1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // These classes wrap the information about a call or function 11 // definition used to handle ABI compliancy. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "TargetInfo.h" 16 #include "ABIInfo.h" 17 #include "CGBlocks.h" 18 #include "CGCXXABI.h" 19 #include "CGValue.h" 20 #include "CodeGenFunction.h" 21 #include "clang/AST/RecordLayout.h" 22 #include "clang/CodeGen/CGFunctionInfo.h" 23 #include "clang/CodeGen/SwiftCallingConv.h" 24 #include "clang/Frontend/CodeGenOptions.h" 25 #include "llvm/ADT/StringExtras.h" 26 #include "llvm/ADT/StringSwitch.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/ADT/Twine.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/Type.h" 31 #include "llvm/Support/raw_ostream.h" 32 #include <algorithm> // std::sort 33 34 using namespace clang; 35 using namespace CodeGen; 36 37 // Helper for coercing an aggregate argument or return value into an integer 38 // array of the same size (including padding) and alignment. This alternate 39 // coercion happens only for the RenderScript ABI and can be removed after 40 // runtimes that rely on it are no longer supported. 41 // 42 // RenderScript assumes that the size of the argument / return value in the IR 43 // is the same as the size of the corresponding qualified type. This helper 44 // coerces the aggregate type into an array of the same size (including 45 // padding). This coercion is used in lieu of expansion of struct members or 46 // other canonical coercions that return a coerced-type of larger size. 47 // 48 // Ty - The argument / return value type 49 // Context - The associated ASTContext 50 // LLVMContext - The associated LLVMContext 51 static ABIArgInfo coerceToIntArray(QualType Ty, 52 ASTContext &Context, 53 llvm::LLVMContext &LLVMContext) { 54 // Alignment and Size are measured in bits. 55 const uint64_t Size = Context.getTypeSize(Ty); 56 const uint64_t Alignment = Context.getTypeAlign(Ty); 57 llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment); 58 const uint64_t NumElements = (Size + Alignment - 1) / Alignment; 59 return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements)); 60 } 61 62 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder, 63 llvm::Value *Array, 64 llvm::Value *Value, 65 unsigned FirstIndex, 66 unsigned LastIndex) { 67 // Alternatively, we could emit this as a loop in the source. 68 for (unsigned I = FirstIndex; I <= LastIndex; ++I) { 69 llvm::Value *Cell = 70 Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I); 71 Builder.CreateAlignedStore(Value, Cell, CharUnits::One()); 72 } 73 } 74 75 static bool isAggregateTypeForABI(QualType T) { 76 return !CodeGenFunction::hasScalarEvaluationKind(T) || 77 T->isMemberFunctionPointerType(); 78 } 79 80 ABIArgInfo 81 ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByRef, bool Realign, 82 llvm::Type *Padding) const { 83 return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty), 84 ByRef, Realign, Padding); 85 } 86 87 ABIArgInfo 88 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const { 89 return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty), 90 /*ByRef*/ false, Realign); 91 } 92 93 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 94 QualType Ty) const { 95 return Address::invalid(); 96 } 97 98 ABIInfo::~ABIInfo() {} 99 100 /// Does the given lowering require more than the given number of 101 /// registers when expanded? 102 /// 103 /// This is intended to be the basis of a reasonable basic implementation 104 /// of should{Pass,Return}IndirectlyForSwift. 105 /// 106 /// For most targets, a limit of four total registers is reasonable; this 107 /// limits the amount of code required in order to move around the value 108 /// in case it wasn't produced immediately prior to the call by the caller 109 /// (or wasn't produced in exactly the right registers) or isn't used 110 /// immediately within the callee. But some targets may need to further 111 /// limit the register count due to an inability to support that many 112 /// return registers. 113 static bool occupiesMoreThan(CodeGenTypes &cgt, 114 ArrayRef<llvm::Type*> scalarTypes, 115 unsigned maxAllRegisters) { 116 unsigned intCount = 0, fpCount = 0; 117 for (llvm::Type *type : scalarTypes) { 118 if (type->isPointerTy()) { 119 intCount++; 120 } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) { 121 auto ptrWidth = cgt.getTarget().getPointerWidth(0); 122 intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth; 123 } else { 124 assert(type->isVectorTy() || type->isFloatingPointTy()); 125 fpCount++; 126 } 127 } 128 129 return (intCount + fpCount > maxAllRegisters); 130 } 131 132 bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, 133 llvm::Type *eltTy, 134 unsigned numElts) const { 135 // The default implementation of this assumes that the target guarantees 136 // 128-bit SIMD support but nothing more. 137 return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16); 138 } 139 140 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT, 141 CGCXXABI &CXXABI) { 142 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); 143 if (!RD) { 144 if (!RT->getDecl()->canPassInRegisters()) 145 return CGCXXABI::RAA_Indirect; 146 return CGCXXABI::RAA_Default; 147 } 148 return CXXABI.getRecordArgABI(RD); 149 } 150 151 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T, 152 CGCXXABI &CXXABI) { 153 const RecordType *RT = T->getAs<RecordType>(); 154 if (!RT) 155 return CGCXXABI::RAA_Default; 156 return getRecordArgABI(RT, CXXABI); 157 } 158 159 static bool classifyReturnType(const CGCXXABI &CXXABI, CGFunctionInfo &FI, 160 const ABIInfo &Info) { 161 QualType Ty = FI.getReturnType(); 162 163 if (const auto *RT = Ty->getAs<RecordType>()) 164 if (!isa<CXXRecordDecl>(RT->getDecl()) && 165 !RT->getDecl()->canPassInRegisters()) { 166 FI.getReturnInfo() = Info.getNaturalAlignIndirect(Ty); 167 return true; 168 } 169 170 return CXXABI.classifyReturnType(FI); 171 } 172 173 /// Pass transparent unions as if they were the type of the first element. Sema 174 /// should ensure that all elements of the union have the same "machine type". 175 static QualType useFirstFieldIfTransparentUnion(QualType Ty) { 176 if (const RecordType *UT = Ty->getAsUnionType()) { 177 const RecordDecl *UD = UT->getDecl(); 178 if (UD->hasAttr<TransparentUnionAttr>()) { 179 assert(!UD->field_empty() && "sema created an empty transparent union"); 180 return UD->field_begin()->getType(); 181 } 182 } 183 return Ty; 184 } 185 186 CGCXXABI &ABIInfo::getCXXABI() const { 187 return CGT.getCXXABI(); 188 } 189 190 ASTContext &ABIInfo::getContext() const { 191 return CGT.getContext(); 192 } 193 194 llvm::LLVMContext &ABIInfo::getVMContext() const { 195 return CGT.getLLVMContext(); 196 } 197 198 const llvm::DataLayout &ABIInfo::getDataLayout() const { 199 return CGT.getDataLayout(); 200 } 201 202 const TargetInfo &ABIInfo::getTarget() const { 203 return CGT.getTarget(); 204 } 205 206 const CodeGenOptions &ABIInfo::getCodeGenOpts() const { 207 return CGT.getCodeGenOpts(); 208 } 209 210 bool ABIInfo::isAndroid() const { return getTarget().getTriple().isAndroid(); } 211 212 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 213 return false; 214 } 215 216 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 217 uint64_t Members) const { 218 return false; 219 } 220 221 LLVM_DUMP_METHOD void ABIArgInfo::dump() const { 222 raw_ostream &OS = llvm::errs(); 223 OS << "(ABIArgInfo Kind="; 224 switch (TheKind) { 225 case Direct: 226 OS << "Direct Type="; 227 if (llvm::Type *Ty = getCoerceToType()) 228 Ty->print(OS); 229 else 230 OS << "null"; 231 break; 232 case Extend: 233 OS << "Extend"; 234 break; 235 case Ignore: 236 OS << "Ignore"; 237 break; 238 case InAlloca: 239 OS << "InAlloca Offset=" << getInAllocaFieldIndex(); 240 break; 241 case Indirect: 242 OS << "Indirect Align=" << getIndirectAlign().getQuantity() 243 << " ByVal=" << getIndirectByVal() 244 << " Realign=" << getIndirectRealign(); 245 break; 246 case Expand: 247 OS << "Expand"; 248 break; 249 case CoerceAndExpand: 250 OS << "CoerceAndExpand Type="; 251 getCoerceAndExpandType()->print(OS); 252 break; 253 } 254 OS << ")\n"; 255 } 256 257 // Dynamically round a pointer up to a multiple of the given alignment. 258 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF, 259 llvm::Value *Ptr, 260 CharUnits Align) { 261 llvm::Value *PtrAsInt = Ptr; 262 // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align; 263 PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy); 264 PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt, 265 llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1)); 266 PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt, 267 llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity())); 268 PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt, 269 Ptr->getType(), 270 Ptr->getName() + ".aligned"); 271 return PtrAsInt; 272 } 273 274 /// Emit va_arg for a platform using the common void* representation, 275 /// where arguments are simply emitted in an array of slots on the stack. 276 /// 277 /// This version implements the core direct-value passing rules. 278 /// 279 /// \param SlotSize - The size and alignment of a stack slot. 280 /// Each argument will be allocated to a multiple of this number of 281 /// slots, and all the slots will be aligned to this value. 282 /// \param AllowHigherAlign - The slot alignment is not a cap; 283 /// an argument type with an alignment greater than the slot size 284 /// will be emitted on a higher-alignment address, potentially 285 /// leaving one or more empty slots behind as padding. If this 286 /// is false, the returned address might be less-aligned than 287 /// DirectAlign. 288 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF, 289 Address VAListAddr, 290 llvm::Type *DirectTy, 291 CharUnits DirectSize, 292 CharUnits DirectAlign, 293 CharUnits SlotSize, 294 bool AllowHigherAlign) { 295 // Cast the element type to i8* if necessary. Some platforms define 296 // va_list as a struct containing an i8* instead of just an i8*. 297 if (VAListAddr.getElementType() != CGF.Int8PtrTy) 298 VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy); 299 300 llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur"); 301 302 // If the CC aligns values higher than the slot size, do so if needed. 303 Address Addr = Address::invalid(); 304 if (AllowHigherAlign && DirectAlign > SlotSize) { 305 Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign), 306 DirectAlign); 307 } else { 308 Addr = Address(Ptr, SlotSize); 309 } 310 311 // Advance the pointer past the argument, then store that back. 312 CharUnits FullDirectSize = DirectSize.alignTo(SlotSize); 313 llvm::Value *NextPtr = 314 CGF.Builder.CreateConstInBoundsByteGEP(Addr.getPointer(), FullDirectSize, 315 "argp.next"); 316 CGF.Builder.CreateStore(NextPtr, VAListAddr); 317 318 // If the argument is smaller than a slot, and this is a big-endian 319 // target, the argument will be right-adjusted in its slot. 320 if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() && 321 !DirectTy->isStructTy()) { 322 Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize); 323 } 324 325 Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy); 326 return Addr; 327 } 328 329 /// Emit va_arg for a platform using the common void* representation, 330 /// where arguments are simply emitted in an array of slots on the stack. 331 /// 332 /// \param IsIndirect - Values of this type are passed indirectly. 333 /// \param ValueInfo - The size and alignment of this type, generally 334 /// computed with getContext().getTypeInfoInChars(ValueTy). 335 /// \param SlotSizeAndAlign - The size and alignment of a stack slot. 336 /// Each argument will be allocated to a multiple of this number of 337 /// slots, and all the slots will be aligned to this value. 338 /// \param AllowHigherAlign - The slot alignment is not a cap; 339 /// an argument type with an alignment greater than the slot size 340 /// will be emitted on a higher-alignment address, potentially 341 /// leaving one or more empty slots behind as padding. 342 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr, 343 QualType ValueTy, bool IsIndirect, 344 std::pair<CharUnits, CharUnits> ValueInfo, 345 CharUnits SlotSizeAndAlign, 346 bool AllowHigherAlign) { 347 // The size and alignment of the value that was passed directly. 348 CharUnits DirectSize, DirectAlign; 349 if (IsIndirect) { 350 DirectSize = CGF.getPointerSize(); 351 DirectAlign = CGF.getPointerAlign(); 352 } else { 353 DirectSize = ValueInfo.first; 354 DirectAlign = ValueInfo.second; 355 } 356 357 // Cast the address we've calculated to the right type. 358 llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy); 359 if (IsIndirect) 360 DirectTy = DirectTy->getPointerTo(0); 361 362 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy, 363 DirectSize, DirectAlign, 364 SlotSizeAndAlign, 365 AllowHigherAlign); 366 367 if (IsIndirect) { 368 Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.second); 369 } 370 371 return Addr; 372 373 } 374 375 static Address emitMergePHI(CodeGenFunction &CGF, 376 Address Addr1, llvm::BasicBlock *Block1, 377 Address Addr2, llvm::BasicBlock *Block2, 378 const llvm::Twine &Name = "") { 379 assert(Addr1.getType() == Addr2.getType()); 380 llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name); 381 PHI->addIncoming(Addr1.getPointer(), Block1); 382 PHI->addIncoming(Addr2.getPointer(), Block2); 383 CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment()); 384 return Address(PHI, Align); 385 } 386 387 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; } 388 389 // If someone can figure out a general rule for this, that would be great. 390 // It's probably just doomed to be platform-dependent, though. 391 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const { 392 // Verified for: 393 // x86-64 FreeBSD, Linux, Darwin 394 // x86-32 FreeBSD, Linux, Darwin 395 // PowerPC Linux, Darwin 396 // ARM Darwin (*not* EABI) 397 // AArch64 Linux 398 return 32; 399 } 400 401 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args, 402 const FunctionNoProtoType *fnType) const { 403 // The following conventions are known to require this to be false: 404 // x86_stdcall 405 // MIPS 406 // For everything else, we just prefer false unless we opt out. 407 return false; 408 } 409 410 void 411 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib, 412 llvm::SmallString<24> &Opt) const { 413 // This assumes the user is passing a library name like "rt" instead of a 414 // filename like "librt.a/so", and that they don't care whether it's static or 415 // dynamic. 416 Opt = "-l"; 417 Opt += Lib; 418 } 419 420 unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const { 421 // OpenCL kernels are called via an explicit runtime API with arguments 422 // set with clSetKernelArg(), not as normal sub-functions. 423 // Return SPIR_KERNEL by default as the kernel calling convention to 424 // ensure the fingerprint is fixed such way that each OpenCL argument 425 // gets one matching argument in the produced kernel function argument 426 // list to enable feasible implementation of clSetKernelArg() with 427 // aggregates etc. In case we would use the default C calling conv here, 428 // clSetKernelArg() might break depending on the target-specific 429 // conventions; different targets might split structs passed as values 430 // to multiple function arguments etc. 431 return llvm::CallingConv::SPIR_KERNEL; 432 } 433 434 llvm::Constant *TargetCodeGenInfo::getNullPointer(const CodeGen::CodeGenModule &CGM, 435 llvm::PointerType *T, QualType QT) const { 436 return llvm::ConstantPointerNull::get(T); 437 } 438 439 LangAS TargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM, 440 const VarDecl *D) const { 441 assert(!CGM.getLangOpts().OpenCL && 442 !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && 443 "Address space agnostic languages only"); 444 return D ? D->getType().getAddressSpace() : LangAS::Default; 445 } 446 447 llvm::Value *TargetCodeGenInfo::performAddrSpaceCast( 448 CodeGen::CodeGenFunction &CGF, llvm::Value *Src, LangAS SrcAddr, 449 LangAS DestAddr, llvm::Type *DestTy, bool isNonNull) const { 450 // Since target may map different address spaces in AST to the same address 451 // space, an address space conversion may end up as a bitcast. 452 if (auto *C = dyn_cast<llvm::Constant>(Src)) 453 return performAddrSpaceCast(CGF.CGM, C, SrcAddr, DestAddr, DestTy); 454 return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DestTy); 455 } 456 457 llvm::Constant * 458 TargetCodeGenInfo::performAddrSpaceCast(CodeGenModule &CGM, llvm::Constant *Src, 459 LangAS SrcAddr, LangAS DestAddr, 460 llvm::Type *DestTy) const { 461 // Since target may map different address spaces in AST to the same address 462 // space, an address space conversion may end up as a bitcast. 463 return llvm::ConstantExpr::getPointerCast(Src, DestTy); 464 } 465 466 llvm::SyncScope::ID 467 TargetCodeGenInfo::getLLVMSyncScopeID(SyncScope S, llvm::LLVMContext &C) const { 468 return C.getOrInsertSyncScopeID(""); /* default sync scope */ 469 } 470 471 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays); 472 473 /// isEmptyField - Return true iff a the field is "empty", that is it 474 /// is an unnamed bit-field or an (array of) empty record(s). 475 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD, 476 bool AllowArrays) { 477 if (FD->isUnnamedBitfield()) 478 return true; 479 480 QualType FT = FD->getType(); 481 482 // Constant arrays of empty records count as empty, strip them off. 483 // Constant arrays of zero length always count as empty. 484 if (AllowArrays) 485 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 486 if (AT->getSize() == 0) 487 return true; 488 FT = AT->getElementType(); 489 } 490 491 const RecordType *RT = FT->getAs<RecordType>(); 492 if (!RT) 493 return false; 494 495 // C++ record fields are never empty, at least in the Itanium ABI. 496 // 497 // FIXME: We should use a predicate for whether this behavior is true in the 498 // current ABI. 499 if (isa<CXXRecordDecl>(RT->getDecl())) 500 return false; 501 502 return isEmptyRecord(Context, FT, AllowArrays); 503 } 504 505 /// isEmptyRecord - Return true iff a structure contains only empty 506 /// fields. Note that a structure with a flexible array member is not 507 /// considered empty. 508 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) { 509 const RecordType *RT = T->getAs<RecordType>(); 510 if (!RT) 511 return false; 512 const RecordDecl *RD = RT->getDecl(); 513 if (RD->hasFlexibleArrayMember()) 514 return false; 515 516 // If this is a C++ record, check the bases first. 517 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 518 for (const auto &I : CXXRD->bases()) 519 if (!isEmptyRecord(Context, I.getType(), true)) 520 return false; 521 522 for (const auto *I : RD->fields()) 523 if (!isEmptyField(Context, I, AllowArrays)) 524 return false; 525 return true; 526 } 527 528 /// isSingleElementStruct - Determine if a structure is a "single 529 /// element struct", i.e. it has exactly one non-empty field or 530 /// exactly one field which is itself a single element 531 /// struct. Structures with flexible array members are never 532 /// considered single element structs. 533 /// 534 /// \return The field declaration for the single non-empty field, if 535 /// it exists. 536 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) { 537 const RecordType *RT = T->getAs<RecordType>(); 538 if (!RT) 539 return nullptr; 540 541 const RecordDecl *RD = RT->getDecl(); 542 if (RD->hasFlexibleArrayMember()) 543 return nullptr; 544 545 const Type *Found = nullptr; 546 547 // If this is a C++ record, check the bases first. 548 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 549 for (const auto &I : CXXRD->bases()) { 550 // Ignore empty records. 551 if (isEmptyRecord(Context, I.getType(), true)) 552 continue; 553 554 // If we already found an element then this isn't a single-element struct. 555 if (Found) 556 return nullptr; 557 558 // If this is non-empty and not a single element struct, the composite 559 // cannot be a single element struct. 560 Found = isSingleElementStruct(I.getType(), Context); 561 if (!Found) 562 return nullptr; 563 } 564 } 565 566 // Check for single element. 567 for (const auto *FD : RD->fields()) { 568 QualType FT = FD->getType(); 569 570 // Ignore empty fields. 571 if (isEmptyField(Context, FD, true)) 572 continue; 573 574 // If we already found an element then this isn't a single-element 575 // struct. 576 if (Found) 577 return nullptr; 578 579 // Treat single element arrays as the element. 580 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 581 if (AT->getSize().getZExtValue() != 1) 582 break; 583 FT = AT->getElementType(); 584 } 585 586 if (!isAggregateTypeForABI(FT)) { 587 Found = FT.getTypePtr(); 588 } else { 589 Found = isSingleElementStruct(FT, Context); 590 if (!Found) 591 return nullptr; 592 } 593 } 594 595 // We don't consider a struct a single-element struct if it has 596 // padding beyond the element type. 597 if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T)) 598 return nullptr; 599 600 return Found; 601 } 602 603 namespace { 604 Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty, 605 const ABIArgInfo &AI) { 606 // This default implementation defers to the llvm backend's va_arg 607 // instruction. It can handle only passing arguments directly 608 // (typically only handled in the backend for primitive types), or 609 // aggregates passed indirectly by pointer (NOTE: if the "byval" 610 // flag has ABI impact in the callee, this implementation cannot 611 // work.) 612 613 // Only a few cases are covered here at the moment -- those needed 614 // by the default abi. 615 llvm::Value *Val; 616 617 if (AI.isIndirect()) { 618 assert(!AI.getPaddingType() && 619 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 620 assert( 621 !AI.getIndirectRealign() && 622 "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!"); 623 624 auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty); 625 CharUnits TyAlignForABI = TyInfo.second; 626 627 llvm::Type *BaseTy = 628 llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); 629 llvm::Value *Addr = 630 CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy); 631 return Address(Addr, TyAlignForABI); 632 } else { 633 assert((AI.isDirect() || AI.isExtend()) && 634 "Unexpected ArgInfo Kind in generic VAArg emitter!"); 635 636 assert(!AI.getInReg() && 637 "Unexpected InReg seen in arginfo in generic VAArg emitter!"); 638 assert(!AI.getPaddingType() && 639 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 640 assert(!AI.getDirectOffset() && 641 "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!"); 642 assert(!AI.getCoerceToType() && 643 "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!"); 644 645 Address Temp = CGF.CreateMemTemp(Ty, "varet"); 646 Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), CGF.ConvertType(Ty)); 647 CGF.Builder.CreateStore(Val, Temp); 648 return Temp; 649 } 650 } 651 652 /// DefaultABIInfo - The default implementation for ABI specific 653 /// details. This implementation provides information which results in 654 /// self-consistent and sensible LLVM IR generation, but does not 655 /// conform to any particular ABI. 656 class DefaultABIInfo : public ABIInfo { 657 public: 658 DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 659 660 ABIArgInfo classifyReturnType(QualType RetTy) const; 661 ABIArgInfo classifyArgumentType(QualType RetTy) const; 662 663 void computeInfo(CGFunctionInfo &FI) const override { 664 if (!getCXXABI().classifyReturnType(FI)) 665 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 666 for (auto &I : FI.arguments()) 667 I.info = classifyArgumentType(I.type); 668 } 669 670 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 671 QualType Ty) const override { 672 return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty)); 673 } 674 }; 675 676 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo { 677 public: 678 DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 679 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 680 }; 681 682 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const { 683 Ty = useFirstFieldIfTransparentUnion(Ty); 684 685 if (isAggregateTypeForABI(Ty)) { 686 // Records with non-trivial destructors/copy-constructors should not be 687 // passed by value. 688 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 689 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 690 691 return getNaturalAlignIndirect(Ty); 692 } 693 694 // Treat an enum type as its underlying type. 695 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 696 Ty = EnumTy->getDecl()->getIntegerType(); 697 698 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 699 : ABIArgInfo::getDirect()); 700 } 701 702 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const { 703 if (RetTy->isVoidType()) 704 return ABIArgInfo::getIgnore(); 705 706 if (isAggregateTypeForABI(RetTy)) 707 return getNaturalAlignIndirect(RetTy); 708 709 // Treat an enum type as its underlying type. 710 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 711 RetTy = EnumTy->getDecl()->getIntegerType(); 712 713 return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 714 : ABIArgInfo::getDirect()); 715 } 716 717 //===----------------------------------------------------------------------===// 718 // WebAssembly ABI Implementation 719 // 720 // This is a very simple ABI that relies a lot on DefaultABIInfo. 721 //===----------------------------------------------------------------------===// 722 723 class WebAssemblyABIInfo final : public DefaultABIInfo { 724 public: 725 explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT) 726 : DefaultABIInfo(CGT) {} 727 728 private: 729 ABIArgInfo classifyReturnType(QualType RetTy) const; 730 ABIArgInfo classifyArgumentType(QualType Ty) const; 731 732 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 733 // non-virtual, but computeInfo and EmitVAArg are virtual, so we 734 // overload them. 735 void computeInfo(CGFunctionInfo &FI) const override { 736 if (!getCXXABI().classifyReturnType(FI)) 737 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 738 for (auto &Arg : FI.arguments()) 739 Arg.info = classifyArgumentType(Arg.type); 740 } 741 742 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 743 QualType Ty) const override; 744 }; 745 746 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo { 747 public: 748 explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 749 : TargetCodeGenInfo(new WebAssemblyABIInfo(CGT)) {} 750 751 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 752 CodeGen::CodeGenModule &CGM) const override { 753 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 754 llvm::Function *Fn = cast<llvm::Function>(GV); 755 if (!FD->doesThisDeclarationHaveABody() && !FD->hasPrototype()) 756 Fn->addFnAttr("no-prototype"); 757 } 758 } 759 }; 760 761 /// Classify argument of given type \p Ty. 762 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const { 763 Ty = useFirstFieldIfTransparentUnion(Ty); 764 765 if (isAggregateTypeForABI(Ty)) { 766 // Records with non-trivial destructors/copy-constructors should not be 767 // passed by value. 768 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 769 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 770 // Ignore empty structs/unions. 771 if (isEmptyRecord(getContext(), Ty, true)) 772 return ABIArgInfo::getIgnore(); 773 // Lower single-element structs to just pass a regular value. TODO: We 774 // could do reasonable-size multiple-element structs too, using getExpand(), 775 // though watch out for things like bitfields. 776 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 777 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 778 } 779 780 // Otherwise just do the default thing. 781 return DefaultABIInfo::classifyArgumentType(Ty); 782 } 783 784 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const { 785 if (isAggregateTypeForABI(RetTy)) { 786 // Records with non-trivial destructors/copy-constructors should not be 787 // returned by value. 788 if (!getRecordArgABI(RetTy, getCXXABI())) { 789 // Ignore empty structs/unions. 790 if (isEmptyRecord(getContext(), RetTy, true)) 791 return ABIArgInfo::getIgnore(); 792 // Lower single-element structs to just return a regular value. TODO: We 793 // could do reasonable-size multiple-element structs too, using 794 // ABIArgInfo::getDirect(). 795 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 796 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 797 } 798 } 799 800 // Otherwise just do the default thing. 801 return DefaultABIInfo::classifyReturnType(RetTy); 802 } 803 804 Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 805 QualType Ty) const { 806 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect=*/ false, 807 getContext().getTypeInfoInChars(Ty), 808 CharUnits::fromQuantity(4), 809 /*AllowHigherAlign=*/ true); 810 } 811 812 //===----------------------------------------------------------------------===// 813 // le32/PNaCl bitcode ABI Implementation 814 // 815 // This is a simplified version of the x86_32 ABI. Arguments and return values 816 // are always passed on the stack. 817 //===----------------------------------------------------------------------===// 818 819 class PNaClABIInfo : public ABIInfo { 820 public: 821 PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 822 823 ABIArgInfo classifyReturnType(QualType RetTy) const; 824 ABIArgInfo classifyArgumentType(QualType RetTy) const; 825 826 void computeInfo(CGFunctionInfo &FI) const override; 827 Address EmitVAArg(CodeGenFunction &CGF, 828 Address VAListAddr, QualType Ty) const override; 829 }; 830 831 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo { 832 public: 833 PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 834 : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {} 835 }; 836 837 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const { 838 if (!getCXXABI().classifyReturnType(FI)) 839 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 840 841 for (auto &I : FI.arguments()) 842 I.info = classifyArgumentType(I.type); 843 } 844 845 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 846 QualType Ty) const { 847 // The PNaCL ABI is a bit odd, in that varargs don't use normal 848 // function classification. Structs get passed directly for varargs 849 // functions, through a rewriting transform in 850 // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows 851 // this target to actually support a va_arg instructions with an 852 // aggregate type, unlike other targets. 853 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 854 } 855 856 /// Classify argument of given type \p Ty. 857 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const { 858 if (isAggregateTypeForABI(Ty)) { 859 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 860 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 861 return getNaturalAlignIndirect(Ty); 862 } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 863 // Treat an enum type as its underlying type. 864 Ty = EnumTy->getDecl()->getIntegerType(); 865 } else if (Ty->isFloatingType()) { 866 // Floating-point types don't go inreg. 867 return ABIArgInfo::getDirect(); 868 } 869 870 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 871 : ABIArgInfo::getDirect()); 872 } 873 874 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const { 875 if (RetTy->isVoidType()) 876 return ABIArgInfo::getIgnore(); 877 878 // In the PNaCl ABI we always return records/structures on the stack. 879 if (isAggregateTypeForABI(RetTy)) 880 return getNaturalAlignIndirect(RetTy); 881 882 // Treat an enum type as its underlying type. 883 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 884 RetTy = EnumTy->getDecl()->getIntegerType(); 885 886 return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 887 : ABIArgInfo::getDirect()); 888 } 889 890 /// IsX86_MMXType - Return true if this is an MMX type. 891 bool IsX86_MMXType(llvm::Type *IRType) { 892 // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>. 893 return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 && 894 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() && 895 IRType->getScalarSizeInBits() != 64; 896 } 897 898 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 899 StringRef Constraint, 900 llvm::Type* Ty) { 901 bool IsMMXCons = llvm::StringSwitch<bool>(Constraint) 902 .Cases("y", "&y", "^Ym", true) 903 .Default(false); 904 if (IsMMXCons && Ty->isVectorTy()) { 905 if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) { 906 // Invalid MMX constraint 907 return nullptr; 908 } 909 910 return llvm::Type::getX86_MMXTy(CGF.getLLVMContext()); 911 } 912 913 // No operation needed 914 return Ty; 915 } 916 917 /// Returns true if this type can be passed in SSE registers with the 918 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64. 919 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) { 920 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 921 if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) { 922 if (BT->getKind() == BuiltinType::LongDouble) { 923 if (&Context.getTargetInfo().getLongDoubleFormat() == 924 &llvm::APFloat::x87DoubleExtended()) 925 return false; 926 } 927 return true; 928 } 929 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 930 // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX 931 // registers specially. 932 unsigned VecSize = Context.getTypeSize(VT); 933 if (VecSize == 128 || VecSize == 256 || VecSize == 512) 934 return true; 935 } 936 return false; 937 } 938 939 /// Returns true if this aggregate is small enough to be passed in SSE registers 940 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64. 941 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) { 942 return NumMembers <= 4; 943 } 944 945 /// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86. 946 static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) { 947 auto AI = ABIArgInfo::getDirect(T); 948 AI.setInReg(true); 949 AI.setCanBeFlattened(false); 950 return AI; 951 } 952 953 //===----------------------------------------------------------------------===// 954 // X86-32 ABI Implementation 955 //===----------------------------------------------------------------------===// 956 957 /// Similar to llvm::CCState, but for Clang. 958 struct CCState { 959 CCState(unsigned CC) : CC(CC), FreeRegs(0), FreeSSERegs(0) {} 960 961 unsigned CC; 962 unsigned FreeRegs; 963 unsigned FreeSSERegs; 964 }; 965 966 enum { 967 // Vectorcall only allows the first 6 parameters to be passed in registers. 968 VectorcallMaxParamNumAsReg = 6 969 }; 970 971 /// X86_32ABIInfo - The X86-32 ABI information. 972 class X86_32ABIInfo : public SwiftABIInfo { 973 enum Class { 974 Integer, 975 Float 976 }; 977 978 static const unsigned MinABIStackAlignInBytes = 4; 979 980 bool IsDarwinVectorABI; 981 bool IsRetSmallStructInRegABI; 982 bool IsWin32StructABI; 983 bool IsSoftFloatABI; 984 bool IsMCUABI; 985 unsigned DefaultNumRegisterParameters; 986 987 static bool isRegisterSize(unsigned Size) { 988 return (Size == 8 || Size == 16 || Size == 32 || Size == 64); 989 } 990 991 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 992 // FIXME: Assumes vectorcall is in use. 993 return isX86VectorTypeForVectorCall(getContext(), Ty); 994 } 995 996 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 997 uint64_t NumMembers) const override { 998 // FIXME: Assumes vectorcall is in use. 999 return isX86VectorCallAggregateSmallEnough(NumMembers); 1000 } 1001 1002 bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const; 1003 1004 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 1005 /// such that the argument will be passed in memory. 1006 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 1007 1008 ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const; 1009 1010 /// Return the alignment to use for the given type on the stack. 1011 unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const; 1012 1013 Class classify(QualType Ty) const; 1014 ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const; 1015 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 1016 1017 /// Updates the number of available free registers, returns 1018 /// true if any registers were allocated. 1019 bool updateFreeRegs(QualType Ty, CCState &State) const; 1020 1021 bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg, 1022 bool &NeedsPadding) const; 1023 bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const; 1024 1025 bool canExpandIndirectArgument(QualType Ty) const; 1026 1027 /// Rewrite the function info so that all memory arguments use 1028 /// inalloca. 1029 void rewriteWithInAlloca(CGFunctionInfo &FI) const; 1030 1031 void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1032 CharUnits &StackOffset, ABIArgInfo &Info, 1033 QualType Type) const; 1034 void computeVectorCallArgs(CGFunctionInfo &FI, CCState &State, 1035 bool &UsedInAlloca) const; 1036 1037 public: 1038 1039 void computeInfo(CGFunctionInfo &FI) const override; 1040 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 1041 QualType Ty) const override; 1042 1043 X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 1044 bool RetSmallStructInRegABI, bool Win32StructABI, 1045 unsigned NumRegisterParameters, bool SoftFloatABI) 1046 : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI), 1047 IsRetSmallStructInRegABI(RetSmallStructInRegABI), 1048 IsWin32StructABI(Win32StructABI), 1049 IsSoftFloatABI(SoftFloatABI), 1050 IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()), 1051 DefaultNumRegisterParameters(NumRegisterParameters) {} 1052 1053 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 1054 bool asReturnValue) const override { 1055 // LLVM's x86-32 lowering currently only assigns up to three 1056 // integer registers and three fp registers. Oddly, it'll use up to 1057 // four vector registers for vectors, but those can overlap with the 1058 // scalar registers. 1059 return occupiesMoreThan(CGT, scalars, /*total*/ 3); 1060 } 1061 1062 bool isSwiftErrorInRegister() const override { 1063 // x86-32 lowering does not support passing swifterror in a register. 1064 return false; 1065 } 1066 }; 1067 1068 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo { 1069 public: 1070 X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 1071 bool RetSmallStructInRegABI, bool Win32StructABI, 1072 unsigned NumRegisterParameters, bool SoftFloatABI) 1073 : TargetCodeGenInfo(new X86_32ABIInfo( 1074 CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI, 1075 NumRegisterParameters, SoftFloatABI)) {} 1076 1077 static bool isStructReturnInRegABI( 1078 const llvm::Triple &Triple, const CodeGenOptions &Opts); 1079 1080 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 1081 CodeGen::CodeGenModule &CGM) const override; 1082 1083 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 1084 // Darwin uses different dwarf register numbers for EH. 1085 if (CGM.getTarget().getTriple().isOSDarwin()) return 5; 1086 return 4; 1087 } 1088 1089 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 1090 llvm::Value *Address) const override; 1091 1092 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 1093 StringRef Constraint, 1094 llvm::Type* Ty) const override { 1095 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 1096 } 1097 1098 void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue, 1099 std::string &Constraints, 1100 std::vector<llvm::Type *> &ResultRegTypes, 1101 std::vector<llvm::Type *> &ResultTruncRegTypes, 1102 std::vector<LValue> &ResultRegDests, 1103 std::string &AsmString, 1104 unsigned NumOutputs) const override; 1105 1106 llvm::Constant * 1107 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 1108 unsigned Sig = (0xeb << 0) | // jmp rel8 1109 (0x06 << 8) | // .+0x08 1110 ('v' << 16) | 1111 ('2' << 24); 1112 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 1113 } 1114 1115 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 1116 return "movl\t%ebp, %ebp" 1117 "\t\t// marker for objc_retainAutoreleaseReturnValue"; 1118 } 1119 }; 1120 1121 } 1122 1123 /// Rewrite input constraint references after adding some output constraints. 1124 /// In the case where there is one output and one input and we add one output, 1125 /// we need to replace all operand references greater than or equal to 1: 1126 /// mov $0, $1 1127 /// mov eax, $1 1128 /// The result will be: 1129 /// mov $0, $2 1130 /// mov eax, $2 1131 static void rewriteInputConstraintReferences(unsigned FirstIn, 1132 unsigned NumNewOuts, 1133 std::string &AsmString) { 1134 std::string Buf; 1135 llvm::raw_string_ostream OS(Buf); 1136 size_t Pos = 0; 1137 while (Pos < AsmString.size()) { 1138 size_t DollarStart = AsmString.find('$', Pos); 1139 if (DollarStart == std::string::npos) 1140 DollarStart = AsmString.size(); 1141 size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart); 1142 if (DollarEnd == std::string::npos) 1143 DollarEnd = AsmString.size(); 1144 OS << StringRef(&AsmString[Pos], DollarEnd - Pos); 1145 Pos = DollarEnd; 1146 size_t NumDollars = DollarEnd - DollarStart; 1147 if (NumDollars % 2 != 0 && Pos < AsmString.size()) { 1148 // We have an operand reference. 1149 size_t DigitStart = Pos; 1150 size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart); 1151 if (DigitEnd == std::string::npos) 1152 DigitEnd = AsmString.size(); 1153 StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart); 1154 unsigned OperandIndex; 1155 if (!OperandStr.getAsInteger(10, OperandIndex)) { 1156 if (OperandIndex >= FirstIn) 1157 OperandIndex += NumNewOuts; 1158 OS << OperandIndex; 1159 } else { 1160 OS << OperandStr; 1161 } 1162 Pos = DigitEnd; 1163 } 1164 } 1165 AsmString = std::move(OS.str()); 1166 } 1167 1168 /// Add output constraints for EAX:EDX because they are return registers. 1169 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs( 1170 CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints, 1171 std::vector<llvm::Type *> &ResultRegTypes, 1172 std::vector<llvm::Type *> &ResultTruncRegTypes, 1173 std::vector<LValue> &ResultRegDests, std::string &AsmString, 1174 unsigned NumOutputs) const { 1175 uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType()); 1176 1177 // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is 1178 // larger. 1179 if (!Constraints.empty()) 1180 Constraints += ','; 1181 if (RetWidth <= 32) { 1182 Constraints += "={eax}"; 1183 ResultRegTypes.push_back(CGF.Int32Ty); 1184 } else { 1185 // Use the 'A' constraint for EAX:EDX. 1186 Constraints += "=A"; 1187 ResultRegTypes.push_back(CGF.Int64Ty); 1188 } 1189 1190 // Truncate EAX or EAX:EDX to an integer of the appropriate size. 1191 llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth); 1192 ResultTruncRegTypes.push_back(CoerceTy); 1193 1194 // Coerce the integer by bitcasting the return slot pointer. 1195 ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(), 1196 CoerceTy->getPointerTo())); 1197 ResultRegDests.push_back(ReturnSlot); 1198 1199 rewriteInputConstraintReferences(NumOutputs, 1, AsmString); 1200 } 1201 1202 /// shouldReturnTypeInRegister - Determine if the given type should be 1203 /// returned in a register (for the Darwin and MCU ABI). 1204 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty, 1205 ASTContext &Context) const { 1206 uint64_t Size = Context.getTypeSize(Ty); 1207 1208 // For i386, type must be register sized. 1209 // For the MCU ABI, it only needs to be <= 8-byte 1210 if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size))) 1211 return false; 1212 1213 if (Ty->isVectorType()) { 1214 // 64- and 128- bit vectors inside structures are not returned in 1215 // registers. 1216 if (Size == 64 || Size == 128) 1217 return false; 1218 1219 return true; 1220 } 1221 1222 // If this is a builtin, pointer, enum, complex type, member pointer, or 1223 // member function pointer it is ok. 1224 if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() || 1225 Ty->isAnyComplexType() || Ty->isEnumeralType() || 1226 Ty->isBlockPointerType() || Ty->isMemberPointerType()) 1227 return true; 1228 1229 // Arrays are treated like records. 1230 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) 1231 return shouldReturnTypeInRegister(AT->getElementType(), Context); 1232 1233 // Otherwise, it must be a record type. 1234 const RecordType *RT = Ty->getAs<RecordType>(); 1235 if (!RT) return false; 1236 1237 // FIXME: Traverse bases here too. 1238 1239 // Structure types are passed in register if all fields would be 1240 // passed in a register. 1241 for (const auto *FD : RT->getDecl()->fields()) { 1242 // Empty fields are ignored. 1243 if (isEmptyField(Context, FD, true)) 1244 continue; 1245 1246 // Check fields recursively. 1247 if (!shouldReturnTypeInRegister(FD->getType(), Context)) 1248 return false; 1249 } 1250 return true; 1251 } 1252 1253 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) { 1254 // Treat complex types as the element type. 1255 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 1256 Ty = CTy->getElementType(); 1257 1258 // Check for a type which we know has a simple scalar argument-passing 1259 // convention without any padding. (We're specifically looking for 32 1260 // and 64-bit integer and integer-equivalents, float, and double.) 1261 if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() && 1262 !Ty->isEnumeralType() && !Ty->isBlockPointerType()) 1263 return false; 1264 1265 uint64_t Size = Context.getTypeSize(Ty); 1266 return Size == 32 || Size == 64; 1267 } 1268 1269 static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD, 1270 uint64_t &Size) { 1271 for (const auto *FD : RD->fields()) { 1272 // Scalar arguments on the stack get 4 byte alignment on x86. If the 1273 // argument is smaller than 32-bits, expanding the struct will create 1274 // alignment padding. 1275 if (!is32Or64BitBasicType(FD->getType(), Context)) 1276 return false; 1277 1278 // FIXME: Reject bit-fields wholesale; there are two problems, we don't know 1279 // how to expand them yet, and the predicate for telling if a bitfield still 1280 // counts as "basic" is more complicated than what we were doing previously. 1281 if (FD->isBitField()) 1282 return false; 1283 1284 Size += Context.getTypeSize(FD->getType()); 1285 } 1286 return true; 1287 } 1288 1289 static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD, 1290 uint64_t &Size) { 1291 // Don't do this if there are any non-empty bases. 1292 for (const CXXBaseSpecifier &Base : RD->bases()) { 1293 if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(), 1294 Size)) 1295 return false; 1296 } 1297 if (!addFieldSizes(Context, RD, Size)) 1298 return false; 1299 return true; 1300 } 1301 1302 /// Test whether an argument type which is to be passed indirectly (on the 1303 /// stack) would have the equivalent layout if it was expanded into separate 1304 /// arguments. If so, we prefer to do the latter to avoid inhibiting 1305 /// optimizations. 1306 bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const { 1307 // We can only expand structure types. 1308 const RecordType *RT = Ty->getAs<RecordType>(); 1309 if (!RT) 1310 return false; 1311 const RecordDecl *RD = RT->getDecl(); 1312 uint64_t Size = 0; 1313 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 1314 if (!IsWin32StructABI) { 1315 // On non-Windows, we have to conservatively match our old bitcode 1316 // prototypes in order to be ABI-compatible at the bitcode level. 1317 if (!CXXRD->isCLike()) 1318 return false; 1319 } else { 1320 // Don't do this for dynamic classes. 1321 if (CXXRD->isDynamicClass()) 1322 return false; 1323 } 1324 if (!addBaseAndFieldSizes(getContext(), CXXRD, Size)) 1325 return false; 1326 } else { 1327 if (!addFieldSizes(getContext(), RD, Size)) 1328 return false; 1329 } 1330 1331 // We can do this if there was no alignment padding. 1332 return Size == getContext().getTypeSize(Ty); 1333 } 1334 1335 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const { 1336 // If the return value is indirect, then the hidden argument is consuming one 1337 // integer register. 1338 if (State.FreeRegs) { 1339 --State.FreeRegs; 1340 if (!IsMCUABI) 1341 return getNaturalAlignIndirectInReg(RetTy); 1342 } 1343 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 1344 } 1345 1346 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, 1347 CCState &State) const { 1348 if (RetTy->isVoidType()) 1349 return ABIArgInfo::getIgnore(); 1350 1351 const Type *Base = nullptr; 1352 uint64_t NumElts = 0; 1353 if ((State.CC == llvm::CallingConv::X86_VectorCall || 1354 State.CC == llvm::CallingConv::X86_RegCall) && 1355 isHomogeneousAggregate(RetTy, Base, NumElts)) { 1356 // The LLVM struct type for such an aggregate should lower properly. 1357 return ABIArgInfo::getDirect(); 1358 } 1359 1360 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 1361 // On Darwin, some vectors are returned in registers. 1362 if (IsDarwinVectorABI) { 1363 uint64_t Size = getContext().getTypeSize(RetTy); 1364 1365 // 128-bit vectors are a special case; they are returned in 1366 // registers and we need to make sure to pick a type the LLVM 1367 // backend will like. 1368 if (Size == 128) 1369 return ABIArgInfo::getDirect(llvm::VectorType::get( 1370 llvm::Type::getInt64Ty(getVMContext()), 2)); 1371 1372 // Always return in register if it fits in a general purpose 1373 // register, or if it is 64 bits and has a single element. 1374 if ((Size == 8 || Size == 16 || Size == 32) || 1375 (Size == 64 && VT->getNumElements() == 1)) 1376 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1377 Size)); 1378 1379 return getIndirectReturnResult(RetTy, State); 1380 } 1381 1382 return ABIArgInfo::getDirect(); 1383 } 1384 1385 if (isAggregateTypeForABI(RetTy)) { 1386 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 1387 // Structures with flexible arrays are always indirect. 1388 if (RT->getDecl()->hasFlexibleArrayMember()) 1389 return getIndirectReturnResult(RetTy, State); 1390 } 1391 1392 // If specified, structs and unions are always indirect. 1393 if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType()) 1394 return getIndirectReturnResult(RetTy, State); 1395 1396 // Ignore empty structs/unions. 1397 if (isEmptyRecord(getContext(), RetTy, true)) 1398 return ABIArgInfo::getIgnore(); 1399 1400 // Small structures which are register sized are generally returned 1401 // in a register. 1402 if (shouldReturnTypeInRegister(RetTy, getContext())) { 1403 uint64_t Size = getContext().getTypeSize(RetTy); 1404 1405 // As a special-case, if the struct is a "single-element" struct, and 1406 // the field is of type "float" or "double", return it in a 1407 // floating-point register. (MSVC does not apply this special case.) 1408 // We apply a similar transformation for pointer types to improve the 1409 // quality of the generated IR. 1410 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 1411 if ((!IsWin32StructABI && SeltTy->isRealFloatingType()) 1412 || SeltTy->hasPointerRepresentation()) 1413 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 1414 1415 // FIXME: We should be able to narrow this integer in cases with dead 1416 // padding. 1417 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size)); 1418 } 1419 1420 return getIndirectReturnResult(RetTy, State); 1421 } 1422 1423 // Treat an enum type as its underlying type. 1424 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 1425 RetTy = EnumTy->getDecl()->getIntegerType(); 1426 1427 return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 1428 : ABIArgInfo::getDirect()); 1429 } 1430 1431 static bool isSSEVectorType(ASTContext &Context, QualType Ty) { 1432 return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128; 1433 } 1434 1435 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) { 1436 const RecordType *RT = Ty->getAs<RecordType>(); 1437 if (!RT) 1438 return 0; 1439 const RecordDecl *RD = RT->getDecl(); 1440 1441 // If this is a C++ record, check the bases first. 1442 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 1443 for (const auto &I : CXXRD->bases()) 1444 if (!isRecordWithSSEVectorType(Context, I.getType())) 1445 return false; 1446 1447 for (const auto *i : RD->fields()) { 1448 QualType FT = i->getType(); 1449 1450 if (isSSEVectorType(Context, FT)) 1451 return true; 1452 1453 if (isRecordWithSSEVectorType(Context, FT)) 1454 return true; 1455 } 1456 1457 return false; 1458 } 1459 1460 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty, 1461 unsigned Align) const { 1462 // Otherwise, if the alignment is less than or equal to the minimum ABI 1463 // alignment, just use the default; the backend will handle this. 1464 if (Align <= MinABIStackAlignInBytes) 1465 return 0; // Use default alignment. 1466 1467 // On non-Darwin, the stack type alignment is always 4. 1468 if (!IsDarwinVectorABI) { 1469 // Set explicit alignment, since we may need to realign the top. 1470 return MinABIStackAlignInBytes; 1471 } 1472 1473 // Otherwise, if the type contains an SSE vector type, the alignment is 16. 1474 if (Align >= 16 && (isSSEVectorType(getContext(), Ty) || 1475 isRecordWithSSEVectorType(getContext(), Ty))) 1476 return 16; 1477 1478 return MinABIStackAlignInBytes; 1479 } 1480 1481 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal, 1482 CCState &State) const { 1483 if (!ByVal) { 1484 if (State.FreeRegs) { 1485 --State.FreeRegs; // Non-byval indirects just use one pointer. 1486 if (!IsMCUABI) 1487 return getNaturalAlignIndirectInReg(Ty); 1488 } 1489 return getNaturalAlignIndirect(Ty, false); 1490 } 1491 1492 // Compute the byval alignment. 1493 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 1494 unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign); 1495 if (StackAlign == 0) 1496 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true); 1497 1498 // If the stack alignment is less than the type alignment, realign the 1499 // argument. 1500 bool Realign = TypeAlign > StackAlign; 1501 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign), 1502 /*ByVal=*/true, Realign); 1503 } 1504 1505 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const { 1506 const Type *T = isSingleElementStruct(Ty, getContext()); 1507 if (!T) 1508 T = Ty.getTypePtr(); 1509 1510 if (const BuiltinType *BT = T->getAs<BuiltinType>()) { 1511 BuiltinType::Kind K = BT->getKind(); 1512 if (K == BuiltinType::Float || K == BuiltinType::Double) 1513 return Float; 1514 } 1515 return Integer; 1516 } 1517 1518 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const { 1519 if (!IsSoftFloatABI) { 1520 Class C = classify(Ty); 1521 if (C == Float) 1522 return false; 1523 } 1524 1525 unsigned Size = getContext().getTypeSize(Ty); 1526 unsigned SizeInRegs = (Size + 31) / 32; 1527 1528 if (SizeInRegs == 0) 1529 return false; 1530 1531 if (!IsMCUABI) { 1532 if (SizeInRegs > State.FreeRegs) { 1533 State.FreeRegs = 0; 1534 return false; 1535 } 1536 } else { 1537 // The MCU psABI allows passing parameters in-reg even if there are 1538 // earlier parameters that are passed on the stack. Also, 1539 // it does not allow passing >8-byte structs in-register, 1540 // even if there are 3 free registers available. 1541 if (SizeInRegs > State.FreeRegs || SizeInRegs > 2) 1542 return false; 1543 } 1544 1545 State.FreeRegs -= SizeInRegs; 1546 return true; 1547 } 1548 1549 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State, 1550 bool &InReg, 1551 bool &NeedsPadding) const { 1552 // On Windows, aggregates other than HFAs are never passed in registers, and 1553 // they do not consume register slots. Homogenous floating-point aggregates 1554 // (HFAs) have already been dealt with at this point. 1555 if (IsWin32StructABI && isAggregateTypeForABI(Ty)) 1556 return false; 1557 1558 NeedsPadding = false; 1559 InReg = !IsMCUABI; 1560 1561 if (!updateFreeRegs(Ty, State)) 1562 return false; 1563 1564 if (IsMCUABI) 1565 return true; 1566 1567 if (State.CC == llvm::CallingConv::X86_FastCall || 1568 State.CC == llvm::CallingConv::X86_VectorCall || 1569 State.CC == llvm::CallingConv::X86_RegCall) { 1570 if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs) 1571 NeedsPadding = true; 1572 1573 return false; 1574 } 1575 1576 return true; 1577 } 1578 1579 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const { 1580 if (!updateFreeRegs(Ty, State)) 1581 return false; 1582 1583 if (IsMCUABI) 1584 return false; 1585 1586 if (State.CC == llvm::CallingConv::X86_FastCall || 1587 State.CC == llvm::CallingConv::X86_VectorCall || 1588 State.CC == llvm::CallingConv::X86_RegCall) { 1589 if (getContext().getTypeSize(Ty) > 32) 1590 return false; 1591 1592 return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() || 1593 Ty->isReferenceType()); 1594 } 1595 1596 return true; 1597 } 1598 1599 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, 1600 CCState &State) const { 1601 // FIXME: Set alignment on indirect arguments. 1602 1603 Ty = useFirstFieldIfTransparentUnion(Ty); 1604 1605 // Check with the C++ ABI first. 1606 const RecordType *RT = Ty->getAs<RecordType>(); 1607 if (RT) { 1608 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 1609 if (RAA == CGCXXABI::RAA_Indirect) { 1610 return getIndirectResult(Ty, false, State); 1611 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 1612 // The field index doesn't matter, we'll fix it up later. 1613 return ABIArgInfo::getInAlloca(/*FieldIndex=*/0); 1614 } 1615 } 1616 1617 // Regcall uses the concept of a homogenous vector aggregate, similar 1618 // to other targets. 1619 const Type *Base = nullptr; 1620 uint64_t NumElts = 0; 1621 if (State.CC == llvm::CallingConv::X86_RegCall && 1622 isHomogeneousAggregate(Ty, Base, NumElts)) { 1623 1624 if (State.FreeSSERegs >= NumElts) { 1625 State.FreeSSERegs -= NumElts; 1626 if (Ty->isBuiltinType() || Ty->isVectorType()) 1627 return ABIArgInfo::getDirect(); 1628 return ABIArgInfo::getExpand(); 1629 } 1630 return getIndirectResult(Ty, /*ByVal=*/false, State); 1631 } 1632 1633 if (isAggregateTypeForABI(Ty)) { 1634 // Structures with flexible arrays are always indirect. 1635 // FIXME: This should not be byval! 1636 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 1637 return getIndirectResult(Ty, true, State); 1638 1639 // Ignore empty structs/unions on non-Windows. 1640 if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true)) 1641 return ABIArgInfo::getIgnore(); 1642 1643 llvm::LLVMContext &LLVMContext = getVMContext(); 1644 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 1645 bool NeedsPadding = false; 1646 bool InReg; 1647 if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) { 1648 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; 1649 SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32); 1650 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 1651 if (InReg) 1652 return ABIArgInfo::getDirectInReg(Result); 1653 else 1654 return ABIArgInfo::getDirect(Result); 1655 } 1656 llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr; 1657 1658 // Expand small (<= 128-bit) record types when we know that the stack layout 1659 // of those arguments will match the struct. This is important because the 1660 // LLVM backend isn't smart enough to remove byval, which inhibits many 1661 // optimizations. 1662 // Don't do this for the MCU if there are still free integer registers 1663 // (see X86_64 ABI for full explanation). 1664 if (getContext().getTypeSize(Ty) <= 4 * 32 && 1665 (!IsMCUABI || State.FreeRegs == 0) && canExpandIndirectArgument(Ty)) 1666 return ABIArgInfo::getExpandWithPadding( 1667 State.CC == llvm::CallingConv::X86_FastCall || 1668 State.CC == llvm::CallingConv::X86_VectorCall || 1669 State.CC == llvm::CallingConv::X86_RegCall, 1670 PaddingType); 1671 1672 return getIndirectResult(Ty, true, State); 1673 } 1674 1675 if (const VectorType *VT = Ty->getAs<VectorType>()) { 1676 // On Darwin, some vectors are passed in memory, we handle this by passing 1677 // it as an i8/i16/i32/i64. 1678 if (IsDarwinVectorABI) { 1679 uint64_t Size = getContext().getTypeSize(Ty); 1680 if ((Size == 8 || Size == 16 || Size == 32) || 1681 (Size == 64 && VT->getNumElements() == 1)) 1682 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1683 Size)); 1684 } 1685 1686 if (IsX86_MMXType(CGT.ConvertType(Ty))) 1687 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64)); 1688 1689 return ABIArgInfo::getDirect(); 1690 } 1691 1692 1693 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 1694 Ty = EnumTy->getDecl()->getIntegerType(); 1695 1696 bool InReg = shouldPrimitiveUseInReg(Ty, State); 1697 1698 if (Ty->isPromotableIntegerType()) { 1699 if (InReg) 1700 return ABIArgInfo::getExtendInReg(Ty); 1701 return ABIArgInfo::getExtend(Ty); 1702 } 1703 1704 if (InReg) 1705 return ABIArgInfo::getDirectInReg(); 1706 return ABIArgInfo::getDirect(); 1707 } 1708 1709 void X86_32ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI, CCState &State, 1710 bool &UsedInAlloca) const { 1711 // Vectorcall x86 works subtly different than in x64, so the format is 1712 // a bit different than the x64 version. First, all vector types (not HVAs) 1713 // are assigned, with the first 6 ending up in the YMM0-5 or XMM0-5 registers. 1714 // This differs from the x64 implementation, where the first 6 by INDEX get 1715 // registers. 1716 // After that, integers AND HVAs are assigned Left to Right in the same pass. 1717 // Integers are passed as ECX/EDX if one is available (in order). HVAs will 1718 // first take up the remaining YMM/XMM registers. If insufficient registers 1719 // remain but an integer register (ECX/EDX) is available, it will be passed 1720 // in that, else, on the stack. 1721 for (auto &I : FI.arguments()) { 1722 // First pass do all the vector types. 1723 const Type *Base = nullptr; 1724 uint64_t NumElts = 0; 1725 const QualType& Ty = I.type; 1726 if ((Ty->isVectorType() || Ty->isBuiltinType()) && 1727 isHomogeneousAggregate(Ty, Base, NumElts)) { 1728 if (State.FreeSSERegs >= NumElts) { 1729 State.FreeSSERegs -= NumElts; 1730 I.info = ABIArgInfo::getDirect(); 1731 } else { 1732 I.info = classifyArgumentType(Ty, State); 1733 } 1734 UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca); 1735 } 1736 } 1737 1738 for (auto &I : FI.arguments()) { 1739 // Second pass, do the rest! 1740 const Type *Base = nullptr; 1741 uint64_t NumElts = 0; 1742 const QualType& Ty = I.type; 1743 bool IsHva = isHomogeneousAggregate(Ty, Base, NumElts); 1744 1745 if (IsHva && !Ty->isVectorType() && !Ty->isBuiltinType()) { 1746 // Assign true HVAs (non vector/native FP types). 1747 if (State.FreeSSERegs >= NumElts) { 1748 State.FreeSSERegs -= NumElts; 1749 I.info = getDirectX86Hva(); 1750 } else { 1751 I.info = getIndirectResult(Ty, /*ByVal=*/false, State); 1752 } 1753 } else if (!IsHva) { 1754 // Assign all Non-HVAs, so this will exclude Vector/FP args. 1755 I.info = classifyArgumentType(Ty, State); 1756 UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca); 1757 } 1758 } 1759 } 1760 1761 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const { 1762 CCState State(FI.getCallingConvention()); 1763 if (IsMCUABI) 1764 State.FreeRegs = 3; 1765 else if (State.CC == llvm::CallingConv::X86_FastCall) 1766 State.FreeRegs = 2; 1767 else if (State.CC == llvm::CallingConv::X86_VectorCall) { 1768 State.FreeRegs = 2; 1769 State.FreeSSERegs = 6; 1770 } else if (FI.getHasRegParm()) 1771 State.FreeRegs = FI.getRegParm(); 1772 else if (State.CC == llvm::CallingConv::X86_RegCall) { 1773 State.FreeRegs = 5; 1774 State.FreeSSERegs = 8; 1775 } else 1776 State.FreeRegs = DefaultNumRegisterParameters; 1777 1778 if (!::classifyReturnType(getCXXABI(), FI, *this)) { 1779 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State); 1780 } else if (FI.getReturnInfo().isIndirect()) { 1781 // The C++ ABI is not aware of register usage, so we have to check if the 1782 // return value was sret and put it in a register ourselves if appropriate. 1783 if (State.FreeRegs) { 1784 --State.FreeRegs; // The sret parameter consumes a register. 1785 if (!IsMCUABI) 1786 FI.getReturnInfo().setInReg(true); 1787 } 1788 } 1789 1790 // The chain argument effectively gives us another free register. 1791 if (FI.isChainCall()) 1792 ++State.FreeRegs; 1793 1794 bool UsedInAlloca = false; 1795 if (State.CC == llvm::CallingConv::X86_VectorCall) { 1796 computeVectorCallArgs(FI, State, UsedInAlloca); 1797 } else { 1798 // If not vectorcall, revert to normal behavior. 1799 for (auto &I : FI.arguments()) { 1800 I.info = classifyArgumentType(I.type, State); 1801 UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca); 1802 } 1803 } 1804 1805 // If we needed to use inalloca for any argument, do a second pass and rewrite 1806 // all the memory arguments to use inalloca. 1807 if (UsedInAlloca) 1808 rewriteWithInAlloca(FI); 1809 } 1810 1811 void 1812 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1813 CharUnits &StackOffset, ABIArgInfo &Info, 1814 QualType Type) const { 1815 // Arguments are always 4-byte-aligned. 1816 CharUnits FieldAlign = CharUnits::fromQuantity(4); 1817 1818 assert(StackOffset.isMultipleOf(FieldAlign) && "unaligned inalloca struct"); 1819 Info = ABIArgInfo::getInAlloca(FrameFields.size()); 1820 FrameFields.push_back(CGT.ConvertTypeForMem(Type)); 1821 StackOffset += getContext().getTypeSizeInChars(Type); 1822 1823 // Insert padding bytes to respect alignment. 1824 CharUnits FieldEnd = StackOffset; 1825 StackOffset = FieldEnd.alignTo(FieldAlign); 1826 if (StackOffset != FieldEnd) { 1827 CharUnits NumBytes = StackOffset - FieldEnd; 1828 llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext()); 1829 Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity()); 1830 FrameFields.push_back(Ty); 1831 } 1832 } 1833 1834 static bool isArgInAlloca(const ABIArgInfo &Info) { 1835 // Leave ignored and inreg arguments alone. 1836 switch (Info.getKind()) { 1837 case ABIArgInfo::InAlloca: 1838 return true; 1839 case ABIArgInfo::Indirect: 1840 assert(Info.getIndirectByVal()); 1841 return true; 1842 case ABIArgInfo::Ignore: 1843 return false; 1844 case ABIArgInfo::Direct: 1845 case ABIArgInfo::Extend: 1846 if (Info.getInReg()) 1847 return false; 1848 return true; 1849 case ABIArgInfo::Expand: 1850 case ABIArgInfo::CoerceAndExpand: 1851 // These are aggregate types which are never passed in registers when 1852 // inalloca is involved. 1853 return true; 1854 } 1855 llvm_unreachable("invalid enum"); 1856 } 1857 1858 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const { 1859 assert(IsWin32StructABI && "inalloca only supported on win32"); 1860 1861 // Build a packed struct type for all of the arguments in memory. 1862 SmallVector<llvm::Type *, 6> FrameFields; 1863 1864 // The stack alignment is always 4. 1865 CharUnits StackAlign = CharUnits::fromQuantity(4); 1866 1867 CharUnits StackOffset; 1868 CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end(); 1869 1870 // Put 'this' into the struct before 'sret', if necessary. 1871 bool IsThisCall = 1872 FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall; 1873 ABIArgInfo &Ret = FI.getReturnInfo(); 1874 if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall && 1875 isArgInAlloca(I->info)) { 1876 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 1877 ++I; 1878 } 1879 1880 // Put the sret parameter into the inalloca struct if it's in memory. 1881 if (Ret.isIndirect() && !Ret.getInReg()) { 1882 CanQualType PtrTy = getContext().getPointerType(FI.getReturnType()); 1883 addFieldToArgStruct(FrameFields, StackOffset, Ret, PtrTy); 1884 // On Windows, the hidden sret parameter is always returned in eax. 1885 Ret.setInAllocaSRet(IsWin32StructABI); 1886 } 1887 1888 // Skip the 'this' parameter in ecx. 1889 if (IsThisCall) 1890 ++I; 1891 1892 // Put arguments passed in memory into the struct. 1893 for (; I != E; ++I) { 1894 if (isArgInAlloca(I->info)) 1895 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 1896 } 1897 1898 FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields, 1899 /*isPacked=*/true), 1900 StackAlign); 1901 } 1902 1903 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF, 1904 Address VAListAddr, QualType Ty) const { 1905 1906 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 1907 1908 // x86-32 changes the alignment of certain arguments on the stack. 1909 // 1910 // Just messing with TypeInfo like this works because we never pass 1911 // anything indirectly. 1912 TypeInfo.second = CharUnits::fromQuantity( 1913 getTypeStackAlignInBytes(Ty, TypeInfo.second.getQuantity())); 1914 1915 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 1916 TypeInfo, CharUnits::fromQuantity(4), 1917 /*AllowHigherAlign*/ true); 1918 } 1919 1920 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI( 1921 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 1922 assert(Triple.getArch() == llvm::Triple::x86); 1923 1924 switch (Opts.getStructReturnConvention()) { 1925 case CodeGenOptions::SRCK_Default: 1926 break; 1927 case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return 1928 return false; 1929 case CodeGenOptions::SRCK_InRegs: // -freg-struct-return 1930 return true; 1931 } 1932 1933 if (Triple.isOSDarwin() || Triple.isOSIAMCU()) 1934 return true; 1935 1936 switch (Triple.getOS()) { 1937 case llvm::Triple::DragonFly: 1938 case llvm::Triple::FreeBSD: 1939 case llvm::Triple::OpenBSD: 1940 case llvm::Triple::Win32: 1941 return true; 1942 default: 1943 return false; 1944 } 1945 } 1946 1947 void X86_32TargetCodeGenInfo::setTargetAttributes( 1948 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 1949 if (GV->isDeclaration()) 1950 return; 1951 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 1952 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 1953 llvm::Function *Fn = cast<llvm::Function>(GV); 1954 Fn->addFnAttr("stackrealign"); 1955 } 1956 if (FD->hasAttr<AnyX86InterruptAttr>()) { 1957 llvm::Function *Fn = cast<llvm::Function>(GV); 1958 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 1959 } 1960 } 1961 } 1962 1963 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable( 1964 CodeGen::CodeGenFunction &CGF, 1965 llvm::Value *Address) const { 1966 CodeGen::CGBuilderTy &Builder = CGF.Builder; 1967 1968 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 1969 1970 // 0-7 are the eight integer registers; the order is different 1971 // on Darwin (for EH), but the range is the same. 1972 // 8 is %eip. 1973 AssignToArrayRange(Builder, Address, Four8, 0, 8); 1974 1975 if (CGF.CGM.getTarget().getTriple().isOSDarwin()) { 1976 // 12-16 are st(0..4). Not sure why we stop at 4. 1977 // These have size 16, which is sizeof(long double) on 1978 // platforms with 8-byte alignment for that type. 1979 llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16); 1980 AssignToArrayRange(Builder, Address, Sixteen8, 12, 16); 1981 1982 } else { 1983 // 9 is %eflags, which doesn't get a size on Darwin for some 1984 // reason. 1985 Builder.CreateAlignedStore( 1986 Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9), 1987 CharUnits::One()); 1988 1989 // 11-16 are st(0..5). Not sure why we stop at 5. 1990 // These have size 12, which is sizeof(long double) on 1991 // platforms with 4-byte alignment for that type. 1992 llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12); 1993 AssignToArrayRange(Builder, Address, Twelve8, 11, 16); 1994 } 1995 1996 return false; 1997 } 1998 1999 //===----------------------------------------------------------------------===// 2000 // X86-64 ABI Implementation 2001 //===----------------------------------------------------------------------===// 2002 2003 2004 namespace { 2005 /// The AVX ABI level for X86 targets. 2006 enum class X86AVXABILevel { 2007 None, 2008 AVX, 2009 AVX512 2010 }; 2011 2012 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel. 2013 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) { 2014 switch (AVXLevel) { 2015 case X86AVXABILevel::AVX512: 2016 return 512; 2017 case X86AVXABILevel::AVX: 2018 return 256; 2019 case X86AVXABILevel::None: 2020 return 128; 2021 } 2022 llvm_unreachable("Unknown AVXLevel"); 2023 } 2024 2025 /// X86_64ABIInfo - The X86_64 ABI information. 2026 class X86_64ABIInfo : public SwiftABIInfo { 2027 enum Class { 2028 Integer = 0, 2029 SSE, 2030 SSEUp, 2031 X87, 2032 X87Up, 2033 ComplexX87, 2034 NoClass, 2035 Memory 2036 }; 2037 2038 /// merge - Implement the X86_64 ABI merging algorithm. 2039 /// 2040 /// Merge an accumulating classification \arg Accum with a field 2041 /// classification \arg Field. 2042 /// 2043 /// \param Accum - The accumulating classification. This should 2044 /// always be either NoClass or the result of a previous merge 2045 /// call. In addition, this should never be Memory (the caller 2046 /// should just return Memory for the aggregate). 2047 static Class merge(Class Accum, Class Field); 2048 2049 /// postMerge - Implement the X86_64 ABI post merging algorithm. 2050 /// 2051 /// Post merger cleanup, reduces a malformed Hi and Lo pair to 2052 /// final MEMORY or SSE classes when necessary. 2053 /// 2054 /// \param AggregateSize - The size of the current aggregate in 2055 /// the classification process. 2056 /// 2057 /// \param Lo - The classification for the parts of the type 2058 /// residing in the low word of the containing object. 2059 /// 2060 /// \param Hi - The classification for the parts of the type 2061 /// residing in the higher words of the containing object. 2062 /// 2063 void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const; 2064 2065 /// classify - Determine the x86_64 register classes in which the 2066 /// given type T should be passed. 2067 /// 2068 /// \param Lo - The classification for the parts of the type 2069 /// residing in the low word of the containing object. 2070 /// 2071 /// \param Hi - The classification for the parts of the type 2072 /// residing in the high word of the containing object. 2073 /// 2074 /// \param OffsetBase - The bit offset of this type in the 2075 /// containing object. Some parameters are classified different 2076 /// depending on whether they straddle an eightbyte boundary. 2077 /// 2078 /// \param isNamedArg - Whether the argument in question is a "named" 2079 /// argument, as used in AMD64-ABI 3.5.7. 2080 /// 2081 /// If a word is unused its result will be NoClass; if a type should 2082 /// be passed in Memory then at least the classification of \arg Lo 2083 /// will be Memory. 2084 /// 2085 /// The \arg Lo class will be NoClass iff the argument is ignored. 2086 /// 2087 /// If the \arg Lo class is ComplexX87, then the \arg Hi class will 2088 /// also be ComplexX87. 2089 void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi, 2090 bool isNamedArg) const; 2091 2092 llvm::Type *GetByteVectorType(QualType Ty) const; 2093 llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType, 2094 unsigned IROffset, QualType SourceTy, 2095 unsigned SourceOffset) const; 2096 llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType, 2097 unsigned IROffset, QualType SourceTy, 2098 unsigned SourceOffset) const; 2099 2100 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 2101 /// such that the argument will be returned in memory. 2102 ABIArgInfo getIndirectReturnResult(QualType Ty) const; 2103 2104 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 2105 /// such that the argument will be passed in memory. 2106 /// 2107 /// \param freeIntRegs - The number of free integer registers remaining 2108 /// available. 2109 ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const; 2110 2111 ABIArgInfo classifyReturnType(QualType RetTy) const; 2112 2113 ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs, 2114 unsigned &neededInt, unsigned &neededSSE, 2115 bool isNamedArg) const; 2116 2117 ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt, 2118 unsigned &NeededSSE) const; 2119 2120 ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 2121 unsigned &NeededSSE) const; 2122 2123 bool IsIllegalVectorType(QualType Ty) const; 2124 2125 /// The 0.98 ABI revision clarified a lot of ambiguities, 2126 /// unfortunately in ways that were not always consistent with 2127 /// certain previous compilers. In particular, platforms which 2128 /// required strict binary compatibility with older versions of GCC 2129 /// may need to exempt themselves. 2130 bool honorsRevision0_98() const { 2131 return !getTarget().getTriple().isOSDarwin(); 2132 } 2133 2134 /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to 2135 /// classify it as INTEGER (for compatibility with older clang compilers). 2136 bool classifyIntegerMMXAsSSE() const { 2137 // Clang <= 3.8 did not do this. 2138 if (getContext().getLangOpts().getClangABICompat() <= 2139 LangOptions::ClangABI::Ver3_8) 2140 return false; 2141 2142 const llvm::Triple &Triple = getTarget().getTriple(); 2143 if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::PS4) 2144 return false; 2145 if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10) 2146 return false; 2147 return true; 2148 } 2149 2150 X86AVXABILevel AVXLevel; 2151 // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on 2152 // 64-bit hardware. 2153 bool Has64BitPointers; 2154 2155 public: 2156 X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) : 2157 SwiftABIInfo(CGT), AVXLevel(AVXLevel), 2158 Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) { 2159 } 2160 2161 bool isPassedUsingAVXType(QualType type) const { 2162 unsigned neededInt, neededSSE; 2163 // The freeIntRegs argument doesn't matter here. 2164 ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE, 2165 /*isNamedArg*/true); 2166 if (info.isDirect()) { 2167 llvm::Type *ty = info.getCoerceToType(); 2168 if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty)) 2169 return (vectorTy->getBitWidth() > 128); 2170 } 2171 return false; 2172 } 2173 2174 void computeInfo(CGFunctionInfo &FI) const override; 2175 2176 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2177 QualType Ty) const override; 2178 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 2179 QualType Ty) const override; 2180 2181 bool has64BitPointers() const { 2182 return Has64BitPointers; 2183 } 2184 2185 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 2186 bool asReturnValue) const override { 2187 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2188 } 2189 bool isSwiftErrorInRegister() const override { 2190 return true; 2191 } 2192 }; 2193 2194 /// WinX86_64ABIInfo - The Windows X86_64 ABI information. 2195 class WinX86_64ABIInfo : public SwiftABIInfo { 2196 public: 2197 WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) 2198 : SwiftABIInfo(CGT), 2199 IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {} 2200 2201 void computeInfo(CGFunctionInfo &FI) const override; 2202 2203 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2204 QualType Ty) const override; 2205 2206 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 2207 // FIXME: Assumes vectorcall is in use. 2208 return isX86VectorTypeForVectorCall(getContext(), Ty); 2209 } 2210 2211 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 2212 uint64_t NumMembers) const override { 2213 // FIXME: Assumes vectorcall is in use. 2214 return isX86VectorCallAggregateSmallEnough(NumMembers); 2215 } 2216 2217 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type *> scalars, 2218 bool asReturnValue) const override { 2219 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2220 } 2221 2222 bool isSwiftErrorInRegister() const override { 2223 return true; 2224 } 2225 2226 private: 2227 ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType, 2228 bool IsVectorCall, bool IsRegCall) const; 2229 ABIArgInfo reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs, 2230 const ABIArgInfo ¤t) const; 2231 void computeVectorCallArgs(CGFunctionInfo &FI, unsigned FreeSSERegs, 2232 bool IsVectorCall, bool IsRegCall) const; 2233 2234 bool IsMingw64; 2235 }; 2236 2237 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2238 public: 2239 X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2240 : TargetCodeGenInfo(new X86_64ABIInfo(CGT, AVXLevel)) {} 2241 2242 const X86_64ABIInfo &getABIInfo() const { 2243 return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo()); 2244 } 2245 2246 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2247 return 7; 2248 } 2249 2250 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2251 llvm::Value *Address) const override { 2252 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2253 2254 // 0-15 are the 16 integer registers. 2255 // 16 is %rip. 2256 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2257 return false; 2258 } 2259 2260 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 2261 StringRef Constraint, 2262 llvm::Type* Ty) const override { 2263 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 2264 } 2265 2266 bool isNoProtoCallVariadic(const CallArgList &args, 2267 const FunctionNoProtoType *fnType) const override { 2268 // The default CC on x86-64 sets %al to the number of SSA 2269 // registers used, and GCC sets this when calling an unprototyped 2270 // function, so we override the default behavior. However, don't do 2271 // that when AVX types are involved: the ABI explicitly states it is 2272 // undefined, and it doesn't work in practice because of how the ABI 2273 // defines varargs anyway. 2274 if (fnType->getCallConv() == CC_C) { 2275 bool HasAVXType = false; 2276 for (CallArgList::const_iterator 2277 it = args.begin(), ie = args.end(); it != ie; ++it) { 2278 if (getABIInfo().isPassedUsingAVXType(it->Ty)) { 2279 HasAVXType = true; 2280 break; 2281 } 2282 } 2283 2284 if (!HasAVXType) 2285 return true; 2286 } 2287 2288 return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType); 2289 } 2290 2291 llvm::Constant * 2292 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 2293 unsigned Sig = (0xeb << 0) | // jmp rel8 2294 (0x06 << 8) | // .+0x08 2295 ('v' << 16) | 2296 ('2' << 24); 2297 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 2298 } 2299 2300 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2301 CodeGen::CodeGenModule &CGM) const override { 2302 if (GV->isDeclaration()) 2303 return; 2304 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2305 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2306 llvm::Function *Fn = cast<llvm::Function>(GV); 2307 Fn->addFnAttr("stackrealign"); 2308 } 2309 if (FD->hasAttr<AnyX86InterruptAttr>()) { 2310 llvm::Function *Fn = cast<llvm::Function>(GV); 2311 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2312 } 2313 } 2314 } 2315 }; 2316 2317 class PS4TargetCodeGenInfo : public X86_64TargetCodeGenInfo { 2318 public: 2319 PS4TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2320 : X86_64TargetCodeGenInfo(CGT, AVXLevel) {} 2321 2322 void getDependentLibraryOption(llvm::StringRef Lib, 2323 llvm::SmallString<24> &Opt) const override { 2324 Opt = "\01"; 2325 // If the argument contains a space, enclose it in quotes. 2326 if (Lib.find(" ") != StringRef::npos) 2327 Opt += "\"" + Lib.str() + "\""; 2328 else 2329 Opt += Lib; 2330 } 2331 }; 2332 2333 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) { 2334 // If the argument does not end in .lib, automatically add the suffix. 2335 // If the argument contains a space, enclose it in quotes. 2336 // This matches the behavior of MSVC. 2337 bool Quote = (Lib.find(" ") != StringRef::npos); 2338 std::string ArgStr = Quote ? "\"" : ""; 2339 ArgStr += Lib; 2340 if (!Lib.endswith_lower(".lib")) 2341 ArgStr += ".lib"; 2342 ArgStr += Quote ? "\"" : ""; 2343 return ArgStr; 2344 } 2345 2346 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo { 2347 public: 2348 WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2349 bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI, 2350 unsigned NumRegisterParameters) 2351 : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI, 2352 Win32StructABI, NumRegisterParameters, false) {} 2353 2354 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2355 CodeGen::CodeGenModule &CGM) const override; 2356 2357 void getDependentLibraryOption(llvm::StringRef Lib, 2358 llvm::SmallString<24> &Opt) const override { 2359 Opt = "/DEFAULTLIB:"; 2360 Opt += qualifyWindowsLibrary(Lib); 2361 } 2362 2363 void getDetectMismatchOption(llvm::StringRef Name, 2364 llvm::StringRef Value, 2365 llvm::SmallString<32> &Opt) const override { 2366 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2367 } 2368 }; 2369 2370 static void addStackProbeTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2371 CodeGen::CodeGenModule &CGM) { 2372 if (llvm::Function *Fn = dyn_cast_or_null<llvm::Function>(GV)) { 2373 2374 if (CGM.getCodeGenOpts().StackProbeSize != 4096) 2375 Fn->addFnAttr("stack-probe-size", 2376 llvm::utostr(CGM.getCodeGenOpts().StackProbeSize)); 2377 if (CGM.getCodeGenOpts().NoStackArgProbe) 2378 Fn->addFnAttr("no-stack-arg-probe"); 2379 } 2380 } 2381 2382 void WinX86_32TargetCodeGenInfo::setTargetAttributes( 2383 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2384 X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2385 if (GV->isDeclaration()) 2386 return; 2387 addStackProbeTargetAttributes(D, GV, CGM); 2388 } 2389 2390 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2391 public: 2392 WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2393 X86AVXABILevel AVXLevel) 2394 : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {} 2395 2396 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2397 CodeGen::CodeGenModule &CGM) const override; 2398 2399 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2400 return 7; 2401 } 2402 2403 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2404 llvm::Value *Address) const override { 2405 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2406 2407 // 0-15 are the 16 integer registers. 2408 // 16 is %rip. 2409 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2410 return false; 2411 } 2412 2413 void getDependentLibraryOption(llvm::StringRef Lib, 2414 llvm::SmallString<24> &Opt) const override { 2415 Opt = "/DEFAULTLIB:"; 2416 Opt += qualifyWindowsLibrary(Lib); 2417 } 2418 2419 void getDetectMismatchOption(llvm::StringRef Name, 2420 llvm::StringRef Value, 2421 llvm::SmallString<32> &Opt) const override { 2422 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2423 } 2424 }; 2425 2426 void WinX86_64TargetCodeGenInfo::setTargetAttributes( 2427 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2428 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2429 if (GV->isDeclaration()) 2430 return; 2431 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2432 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2433 llvm::Function *Fn = cast<llvm::Function>(GV); 2434 Fn->addFnAttr("stackrealign"); 2435 } 2436 if (FD->hasAttr<AnyX86InterruptAttr>()) { 2437 llvm::Function *Fn = cast<llvm::Function>(GV); 2438 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2439 } 2440 } 2441 2442 addStackProbeTargetAttributes(D, GV, CGM); 2443 } 2444 } 2445 2446 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo, 2447 Class &Hi) const { 2448 // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done: 2449 // 2450 // (a) If one of the classes is Memory, the whole argument is passed in 2451 // memory. 2452 // 2453 // (b) If X87UP is not preceded by X87, the whole argument is passed in 2454 // memory. 2455 // 2456 // (c) If the size of the aggregate exceeds two eightbytes and the first 2457 // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole 2458 // argument is passed in memory. NOTE: This is necessary to keep the 2459 // ABI working for processors that don't support the __m256 type. 2460 // 2461 // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE. 2462 // 2463 // Some of these are enforced by the merging logic. Others can arise 2464 // only with unions; for example: 2465 // union { _Complex double; unsigned; } 2466 // 2467 // Note that clauses (b) and (c) were added in 0.98. 2468 // 2469 if (Hi == Memory) 2470 Lo = Memory; 2471 if (Hi == X87Up && Lo != X87 && honorsRevision0_98()) 2472 Lo = Memory; 2473 if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp)) 2474 Lo = Memory; 2475 if (Hi == SSEUp && Lo != SSE) 2476 Hi = SSE; 2477 } 2478 2479 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) { 2480 // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is 2481 // classified recursively so that always two fields are 2482 // considered. The resulting class is calculated according to 2483 // the classes of the fields in the eightbyte: 2484 // 2485 // (a) If both classes are equal, this is the resulting class. 2486 // 2487 // (b) If one of the classes is NO_CLASS, the resulting class is 2488 // the other class. 2489 // 2490 // (c) If one of the classes is MEMORY, the result is the MEMORY 2491 // class. 2492 // 2493 // (d) If one of the classes is INTEGER, the result is the 2494 // INTEGER. 2495 // 2496 // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class, 2497 // MEMORY is used as class. 2498 // 2499 // (f) Otherwise class SSE is used. 2500 2501 // Accum should never be memory (we should have returned) or 2502 // ComplexX87 (because this cannot be passed in a structure). 2503 assert((Accum != Memory && Accum != ComplexX87) && 2504 "Invalid accumulated classification during merge."); 2505 if (Accum == Field || Field == NoClass) 2506 return Accum; 2507 if (Field == Memory) 2508 return Memory; 2509 if (Accum == NoClass) 2510 return Field; 2511 if (Accum == Integer || Field == Integer) 2512 return Integer; 2513 if (Field == X87 || Field == X87Up || Field == ComplexX87 || 2514 Accum == X87 || Accum == X87Up) 2515 return Memory; 2516 return SSE; 2517 } 2518 2519 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, 2520 Class &Lo, Class &Hi, bool isNamedArg) const { 2521 // FIXME: This code can be simplified by introducing a simple value class for 2522 // Class pairs with appropriate constructor methods for the various 2523 // situations. 2524 2525 // FIXME: Some of the split computations are wrong; unaligned vectors 2526 // shouldn't be passed in registers for example, so there is no chance they 2527 // can straddle an eightbyte. Verify & simplify. 2528 2529 Lo = Hi = NoClass; 2530 2531 Class &Current = OffsetBase < 64 ? Lo : Hi; 2532 Current = Memory; 2533 2534 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 2535 BuiltinType::Kind k = BT->getKind(); 2536 2537 if (k == BuiltinType::Void) { 2538 Current = NoClass; 2539 } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) { 2540 Lo = Integer; 2541 Hi = Integer; 2542 } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) { 2543 Current = Integer; 2544 } else if (k == BuiltinType::Float || k == BuiltinType::Double) { 2545 Current = SSE; 2546 } else if (k == BuiltinType::LongDouble) { 2547 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2548 if (LDF == &llvm::APFloat::IEEEquad()) { 2549 Lo = SSE; 2550 Hi = SSEUp; 2551 } else if (LDF == &llvm::APFloat::x87DoubleExtended()) { 2552 Lo = X87; 2553 Hi = X87Up; 2554 } else if (LDF == &llvm::APFloat::IEEEdouble()) { 2555 Current = SSE; 2556 } else 2557 llvm_unreachable("unexpected long double representation!"); 2558 } 2559 // FIXME: _Decimal32 and _Decimal64 are SSE. 2560 // FIXME: _float128 and _Decimal128 are (SSE, SSEUp). 2561 return; 2562 } 2563 2564 if (const EnumType *ET = Ty->getAs<EnumType>()) { 2565 // Classify the underlying integer type. 2566 classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg); 2567 return; 2568 } 2569 2570 if (Ty->hasPointerRepresentation()) { 2571 Current = Integer; 2572 return; 2573 } 2574 2575 if (Ty->isMemberPointerType()) { 2576 if (Ty->isMemberFunctionPointerType()) { 2577 if (Has64BitPointers) { 2578 // If Has64BitPointers, this is an {i64, i64}, so classify both 2579 // Lo and Hi now. 2580 Lo = Hi = Integer; 2581 } else { 2582 // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that 2583 // straddles an eightbyte boundary, Hi should be classified as well. 2584 uint64_t EB_FuncPtr = (OffsetBase) / 64; 2585 uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64; 2586 if (EB_FuncPtr != EB_ThisAdj) { 2587 Lo = Hi = Integer; 2588 } else { 2589 Current = Integer; 2590 } 2591 } 2592 } else { 2593 Current = Integer; 2594 } 2595 return; 2596 } 2597 2598 if (const VectorType *VT = Ty->getAs<VectorType>()) { 2599 uint64_t Size = getContext().getTypeSize(VT); 2600 if (Size == 1 || Size == 8 || Size == 16 || Size == 32) { 2601 // gcc passes the following as integer: 2602 // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float> 2603 // 2 bytes - <2 x char>, <1 x short> 2604 // 1 byte - <1 x char> 2605 Current = Integer; 2606 2607 // If this type crosses an eightbyte boundary, it should be 2608 // split. 2609 uint64_t EB_Lo = (OffsetBase) / 64; 2610 uint64_t EB_Hi = (OffsetBase + Size - 1) / 64; 2611 if (EB_Lo != EB_Hi) 2612 Hi = Lo; 2613 } else if (Size == 64) { 2614 QualType ElementType = VT->getElementType(); 2615 2616 // gcc passes <1 x double> in memory. :( 2617 if (ElementType->isSpecificBuiltinType(BuiltinType::Double)) 2618 return; 2619 2620 // gcc passes <1 x long long> as SSE but clang used to unconditionally 2621 // pass them as integer. For platforms where clang is the de facto 2622 // platform compiler, we must continue to use integer. 2623 if (!classifyIntegerMMXAsSSE() && 2624 (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) || 2625 ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) || 2626 ElementType->isSpecificBuiltinType(BuiltinType::Long) || 2627 ElementType->isSpecificBuiltinType(BuiltinType::ULong))) 2628 Current = Integer; 2629 else 2630 Current = SSE; 2631 2632 // If this type crosses an eightbyte boundary, it should be 2633 // split. 2634 if (OffsetBase && OffsetBase != 64) 2635 Hi = Lo; 2636 } else if (Size == 128 || 2637 (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) { 2638 // Arguments of 256-bits are split into four eightbyte chunks. The 2639 // least significant one belongs to class SSE and all the others to class 2640 // SSEUP. The original Lo and Hi design considers that types can't be 2641 // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense. 2642 // This design isn't correct for 256-bits, but since there're no cases 2643 // where the upper parts would need to be inspected, avoid adding 2644 // complexity and just consider Hi to match the 64-256 part. 2645 // 2646 // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in 2647 // registers if they are "named", i.e. not part of the "..." of a 2648 // variadic function. 2649 // 2650 // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are 2651 // split into eight eightbyte chunks, one SSE and seven SSEUP. 2652 Lo = SSE; 2653 Hi = SSEUp; 2654 } 2655 return; 2656 } 2657 2658 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 2659 QualType ET = getContext().getCanonicalType(CT->getElementType()); 2660 2661 uint64_t Size = getContext().getTypeSize(Ty); 2662 if (ET->isIntegralOrEnumerationType()) { 2663 if (Size <= 64) 2664 Current = Integer; 2665 else if (Size <= 128) 2666 Lo = Hi = Integer; 2667 } else if (ET == getContext().FloatTy) { 2668 Current = SSE; 2669 } else if (ET == getContext().DoubleTy) { 2670 Lo = Hi = SSE; 2671 } else if (ET == getContext().LongDoubleTy) { 2672 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2673 if (LDF == &llvm::APFloat::IEEEquad()) 2674 Current = Memory; 2675 else if (LDF == &llvm::APFloat::x87DoubleExtended()) 2676 Current = ComplexX87; 2677 else if (LDF == &llvm::APFloat::IEEEdouble()) 2678 Lo = Hi = SSE; 2679 else 2680 llvm_unreachable("unexpected long double representation!"); 2681 } 2682 2683 // If this complex type crosses an eightbyte boundary then it 2684 // should be split. 2685 uint64_t EB_Real = (OffsetBase) / 64; 2686 uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64; 2687 if (Hi == NoClass && EB_Real != EB_Imag) 2688 Hi = Lo; 2689 2690 return; 2691 } 2692 2693 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 2694 // Arrays are treated like structures. 2695 2696 uint64_t Size = getContext().getTypeSize(Ty); 2697 2698 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 2699 // than eight eightbytes, ..., it has class MEMORY. 2700 if (Size > 512) 2701 return; 2702 2703 // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned 2704 // fields, it has class MEMORY. 2705 // 2706 // Only need to check alignment of array base. 2707 if (OffsetBase % getContext().getTypeAlign(AT->getElementType())) 2708 return; 2709 2710 // Otherwise implement simplified merge. We could be smarter about 2711 // this, but it isn't worth it and would be harder to verify. 2712 Current = NoClass; 2713 uint64_t EltSize = getContext().getTypeSize(AT->getElementType()); 2714 uint64_t ArraySize = AT->getSize().getZExtValue(); 2715 2716 // The only case a 256-bit wide vector could be used is when the array 2717 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 2718 // to work for sizes wider than 128, early check and fallback to memory. 2719 // 2720 if (Size > 128 && 2721 (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel))) 2722 return; 2723 2724 for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) { 2725 Class FieldLo, FieldHi; 2726 classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg); 2727 Lo = merge(Lo, FieldLo); 2728 Hi = merge(Hi, FieldHi); 2729 if (Lo == Memory || Hi == Memory) 2730 break; 2731 } 2732 2733 postMerge(Size, Lo, Hi); 2734 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification."); 2735 return; 2736 } 2737 2738 if (const RecordType *RT = Ty->getAs<RecordType>()) { 2739 uint64_t Size = getContext().getTypeSize(Ty); 2740 2741 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 2742 // than eight eightbytes, ..., it has class MEMORY. 2743 if (Size > 512) 2744 return; 2745 2746 // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial 2747 // copy constructor or a non-trivial destructor, it is passed by invisible 2748 // reference. 2749 if (getRecordArgABI(RT, getCXXABI())) 2750 return; 2751 2752 const RecordDecl *RD = RT->getDecl(); 2753 2754 // Assume variable sized types are passed in memory. 2755 if (RD->hasFlexibleArrayMember()) 2756 return; 2757 2758 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 2759 2760 // Reset Lo class, this will be recomputed. 2761 Current = NoClass; 2762 2763 // If this is a C++ record, classify the bases first. 2764 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 2765 for (const auto &I : CXXRD->bases()) { 2766 assert(!I.isVirtual() && !I.getType()->isDependentType() && 2767 "Unexpected base class!"); 2768 const CXXRecordDecl *Base = 2769 cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); 2770 2771 // Classify this field. 2772 // 2773 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a 2774 // single eightbyte, each is classified separately. Each eightbyte gets 2775 // initialized to class NO_CLASS. 2776 Class FieldLo, FieldHi; 2777 uint64_t Offset = 2778 OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base)); 2779 classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg); 2780 Lo = merge(Lo, FieldLo); 2781 Hi = merge(Hi, FieldHi); 2782 if (Lo == Memory || Hi == Memory) { 2783 postMerge(Size, Lo, Hi); 2784 return; 2785 } 2786 } 2787 } 2788 2789 // Classify the fields one at a time, merging the results. 2790 unsigned idx = 0; 2791 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 2792 i != e; ++i, ++idx) { 2793 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 2794 bool BitField = i->isBitField(); 2795 2796 // Ignore padding bit-fields. 2797 if (BitField && i->isUnnamedBitfield()) 2798 continue; 2799 2800 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than 2801 // four eightbytes, or it contains unaligned fields, it has class MEMORY. 2802 // 2803 // The only case a 256-bit wide vector could be used is when the struct 2804 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 2805 // to work for sizes wider than 128, early check and fallback to memory. 2806 // 2807 if (Size > 128 && (Size != getContext().getTypeSize(i->getType()) || 2808 Size > getNativeVectorSizeForAVXABI(AVXLevel))) { 2809 Lo = Memory; 2810 postMerge(Size, Lo, Hi); 2811 return; 2812 } 2813 // Note, skip this test for bit-fields, see below. 2814 if (!BitField && Offset % getContext().getTypeAlign(i->getType())) { 2815 Lo = Memory; 2816 postMerge(Size, Lo, Hi); 2817 return; 2818 } 2819 2820 // Classify this field. 2821 // 2822 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate 2823 // exceeds a single eightbyte, each is classified 2824 // separately. Each eightbyte gets initialized to class 2825 // NO_CLASS. 2826 Class FieldLo, FieldHi; 2827 2828 // Bit-fields require special handling, they do not force the 2829 // structure to be passed in memory even if unaligned, and 2830 // therefore they can straddle an eightbyte. 2831 if (BitField) { 2832 assert(!i->isUnnamedBitfield()); 2833 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 2834 uint64_t Size = i->getBitWidthValue(getContext()); 2835 2836 uint64_t EB_Lo = Offset / 64; 2837 uint64_t EB_Hi = (Offset + Size - 1) / 64; 2838 2839 if (EB_Lo) { 2840 assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes."); 2841 FieldLo = NoClass; 2842 FieldHi = Integer; 2843 } else { 2844 FieldLo = Integer; 2845 FieldHi = EB_Hi ? Integer : NoClass; 2846 } 2847 } else 2848 classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg); 2849 Lo = merge(Lo, FieldLo); 2850 Hi = merge(Hi, FieldHi); 2851 if (Lo == Memory || Hi == Memory) 2852 break; 2853 } 2854 2855 postMerge(Size, Lo, Hi); 2856 } 2857 } 2858 2859 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const { 2860 // If this is a scalar LLVM value then assume LLVM will pass it in the right 2861 // place naturally. 2862 if (!isAggregateTypeForABI(Ty)) { 2863 // Treat an enum type as its underlying type. 2864 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2865 Ty = EnumTy->getDecl()->getIntegerType(); 2866 2867 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 2868 : ABIArgInfo::getDirect()); 2869 } 2870 2871 return getNaturalAlignIndirect(Ty); 2872 } 2873 2874 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const { 2875 if (const VectorType *VecTy = Ty->getAs<VectorType>()) { 2876 uint64_t Size = getContext().getTypeSize(VecTy); 2877 unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel); 2878 if (Size <= 64 || Size > LargestVector) 2879 return true; 2880 } 2881 2882 return false; 2883 } 2884 2885 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty, 2886 unsigned freeIntRegs) const { 2887 // If this is a scalar LLVM value then assume LLVM will pass it in the right 2888 // place naturally. 2889 // 2890 // This assumption is optimistic, as there could be free registers available 2891 // when we need to pass this argument in memory, and LLVM could try to pass 2892 // the argument in the free register. This does not seem to happen currently, 2893 // but this code would be much safer if we could mark the argument with 2894 // 'onstack'. See PR12193. 2895 if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) { 2896 // Treat an enum type as its underlying type. 2897 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2898 Ty = EnumTy->getDecl()->getIntegerType(); 2899 2900 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 2901 : ABIArgInfo::getDirect()); 2902 } 2903 2904 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 2905 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 2906 2907 // Compute the byval alignment. We specify the alignment of the byval in all 2908 // cases so that the mid-level optimizer knows the alignment of the byval. 2909 unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U); 2910 2911 // Attempt to avoid passing indirect results using byval when possible. This 2912 // is important for good codegen. 2913 // 2914 // We do this by coercing the value into a scalar type which the backend can 2915 // handle naturally (i.e., without using byval). 2916 // 2917 // For simplicity, we currently only do this when we have exhausted all of the 2918 // free integer registers. Doing this when there are free integer registers 2919 // would require more care, as we would have to ensure that the coerced value 2920 // did not claim the unused register. That would require either reording the 2921 // arguments to the function (so that any subsequent inreg values came first), 2922 // or only doing this optimization when there were no following arguments that 2923 // might be inreg. 2924 // 2925 // We currently expect it to be rare (particularly in well written code) for 2926 // arguments to be passed on the stack when there are still free integer 2927 // registers available (this would typically imply large structs being passed 2928 // by value), so this seems like a fair tradeoff for now. 2929 // 2930 // We can revisit this if the backend grows support for 'onstack' parameter 2931 // attributes. See PR12193. 2932 if (freeIntRegs == 0) { 2933 uint64_t Size = getContext().getTypeSize(Ty); 2934 2935 // If this type fits in an eightbyte, coerce it into the matching integral 2936 // type, which will end up on the stack (with alignment 8). 2937 if (Align == 8 && Size <= 64) 2938 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 2939 Size)); 2940 } 2941 2942 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align)); 2943 } 2944 2945 /// The ABI specifies that a value should be passed in a full vector XMM/YMM 2946 /// register. Pick an LLVM IR type that will be passed as a vector register. 2947 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const { 2948 // Wrapper structs/arrays that only contain vectors are passed just like 2949 // vectors; strip them off if present. 2950 if (const Type *InnerTy = isSingleElementStruct(Ty, getContext())) 2951 Ty = QualType(InnerTy, 0); 2952 2953 llvm::Type *IRType = CGT.ConvertType(Ty); 2954 if (isa<llvm::VectorType>(IRType) || 2955 IRType->getTypeID() == llvm::Type::FP128TyID) 2956 return IRType; 2957 2958 // We couldn't find the preferred IR vector type for 'Ty'. 2959 uint64_t Size = getContext().getTypeSize(Ty); 2960 assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!"); 2961 2962 // Return a LLVM IR vector type based on the size of 'Ty'. 2963 return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 2964 Size / 64); 2965 } 2966 2967 /// BitsContainNoUserData - Return true if the specified [start,end) bit range 2968 /// is known to either be off the end of the specified type or being in 2969 /// alignment padding. The user type specified is known to be at most 128 bits 2970 /// in size, and have passed through X86_64ABIInfo::classify with a successful 2971 /// classification that put one of the two halves in the INTEGER class. 2972 /// 2973 /// It is conservatively correct to return false. 2974 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit, 2975 unsigned EndBit, ASTContext &Context) { 2976 // If the bytes being queried are off the end of the type, there is no user 2977 // data hiding here. This handles analysis of builtins, vectors and other 2978 // types that don't contain interesting padding. 2979 unsigned TySize = (unsigned)Context.getTypeSize(Ty); 2980 if (TySize <= StartBit) 2981 return true; 2982 2983 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 2984 unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType()); 2985 unsigned NumElts = (unsigned)AT->getSize().getZExtValue(); 2986 2987 // Check each element to see if the element overlaps with the queried range. 2988 for (unsigned i = 0; i != NumElts; ++i) { 2989 // If the element is after the span we care about, then we're done.. 2990 unsigned EltOffset = i*EltSize; 2991 if (EltOffset >= EndBit) break; 2992 2993 unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0; 2994 if (!BitsContainNoUserData(AT->getElementType(), EltStart, 2995 EndBit-EltOffset, Context)) 2996 return false; 2997 } 2998 // If it overlaps no elements, then it is safe to process as padding. 2999 return true; 3000 } 3001 3002 if (const RecordType *RT = Ty->getAs<RecordType>()) { 3003 const RecordDecl *RD = RT->getDecl(); 3004 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 3005 3006 // If this is a C++ record, check the bases first. 3007 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 3008 for (const auto &I : CXXRD->bases()) { 3009 assert(!I.isVirtual() && !I.getType()->isDependentType() && 3010 "Unexpected base class!"); 3011 const CXXRecordDecl *Base = 3012 cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); 3013 3014 // If the base is after the span we care about, ignore it. 3015 unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base)); 3016 if (BaseOffset >= EndBit) continue; 3017 3018 unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0; 3019 if (!BitsContainNoUserData(I.getType(), BaseStart, 3020 EndBit-BaseOffset, Context)) 3021 return false; 3022 } 3023 } 3024 3025 // Verify that no field has data that overlaps the region of interest. Yes 3026 // this could be sped up a lot by being smarter about queried fields, 3027 // however we're only looking at structs up to 16 bytes, so we don't care 3028 // much. 3029 unsigned idx = 0; 3030 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 3031 i != e; ++i, ++idx) { 3032 unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx); 3033 3034 // If we found a field after the region we care about, then we're done. 3035 if (FieldOffset >= EndBit) break; 3036 3037 unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0; 3038 if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset, 3039 Context)) 3040 return false; 3041 } 3042 3043 // If nothing in this record overlapped the area of interest, then we're 3044 // clean. 3045 return true; 3046 } 3047 3048 return false; 3049 } 3050 3051 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a 3052 /// float member at the specified offset. For example, {int,{float}} has a 3053 /// float at offset 4. It is conservatively correct for this routine to return 3054 /// false. 3055 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset, 3056 const llvm::DataLayout &TD) { 3057 // Base case if we find a float. 3058 if (IROffset == 0 && IRType->isFloatTy()) 3059 return true; 3060 3061 // If this is a struct, recurse into the field at the specified offset. 3062 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 3063 const llvm::StructLayout *SL = TD.getStructLayout(STy); 3064 unsigned Elt = SL->getElementContainingOffset(IROffset); 3065 IROffset -= SL->getElementOffset(Elt); 3066 return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD); 3067 } 3068 3069 // If this is an array, recurse into the field at the specified offset. 3070 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 3071 llvm::Type *EltTy = ATy->getElementType(); 3072 unsigned EltSize = TD.getTypeAllocSize(EltTy); 3073 IROffset -= IROffset/EltSize*EltSize; 3074 return ContainsFloatAtOffset(EltTy, IROffset, TD); 3075 } 3076 3077 return false; 3078 } 3079 3080 3081 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the 3082 /// low 8 bytes of an XMM register, corresponding to the SSE class. 3083 llvm::Type *X86_64ABIInfo:: 3084 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3085 QualType SourceTy, unsigned SourceOffset) const { 3086 // The only three choices we have are either double, <2 x float>, or float. We 3087 // pass as float if the last 4 bytes is just padding. This happens for 3088 // structs that contain 3 floats. 3089 if (BitsContainNoUserData(SourceTy, SourceOffset*8+32, 3090 SourceOffset*8+64, getContext())) 3091 return llvm::Type::getFloatTy(getVMContext()); 3092 3093 // We want to pass as <2 x float> if the LLVM IR type contains a float at 3094 // offset+0 and offset+4. Walk the LLVM IR type to find out if this is the 3095 // case. 3096 if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) && 3097 ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout())) 3098 return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2); 3099 3100 return llvm::Type::getDoubleTy(getVMContext()); 3101 } 3102 3103 3104 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in 3105 /// an 8-byte GPR. This means that we either have a scalar or we are talking 3106 /// about the high or low part of an up-to-16-byte struct. This routine picks 3107 /// the best LLVM IR type to represent this, which may be i64 or may be anything 3108 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*, 3109 /// etc). 3110 /// 3111 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for 3112 /// the source type. IROffset is an offset in bytes into the LLVM IR type that 3113 /// the 8-byte value references. PrefType may be null. 3114 /// 3115 /// SourceTy is the source-level type for the entire argument. SourceOffset is 3116 /// an offset into this that we're processing (which is always either 0 or 8). 3117 /// 3118 llvm::Type *X86_64ABIInfo:: 3119 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3120 QualType SourceTy, unsigned SourceOffset) const { 3121 // If we're dealing with an un-offset LLVM IR type, then it means that we're 3122 // returning an 8-byte unit starting with it. See if we can safely use it. 3123 if (IROffset == 0) { 3124 // Pointers and int64's always fill the 8-byte unit. 3125 if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) || 3126 IRType->isIntegerTy(64)) 3127 return IRType; 3128 3129 // If we have a 1/2/4-byte integer, we can use it only if the rest of the 3130 // goodness in the source type is just tail padding. This is allowed to 3131 // kick in for struct {double,int} on the int, but not on 3132 // struct{double,int,int} because we wouldn't return the second int. We 3133 // have to do this analysis on the source type because we can't depend on 3134 // unions being lowered a specific way etc. 3135 if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) || 3136 IRType->isIntegerTy(32) || 3137 (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) { 3138 unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 : 3139 cast<llvm::IntegerType>(IRType)->getBitWidth(); 3140 3141 if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth, 3142 SourceOffset*8+64, getContext())) 3143 return IRType; 3144 } 3145 } 3146 3147 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 3148 // If this is a struct, recurse into the field at the specified offset. 3149 const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy); 3150 if (IROffset < SL->getSizeInBytes()) { 3151 unsigned FieldIdx = SL->getElementContainingOffset(IROffset); 3152 IROffset -= SL->getElementOffset(FieldIdx); 3153 3154 return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset, 3155 SourceTy, SourceOffset); 3156 } 3157 } 3158 3159 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 3160 llvm::Type *EltTy = ATy->getElementType(); 3161 unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy); 3162 unsigned EltOffset = IROffset/EltSize*EltSize; 3163 return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy, 3164 SourceOffset); 3165 } 3166 3167 // Okay, we don't have any better idea of what to pass, so we pass this in an 3168 // integer register that isn't too big to fit the rest of the struct. 3169 unsigned TySizeInBytes = 3170 (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity(); 3171 3172 assert(TySizeInBytes != SourceOffset && "Empty field?"); 3173 3174 // It is always safe to classify this as an integer type up to i64 that 3175 // isn't larger than the structure. 3176 return llvm::IntegerType::get(getVMContext(), 3177 std::min(TySizeInBytes-SourceOffset, 8U)*8); 3178 } 3179 3180 3181 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally 3182 /// be used as elements of a two register pair to pass or return, return a 3183 /// first class aggregate to represent them. For example, if the low part of 3184 /// a by-value argument should be passed as i32* and the high part as float, 3185 /// return {i32*, float}. 3186 static llvm::Type * 3187 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi, 3188 const llvm::DataLayout &TD) { 3189 // In order to correctly satisfy the ABI, we need to the high part to start 3190 // at offset 8. If the high and low parts we inferred are both 4-byte types 3191 // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have 3192 // the second element at offset 8. Check for this: 3193 unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo); 3194 unsigned HiAlign = TD.getABITypeAlignment(Hi); 3195 unsigned HiStart = llvm::alignTo(LoSize, HiAlign); 3196 assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!"); 3197 3198 // To handle this, we have to increase the size of the low part so that the 3199 // second element will start at an 8 byte offset. We can't increase the size 3200 // of the second element because it might make us access off the end of the 3201 // struct. 3202 if (HiStart != 8) { 3203 // There are usually two sorts of types the ABI generation code can produce 3204 // for the low part of a pair that aren't 8 bytes in size: float or 3205 // i8/i16/i32. This can also include pointers when they are 32-bit (X32 and 3206 // NaCl). 3207 // Promote these to a larger type. 3208 if (Lo->isFloatTy()) 3209 Lo = llvm::Type::getDoubleTy(Lo->getContext()); 3210 else { 3211 assert((Lo->isIntegerTy() || Lo->isPointerTy()) 3212 && "Invalid/unknown lo type"); 3213 Lo = llvm::Type::getInt64Ty(Lo->getContext()); 3214 } 3215 } 3216 3217 llvm::StructType *Result = llvm::StructType::get(Lo, Hi); 3218 3219 // Verify that the second element is at an 8-byte offset. 3220 assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 && 3221 "Invalid x86-64 argument pair!"); 3222 return Result; 3223 } 3224 3225 ABIArgInfo X86_64ABIInfo:: 3226 classifyReturnType(QualType RetTy) const { 3227 // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the 3228 // classification algorithm. 3229 X86_64ABIInfo::Class Lo, Hi; 3230 classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true); 3231 3232 // Check some invariants. 3233 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3234 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3235 3236 llvm::Type *ResType = nullptr; 3237 switch (Lo) { 3238 case NoClass: 3239 if (Hi == NoClass) 3240 return ABIArgInfo::getIgnore(); 3241 // If the low part is just padding, it takes no register, leave ResType 3242 // null. 3243 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3244 "Unknown missing lo part"); 3245 break; 3246 3247 case SSEUp: 3248 case X87Up: 3249 llvm_unreachable("Invalid classification for lo word."); 3250 3251 // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via 3252 // hidden argument. 3253 case Memory: 3254 return getIndirectReturnResult(RetTy); 3255 3256 // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next 3257 // available register of the sequence %rax, %rdx is used. 3258 case Integer: 3259 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3260 3261 // If we have a sign or zero extended integer, make sure to return Extend 3262 // so that the parameter gets the right LLVM IR attributes. 3263 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3264 // Treat an enum type as its underlying type. 3265 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 3266 RetTy = EnumTy->getDecl()->getIntegerType(); 3267 3268 if (RetTy->isIntegralOrEnumerationType() && 3269 RetTy->isPromotableIntegerType()) 3270 return ABIArgInfo::getExtend(RetTy); 3271 } 3272 break; 3273 3274 // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next 3275 // available SSE register of the sequence %xmm0, %xmm1 is used. 3276 case SSE: 3277 ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3278 break; 3279 3280 // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is 3281 // returned on the X87 stack in %st0 as 80-bit x87 number. 3282 case X87: 3283 ResType = llvm::Type::getX86_FP80Ty(getVMContext()); 3284 break; 3285 3286 // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real 3287 // part of the value is returned in %st0 and the imaginary part in 3288 // %st1. 3289 case ComplexX87: 3290 assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification."); 3291 ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()), 3292 llvm::Type::getX86_FP80Ty(getVMContext())); 3293 break; 3294 } 3295 3296 llvm::Type *HighPart = nullptr; 3297 switch (Hi) { 3298 // Memory was handled previously and X87 should 3299 // never occur as a hi class. 3300 case Memory: 3301 case X87: 3302 llvm_unreachable("Invalid classification for hi word."); 3303 3304 case ComplexX87: // Previously handled. 3305 case NoClass: 3306 break; 3307 3308 case Integer: 3309 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3310 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3311 return ABIArgInfo::getDirect(HighPart, 8); 3312 break; 3313 case SSE: 3314 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3315 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3316 return ABIArgInfo::getDirect(HighPart, 8); 3317 break; 3318 3319 // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte 3320 // is passed in the next available eightbyte chunk if the last used 3321 // vector register. 3322 // 3323 // SSEUP should always be preceded by SSE, just widen. 3324 case SSEUp: 3325 assert(Lo == SSE && "Unexpected SSEUp classification."); 3326 ResType = GetByteVectorType(RetTy); 3327 break; 3328 3329 // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is 3330 // returned together with the previous X87 value in %st0. 3331 case X87Up: 3332 // If X87Up is preceded by X87, we don't need to do 3333 // anything. However, in some cases with unions it may not be 3334 // preceded by X87. In such situations we follow gcc and pass the 3335 // extra bits in an SSE reg. 3336 if (Lo != X87) { 3337 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3338 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3339 return ABIArgInfo::getDirect(HighPart, 8); 3340 } 3341 break; 3342 } 3343 3344 // If a high part was specified, merge it together with the low part. It is 3345 // known to pass in the high eightbyte of the result. We do this by forming a 3346 // first class struct aggregate with the high and low part: {low, high} 3347 if (HighPart) 3348 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3349 3350 return ABIArgInfo::getDirect(ResType); 3351 } 3352 3353 ABIArgInfo X86_64ABIInfo::classifyArgumentType( 3354 QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE, 3355 bool isNamedArg) 3356 const 3357 { 3358 Ty = useFirstFieldIfTransparentUnion(Ty); 3359 3360 X86_64ABIInfo::Class Lo, Hi; 3361 classify(Ty, 0, Lo, Hi, isNamedArg); 3362 3363 // Check some invariants. 3364 // FIXME: Enforce these by construction. 3365 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3366 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3367 3368 neededInt = 0; 3369 neededSSE = 0; 3370 llvm::Type *ResType = nullptr; 3371 switch (Lo) { 3372 case NoClass: 3373 if (Hi == NoClass) 3374 return ABIArgInfo::getIgnore(); 3375 // If the low part is just padding, it takes no register, leave ResType 3376 // null. 3377 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3378 "Unknown missing lo part"); 3379 break; 3380 3381 // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument 3382 // on the stack. 3383 case Memory: 3384 3385 // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or 3386 // COMPLEX_X87, it is passed in memory. 3387 case X87: 3388 case ComplexX87: 3389 if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect) 3390 ++neededInt; 3391 return getIndirectResult(Ty, freeIntRegs); 3392 3393 case SSEUp: 3394 case X87Up: 3395 llvm_unreachable("Invalid classification for lo word."); 3396 3397 // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next 3398 // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8 3399 // and %r9 is used. 3400 case Integer: 3401 ++neededInt; 3402 3403 // Pick an 8-byte type based on the preferred type. 3404 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0); 3405 3406 // If we have a sign or zero extended integer, make sure to return Extend 3407 // so that the parameter gets the right LLVM IR attributes. 3408 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3409 // Treat an enum type as its underlying type. 3410 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3411 Ty = EnumTy->getDecl()->getIntegerType(); 3412 3413 if (Ty->isIntegralOrEnumerationType() && 3414 Ty->isPromotableIntegerType()) 3415 return ABIArgInfo::getExtend(Ty); 3416 } 3417 3418 break; 3419 3420 // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next 3421 // available SSE register is used, the registers are taken in the 3422 // order from %xmm0 to %xmm7. 3423 case SSE: { 3424 llvm::Type *IRType = CGT.ConvertType(Ty); 3425 ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0); 3426 ++neededSSE; 3427 break; 3428 } 3429 } 3430 3431 llvm::Type *HighPart = nullptr; 3432 switch (Hi) { 3433 // Memory was handled previously, ComplexX87 and X87 should 3434 // never occur as hi classes, and X87Up must be preceded by X87, 3435 // which is passed in memory. 3436 case Memory: 3437 case X87: 3438 case ComplexX87: 3439 llvm_unreachable("Invalid classification for hi word."); 3440 3441 case NoClass: break; 3442 3443 case Integer: 3444 ++neededInt; 3445 // Pick an 8-byte type based on the preferred type. 3446 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3447 3448 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3449 return ABIArgInfo::getDirect(HighPart, 8); 3450 break; 3451 3452 // X87Up generally doesn't occur here (long double is passed in 3453 // memory), except in situations involving unions. 3454 case X87Up: 3455 case SSE: 3456 HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3457 3458 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3459 return ABIArgInfo::getDirect(HighPart, 8); 3460 3461 ++neededSSE; 3462 break; 3463 3464 // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the 3465 // eightbyte is passed in the upper half of the last used SSE 3466 // register. This only happens when 128-bit vectors are passed. 3467 case SSEUp: 3468 assert(Lo == SSE && "Unexpected SSEUp classification"); 3469 ResType = GetByteVectorType(Ty); 3470 break; 3471 } 3472 3473 // If a high part was specified, merge it together with the low part. It is 3474 // known to pass in the high eightbyte of the result. We do this by forming a 3475 // first class struct aggregate with the high and low part: {low, high} 3476 if (HighPart) 3477 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3478 3479 return ABIArgInfo::getDirect(ResType); 3480 } 3481 3482 ABIArgInfo 3483 X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 3484 unsigned &NeededSSE) const { 3485 auto RT = Ty->getAs<RecordType>(); 3486 assert(RT && "classifyRegCallStructType only valid with struct types"); 3487 3488 if (RT->getDecl()->hasFlexibleArrayMember()) 3489 return getIndirectReturnResult(Ty); 3490 3491 // Sum up bases 3492 if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 3493 if (CXXRD->isDynamicClass()) { 3494 NeededInt = NeededSSE = 0; 3495 return getIndirectReturnResult(Ty); 3496 } 3497 3498 for (const auto &I : CXXRD->bases()) 3499 if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE) 3500 .isIndirect()) { 3501 NeededInt = NeededSSE = 0; 3502 return getIndirectReturnResult(Ty); 3503 } 3504 } 3505 3506 // Sum up members 3507 for (const auto *FD : RT->getDecl()->fields()) { 3508 if (FD->getType()->isRecordType() && !FD->getType()->isUnionType()) { 3509 if (classifyRegCallStructTypeImpl(FD->getType(), NeededInt, NeededSSE) 3510 .isIndirect()) { 3511 NeededInt = NeededSSE = 0; 3512 return getIndirectReturnResult(Ty); 3513 } 3514 } else { 3515 unsigned LocalNeededInt, LocalNeededSSE; 3516 if (classifyArgumentType(FD->getType(), UINT_MAX, LocalNeededInt, 3517 LocalNeededSSE, true) 3518 .isIndirect()) { 3519 NeededInt = NeededSSE = 0; 3520 return getIndirectReturnResult(Ty); 3521 } 3522 NeededInt += LocalNeededInt; 3523 NeededSSE += LocalNeededSSE; 3524 } 3525 } 3526 3527 return ABIArgInfo::getDirect(); 3528 } 3529 3530 ABIArgInfo X86_64ABIInfo::classifyRegCallStructType(QualType Ty, 3531 unsigned &NeededInt, 3532 unsigned &NeededSSE) const { 3533 3534 NeededInt = 0; 3535 NeededSSE = 0; 3536 3537 return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE); 3538 } 3539 3540 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 3541 3542 const unsigned CallingConv = FI.getCallingConvention(); 3543 // It is possible to force Win64 calling convention on any x86_64 target by 3544 // using __attribute__((ms_abi)). In such case to correctly emit Win64 3545 // compatible code delegate this call to WinX86_64ABIInfo::computeInfo. 3546 if (CallingConv == llvm::CallingConv::Win64) { 3547 WinX86_64ABIInfo Win64ABIInfo(CGT); 3548 Win64ABIInfo.computeInfo(FI); 3549 return; 3550 } 3551 3552 bool IsRegCall = CallingConv == llvm::CallingConv::X86_RegCall; 3553 3554 // Keep track of the number of assigned registers. 3555 unsigned FreeIntRegs = IsRegCall ? 11 : 6; 3556 unsigned FreeSSERegs = IsRegCall ? 16 : 8; 3557 unsigned NeededInt, NeededSSE; 3558 3559 if (!::classifyReturnType(getCXXABI(), FI, *this)) { 3560 if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() && 3561 !FI.getReturnType()->getTypePtr()->isUnionType()) { 3562 FI.getReturnInfo() = 3563 classifyRegCallStructType(FI.getReturnType(), NeededInt, NeededSSE); 3564 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 3565 FreeIntRegs -= NeededInt; 3566 FreeSSERegs -= NeededSSE; 3567 } else { 3568 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 3569 } 3570 } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>()) { 3571 // Complex Long Double Type is passed in Memory when Regcall 3572 // calling convention is used. 3573 const ComplexType *CT = FI.getReturnType()->getAs<ComplexType>(); 3574 if (getContext().getCanonicalType(CT->getElementType()) == 3575 getContext().LongDoubleTy) 3576 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 3577 } else 3578 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 3579 } 3580 3581 // If the return value is indirect, then the hidden argument is consuming one 3582 // integer register. 3583 if (FI.getReturnInfo().isIndirect()) 3584 --FreeIntRegs; 3585 3586 // The chain argument effectively gives us another free register. 3587 if (FI.isChainCall()) 3588 ++FreeIntRegs; 3589 3590 unsigned NumRequiredArgs = FI.getNumRequiredArgs(); 3591 // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers 3592 // get assigned (in left-to-right order) for passing as follows... 3593 unsigned ArgNo = 0; 3594 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 3595 it != ie; ++it, ++ArgNo) { 3596 bool IsNamedArg = ArgNo < NumRequiredArgs; 3597 3598 if (IsRegCall && it->type->isStructureOrClassType()) 3599 it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE); 3600 else 3601 it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt, 3602 NeededSSE, IsNamedArg); 3603 3604 // AMD64-ABI 3.2.3p3: If there are no registers available for any 3605 // eightbyte of an argument, the whole argument is passed on the 3606 // stack. If registers have already been assigned for some 3607 // eightbytes of such an argument, the assignments get reverted. 3608 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 3609 FreeIntRegs -= NeededInt; 3610 FreeSSERegs -= NeededSSE; 3611 } else { 3612 it->info = getIndirectResult(it->type, FreeIntRegs); 3613 } 3614 } 3615 } 3616 3617 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF, 3618 Address VAListAddr, QualType Ty) { 3619 Address overflow_arg_area_p = CGF.Builder.CreateStructGEP( 3620 VAListAddr, 2, CharUnits::fromQuantity(8), "overflow_arg_area_p"); 3621 llvm::Value *overflow_arg_area = 3622 CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area"); 3623 3624 // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16 3625 // byte boundary if alignment needed by type exceeds 8 byte boundary. 3626 // It isn't stated explicitly in the standard, but in practice we use 3627 // alignment greater than 16 where necessary. 3628 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 3629 if (Align > CharUnits::fromQuantity(8)) { 3630 overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area, 3631 Align); 3632 } 3633 3634 // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area. 3635 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 3636 llvm::Value *Res = 3637 CGF.Builder.CreateBitCast(overflow_arg_area, 3638 llvm::PointerType::getUnqual(LTy)); 3639 3640 // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to: 3641 // l->overflow_arg_area + sizeof(type). 3642 // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to 3643 // an 8 byte boundary. 3644 3645 uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8; 3646 llvm::Value *Offset = 3647 llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7); 3648 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset, 3649 "overflow_arg_area.next"); 3650 CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p); 3651 3652 // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type. 3653 return Address(Res, Align); 3654 } 3655 3656 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 3657 QualType Ty) const { 3658 // Assume that va_list type is correct; should be pointer to LLVM type: 3659 // struct { 3660 // i32 gp_offset; 3661 // i32 fp_offset; 3662 // i8* overflow_arg_area; 3663 // i8* reg_save_area; 3664 // }; 3665 unsigned neededInt, neededSSE; 3666 3667 Ty = getContext().getCanonicalType(Ty); 3668 ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE, 3669 /*isNamedArg*/false); 3670 3671 // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed 3672 // in the registers. If not go to step 7. 3673 if (!neededInt && !neededSSE) 3674 return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 3675 3676 // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of 3677 // general purpose registers needed to pass type and num_fp to hold 3678 // the number of floating point registers needed. 3679 3680 // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into 3681 // registers. In the case: l->gp_offset > 48 - num_gp * 8 or 3682 // l->fp_offset > 304 - num_fp * 16 go to step 7. 3683 // 3684 // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of 3685 // register save space). 3686 3687 llvm::Value *InRegs = nullptr; 3688 Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid(); 3689 llvm::Value *gp_offset = nullptr, *fp_offset = nullptr; 3690 if (neededInt) { 3691 gp_offset_p = 3692 CGF.Builder.CreateStructGEP(VAListAddr, 0, CharUnits::Zero(), 3693 "gp_offset_p"); 3694 gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset"); 3695 InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8); 3696 InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp"); 3697 } 3698 3699 if (neededSSE) { 3700 fp_offset_p = 3701 CGF.Builder.CreateStructGEP(VAListAddr, 1, CharUnits::fromQuantity(4), 3702 "fp_offset_p"); 3703 fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset"); 3704 llvm::Value *FitsInFP = 3705 llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16); 3706 FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp"); 3707 InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP; 3708 } 3709 3710 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 3711 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 3712 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 3713 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 3714 3715 // Emit code to load the value if it was passed in registers. 3716 3717 CGF.EmitBlock(InRegBlock); 3718 3719 // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with 3720 // an offset of l->gp_offset and/or l->fp_offset. This may require 3721 // copying to a temporary location in case the parameter is passed 3722 // in different register classes or requires an alignment greater 3723 // than 8 for general purpose registers and 16 for XMM registers. 3724 // 3725 // FIXME: This really results in shameful code when we end up needing to 3726 // collect arguments from different places; often what should result in a 3727 // simple assembling of a structure from scattered addresses has many more 3728 // loads than necessary. Can we clean this up? 3729 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 3730 llvm::Value *RegSaveArea = CGF.Builder.CreateLoad( 3731 CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(16)), 3732 "reg_save_area"); 3733 3734 Address RegAddr = Address::invalid(); 3735 if (neededInt && neededSSE) { 3736 // FIXME: Cleanup. 3737 assert(AI.isDirect() && "Unexpected ABI info for mixed regs"); 3738 llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType()); 3739 Address Tmp = CGF.CreateMemTemp(Ty); 3740 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 3741 assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs"); 3742 llvm::Type *TyLo = ST->getElementType(0); 3743 llvm::Type *TyHi = ST->getElementType(1); 3744 assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) && 3745 "Unexpected ABI info for mixed regs"); 3746 llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo); 3747 llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi); 3748 llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegSaveArea, gp_offset); 3749 llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegSaveArea, fp_offset); 3750 llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr; 3751 llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr; 3752 3753 // Copy the first element. 3754 // FIXME: Our choice of alignment here and below is probably pessimistic. 3755 llvm::Value *V = CGF.Builder.CreateAlignedLoad( 3756 TyLo, CGF.Builder.CreateBitCast(RegLoAddr, PTyLo), 3757 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyLo))); 3758 CGF.Builder.CreateStore(V, 3759 CGF.Builder.CreateStructGEP(Tmp, 0, CharUnits::Zero())); 3760 3761 // Copy the second element. 3762 V = CGF.Builder.CreateAlignedLoad( 3763 TyHi, CGF.Builder.CreateBitCast(RegHiAddr, PTyHi), 3764 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyHi))); 3765 CharUnits Offset = CharUnits::fromQuantity( 3766 getDataLayout().getStructLayout(ST)->getElementOffset(1)); 3767 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1, Offset)); 3768 3769 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 3770 } else if (neededInt) { 3771 RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, gp_offset), 3772 CharUnits::fromQuantity(8)); 3773 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 3774 3775 // Copy to a temporary if necessary to ensure the appropriate alignment. 3776 std::pair<CharUnits, CharUnits> SizeAlign = 3777 getContext().getTypeInfoInChars(Ty); 3778 uint64_t TySize = SizeAlign.first.getQuantity(); 3779 CharUnits TyAlign = SizeAlign.second; 3780 3781 // Copy into a temporary if the type is more aligned than the 3782 // register save area. 3783 if (TyAlign.getQuantity() > 8) { 3784 Address Tmp = CGF.CreateMemTemp(Ty); 3785 CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false); 3786 RegAddr = Tmp; 3787 } 3788 3789 } else if (neededSSE == 1) { 3790 RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset), 3791 CharUnits::fromQuantity(16)); 3792 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 3793 } else { 3794 assert(neededSSE == 2 && "Invalid number of needed registers!"); 3795 // SSE registers are spaced 16 bytes apart in the register save 3796 // area, we need to collect the two eightbytes together. 3797 // The ABI isn't explicit about this, but it seems reasonable 3798 // to assume that the slots are 16-byte aligned, since the stack is 3799 // naturally 16-byte aligned and the prologue is expected to store 3800 // all the SSE registers to the RSA. 3801 Address RegAddrLo = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset), 3802 CharUnits::fromQuantity(16)); 3803 Address RegAddrHi = 3804 CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo, 3805 CharUnits::fromQuantity(16)); 3806 llvm::Type *ST = AI.canHaveCoerceToType() 3807 ? AI.getCoerceToType() 3808 : llvm::StructType::get(CGF.DoubleTy, CGF.DoubleTy); 3809 llvm::Value *V; 3810 Address Tmp = CGF.CreateMemTemp(Ty); 3811 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 3812 V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast( 3813 RegAddrLo, ST->getStructElementType(0))); 3814 CGF.Builder.CreateStore(V, 3815 CGF.Builder.CreateStructGEP(Tmp, 0, CharUnits::Zero())); 3816 V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast( 3817 RegAddrHi, ST->getStructElementType(1))); 3818 CGF.Builder.CreateStore(V, 3819 CGF.Builder.CreateStructGEP(Tmp, 1, CharUnits::fromQuantity(8))); 3820 3821 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 3822 } 3823 3824 // AMD64-ABI 3.5.7p5: Step 5. Set: 3825 // l->gp_offset = l->gp_offset + num_gp * 8 3826 // l->fp_offset = l->fp_offset + num_fp * 16. 3827 if (neededInt) { 3828 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8); 3829 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset), 3830 gp_offset_p); 3831 } 3832 if (neededSSE) { 3833 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16); 3834 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset), 3835 fp_offset_p); 3836 } 3837 CGF.EmitBranch(ContBlock); 3838 3839 // Emit code to load the value if it was passed in memory. 3840 3841 CGF.EmitBlock(InMemBlock); 3842 Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 3843 3844 // Return the appropriate result. 3845 3846 CGF.EmitBlock(ContBlock); 3847 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock, 3848 "vaarg.addr"); 3849 return ResAddr; 3850 } 3851 3852 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 3853 QualType Ty) const { 3854 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 3855 CGF.getContext().getTypeInfoInChars(Ty), 3856 CharUnits::fromQuantity(8), 3857 /*allowHigherAlign*/ false); 3858 } 3859 3860 ABIArgInfo 3861 WinX86_64ABIInfo::reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs, 3862 const ABIArgInfo ¤t) const { 3863 // Assumes vectorCall calling convention. 3864 const Type *Base = nullptr; 3865 uint64_t NumElts = 0; 3866 3867 if (!Ty->isBuiltinType() && !Ty->isVectorType() && 3868 isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) { 3869 FreeSSERegs -= NumElts; 3870 return getDirectX86Hva(); 3871 } 3872 return current; 3873 } 3874 3875 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs, 3876 bool IsReturnType, bool IsVectorCall, 3877 bool IsRegCall) const { 3878 3879 if (Ty->isVoidType()) 3880 return ABIArgInfo::getIgnore(); 3881 3882 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3883 Ty = EnumTy->getDecl()->getIntegerType(); 3884 3885 TypeInfo Info = getContext().getTypeInfo(Ty); 3886 uint64_t Width = Info.Width; 3887 CharUnits Align = getContext().toCharUnitsFromBits(Info.Align); 3888 3889 const RecordType *RT = Ty->getAs<RecordType>(); 3890 if (RT) { 3891 if (!IsReturnType) { 3892 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI())) 3893 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 3894 } 3895 3896 if (RT->getDecl()->hasFlexibleArrayMember()) 3897 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 3898 3899 } 3900 3901 const Type *Base = nullptr; 3902 uint64_t NumElts = 0; 3903 // vectorcall adds the concept of a homogenous vector aggregate, similar to 3904 // other targets. 3905 if ((IsVectorCall || IsRegCall) && 3906 isHomogeneousAggregate(Ty, Base, NumElts)) { 3907 if (IsRegCall) { 3908 if (FreeSSERegs >= NumElts) { 3909 FreeSSERegs -= NumElts; 3910 if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType()) 3911 return ABIArgInfo::getDirect(); 3912 return ABIArgInfo::getExpand(); 3913 } 3914 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3915 } else if (IsVectorCall) { 3916 if (FreeSSERegs >= NumElts && 3917 (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) { 3918 FreeSSERegs -= NumElts; 3919 return ABIArgInfo::getDirect(); 3920 } else if (IsReturnType) { 3921 return ABIArgInfo::getExpand(); 3922 } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) { 3923 // HVAs are delayed and reclassified in the 2nd step. 3924 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3925 } 3926 } 3927 } 3928 3929 if (Ty->isMemberPointerType()) { 3930 // If the member pointer is represented by an LLVM int or ptr, pass it 3931 // directly. 3932 llvm::Type *LLTy = CGT.ConvertType(Ty); 3933 if (LLTy->isPointerTy() || LLTy->isIntegerTy()) 3934 return ABIArgInfo::getDirect(); 3935 } 3936 3937 if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) { 3938 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 3939 // not 1, 2, 4, or 8 bytes, must be passed by reference." 3940 if (Width > 64 || !llvm::isPowerOf2_64(Width)) 3941 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 3942 3943 // Otherwise, coerce it to a small integer. 3944 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width)); 3945 } 3946 3947 // Bool type is always extended to the ABI, other builtin types are not 3948 // extended. 3949 const BuiltinType *BT = Ty->getAs<BuiltinType>(); 3950 if (BT && BT->getKind() == BuiltinType::Bool) 3951 return ABIArgInfo::getExtend(Ty); 3952 3953 // Mingw64 GCC uses the old 80 bit extended precision floating point unit. It 3954 // passes them indirectly through memory. 3955 if (IsMingw64 && BT && BT->getKind() == BuiltinType::LongDouble) { 3956 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 3957 if (LDF == &llvm::APFloat::x87DoubleExtended()) 3958 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3959 } 3960 3961 return ABIArgInfo::getDirect(); 3962 } 3963 3964 void WinX86_64ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI, 3965 unsigned FreeSSERegs, 3966 bool IsVectorCall, 3967 bool IsRegCall) const { 3968 unsigned Count = 0; 3969 for (auto &I : FI.arguments()) { 3970 // Vectorcall in x64 only permits the first 6 arguments to be passed 3971 // as XMM/YMM registers. 3972 if (Count < VectorcallMaxParamNumAsReg) 3973 I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall); 3974 else { 3975 // Since these cannot be passed in registers, pretend no registers 3976 // are left. 3977 unsigned ZeroSSERegsAvail = 0; 3978 I.info = classify(I.type, /*FreeSSERegs=*/ZeroSSERegsAvail, false, 3979 IsVectorCall, IsRegCall); 3980 } 3981 ++Count; 3982 } 3983 3984 for (auto &I : FI.arguments()) { 3985 I.info = reclassifyHvaArgType(I.type, FreeSSERegs, I.info); 3986 } 3987 } 3988 3989 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 3990 bool IsVectorCall = 3991 FI.getCallingConvention() == llvm::CallingConv::X86_VectorCall; 3992 bool IsRegCall = FI.getCallingConvention() == llvm::CallingConv::X86_RegCall; 3993 3994 unsigned FreeSSERegs = 0; 3995 if (IsVectorCall) { 3996 // We can use up to 4 SSE return registers with vectorcall. 3997 FreeSSERegs = 4; 3998 } else if (IsRegCall) { 3999 // RegCall gives us 16 SSE registers. 4000 FreeSSERegs = 16; 4001 } 4002 4003 if (!getCXXABI().classifyReturnType(FI)) 4004 FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true, 4005 IsVectorCall, IsRegCall); 4006 4007 if (IsVectorCall) { 4008 // We can use up to 6 SSE register parameters with vectorcall. 4009 FreeSSERegs = 6; 4010 } else if (IsRegCall) { 4011 // RegCall gives us 16 SSE registers, we can reuse the return registers. 4012 FreeSSERegs = 16; 4013 } 4014 4015 if (IsVectorCall) { 4016 computeVectorCallArgs(FI, FreeSSERegs, IsVectorCall, IsRegCall); 4017 } else { 4018 for (auto &I : FI.arguments()) 4019 I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall); 4020 } 4021 4022 } 4023 4024 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4025 QualType Ty) const { 4026 4027 bool IsIndirect = false; 4028 4029 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4030 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4031 if (isAggregateTypeForABI(Ty) || Ty->isMemberPointerType()) { 4032 uint64_t Width = getContext().getTypeSize(Ty); 4033 IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width); 4034 } 4035 4036 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 4037 CGF.getContext().getTypeInfoInChars(Ty), 4038 CharUnits::fromQuantity(8), 4039 /*allowHigherAlign*/ false); 4040 } 4041 4042 // PowerPC-32 4043 namespace { 4044 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information. 4045 class PPC32_SVR4_ABIInfo : public DefaultABIInfo { 4046 bool IsSoftFloatABI; 4047 4048 CharUnits getParamTypeAlignment(QualType Ty) const; 4049 4050 public: 4051 PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI) 4052 : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI) {} 4053 4054 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4055 QualType Ty) const override; 4056 }; 4057 4058 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo { 4059 public: 4060 PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI) 4061 : TargetCodeGenInfo(new PPC32_SVR4_ABIInfo(CGT, SoftFloatABI)) {} 4062 4063 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4064 // This is recovered from gcc output. 4065 return 1; // r1 is the dedicated stack pointer 4066 } 4067 4068 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4069 llvm::Value *Address) const override; 4070 }; 4071 } 4072 4073 CharUnits PPC32_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 4074 // Complex types are passed just like their elements 4075 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 4076 Ty = CTy->getElementType(); 4077 4078 if (Ty->isVectorType()) 4079 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 4080 : 4); 4081 4082 // For single-element float/vector structs, we consider the whole type 4083 // to have the same alignment requirements as its single element. 4084 const Type *AlignTy = nullptr; 4085 if (const Type *EltType = isSingleElementStruct(Ty, getContext())) { 4086 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 4087 if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) || 4088 (BT && BT->isFloatingPoint())) 4089 AlignTy = EltType; 4090 } 4091 4092 if (AlignTy) 4093 return CharUnits::fromQuantity(AlignTy->isVectorType() ? 16 : 4); 4094 return CharUnits::fromQuantity(4); 4095 } 4096 4097 // TODO: this implementation is now likely redundant with 4098 // DefaultABIInfo::EmitVAArg. 4099 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList, 4100 QualType Ty) const { 4101 if (getTarget().getTriple().isOSDarwin()) { 4102 auto TI = getContext().getTypeInfoInChars(Ty); 4103 TI.second = getParamTypeAlignment(Ty); 4104 4105 CharUnits SlotSize = CharUnits::fromQuantity(4); 4106 return emitVoidPtrVAArg(CGF, VAList, Ty, 4107 classifyArgumentType(Ty).isIndirect(), TI, SlotSize, 4108 /*AllowHigherAlign=*/true); 4109 } 4110 4111 const unsigned OverflowLimit = 8; 4112 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 4113 // TODO: Implement this. For now ignore. 4114 (void)CTy; 4115 return Address::invalid(); // FIXME? 4116 } 4117 4118 // struct __va_list_tag { 4119 // unsigned char gpr; 4120 // unsigned char fpr; 4121 // unsigned short reserved; 4122 // void *overflow_arg_area; 4123 // void *reg_save_area; 4124 // }; 4125 4126 bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64; 4127 bool isInt = 4128 Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType(); 4129 bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64; 4130 4131 // All aggregates are passed indirectly? That doesn't seem consistent 4132 // with the argument-lowering code. 4133 bool isIndirect = Ty->isAggregateType(); 4134 4135 CGBuilderTy &Builder = CGF.Builder; 4136 4137 // The calling convention either uses 1-2 GPRs or 1 FPR. 4138 Address NumRegsAddr = Address::invalid(); 4139 if (isInt || IsSoftFloatABI) { 4140 NumRegsAddr = Builder.CreateStructGEP(VAList, 0, CharUnits::Zero(), "gpr"); 4141 } else { 4142 NumRegsAddr = Builder.CreateStructGEP(VAList, 1, CharUnits::One(), "fpr"); 4143 } 4144 4145 llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs"); 4146 4147 // "Align" the register count when TY is i64. 4148 if (isI64 || (isF64 && IsSoftFloatABI)) { 4149 NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1)); 4150 NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U)); 4151 } 4152 4153 llvm::Value *CC = 4154 Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond"); 4155 4156 llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs"); 4157 llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow"); 4158 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 4159 4160 Builder.CreateCondBr(CC, UsingRegs, UsingOverflow); 4161 4162 llvm::Type *DirectTy = CGF.ConvertType(Ty); 4163 if (isIndirect) DirectTy = DirectTy->getPointerTo(0); 4164 4165 // Case 1: consume registers. 4166 Address RegAddr = Address::invalid(); 4167 { 4168 CGF.EmitBlock(UsingRegs); 4169 4170 Address RegSaveAreaPtr = 4171 Builder.CreateStructGEP(VAList, 4, CharUnits::fromQuantity(8)); 4172 RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr), 4173 CharUnits::fromQuantity(8)); 4174 assert(RegAddr.getElementType() == CGF.Int8Ty); 4175 4176 // Floating-point registers start after the general-purpose registers. 4177 if (!(isInt || IsSoftFloatABI)) { 4178 RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr, 4179 CharUnits::fromQuantity(32)); 4180 } 4181 4182 // Get the address of the saved value by scaling the number of 4183 // registers we've used by the number of 4184 CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8); 4185 llvm::Value *RegOffset = 4186 Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity())); 4187 RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty, 4188 RegAddr.getPointer(), RegOffset), 4189 RegAddr.getAlignment().alignmentOfArrayElement(RegSize)); 4190 RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy); 4191 4192 // Increase the used-register count. 4193 NumRegs = 4194 Builder.CreateAdd(NumRegs, 4195 Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1)); 4196 Builder.CreateStore(NumRegs, NumRegsAddr); 4197 4198 CGF.EmitBranch(Cont); 4199 } 4200 4201 // Case 2: consume space in the overflow area. 4202 Address MemAddr = Address::invalid(); 4203 { 4204 CGF.EmitBlock(UsingOverflow); 4205 4206 Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr); 4207 4208 // Everything in the overflow area is rounded up to a size of at least 4. 4209 CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4); 4210 4211 CharUnits Size; 4212 if (!isIndirect) { 4213 auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty); 4214 Size = TypeInfo.first.alignTo(OverflowAreaAlign); 4215 } else { 4216 Size = CGF.getPointerSize(); 4217 } 4218 4219 Address OverflowAreaAddr = 4220 Builder.CreateStructGEP(VAList, 3, CharUnits::fromQuantity(4)); 4221 Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"), 4222 OverflowAreaAlign); 4223 // Round up address of argument to alignment 4224 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 4225 if (Align > OverflowAreaAlign) { 4226 llvm::Value *Ptr = OverflowArea.getPointer(); 4227 OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align), 4228 Align); 4229 } 4230 4231 MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy); 4232 4233 // Increase the overflow area. 4234 OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size); 4235 Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr); 4236 CGF.EmitBranch(Cont); 4237 } 4238 4239 CGF.EmitBlock(Cont); 4240 4241 // Merge the cases with a phi. 4242 Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow, 4243 "vaarg.addr"); 4244 4245 // Load the pointer if the argument was passed indirectly. 4246 if (isIndirect) { 4247 Result = Address(Builder.CreateLoad(Result, "aggr"), 4248 getContext().getTypeAlignInChars(Ty)); 4249 } 4250 4251 return Result; 4252 } 4253 4254 bool 4255 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4256 llvm::Value *Address) const { 4257 // This is calculated from the LLVM and GCC tables and verified 4258 // against gcc output. AFAIK all ABIs use the same encoding. 4259 4260 CodeGen::CGBuilderTy &Builder = CGF.Builder; 4261 4262 llvm::IntegerType *i8 = CGF.Int8Ty; 4263 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 4264 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 4265 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 4266 4267 // 0-31: r0-31, the 4-byte general-purpose registers 4268 AssignToArrayRange(Builder, Address, Four8, 0, 31); 4269 4270 // 32-63: fp0-31, the 8-byte floating-point registers 4271 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 4272 4273 // 64-76 are various 4-byte special-purpose registers: 4274 // 64: mq 4275 // 65: lr 4276 // 66: ctr 4277 // 67: ap 4278 // 68-75 cr0-7 4279 // 76: xer 4280 AssignToArrayRange(Builder, Address, Four8, 64, 76); 4281 4282 // 77-108: v0-31, the 16-byte vector registers 4283 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 4284 4285 // 109: vrsave 4286 // 110: vscr 4287 // 111: spe_acc 4288 // 112: spefscr 4289 // 113: sfp 4290 AssignToArrayRange(Builder, Address, Four8, 109, 113); 4291 4292 return false; 4293 } 4294 4295 // PowerPC-64 4296 4297 namespace { 4298 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information. 4299 class PPC64_SVR4_ABIInfo : public SwiftABIInfo { 4300 public: 4301 enum ABIKind { 4302 ELFv1 = 0, 4303 ELFv2 4304 }; 4305 4306 private: 4307 static const unsigned GPRBits = 64; 4308 ABIKind Kind; 4309 bool HasQPX; 4310 bool IsSoftFloatABI; 4311 4312 // A vector of float or double will be promoted to <4 x f32> or <4 x f64> and 4313 // will be passed in a QPX register. 4314 bool IsQPXVectorTy(const Type *Ty) const { 4315 if (!HasQPX) 4316 return false; 4317 4318 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4319 unsigned NumElements = VT->getNumElements(); 4320 if (NumElements == 1) 4321 return false; 4322 4323 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) { 4324 if (getContext().getTypeSize(Ty) <= 256) 4325 return true; 4326 } else if (VT->getElementType()-> 4327 isSpecificBuiltinType(BuiltinType::Float)) { 4328 if (getContext().getTypeSize(Ty) <= 128) 4329 return true; 4330 } 4331 } 4332 4333 return false; 4334 } 4335 4336 bool IsQPXVectorTy(QualType Ty) const { 4337 return IsQPXVectorTy(Ty.getTypePtr()); 4338 } 4339 4340 public: 4341 PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, bool HasQPX, 4342 bool SoftFloatABI) 4343 : SwiftABIInfo(CGT), Kind(Kind), HasQPX(HasQPX), 4344 IsSoftFloatABI(SoftFloatABI) {} 4345 4346 bool isPromotableTypeForABI(QualType Ty) const; 4347 CharUnits getParamTypeAlignment(QualType Ty) const; 4348 4349 ABIArgInfo classifyReturnType(QualType RetTy) const; 4350 ABIArgInfo classifyArgumentType(QualType Ty) const; 4351 4352 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 4353 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 4354 uint64_t Members) const override; 4355 4356 // TODO: We can add more logic to computeInfo to improve performance. 4357 // Example: For aggregate arguments that fit in a register, we could 4358 // use getDirectInReg (as is done below for structs containing a single 4359 // floating-point value) to avoid pushing them to memory on function 4360 // entry. This would require changing the logic in PPCISelLowering 4361 // when lowering the parameters in the caller and args in the callee. 4362 void computeInfo(CGFunctionInfo &FI) const override { 4363 if (!getCXXABI().classifyReturnType(FI)) 4364 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4365 for (auto &I : FI.arguments()) { 4366 // We rely on the default argument classification for the most part. 4367 // One exception: An aggregate containing a single floating-point 4368 // or vector item must be passed in a register if one is available. 4369 const Type *T = isSingleElementStruct(I.type, getContext()); 4370 if (T) { 4371 const BuiltinType *BT = T->getAs<BuiltinType>(); 4372 if (IsQPXVectorTy(T) || 4373 (T->isVectorType() && getContext().getTypeSize(T) == 128) || 4374 (BT && BT->isFloatingPoint())) { 4375 QualType QT(T, 0); 4376 I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT)); 4377 continue; 4378 } 4379 } 4380 I.info = classifyArgumentType(I.type); 4381 } 4382 } 4383 4384 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4385 QualType Ty) const override; 4386 4387 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 4388 bool asReturnValue) const override { 4389 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 4390 } 4391 4392 bool isSwiftErrorInRegister() const override { 4393 return false; 4394 } 4395 }; 4396 4397 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo { 4398 4399 public: 4400 PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT, 4401 PPC64_SVR4_ABIInfo::ABIKind Kind, bool HasQPX, 4402 bool SoftFloatABI) 4403 : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT, Kind, HasQPX, 4404 SoftFloatABI)) {} 4405 4406 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4407 // This is recovered from gcc output. 4408 return 1; // r1 is the dedicated stack pointer 4409 } 4410 4411 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4412 llvm::Value *Address) const override; 4413 }; 4414 4415 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo { 4416 public: 4417 PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {} 4418 4419 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4420 // This is recovered from gcc output. 4421 return 1; // r1 is the dedicated stack pointer 4422 } 4423 4424 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4425 llvm::Value *Address) const override; 4426 }; 4427 4428 } 4429 4430 // Return true if the ABI requires Ty to be passed sign- or zero- 4431 // extended to 64 bits. 4432 bool 4433 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const { 4434 // Treat an enum type as its underlying type. 4435 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4436 Ty = EnumTy->getDecl()->getIntegerType(); 4437 4438 // Promotable integer types are required to be promoted by the ABI. 4439 if (Ty->isPromotableIntegerType()) 4440 return true; 4441 4442 // In addition to the usual promotable integer types, we also need to 4443 // extend all 32-bit types, since the ABI requires promotion to 64 bits. 4444 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 4445 switch (BT->getKind()) { 4446 case BuiltinType::Int: 4447 case BuiltinType::UInt: 4448 return true; 4449 default: 4450 break; 4451 } 4452 4453 return false; 4454 } 4455 4456 /// isAlignedParamType - Determine whether a type requires 16-byte or 4457 /// higher alignment in the parameter area. Always returns at least 8. 4458 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 4459 // Complex types are passed just like their elements. 4460 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 4461 Ty = CTy->getElementType(); 4462 4463 // Only vector types of size 16 bytes need alignment (larger types are 4464 // passed via reference, smaller types are not aligned). 4465 if (IsQPXVectorTy(Ty)) { 4466 if (getContext().getTypeSize(Ty) > 128) 4467 return CharUnits::fromQuantity(32); 4468 4469 return CharUnits::fromQuantity(16); 4470 } else if (Ty->isVectorType()) { 4471 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8); 4472 } 4473 4474 // For single-element float/vector structs, we consider the whole type 4475 // to have the same alignment requirements as its single element. 4476 const Type *AlignAsType = nullptr; 4477 const Type *EltType = isSingleElementStruct(Ty, getContext()); 4478 if (EltType) { 4479 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 4480 if (IsQPXVectorTy(EltType) || (EltType->isVectorType() && 4481 getContext().getTypeSize(EltType) == 128) || 4482 (BT && BT->isFloatingPoint())) 4483 AlignAsType = EltType; 4484 } 4485 4486 // Likewise for ELFv2 homogeneous aggregates. 4487 const Type *Base = nullptr; 4488 uint64_t Members = 0; 4489 if (!AlignAsType && Kind == ELFv2 && 4490 isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members)) 4491 AlignAsType = Base; 4492 4493 // With special case aggregates, only vector base types need alignment. 4494 if (AlignAsType && IsQPXVectorTy(AlignAsType)) { 4495 if (getContext().getTypeSize(AlignAsType) > 128) 4496 return CharUnits::fromQuantity(32); 4497 4498 return CharUnits::fromQuantity(16); 4499 } else if (AlignAsType) { 4500 return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8); 4501 } 4502 4503 // Otherwise, we only need alignment for any aggregate type that 4504 // has an alignment requirement of >= 16 bytes. 4505 if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) { 4506 if (HasQPX && getContext().getTypeAlign(Ty) >= 256) 4507 return CharUnits::fromQuantity(32); 4508 return CharUnits::fromQuantity(16); 4509 } 4510 4511 return CharUnits::fromQuantity(8); 4512 } 4513 4514 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous 4515 /// aggregate. Base is set to the base element type, and Members is set 4516 /// to the number of base elements. 4517 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base, 4518 uint64_t &Members) const { 4519 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 4520 uint64_t NElements = AT->getSize().getZExtValue(); 4521 if (NElements == 0) 4522 return false; 4523 if (!isHomogeneousAggregate(AT->getElementType(), Base, Members)) 4524 return false; 4525 Members *= NElements; 4526 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 4527 const RecordDecl *RD = RT->getDecl(); 4528 if (RD->hasFlexibleArrayMember()) 4529 return false; 4530 4531 Members = 0; 4532 4533 // If this is a C++ record, check the bases first. 4534 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 4535 for (const auto &I : CXXRD->bases()) { 4536 // Ignore empty records. 4537 if (isEmptyRecord(getContext(), I.getType(), true)) 4538 continue; 4539 4540 uint64_t FldMembers; 4541 if (!isHomogeneousAggregate(I.getType(), Base, FldMembers)) 4542 return false; 4543 4544 Members += FldMembers; 4545 } 4546 } 4547 4548 for (const auto *FD : RD->fields()) { 4549 // Ignore (non-zero arrays of) empty records. 4550 QualType FT = FD->getType(); 4551 while (const ConstantArrayType *AT = 4552 getContext().getAsConstantArrayType(FT)) { 4553 if (AT->getSize().getZExtValue() == 0) 4554 return false; 4555 FT = AT->getElementType(); 4556 } 4557 if (isEmptyRecord(getContext(), FT, true)) 4558 continue; 4559 4560 // For compatibility with GCC, ignore empty bitfields in C++ mode. 4561 if (getContext().getLangOpts().CPlusPlus && 4562 FD->isZeroLengthBitField(getContext())) 4563 continue; 4564 4565 uint64_t FldMembers; 4566 if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers)) 4567 return false; 4568 4569 Members = (RD->isUnion() ? 4570 std::max(Members, FldMembers) : Members + FldMembers); 4571 } 4572 4573 if (!Base) 4574 return false; 4575 4576 // Ensure there is no padding. 4577 if (getContext().getTypeSize(Base) * Members != 4578 getContext().getTypeSize(Ty)) 4579 return false; 4580 } else { 4581 Members = 1; 4582 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 4583 Members = 2; 4584 Ty = CT->getElementType(); 4585 } 4586 4587 // Most ABIs only support float, double, and some vector type widths. 4588 if (!isHomogeneousAggregateBaseType(Ty)) 4589 return false; 4590 4591 // The base type must be the same for all members. Types that 4592 // agree in both total size and mode (float vs. vector) are 4593 // treated as being equivalent here. 4594 const Type *TyPtr = Ty.getTypePtr(); 4595 if (!Base) { 4596 Base = TyPtr; 4597 // If it's a non-power-of-2 vector, its size is already a power-of-2, 4598 // so make sure to widen it explicitly. 4599 if (const VectorType *VT = Base->getAs<VectorType>()) { 4600 QualType EltTy = VT->getElementType(); 4601 unsigned NumElements = 4602 getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy); 4603 Base = getContext() 4604 .getVectorType(EltTy, NumElements, VT->getVectorKind()) 4605 .getTypePtr(); 4606 } 4607 } 4608 4609 if (Base->isVectorType() != TyPtr->isVectorType() || 4610 getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr)) 4611 return false; 4612 } 4613 return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members); 4614 } 4615 4616 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 4617 // Homogeneous aggregates for ELFv2 must have base types of float, 4618 // double, long double, or 128-bit vectors. 4619 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 4620 if (BT->getKind() == BuiltinType::Float || 4621 BT->getKind() == BuiltinType::Double || 4622 BT->getKind() == BuiltinType::LongDouble) { 4623 if (IsSoftFloatABI) 4624 return false; 4625 return true; 4626 } 4627 } 4628 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4629 if (getContext().getTypeSize(VT) == 128 || IsQPXVectorTy(Ty)) 4630 return true; 4631 } 4632 return false; 4633 } 4634 4635 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough( 4636 const Type *Base, uint64_t Members) const { 4637 // Vector types require one register, floating point types require one 4638 // or two registers depending on their size. 4639 uint32_t NumRegs = 4640 Base->isVectorType() ? 1 : (getContext().getTypeSize(Base) + 63) / 64; 4641 4642 // Homogeneous Aggregates may occupy at most 8 registers. 4643 return Members * NumRegs <= 8; 4644 } 4645 4646 ABIArgInfo 4647 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const { 4648 Ty = useFirstFieldIfTransparentUnion(Ty); 4649 4650 if (Ty->isAnyComplexType()) 4651 return ABIArgInfo::getDirect(); 4652 4653 // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes) 4654 // or via reference (larger than 16 bytes). 4655 if (Ty->isVectorType() && !IsQPXVectorTy(Ty)) { 4656 uint64_t Size = getContext().getTypeSize(Ty); 4657 if (Size > 128) 4658 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4659 else if (Size < 128) { 4660 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 4661 return ABIArgInfo::getDirect(CoerceTy); 4662 } 4663 } 4664 4665 if (isAggregateTypeForABI(Ty)) { 4666 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 4667 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 4668 4669 uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity(); 4670 uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); 4671 4672 // ELFv2 homogeneous aggregates are passed as array types. 4673 const Type *Base = nullptr; 4674 uint64_t Members = 0; 4675 if (Kind == ELFv2 && 4676 isHomogeneousAggregate(Ty, Base, Members)) { 4677 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 4678 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 4679 return ABIArgInfo::getDirect(CoerceTy); 4680 } 4681 4682 // If an aggregate may end up fully in registers, we do not 4683 // use the ByVal method, but pass the aggregate as array. 4684 // This is usually beneficial since we avoid forcing the 4685 // back-end to store the argument to memory. 4686 uint64_t Bits = getContext().getTypeSize(Ty); 4687 if (Bits > 0 && Bits <= 8 * GPRBits) { 4688 llvm::Type *CoerceTy; 4689 4690 // Types up to 8 bytes are passed as integer type (which will be 4691 // properly aligned in the argument save area doubleword). 4692 if (Bits <= GPRBits) 4693 CoerceTy = 4694 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 4695 // Larger types are passed as arrays, with the base type selected 4696 // according to the required alignment in the save area. 4697 else { 4698 uint64_t RegBits = ABIAlign * 8; 4699 uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits; 4700 llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits); 4701 CoerceTy = llvm::ArrayType::get(RegTy, NumRegs); 4702 } 4703 4704 return ABIArgInfo::getDirect(CoerceTy); 4705 } 4706 4707 // All other aggregates are passed ByVal. 4708 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 4709 /*ByVal=*/true, 4710 /*Realign=*/TyAlign > ABIAlign); 4711 } 4712 4713 return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 4714 : ABIArgInfo::getDirect()); 4715 } 4716 4717 ABIArgInfo 4718 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { 4719 if (RetTy->isVoidType()) 4720 return ABIArgInfo::getIgnore(); 4721 4722 if (RetTy->isAnyComplexType()) 4723 return ABIArgInfo::getDirect(); 4724 4725 // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes) 4726 // or via reference (larger than 16 bytes). 4727 if (RetTy->isVectorType() && !IsQPXVectorTy(RetTy)) { 4728 uint64_t Size = getContext().getTypeSize(RetTy); 4729 if (Size > 128) 4730 return getNaturalAlignIndirect(RetTy); 4731 else if (Size < 128) { 4732 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 4733 return ABIArgInfo::getDirect(CoerceTy); 4734 } 4735 } 4736 4737 if (isAggregateTypeForABI(RetTy)) { 4738 // ELFv2 homogeneous aggregates are returned as array types. 4739 const Type *Base = nullptr; 4740 uint64_t Members = 0; 4741 if (Kind == ELFv2 && 4742 isHomogeneousAggregate(RetTy, Base, Members)) { 4743 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 4744 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 4745 return ABIArgInfo::getDirect(CoerceTy); 4746 } 4747 4748 // ELFv2 small aggregates are returned in up to two registers. 4749 uint64_t Bits = getContext().getTypeSize(RetTy); 4750 if (Kind == ELFv2 && Bits <= 2 * GPRBits) { 4751 if (Bits == 0) 4752 return ABIArgInfo::getIgnore(); 4753 4754 llvm::Type *CoerceTy; 4755 if (Bits > GPRBits) { 4756 CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits); 4757 CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy); 4758 } else 4759 CoerceTy = 4760 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 4761 return ABIArgInfo::getDirect(CoerceTy); 4762 } 4763 4764 // All other aggregates are returned indirectly. 4765 return getNaturalAlignIndirect(RetTy); 4766 } 4767 4768 return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 4769 : ABIArgInfo::getDirect()); 4770 } 4771 4772 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine. 4773 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4774 QualType Ty) const { 4775 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 4776 TypeInfo.second = getParamTypeAlignment(Ty); 4777 4778 CharUnits SlotSize = CharUnits::fromQuantity(8); 4779 4780 // If we have a complex type and the base type is smaller than 8 bytes, 4781 // the ABI calls for the real and imaginary parts to be right-adjusted 4782 // in separate doublewords. However, Clang expects us to produce a 4783 // pointer to a structure with the two parts packed tightly. So generate 4784 // loads of the real and imaginary parts relative to the va_list pointer, 4785 // and store them to a temporary structure. 4786 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 4787 CharUnits EltSize = TypeInfo.first / 2; 4788 if (EltSize < SlotSize) { 4789 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty, 4790 SlotSize * 2, SlotSize, 4791 SlotSize, /*AllowHigher*/ true); 4792 4793 Address RealAddr = Addr; 4794 Address ImagAddr = RealAddr; 4795 if (CGF.CGM.getDataLayout().isBigEndian()) { 4796 RealAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, 4797 SlotSize - EltSize); 4798 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr, 4799 2 * SlotSize - EltSize); 4800 } else { 4801 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize); 4802 } 4803 4804 llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType()); 4805 RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy); 4806 ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy); 4807 llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal"); 4808 llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag"); 4809 4810 Address Temp = CGF.CreateMemTemp(Ty, "vacplx"); 4811 CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty), 4812 /*init*/ true); 4813 return Temp; 4814 } 4815 } 4816 4817 // Otherwise, just use the general rule. 4818 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 4819 TypeInfo, SlotSize, /*AllowHigher*/ true); 4820 } 4821 4822 static bool 4823 PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4824 llvm::Value *Address) { 4825 // This is calculated from the LLVM and GCC tables and verified 4826 // against gcc output. AFAIK all ABIs use the same encoding. 4827 4828 CodeGen::CGBuilderTy &Builder = CGF.Builder; 4829 4830 llvm::IntegerType *i8 = CGF.Int8Ty; 4831 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 4832 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 4833 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 4834 4835 // 0-31: r0-31, the 8-byte general-purpose registers 4836 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 4837 4838 // 32-63: fp0-31, the 8-byte floating-point registers 4839 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 4840 4841 // 64-67 are various 8-byte special-purpose registers: 4842 // 64: mq 4843 // 65: lr 4844 // 66: ctr 4845 // 67: ap 4846 AssignToArrayRange(Builder, Address, Eight8, 64, 67); 4847 4848 // 68-76 are various 4-byte special-purpose registers: 4849 // 68-75 cr0-7 4850 // 76: xer 4851 AssignToArrayRange(Builder, Address, Four8, 68, 76); 4852 4853 // 77-108: v0-31, the 16-byte vector registers 4854 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 4855 4856 // 109: vrsave 4857 // 110: vscr 4858 // 111: spe_acc 4859 // 112: spefscr 4860 // 113: sfp 4861 // 114: tfhar 4862 // 115: tfiar 4863 // 116: texasr 4864 AssignToArrayRange(Builder, Address, Eight8, 109, 116); 4865 4866 return false; 4867 } 4868 4869 bool 4870 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable( 4871 CodeGen::CodeGenFunction &CGF, 4872 llvm::Value *Address) const { 4873 4874 return PPC64_initDwarfEHRegSizeTable(CGF, Address); 4875 } 4876 4877 bool 4878 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4879 llvm::Value *Address) const { 4880 4881 return PPC64_initDwarfEHRegSizeTable(CGF, Address); 4882 } 4883 4884 //===----------------------------------------------------------------------===// 4885 // AArch64 ABI Implementation 4886 //===----------------------------------------------------------------------===// 4887 4888 namespace { 4889 4890 class AArch64ABIInfo : public SwiftABIInfo { 4891 public: 4892 enum ABIKind { 4893 AAPCS = 0, 4894 DarwinPCS, 4895 Win64 4896 }; 4897 4898 private: 4899 ABIKind Kind; 4900 4901 public: 4902 AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind) 4903 : SwiftABIInfo(CGT), Kind(Kind) {} 4904 4905 private: 4906 ABIKind getABIKind() const { return Kind; } 4907 bool isDarwinPCS() const { return Kind == DarwinPCS; } 4908 4909 ABIArgInfo classifyReturnType(QualType RetTy) const; 4910 ABIArgInfo classifyArgumentType(QualType RetTy) const; 4911 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 4912 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 4913 uint64_t Members) const override; 4914 4915 bool isIllegalVectorType(QualType Ty) const; 4916 4917 void computeInfo(CGFunctionInfo &FI) const override { 4918 if (!::classifyReturnType(getCXXABI(), FI, *this)) 4919 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4920 4921 for (auto &it : FI.arguments()) 4922 it.info = classifyArgumentType(it.type); 4923 } 4924 4925 Address EmitDarwinVAArg(Address VAListAddr, QualType Ty, 4926 CodeGenFunction &CGF) const; 4927 4928 Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty, 4929 CodeGenFunction &CGF) const; 4930 4931 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4932 QualType Ty) const override { 4933 return Kind == Win64 ? EmitMSVAArg(CGF, VAListAddr, Ty) 4934 : isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF) 4935 : EmitAAPCSVAArg(VAListAddr, Ty, CGF); 4936 } 4937 4938 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 4939 QualType Ty) const override; 4940 4941 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 4942 bool asReturnValue) const override { 4943 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 4944 } 4945 bool isSwiftErrorInRegister() const override { 4946 return true; 4947 } 4948 4949 bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy, 4950 unsigned elts) const override; 4951 }; 4952 4953 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo { 4954 public: 4955 AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind) 4956 : TargetCodeGenInfo(new AArch64ABIInfo(CGT, Kind)) {} 4957 4958 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 4959 return "mov\tfp, fp\t\t// marker for objc_retainAutoreleaseReturnValue"; 4960 } 4961 4962 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4963 return 31; 4964 } 4965 4966 bool doesReturnSlotInterfereWithArgs() const override { return false; } 4967 }; 4968 4969 class WindowsAArch64TargetCodeGenInfo : public AArch64TargetCodeGenInfo { 4970 public: 4971 WindowsAArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind K) 4972 : AArch64TargetCodeGenInfo(CGT, K) {} 4973 4974 void getDependentLibraryOption(llvm::StringRef Lib, 4975 llvm::SmallString<24> &Opt) const override { 4976 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); 4977 } 4978 4979 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, 4980 llvm::SmallString<32> &Opt) const override { 4981 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 4982 } 4983 }; 4984 } 4985 4986 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const { 4987 Ty = useFirstFieldIfTransparentUnion(Ty); 4988 4989 // Handle illegal vector types here. 4990 if (isIllegalVectorType(Ty)) { 4991 uint64_t Size = getContext().getTypeSize(Ty); 4992 // Android promotes <2 x i8> to i16, not i32 4993 if (isAndroid() && (Size <= 16)) { 4994 llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext()); 4995 return ABIArgInfo::getDirect(ResType); 4996 } 4997 if (Size <= 32) { 4998 llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext()); 4999 return ABIArgInfo::getDirect(ResType); 5000 } 5001 if (Size == 64) { 5002 llvm::Type *ResType = 5003 llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2); 5004 return ABIArgInfo::getDirect(ResType); 5005 } 5006 if (Size == 128) { 5007 llvm::Type *ResType = 5008 llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4); 5009 return ABIArgInfo::getDirect(ResType); 5010 } 5011 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5012 } 5013 5014 if (!isAggregateTypeForABI(Ty)) { 5015 // Treat an enum type as its underlying type. 5016 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5017 Ty = EnumTy->getDecl()->getIntegerType(); 5018 5019 return (Ty->isPromotableIntegerType() && isDarwinPCS() 5020 ? ABIArgInfo::getExtend(Ty) 5021 : ABIArgInfo::getDirect()); 5022 } 5023 5024 // Structures with either a non-trivial destructor or a non-trivial 5025 // copy constructor are always indirect. 5026 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 5027 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 5028 CGCXXABI::RAA_DirectInMemory); 5029 } 5030 5031 // Empty records are always ignored on Darwin, but actually passed in C++ mode 5032 // elsewhere for GNU compatibility. 5033 uint64_t Size = getContext().getTypeSize(Ty); 5034 bool IsEmpty = isEmptyRecord(getContext(), Ty, true); 5035 if (IsEmpty || Size == 0) { 5036 if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS()) 5037 return ABIArgInfo::getIgnore(); 5038 5039 // GNU C mode. The only argument that gets ignored is an empty one with size 5040 // 0. 5041 if (IsEmpty && Size == 0) 5042 return ABIArgInfo::getIgnore(); 5043 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 5044 } 5045 5046 // Homogeneous Floating-point Aggregates (HFAs) need to be expanded. 5047 const Type *Base = nullptr; 5048 uint64_t Members = 0; 5049 if (isHomogeneousAggregate(Ty, Base, Members)) { 5050 return ABIArgInfo::getDirect( 5051 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members)); 5052 } 5053 5054 // Aggregates <= 16 bytes are passed directly in registers or on the stack. 5055 if (Size <= 128) { 5056 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 5057 // same size and alignment. 5058 if (getTarget().isRenderScriptTarget()) { 5059 return coerceToIntArray(Ty, getContext(), getVMContext()); 5060 } 5061 unsigned Alignment = getContext().getTypeAlign(Ty); 5062 Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes 5063 5064 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 5065 // For aggregates with 16-byte alignment, we use i128. 5066 if (Alignment < 128 && Size == 128) { 5067 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); 5068 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 5069 } 5070 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 5071 } 5072 5073 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5074 } 5075 5076 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy) const { 5077 if (RetTy->isVoidType()) 5078 return ABIArgInfo::getIgnore(); 5079 5080 // Large vector types should be returned via memory. 5081 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) 5082 return getNaturalAlignIndirect(RetTy); 5083 5084 if (!isAggregateTypeForABI(RetTy)) { 5085 // Treat an enum type as its underlying type. 5086 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5087 RetTy = EnumTy->getDecl()->getIntegerType(); 5088 5089 return (RetTy->isPromotableIntegerType() && isDarwinPCS() 5090 ? ABIArgInfo::getExtend(RetTy) 5091 : ABIArgInfo::getDirect()); 5092 } 5093 5094 uint64_t Size = getContext().getTypeSize(RetTy); 5095 if (isEmptyRecord(getContext(), RetTy, true) || Size == 0) 5096 return ABIArgInfo::getIgnore(); 5097 5098 const Type *Base = nullptr; 5099 uint64_t Members = 0; 5100 if (isHomogeneousAggregate(RetTy, Base, Members)) 5101 // Homogeneous Floating-point Aggregates (HFAs) are returned directly. 5102 return ABIArgInfo::getDirect(); 5103 5104 // Aggregates <= 16 bytes are returned directly in registers or on the stack. 5105 if (Size <= 128) { 5106 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 5107 // same size and alignment. 5108 if (getTarget().isRenderScriptTarget()) { 5109 return coerceToIntArray(RetTy, getContext(), getVMContext()); 5110 } 5111 unsigned Alignment = getContext().getTypeAlign(RetTy); 5112 Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes 5113 5114 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 5115 // For aggregates with 16-byte alignment, we use i128. 5116 if (Alignment < 128 && Size == 128) { 5117 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); 5118 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 5119 } 5120 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 5121 } 5122 5123 return getNaturalAlignIndirect(RetTy); 5124 } 5125 5126 /// isIllegalVectorType - check whether the vector type is legal for AArch64. 5127 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const { 5128 if (const VectorType *VT = Ty->getAs<VectorType>()) { 5129 // Check whether VT is legal. 5130 unsigned NumElements = VT->getNumElements(); 5131 uint64_t Size = getContext().getTypeSize(VT); 5132 // NumElements should be power of 2. 5133 if (!llvm::isPowerOf2_32(NumElements)) 5134 return true; 5135 return Size != 64 && (Size != 128 || NumElements == 1); 5136 } 5137 return false; 5138 } 5139 5140 bool AArch64ABIInfo::isLegalVectorTypeForSwift(CharUnits totalSize, 5141 llvm::Type *eltTy, 5142 unsigned elts) const { 5143 if (!llvm::isPowerOf2_32(elts)) 5144 return false; 5145 if (totalSize.getQuantity() != 8 && 5146 (totalSize.getQuantity() != 16 || elts == 1)) 5147 return false; 5148 return true; 5149 } 5150 5151 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 5152 // Homogeneous aggregates for AAPCS64 must have base types of a floating 5153 // point type or a short-vector type. This is the same as the 32-bit ABI, 5154 // but with the difference that any floating-point type is allowed, 5155 // including __fp16. 5156 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 5157 if (BT->isFloatingPoint()) 5158 return true; 5159 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 5160 unsigned VecSize = getContext().getTypeSize(VT); 5161 if (VecSize == 64 || VecSize == 128) 5162 return true; 5163 } 5164 return false; 5165 } 5166 5167 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 5168 uint64_t Members) const { 5169 return Members <= 4; 5170 } 5171 5172 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr, 5173 QualType Ty, 5174 CodeGenFunction &CGF) const { 5175 ABIArgInfo AI = classifyArgumentType(Ty); 5176 bool IsIndirect = AI.isIndirect(); 5177 5178 llvm::Type *BaseTy = CGF.ConvertType(Ty); 5179 if (IsIndirect) 5180 BaseTy = llvm::PointerType::getUnqual(BaseTy); 5181 else if (AI.getCoerceToType()) 5182 BaseTy = AI.getCoerceToType(); 5183 5184 unsigned NumRegs = 1; 5185 if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) { 5186 BaseTy = ArrTy->getElementType(); 5187 NumRegs = ArrTy->getNumElements(); 5188 } 5189 bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy(); 5190 5191 // The AArch64 va_list type and handling is specified in the Procedure Call 5192 // Standard, section B.4: 5193 // 5194 // struct { 5195 // void *__stack; 5196 // void *__gr_top; 5197 // void *__vr_top; 5198 // int __gr_offs; 5199 // int __vr_offs; 5200 // }; 5201 5202 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); 5203 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 5204 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); 5205 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 5206 5207 auto TyInfo = getContext().getTypeInfoInChars(Ty); 5208 CharUnits TyAlign = TyInfo.second; 5209 5210 Address reg_offs_p = Address::invalid(); 5211 llvm::Value *reg_offs = nullptr; 5212 int reg_top_index; 5213 CharUnits reg_top_offset; 5214 int RegSize = IsIndirect ? 8 : TyInfo.first.getQuantity(); 5215 if (!IsFPR) { 5216 // 3 is the field number of __gr_offs 5217 reg_offs_p = 5218 CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(24), 5219 "gr_offs_p"); 5220 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs"); 5221 reg_top_index = 1; // field number for __gr_top 5222 reg_top_offset = CharUnits::fromQuantity(8); 5223 RegSize = llvm::alignTo(RegSize, 8); 5224 } else { 5225 // 4 is the field number of __vr_offs. 5226 reg_offs_p = 5227 CGF.Builder.CreateStructGEP(VAListAddr, 4, CharUnits::fromQuantity(28), 5228 "vr_offs_p"); 5229 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs"); 5230 reg_top_index = 2; // field number for __vr_top 5231 reg_top_offset = CharUnits::fromQuantity(16); 5232 RegSize = 16 * NumRegs; 5233 } 5234 5235 //======================================= 5236 // Find out where argument was passed 5237 //======================================= 5238 5239 // If reg_offs >= 0 we're already using the stack for this type of 5240 // argument. We don't want to keep updating reg_offs (in case it overflows, 5241 // though anyone passing 2GB of arguments, each at most 16 bytes, deserves 5242 // whatever they get). 5243 llvm::Value *UsingStack = nullptr; 5244 UsingStack = CGF.Builder.CreateICmpSGE( 5245 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0)); 5246 5247 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock); 5248 5249 // Otherwise, at least some kind of argument could go in these registers, the 5250 // question is whether this particular type is too big. 5251 CGF.EmitBlock(MaybeRegBlock); 5252 5253 // Integer arguments may need to correct register alignment (for example a 5254 // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we 5255 // align __gr_offs to calculate the potential address. 5256 if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) { 5257 int Align = TyAlign.getQuantity(); 5258 5259 reg_offs = CGF.Builder.CreateAdd( 5260 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1), 5261 "align_regoffs"); 5262 reg_offs = CGF.Builder.CreateAnd( 5263 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align), 5264 "aligned_regoffs"); 5265 } 5266 5267 // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list. 5268 // The fact that this is done unconditionally reflects the fact that 5269 // allocating an argument to the stack also uses up all the remaining 5270 // registers of the appropriate kind. 5271 llvm::Value *NewOffset = nullptr; 5272 NewOffset = CGF.Builder.CreateAdd( 5273 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs"); 5274 CGF.Builder.CreateStore(NewOffset, reg_offs_p); 5275 5276 // Now we're in a position to decide whether this argument really was in 5277 // registers or not. 5278 llvm::Value *InRegs = nullptr; 5279 InRegs = CGF.Builder.CreateICmpSLE( 5280 NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg"); 5281 5282 CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock); 5283 5284 //======================================= 5285 // Argument was in registers 5286 //======================================= 5287 5288 // Now we emit the code for if the argument was originally passed in 5289 // registers. First start the appropriate block: 5290 CGF.EmitBlock(InRegBlock); 5291 5292 llvm::Value *reg_top = nullptr; 5293 Address reg_top_p = CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, 5294 reg_top_offset, "reg_top_p"); 5295 reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top"); 5296 Address BaseAddr(CGF.Builder.CreateInBoundsGEP(reg_top, reg_offs), 5297 CharUnits::fromQuantity(IsFPR ? 16 : 8)); 5298 Address RegAddr = Address::invalid(); 5299 llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty); 5300 5301 if (IsIndirect) { 5302 // If it's been passed indirectly (actually a struct), whatever we find from 5303 // stored registers or on the stack will actually be a struct **. 5304 MemTy = llvm::PointerType::getUnqual(MemTy); 5305 } 5306 5307 const Type *Base = nullptr; 5308 uint64_t NumMembers = 0; 5309 bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers); 5310 if (IsHFA && NumMembers > 1) { 5311 // Homogeneous aggregates passed in registers will have their elements split 5312 // and stored 16-bytes apart regardless of size (they're notionally in qN, 5313 // qN+1, ...). We reload and store into a temporary local variable 5314 // contiguously. 5315 assert(!IsIndirect && "Homogeneous aggregates should be passed directly"); 5316 auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0)); 5317 llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0)); 5318 llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers); 5319 Address Tmp = CGF.CreateTempAlloca(HFATy, 5320 std::max(TyAlign, BaseTyInfo.second)); 5321 5322 // On big-endian platforms, the value will be right-aligned in its slot. 5323 int Offset = 0; 5324 if (CGF.CGM.getDataLayout().isBigEndian() && 5325 BaseTyInfo.first.getQuantity() < 16) 5326 Offset = 16 - BaseTyInfo.first.getQuantity(); 5327 5328 for (unsigned i = 0; i < NumMembers; ++i) { 5329 CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset); 5330 Address LoadAddr = 5331 CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset); 5332 LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy); 5333 5334 Address StoreAddr = 5335 CGF.Builder.CreateConstArrayGEP(Tmp, i, BaseTyInfo.first); 5336 5337 llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr); 5338 CGF.Builder.CreateStore(Elem, StoreAddr); 5339 } 5340 5341 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy); 5342 } else { 5343 // Otherwise the object is contiguous in memory. 5344 5345 // It might be right-aligned in its slot. 5346 CharUnits SlotSize = BaseAddr.getAlignment(); 5347 if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect && 5348 (IsHFA || !isAggregateTypeForABI(Ty)) && 5349 TyInfo.first < SlotSize) { 5350 CharUnits Offset = SlotSize - TyInfo.first; 5351 BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset); 5352 } 5353 5354 RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy); 5355 } 5356 5357 CGF.EmitBranch(ContBlock); 5358 5359 //======================================= 5360 // Argument was on the stack 5361 //======================================= 5362 CGF.EmitBlock(OnStackBlock); 5363 5364 Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, 5365 CharUnits::Zero(), "stack_p"); 5366 llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack"); 5367 5368 // Again, stack arguments may need realignment. In this case both integer and 5369 // floating-point ones might be affected. 5370 if (!IsIndirect && TyAlign.getQuantity() > 8) { 5371 int Align = TyAlign.getQuantity(); 5372 5373 OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty); 5374 5375 OnStackPtr = CGF.Builder.CreateAdd( 5376 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1), 5377 "align_stack"); 5378 OnStackPtr = CGF.Builder.CreateAnd( 5379 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align), 5380 "align_stack"); 5381 5382 OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy); 5383 } 5384 Address OnStackAddr(OnStackPtr, 5385 std::max(CharUnits::fromQuantity(8), TyAlign)); 5386 5387 // All stack slots are multiples of 8 bytes. 5388 CharUnits StackSlotSize = CharUnits::fromQuantity(8); 5389 CharUnits StackSize; 5390 if (IsIndirect) 5391 StackSize = StackSlotSize; 5392 else 5393 StackSize = TyInfo.first.alignTo(StackSlotSize); 5394 5395 llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize); 5396 llvm::Value *NewStack = 5397 CGF.Builder.CreateInBoundsGEP(OnStackPtr, StackSizeC, "new_stack"); 5398 5399 // Write the new value of __stack for the next call to va_arg 5400 CGF.Builder.CreateStore(NewStack, stack_p); 5401 5402 if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) && 5403 TyInfo.first < StackSlotSize) { 5404 CharUnits Offset = StackSlotSize - TyInfo.first; 5405 OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset); 5406 } 5407 5408 OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy); 5409 5410 CGF.EmitBranch(ContBlock); 5411 5412 //======================================= 5413 // Tidy up 5414 //======================================= 5415 CGF.EmitBlock(ContBlock); 5416 5417 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 5418 OnStackAddr, OnStackBlock, "vaargs.addr"); 5419 5420 if (IsIndirect) 5421 return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"), 5422 TyInfo.second); 5423 5424 return ResAddr; 5425 } 5426 5427 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty, 5428 CodeGenFunction &CGF) const { 5429 // The backend's lowering doesn't support va_arg for aggregates or 5430 // illegal vector types. Lower VAArg here for these cases and use 5431 // the LLVM va_arg instruction for everything else. 5432 if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty)) 5433 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 5434 5435 CharUnits SlotSize = CharUnits::fromQuantity(8); 5436 5437 // Empty records are ignored for parameter passing purposes. 5438 if (isEmptyRecord(getContext(), Ty, true)) { 5439 Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 5440 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 5441 return Addr; 5442 } 5443 5444 // The size of the actual thing passed, which might end up just 5445 // being a pointer for indirect types. 5446 auto TyInfo = getContext().getTypeInfoInChars(Ty); 5447 5448 // Arguments bigger than 16 bytes which aren't homogeneous 5449 // aggregates should be passed indirectly. 5450 bool IsIndirect = false; 5451 if (TyInfo.first.getQuantity() > 16) { 5452 const Type *Base = nullptr; 5453 uint64_t Members = 0; 5454 IsIndirect = !isHomogeneousAggregate(Ty, Base, Members); 5455 } 5456 5457 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 5458 TyInfo, SlotSize, /*AllowHigherAlign*/ true); 5459 } 5460 5461 Address AArch64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 5462 QualType Ty) const { 5463 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 5464 CGF.getContext().getTypeInfoInChars(Ty), 5465 CharUnits::fromQuantity(8), 5466 /*allowHigherAlign*/ false); 5467 } 5468 5469 //===----------------------------------------------------------------------===// 5470 // ARM ABI Implementation 5471 //===----------------------------------------------------------------------===// 5472 5473 namespace { 5474 5475 class ARMABIInfo : public SwiftABIInfo { 5476 public: 5477 enum ABIKind { 5478 APCS = 0, 5479 AAPCS = 1, 5480 AAPCS_VFP = 2, 5481 AAPCS16_VFP = 3, 5482 }; 5483 5484 private: 5485 ABIKind Kind; 5486 5487 public: 5488 ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) 5489 : SwiftABIInfo(CGT), Kind(_Kind) { 5490 setCCs(); 5491 } 5492 5493 bool isEABI() const { 5494 switch (getTarget().getTriple().getEnvironment()) { 5495 case llvm::Triple::Android: 5496 case llvm::Triple::EABI: 5497 case llvm::Triple::EABIHF: 5498 case llvm::Triple::GNUEABI: 5499 case llvm::Triple::GNUEABIHF: 5500 case llvm::Triple::MuslEABI: 5501 case llvm::Triple::MuslEABIHF: 5502 return true; 5503 default: 5504 return false; 5505 } 5506 } 5507 5508 bool isEABIHF() const { 5509 switch (getTarget().getTriple().getEnvironment()) { 5510 case llvm::Triple::EABIHF: 5511 case llvm::Triple::GNUEABIHF: 5512 case llvm::Triple::MuslEABIHF: 5513 return true; 5514 default: 5515 return false; 5516 } 5517 } 5518 5519 ABIKind getABIKind() const { return Kind; } 5520 5521 private: 5522 ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic) const; 5523 ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic) const; 5524 bool isIllegalVectorType(QualType Ty) const; 5525 5526 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 5527 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 5528 uint64_t Members) const override; 5529 5530 void computeInfo(CGFunctionInfo &FI) const override; 5531 5532 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5533 QualType Ty) const override; 5534 5535 llvm::CallingConv::ID getLLVMDefaultCC() const; 5536 llvm::CallingConv::ID getABIDefaultCC() const; 5537 void setCCs(); 5538 5539 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 5540 bool asReturnValue) const override { 5541 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 5542 } 5543 bool isSwiftErrorInRegister() const override { 5544 return true; 5545 } 5546 bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy, 5547 unsigned elts) const override; 5548 }; 5549 5550 class ARMTargetCodeGenInfo : public TargetCodeGenInfo { 5551 public: 5552 ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 5553 :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {} 5554 5555 const ARMABIInfo &getABIInfo() const { 5556 return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo()); 5557 } 5558 5559 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 5560 return 13; 5561 } 5562 5563 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 5564 return "mov\tr7, r7\t\t// marker for objc_retainAutoreleaseReturnValue"; 5565 } 5566 5567 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5568 llvm::Value *Address) const override { 5569 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 5570 5571 // 0-15 are the 16 integer registers. 5572 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15); 5573 return false; 5574 } 5575 5576 unsigned getSizeOfUnwindException() const override { 5577 if (getABIInfo().isEABI()) return 88; 5578 return TargetCodeGenInfo::getSizeOfUnwindException(); 5579 } 5580 5581 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5582 CodeGen::CodeGenModule &CGM) const override { 5583 if (GV->isDeclaration()) 5584 return; 5585 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 5586 if (!FD) 5587 return; 5588 5589 const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>(); 5590 if (!Attr) 5591 return; 5592 5593 const char *Kind; 5594 switch (Attr->getInterrupt()) { 5595 case ARMInterruptAttr::Generic: Kind = ""; break; 5596 case ARMInterruptAttr::IRQ: Kind = "IRQ"; break; 5597 case ARMInterruptAttr::FIQ: Kind = "FIQ"; break; 5598 case ARMInterruptAttr::SWI: Kind = "SWI"; break; 5599 case ARMInterruptAttr::ABORT: Kind = "ABORT"; break; 5600 case ARMInterruptAttr::UNDEF: Kind = "UNDEF"; break; 5601 } 5602 5603 llvm::Function *Fn = cast<llvm::Function>(GV); 5604 5605 Fn->addFnAttr("interrupt", Kind); 5606 5607 ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind(); 5608 if (ABI == ARMABIInfo::APCS) 5609 return; 5610 5611 // AAPCS guarantees that sp will be 8-byte aligned on any public interface, 5612 // however this is not necessarily true on taking any interrupt. Instruct 5613 // the backend to perform a realignment as part of the function prologue. 5614 llvm::AttrBuilder B; 5615 B.addStackAlignmentAttr(8); 5616 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 5617 } 5618 }; 5619 5620 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo { 5621 public: 5622 WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 5623 : ARMTargetCodeGenInfo(CGT, K) {} 5624 5625 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5626 CodeGen::CodeGenModule &CGM) const override; 5627 5628 void getDependentLibraryOption(llvm::StringRef Lib, 5629 llvm::SmallString<24> &Opt) const override { 5630 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); 5631 } 5632 5633 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, 5634 llvm::SmallString<32> &Opt) const override { 5635 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 5636 } 5637 }; 5638 5639 void WindowsARMTargetCodeGenInfo::setTargetAttributes( 5640 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 5641 ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 5642 if (GV->isDeclaration()) 5643 return; 5644 addStackProbeTargetAttributes(D, GV, CGM); 5645 } 5646 } 5647 5648 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const { 5649 if (!::classifyReturnType(getCXXABI(), FI, *this)) 5650 FI.getReturnInfo() = 5651 classifyReturnType(FI.getReturnType(), FI.isVariadic()); 5652 5653 for (auto &I : FI.arguments()) 5654 I.info = classifyArgumentType(I.type, FI.isVariadic()); 5655 5656 // Always honor user-specified calling convention. 5657 if (FI.getCallingConvention() != llvm::CallingConv::C) 5658 return; 5659 5660 llvm::CallingConv::ID cc = getRuntimeCC(); 5661 if (cc != llvm::CallingConv::C) 5662 FI.setEffectiveCallingConvention(cc); 5663 } 5664 5665 /// Return the default calling convention that LLVM will use. 5666 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const { 5667 // The default calling convention that LLVM will infer. 5668 if (isEABIHF() || getTarget().getTriple().isWatchABI()) 5669 return llvm::CallingConv::ARM_AAPCS_VFP; 5670 else if (isEABI()) 5671 return llvm::CallingConv::ARM_AAPCS; 5672 else 5673 return llvm::CallingConv::ARM_APCS; 5674 } 5675 5676 /// Return the calling convention that our ABI would like us to use 5677 /// as the C calling convention. 5678 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const { 5679 switch (getABIKind()) { 5680 case APCS: return llvm::CallingConv::ARM_APCS; 5681 case AAPCS: return llvm::CallingConv::ARM_AAPCS; 5682 case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 5683 case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 5684 } 5685 llvm_unreachable("bad ABI kind"); 5686 } 5687 5688 void ARMABIInfo::setCCs() { 5689 assert(getRuntimeCC() == llvm::CallingConv::C); 5690 5691 // Don't muddy up the IR with a ton of explicit annotations if 5692 // they'd just match what LLVM will infer from the triple. 5693 llvm::CallingConv::ID abiCC = getABIDefaultCC(); 5694 if (abiCC != getLLVMDefaultCC()) 5695 RuntimeCC = abiCC; 5696 } 5697 5698 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, 5699 bool isVariadic) const { 5700 // 6.1.2.1 The following argument types are VFP CPRCs: 5701 // A single-precision floating-point type (including promoted 5702 // half-precision types); A double-precision floating-point type; 5703 // A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate 5704 // with a Base Type of a single- or double-precision floating-point type, 5705 // 64-bit containerized vectors or 128-bit containerized vectors with one 5706 // to four Elements. 5707 bool IsEffectivelyAAPCS_VFP = getABIKind() == AAPCS_VFP && !isVariadic; 5708 5709 Ty = useFirstFieldIfTransparentUnion(Ty); 5710 5711 // Handle illegal vector types here. 5712 if (isIllegalVectorType(Ty)) { 5713 uint64_t Size = getContext().getTypeSize(Ty); 5714 if (Size <= 32) { 5715 llvm::Type *ResType = 5716 llvm::Type::getInt32Ty(getVMContext()); 5717 return ABIArgInfo::getDirect(ResType); 5718 } 5719 if (Size == 64) { 5720 llvm::Type *ResType = llvm::VectorType::get( 5721 llvm::Type::getInt32Ty(getVMContext()), 2); 5722 return ABIArgInfo::getDirect(ResType); 5723 } 5724 if (Size == 128) { 5725 llvm::Type *ResType = llvm::VectorType::get( 5726 llvm::Type::getInt32Ty(getVMContext()), 4); 5727 return ABIArgInfo::getDirect(ResType); 5728 } 5729 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5730 } 5731 5732 // _Float16 and __fp16 get passed as if it were an int or float, but with 5733 // the top 16 bits unspecified. This is not done for OpenCL as it handles the 5734 // half type natively, and does not need to interwork with AAPCS code. 5735 if ((Ty->isFloat16Type() || Ty->isHalfType()) && 5736 !getContext().getLangOpts().NativeHalfArgsAndReturns) { 5737 llvm::Type *ResType = IsEffectivelyAAPCS_VFP ? 5738 llvm::Type::getFloatTy(getVMContext()) : 5739 llvm::Type::getInt32Ty(getVMContext()); 5740 return ABIArgInfo::getDirect(ResType); 5741 } 5742 5743 if (!isAggregateTypeForABI(Ty)) { 5744 // Treat an enum type as its underlying type. 5745 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 5746 Ty = EnumTy->getDecl()->getIntegerType(); 5747 } 5748 5749 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 5750 : ABIArgInfo::getDirect()); 5751 } 5752 5753 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 5754 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 5755 } 5756 5757 // Ignore empty records. 5758 if (isEmptyRecord(getContext(), Ty, true)) 5759 return ABIArgInfo::getIgnore(); 5760 5761 if (IsEffectivelyAAPCS_VFP) { 5762 // Homogeneous Aggregates need to be expanded when we can fit the aggregate 5763 // into VFP registers. 5764 const Type *Base = nullptr; 5765 uint64_t Members = 0; 5766 if (isHomogeneousAggregate(Ty, Base, Members)) { 5767 assert(Base && "Base class should be set for homogeneous aggregate"); 5768 // Base can be a floating-point or a vector. 5769 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); 5770 } 5771 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 5772 // WatchOS does have homogeneous aggregates. Note that we intentionally use 5773 // this convention even for a variadic function: the backend will use GPRs 5774 // if needed. 5775 const Type *Base = nullptr; 5776 uint64_t Members = 0; 5777 if (isHomogeneousAggregate(Ty, Base, Members)) { 5778 assert(Base && Members <= 4 && "unexpected homogeneous aggregate"); 5779 llvm::Type *Ty = 5780 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members); 5781 return ABIArgInfo::getDirect(Ty, 0, nullptr, false); 5782 } 5783 } 5784 5785 if (getABIKind() == ARMABIInfo::AAPCS16_VFP && 5786 getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) { 5787 // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're 5788 // bigger than 128-bits, they get placed in space allocated by the caller, 5789 // and a pointer is passed. 5790 return ABIArgInfo::getIndirect( 5791 CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false); 5792 } 5793 5794 // Support byval for ARM. 5795 // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at 5796 // most 8-byte. We realign the indirect argument if type alignment is bigger 5797 // than ABI alignment. 5798 uint64_t ABIAlign = 4; 5799 uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8; 5800 if (getABIKind() == ARMABIInfo::AAPCS_VFP || 5801 getABIKind() == ARMABIInfo::AAPCS) 5802 ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8); 5803 5804 if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) { 5805 assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval"); 5806 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 5807 /*ByVal=*/true, 5808 /*Realign=*/TyAlign > ABIAlign); 5809 } 5810 5811 // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of 5812 // same size and alignment. 5813 if (getTarget().isRenderScriptTarget()) { 5814 return coerceToIntArray(Ty, getContext(), getVMContext()); 5815 } 5816 5817 // Otherwise, pass by coercing to a structure of the appropriate size. 5818 llvm::Type* ElemTy; 5819 unsigned SizeRegs; 5820 // FIXME: Try to match the types of the arguments more accurately where 5821 // we can. 5822 if (getContext().getTypeAlign(Ty) <= 32) { 5823 ElemTy = llvm::Type::getInt32Ty(getVMContext()); 5824 SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32; 5825 } else { 5826 ElemTy = llvm::Type::getInt64Ty(getVMContext()); 5827 SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64; 5828 } 5829 5830 return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs)); 5831 } 5832 5833 static bool isIntegerLikeType(QualType Ty, ASTContext &Context, 5834 llvm::LLVMContext &VMContext) { 5835 // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure 5836 // is called integer-like if its size is less than or equal to one word, and 5837 // the offset of each of its addressable sub-fields is zero. 5838 5839 uint64_t Size = Context.getTypeSize(Ty); 5840 5841 // Check that the type fits in a word. 5842 if (Size > 32) 5843 return false; 5844 5845 // FIXME: Handle vector types! 5846 if (Ty->isVectorType()) 5847 return false; 5848 5849 // Float types are never treated as "integer like". 5850 if (Ty->isRealFloatingType()) 5851 return false; 5852 5853 // If this is a builtin or pointer type then it is ok. 5854 if (Ty->getAs<BuiltinType>() || Ty->isPointerType()) 5855 return true; 5856 5857 // Small complex integer types are "integer like". 5858 if (const ComplexType *CT = Ty->getAs<ComplexType>()) 5859 return isIntegerLikeType(CT->getElementType(), Context, VMContext); 5860 5861 // Single element and zero sized arrays should be allowed, by the definition 5862 // above, but they are not. 5863 5864 // Otherwise, it must be a record type. 5865 const RecordType *RT = Ty->getAs<RecordType>(); 5866 if (!RT) return false; 5867 5868 // Ignore records with flexible arrays. 5869 const RecordDecl *RD = RT->getDecl(); 5870 if (RD->hasFlexibleArrayMember()) 5871 return false; 5872 5873 // Check that all sub-fields are at offset 0, and are themselves "integer 5874 // like". 5875 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 5876 5877 bool HadField = false; 5878 unsigned idx = 0; 5879 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 5880 i != e; ++i, ++idx) { 5881 const FieldDecl *FD = *i; 5882 5883 // Bit-fields are not addressable, we only need to verify they are "integer 5884 // like". We still have to disallow a subsequent non-bitfield, for example: 5885 // struct { int : 0; int x } 5886 // is non-integer like according to gcc. 5887 if (FD->isBitField()) { 5888 if (!RD->isUnion()) 5889 HadField = true; 5890 5891 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 5892 return false; 5893 5894 continue; 5895 } 5896 5897 // Check if this field is at offset 0. 5898 if (Layout.getFieldOffset(idx) != 0) 5899 return false; 5900 5901 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 5902 return false; 5903 5904 // Only allow at most one field in a structure. This doesn't match the 5905 // wording above, but follows gcc in situations with a field following an 5906 // empty structure. 5907 if (!RD->isUnion()) { 5908 if (HadField) 5909 return false; 5910 5911 HadField = true; 5912 } 5913 } 5914 5915 return true; 5916 } 5917 5918 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, 5919 bool isVariadic) const { 5920 bool IsEffectivelyAAPCS_VFP = 5921 (getABIKind() == AAPCS_VFP || getABIKind() == AAPCS16_VFP) && !isVariadic; 5922 5923 if (RetTy->isVoidType()) 5924 return ABIArgInfo::getIgnore(); 5925 5926 // Large vector types should be returned via memory. 5927 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) { 5928 return getNaturalAlignIndirect(RetTy); 5929 } 5930 5931 // _Float16 and __fp16 get returned as if it were an int or float, but with 5932 // the top 16 bits unspecified. This is not done for OpenCL as it handles the 5933 // half type natively, and does not need to interwork with AAPCS code. 5934 if ((RetTy->isFloat16Type() || RetTy->isHalfType()) && 5935 !getContext().getLangOpts().NativeHalfArgsAndReturns) { 5936 llvm::Type *ResType = IsEffectivelyAAPCS_VFP ? 5937 llvm::Type::getFloatTy(getVMContext()) : 5938 llvm::Type::getInt32Ty(getVMContext()); 5939 return ABIArgInfo::getDirect(ResType); 5940 } 5941 5942 if (!isAggregateTypeForABI(RetTy)) { 5943 // Treat an enum type as its underlying type. 5944 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5945 RetTy = EnumTy->getDecl()->getIntegerType(); 5946 5947 return RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 5948 : ABIArgInfo::getDirect(); 5949 } 5950 5951 // Are we following APCS? 5952 if (getABIKind() == APCS) { 5953 if (isEmptyRecord(getContext(), RetTy, false)) 5954 return ABIArgInfo::getIgnore(); 5955 5956 // Complex types are all returned as packed integers. 5957 // 5958 // FIXME: Consider using 2 x vector types if the back end handles them 5959 // correctly. 5960 if (RetTy->isAnyComplexType()) 5961 return ABIArgInfo::getDirect(llvm::IntegerType::get( 5962 getVMContext(), getContext().getTypeSize(RetTy))); 5963 5964 // Integer like structures are returned in r0. 5965 if (isIntegerLikeType(RetTy, getContext(), getVMContext())) { 5966 // Return in the smallest viable integer type. 5967 uint64_t Size = getContext().getTypeSize(RetTy); 5968 if (Size <= 8) 5969 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 5970 if (Size <= 16) 5971 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 5972 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 5973 } 5974 5975 // Otherwise return in memory. 5976 return getNaturalAlignIndirect(RetTy); 5977 } 5978 5979 // Otherwise this is an AAPCS variant. 5980 5981 if (isEmptyRecord(getContext(), RetTy, true)) 5982 return ABIArgInfo::getIgnore(); 5983 5984 // Check for homogeneous aggregates with AAPCS-VFP. 5985 if (IsEffectivelyAAPCS_VFP) { 5986 const Type *Base = nullptr; 5987 uint64_t Members = 0; 5988 if (isHomogeneousAggregate(RetTy, Base, Members)) { 5989 assert(Base && "Base class should be set for homogeneous aggregate"); 5990 // Homogeneous Aggregates are returned directly. 5991 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); 5992 } 5993 } 5994 5995 // Aggregates <= 4 bytes are returned in r0; other aggregates 5996 // are returned indirectly. 5997 uint64_t Size = getContext().getTypeSize(RetTy); 5998 if (Size <= 32) { 5999 // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of 6000 // same size and alignment. 6001 if (getTarget().isRenderScriptTarget()) { 6002 return coerceToIntArray(RetTy, getContext(), getVMContext()); 6003 } 6004 if (getDataLayout().isBigEndian()) 6005 // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4) 6006 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6007 6008 // Return in the smallest viable integer type. 6009 if (Size <= 8) 6010 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6011 if (Size <= 16) 6012 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6013 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6014 } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) { 6015 llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext()); 6016 llvm::Type *CoerceTy = 6017 llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32); 6018 return ABIArgInfo::getDirect(CoerceTy); 6019 } 6020 6021 return getNaturalAlignIndirect(RetTy); 6022 } 6023 6024 /// isIllegalVector - check whether Ty is an illegal vector type. 6025 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const { 6026 if (const VectorType *VT = Ty->getAs<VectorType> ()) { 6027 if (isAndroid()) { 6028 // Android shipped using Clang 3.1, which supported a slightly different 6029 // vector ABI. The primary differences were that 3-element vector types 6030 // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path 6031 // accepts that legacy behavior for Android only. 6032 // Check whether VT is legal. 6033 unsigned NumElements = VT->getNumElements(); 6034 // NumElements should be power of 2 or equal to 3. 6035 if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3) 6036 return true; 6037 } else { 6038 // Check whether VT is legal. 6039 unsigned NumElements = VT->getNumElements(); 6040 uint64_t Size = getContext().getTypeSize(VT); 6041 // NumElements should be power of 2. 6042 if (!llvm::isPowerOf2_32(NumElements)) 6043 return true; 6044 // Size should be greater than 32 bits. 6045 return Size <= 32; 6046 } 6047 } 6048 return false; 6049 } 6050 6051 bool ARMABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, 6052 llvm::Type *eltTy, 6053 unsigned numElts) const { 6054 if (!llvm::isPowerOf2_32(numElts)) 6055 return false; 6056 unsigned size = getDataLayout().getTypeStoreSizeInBits(eltTy); 6057 if (size > 64) 6058 return false; 6059 if (vectorSize.getQuantity() != 8 && 6060 (vectorSize.getQuantity() != 16 || numElts == 1)) 6061 return false; 6062 return true; 6063 } 6064 6065 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 6066 // Homogeneous aggregates for AAPCS-VFP must have base types of float, 6067 // double, or 64-bit or 128-bit vectors. 6068 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 6069 if (BT->getKind() == BuiltinType::Float || 6070 BT->getKind() == BuiltinType::Double || 6071 BT->getKind() == BuiltinType::LongDouble) 6072 return true; 6073 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 6074 unsigned VecSize = getContext().getTypeSize(VT); 6075 if (VecSize == 64 || VecSize == 128) 6076 return true; 6077 } 6078 return false; 6079 } 6080 6081 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 6082 uint64_t Members) const { 6083 return Members <= 4; 6084 } 6085 6086 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6087 QualType Ty) const { 6088 CharUnits SlotSize = CharUnits::fromQuantity(4); 6089 6090 // Empty records are ignored for parameter passing purposes. 6091 if (isEmptyRecord(getContext(), Ty, true)) { 6092 Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize); 6093 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 6094 return Addr; 6095 } 6096 6097 auto TyInfo = getContext().getTypeInfoInChars(Ty); 6098 CharUnits TyAlignForABI = TyInfo.second; 6099 6100 // Use indirect if size of the illegal vector is bigger than 16 bytes. 6101 bool IsIndirect = false; 6102 const Type *Base = nullptr; 6103 uint64_t Members = 0; 6104 if (TyInfo.first > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) { 6105 IsIndirect = true; 6106 6107 // ARMv7k passes structs bigger than 16 bytes indirectly, in space 6108 // allocated by the caller. 6109 } else if (TyInfo.first > CharUnits::fromQuantity(16) && 6110 getABIKind() == ARMABIInfo::AAPCS16_VFP && 6111 !isHomogeneousAggregate(Ty, Base, Members)) { 6112 IsIndirect = true; 6113 6114 // Otherwise, bound the type's ABI alignment. 6115 // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for 6116 // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte. 6117 // Our callers should be prepared to handle an under-aligned address. 6118 } else if (getABIKind() == ARMABIInfo::AAPCS_VFP || 6119 getABIKind() == ARMABIInfo::AAPCS) { 6120 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 6121 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8)); 6122 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 6123 // ARMv7k allows type alignment up to 16 bytes. 6124 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 6125 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16)); 6126 } else { 6127 TyAlignForABI = CharUnits::fromQuantity(4); 6128 } 6129 TyInfo.second = TyAlignForABI; 6130 6131 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo, 6132 SlotSize, /*AllowHigherAlign*/ true); 6133 } 6134 6135 //===----------------------------------------------------------------------===// 6136 // NVPTX ABI Implementation 6137 //===----------------------------------------------------------------------===// 6138 6139 namespace { 6140 6141 class NVPTXABIInfo : public ABIInfo { 6142 public: 6143 NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 6144 6145 ABIArgInfo classifyReturnType(QualType RetTy) const; 6146 ABIArgInfo classifyArgumentType(QualType Ty) const; 6147 6148 void computeInfo(CGFunctionInfo &FI) const override; 6149 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6150 QualType Ty) const override; 6151 }; 6152 6153 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo { 6154 public: 6155 NVPTXTargetCodeGenInfo(CodeGenTypes &CGT) 6156 : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {} 6157 6158 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6159 CodeGen::CodeGenModule &M) const override; 6160 bool shouldEmitStaticExternCAliases() const override; 6161 6162 private: 6163 // Adds a NamedMDNode with F, Name, and Operand as operands, and adds the 6164 // resulting MDNode to the nvvm.annotations MDNode. 6165 static void addNVVMMetadata(llvm::Function *F, StringRef Name, int Operand); 6166 }; 6167 6168 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const { 6169 if (RetTy->isVoidType()) 6170 return ABIArgInfo::getIgnore(); 6171 6172 // note: this is different from default ABI 6173 if (!RetTy->isScalarType()) 6174 return ABIArgInfo::getDirect(); 6175 6176 // Treat an enum type as its underlying type. 6177 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 6178 RetTy = EnumTy->getDecl()->getIntegerType(); 6179 6180 return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 6181 : ABIArgInfo::getDirect()); 6182 } 6183 6184 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const { 6185 // Treat an enum type as its underlying type. 6186 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 6187 Ty = EnumTy->getDecl()->getIntegerType(); 6188 6189 // Return aggregates type as indirect by value 6190 if (isAggregateTypeForABI(Ty)) 6191 return getNaturalAlignIndirect(Ty, /* byval */ true); 6192 6193 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 6194 : ABIArgInfo::getDirect()); 6195 } 6196 6197 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const { 6198 if (!getCXXABI().classifyReturnType(FI)) 6199 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 6200 for (auto &I : FI.arguments()) 6201 I.info = classifyArgumentType(I.type); 6202 6203 // Always honor user-specified calling convention. 6204 if (FI.getCallingConvention() != llvm::CallingConv::C) 6205 return; 6206 6207 FI.setEffectiveCallingConvention(getRuntimeCC()); 6208 } 6209 6210 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6211 QualType Ty) const { 6212 llvm_unreachable("NVPTX does not support varargs"); 6213 } 6214 6215 void NVPTXTargetCodeGenInfo::setTargetAttributes( 6216 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 6217 if (GV->isDeclaration()) 6218 return; 6219 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 6220 if (!FD) return; 6221 6222 llvm::Function *F = cast<llvm::Function>(GV); 6223 6224 // Perform special handling in OpenCL mode 6225 if (M.getLangOpts().OpenCL) { 6226 // Use OpenCL function attributes to check for kernel functions 6227 // By default, all functions are device functions 6228 if (FD->hasAttr<OpenCLKernelAttr>()) { 6229 // OpenCL __kernel functions get kernel metadata 6230 // Create !{<func-ref>, metadata !"kernel", i32 1} node 6231 addNVVMMetadata(F, "kernel", 1); 6232 // And kernel functions are not subject to inlining 6233 F->addFnAttr(llvm::Attribute::NoInline); 6234 } 6235 } 6236 6237 // Perform special handling in CUDA mode. 6238 if (M.getLangOpts().CUDA) { 6239 // CUDA __global__ functions get a kernel metadata entry. Since 6240 // __global__ functions cannot be called from the device, we do not 6241 // need to set the noinline attribute. 6242 if (FD->hasAttr<CUDAGlobalAttr>()) { 6243 // Create !{<func-ref>, metadata !"kernel", i32 1} node 6244 addNVVMMetadata(F, "kernel", 1); 6245 } 6246 if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) { 6247 // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node 6248 llvm::APSInt MaxThreads(32); 6249 MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext()); 6250 if (MaxThreads > 0) 6251 addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue()); 6252 6253 // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was 6254 // not specified in __launch_bounds__ or if the user specified a 0 value, 6255 // we don't have to add a PTX directive. 6256 if (Attr->getMinBlocks()) { 6257 llvm::APSInt MinBlocks(32); 6258 MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext()); 6259 if (MinBlocks > 0) 6260 // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node 6261 addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue()); 6262 } 6263 } 6264 } 6265 } 6266 6267 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::Function *F, StringRef Name, 6268 int Operand) { 6269 llvm::Module *M = F->getParent(); 6270 llvm::LLVMContext &Ctx = M->getContext(); 6271 6272 // Get "nvvm.annotations" metadata node 6273 llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations"); 6274 6275 llvm::Metadata *MDVals[] = { 6276 llvm::ConstantAsMetadata::get(F), llvm::MDString::get(Ctx, Name), 6277 llvm::ConstantAsMetadata::get( 6278 llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))}; 6279 // Append metadata to nvvm.annotations 6280 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 6281 } 6282 6283 bool NVPTXTargetCodeGenInfo::shouldEmitStaticExternCAliases() const { 6284 return false; 6285 } 6286 } 6287 6288 //===----------------------------------------------------------------------===// 6289 // SystemZ ABI Implementation 6290 //===----------------------------------------------------------------------===// 6291 6292 namespace { 6293 6294 class SystemZABIInfo : public SwiftABIInfo { 6295 bool HasVector; 6296 6297 public: 6298 SystemZABIInfo(CodeGenTypes &CGT, bool HV) 6299 : SwiftABIInfo(CGT), HasVector(HV) {} 6300 6301 bool isPromotableIntegerType(QualType Ty) const; 6302 bool isCompoundType(QualType Ty) const; 6303 bool isVectorArgumentType(QualType Ty) const; 6304 bool isFPArgumentType(QualType Ty) const; 6305 QualType GetSingleElementType(QualType Ty) const; 6306 6307 ABIArgInfo classifyReturnType(QualType RetTy) const; 6308 ABIArgInfo classifyArgumentType(QualType ArgTy) const; 6309 6310 void computeInfo(CGFunctionInfo &FI) const override { 6311 if (!getCXXABI().classifyReturnType(FI)) 6312 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 6313 for (auto &I : FI.arguments()) 6314 I.info = classifyArgumentType(I.type); 6315 } 6316 6317 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6318 QualType Ty) const override; 6319 6320 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 6321 bool asReturnValue) const override { 6322 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 6323 } 6324 bool isSwiftErrorInRegister() const override { 6325 return false; 6326 } 6327 }; 6328 6329 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo { 6330 public: 6331 SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector) 6332 : TargetCodeGenInfo(new SystemZABIInfo(CGT, HasVector)) {} 6333 }; 6334 6335 } 6336 6337 bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const { 6338 // Treat an enum type as its underlying type. 6339 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 6340 Ty = EnumTy->getDecl()->getIntegerType(); 6341 6342 // Promotable integer types are required to be promoted by the ABI. 6343 if (Ty->isPromotableIntegerType()) 6344 return true; 6345 6346 // 32-bit values must also be promoted. 6347 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 6348 switch (BT->getKind()) { 6349 case BuiltinType::Int: 6350 case BuiltinType::UInt: 6351 return true; 6352 default: 6353 return false; 6354 } 6355 return false; 6356 } 6357 6358 bool SystemZABIInfo::isCompoundType(QualType Ty) const { 6359 return (Ty->isAnyComplexType() || 6360 Ty->isVectorType() || 6361 isAggregateTypeForABI(Ty)); 6362 } 6363 6364 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const { 6365 return (HasVector && 6366 Ty->isVectorType() && 6367 getContext().getTypeSize(Ty) <= 128); 6368 } 6369 6370 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const { 6371 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 6372 switch (BT->getKind()) { 6373 case BuiltinType::Float: 6374 case BuiltinType::Double: 6375 return true; 6376 default: 6377 return false; 6378 } 6379 6380 return false; 6381 } 6382 6383 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const { 6384 if (const RecordType *RT = Ty->getAsStructureType()) { 6385 const RecordDecl *RD = RT->getDecl(); 6386 QualType Found; 6387 6388 // If this is a C++ record, check the bases first. 6389 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 6390 for (const auto &I : CXXRD->bases()) { 6391 QualType Base = I.getType(); 6392 6393 // Empty bases don't affect things either way. 6394 if (isEmptyRecord(getContext(), Base, true)) 6395 continue; 6396 6397 if (!Found.isNull()) 6398 return Ty; 6399 Found = GetSingleElementType(Base); 6400 } 6401 6402 // Check the fields. 6403 for (const auto *FD : RD->fields()) { 6404 // For compatibility with GCC, ignore empty bitfields in C++ mode. 6405 // Unlike isSingleElementStruct(), empty structure and array fields 6406 // do count. So do anonymous bitfields that aren't zero-sized. 6407 if (getContext().getLangOpts().CPlusPlus && 6408 FD->isZeroLengthBitField(getContext())) 6409 continue; 6410 6411 // Unlike isSingleElementStruct(), arrays do not count. 6412 // Nested structures still do though. 6413 if (!Found.isNull()) 6414 return Ty; 6415 Found = GetSingleElementType(FD->getType()); 6416 } 6417 6418 // Unlike isSingleElementStruct(), trailing padding is allowed. 6419 // An 8-byte aligned struct s { float f; } is passed as a double. 6420 if (!Found.isNull()) 6421 return Found; 6422 } 6423 6424 return Ty; 6425 } 6426 6427 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6428 QualType Ty) const { 6429 // Assume that va_list type is correct; should be pointer to LLVM type: 6430 // struct { 6431 // i64 __gpr; 6432 // i64 __fpr; 6433 // i8 *__overflow_arg_area; 6434 // i8 *__reg_save_area; 6435 // }; 6436 6437 // Every non-vector argument occupies 8 bytes and is passed by preference 6438 // in either GPRs or FPRs. Vector arguments occupy 8 or 16 bytes and are 6439 // always passed on the stack. 6440 Ty = getContext().getCanonicalType(Ty); 6441 auto TyInfo = getContext().getTypeInfoInChars(Ty); 6442 llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty); 6443 llvm::Type *DirectTy = ArgTy; 6444 ABIArgInfo AI = classifyArgumentType(Ty); 6445 bool IsIndirect = AI.isIndirect(); 6446 bool InFPRs = false; 6447 bool IsVector = false; 6448 CharUnits UnpaddedSize; 6449 CharUnits DirectAlign; 6450 if (IsIndirect) { 6451 DirectTy = llvm::PointerType::getUnqual(DirectTy); 6452 UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8); 6453 } else { 6454 if (AI.getCoerceToType()) 6455 ArgTy = AI.getCoerceToType(); 6456 InFPRs = ArgTy->isFloatTy() || ArgTy->isDoubleTy(); 6457 IsVector = ArgTy->isVectorTy(); 6458 UnpaddedSize = TyInfo.first; 6459 DirectAlign = TyInfo.second; 6460 } 6461 CharUnits PaddedSize = CharUnits::fromQuantity(8); 6462 if (IsVector && UnpaddedSize > PaddedSize) 6463 PaddedSize = CharUnits::fromQuantity(16); 6464 assert((UnpaddedSize <= PaddedSize) && "Invalid argument size."); 6465 6466 CharUnits Padding = (PaddedSize - UnpaddedSize); 6467 6468 llvm::Type *IndexTy = CGF.Int64Ty; 6469 llvm::Value *PaddedSizeV = 6470 llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity()); 6471 6472 if (IsVector) { 6473 // Work out the address of a vector argument on the stack. 6474 // Vector arguments are always passed in the high bits of a 6475 // single (8 byte) or double (16 byte) stack slot. 6476 Address OverflowArgAreaPtr = 6477 CGF.Builder.CreateStructGEP(VAListAddr, 2, CharUnits::fromQuantity(16), 6478 "overflow_arg_area_ptr"); 6479 Address OverflowArgArea = 6480 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 6481 TyInfo.second); 6482 Address MemAddr = 6483 CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr"); 6484 6485 // Update overflow_arg_area_ptr pointer 6486 llvm::Value *NewOverflowArgArea = 6487 CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV, 6488 "overflow_arg_area"); 6489 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 6490 6491 return MemAddr; 6492 } 6493 6494 assert(PaddedSize.getQuantity() == 8); 6495 6496 unsigned MaxRegs, RegCountField, RegSaveIndex; 6497 CharUnits RegPadding; 6498 if (InFPRs) { 6499 MaxRegs = 4; // Maximum of 4 FPR arguments 6500 RegCountField = 1; // __fpr 6501 RegSaveIndex = 16; // save offset for f0 6502 RegPadding = CharUnits(); // floats are passed in the high bits of an FPR 6503 } else { 6504 MaxRegs = 5; // Maximum of 5 GPR arguments 6505 RegCountField = 0; // __gpr 6506 RegSaveIndex = 2; // save offset for r2 6507 RegPadding = Padding; // values are passed in the low bits of a GPR 6508 } 6509 6510 Address RegCountPtr = CGF.Builder.CreateStructGEP( 6511 VAListAddr, RegCountField, RegCountField * CharUnits::fromQuantity(8), 6512 "reg_count_ptr"); 6513 llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count"); 6514 llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs); 6515 llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV, 6516 "fits_in_regs"); 6517 6518 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 6519 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 6520 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 6521 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 6522 6523 // Emit code to load the value if it was passed in registers. 6524 CGF.EmitBlock(InRegBlock); 6525 6526 // Work out the address of an argument register. 6527 llvm::Value *ScaledRegCount = 6528 CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count"); 6529 llvm::Value *RegBase = 6530 llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity() 6531 + RegPadding.getQuantity()); 6532 llvm::Value *RegOffset = 6533 CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset"); 6534 Address RegSaveAreaPtr = 6535 CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(24), 6536 "reg_save_area_ptr"); 6537 llvm::Value *RegSaveArea = 6538 CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area"); 6539 Address RawRegAddr(CGF.Builder.CreateGEP(RegSaveArea, RegOffset, 6540 "raw_reg_addr"), 6541 PaddedSize); 6542 Address RegAddr = 6543 CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr"); 6544 6545 // Update the register count 6546 llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1); 6547 llvm::Value *NewRegCount = 6548 CGF.Builder.CreateAdd(RegCount, One, "reg_count"); 6549 CGF.Builder.CreateStore(NewRegCount, RegCountPtr); 6550 CGF.EmitBranch(ContBlock); 6551 6552 // Emit code to load the value if it was passed in memory. 6553 CGF.EmitBlock(InMemBlock); 6554 6555 // Work out the address of a stack argument. 6556 Address OverflowArgAreaPtr = CGF.Builder.CreateStructGEP( 6557 VAListAddr, 2, CharUnits::fromQuantity(16), "overflow_arg_area_ptr"); 6558 Address OverflowArgArea = 6559 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 6560 PaddedSize); 6561 Address RawMemAddr = 6562 CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr"); 6563 Address MemAddr = 6564 CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr"); 6565 6566 // Update overflow_arg_area_ptr pointer 6567 llvm::Value *NewOverflowArgArea = 6568 CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV, 6569 "overflow_arg_area"); 6570 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 6571 CGF.EmitBranch(ContBlock); 6572 6573 // Return the appropriate result. 6574 CGF.EmitBlock(ContBlock); 6575 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 6576 MemAddr, InMemBlock, "va_arg.addr"); 6577 6578 if (IsIndirect) 6579 ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"), 6580 TyInfo.second); 6581 6582 return ResAddr; 6583 } 6584 6585 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const { 6586 if (RetTy->isVoidType()) 6587 return ABIArgInfo::getIgnore(); 6588 if (isVectorArgumentType(RetTy)) 6589 return ABIArgInfo::getDirect(); 6590 if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64) 6591 return getNaturalAlignIndirect(RetTy); 6592 return (isPromotableIntegerType(RetTy) ? ABIArgInfo::getExtend(RetTy) 6593 : ABIArgInfo::getDirect()); 6594 } 6595 6596 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const { 6597 // Handle the generic C++ ABI. 6598 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 6599 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 6600 6601 // Integers and enums are extended to full register width. 6602 if (isPromotableIntegerType(Ty)) 6603 return ABIArgInfo::getExtend(Ty); 6604 6605 // Handle vector types and vector-like structure types. Note that 6606 // as opposed to float-like structure types, we do not allow any 6607 // padding for vector-like structures, so verify the sizes match. 6608 uint64_t Size = getContext().getTypeSize(Ty); 6609 QualType SingleElementTy = GetSingleElementType(Ty); 6610 if (isVectorArgumentType(SingleElementTy) && 6611 getContext().getTypeSize(SingleElementTy) == Size) 6612 return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy)); 6613 6614 // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly. 6615 if (Size != 8 && Size != 16 && Size != 32 && Size != 64) 6616 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6617 6618 // Handle small structures. 6619 if (const RecordType *RT = Ty->getAs<RecordType>()) { 6620 // Structures with flexible arrays have variable length, so really 6621 // fail the size test above. 6622 const RecordDecl *RD = RT->getDecl(); 6623 if (RD->hasFlexibleArrayMember()) 6624 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6625 6626 // The structure is passed as an unextended integer, a float, or a double. 6627 llvm::Type *PassTy; 6628 if (isFPArgumentType(SingleElementTy)) { 6629 assert(Size == 32 || Size == 64); 6630 if (Size == 32) 6631 PassTy = llvm::Type::getFloatTy(getVMContext()); 6632 else 6633 PassTy = llvm::Type::getDoubleTy(getVMContext()); 6634 } else 6635 PassTy = llvm::IntegerType::get(getVMContext(), Size); 6636 return ABIArgInfo::getDirect(PassTy); 6637 } 6638 6639 // Non-structure compounds are passed indirectly. 6640 if (isCompoundType(Ty)) 6641 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6642 6643 return ABIArgInfo::getDirect(nullptr); 6644 } 6645 6646 //===----------------------------------------------------------------------===// 6647 // MSP430 ABI Implementation 6648 //===----------------------------------------------------------------------===// 6649 6650 namespace { 6651 6652 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo { 6653 public: 6654 MSP430TargetCodeGenInfo(CodeGenTypes &CGT) 6655 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 6656 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6657 CodeGen::CodeGenModule &M) const override; 6658 }; 6659 6660 } 6661 6662 void MSP430TargetCodeGenInfo::setTargetAttributes( 6663 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 6664 if (GV->isDeclaration()) 6665 return; 6666 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 6667 if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) { 6668 // Handle 'interrupt' attribute: 6669 llvm::Function *F = cast<llvm::Function>(GV); 6670 6671 // Step 1: Set ISR calling convention. 6672 F->setCallingConv(llvm::CallingConv::MSP430_INTR); 6673 6674 // Step 2: Add attributes goodness. 6675 F->addFnAttr(llvm::Attribute::NoInline); 6676 6677 // Step 3: Emit ISR vector alias. 6678 unsigned Num = attr->getNumber() / 2; 6679 llvm::GlobalAlias::create(llvm::Function::ExternalLinkage, 6680 "__isr_" + Twine(Num), F); 6681 } 6682 } 6683 } 6684 6685 //===----------------------------------------------------------------------===// 6686 // MIPS ABI Implementation. This works for both little-endian and 6687 // big-endian variants. 6688 //===----------------------------------------------------------------------===// 6689 6690 namespace { 6691 class MipsABIInfo : public ABIInfo { 6692 bool IsO32; 6693 unsigned MinABIStackAlignInBytes, StackAlignInBytes; 6694 void CoerceToIntArgs(uint64_t TySize, 6695 SmallVectorImpl<llvm::Type *> &ArgList) const; 6696 llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const; 6697 llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const; 6698 llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const; 6699 public: 6700 MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) : 6701 ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8), 6702 StackAlignInBytes(IsO32 ? 8 : 16) {} 6703 6704 ABIArgInfo classifyReturnType(QualType RetTy) const; 6705 ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const; 6706 void computeInfo(CGFunctionInfo &FI) const override; 6707 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6708 QualType Ty) const override; 6709 ABIArgInfo extendType(QualType Ty) const; 6710 }; 6711 6712 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo { 6713 unsigned SizeOfUnwindException; 6714 public: 6715 MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32) 6716 : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)), 6717 SizeOfUnwindException(IsO32 ? 24 : 32) {} 6718 6719 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 6720 return 29; 6721 } 6722 6723 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6724 CodeGen::CodeGenModule &CGM) const override { 6725 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 6726 if (!FD) return; 6727 llvm::Function *Fn = cast<llvm::Function>(GV); 6728 6729 if (FD->hasAttr<MipsLongCallAttr>()) 6730 Fn->addFnAttr("long-call"); 6731 else if (FD->hasAttr<MipsShortCallAttr>()) 6732 Fn->addFnAttr("short-call"); 6733 6734 // Other attributes do not have a meaning for declarations. 6735 if (GV->isDeclaration()) 6736 return; 6737 6738 if (FD->hasAttr<Mips16Attr>()) { 6739 Fn->addFnAttr("mips16"); 6740 } 6741 else if (FD->hasAttr<NoMips16Attr>()) { 6742 Fn->addFnAttr("nomips16"); 6743 } 6744 6745 if (FD->hasAttr<MicroMipsAttr>()) 6746 Fn->addFnAttr("micromips"); 6747 else if (FD->hasAttr<NoMicroMipsAttr>()) 6748 Fn->addFnAttr("nomicromips"); 6749 6750 const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>(); 6751 if (!Attr) 6752 return; 6753 6754 const char *Kind; 6755 switch (Attr->getInterrupt()) { 6756 case MipsInterruptAttr::eic: Kind = "eic"; break; 6757 case MipsInterruptAttr::sw0: Kind = "sw0"; break; 6758 case MipsInterruptAttr::sw1: Kind = "sw1"; break; 6759 case MipsInterruptAttr::hw0: Kind = "hw0"; break; 6760 case MipsInterruptAttr::hw1: Kind = "hw1"; break; 6761 case MipsInterruptAttr::hw2: Kind = "hw2"; break; 6762 case MipsInterruptAttr::hw3: Kind = "hw3"; break; 6763 case MipsInterruptAttr::hw4: Kind = "hw4"; break; 6764 case MipsInterruptAttr::hw5: Kind = "hw5"; break; 6765 } 6766 6767 Fn->addFnAttr("interrupt", Kind); 6768 6769 } 6770 6771 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 6772 llvm::Value *Address) const override; 6773 6774 unsigned getSizeOfUnwindException() const override { 6775 return SizeOfUnwindException; 6776 } 6777 }; 6778 } 6779 6780 void MipsABIInfo::CoerceToIntArgs( 6781 uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const { 6782 llvm::IntegerType *IntTy = 6783 llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8); 6784 6785 // Add (TySize / MinABIStackAlignInBytes) args of IntTy. 6786 for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N) 6787 ArgList.push_back(IntTy); 6788 6789 // If necessary, add one more integer type to ArgList. 6790 unsigned R = TySize % (MinABIStackAlignInBytes * 8); 6791 6792 if (R) 6793 ArgList.push_back(llvm::IntegerType::get(getVMContext(), R)); 6794 } 6795 6796 // In N32/64, an aligned double precision floating point field is passed in 6797 // a register. 6798 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const { 6799 SmallVector<llvm::Type*, 8> ArgList, IntArgList; 6800 6801 if (IsO32) { 6802 CoerceToIntArgs(TySize, ArgList); 6803 return llvm::StructType::get(getVMContext(), ArgList); 6804 } 6805 6806 if (Ty->isComplexType()) 6807 return CGT.ConvertType(Ty); 6808 6809 const RecordType *RT = Ty->getAs<RecordType>(); 6810 6811 // Unions/vectors are passed in integer registers. 6812 if (!RT || !RT->isStructureOrClassType()) { 6813 CoerceToIntArgs(TySize, ArgList); 6814 return llvm::StructType::get(getVMContext(), ArgList); 6815 } 6816 6817 const RecordDecl *RD = RT->getDecl(); 6818 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 6819 assert(!(TySize % 8) && "Size of structure must be multiple of 8."); 6820 6821 uint64_t LastOffset = 0; 6822 unsigned idx = 0; 6823 llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64); 6824 6825 // Iterate over fields in the struct/class and check if there are any aligned 6826 // double fields. 6827 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 6828 i != e; ++i, ++idx) { 6829 const QualType Ty = i->getType(); 6830 const BuiltinType *BT = Ty->getAs<BuiltinType>(); 6831 6832 if (!BT || BT->getKind() != BuiltinType::Double) 6833 continue; 6834 6835 uint64_t Offset = Layout.getFieldOffset(idx); 6836 if (Offset % 64) // Ignore doubles that are not aligned. 6837 continue; 6838 6839 // Add ((Offset - LastOffset) / 64) args of type i64. 6840 for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j) 6841 ArgList.push_back(I64); 6842 6843 // Add double type. 6844 ArgList.push_back(llvm::Type::getDoubleTy(getVMContext())); 6845 LastOffset = Offset + 64; 6846 } 6847 6848 CoerceToIntArgs(TySize - LastOffset, IntArgList); 6849 ArgList.append(IntArgList.begin(), IntArgList.end()); 6850 6851 return llvm::StructType::get(getVMContext(), ArgList); 6852 } 6853 6854 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset, 6855 uint64_t Offset) const { 6856 if (OrigOffset + MinABIStackAlignInBytes > Offset) 6857 return nullptr; 6858 6859 return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8); 6860 } 6861 6862 ABIArgInfo 6863 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const { 6864 Ty = useFirstFieldIfTransparentUnion(Ty); 6865 6866 uint64_t OrigOffset = Offset; 6867 uint64_t TySize = getContext().getTypeSize(Ty); 6868 uint64_t Align = getContext().getTypeAlign(Ty) / 8; 6869 6870 Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes), 6871 (uint64_t)StackAlignInBytes); 6872 unsigned CurrOffset = llvm::alignTo(Offset, Align); 6873 Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8; 6874 6875 if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) { 6876 // Ignore empty aggregates. 6877 if (TySize == 0) 6878 return ABIArgInfo::getIgnore(); 6879 6880 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 6881 Offset = OrigOffset + MinABIStackAlignInBytes; 6882 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 6883 } 6884 6885 // If we have reached here, aggregates are passed directly by coercing to 6886 // another structure type. Padding is inserted if the offset of the 6887 // aggregate is unaligned. 6888 ABIArgInfo ArgInfo = 6889 ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0, 6890 getPaddingType(OrigOffset, CurrOffset)); 6891 ArgInfo.setInReg(true); 6892 return ArgInfo; 6893 } 6894 6895 // Treat an enum type as its underlying type. 6896 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 6897 Ty = EnumTy->getDecl()->getIntegerType(); 6898 6899 // All integral types are promoted to the GPR width. 6900 if (Ty->isIntegralOrEnumerationType()) 6901 return extendType(Ty); 6902 6903 return ABIArgInfo::getDirect( 6904 nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset)); 6905 } 6906 6907 llvm::Type* 6908 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const { 6909 const RecordType *RT = RetTy->getAs<RecordType>(); 6910 SmallVector<llvm::Type*, 8> RTList; 6911 6912 if (RT && RT->isStructureOrClassType()) { 6913 const RecordDecl *RD = RT->getDecl(); 6914 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 6915 unsigned FieldCnt = Layout.getFieldCount(); 6916 6917 // N32/64 returns struct/classes in floating point registers if the 6918 // following conditions are met: 6919 // 1. The size of the struct/class is no larger than 128-bit. 6920 // 2. The struct/class has one or two fields all of which are floating 6921 // point types. 6922 // 3. The offset of the first field is zero (this follows what gcc does). 6923 // 6924 // Any other composite results are returned in integer registers. 6925 // 6926 if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) { 6927 RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end(); 6928 for (; b != e; ++b) { 6929 const BuiltinType *BT = b->getType()->getAs<BuiltinType>(); 6930 6931 if (!BT || !BT->isFloatingPoint()) 6932 break; 6933 6934 RTList.push_back(CGT.ConvertType(b->getType())); 6935 } 6936 6937 if (b == e) 6938 return llvm::StructType::get(getVMContext(), RTList, 6939 RD->hasAttr<PackedAttr>()); 6940 6941 RTList.clear(); 6942 } 6943 } 6944 6945 CoerceToIntArgs(Size, RTList); 6946 return llvm::StructType::get(getVMContext(), RTList); 6947 } 6948 6949 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const { 6950 uint64_t Size = getContext().getTypeSize(RetTy); 6951 6952 if (RetTy->isVoidType()) 6953 return ABIArgInfo::getIgnore(); 6954 6955 // O32 doesn't treat zero-sized structs differently from other structs. 6956 // However, N32/N64 ignores zero sized return values. 6957 if (!IsO32 && Size == 0) 6958 return ABIArgInfo::getIgnore(); 6959 6960 if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) { 6961 if (Size <= 128) { 6962 if (RetTy->isAnyComplexType()) 6963 return ABIArgInfo::getDirect(); 6964 6965 // O32 returns integer vectors in registers and N32/N64 returns all small 6966 // aggregates in registers. 6967 if (!IsO32 || 6968 (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) { 6969 ABIArgInfo ArgInfo = 6970 ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size)); 6971 ArgInfo.setInReg(true); 6972 return ArgInfo; 6973 } 6974 } 6975 6976 return getNaturalAlignIndirect(RetTy); 6977 } 6978 6979 // Treat an enum type as its underlying type. 6980 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 6981 RetTy = EnumTy->getDecl()->getIntegerType(); 6982 6983 return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 6984 : ABIArgInfo::getDirect()); 6985 } 6986 6987 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const { 6988 ABIArgInfo &RetInfo = FI.getReturnInfo(); 6989 if (!getCXXABI().classifyReturnType(FI)) 6990 RetInfo = classifyReturnType(FI.getReturnType()); 6991 6992 // Check if a pointer to an aggregate is passed as a hidden argument. 6993 uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0; 6994 6995 for (auto &I : FI.arguments()) 6996 I.info = classifyArgumentType(I.type, Offset); 6997 } 6998 6999 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7000 QualType OrigTy) const { 7001 QualType Ty = OrigTy; 7002 7003 // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64. 7004 // Pointers are also promoted in the same way but this only matters for N32. 7005 unsigned SlotSizeInBits = IsO32 ? 32 : 64; 7006 unsigned PtrWidth = getTarget().getPointerWidth(0); 7007 bool DidPromote = false; 7008 if ((Ty->isIntegerType() && 7009 getContext().getIntWidth(Ty) < SlotSizeInBits) || 7010 (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) { 7011 DidPromote = true; 7012 Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits, 7013 Ty->isSignedIntegerType()); 7014 } 7015 7016 auto TyInfo = getContext().getTypeInfoInChars(Ty); 7017 7018 // The alignment of things in the argument area is never larger than 7019 // StackAlignInBytes. 7020 TyInfo.second = 7021 std::min(TyInfo.second, CharUnits::fromQuantity(StackAlignInBytes)); 7022 7023 // MinABIStackAlignInBytes is the size of argument slots on the stack. 7024 CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes); 7025 7026 Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 7027 TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true); 7028 7029 7030 // If there was a promotion, "unpromote" into a temporary. 7031 // TODO: can we just use a pointer into a subset of the original slot? 7032 if (DidPromote) { 7033 Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp"); 7034 llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr); 7035 7036 // Truncate down to the right width. 7037 llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType() 7038 : CGF.IntPtrTy); 7039 llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy); 7040 if (OrigTy->isPointerType()) 7041 V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType()); 7042 7043 CGF.Builder.CreateStore(V, Temp); 7044 Addr = Temp; 7045 } 7046 7047 return Addr; 7048 } 7049 7050 ABIArgInfo MipsABIInfo::extendType(QualType Ty) const { 7051 int TySize = getContext().getTypeSize(Ty); 7052 7053 // MIPS64 ABI requires unsigned 32 bit integers to be sign extended. 7054 if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 7055 return ABIArgInfo::getSignExtend(Ty); 7056 7057 return ABIArgInfo::getExtend(Ty); 7058 } 7059 7060 bool 7061 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 7062 llvm::Value *Address) const { 7063 // This information comes from gcc's implementation, which seems to 7064 // as canonical as it gets. 7065 7066 // Everything on MIPS is 4 bytes. Double-precision FP registers 7067 // are aliased to pairs of single-precision FP registers. 7068 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 7069 7070 // 0-31 are the general purpose registers, $0 - $31. 7071 // 32-63 are the floating-point registers, $f0 - $f31. 7072 // 64 and 65 are the multiply/divide registers, $hi and $lo. 7073 // 66 is the (notional, I think) register for signal-handler return. 7074 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65); 7075 7076 // 67-74 are the floating-point status registers, $fcc0 - $fcc7. 7077 // They are one bit wide and ignored here. 7078 7079 // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31. 7080 // (coprocessor 1 is the FP unit) 7081 // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31. 7082 // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31. 7083 // 176-181 are the DSP accumulator registers. 7084 AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181); 7085 return false; 7086 } 7087 7088 //===----------------------------------------------------------------------===// 7089 // AVR ABI Implementation. 7090 //===----------------------------------------------------------------------===// 7091 7092 namespace { 7093 class AVRTargetCodeGenInfo : public TargetCodeGenInfo { 7094 public: 7095 AVRTargetCodeGenInfo(CodeGenTypes &CGT) 7096 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) { } 7097 7098 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7099 CodeGen::CodeGenModule &CGM) const override { 7100 if (GV->isDeclaration()) 7101 return; 7102 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 7103 if (!FD) return; 7104 auto *Fn = cast<llvm::Function>(GV); 7105 7106 if (FD->getAttr<AVRInterruptAttr>()) 7107 Fn->addFnAttr("interrupt"); 7108 7109 if (FD->getAttr<AVRSignalAttr>()) 7110 Fn->addFnAttr("signal"); 7111 } 7112 }; 7113 } 7114 7115 //===----------------------------------------------------------------------===// 7116 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults. 7117 // Currently subclassed only to implement custom OpenCL C function attribute 7118 // handling. 7119 //===----------------------------------------------------------------------===// 7120 7121 namespace { 7122 7123 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo { 7124 public: 7125 TCETargetCodeGenInfo(CodeGenTypes &CGT) 7126 : DefaultTargetCodeGenInfo(CGT) {} 7127 7128 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7129 CodeGen::CodeGenModule &M) const override; 7130 }; 7131 7132 void TCETargetCodeGenInfo::setTargetAttributes( 7133 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 7134 if (GV->isDeclaration()) 7135 return; 7136 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 7137 if (!FD) return; 7138 7139 llvm::Function *F = cast<llvm::Function>(GV); 7140 7141 if (M.getLangOpts().OpenCL) { 7142 if (FD->hasAttr<OpenCLKernelAttr>()) { 7143 // OpenCL C Kernel functions are not subject to inlining 7144 F->addFnAttr(llvm::Attribute::NoInline); 7145 const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>(); 7146 if (Attr) { 7147 // Convert the reqd_work_group_size() attributes to metadata. 7148 llvm::LLVMContext &Context = F->getContext(); 7149 llvm::NamedMDNode *OpenCLMetadata = 7150 M.getModule().getOrInsertNamedMetadata( 7151 "opencl.kernel_wg_size_info"); 7152 7153 SmallVector<llvm::Metadata *, 5> Operands; 7154 Operands.push_back(llvm::ConstantAsMetadata::get(F)); 7155 7156 Operands.push_back( 7157 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 7158 M.Int32Ty, llvm::APInt(32, Attr->getXDim())))); 7159 Operands.push_back( 7160 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 7161 M.Int32Ty, llvm::APInt(32, Attr->getYDim())))); 7162 Operands.push_back( 7163 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 7164 M.Int32Ty, llvm::APInt(32, Attr->getZDim())))); 7165 7166 // Add a boolean constant operand for "required" (true) or "hint" 7167 // (false) for implementing the work_group_size_hint attr later. 7168 // Currently always true as the hint is not yet implemented. 7169 Operands.push_back( 7170 llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context))); 7171 OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands)); 7172 } 7173 } 7174 } 7175 } 7176 7177 } 7178 7179 //===----------------------------------------------------------------------===// 7180 // Hexagon ABI Implementation 7181 //===----------------------------------------------------------------------===// 7182 7183 namespace { 7184 7185 class HexagonABIInfo : public ABIInfo { 7186 7187 7188 public: 7189 HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 7190 7191 private: 7192 7193 ABIArgInfo classifyReturnType(QualType RetTy) const; 7194 ABIArgInfo classifyArgumentType(QualType RetTy) const; 7195 7196 void computeInfo(CGFunctionInfo &FI) const override; 7197 7198 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7199 QualType Ty) const override; 7200 }; 7201 7202 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo { 7203 public: 7204 HexagonTargetCodeGenInfo(CodeGenTypes &CGT) 7205 :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {} 7206 7207 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 7208 return 29; 7209 } 7210 }; 7211 7212 } 7213 7214 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const { 7215 if (!getCXXABI().classifyReturnType(FI)) 7216 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7217 for (auto &I : FI.arguments()) 7218 I.info = classifyArgumentType(I.type); 7219 } 7220 7221 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const { 7222 if (!isAggregateTypeForABI(Ty)) { 7223 // Treat an enum type as its underlying type. 7224 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7225 Ty = EnumTy->getDecl()->getIntegerType(); 7226 7227 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 7228 : ABIArgInfo::getDirect()); 7229 } 7230 7231 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 7232 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7233 7234 // Ignore empty records. 7235 if (isEmptyRecord(getContext(), Ty, true)) 7236 return ABIArgInfo::getIgnore(); 7237 7238 uint64_t Size = getContext().getTypeSize(Ty); 7239 if (Size > 64) 7240 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 7241 // Pass in the smallest viable integer type. 7242 else if (Size > 32) 7243 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); 7244 else if (Size > 16) 7245 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 7246 else if (Size > 8) 7247 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 7248 else 7249 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 7250 } 7251 7252 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const { 7253 if (RetTy->isVoidType()) 7254 return ABIArgInfo::getIgnore(); 7255 7256 // Large vector types should be returned via memory. 7257 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64) 7258 return getNaturalAlignIndirect(RetTy); 7259 7260 if (!isAggregateTypeForABI(RetTy)) { 7261 // Treat an enum type as its underlying type. 7262 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 7263 RetTy = EnumTy->getDecl()->getIntegerType(); 7264 7265 return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 7266 : ABIArgInfo::getDirect()); 7267 } 7268 7269 if (isEmptyRecord(getContext(), RetTy, true)) 7270 return ABIArgInfo::getIgnore(); 7271 7272 // Aggregates <= 8 bytes are returned in r0; other aggregates 7273 // are returned indirectly. 7274 uint64_t Size = getContext().getTypeSize(RetTy); 7275 if (Size <= 64) { 7276 // Return in the smallest viable integer type. 7277 if (Size <= 8) 7278 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 7279 if (Size <= 16) 7280 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 7281 if (Size <= 32) 7282 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 7283 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); 7284 } 7285 7286 return getNaturalAlignIndirect(RetTy, /*ByVal=*/true); 7287 } 7288 7289 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7290 QualType Ty) const { 7291 // FIXME: Someone needs to audit that this handle alignment correctly. 7292 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 7293 getContext().getTypeInfoInChars(Ty), 7294 CharUnits::fromQuantity(4), 7295 /*AllowHigherAlign*/ true); 7296 } 7297 7298 //===----------------------------------------------------------------------===// 7299 // Lanai ABI Implementation 7300 //===----------------------------------------------------------------------===// 7301 7302 namespace { 7303 class LanaiABIInfo : public DefaultABIInfo { 7304 public: 7305 LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 7306 7307 bool shouldUseInReg(QualType Ty, CCState &State) const; 7308 7309 void computeInfo(CGFunctionInfo &FI) const override { 7310 CCState State(FI.getCallingConvention()); 7311 // Lanai uses 4 registers to pass arguments unless the function has the 7312 // regparm attribute set. 7313 if (FI.getHasRegParm()) { 7314 State.FreeRegs = FI.getRegParm(); 7315 } else { 7316 State.FreeRegs = 4; 7317 } 7318 7319 if (!getCXXABI().classifyReturnType(FI)) 7320 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7321 for (auto &I : FI.arguments()) 7322 I.info = classifyArgumentType(I.type, State); 7323 } 7324 7325 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 7326 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 7327 }; 7328 } // end anonymous namespace 7329 7330 bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const { 7331 unsigned Size = getContext().getTypeSize(Ty); 7332 unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U; 7333 7334 if (SizeInRegs == 0) 7335 return false; 7336 7337 if (SizeInRegs > State.FreeRegs) { 7338 State.FreeRegs = 0; 7339 return false; 7340 } 7341 7342 State.FreeRegs -= SizeInRegs; 7343 7344 return true; 7345 } 7346 7347 ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal, 7348 CCState &State) const { 7349 if (!ByVal) { 7350 if (State.FreeRegs) { 7351 --State.FreeRegs; // Non-byval indirects just use one pointer. 7352 return getNaturalAlignIndirectInReg(Ty); 7353 } 7354 return getNaturalAlignIndirect(Ty, false); 7355 } 7356 7357 // Compute the byval alignment. 7358 const unsigned MinABIStackAlignInBytes = 4; 7359 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 7360 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true, 7361 /*Realign=*/TypeAlign > 7362 MinABIStackAlignInBytes); 7363 } 7364 7365 ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty, 7366 CCState &State) const { 7367 // Check with the C++ ABI first. 7368 const RecordType *RT = Ty->getAs<RecordType>(); 7369 if (RT) { 7370 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 7371 if (RAA == CGCXXABI::RAA_Indirect) { 7372 return getIndirectResult(Ty, /*ByVal=*/false, State); 7373 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 7374 return getNaturalAlignIndirect(Ty, /*ByRef=*/true); 7375 } 7376 } 7377 7378 if (isAggregateTypeForABI(Ty)) { 7379 // Structures with flexible arrays are always indirect. 7380 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 7381 return getIndirectResult(Ty, /*ByVal=*/true, State); 7382 7383 // Ignore empty structs/unions. 7384 if (isEmptyRecord(getContext(), Ty, true)) 7385 return ABIArgInfo::getIgnore(); 7386 7387 llvm::LLVMContext &LLVMContext = getVMContext(); 7388 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; 7389 if (SizeInRegs <= State.FreeRegs) { 7390 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 7391 SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32); 7392 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 7393 State.FreeRegs -= SizeInRegs; 7394 return ABIArgInfo::getDirectInReg(Result); 7395 } else { 7396 State.FreeRegs = 0; 7397 } 7398 return getIndirectResult(Ty, true, State); 7399 } 7400 7401 // Treat an enum type as its underlying type. 7402 if (const auto *EnumTy = Ty->getAs<EnumType>()) 7403 Ty = EnumTy->getDecl()->getIntegerType(); 7404 7405 bool InReg = shouldUseInReg(Ty, State); 7406 if (Ty->isPromotableIntegerType()) { 7407 if (InReg) 7408 return ABIArgInfo::getDirectInReg(); 7409 return ABIArgInfo::getExtend(Ty); 7410 } 7411 if (InReg) 7412 return ABIArgInfo::getDirectInReg(); 7413 return ABIArgInfo::getDirect(); 7414 } 7415 7416 namespace { 7417 class LanaiTargetCodeGenInfo : public TargetCodeGenInfo { 7418 public: 7419 LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 7420 : TargetCodeGenInfo(new LanaiABIInfo(CGT)) {} 7421 }; 7422 } 7423 7424 //===----------------------------------------------------------------------===// 7425 // AMDGPU ABI Implementation 7426 //===----------------------------------------------------------------------===// 7427 7428 namespace { 7429 7430 class AMDGPUABIInfo final : public DefaultABIInfo { 7431 private: 7432 static const unsigned MaxNumRegsForArgsRet = 16; 7433 7434 unsigned numRegsForType(QualType Ty) const; 7435 7436 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 7437 bool isHomogeneousAggregateSmallEnough(const Type *Base, 7438 uint64_t Members) const override; 7439 7440 public: 7441 explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) : 7442 DefaultABIInfo(CGT) {} 7443 7444 ABIArgInfo classifyReturnType(QualType RetTy) const; 7445 ABIArgInfo classifyKernelArgumentType(QualType Ty) const; 7446 ABIArgInfo classifyArgumentType(QualType Ty, unsigned &NumRegsLeft) const; 7447 7448 void computeInfo(CGFunctionInfo &FI) const override; 7449 }; 7450 7451 bool AMDGPUABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 7452 return true; 7453 } 7454 7455 bool AMDGPUABIInfo::isHomogeneousAggregateSmallEnough( 7456 const Type *Base, uint64_t Members) const { 7457 uint32_t NumRegs = (getContext().getTypeSize(Base) + 31) / 32; 7458 7459 // Homogeneous Aggregates may occupy at most 16 registers. 7460 return Members * NumRegs <= MaxNumRegsForArgsRet; 7461 } 7462 7463 /// Estimate number of registers the type will use when passed in registers. 7464 unsigned AMDGPUABIInfo::numRegsForType(QualType Ty) const { 7465 unsigned NumRegs = 0; 7466 7467 if (const VectorType *VT = Ty->getAs<VectorType>()) { 7468 // Compute from the number of elements. The reported size is based on the 7469 // in-memory size, which includes the padding 4th element for 3-vectors. 7470 QualType EltTy = VT->getElementType(); 7471 unsigned EltSize = getContext().getTypeSize(EltTy); 7472 7473 // 16-bit element vectors should be passed as packed. 7474 if (EltSize == 16) 7475 return (VT->getNumElements() + 1) / 2; 7476 7477 unsigned EltNumRegs = (EltSize + 31) / 32; 7478 return EltNumRegs * VT->getNumElements(); 7479 } 7480 7481 if (const RecordType *RT = Ty->getAs<RecordType>()) { 7482 const RecordDecl *RD = RT->getDecl(); 7483 assert(!RD->hasFlexibleArrayMember()); 7484 7485 for (const FieldDecl *Field : RD->fields()) { 7486 QualType FieldTy = Field->getType(); 7487 NumRegs += numRegsForType(FieldTy); 7488 } 7489 7490 return NumRegs; 7491 } 7492 7493 return (getContext().getTypeSize(Ty) + 31) / 32; 7494 } 7495 7496 void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const { 7497 llvm::CallingConv::ID CC = FI.getCallingConvention(); 7498 7499 if (!getCXXABI().classifyReturnType(FI)) 7500 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7501 7502 unsigned NumRegsLeft = MaxNumRegsForArgsRet; 7503 for (auto &Arg : FI.arguments()) { 7504 if (CC == llvm::CallingConv::AMDGPU_KERNEL) { 7505 Arg.info = classifyKernelArgumentType(Arg.type); 7506 } else { 7507 Arg.info = classifyArgumentType(Arg.type, NumRegsLeft); 7508 } 7509 } 7510 } 7511 7512 ABIArgInfo AMDGPUABIInfo::classifyReturnType(QualType RetTy) const { 7513 if (isAggregateTypeForABI(RetTy)) { 7514 // Records with non-trivial destructors/copy-constructors should not be 7515 // returned by value. 7516 if (!getRecordArgABI(RetTy, getCXXABI())) { 7517 // Ignore empty structs/unions. 7518 if (isEmptyRecord(getContext(), RetTy, true)) 7519 return ABIArgInfo::getIgnore(); 7520 7521 // Lower single-element structs to just return a regular value. 7522 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 7523 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 7524 7525 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 7526 const RecordDecl *RD = RT->getDecl(); 7527 if (RD->hasFlexibleArrayMember()) 7528 return DefaultABIInfo::classifyReturnType(RetTy); 7529 } 7530 7531 // Pack aggregates <= 4 bytes into single VGPR or pair. 7532 uint64_t Size = getContext().getTypeSize(RetTy); 7533 if (Size <= 16) 7534 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 7535 7536 if (Size <= 32) 7537 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 7538 7539 if (Size <= 64) { 7540 llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext()); 7541 return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2)); 7542 } 7543 7544 if (numRegsForType(RetTy) <= MaxNumRegsForArgsRet) 7545 return ABIArgInfo::getDirect(); 7546 } 7547 } 7548 7549 // Otherwise just do the default thing. 7550 return DefaultABIInfo::classifyReturnType(RetTy); 7551 } 7552 7553 /// For kernels all parameters are really passed in a special buffer. It doesn't 7554 /// make sense to pass anything byval, so everything must be direct. 7555 ABIArgInfo AMDGPUABIInfo::classifyKernelArgumentType(QualType Ty) const { 7556 Ty = useFirstFieldIfTransparentUnion(Ty); 7557 7558 // TODO: Can we omit empty structs? 7559 7560 // Coerce single element structs to its element. 7561 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 7562 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 7563 7564 // If we set CanBeFlattened to true, CodeGen will expand the struct to its 7565 // individual elements, which confuses the Clover OpenCL backend; therefore we 7566 // have to set it to false here. Other args of getDirect() are just defaults. 7567 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); 7568 } 7569 7570 ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty, 7571 unsigned &NumRegsLeft) const { 7572 assert(NumRegsLeft <= MaxNumRegsForArgsRet && "register estimate underflow"); 7573 7574 Ty = useFirstFieldIfTransparentUnion(Ty); 7575 7576 if (isAggregateTypeForABI(Ty)) { 7577 // Records with non-trivial destructors/copy-constructors should not be 7578 // passed by value. 7579 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 7580 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7581 7582 // Ignore empty structs/unions. 7583 if (isEmptyRecord(getContext(), Ty, true)) 7584 return ABIArgInfo::getIgnore(); 7585 7586 // Lower single-element structs to just pass a regular value. TODO: We 7587 // could do reasonable-size multiple-element structs too, using getExpand(), 7588 // though watch out for things like bitfields. 7589 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 7590 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 7591 7592 if (const RecordType *RT = Ty->getAs<RecordType>()) { 7593 const RecordDecl *RD = RT->getDecl(); 7594 if (RD->hasFlexibleArrayMember()) 7595 return DefaultABIInfo::classifyArgumentType(Ty); 7596 } 7597 7598 // Pack aggregates <= 8 bytes into single VGPR or pair. 7599 uint64_t Size = getContext().getTypeSize(Ty); 7600 if (Size <= 64) { 7601 unsigned NumRegs = (Size + 31) / 32; 7602 NumRegsLeft -= std::min(NumRegsLeft, NumRegs); 7603 7604 if (Size <= 16) 7605 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 7606 7607 if (Size <= 32) 7608 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 7609 7610 // XXX: Should this be i64 instead, and should the limit increase? 7611 llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext()); 7612 return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2)); 7613 } 7614 7615 if (NumRegsLeft > 0) { 7616 unsigned NumRegs = numRegsForType(Ty); 7617 if (NumRegsLeft >= NumRegs) { 7618 NumRegsLeft -= NumRegs; 7619 return ABIArgInfo::getDirect(); 7620 } 7621 } 7622 } 7623 7624 // Otherwise just do the default thing. 7625 ABIArgInfo ArgInfo = DefaultABIInfo::classifyArgumentType(Ty); 7626 if (!ArgInfo.isIndirect()) { 7627 unsigned NumRegs = numRegsForType(Ty); 7628 NumRegsLeft -= std::min(NumRegs, NumRegsLeft); 7629 } 7630 7631 return ArgInfo; 7632 } 7633 7634 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo { 7635 public: 7636 AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT) 7637 : TargetCodeGenInfo(new AMDGPUABIInfo(CGT)) {} 7638 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7639 CodeGen::CodeGenModule &M) const override; 7640 unsigned getOpenCLKernelCallingConv() const override; 7641 7642 llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM, 7643 llvm::PointerType *T, QualType QT) const override; 7644 7645 LangAS getASTAllocaAddressSpace() const override { 7646 return getLangASFromTargetAS( 7647 getABIInfo().getDataLayout().getAllocaAddrSpace()); 7648 } 7649 LangAS getGlobalVarAddressSpace(CodeGenModule &CGM, 7650 const VarDecl *D) const override; 7651 llvm::SyncScope::ID getLLVMSyncScopeID(SyncScope S, 7652 llvm::LLVMContext &C) const override; 7653 llvm::Function * 7654 createEnqueuedBlockKernel(CodeGenFunction &CGF, 7655 llvm::Function *BlockInvokeFunc, 7656 llvm::Value *BlockLiteral) const override; 7657 bool shouldEmitStaticExternCAliases() const override; 7658 void setCUDAKernelCallingConvention(const FunctionType *&FT) const override; 7659 }; 7660 } 7661 7662 void AMDGPUTargetCodeGenInfo::setTargetAttributes( 7663 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 7664 if (GV->isDeclaration()) 7665 return; 7666 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 7667 if (!FD) 7668 return; 7669 7670 llvm::Function *F = cast<llvm::Function>(GV); 7671 7672 const auto *ReqdWGS = M.getLangOpts().OpenCL ? 7673 FD->getAttr<ReqdWorkGroupSizeAttr>() : nullptr; 7674 7675 if (M.getLangOpts().OpenCL && FD->hasAttr<OpenCLKernelAttr>() && 7676 (M.getTriple().getOS() == llvm::Triple::AMDHSA)) 7677 F->addFnAttr("amdgpu-implicitarg-num-bytes", "48"); 7678 7679 const auto *FlatWGS = FD->getAttr<AMDGPUFlatWorkGroupSizeAttr>(); 7680 if (ReqdWGS || FlatWGS) { 7681 unsigned Min = FlatWGS ? FlatWGS->getMin() : 0; 7682 unsigned Max = FlatWGS ? FlatWGS->getMax() : 0; 7683 if (ReqdWGS && Min == 0 && Max == 0) 7684 Min = Max = ReqdWGS->getXDim() * ReqdWGS->getYDim() * ReqdWGS->getZDim(); 7685 7686 if (Min != 0) { 7687 assert(Min <= Max && "Min must be less than or equal Max"); 7688 7689 std::string AttrVal = llvm::utostr(Min) + "," + llvm::utostr(Max); 7690 F->addFnAttr("amdgpu-flat-work-group-size", AttrVal); 7691 } else 7692 assert(Max == 0 && "Max must be zero"); 7693 } 7694 7695 if (const auto *Attr = FD->getAttr<AMDGPUWavesPerEUAttr>()) { 7696 unsigned Min = Attr->getMin(); 7697 unsigned Max = Attr->getMax(); 7698 7699 if (Min != 0) { 7700 assert((Max == 0 || Min <= Max) && "Min must be less than or equal Max"); 7701 7702 std::string AttrVal = llvm::utostr(Min); 7703 if (Max != 0) 7704 AttrVal = AttrVal + "," + llvm::utostr(Max); 7705 F->addFnAttr("amdgpu-waves-per-eu", AttrVal); 7706 } else 7707 assert(Max == 0 && "Max must be zero"); 7708 } 7709 7710 if (const auto *Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) { 7711 unsigned NumSGPR = Attr->getNumSGPR(); 7712 7713 if (NumSGPR != 0) 7714 F->addFnAttr("amdgpu-num-sgpr", llvm::utostr(NumSGPR)); 7715 } 7716 7717 if (const auto *Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) { 7718 uint32_t NumVGPR = Attr->getNumVGPR(); 7719 7720 if (NumVGPR != 0) 7721 F->addFnAttr("amdgpu-num-vgpr", llvm::utostr(NumVGPR)); 7722 } 7723 } 7724 7725 unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 7726 return llvm::CallingConv::AMDGPU_KERNEL; 7727 } 7728 7729 // Currently LLVM assumes null pointers always have value 0, 7730 // which results in incorrectly transformed IR. Therefore, instead of 7731 // emitting null pointers in private and local address spaces, a null 7732 // pointer in generic address space is emitted which is casted to a 7733 // pointer in local or private address space. 7734 llvm::Constant *AMDGPUTargetCodeGenInfo::getNullPointer( 7735 const CodeGen::CodeGenModule &CGM, llvm::PointerType *PT, 7736 QualType QT) const { 7737 if (CGM.getContext().getTargetNullPointerValue(QT) == 0) 7738 return llvm::ConstantPointerNull::get(PT); 7739 7740 auto &Ctx = CGM.getContext(); 7741 auto NPT = llvm::PointerType::get(PT->getElementType(), 7742 Ctx.getTargetAddressSpace(LangAS::opencl_generic)); 7743 return llvm::ConstantExpr::getAddrSpaceCast( 7744 llvm::ConstantPointerNull::get(NPT), PT); 7745 } 7746 7747 LangAS 7748 AMDGPUTargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM, 7749 const VarDecl *D) const { 7750 assert(!CGM.getLangOpts().OpenCL && 7751 !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && 7752 "Address space agnostic languages only"); 7753 LangAS DefaultGlobalAS = getLangASFromTargetAS( 7754 CGM.getContext().getTargetAddressSpace(LangAS::opencl_global)); 7755 if (!D) 7756 return DefaultGlobalAS; 7757 7758 LangAS AddrSpace = D->getType().getAddressSpace(); 7759 assert(AddrSpace == LangAS::Default || isTargetAddressSpace(AddrSpace)); 7760 if (AddrSpace != LangAS::Default) 7761 return AddrSpace; 7762 7763 if (CGM.isTypeConstant(D->getType(), false)) { 7764 if (auto ConstAS = CGM.getTarget().getConstantAddressSpace()) 7765 return ConstAS.getValue(); 7766 } 7767 return DefaultGlobalAS; 7768 } 7769 7770 llvm::SyncScope::ID 7771 AMDGPUTargetCodeGenInfo::getLLVMSyncScopeID(SyncScope S, 7772 llvm::LLVMContext &C) const { 7773 StringRef Name; 7774 switch (S) { 7775 case SyncScope::OpenCLWorkGroup: 7776 Name = "workgroup"; 7777 break; 7778 case SyncScope::OpenCLDevice: 7779 Name = "agent"; 7780 break; 7781 case SyncScope::OpenCLAllSVMDevices: 7782 Name = ""; 7783 break; 7784 case SyncScope::OpenCLSubGroup: 7785 Name = "subgroup"; 7786 } 7787 return C.getOrInsertSyncScopeID(Name); 7788 } 7789 7790 bool AMDGPUTargetCodeGenInfo::shouldEmitStaticExternCAliases() const { 7791 return false; 7792 } 7793 7794 void AMDGPUTargetCodeGenInfo::setCUDAKernelCallingConvention( 7795 const FunctionType *&FT) const { 7796 FT = getABIInfo().getContext().adjustFunctionType( 7797 FT, FT->getExtInfo().withCallingConv(CC_OpenCLKernel)); 7798 } 7799 7800 //===----------------------------------------------------------------------===// 7801 // SPARC v8 ABI Implementation. 7802 // Based on the SPARC Compliance Definition version 2.4.1. 7803 // 7804 // Ensures that complex values are passed in registers. 7805 // 7806 namespace { 7807 class SparcV8ABIInfo : public DefaultABIInfo { 7808 public: 7809 SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 7810 7811 private: 7812 ABIArgInfo classifyReturnType(QualType RetTy) const; 7813 void computeInfo(CGFunctionInfo &FI) const override; 7814 }; 7815 } // end anonymous namespace 7816 7817 7818 ABIArgInfo 7819 SparcV8ABIInfo::classifyReturnType(QualType Ty) const { 7820 if (Ty->isAnyComplexType()) { 7821 return ABIArgInfo::getDirect(); 7822 } 7823 else { 7824 return DefaultABIInfo::classifyReturnType(Ty); 7825 } 7826 } 7827 7828 void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const { 7829 7830 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7831 for (auto &Arg : FI.arguments()) 7832 Arg.info = classifyArgumentType(Arg.type); 7833 } 7834 7835 namespace { 7836 class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo { 7837 public: 7838 SparcV8TargetCodeGenInfo(CodeGenTypes &CGT) 7839 : TargetCodeGenInfo(new SparcV8ABIInfo(CGT)) {} 7840 }; 7841 } // end anonymous namespace 7842 7843 //===----------------------------------------------------------------------===// 7844 // SPARC v9 ABI Implementation. 7845 // Based on the SPARC Compliance Definition version 2.4.1. 7846 // 7847 // Function arguments a mapped to a nominal "parameter array" and promoted to 7848 // registers depending on their type. Each argument occupies 8 or 16 bytes in 7849 // the array, structs larger than 16 bytes are passed indirectly. 7850 // 7851 // One case requires special care: 7852 // 7853 // struct mixed { 7854 // int i; 7855 // float f; 7856 // }; 7857 // 7858 // When a struct mixed is passed by value, it only occupies 8 bytes in the 7859 // parameter array, but the int is passed in an integer register, and the float 7860 // is passed in a floating point register. This is represented as two arguments 7861 // with the LLVM IR inreg attribute: 7862 // 7863 // declare void f(i32 inreg %i, float inreg %f) 7864 // 7865 // The code generator will only allocate 4 bytes from the parameter array for 7866 // the inreg arguments. All other arguments are allocated a multiple of 8 7867 // bytes. 7868 // 7869 namespace { 7870 class SparcV9ABIInfo : public ABIInfo { 7871 public: 7872 SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 7873 7874 private: 7875 ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const; 7876 void computeInfo(CGFunctionInfo &FI) const override; 7877 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7878 QualType Ty) const override; 7879 7880 // Coercion type builder for structs passed in registers. The coercion type 7881 // serves two purposes: 7882 // 7883 // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned' 7884 // in registers. 7885 // 2. Expose aligned floating point elements as first-level elements, so the 7886 // code generator knows to pass them in floating point registers. 7887 // 7888 // We also compute the InReg flag which indicates that the struct contains 7889 // aligned 32-bit floats. 7890 // 7891 struct CoerceBuilder { 7892 llvm::LLVMContext &Context; 7893 const llvm::DataLayout &DL; 7894 SmallVector<llvm::Type*, 8> Elems; 7895 uint64_t Size; 7896 bool InReg; 7897 7898 CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl) 7899 : Context(c), DL(dl), Size(0), InReg(false) {} 7900 7901 // Pad Elems with integers until Size is ToSize. 7902 void pad(uint64_t ToSize) { 7903 assert(ToSize >= Size && "Cannot remove elements"); 7904 if (ToSize == Size) 7905 return; 7906 7907 // Finish the current 64-bit word. 7908 uint64_t Aligned = llvm::alignTo(Size, 64); 7909 if (Aligned > Size && Aligned <= ToSize) { 7910 Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size)); 7911 Size = Aligned; 7912 } 7913 7914 // Add whole 64-bit words. 7915 while (Size + 64 <= ToSize) { 7916 Elems.push_back(llvm::Type::getInt64Ty(Context)); 7917 Size += 64; 7918 } 7919 7920 // Final in-word padding. 7921 if (Size < ToSize) { 7922 Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size)); 7923 Size = ToSize; 7924 } 7925 } 7926 7927 // Add a floating point element at Offset. 7928 void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) { 7929 // Unaligned floats are treated as integers. 7930 if (Offset % Bits) 7931 return; 7932 // The InReg flag is only required if there are any floats < 64 bits. 7933 if (Bits < 64) 7934 InReg = true; 7935 pad(Offset); 7936 Elems.push_back(Ty); 7937 Size = Offset + Bits; 7938 } 7939 7940 // Add a struct type to the coercion type, starting at Offset (in bits). 7941 void addStruct(uint64_t Offset, llvm::StructType *StrTy) { 7942 const llvm::StructLayout *Layout = DL.getStructLayout(StrTy); 7943 for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) { 7944 llvm::Type *ElemTy = StrTy->getElementType(i); 7945 uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i); 7946 switch (ElemTy->getTypeID()) { 7947 case llvm::Type::StructTyID: 7948 addStruct(ElemOffset, cast<llvm::StructType>(ElemTy)); 7949 break; 7950 case llvm::Type::FloatTyID: 7951 addFloat(ElemOffset, ElemTy, 32); 7952 break; 7953 case llvm::Type::DoubleTyID: 7954 addFloat(ElemOffset, ElemTy, 64); 7955 break; 7956 case llvm::Type::FP128TyID: 7957 addFloat(ElemOffset, ElemTy, 128); 7958 break; 7959 case llvm::Type::PointerTyID: 7960 if (ElemOffset % 64 == 0) { 7961 pad(ElemOffset); 7962 Elems.push_back(ElemTy); 7963 Size += 64; 7964 } 7965 break; 7966 default: 7967 break; 7968 } 7969 } 7970 } 7971 7972 // Check if Ty is a usable substitute for the coercion type. 7973 bool isUsableType(llvm::StructType *Ty) const { 7974 return llvm::makeArrayRef(Elems) == Ty->elements(); 7975 } 7976 7977 // Get the coercion type as a literal struct type. 7978 llvm::Type *getType() const { 7979 if (Elems.size() == 1) 7980 return Elems.front(); 7981 else 7982 return llvm::StructType::get(Context, Elems); 7983 } 7984 }; 7985 }; 7986 } // end anonymous namespace 7987 7988 ABIArgInfo 7989 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const { 7990 if (Ty->isVoidType()) 7991 return ABIArgInfo::getIgnore(); 7992 7993 uint64_t Size = getContext().getTypeSize(Ty); 7994 7995 // Anything too big to fit in registers is passed with an explicit indirect 7996 // pointer / sret pointer. 7997 if (Size > SizeLimit) 7998 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 7999 8000 // Treat an enum type as its underlying type. 8001 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 8002 Ty = EnumTy->getDecl()->getIntegerType(); 8003 8004 // Integer types smaller than a register are extended. 8005 if (Size < 64 && Ty->isIntegerType()) 8006 return ABIArgInfo::getExtend(Ty); 8007 8008 // Other non-aggregates go in registers. 8009 if (!isAggregateTypeForABI(Ty)) 8010 return ABIArgInfo::getDirect(); 8011 8012 // If a C++ object has either a non-trivial copy constructor or a non-trivial 8013 // destructor, it is passed with an explicit indirect pointer / sret pointer. 8014 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 8015 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 8016 8017 // This is a small aggregate type that should be passed in registers. 8018 // Build a coercion type from the LLVM struct type. 8019 llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty)); 8020 if (!StrTy) 8021 return ABIArgInfo::getDirect(); 8022 8023 CoerceBuilder CB(getVMContext(), getDataLayout()); 8024 CB.addStruct(0, StrTy); 8025 CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64)); 8026 8027 // Try to use the original type for coercion. 8028 llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType(); 8029 8030 if (CB.InReg) 8031 return ABIArgInfo::getDirectInReg(CoerceTy); 8032 else 8033 return ABIArgInfo::getDirect(CoerceTy); 8034 } 8035 8036 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8037 QualType Ty) const { 8038 ABIArgInfo AI = classifyType(Ty, 16 * 8); 8039 llvm::Type *ArgTy = CGT.ConvertType(Ty); 8040 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 8041 AI.setCoerceToType(ArgTy); 8042 8043 CharUnits SlotSize = CharUnits::fromQuantity(8); 8044 8045 CGBuilderTy &Builder = CGF.Builder; 8046 Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 8047 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 8048 8049 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 8050 8051 Address ArgAddr = Address::invalid(); 8052 CharUnits Stride; 8053 switch (AI.getKind()) { 8054 case ABIArgInfo::Expand: 8055 case ABIArgInfo::CoerceAndExpand: 8056 case ABIArgInfo::InAlloca: 8057 llvm_unreachable("Unsupported ABI kind for va_arg"); 8058 8059 case ABIArgInfo::Extend: { 8060 Stride = SlotSize; 8061 CharUnits Offset = SlotSize - TypeInfo.first; 8062 ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend"); 8063 break; 8064 } 8065 8066 case ABIArgInfo::Direct: { 8067 auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType()); 8068 Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize); 8069 ArgAddr = Addr; 8070 break; 8071 } 8072 8073 case ABIArgInfo::Indirect: 8074 Stride = SlotSize; 8075 ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect"); 8076 ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"), 8077 TypeInfo.second); 8078 break; 8079 8080 case ABIArgInfo::Ignore: 8081 return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.second); 8082 } 8083 8084 // Update VAList. 8085 llvm::Value *NextPtr = 8086 Builder.CreateConstInBoundsByteGEP(Addr.getPointer(), Stride, "ap.next"); 8087 Builder.CreateStore(NextPtr, VAListAddr); 8088 8089 return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr"); 8090 } 8091 8092 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const { 8093 FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8); 8094 for (auto &I : FI.arguments()) 8095 I.info = classifyType(I.type, 16 * 8); 8096 } 8097 8098 namespace { 8099 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo { 8100 public: 8101 SparcV9TargetCodeGenInfo(CodeGenTypes &CGT) 8102 : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {} 8103 8104 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 8105 return 14; 8106 } 8107 8108 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 8109 llvm::Value *Address) const override; 8110 }; 8111 } // end anonymous namespace 8112 8113 bool 8114 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 8115 llvm::Value *Address) const { 8116 // This is calculated from the LLVM and GCC tables and verified 8117 // against gcc output. AFAIK all ABIs use the same encoding. 8118 8119 CodeGen::CGBuilderTy &Builder = CGF.Builder; 8120 8121 llvm::IntegerType *i8 = CGF.Int8Ty; 8122 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 8123 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 8124 8125 // 0-31: the 8-byte general-purpose registers 8126 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 8127 8128 // 32-63: f0-31, the 4-byte floating-point registers 8129 AssignToArrayRange(Builder, Address, Four8, 32, 63); 8130 8131 // Y = 64 8132 // PSR = 65 8133 // WIM = 66 8134 // TBR = 67 8135 // PC = 68 8136 // NPC = 69 8137 // FSR = 70 8138 // CSR = 71 8139 AssignToArrayRange(Builder, Address, Eight8, 64, 71); 8140 8141 // 72-87: d0-15, the 8-byte floating-point registers 8142 AssignToArrayRange(Builder, Address, Eight8, 72, 87); 8143 8144 return false; 8145 } 8146 8147 8148 //===----------------------------------------------------------------------===// 8149 // XCore ABI Implementation 8150 //===----------------------------------------------------------------------===// 8151 8152 namespace { 8153 8154 /// A SmallStringEnc instance is used to build up the TypeString by passing 8155 /// it by reference between functions that append to it. 8156 typedef llvm::SmallString<128> SmallStringEnc; 8157 8158 /// TypeStringCache caches the meta encodings of Types. 8159 /// 8160 /// The reason for caching TypeStrings is two fold: 8161 /// 1. To cache a type's encoding for later uses; 8162 /// 2. As a means to break recursive member type inclusion. 8163 /// 8164 /// A cache Entry can have a Status of: 8165 /// NonRecursive: The type encoding is not recursive; 8166 /// Recursive: The type encoding is recursive; 8167 /// Incomplete: An incomplete TypeString; 8168 /// IncompleteUsed: An incomplete TypeString that has been used in a 8169 /// Recursive type encoding. 8170 /// 8171 /// A NonRecursive entry will have all of its sub-members expanded as fully 8172 /// as possible. Whilst it may contain types which are recursive, the type 8173 /// itself is not recursive and thus its encoding may be safely used whenever 8174 /// the type is encountered. 8175 /// 8176 /// A Recursive entry will have all of its sub-members expanded as fully as 8177 /// possible. The type itself is recursive and it may contain other types which 8178 /// are recursive. The Recursive encoding must not be used during the expansion 8179 /// of a recursive type's recursive branch. For simplicity the code uses 8180 /// IncompleteCount to reject all usage of Recursive encodings for member types. 8181 /// 8182 /// An Incomplete entry is always a RecordType and only encodes its 8183 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and 8184 /// are placed into the cache during type expansion as a means to identify and 8185 /// handle recursive inclusion of types as sub-members. If there is recursion 8186 /// the entry becomes IncompleteUsed. 8187 /// 8188 /// During the expansion of a RecordType's members: 8189 /// 8190 /// If the cache contains a NonRecursive encoding for the member type, the 8191 /// cached encoding is used; 8192 /// 8193 /// If the cache contains a Recursive encoding for the member type, the 8194 /// cached encoding is 'Swapped' out, as it may be incorrect, and... 8195 /// 8196 /// If the member is a RecordType, an Incomplete encoding is placed into the 8197 /// cache to break potential recursive inclusion of itself as a sub-member; 8198 /// 8199 /// Once a member RecordType has been expanded, its temporary incomplete 8200 /// entry is removed from the cache. If a Recursive encoding was swapped out 8201 /// it is swapped back in; 8202 /// 8203 /// If an incomplete entry is used to expand a sub-member, the incomplete 8204 /// entry is marked as IncompleteUsed. The cache keeps count of how many 8205 /// IncompleteUsed entries it currently contains in IncompleteUsedCount; 8206 /// 8207 /// If a member's encoding is found to be a NonRecursive or Recursive viz: 8208 /// IncompleteUsedCount==0, the member's encoding is added to the cache. 8209 /// Else the member is part of a recursive type and thus the recursion has 8210 /// been exited too soon for the encoding to be correct for the member. 8211 /// 8212 class TypeStringCache { 8213 enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed}; 8214 struct Entry { 8215 std::string Str; // The encoded TypeString for the type. 8216 enum Status State; // Information about the encoding in 'Str'. 8217 std::string Swapped; // A temporary place holder for a Recursive encoding 8218 // during the expansion of RecordType's members. 8219 }; 8220 std::map<const IdentifierInfo *, struct Entry> Map; 8221 unsigned IncompleteCount; // Number of Incomplete entries in the Map. 8222 unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map. 8223 public: 8224 TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {} 8225 void addIncomplete(const IdentifierInfo *ID, std::string StubEnc); 8226 bool removeIncomplete(const IdentifierInfo *ID); 8227 void addIfComplete(const IdentifierInfo *ID, StringRef Str, 8228 bool IsRecursive); 8229 StringRef lookupStr(const IdentifierInfo *ID); 8230 }; 8231 8232 /// TypeString encodings for enum & union fields must be order. 8233 /// FieldEncoding is a helper for this ordering process. 8234 class FieldEncoding { 8235 bool HasName; 8236 std::string Enc; 8237 public: 8238 FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {} 8239 StringRef str() { return Enc; } 8240 bool operator<(const FieldEncoding &rhs) const { 8241 if (HasName != rhs.HasName) return HasName; 8242 return Enc < rhs.Enc; 8243 } 8244 }; 8245 8246 class XCoreABIInfo : public DefaultABIInfo { 8247 public: 8248 XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 8249 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8250 QualType Ty) const override; 8251 }; 8252 8253 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo { 8254 mutable TypeStringCache TSC; 8255 public: 8256 XCoreTargetCodeGenInfo(CodeGenTypes &CGT) 8257 :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {} 8258 void emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 8259 CodeGen::CodeGenModule &M) const override; 8260 }; 8261 8262 } // End anonymous namespace. 8263 8264 // TODO: this implementation is likely now redundant with the default 8265 // EmitVAArg. 8266 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8267 QualType Ty) const { 8268 CGBuilderTy &Builder = CGF.Builder; 8269 8270 // Get the VAList. 8271 CharUnits SlotSize = CharUnits::fromQuantity(4); 8272 Address AP(Builder.CreateLoad(VAListAddr), SlotSize); 8273 8274 // Handle the argument. 8275 ABIArgInfo AI = classifyArgumentType(Ty); 8276 CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty); 8277 llvm::Type *ArgTy = CGT.ConvertType(Ty); 8278 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 8279 AI.setCoerceToType(ArgTy); 8280 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 8281 8282 Address Val = Address::invalid(); 8283 CharUnits ArgSize = CharUnits::Zero(); 8284 switch (AI.getKind()) { 8285 case ABIArgInfo::Expand: 8286 case ABIArgInfo::CoerceAndExpand: 8287 case ABIArgInfo::InAlloca: 8288 llvm_unreachable("Unsupported ABI kind for va_arg"); 8289 case ABIArgInfo::Ignore: 8290 Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign); 8291 ArgSize = CharUnits::Zero(); 8292 break; 8293 case ABIArgInfo::Extend: 8294 case ABIArgInfo::Direct: 8295 Val = Builder.CreateBitCast(AP, ArgPtrTy); 8296 ArgSize = CharUnits::fromQuantity( 8297 getDataLayout().getTypeAllocSize(AI.getCoerceToType())); 8298 ArgSize = ArgSize.alignTo(SlotSize); 8299 break; 8300 case ABIArgInfo::Indirect: 8301 Val = Builder.CreateElementBitCast(AP, ArgPtrTy); 8302 Val = Address(Builder.CreateLoad(Val), TypeAlign); 8303 ArgSize = SlotSize; 8304 break; 8305 } 8306 8307 // Increment the VAList. 8308 if (!ArgSize.isZero()) { 8309 llvm::Value *APN = 8310 Builder.CreateConstInBoundsByteGEP(AP.getPointer(), ArgSize); 8311 Builder.CreateStore(APN, VAListAddr); 8312 } 8313 8314 return Val; 8315 } 8316 8317 /// During the expansion of a RecordType, an incomplete TypeString is placed 8318 /// into the cache as a means to identify and break recursion. 8319 /// If there is a Recursive encoding in the cache, it is swapped out and will 8320 /// be reinserted by removeIncomplete(). 8321 /// All other types of encoding should have been used rather than arriving here. 8322 void TypeStringCache::addIncomplete(const IdentifierInfo *ID, 8323 std::string StubEnc) { 8324 if (!ID) 8325 return; 8326 Entry &E = Map[ID]; 8327 assert( (E.Str.empty() || E.State == Recursive) && 8328 "Incorrectly use of addIncomplete"); 8329 assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()"); 8330 E.Swapped.swap(E.Str); // swap out the Recursive 8331 E.Str.swap(StubEnc); 8332 E.State = Incomplete; 8333 ++IncompleteCount; 8334 } 8335 8336 /// Once the RecordType has been expanded, the temporary incomplete TypeString 8337 /// must be removed from the cache. 8338 /// If a Recursive was swapped out by addIncomplete(), it will be replaced. 8339 /// Returns true if the RecordType was defined recursively. 8340 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) { 8341 if (!ID) 8342 return false; 8343 auto I = Map.find(ID); 8344 assert(I != Map.end() && "Entry not present"); 8345 Entry &E = I->second; 8346 assert( (E.State == Incomplete || 8347 E.State == IncompleteUsed) && 8348 "Entry must be an incomplete type"); 8349 bool IsRecursive = false; 8350 if (E.State == IncompleteUsed) { 8351 // We made use of our Incomplete encoding, thus we are recursive. 8352 IsRecursive = true; 8353 --IncompleteUsedCount; 8354 } 8355 if (E.Swapped.empty()) 8356 Map.erase(I); 8357 else { 8358 // Swap the Recursive back. 8359 E.Swapped.swap(E.Str); 8360 E.Swapped.clear(); 8361 E.State = Recursive; 8362 } 8363 --IncompleteCount; 8364 return IsRecursive; 8365 } 8366 8367 /// Add the encoded TypeString to the cache only if it is NonRecursive or 8368 /// Recursive (viz: all sub-members were expanded as fully as possible). 8369 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str, 8370 bool IsRecursive) { 8371 if (!ID || IncompleteUsedCount) 8372 return; // No key or it is is an incomplete sub-type so don't add. 8373 Entry &E = Map[ID]; 8374 if (IsRecursive && !E.Str.empty()) { 8375 assert(E.State==Recursive && E.Str.size() == Str.size() && 8376 "This is not the same Recursive entry"); 8377 // The parent container was not recursive after all, so we could have used 8378 // this Recursive sub-member entry after all, but we assumed the worse when 8379 // we started viz: IncompleteCount!=0. 8380 return; 8381 } 8382 assert(E.Str.empty() && "Entry already present"); 8383 E.Str = Str.str(); 8384 E.State = IsRecursive? Recursive : NonRecursive; 8385 } 8386 8387 /// Return a cached TypeString encoding for the ID. If there isn't one, or we 8388 /// are recursively expanding a type (IncompleteCount != 0) and the cached 8389 /// encoding is Recursive, return an empty StringRef. 8390 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) { 8391 if (!ID) 8392 return StringRef(); // We have no key. 8393 auto I = Map.find(ID); 8394 if (I == Map.end()) 8395 return StringRef(); // We have no encoding. 8396 Entry &E = I->second; 8397 if (E.State == Recursive && IncompleteCount) 8398 return StringRef(); // We don't use Recursive encodings for member types. 8399 8400 if (E.State == Incomplete) { 8401 // The incomplete type is being used to break out of recursion. 8402 E.State = IncompleteUsed; 8403 ++IncompleteUsedCount; 8404 } 8405 return E.Str; 8406 } 8407 8408 /// The XCore ABI includes a type information section that communicates symbol 8409 /// type information to the linker. The linker uses this information to verify 8410 /// safety/correctness of things such as array bound and pointers et al. 8411 /// The ABI only requires C (and XC) language modules to emit TypeStrings. 8412 /// This type information (TypeString) is emitted into meta data for all global 8413 /// symbols: definitions, declarations, functions & variables. 8414 /// 8415 /// The TypeString carries type, qualifier, name, size & value details. 8416 /// Please see 'Tools Development Guide' section 2.16.2 for format details: 8417 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf 8418 /// The output is tested by test/CodeGen/xcore-stringtype.c. 8419 /// 8420 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 8421 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC); 8422 8423 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols. 8424 void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 8425 CodeGen::CodeGenModule &CGM) const { 8426 SmallStringEnc Enc; 8427 if (getTypeString(Enc, D, CGM, TSC)) { 8428 llvm::LLVMContext &Ctx = CGM.getModule().getContext(); 8429 llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV), 8430 llvm::MDString::get(Ctx, Enc.str())}; 8431 llvm::NamedMDNode *MD = 8432 CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings"); 8433 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 8434 } 8435 } 8436 8437 //===----------------------------------------------------------------------===// 8438 // SPIR ABI Implementation 8439 //===----------------------------------------------------------------------===// 8440 8441 namespace { 8442 class SPIRTargetCodeGenInfo : public TargetCodeGenInfo { 8443 public: 8444 SPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 8445 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 8446 unsigned getOpenCLKernelCallingConv() const override; 8447 }; 8448 8449 } // End anonymous namespace. 8450 8451 namespace clang { 8452 namespace CodeGen { 8453 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) { 8454 DefaultABIInfo SPIRABI(CGM.getTypes()); 8455 SPIRABI.computeInfo(FI); 8456 } 8457 } 8458 } 8459 8460 unsigned SPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 8461 return llvm::CallingConv::SPIR_KERNEL; 8462 } 8463 8464 static bool appendType(SmallStringEnc &Enc, QualType QType, 8465 const CodeGen::CodeGenModule &CGM, 8466 TypeStringCache &TSC); 8467 8468 /// Helper function for appendRecordType(). 8469 /// Builds a SmallVector containing the encoded field types in declaration 8470 /// order. 8471 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE, 8472 const RecordDecl *RD, 8473 const CodeGen::CodeGenModule &CGM, 8474 TypeStringCache &TSC) { 8475 for (const auto *Field : RD->fields()) { 8476 SmallStringEnc Enc; 8477 Enc += "m("; 8478 Enc += Field->getName(); 8479 Enc += "){"; 8480 if (Field->isBitField()) { 8481 Enc += "b("; 8482 llvm::raw_svector_ostream OS(Enc); 8483 OS << Field->getBitWidthValue(CGM.getContext()); 8484 Enc += ':'; 8485 } 8486 if (!appendType(Enc, Field->getType(), CGM, TSC)) 8487 return false; 8488 if (Field->isBitField()) 8489 Enc += ')'; 8490 Enc += '}'; 8491 FE.emplace_back(!Field->getName().empty(), Enc); 8492 } 8493 return true; 8494 } 8495 8496 /// Appends structure and union types to Enc and adds encoding to cache. 8497 /// Recursively calls appendType (via extractFieldType) for each field. 8498 /// Union types have their fields ordered according to the ABI. 8499 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT, 8500 const CodeGen::CodeGenModule &CGM, 8501 TypeStringCache &TSC, const IdentifierInfo *ID) { 8502 // Append the cached TypeString if we have one. 8503 StringRef TypeString = TSC.lookupStr(ID); 8504 if (!TypeString.empty()) { 8505 Enc += TypeString; 8506 return true; 8507 } 8508 8509 // Start to emit an incomplete TypeString. 8510 size_t Start = Enc.size(); 8511 Enc += (RT->isUnionType()? 'u' : 's'); 8512 Enc += '('; 8513 if (ID) 8514 Enc += ID->getName(); 8515 Enc += "){"; 8516 8517 // We collect all encoded fields and order as necessary. 8518 bool IsRecursive = false; 8519 const RecordDecl *RD = RT->getDecl()->getDefinition(); 8520 if (RD && !RD->field_empty()) { 8521 // An incomplete TypeString stub is placed in the cache for this RecordType 8522 // so that recursive calls to this RecordType will use it whilst building a 8523 // complete TypeString for this RecordType. 8524 SmallVector<FieldEncoding, 16> FE; 8525 std::string StubEnc(Enc.substr(Start).str()); 8526 StubEnc += '}'; // StubEnc now holds a valid incomplete TypeString. 8527 TSC.addIncomplete(ID, std::move(StubEnc)); 8528 if (!extractFieldType(FE, RD, CGM, TSC)) { 8529 (void) TSC.removeIncomplete(ID); 8530 return false; 8531 } 8532 IsRecursive = TSC.removeIncomplete(ID); 8533 // The ABI requires unions to be sorted but not structures. 8534 // See FieldEncoding::operator< for sort algorithm. 8535 if (RT->isUnionType()) 8536 llvm::sort(FE.begin(), FE.end()); 8537 // We can now complete the TypeString. 8538 unsigned E = FE.size(); 8539 for (unsigned I = 0; I != E; ++I) { 8540 if (I) 8541 Enc += ','; 8542 Enc += FE[I].str(); 8543 } 8544 } 8545 Enc += '}'; 8546 TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive); 8547 return true; 8548 } 8549 8550 /// Appends enum types to Enc and adds the encoding to the cache. 8551 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET, 8552 TypeStringCache &TSC, 8553 const IdentifierInfo *ID) { 8554 // Append the cached TypeString if we have one. 8555 StringRef TypeString = TSC.lookupStr(ID); 8556 if (!TypeString.empty()) { 8557 Enc += TypeString; 8558 return true; 8559 } 8560 8561 size_t Start = Enc.size(); 8562 Enc += "e("; 8563 if (ID) 8564 Enc += ID->getName(); 8565 Enc += "){"; 8566 8567 // We collect all encoded enumerations and order them alphanumerically. 8568 if (const EnumDecl *ED = ET->getDecl()->getDefinition()) { 8569 SmallVector<FieldEncoding, 16> FE; 8570 for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E; 8571 ++I) { 8572 SmallStringEnc EnumEnc; 8573 EnumEnc += "m("; 8574 EnumEnc += I->getName(); 8575 EnumEnc += "){"; 8576 I->getInitVal().toString(EnumEnc); 8577 EnumEnc += '}'; 8578 FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc)); 8579 } 8580 llvm::sort(FE.begin(), FE.end()); 8581 unsigned E = FE.size(); 8582 for (unsigned I = 0; I != E; ++I) { 8583 if (I) 8584 Enc += ','; 8585 Enc += FE[I].str(); 8586 } 8587 } 8588 Enc += '}'; 8589 TSC.addIfComplete(ID, Enc.substr(Start), false); 8590 return true; 8591 } 8592 8593 /// Appends type's qualifier to Enc. 8594 /// This is done prior to appending the type's encoding. 8595 static void appendQualifier(SmallStringEnc &Enc, QualType QT) { 8596 // Qualifiers are emitted in alphabetical order. 8597 static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"}; 8598 int Lookup = 0; 8599 if (QT.isConstQualified()) 8600 Lookup += 1<<0; 8601 if (QT.isRestrictQualified()) 8602 Lookup += 1<<1; 8603 if (QT.isVolatileQualified()) 8604 Lookup += 1<<2; 8605 Enc += Table[Lookup]; 8606 } 8607 8608 /// Appends built-in types to Enc. 8609 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) { 8610 const char *EncType; 8611 switch (BT->getKind()) { 8612 case BuiltinType::Void: 8613 EncType = "0"; 8614 break; 8615 case BuiltinType::Bool: 8616 EncType = "b"; 8617 break; 8618 case BuiltinType::Char_U: 8619 EncType = "uc"; 8620 break; 8621 case BuiltinType::UChar: 8622 EncType = "uc"; 8623 break; 8624 case BuiltinType::SChar: 8625 EncType = "sc"; 8626 break; 8627 case BuiltinType::UShort: 8628 EncType = "us"; 8629 break; 8630 case BuiltinType::Short: 8631 EncType = "ss"; 8632 break; 8633 case BuiltinType::UInt: 8634 EncType = "ui"; 8635 break; 8636 case BuiltinType::Int: 8637 EncType = "si"; 8638 break; 8639 case BuiltinType::ULong: 8640 EncType = "ul"; 8641 break; 8642 case BuiltinType::Long: 8643 EncType = "sl"; 8644 break; 8645 case BuiltinType::ULongLong: 8646 EncType = "ull"; 8647 break; 8648 case BuiltinType::LongLong: 8649 EncType = "sll"; 8650 break; 8651 case BuiltinType::Float: 8652 EncType = "ft"; 8653 break; 8654 case BuiltinType::Double: 8655 EncType = "d"; 8656 break; 8657 case BuiltinType::LongDouble: 8658 EncType = "ld"; 8659 break; 8660 default: 8661 return false; 8662 } 8663 Enc += EncType; 8664 return true; 8665 } 8666 8667 /// Appends a pointer encoding to Enc before calling appendType for the pointee. 8668 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT, 8669 const CodeGen::CodeGenModule &CGM, 8670 TypeStringCache &TSC) { 8671 Enc += "p("; 8672 if (!appendType(Enc, PT->getPointeeType(), CGM, TSC)) 8673 return false; 8674 Enc += ')'; 8675 return true; 8676 } 8677 8678 /// Appends array encoding to Enc before calling appendType for the element. 8679 static bool appendArrayType(SmallStringEnc &Enc, QualType QT, 8680 const ArrayType *AT, 8681 const CodeGen::CodeGenModule &CGM, 8682 TypeStringCache &TSC, StringRef NoSizeEnc) { 8683 if (AT->getSizeModifier() != ArrayType::Normal) 8684 return false; 8685 Enc += "a("; 8686 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) 8687 CAT->getSize().toStringUnsigned(Enc); 8688 else 8689 Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "". 8690 Enc += ':'; 8691 // The Qualifiers should be attached to the type rather than the array. 8692 appendQualifier(Enc, QT); 8693 if (!appendType(Enc, AT->getElementType(), CGM, TSC)) 8694 return false; 8695 Enc += ')'; 8696 return true; 8697 } 8698 8699 /// Appends a function encoding to Enc, calling appendType for the return type 8700 /// and the arguments. 8701 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT, 8702 const CodeGen::CodeGenModule &CGM, 8703 TypeStringCache &TSC) { 8704 Enc += "f{"; 8705 if (!appendType(Enc, FT->getReturnType(), CGM, TSC)) 8706 return false; 8707 Enc += "}("; 8708 if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) { 8709 // N.B. we are only interested in the adjusted param types. 8710 auto I = FPT->param_type_begin(); 8711 auto E = FPT->param_type_end(); 8712 if (I != E) { 8713 do { 8714 if (!appendType(Enc, *I, CGM, TSC)) 8715 return false; 8716 ++I; 8717 if (I != E) 8718 Enc += ','; 8719 } while (I != E); 8720 if (FPT->isVariadic()) 8721 Enc += ",va"; 8722 } else { 8723 if (FPT->isVariadic()) 8724 Enc += "va"; 8725 else 8726 Enc += '0'; 8727 } 8728 } 8729 Enc += ')'; 8730 return true; 8731 } 8732 8733 /// Handles the type's qualifier before dispatching a call to handle specific 8734 /// type encodings. 8735 static bool appendType(SmallStringEnc &Enc, QualType QType, 8736 const CodeGen::CodeGenModule &CGM, 8737 TypeStringCache &TSC) { 8738 8739 QualType QT = QType.getCanonicalType(); 8740 8741 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) 8742 // The Qualifiers should be attached to the type rather than the array. 8743 // Thus we don't call appendQualifier() here. 8744 return appendArrayType(Enc, QT, AT, CGM, TSC, ""); 8745 8746 appendQualifier(Enc, QT); 8747 8748 if (const BuiltinType *BT = QT->getAs<BuiltinType>()) 8749 return appendBuiltinType(Enc, BT); 8750 8751 if (const PointerType *PT = QT->getAs<PointerType>()) 8752 return appendPointerType(Enc, PT, CGM, TSC); 8753 8754 if (const EnumType *ET = QT->getAs<EnumType>()) 8755 return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier()); 8756 8757 if (const RecordType *RT = QT->getAsStructureType()) 8758 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 8759 8760 if (const RecordType *RT = QT->getAsUnionType()) 8761 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 8762 8763 if (const FunctionType *FT = QT->getAs<FunctionType>()) 8764 return appendFunctionType(Enc, FT, CGM, TSC); 8765 8766 return false; 8767 } 8768 8769 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 8770 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) { 8771 if (!D) 8772 return false; 8773 8774 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 8775 if (FD->getLanguageLinkage() != CLanguageLinkage) 8776 return false; 8777 return appendType(Enc, FD->getType(), CGM, TSC); 8778 } 8779 8780 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 8781 if (VD->getLanguageLinkage() != CLanguageLinkage) 8782 return false; 8783 QualType QT = VD->getType().getCanonicalType(); 8784 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) { 8785 // Global ArrayTypes are given a size of '*' if the size is unknown. 8786 // The Qualifiers should be attached to the type rather than the array. 8787 // Thus we don't call appendQualifier() here. 8788 return appendArrayType(Enc, QT, AT, CGM, TSC, "*"); 8789 } 8790 return appendType(Enc, QT, CGM, TSC); 8791 } 8792 return false; 8793 } 8794 8795 //===----------------------------------------------------------------------===// 8796 // RISCV ABI Implementation 8797 //===----------------------------------------------------------------------===// 8798 8799 namespace { 8800 class RISCVABIInfo : public DefaultABIInfo { 8801 private: 8802 unsigned XLen; // Size of the integer ('x') registers in bits. 8803 static const int NumArgGPRs = 8; 8804 8805 public: 8806 RISCVABIInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen) 8807 : DefaultABIInfo(CGT), XLen(XLen) {} 8808 8809 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 8810 // non-virtual, but computeInfo is virtual, so we overload it. 8811 void computeInfo(CGFunctionInfo &FI) const override; 8812 8813 ABIArgInfo classifyArgumentType(QualType Ty, bool IsFixed, 8814 int &ArgGPRsLeft) const; 8815 ABIArgInfo classifyReturnType(QualType RetTy) const; 8816 8817 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8818 QualType Ty) const override; 8819 8820 ABIArgInfo extendType(QualType Ty) const; 8821 }; 8822 } // end anonymous namespace 8823 8824 void RISCVABIInfo::computeInfo(CGFunctionInfo &FI) const { 8825 QualType RetTy = FI.getReturnType(); 8826 if (!getCXXABI().classifyReturnType(FI)) 8827 FI.getReturnInfo() = classifyReturnType(RetTy); 8828 8829 // IsRetIndirect is true if classifyArgumentType indicated the value should 8830 // be passed indirect or if the type size is greater than 2*xlen. e.g. fp128 8831 // is passed direct in LLVM IR, relying on the backend lowering code to 8832 // rewrite the argument list and pass indirectly on RV32. 8833 bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect || 8834 getContext().getTypeSize(RetTy) > (2 * XLen); 8835 8836 // We must track the number of GPRs used in order to conform to the RISC-V 8837 // ABI, as integer scalars passed in registers should have signext/zeroext 8838 // when promoted, but are anyext if passed on the stack. As GPR usage is 8839 // different for variadic arguments, we must also track whether we are 8840 // examining a vararg or not. 8841 int ArgGPRsLeft = IsRetIndirect ? NumArgGPRs - 1 : NumArgGPRs; 8842 int NumFixedArgs = FI.getNumRequiredArgs(); 8843 8844 int ArgNum = 0; 8845 for (auto &ArgInfo : FI.arguments()) { 8846 bool IsFixed = ArgNum < NumFixedArgs; 8847 ArgInfo.info = classifyArgumentType(ArgInfo.type, IsFixed, ArgGPRsLeft); 8848 ArgNum++; 8849 } 8850 } 8851 8852 ABIArgInfo RISCVABIInfo::classifyArgumentType(QualType Ty, bool IsFixed, 8853 int &ArgGPRsLeft) const { 8854 assert(ArgGPRsLeft <= NumArgGPRs && "Arg GPR tracking underflow"); 8855 Ty = useFirstFieldIfTransparentUnion(Ty); 8856 8857 // Structures with either a non-trivial destructor or a non-trivial 8858 // copy constructor are always passed indirectly. 8859 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 8860 if (ArgGPRsLeft) 8861 ArgGPRsLeft -= 1; 8862 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 8863 CGCXXABI::RAA_DirectInMemory); 8864 } 8865 8866 // Ignore empty structs/unions. 8867 if (isEmptyRecord(getContext(), Ty, true)) 8868 return ABIArgInfo::getIgnore(); 8869 8870 uint64_t Size = getContext().getTypeSize(Ty); 8871 uint64_t NeededAlign = getContext().getTypeAlign(Ty); 8872 bool MustUseStack = false; 8873 // Determine the number of GPRs needed to pass the current argument 8874 // according to the ABI. 2*XLen-aligned varargs are passed in "aligned" 8875 // register pairs, so may consume 3 registers. 8876 int NeededArgGPRs = 1; 8877 if (!IsFixed && NeededAlign == 2 * XLen) 8878 NeededArgGPRs = 2 + (ArgGPRsLeft % 2); 8879 else if (Size > XLen && Size <= 2 * XLen) 8880 NeededArgGPRs = 2; 8881 8882 if (NeededArgGPRs > ArgGPRsLeft) { 8883 MustUseStack = true; 8884 NeededArgGPRs = ArgGPRsLeft; 8885 } 8886 8887 ArgGPRsLeft -= NeededArgGPRs; 8888 8889 if (!isAggregateTypeForABI(Ty) && !Ty->isVectorType()) { 8890 // Treat an enum type as its underlying type. 8891 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 8892 Ty = EnumTy->getDecl()->getIntegerType(); 8893 8894 // All integral types are promoted to XLen width, unless passed on the 8895 // stack. 8896 if (Size < XLen && Ty->isIntegralOrEnumerationType() && !MustUseStack) { 8897 return extendType(Ty); 8898 } 8899 8900 return ABIArgInfo::getDirect(); 8901 } 8902 8903 // Aggregates which are <= 2*XLen will be passed in registers if possible, 8904 // so coerce to integers. 8905 if (Size <= 2 * XLen) { 8906 unsigned Alignment = getContext().getTypeAlign(Ty); 8907 8908 // Use a single XLen int if possible, 2*XLen if 2*XLen alignment is 8909 // required, and a 2-element XLen array if only XLen alignment is required. 8910 if (Size <= XLen) { 8911 return ABIArgInfo::getDirect( 8912 llvm::IntegerType::get(getVMContext(), XLen)); 8913 } else if (Alignment == 2 * XLen) { 8914 return ABIArgInfo::getDirect( 8915 llvm::IntegerType::get(getVMContext(), 2 * XLen)); 8916 } else { 8917 return ABIArgInfo::getDirect(llvm::ArrayType::get( 8918 llvm::IntegerType::get(getVMContext(), XLen), 2)); 8919 } 8920 } 8921 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 8922 } 8923 8924 ABIArgInfo RISCVABIInfo::classifyReturnType(QualType RetTy) const { 8925 if (RetTy->isVoidType()) 8926 return ABIArgInfo::getIgnore(); 8927 8928 int ArgGPRsLeft = 2; 8929 8930 // The rules for return and argument types are the same, so defer to 8931 // classifyArgumentType. 8932 return classifyArgumentType(RetTy, /*IsFixed=*/true, ArgGPRsLeft); 8933 } 8934 8935 Address RISCVABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8936 QualType Ty) const { 8937 CharUnits SlotSize = CharUnits::fromQuantity(XLen / 8); 8938 8939 // Empty records are ignored for parameter passing purposes. 8940 if (isEmptyRecord(getContext(), Ty, true)) { 8941 Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize); 8942 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 8943 return Addr; 8944 } 8945 8946 std::pair<CharUnits, CharUnits> SizeAndAlign = 8947 getContext().getTypeInfoInChars(Ty); 8948 8949 // Arguments bigger than 2*Xlen bytes are passed indirectly. 8950 bool IsIndirect = SizeAndAlign.first > 2 * SlotSize; 8951 8952 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, SizeAndAlign, 8953 SlotSize, /*AllowHigherAlign=*/true); 8954 } 8955 8956 ABIArgInfo RISCVABIInfo::extendType(QualType Ty) const { 8957 int TySize = getContext().getTypeSize(Ty); 8958 // RV64 ABI requires unsigned 32 bit integers to be sign extended. 8959 if (XLen == 64 && Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 8960 return ABIArgInfo::getSignExtend(Ty); 8961 return ABIArgInfo::getExtend(Ty); 8962 } 8963 8964 namespace { 8965 class RISCVTargetCodeGenInfo : public TargetCodeGenInfo { 8966 public: 8967 RISCVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen) 8968 : TargetCodeGenInfo(new RISCVABIInfo(CGT, XLen)) {} 8969 }; 8970 } // namespace 8971 8972 //===----------------------------------------------------------------------===// 8973 // Driver code 8974 //===----------------------------------------------------------------------===// 8975 8976 bool CodeGenModule::supportsCOMDAT() const { 8977 return getTriple().supportsCOMDAT(); 8978 } 8979 8980 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { 8981 if (TheTargetCodeGenInfo) 8982 return *TheTargetCodeGenInfo; 8983 8984 // Helper to set the unique_ptr while still keeping the return value. 8985 auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & { 8986 this->TheTargetCodeGenInfo.reset(P); 8987 return *P; 8988 }; 8989 8990 const llvm::Triple &Triple = getTarget().getTriple(); 8991 switch (Triple.getArch()) { 8992 default: 8993 return SetCGInfo(new DefaultTargetCodeGenInfo(Types)); 8994 8995 case llvm::Triple::le32: 8996 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 8997 case llvm::Triple::mips: 8998 case llvm::Triple::mipsel: 8999 if (Triple.getOS() == llvm::Triple::NaCl) 9000 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 9001 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true)); 9002 9003 case llvm::Triple::mips64: 9004 case llvm::Triple::mips64el: 9005 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false)); 9006 9007 case llvm::Triple::avr: 9008 return SetCGInfo(new AVRTargetCodeGenInfo(Types)); 9009 9010 case llvm::Triple::aarch64: 9011 case llvm::Triple::aarch64_be: { 9012 AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS; 9013 if (getTarget().getABI() == "darwinpcs") 9014 Kind = AArch64ABIInfo::DarwinPCS; 9015 else if (Triple.isOSWindows()) 9016 return SetCGInfo( 9017 new WindowsAArch64TargetCodeGenInfo(Types, AArch64ABIInfo::Win64)); 9018 9019 return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind)); 9020 } 9021 9022 case llvm::Triple::wasm32: 9023 case llvm::Triple::wasm64: 9024 return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types)); 9025 9026 case llvm::Triple::arm: 9027 case llvm::Triple::armeb: 9028 case llvm::Triple::thumb: 9029 case llvm::Triple::thumbeb: { 9030 if (Triple.getOS() == llvm::Triple::Win32) { 9031 return SetCGInfo( 9032 new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP)); 9033 } 9034 9035 ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS; 9036 StringRef ABIStr = getTarget().getABI(); 9037 if (ABIStr == "apcs-gnu") 9038 Kind = ARMABIInfo::APCS; 9039 else if (ABIStr == "aapcs16") 9040 Kind = ARMABIInfo::AAPCS16_VFP; 9041 else if (CodeGenOpts.FloatABI == "hard" || 9042 (CodeGenOpts.FloatABI != "soft" && 9043 (Triple.getEnvironment() == llvm::Triple::GNUEABIHF || 9044 Triple.getEnvironment() == llvm::Triple::MuslEABIHF || 9045 Triple.getEnvironment() == llvm::Triple::EABIHF))) 9046 Kind = ARMABIInfo::AAPCS_VFP; 9047 9048 return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind)); 9049 } 9050 9051 case llvm::Triple::ppc: 9052 return SetCGInfo( 9053 new PPC32TargetCodeGenInfo(Types, CodeGenOpts.FloatABI == "soft")); 9054 case llvm::Triple::ppc64: 9055 if (Triple.isOSBinFormatELF()) { 9056 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1; 9057 if (getTarget().getABI() == "elfv2") 9058 Kind = PPC64_SVR4_ABIInfo::ELFv2; 9059 bool HasQPX = getTarget().getABI() == "elfv1-qpx"; 9060 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 9061 9062 return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX, 9063 IsSoftFloat)); 9064 } else 9065 return SetCGInfo(new PPC64TargetCodeGenInfo(Types)); 9066 case llvm::Triple::ppc64le: { 9067 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); 9068 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2; 9069 if (getTarget().getABI() == "elfv1" || getTarget().getABI() == "elfv1-qpx") 9070 Kind = PPC64_SVR4_ABIInfo::ELFv1; 9071 bool HasQPX = getTarget().getABI() == "elfv1-qpx"; 9072 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 9073 9074 return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX, 9075 IsSoftFloat)); 9076 } 9077 9078 case llvm::Triple::nvptx: 9079 case llvm::Triple::nvptx64: 9080 return SetCGInfo(new NVPTXTargetCodeGenInfo(Types)); 9081 9082 case llvm::Triple::msp430: 9083 return SetCGInfo(new MSP430TargetCodeGenInfo(Types)); 9084 9085 case llvm::Triple::riscv32: 9086 return SetCGInfo(new RISCVTargetCodeGenInfo(Types, 32)); 9087 case llvm::Triple::riscv64: 9088 return SetCGInfo(new RISCVTargetCodeGenInfo(Types, 64)); 9089 9090 case llvm::Triple::systemz: { 9091 bool HasVector = getTarget().getABI() == "vector"; 9092 return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector)); 9093 } 9094 9095 case llvm::Triple::tce: 9096 case llvm::Triple::tcele: 9097 return SetCGInfo(new TCETargetCodeGenInfo(Types)); 9098 9099 case llvm::Triple::x86: { 9100 bool IsDarwinVectorABI = Triple.isOSDarwin(); 9101 bool RetSmallStructInRegABI = 9102 X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 9103 bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing(); 9104 9105 if (Triple.getOS() == llvm::Triple::Win32) { 9106 return SetCGInfo(new WinX86_32TargetCodeGenInfo( 9107 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 9108 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters)); 9109 } else { 9110 return SetCGInfo(new X86_32TargetCodeGenInfo( 9111 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 9112 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters, 9113 CodeGenOpts.FloatABI == "soft")); 9114 } 9115 } 9116 9117 case llvm::Triple::x86_64: { 9118 StringRef ABI = getTarget().getABI(); 9119 X86AVXABILevel AVXLevel = 9120 (ABI == "avx512" 9121 ? X86AVXABILevel::AVX512 9122 : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None); 9123 9124 switch (Triple.getOS()) { 9125 case llvm::Triple::Win32: 9126 return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel)); 9127 case llvm::Triple::PS4: 9128 return SetCGInfo(new PS4TargetCodeGenInfo(Types, AVXLevel)); 9129 default: 9130 return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel)); 9131 } 9132 } 9133 case llvm::Triple::hexagon: 9134 return SetCGInfo(new HexagonTargetCodeGenInfo(Types)); 9135 case llvm::Triple::lanai: 9136 return SetCGInfo(new LanaiTargetCodeGenInfo(Types)); 9137 case llvm::Triple::r600: 9138 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 9139 case llvm::Triple::amdgcn: 9140 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 9141 case llvm::Triple::sparc: 9142 return SetCGInfo(new SparcV8TargetCodeGenInfo(Types)); 9143 case llvm::Triple::sparcv9: 9144 return SetCGInfo(new SparcV9TargetCodeGenInfo(Types)); 9145 case llvm::Triple::xcore: 9146 return SetCGInfo(new XCoreTargetCodeGenInfo(Types)); 9147 case llvm::Triple::spir: 9148 case llvm::Triple::spir64: 9149 return SetCGInfo(new SPIRTargetCodeGenInfo(Types)); 9150 } 9151 } 9152 9153 /// Create an OpenCL kernel for an enqueued block. 9154 /// 9155 /// The kernel has the same function type as the block invoke function. Its 9156 /// name is the name of the block invoke function postfixed with "_kernel". 9157 /// It simply calls the block invoke function then returns. 9158 llvm::Function * 9159 TargetCodeGenInfo::createEnqueuedBlockKernel(CodeGenFunction &CGF, 9160 llvm::Function *Invoke, 9161 llvm::Value *BlockLiteral) const { 9162 auto *InvokeFT = Invoke->getFunctionType(); 9163 llvm::SmallVector<llvm::Type *, 2> ArgTys; 9164 for (auto &P : InvokeFT->params()) 9165 ArgTys.push_back(P); 9166 auto &C = CGF.getLLVMContext(); 9167 std::string Name = Invoke->getName().str() + "_kernel"; 9168 auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false); 9169 auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name, 9170 &CGF.CGM.getModule()); 9171 auto IP = CGF.Builder.saveIP(); 9172 auto *BB = llvm::BasicBlock::Create(C, "entry", F); 9173 auto &Builder = CGF.Builder; 9174 Builder.SetInsertPoint(BB); 9175 llvm::SmallVector<llvm::Value *, 2> Args; 9176 for (auto &A : F->args()) 9177 Args.push_back(&A); 9178 Builder.CreateCall(Invoke, Args); 9179 Builder.CreateRetVoid(); 9180 Builder.restoreIP(IP); 9181 return F; 9182 } 9183 9184 /// Create an OpenCL kernel for an enqueued block. 9185 /// 9186 /// The type of the first argument (the block literal) is the struct type 9187 /// of the block literal instead of a pointer type. The first argument 9188 /// (block literal) is passed directly by value to the kernel. The kernel 9189 /// allocates the same type of struct on stack and stores the block literal 9190 /// to it and passes its pointer to the block invoke function. The kernel 9191 /// has "enqueued-block" function attribute and kernel argument metadata. 9192 llvm::Function *AMDGPUTargetCodeGenInfo::createEnqueuedBlockKernel( 9193 CodeGenFunction &CGF, llvm::Function *Invoke, 9194 llvm::Value *BlockLiteral) const { 9195 auto &Builder = CGF.Builder; 9196 auto &C = CGF.getLLVMContext(); 9197 9198 auto *BlockTy = BlockLiteral->getType()->getPointerElementType(); 9199 auto *InvokeFT = Invoke->getFunctionType(); 9200 llvm::SmallVector<llvm::Type *, 2> ArgTys; 9201 llvm::SmallVector<llvm::Metadata *, 8> AddressQuals; 9202 llvm::SmallVector<llvm::Metadata *, 8> AccessQuals; 9203 llvm::SmallVector<llvm::Metadata *, 8> ArgTypeNames; 9204 llvm::SmallVector<llvm::Metadata *, 8> ArgBaseTypeNames; 9205 llvm::SmallVector<llvm::Metadata *, 8> ArgTypeQuals; 9206 llvm::SmallVector<llvm::Metadata *, 8> ArgNames; 9207 9208 ArgTys.push_back(BlockTy); 9209 ArgTypeNames.push_back(llvm::MDString::get(C, "__block_literal")); 9210 AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(0))); 9211 ArgBaseTypeNames.push_back(llvm::MDString::get(C, "__block_literal")); 9212 ArgTypeQuals.push_back(llvm::MDString::get(C, "")); 9213 AccessQuals.push_back(llvm::MDString::get(C, "none")); 9214 ArgNames.push_back(llvm::MDString::get(C, "block_literal")); 9215 for (unsigned I = 1, E = InvokeFT->getNumParams(); I < E; ++I) { 9216 ArgTys.push_back(InvokeFT->getParamType(I)); 9217 ArgTypeNames.push_back(llvm::MDString::get(C, "void*")); 9218 AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(3))); 9219 AccessQuals.push_back(llvm::MDString::get(C, "none")); 9220 ArgBaseTypeNames.push_back(llvm::MDString::get(C, "void*")); 9221 ArgTypeQuals.push_back(llvm::MDString::get(C, "")); 9222 ArgNames.push_back( 9223 llvm::MDString::get(C, (Twine("local_arg") + Twine(I)).str())); 9224 } 9225 std::string Name = Invoke->getName().str() + "_kernel"; 9226 auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false); 9227 auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name, 9228 &CGF.CGM.getModule()); 9229 F->addFnAttr("enqueued-block"); 9230 auto IP = CGF.Builder.saveIP(); 9231 auto *BB = llvm::BasicBlock::Create(C, "entry", F); 9232 Builder.SetInsertPoint(BB); 9233 unsigned BlockAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(BlockTy); 9234 auto *BlockPtr = Builder.CreateAlloca(BlockTy, nullptr); 9235 BlockPtr->setAlignment(BlockAlign); 9236 Builder.CreateAlignedStore(F->arg_begin(), BlockPtr, BlockAlign); 9237 auto *Cast = Builder.CreatePointerCast(BlockPtr, InvokeFT->getParamType(0)); 9238 llvm::SmallVector<llvm::Value *, 2> Args; 9239 Args.push_back(Cast); 9240 for (auto I = F->arg_begin() + 1, E = F->arg_end(); I != E; ++I) 9241 Args.push_back(I); 9242 Builder.CreateCall(Invoke, Args); 9243 Builder.CreateRetVoid(); 9244 Builder.restoreIP(IP); 9245 9246 F->setMetadata("kernel_arg_addr_space", llvm::MDNode::get(C, AddressQuals)); 9247 F->setMetadata("kernel_arg_access_qual", llvm::MDNode::get(C, AccessQuals)); 9248 F->setMetadata("kernel_arg_type", llvm::MDNode::get(C, ArgTypeNames)); 9249 F->setMetadata("kernel_arg_base_type", 9250 llvm::MDNode::get(C, ArgBaseTypeNames)); 9251 F->setMetadata("kernel_arg_type_qual", llvm::MDNode::get(C, ArgTypeQuals)); 9252 if (CGF.CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 9253 F->setMetadata("kernel_arg_name", llvm::MDNode::get(C, ArgNames)); 9254 9255 return F; 9256 } 9257