1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // These classes wrap the information about a call or function
11 // definition used to handle ABI compliancy.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "TargetInfo.h"
16 #include "ABIInfo.h"
17 #include "CGBlocks.h"
18 #include "CGCXXABI.h"
19 #include "CGValue.h"
20 #include "CodeGenFunction.h"
21 #include "clang/AST/RecordLayout.h"
22 #include "clang/CodeGen/CGFunctionInfo.h"
23 #include "clang/CodeGen/SwiftCallingConv.h"
24 #include "clang/Frontend/CodeGenOptions.h"
25 #include "llvm/ADT/StringExtras.h"
26 #include "llvm/ADT/StringSwitch.h"
27 #include "llvm/ADT/Triple.h"
28 #include "llvm/ADT/Twine.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/Type.h"
31 #include "llvm/Support/raw_ostream.h"
32 #include <algorithm>    // std::sort
33 
34 using namespace clang;
35 using namespace CodeGen;
36 
37 // Helper for coercing an aggregate argument or return value into an integer
38 // array of the same size (including padding) and alignment.  This alternate
39 // coercion happens only for the RenderScript ABI and can be removed after
40 // runtimes that rely on it are no longer supported.
41 //
42 // RenderScript assumes that the size of the argument / return value in the IR
43 // is the same as the size of the corresponding qualified type. This helper
44 // coerces the aggregate type into an array of the same size (including
45 // padding).  This coercion is used in lieu of expansion of struct members or
46 // other canonical coercions that return a coerced-type of larger size.
47 //
48 // Ty          - The argument / return value type
49 // Context     - The associated ASTContext
50 // LLVMContext - The associated LLVMContext
51 static ABIArgInfo coerceToIntArray(QualType Ty,
52                                    ASTContext &Context,
53                                    llvm::LLVMContext &LLVMContext) {
54   // Alignment and Size are measured in bits.
55   const uint64_t Size = Context.getTypeSize(Ty);
56   const uint64_t Alignment = Context.getTypeAlign(Ty);
57   llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment);
58   const uint64_t NumElements = (Size + Alignment - 1) / Alignment;
59   return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements));
60 }
61 
62 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
63                                llvm::Value *Array,
64                                llvm::Value *Value,
65                                unsigned FirstIndex,
66                                unsigned LastIndex) {
67   // Alternatively, we could emit this as a loop in the source.
68   for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
69     llvm::Value *Cell =
70         Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I);
71     Builder.CreateAlignedStore(Value, Cell, CharUnits::One());
72   }
73 }
74 
75 static bool isAggregateTypeForABI(QualType T) {
76   return !CodeGenFunction::hasScalarEvaluationKind(T) ||
77          T->isMemberFunctionPointerType();
78 }
79 
80 ABIArgInfo
81 ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByRef, bool Realign,
82                                  llvm::Type *Padding) const {
83   return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty),
84                                  ByRef, Realign, Padding);
85 }
86 
87 ABIArgInfo
88 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const {
89   return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty),
90                                       /*ByRef*/ false, Realign);
91 }
92 
93 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
94                              QualType Ty) const {
95   return Address::invalid();
96 }
97 
98 ABIInfo::~ABIInfo() {}
99 
100 /// Does the given lowering require more than the given number of
101 /// registers when expanded?
102 ///
103 /// This is intended to be the basis of a reasonable basic implementation
104 /// of should{Pass,Return}IndirectlyForSwift.
105 ///
106 /// For most targets, a limit of four total registers is reasonable; this
107 /// limits the amount of code required in order to move around the value
108 /// in case it wasn't produced immediately prior to the call by the caller
109 /// (or wasn't produced in exactly the right registers) or isn't used
110 /// immediately within the callee.  But some targets may need to further
111 /// limit the register count due to an inability to support that many
112 /// return registers.
113 static bool occupiesMoreThan(CodeGenTypes &cgt,
114                              ArrayRef<llvm::Type*> scalarTypes,
115                              unsigned maxAllRegisters) {
116   unsigned intCount = 0, fpCount = 0;
117   for (llvm::Type *type : scalarTypes) {
118     if (type->isPointerTy()) {
119       intCount++;
120     } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) {
121       auto ptrWidth = cgt.getTarget().getPointerWidth(0);
122       intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth;
123     } else {
124       assert(type->isVectorTy() || type->isFloatingPointTy());
125       fpCount++;
126     }
127   }
128 
129   return (intCount + fpCount > maxAllRegisters);
130 }
131 
132 bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize,
133                                              llvm::Type *eltTy,
134                                              unsigned numElts) const {
135   // The default implementation of this assumes that the target guarantees
136   // 128-bit SIMD support but nothing more.
137   return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16);
138 }
139 
140 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT,
141                                               CGCXXABI &CXXABI) {
142   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
143   if (!RD) {
144     if (!RT->getDecl()->canPassInRegisters())
145       return CGCXXABI::RAA_Indirect;
146     return CGCXXABI::RAA_Default;
147   }
148   return CXXABI.getRecordArgABI(RD);
149 }
150 
151 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T,
152                                               CGCXXABI &CXXABI) {
153   const RecordType *RT = T->getAs<RecordType>();
154   if (!RT)
155     return CGCXXABI::RAA_Default;
156   return getRecordArgABI(RT, CXXABI);
157 }
158 
159 static bool classifyReturnType(const CGCXXABI &CXXABI, CGFunctionInfo &FI,
160                                const ABIInfo &Info) {
161   QualType Ty = FI.getReturnType();
162 
163   if (const auto *RT = Ty->getAs<RecordType>())
164     if (!isa<CXXRecordDecl>(RT->getDecl()) &&
165         !RT->getDecl()->canPassInRegisters()) {
166       FI.getReturnInfo() = Info.getNaturalAlignIndirect(Ty);
167       return true;
168     }
169 
170   return CXXABI.classifyReturnType(FI);
171 }
172 
173 /// Pass transparent unions as if they were the type of the first element. Sema
174 /// should ensure that all elements of the union have the same "machine type".
175 static QualType useFirstFieldIfTransparentUnion(QualType Ty) {
176   if (const RecordType *UT = Ty->getAsUnionType()) {
177     const RecordDecl *UD = UT->getDecl();
178     if (UD->hasAttr<TransparentUnionAttr>()) {
179       assert(!UD->field_empty() && "sema created an empty transparent union");
180       return UD->field_begin()->getType();
181     }
182   }
183   return Ty;
184 }
185 
186 CGCXXABI &ABIInfo::getCXXABI() const {
187   return CGT.getCXXABI();
188 }
189 
190 ASTContext &ABIInfo::getContext() const {
191   return CGT.getContext();
192 }
193 
194 llvm::LLVMContext &ABIInfo::getVMContext() const {
195   return CGT.getLLVMContext();
196 }
197 
198 const llvm::DataLayout &ABIInfo::getDataLayout() const {
199   return CGT.getDataLayout();
200 }
201 
202 const TargetInfo &ABIInfo::getTarget() const {
203   return CGT.getTarget();
204 }
205 
206 const CodeGenOptions &ABIInfo::getCodeGenOpts() const {
207   return CGT.getCodeGenOpts();
208 }
209 
210 bool ABIInfo::isAndroid() const { return getTarget().getTriple().isAndroid(); }
211 
212 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
213   return false;
214 }
215 
216 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
217                                                 uint64_t Members) const {
218   return false;
219 }
220 
221 LLVM_DUMP_METHOD void ABIArgInfo::dump() const {
222   raw_ostream &OS = llvm::errs();
223   OS << "(ABIArgInfo Kind=";
224   switch (TheKind) {
225   case Direct:
226     OS << "Direct Type=";
227     if (llvm::Type *Ty = getCoerceToType())
228       Ty->print(OS);
229     else
230       OS << "null";
231     break;
232   case Extend:
233     OS << "Extend";
234     break;
235   case Ignore:
236     OS << "Ignore";
237     break;
238   case InAlloca:
239     OS << "InAlloca Offset=" << getInAllocaFieldIndex();
240     break;
241   case Indirect:
242     OS << "Indirect Align=" << getIndirectAlign().getQuantity()
243        << " ByVal=" << getIndirectByVal()
244        << " Realign=" << getIndirectRealign();
245     break;
246   case Expand:
247     OS << "Expand";
248     break;
249   case CoerceAndExpand:
250     OS << "CoerceAndExpand Type=";
251     getCoerceAndExpandType()->print(OS);
252     break;
253   }
254   OS << ")\n";
255 }
256 
257 // Dynamically round a pointer up to a multiple of the given alignment.
258 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF,
259                                                   llvm::Value *Ptr,
260                                                   CharUnits Align) {
261   llvm::Value *PtrAsInt = Ptr;
262   // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align;
263   PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy);
264   PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt,
265         llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1));
266   PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt,
267            llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity()));
268   PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt,
269                                         Ptr->getType(),
270                                         Ptr->getName() + ".aligned");
271   return PtrAsInt;
272 }
273 
274 /// Emit va_arg for a platform using the common void* representation,
275 /// where arguments are simply emitted in an array of slots on the stack.
276 ///
277 /// This version implements the core direct-value passing rules.
278 ///
279 /// \param SlotSize - The size and alignment of a stack slot.
280 ///   Each argument will be allocated to a multiple of this number of
281 ///   slots, and all the slots will be aligned to this value.
282 /// \param AllowHigherAlign - The slot alignment is not a cap;
283 ///   an argument type with an alignment greater than the slot size
284 ///   will be emitted on a higher-alignment address, potentially
285 ///   leaving one or more empty slots behind as padding.  If this
286 ///   is false, the returned address might be less-aligned than
287 ///   DirectAlign.
288 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF,
289                                       Address VAListAddr,
290                                       llvm::Type *DirectTy,
291                                       CharUnits DirectSize,
292                                       CharUnits DirectAlign,
293                                       CharUnits SlotSize,
294                                       bool AllowHigherAlign) {
295   // Cast the element type to i8* if necessary.  Some platforms define
296   // va_list as a struct containing an i8* instead of just an i8*.
297   if (VAListAddr.getElementType() != CGF.Int8PtrTy)
298     VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy);
299 
300   llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur");
301 
302   // If the CC aligns values higher than the slot size, do so if needed.
303   Address Addr = Address::invalid();
304   if (AllowHigherAlign && DirectAlign > SlotSize) {
305     Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign),
306                                                  DirectAlign);
307   } else {
308     Addr = Address(Ptr, SlotSize);
309   }
310 
311   // Advance the pointer past the argument, then store that back.
312   CharUnits FullDirectSize = DirectSize.alignTo(SlotSize);
313   llvm::Value *NextPtr =
314     CGF.Builder.CreateConstInBoundsByteGEP(Addr.getPointer(), FullDirectSize,
315                                            "argp.next");
316   CGF.Builder.CreateStore(NextPtr, VAListAddr);
317 
318   // If the argument is smaller than a slot, and this is a big-endian
319   // target, the argument will be right-adjusted in its slot.
320   if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() &&
321       !DirectTy->isStructTy()) {
322     Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize);
323   }
324 
325   Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy);
326   return Addr;
327 }
328 
329 /// Emit va_arg for a platform using the common void* representation,
330 /// where arguments are simply emitted in an array of slots on the stack.
331 ///
332 /// \param IsIndirect - Values of this type are passed indirectly.
333 /// \param ValueInfo - The size and alignment of this type, generally
334 ///   computed with getContext().getTypeInfoInChars(ValueTy).
335 /// \param SlotSizeAndAlign - The size and alignment of a stack slot.
336 ///   Each argument will be allocated to a multiple of this number of
337 ///   slots, and all the slots will be aligned to this value.
338 /// \param AllowHigherAlign - The slot alignment is not a cap;
339 ///   an argument type with an alignment greater than the slot size
340 ///   will be emitted on a higher-alignment address, potentially
341 ///   leaving one or more empty slots behind as padding.
342 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr,
343                                 QualType ValueTy, bool IsIndirect,
344                                 std::pair<CharUnits, CharUnits> ValueInfo,
345                                 CharUnits SlotSizeAndAlign,
346                                 bool AllowHigherAlign) {
347   // The size and alignment of the value that was passed directly.
348   CharUnits DirectSize, DirectAlign;
349   if (IsIndirect) {
350     DirectSize = CGF.getPointerSize();
351     DirectAlign = CGF.getPointerAlign();
352   } else {
353     DirectSize = ValueInfo.first;
354     DirectAlign = ValueInfo.second;
355   }
356 
357   // Cast the address we've calculated to the right type.
358   llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy);
359   if (IsIndirect)
360     DirectTy = DirectTy->getPointerTo(0);
361 
362   Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy,
363                                         DirectSize, DirectAlign,
364                                         SlotSizeAndAlign,
365                                         AllowHigherAlign);
366 
367   if (IsIndirect) {
368     Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.second);
369   }
370 
371   return Addr;
372 
373 }
374 
375 static Address emitMergePHI(CodeGenFunction &CGF,
376                             Address Addr1, llvm::BasicBlock *Block1,
377                             Address Addr2, llvm::BasicBlock *Block2,
378                             const llvm::Twine &Name = "") {
379   assert(Addr1.getType() == Addr2.getType());
380   llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name);
381   PHI->addIncoming(Addr1.getPointer(), Block1);
382   PHI->addIncoming(Addr2.getPointer(), Block2);
383   CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment());
384   return Address(PHI, Align);
385 }
386 
387 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }
388 
389 // If someone can figure out a general rule for this, that would be great.
390 // It's probably just doomed to be platform-dependent, though.
391 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const {
392   // Verified for:
393   //   x86-64     FreeBSD, Linux, Darwin
394   //   x86-32     FreeBSD, Linux, Darwin
395   //   PowerPC    Linux, Darwin
396   //   ARM        Darwin (*not* EABI)
397   //   AArch64    Linux
398   return 32;
399 }
400 
401 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args,
402                                      const FunctionNoProtoType *fnType) const {
403   // The following conventions are known to require this to be false:
404   //   x86_stdcall
405   //   MIPS
406   // For everything else, we just prefer false unless we opt out.
407   return false;
408 }
409 
410 void
411 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib,
412                                              llvm::SmallString<24> &Opt) const {
413   // This assumes the user is passing a library name like "rt" instead of a
414   // filename like "librt.a/so", and that they don't care whether it's static or
415   // dynamic.
416   Opt = "-l";
417   Opt += Lib;
418 }
419 
420 unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const {
421   // OpenCL kernels are called via an explicit runtime API with arguments
422   // set with clSetKernelArg(), not as normal sub-functions.
423   // Return SPIR_KERNEL by default as the kernel calling convention to
424   // ensure the fingerprint is fixed such way that each OpenCL argument
425   // gets one matching argument in the produced kernel function argument
426   // list to enable feasible implementation of clSetKernelArg() with
427   // aggregates etc. In case we would use the default C calling conv here,
428   // clSetKernelArg() might break depending on the target-specific
429   // conventions; different targets might split structs passed as values
430   // to multiple function arguments etc.
431   return llvm::CallingConv::SPIR_KERNEL;
432 }
433 
434 llvm::Constant *TargetCodeGenInfo::getNullPointer(const CodeGen::CodeGenModule &CGM,
435     llvm::PointerType *T, QualType QT) const {
436   return llvm::ConstantPointerNull::get(T);
437 }
438 
439 LangAS TargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM,
440                                                    const VarDecl *D) const {
441   assert(!CGM.getLangOpts().OpenCL &&
442          !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) &&
443          "Address space agnostic languages only");
444   return D ? D->getType().getAddressSpace() : LangAS::Default;
445 }
446 
447 llvm::Value *TargetCodeGenInfo::performAddrSpaceCast(
448     CodeGen::CodeGenFunction &CGF, llvm::Value *Src, LangAS SrcAddr,
449     LangAS DestAddr, llvm::Type *DestTy, bool isNonNull) const {
450   // Since target may map different address spaces in AST to the same address
451   // space, an address space conversion may end up as a bitcast.
452   if (auto *C = dyn_cast<llvm::Constant>(Src))
453     return performAddrSpaceCast(CGF.CGM, C, SrcAddr, DestAddr, DestTy);
454   return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DestTy);
455 }
456 
457 llvm::Constant *
458 TargetCodeGenInfo::performAddrSpaceCast(CodeGenModule &CGM, llvm::Constant *Src,
459                                         LangAS SrcAddr, LangAS DestAddr,
460                                         llvm::Type *DestTy) const {
461   // Since target may map different address spaces in AST to the same address
462   // space, an address space conversion may end up as a bitcast.
463   return llvm::ConstantExpr::getPointerCast(Src, DestTy);
464 }
465 
466 llvm::SyncScope::ID
467 TargetCodeGenInfo::getLLVMSyncScopeID(SyncScope S, llvm::LLVMContext &C) const {
468   return C.getOrInsertSyncScopeID(""); /* default sync scope */
469 }
470 
471 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
472 
473 /// isEmptyField - Return true iff a the field is "empty", that is it
474 /// is an unnamed bit-field or an (array of) empty record(s).
475 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
476                          bool AllowArrays) {
477   if (FD->isUnnamedBitfield())
478     return true;
479 
480   QualType FT = FD->getType();
481 
482   // Constant arrays of empty records count as empty, strip them off.
483   // Constant arrays of zero length always count as empty.
484   if (AllowArrays)
485     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
486       if (AT->getSize() == 0)
487         return true;
488       FT = AT->getElementType();
489     }
490 
491   const RecordType *RT = FT->getAs<RecordType>();
492   if (!RT)
493     return false;
494 
495   // C++ record fields are never empty, at least in the Itanium ABI.
496   //
497   // FIXME: We should use a predicate for whether this behavior is true in the
498   // current ABI.
499   if (isa<CXXRecordDecl>(RT->getDecl()))
500     return false;
501 
502   return isEmptyRecord(Context, FT, AllowArrays);
503 }
504 
505 /// isEmptyRecord - Return true iff a structure contains only empty
506 /// fields. Note that a structure with a flexible array member is not
507 /// considered empty.
508 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
509   const RecordType *RT = T->getAs<RecordType>();
510   if (!RT)
511     return false;
512   const RecordDecl *RD = RT->getDecl();
513   if (RD->hasFlexibleArrayMember())
514     return false;
515 
516   // If this is a C++ record, check the bases first.
517   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
518     for (const auto &I : CXXRD->bases())
519       if (!isEmptyRecord(Context, I.getType(), true))
520         return false;
521 
522   for (const auto *I : RD->fields())
523     if (!isEmptyField(Context, I, AllowArrays))
524       return false;
525   return true;
526 }
527 
528 /// isSingleElementStruct - Determine if a structure is a "single
529 /// element struct", i.e. it has exactly one non-empty field or
530 /// exactly one field which is itself a single element
531 /// struct. Structures with flexible array members are never
532 /// considered single element structs.
533 ///
534 /// \return The field declaration for the single non-empty field, if
535 /// it exists.
536 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
537   const RecordType *RT = T->getAs<RecordType>();
538   if (!RT)
539     return nullptr;
540 
541   const RecordDecl *RD = RT->getDecl();
542   if (RD->hasFlexibleArrayMember())
543     return nullptr;
544 
545   const Type *Found = nullptr;
546 
547   // If this is a C++ record, check the bases first.
548   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
549     for (const auto &I : CXXRD->bases()) {
550       // Ignore empty records.
551       if (isEmptyRecord(Context, I.getType(), true))
552         continue;
553 
554       // If we already found an element then this isn't a single-element struct.
555       if (Found)
556         return nullptr;
557 
558       // If this is non-empty and not a single element struct, the composite
559       // cannot be a single element struct.
560       Found = isSingleElementStruct(I.getType(), Context);
561       if (!Found)
562         return nullptr;
563     }
564   }
565 
566   // Check for single element.
567   for (const auto *FD : RD->fields()) {
568     QualType FT = FD->getType();
569 
570     // Ignore empty fields.
571     if (isEmptyField(Context, FD, true))
572       continue;
573 
574     // If we already found an element then this isn't a single-element
575     // struct.
576     if (Found)
577       return nullptr;
578 
579     // Treat single element arrays as the element.
580     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
581       if (AT->getSize().getZExtValue() != 1)
582         break;
583       FT = AT->getElementType();
584     }
585 
586     if (!isAggregateTypeForABI(FT)) {
587       Found = FT.getTypePtr();
588     } else {
589       Found = isSingleElementStruct(FT, Context);
590       if (!Found)
591         return nullptr;
592     }
593   }
594 
595   // We don't consider a struct a single-element struct if it has
596   // padding beyond the element type.
597   if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T))
598     return nullptr;
599 
600   return Found;
601 }
602 
603 namespace {
604 Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty,
605                        const ABIArgInfo &AI) {
606   // This default implementation defers to the llvm backend's va_arg
607   // instruction. It can handle only passing arguments directly
608   // (typically only handled in the backend for primitive types), or
609   // aggregates passed indirectly by pointer (NOTE: if the "byval"
610   // flag has ABI impact in the callee, this implementation cannot
611   // work.)
612 
613   // Only a few cases are covered here at the moment -- those needed
614   // by the default abi.
615   llvm::Value *Val;
616 
617   if (AI.isIndirect()) {
618     assert(!AI.getPaddingType() &&
619            "Unexpected PaddingType seen in arginfo in generic VAArg emitter!");
620     assert(
621         !AI.getIndirectRealign() &&
622         "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!");
623 
624     auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty);
625     CharUnits TyAlignForABI = TyInfo.second;
626 
627     llvm::Type *BaseTy =
628         llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
629     llvm::Value *Addr =
630         CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy);
631     return Address(Addr, TyAlignForABI);
632   } else {
633     assert((AI.isDirect() || AI.isExtend()) &&
634            "Unexpected ArgInfo Kind in generic VAArg emitter!");
635 
636     assert(!AI.getInReg() &&
637            "Unexpected InReg seen in arginfo in generic VAArg emitter!");
638     assert(!AI.getPaddingType() &&
639            "Unexpected PaddingType seen in arginfo in generic VAArg emitter!");
640     assert(!AI.getDirectOffset() &&
641            "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!");
642     assert(!AI.getCoerceToType() &&
643            "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!");
644 
645     Address Temp = CGF.CreateMemTemp(Ty, "varet");
646     Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), CGF.ConvertType(Ty));
647     CGF.Builder.CreateStore(Val, Temp);
648     return Temp;
649   }
650 }
651 
652 /// DefaultABIInfo - The default implementation for ABI specific
653 /// details. This implementation provides information which results in
654 /// self-consistent and sensible LLVM IR generation, but does not
655 /// conform to any particular ABI.
656 class DefaultABIInfo : public ABIInfo {
657 public:
658   DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
659 
660   ABIArgInfo classifyReturnType(QualType RetTy) const;
661   ABIArgInfo classifyArgumentType(QualType RetTy) const;
662 
663   void computeInfo(CGFunctionInfo &FI) const override {
664     if (!getCXXABI().classifyReturnType(FI))
665       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
666     for (auto &I : FI.arguments())
667       I.info = classifyArgumentType(I.type);
668   }
669 
670   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
671                     QualType Ty) const override {
672     return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty));
673   }
674 };
675 
676 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
677 public:
678   DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
679     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
680 };
681 
682 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
683   Ty = useFirstFieldIfTransparentUnion(Ty);
684 
685   if (isAggregateTypeForABI(Ty)) {
686     // Records with non-trivial destructors/copy-constructors should not be
687     // passed by value.
688     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
689       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
690 
691     return getNaturalAlignIndirect(Ty);
692   }
693 
694   // Treat an enum type as its underlying type.
695   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
696     Ty = EnumTy->getDecl()->getIntegerType();
697 
698   return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
699                                         : ABIArgInfo::getDirect());
700 }
701 
702 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
703   if (RetTy->isVoidType())
704     return ABIArgInfo::getIgnore();
705 
706   if (isAggregateTypeForABI(RetTy))
707     return getNaturalAlignIndirect(RetTy);
708 
709   // Treat an enum type as its underlying type.
710   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
711     RetTy = EnumTy->getDecl()->getIntegerType();
712 
713   return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
714                                            : ABIArgInfo::getDirect());
715 }
716 
717 //===----------------------------------------------------------------------===//
718 // WebAssembly ABI Implementation
719 //
720 // This is a very simple ABI that relies a lot on DefaultABIInfo.
721 //===----------------------------------------------------------------------===//
722 
723 class WebAssemblyABIInfo final : public DefaultABIInfo {
724 public:
725   explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT)
726       : DefaultABIInfo(CGT) {}
727 
728 private:
729   ABIArgInfo classifyReturnType(QualType RetTy) const;
730   ABIArgInfo classifyArgumentType(QualType Ty) const;
731 
732   // DefaultABIInfo's classifyReturnType and classifyArgumentType are
733   // non-virtual, but computeInfo and EmitVAArg are virtual, so we
734   // overload them.
735   void computeInfo(CGFunctionInfo &FI) const override {
736     if (!getCXXABI().classifyReturnType(FI))
737       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
738     for (auto &Arg : FI.arguments())
739       Arg.info = classifyArgumentType(Arg.type);
740   }
741 
742   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
743                     QualType Ty) const override;
744 };
745 
746 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo {
747 public:
748   explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
749       : TargetCodeGenInfo(new WebAssemblyABIInfo(CGT)) {}
750 
751   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
752                            CodeGen::CodeGenModule &CGM) const override {
753     if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) {
754       llvm::Function *Fn = cast<llvm::Function>(GV);
755       if (!FD->doesThisDeclarationHaveABody() && !FD->hasPrototype())
756         Fn->addFnAttr("no-prototype");
757     }
758   }
759 };
760 
761 /// Classify argument of given type \p Ty.
762 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const {
763   Ty = useFirstFieldIfTransparentUnion(Ty);
764 
765   if (isAggregateTypeForABI(Ty)) {
766     // Records with non-trivial destructors/copy-constructors should not be
767     // passed by value.
768     if (auto RAA = getRecordArgABI(Ty, getCXXABI()))
769       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
770     // Ignore empty structs/unions.
771     if (isEmptyRecord(getContext(), Ty, true))
772       return ABIArgInfo::getIgnore();
773     // Lower single-element structs to just pass a regular value. TODO: We
774     // could do reasonable-size multiple-element structs too, using getExpand(),
775     // though watch out for things like bitfields.
776     if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
777       return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
778   }
779 
780   // Otherwise just do the default thing.
781   return DefaultABIInfo::classifyArgumentType(Ty);
782 }
783 
784 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const {
785   if (isAggregateTypeForABI(RetTy)) {
786     // Records with non-trivial destructors/copy-constructors should not be
787     // returned by value.
788     if (!getRecordArgABI(RetTy, getCXXABI())) {
789       // Ignore empty structs/unions.
790       if (isEmptyRecord(getContext(), RetTy, true))
791         return ABIArgInfo::getIgnore();
792       // Lower single-element structs to just return a regular value. TODO: We
793       // could do reasonable-size multiple-element structs too, using
794       // ABIArgInfo::getDirect().
795       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
796         return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
797     }
798   }
799 
800   // Otherwise just do the default thing.
801   return DefaultABIInfo::classifyReturnType(RetTy);
802 }
803 
804 Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
805                                       QualType Ty) const {
806   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect=*/ false,
807                           getContext().getTypeInfoInChars(Ty),
808                           CharUnits::fromQuantity(4),
809                           /*AllowHigherAlign=*/ true);
810 }
811 
812 //===----------------------------------------------------------------------===//
813 // le32/PNaCl bitcode ABI Implementation
814 //
815 // This is a simplified version of the x86_32 ABI.  Arguments and return values
816 // are always passed on the stack.
817 //===----------------------------------------------------------------------===//
818 
819 class PNaClABIInfo : public ABIInfo {
820  public:
821   PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
822 
823   ABIArgInfo classifyReturnType(QualType RetTy) const;
824   ABIArgInfo classifyArgumentType(QualType RetTy) const;
825 
826   void computeInfo(CGFunctionInfo &FI) const override;
827   Address EmitVAArg(CodeGenFunction &CGF,
828                     Address VAListAddr, QualType Ty) const override;
829 };
830 
831 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo {
832  public:
833   PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
834     : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {}
835 };
836 
837 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const {
838   if (!getCXXABI().classifyReturnType(FI))
839     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
840 
841   for (auto &I : FI.arguments())
842     I.info = classifyArgumentType(I.type);
843 }
844 
845 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
846                                 QualType Ty) const {
847   // The PNaCL ABI is a bit odd, in that varargs don't use normal
848   // function classification. Structs get passed directly for varargs
849   // functions, through a rewriting transform in
850   // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows
851   // this target to actually support a va_arg instructions with an
852   // aggregate type, unlike other targets.
853   return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect());
854 }
855 
856 /// Classify argument of given type \p Ty.
857 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const {
858   if (isAggregateTypeForABI(Ty)) {
859     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
860       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
861     return getNaturalAlignIndirect(Ty);
862   } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
863     // Treat an enum type as its underlying type.
864     Ty = EnumTy->getDecl()->getIntegerType();
865   } else if (Ty->isFloatingType()) {
866     // Floating-point types don't go inreg.
867     return ABIArgInfo::getDirect();
868   }
869 
870   return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
871                                         : ABIArgInfo::getDirect());
872 }
873 
874 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const {
875   if (RetTy->isVoidType())
876     return ABIArgInfo::getIgnore();
877 
878   // In the PNaCl ABI we always return records/structures on the stack.
879   if (isAggregateTypeForABI(RetTy))
880     return getNaturalAlignIndirect(RetTy);
881 
882   // Treat an enum type as its underlying type.
883   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
884     RetTy = EnumTy->getDecl()->getIntegerType();
885 
886   return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
887                                            : ABIArgInfo::getDirect());
888 }
889 
890 /// IsX86_MMXType - Return true if this is an MMX type.
891 bool IsX86_MMXType(llvm::Type *IRType) {
892   // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>.
893   return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
894     cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
895     IRType->getScalarSizeInBits() != 64;
896 }
897 
898 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
899                                           StringRef Constraint,
900                                           llvm::Type* Ty) {
901   bool IsMMXCons = llvm::StringSwitch<bool>(Constraint)
902                      .Cases("y", "&y", "^Ym", true)
903                      .Default(false);
904   if (IsMMXCons && Ty->isVectorTy()) {
905     if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) {
906       // Invalid MMX constraint
907       return nullptr;
908     }
909 
910     return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
911   }
912 
913   // No operation needed
914   return Ty;
915 }
916 
917 /// Returns true if this type can be passed in SSE registers with the
918 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64.
919 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) {
920   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
921     if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) {
922       if (BT->getKind() == BuiltinType::LongDouble) {
923         if (&Context.getTargetInfo().getLongDoubleFormat() ==
924             &llvm::APFloat::x87DoubleExtended())
925           return false;
926       }
927       return true;
928     }
929   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
930     // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX
931     // registers specially.
932     unsigned VecSize = Context.getTypeSize(VT);
933     if (VecSize == 128 || VecSize == 256 || VecSize == 512)
934       return true;
935   }
936   return false;
937 }
938 
939 /// Returns true if this aggregate is small enough to be passed in SSE registers
940 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64.
941 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) {
942   return NumMembers <= 4;
943 }
944 
945 /// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86.
946 static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) {
947   auto AI = ABIArgInfo::getDirect(T);
948   AI.setInReg(true);
949   AI.setCanBeFlattened(false);
950   return AI;
951 }
952 
953 //===----------------------------------------------------------------------===//
954 // X86-32 ABI Implementation
955 //===----------------------------------------------------------------------===//
956 
957 /// Similar to llvm::CCState, but for Clang.
958 struct CCState {
959   CCState(unsigned CC) : CC(CC), FreeRegs(0), FreeSSERegs(0) {}
960 
961   unsigned CC;
962   unsigned FreeRegs;
963   unsigned FreeSSERegs;
964 };
965 
966 enum {
967   // Vectorcall only allows the first 6 parameters to be passed in registers.
968   VectorcallMaxParamNumAsReg = 6
969 };
970 
971 /// X86_32ABIInfo - The X86-32 ABI information.
972 class X86_32ABIInfo : public SwiftABIInfo {
973   enum Class {
974     Integer,
975     Float
976   };
977 
978   static const unsigned MinABIStackAlignInBytes = 4;
979 
980   bool IsDarwinVectorABI;
981   bool IsRetSmallStructInRegABI;
982   bool IsWin32StructABI;
983   bool IsSoftFloatABI;
984   bool IsMCUABI;
985   unsigned DefaultNumRegisterParameters;
986 
987   static bool isRegisterSize(unsigned Size) {
988     return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
989   }
990 
991   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
992     // FIXME: Assumes vectorcall is in use.
993     return isX86VectorTypeForVectorCall(getContext(), Ty);
994   }
995 
996   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
997                                          uint64_t NumMembers) const override {
998     // FIXME: Assumes vectorcall is in use.
999     return isX86VectorCallAggregateSmallEnough(NumMembers);
1000   }
1001 
1002   bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const;
1003 
1004   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1005   /// such that the argument will be passed in memory.
1006   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
1007 
1008   ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const;
1009 
1010   /// Return the alignment to use for the given type on the stack.
1011   unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
1012 
1013   Class classify(QualType Ty) const;
1014   ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const;
1015   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
1016 
1017   /// Updates the number of available free registers, returns
1018   /// true if any registers were allocated.
1019   bool updateFreeRegs(QualType Ty, CCState &State) const;
1020 
1021   bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg,
1022                                 bool &NeedsPadding) const;
1023   bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const;
1024 
1025   bool canExpandIndirectArgument(QualType Ty) const;
1026 
1027   /// Rewrite the function info so that all memory arguments use
1028   /// inalloca.
1029   void rewriteWithInAlloca(CGFunctionInfo &FI) const;
1030 
1031   void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
1032                            CharUnits &StackOffset, ABIArgInfo &Info,
1033                            QualType Type) const;
1034   void computeVectorCallArgs(CGFunctionInfo &FI, CCState &State,
1035                              bool &UsedInAlloca) const;
1036 
1037 public:
1038 
1039   void computeInfo(CGFunctionInfo &FI) const override;
1040   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
1041                     QualType Ty) const override;
1042 
1043   X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
1044                 bool RetSmallStructInRegABI, bool Win32StructABI,
1045                 unsigned NumRegisterParameters, bool SoftFloatABI)
1046     : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI),
1047       IsRetSmallStructInRegABI(RetSmallStructInRegABI),
1048       IsWin32StructABI(Win32StructABI),
1049       IsSoftFloatABI(SoftFloatABI),
1050       IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()),
1051       DefaultNumRegisterParameters(NumRegisterParameters) {}
1052 
1053   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
1054                                     bool asReturnValue) const override {
1055     // LLVM's x86-32 lowering currently only assigns up to three
1056     // integer registers and three fp registers.  Oddly, it'll use up to
1057     // four vector registers for vectors, but those can overlap with the
1058     // scalar registers.
1059     return occupiesMoreThan(CGT, scalars, /*total*/ 3);
1060   }
1061 
1062   bool isSwiftErrorInRegister() const override {
1063     // x86-32 lowering does not support passing swifterror in a register.
1064     return false;
1065   }
1066 };
1067 
1068 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
1069 public:
1070   X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
1071                           bool RetSmallStructInRegABI, bool Win32StructABI,
1072                           unsigned NumRegisterParameters, bool SoftFloatABI)
1073       : TargetCodeGenInfo(new X86_32ABIInfo(
1074             CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI,
1075             NumRegisterParameters, SoftFloatABI)) {}
1076 
1077   static bool isStructReturnInRegABI(
1078       const llvm::Triple &Triple, const CodeGenOptions &Opts);
1079 
1080   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
1081                            CodeGen::CodeGenModule &CGM) const override;
1082 
1083   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
1084     // Darwin uses different dwarf register numbers for EH.
1085     if (CGM.getTarget().getTriple().isOSDarwin()) return 5;
1086     return 4;
1087   }
1088 
1089   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1090                                llvm::Value *Address) const override;
1091 
1092   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
1093                                   StringRef Constraint,
1094                                   llvm::Type* Ty) const override {
1095     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
1096   }
1097 
1098   void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue,
1099                                 std::string &Constraints,
1100                                 std::vector<llvm::Type *> &ResultRegTypes,
1101                                 std::vector<llvm::Type *> &ResultTruncRegTypes,
1102                                 std::vector<LValue> &ResultRegDests,
1103                                 std::string &AsmString,
1104                                 unsigned NumOutputs) const override;
1105 
1106   llvm::Constant *
1107   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
1108     unsigned Sig = (0xeb << 0) |  // jmp rel8
1109                    (0x06 << 8) |  //           .+0x08
1110                    ('v' << 16) |
1111                    ('2' << 24);
1112     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
1113   }
1114 
1115   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
1116     return "movl\t%ebp, %ebp"
1117            "\t\t// marker for objc_retainAutoreleaseReturnValue";
1118   }
1119 };
1120 
1121 }
1122 
1123 /// Rewrite input constraint references after adding some output constraints.
1124 /// In the case where there is one output and one input and we add one output,
1125 /// we need to replace all operand references greater than or equal to 1:
1126 ///     mov $0, $1
1127 ///     mov eax, $1
1128 /// The result will be:
1129 ///     mov $0, $2
1130 ///     mov eax, $2
1131 static void rewriteInputConstraintReferences(unsigned FirstIn,
1132                                              unsigned NumNewOuts,
1133                                              std::string &AsmString) {
1134   std::string Buf;
1135   llvm::raw_string_ostream OS(Buf);
1136   size_t Pos = 0;
1137   while (Pos < AsmString.size()) {
1138     size_t DollarStart = AsmString.find('$', Pos);
1139     if (DollarStart == std::string::npos)
1140       DollarStart = AsmString.size();
1141     size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart);
1142     if (DollarEnd == std::string::npos)
1143       DollarEnd = AsmString.size();
1144     OS << StringRef(&AsmString[Pos], DollarEnd - Pos);
1145     Pos = DollarEnd;
1146     size_t NumDollars = DollarEnd - DollarStart;
1147     if (NumDollars % 2 != 0 && Pos < AsmString.size()) {
1148       // We have an operand reference.
1149       size_t DigitStart = Pos;
1150       size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart);
1151       if (DigitEnd == std::string::npos)
1152         DigitEnd = AsmString.size();
1153       StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart);
1154       unsigned OperandIndex;
1155       if (!OperandStr.getAsInteger(10, OperandIndex)) {
1156         if (OperandIndex >= FirstIn)
1157           OperandIndex += NumNewOuts;
1158         OS << OperandIndex;
1159       } else {
1160         OS << OperandStr;
1161       }
1162       Pos = DigitEnd;
1163     }
1164   }
1165   AsmString = std::move(OS.str());
1166 }
1167 
1168 /// Add output constraints for EAX:EDX because they are return registers.
1169 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs(
1170     CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints,
1171     std::vector<llvm::Type *> &ResultRegTypes,
1172     std::vector<llvm::Type *> &ResultTruncRegTypes,
1173     std::vector<LValue> &ResultRegDests, std::string &AsmString,
1174     unsigned NumOutputs) const {
1175   uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType());
1176 
1177   // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is
1178   // larger.
1179   if (!Constraints.empty())
1180     Constraints += ',';
1181   if (RetWidth <= 32) {
1182     Constraints += "={eax}";
1183     ResultRegTypes.push_back(CGF.Int32Ty);
1184   } else {
1185     // Use the 'A' constraint for EAX:EDX.
1186     Constraints += "=A";
1187     ResultRegTypes.push_back(CGF.Int64Ty);
1188   }
1189 
1190   // Truncate EAX or EAX:EDX to an integer of the appropriate size.
1191   llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth);
1192   ResultTruncRegTypes.push_back(CoerceTy);
1193 
1194   // Coerce the integer by bitcasting the return slot pointer.
1195   ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(),
1196                                                   CoerceTy->getPointerTo()));
1197   ResultRegDests.push_back(ReturnSlot);
1198 
1199   rewriteInputConstraintReferences(NumOutputs, 1, AsmString);
1200 }
1201 
1202 /// shouldReturnTypeInRegister - Determine if the given type should be
1203 /// returned in a register (for the Darwin and MCU ABI).
1204 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
1205                                                ASTContext &Context) const {
1206   uint64_t Size = Context.getTypeSize(Ty);
1207 
1208   // For i386, type must be register sized.
1209   // For the MCU ABI, it only needs to be <= 8-byte
1210   if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size)))
1211    return false;
1212 
1213   if (Ty->isVectorType()) {
1214     // 64- and 128- bit vectors inside structures are not returned in
1215     // registers.
1216     if (Size == 64 || Size == 128)
1217       return false;
1218 
1219     return true;
1220   }
1221 
1222   // If this is a builtin, pointer, enum, complex type, member pointer, or
1223   // member function pointer it is ok.
1224   if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
1225       Ty->isAnyComplexType() || Ty->isEnumeralType() ||
1226       Ty->isBlockPointerType() || Ty->isMemberPointerType())
1227     return true;
1228 
1229   // Arrays are treated like records.
1230   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
1231     return shouldReturnTypeInRegister(AT->getElementType(), Context);
1232 
1233   // Otherwise, it must be a record type.
1234   const RecordType *RT = Ty->getAs<RecordType>();
1235   if (!RT) return false;
1236 
1237   // FIXME: Traverse bases here too.
1238 
1239   // Structure types are passed in register if all fields would be
1240   // passed in a register.
1241   for (const auto *FD : RT->getDecl()->fields()) {
1242     // Empty fields are ignored.
1243     if (isEmptyField(Context, FD, true))
1244       continue;
1245 
1246     // Check fields recursively.
1247     if (!shouldReturnTypeInRegister(FD->getType(), Context))
1248       return false;
1249   }
1250   return true;
1251 }
1252 
1253 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
1254   // Treat complex types as the element type.
1255   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
1256     Ty = CTy->getElementType();
1257 
1258   // Check for a type which we know has a simple scalar argument-passing
1259   // convention without any padding.  (We're specifically looking for 32
1260   // and 64-bit integer and integer-equivalents, float, and double.)
1261   if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
1262       !Ty->isEnumeralType() && !Ty->isBlockPointerType())
1263     return false;
1264 
1265   uint64_t Size = Context.getTypeSize(Ty);
1266   return Size == 32 || Size == 64;
1267 }
1268 
1269 static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD,
1270                           uint64_t &Size) {
1271   for (const auto *FD : RD->fields()) {
1272     // Scalar arguments on the stack get 4 byte alignment on x86. If the
1273     // argument is smaller than 32-bits, expanding the struct will create
1274     // alignment padding.
1275     if (!is32Or64BitBasicType(FD->getType(), Context))
1276       return false;
1277 
1278     // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
1279     // how to expand them yet, and the predicate for telling if a bitfield still
1280     // counts as "basic" is more complicated than what we were doing previously.
1281     if (FD->isBitField())
1282       return false;
1283 
1284     Size += Context.getTypeSize(FD->getType());
1285   }
1286   return true;
1287 }
1288 
1289 static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD,
1290                                  uint64_t &Size) {
1291   // Don't do this if there are any non-empty bases.
1292   for (const CXXBaseSpecifier &Base : RD->bases()) {
1293     if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(),
1294                               Size))
1295       return false;
1296   }
1297   if (!addFieldSizes(Context, RD, Size))
1298     return false;
1299   return true;
1300 }
1301 
1302 /// Test whether an argument type which is to be passed indirectly (on the
1303 /// stack) would have the equivalent layout if it was expanded into separate
1304 /// arguments. If so, we prefer to do the latter to avoid inhibiting
1305 /// optimizations.
1306 bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const {
1307   // We can only expand structure types.
1308   const RecordType *RT = Ty->getAs<RecordType>();
1309   if (!RT)
1310     return false;
1311   const RecordDecl *RD = RT->getDecl();
1312   uint64_t Size = 0;
1313   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1314     if (!IsWin32StructABI) {
1315       // On non-Windows, we have to conservatively match our old bitcode
1316       // prototypes in order to be ABI-compatible at the bitcode level.
1317       if (!CXXRD->isCLike())
1318         return false;
1319     } else {
1320       // Don't do this for dynamic classes.
1321       if (CXXRD->isDynamicClass())
1322         return false;
1323     }
1324     if (!addBaseAndFieldSizes(getContext(), CXXRD, Size))
1325       return false;
1326   } else {
1327     if (!addFieldSizes(getContext(), RD, Size))
1328       return false;
1329   }
1330 
1331   // We can do this if there was no alignment padding.
1332   return Size == getContext().getTypeSize(Ty);
1333 }
1334 
1335 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const {
1336   // If the return value is indirect, then the hidden argument is consuming one
1337   // integer register.
1338   if (State.FreeRegs) {
1339     --State.FreeRegs;
1340     if (!IsMCUABI)
1341       return getNaturalAlignIndirectInReg(RetTy);
1342   }
1343   return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
1344 }
1345 
1346 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
1347                                              CCState &State) const {
1348   if (RetTy->isVoidType())
1349     return ABIArgInfo::getIgnore();
1350 
1351   const Type *Base = nullptr;
1352   uint64_t NumElts = 0;
1353   if ((State.CC == llvm::CallingConv::X86_VectorCall ||
1354        State.CC == llvm::CallingConv::X86_RegCall) &&
1355       isHomogeneousAggregate(RetTy, Base, NumElts)) {
1356     // The LLVM struct type for such an aggregate should lower properly.
1357     return ABIArgInfo::getDirect();
1358   }
1359 
1360   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
1361     // On Darwin, some vectors are returned in registers.
1362     if (IsDarwinVectorABI) {
1363       uint64_t Size = getContext().getTypeSize(RetTy);
1364 
1365       // 128-bit vectors are a special case; they are returned in
1366       // registers and we need to make sure to pick a type the LLVM
1367       // backend will like.
1368       if (Size == 128)
1369         return ABIArgInfo::getDirect(llvm::VectorType::get(
1370                   llvm::Type::getInt64Ty(getVMContext()), 2));
1371 
1372       // Always return in register if it fits in a general purpose
1373       // register, or if it is 64 bits and has a single element.
1374       if ((Size == 8 || Size == 16 || Size == 32) ||
1375           (Size == 64 && VT->getNumElements() == 1))
1376         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1377                                                             Size));
1378 
1379       return getIndirectReturnResult(RetTy, State);
1380     }
1381 
1382     return ABIArgInfo::getDirect();
1383   }
1384 
1385   if (isAggregateTypeForABI(RetTy)) {
1386     if (const RecordType *RT = RetTy->getAs<RecordType>()) {
1387       // Structures with flexible arrays are always indirect.
1388       if (RT->getDecl()->hasFlexibleArrayMember())
1389         return getIndirectReturnResult(RetTy, State);
1390     }
1391 
1392     // If specified, structs and unions are always indirect.
1393     if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType())
1394       return getIndirectReturnResult(RetTy, State);
1395 
1396     // Ignore empty structs/unions.
1397     if (isEmptyRecord(getContext(), RetTy, true))
1398       return ABIArgInfo::getIgnore();
1399 
1400     // Small structures which are register sized are generally returned
1401     // in a register.
1402     if (shouldReturnTypeInRegister(RetTy, getContext())) {
1403       uint64_t Size = getContext().getTypeSize(RetTy);
1404 
1405       // As a special-case, if the struct is a "single-element" struct, and
1406       // the field is of type "float" or "double", return it in a
1407       // floating-point register. (MSVC does not apply this special case.)
1408       // We apply a similar transformation for pointer types to improve the
1409       // quality of the generated IR.
1410       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
1411         if ((!IsWin32StructABI && SeltTy->isRealFloatingType())
1412             || SeltTy->hasPointerRepresentation())
1413           return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
1414 
1415       // FIXME: We should be able to narrow this integer in cases with dead
1416       // padding.
1417       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
1418     }
1419 
1420     return getIndirectReturnResult(RetTy, State);
1421   }
1422 
1423   // Treat an enum type as its underlying type.
1424   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
1425     RetTy = EnumTy->getDecl()->getIntegerType();
1426 
1427   return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
1428                                            : ABIArgInfo::getDirect());
1429 }
1430 
1431 static bool isSSEVectorType(ASTContext &Context, QualType Ty) {
1432   return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128;
1433 }
1434 
1435 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) {
1436   const RecordType *RT = Ty->getAs<RecordType>();
1437   if (!RT)
1438     return 0;
1439   const RecordDecl *RD = RT->getDecl();
1440 
1441   // If this is a C++ record, check the bases first.
1442   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
1443     for (const auto &I : CXXRD->bases())
1444       if (!isRecordWithSSEVectorType(Context, I.getType()))
1445         return false;
1446 
1447   for (const auto *i : RD->fields()) {
1448     QualType FT = i->getType();
1449 
1450     if (isSSEVectorType(Context, FT))
1451       return true;
1452 
1453     if (isRecordWithSSEVectorType(Context, FT))
1454       return true;
1455   }
1456 
1457   return false;
1458 }
1459 
1460 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
1461                                                  unsigned Align) const {
1462   // Otherwise, if the alignment is less than or equal to the minimum ABI
1463   // alignment, just use the default; the backend will handle this.
1464   if (Align <= MinABIStackAlignInBytes)
1465     return 0; // Use default alignment.
1466 
1467   // On non-Darwin, the stack type alignment is always 4.
1468   if (!IsDarwinVectorABI) {
1469     // Set explicit alignment, since we may need to realign the top.
1470     return MinABIStackAlignInBytes;
1471   }
1472 
1473   // Otherwise, if the type contains an SSE vector type, the alignment is 16.
1474   if (Align >= 16 && (isSSEVectorType(getContext(), Ty) ||
1475                       isRecordWithSSEVectorType(getContext(), Ty)))
1476     return 16;
1477 
1478   return MinABIStackAlignInBytes;
1479 }
1480 
1481 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal,
1482                                             CCState &State) const {
1483   if (!ByVal) {
1484     if (State.FreeRegs) {
1485       --State.FreeRegs; // Non-byval indirects just use one pointer.
1486       if (!IsMCUABI)
1487         return getNaturalAlignIndirectInReg(Ty);
1488     }
1489     return getNaturalAlignIndirect(Ty, false);
1490   }
1491 
1492   // Compute the byval alignment.
1493   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
1494   unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
1495   if (StackAlign == 0)
1496     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true);
1497 
1498   // If the stack alignment is less than the type alignment, realign the
1499   // argument.
1500   bool Realign = TypeAlign > StackAlign;
1501   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign),
1502                                  /*ByVal=*/true, Realign);
1503 }
1504 
1505 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const {
1506   const Type *T = isSingleElementStruct(Ty, getContext());
1507   if (!T)
1508     T = Ty.getTypePtr();
1509 
1510   if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
1511     BuiltinType::Kind K = BT->getKind();
1512     if (K == BuiltinType::Float || K == BuiltinType::Double)
1513       return Float;
1514   }
1515   return Integer;
1516 }
1517 
1518 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const {
1519   if (!IsSoftFloatABI) {
1520     Class C = classify(Ty);
1521     if (C == Float)
1522       return false;
1523   }
1524 
1525   unsigned Size = getContext().getTypeSize(Ty);
1526   unsigned SizeInRegs = (Size + 31) / 32;
1527 
1528   if (SizeInRegs == 0)
1529     return false;
1530 
1531   if (!IsMCUABI) {
1532     if (SizeInRegs > State.FreeRegs) {
1533       State.FreeRegs = 0;
1534       return false;
1535     }
1536   } else {
1537     // The MCU psABI allows passing parameters in-reg even if there are
1538     // earlier parameters that are passed on the stack. Also,
1539     // it does not allow passing >8-byte structs in-register,
1540     // even if there are 3 free registers available.
1541     if (SizeInRegs > State.FreeRegs || SizeInRegs > 2)
1542       return false;
1543   }
1544 
1545   State.FreeRegs -= SizeInRegs;
1546   return true;
1547 }
1548 
1549 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State,
1550                                              bool &InReg,
1551                                              bool &NeedsPadding) const {
1552   // On Windows, aggregates other than HFAs are never passed in registers, and
1553   // they do not consume register slots. Homogenous floating-point aggregates
1554   // (HFAs) have already been dealt with at this point.
1555   if (IsWin32StructABI && isAggregateTypeForABI(Ty))
1556     return false;
1557 
1558   NeedsPadding = false;
1559   InReg = !IsMCUABI;
1560 
1561   if (!updateFreeRegs(Ty, State))
1562     return false;
1563 
1564   if (IsMCUABI)
1565     return true;
1566 
1567   if (State.CC == llvm::CallingConv::X86_FastCall ||
1568       State.CC == llvm::CallingConv::X86_VectorCall ||
1569       State.CC == llvm::CallingConv::X86_RegCall) {
1570     if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs)
1571       NeedsPadding = true;
1572 
1573     return false;
1574   }
1575 
1576   return true;
1577 }
1578 
1579 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const {
1580   if (!updateFreeRegs(Ty, State))
1581     return false;
1582 
1583   if (IsMCUABI)
1584     return false;
1585 
1586   if (State.CC == llvm::CallingConv::X86_FastCall ||
1587       State.CC == llvm::CallingConv::X86_VectorCall ||
1588       State.CC == llvm::CallingConv::X86_RegCall) {
1589     if (getContext().getTypeSize(Ty) > 32)
1590       return false;
1591 
1592     return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() ||
1593         Ty->isReferenceType());
1594   }
1595 
1596   return true;
1597 }
1598 
1599 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
1600                                                CCState &State) const {
1601   // FIXME: Set alignment on indirect arguments.
1602 
1603   Ty = useFirstFieldIfTransparentUnion(Ty);
1604 
1605   // Check with the C++ ABI first.
1606   const RecordType *RT = Ty->getAs<RecordType>();
1607   if (RT) {
1608     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
1609     if (RAA == CGCXXABI::RAA_Indirect) {
1610       return getIndirectResult(Ty, false, State);
1611     } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
1612       // The field index doesn't matter, we'll fix it up later.
1613       return ABIArgInfo::getInAlloca(/*FieldIndex=*/0);
1614     }
1615   }
1616 
1617   // Regcall uses the concept of a homogenous vector aggregate, similar
1618   // to other targets.
1619   const Type *Base = nullptr;
1620   uint64_t NumElts = 0;
1621   if (State.CC == llvm::CallingConv::X86_RegCall &&
1622       isHomogeneousAggregate(Ty, Base, NumElts)) {
1623 
1624     if (State.FreeSSERegs >= NumElts) {
1625       State.FreeSSERegs -= NumElts;
1626       if (Ty->isBuiltinType() || Ty->isVectorType())
1627         return ABIArgInfo::getDirect();
1628       return ABIArgInfo::getExpand();
1629     }
1630     return getIndirectResult(Ty, /*ByVal=*/false, State);
1631   }
1632 
1633   if (isAggregateTypeForABI(Ty)) {
1634     // Structures with flexible arrays are always indirect.
1635     // FIXME: This should not be byval!
1636     if (RT && RT->getDecl()->hasFlexibleArrayMember())
1637       return getIndirectResult(Ty, true, State);
1638 
1639     // Ignore empty structs/unions on non-Windows.
1640     if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true))
1641       return ABIArgInfo::getIgnore();
1642 
1643     llvm::LLVMContext &LLVMContext = getVMContext();
1644     llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
1645     bool NeedsPadding = false;
1646     bool InReg;
1647     if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) {
1648       unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
1649       SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32);
1650       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
1651       if (InReg)
1652         return ABIArgInfo::getDirectInReg(Result);
1653       else
1654         return ABIArgInfo::getDirect(Result);
1655     }
1656     llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr;
1657 
1658     // Expand small (<= 128-bit) record types when we know that the stack layout
1659     // of those arguments will match the struct. This is important because the
1660     // LLVM backend isn't smart enough to remove byval, which inhibits many
1661     // optimizations.
1662     // Don't do this for the MCU if there are still free integer registers
1663     // (see X86_64 ABI for full explanation).
1664     if (getContext().getTypeSize(Ty) <= 4 * 32 &&
1665         (!IsMCUABI || State.FreeRegs == 0) && canExpandIndirectArgument(Ty))
1666       return ABIArgInfo::getExpandWithPadding(
1667           State.CC == llvm::CallingConv::X86_FastCall ||
1668               State.CC == llvm::CallingConv::X86_VectorCall ||
1669               State.CC == llvm::CallingConv::X86_RegCall,
1670           PaddingType);
1671 
1672     return getIndirectResult(Ty, true, State);
1673   }
1674 
1675   if (const VectorType *VT = Ty->getAs<VectorType>()) {
1676     // On Darwin, some vectors are passed in memory, we handle this by passing
1677     // it as an i8/i16/i32/i64.
1678     if (IsDarwinVectorABI) {
1679       uint64_t Size = getContext().getTypeSize(Ty);
1680       if ((Size == 8 || Size == 16 || Size == 32) ||
1681           (Size == 64 && VT->getNumElements() == 1))
1682         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1683                                                             Size));
1684     }
1685 
1686     if (IsX86_MMXType(CGT.ConvertType(Ty)))
1687       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64));
1688 
1689     return ABIArgInfo::getDirect();
1690   }
1691 
1692 
1693   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1694     Ty = EnumTy->getDecl()->getIntegerType();
1695 
1696   bool InReg = shouldPrimitiveUseInReg(Ty, State);
1697 
1698   if (Ty->isPromotableIntegerType()) {
1699     if (InReg)
1700       return ABIArgInfo::getExtendInReg(Ty);
1701     return ABIArgInfo::getExtend(Ty);
1702   }
1703 
1704   if (InReg)
1705     return ABIArgInfo::getDirectInReg();
1706   return ABIArgInfo::getDirect();
1707 }
1708 
1709 void X86_32ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI, CCState &State,
1710                                           bool &UsedInAlloca) const {
1711   // Vectorcall x86 works subtly different than in x64, so the format is
1712   // a bit different than the x64 version.  First, all vector types (not HVAs)
1713   // are assigned, with the first 6 ending up in the YMM0-5 or XMM0-5 registers.
1714   // This differs from the x64 implementation, where the first 6 by INDEX get
1715   // registers.
1716   // After that, integers AND HVAs are assigned Left to Right in the same pass.
1717   // Integers are passed as ECX/EDX if one is available (in order).  HVAs will
1718   // first take up the remaining YMM/XMM registers. If insufficient registers
1719   // remain but an integer register (ECX/EDX) is available, it will be passed
1720   // in that, else, on the stack.
1721   for (auto &I : FI.arguments()) {
1722     // First pass do all the vector types.
1723     const Type *Base = nullptr;
1724     uint64_t NumElts = 0;
1725     const QualType& Ty = I.type;
1726     if ((Ty->isVectorType() || Ty->isBuiltinType()) &&
1727         isHomogeneousAggregate(Ty, Base, NumElts)) {
1728       if (State.FreeSSERegs >= NumElts) {
1729         State.FreeSSERegs -= NumElts;
1730         I.info = ABIArgInfo::getDirect();
1731       } else {
1732         I.info = classifyArgumentType(Ty, State);
1733       }
1734       UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca);
1735     }
1736   }
1737 
1738   for (auto &I : FI.arguments()) {
1739     // Second pass, do the rest!
1740     const Type *Base = nullptr;
1741     uint64_t NumElts = 0;
1742     const QualType& Ty = I.type;
1743     bool IsHva = isHomogeneousAggregate(Ty, Base, NumElts);
1744 
1745     if (IsHva && !Ty->isVectorType() && !Ty->isBuiltinType()) {
1746       // Assign true HVAs (non vector/native FP types).
1747       if (State.FreeSSERegs >= NumElts) {
1748         State.FreeSSERegs -= NumElts;
1749         I.info = getDirectX86Hva();
1750       } else {
1751         I.info = getIndirectResult(Ty, /*ByVal=*/false, State);
1752       }
1753     } else if (!IsHva) {
1754       // Assign all Non-HVAs, so this will exclude Vector/FP args.
1755       I.info = classifyArgumentType(Ty, State);
1756       UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca);
1757     }
1758   }
1759 }
1760 
1761 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
1762   CCState State(FI.getCallingConvention());
1763   if (IsMCUABI)
1764     State.FreeRegs = 3;
1765   else if (State.CC == llvm::CallingConv::X86_FastCall)
1766     State.FreeRegs = 2;
1767   else if (State.CC == llvm::CallingConv::X86_VectorCall) {
1768     State.FreeRegs = 2;
1769     State.FreeSSERegs = 6;
1770   } else if (FI.getHasRegParm())
1771     State.FreeRegs = FI.getRegParm();
1772   else if (State.CC == llvm::CallingConv::X86_RegCall) {
1773     State.FreeRegs = 5;
1774     State.FreeSSERegs = 8;
1775   } else
1776     State.FreeRegs = DefaultNumRegisterParameters;
1777 
1778   if (!::classifyReturnType(getCXXABI(), FI, *this)) {
1779     FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State);
1780   } else if (FI.getReturnInfo().isIndirect()) {
1781     // The C++ ABI is not aware of register usage, so we have to check if the
1782     // return value was sret and put it in a register ourselves if appropriate.
1783     if (State.FreeRegs) {
1784       --State.FreeRegs;  // The sret parameter consumes a register.
1785       if (!IsMCUABI)
1786         FI.getReturnInfo().setInReg(true);
1787     }
1788   }
1789 
1790   // The chain argument effectively gives us another free register.
1791   if (FI.isChainCall())
1792     ++State.FreeRegs;
1793 
1794   bool UsedInAlloca = false;
1795   if (State.CC == llvm::CallingConv::X86_VectorCall) {
1796     computeVectorCallArgs(FI, State, UsedInAlloca);
1797   } else {
1798     // If not vectorcall, revert to normal behavior.
1799     for (auto &I : FI.arguments()) {
1800       I.info = classifyArgumentType(I.type, State);
1801       UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca);
1802     }
1803   }
1804 
1805   // If we needed to use inalloca for any argument, do a second pass and rewrite
1806   // all the memory arguments to use inalloca.
1807   if (UsedInAlloca)
1808     rewriteWithInAlloca(FI);
1809 }
1810 
1811 void
1812 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
1813                                    CharUnits &StackOffset, ABIArgInfo &Info,
1814                                    QualType Type) const {
1815   // Arguments are always 4-byte-aligned.
1816   CharUnits FieldAlign = CharUnits::fromQuantity(4);
1817 
1818   assert(StackOffset.isMultipleOf(FieldAlign) && "unaligned inalloca struct");
1819   Info = ABIArgInfo::getInAlloca(FrameFields.size());
1820   FrameFields.push_back(CGT.ConvertTypeForMem(Type));
1821   StackOffset += getContext().getTypeSizeInChars(Type);
1822 
1823   // Insert padding bytes to respect alignment.
1824   CharUnits FieldEnd = StackOffset;
1825   StackOffset = FieldEnd.alignTo(FieldAlign);
1826   if (StackOffset != FieldEnd) {
1827     CharUnits NumBytes = StackOffset - FieldEnd;
1828     llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext());
1829     Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity());
1830     FrameFields.push_back(Ty);
1831   }
1832 }
1833 
1834 static bool isArgInAlloca(const ABIArgInfo &Info) {
1835   // Leave ignored and inreg arguments alone.
1836   switch (Info.getKind()) {
1837   case ABIArgInfo::InAlloca:
1838     return true;
1839   case ABIArgInfo::Indirect:
1840     assert(Info.getIndirectByVal());
1841     return true;
1842   case ABIArgInfo::Ignore:
1843     return false;
1844   case ABIArgInfo::Direct:
1845   case ABIArgInfo::Extend:
1846     if (Info.getInReg())
1847       return false;
1848     return true;
1849   case ABIArgInfo::Expand:
1850   case ABIArgInfo::CoerceAndExpand:
1851     // These are aggregate types which are never passed in registers when
1852     // inalloca is involved.
1853     return true;
1854   }
1855   llvm_unreachable("invalid enum");
1856 }
1857 
1858 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const {
1859   assert(IsWin32StructABI && "inalloca only supported on win32");
1860 
1861   // Build a packed struct type for all of the arguments in memory.
1862   SmallVector<llvm::Type *, 6> FrameFields;
1863 
1864   // The stack alignment is always 4.
1865   CharUnits StackAlign = CharUnits::fromQuantity(4);
1866 
1867   CharUnits StackOffset;
1868   CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end();
1869 
1870   // Put 'this' into the struct before 'sret', if necessary.
1871   bool IsThisCall =
1872       FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall;
1873   ABIArgInfo &Ret = FI.getReturnInfo();
1874   if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall &&
1875       isArgInAlloca(I->info)) {
1876     addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
1877     ++I;
1878   }
1879 
1880   // Put the sret parameter into the inalloca struct if it's in memory.
1881   if (Ret.isIndirect() && !Ret.getInReg()) {
1882     CanQualType PtrTy = getContext().getPointerType(FI.getReturnType());
1883     addFieldToArgStruct(FrameFields, StackOffset, Ret, PtrTy);
1884     // On Windows, the hidden sret parameter is always returned in eax.
1885     Ret.setInAllocaSRet(IsWin32StructABI);
1886   }
1887 
1888   // Skip the 'this' parameter in ecx.
1889   if (IsThisCall)
1890     ++I;
1891 
1892   // Put arguments passed in memory into the struct.
1893   for (; I != E; ++I) {
1894     if (isArgInAlloca(I->info))
1895       addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
1896   }
1897 
1898   FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields,
1899                                         /*isPacked=*/true),
1900                   StackAlign);
1901 }
1902 
1903 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF,
1904                                  Address VAListAddr, QualType Ty) const {
1905 
1906   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
1907 
1908   // x86-32 changes the alignment of certain arguments on the stack.
1909   //
1910   // Just messing with TypeInfo like this works because we never pass
1911   // anything indirectly.
1912   TypeInfo.second = CharUnits::fromQuantity(
1913                 getTypeStackAlignInBytes(Ty, TypeInfo.second.getQuantity()));
1914 
1915   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
1916                           TypeInfo, CharUnits::fromQuantity(4),
1917                           /*AllowHigherAlign*/ true);
1918 }
1919 
1920 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI(
1921     const llvm::Triple &Triple, const CodeGenOptions &Opts) {
1922   assert(Triple.getArch() == llvm::Triple::x86);
1923 
1924   switch (Opts.getStructReturnConvention()) {
1925   case CodeGenOptions::SRCK_Default:
1926     break;
1927   case CodeGenOptions::SRCK_OnStack:  // -fpcc-struct-return
1928     return false;
1929   case CodeGenOptions::SRCK_InRegs:  // -freg-struct-return
1930     return true;
1931   }
1932 
1933   if (Triple.isOSDarwin() || Triple.isOSIAMCU())
1934     return true;
1935 
1936   switch (Triple.getOS()) {
1937   case llvm::Triple::DragonFly:
1938   case llvm::Triple::FreeBSD:
1939   case llvm::Triple::OpenBSD:
1940   case llvm::Triple::Win32:
1941     return true;
1942   default:
1943     return false;
1944   }
1945 }
1946 
1947 void X86_32TargetCodeGenInfo::setTargetAttributes(
1948     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
1949   if (GV->isDeclaration())
1950     return;
1951   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
1952     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
1953       llvm::Function *Fn = cast<llvm::Function>(GV);
1954       Fn->addFnAttr("stackrealign");
1955     }
1956     if (FD->hasAttr<AnyX86InterruptAttr>()) {
1957       llvm::Function *Fn = cast<llvm::Function>(GV);
1958       Fn->setCallingConv(llvm::CallingConv::X86_INTR);
1959     }
1960   }
1961 }
1962 
1963 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
1964                                                CodeGen::CodeGenFunction &CGF,
1965                                                llvm::Value *Address) const {
1966   CodeGen::CGBuilderTy &Builder = CGF.Builder;
1967 
1968   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
1969 
1970   // 0-7 are the eight integer registers;  the order is different
1971   //   on Darwin (for EH), but the range is the same.
1972   // 8 is %eip.
1973   AssignToArrayRange(Builder, Address, Four8, 0, 8);
1974 
1975   if (CGF.CGM.getTarget().getTriple().isOSDarwin()) {
1976     // 12-16 are st(0..4).  Not sure why we stop at 4.
1977     // These have size 16, which is sizeof(long double) on
1978     // platforms with 8-byte alignment for that type.
1979     llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
1980     AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
1981 
1982   } else {
1983     // 9 is %eflags, which doesn't get a size on Darwin for some
1984     // reason.
1985     Builder.CreateAlignedStore(
1986         Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9),
1987                                CharUnits::One());
1988 
1989     // 11-16 are st(0..5).  Not sure why we stop at 5.
1990     // These have size 12, which is sizeof(long double) on
1991     // platforms with 4-byte alignment for that type.
1992     llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
1993     AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
1994   }
1995 
1996   return false;
1997 }
1998 
1999 //===----------------------------------------------------------------------===//
2000 // X86-64 ABI Implementation
2001 //===----------------------------------------------------------------------===//
2002 
2003 
2004 namespace {
2005 /// The AVX ABI level for X86 targets.
2006 enum class X86AVXABILevel {
2007   None,
2008   AVX,
2009   AVX512
2010 };
2011 
2012 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel.
2013 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) {
2014   switch (AVXLevel) {
2015   case X86AVXABILevel::AVX512:
2016     return 512;
2017   case X86AVXABILevel::AVX:
2018     return 256;
2019   case X86AVXABILevel::None:
2020     return 128;
2021   }
2022   llvm_unreachable("Unknown AVXLevel");
2023 }
2024 
2025 /// X86_64ABIInfo - The X86_64 ABI information.
2026 class X86_64ABIInfo : public SwiftABIInfo {
2027   enum Class {
2028     Integer = 0,
2029     SSE,
2030     SSEUp,
2031     X87,
2032     X87Up,
2033     ComplexX87,
2034     NoClass,
2035     Memory
2036   };
2037 
2038   /// merge - Implement the X86_64 ABI merging algorithm.
2039   ///
2040   /// Merge an accumulating classification \arg Accum with a field
2041   /// classification \arg Field.
2042   ///
2043   /// \param Accum - The accumulating classification. This should
2044   /// always be either NoClass or the result of a previous merge
2045   /// call. In addition, this should never be Memory (the caller
2046   /// should just return Memory for the aggregate).
2047   static Class merge(Class Accum, Class Field);
2048 
2049   /// postMerge - Implement the X86_64 ABI post merging algorithm.
2050   ///
2051   /// Post merger cleanup, reduces a malformed Hi and Lo pair to
2052   /// final MEMORY or SSE classes when necessary.
2053   ///
2054   /// \param AggregateSize - The size of the current aggregate in
2055   /// the classification process.
2056   ///
2057   /// \param Lo - The classification for the parts of the type
2058   /// residing in the low word of the containing object.
2059   ///
2060   /// \param Hi - The classification for the parts of the type
2061   /// residing in the higher words of the containing object.
2062   ///
2063   void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
2064 
2065   /// classify - Determine the x86_64 register classes in which the
2066   /// given type T should be passed.
2067   ///
2068   /// \param Lo - The classification for the parts of the type
2069   /// residing in the low word of the containing object.
2070   ///
2071   /// \param Hi - The classification for the parts of the type
2072   /// residing in the high word of the containing object.
2073   ///
2074   /// \param OffsetBase - The bit offset of this type in the
2075   /// containing object.  Some parameters are classified different
2076   /// depending on whether they straddle an eightbyte boundary.
2077   ///
2078   /// \param isNamedArg - Whether the argument in question is a "named"
2079   /// argument, as used in AMD64-ABI 3.5.7.
2080   ///
2081   /// If a word is unused its result will be NoClass; if a type should
2082   /// be passed in Memory then at least the classification of \arg Lo
2083   /// will be Memory.
2084   ///
2085   /// The \arg Lo class will be NoClass iff the argument is ignored.
2086   ///
2087   /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
2088   /// also be ComplexX87.
2089   void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi,
2090                 bool isNamedArg) const;
2091 
2092   llvm::Type *GetByteVectorType(QualType Ty) const;
2093   llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
2094                                  unsigned IROffset, QualType SourceTy,
2095                                  unsigned SourceOffset) const;
2096   llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
2097                                      unsigned IROffset, QualType SourceTy,
2098                                      unsigned SourceOffset) const;
2099 
2100   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
2101   /// such that the argument will be returned in memory.
2102   ABIArgInfo getIndirectReturnResult(QualType Ty) const;
2103 
2104   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
2105   /// such that the argument will be passed in memory.
2106   ///
2107   /// \param freeIntRegs - The number of free integer registers remaining
2108   /// available.
2109   ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;
2110 
2111   ABIArgInfo classifyReturnType(QualType RetTy) const;
2112 
2113   ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs,
2114                                   unsigned &neededInt, unsigned &neededSSE,
2115                                   bool isNamedArg) const;
2116 
2117   ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt,
2118                                        unsigned &NeededSSE) const;
2119 
2120   ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
2121                                            unsigned &NeededSSE) const;
2122 
2123   bool IsIllegalVectorType(QualType Ty) const;
2124 
2125   /// The 0.98 ABI revision clarified a lot of ambiguities,
2126   /// unfortunately in ways that were not always consistent with
2127   /// certain previous compilers.  In particular, platforms which
2128   /// required strict binary compatibility with older versions of GCC
2129   /// may need to exempt themselves.
2130   bool honorsRevision0_98() const {
2131     return !getTarget().getTriple().isOSDarwin();
2132   }
2133 
2134   /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to
2135   /// classify it as INTEGER (for compatibility with older clang compilers).
2136   bool classifyIntegerMMXAsSSE() const {
2137     // Clang <= 3.8 did not do this.
2138     if (getContext().getLangOpts().getClangABICompat() <=
2139         LangOptions::ClangABI::Ver3_8)
2140       return false;
2141 
2142     const llvm::Triple &Triple = getTarget().getTriple();
2143     if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::PS4)
2144       return false;
2145     if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10)
2146       return false;
2147     return true;
2148   }
2149 
2150   X86AVXABILevel AVXLevel;
2151   // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on
2152   // 64-bit hardware.
2153   bool Has64BitPointers;
2154 
2155 public:
2156   X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) :
2157       SwiftABIInfo(CGT), AVXLevel(AVXLevel),
2158       Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {
2159   }
2160 
2161   bool isPassedUsingAVXType(QualType type) const {
2162     unsigned neededInt, neededSSE;
2163     // The freeIntRegs argument doesn't matter here.
2164     ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE,
2165                                            /*isNamedArg*/true);
2166     if (info.isDirect()) {
2167       llvm::Type *ty = info.getCoerceToType();
2168       if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
2169         return (vectorTy->getBitWidth() > 128);
2170     }
2171     return false;
2172   }
2173 
2174   void computeInfo(CGFunctionInfo &FI) const override;
2175 
2176   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
2177                     QualType Ty) const override;
2178   Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
2179                       QualType Ty) const override;
2180 
2181   bool has64BitPointers() const {
2182     return Has64BitPointers;
2183   }
2184 
2185   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
2186                                     bool asReturnValue) const override {
2187     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
2188   }
2189   bool isSwiftErrorInRegister() const override {
2190     return true;
2191   }
2192 };
2193 
2194 /// WinX86_64ABIInfo - The Windows X86_64 ABI information.
2195 class WinX86_64ABIInfo : public SwiftABIInfo {
2196 public:
2197   WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT)
2198       : SwiftABIInfo(CGT),
2199         IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {}
2200 
2201   void computeInfo(CGFunctionInfo &FI) const override;
2202 
2203   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
2204                     QualType Ty) const override;
2205 
2206   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
2207     // FIXME: Assumes vectorcall is in use.
2208     return isX86VectorTypeForVectorCall(getContext(), Ty);
2209   }
2210 
2211   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
2212                                          uint64_t NumMembers) const override {
2213     // FIXME: Assumes vectorcall is in use.
2214     return isX86VectorCallAggregateSmallEnough(NumMembers);
2215   }
2216 
2217   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type *> scalars,
2218                                     bool asReturnValue) const override {
2219     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
2220   }
2221 
2222   bool isSwiftErrorInRegister() const override {
2223     return true;
2224   }
2225 
2226 private:
2227   ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType,
2228                       bool IsVectorCall, bool IsRegCall) const;
2229   ABIArgInfo reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs,
2230                                       const ABIArgInfo &current) const;
2231   void computeVectorCallArgs(CGFunctionInfo &FI, unsigned FreeSSERegs,
2232                              bool IsVectorCall, bool IsRegCall) const;
2233 
2234     bool IsMingw64;
2235 };
2236 
2237 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
2238 public:
2239   X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
2240       : TargetCodeGenInfo(new X86_64ABIInfo(CGT, AVXLevel)) {}
2241 
2242   const X86_64ABIInfo &getABIInfo() const {
2243     return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
2244   }
2245 
2246   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
2247     return 7;
2248   }
2249 
2250   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2251                                llvm::Value *Address) const override {
2252     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
2253 
2254     // 0-15 are the 16 integer registers.
2255     // 16 is %rip.
2256     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
2257     return false;
2258   }
2259 
2260   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
2261                                   StringRef Constraint,
2262                                   llvm::Type* Ty) const override {
2263     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
2264   }
2265 
2266   bool isNoProtoCallVariadic(const CallArgList &args,
2267                              const FunctionNoProtoType *fnType) const override {
2268     // The default CC on x86-64 sets %al to the number of SSA
2269     // registers used, and GCC sets this when calling an unprototyped
2270     // function, so we override the default behavior.  However, don't do
2271     // that when AVX types are involved: the ABI explicitly states it is
2272     // undefined, and it doesn't work in practice because of how the ABI
2273     // defines varargs anyway.
2274     if (fnType->getCallConv() == CC_C) {
2275       bool HasAVXType = false;
2276       for (CallArgList::const_iterator
2277              it = args.begin(), ie = args.end(); it != ie; ++it) {
2278         if (getABIInfo().isPassedUsingAVXType(it->Ty)) {
2279           HasAVXType = true;
2280           break;
2281         }
2282       }
2283 
2284       if (!HasAVXType)
2285         return true;
2286     }
2287 
2288     return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
2289   }
2290 
2291   llvm::Constant *
2292   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
2293     unsigned Sig = (0xeb << 0) | // jmp rel8
2294                    (0x06 << 8) | //           .+0x08
2295                    ('v' << 16) |
2296                    ('2' << 24);
2297     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
2298   }
2299 
2300   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2301                            CodeGen::CodeGenModule &CGM) const override {
2302     if (GV->isDeclaration())
2303       return;
2304     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
2305       if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
2306         llvm::Function *Fn = cast<llvm::Function>(GV);
2307         Fn->addFnAttr("stackrealign");
2308       }
2309       if (FD->hasAttr<AnyX86InterruptAttr>()) {
2310         llvm::Function *Fn = cast<llvm::Function>(GV);
2311         Fn->setCallingConv(llvm::CallingConv::X86_INTR);
2312       }
2313     }
2314   }
2315 };
2316 
2317 class PS4TargetCodeGenInfo : public X86_64TargetCodeGenInfo {
2318 public:
2319   PS4TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
2320     : X86_64TargetCodeGenInfo(CGT, AVXLevel) {}
2321 
2322   void getDependentLibraryOption(llvm::StringRef Lib,
2323                                  llvm::SmallString<24> &Opt) const override {
2324     Opt = "\01";
2325     // If the argument contains a space, enclose it in quotes.
2326     if (Lib.find(" ") != StringRef::npos)
2327       Opt += "\"" + Lib.str() + "\"";
2328     else
2329       Opt += Lib;
2330   }
2331 };
2332 
2333 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) {
2334   // If the argument does not end in .lib, automatically add the suffix.
2335   // If the argument contains a space, enclose it in quotes.
2336   // This matches the behavior of MSVC.
2337   bool Quote = (Lib.find(" ") != StringRef::npos);
2338   std::string ArgStr = Quote ? "\"" : "";
2339   ArgStr += Lib;
2340   if (!Lib.endswith_lower(".lib"))
2341     ArgStr += ".lib";
2342   ArgStr += Quote ? "\"" : "";
2343   return ArgStr;
2344 }
2345 
2346 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo {
2347 public:
2348   WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
2349         bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI,
2350         unsigned NumRegisterParameters)
2351     : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI,
2352         Win32StructABI, NumRegisterParameters, false) {}
2353 
2354   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2355                            CodeGen::CodeGenModule &CGM) const override;
2356 
2357   void getDependentLibraryOption(llvm::StringRef Lib,
2358                                  llvm::SmallString<24> &Opt) const override {
2359     Opt = "/DEFAULTLIB:";
2360     Opt += qualifyWindowsLibrary(Lib);
2361   }
2362 
2363   void getDetectMismatchOption(llvm::StringRef Name,
2364                                llvm::StringRef Value,
2365                                llvm::SmallString<32> &Opt) const override {
2366     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
2367   }
2368 };
2369 
2370 static void addStackProbeTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2371                                           CodeGen::CodeGenModule &CGM) {
2372   if (llvm::Function *Fn = dyn_cast_or_null<llvm::Function>(GV)) {
2373 
2374     if (CGM.getCodeGenOpts().StackProbeSize != 4096)
2375       Fn->addFnAttr("stack-probe-size",
2376                     llvm::utostr(CGM.getCodeGenOpts().StackProbeSize));
2377     if (CGM.getCodeGenOpts().NoStackArgProbe)
2378       Fn->addFnAttr("no-stack-arg-probe");
2379   }
2380 }
2381 
2382 void WinX86_32TargetCodeGenInfo::setTargetAttributes(
2383     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
2384   X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
2385   if (GV->isDeclaration())
2386     return;
2387   addStackProbeTargetAttributes(D, GV, CGM);
2388 }
2389 
2390 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
2391 public:
2392   WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
2393                              X86AVXABILevel AVXLevel)
2394       : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {}
2395 
2396   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2397                            CodeGen::CodeGenModule &CGM) const override;
2398 
2399   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
2400     return 7;
2401   }
2402 
2403   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2404                                llvm::Value *Address) const override {
2405     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
2406 
2407     // 0-15 are the 16 integer registers.
2408     // 16 is %rip.
2409     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
2410     return false;
2411   }
2412 
2413   void getDependentLibraryOption(llvm::StringRef Lib,
2414                                  llvm::SmallString<24> &Opt) const override {
2415     Opt = "/DEFAULTLIB:";
2416     Opt += qualifyWindowsLibrary(Lib);
2417   }
2418 
2419   void getDetectMismatchOption(llvm::StringRef Name,
2420                                llvm::StringRef Value,
2421                                llvm::SmallString<32> &Opt) const override {
2422     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
2423   }
2424 };
2425 
2426 void WinX86_64TargetCodeGenInfo::setTargetAttributes(
2427     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
2428   TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
2429   if (GV->isDeclaration())
2430     return;
2431   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
2432     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
2433       llvm::Function *Fn = cast<llvm::Function>(GV);
2434       Fn->addFnAttr("stackrealign");
2435     }
2436     if (FD->hasAttr<AnyX86InterruptAttr>()) {
2437       llvm::Function *Fn = cast<llvm::Function>(GV);
2438       Fn->setCallingConv(llvm::CallingConv::X86_INTR);
2439     }
2440   }
2441 
2442   addStackProbeTargetAttributes(D, GV, CGM);
2443 }
2444 }
2445 
2446 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
2447                               Class &Hi) const {
2448   // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
2449   //
2450   // (a) If one of the classes is Memory, the whole argument is passed in
2451   //     memory.
2452   //
2453   // (b) If X87UP is not preceded by X87, the whole argument is passed in
2454   //     memory.
2455   //
2456   // (c) If the size of the aggregate exceeds two eightbytes and the first
2457   //     eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
2458   //     argument is passed in memory. NOTE: This is necessary to keep the
2459   //     ABI working for processors that don't support the __m256 type.
2460   //
2461   // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
2462   //
2463   // Some of these are enforced by the merging logic.  Others can arise
2464   // only with unions; for example:
2465   //   union { _Complex double; unsigned; }
2466   //
2467   // Note that clauses (b) and (c) were added in 0.98.
2468   //
2469   if (Hi == Memory)
2470     Lo = Memory;
2471   if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
2472     Lo = Memory;
2473   if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
2474     Lo = Memory;
2475   if (Hi == SSEUp && Lo != SSE)
2476     Hi = SSE;
2477 }
2478 
2479 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
2480   // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
2481   // classified recursively so that always two fields are
2482   // considered. The resulting class is calculated according to
2483   // the classes of the fields in the eightbyte:
2484   //
2485   // (a) If both classes are equal, this is the resulting class.
2486   //
2487   // (b) If one of the classes is NO_CLASS, the resulting class is
2488   // the other class.
2489   //
2490   // (c) If one of the classes is MEMORY, the result is the MEMORY
2491   // class.
2492   //
2493   // (d) If one of the classes is INTEGER, the result is the
2494   // INTEGER.
2495   //
2496   // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
2497   // MEMORY is used as class.
2498   //
2499   // (f) Otherwise class SSE is used.
2500 
2501   // Accum should never be memory (we should have returned) or
2502   // ComplexX87 (because this cannot be passed in a structure).
2503   assert((Accum != Memory && Accum != ComplexX87) &&
2504          "Invalid accumulated classification during merge.");
2505   if (Accum == Field || Field == NoClass)
2506     return Accum;
2507   if (Field == Memory)
2508     return Memory;
2509   if (Accum == NoClass)
2510     return Field;
2511   if (Accum == Integer || Field == Integer)
2512     return Integer;
2513   if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
2514       Accum == X87 || Accum == X87Up)
2515     return Memory;
2516   return SSE;
2517 }
2518 
2519 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
2520                              Class &Lo, Class &Hi, bool isNamedArg) const {
2521   // FIXME: This code can be simplified by introducing a simple value class for
2522   // Class pairs with appropriate constructor methods for the various
2523   // situations.
2524 
2525   // FIXME: Some of the split computations are wrong; unaligned vectors
2526   // shouldn't be passed in registers for example, so there is no chance they
2527   // can straddle an eightbyte. Verify & simplify.
2528 
2529   Lo = Hi = NoClass;
2530 
2531   Class &Current = OffsetBase < 64 ? Lo : Hi;
2532   Current = Memory;
2533 
2534   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
2535     BuiltinType::Kind k = BT->getKind();
2536 
2537     if (k == BuiltinType::Void) {
2538       Current = NoClass;
2539     } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
2540       Lo = Integer;
2541       Hi = Integer;
2542     } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
2543       Current = Integer;
2544     } else if (k == BuiltinType::Float || k == BuiltinType::Double) {
2545       Current = SSE;
2546     } else if (k == BuiltinType::LongDouble) {
2547       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
2548       if (LDF == &llvm::APFloat::IEEEquad()) {
2549         Lo = SSE;
2550         Hi = SSEUp;
2551       } else if (LDF == &llvm::APFloat::x87DoubleExtended()) {
2552         Lo = X87;
2553         Hi = X87Up;
2554       } else if (LDF == &llvm::APFloat::IEEEdouble()) {
2555         Current = SSE;
2556       } else
2557         llvm_unreachable("unexpected long double representation!");
2558     }
2559     // FIXME: _Decimal32 and _Decimal64 are SSE.
2560     // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
2561     return;
2562   }
2563 
2564   if (const EnumType *ET = Ty->getAs<EnumType>()) {
2565     // Classify the underlying integer type.
2566     classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg);
2567     return;
2568   }
2569 
2570   if (Ty->hasPointerRepresentation()) {
2571     Current = Integer;
2572     return;
2573   }
2574 
2575   if (Ty->isMemberPointerType()) {
2576     if (Ty->isMemberFunctionPointerType()) {
2577       if (Has64BitPointers) {
2578         // If Has64BitPointers, this is an {i64, i64}, so classify both
2579         // Lo and Hi now.
2580         Lo = Hi = Integer;
2581       } else {
2582         // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that
2583         // straddles an eightbyte boundary, Hi should be classified as well.
2584         uint64_t EB_FuncPtr = (OffsetBase) / 64;
2585         uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64;
2586         if (EB_FuncPtr != EB_ThisAdj) {
2587           Lo = Hi = Integer;
2588         } else {
2589           Current = Integer;
2590         }
2591       }
2592     } else {
2593       Current = Integer;
2594     }
2595     return;
2596   }
2597 
2598   if (const VectorType *VT = Ty->getAs<VectorType>()) {
2599     uint64_t Size = getContext().getTypeSize(VT);
2600     if (Size == 1 || Size == 8 || Size == 16 || Size == 32) {
2601       // gcc passes the following as integer:
2602       // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float>
2603       // 2 bytes - <2 x char>, <1 x short>
2604       // 1 byte  - <1 x char>
2605       Current = Integer;
2606 
2607       // If this type crosses an eightbyte boundary, it should be
2608       // split.
2609       uint64_t EB_Lo = (OffsetBase) / 64;
2610       uint64_t EB_Hi = (OffsetBase + Size - 1) / 64;
2611       if (EB_Lo != EB_Hi)
2612         Hi = Lo;
2613     } else if (Size == 64) {
2614       QualType ElementType = VT->getElementType();
2615 
2616       // gcc passes <1 x double> in memory. :(
2617       if (ElementType->isSpecificBuiltinType(BuiltinType::Double))
2618         return;
2619 
2620       // gcc passes <1 x long long> as SSE but clang used to unconditionally
2621       // pass them as integer.  For platforms where clang is the de facto
2622       // platform compiler, we must continue to use integer.
2623       if (!classifyIntegerMMXAsSSE() &&
2624           (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) ||
2625            ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) ||
2626            ElementType->isSpecificBuiltinType(BuiltinType::Long) ||
2627            ElementType->isSpecificBuiltinType(BuiltinType::ULong)))
2628         Current = Integer;
2629       else
2630         Current = SSE;
2631 
2632       // If this type crosses an eightbyte boundary, it should be
2633       // split.
2634       if (OffsetBase && OffsetBase != 64)
2635         Hi = Lo;
2636     } else if (Size == 128 ||
2637                (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) {
2638       // Arguments of 256-bits are split into four eightbyte chunks. The
2639       // least significant one belongs to class SSE and all the others to class
2640       // SSEUP. The original Lo and Hi design considers that types can't be
2641       // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
2642       // This design isn't correct for 256-bits, but since there're no cases
2643       // where the upper parts would need to be inspected, avoid adding
2644       // complexity and just consider Hi to match the 64-256 part.
2645       //
2646       // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in
2647       // registers if they are "named", i.e. not part of the "..." of a
2648       // variadic function.
2649       //
2650       // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are
2651       // split into eight eightbyte chunks, one SSE and seven SSEUP.
2652       Lo = SSE;
2653       Hi = SSEUp;
2654     }
2655     return;
2656   }
2657 
2658   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
2659     QualType ET = getContext().getCanonicalType(CT->getElementType());
2660 
2661     uint64_t Size = getContext().getTypeSize(Ty);
2662     if (ET->isIntegralOrEnumerationType()) {
2663       if (Size <= 64)
2664         Current = Integer;
2665       else if (Size <= 128)
2666         Lo = Hi = Integer;
2667     } else if (ET == getContext().FloatTy) {
2668       Current = SSE;
2669     } else if (ET == getContext().DoubleTy) {
2670       Lo = Hi = SSE;
2671     } else if (ET == getContext().LongDoubleTy) {
2672       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
2673       if (LDF == &llvm::APFloat::IEEEquad())
2674         Current = Memory;
2675       else if (LDF == &llvm::APFloat::x87DoubleExtended())
2676         Current = ComplexX87;
2677       else if (LDF == &llvm::APFloat::IEEEdouble())
2678         Lo = Hi = SSE;
2679       else
2680         llvm_unreachable("unexpected long double representation!");
2681     }
2682 
2683     // If this complex type crosses an eightbyte boundary then it
2684     // should be split.
2685     uint64_t EB_Real = (OffsetBase) / 64;
2686     uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
2687     if (Hi == NoClass && EB_Real != EB_Imag)
2688       Hi = Lo;
2689 
2690     return;
2691   }
2692 
2693   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
2694     // Arrays are treated like structures.
2695 
2696     uint64_t Size = getContext().getTypeSize(Ty);
2697 
2698     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
2699     // than eight eightbytes, ..., it has class MEMORY.
2700     if (Size > 512)
2701       return;
2702 
2703     // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
2704     // fields, it has class MEMORY.
2705     //
2706     // Only need to check alignment of array base.
2707     if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
2708       return;
2709 
2710     // Otherwise implement simplified merge. We could be smarter about
2711     // this, but it isn't worth it and would be harder to verify.
2712     Current = NoClass;
2713     uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
2714     uint64_t ArraySize = AT->getSize().getZExtValue();
2715 
2716     // The only case a 256-bit wide vector could be used is when the array
2717     // contains a single 256-bit element. Since Lo and Hi logic isn't extended
2718     // to work for sizes wider than 128, early check and fallback to memory.
2719     //
2720     if (Size > 128 &&
2721         (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel)))
2722       return;
2723 
2724     for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
2725       Class FieldLo, FieldHi;
2726       classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg);
2727       Lo = merge(Lo, FieldLo);
2728       Hi = merge(Hi, FieldHi);
2729       if (Lo == Memory || Hi == Memory)
2730         break;
2731     }
2732 
2733     postMerge(Size, Lo, Hi);
2734     assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
2735     return;
2736   }
2737 
2738   if (const RecordType *RT = Ty->getAs<RecordType>()) {
2739     uint64_t Size = getContext().getTypeSize(Ty);
2740 
2741     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
2742     // than eight eightbytes, ..., it has class MEMORY.
2743     if (Size > 512)
2744       return;
2745 
2746     // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
2747     // copy constructor or a non-trivial destructor, it is passed by invisible
2748     // reference.
2749     if (getRecordArgABI(RT, getCXXABI()))
2750       return;
2751 
2752     const RecordDecl *RD = RT->getDecl();
2753 
2754     // Assume variable sized types are passed in memory.
2755     if (RD->hasFlexibleArrayMember())
2756       return;
2757 
2758     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
2759 
2760     // Reset Lo class, this will be recomputed.
2761     Current = NoClass;
2762 
2763     // If this is a C++ record, classify the bases first.
2764     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
2765       for (const auto &I : CXXRD->bases()) {
2766         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
2767                "Unexpected base class!");
2768         const CXXRecordDecl *Base =
2769           cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
2770 
2771         // Classify this field.
2772         //
2773         // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
2774         // single eightbyte, each is classified separately. Each eightbyte gets
2775         // initialized to class NO_CLASS.
2776         Class FieldLo, FieldHi;
2777         uint64_t Offset =
2778           OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base));
2779         classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg);
2780         Lo = merge(Lo, FieldLo);
2781         Hi = merge(Hi, FieldHi);
2782         if (Lo == Memory || Hi == Memory) {
2783           postMerge(Size, Lo, Hi);
2784           return;
2785         }
2786       }
2787     }
2788 
2789     // Classify the fields one at a time, merging the results.
2790     unsigned idx = 0;
2791     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2792            i != e; ++i, ++idx) {
2793       uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
2794       bool BitField = i->isBitField();
2795 
2796       // Ignore padding bit-fields.
2797       if (BitField && i->isUnnamedBitfield())
2798         continue;
2799 
2800       // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
2801       // four eightbytes, or it contains unaligned fields, it has class MEMORY.
2802       //
2803       // The only case a 256-bit wide vector could be used is when the struct
2804       // contains a single 256-bit element. Since Lo and Hi logic isn't extended
2805       // to work for sizes wider than 128, early check and fallback to memory.
2806       //
2807       if (Size > 128 && (Size != getContext().getTypeSize(i->getType()) ||
2808                          Size > getNativeVectorSizeForAVXABI(AVXLevel))) {
2809         Lo = Memory;
2810         postMerge(Size, Lo, Hi);
2811         return;
2812       }
2813       // Note, skip this test for bit-fields, see below.
2814       if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
2815         Lo = Memory;
2816         postMerge(Size, Lo, Hi);
2817         return;
2818       }
2819 
2820       // Classify this field.
2821       //
2822       // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
2823       // exceeds a single eightbyte, each is classified
2824       // separately. Each eightbyte gets initialized to class
2825       // NO_CLASS.
2826       Class FieldLo, FieldHi;
2827 
2828       // Bit-fields require special handling, they do not force the
2829       // structure to be passed in memory even if unaligned, and
2830       // therefore they can straddle an eightbyte.
2831       if (BitField) {
2832         assert(!i->isUnnamedBitfield());
2833         uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
2834         uint64_t Size = i->getBitWidthValue(getContext());
2835 
2836         uint64_t EB_Lo = Offset / 64;
2837         uint64_t EB_Hi = (Offset + Size - 1) / 64;
2838 
2839         if (EB_Lo) {
2840           assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
2841           FieldLo = NoClass;
2842           FieldHi = Integer;
2843         } else {
2844           FieldLo = Integer;
2845           FieldHi = EB_Hi ? Integer : NoClass;
2846         }
2847       } else
2848         classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg);
2849       Lo = merge(Lo, FieldLo);
2850       Hi = merge(Hi, FieldHi);
2851       if (Lo == Memory || Hi == Memory)
2852         break;
2853     }
2854 
2855     postMerge(Size, Lo, Hi);
2856   }
2857 }
2858 
2859 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
2860   // If this is a scalar LLVM value then assume LLVM will pass it in the right
2861   // place naturally.
2862   if (!isAggregateTypeForABI(Ty)) {
2863     // Treat an enum type as its underlying type.
2864     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2865       Ty = EnumTy->getDecl()->getIntegerType();
2866 
2867     return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
2868                                           : ABIArgInfo::getDirect());
2869   }
2870 
2871   return getNaturalAlignIndirect(Ty);
2872 }
2873 
2874 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
2875   if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
2876     uint64_t Size = getContext().getTypeSize(VecTy);
2877     unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel);
2878     if (Size <= 64 || Size > LargestVector)
2879       return true;
2880   }
2881 
2882   return false;
2883 }
2884 
2885 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
2886                                             unsigned freeIntRegs) const {
2887   // If this is a scalar LLVM value then assume LLVM will pass it in the right
2888   // place naturally.
2889   //
2890   // This assumption is optimistic, as there could be free registers available
2891   // when we need to pass this argument in memory, and LLVM could try to pass
2892   // the argument in the free register. This does not seem to happen currently,
2893   // but this code would be much safer if we could mark the argument with
2894   // 'onstack'. See PR12193.
2895   if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) {
2896     // Treat an enum type as its underlying type.
2897     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2898       Ty = EnumTy->getDecl()->getIntegerType();
2899 
2900     return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
2901                                           : ABIArgInfo::getDirect());
2902   }
2903 
2904   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
2905     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
2906 
2907   // Compute the byval alignment. We specify the alignment of the byval in all
2908   // cases so that the mid-level optimizer knows the alignment of the byval.
2909   unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
2910 
2911   // Attempt to avoid passing indirect results using byval when possible. This
2912   // is important for good codegen.
2913   //
2914   // We do this by coercing the value into a scalar type which the backend can
2915   // handle naturally (i.e., without using byval).
2916   //
2917   // For simplicity, we currently only do this when we have exhausted all of the
2918   // free integer registers. Doing this when there are free integer registers
2919   // would require more care, as we would have to ensure that the coerced value
2920   // did not claim the unused register. That would require either reording the
2921   // arguments to the function (so that any subsequent inreg values came first),
2922   // or only doing this optimization when there were no following arguments that
2923   // might be inreg.
2924   //
2925   // We currently expect it to be rare (particularly in well written code) for
2926   // arguments to be passed on the stack when there are still free integer
2927   // registers available (this would typically imply large structs being passed
2928   // by value), so this seems like a fair tradeoff for now.
2929   //
2930   // We can revisit this if the backend grows support for 'onstack' parameter
2931   // attributes. See PR12193.
2932   if (freeIntRegs == 0) {
2933     uint64_t Size = getContext().getTypeSize(Ty);
2934 
2935     // If this type fits in an eightbyte, coerce it into the matching integral
2936     // type, which will end up on the stack (with alignment 8).
2937     if (Align == 8 && Size <= 64)
2938       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2939                                                           Size));
2940   }
2941 
2942   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align));
2943 }
2944 
2945 /// The ABI specifies that a value should be passed in a full vector XMM/YMM
2946 /// register. Pick an LLVM IR type that will be passed as a vector register.
2947 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
2948   // Wrapper structs/arrays that only contain vectors are passed just like
2949   // vectors; strip them off if present.
2950   if (const Type *InnerTy = isSingleElementStruct(Ty, getContext()))
2951     Ty = QualType(InnerTy, 0);
2952 
2953   llvm::Type *IRType = CGT.ConvertType(Ty);
2954   if (isa<llvm::VectorType>(IRType) ||
2955       IRType->getTypeID() == llvm::Type::FP128TyID)
2956     return IRType;
2957 
2958   // We couldn't find the preferred IR vector type for 'Ty'.
2959   uint64_t Size = getContext().getTypeSize(Ty);
2960   assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!");
2961 
2962   // Return a LLVM IR vector type based on the size of 'Ty'.
2963   return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()),
2964                                Size / 64);
2965 }
2966 
2967 /// BitsContainNoUserData - Return true if the specified [start,end) bit range
2968 /// is known to either be off the end of the specified type or being in
2969 /// alignment padding.  The user type specified is known to be at most 128 bits
2970 /// in size, and have passed through X86_64ABIInfo::classify with a successful
2971 /// classification that put one of the two halves in the INTEGER class.
2972 ///
2973 /// It is conservatively correct to return false.
2974 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
2975                                   unsigned EndBit, ASTContext &Context) {
2976   // If the bytes being queried are off the end of the type, there is no user
2977   // data hiding here.  This handles analysis of builtins, vectors and other
2978   // types that don't contain interesting padding.
2979   unsigned TySize = (unsigned)Context.getTypeSize(Ty);
2980   if (TySize <= StartBit)
2981     return true;
2982 
2983   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
2984     unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
2985     unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
2986 
2987     // Check each element to see if the element overlaps with the queried range.
2988     for (unsigned i = 0; i != NumElts; ++i) {
2989       // If the element is after the span we care about, then we're done..
2990       unsigned EltOffset = i*EltSize;
2991       if (EltOffset >= EndBit) break;
2992 
2993       unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
2994       if (!BitsContainNoUserData(AT->getElementType(), EltStart,
2995                                  EndBit-EltOffset, Context))
2996         return false;
2997     }
2998     // If it overlaps no elements, then it is safe to process as padding.
2999     return true;
3000   }
3001 
3002   if (const RecordType *RT = Ty->getAs<RecordType>()) {
3003     const RecordDecl *RD = RT->getDecl();
3004     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3005 
3006     // If this is a C++ record, check the bases first.
3007     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
3008       for (const auto &I : CXXRD->bases()) {
3009         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
3010                "Unexpected base class!");
3011         const CXXRecordDecl *Base =
3012           cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
3013 
3014         // If the base is after the span we care about, ignore it.
3015         unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base));
3016         if (BaseOffset >= EndBit) continue;
3017 
3018         unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
3019         if (!BitsContainNoUserData(I.getType(), BaseStart,
3020                                    EndBit-BaseOffset, Context))
3021           return false;
3022       }
3023     }
3024 
3025     // Verify that no field has data that overlaps the region of interest.  Yes
3026     // this could be sped up a lot by being smarter about queried fields,
3027     // however we're only looking at structs up to 16 bytes, so we don't care
3028     // much.
3029     unsigned idx = 0;
3030     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
3031          i != e; ++i, ++idx) {
3032       unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
3033 
3034       // If we found a field after the region we care about, then we're done.
3035       if (FieldOffset >= EndBit) break;
3036 
3037       unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
3038       if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
3039                                  Context))
3040         return false;
3041     }
3042 
3043     // If nothing in this record overlapped the area of interest, then we're
3044     // clean.
3045     return true;
3046   }
3047 
3048   return false;
3049 }
3050 
3051 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
3052 /// float member at the specified offset.  For example, {int,{float}} has a
3053 /// float at offset 4.  It is conservatively correct for this routine to return
3054 /// false.
3055 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset,
3056                                   const llvm::DataLayout &TD) {
3057   // Base case if we find a float.
3058   if (IROffset == 0 && IRType->isFloatTy())
3059     return true;
3060 
3061   // If this is a struct, recurse into the field at the specified offset.
3062   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
3063     const llvm::StructLayout *SL = TD.getStructLayout(STy);
3064     unsigned Elt = SL->getElementContainingOffset(IROffset);
3065     IROffset -= SL->getElementOffset(Elt);
3066     return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
3067   }
3068 
3069   // If this is an array, recurse into the field at the specified offset.
3070   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
3071     llvm::Type *EltTy = ATy->getElementType();
3072     unsigned EltSize = TD.getTypeAllocSize(EltTy);
3073     IROffset -= IROffset/EltSize*EltSize;
3074     return ContainsFloatAtOffset(EltTy, IROffset, TD);
3075   }
3076 
3077   return false;
3078 }
3079 
3080 
3081 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
3082 /// low 8 bytes of an XMM register, corresponding to the SSE class.
3083 llvm::Type *X86_64ABIInfo::
3084 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
3085                    QualType SourceTy, unsigned SourceOffset) const {
3086   // The only three choices we have are either double, <2 x float>, or float. We
3087   // pass as float if the last 4 bytes is just padding.  This happens for
3088   // structs that contain 3 floats.
3089   if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
3090                             SourceOffset*8+64, getContext()))
3091     return llvm::Type::getFloatTy(getVMContext());
3092 
3093   // We want to pass as <2 x float> if the LLVM IR type contains a float at
3094   // offset+0 and offset+4.  Walk the LLVM IR type to find out if this is the
3095   // case.
3096   if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) &&
3097       ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout()))
3098     return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2);
3099 
3100   return llvm::Type::getDoubleTy(getVMContext());
3101 }
3102 
3103 
3104 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
3105 /// an 8-byte GPR.  This means that we either have a scalar or we are talking
3106 /// about the high or low part of an up-to-16-byte struct.  This routine picks
3107 /// the best LLVM IR type to represent this, which may be i64 or may be anything
3108 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
3109 /// etc).
3110 ///
3111 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
3112 /// the source type.  IROffset is an offset in bytes into the LLVM IR type that
3113 /// the 8-byte value references.  PrefType may be null.
3114 ///
3115 /// SourceTy is the source-level type for the entire argument.  SourceOffset is
3116 /// an offset into this that we're processing (which is always either 0 or 8).
3117 ///
3118 llvm::Type *X86_64ABIInfo::
3119 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
3120                        QualType SourceTy, unsigned SourceOffset) const {
3121   // If we're dealing with an un-offset LLVM IR type, then it means that we're
3122   // returning an 8-byte unit starting with it.  See if we can safely use it.
3123   if (IROffset == 0) {
3124     // Pointers and int64's always fill the 8-byte unit.
3125     if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) ||
3126         IRType->isIntegerTy(64))
3127       return IRType;
3128 
3129     // If we have a 1/2/4-byte integer, we can use it only if the rest of the
3130     // goodness in the source type is just tail padding.  This is allowed to
3131     // kick in for struct {double,int} on the int, but not on
3132     // struct{double,int,int} because we wouldn't return the second int.  We
3133     // have to do this analysis on the source type because we can't depend on
3134     // unions being lowered a specific way etc.
3135     if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
3136         IRType->isIntegerTy(32) ||
3137         (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) {
3138       unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 :
3139           cast<llvm::IntegerType>(IRType)->getBitWidth();
3140 
3141       if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
3142                                 SourceOffset*8+64, getContext()))
3143         return IRType;
3144     }
3145   }
3146 
3147   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
3148     // If this is a struct, recurse into the field at the specified offset.
3149     const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy);
3150     if (IROffset < SL->getSizeInBytes()) {
3151       unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
3152       IROffset -= SL->getElementOffset(FieldIdx);
3153 
3154       return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
3155                                     SourceTy, SourceOffset);
3156     }
3157   }
3158 
3159   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
3160     llvm::Type *EltTy = ATy->getElementType();
3161     unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy);
3162     unsigned EltOffset = IROffset/EltSize*EltSize;
3163     return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
3164                                   SourceOffset);
3165   }
3166 
3167   // Okay, we don't have any better idea of what to pass, so we pass this in an
3168   // integer register that isn't too big to fit the rest of the struct.
3169   unsigned TySizeInBytes =
3170     (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
3171 
3172   assert(TySizeInBytes != SourceOffset && "Empty field?");
3173 
3174   // It is always safe to classify this as an integer type up to i64 that
3175   // isn't larger than the structure.
3176   return llvm::IntegerType::get(getVMContext(),
3177                                 std::min(TySizeInBytes-SourceOffset, 8U)*8);
3178 }
3179 
3180 
3181 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
3182 /// be used as elements of a two register pair to pass or return, return a
3183 /// first class aggregate to represent them.  For example, if the low part of
3184 /// a by-value argument should be passed as i32* and the high part as float,
3185 /// return {i32*, float}.
3186 static llvm::Type *
3187 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
3188                            const llvm::DataLayout &TD) {
3189   // In order to correctly satisfy the ABI, we need to the high part to start
3190   // at offset 8.  If the high and low parts we inferred are both 4-byte types
3191   // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
3192   // the second element at offset 8.  Check for this:
3193   unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
3194   unsigned HiAlign = TD.getABITypeAlignment(Hi);
3195   unsigned HiStart = llvm::alignTo(LoSize, HiAlign);
3196   assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
3197 
3198   // To handle this, we have to increase the size of the low part so that the
3199   // second element will start at an 8 byte offset.  We can't increase the size
3200   // of the second element because it might make us access off the end of the
3201   // struct.
3202   if (HiStart != 8) {
3203     // There are usually two sorts of types the ABI generation code can produce
3204     // for the low part of a pair that aren't 8 bytes in size: float or
3205     // i8/i16/i32.  This can also include pointers when they are 32-bit (X32 and
3206     // NaCl).
3207     // Promote these to a larger type.
3208     if (Lo->isFloatTy())
3209       Lo = llvm::Type::getDoubleTy(Lo->getContext());
3210     else {
3211       assert((Lo->isIntegerTy() || Lo->isPointerTy())
3212              && "Invalid/unknown lo type");
3213       Lo = llvm::Type::getInt64Ty(Lo->getContext());
3214     }
3215   }
3216 
3217   llvm::StructType *Result = llvm::StructType::get(Lo, Hi);
3218 
3219   // Verify that the second element is at an 8-byte offset.
3220   assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
3221          "Invalid x86-64 argument pair!");
3222   return Result;
3223 }
3224 
3225 ABIArgInfo X86_64ABIInfo::
3226 classifyReturnType(QualType RetTy) const {
3227   // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
3228   // classification algorithm.
3229   X86_64ABIInfo::Class Lo, Hi;
3230   classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true);
3231 
3232   // Check some invariants.
3233   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
3234   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
3235 
3236   llvm::Type *ResType = nullptr;
3237   switch (Lo) {
3238   case NoClass:
3239     if (Hi == NoClass)
3240       return ABIArgInfo::getIgnore();
3241     // If the low part is just padding, it takes no register, leave ResType
3242     // null.
3243     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
3244            "Unknown missing lo part");
3245     break;
3246 
3247   case SSEUp:
3248   case X87Up:
3249     llvm_unreachable("Invalid classification for lo word.");
3250 
3251     // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
3252     // hidden argument.
3253   case Memory:
3254     return getIndirectReturnResult(RetTy);
3255 
3256     // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
3257     // available register of the sequence %rax, %rdx is used.
3258   case Integer:
3259     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
3260 
3261     // If we have a sign or zero extended integer, make sure to return Extend
3262     // so that the parameter gets the right LLVM IR attributes.
3263     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
3264       // Treat an enum type as its underlying type.
3265       if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
3266         RetTy = EnumTy->getDecl()->getIntegerType();
3267 
3268       if (RetTy->isIntegralOrEnumerationType() &&
3269           RetTy->isPromotableIntegerType())
3270         return ABIArgInfo::getExtend(RetTy);
3271     }
3272     break;
3273 
3274     // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
3275     // available SSE register of the sequence %xmm0, %xmm1 is used.
3276   case SSE:
3277     ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
3278     break;
3279 
3280     // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
3281     // returned on the X87 stack in %st0 as 80-bit x87 number.
3282   case X87:
3283     ResType = llvm::Type::getX86_FP80Ty(getVMContext());
3284     break;
3285 
3286     // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
3287     // part of the value is returned in %st0 and the imaginary part in
3288     // %st1.
3289   case ComplexX87:
3290     assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
3291     ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
3292                                     llvm::Type::getX86_FP80Ty(getVMContext()));
3293     break;
3294   }
3295 
3296   llvm::Type *HighPart = nullptr;
3297   switch (Hi) {
3298     // Memory was handled previously and X87 should
3299     // never occur as a hi class.
3300   case Memory:
3301   case X87:
3302     llvm_unreachable("Invalid classification for hi word.");
3303 
3304   case ComplexX87: // Previously handled.
3305   case NoClass:
3306     break;
3307 
3308   case Integer:
3309     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3310     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3311       return ABIArgInfo::getDirect(HighPart, 8);
3312     break;
3313   case SSE:
3314     HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3315     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3316       return ABIArgInfo::getDirect(HighPart, 8);
3317     break;
3318 
3319     // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
3320     // is passed in the next available eightbyte chunk if the last used
3321     // vector register.
3322     //
3323     // SSEUP should always be preceded by SSE, just widen.
3324   case SSEUp:
3325     assert(Lo == SSE && "Unexpected SSEUp classification.");
3326     ResType = GetByteVectorType(RetTy);
3327     break;
3328 
3329     // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
3330     // returned together with the previous X87 value in %st0.
3331   case X87Up:
3332     // If X87Up is preceded by X87, we don't need to do
3333     // anything. However, in some cases with unions it may not be
3334     // preceded by X87. In such situations we follow gcc and pass the
3335     // extra bits in an SSE reg.
3336     if (Lo != X87) {
3337       HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3338       if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3339         return ABIArgInfo::getDirect(HighPart, 8);
3340     }
3341     break;
3342   }
3343 
3344   // If a high part was specified, merge it together with the low part.  It is
3345   // known to pass in the high eightbyte of the result.  We do this by forming a
3346   // first class struct aggregate with the high and low part: {low, high}
3347   if (HighPart)
3348     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
3349 
3350   return ABIArgInfo::getDirect(ResType);
3351 }
3352 
3353 ABIArgInfo X86_64ABIInfo::classifyArgumentType(
3354   QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE,
3355   bool isNamedArg)
3356   const
3357 {
3358   Ty = useFirstFieldIfTransparentUnion(Ty);
3359 
3360   X86_64ABIInfo::Class Lo, Hi;
3361   classify(Ty, 0, Lo, Hi, isNamedArg);
3362 
3363   // Check some invariants.
3364   // FIXME: Enforce these by construction.
3365   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
3366   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
3367 
3368   neededInt = 0;
3369   neededSSE = 0;
3370   llvm::Type *ResType = nullptr;
3371   switch (Lo) {
3372   case NoClass:
3373     if (Hi == NoClass)
3374       return ABIArgInfo::getIgnore();
3375     // If the low part is just padding, it takes no register, leave ResType
3376     // null.
3377     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
3378            "Unknown missing lo part");
3379     break;
3380 
3381     // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
3382     // on the stack.
3383   case Memory:
3384 
3385     // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
3386     // COMPLEX_X87, it is passed in memory.
3387   case X87:
3388   case ComplexX87:
3389     if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect)
3390       ++neededInt;
3391     return getIndirectResult(Ty, freeIntRegs);
3392 
3393   case SSEUp:
3394   case X87Up:
3395     llvm_unreachable("Invalid classification for lo word.");
3396 
3397     // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
3398     // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
3399     // and %r9 is used.
3400   case Integer:
3401     ++neededInt;
3402 
3403     // Pick an 8-byte type based on the preferred type.
3404     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
3405 
3406     // If we have a sign or zero extended integer, make sure to return Extend
3407     // so that the parameter gets the right LLVM IR attributes.
3408     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
3409       // Treat an enum type as its underlying type.
3410       if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3411         Ty = EnumTy->getDecl()->getIntegerType();
3412 
3413       if (Ty->isIntegralOrEnumerationType() &&
3414           Ty->isPromotableIntegerType())
3415         return ABIArgInfo::getExtend(Ty);
3416     }
3417 
3418     break;
3419 
3420     // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
3421     // available SSE register is used, the registers are taken in the
3422     // order from %xmm0 to %xmm7.
3423   case SSE: {
3424     llvm::Type *IRType = CGT.ConvertType(Ty);
3425     ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
3426     ++neededSSE;
3427     break;
3428   }
3429   }
3430 
3431   llvm::Type *HighPart = nullptr;
3432   switch (Hi) {
3433     // Memory was handled previously, ComplexX87 and X87 should
3434     // never occur as hi classes, and X87Up must be preceded by X87,
3435     // which is passed in memory.
3436   case Memory:
3437   case X87:
3438   case ComplexX87:
3439     llvm_unreachable("Invalid classification for hi word.");
3440 
3441   case NoClass: break;
3442 
3443   case Integer:
3444     ++neededInt;
3445     // Pick an 8-byte type based on the preferred type.
3446     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
3447 
3448     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
3449       return ABIArgInfo::getDirect(HighPart, 8);
3450     break;
3451 
3452     // X87Up generally doesn't occur here (long double is passed in
3453     // memory), except in situations involving unions.
3454   case X87Up:
3455   case SSE:
3456     HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
3457 
3458     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
3459       return ABIArgInfo::getDirect(HighPart, 8);
3460 
3461     ++neededSSE;
3462     break;
3463 
3464     // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
3465     // eightbyte is passed in the upper half of the last used SSE
3466     // register.  This only happens when 128-bit vectors are passed.
3467   case SSEUp:
3468     assert(Lo == SSE && "Unexpected SSEUp classification");
3469     ResType = GetByteVectorType(Ty);
3470     break;
3471   }
3472 
3473   // If a high part was specified, merge it together with the low part.  It is
3474   // known to pass in the high eightbyte of the result.  We do this by forming a
3475   // first class struct aggregate with the high and low part: {low, high}
3476   if (HighPart)
3477     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
3478 
3479   return ABIArgInfo::getDirect(ResType);
3480 }
3481 
3482 ABIArgInfo
3483 X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
3484                                              unsigned &NeededSSE) const {
3485   auto RT = Ty->getAs<RecordType>();
3486   assert(RT && "classifyRegCallStructType only valid with struct types");
3487 
3488   if (RT->getDecl()->hasFlexibleArrayMember())
3489     return getIndirectReturnResult(Ty);
3490 
3491   // Sum up bases
3492   if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
3493     if (CXXRD->isDynamicClass()) {
3494       NeededInt = NeededSSE = 0;
3495       return getIndirectReturnResult(Ty);
3496     }
3497 
3498     for (const auto &I : CXXRD->bases())
3499       if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE)
3500               .isIndirect()) {
3501         NeededInt = NeededSSE = 0;
3502         return getIndirectReturnResult(Ty);
3503       }
3504   }
3505 
3506   // Sum up members
3507   for (const auto *FD : RT->getDecl()->fields()) {
3508     if (FD->getType()->isRecordType() && !FD->getType()->isUnionType()) {
3509       if (classifyRegCallStructTypeImpl(FD->getType(), NeededInt, NeededSSE)
3510               .isIndirect()) {
3511         NeededInt = NeededSSE = 0;
3512         return getIndirectReturnResult(Ty);
3513       }
3514     } else {
3515       unsigned LocalNeededInt, LocalNeededSSE;
3516       if (classifyArgumentType(FD->getType(), UINT_MAX, LocalNeededInt,
3517                                LocalNeededSSE, true)
3518               .isIndirect()) {
3519         NeededInt = NeededSSE = 0;
3520         return getIndirectReturnResult(Ty);
3521       }
3522       NeededInt += LocalNeededInt;
3523       NeededSSE += LocalNeededSSE;
3524     }
3525   }
3526 
3527   return ABIArgInfo::getDirect();
3528 }
3529 
3530 ABIArgInfo X86_64ABIInfo::classifyRegCallStructType(QualType Ty,
3531                                                     unsigned &NeededInt,
3532                                                     unsigned &NeededSSE) const {
3533 
3534   NeededInt = 0;
3535   NeededSSE = 0;
3536 
3537   return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE);
3538 }
3539 
3540 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
3541 
3542   const unsigned CallingConv = FI.getCallingConvention();
3543   // It is possible to force Win64 calling convention on any x86_64 target by
3544   // using __attribute__((ms_abi)). In such case to correctly emit Win64
3545   // compatible code delegate this call to WinX86_64ABIInfo::computeInfo.
3546   if (CallingConv == llvm::CallingConv::Win64) {
3547     WinX86_64ABIInfo Win64ABIInfo(CGT);
3548     Win64ABIInfo.computeInfo(FI);
3549     return;
3550   }
3551 
3552   bool IsRegCall = CallingConv == llvm::CallingConv::X86_RegCall;
3553 
3554   // Keep track of the number of assigned registers.
3555   unsigned FreeIntRegs = IsRegCall ? 11 : 6;
3556   unsigned FreeSSERegs = IsRegCall ? 16 : 8;
3557   unsigned NeededInt, NeededSSE;
3558 
3559   if (!::classifyReturnType(getCXXABI(), FI, *this)) {
3560     if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() &&
3561         !FI.getReturnType()->getTypePtr()->isUnionType()) {
3562       FI.getReturnInfo() =
3563           classifyRegCallStructType(FI.getReturnType(), NeededInt, NeededSSE);
3564       if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
3565         FreeIntRegs -= NeededInt;
3566         FreeSSERegs -= NeededSSE;
3567       } else {
3568         FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType());
3569       }
3570     } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>()) {
3571       // Complex Long Double Type is passed in Memory when Regcall
3572       // calling convention is used.
3573       const ComplexType *CT = FI.getReturnType()->getAs<ComplexType>();
3574       if (getContext().getCanonicalType(CT->getElementType()) ==
3575           getContext().LongDoubleTy)
3576         FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType());
3577     } else
3578       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3579   }
3580 
3581   // If the return value is indirect, then the hidden argument is consuming one
3582   // integer register.
3583   if (FI.getReturnInfo().isIndirect())
3584     --FreeIntRegs;
3585 
3586   // The chain argument effectively gives us another free register.
3587   if (FI.isChainCall())
3588     ++FreeIntRegs;
3589 
3590   unsigned NumRequiredArgs = FI.getNumRequiredArgs();
3591   // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
3592   // get assigned (in left-to-right order) for passing as follows...
3593   unsigned ArgNo = 0;
3594   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3595        it != ie; ++it, ++ArgNo) {
3596     bool IsNamedArg = ArgNo < NumRequiredArgs;
3597 
3598     if (IsRegCall && it->type->isStructureOrClassType())
3599       it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE);
3600     else
3601       it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt,
3602                                       NeededSSE, IsNamedArg);
3603 
3604     // AMD64-ABI 3.2.3p3: If there are no registers available for any
3605     // eightbyte of an argument, the whole argument is passed on the
3606     // stack. If registers have already been assigned for some
3607     // eightbytes of such an argument, the assignments get reverted.
3608     if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
3609       FreeIntRegs -= NeededInt;
3610       FreeSSERegs -= NeededSSE;
3611     } else {
3612       it->info = getIndirectResult(it->type, FreeIntRegs);
3613     }
3614   }
3615 }
3616 
3617 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF,
3618                                          Address VAListAddr, QualType Ty) {
3619   Address overflow_arg_area_p = CGF.Builder.CreateStructGEP(
3620       VAListAddr, 2, CharUnits::fromQuantity(8), "overflow_arg_area_p");
3621   llvm::Value *overflow_arg_area =
3622     CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
3623 
3624   // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
3625   // byte boundary if alignment needed by type exceeds 8 byte boundary.
3626   // It isn't stated explicitly in the standard, but in practice we use
3627   // alignment greater than 16 where necessary.
3628   CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
3629   if (Align > CharUnits::fromQuantity(8)) {
3630     overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area,
3631                                                       Align);
3632   }
3633 
3634   // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
3635   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
3636   llvm::Value *Res =
3637     CGF.Builder.CreateBitCast(overflow_arg_area,
3638                               llvm::PointerType::getUnqual(LTy));
3639 
3640   // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
3641   // l->overflow_arg_area + sizeof(type).
3642   // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
3643   // an 8 byte boundary.
3644 
3645   uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
3646   llvm::Value *Offset =
3647       llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7);
3648   overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
3649                                             "overflow_arg_area.next");
3650   CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
3651 
3652   // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
3653   return Address(Res, Align);
3654 }
3655 
3656 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
3657                                  QualType Ty) const {
3658   // Assume that va_list type is correct; should be pointer to LLVM type:
3659   // struct {
3660   //   i32 gp_offset;
3661   //   i32 fp_offset;
3662   //   i8* overflow_arg_area;
3663   //   i8* reg_save_area;
3664   // };
3665   unsigned neededInt, neededSSE;
3666 
3667   Ty = getContext().getCanonicalType(Ty);
3668   ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE,
3669                                        /*isNamedArg*/false);
3670 
3671   // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
3672   // in the registers. If not go to step 7.
3673   if (!neededInt && !neededSSE)
3674     return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
3675 
3676   // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
3677   // general purpose registers needed to pass type and num_fp to hold
3678   // the number of floating point registers needed.
3679 
3680   // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
3681   // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
3682   // l->fp_offset > 304 - num_fp * 16 go to step 7.
3683   //
3684   // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
3685   // register save space).
3686 
3687   llvm::Value *InRegs = nullptr;
3688   Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid();
3689   llvm::Value *gp_offset = nullptr, *fp_offset = nullptr;
3690   if (neededInt) {
3691     gp_offset_p =
3692         CGF.Builder.CreateStructGEP(VAListAddr, 0, CharUnits::Zero(),
3693                                     "gp_offset_p");
3694     gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
3695     InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
3696     InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
3697   }
3698 
3699   if (neededSSE) {
3700     fp_offset_p =
3701         CGF.Builder.CreateStructGEP(VAListAddr, 1, CharUnits::fromQuantity(4),
3702                                     "fp_offset_p");
3703     fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
3704     llvm::Value *FitsInFP =
3705       llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
3706     FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
3707     InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
3708   }
3709 
3710   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
3711   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
3712   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
3713   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
3714 
3715   // Emit code to load the value if it was passed in registers.
3716 
3717   CGF.EmitBlock(InRegBlock);
3718 
3719   // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
3720   // an offset of l->gp_offset and/or l->fp_offset. This may require
3721   // copying to a temporary location in case the parameter is passed
3722   // in different register classes or requires an alignment greater
3723   // than 8 for general purpose registers and 16 for XMM registers.
3724   //
3725   // FIXME: This really results in shameful code when we end up needing to
3726   // collect arguments from different places; often what should result in a
3727   // simple assembling of a structure from scattered addresses has many more
3728   // loads than necessary. Can we clean this up?
3729   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
3730   llvm::Value *RegSaveArea = CGF.Builder.CreateLoad(
3731       CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(16)),
3732                                   "reg_save_area");
3733 
3734   Address RegAddr = Address::invalid();
3735   if (neededInt && neededSSE) {
3736     // FIXME: Cleanup.
3737     assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
3738     llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
3739     Address Tmp = CGF.CreateMemTemp(Ty);
3740     Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
3741     assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
3742     llvm::Type *TyLo = ST->getElementType(0);
3743     llvm::Type *TyHi = ST->getElementType(1);
3744     assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
3745            "Unexpected ABI info for mixed regs");
3746     llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
3747     llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
3748     llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegSaveArea, gp_offset);
3749     llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegSaveArea, fp_offset);
3750     llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr;
3751     llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr;
3752 
3753     // Copy the first element.
3754     // FIXME: Our choice of alignment here and below is probably pessimistic.
3755     llvm::Value *V = CGF.Builder.CreateAlignedLoad(
3756         TyLo, CGF.Builder.CreateBitCast(RegLoAddr, PTyLo),
3757         CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyLo)));
3758     CGF.Builder.CreateStore(V,
3759                     CGF.Builder.CreateStructGEP(Tmp, 0, CharUnits::Zero()));
3760 
3761     // Copy the second element.
3762     V = CGF.Builder.CreateAlignedLoad(
3763         TyHi, CGF.Builder.CreateBitCast(RegHiAddr, PTyHi),
3764         CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyHi)));
3765     CharUnits Offset = CharUnits::fromQuantity(
3766                    getDataLayout().getStructLayout(ST)->getElementOffset(1));
3767     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1, Offset));
3768 
3769     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
3770   } else if (neededInt) {
3771     RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, gp_offset),
3772                       CharUnits::fromQuantity(8));
3773     RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
3774 
3775     // Copy to a temporary if necessary to ensure the appropriate alignment.
3776     std::pair<CharUnits, CharUnits> SizeAlign =
3777         getContext().getTypeInfoInChars(Ty);
3778     uint64_t TySize = SizeAlign.first.getQuantity();
3779     CharUnits TyAlign = SizeAlign.second;
3780 
3781     // Copy into a temporary if the type is more aligned than the
3782     // register save area.
3783     if (TyAlign.getQuantity() > 8) {
3784       Address Tmp = CGF.CreateMemTemp(Ty);
3785       CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false);
3786       RegAddr = Tmp;
3787     }
3788 
3789   } else if (neededSSE == 1) {
3790     RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset),
3791                       CharUnits::fromQuantity(16));
3792     RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
3793   } else {
3794     assert(neededSSE == 2 && "Invalid number of needed registers!");
3795     // SSE registers are spaced 16 bytes apart in the register save
3796     // area, we need to collect the two eightbytes together.
3797     // The ABI isn't explicit about this, but it seems reasonable
3798     // to assume that the slots are 16-byte aligned, since the stack is
3799     // naturally 16-byte aligned and the prologue is expected to store
3800     // all the SSE registers to the RSA.
3801     Address RegAddrLo = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset),
3802                                 CharUnits::fromQuantity(16));
3803     Address RegAddrHi =
3804       CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo,
3805                                              CharUnits::fromQuantity(16));
3806     llvm::Type *ST = AI.canHaveCoerceToType()
3807                          ? AI.getCoerceToType()
3808                          : llvm::StructType::get(CGF.DoubleTy, CGF.DoubleTy);
3809     llvm::Value *V;
3810     Address Tmp = CGF.CreateMemTemp(Ty);
3811     Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
3812     V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast(
3813         RegAddrLo, ST->getStructElementType(0)));
3814     CGF.Builder.CreateStore(V,
3815                    CGF.Builder.CreateStructGEP(Tmp, 0, CharUnits::Zero()));
3816     V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast(
3817         RegAddrHi, ST->getStructElementType(1)));
3818     CGF.Builder.CreateStore(V,
3819           CGF.Builder.CreateStructGEP(Tmp, 1, CharUnits::fromQuantity(8)));
3820 
3821     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
3822   }
3823 
3824   // AMD64-ABI 3.5.7p5: Step 5. Set:
3825   // l->gp_offset = l->gp_offset + num_gp * 8
3826   // l->fp_offset = l->fp_offset + num_fp * 16.
3827   if (neededInt) {
3828     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
3829     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
3830                             gp_offset_p);
3831   }
3832   if (neededSSE) {
3833     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
3834     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
3835                             fp_offset_p);
3836   }
3837   CGF.EmitBranch(ContBlock);
3838 
3839   // Emit code to load the value if it was passed in memory.
3840 
3841   CGF.EmitBlock(InMemBlock);
3842   Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
3843 
3844   // Return the appropriate result.
3845 
3846   CGF.EmitBlock(ContBlock);
3847   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock,
3848                                  "vaarg.addr");
3849   return ResAddr;
3850 }
3851 
3852 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
3853                                    QualType Ty) const {
3854   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
3855                           CGF.getContext().getTypeInfoInChars(Ty),
3856                           CharUnits::fromQuantity(8),
3857                           /*allowHigherAlign*/ false);
3858 }
3859 
3860 ABIArgInfo
3861 WinX86_64ABIInfo::reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs,
3862                                     const ABIArgInfo &current) const {
3863   // Assumes vectorCall calling convention.
3864   const Type *Base = nullptr;
3865   uint64_t NumElts = 0;
3866 
3867   if (!Ty->isBuiltinType() && !Ty->isVectorType() &&
3868       isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) {
3869     FreeSSERegs -= NumElts;
3870     return getDirectX86Hva();
3871   }
3872   return current;
3873 }
3874 
3875 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs,
3876                                       bool IsReturnType, bool IsVectorCall,
3877                                       bool IsRegCall) const {
3878 
3879   if (Ty->isVoidType())
3880     return ABIArgInfo::getIgnore();
3881 
3882   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3883     Ty = EnumTy->getDecl()->getIntegerType();
3884 
3885   TypeInfo Info = getContext().getTypeInfo(Ty);
3886   uint64_t Width = Info.Width;
3887   CharUnits Align = getContext().toCharUnitsFromBits(Info.Align);
3888 
3889   const RecordType *RT = Ty->getAs<RecordType>();
3890   if (RT) {
3891     if (!IsReturnType) {
3892       if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()))
3893         return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
3894     }
3895 
3896     if (RT->getDecl()->hasFlexibleArrayMember())
3897       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
3898 
3899   }
3900 
3901   const Type *Base = nullptr;
3902   uint64_t NumElts = 0;
3903   // vectorcall adds the concept of a homogenous vector aggregate, similar to
3904   // other targets.
3905   if ((IsVectorCall || IsRegCall) &&
3906       isHomogeneousAggregate(Ty, Base, NumElts)) {
3907     if (IsRegCall) {
3908       if (FreeSSERegs >= NumElts) {
3909         FreeSSERegs -= NumElts;
3910         if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())
3911           return ABIArgInfo::getDirect();
3912         return ABIArgInfo::getExpand();
3913       }
3914       return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3915     } else if (IsVectorCall) {
3916       if (FreeSSERegs >= NumElts &&
3917           (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) {
3918         FreeSSERegs -= NumElts;
3919         return ABIArgInfo::getDirect();
3920       } else if (IsReturnType) {
3921         return ABIArgInfo::getExpand();
3922       } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) {
3923         // HVAs are delayed and reclassified in the 2nd step.
3924         return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3925       }
3926     }
3927   }
3928 
3929   if (Ty->isMemberPointerType()) {
3930     // If the member pointer is represented by an LLVM int or ptr, pass it
3931     // directly.
3932     llvm::Type *LLTy = CGT.ConvertType(Ty);
3933     if (LLTy->isPointerTy() || LLTy->isIntegerTy())
3934       return ABIArgInfo::getDirect();
3935   }
3936 
3937   if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) {
3938     // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
3939     // not 1, 2, 4, or 8 bytes, must be passed by reference."
3940     if (Width > 64 || !llvm::isPowerOf2_64(Width))
3941       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
3942 
3943     // Otherwise, coerce it to a small integer.
3944     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width));
3945   }
3946 
3947   // Bool type is always extended to the ABI, other builtin types are not
3948   // extended.
3949   const BuiltinType *BT = Ty->getAs<BuiltinType>();
3950   if (BT && BT->getKind() == BuiltinType::Bool)
3951     return ABIArgInfo::getExtend(Ty);
3952 
3953   // Mingw64 GCC uses the old 80 bit extended precision floating point unit. It
3954   // passes them indirectly through memory.
3955   if (IsMingw64 && BT && BT->getKind() == BuiltinType::LongDouble) {
3956     const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
3957     if (LDF == &llvm::APFloat::x87DoubleExtended())
3958       return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3959   }
3960 
3961   return ABIArgInfo::getDirect();
3962 }
3963 
3964 void WinX86_64ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI,
3965                                              unsigned FreeSSERegs,
3966                                              bool IsVectorCall,
3967                                              bool IsRegCall) const {
3968   unsigned Count = 0;
3969   for (auto &I : FI.arguments()) {
3970     // Vectorcall in x64 only permits the first 6 arguments to be passed
3971     // as XMM/YMM registers.
3972     if (Count < VectorcallMaxParamNumAsReg)
3973       I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall);
3974     else {
3975       // Since these cannot be passed in registers, pretend no registers
3976       // are left.
3977       unsigned ZeroSSERegsAvail = 0;
3978       I.info = classify(I.type, /*FreeSSERegs=*/ZeroSSERegsAvail, false,
3979                         IsVectorCall, IsRegCall);
3980     }
3981     ++Count;
3982   }
3983 
3984   for (auto &I : FI.arguments()) {
3985     I.info = reclassifyHvaArgType(I.type, FreeSSERegs, I.info);
3986   }
3987 }
3988 
3989 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
3990   bool IsVectorCall =
3991       FI.getCallingConvention() == llvm::CallingConv::X86_VectorCall;
3992   bool IsRegCall = FI.getCallingConvention() == llvm::CallingConv::X86_RegCall;
3993 
3994   unsigned FreeSSERegs = 0;
3995   if (IsVectorCall) {
3996     // We can use up to 4 SSE return registers with vectorcall.
3997     FreeSSERegs = 4;
3998   } else if (IsRegCall) {
3999     // RegCall gives us 16 SSE registers.
4000     FreeSSERegs = 16;
4001   }
4002 
4003   if (!getCXXABI().classifyReturnType(FI))
4004     FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true,
4005                                   IsVectorCall, IsRegCall);
4006 
4007   if (IsVectorCall) {
4008     // We can use up to 6 SSE register parameters with vectorcall.
4009     FreeSSERegs = 6;
4010   } else if (IsRegCall) {
4011     // RegCall gives us 16 SSE registers, we can reuse the return registers.
4012     FreeSSERegs = 16;
4013   }
4014 
4015   if (IsVectorCall) {
4016     computeVectorCallArgs(FI, FreeSSERegs, IsVectorCall, IsRegCall);
4017   } else {
4018     for (auto &I : FI.arguments())
4019       I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall);
4020   }
4021 
4022 }
4023 
4024 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4025                                     QualType Ty) const {
4026 
4027   bool IsIndirect = false;
4028 
4029   // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
4030   // not 1, 2, 4, or 8 bytes, must be passed by reference."
4031   if (isAggregateTypeForABI(Ty) || Ty->isMemberPointerType()) {
4032     uint64_t Width = getContext().getTypeSize(Ty);
4033     IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width);
4034   }
4035 
4036   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
4037                           CGF.getContext().getTypeInfoInChars(Ty),
4038                           CharUnits::fromQuantity(8),
4039                           /*allowHigherAlign*/ false);
4040 }
4041 
4042 // PowerPC-32
4043 namespace {
4044 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information.
4045 class PPC32_SVR4_ABIInfo : public DefaultABIInfo {
4046   bool IsSoftFloatABI;
4047 
4048   CharUnits getParamTypeAlignment(QualType Ty) const;
4049 
4050 public:
4051   PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI)
4052       : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI) {}
4053 
4054   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4055                     QualType Ty) const override;
4056 };
4057 
4058 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo {
4059 public:
4060   PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI)
4061       : TargetCodeGenInfo(new PPC32_SVR4_ABIInfo(CGT, SoftFloatABI)) {}
4062 
4063   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4064     // This is recovered from gcc output.
4065     return 1; // r1 is the dedicated stack pointer
4066   }
4067 
4068   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4069                                llvm::Value *Address) const override;
4070 };
4071 }
4072 
4073 CharUnits PPC32_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const {
4074   // Complex types are passed just like their elements
4075   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
4076     Ty = CTy->getElementType();
4077 
4078   if (Ty->isVectorType())
4079     return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16
4080                                                                        : 4);
4081 
4082   // For single-element float/vector structs, we consider the whole type
4083   // to have the same alignment requirements as its single element.
4084   const Type *AlignTy = nullptr;
4085   if (const Type *EltType = isSingleElementStruct(Ty, getContext())) {
4086     const BuiltinType *BT = EltType->getAs<BuiltinType>();
4087     if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) ||
4088         (BT && BT->isFloatingPoint()))
4089       AlignTy = EltType;
4090   }
4091 
4092   if (AlignTy)
4093     return CharUnits::fromQuantity(AlignTy->isVectorType() ? 16 : 4);
4094   return CharUnits::fromQuantity(4);
4095 }
4096 
4097 // TODO: this implementation is now likely redundant with
4098 // DefaultABIInfo::EmitVAArg.
4099 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList,
4100                                       QualType Ty) const {
4101   if (getTarget().getTriple().isOSDarwin()) {
4102     auto TI = getContext().getTypeInfoInChars(Ty);
4103     TI.second = getParamTypeAlignment(Ty);
4104 
4105     CharUnits SlotSize = CharUnits::fromQuantity(4);
4106     return emitVoidPtrVAArg(CGF, VAList, Ty,
4107                             classifyArgumentType(Ty).isIndirect(), TI, SlotSize,
4108                             /*AllowHigherAlign=*/true);
4109   }
4110 
4111   const unsigned OverflowLimit = 8;
4112   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
4113     // TODO: Implement this. For now ignore.
4114     (void)CTy;
4115     return Address::invalid(); // FIXME?
4116   }
4117 
4118   // struct __va_list_tag {
4119   //   unsigned char gpr;
4120   //   unsigned char fpr;
4121   //   unsigned short reserved;
4122   //   void *overflow_arg_area;
4123   //   void *reg_save_area;
4124   // };
4125 
4126   bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64;
4127   bool isInt =
4128       Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType();
4129   bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64;
4130 
4131   // All aggregates are passed indirectly?  That doesn't seem consistent
4132   // with the argument-lowering code.
4133   bool isIndirect = Ty->isAggregateType();
4134 
4135   CGBuilderTy &Builder = CGF.Builder;
4136 
4137   // The calling convention either uses 1-2 GPRs or 1 FPR.
4138   Address NumRegsAddr = Address::invalid();
4139   if (isInt || IsSoftFloatABI) {
4140     NumRegsAddr = Builder.CreateStructGEP(VAList, 0, CharUnits::Zero(), "gpr");
4141   } else {
4142     NumRegsAddr = Builder.CreateStructGEP(VAList, 1, CharUnits::One(), "fpr");
4143   }
4144 
4145   llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs");
4146 
4147   // "Align" the register count when TY is i64.
4148   if (isI64 || (isF64 && IsSoftFloatABI)) {
4149     NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1));
4150     NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U));
4151   }
4152 
4153   llvm::Value *CC =
4154       Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond");
4155 
4156   llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs");
4157   llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow");
4158   llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
4159 
4160   Builder.CreateCondBr(CC, UsingRegs, UsingOverflow);
4161 
4162   llvm::Type *DirectTy = CGF.ConvertType(Ty);
4163   if (isIndirect) DirectTy = DirectTy->getPointerTo(0);
4164 
4165   // Case 1: consume registers.
4166   Address RegAddr = Address::invalid();
4167   {
4168     CGF.EmitBlock(UsingRegs);
4169 
4170     Address RegSaveAreaPtr =
4171       Builder.CreateStructGEP(VAList, 4, CharUnits::fromQuantity(8));
4172     RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr),
4173                       CharUnits::fromQuantity(8));
4174     assert(RegAddr.getElementType() == CGF.Int8Ty);
4175 
4176     // Floating-point registers start after the general-purpose registers.
4177     if (!(isInt || IsSoftFloatABI)) {
4178       RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr,
4179                                                    CharUnits::fromQuantity(32));
4180     }
4181 
4182     // Get the address of the saved value by scaling the number of
4183     // registers we've used by the number of
4184     CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8);
4185     llvm::Value *RegOffset =
4186       Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity()));
4187     RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty,
4188                                             RegAddr.getPointer(), RegOffset),
4189                       RegAddr.getAlignment().alignmentOfArrayElement(RegSize));
4190     RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy);
4191 
4192     // Increase the used-register count.
4193     NumRegs =
4194       Builder.CreateAdd(NumRegs,
4195                         Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1));
4196     Builder.CreateStore(NumRegs, NumRegsAddr);
4197 
4198     CGF.EmitBranch(Cont);
4199   }
4200 
4201   // Case 2: consume space in the overflow area.
4202   Address MemAddr = Address::invalid();
4203   {
4204     CGF.EmitBlock(UsingOverflow);
4205 
4206     Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr);
4207 
4208     // Everything in the overflow area is rounded up to a size of at least 4.
4209     CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4);
4210 
4211     CharUnits Size;
4212     if (!isIndirect) {
4213       auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty);
4214       Size = TypeInfo.first.alignTo(OverflowAreaAlign);
4215     } else {
4216       Size = CGF.getPointerSize();
4217     }
4218 
4219     Address OverflowAreaAddr =
4220       Builder.CreateStructGEP(VAList, 3, CharUnits::fromQuantity(4));
4221     Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"),
4222                          OverflowAreaAlign);
4223     // Round up address of argument to alignment
4224     CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
4225     if (Align > OverflowAreaAlign) {
4226       llvm::Value *Ptr = OverflowArea.getPointer();
4227       OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align),
4228                                                            Align);
4229     }
4230 
4231     MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy);
4232 
4233     // Increase the overflow area.
4234     OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size);
4235     Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr);
4236     CGF.EmitBranch(Cont);
4237   }
4238 
4239   CGF.EmitBlock(Cont);
4240 
4241   // Merge the cases with a phi.
4242   Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow,
4243                                 "vaarg.addr");
4244 
4245   // Load the pointer if the argument was passed indirectly.
4246   if (isIndirect) {
4247     Result = Address(Builder.CreateLoad(Result, "aggr"),
4248                      getContext().getTypeAlignInChars(Ty));
4249   }
4250 
4251   return Result;
4252 }
4253 
4254 bool
4255 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4256                                                 llvm::Value *Address) const {
4257   // This is calculated from the LLVM and GCC tables and verified
4258   // against gcc output.  AFAIK all ABIs use the same encoding.
4259 
4260   CodeGen::CGBuilderTy &Builder = CGF.Builder;
4261 
4262   llvm::IntegerType *i8 = CGF.Int8Ty;
4263   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
4264   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
4265   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
4266 
4267   // 0-31: r0-31, the 4-byte general-purpose registers
4268   AssignToArrayRange(Builder, Address, Four8, 0, 31);
4269 
4270   // 32-63: fp0-31, the 8-byte floating-point registers
4271   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
4272 
4273   // 64-76 are various 4-byte special-purpose registers:
4274   // 64: mq
4275   // 65: lr
4276   // 66: ctr
4277   // 67: ap
4278   // 68-75 cr0-7
4279   // 76: xer
4280   AssignToArrayRange(Builder, Address, Four8, 64, 76);
4281 
4282   // 77-108: v0-31, the 16-byte vector registers
4283   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
4284 
4285   // 109: vrsave
4286   // 110: vscr
4287   // 111: spe_acc
4288   // 112: spefscr
4289   // 113: sfp
4290   AssignToArrayRange(Builder, Address, Four8, 109, 113);
4291 
4292   return false;
4293 }
4294 
4295 // PowerPC-64
4296 
4297 namespace {
4298 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information.
4299 class PPC64_SVR4_ABIInfo : public SwiftABIInfo {
4300 public:
4301   enum ABIKind {
4302     ELFv1 = 0,
4303     ELFv2
4304   };
4305 
4306 private:
4307   static const unsigned GPRBits = 64;
4308   ABIKind Kind;
4309   bool HasQPX;
4310   bool IsSoftFloatABI;
4311 
4312   // A vector of float or double will be promoted to <4 x f32> or <4 x f64> and
4313   // will be passed in a QPX register.
4314   bool IsQPXVectorTy(const Type *Ty) const {
4315     if (!HasQPX)
4316       return false;
4317 
4318     if (const VectorType *VT = Ty->getAs<VectorType>()) {
4319       unsigned NumElements = VT->getNumElements();
4320       if (NumElements == 1)
4321         return false;
4322 
4323       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) {
4324         if (getContext().getTypeSize(Ty) <= 256)
4325           return true;
4326       } else if (VT->getElementType()->
4327                    isSpecificBuiltinType(BuiltinType::Float)) {
4328         if (getContext().getTypeSize(Ty) <= 128)
4329           return true;
4330       }
4331     }
4332 
4333     return false;
4334   }
4335 
4336   bool IsQPXVectorTy(QualType Ty) const {
4337     return IsQPXVectorTy(Ty.getTypePtr());
4338   }
4339 
4340 public:
4341   PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, bool HasQPX,
4342                      bool SoftFloatABI)
4343       : SwiftABIInfo(CGT), Kind(Kind), HasQPX(HasQPX),
4344         IsSoftFloatABI(SoftFloatABI) {}
4345 
4346   bool isPromotableTypeForABI(QualType Ty) const;
4347   CharUnits getParamTypeAlignment(QualType Ty) const;
4348 
4349   ABIArgInfo classifyReturnType(QualType RetTy) const;
4350   ABIArgInfo classifyArgumentType(QualType Ty) const;
4351 
4352   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
4353   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
4354                                          uint64_t Members) const override;
4355 
4356   // TODO: We can add more logic to computeInfo to improve performance.
4357   // Example: For aggregate arguments that fit in a register, we could
4358   // use getDirectInReg (as is done below for structs containing a single
4359   // floating-point value) to avoid pushing them to memory on function
4360   // entry.  This would require changing the logic in PPCISelLowering
4361   // when lowering the parameters in the caller and args in the callee.
4362   void computeInfo(CGFunctionInfo &FI) const override {
4363     if (!getCXXABI().classifyReturnType(FI))
4364       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4365     for (auto &I : FI.arguments()) {
4366       // We rely on the default argument classification for the most part.
4367       // One exception:  An aggregate containing a single floating-point
4368       // or vector item must be passed in a register if one is available.
4369       const Type *T = isSingleElementStruct(I.type, getContext());
4370       if (T) {
4371         const BuiltinType *BT = T->getAs<BuiltinType>();
4372         if (IsQPXVectorTy(T) ||
4373             (T->isVectorType() && getContext().getTypeSize(T) == 128) ||
4374             (BT && BT->isFloatingPoint())) {
4375           QualType QT(T, 0);
4376           I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT));
4377           continue;
4378         }
4379       }
4380       I.info = classifyArgumentType(I.type);
4381     }
4382   }
4383 
4384   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4385                     QualType Ty) const override;
4386 
4387   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
4388                                     bool asReturnValue) const override {
4389     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
4390   }
4391 
4392   bool isSwiftErrorInRegister() const override {
4393     return false;
4394   }
4395 };
4396 
4397 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo {
4398 
4399 public:
4400   PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT,
4401                                PPC64_SVR4_ABIInfo::ABIKind Kind, bool HasQPX,
4402                                bool SoftFloatABI)
4403       : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT, Kind, HasQPX,
4404                                                  SoftFloatABI)) {}
4405 
4406   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4407     // This is recovered from gcc output.
4408     return 1; // r1 is the dedicated stack pointer
4409   }
4410 
4411   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4412                                llvm::Value *Address) const override;
4413 };
4414 
4415 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
4416 public:
4417   PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
4418 
4419   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4420     // This is recovered from gcc output.
4421     return 1; // r1 is the dedicated stack pointer
4422   }
4423 
4424   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4425                                llvm::Value *Address) const override;
4426 };
4427 
4428 }
4429 
4430 // Return true if the ABI requires Ty to be passed sign- or zero-
4431 // extended to 64 bits.
4432 bool
4433 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const {
4434   // Treat an enum type as its underlying type.
4435   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4436     Ty = EnumTy->getDecl()->getIntegerType();
4437 
4438   // Promotable integer types are required to be promoted by the ABI.
4439   if (Ty->isPromotableIntegerType())
4440     return true;
4441 
4442   // In addition to the usual promotable integer types, we also need to
4443   // extend all 32-bit types, since the ABI requires promotion to 64 bits.
4444   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
4445     switch (BT->getKind()) {
4446     case BuiltinType::Int:
4447     case BuiltinType::UInt:
4448       return true;
4449     default:
4450       break;
4451     }
4452 
4453   return false;
4454 }
4455 
4456 /// isAlignedParamType - Determine whether a type requires 16-byte or
4457 /// higher alignment in the parameter area.  Always returns at least 8.
4458 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const {
4459   // Complex types are passed just like their elements.
4460   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
4461     Ty = CTy->getElementType();
4462 
4463   // Only vector types of size 16 bytes need alignment (larger types are
4464   // passed via reference, smaller types are not aligned).
4465   if (IsQPXVectorTy(Ty)) {
4466     if (getContext().getTypeSize(Ty) > 128)
4467       return CharUnits::fromQuantity(32);
4468 
4469     return CharUnits::fromQuantity(16);
4470   } else if (Ty->isVectorType()) {
4471     return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8);
4472   }
4473 
4474   // For single-element float/vector structs, we consider the whole type
4475   // to have the same alignment requirements as its single element.
4476   const Type *AlignAsType = nullptr;
4477   const Type *EltType = isSingleElementStruct(Ty, getContext());
4478   if (EltType) {
4479     const BuiltinType *BT = EltType->getAs<BuiltinType>();
4480     if (IsQPXVectorTy(EltType) || (EltType->isVectorType() &&
4481          getContext().getTypeSize(EltType) == 128) ||
4482         (BT && BT->isFloatingPoint()))
4483       AlignAsType = EltType;
4484   }
4485 
4486   // Likewise for ELFv2 homogeneous aggregates.
4487   const Type *Base = nullptr;
4488   uint64_t Members = 0;
4489   if (!AlignAsType && Kind == ELFv2 &&
4490       isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members))
4491     AlignAsType = Base;
4492 
4493   // With special case aggregates, only vector base types need alignment.
4494   if (AlignAsType && IsQPXVectorTy(AlignAsType)) {
4495     if (getContext().getTypeSize(AlignAsType) > 128)
4496       return CharUnits::fromQuantity(32);
4497 
4498     return CharUnits::fromQuantity(16);
4499   } else if (AlignAsType) {
4500     return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8);
4501   }
4502 
4503   // Otherwise, we only need alignment for any aggregate type that
4504   // has an alignment requirement of >= 16 bytes.
4505   if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) {
4506     if (HasQPX && getContext().getTypeAlign(Ty) >= 256)
4507       return CharUnits::fromQuantity(32);
4508     return CharUnits::fromQuantity(16);
4509   }
4510 
4511   return CharUnits::fromQuantity(8);
4512 }
4513 
4514 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous
4515 /// aggregate.  Base is set to the base element type, and Members is set
4516 /// to the number of base elements.
4517 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base,
4518                                      uint64_t &Members) const {
4519   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
4520     uint64_t NElements = AT->getSize().getZExtValue();
4521     if (NElements == 0)
4522       return false;
4523     if (!isHomogeneousAggregate(AT->getElementType(), Base, Members))
4524       return false;
4525     Members *= NElements;
4526   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
4527     const RecordDecl *RD = RT->getDecl();
4528     if (RD->hasFlexibleArrayMember())
4529       return false;
4530 
4531     Members = 0;
4532 
4533     // If this is a C++ record, check the bases first.
4534     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
4535       for (const auto &I : CXXRD->bases()) {
4536         // Ignore empty records.
4537         if (isEmptyRecord(getContext(), I.getType(), true))
4538           continue;
4539 
4540         uint64_t FldMembers;
4541         if (!isHomogeneousAggregate(I.getType(), Base, FldMembers))
4542           return false;
4543 
4544         Members += FldMembers;
4545       }
4546     }
4547 
4548     for (const auto *FD : RD->fields()) {
4549       // Ignore (non-zero arrays of) empty records.
4550       QualType FT = FD->getType();
4551       while (const ConstantArrayType *AT =
4552              getContext().getAsConstantArrayType(FT)) {
4553         if (AT->getSize().getZExtValue() == 0)
4554           return false;
4555         FT = AT->getElementType();
4556       }
4557       if (isEmptyRecord(getContext(), FT, true))
4558         continue;
4559 
4560       // For compatibility with GCC, ignore empty bitfields in C++ mode.
4561       if (getContext().getLangOpts().CPlusPlus &&
4562           FD->isZeroLengthBitField(getContext()))
4563         continue;
4564 
4565       uint64_t FldMembers;
4566       if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers))
4567         return false;
4568 
4569       Members = (RD->isUnion() ?
4570                  std::max(Members, FldMembers) : Members + FldMembers);
4571     }
4572 
4573     if (!Base)
4574       return false;
4575 
4576     // Ensure there is no padding.
4577     if (getContext().getTypeSize(Base) * Members !=
4578         getContext().getTypeSize(Ty))
4579       return false;
4580   } else {
4581     Members = 1;
4582     if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
4583       Members = 2;
4584       Ty = CT->getElementType();
4585     }
4586 
4587     // Most ABIs only support float, double, and some vector type widths.
4588     if (!isHomogeneousAggregateBaseType(Ty))
4589       return false;
4590 
4591     // The base type must be the same for all members.  Types that
4592     // agree in both total size and mode (float vs. vector) are
4593     // treated as being equivalent here.
4594     const Type *TyPtr = Ty.getTypePtr();
4595     if (!Base) {
4596       Base = TyPtr;
4597       // If it's a non-power-of-2 vector, its size is already a power-of-2,
4598       // so make sure to widen it explicitly.
4599       if (const VectorType *VT = Base->getAs<VectorType>()) {
4600         QualType EltTy = VT->getElementType();
4601         unsigned NumElements =
4602             getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy);
4603         Base = getContext()
4604                    .getVectorType(EltTy, NumElements, VT->getVectorKind())
4605                    .getTypePtr();
4606       }
4607     }
4608 
4609     if (Base->isVectorType() != TyPtr->isVectorType() ||
4610         getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr))
4611       return false;
4612   }
4613   return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members);
4614 }
4615 
4616 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
4617   // Homogeneous aggregates for ELFv2 must have base types of float,
4618   // double, long double, or 128-bit vectors.
4619   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
4620     if (BT->getKind() == BuiltinType::Float ||
4621         BT->getKind() == BuiltinType::Double ||
4622         BT->getKind() == BuiltinType::LongDouble) {
4623       if (IsSoftFloatABI)
4624         return false;
4625       return true;
4626     }
4627   }
4628   if (const VectorType *VT = Ty->getAs<VectorType>()) {
4629     if (getContext().getTypeSize(VT) == 128 || IsQPXVectorTy(Ty))
4630       return true;
4631   }
4632   return false;
4633 }
4634 
4635 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough(
4636     const Type *Base, uint64_t Members) const {
4637   // Vector types require one register, floating point types require one
4638   // or two registers depending on their size.
4639   uint32_t NumRegs =
4640       Base->isVectorType() ? 1 : (getContext().getTypeSize(Base) + 63) / 64;
4641 
4642   // Homogeneous Aggregates may occupy at most 8 registers.
4643   return Members * NumRegs <= 8;
4644 }
4645 
4646 ABIArgInfo
4647 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const {
4648   Ty = useFirstFieldIfTransparentUnion(Ty);
4649 
4650   if (Ty->isAnyComplexType())
4651     return ABIArgInfo::getDirect();
4652 
4653   // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes)
4654   // or via reference (larger than 16 bytes).
4655   if (Ty->isVectorType() && !IsQPXVectorTy(Ty)) {
4656     uint64_t Size = getContext().getTypeSize(Ty);
4657     if (Size > 128)
4658       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
4659     else if (Size < 128) {
4660       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
4661       return ABIArgInfo::getDirect(CoerceTy);
4662     }
4663   }
4664 
4665   if (isAggregateTypeForABI(Ty)) {
4666     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
4667       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
4668 
4669     uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity();
4670     uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity();
4671 
4672     // ELFv2 homogeneous aggregates are passed as array types.
4673     const Type *Base = nullptr;
4674     uint64_t Members = 0;
4675     if (Kind == ELFv2 &&
4676         isHomogeneousAggregate(Ty, Base, Members)) {
4677       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
4678       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
4679       return ABIArgInfo::getDirect(CoerceTy);
4680     }
4681 
4682     // If an aggregate may end up fully in registers, we do not
4683     // use the ByVal method, but pass the aggregate as array.
4684     // This is usually beneficial since we avoid forcing the
4685     // back-end to store the argument to memory.
4686     uint64_t Bits = getContext().getTypeSize(Ty);
4687     if (Bits > 0 && Bits <= 8 * GPRBits) {
4688       llvm::Type *CoerceTy;
4689 
4690       // Types up to 8 bytes are passed as integer type (which will be
4691       // properly aligned in the argument save area doubleword).
4692       if (Bits <= GPRBits)
4693         CoerceTy =
4694             llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8));
4695       // Larger types are passed as arrays, with the base type selected
4696       // according to the required alignment in the save area.
4697       else {
4698         uint64_t RegBits = ABIAlign * 8;
4699         uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits;
4700         llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits);
4701         CoerceTy = llvm::ArrayType::get(RegTy, NumRegs);
4702       }
4703 
4704       return ABIArgInfo::getDirect(CoerceTy);
4705     }
4706 
4707     // All other aggregates are passed ByVal.
4708     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
4709                                    /*ByVal=*/true,
4710                                    /*Realign=*/TyAlign > ABIAlign);
4711   }
4712 
4713   return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
4714                                      : ABIArgInfo::getDirect());
4715 }
4716 
4717 ABIArgInfo
4718 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
4719   if (RetTy->isVoidType())
4720     return ABIArgInfo::getIgnore();
4721 
4722   if (RetTy->isAnyComplexType())
4723     return ABIArgInfo::getDirect();
4724 
4725   // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes)
4726   // or via reference (larger than 16 bytes).
4727   if (RetTy->isVectorType() && !IsQPXVectorTy(RetTy)) {
4728     uint64_t Size = getContext().getTypeSize(RetTy);
4729     if (Size > 128)
4730       return getNaturalAlignIndirect(RetTy);
4731     else if (Size < 128) {
4732       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
4733       return ABIArgInfo::getDirect(CoerceTy);
4734     }
4735   }
4736 
4737   if (isAggregateTypeForABI(RetTy)) {
4738     // ELFv2 homogeneous aggregates are returned as array types.
4739     const Type *Base = nullptr;
4740     uint64_t Members = 0;
4741     if (Kind == ELFv2 &&
4742         isHomogeneousAggregate(RetTy, Base, Members)) {
4743       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
4744       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
4745       return ABIArgInfo::getDirect(CoerceTy);
4746     }
4747 
4748     // ELFv2 small aggregates are returned in up to two registers.
4749     uint64_t Bits = getContext().getTypeSize(RetTy);
4750     if (Kind == ELFv2 && Bits <= 2 * GPRBits) {
4751       if (Bits == 0)
4752         return ABIArgInfo::getIgnore();
4753 
4754       llvm::Type *CoerceTy;
4755       if (Bits > GPRBits) {
4756         CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits);
4757         CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy);
4758       } else
4759         CoerceTy =
4760             llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8));
4761       return ABIArgInfo::getDirect(CoerceTy);
4762     }
4763 
4764     // All other aggregates are returned indirectly.
4765     return getNaturalAlignIndirect(RetTy);
4766   }
4767 
4768   return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
4769                                         : ABIArgInfo::getDirect());
4770 }
4771 
4772 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine.
4773 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4774                                       QualType Ty) const {
4775   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
4776   TypeInfo.second = getParamTypeAlignment(Ty);
4777 
4778   CharUnits SlotSize = CharUnits::fromQuantity(8);
4779 
4780   // If we have a complex type and the base type is smaller than 8 bytes,
4781   // the ABI calls for the real and imaginary parts to be right-adjusted
4782   // in separate doublewords.  However, Clang expects us to produce a
4783   // pointer to a structure with the two parts packed tightly.  So generate
4784   // loads of the real and imaginary parts relative to the va_list pointer,
4785   // and store them to a temporary structure.
4786   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
4787     CharUnits EltSize = TypeInfo.first / 2;
4788     if (EltSize < SlotSize) {
4789       Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty,
4790                                             SlotSize * 2, SlotSize,
4791                                             SlotSize, /*AllowHigher*/ true);
4792 
4793       Address RealAddr = Addr;
4794       Address ImagAddr = RealAddr;
4795       if (CGF.CGM.getDataLayout().isBigEndian()) {
4796         RealAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr,
4797                                                           SlotSize - EltSize);
4798         ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr,
4799                                                       2 * SlotSize - EltSize);
4800       } else {
4801         ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize);
4802       }
4803 
4804       llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType());
4805       RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy);
4806       ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy);
4807       llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal");
4808       llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag");
4809 
4810       Address Temp = CGF.CreateMemTemp(Ty, "vacplx");
4811       CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty),
4812                              /*init*/ true);
4813       return Temp;
4814     }
4815   }
4816 
4817   // Otherwise, just use the general rule.
4818   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
4819                           TypeInfo, SlotSize, /*AllowHigher*/ true);
4820 }
4821 
4822 static bool
4823 PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4824                               llvm::Value *Address) {
4825   // This is calculated from the LLVM and GCC tables and verified
4826   // against gcc output.  AFAIK all ABIs use the same encoding.
4827 
4828   CodeGen::CGBuilderTy &Builder = CGF.Builder;
4829 
4830   llvm::IntegerType *i8 = CGF.Int8Ty;
4831   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
4832   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
4833   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
4834 
4835   // 0-31: r0-31, the 8-byte general-purpose registers
4836   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
4837 
4838   // 32-63: fp0-31, the 8-byte floating-point registers
4839   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
4840 
4841   // 64-67 are various 8-byte special-purpose registers:
4842   // 64: mq
4843   // 65: lr
4844   // 66: ctr
4845   // 67: ap
4846   AssignToArrayRange(Builder, Address, Eight8, 64, 67);
4847 
4848   // 68-76 are various 4-byte special-purpose registers:
4849   // 68-75 cr0-7
4850   // 76: xer
4851   AssignToArrayRange(Builder, Address, Four8, 68, 76);
4852 
4853   // 77-108: v0-31, the 16-byte vector registers
4854   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
4855 
4856   // 109: vrsave
4857   // 110: vscr
4858   // 111: spe_acc
4859   // 112: spefscr
4860   // 113: sfp
4861   // 114: tfhar
4862   // 115: tfiar
4863   // 116: texasr
4864   AssignToArrayRange(Builder, Address, Eight8, 109, 116);
4865 
4866   return false;
4867 }
4868 
4869 bool
4870 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable(
4871   CodeGen::CodeGenFunction &CGF,
4872   llvm::Value *Address) const {
4873 
4874   return PPC64_initDwarfEHRegSizeTable(CGF, Address);
4875 }
4876 
4877 bool
4878 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4879                                                 llvm::Value *Address) const {
4880 
4881   return PPC64_initDwarfEHRegSizeTable(CGF, Address);
4882 }
4883 
4884 //===----------------------------------------------------------------------===//
4885 // AArch64 ABI Implementation
4886 //===----------------------------------------------------------------------===//
4887 
4888 namespace {
4889 
4890 class AArch64ABIInfo : public SwiftABIInfo {
4891 public:
4892   enum ABIKind {
4893     AAPCS = 0,
4894     DarwinPCS,
4895     Win64
4896   };
4897 
4898 private:
4899   ABIKind Kind;
4900 
4901 public:
4902   AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind)
4903     : SwiftABIInfo(CGT), Kind(Kind) {}
4904 
4905 private:
4906   ABIKind getABIKind() const { return Kind; }
4907   bool isDarwinPCS() const { return Kind == DarwinPCS; }
4908 
4909   ABIArgInfo classifyReturnType(QualType RetTy) const;
4910   ABIArgInfo classifyArgumentType(QualType RetTy) const;
4911   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
4912   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
4913                                          uint64_t Members) const override;
4914 
4915   bool isIllegalVectorType(QualType Ty) const;
4916 
4917   void computeInfo(CGFunctionInfo &FI) const override {
4918     if (!::classifyReturnType(getCXXABI(), FI, *this))
4919       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4920 
4921     for (auto &it : FI.arguments())
4922       it.info = classifyArgumentType(it.type);
4923   }
4924 
4925   Address EmitDarwinVAArg(Address VAListAddr, QualType Ty,
4926                           CodeGenFunction &CGF) const;
4927 
4928   Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty,
4929                          CodeGenFunction &CGF) const;
4930 
4931   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4932                     QualType Ty) const override {
4933     return Kind == Win64 ? EmitMSVAArg(CGF, VAListAddr, Ty)
4934                          : isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF)
4935                                          : EmitAAPCSVAArg(VAListAddr, Ty, CGF);
4936   }
4937 
4938   Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
4939                       QualType Ty) const override;
4940 
4941   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
4942                                     bool asReturnValue) const override {
4943     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
4944   }
4945   bool isSwiftErrorInRegister() const override {
4946     return true;
4947   }
4948 
4949   bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy,
4950                                  unsigned elts) const override;
4951 };
4952 
4953 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo {
4954 public:
4955   AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind)
4956       : TargetCodeGenInfo(new AArch64ABIInfo(CGT, Kind)) {}
4957 
4958   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
4959     return "mov\tfp, fp\t\t// marker for objc_retainAutoreleaseReturnValue";
4960   }
4961 
4962   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4963     return 31;
4964   }
4965 
4966   bool doesReturnSlotInterfereWithArgs() const override { return false; }
4967 };
4968 
4969 class WindowsAArch64TargetCodeGenInfo : public AArch64TargetCodeGenInfo {
4970 public:
4971   WindowsAArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind K)
4972       : AArch64TargetCodeGenInfo(CGT, K) {}
4973 
4974   void getDependentLibraryOption(llvm::StringRef Lib,
4975                                  llvm::SmallString<24> &Opt) const override {
4976     Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib);
4977   }
4978 
4979   void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value,
4980                                llvm::SmallString<32> &Opt) const override {
4981     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
4982   }
4983 };
4984 }
4985 
4986 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const {
4987   Ty = useFirstFieldIfTransparentUnion(Ty);
4988 
4989   // Handle illegal vector types here.
4990   if (isIllegalVectorType(Ty)) {
4991     uint64_t Size = getContext().getTypeSize(Ty);
4992     // Android promotes <2 x i8> to i16, not i32
4993     if (isAndroid() && (Size <= 16)) {
4994       llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext());
4995       return ABIArgInfo::getDirect(ResType);
4996     }
4997     if (Size <= 32) {
4998       llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext());
4999       return ABIArgInfo::getDirect(ResType);
5000     }
5001     if (Size == 64) {
5002       llvm::Type *ResType =
5003           llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2);
5004       return ABIArgInfo::getDirect(ResType);
5005     }
5006     if (Size == 128) {
5007       llvm::Type *ResType =
5008           llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4);
5009       return ABIArgInfo::getDirect(ResType);
5010     }
5011     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5012   }
5013 
5014   if (!isAggregateTypeForABI(Ty)) {
5015     // Treat an enum type as its underlying type.
5016     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5017       Ty = EnumTy->getDecl()->getIntegerType();
5018 
5019     return (Ty->isPromotableIntegerType() && isDarwinPCS()
5020                 ? ABIArgInfo::getExtend(Ty)
5021                 : ABIArgInfo::getDirect());
5022   }
5023 
5024   // Structures with either a non-trivial destructor or a non-trivial
5025   // copy constructor are always indirect.
5026   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
5027     return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
5028                                      CGCXXABI::RAA_DirectInMemory);
5029   }
5030 
5031   // Empty records are always ignored on Darwin, but actually passed in C++ mode
5032   // elsewhere for GNU compatibility.
5033   uint64_t Size = getContext().getTypeSize(Ty);
5034   bool IsEmpty = isEmptyRecord(getContext(), Ty, true);
5035   if (IsEmpty || Size == 0) {
5036     if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS())
5037       return ABIArgInfo::getIgnore();
5038 
5039     // GNU C mode. The only argument that gets ignored is an empty one with size
5040     // 0.
5041     if (IsEmpty && Size == 0)
5042       return ABIArgInfo::getIgnore();
5043     return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
5044   }
5045 
5046   // Homogeneous Floating-point Aggregates (HFAs) need to be expanded.
5047   const Type *Base = nullptr;
5048   uint64_t Members = 0;
5049   if (isHomogeneousAggregate(Ty, Base, Members)) {
5050     return ABIArgInfo::getDirect(
5051         llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members));
5052   }
5053 
5054   // Aggregates <= 16 bytes are passed directly in registers or on the stack.
5055   if (Size <= 128) {
5056     // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of
5057     // same size and alignment.
5058     if (getTarget().isRenderScriptTarget()) {
5059       return coerceToIntArray(Ty, getContext(), getVMContext());
5060     }
5061     unsigned Alignment = getContext().getTypeAlign(Ty);
5062     Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes
5063 
5064     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
5065     // For aggregates with 16-byte alignment, we use i128.
5066     if (Alignment < 128 && Size == 128) {
5067       llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
5068       return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
5069     }
5070     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
5071   }
5072 
5073   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5074 }
5075 
5076 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy) const {
5077   if (RetTy->isVoidType())
5078     return ABIArgInfo::getIgnore();
5079 
5080   // Large vector types should be returned via memory.
5081   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
5082     return getNaturalAlignIndirect(RetTy);
5083 
5084   if (!isAggregateTypeForABI(RetTy)) {
5085     // Treat an enum type as its underlying type.
5086     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5087       RetTy = EnumTy->getDecl()->getIntegerType();
5088 
5089     return (RetTy->isPromotableIntegerType() && isDarwinPCS()
5090                 ? ABIArgInfo::getExtend(RetTy)
5091                 : ABIArgInfo::getDirect());
5092   }
5093 
5094   uint64_t Size = getContext().getTypeSize(RetTy);
5095   if (isEmptyRecord(getContext(), RetTy, true) || Size == 0)
5096     return ABIArgInfo::getIgnore();
5097 
5098   const Type *Base = nullptr;
5099   uint64_t Members = 0;
5100   if (isHomogeneousAggregate(RetTy, Base, Members))
5101     // Homogeneous Floating-point Aggregates (HFAs) are returned directly.
5102     return ABIArgInfo::getDirect();
5103 
5104   // Aggregates <= 16 bytes are returned directly in registers or on the stack.
5105   if (Size <= 128) {
5106     // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of
5107     // same size and alignment.
5108     if (getTarget().isRenderScriptTarget()) {
5109       return coerceToIntArray(RetTy, getContext(), getVMContext());
5110     }
5111     unsigned Alignment = getContext().getTypeAlign(RetTy);
5112     Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes
5113 
5114     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
5115     // For aggregates with 16-byte alignment, we use i128.
5116     if (Alignment < 128 && Size == 128) {
5117       llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
5118       return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
5119     }
5120     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
5121   }
5122 
5123   return getNaturalAlignIndirect(RetTy);
5124 }
5125 
5126 /// isIllegalVectorType - check whether the vector type is legal for AArch64.
5127 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const {
5128   if (const VectorType *VT = Ty->getAs<VectorType>()) {
5129     // Check whether VT is legal.
5130     unsigned NumElements = VT->getNumElements();
5131     uint64_t Size = getContext().getTypeSize(VT);
5132     // NumElements should be power of 2.
5133     if (!llvm::isPowerOf2_32(NumElements))
5134       return true;
5135     return Size != 64 && (Size != 128 || NumElements == 1);
5136   }
5137   return false;
5138 }
5139 
5140 bool AArch64ABIInfo::isLegalVectorTypeForSwift(CharUnits totalSize,
5141                                                llvm::Type *eltTy,
5142                                                unsigned elts) const {
5143   if (!llvm::isPowerOf2_32(elts))
5144     return false;
5145   if (totalSize.getQuantity() != 8 &&
5146       (totalSize.getQuantity() != 16 || elts == 1))
5147     return false;
5148   return true;
5149 }
5150 
5151 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
5152   // Homogeneous aggregates for AAPCS64 must have base types of a floating
5153   // point type or a short-vector type. This is the same as the 32-bit ABI,
5154   // but with the difference that any floating-point type is allowed,
5155   // including __fp16.
5156   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
5157     if (BT->isFloatingPoint())
5158       return true;
5159   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
5160     unsigned VecSize = getContext().getTypeSize(VT);
5161     if (VecSize == 64 || VecSize == 128)
5162       return true;
5163   }
5164   return false;
5165 }
5166 
5167 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
5168                                                        uint64_t Members) const {
5169   return Members <= 4;
5170 }
5171 
5172 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr,
5173                                             QualType Ty,
5174                                             CodeGenFunction &CGF) const {
5175   ABIArgInfo AI = classifyArgumentType(Ty);
5176   bool IsIndirect = AI.isIndirect();
5177 
5178   llvm::Type *BaseTy = CGF.ConvertType(Ty);
5179   if (IsIndirect)
5180     BaseTy = llvm::PointerType::getUnqual(BaseTy);
5181   else if (AI.getCoerceToType())
5182     BaseTy = AI.getCoerceToType();
5183 
5184   unsigned NumRegs = 1;
5185   if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) {
5186     BaseTy = ArrTy->getElementType();
5187     NumRegs = ArrTy->getNumElements();
5188   }
5189   bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy();
5190 
5191   // The AArch64 va_list type and handling is specified in the Procedure Call
5192   // Standard, section B.4:
5193   //
5194   // struct {
5195   //   void *__stack;
5196   //   void *__gr_top;
5197   //   void *__vr_top;
5198   //   int __gr_offs;
5199   //   int __vr_offs;
5200   // };
5201 
5202   llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
5203   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
5204   llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
5205   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
5206 
5207   auto TyInfo = getContext().getTypeInfoInChars(Ty);
5208   CharUnits TyAlign = TyInfo.second;
5209 
5210   Address reg_offs_p = Address::invalid();
5211   llvm::Value *reg_offs = nullptr;
5212   int reg_top_index;
5213   CharUnits reg_top_offset;
5214   int RegSize = IsIndirect ? 8 : TyInfo.first.getQuantity();
5215   if (!IsFPR) {
5216     // 3 is the field number of __gr_offs
5217     reg_offs_p =
5218         CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(24),
5219                                     "gr_offs_p");
5220     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs");
5221     reg_top_index = 1; // field number for __gr_top
5222     reg_top_offset = CharUnits::fromQuantity(8);
5223     RegSize = llvm::alignTo(RegSize, 8);
5224   } else {
5225     // 4 is the field number of __vr_offs.
5226     reg_offs_p =
5227         CGF.Builder.CreateStructGEP(VAListAddr, 4, CharUnits::fromQuantity(28),
5228                                     "vr_offs_p");
5229     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs");
5230     reg_top_index = 2; // field number for __vr_top
5231     reg_top_offset = CharUnits::fromQuantity(16);
5232     RegSize = 16 * NumRegs;
5233   }
5234 
5235   //=======================================
5236   // Find out where argument was passed
5237   //=======================================
5238 
5239   // If reg_offs >= 0 we're already using the stack for this type of
5240   // argument. We don't want to keep updating reg_offs (in case it overflows,
5241   // though anyone passing 2GB of arguments, each at most 16 bytes, deserves
5242   // whatever they get).
5243   llvm::Value *UsingStack = nullptr;
5244   UsingStack = CGF.Builder.CreateICmpSGE(
5245       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0));
5246 
5247   CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock);
5248 
5249   // Otherwise, at least some kind of argument could go in these registers, the
5250   // question is whether this particular type is too big.
5251   CGF.EmitBlock(MaybeRegBlock);
5252 
5253   // Integer arguments may need to correct register alignment (for example a
5254   // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we
5255   // align __gr_offs to calculate the potential address.
5256   if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) {
5257     int Align = TyAlign.getQuantity();
5258 
5259     reg_offs = CGF.Builder.CreateAdd(
5260         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1),
5261         "align_regoffs");
5262     reg_offs = CGF.Builder.CreateAnd(
5263         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align),
5264         "aligned_regoffs");
5265   }
5266 
5267   // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list.
5268   // The fact that this is done unconditionally reflects the fact that
5269   // allocating an argument to the stack also uses up all the remaining
5270   // registers of the appropriate kind.
5271   llvm::Value *NewOffset = nullptr;
5272   NewOffset = CGF.Builder.CreateAdd(
5273       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs");
5274   CGF.Builder.CreateStore(NewOffset, reg_offs_p);
5275 
5276   // Now we're in a position to decide whether this argument really was in
5277   // registers or not.
5278   llvm::Value *InRegs = nullptr;
5279   InRegs = CGF.Builder.CreateICmpSLE(
5280       NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg");
5281 
5282   CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock);
5283 
5284   //=======================================
5285   // Argument was in registers
5286   //=======================================
5287 
5288   // Now we emit the code for if the argument was originally passed in
5289   // registers. First start the appropriate block:
5290   CGF.EmitBlock(InRegBlock);
5291 
5292   llvm::Value *reg_top = nullptr;
5293   Address reg_top_p = CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index,
5294                                                   reg_top_offset, "reg_top_p");
5295   reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top");
5296   Address BaseAddr(CGF.Builder.CreateInBoundsGEP(reg_top, reg_offs),
5297                    CharUnits::fromQuantity(IsFPR ? 16 : 8));
5298   Address RegAddr = Address::invalid();
5299   llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty);
5300 
5301   if (IsIndirect) {
5302     // If it's been passed indirectly (actually a struct), whatever we find from
5303     // stored registers or on the stack will actually be a struct **.
5304     MemTy = llvm::PointerType::getUnqual(MemTy);
5305   }
5306 
5307   const Type *Base = nullptr;
5308   uint64_t NumMembers = 0;
5309   bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers);
5310   if (IsHFA && NumMembers > 1) {
5311     // Homogeneous aggregates passed in registers will have their elements split
5312     // and stored 16-bytes apart regardless of size (they're notionally in qN,
5313     // qN+1, ...). We reload and store into a temporary local variable
5314     // contiguously.
5315     assert(!IsIndirect && "Homogeneous aggregates should be passed directly");
5316     auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0));
5317     llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0));
5318     llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers);
5319     Address Tmp = CGF.CreateTempAlloca(HFATy,
5320                                        std::max(TyAlign, BaseTyInfo.second));
5321 
5322     // On big-endian platforms, the value will be right-aligned in its slot.
5323     int Offset = 0;
5324     if (CGF.CGM.getDataLayout().isBigEndian() &&
5325         BaseTyInfo.first.getQuantity() < 16)
5326       Offset = 16 - BaseTyInfo.first.getQuantity();
5327 
5328     for (unsigned i = 0; i < NumMembers; ++i) {
5329       CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset);
5330       Address LoadAddr =
5331         CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset);
5332       LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy);
5333 
5334       Address StoreAddr =
5335         CGF.Builder.CreateConstArrayGEP(Tmp, i, BaseTyInfo.first);
5336 
5337       llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr);
5338       CGF.Builder.CreateStore(Elem, StoreAddr);
5339     }
5340 
5341     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy);
5342   } else {
5343     // Otherwise the object is contiguous in memory.
5344 
5345     // It might be right-aligned in its slot.
5346     CharUnits SlotSize = BaseAddr.getAlignment();
5347     if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect &&
5348         (IsHFA || !isAggregateTypeForABI(Ty)) &&
5349         TyInfo.first < SlotSize) {
5350       CharUnits Offset = SlotSize - TyInfo.first;
5351       BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset);
5352     }
5353 
5354     RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy);
5355   }
5356 
5357   CGF.EmitBranch(ContBlock);
5358 
5359   //=======================================
5360   // Argument was on the stack
5361   //=======================================
5362   CGF.EmitBlock(OnStackBlock);
5363 
5364   Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0,
5365                                                 CharUnits::Zero(), "stack_p");
5366   llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack");
5367 
5368   // Again, stack arguments may need realignment. In this case both integer and
5369   // floating-point ones might be affected.
5370   if (!IsIndirect && TyAlign.getQuantity() > 8) {
5371     int Align = TyAlign.getQuantity();
5372 
5373     OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty);
5374 
5375     OnStackPtr = CGF.Builder.CreateAdd(
5376         OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1),
5377         "align_stack");
5378     OnStackPtr = CGF.Builder.CreateAnd(
5379         OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align),
5380         "align_stack");
5381 
5382     OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy);
5383   }
5384   Address OnStackAddr(OnStackPtr,
5385                       std::max(CharUnits::fromQuantity(8), TyAlign));
5386 
5387   // All stack slots are multiples of 8 bytes.
5388   CharUnits StackSlotSize = CharUnits::fromQuantity(8);
5389   CharUnits StackSize;
5390   if (IsIndirect)
5391     StackSize = StackSlotSize;
5392   else
5393     StackSize = TyInfo.first.alignTo(StackSlotSize);
5394 
5395   llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize);
5396   llvm::Value *NewStack =
5397       CGF.Builder.CreateInBoundsGEP(OnStackPtr, StackSizeC, "new_stack");
5398 
5399   // Write the new value of __stack for the next call to va_arg
5400   CGF.Builder.CreateStore(NewStack, stack_p);
5401 
5402   if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) &&
5403       TyInfo.first < StackSlotSize) {
5404     CharUnits Offset = StackSlotSize - TyInfo.first;
5405     OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset);
5406   }
5407 
5408   OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy);
5409 
5410   CGF.EmitBranch(ContBlock);
5411 
5412   //=======================================
5413   // Tidy up
5414   //=======================================
5415   CGF.EmitBlock(ContBlock);
5416 
5417   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
5418                                  OnStackAddr, OnStackBlock, "vaargs.addr");
5419 
5420   if (IsIndirect)
5421     return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"),
5422                    TyInfo.second);
5423 
5424   return ResAddr;
5425 }
5426 
5427 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty,
5428                                         CodeGenFunction &CGF) const {
5429   // The backend's lowering doesn't support va_arg for aggregates or
5430   // illegal vector types.  Lower VAArg here for these cases and use
5431   // the LLVM va_arg instruction for everything else.
5432   if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty))
5433     return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect());
5434 
5435   CharUnits SlotSize = CharUnits::fromQuantity(8);
5436 
5437   // Empty records are ignored for parameter passing purposes.
5438   if (isEmptyRecord(getContext(), Ty, true)) {
5439     Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
5440     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
5441     return Addr;
5442   }
5443 
5444   // The size of the actual thing passed, which might end up just
5445   // being a pointer for indirect types.
5446   auto TyInfo = getContext().getTypeInfoInChars(Ty);
5447 
5448   // Arguments bigger than 16 bytes which aren't homogeneous
5449   // aggregates should be passed indirectly.
5450   bool IsIndirect = false;
5451   if (TyInfo.first.getQuantity() > 16) {
5452     const Type *Base = nullptr;
5453     uint64_t Members = 0;
5454     IsIndirect = !isHomogeneousAggregate(Ty, Base, Members);
5455   }
5456 
5457   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
5458                           TyInfo, SlotSize, /*AllowHigherAlign*/ true);
5459 }
5460 
5461 Address AArch64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
5462                                     QualType Ty) const {
5463   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
5464                           CGF.getContext().getTypeInfoInChars(Ty),
5465                           CharUnits::fromQuantity(8),
5466                           /*allowHigherAlign*/ false);
5467 }
5468 
5469 //===----------------------------------------------------------------------===//
5470 // ARM ABI Implementation
5471 //===----------------------------------------------------------------------===//
5472 
5473 namespace {
5474 
5475 class ARMABIInfo : public SwiftABIInfo {
5476 public:
5477   enum ABIKind {
5478     APCS = 0,
5479     AAPCS = 1,
5480     AAPCS_VFP = 2,
5481     AAPCS16_VFP = 3,
5482   };
5483 
5484 private:
5485   ABIKind Kind;
5486 
5487 public:
5488   ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind)
5489       : SwiftABIInfo(CGT), Kind(_Kind) {
5490     setCCs();
5491   }
5492 
5493   bool isEABI() const {
5494     switch (getTarget().getTriple().getEnvironment()) {
5495     case llvm::Triple::Android:
5496     case llvm::Triple::EABI:
5497     case llvm::Triple::EABIHF:
5498     case llvm::Triple::GNUEABI:
5499     case llvm::Triple::GNUEABIHF:
5500     case llvm::Triple::MuslEABI:
5501     case llvm::Triple::MuslEABIHF:
5502       return true;
5503     default:
5504       return false;
5505     }
5506   }
5507 
5508   bool isEABIHF() const {
5509     switch (getTarget().getTriple().getEnvironment()) {
5510     case llvm::Triple::EABIHF:
5511     case llvm::Triple::GNUEABIHF:
5512     case llvm::Triple::MuslEABIHF:
5513       return true;
5514     default:
5515       return false;
5516     }
5517   }
5518 
5519   ABIKind getABIKind() const { return Kind; }
5520 
5521 private:
5522   ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic) const;
5523   ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic) const;
5524   bool isIllegalVectorType(QualType Ty) const;
5525 
5526   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
5527   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
5528                                          uint64_t Members) const override;
5529 
5530   void computeInfo(CGFunctionInfo &FI) const override;
5531 
5532   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5533                     QualType Ty) const override;
5534 
5535   llvm::CallingConv::ID getLLVMDefaultCC() const;
5536   llvm::CallingConv::ID getABIDefaultCC() const;
5537   void setCCs();
5538 
5539   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
5540                                     bool asReturnValue) const override {
5541     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
5542   }
5543   bool isSwiftErrorInRegister() const override {
5544     return true;
5545   }
5546   bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy,
5547                                  unsigned elts) const override;
5548 };
5549 
5550 class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
5551 public:
5552   ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
5553     :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {}
5554 
5555   const ARMABIInfo &getABIInfo() const {
5556     return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo());
5557   }
5558 
5559   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
5560     return 13;
5561   }
5562 
5563   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
5564     return "mov\tr7, r7\t\t// marker for objc_retainAutoreleaseReturnValue";
5565   }
5566 
5567   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5568                                llvm::Value *Address) const override {
5569     llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
5570 
5571     // 0-15 are the 16 integer registers.
5572     AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15);
5573     return false;
5574   }
5575 
5576   unsigned getSizeOfUnwindException() const override {
5577     if (getABIInfo().isEABI()) return 88;
5578     return TargetCodeGenInfo::getSizeOfUnwindException();
5579   }
5580 
5581   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5582                            CodeGen::CodeGenModule &CGM) const override {
5583     if (GV->isDeclaration())
5584       return;
5585     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
5586     if (!FD)
5587       return;
5588 
5589     const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>();
5590     if (!Attr)
5591       return;
5592 
5593     const char *Kind;
5594     switch (Attr->getInterrupt()) {
5595     case ARMInterruptAttr::Generic: Kind = ""; break;
5596     case ARMInterruptAttr::IRQ:     Kind = "IRQ"; break;
5597     case ARMInterruptAttr::FIQ:     Kind = "FIQ"; break;
5598     case ARMInterruptAttr::SWI:     Kind = "SWI"; break;
5599     case ARMInterruptAttr::ABORT:   Kind = "ABORT"; break;
5600     case ARMInterruptAttr::UNDEF:   Kind = "UNDEF"; break;
5601     }
5602 
5603     llvm::Function *Fn = cast<llvm::Function>(GV);
5604 
5605     Fn->addFnAttr("interrupt", Kind);
5606 
5607     ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind();
5608     if (ABI == ARMABIInfo::APCS)
5609       return;
5610 
5611     // AAPCS guarantees that sp will be 8-byte aligned on any public interface,
5612     // however this is not necessarily true on taking any interrupt. Instruct
5613     // the backend to perform a realignment as part of the function prologue.
5614     llvm::AttrBuilder B;
5615     B.addStackAlignmentAttr(8);
5616     Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
5617   }
5618 };
5619 
5620 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo {
5621 public:
5622   WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
5623       : ARMTargetCodeGenInfo(CGT, K) {}
5624 
5625   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5626                            CodeGen::CodeGenModule &CGM) const override;
5627 
5628   void getDependentLibraryOption(llvm::StringRef Lib,
5629                                  llvm::SmallString<24> &Opt) const override {
5630     Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib);
5631   }
5632 
5633   void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value,
5634                                llvm::SmallString<32> &Opt) const override {
5635     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
5636   }
5637 };
5638 
5639 void WindowsARMTargetCodeGenInfo::setTargetAttributes(
5640     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
5641   ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
5642   if (GV->isDeclaration())
5643     return;
5644   addStackProbeTargetAttributes(D, GV, CGM);
5645 }
5646 }
5647 
5648 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
5649   if (!::classifyReturnType(getCXXABI(), FI, *this))
5650     FI.getReturnInfo() =
5651         classifyReturnType(FI.getReturnType(), FI.isVariadic());
5652 
5653   for (auto &I : FI.arguments())
5654     I.info = classifyArgumentType(I.type, FI.isVariadic());
5655 
5656   // Always honor user-specified calling convention.
5657   if (FI.getCallingConvention() != llvm::CallingConv::C)
5658     return;
5659 
5660   llvm::CallingConv::ID cc = getRuntimeCC();
5661   if (cc != llvm::CallingConv::C)
5662     FI.setEffectiveCallingConvention(cc);
5663 }
5664 
5665 /// Return the default calling convention that LLVM will use.
5666 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const {
5667   // The default calling convention that LLVM will infer.
5668   if (isEABIHF() || getTarget().getTriple().isWatchABI())
5669     return llvm::CallingConv::ARM_AAPCS_VFP;
5670   else if (isEABI())
5671     return llvm::CallingConv::ARM_AAPCS;
5672   else
5673     return llvm::CallingConv::ARM_APCS;
5674 }
5675 
5676 /// Return the calling convention that our ABI would like us to use
5677 /// as the C calling convention.
5678 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const {
5679   switch (getABIKind()) {
5680   case APCS: return llvm::CallingConv::ARM_APCS;
5681   case AAPCS: return llvm::CallingConv::ARM_AAPCS;
5682   case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
5683   case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
5684   }
5685   llvm_unreachable("bad ABI kind");
5686 }
5687 
5688 void ARMABIInfo::setCCs() {
5689   assert(getRuntimeCC() == llvm::CallingConv::C);
5690 
5691   // Don't muddy up the IR with a ton of explicit annotations if
5692   // they'd just match what LLVM will infer from the triple.
5693   llvm::CallingConv::ID abiCC = getABIDefaultCC();
5694   if (abiCC != getLLVMDefaultCC())
5695     RuntimeCC = abiCC;
5696 }
5697 
5698 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty,
5699                                             bool isVariadic) const {
5700   // 6.1.2.1 The following argument types are VFP CPRCs:
5701   //   A single-precision floating-point type (including promoted
5702   //   half-precision types); A double-precision floating-point type;
5703   //   A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate
5704   //   with a Base Type of a single- or double-precision floating-point type,
5705   //   64-bit containerized vectors or 128-bit containerized vectors with one
5706   //   to four Elements.
5707   bool IsEffectivelyAAPCS_VFP = getABIKind() == AAPCS_VFP && !isVariadic;
5708 
5709   Ty = useFirstFieldIfTransparentUnion(Ty);
5710 
5711   // Handle illegal vector types here.
5712   if (isIllegalVectorType(Ty)) {
5713     uint64_t Size = getContext().getTypeSize(Ty);
5714     if (Size <= 32) {
5715       llvm::Type *ResType =
5716           llvm::Type::getInt32Ty(getVMContext());
5717       return ABIArgInfo::getDirect(ResType);
5718     }
5719     if (Size == 64) {
5720       llvm::Type *ResType = llvm::VectorType::get(
5721           llvm::Type::getInt32Ty(getVMContext()), 2);
5722       return ABIArgInfo::getDirect(ResType);
5723     }
5724     if (Size == 128) {
5725       llvm::Type *ResType = llvm::VectorType::get(
5726           llvm::Type::getInt32Ty(getVMContext()), 4);
5727       return ABIArgInfo::getDirect(ResType);
5728     }
5729     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5730   }
5731 
5732   // _Float16 and __fp16 get passed as if it were an int or float, but with
5733   // the top 16 bits unspecified. This is not done for OpenCL as it handles the
5734   // half type natively, and does not need to interwork with AAPCS code.
5735   if ((Ty->isFloat16Type() || Ty->isHalfType()) &&
5736       !getContext().getLangOpts().NativeHalfArgsAndReturns) {
5737     llvm::Type *ResType = IsEffectivelyAAPCS_VFP ?
5738       llvm::Type::getFloatTy(getVMContext()) :
5739       llvm::Type::getInt32Ty(getVMContext());
5740     return ABIArgInfo::getDirect(ResType);
5741   }
5742 
5743   if (!isAggregateTypeForABI(Ty)) {
5744     // Treat an enum type as its underlying type.
5745     if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
5746       Ty = EnumTy->getDecl()->getIntegerType();
5747     }
5748 
5749     return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
5750                                           : ABIArgInfo::getDirect());
5751   }
5752 
5753   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
5754     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
5755   }
5756 
5757   // Ignore empty records.
5758   if (isEmptyRecord(getContext(), Ty, true))
5759     return ABIArgInfo::getIgnore();
5760 
5761   if (IsEffectivelyAAPCS_VFP) {
5762     // Homogeneous Aggregates need to be expanded when we can fit the aggregate
5763     // into VFP registers.
5764     const Type *Base = nullptr;
5765     uint64_t Members = 0;
5766     if (isHomogeneousAggregate(Ty, Base, Members)) {
5767       assert(Base && "Base class should be set for homogeneous aggregate");
5768       // Base can be a floating-point or a vector.
5769       return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
5770     }
5771   } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) {
5772     // WatchOS does have homogeneous aggregates. Note that we intentionally use
5773     // this convention even for a variadic function: the backend will use GPRs
5774     // if needed.
5775     const Type *Base = nullptr;
5776     uint64_t Members = 0;
5777     if (isHomogeneousAggregate(Ty, Base, Members)) {
5778       assert(Base && Members <= 4 && "unexpected homogeneous aggregate");
5779       llvm::Type *Ty =
5780         llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members);
5781       return ABIArgInfo::getDirect(Ty, 0, nullptr, false);
5782     }
5783   }
5784 
5785   if (getABIKind() == ARMABIInfo::AAPCS16_VFP &&
5786       getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) {
5787     // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're
5788     // bigger than 128-bits, they get placed in space allocated by the caller,
5789     // and a pointer is passed.
5790     return ABIArgInfo::getIndirect(
5791         CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false);
5792   }
5793 
5794   // Support byval for ARM.
5795   // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at
5796   // most 8-byte. We realign the indirect argument if type alignment is bigger
5797   // than ABI alignment.
5798   uint64_t ABIAlign = 4;
5799   uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8;
5800   if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
5801        getABIKind() == ARMABIInfo::AAPCS)
5802     ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
5803 
5804   if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) {
5805     assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval");
5806     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
5807                                    /*ByVal=*/true,
5808                                    /*Realign=*/TyAlign > ABIAlign);
5809   }
5810 
5811   // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of
5812   // same size and alignment.
5813   if (getTarget().isRenderScriptTarget()) {
5814     return coerceToIntArray(Ty, getContext(), getVMContext());
5815   }
5816 
5817   // Otherwise, pass by coercing to a structure of the appropriate size.
5818   llvm::Type* ElemTy;
5819   unsigned SizeRegs;
5820   // FIXME: Try to match the types of the arguments more accurately where
5821   // we can.
5822   if (getContext().getTypeAlign(Ty) <= 32) {
5823     ElemTy = llvm::Type::getInt32Ty(getVMContext());
5824     SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
5825   } else {
5826     ElemTy = llvm::Type::getInt64Ty(getVMContext());
5827     SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
5828   }
5829 
5830   return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs));
5831 }
5832 
5833 static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
5834                               llvm::LLVMContext &VMContext) {
5835   // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
5836   // is called integer-like if its size is less than or equal to one word, and
5837   // the offset of each of its addressable sub-fields is zero.
5838 
5839   uint64_t Size = Context.getTypeSize(Ty);
5840 
5841   // Check that the type fits in a word.
5842   if (Size > 32)
5843     return false;
5844 
5845   // FIXME: Handle vector types!
5846   if (Ty->isVectorType())
5847     return false;
5848 
5849   // Float types are never treated as "integer like".
5850   if (Ty->isRealFloatingType())
5851     return false;
5852 
5853   // If this is a builtin or pointer type then it is ok.
5854   if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
5855     return true;
5856 
5857   // Small complex integer types are "integer like".
5858   if (const ComplexType *CT = Ty->getAs<ComplexType>())
5859     return isIntegerLikeType(CT->getElementType(), Context, VMContext);
5860 
5861   // Single element and zero sized arrays should be allowed, by the definition
5862   // above, but they are not.
5863 
5864   // Otherwise, it must be a record type.
5865   const RecordType *RT = Ty->getAs<RecordType>();
5866   if (!RT) return false;
5867 
5868   // Ignore records with flexible arrays.
5869   const RecordDecl *RD = RT->getDecl();
5870   if (RD->hasFlexibleArrayMember())
5871     return false;
5872 
5873   // Check that all sub-fields are at offset 0, and are themselves "integer
5874   // like".
5875   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
5876 
5877   bool HadField = false;
5878   unsigned idx = 0;
5879   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
5880        i != e; ++i, ++idx) {
5881     const FieldDecl *FD = *i;
5882 
5883     // Bit-fields are not addressable, we only need to verify they are "integer
5884     // like". We still have to disallow a subsequent non-bitfield, for example:
5885     //   struct { int : 0; int x }
5886     // is non-integer like according to gcc.
5887     if (FD->isBitField()) {
5888       if (!RD->isUnion())
5889         HadField = true;
5890 
5891       if (!isIntegerLikeType(FD->getType(), Context, VMContext))
5892         return false;
5893 
5894       continue;
5895     }
5896 
5897     // Check if this field is at offset 0.
5898     if (Layout.getFieldOffset(idx) != 0)
5899       return false;
5900 
5901     if (!isIntegerLikeType(FD->getType(), Context, VMContext))
5902       return false;
5903 
5904     // Only allow at most one field in a structure. This doesn't match the
5905     // wording above, but follows gcc in situations with a field following an
5906     // empty structure.
5907     if (!RD->isUnion()) {
5908       if (HadField)
5909         return false;
5910 
5911       HadField = true;
5912     }
5913   }
5914 
5915   return true;
5916 }
5917 
5918 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy,
5919                                           bool isVariadic) const {
5920   bool IsEffectivelyAAPCS_VFP =
5921       (getABIKind() == AAPCS_VFP || getABIKind() == AAPCS16_VFP) && !isVariadic;
5922 
5923   if (RetTy->isVoidType())
5924     return ABIArgInfo::getIgnore();
5925 
5926   // Large vector types should be returned via memory.
5927   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) {
5928     return getNaturalAlignIndirect(RetTy);
5929   }
5930 
5931   // _Float16 and __fp16 get returned as if it were an int or float, but with
5932   // the top 16 bits unspecified. This is not done for OpenCL as it handles the
5933   // half type natively, and does not need to interwork with AAPCS code.
5934   if ((RetTy->isFloat16Type() || RetTy->isHalfType()) &&
5935       !getContext().getLangOpts().NativeHalfArgsAndReturns) {
5936     llvm::Type *ResType = IsEffectivelyAAPCS_VFP ?
5937       llvm::Type::getFloatTy(getVMContext()) :
5938       llvm::Type::getInt32Ty(getVMContext());
5939     return ABIArgInfo::getDirect(ResType);
5940   }
5941 
5942   if (!isAggregateTypeForABI(RetTy)) {
5943     // Treat an enum type as its underlying type.
5944     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5945       RetTy = EnumTy->getDecl()->getIntegerType();
5946 
5947     return RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
5948                                             : ABIArgInfo::getDirect();
5949   }
5950 
5951   // Are we following APCS?
5952   if (getABIKind() == APCS) {
5953     if (isEmptyRecord(getContext(), RetTy, false))
5954       return ABIArgInfo::getIgnore();
5955 
5956     // Complex types are all returned as packed integers.
5957     //
5958     // FIXME: Consider using 2 x vector types if the back end handles them
5959     // correctly.
5960     if (RetTy->isAnyComplexType())
5961       return ABIArgInfo::getDirect(llvm::IntegerType::get(
5962           getVMContext(), getContext().getTypeSize(RetTy)));
5963 
5964     // Integer like structures are returned in r0.
5965     if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
5966       // Return in the smallest viable integer type.
5967       uint64_t Size = getContext().getTypeSize(RetTy);
5968       if (Size <= 8)
5969         return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
5970       if (Size <= 16)
5971         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
5972       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
5973     }
5974 
5975     // Otherwise return in memory.
5976     return getNaturalAlignIndirect(RetTy);
5977   }
5978 
5979   // Otherwise this is an AAPCS variant.
5980 
5981   if (isEmptyRecord(getContext(), RetTy, true))
5982     return ABIArgInfo::getIgnore();
5983 
5984   // Check for homogeneous aggregates with AAPCS-VFP.
5985   if (IsEffectivelyAAPCS_VFP) {
5986     const Type *Base = nullptr;
5987     uint64_t Members = 0;
5988     if (isHomogeneousAggregate(RetTy, Base, Members)) {
5989       assert(Base && "Base class should be set for homogeneous aggregate");
5990       // Homogeneous Aggregates are returned directly.
5991       return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
5992     }
5993   }
5994 
5995   // Aggregates <= 4 bytes are returned in r0; other aggregates
5996   // are returned indirectly.
5997   uint64_t Size = getContext().getTypeSize(RetTy);
5998   if (Size <= 32) {
5999     // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of
6000     // same size and alignment.
6001     if (getTarget().isRenderScriptTarget()) {
6002       return coerceToIntArray(RetTy, getContext(), getVMContext());
6003     }
6004     if (getDataLayout().isBigEndian())
6005       // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4)
6006       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6007 
6008     // Return in the smallest viable integer type.
6009     if (Size <= 8)
6010       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
6011     if (Size <= 16)
6012       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
6013     return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6014   } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) {
6015     llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext());
6016     llvm::Type *CoerceTy =
6017         llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32);
6018     return ABIArgInfo::getDirect(CoerceTy);
6019   }
6020 
6021   return getNaturalAlignIndirect(RetTy);
6022 }
6023 
6024 /// isIllegalVector - check whether Ty is an illegal vector type.
6025 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const {
6026   if (const VectorType *VT = Ty->getAs<VectorType> ()) {
6027     if (isAndroid()) {
6028       // Android shipped using Clang 3.1, which supported a slightly different
6029       // vector ABI. The primary differences were that 3-element vector types
6030       // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path
6031       // accepts that legacy behavior for Android only.
6032       // Check whether VT is legal.
6033       unsigned NumElements = VT->getNumElements();
6034       // NumElements should be power of 2 or equal to 3.
6035       if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3)
6036         return true;
6037     } else {
6038       // Check whether VT is legal.
6039       unsigned NumElements = VT->getNumElements();
6040       uint64_t Size = getContext().getTypeSize(VT);
6041       // NumElements should be power of 2.
6042       if (!llvm::isPowerOf2_32(NumElements))
6043         return true;
6044       // Size should be greater than 32 bits.
6045       return Size <= 32;
6046     }
6047   }
6048   return false;
6049 }
6050 
6051 bool ARMABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize,
6052                                            llvm::Type *eltTy,
6053                                            unsigned numElts) const {
6054   if (!llvm::isPowerOf2_32(numElts))
6055     return false;
6056   unsigned size = getDataLayout().getTypeStoreSizeInBits(eltTy);
6057   if (size > 64)
6058     return false;
6059   if (vectorSize.getQuantity() != 8 &&
6060       (vectorSize.getQuantity() != 16 || numElts == 1))
6061     return false;
6062   return true;
6063 }
6064 
6065 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
6066   // Homogeneous aggregates for AAPCS-VFP must have base types of float,
6067   // double, or 64-bit or 128-bit vectors.
6068   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
6069     if (BT->getKind() == BuiltinType::Float ||
6070         BT->getKind() == BuiltinType::Double ||
6071         BT->getKind() == BuiltinType::LongDouble)
6072       return true;
6073   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
6074     unsigned VecSize = getContext().getTypeSize(VT);
6075     if (VecSize == 64 || VecSize == 128)
6076       return true;
6077   }
6078   return false;
6079 }
6080 
6081 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
6082                                                    uint64_t Members) const {
6083   return Members <= 4;
6084 }
6085 
6086 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6087                               QualType Ty) const {
6088   CharUnits SlotSize = CharUnits::fromQuantity(4);
6089 
6090   // Empty records are ignored for parameter passing purposes.
6091   if (isEmptyRecord(getContext(), Ty, true)) {
6092     Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize);
6093     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
6094     return Addr;
6095   }
6096 
6097   auto TyInfo = getContext().getTypeInfoInChars(Ty);
6098   CharUnits TyAlignForABI = TyInfo.second;
6099 
6100   // Use indirect if size of the illegal vector is bigger than 16 bytes.
6101   bool IsIndirect = false;
6102   const Type *Base = nullptr;
6103   uint64_t Members = 0;
6104   if (TyInfo.first > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) {
6105     IsIndirect = true;
6106 
6107   // ARMv7k passes structs bigger than 16 bytes indirectly, in space
6108   // allocated by the caller.
6109   } else if (TyInfo.first > CharUnits::fromQuantity(16) &&
6110              getABIKind() == ARMABIInfo::AAPCS16_VFP &&
6111              !isHomogeneousAggregate(Ty, Base, Members)) {
6112     IsIndirect = true;
6113 
6114   // Otherwise, bound the type's ABI alignment.
6115   // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for
6116   // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte.
6117   // Our callers should be prepared to handle an under-aligned address.
6118   } else if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
6119              getABIKind() == ARMABIInfo::AAPCS) {
6120     TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
6121     TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8));
6122   } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) {
6123     // ARMv7k allows type alignment up to 16 bytes.
6124     TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
6125     TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16));
6126   } else {
6127     TyAlignForABI = CharUnits::fromQuantity(4);
6128   }
6129   TyInfo.second = TyAlignForABI;
6130 
6131   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo,
6132                           SlotSize, /*AllowHigherAlign*/ true);
6133 }
6134 
6135 //===----------------------------------------------------------------------===//
6136 // NVPTX ABI Implementation
6137 //===----------------------------------------------------------------------===//
6138 
6139 namespace {
6140 
6141 class NVPTXABIInfo : public ABIInfo {
6142 public:
6143   NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
6144 
6145   ABIArgInfo classifyReturnType(QualType RetTy) const;
6146   ABIArgInfo classifyArgumentType(QualType Ty) const;
6147 
6148   void computeInfo(CGFunctionInfo &FI) const override;
6149   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6150                     QualType Ty) const override;
6151 };
6152 
6153 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo {
6154 public:
6155   NVPTXTargetCodeGenInfo(CodeGenTypes &CGT)
6156     : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {}
6157 
6158   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6159                            CodeGen::CodeGenModule &M) const override;
6160   bool shouldEmitStaticExternCAliases() const override;
6161 
6162 private:
6163   // Adds a NamedMDNode with F, Name, and Operand as operands, and adds the
6164   // resulting MDNode to the nvvm.annotations MDNode.
6165   static void addNVVMMetadata(llvm::Function *F, StringRef Name, int Operand);
6166 };
6167 
6168 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const {
6169   if (RetTy->isVoidType())
6170     return ABIArgInfo::getIgnore();
6171 
6172   // note: this is different from default ABI
6173   if (!RetTy->isScalarType())
6174     return ABIArgInfo::getDirect();
6175 
6176   // Treat an enum type as its underlying type.
6177   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
6178     RetTy = EnumTy->getDecl()->getIntegerType();
6179 
6180   return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
6181                                            : ABIArgInfo::getDirect());
6182 }
6183 
6184 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const {
6185   // Treat an enum type as its underlying type.
6186   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
6187     Ty = EnumTy->getDecl()->getIntegerType();
6188 
6189   // Return aggregates type as indirect by value
6190   if (isAggregateTypeForABI(Ty))
6191     return getNaturalAlignIndirect(Ty, /* byval */ true);
6192 
6193   return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
6194                                         : ABIArgInfo::getDirect());
6195 }
6196 
6197 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
6198   if (!getCXXABI().classifyReturnType(FI))
6199     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
6200   for (auto &I : FI.arguments())
6201     I.info = classifyArgumentType(I.type);
6202 
6203   // Always honor user-specified calling convention.
6204   if (FI.getCallingConvention() != llvm::CallingConv::C)
6205     return;
6206 
6207   FI.setEffectiveCallingConvention(getRuntimeCC());
6208 }
6209 
6210 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6211                                 QualType Ty) const {
6212   llvm_unreachable("NVPTX does not support varargs");
6213 }
6214 
6215 void NVPTXTargetCodeGenInfo::setTargetAttributes(
6216     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
6217   if (GV->isDeclaration())
6218     return;
6219   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
6220   if (!FD) return;
6221 
6222   llvm::Function *F = cast<llvm::Function>(GV);
6223 
6224   // Perform special handling in OpenCL mode
6225   if (M.getLangOpts().OpenCL) {
6226     // Use OpenCL function attributes to check for kernel functions
6227     // By default, all functions are device functions
6228     if (FD->hasAttr<OpenCLKernelAttr>()) {
6229       // OpenCL __kernel functions get kernel metadata
6230       // Create !{<func-ref>, metadata !"kernel", i32 1} node
6231       addNVVMMetadata(F, "kernel", 1);
6232       // And kernel functions are not subject to inlining
6233       F->addFnAttr(llvm::Attribute::NoInline);
6234     }
6235   }
6236 
6237   // Perform special handling in CUDA mode.
6238   if (M.getLangOpts().CUDA) {
6239     // CUDA __global__ functions get a kernel metadata entry.  Since
6240     // __global__ functions cannot be called from the device, we do not
6241     // need to set the noinline attribute.
6242     if (FD->hasAttr<CUDAGlobalAttr>()) {
6243       // Create !{<func-ref>, metadata !"kernel", i32 1} node
6244       addNVVMMetadata(F, "kernel", 1);
6245     }
6246     if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) {
6247       // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node
6248       llvm::APSInt MaxThreads(32);
6249       MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext());
6250       if (MaxThreads > 0)
6251         addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue());
6252 
6253       // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was
6254       // not specified in __launch_bounds__ or if the user specified a 0 value,
6255       // we don't have to add a PTX directive.
6256       if (Attr->getMinBlocks()) {
6257         llvm::APSInt MinBlocks(32);
6258         MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext());
6259         if (MinBlocks > 0)
6260           // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node
6261           addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue());
6262       }
6263     }
6264   }
6265 }
6266 
6267 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::Function *F, StringRef Name,
6268                                              int Operand) {
6269   llvm::Module *M = F->getParent();
6270   llvm::LLVMContext &Ctx = M->getContext();
6271 
6272   // Get "nvvm.annotations" metadata node
6273   llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations");
6274 
6275   llvm::Metadata *MDVals[] = {
6276       llvm::ConstantAsMetadata::get(F), llvm::MDString::get(Ctx, Name),
6277       llvm::ConstantAsMetadata::get(
6278           llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))};
6279   // Append metadata to nvvm.annotations
6280   MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
6281 }
6282 
6283 bool NVPTXTargetCodeGenInfo::shouldEmitStaticExternCAliases() const {
6284   return false;
6285 }
6286 }
6287 
6288 //===----------------------------------------------------------------------===//
6289 // SystemZ ABI Implementation
6290 //===----------------------------------------------------------------------===//
6291 
6292 namespace {
6293 
6294 class SystemZABIInfo : public SwiftABIInfo {
6295   bool HasVector;
6296 
6297 public:
6298   SystemZABIInfo(CodeGenTypes &CGT, bool HV)
6299     : SwiftABIInfo(CGT), HasVector(HV) {}
6300 
6301   bool isPromotableIntegerType(QualType Ty) const;
6302   bool isCompoundType(QualType Ty) const;
6303   bool isVectorArgumentType(QualType Ty) const;
6304   bool isFPArgumentType(QualType Ty) const;
6305   QualType GetSingleElementType(QualType Ty) const;
6306 
6307   ABIArgInfo classifyReturnType(QualType RetTy) const;
6308   ABIArgInfo classifyArgumentType(QualType ArgTy) const;
6309 
6310   void computeInfo(CGFunctionInfo &FI) const override {
6311     if (!getCXXABI().classifyReturnType(FI))
6312       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
6313     for (auto &I : FI.arguments())
6314       I.info = classifyArgumentType(I.type);
6315   }
6316 
6317   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6318                     QualType Ty) const override;
6319 
6320   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
6321                                     bool asReturnValue) const override {
6322     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
6323   }
6324   bool isSwiftErrorInRegister() const override {
6325     return false;
6326   }
6327 };
6328 
6329 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
6330 public:
6331   SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector)
6332     : TargetCodeGenInfo(new SystemZABIInfo(CGT, HasVector)) {}
6333 };
6334 
6335 }
6336 
6337 bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const {
6338   // Treat an enum type as its underlying type.
6339   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
6340     Ty = EnumTy->getDecl()->getIntegerType();
6341 
6342   // Promotable integer types are required to be promoted by the ABI.
6343   if (Ty->isPromotableIntegerType())
6344     return true;
6345 
6346   // 32-bit values must also be promoted.
6347   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
6348     switch (BT->getKind()) {
6349     case BuiltinType::Int:
6350     case BuiltinType::UInt:
6351       return true;
6352     default:
6353       return false;
6354     }
6355   return false;
6356 }
6357 
6358 bool SystemZABIInfo::isCompoundType(QualType Ty) const {
6359   return (Ty->isAnyComplexType() ||
6360           Ty->isVectorType() ||
6361           isAggregateTypeForABI(Ty));
6362 }
6363 
6364 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const {
6365   return (HasVector &&
6366           Ty->isVectorType() &&
6367           getContext().getTypeSize(Ty) <= 128);
6368 }
6369 
6370 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const {
6371   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
6372     switch (BT->getKind()) {
6373     case BuiltinType::Float:
6374     case BuiltinType::Double:
6375       return true;
6376     default:
6377       return false;
6378     }
6379 
6380   return false;
6381 }
6382 
6383 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const {
6384   if (const RecordType *RT = Ty->getAsStructureType()) {
6385     const RecordDecl *RD = RT->getDecl();
6386     QualType Found;
6387 
6388     // If this is a C++ record, check the bases first.
6389     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
6390       for (const auto &I : CXXRD->bases()) {
6391         QualType Base = I.getType();
6392 
6393         // Empty bases don't affect things either way.
6394         if (isEmptyRecord(getContext(), Base, true))
6395           continue;
6396 
6397         if (!Found.isNull())
6398           return Ty;
6399         Found = GetSingleElementType(Base);
6400       }
6401 
6402     // Check the fields.
6403     for (const auto *FD : RD->fields()) {
6404       // For compatibility with GCC, ignore empty bitfields in C++ mode.
6405       // Unlike isSingleElementStruct(), empty structure and array fields
6406       // do count.  So do anonymous bitfields that aren't zero-sized.
6407       if (getContext().getLangOpts().CPlusPlus &&
6408           FD->isZeroLengthBitField(getContext()))
6409         continue;
6410 
6411       // Unlike isSingleElementStruct(), arrays do not count.
6412       // Nested structures still do though.
6413       if (!Found.isNull())
6414         return Ty;
6415       Found = GetSingleElementType(FD->getType());
6416     }
6417 
6418     // Unlike isSingleElementStruct(), trailing padding is allowed.
6419     // An 8-byte aligned struct s { float f; } is passed as a double.
6420     if (!Found.isNull())
6421       return Found;
6422   }
6423 
6424   return Ty;
6425 }
6426 
6427 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6428                                   QualType Ty) const {
6429   // Assume that va_list type is correct; should be pointer to LLVM type:
6430   // struct {
6431   //   i64 __gpr;
6432   //   i64 __fpr;
6433   //   i8 *__overflow_arg_area;
6434   //   i8 *__reg_save_area;
6435   // };
6436 
6437   // Every non-vector argument occupies 8 bytes and is passed by preference
6438   // in either GPRs or FPRs.  Vector arguments occupy 8 or 16 bytes and are
6439   // always passed on the stack.
6440   Ty = getContext().getCanonicalType(Ty);
6441   auto TyInfo = getContext().getTypeInfoInChars(Ty);
6442   llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty);
6443   llvm::Type *DirectTy = ArgTy;
6444   ABIArgInfo AI = classifyArgumentType(Ty);
6445   bool IsIndirect = AI.isIndirect();
6446   bool InFPRs = false;
6447   bool IsVector = false;
6448   CharUnits UnpaddedSize;
6449   CharUnits DirectAlign;
6450   if (IsIndirect) {
6451     DirectTy = llvm::PointerType::getUnqual(DirectTy);
6452     UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8);
6453   } else {
6454     if (AI.getCoerceToType())
6455       ArgTy = AI.getCoerceToType();
6456     InFPRs = ArgTy->isFloatTy() || ArgTy->isDoubleTy();
6457     IsVector = ArgTy->isVectorTy();
6458     UnpaddedSize = TyInfo.first;
6459     DirectAlign = TyInfo.second;
6460   }
6461   CharUnits PaddedSize = CharUnits::fromQuantity(8);
6462   if (IsVector && UnpaddedSize > PaddedSize)
6463     PaddedSize = CharUnits::fromQuantity(16);
6464   assert((UnpaddedSize <= PaddedSize) && "Invalid argument size.");
6465 
6466   CharUnits Padding = (PaddedSize - UnpaddedSize);
6467 
6468   llvm::Type *IndexTy = CGF.Int64Ty;
6469   llvm::Value *PaddedSizeV =
6470     llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity());
6471 
6472   if (IsVector) {
6473     // Work out the address of a vector argument on the stack.
6474     // Vector arguments are always passed in the high bits of a
6475     // single (8 byte) or double (16 byte) stack slot.
6476     Address OverflowArgAreaPtr =
6477       CGF.Builder.CreateStructGEP(VAListAddr, 2, CharUnits::fromQuantity(16),
6478                                   "overflow_arg_area_ptr");
6479     Address OverflowArgArea =
6480       Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
6481               TyInfo.second);
6482     Address MemAddr =
6483       CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr");
6484 
6485     // Update overflow_arg_area_ptr pointer
6486     llvm::Value *NewOverflowArgArea =
6487       CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV,
6488                             "overflow_arg_area");
6489     CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
6490 
6491     return MemAddr;
6492   }
6493 
6494   assert(PaddedSize.getQuantity() == 8);
6495 
6496   unsigned MaxRegs, RegCountField, RegSaveIndex;
6497   CharUnits RegPadding;
6498   if (InFPRs) {
6499     MaxRegs = 4; // Maximum of 4 FPR arguments
6500     RegCountField = 1; // __fpr
6501     RegSaveIndex = 16; // save offset for f0
6502     RegPadding = CharUnits(); // floats are passed in the high bits of an FPR
6503   } else {
6504     MaxRegs = 5; // Maximum of 5 GPR arguments
6505     RegCountField = 0; // __gpr
6506     RegSaveIndex = 2; // save offset for r2
6507     RegPadding = Padding; // values are passed in the low bits of a GPR
6508   }
6509 
6510   Address RegCountPtr = CGF.Builder.CreateStructGEP(
6511       VAListAddr, RegCountField, RegCountField * CharUnits::fromQuantity(8),
6512       "reg_count_ptr");
6513   llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count");
6514   llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs);
6515   llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV,
6516                                                  "fits_in_regs");
6517 
6518   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
6519   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
6520   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
6521   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
6522 
6523   // Emit code to load the value if it was passed in registers.
6524   CGF.EmitBlock(InRegBlock);
6525 
6526   // Work out the address of an argument register.
6527   llvm::Value *ScaledRegCount =
6528     CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count");
6529   llvm::Value *RegBase =
6530     llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity()
6531                                       + RegPadding.getQuantity());
6532   llvm::Value *RegOffset =
6533     CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset");
6534   Address RegSaveAreaPtr =
6535       CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(24),
6536                                   "reg_save_area_ptr");
6537   llvm::Value *RegSaveArea =
6538     CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area");
6539   Address RawRegAddr(CGF.Builder.CreateGEP(RegSaveArea, RegOffset,
6540                                            "raw_reg_addr"),
6541                      PaddedSize);
6542   Address RegAddr =
6543     CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr");
6544 
6545   // Update the register count
6546   llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1);
6547   llvm::Value *NewRegCount =
6548     CGF.Builder.CreateAdd(RegCount, One, "reg_count");
6549   CGF.Builder.CreateStore(NewRegCount, RegCountPtr);
6550   CGF.EmitBranch(ContBlock);
6551 
6552   // Emit code to load the value if it was passed in memory.
6553   CGF.EmitBlock(InMemBlock);
6554 
6555   // Work out the address of a stack argument.
6556   Address OverflowArgAreaPtr = CGF.Builder.CreateStructGEP(
6557       VAListAddr, 2, CharUnits::fromQuantity(16), "overflow_arg_area_ptr");
6558   Address OverflowArgArea =
6559     Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
6560             PaddedSize);
6561   Address RawMemAddr =
6562     CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr");
6563   Address MemAddr =
6564     CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr");
6565 
6566   // Update overflow_arg_area_ptr pointer
6567   llvm::Value *NewOverflowArgArea =
6568     CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV,
6569                           "overflow_arg_area");
6570   CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
6571   CGF.EmitBranch(ContBlock);
6572 
6573   // Return the appropriate result.
6574   CGF.EmitBlock(ContBlock);
6575   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
6576                                  MemAddr, InMemBlock, "va_arg.addr");
6577 
6578   if (IsIndirect)
6579     ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"),
6580                       TyInfo.second);
6581 
6582   return ResAddr;
6583 }
6584 
6585 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const {
6586   if (RetTy->isVoidType())
6587     return ABIArgInfo::getIgnore();
6588   if (isVectorArgumentType(RetTy))
6589     return ABIArgInfo::getDirect();
6590   if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64)
6591     return getNaturalAlignIndirect(RetTy);
6592   return (isPromotableIntegerType(RetTy) ? ABIArgInfo::getExtend(RetTy)
6593                                          : ABIArgInfo::getDirect());
6594 }
6595 
6596 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const {
6597   // Handle the generic C++ ABI.
6598   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
6599     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
6600 
6601   // Integers and enums are extended to full register width.
6602   if (isPromotableIntegerType(Ty))
6603     return ABIArgInfo::getExtend(Ty);
6604 
6605   // Handle vector types and vector-like structure types.  Note that
6606   // as opposed to float-like structure types, we do not allow any
6607   // padding for vector-like structures, so verify the sizes match.
6608   uint64_t Size = getContext().getTypeSize(Ty);
6609   QualType SingleElementTy = GetSingleElementType(Ty);
6610   if (isVectorArgumentType(SingleElementTy) &&
6611       getContext().getTypeSize(SingleElementTy) == Size)
6612     return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy));
6613 
6614   // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly.
6615   if (Size != 8 && Size != 16 && Size != 32 && Size != 64)
6616     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
6617 
6618   // Handle small structures.
6619   if (const RecordType *RT = Ty->getAs<RecordType>()) {
6620     // Structures with flexible arrays have variable length, so really
6621     // fail the size test above.
6622     const RecordDecl *RD = RT->getDecl();
6623     if (RD->hasFlexibleArrayMember())
6624       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
6625 
6626     // The structure is passed as an unextended integer, a float, or a double.
6627     llvm::Type *PassTy;
6628     if (isFPArgumentType(SingleElementTy)) {
6629       assert(Size == 32 || Size == 64);
6630       if (Size == 32)
6631         PassTy = llvm::Type::getFloatTy(getVMContext());
6632       else
6633         PassTy = llvm::Type::getDoubleTy(getVMContext());
6634     } else
6635       PassTy = llvm::IntegerType::get(getVMContext(), Size);
6636     return ABIArgInfo::getDirect(PassTy);
6637   }
6638 
6639   // Non-structure compounds are passed indirectly.
6640   if (isCompoundType(Ty))
6641     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
6642 
6643   return ABIArgInfo::getDirect(nullptr);
6644 }
6645 
6646 //===----------------------------------------------------------------------===//
6647 // MSP430 ABI Implementation
6648 //===----------------------------------------------------------------------===//
6649 
6650 namespace {
6651 
6652 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
6653 public:
6654   MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
6655     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
6656   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6657                            CodeGen::CodeGenModule &M) const override;
6658 };
6659 
6660 }
6661 
6662 void MSP430TargetCodeGenInfo::setTargetAttributes(
6663     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
6664   if (GV->isDeclaration())
6665     return;
6666   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
6667     if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) {
6668       // Handle 'interrupt' attribute:
6669       llvm::Function *F = cast<llvm::Function>(GV);
6670 
6671       // Step 1: Set ISR calling convention.
6672       F->setCallingConv(llvm::CallingConv::MSP430_INTR);
6673 
6674       // Step 2: Add attributes goodness.
6675       F->addFnAttr(llvm::Attribute::NoInline);
6676 
6677       // Step 3: Emit ISR vector alias.
6678       unsigned Num = attr->getNumber() / 2;
6679       llvm::GlobalAlias::create(llvm::Function::ExternalLinkage,
6680                                 "__isr_" + Twine(Num), F);
6681     }
6682   }
6683 }
6684 
6685 //===----------------------------------------------------------------------===//
6686 // MIPS ABI Implementation.  This works for both little-endian and
6687 // big-endian variants.
6688 //===----------------------------------------------------------------------===//
6689 
6690 namespace {
6691 class MipsABIInfo : public ABIInfo {
6692   bool IsO32;
6693   unsigned MinABIStackAlignInBytes, StackAlignInBytes;
6694   void CoerceToIntArgs(uint64_t TySize,
6695                        SmallVectorImpl<llvm::Type *> &ArgList) const;
6696   llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const;
6697   llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const;
6698   llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const;
6699 public:
6700   MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) :
6701     ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8),
6702     StackAlignInBytes(IsO32 ? 8 : 16) {}
6703 
6704   ABIArgInfo classifyReturnType(QualType RetTy) const;
6705   ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const;
6706   void computeInfo(CGFunctionInfo &FI) const override;
6707   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6708                     QualType Ty) const override;
6709   ABIArgInfo extendType(QualType Ty) const;
6710 };
6711 
6712 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
6713   unsigned SizeOfUnwindException;
6714 public:
6715   MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32)
6716     : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)),
6717       SizeOfUnwindException(IsO32 ? 24 : 32) {}
6718 
6719   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
6720     return 29;
6721   }
6722 
6723   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6724                            CodeGen::CodeGenModule &CGM) const override {
6725     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
6726     if (!FD) return;
6727     llvm::Function *Fn = cast<llvm::Function>(GV);
6728 
6729     if (FD->hasAttr<MipsLongCallAttr>())
6730       Fn->addFnAttr("long-call");
6731     else if (FD->hasAttr<MipsShortCallAttr>())
6732       Fn->addFnAttr("short-call");
6733 
6734     // Other attributes do not have a meaning for declarations.
6735     if (GV->isDeclaration())
6736       return;
6737 
6738     if (FD->hasAttr<Mips16Attr>()) {
6739       Fn->addFnAttr("mips16");
6740     }
6741     else if (FD->hasAttr<NoMips16Attr>()) {
6742       Fn->addFnAttr("nomips16");
6743     }
6744 
6745     if (FD->hasAttr<MicroMipsAttr>())
6746       Fn->addFnAttr("micromips");
6747     else if (FD->hasAttr<NoMicroMipsAttr>())
6748       Fn->addFnAttr("nomicromips");
6749 
6750     const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>();
6751     if (!Attr)
6752       return;
6753 
6754     const char *Kind;
6755     switch (Attr->getInterrupt()) {
6756     case MipsInterruptAttr::eic:     Kind = "eic"; break;
6757     case MipsInterruptAttr::sw0:     Kind = "sw0"; break;
6758     case MipsInterruptAttr::sw1:     Kind = "sw1"; break;
6759     case MipsInterruptAttr::hw0:     Kind = "hw0"; break;
6760     case MipsInterruptAttr::hw1:     Kind = "hw1"; break;
6761     case MipsInterruptAttr::hw2:     Kind = "hw2"; break;
6762     case MipsInterruptAttr::hw3:     Kind = "hw3"; break;
6763     case MipsInterruptAttr::hw4:     Kind = "hw4"; break;
6764     case MipsInterruptAttr::hw5:     Kind = "hw5"; break;
6765     }
6766 
6767     Fn->addFnAttr("interrupt", Kind);
6768 
6769   }
6770 
6771   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
6772                                llvm::Value *Address) const override;
6773 
6774   unsigned getSizeOfUnwindException() const override {
6775     return SizeOfUnwindException;
6776   }
6777 };
6778 }
6779 
6780 void MipsABIInfo::CoerceToIntArgs(
6781     uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const {
6782   llvm::IntegerType *IntTy =
6783     llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
6784 
6785   // Add (TySize / MinABIStackAlignInBytes) args of IntTy.
6786   for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N)
6787     ArgList.push_back(IntTy);
6788 
6789   // If necessary, add one more integer type to ArgList.
6790   unsigned R = TySize % (MinABIStackAlignInBytes * 8);
6791 
6792   if (R)
6793     ArgList.push_back(llvm::IntegerType::get(getVMContext(), R));
6794 }
6795 
6796 // In N32/64, an aligned double precision floating point field is passed in
6797 // a register.
6798 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const {
6799   SmallVector<llvm::Type*, 8> ArgList, IntArgList;
6800 
6801   if (IsO32) {
6802     CoerceToIntArgs(TySize, ArgList);
6803     return llvm::StructType::get(getVMContext(), ArgList);
6804   }
6805 
6806   if (Ty->isComplexType())
6807     return CGT.ConvertType(Ty);
6808 
6809   const RecordType *RT = Ty->getAs<RecordType>();
6810 
6811   // Unions/vectors are passed in integer registers.
6812   if (!RT || !RT->isStructureOrClassType()) {
6813     CoerceToIntArgs(TySize, ArgList);
6814     return llvm::StructType::get(getVMContext(), ArgList);
6815   }
6816 
6817   const RecordDecl *RD = RT->getDecl();
6818   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
6819   assert(!(TySize % 8) && "Size of structure must be multiple of 8.");
6820 
6821   uint64_t LastOffset = 0;
6822   unsigned idx = 0;
6823   llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64);
6824 
6825   // Iterate over fields in the struct/class and check if there are any aligned
6826   // double fields.
6827   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
6828        i != e; ++i, ++idx) {
6829     const QualType Ty = i->getType();
6830     const BuiltinType *BT = Ty->getAs<BuiltinType>();
6831 
6832     if (!BT || BT->getKind() != BuiltinType::Double)
6833       continue;
6834 
6835     uint64_t Offset = Layout.getFieldOffset(idx);
6836     if (Offset % 64) // Ignore doubles that are not aligned.
6837       continue;
6838 
6839     // Add ((Offset - LastOffset) / 64) args of type i64.
6840     for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j)
6841       ArgList.push_back(I64);
6842 
6843     // Add double type.
6844     ArgList.push_back(llvm::Type::getDoubleTy(getVMContext()));
6845     LastOffset = Offset + 64;
6846   }
6847 
6848   CoerceToIntArgs(TySize - LastOffset, IntArgList);
6849   ArgList.append(IntArgList.begin(), IntArgList.end());
6850 
6851   return llvm::StructType::get(getVMContext(), ArgList);
6852 }
6853 
6854 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset,
6855                                         uint64_t Offset) const {
6856   if (OrigOffset + MinABIStackAlignInBytes > Offset)
6857     return nullptr;
6858 
6859   return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8);
6860 }
6861 
6862 ABIArgInfo
6863 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const {
6864   Ty = useFirstFieldIfTransparentUnion(Ty);
6865 
6866   uint64_t OrigOffset = Offset;
6867   uint64_t TySize = getContext().getTypeSize(Ty);
6868   uint64_t Align = getContext().getTypeAlign(Ty) / 8;
6869 
6870   Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes),
6871                    (uint64_t)StackAlignInBytes);
6872   unsigned CurrOffset = llvm::alignTo(Offset, Align);
6873   Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8;
6874 
6875   if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) {
6876     // Ignore empty aggregates.
6877     if (TySize == 0)
6878       return ABIArgInfo::getIgnore();
6879 
6880     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
6881       Offset = OrigOffset + MinABIStackAlignInBytes;
6882       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
6883     }
6884 
6885     // If we have reached here, aggregates are passed directly by coercing to
6886     // another structure type. Padding is inserted if the offset of the
6887     // aggregate is unaligned.
6888     ABIArgInfo ArgInfo =
6889         ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0,
6890                               getPaddingType(OrigOffset, CurrOffset));
6891     ArgInfo.setInReg(true);
6892     return ArgInfo;
6893   }
6894 
6895   // Treat an enum type as its underlying type.
6896   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
6897     Ty = EnumTy->getDecl()->getIntegerType();
6898 
6899   // All integral types are promoted to the GPR width.
6900   if (Ty->isIntegralOrEnumerationType())
6901     return extendType(Ty);
6902 
6903   return ABIArgInfo::getDirect(
6904       nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset));
6905 }
6906 
6907 llvm::Type*
6908 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const {
6909   const RecordType *RT = RetTy->getAs<RecordType>();
6910   SmallVector<llvm::Type*, 8> RTList;
6911 
6912   if (RT && RT->isStructureOrClassType()) {
6913     const RecordDecl *RD = RT->getDecl();
6914     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
6915     unsigned FieldCnt = Layout.getFieldCount();
6916 
6917     // N32/64 returns struct/classes in floating point registers if the
6918     // following conditions are met:
6919     // 1. The size of the struct/class is no larger than 128-bit.
6920     // 2. The struct/class has one or two fields all of which are floating
6921     //    point types.
6922     // 3. The offset of the first field is zero (this follows what gcc does).
6923     //
6924     // Any other composite results are returned in integer registers.
6925     //
6926     if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) {
6927       RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end();
6928       for (; b != e; ++b) {
6929         const BuiltinType *BT = b->getType()->getAs<BuiltinType>();
6930 
6931         if (!BT || !BT->isFloatingPoint())
6932           break;
6933 
6934         RTList.push_back(CGT.ConvertType(b->getType()));
6935       }
6936 
6937       if (b == e)
6938         return llvm::StructType::get(getVMContext(), RTList,
6939                                      RD->hasAttr<PackedAttr>());
6940 
6941       RTList.clear();
6942     }
6943   }
6944 
6945   CoerceToIntArgs(Size, RTList);
6946   return llvm::StructType::get(getVMContext(), RTList);
6947 }
6948 
6949 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
6950   uint64_t Size = getContext().getTypeSize(RetTy);
6951 
6952   if (RetTy->isVoidType())
6953     return ABIArgInfo::getIgnore();
6954 
6955   // O32 doesn't treat zero-sized structs differently from other structs.
6956   // However, N32/N64 ignores zero sized return values.
6957   if (!IsO32 && Size == 0)
6958     return ABIArgInfo::getIgnore();
6959 
6960   if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) {
6961     if (Size <= 128) {
6962       if (RetTy->isAnyComplexType())
6963         return ABIArgInfo::getDirect();
6964 
6965       // O32 returns integer vectors in registers and N32/N64 returns all small
6966       // aggregates in registers.
6967       if (!IsO32 ||
6968           (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) {
6969         ABIArgInfo ArgInfo =
6970             ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
6971         ArgInfo.setInReg(true);
6972         return ArgInfo;
6973       }
6974     }
6975 
6976     return getNaturalAlignIndirect(RetTy);
6977   }
6978 
6979   // Treat an enum type as its underlying type.
6980   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
6981     RetTy = EnumTy->getDecl()->getIntegerType();
6982 
6983   return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
6984                                            : ABIArgInfo::getDirect());
6985 }
6986 
6987 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
6988   ABIArgInfo &RetInfo = FI.getReturnInfo();
6989   if (!getCXXABI().classifyReturnType(FI))
6990     RetInfo = classifyReturnType(FI.getReturnType());
6991 
6992   // Check if a pointer to an aggregate is passed as a hidden argument.
6993   uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0;
6994 
6995   for (auto &I : FI.arguments())
6996     I.info = classifyArgumentType(I.type, Offset);
6997 }
6998 
6999 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7000                                QualType OrigTy) const {
7001   QualType Ty = OrigTy;
7002 
7003   // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64.
7004   // Pointers are also promoted in the same way but this only matters for N32.
7005   unsigned SlotSizeInBits = IsO32 ? 32 : 64;
7006   unsigned PtrWidth = getTarget().getPointerWidth(0);
7007   bool DidPromote = false;
7008   if ((Ty->isIntegerType() &&
7009           getContext().getIntWidth(Ty) < SlotSizeInBits) ||
7010       (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) {
7011     DidPromote = true;
7012     Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits,
7013                                             Ty->isSignedIntegerType());
7014   }
7015 
7016   auto TyInfo = getContext().getTypeInfoInChars(Ty);
7017 
7018   // The alignment of things in the argument area is never larger than
7019   // StackAlignInBytes.
7020   TyInfo.second =
7021     std::min(TyInfo.second, CharUnits::fromQuantity(StackAlignInBytes));
7022 
7023   // MinABIStackAlignInBytes is the size of argument slots on the stack.
7024   CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes);
7025 
7026   Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
7027                           TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true);
7028 
7029 
7030   // If there was a promotion, "unpromote" into a temporary.
7031   // TODO: can we just use a pointer into a subset of the original slot?
7032   if (DidPromote) {
7033     Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp");
7034     llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr);
7035 
7036     // Truncate down to the right width.
7037     llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType()
7038                                                  : CGF.IntPtrTy);
7039     llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy);
7040     if (OrigTy->isPointerType())
7041       V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType());
7042 
7043     CGF.Builder.CreateStore(V, Temp);
7044     Addr = Temp;
7045   }
7046 
7047   return Addr;
7048 }
7049 
7050 ABIArgInfo MipsABIInfo::extendType(QualType Ty) const {
7051   int TySize = getContext().getTypeSize(Ty);
7052 
7053   // MIPS64 ABI requires unsigned 32 bit integers to be sign extended.
7054   if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
7055     return ABIArgInfo::getSignExtend(Ty);
7056 
7057   return ABIArgInfo::getExtend(Ty);
7058 }
7059 
7060 bool
7061 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
7062                                                llvm::Value *Address) const {
7063   // This information comes from gcc's implementation, which seems to
7064   // as canonical as it gets.
7065 
7066   // Everything on MIPS is 4 bytes.  Double-precision FP registers
7067   // are aliased to pairs of single-precision FP registers.
7068   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
7069 
7070   // 0-31 are the general purpose registers, $0 - $31.
7071   // 32-63 are the floating-point registers, $f0 - $f31.
7072   // 64 and 65 are the multiply/divide registers, $hi and $lo.
7073   // 66 is the (notional, I think) register for signal-handler return.
7074   AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65);
7075 
7076   // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
7077   // They are one bit wide and ignored here.
7078 
7079   // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
7080   // (coprocessor 1 is the FP unit)
7081   // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
7082   // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
7083   // 176-181 are the DSP accumulator registers.
7084   AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181);
7085   return false;
7086 }
7087 
7088 //===----------------------------------------------------------------------===//
7089 // AVR ABI Implementation.
7090 //===----------------------------------------------------------------------===//
7091 
7092 namespace {
7093 class AVRTargetCodeGenInfo : public TargetCodeGenInfo {
7094 public:
7095   AVRTargetCodeGenInfo(CodeGenTypes &CGT)
7096     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) { }
7097 
7098   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7099                            CodeGen::CodeGenModule &CGM) const override {
7100     if (GV->isDeclaration())
7101       return;
7102     const auto *FD = dyn_cast_or_null<FunctionDecl>(D);
7103     if (!FD) return;
7104     auto *Fn = cast<llvm::Function>(GV);
7105 
7106     if (FD->getAttr<AVRInterruptAttr>())
7107       Fn->addFnAttr("interrupt");
7108 
7109     if (FD->getAttr<AVRSignalAttr>())
7110       Fn->addFnAttr("signal");
7111   }
7112 };
7113 }
7114 
7115 //===----------------------------------------------------------------------===//
7116 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults.
7117 // Currently subclassed only to implement custom OpenCL C function attribute
7118 // handling.
7119 //===----------------------------------------------------------------------===//
7120 
7121 namespace {
7122 
7123 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo {
7124 public:
7125   TCETargetCodeGenInfo(CodeGenTypes &CGT)
7126     : DefaultTargetCodeGenInfo(CGT) {}
7127 
7128   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7129                            CodeGen::CodeGenModule &M) const override;
7130 };
7131 
7132 void TCETargetCodeGenInfo::setTargetAttributes(
7133     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
7134   if (GV->isDeclaration())
7135     return;
7136   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
7137   if (!FD) return;
7138 
7139   llvm::Function *F = cast<llvm::Function>(GV);
7140 
7141   if (M.getLangOpts().OpenCL) {
7142     if (FD->hasAttr<OpenCLKernelAttr>()) {
7143       // OpenCL C Kernel functions are not subject to inlining
7144       F->addFnAttr(llvm::Attribute::NoInline);
7145       const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>();
7146       if (Attr) {
7147         // Convert the reqd_work_group_size() attributes to metadata.
7148         llvm::LLVMContext &Context = F->getContext();
7149         llvm::NamedMDNode *OpenCLMetadata =
7150             M.getModule().getOrInsertNamedMetadata(
7151                 "opencl.kernel_wg_size_info");
7152 
7153         SmallVector<llvm::Metadata *, 5> Operands;
7154         Operands.push_back(llvm::ConstantAsMetadata::get(F));
7155 
7156         Operands.push_back(
7157             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
7158                 M.Int32Ty, llvm::APInt(32, Attr->getXDim()))));
7159         Operands.push_back(
7160             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
7161                 M.Int32Ty, llvm::APInt(32, Attr->getYDim()))));
7162         Operands.push_back(
7163             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
7164                 M.Int32Ty, llvm::APInt(32, Attr->getZDim()))));
7165 
7166         // Add a boolean constant operand for "required" (true) or "hint"
7167         // (false) for implementing the work_group_size_hint attr later.
7168         // Currently always true as the hint is not yet implemented.
7169         Operands.push_back(
7170             llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context)));
7171         OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands));
7172       }
7173     }
7174   }
7175 }
7176 
7177 }
7178 
7179 //===----------------------------------------------------------------------===//
7180 // Hexagon ABI Implementation
7181 //===----------------------------------------------------------------------===//
7182 
7183 namespace {
7184 
7185 class HexagonABIInfo : public ABIInfo {
7186 
7187 
7188 public:
7189   HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
7190 
7191 private:
7192 
7193   ABIArgInfo classifyReturnType(QualType RetTy) const;
7194   ABIArgInfo classifyArgumentType(QualType RetTy) const;
7195 
7196   void computeInfo(CGFunctionInfo &FI) const override;
7197 
7198   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7199                     QualType Ty) const override;
7200 };
7201 
7202 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo {
7203 public:
7204   HexagonTargetCodeGenInfo(CodeGenTypes &CGT)
7205     :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {}
7206 
7207   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
7208     return 29;
7209   }
7210 };
7211 
7212 }
7213 
7214 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const {
7215   if (!getCXXABI().classifyReturnType(FI))
7216     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7217   for (auto &I : FI.arguments())
7218     I.info = classifyArgumentType(I.type);
7219 }
7220 
7221 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const {
7222   if (!isAggregateTypeForABI(Ty)) {
7223     // Treat an enum type as its underlying type.
7224     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
7225       Ty = EnumTy->getDecl()->getIntegerType();
7226 
7227     return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
7228                                           : ABIArgInfo::getDirect());
7229   }
7230 
7231   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
7232     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
7233 
7234   // Ignore empty records.
7235   if (isEmptyRecord(getContext(), Ty, true))
7236     return ABIArgInfo::getIgnore();
7237 
7238   uint64_t Size = getContext().getTypeSize(Ty);
7239   if (Size > 64)
7240     return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
7241     // Pass in the smallest viable integer type.
7242   else if (Size > 32)
7243       return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
7244   else if (Size > 16)
7245       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
7246   else if (Size > 8)
7247       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
7248   else
7249       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
7250 }
7251 
7252 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const {
7253   if (RetTy->isVoidType())
7254     return ABIArgInfo::getIgnore();
7255 
7256   // Large vector types should be returned via memory.
7257   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64)
7258     return getNaturalAlignIndirect(RetTy);
7259 
7260   if (!isAggregateTypeForABI(RetTy)) {
7261     // Treat an enum type as its underlying type.
7262     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
7263       RetTy = EnumTy->getDecl()->getIntegerType();
7264 
7265     return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
7266                                              : ABIArgInfo::getDirect());
7267   }
7268 
7269   if (isEmptyRecord(getContext(), RetTy, true))
7270     return ABIArgInfo::getIgnore();
7271 
7272   // Aggregates <= 8 bytes are returned in r0; other aggregates
7273   // are returned indirectly.
7274   uint64_t Size = getContext().getTypeSize(RetTy);
7275   if (Size <= 64) {
7276     // Return in the smallest viable integer type.
7277     if (Size <= 8)
7278       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
7279     if (Size <= 16)
7280       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
7281     if (Size <= 32)
7282       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
7283     return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
7284   }
7285 
7286   return getNaturalAlignIndirect(RetTy, /*ByVal=*/true);
7287 }
7288 
7289 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7290                                   QualType Ty) const {
7291   // FIXME: Someone needs to audit that this handle alignment correctly.
7292   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
7293                           getContext().getTypeInfoInChars(Ty),
7294                           CharUnits::fromQuantity(4),
7295                           /*AllowHigherAlign*/ true);
7296 }
7297 
7298 //===----------------------------------------------------------------------===//
7299 // Lanai ABI Implementation
7300 //===----------------------------------------------------------------------===//
7301 
7302 namespace {
7303 class LanaiABIInfo : public DefaultABIInfo {
7304 public:
7305   LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
7306 
7307   bool shouldUseInReg(QualType Ty, CCState &State) const;
7308 
7309   void computeInfo(CGFunctionInfo &FI) const override {
7310     CCState State(FI.getCallingConvention());
7311     // Lanai uses 4 registers to pass arguments unless the function has the
7312     // regparm attribute set.
7313     if (FI.getHasRegParm()) {
7314       State.FreeRegs = FI.getRegParm();
7315     } else {
7316       State.FreeRegs = 4;
7317     }
7318 
7319     if (!getCXXABI().classifyReturnType(FI))
7320       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7321     for (auto &I : FI.arguments())
7322       I.info = classifyArgumentType(I.type, State);
7323   }
7324 
7325   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
7326   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
7327 };
7328 } // end anonymous namespace
7329 
7330 bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const {
7331   unsigned Size = getContext().getTypeSize(Ty);
7332   unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U;
7333 
7334   if (SizeInRegs == 0)
7335     return false;
7336 
7337   if (SizeInRegs > State.FreeRegs) {
7338     State.FreeRegs = 0;
7339     return false;
7340   }
7341 
7342   State.FreeRegs -= SizeInRegs;
7343 
7344   return true;
7345 }
7346 
7347 ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal,
7348                                            CCState &State) const {
7349   if (!ByVal) {
7350     if (State.FreeRegs) {
7351       --State.FreeRegs; // Non-byval indirects just use one pointer.
7352       return getNaturalAlignIndirectInReg(Ty);
7353     }
7354     return getNaturalAlignIndirect(Ty, false);
7355   }
7356 
7357   // Compute the byval alignment.
7358   const unsigned MinABIStackAlignInBytes = 4;
7359   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
7360   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true,
7361                                  /*Realign=*/TypeAlign >
7362                                      MinABIStackAlignInBytes);
7363 }
7364 
7365 ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty,
7366                                               CCState &State) const {
7367   // Check with the C++ ABI first.
7368   const RecordType *RT = Ty->getAs<RecordType>();
7369   if (RT) {
7370     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
7371     if (RAA == CGCXXABI::RAA_Indirect) {
7372       return getIndirectResult(Ty, /*ByVal=*/false, State);
7373     } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
7374       return getNaturalAlignIndirect(Ty, /*ByRef=*/true);
7375     }
7376   }
7377 
7378   if (isAggregateTypeForABI(Ty)) {
7379     // Structures with flexible arrays are always indirect.
7380     if (RT && RT->getDecl()->hasFlexibleArrayMember())
7381       return getIndirectResult(Ty, /*ByVal=*/true, State);
7382 
7383     // Ignore empty structs/unions.
7384     if (isEmptyRecord(getContext(), Ty, true))
7385       return ABIArgInfo::getIgnore();
7386 
7387     llvm::LLVMContext &LLVMContext = getVMContext();
7388     unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
7389     if (SizeInRegs <= State.FreeRegs) {
7390       llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
7391       SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32);
7392       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
7393       State.FreeRegs -= SizeInRegs;
7394       return ABIArgInfo::getDirectInReg(Result);
7395     } else {
7396       State.FreeRegs = 0;
7397     }
7398     return getIndirectResult(Ty, true, State);
7399   }
7400 
7401   // Treat an enum type as its underlying type.
7402   if (const auto *EnumTy = Ty->getAs<EnumType>())
7403     Ty = EnumTy->getDecl()->getIntegerType();
7404 
7405   bool InReg = shouldUseInReg(Ty, State);
7406   if (Ty->isPromotableIntegerType()) {
7407     if (InReg)
7408       return ABIArgInfo::getDirectInReg();
7409     return ABIArgInfo::getExtend(Ty);
7410   }
7411   if (InReg)
7412     return ABIArgInfo::getDirectInReg();
7413   return ABIArgInfo::getDirect();
7414 }
7415 
7416 namespace {
7417 class LanaiTargetCodeGenInfo : public TargetCodeGenInfo {
7418 public:
7419   LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
7420       : TargetCodeGenInfo(new LanaiABIInfo(CGT)) {}
7421 };
7422 }
7423 
7424 //===----------------------------------------------------------------------===//
7425 // AMDGPU ABI Implementation
7426 //===----------------------------------------------------------------------===//
7427 
7428 namespace {
7429 
7430 class AMDGPUABIInfo final : public DefaultABIInfo {
7431 private:
7432   static const unsigned MaxNumRegsForArgsRet = 16;
7433 
7434   unsigned numRegsForType(QualType Ty) const;
7435 
7436   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
7437   bool isHomogeneousAggregateSmallEnough(const Type *Base,
7438                                          uint64_t Members) const override;
7439 
7440 public:
7441   explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) :
7442     DefaultABIInfo(CGT) {}
7443 
7444   ABIArgInfo classifyReturnType(QualType RetTy) const;
7445   ABIArgInfo classifyKernelArgumentType(QualType Ty) const;
7446   ABIArgInfo classifyArgumentType(QualType Ty, unsigned &NumRegsLeft) const;
7447 
7448   void computeInfo(CGFunctionInfo &FI) const override;
7449 };
7450 
7451 bool AMDGPUABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
7452   return true;
7453 }
7454 
7455 bool AMDGPUABIInfo::isHomogeneousAggregateSmallEnough(
7456   const Type *Base, uint64_t Members) const {
7457   uint32_t NumRegs = (getContext().getTypeSize(Base) + 31) / 32;
7458 
7459   // Homogeneous Aggregates may occupy at most 16 registers.
7460   return Members * NumRegs <= MaxNumRegsForArgsRet;
7461 }
7462 
7463 /// Estimate number of registers the type will use when passed in registers.
7464 unsigned AMDGPUABIInfo::numRegsForType(QualType Ty) const {
7465   unsigned NumRegs = 0;
7466 
7467   if (const VectorType *VT = Ty->getAs<VectorType>()) {
7468     // Compute from the number of elements. The reported size is based on the
7469     // in-memory size, which includes the padding 4th element for 3-vectors.
7470     QualType EltTy = VT->getElementType();
7471     unsigned EltSize = getContext().getTypeSize(EltTy);
7472 
7473     // 16-bit element vectors should be passed as packed.
7474     if (EltSize == 16)
7475       return (VT->getNumElements() + 1) / 2;
7476 
7477     unsigned EltNumRegs = (EltSize + 31) / 32;
7478     return EltNumRegs * VT->getNumElements();
7479   }
7480 
7481   if (const RecordType *RT = Ty->getAs<RecordType>()) {
7482     const RecordDecl *RD = RT->getDecl();
7483     assert(!RD->hasFlexibleArrayMember());
7484 
7485     for (const FieldDecl *Field : RD->fields()) {
7486       QualType FieldTy = Field->getType();
7487       NumRegs += numRegsForType(FieldTy);
7488     }
7489 
7490     return NumRegs;
7491   }
7492 
7493   return (getContext().getTypeSize(Ty) + 31) / 32;
7494 }
7495 
7496 void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const {
7497   llvm::CallingConv::ID CC = FI.getCallingConvention();
7498 
7499   if (!getCXXABI().classifyReturnType(FI))
7500     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7501 
7502   unsigned NumRegsLeft = MaxNumRegsForArgsRet;
7503   for (auto &Arg : FI.arguments()) {
7504     if (CC == llvm::CallingConv::AMDGPU_KERNEL) {
7505       Arg.info = classifyKernelArgumentType(Arg.type);
7506     } else {
7507       Arg.info = classifyArgumentType(Arg.type, NumRegsLeft);
7508     }
7509   }
7510 }
7511 
7512 ABIArgInfo AMDGPUABIInfo::classifyReturnType(QualType RetTy) const {
7513   if (isAggregateTypeForABI(RetTy)) {
7514     // Records with non-trivial destructors/copy-constructors should not be
7515     // returned by value.
7516     if (!getRecordArgABI(RetTy, getCXXABI())) {
7517       // Ignore empty structs/unions.
7518       if (isEmptyRecord(getContext(), RetTy, true))
7519         return ABIArgInfo::getIgnore();
7520 
7521       // Lower single-element structs to just return a regular value.
7522       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
7523         return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
7524 
7525       if (const RecordType *RT = RetTy->getAs<RecordType>()) {
7526         const RecordDecl *RD = RT->getDecl();
7527         if (RD->hasFlexibleArrayMember())
7528           return DefaultABIInfo::classifyReturnType(RetTy);
7529       }
7530 
7531       // Pack aggregates <= 4 bytes into single VGPR or pair.
7532       uint64_t Size = getContext().getTypeSize(RetTy);
7533       if (Size <= 16)
7534         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
7535 
7536       if (Size <= 32)
7537         return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
7538 
7539       if (Size <= 64) {
7540         llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext());
7541         return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2));
7542       }
7543 
7544       if (numRegsForType(RetTy) <= MaxNumRegsForArgsRet)
7545         return ABIArgInfo::getDirect();
7546     }
7547   }
7548 
7549   // Otherwise just do the default thing.
7550   return DefaultABIInfo::classifyReturnType(RetTy);
7551 }
7552 
7553 /// For kernels all parameters are really passed in a special buffer. It doesn't
7554 /// make sense to pass anything byval, so everything must be direct.
7555 ABIArgInfo AMDGPUABIInfo::classifyKernelArgumentType(QualType Ty) const {
7556   Ty = useFirstFieldIfTransparentUnion(Ty);
7557 
7558   // TODO: Can we omit empty structs?
7559 
7560   // Coerce single element structs to its element.
7561   if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
7562     return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
7563 
7564   // If we set CanBeFlattened to true, CodeGen will expand the struct to its
7565   // individual elements, which confuses the Clover OpenCL backend; therefore we
7566   // have to set it to false here. Other args of getDirect() are just defaults.
7567   return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
7568 }
7569 
7570 ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty,
7571                                                unsigned &NumRegsLeft) const {
7572   assert(NumRegsLeft <= MaxNumRegsForArgsRet && "register estimate underflow");
7573 
7574   Ty = useFirstFieldIfTransparentUnion(Ty);
7575 
7576   if (isAggregateTypeForABI(Ty)) {
7577     // Records with non-trivial destructors/copy-constructors should not be
7578     // passed by value.
7579     if (auto RAA = getRecordArgABI(Ty, getCXXABI()))
7580       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
7581 
7582     // Ignore empty structs/unions.
7583     if (isEmptyRecord(getContext(), Ty, true))
7584       return ABIArgInfo::getIgnore();
7585 
7586     // Lower single-element structs to just pass a regular value. TODO: We
7587     // could do reasonable-size multiple-element structs too, using getExpand(),
7588     // though watch out for things like bitfields.
7589     if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
7590       return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
7591 
7592     if (const RecordType *RT = Ty->getAs<RecordType>()) {
7593       const RecordDecl *RD = RT->getDecl();
7594       if (RD->hasFlexibleArrayMember())
7595         return DefaultABIInfo::classifyArgumentType(Ty);
7596     }
7597 
7598     // Pack aggregates <= 8 bytes into single VGPR or pair.
7599     uint64_t Size = getContext().getTypeSize(Ty);
7600     if (Size <= 64) {
7601       unsigned NumRegs = (Size + 31) / 32;
7602       NumRegsLeft -= std::min(NumRegsLeft, NumRegs);
7603 
7604       if (Size <= 16)
7605         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
7606 
7607       if (Size <= 32)
7608         return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
7609 
7610       // XXX: Should this be i64 instead, and should the limit increase?
7611       llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext());
7612       return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2));
7613     }
7614 
7615     if (NumRegsLeft > 0) {
7616       unsigned NumRegs = numRegsForType(Ty);
7617       if (NumRegsLeft >= NumRegs) {
7618         NumRegsLeft -= NumRegs;
7619         return ABIArgInfo::getDirect();
7620       }
7621     }
7622   }
7623 
7624   // Otherwise just do the default thing.
7625   ABIArgInfo ArgInfo = DefaultABIInfo::classifyArgumentType(Ty);
7626   if (!ArgInfo.isIndirect()) {
7627     unsigned NumRegs = numRegsForType(Ty);
7628     NumRegsLeft -= std::min(NumRegs, NumRegsLeft);
7629   }
7630 
7631   return ArgInfo;
7632 }
7633 
7634 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo {
7635 public:
7636   AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT)
7637     : TargetCodeGenInfo(new AMDGPUABIInfo(CGT)) {}
7638   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7639                            CodeGen::CodeGenModule &M) const override;
7640   unsigned getOpenCLKernelCallingConv() const override;
7641 
7642   llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM,
7643       llvm::PointerType *T, QualType QT) const override;
7644 
7645   LangAS getASTAllocaAddressSpace() const override {
7646     return getLangASFromTargetAS(
7647         getABIInfo().getDataLayout().getAllocaAddrSpace());
7648   }
7649   LangAS getGlobalVarAddressSpace(CodeGenModule &CGM,
7650                                   const VarDecl *D) const override;
7651   llvm::SyncScope::ID getLLVMSyncScopeID(SyncScope S,
7652                                          llvm::LLVMContext &C) const override;
7653   llvm::Function *
7654   createEnqueuedBlockKernel(CodeGenFunction &CGF,
7655                             llvm::Function *BlockInvokeFunc,
7656                             llvm::Value *BlockLiteral) const override;
7657   bool shouldEmitStaticExternCAliases() const override;
7658   void setCUDAKernelCallingConvention(const FunctionType *&FT) const override;
7659 };
7660 }
7661 
7662 void AMDGPUTargetCodeGenInfo::setTargetAttributes(
7663     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
7664   if (GV->isDeclaration())
7665     return;
7666   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
7667   if (!FD)
7668     return;
7669 
7670   llvm::Function *F = cast<llvm::Function>(GV);
7671 
7672   const auto *ReqdWGS = M.getLangOpts().OpenCL ?
7673     FD->getAttr<ReqdWorkGroupSizeAttr>() : nullptr;
7674 
7675   if (M.getLangOpts().OpenCL && FD->hasAttr<OpenCLKernelAttr>() &&
7676       (M.getTriple().getOS() == llvm::Triple::AMDHSA))
7677     F->addFnAttr("amdgpu-implicitarg-num-bytes", "48");
7678 
7679   const auto *FlatWGS = FD->getAttr<AMDGPUFlatWorkGroupSizeAttr>();
7680   if (ReqdWGS || FlatWGS) {
7681     unsigned Min = FlatWGS ? FlatWGS->getMin() : 0;
7682     unsigned Max = FlatWGS ? FlatWGS->getMax() : 0;
7683     if (ReqdWGS && Min == 0 && Max == 0)
7684       Min = Max = ReqdWGS->getXDim() * ReqdWGS->getYDim() * ReqdWGS->getZDim();
7685 
7686     if (Min != 0) {
7687       assert(Min <= Max && "Min must be less than or equal Max");
7688 
7689       std::string AttrVal = llvm::utostr(Min) + "," + llvm::utostr(Max);
7690       F->addFnAttr("amdgpu-flat-work-group-size", AttrVal);
7691     } else
7692       assert(Max == 0 && "Max must be zero");
7693   }
7694 
7695   if (const auto *Attr = FD->getAttr<AMDGPUWavesPerEUAttr>()) {
7696     unsigned Min = Attr->getMin();
7697     unsigned Max = Attr->getMax();
7698 
7699     if (Min != 0) {
7700       assert((Max == 0 || Min <= Max) && "Min must be less than or equal Max");
7701 
7702       std::string AttrVal = llvm::utostr(Min);
7703       if (Max != 0)
7704         AttrVal = AttrVal + "," + llvm::utostr(Max);
7705       F->addFnAttr("amdgpu-waves-per-eu", AttrVal);
7706     } else
7707       assert(Max == 0 && "Max must be zero");
7708   }
7709 
7710   if (const auto *Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) {
7711     unsigned NumSGPR = Attr->getNumSGPR();
7712 
7713     if (NumSGPR != 0)
7714       F->addFnAttr("amdgpu-num-sgpr", llvm::utostr(NumSGPR));
7715   }
7716 
7717   if (const auto *Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) {
7718     uint32_t NumVGPR = Attr->getNumVGPR();
7719 
7720     if (NumVGPR != 0)
7721       F->addFnAttr("amdgpu-num-vgpr", llvm::utostr(NumVGPR));
7722   }
7723 }
7724 
7725 unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const {
7726   return llvm::CallingConv::AMDGPU_KERNEL;
7727 }
7728 
7729 // Currently LLVM assumes null pointers always have value 0,
7730 // which results in incorrectly transformed IR. Therefore, instead of
7731 // emitting null pointers in private and local address spaces, a null
7732 // pointer in generic address space is emitted which is casted to a
7733 // pointer in local or private address space.
7734 llvm::Constant *AMDGPUTargetCodeGenInfo::getNullPointer(
7735     const CodeGen::CodeGenModule &CGM, llvm::PointerType *PT,
7736     QualType QT) const {
7737   if (CGM.getContext().getTargetNullPointerValue(QT) == 0)
7738     return llvm::ConstantPointerNull::get(PT);
7739 
7740   auto &Ctx = CGM.getContext();
7741   auto NPT = llvm::PointerType::get(PT->getElementType(),
7742       Ctx.getTargetAddressSpace(LangAS::opencl_generic));
7743   return llvm::ConstantExpr::getAddrSpaceCast(
7744       llvm::ConstantPointerNull::get(NPT), PT);
7745 }
7746 
7747 LangAS
7748 AMDGPUTargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM,
7749                                                   const VarDecl *D) const {
7750   assert(!CGM.getLangOpts().OpenCL &&
7751          !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) &&
7752          "Address space agnostic languages only");
7753   LangAS DefaultGlobalAS = getLangASFromTargetAS(
7754       CGM.getContext().getTargetAddressSpace(LangAS::opencl_global));
7755   if (!D)
7756     return DefaultGlobalAS;
7757 
7758   LangAS AddrSpace = D->getType().getAddressSpace();
7759   assert(AddrSpace == LangAS::Default || isTargetAddressSpace(AddrSpace));
7760   if (AddrSpace != LangAS::Default)
7761     return AddrSpace;
7762 
7763   if (CGM.isTypeConstant(D->getType(), false)) {
7764     if (auto ConstAS = CGM.getTarget().getConstantAddressSpace())
7765       return ConstAS.getValue();
7766   }
7767   return DefaultGlobalAS;
7768 }
7769 
7770 llvm::SyncScope::ID
7771 AMDGPUTargetCodeGenInfo::getLLVMSyncScopeID(SyncScope S,
7772                                             llvm::LLVMContext &C) const {
7773   StringRef Name;
7774   switch (S) {
7775   case SyncScope::OpenCLWorkGroup:
7776     Name = "workgroup";
7777     break;
7778   case SyncScope::OpenCLDevice:
7779     Name = "agent";
7780     break;
7781   case SyncScope::OpenCLAllSVMDevices:
7782     Name = "";
7783     break;
7784   case SyncScope::OpenCLSubGroup:
7785     Name = "subgroup";
7786   }
7787   return C.getOrInsertSyncScopeID(Name);
7788 }
7789 
7790 bool AMDGPUTargetCodeGenInfo::shouldEmitStaticExternCAliases() const {
7791   return false;
7792 }
7793 
7794 void AMDGPUTargetCodeGenInfo::setCUDAKernelCallingConvention(
7795     const FunctionType *&FT) const {
7796   FT = getABIInfo().getContext().adjustFunctionType(
7797       FT, FT->getExtInfo().withCallingConv(CC_OpenCLKernel));
7798 }
7799 
7800 //===----------------------------------------------------------------------===//
7801 // SPARC v8 ABI Implementation.
7802 // Based on the SPARC Compliance Definition version 2.4.1.
7803 //
7804 // Ensures that complex values are passed in registers.
7805 //
7806 namespace {
7807 class SparcV8ABIInfo : public DefaultABIInfo {
7808 public:
7809   SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
7810 
7811 private:
7812   ABIArgInfo classifyReturnType(QualType RetTy) const;
7813   void computeInfo(CGFunctionInfo &FI) const override;
7814 };
7815 } // end anonymous namespace
7816 
7817 
7818 ABIArgInfo
7819 SparcV8ABIInfo::classifyReturnType(QualType Ty) const {
7820   if (Ty->isAnyComplexType()) {
7821     return ABIArgInfo::getDirect();
7822   }
7823   else {
7824     return DefaultABIInfo::classifyReturnType(Ty);
7825   }
7826 }
7827 
7828 void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const {
7829 
7830   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7831   for (auto &Arg : FI.arguments())
7832     Arg.info = classifyArgumentType(Arg.type);
7833 }
7834 
7835 namespace {
7836 class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo {
7837 public:
7838   SparcV8TargetCodeGenInfo(CodeGenTypes &CGT)
7839     : TargetCodeGenInfo(new SparcV8ABIInfo(CGT)) {}
7840 };
7841 } // end anonymous namespace
7842 
7843 //===----------------------------------------------------------------------===//
7844 // SPARC v9 ABI Implementation.
7845 // Based on the SPARC Compliance Definition version 2.4.1.
7846 //
7847 // Function arguments a mapped to a nominal "parameter array" and promoted to
7848 // registers depending on their type. Each argument occupies 8 or 16 bytes in
7849 // the array, structs larger than 16 bytes are passed indirectly.
7850 //
7851 // One case requires special care:
7852 //
7853 //   struct mixed {
7854 //     int i;
7855 //     float f;
7856 //   };
7857 //
7858 // When a struct mixed is passed by value, it only occupies 8 bytes in the
7859 // parameter array, but the int is passed in an integer register, and the float
7860 // is passed in a floating point register. This is represented as two arguments
7861 // with the LLVM IR inreg attribute:
7862 //
7863 //   declare void f(i32 inreg %i, float inreg %f)
7864 //
7865 // The code generator will only allocate 4 bytes from the parameter array for
7866 // the inreg arguments. All other arguments are allocated a multiple of 8
7867 // bytes.
7868 //
7869 namespace {
7870 class SparcV9ABIInfo : public ABIInfo {
7871 public:
7872   SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
7873 
7874 private:
7875   ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const;
7876   void computeInfo(CGFunctionInfo &FI) const override;
7877   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7878                     QualType Ty) const override;
7879 
7880   // Coercion type builder for structs passed in registers. The coercion type
7881   // serves two purposes:
7882   //
7883   // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned'
7884   //    in registers.
7885   // 2. Expose aligned floating point elements as first-level elements, so the
7886   //    code generator knows to pass them in floating point registers.
7887   //
7888   // We also compute the InReg flag which indicates that the struct contains
7889   // aligned 32-bit floats.
7890   //
7891   struct CoerceBuilder {
7892     llvm::LLVMContext &Context;
7893     const llvm::DataLayout &DL;
7894     SmallVector<llvm::Type*, 8> Elems;
7895     uint64_t Size;
7896     bool InReg;
7897 
7898     CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl)
7899       : Context(c), DL(dl), Size(0), InReg(false) {}
7900 
7901     // Pad Elems with integers until Size is ToSize.
7902     void pad(uint64_t ToSize) {
7903       assert(ToSize >= Size && "Cannot remove elements");
7904       if (ToSize == Size)
7905         return;
7906 
7907       // Finish the current 64-bit word.
7908       uint64_t Aligned = llvm::alignTo(Size, 64);
7909       if (Aligned > Size && Aligned <= ToSize) {
7910         Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size));
7911         Size = Aligned;
7912       }
7913 
7914       // Add whole 64-bit words.
7915       while (Size + 64 <= ToSize) {
7916         Elems.push_back(llvm::Type::getInt64Ty(Context));
7917         Size += 64;
7918       }
7919 
7920       // Final in-word padding.
7921       if (Size < ToSize) {
7922         Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size));
7923         Size = ToSize;
7924       }
7925     }
7926 
7927     // Add a floating point element at Offset.
7928     void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) {
7929       // Unaligned floats are treated as integers.
7930       if (Offset % Bits)
7931         return;
7932       // The InReg flag is only required if there are any floats < 64 bits.
7933       if (Bits < 64)
7934         InReg = true;
7935       pad(Offset);
7936       Elems.push_back(Ty);
7937       Size = Offset + Bits;
7938     }
7939 
7940     // Add a struct type to the coercion type, starting at Offset (in bits).
7941     void addStruct(uint64_t Offset, llvm::StructType *StrTy) {
7942       const llvm::StructLayout *Layout = DL.getStructLayout(StrTy);
7943       for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) {
7944         llvm::Type *ElemTy = StrTy->getElementType(i);
7945         uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i);
7946         switch (ElemTy->getTypeID()) {
7947         case llvm::Type::StructTyID:
7948           addStruct(ElemOffset, cast<llvm::StructType>(ElemTy));
7949           break;
7950         case llvm::Type::FloatTyID:
7951           addFloat(ElemOffset, ElemTy, 32);
7952           break;
7953         case llvm::Type::DoubleTyID:
7954           addFloat(ElemOffset, ElemTy, 64);
7955           break;
7956         case llvm::Type::FP128TyID:
7957           addFloat(ElemOffset, ElemTy, 128);
7958           break;
7959         case llvm::Type::PointerTyID:
7960           if (ElemOffset % 64 == 0) {
7961             pad(ElemOffset);
7962             Elems.push_back(ElemTy);
7963             Size += 64;
7964           }
7965           break;
7966         default:
7967           break;
7968         }
7969       }
7970     }
7971 
7972     // Check if Ty is a usable substitute for the coercion type.
7973     bool isUsableType(llvm::StructType *Ty) const {
7974       return llvm::makeArrayRef(Elems) == Ty->elements();
7975     }
7976 
7977     // Get the coercion type as a literal struct type.
7978     llvm::Type *getType() const {
7979       if (Elems.size() == 1)
7980         return Elems.front();
7981       else
7982         return llvm::StructType::get(Context, Elems);
7983     }
7984   };
7985 };
7986 } // end anonymous namespace
7987 
7988 ABIArgInfo
7989 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const {
7990   if (Ty->isVoidType())
7991     return ABIArgInfo::getIgnore();
7992 
7993   uint64_t Size = getContext().getTypeSize(Ty);
7994 
7995   // Anything too big to fit in registers is passed with an explicit indirect
7996   // pointer / sret pointer.
7997   if (Size > SizeLimit)
7998     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
7999 
8000   // Treat an enum type as its underlying type.
8001   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
8002     Ty = EnumTy->getDecl()->getIntegerType();
8003 
8004   // Integer types smaller than a register are extended.
8005   if (Size < 64 && Ty->isIntegerType())
8006     return ABIArgInfo::getExtend(Ty);
8007 
8008   // Other non-aggregates go in registers.
8009   if (!isAggregateTypeForABI(Ty))
8010     return ABIArgInfo::getDirect();
8011 
8012   // If a C++ object has either a non-trivial copy constructor or a non-trivial
8013   // destructor, it is passed with an explicit indirect pointer / sret pointer.
8014   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
8015     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
8016 
8017   // This is a small aggregate type that should be passed in registers.
8018   // Build a coercion type from the LLVM struct type.
8019   llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty));
8020   if (!StrTy)
8021     return ABIArgInfo::getDirect();
8022 
8023   CoerceBuilder CB(getVMContext(), getDataLayout());
8024   CB.addStruct(0, StrTy);
8025   CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64));
8026 
8027   // Try to use the original type for coercion.
8028   llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType();
8029 
8030   if (CB.InReg)
8031     return ABIArgInfo::getDirectInReg(CoerceTy);
8032   else
8033     return ABIArgInfo::getDirect(CoerceTy);
8034 }
8035 
8036 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8037                                   QualType Ty) const {
8038   ABIArgInfo AI = classifyType(Ty, 16 * 8);
8039   llvm::Type *ArgTy = CGT.ConvertType(Ty);
8040   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
8041     AI.setCoerceToType(ArgTy);
8042 
8043   CharUnits SlotSize = CharUnits::fromQuantity(8);
8044 
8045   CGBuilderTy &Builder = CGF.Builder;
8046   Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
8047   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
8048 
8049   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
8050 
8051   Address ArgAddr = Address::invalid();
8052   CharUnits Stride;
8053   switch (AI.getKind()) {
8054   case ABIArgInfo::Expand:
8055   case ABIArgInfo::CoerceAndExpand:
8056   case ABIArgInfo::InAlloca:
8057     llvm_unreachable("Unsupported ABI kind for va_arg");
8058 
8059   case ABIArgInfo::Extend: {
8060     Stride = SlotSize;
8061     CharUnits Offset = SlotSize - TypeInfo.first;
8062     ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend");
8063     break;
8064   }
8065 
8066   case ABIArgInfo::Direct: {
8067     auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
8068     Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize);
8069     ArgAddr = Addr;
8070     break;
8071   }
8072 
8073   case ABIArgInfo::Indirect:
8074     Stride = SlotSize;
8075     ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect");
8076     ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"),
8077                       TypeInfo.second);
8078     break;
8079 
8080   case ABIArgInfo::Ignore:
8081     return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.second);
8082   }
8083 
8084   // Update VAList.
8085   llvm::Value *NextPtr =
8086     Builder.CreateConstInBoundsByteGEP(Addr.getPointer(), Stride, "ap.next");
8087   Builder.CreateStore(NextPtr, VAListAddr);
8088 
8089   return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr");
8090 }
8091 
8092 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const {
8093   FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8);
8094   for (auto &I : FI.arguments())
8095     I.info = classifyType(I.type, 16 * 8);
8096 }
8097 
8098 namespace {
8099 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo {
8100 public:
8101   SparcV9TargetCodeGenInfo(CodeGenTypes &CGT)
8102     : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {}
8103 
8104   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
8105     return 14;
8106   }
8107 
8108   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
8109                                llvm::Value *Address) const override;
8110 };
8111 } // end anonymous namespace
8112 
8113 bool
8114 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
8115                                                 llvm::Value *Address) const {
8116   // This is calculated from the LLVM and GCC tables and verified
8117   // against gcc output.  AFAIK all ABIs use the same encoding.
8118 
8119   CodeGen::CGBuilderTy &Builder = CGF.Builder;
8120 
8121   llvm::IntegerType *i8 = CGF.Int8Ty;
8122   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
8123   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
8124 
8125   // 0-31: the 8-byte general-purpose registers
8126   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
8127 
8128   // 32-63: f0-31, the 4-byte floating-point registers
8129   AssignToArrayRange(Builder, Address, Four8, 32, 63);
8130 
8131   //   Y   = 64
8132   //   PSR = 65
8133   //   WIM = 66
8134   //   TBR = 67
8135   //   PC  = 68
8136   //   NPC = 69
8137   //   FSR = 70
8138   //   CSR = 71
8139   AssignToArrayRange(Builder, Address, Eight8, 64, 71);
8140 
8141   // 72-87: d0-15, the 8-byte floating-point registers
8142   AssignToArrayRange(Builder, Address, Eight8, 72, 87);
8143 
8144   return false;
8145 }
8146 
8147 
8148 //===----------------------------------------------------------------------===//
8149 // XCore ABI Implementation
8150 //===----------------------------------------------------------------------===//
8151 
8152 namespace {
8153 
8154 /// A SmallStringEnc instance is used to build up the TypeString by passing
8155 /// it by reference between functions that append to it.
8156 typedef llvm::SmallString<128> SmallStringEnc;
8157 
8158 /// TypeStringCache caches the meta encodings of Types.
8159 ///
8160 /// The reason for caching TypeStrings is two fold:
8161 ///   1. To cache a type's encoding for later uses;
8162 ///   2. As a means to break recursive member type inclusion.
8163 ///
8164 /// A cache Entry can have a Status of:
8165 ///   NonRecursive:   The type encoding is not recursive;
8166 ///   Recursive:      The type encoding is recursive;
8167 ///   Incomplete:     An incomplete TypeString;
8168 ///   IncompleteUsed: An incomplete TypeString that has been used in a
8169 ///                   Recursive type encoding.
8170 ///
8171 /// A NonRecursive entry will have all of its sub-members expanded as fully
8172 /// as possible. Whilst it may contain types which are recursive, the type
8173 /// itself is not recursive and thus its encoding may be safely used whenever
8174 /// the type is encountered.
8175 ///
8176 /// A Recursive entry will have all of its sub-members expanded as fully as
8177 /// possible. The type itself is recursive and it may contain other types which
8178 /// are recursive. The Recursive encoding must not be used during the expansion
8179 /// of a recursive type's recursive branch. For simplicity the code uses
8180 /// IncompleteCount to reject all usage of Recursive encodings for member types.
8181 ///
8182 /// An Incomplete entry is always a RecordType and only encodes its
8183 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and
8184 /// are placed into the cache during type expansion as a means to identify and
8185 /// handle recursive inclusion of types as sub-members. If there is recursion
8186 /// the entry becomes IncompleteUsed.
8187 ///
8188 /// During the expansion of a RecordType's members:
8189 ///
8190 ///   If the cache contains a NonRecursive encoding for the member type, the
8191 ///   cached encoding is used;
8192 ///
8193 ///   If the cache contains a Recursive encoding for the member type, the
8194 ///   cached encoding is 'Swapped' out, as it may be incorrect, and...
8195 ///
8196 ///   If the member is a RecordType, an Incomplete encoding is placed into the
8197 ///   cache to break potential recursive inclusion of itself as a sub-member;
8198 ///
8199 ///   Once a member RecordType has been expanded, its temporary incomplete
8200 ///   entry is removed from the cache. If a Recursive encoding was swapped out
8201 ///   it is swapped back in;
8202 ///
8203 ///   If an incomplete entry is used to expand a sub-member, the incomplete
8204 ///   entry is marked as IncompleteUsed. The cache keeps count of how many
8205 ///   IncompleteUsed entries it currently contains in IncompleteUsedCount;
8206 ///
8207 ///   If a member's encoding is found to be a NonRecursive or Recursive viz:
8208 ///   IncompleteUsedCount==0, the member's encoding is added to the cache.
8209 ///   Else the member is part of a recursive type and thus the recursion has
8210 ///   been exited too soon for the encoding to be correct for the member.
8211 ///
8212 class TypeStringCache {
8213   enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed};
8214   struct Entry {
8215     std::string Str;     // The encoded TypeString for the type.
8216     enum Status State;   // Information about the encoding in 'Str'.
8217     std::string Swapped; // A temporary place holder for a Recursive encoding
8218                          // during the expansion of RecordType's members.
8219   };
8220   std::map<const IdentifierInfo *, struct Entry> Map;
8221   unsigned IncompleteCount;     // Number of Incomplete entries in the Map.
8222   unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map.
8223 public:
8224   TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {}
8225   void addIncomplete(const IdentifierInfo *ID, std::string StubEnc);
8226   bool removeIncomplete(const IdentifierInfo *ID);
8227   void addIfComplete(const IdentifierInfo *ID, StringRef Str,
8228                      bool IsRecursive);
8229   StringRef lookupStr(const IdentifierInfo *ID);
8230 };
8231 
8232 /// TypeString encodings for enum & union fields must be order.
8233 /// FieldEncoding is a helper for this ordering process.
8234 class FieldEncoding {
8235   bool HasName;
8236   std::string Enc;
8237 public:
8238   FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {}
8239   StringRef str() { return Enc; }
8240   bool operator<(const FieldEncoding &rhs) const {
8241     if (HasName != rhs.HasName) return HasName;
8242     return Enc < rhs.Enc;
8243   }
8244 };
8245 
8246 class XCoreABIInfo : public DefaultABIInfo {
8247 public:
8248   XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
8249   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8250                     QualType Ty) const override;
8251 };
8252 
8253 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo {
8254   mutable TypeStringCache TSC;
8255 public:
8256   XCoreTargetCodeGenInfo(CodeGenTypes &CGT)
8257     :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {}
8258   void emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
8259                     CodeGen::CodeGenModule &M) const override;
8260 };
8261 
8262 } // End anonymous namespace.
8263 
8264 // TODO: this implementation is likely now redundant with the default
8265 // EmitVAArg.
8266 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8267                                 QualType Ty) const {
8268   CGBuilderTy &Builder = CGF.Builder;
8269 
8270   // Get the VAList.
8271   CharUnits SlotSize = CharUnits::fromQuantity(4);
8272   Address AP(Builder.CreateLoad(VAListAddr), SlotSize);
8273 
8274   // Handle the argument.
8275   ABIArgInfo AI = classifyArgumentType(Ty);
8276   CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty);
8277   llvm::Type *ArgTy = CGT.ConvertType(Ty);
8278   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
8279     AI.setCoerceToType(ArgTy);
8280   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
8281 
8282   Address Val = Address::invalid();
8283   CharUnits ArgSize = CharUnits::Zero();
8284   switch (AI.getKind()) {
8285   case ABIArgInfo::Expand:
8286   case ABIArgInfo::CoerceAndExpand:
8287   case ABIArgInfo::InAlloca:
8288     llvm_unreachable("Unsupported ABI kind for va_arg");
8289   case ABIArgInfo::Ignore:
8290     Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign);
8291     ArgSize = CharUnits::Zero();
8292     break;
8293   case ABIArgInfo::Extend:
8294   case ABIArgInfo::Direct:
8295     Val = Builder.CreateBitCast(AP, ArgPtrTy);
8296     ArgSize = CharUnits::fromQuantity(
8297                        getDataLayout().getTypeAllocSize(AI.getCoerceToType()));
8298     ArgSize = ArgSize.alignTo(SlotSize);
8299     break;
8300   case ABIArgInfo::Indirect:
8301     Val = Builder.CreateElementBitCast(AP, ArgPtrTy);
8302     Val = Address(Builder.CreateLoad(Val), TypeAlign);
8303     ArgSize = SlotSize;
8304     break;
8305   }
8306 
8307   // Increment the VAList.
8308   if (!ArgSize.isZero()) {
8309     llvm::Value *APN =
8310       Builder.CreateConstInBoundsByteGEP(AP.getPointer(), ArgSize);
8311     Builder.CreateStore(APN, VAListAddr);
8312   }
8313 
8314   return Val;
8315 }
8316 
8317 /// During the expansion of a RecordType, an incomplete TypeString is placed
8318 /// into the cache as a means to identify and break recursion.
8319 /// If there is a Recursive encoding in the cache, it is swapped out and will
8320 /// be reinserted by removeIncomplete().
8321 /// All other types of encoding should have been used rather than arriving here.
8322 void TypeStringCache::addIncomplete(const IdentifierInfo *ID,
8323                                     std::string StubEnc) {
8324   if (!ID)
8325     return;
8326   Entry &E = Map[ID];
8327   assert( (E.Str.empty() || E.State == Recursive) &&
8328          "Incorrectly use of addIncomplete");
8329   assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()");
8330   E.Swapped.swap(E.Str); // swap out the Recursive
8331   E.Str.swap(StubEnc);
8332   E.State = Incomplete;
8333   ++IncompleteCount;
8334 }
8335 
8336 /// Once the RecordType has been expanded, the temporary incomplete TypeString
8337 /// must be removed from the cache.
8338 /// If a Recursive was swapped out by addIncomplete(), it will be replaced.
8339 /// Returns true if the RecordType was defined recursively.
8340 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) {
8341   if (!ID)
8342     return false;
8343   auto I = Map.find(ID);
8344   assert(I != Map.end() && "Entry not present");
8345   Entry &E = I->second;
8346   assert( (E.State == Incomplete ||
8347            E.State == IncompleteUsed) &&
8348          "Entry must be an incomplete type");
8349   bool IsRecursive = false;
8350   if (E.State == IncompleteUsed) {
8351     // We made use of our Incomplete encoding, thus we are recursive.
8352     IsRecursive = true;
8353     --IncompleteUsedCount;
8354   }
8355   if (E.Swapped.empty())
8356     Map.erase(I);
8357   else {
8358     // Swap the Recursive back.
8359     E.Swapped.swap(E.Str);
8360     E.Swapped.clear();
8361     E.State = Recursive;
8362   }
8363   --IncompleteCount;
8364   return IsRecursive;
8365 }
8366 
8367 /// Add the encoded TypeString to the cache only if it is NonRecursive or
8368 /// Recursive (viz: all sub-members were expanded as fully as possible).
8369 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str,
8370                                     bool IsRecursive) {
8371   if (!ID || IncompleteUsedCount)
8372     return; // No key or it is is an incomplete sub-type so don't add.
8373   Entry &E = Map[ID];
8374   if (IsRecursive && !E.Str.empty()) {
8375     assert(E.State==Recursive && E.Str.size() == Str.size() &&
8376            "This is not the same Recursive entry");
8377     // The parent container was not recursive after all, so we could have used
8378     // this Recursive sub-member entry after all, but we assumed the worse when
8379     // we started viz: IncompleteCount!=0.
8380     return;
8381   }
8382   assert(E.Str.empty() && "Entry already present");
8383   E.Str = Str.str();
8384   E.State = IsRecursive? Recursive : NonRecursive;
8385 }
8386 
8387 /// Return a cached TypeString encoding for the ID. If there isn't one, or we
8388 /// are recursively expanding a type (IncompleteCount != 0) and the cached
8389 /// encoding is Recursive, return an empty StringRef.
8390 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) {
8391   if (!ID)
8392     return StringRef();   // We have no key.
8393   auto I = Map.find(ID);
8394   if (I == Map.end())
8395     return StringRef();   // We have no encoding.
8396   Entry &E = I->second;
8397   if (E.State == Recursive && IncompleteCount)
8398     return StringRef();   // We don't use Recursive encodings for member types.
8399 
8400   if (E.State == Incomplete) {
8401     // The incomplete type is being used to break out of recursion.
8402     E.State = IncompleteUsed;
8403     ++IncompleteUsedCount;
8404   }
8405   return E.Str;
8406 }
8407 
8408 /// The XCore ABI includes a type information section that communicates symbol
8409 /// type information to the linker. The linker uses this information to verify
8410 /// safety/correctness of things such as array bound and pointers et al.
8411 /// The ABI only requires C (and XC) language modules to emit TypeStrings.
8412 /// This type information (TypeString) is emitted into meta data for all global
8413 /// symbols: definitions, declarations, functions & variables.
8414 ///
8415 /// The TypeString carries type, qualifier, name, size & value details.
8416 /// Please see 'Tools Development Guide' section 2.16.2 for format details:
8417 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf
8418 /// The output is tested by test/CodeGen/xcore-stringtype.c.
8419 ///
8420 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
8421                           CodeGen::CodeGenModule &CGM, TypeStringCache &TSC);
8422 
8423 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols.
8424 void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
8425                                           CodeGen::CodeGenModule &CGM) const {
8426   SmallStringEnc Enc;
8427   if (getTypeString(Enc, D, CGM, TSC)) {
8428     llvm::LLVMContext &Ctx = CGM.getModule().getContext();
8429     llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV),
8430                                 llvm::MDString::get(Ctx, Enc.str())};
8431     llvm::NamedMDNode *MD =
8432       CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings");
8433     MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
8434   }
8435 }
8436 
8437 //===----------------------------------------------------------------------===//
8438 // SPIR ABI Implementation
8439 //===----------------------------------------------------------------------===//
8440 
8441 namespace {
8442 class SPIRTargetCodeGenInfo : public TargetCodeGenInfo {
8443 public:
8444   SPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
8445     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
8446   unsigned getOpenCLKernelCallingConv() const override;
8447 };
8448 
8449 } // End anonymous namespace.
8450 
8451 namespace clang {
8452 namespace CodeGen {
8453 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) {
8454   DefaultABIInfo SPIRABI(CGM.getTypes());
8455   SPIRABI.computeInfo(FI);
8456 }
8457 }
8458 }
8459 
8460 unsigned SPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const {
8461   return llvm::CallingConv::SPIR_KERNEL;
8462 }
8463 
8464 static bool appendType(SmallStringEnc &Enc, QualType QType,
8465                        const CodeGen::CodeGenModule &CGM,
8466                        TypeStringCache &TSC);
8467 
8468 /// Helper function for appendRecordType().
8469 /// Builds a SmallVector containing the encoded field types in declaration
8470 /// order.
8471 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE,
8472                              const RecordDecl *RD,
8473                              const CodeGen::CodeGenModule &CGM,
8474                              TypeStringCache &TSC) {
8475   for (const auto *Field : RD->fields()) {
8476     SmallStringEnc Enc;
8477     Enc += "m(";
8478     Enc += Field->getName();
8479     Enc += "){";
8480     if (Field->isBitField()) {
8481       Enc += "b(";
8482       llvm::raw_svector_ostream OS(Enc);
8483       OS << Field->getBitWidthValue(CGM.getContext());
8484       Enc += ':';
8485     }
8486     if (!appendType(Enc, Field->getType(), CGM, TSC))
8487       return false;
8488     if (Field->isBitField())
8489       Enc += ')';
8490     Enc += '}';
8491     FE.emplace_back(!Field->getName().empty(), Enc);
8492   }
8493   return true;
8494 }
8495 
8496 /// Appends structure and union types to Enc and adds encoding to cache.
8497 /// Recursively calls appendType (via extractFieldType) for each field.
8498 /// Union types have their fields ordered according to the ABI.
8499 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT,
8500                              const CodeGen::CodeGenModule &CGM,
8501                              TypeStringCache &TSC, const IdentifierInfo *ID) {
8502   // Append the cached TypeString if we have one.
8503   StringRef TypeString = TSC.lookupStr(ID);
8504   if (!TypeString.empty()) {
8505     Enc += TypeString;
8506     return true;
8507   }
8508 
8509   // Start to emit an incomplete TypeString.
8510   size_t Start = Enc.size();
8511   Enc += (RT->isUnionType()? 'u' : 's');
8512   Enc += '(';
8513   if (ID)
8514     Enc += ID->getName();
8515   Enc += "){";
8516 
8517   // We collect all encoded fields and order as necessary.
8518   bool IsRecursive = false;
8519   const RecordDecl *RD = RT->getDecl()->getDefinition();
8520   if (RD && !RD->field_empty()) {
8521     // An incomplete TypeString stub is placed in the cache for this RecordType
8522     // so that recursive calls to this RecordType will use it whilst building a
8523     // complete TypeString for this RecordType.
8524     SmallVector<FieldEncoding, 16> FE;
8525     std::string StubEnc(Enc.substr(Start).str());
8526     StubEnc += '}';  // StubEnc now holds a valid incomplete TypeString.
8527     TSC.addIncomplete(ID, std::move(StubEnc));
8528     if (!extractFieldType(FE, RD, CGM, TSC)) {
8529       (void) TSC.removeIncomplete(ID);
8530       return false;
8531     }
8532     IsRecursive = TSC.removeIncomplete(ID);
8533     // The ABI requires unions to be sorted but not structures.
8534     // See FieldEncoding::operator< for sort algorithm.
8535     if (RT->isUnionType())
8536       llvm::sort(FE.begin(), FE.end());
8537     // We can now complete the TypeString.
8538     unsigned E = FE.size();
8539     for (unsigned I = 0; I != E; ++I) {
8540       if (I)
8541         Enc += ',';
8542       Enc += FE[I].str();
8543     }
8544   }
8545   Enc += '}';
8546   TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive);
8547   return true;
8548 }
8549 
8550 /// Appends enum types to Enc and adds the encoding to the cache.
8551 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET,
8552                            TypeStringCache &TSC,
8553                            const IdentifierInfo *ID) {
8554   // Append the cached TypeString if we have one.
8555   StringRef TypeString = TSC.lookupStr(ID);
8556   if (!TypeString.empty()) {
8557     Enc += TypeString;
8558     return true;
8559   }
8560 
8561   size_t Start = Enc.size();
8562   Enc += "e(";
8563   if (ID)
8564     Enc += ID->getName();
8565   Enc += "){";
8566 
8567   // We collect all encoded enumerations and order them alphanumerically.
8568   if (const EnumDecl *ED = ET->getDecl()->getDefinition()) {
8569     SmallVector<FieldEncoding, 16> FE;
8570     for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E;
8571          ++I) {
8572       SmallStringEnc EnumEnc;
8573       EnumEnc += "m(";
8574       EnumEnc += I->getName();
8575       EnumEnc += "){";
8576       I->getInitVal().toString(EnumEnc);
8577       EnumEnc += '}';
8578       FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc));
8579     }
8580     llvm::sort(FE.begin(), FE.end());
8581     unsigned E = FE.size();
8582     for (unsigned I = 0; I != E; ++I) {
8583       if (I)
8584         Enc += ',';
8585       Enc += FE[I].str();
8586     }
8587   }
8588   Enc += '}';
8589   TSC.addIfComplete(ID, Enc.substr(Start), false);
8590   return true;
8591 }
8592 
8593 /// Appends type's qualifier to Enc.
8594 /// This is done prior to appending the type's encoding.
8595 static void appendQualifier(SmallStringEnc &Enc, QualType QT) {
8596   // Qualifiers are emitted in alphabetical order.
8597   static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"};
8598   int Lookup = 0;
8599   if (QT.isConstQualified())
8600     Lookup += 1<<0;
8601   if (QT.isRestrictQualified())
8602     Lookup += 1<<1;
8603   if (QT.isVolatileQualified())
8604     Lookup += 1<<2;
8605   Enc += Table[Lookup];
8606 }
8607 
8608 /// Appends built-in types to Enc.
8609 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) {
8610   const char *EncType;
8611   switch (BT->getKind()) {
8612     case BuiltinType::Void:
8613       EncType = "0";
8614       break;
8615     case BuiltinType::Bool:
8616       EncType = "b";
8617       break;
8618     case BuiltinType::Char_U:
8619       EncType = "uc";
8620       break;
8621     case BuiltinType::UChar:
8622       EncType = "uc";
8623       break;
8624     case BuiltinType::SChar:
8625       EncType = "sc";
8626       break;
8627     case BuiltinType::UShort:
8628       EncType = "us";
8629       break;
8630     case BuiltinType::Short:
8631       EncType = "ss";
8632       break;
8633     case BuiltinType::UInt:
8634       EncType = "ui";
8635       break;
8636     case BuiltinType::Int:
8637       EncType = "si";
8638       break;
8639     case BuiltinType::ULong:
8640       EncType = "ul";
8641       break;
8642     case BuiltinType::Long:
8643       EncType = "sl";
8644       break;
8645     case BuiltinType::ULongLong:
8646       EncType = "ull";
8647       break;
8648     case BuiltinType::LongLong:
8649       EncType = "sll";
8650       break;
8651     case BuiltinType::Float:
8652       EncType = "ft";
8653       break;
8654     case BuiltinType::Double:
8655       EncType = "d";
8656       break;
8657     case BuiltinType::LongDouble:
8658       EncType = "ld";
8659       break;
8660     default:
8661       return false;
8662   }
8663   Enc += EncType;
8664   return true;
8665 }
8666 
8667 /// Appends a pointer encoding to Enc before calling appendType for the pointee.
8668 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT,
8669                               const CodeGen::CodeGenModule &CGM,
8670                               TypeStringCache &TSC) {
8671   Enc += "p(";
8672   if (!appendType(Enc, PT->getPointeeType(), CGM, TSC))
8673     return false;
8674   Enc += ')';
8675   return true;
8676 }
8677 
8678 /// Appends array encoding to Enc before calling appendType for the element.
8679 static bool appendArrayType(SmallStringEnc &Enc, QualType QT,
8680                             const ArrayType *AT,
8681                             const CodeGen::CodeGenModule &CGM,
8682                             TypeStringCache &TSC, StringRef NoSizeEnc) {
8683   if (AT->getSizeModifier() != ArrayType::Normal)
8684     return false;
8685   Enc += "a(";
8686   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
8687     CAT->getSize().toStringUnsigned(Enc);
8688   else
8689     Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "".
8690   Enc += ':';
8691   // The Qualifiers should be attached to the type rather than the array.
8692   appendQualifier(Enc, QT);
8693   if (!appendType(Enc, AT->getElementType(), CGM, TSC))
8694     return false;
8695   Enc += ')';
8696   return true;
8697 }
8698 
8699 /// Appends a function encoding to Enc, calling appendType for the return type
8700 /// and the arguments.
8701 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT,
8702                              const CodeGen::CodeGenModule &CGM,
8703                              TypeStringCache &TSC) {
8704   Enc += "f{";
8705   if (!appendType(Enc, FT->getReturnType(), CGM, TSC))
8706     return false;
8707   Enc += "}(";
8708   if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) {
8709     // N.B. we are only interested in the adjusted param types.
8710     auto I = FPT->param_type_begin();
8711     auto E = FPT->param_type_end();
8712     if (I != E) {
8713       do {
8714         if (!appendType(Enc, *I, CGM, TSC))
8715           return false;
8716         ++I;
8717         if (I != E)
8718           Enc += ',';
8719       } while (I != E);
8720       if (FPT->isVariadic())
8721         Enc += ",va";
8722     } else {
8723       if (FPT->isVariadic())
8724         Enc += "va";
8725       else
8726         Enc += '0';
8727     }
8728   }
8729   Enc += ')';
8730   return true;
8731 }
8732 
8733 /// Handles the type's qualifier before dispatching a call to handle specific
8734 /// type encodings.
8735 static bool appendType(SmallStringEnc &Enc, QualType QType,
8736                        const CodeGen::CodeGenModule &CGM,
8737                        TypeStringCache &TSC) {
8738 
8739   QualType QT = QType.getCanonicalType();
8740 
8741   if (const ArrayType *AT = QT->getAsArrayTypeUnsafe())
8742     // The Qualifiers should be attached to the type rather than the array.
8743     // Thus we don't call appendQualifier() here.
8744     return appendArrayType(Enc, QT, AT, CGM, TSC, "");
8745 
8746   appendQualifier(Enc, QT);
8747 
8748   if (const BuiltinType *BT = QT->getAs<BuiltinType>())
8749     return appendBuiltinType(Enc, BT);
8750 
8751   if (const PointerType *PT = QT->getAs<PointerType>())
8752     return appendPointerType(Enc, PT, CGM, TSC);
8753 
8754   if (const EnumType *ET = QT->getAs<EnumType>())
8755     return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier());
8756 
8757   if (const RecordType *RT = QT->getAsStructureType())
8758     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
8759 
8760   if (const RecordType *RT = QT->getAsUnionType())
8761     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
8762 
8763   if (const FunctionType *FT = QT->getAs<FunctionType>())
8764     return appendFunctionType(Enc, FT, CGM, TSC);
8765 
8766   return false;
8767 }
8768 
8769 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
8770                           CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) {
8771   if (!D)
8772     return false;
8773 
8774   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
8775     if (FD->getLanguageLinkage() != CLanguageLinkage)
8776       return false;
8777     return appendType(Enc, FD->getType(), CGM, TSC);
8778   }
8779 
8780   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
8781     if (VD->getLanguageLinkage() != CLanguageLinkage)
8782       return false;
8783     QualType QT = VD->getType().getCanonicalType();
8784     if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) {
8785       // Global ArrayTypes are given a size of '*' if the size is unknown.
8786       // The Qualifiers should be attached to the type rather than the array.
8787       // Thus we don't call appendQualifier() here.
8788       return appendArrayType(Enc, QT, AT, CGM, TSC, "*");
8789     }
8790     return appendType(Enc, QT, CGM, TSC);
8791   }
8792   return false;
8793 }
8794 
8795 //===----------------------------------------------------------------------===//
8796 // RISCV ABI Implementation
8797 //===----------------------------------------------------------------------===//
8798 
8799 namespace {
8800 class RISCVABIInfo : public DefaultABIInfo {
8801 private:
8802   unsigned XLen; // Size of the integer ('x') registers in bits.
8803   static const int NumArgGPRs = 8;
8804 
8805 public:
8806   RISCVABIInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen)
8807       : DefaultABIInfo(CGT), XLen(XLen) {}
8808 
8809   // DefaultABIInfo's classifyReturnType and classifyArgumentType are
8810   // non-virtual, but computeInfo is virtual, so we overload it.
8811   void computeInfo(CGFunctionInfo &FI) const override;
8812 
8813   ABIArgInfo classifyArgumentType(QualType Ty, bool IsFixed,
8814                                   int &ArgGPRsLeft) const;
8815   ABIArgInfo classifyReturnType(QualType RetTy) const;
8816 
8817   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8818                     QualType Ty) const override;
8819 
8820   ABIArgInfo extendType(QualType Ty) const;
8821 };
8822 } // end anonymous namespace
8823 
8824 void RISCVABIInfo::computeInfo(CGFunctionInfo &FI) const {
8825   QualType RetTy = FI.getReturnType();
8826   if (!getCXXABI().classifyReturnType(FI))
8827     FI.getReturnInfo() = classifyReturnType(RetTy);
8828 
8829   // IsRetIndirect is true if classifyArgumentType indicated the value should
8830   // be passed indirect or if the type size is greater than 2*xlen. e.g. fp128
8831   // is passed direct in LLVM IR, relying on the backend lowering code to
8832   // rewrite the argument list and pass indirectly on RV32.
8833   bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect ||
8834                        getContext().getTypeSize(RetTy) > (2 * XLen);
8835 
8836   // We must track the number of GPRs used in order to conform to the RISC-V
8837   // ABI, as integer scalars passed in registers should have signext/zeroext
8838   // when promoted, but are anyext if passed on the stack. As GPR usage is
8839   // different for variadic arguments, we must also track whether we are
8840   // examining a vararg or not.
8841   int ArgGPRsLeft = IsRetIndirect ? NumArgGPRs - 1 : NumArgGPRs;
8842   int NumFixedArgs = FI.getNumRequiredArgs();
8843 
8844   int ArgNum = 0;
8845   for (auto &ArgInfo : FI.arguments()) {
8846     bool IsFixed = ArgNum < NumFixedArgs;
8847     ArgInfo.info = classifyArgumentType(ArgInfo.type, IsFixed, ArgGPRsLeft);
8848     ArgNum++;
8849   }
8850 }
8851 
8852 ABIArgInfo RISCVABIInfo::classifyArgumentType(QualType Ty, bool IsFixed,
8853                                               int &ArgGPRsLeft) const {
8854   assert(ArgGPRsLeft <= NumArgGPRs && "Arg GPR tracking underflow");
8855   Ty = useFirstFieldIfTransparentUnion(Ty);
8856 
8857   // Structures with either a non-trivial destructor or a non-trivial
8858   // copy constructor are always passed indirectly.
8859   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
8860     if (ArgGPRsLeft)
8861       ArgGPRsLeft -= 1;
8862     return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
8863                                            CGCXXABI::RAA_DirectInMemory);
8864   }
8865 
8866   // Ignore empty structs/unions.
8867   if (isEmptyRecord(getContext(), Ty, true))
8868     return ABIArgInfo::getIgnore();
8869 
8870   uint64_t Size = getContext().getTypeSize(Ty);
8871   uint64_t NeededAlign = getContext().getTypeAlign(Ty);
8872   bool MustUseStack = false;
8873   // Determine the number of GPRs needed to pass the current argument
8874   // according to the ABI. 2*XLen-aligned varargs are passed in "aligned"
8875   // register pairs, so may consume 3 registers.
8876   int NeededArgGPRs = 1;
8877   if (!IsFixed && NeededAlign == 2 * XLen)
8878     NeededArgGPRs = 2 + (ArgGPRsLeft % 2);
8879   else if (Size > XLen && Size <= 2 * XLen)
8880     NeededArgGPRs = 2;
8881 
8882   if (NeededArgGPRs > ArgGPRsLeft) {
8883     MustUseStack = true;
8884     NeededArgGPRs = ArgGPRsLeft;
8885   }
8886 
8887   ArgGPRsLeft -= NeededArgGPRs;
8888 
8889   if (!isAggregateTypeForABI(Ty) && !Ty->isVectorType()) {
8890     // Treat an enum type as its underlying type.
8891     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
8892       Ty = EnumTy->getDecl()->getIntegerType();
8893 
8894     // All integral types are promoted to XLen width, unless passed on the
8895     // stack.
8896     if (Size < XLen && Ty->isIntegralOrEnumerationType() && !MustUseStack) {
8897       return extendType(Ty);
8898     }
8899 
8900     return ABIArgInfo::getDirect();
8901   }
8902 
8903   // Aggregates which are <= 2*XLen will be passed in registers if possible,
8904   // so coerce to integers.
8905   if (Size <= 2 * XLen) {
8906     unsigned Alignment = getContext().getTypeAlign(Ty);
8907 
8908     // Use a single XLen int if possible, 2*XLen if 2*XLen alignment is
8909     // required, and a 2-element XLen array if only XLen alignment is required.
8910     if (Size <= XLen) {
8911       return ABIArgInfo::getDirect(
8912           llvm::IntegerType::get(getVMContext(), XLen));
8913     } else if (Alignment == 2 * XLen) {
8914       return ABIArgInfo::getDirect(
8915           llvm::IntegerType::get(getVMContext(), 2 * XLen));
8916     } else {
8917       return ABIArgInfo::getDirect(llvm::ArrayType::get(
8918           llvm::IntegerType::get(getVMContext(), XLen), 2));
8919     }
8920   }
8921   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
8922 }
8923 
8924 ABIArgInfo RISCVABIInfo::classifyReturnType(QualType RetTy) const {
8925   if (RetTy->isVoidType())
8926     return ABIArgInfo::getIgnore();
8927 
8928   int ArgGPRsLeft = 2;
8929 
8930   // The rules for return and argument types are the same, so defer to
8931   // classifyArgumentType.
8932   return classifyArgumentType(RetTy, /*IsFixed=*/true, ArgGPRsLeft);
8933 }
8934 
8935 Address RISCVABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8936                                 QualType Ty) const {
8937   CharUnits SlotSize = CharUnits::fromQuantity(XLen / 8);
8938 
8939   // Empty records are ignored for parameter passing purposes.
8940   if (isEmptyRecord(getContext(), Ty, true)) {
8941     Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize);
8942     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
8943     return Addr;
8944   }
8945 
8946   std::pair<CharUnits, CharUnits> SizeAndAlign =
8947       getContext().getTypeInfoInChars(Ty);
8948 
8949   // Arguments bigger than 2*Xlen bytes are passed indirectly.
8950   bool IsIndirect = SizeAndAlign.first > 2 * SlotSize;
8951 
8952   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, SizeAndAlign,
8953                           SlotSize, /*AllowHigherAlign=*/true);
8954 }
8955 
8956 ABIArgInfo RISCVABIInfo::extendType(QualType Ty) const {
8957   int TySize = getContext().getTypeSize(Ty);
8958   // RV64 ABI requires unsigned 32 bit integers to be sign extended.
8959   if (XLen == 64 && Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
8960     return ABIArgInfo::getSignExtend(Ty);
8961   return ABIArgInfo::getExtend(Ty);
8962 }
8963 
8964 namespace {
8965 class RISCVTargetCodeGenInfo : public TargetCodeGenInfo {
8966 public:
8967   RISCVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen)
8968       : TargetCodeGenInfo(new RISCVABIInfo(CGT, XLen)) {}
8969 };
8970 } // namespace
8971 
8972 //===----------------------------------------------------------------------===//
8973 // Driver code
8974 //===----------------------------------------------------------------------===//
8975 
8976 bool CodeGenModule::supportsCOMDAT() const {
8977   return getTriple().supportsCOMDAT();
8978 }
8979 
8980 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
8981   if (TheTargetCodeGenInfo)
8982     return *TheTargetCodeGenInfo;
8983 
8984   // Helper to set the unique_ptr while still keeping the return value.
8985   auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & {
8986     this->TheTargetCodeGenInfo.reset(P);
8987     return *P;
8988   };
8989 
8990   const llvm::Triple &Triple = getTarget().getTriple();
8991   switch (Triple.getArch()) {
8992   default:
8993     return SetCGInfo(new DefaultTargetCodeGenInfo(Types));
8994 
8995   case llvm::Triple::le32:
8996     return SetCGInfo(new PNaClTargetCodeGenInfo(Types));
8997   case llvm::Triple::mips:
8998   case llvm::Triple::mipsel:
8999     if (Triple.getOS() == llvm::Triple::NaCl)
9000       return SetCGInfo(new PNaClTargetCodeGenInfo(Types));
9001     return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true));
9002 
9003   case llvm::Triple::mips64:
9004   case llvm::Triple::mips64el:
9005     return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false));
9006 
9007   case llvm::Triple::avr:
9008     return SetCGInfo(new AVRTargetCodeGenInfo(Types));
9009 
9010   case llvm::Triple::aarch64:
9011   case llvm::Triple::aarch64_be: {
9012     AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS;
9013     if (getTarget().getABI() == "darwinpcs")
9014       Kind = AArch64ABIInfo::DarwinPCS;
9015     else if (Triple.isOSWindows())
9016       return SetCGInfo(
9017           new WindowsAArch64TargetCodeGenInfo(Types, AArch64ABIInfo::Win64));
9018 
9019     return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind));
9020   }
9021 
9022   case llvm::Triple::wasm32:
9023   case llvm::Triple::wasm64:
9024     return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types));
9025 
9026   case llvm::Triple::arm:
9027   case llvm::Triple::armeb:
9028   case llvm::Triple::thumb:
9029   case llvm::Triple::thumbeb: {
9030     if (Triple.getOS() == llvm::Triple::Win32) {
9031       return SetCGInfo(
9032           new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP));
9033     }
9034 
9035     ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
9036     StringRef ABIStr = getTarget().getABI();
9037     if (ABIStr == "apcs-gnu")
9038       Kind = ARMABIInfo::APCS;
9039     else if (ABIStr == "aapcs16")
9040       Kind = ARMABIInfo::AAPCS16_VFP;
9041     else if (CodeGenOpts.FloatABI == "hard" ||
9042              (CodeGenOpts.FloatABI != "soft" &&
9043               (Triple.getEnvironment() == llvm::Triple::GNUEABIHF ||
9044                Triple.getEnvironment() == llvm::Triple::MuslEABIHF ||
9045                Triple.getEnvironment() == llvm::Triple::EABIHF)))
9046       Kind = ARMABIInfo::AAPCS_VFP;
9047 
9048     return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind));
9049   }
9050 
9051   case llvm::Triple::ppc:
9052     return SetCGInfo(
9053         new PPC32TargetCodeGenInfo(Types, CodeGenOpts.FloatABI == "soft"));
9054   case llvm::Triple::ppc64:
9055     if (Triple.isOSBinFormatELF()) {
9056       PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1;
9057       if (getTarget().getABI() == "elfv2")
9058         Kind = PPC64_SVR4_ABIInfo::ELFv2;
9059       bool HasQPX = getTarget().getABI() == "elfv1-qpx";
9060       bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
9061 
9062       return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX,
9063                                                         IsSoftFloat));
9064     } else
9065       return SetCGInfo(new PPC64TargetCodeGenInfo(Types));
9066   case llvm::Triple::ppc64le: {
9067     assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
9068     PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2;
9069     if (getTarget().getABI() == "elfv1" || getTarget().getABI() == "elfv1-qpx")
9070       Kind = PPC64_SVR4_ABIInfo::ELFv1;
9071     bool HasQPX = getTarget().getABI() == "elfv1-qpx";
9072     bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
9073 
9074     return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX,
9075                                                       IsSoftFloat));
9076   }
9077 
9078   case llvm::Triple::nvptx:
9079   case llvm::Triple::nvptx64:
9080     return SetCGInfo(new NVPTXTargetCodeGenInfo(Types));
9081 
9082   case llvm::Triple::msp430:
9083     return SetCGInfo(new MSP430TargetCodeGenInfo(Types));
9084 
9085   case llvm::Triple::riscv32:
9086     return SetCGInfo(new RISCVTargetCodeGenInfo(Types, 32));
9087   case llvm::Triple::riscv64:
9088     return SetCGInfo(new RISCVTargetCodeGenInfo(Types, 64));
9089 
9090   case llvm::Triple::systemz: {
9091     bool HasVector = getTarget().getABI() == "vector";
9092     return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector));
9093   }
9094 
9095   case llvm::Triple::tce:
9096   case llvm::Triple::tcele:
9097     return SetCGInfo(new TCETargetCodeGenInfo(Types));
9098 
9099   case llvm::Triple::x86: {
9100     bool IsDarwinVectorABI = Triple.isOSDarwin();
9101     bool RetSmallStructInRegABI =
9102         X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
9103     bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing();
9104 
9105     if (Triple.getOS() == llvm::Triple::Win32) {
9106       return SetCGInfo(new WinX86_32TargetCodeGenInfo(
9107           Types, IsDarwinVectorABI, RetSmallStructInRegABI,
9108           IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters));
9109     } else {
9110       return SetCGInfo(new X86_32TargetCodeGenInfo(
9111           Types, IsDarwinVectorABI, RetSmallStructInRegABI,
9112           IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters,
9113           CodeGenOpts.FloatABI == "soft"));
9114     }
9115   }
9116 
9117   case llvm::Triple::x86_64: {
9118     StringRef ABI = getTarget().getABI();
9119     X86AVXABILevel AVXLevel =
9120         (ABI == "avx512"
9121              ? X86AVXABILevel::AVX512
9122              : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None);
9123 
9124     switch (Triple.getOS()) {
9125     case llvm::Triple::Win32:
9126       return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel));
9127     case llvm::Triple::PS4:
9128       return SetCGInfo(new PS4TargetCodeGenInfo(Types, AVXLevel));
9129     default:
9130       return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel));
9131     }
9132   }
9133   case llvm::Triple::hexagon:
9134     return SetCGInfo(new HexagonTargetCodeGenInfo(Types));
9135   case llvm::Triple::lanai:
9136     return SetCGInfo(new LanaiTargetCodeGenInfo(Types));
9137   case llvm::Triple::r600:
9138     return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types));
9139   case llvm::Triple::amdgcn:
9140     return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types));
9141   case llvm::Triple::sparc:
9142     return SetCGInfo(new SparcV8TargetCodeGenInfo(Types));
9143   case llvm::Triple::sparcv9:
9144     return SetCGInfo(new SparcV9TargetCodeGenInfo(Types));
9145   case llvm::Triple::xcore:
9146     return SetCGInfo(new XCoreTargetCodeGenInfo(Types));
9147   case llvm::Triple::spir:
9148   case llvm::Triple::spir64:
9149     return SetCGInfo(new SPIRTargetCodeGenInfo(Types));
9150   }
9151 }
9152 
9153 /// Create an OpenCL kernel for an enqueued block.
9154 ///
9155 /// The kernel has the same function type as the block invoke function. Its
9156 /// name is the name of the block invoke function postfixed with "_kernel".
9157 /// It simply calls the block invoke function then returns.
9158 llvm::Function *
9159 TargetCodeGenInfo::createEnqueuedBlockKernel(CodeGenFunction &CGF,
9160                                              llvm::Function *Invoke,
9161                                              llvm::Value *BlockLiteral) const {
9162   auto *InvokeFT = Invoke->getFunctionType();
9163   llvm::SmallVector<llvm::Type *, 2> ArgTys;
9164   for (auto &P : InvokeFT->params())
9165     ArgTys.push_back(P);
9166   auto &C = CGF.getLLVMContext();
9167   std::string Name = Invoke->getName().str() + "_kernel";
9168   auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false);
9169   auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name,
9170                                    &CGF.CGM.getModule());
9171   auto IP = CGF.Builder.saveIP();
9172   auto *BB = llvm::BasicBlock::Create(C, "entry", F);
9173   auto &Builder = CGF.Builder;
9174   Builder.SetInsertPoint(BB);
9175   llvm::SmallVector<llvm::Value *, 2> Args;
9176   for (auto &A : F->args())
9177     Args.push_back(&A);
9178   Builder.CreateCall(Invoke, Args);
9179   Builder.CreateRetVoid();
9180   Builder.restoreIP(IP);
9181   return F;
9182 }
9183 
9184 /// Create an OpenCL kernel for an enqueued block.
9185 ///
9186 /// The type of the first argument (the block literal) is the struct type
9187 /// of the block literal instead of a pointer type. The first argument
9188 /// (block literal) is passed directly by value to the kernel. The kernel
9189 /// allocates the same type of struct on stack and stores the block literal
9190 /// to it and passes its pointer to the block invoke function. The kernel
9191 /// has "enqueued-block" function attribute and kernel argument metadata.
9192 llvm::Function *AMDGPUTargetCodeGenInfo::createEnqueuedBlockKernel(
9193     CodeGenFunction &CGF, llvm::Function *Invoke,
9194     llvm::Value *BlockLiteral) const {
9195   auto &Builder = CGF.Builder;
9196   auto &C = CGF.getLLVMContext();
9197 
9198   auto *BlockTy = BlockLiteral->getType()->getPointerElementType();
9199   auto *InvokeFT = Invoke->getFunctionType();
9200   llvm::SmallVector<llvm::Type *, 2> ArgTys;
9201   llvm::SmallVector<llvm::Metadata *, 8> AddressQuals;
9202   llvm::SmallVector<llvm::Metadata *, 8> AccessQuals;
9203   llvm::SmallVector<llvm::Metadata *, 8> ArgTypeNames;
9204   llvm::SmallVector<llvm::Metadata *, 8> ArgBaseTypeNames;
9205   llvm::SmallVector<llvm::Metadata *, 8> ArgTypeQuals;
9206   llvm::SmallVector<llvm::Metadata *, 8> ArgNames;
9207 
9208   ArgTys.push_back(BlockTy);
9209   ArgTypeNames.push_back(llvm::MDString::get(C, "__block_literal"));
9210   AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(0)));
9211   ArgBaseTypeNames.push_back(llvm::MDString::get(C, "__block_literal"));
9212   ArgTypeQuals.push_back(llvm::MDString::get(C, ""));
9213   AccessQuals.push_back(llvm::MDString::get(C, "none"));
9214   ArgNames.push_back(llvm::MDString::get(C, "block_literal"));
9215   for (unsigned I = 1, E = InvokeFT->getNumParams(); I < E; ++I) {
9216     ArgTys.push_back(InvokeFT->getParamType(I));
9217     ArgTypeNames.push_back(llvm::MDString::get(C, "void*"));
9218     AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(3)));
9219     AccessQuals.push_back(llvm::MDString::get(C, "none"));
9220     ArgBaseTypeNames.push_back(llvm::MDString::get(C, "void*"));
9221     ArgTypeQuals.push_back(llvm::MDString::get(C, ""));
9222     ArgNames.push_back(
9223         llvm::MDString::get(C, (Twine("local_arg") + Twine(I)).str()));
9224   }
9225   std::string Name = Invoke->getName().str() + "_kernel";
9226   auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false);
9227   auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name,
9228                                    &CGF.CGM.getModule());
9229   F->addFnAttr("enqueued-block");
9230   auto IP = CGF.Builder.saveIP();
9231   auto *BB = llvm::BasicBlock::Create(C, "entry", F);
9232   Builder.SetInsertPoint(BB);
9233   unsigned BlockAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(BlockTy);
9234   auto *BlockPtr = Builder.CreateAlloca(BlockTy, nullptr);
9235   BlockPtr->setAlignment(BlockAlign);
9236   Builder.CreateAlignedStore(F->arg_begin(), BlockPtr, BlockAlign);
9237   auto *Cast = Builder.CreatePointerCast(BlockPtr, InvokeFT->getParamType(0));
9238   llvm::SmallVector<llvm::Value *, 2> Args;
9239   Args.push_back(Cast);
9240   for (auto I = F->arg_begin() + 1, E = F->arg_end(); I != E; ++I)
9241     Args.push_back(I);
9242   Builder.CreateCall(Invoke, Args);
9243   Builder.CreateRetVoid();
9244   Builder.restoreIP(IP);
9245 
9246   F->setMetadata("kernel_arg_addr_space", llvm::MDNode::get(C, AddressQuals));
9247   F->setMetadata("kernel_arg_access_qual", llvm::MDNode::get(C, AccessQuals));
9248   F->setMetadata("kernel_arg_type", llvm::MDNode::get(C, ArgTypeNames));
9249   F->setMetadata("kernel_arg_base_type",
9250                  llvm::MDNode::get(C, ArgBaseTypeNames));
9251   F->setMetadata("kernel_arg_type_qual", llvm::MDNode::get(C, ArgTypeQuals));
9252   if (CGF.CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
9253     F->setMetadata("kernel_arg_name", llvm::MDNode::get(C, ArgNames));
9254 
9255   return F;
9256 }
9257