1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // These classes wrap the information about a call or function 11 // definition used to handle ABI compliancy. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "TargetInfo.h" 16 #include "ABIInfo.h" 17 #include "CGBlocks.h" 18 #include "CGCXXABI.h" 19 #include "CGValue.h" 20 #include "CodeGenFunction.h" 21 #include "clang/AST/RecordLayout.h" 22 #include "clang/CodeGen/CGFunctionInfo.h" 23 #include "clang/CodeGen/SwiftCallingConv.h" 24 #include "clang/Frontend/CodeGenOptions.h" 25 #include "llvm/ADT/StringExtras.h" 26 #include "llvm/ADT/StringSwitch.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/ADT/Twine.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/Type.h" 31 #include "llvm/Support/raw_ostream.h" 32 #include <algorithm> // std::sort 33 34 using namespace clang; 35 using namespace CodeGen; 36 37 // Helper for coercing an aggregate argument or return value into an integer 38 // array of the same size (including padding) and alignment. This alternate 39 // coercion happens only for the RenderScript ABI and can be removed after 40 // runtimes that rely on it are no longer supported. 41 // 42 // RenderScript assumes that the size of the argument / return value in the IR 43 // is the same as the size of the corresponding qualified type. This helper 44 // coerces the aggregate type into an array of the same size (including 45 // padding). This coercion is used in lieu of expansion of struct members or 46 // other canonical coercions that return a coerced-type of larger size. 47 // 48 // Ty - The argument / return value type 49 // Context - The associated ASTContext 50 // LLVMContext - The associated LLVMContext 51 static ABIArgInfo coerceToIntArray(QualType Ty, 52 ASTContext &Context, 53 llvm::LLVMContext &LLVMContext) { 54 // Alignment and Size are measured in bits. 55 const uint64_t Size = Context.getTypeSize(Ty); 56 const uint64_t Alignment = Context.getTypeAlign(Ty); 57 llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment); 58 const uint64_t NumElements = (Size + Alignment - 1) / Alignment; 59 return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements)); 60 } 61 62 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder, 63 llvm::Value *Array, 64 llvm::Value *Value, 65 unsigned FirstIndex, 66 unsigned LastIndex) { 67 // Alternatively, we could emit this as a loop in the source. 68 for (unsigned I = FirstIndex; I <= LastIndex; ++I) { 69 llvm::Value *Cell = 70 Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I); 71 Builder.CreateAlignedStore(Value, Cell, CharUnits::One()); 72 } 73 } 74 75 static bool isAggregateTypeForABI(QualType T) { 76 return !CodeGenFunction::hasScalarEvaluationKind(T) || 77 T->isMemberFunctionPointerType(); 78 } 79 80 ABIArgInfo 81 ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByRef, bool Realign, 82 llvm::Type *Padding) const { 83 return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty), 84 ByRef, Realign, Padding); 85 } 86 87 ABIArgInfo 88 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const { 89 return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty), 90 /*ByRef*/ false, Realign); 91 } 92 93 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 94 QualType Ty) const { 95 return Address::invalid(); 96 } 97 98 ABIInfo::~ABIInfo() {} 99 100 /// Does the given lowering require more than the given number of 101 /// registers when expanded? 102 /// 103 /// This is intended to be the basis of a reasonable basic implementation 104 /// of should{Pass,Return}IndirectlyForSwift. 105 /// 106 /// For most targets, a limit of four total registers is reasonable; this 107 /// limits the amount of code required in order to move around the value 108 /// in case it wasn't produced immediately prior to the call by the caller 109 /// (or wasn't produced in exactly the right registers) or isn't used 110 /// immediately within the callee. But some targets may need to further 111 /// limit the register count due to an inability to support that many 112 /// return registers. 113 static bool occupiesMoreThan(CodeGenTypes &cgt, 114 ArrayRef<llvm::Type*> scalarTypes, 115 unsigned maxAllRegisters) { 116 unsigned intCount = 0, fpCount = 0; 117 for (llvm::Type *type : scalarTypes) { 118 if (type->isPointerTy()) { 119 intCount++; 120 } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) { 121 auto ptrWidth = cgt.getTarget().getPointerWidth(0); 122 intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth; 123 } else { 124 assert(type->isVectorTy() || type->isFloatingPointTy()); 125 fpCount++; 126 } 127 } 128 129 return (intCount + fpCount > maxAllRegisters); 130 } 131 132 bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, 133 llvm::Type *eltTy, 134 unsigned numElts) const { 135 // The default implementation of this assumes that the target guarantees 136 // 128-bit SIMD support but nothing more. 137 return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16); 138 } 139 140 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT, 141 CGCXXABI &CXXABI) { 142 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); 143 if (!RD) 144 return CGCXXABI::RAA_Default; 145 return CXXABI.getRecordArgABI(RD); 146 } 147 148 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T, 149 CGCXXABI &CXXABI) { 150 const RecordType *RT = T->getAs<RecordType>(); 151 if (!RT) 152 return CGCXXABI::RAA_Default; 153 return getRecordArgABI(RT, CXXABI); 154 } 155 156 /// Pass transparent unions as if they were the type of the first element. Sema 157 /// should ensure that all elements of the union have the same "machine type". 158 static QualType useFirstFieldIfTransparentUnion(QualType Ty) { 159 if (const RecordType *UT = Ty->getAsUnionType()) { 160 const RecordDecl *UD = UT->getDecl(); 161 if (UD->hasAttr<TransparentUnionAttr>()) { 162 assert(!UD->field_empty() && "sema created an empty transparent union"); 163 return UD->field_begin()->getType(); 164 } 165 } 166 return Ty; 167 } 168 169 CGCXXABI &ABIInfo::getCXXABI() const { 170 return CGT.getCXXABI(); 171 } 172 173 ASTContext &ABIInfo::getContext() const { 174 return CGT.getContext(); 175 } 176 177 llvm::LLVMContext &ABIInfo::getVMContext() const { 178 return CGT.getLLVMContext(); 179 } 180 181 const llvm::DataLayout &ABIInfo::getDataLayout() const { 182 return CGT.getDataLayout(); 183 } 184 185 const TargetInfo &ABIInfo::getTarget() const { 186 return CGT.getTarget(); 187 } 188 189 const CodeGenOptions &ABIInfo::getCodeGenOpts() const { 190 return CGT.getCodeGenOpts(); 191 } 192 193 bool ABIInfo::isAndroid() const { return getTarget().getTriple().isAndroid(); } 194 195 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 196 return false; 197 } 198 199 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 200 uint64_t Members) const { 201 return false; 202 } 203 204 LLVM_DUMP_METHOD void ABIArgInfo::dump() const { 205 raw_ostream &OS = llvm::errs(); 206 OS << "(ABIArgInfo Kind="; 207 switch (TheKind) { 208 case Direct: 209 OS << "Direct Type="; 210 if (llvm::Type *Ty = getCoerceToType()) 211 Ty->print(OS); 212 else 213 OS << "null"; 214 break; 215 case Extend: 216 OS << "Extend"; 217 break; 218 case Ignore: 219 OS << "Ignore"; 220 break; 221 case InAlloca: 222 OS << "InAlloca Offset=" << getInAllocaFieldIndex(); 223 break; 224 case Indirect: 225 OS << "Indirect Align=" << getIndirectAlign().getQuantity() 226 << " ByVal=" << getIndirectByVal() 227 << " Realign=" << getIndirectRealign(); 228 break; 229 case Expand: 230 OS << "Expand"; 231 break; 232 case CoerceAndExpand: 233 OS << "CoerceAndExpand Type="; 234 getCoerceAndExpandType()->print(OS); 235 break; 236 } 237 OS << ")\n"; 238 } 239 240 // Dynamically round a pointer up to a multiple of the given alignment. 241 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF, 242 llvm::Value *Ptr, 243 CharUnits Align) { 244 llvm::Value *PtrAsInt = Ptr; 245 // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align; 246 PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy); 247 PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt, 248 llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1)); 249 PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt, 250 llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity())); 251 PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt, 252 Ptr->getType(), 253 Ptr->getName() + ".aligned"); 254 return PtrAsInt; 255 } 256 257 /// Emit va_arg for a platform using the common void* representation, 258 /// where arguments are simply emitted in an array of slots on the stack. 259 /// 260 /// This version implements the core direct-value passing rules. 261 /// 262 /// \param SlotSize - The size and alignment of a stack slot. 263 /// Each argument will be allocated to a multiple of this number of 264 /// slots, and all the slots will be aligned to this value. 265 /// \param AllowHigherAlign - The slot alignment is not a cap; 266 /// an argument type with an alignment greater than the slot size 267 /// will be emitted on a higher-alignment address, potentially 268 /// leaving one or more empty slots behind as padding. If this 269 /// is false, the returned address might be less-aligned than 270 /// DirectAlign. 271 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF, 272 Address VAListAddr, 273 llvm::Type *DirectTy, 274 CharUnits DirectSize, 275 CharUnits DirectAlign, 276 CharUnits SlotSize, 277 bool AllowHigherAlign) { 278 // Cast the element type to i8* if necessary. Some platforms define 279 // va_list as a struct containing an i8* instead of just an i8*. 280 if (VAListAddr.getElementType() != CGF.Int8PtrTy) 281 VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy); 282 283 llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur"); 284 285 // If the CC aligns values higher than the slot size, do so if needed. 286 Address Addr = Address::invalid(); 287 if (AllowHigherAlign && DirectAlign > SlotSize) { 288 Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign), 289 DirectAlign); 290 } else { 291 Addr = Address(Ptr, SlotSize); 292 } 293 294 // Advance the pointer past the argument, then store that back. 295 CharUnits FullDirectSize = DirectSize.alignTo(SlotSize); 296 llvm::Value *NextPtr = 297 CGF.Builder.CreateConstInBoundsByteGEP(Addr.getPointer(), FullDirectSize, 298 "argp.next"); 299 CGF.Builder.CreateStore(NextPtr, VAListAddr); 300 301 // If the argument is smaller than a slot, and this is a big-endian 302 // target, the argument will be right-adjusted in its slot. 303 if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() && 304 !DirectTy->isStructTy()) { 305 Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize); 306 } 307 308 Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy); 309 return Addr; 310 } 311 312 /// Emit va_arg for a platform using the common void* representation, 313 /// where arguments are simply emitted in an array of slots on the stack. 314 /// 315 /// \param IsIndirect - Values of this type are passed indirectly. 316 /// \param ValueInfo - The size and alignment of this type, generally 317 /// computed with getContext().getTypeInfoInChars(ValueTy). 318 /// \param SlotSizeAndAlign - The size and alignment of a stack slot. 319 /// Each argument will be allocated to a multiple of this number of 320 /// slots, and all the slots will be aligned to this value. 321 /// \param AllowHigherAlign - The slot alignment is not a cap; 322 /// an argument type with an alignment greater than the slot size 323 /// will be emitted on a higher-alignment address, potentially 324 /// leaving one or more empty slots behind as padding. 325 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr, 326 QualType ValueTy, bool IsIndirect, 327 std::pair<CharUnits, CharUnits> ValueInfo, 328 CharUnits SlotSizeAndAlign, 329 bool AllowHigherAlign) { 330 // The size and alignment of the value that was passed directly. 331 CharUnits DirectSize, DirectAlign; 332 if (IsIndirect) { 333 DirectSize = CGF.getPointerSize(); 334 DirectAlign = CGF.getPointerAlign(); 335 } else { 336 DirectSize = ValueInfo.first; 337 DirectAlign = ValueInfo.second; 338 } 339 340 // Cast the address we've calculated to the right type. 341 llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy); 342 if (IsIndirect) 343 DirectTy = DirectTy->getPointerTo(0); 344 345 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy, 346 DirectSize, DirectAlign, 347 SlotSizeAndAlign, 348 AllowHigherAlign); 349 350 if (IsIndirect) { 351 Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.second); 352 } 353 354 return Addr; 355 356 } 357 358 static Address emitMergePHI(CodeGenFunction &CGF, 359 Address Addr1, llvm::BasicBlock *Block1, 360 Address Addr2, llvm::BasicBlock *Block2, 361 const llvm::Twine &Name = "") { 362 assert(Addr1.getType() == Addr2.getType()); 363 llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name); 364 PHI->addIncoming(Addr1.getPointer(), Block1); 365 PHI->addIncoming(Addr2.getPointer(), Block2); 366 CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment()); 367 return Address(PHI, Align); 368 } 369 370 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; } 371 372 // If someone can figure out a general rule for this, that would be great. 373 // It's probably just doomed to be platform-dependent, though. 374 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const { 375 // Verified for: 376 // x86-64 FreeBSD, Linux, Darwin 377 // x86-32 FreeBSD, Linux, Darwin 378 // PowerPC Linux, Darwin 379 // ARM Darwin (*not* EABI) 380 // AArch64 Linux 381 return 32; 382 } 383 384 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args, 385 const FunctionNoProtoType *fnType) const { 386 // The following conventions are known to require this to be false: 387 // x86_stdcall 388 // MIPS 389 // For everything else, we just prefer false unless we opt out. 390 return false; 391 } 392 393 void 394 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib, 395 llvm::SmallString<24> &Opt) const { 396 // This assumes the user is passing a library name like "rt" instead of a 397 // filename like "librt.a/so", and that they don't care whether it's static or 398 // dynamic. 399 Opt = "-l"; 400 Opt += Lib; 401 } 402 403 unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const { 404 // OpenCL kernels are called via an explicit runtime API with arguments 405 // set with clSetKernelArg(), not as normal sub-functions. 406 // Return SPIR_KERNEL by default as the kernel calling convention to 407 // ensure the fingerprint is fixed such way that each OpenCL argument 408 // gets one matching argument in the produced kernel function argument 409 // list to enable feasible implementation of clSetKernelArg() with 410 // aggregates etc. In case we would use the default C calling conv here, 411 // clSetKernelArg() might break depending on the target-specific 412 // conventions; different targets might split structs passed as values 413 // to multiple function arguments etc. 414 return llvm::CallingConv::SPIR_KERNEL; 415 } 416 417 llvm::Constant *TargetCodeGenInfo::getNullPointer(const CodeGen::CodeGenModule &CGM, 418 llvm::PointerType *T, QualType QT) const { 419 return llvm::ConstantPointerNull::get(T); 420 } 421 422 LangAS TargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM, 423 const VarDecl *D) const { 424 assert(!CGM.getLangOpts().OpenCL && 425 !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && 426 "Address space agnostic languages only"); 427 return D ? D->getType().getAddressSpace() : LangAS::Default; 428 } 429 430 llvm::Value *TargetCodeGenInfo::performAddrSpaceCast( 431 CodeGen::CodeGenFunction &CGF, llvm::Value *Src, LangAS SrcAddr, 432 LangAS DestAddr, llvm::Type *DestTy, bool isNonNull) const { 433 // Since target may map different address spaces in AST to the same address 434 // space, an address space conversion may end up as a bitcast. 435 if (auto *C = dyn_cast<llvm::Constant>(Src)) 436 return performAddrSpaceCast(CGF.CGM, C, SrcAddr, DestAddr, DestTy); 437 return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DestTy); 438 } 439 440 llvm::Constant * 441 TargetCodeGenInfo::performAddrSpaceCast(CodeGenModule &CGM, llvm::Constant *Src, 442 LangAS SrcAddr, LangAS DestAddr, 443 llvm::Type *DestTy) const { 444 // Since target may map different address spaces in AST to the same address 445 // space, an address space conversion may end up as a bitcast. 446 return llvm::ConstantExpr::getPointerCast(Src, DestTy); 447 } 448 449 llvm::SyncScope::ID 450 TargetCodeGenInfo::getLLVMSyncScopeID(SyncScope S, llvm::LLVMContext &C) const { 451 return C.getOrInsertSyncScopeID(""); /* default sync scope */ 452 } 453 454 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays); 455 456 /// isEmptyField - Return true iff a the field is "empty", that is it 457 /// is an unnamed bit-field or an (array of) empty record(s). 458 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD, 459 bool AllowArrays) { 460 if (FD->isUnnamedBitfield()) 461 return true; 462 463 QualType FT = FD->getType(); 464 465 // Constant arrays of empty records count as empty, strip them off. 466 // Constant arrays of zero length always count as empty. 467 if (AllowArrays) 468 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 469 if (AT->getSize() == 0) 470 return true; 471 FT = AT->getElementType(); 472 } 473 474 const RecordType *RT = FT->getAs<RecordType>(); 475 if (!RT) 476 return false; 477 478 // C++ record fields are never empty, at least in the Itanium ABI. 479 // 480 // FIXME: We should use a predicate for whether this behavior is true in the 481 // current ABI. 482 if (isa<CXXRecordDecl>(RT->getDecl())) 483 return false; 484 485 return isEmptyRecord(Context, FT, AllowArrays); 486 } 487 488 /// isEmptyRecord - Return true iff a structure contains only empty 489 /// fields. Note that a structure with a flexible array member is not 490 /// considered empty. 491 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) { 492 const RecordType *RT = T->getAs<RecordType>(); 493 if (!RT) 494 return false; 495 const RecordDecl *RD = RT->getDecl(); 496 if (RD->hasFlexibleArrayMember()) 497 return false; 498 499 // If this is a C++ record, check the bases first. 500 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 501 for (const auto &I : CXXRD->bases()) 502 if (!isEmptyRecord(Context, I.getType(), true)) 503 return false; 504 505 for (const auto *I : RD->fields()) 506 if (!isEmptyField(Context, I, AllowArrays)) 507 return false; 508 return true; 509 } 510 511 /// isSingleElementStruct - Determine if a structure is a "single 512 /// element struct", i.e. it has exactly one non-empty field or 513 /// exactly one field which is itself a single element 514 /// struct. Structures with flexible array members are never 515 /// considered single element structs. 516 /// 517 /// \return The field declaration for the single non-empty field, if 518 /// it exists. 519 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) { 520 const RecordType *RT = T->getAs<RecordType>(); 521 if (!RT) 522 return nullptr; 523 524 const RecordDecl *RD = RT->getDecl(); 525 if (RD->hasFlexibleArrayMember()) 526 return nullptr; 527 528 const Type *Found = nullptr; 529 530 // If this is a C++ record, check the bases first. 531 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 532 for (const auto &I : CXXRD->bases()) { 533 // Ignore empty records. 534 if (isEmptyRecord(Context, I.getType(), true)) 535 continue; 536 537 // If we already found an element then this isn't a single-element struct. 538 if (Found) 539 return nullptr; 540 541 // If this is non-empty and not a single element struct, the composite 542 // cannot be a single element struct. 543 Found = isSingleElementStruct(I.getType(), Context); 544 if (!Found) 545 return nullptr; 546 } 547 } 548 549 // Check for single element. 550 for (const auto *FD : RD->fields()) { 551 QualType FT = FD->getType(); 552 553 // Ignore empty fields. 554 if (isEmptyField(Context, FD, true)) 555 continue; 556 557 // If we already found an element then this isn't a single-element 558 // struct. 559 if (Found) 560 return nullptr; 561 562 // Treat single element arrays as the element. 563 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 564 if (AT->getSize().getZExtValue() != 1) 565 break; 566 FT = AT->getElementType(); 567 } 568 569 if (!isAggregateTypeForABI(FT)) { 570 Found = FT.getTypePtr(); 571 } else { 572 Found = isSingleElementStruct(FT, Context); 573 if (!Found) 574 return nullptr; 575 } 576 } 577 578 // We don't consider a struct a single-element struct if it has 579 // padding beyond the element type. 580 if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T)) 581 return nullptr; 582 583 return Found; 584 } 585 586 namespace { 587 Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty, 588 const ABIArgInfo &AI) { 589 // This default implementation defers to the llvm backend's va_arg 590 // instruction. It can handle only passing arguments directly 591 // (typically only handled in the backend for primitive types), or 592 // aggregates passed indirectly by pointer (NOTE: if the "byval" 593 // flag has ABI impact in the callee, this implementation cannot 594 // work.) 595 596 // Only a few cases are covered here at the moment -- those needed 597 // by the default abi. 598 llvm::Value *Val; 599 600 if (AI.isIndirect()) { 601 assert(!AI.getPaddingType() && 602 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 603 assert( 604 !AI.getIndirectRealign() && 605 "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!"); 606 607 auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty); 608 CharUnits TyAlignForABI = TyInfo.second; 609 610 llvm::Type *BaseTy = 611 llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); 612 llvm::Value *Addr = 613 CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy); 614 return Address(Addr, TyAlignForABI); 615 } else { 616 assert((AI.isDirect() || AI.isExtend()) && 617 "Unexpected ArgInfo Kind in generic VAArg emitter!"); 618 619 assert(!AI.getInReg() && 620 "Unexpected InReg seen in arginfo in generic VAArg emitter!"); 621 assert(!AI.getPaddingType() && 622 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 623 assert(!AI.getDirectOffset() && 624 "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!"); 625 assert(!AI.getCoerceToType() && 626 "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!"); 627 628 Address Temp = CGF.CreateMemTemp(Ty, "varet"); 629 Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), CGF.ConvertType(Ty)); 630 CGF.Builder.CreateStore(Val, Temp); 631 return Temp; 632 } 633 } 634 635 /// DefaultABIInfo - The default implementation for ABI specific 636 /// details. This implementation provides information which results in 637 /// self-consistent and sensible LLVM IR generation, but does not 638 /// conform to any particular ABI. 639 class DefaultABIInfo : public ABIInfo { 640 public: 641 DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 642 643 ABIArgInfo classifyReturnType(QualType RetTy) const; 644 ABIArgInfo classifyArgumentType(QualType RetTy) const; 645 646 void computeInfo(CGFunctionInfo &FI) const override { 647 if (!getCXXABI().classifyReturnType(FI)) 648 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 649 for (auto &I : FI.arguments()) 650 I.info = classifyArgumentType(I.type); 651 } 652 653 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 654 QualType Ty) const override { 655 return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty)); 656 } 657 }; 658 659 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo { 660 public: 661 DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 662 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 663 }; 664 665 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const { 666 Ty = useFirstFieldIfTransparentUnion(Ty); 667 668 if (isAggregateTypeForABI(Ty)) { 669 // Records with non-trivial destructors/copy-constructors should not be 670 // passed by value. 671 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 672 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 673 674 return getNaturalAlignIndirect(Ty); 675 } 676 677 // Treat an enum type as its underlying type. 678 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 679 Ty = EnumTy->getDecl()->getIntegerType(); 680 681 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 682 : ABIArgInfo::getDirect()); 683 } 684 685 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const { 686 if (RetTy->isVoidType()) 687 return ABIArgInfo::getIgnore(); 688 689 if (isAggregateTypeForABI(RetTy)) 690 return getNaturalAlignIndirect(RetTy); 691 692 // Treat an enum type as its underlying type. 693 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 694 RetTy = EnumTy->getDecl()->getIntegerType(); 695 696 return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 697 : ABIArgInfo::getDirect()); 698 } 699 700 //===----------------------------------------------------------------------===// 701 // WebAssembly ABI Implementation 702 // 703 // This is a very simple ABI that relies a lot on DefaultABIInfo. 704 //===----------------------------------------------------------------------===// 705 706 class WebAssemblyABIInfo final : public DefaultABIInfo { 707 public: 708 explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT) 709 : DefaultABIInfo(CGT) {} 710 711 private: 712 ABIArgInfo classifyReturnType(QualType RetTy) const; 713 ABIArgInfo classifyArgumentType(QualType Ty) const; 714 715 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 716 // non-virtual, but computeInfo and EmitVAArg are virtual, so we 717 // overload them. 718 void computeInfo(CGFunctionInfo &FI) const override { 719 if (!getCXXABI().classifyReturnType(FI)) 720 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 721 for (auto &Arg : FI.arguments()) 722 Arg.info = classifyArgumentType(Arg.type); 723 } 724 725 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 726 QualType Ty) const override; 727 }; 728 729 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo { 730 public: 731 explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 732 : TargetCodeGenInfo(new WebAssemblyABIInfo(CGT)) {} 733 }; 734 735 /// \brief Classify argument of given type \p Ty. 736 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const { 737 Ty = useFirstFieldIfTransparentUnion(Ty); 738 739 if (isAggregateTypeForABI(Ty)) { 740 // Records with non-trivial destructors/copy-constructors should not be 741 // passed by value. 742 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 743 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 744 // Ignore empty structs/unions. 745 if (isEmptyRecord(getContext(), Ty, true)) 746 return ABIArgInfo::getIgnore(); 747 // Lower single-element structs to just pass a regular value. TODO: We 748 // could do reasonable-size multiple-element structs too, using getExpand(), 749 // though watch out for things like bitfields. 750 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 751 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 752 } 753 754 // Otherwise just do the default thing. 755 return DefaultABIInfo::classifyArgumentType(Ty); 756 } 757 758 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const { 759 if (isAggregateTypeForABI(RetTy)) { 760 // Records with non-trivial destructors/copy-constructors should not be 761 // returned by value. 762 if (!getRecordArgABI(RetTy, getCXXABI())) { 763 // Ignore empty structs/unions. 764 if (isEmptyRecord(getContext(), RetTy, true)) 765 return ABIArgInfo::getIgnore(); 766 // Lower single-element structs to just return a regular value. TODO: We 767 // could do reasonable-size multiple-element structs too, using 768 // ABIArgInfo::getDirect(). 769 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 770 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 771 } 772 } 773 774 // Otherwise just do the default thing. 775 return DefaultABIInfo::classifyReturnType(RetTy); 776 } 777 778 Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 779 QualType Ty) const { 780 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect=*/ false, 781 getContext().getTypeInfoInChars(Ty), 782 CharUnits::fromQuantity(4), 783 /*AllowHigherAlign=*/ true); 784 } 785 786 //===----------------------------------------------------------------------===// 787 // le32/PNaCl bitcode ABI Implementation 788 // 789 // This is a simplified version of the x86_32 ABI. Arguments and return values 790 // are always passed on the stack. 791 //===----------------------------------------------------------------------===// 792 793 class PNaClABIInfo : public ABIInfo { 794 public: 795 PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 796 797 ABIArgInfo classifyReturnType(QualType RetTy) const; 798 ABIArgInfo classifyArgumentType(QualType RetTy) const; 799 800 void computeInfo(CGFunctionInfo &FI) const override; 801 Address EmitVAArg(CodeGenFunction &CGF, 802 Address VAListAddr, QualType Ty) const override; 803 }; 804 805 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo { 806 public: 807 PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 808 : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {} 809 }; 810 811 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const { 812 if (!getCXXABI().classifyReturnType(FI)) 813 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 814 815 for (auto &I : FI.arguments()) 816 I.info = classifyArgumentType(I.type); 817 } 818 819 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 820 QualType Ty) const { 821 // The PNaCL ABI is a bit odd, in that varargs don't use normal 822 // function classification. Structs get passed directly for varargs 823 // functions, through a rewriting transform in 824 // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows 825 // this target to actually support a va_arg instructions with an 826 // aggregate type, unlike other targets. 827 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 828 } 829 830 /// \brief Classify argument of given type \p Ty. 831 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const { 832 if (isAggregateTypeForABI(Ty)) { 833 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 834 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 835 return getNaturalAlignIndirect(Ty); 836 } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 837 // Treat an enum type as its underlying type. 838 Ty = EnumTy->getDecl()->getIntegerType(); 839 } else if (Ty->isFloatingType()) { 840 // Floating-point types don't go inreg. 841 return ABIArgInfo::getDirect(); 842 } 843 844 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 845 : ABIArgInfo::getDirect()); 846 } 847 848 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const { 849 if (RetTy->isVoidType()) 850 return ABIArgInfo::getIgnore(); 851 852 // In the PNaCl ABI we always return records/structures on the stack. 853 if (isAggregateTypeForABI(RetTy)) 854 return getNaturalAlignIndirect(RetTy); 855 856 // Treat an enum type as its underlying type. 857 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 858 RetTy = EnumTy->getDecl()->getIntegerType(); 859 860 return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 861 : ABIArgInfo::getDirect()); 862 } 863 864 /// IsX86_MMXType - Return true if this is an MMX type. 865 bool IsX86_MMXType(llvm::Type *IRType) { 866 // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>. 867 return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 && 868 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() && 869 IRType->getScalarSizeInBits() != 64; 870 } 871 872 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 873 StringRef Constraint, 874 llvm::Type* Ty) { 875 bool IsMMXCons = llvm::StringSwitch<bool>(Constraint) 876 .Cases("y", "&y", "^Ym", true) 877 .Default(false); 878 if (IsMMXCons && Ty->isVectorTy()) { 879 if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) { 880 // Invalid MMX constraint 881 return nullptr; 882 } 883 884 return llvm::Type::getX86_MMXTy(CGF.getLLVMContext()); 885 } 886 887 // No operation needed 888 return Ty; 889 } 890 891 /// Returns true if this type can be passed in SSE registers with the 892 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64. 893 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) { 894 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 895 if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) { 896 if (BT->getKind() == BuiltinType::LongDouble) { 897 if (&Context.getTargetInfo().getLongDoubleFormat() == 898 &llvm::APFloat::x87DoubleExtended()) 899 return false; 900 } 901 return true; 902 } 903 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 904 // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX 905 // registers specially. 906 unsigned VecSize = Context.getTypeSize(VT); 907 if (VecSize == 128 || VecSize == 256 || VecSize == 512) 908 return true; 909 } 910 return false; 911 } 912 913 /// Returns true if this aggregate is small enough to be passed in SSE registers 914 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64. 915 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) { 916 return NumMembers <= 4; 917 } 918 919 /// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86. 920 static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) { 921 auto AI = ABIArgInfo::getDirect(T); 922 AI.setInReg(true); 923 AI.setCanBeFlattened(false); 924 return AI; 925 } 926 927 //===----------------------------------------------------------------------===// 928 // X86-32 ABI Implementation 929 //===----------------------------------------------------------------------===// 930 931 /// \brief Similar to llvm::CCState, but for Clang. 932 struct CCState { 933 CCState(unsigned CC) : CC(CC), FreeRegs(0), FreeSSERegs(0) {} 934 935 unsigned CC; 936 unsigned FreeRegs; 937 unsigned FreeSSERegs; 938 }; 939 940 enum { 941 // Vectorcall only allows the first 6 parameters to be passed in registers. 942 VectorcallMaxParamNumAsReg = 6 943 }; 944 945 /// X86_32ABIInfo - The X86-32 ABI information. 946 class X86_32ABIInfo : public SwiftABIInfo { 947 enum Class { 948 Integer, 949 Float 950 }; 951 952 static const unsigned MinABIStackAlignInBytes = 4; 953 954 bool IsDarwinVectorABI; 955 bool IsRetSmallStructInRegABI; 956 bool IsWin32StructABI; 957 bool IsSoftFloatABI; 958 bool IsMCUABI; 959 unsigned DefaultNumRegisterParameters; 960 961 static bool isRegisterSize(unsigned Size) { 962 return (Size == 8 || Size == 16 || Size == 32 || Size == 64); 963 } 964 965 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 966 // FIXME: Assumes vectorcall is in use. 967 return isX86VectorTypeForVectorCall(getContext(), Ty); 968 } 969 970 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 971 uint64_t NumMembers) const override { 972 // FIXME: Assumes vectorcall is in use. 973 return isX86VectorCallAggregateSmallEnough(NumMembers); 974 } 975 976 bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const; 977 978 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 979 /// such that the argument will be passed in memory. 980 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 981 982 ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const; 983 984 /// \brief Return the alignment to use for the given type on the stack. 985 unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const; 986 987 Class classify(QualType Ty) const; 988 ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const; 989 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 990 991 /// \brief Updates the number of available free registers, returns 992 /// true if any registers were allocated. 993 bool updateFreeRegs(QualType Ty, CCState &State) const; 994 995 bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg, 996 bool &NeedsPadding) const; 997 bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const; 998 999 bool canExpandIndirectArgument(QualType Ty) const; 1000 1001 /// \brief Rewrite the function info so that all memory arguments use 1002 /// inalloca. 1003 void rewriteWithInAlloca(CGFunctionInfo &FI) const; 1004 1005 void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1006 CharUnits &StackOffset, ABIArgInfo &Info, 1007 QualType Type) const; 1008 void computeVectorCallArgs(CGFunctionInfo &FI, CCState &State, 1009 bool &UsedInAlloca) const; 1010 1011 public: 1012 1013 void computeInfo(CGFunctionInfo &FI) const override; 1014 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 1015 QualType Ty) const override; 1016 1017 X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 1018 bool RetSmallStructInRegABI, bool Win32StructABI, 1019 unsigned NumRegisterParameters, bool SoftFloatABI) 1020 : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI), 1021 IsRetSmallStructInRegABI(RetSmallStructInRegABI), 1022 IsWin32StructABI(Win32StructABI), 1023 IsSoftFloatABI(SoftFloatABI), 1024 IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()), 1025 DefaultNumRegisterParameters(NumRegisterParameters) {} 1026 1027 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 1028 bool asReturnValue) const override { 1029 // LLVM's x86-32 lowering currently only assigns up to three 1030 // integer registers and three fp registers. Oddly, it'll use up to 1031 // four vector registers for vectors, but those can overlap with the 1032 // scalar registers. 1033 return occupiesMoreThan(CGT, scalars, /*total*/ 3); 1034 } 1035 1036 bool isSwiftErrorInRegister() const override { 1037 // x86-32 lowering does not support passing swifterror in a register. 1038 return false; 1039 } 1040 }; 1041 1042 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo { 1043 public: 1044 X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 1045 bool RetSmallStructInRegABI, bool Win32StructABI, 1046 unsigned NumRegisterParameters, bool SoftFloatABI) 1047 : TargetCodeGenInfo(new X86_32ABIInfo( 1048 CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI, 1049 NumRegisterParameters, SoftFloatABI)) {} 1050 1051 static bool isStructReturnInRegABI( 1052 const llvm::Triple &Triple, const CodeGenOptions &Opts); 1053 1054 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 1055 CodeGen::CodeGenModule &CGM, 1056 ForDefinition_t IsForDefinition) const override; 1057 1058 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 1059 // Darwin uses different dwarf register numbers for EH. 1060 if (CGM.getTarget().getTriple().isOSDarwin()) return 5; 1061 return 4; 1062 } 1063 1064 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 1065 llvm::Value *Address) const override; 1066 1067 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 1068 StringRef Constraint, 1069 llvm::Type* Ty) const override { 1070 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 1071 } 1072 1073 void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue, 1074 std::string &Constraints, 1075 std::vector<llvm::Type *> &ResultRegTypes, 1076 std::vector<llvm::Type *> &ResultTruncRegTypes, 1077 std::vector<LValue> &ResultRegDests, 1078 std::string &AsmString, 1079 unsigned NumOutputs) const override; 1080 1081 llvm::Constant * 1082 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 1083 unsigned Sig = (0xeb << 0) | // jmp rel8 1084 (0x06 << 8) | // .+0x08 1085 ('v' << 16) | 1086 ('2' << 24); 1087 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 1088 } 1089 1090 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 1091 return "movl\t%ebp, %ebp" 1092 "\t\t// marker for objc_retainAutoreleaseReturnValue"; 1093 } 1094 }; 1095 1096 } 1097 1098 /// Rewrite input constraint references after adding some output constraints. 1099 /// In the case where there is one output and one input and we add one output, 1100 /// we need to replace all operand references greater than or equal to 1: 1101 /// mov $0, $1 1102 /// mov eax, $1 1103 /// The result will be: 1104 /// mov $0, $2 1105 /// mov eax, $2 1106 static void rewriteInputConstraintReferences(unsigned FirstIn, 1107 unsigned NumNewOuts, 1108 std::string &AsmString) { 1109 std::string Buf; 1110 llvm::raw_string_ostream OS(Buf); 1111 size_t Pos = 0; 1112 while (Pos < AsmString.size()) { 1113 size_t DollarStart = AsmString.find('$', Pos); 1114 if (DollarStart == std::string::npos) 1115 DollarStart = AsmString.size(); 1116 size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart); 1117 if (DollarEnd == std::string::npos) 1118 DollarEnd = AsmString.size(); 1119 OS << StringRef(&AsmString[Pos], DollarEnd - Pos); 1120 Pos = DollarEnd; 1121 size_t NumDollars = DollarEnd - DollarStart; 1122 if (NumDollars % 2 != 0 && Pos < AsmString.size()) { 1123 // We have an operand reference. 1124 size_t DigitStart = Pos; 1125 size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart); 1126 if (DigitEnd == std::string::npos) 1127 DigitEnd = AsmString.size(); 1128 StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart); 1129 unsigned OperandIndex; 1130 if (!OperandStr.getAsInteger(10, OperandIndex)) { 1131 if (OperandIndex >= FirstIn) 1132 OperandIndex += NumNewOuts; 1133 OS << OperandIndex; 1134 } else { 1135 OS << OperandStr; 1136 } 1137 Pos = DigitEnd; 1138 } 1139 } 1140 AsmString = std::move(OS.str()); 1141 } 1142 1143 /// Add output constraints for EAX:EDX because they are return registers. 1144 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs( 1145 CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints, 1146 std::vector<llvm::Type *> &ResultRegTypes, 1147 std::vector<llvm::Type *> &ResultTruncRegTypes, 1148 std::vector<LValue> &ResultRegDests, std::string &AsmString, 1149 unsigned NumOutputs) const { 1150 uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType()); 1151 1152 // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is 1153 // larger. 1154 if (!Constraints.empty()) 1155 Constraints += ','; 1156 if (RetWidth <= 32) { 1157 Constraints += "={eax}"; 1158 ResultRegTypes.push_back(CGF.Int32Ty); 1159 } else { 1160 // Use the 'A' constraint for EAX:EDX. 1161 Constraints += "=A"; 1162 ResultRegTypes.push_back(CGF.Int64Ty); 1163 } 1164 1165 // Truncate EAX or EAX:EDX to an integer of the appropriate size. 1166 llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth); 1167 ResultTruncRegTypes.push_back(CoerceTy); 1168 1169 // Coerce the integer by bitcasting the return slot pointer. 1170 ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(), 1171 CoerceTy->getPointerTo())); 1172 ResultRegDests.push_back(ReturnSlot); 1173 1174 rewriteInputConstraintReferences(NumOutputs, 1, AsmString); 1175 } 1176 1177 /// shouldReturnTypeInRegister - Determine if the given type should be 1178 /// returned in a register (for the Darwin and MCU ABI). 1179 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty, 1180 ASTContext &Context) const { 1181 uint64_t Size = Context.getTypeSize(Ty); 1182 1183 // For i386, type must be register sized. 1184 // For the MCU ABI, it only needs to be <= 8-byte 1185 if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size))) 1186 return false; 1187 1188 if (Ty->isVectorType()) { 1189 // 64- and 128- bit vectors inside structures are not returned in 1190 // registers. 1191 if (Size == 64 || Size == 128) 1192 return false; 1193 1194 return true; 1195 } 1196 1197 // If this is a builtin, pointer, enum, complex type, member pointer, or 1198 // member function pointer it is ok. 1199 if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() || 1200 Ty->isAnyComplexType() || Ty->isEnumeralType() || 1201 Ty->isBlockPointerType() || Ty->isMemberPointerType()) 1202 return true; 1203 1204 // Arrays are treated like records. 1205 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) 1206 return shouldReturnTypeInRegister(AT->getElementType(), Context); 1207 1208 // Otherwise, it must be a record type. 1209 const RecordType *RT = Ty->getAs<RecordType>(); 1210 if (!RT) return false; 1211 1212 // FIXME: Traverse bases here too. 1213 1214 // Structure types are passed in register if all fields would be 1215 // passed in a register. 1216 for (const auto *FD : RT->getDecl()->fields()) { 1217 // Empty fields are ignored. 1218 if (isEmptyField(Context, FD, true)) 1219 continue; 1220 1221 // Check fields recursively. 1222 if (!shouldReturnTypeInRegister(FD->getType(), Context)) 1223 return false; 1224 } 1225 return true; 1226 } 1227 1228 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) { 1229 // Treat complex types as the element type. 1230 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 1231 Ty = CTy->getElementType(); 1232 1233 // Check for a type which we know has a simple scalar argument-passing 1234 // convention without any padding. (We're specifically looking for 32 1235 // and 64-bit integer and integer-equivalents, float, and double.) 1236 if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() && 1237 !Ty->isEnumeralType() && !Ty->isBlockPointerType()) 1238 return false; 1239 1240 uint64_t Size = Context.getTypeSize(Ty); 1241 return Size == 32 || Size == 64; 1242 } 1243 1244 static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD, 1245 uint64_t &Size) { 1246 for (const auto *FD : RD->fields()) { 1247 // Scalar arguments on the stack get 4 byte alignment on x86. If the 1248 // argument is smaller than 32-bits, expanding the struct will create 1249 // alignment padding. 1250 if (!is32Or64BitBasicType(FD->getType(), Context)) 1251 return false; 1252 1253 // FIXME: Reject bit-fields wholesale; there are two problems, we don't know 1254 // how to expand them yet, and the predicate for telling if a bitfield still 1255 // counts as "basic" is more complicated than what we were doing previously. 1256 if (FD->isBitField()) 1257 return false; 1258 1259 Size += Context.getTypeSize(FD->getType()); 1260 } 1261 return true; 1262 } 1263 1264 static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD, 1265 uint64_t &Size) { 1266 // Don't do this if there are any non-empty bases. 1267 for (const CXXBaseSpecifier &Base : RD->bases()) { 1268 if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(), 1269 Size)) 1270 return false; 1271 } 1272 if (!addFieldSizes(Context, RD, Size)) 1273 return false; 1274 return true; 1275 } 1276 1277 /// Test whether an argument type which is to be passed indirectly (on the 1278 /// stack) would have the equivalent layout if it was expanded into separate 1279 /// arguments. If so, we prefer to do the latter to avoid inhibiting 1280 /// optimizations. 1281 bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const { 1282 // We can only expand structure types. 1283 const RecordType *RT = Ty->getAs<RecordType>(); 1284 if (!RT) 1285 return false; 1286 const RecordDecl *RD = RT->getDecl(); 1287 uint64_t Size = 0; 1288 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 1289 if (!IsWin32StructABI) { 1290 // On non-Windows, we have to conservatively match our old bitcode 1291 // prototypes in order to be ABI-compatible at the bitcode level. 1292 if (!CXXRD->isCLike()) 1293 return false; 1294 } else { 1295 // Don't do this for dynamic classes. 1296 if (CXXRD->isDynamicClass()) 1297 return false; 1298 } 1299 if (!addBaseAndFieldSizes(getContext(), CXXRD, Size)) 1300 return false; 1301 } else { 1302 if (!addFieldSizes(getContext(), RD, Size)) 1303 return false; 1304 } 1305 1306 // We can do this if there was no alignment padding. 1307 return Size == getContext().getTypeSize(Ty); 1308 } 1309 1310 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const { 1311 // If the return value is indirect, then the hidden argument is consuming one 1312 // integer register. 1313 if (State.FreeRegs) { 1314 --State.FreeRegs; 1315 if (!IsMCUABI) 1316 return getNaturalAlignIndirectInReg(RetTy); 1317 } 1318 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 1319 } 1320 1321 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, 1322 CCState &State) const { 1323 if (RetTy->isVoidType()) 1324 return ABIArgInfo::getIgnore(); 1325 1326 const Type *Base = nullptr; 1327 uint64_t NumElts = 0; 1328 if ((State.CC == llvm::CallingConv::X86_VectorCall || 1329 State.CC == llvm::CallingConv::X86_RegCall) && 1330 isHomogeneousAggregate(RetTy, Base, NumElts)) { 1331 // The LLVM struct type for such an aggregate should lower properly. 1332 return ABIArgInfo::getDirect(); 1333 } 1334 1335 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 1336 // On Darwin, some vectors are returned in registers. 1337 if (IsDarwinVectorABI) { 1338 uint64_t Size = getContext().getTypeSize(RetTy); 1339 1340 // 128-bit vectors are a special case; they are returned in 1341 // registers and we need to make sure to pick a type the LLVM 1342 // backend will like. 1343 if (Size == 128) 1344 return ABIArgInfo::getDirect(llvm::VectorType::get( 1345 llvm::Type::getInt64Ty(getVMContext()), 2)); 1346 1347 // Always return in register if it fits in a general purpose 1348 // register, or if it is 64 bits and has a single element. 1349 if ((Size == 8 || Size == 16 || Size == 32) || 1350 (Size == 64 && VT->getNumElements() == 1)) 1351 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1352 Size)); 1353 1354 return getIndirectReturnResult(RetTy, State); 1355 } 1356 1357 return ABIArgInfo::getDirect(); 1358 } 1359 1360 if (isAggregateTypeForABI(RetTy)) { 1361 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 1362 // Structures with flexible arrays are always indirect. 1363 if (RT->getDecl()->hasFlexibleArrayMember()) 1364 return getIndirectReturnResult(RetTy, State); 1365 } 1366 1367 // If specified, structs and unions are always indirect. 1368 if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType()) 1369 return getIndirectReturnResult(RetTy, State); 1370 1371 // Ignore empty structs/unions. 1372 if (isEmptyRecord(getContext(), RetTy, true)) 1373 return ABIArgInfo::getIgnore(); 1374 1375 // Small structures which are register sized are generally returned 1376 // in a register. 1377 if (shouldReturnTypeInRegister(RetTy, getContext())) { 1378 uint64_t Size = getContext().getTypeSize(RetTy); 1379 1380 // As a special-case, if the struct is a "single-element" struct, and 1381 // the field is of type "float" or "double", return it in a 1382 // floating-point register. (MSVC does not apply this special case.) 1383 // We apply a similar transformation for pointer types to improve the 1384 // quality of the generated IR. 1385 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 1386 if ((!IsWin32StructABI && SeltTy->isRealFloatingType()) 1387 || SeltTy->hasPointerRepresentation()) 1388 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 1389 1390 // FIXME: We should be able to narrow this integer in cases with dead 1391 // padding. 1392 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size)); 1393 } 1394 1395 return getIndirectReturnResult(RetTy, State); 1396 } 1397 1398 // Treat an enum type as its underlying type. 1399 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 1400 RetTy = EnumTy->getDecl()->getIntegerType(); 1401 1402 return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 1403 : ABIArgInfo::getDirect()); 1404 } 1405 1406 static bool isSSEVectorType(ASTContext &Context, QualType Ty) { 1407 return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128; 1408 } 1409 1410 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) { 1411 const RecordType *RT = Ty->getAs<RecordType>(); 1412 if (!RT) 1413 return 0; 1414 const RecordDecl *RD = RT->getDecl(); 1415 1416 // If this is a C++ record, check the bases first. 1417 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 1418 for (const auto &I : CXXRD->bases()) 1419 if (!isRecordWithSSEVectorType(Context, I.getType())) 1420 return false; 1421 1422 for (const auto *i : RD->fields()) { 1423 QualType FT = i->getType(); 1424 1425 if (isSSEVectorType(Context, FT)) 1426 return true; 1427 1428 if (isRecordWithSSEVectorType(Context, FT)) 1429 return true; 1430 } 1431 1432 return false; 1433 } 1434 1435 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty, 1436 unsigned Align) const { 1437 // Otherwise, if the alignment is less than or equal to the minimum ABI 1438 // alignment, just use the default; the backend will handle this. 1439 if (Align <= MinABIStackAlignInBytes) 1440 return 0; // Use default alignment. 1441 1442 // On non-Darwin, the stack type alignment is always 4. 1443 if (!IsDarwinVectorABI) { 1444 // Set explicit alignment, since we may need to realign the top. 1445 return MinABIStackAlignInBytes; 1446 } 1447 1448 // Otherwise, if the type contains an SSE vector type, the alignment is 16. 1449 if (Align >= 16 && (isSSEVectorType(getContext(), Ty) || 1450 isRecordWithSSEVectorType(getContext(), Ty))) 1451 return 16; 1452 1453 return MinABIStackAlignInBytes; 1454 } 1455 1456 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal, 1457 CCState &State) const { 1458 if (!ByVal) { 1459 if (State.FreeRegs) { 1460 --State.FreeRegs; // Non-byval indirects just use one pointer. 1461 if (!IsMCUABI) 1462 return getNaturalAlignIndirectInReg(Ty); 1463 } 1464 return getNaturalAlignIndirect(Ty, false); 1465 } 1466 1467 // Compute the byval alignment. 1468 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 1469 unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign); 1470 if (StackAlign == 0) 1471 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true); 1472 1473 // If the stack alignment is less than the type alignment, realign the 1474 // argument. 1475 bool Realign = TypeAlign > StackAlign; 1476 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign), 1477 /*ByVal=*/true, Realign); 1478 } 1479 1480 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const { 1481 const Type *T = isSingleElementStruct(Ty, getContext()); 1482 if (!T) 1483 T = Ty.getTypePtr(); 1484 1485 if (const BuiltinType *BT = T->getAs<BuiltinType>()) { 1486 BuiltinType::Kind K = BT->getKind(); 1487 if (K == BuiltinType::Float || K == BuiltinType::Double) 1488 return Float; 1489 } 1490 return Integer; 1491 } 1492 1493 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const { 1494 if (!IsSoftFloatABI) { 1495 Class C = classify(Ty); 1496 if (C == Float) 1497 return false; 1498 } 1499 1500 unsigned Size = getContext().getTypeSize(Ty); 1501 unsigned SizeInRegs = (Size + 31) / 32; 1502 1503 if (SizeInRegs == 0) 1504 return false; 1505 1506 if (!IsMCUABI) { 1507 if (SizeInRegs > State.FreeRegs) { 1508 State.FreeRegs = 0; 1509 return false; 1510 } 1511 } else { 1512 // The MCU psABI allows passing parameters in-reg even if there are 1513 // earlier parameters that are passed on the stack. Also, 1514 // it does not allow passing >8-byte structs in-register, 1515 // even if there are 3 free registers available. 1516 if (SizeInRegs > State.FreeRegs || SizeInRegs > 2) 1517 return false; 1518 } 1519 1520 State.FreeRegs -= SizeInRegs; 1521 return true; 1522 } 1523 1524 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State, 1525 bool &InReg, 1526 bool &NeedsPadding) const { 1527 // On Windows, aggregates other than HFAs are never passed in registers, and 1528 // they do not consume register slots. Homogenous floating-point aggregates 1529 // (HFAs) have already been dealt with at this point. 1530 if (IsWin32StructABI && isAggregateTypeForABI(Ty)) 1531 return false; 1532 1533 NeedsPadding = false; 1534 InReg = !IsMCUABI; 1535 1536 if (!updateFreeRegs(Ty, State)) 1537 return false; 1538 1539 if (IsMCUABI) 1540 return true; 1541 1542 if (State.CC == llvm::CallingConv::X86_FastCall || 1543 State.CC == llvm::CallingConv::X86_VectorCall || 1544 State.CC == llvm::CallingConv::X86_RegCall) { 1545 if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs) 1546 NeedsPadding = true; 1547 1548 return false; 1549 } 1550 1551 return true; 1552 } 1553 1554 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const { 1555 if (!updateFreeRegs(Ty, State)) 1556 return false; 1557 1558 if (IsMCUABI) 1559 return false; 1560 1561 if (State.CC == llvm::CallingConv::X86_FastCall || 1562 State.CC == llvm::CallingConv::X86_VectorCall || 1563 State.CC == llvm::CallingConv::X86_RegCall) { 1564 if (getContext().getTypeSize(Ty) > 32) 1565 return false; 1566 1567 return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() || 1568 Ty->isReferenceType()); 1569 } 1570 1571 return true; 1572 } 1573 1574 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, 1575 CCState &State) const { 1576 // FIXME: Set alignment on indirect arguments. 1577 1578 Ty = useFirstFieldIfTransparentUnion(Ty); 1579 1580 // Check with the C++ ABI first. 1581 const RecordType *RT = Ty->getAs<RecordType>(); 1582 if (RT) { 1583 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 1584 if (RAA == CGCXXABI::RAA_Indirect) { 1585 return getIndirectResult(Ty, false, State); 1586 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 1587 // The field index doesn't matter, we'll fix it up later. 1588 return ABIArgInfo::getInAlloca(/*FieldIndex=*/0); 1589 } 1590 } 1591 1592 // Regcall uses the concept of a homogenous vector aggregate, similar 1593 // to other targets. 1594 const Type *Base = nullptr; 1595 uint64_t NumElts = 0; 1596 if (State.CC == llvm::CallingConv::X86_RegCall && 1597 isHomogeneousAggregate(Ty, Base, NumElts)) { 1598 1599 if (State.FreeSSERegs >= NumElts) { 1600 State.FreeSSERegs -= NumElts; 1601 if (Ty->isBuiltinType() || Ty->isVectorType()) 1602 return ABIArgInfo::getDirect(); 1603 return ABIArgInfo::getExpand(); 1604 } 1605 return getIndirectResult(Ty, /*ByVal=*/false, State); 1606 } 1607 1608 if (isAggregateTypeForABI(Ty)) { 1609 // Structures with flexible arrays are always indirect. 1610 // FIXME: This should not be byval! 1611 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 1612 return getIndirectResult(Ty, true, State); 1613 1614 // Ignore empty structs/unions on non-Windows. 1615 if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true)) 1616 return ABIArgInfo::getIgnore(); 1617 1618 llvm::LLVMContext &LLVMContext = getVMContext(); 1619 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 1620 bool NeedsPadding = false; 1621 bool InReg; 1622 if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) { 1623 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; 1624 SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32); 1625 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 1626 if (InReg) 1627 return ABIArgInfo::getDirectInReg(Result); 1628 else 1629 return ABIArgInfo::getDirect(Result); 1630 } 1631 llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr; 1632 1633 // Expand small (<= 128-bit) record types when we know that the stack layout 1634 // of those arguments will match the struct. This is important because the 1635 // LLVM backend isn't smart enough to remove byval, which inhibits many 1636 // optimizations. 1637 // Don't do this for the MCU if there are still free integer registers 1638 // (see X86_64 ABI for full explanation). 1639 if (getContext().getTypeSize(Ty) <= 4 * 32 && 1640 (!IsMCUABI || State.FreeRegs == 0) && canExpandIndirectArgument(Ty)) 1641 return ABIArgInfo::getExpandWithPadding( 1642 State.CC == llvm::CallingConv::X86_FastCall || 1643 State.CC == llvm::CallingConv::X86_VectorCall || 1644 State.CC == llvm::CallingConv::X86_RegCall, 1645 PaddingType); 1646 1647 return getIndirectResult(Ty, true, State); 1648 } 1649 1650 if (const VectorType *VT = Ty->getAs<VectorType>()) { 1651 // On Darwin, some vectors are passed in memory, we handle this by passing 1652 // it as an i8/i16/i32/i64. 1653 if (IsDarwinVectorABI) { 1654 uint64_t Size = getContext().getTypeSize(Ty); 1655 if ((Size == 8 || Size == 16 || Size == 32) || 1656 (Size == 64 && VT->getNumElements() == 1)) 1657 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1658 Size)); 1659 } 1660 1661 if (IsX86_MMXType(CGT.ConvertType(Ty))) 1662 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64)); 1663 1664 return ABIArgInfo::getDirect(); 1665 } 1666 1667 1668 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 1669 Ty = EnumTy->getDecl()->getIntegerType(); 1670 1671 bool InReg = shouldPrimitiveUseInReg(Ty, State); 1672 1673 if (Ty->isPromotableIntegerType()) { 1674 if (InReg) 1675 return ABIArgInfo::getExtendInReg(Ty); 1676 return ABIArgInfo::getExtend(Ty); 1677 } 1678 1679 if (InReg) 1680 return ABIArgInfo::getDirectInReg(); 1681 return ABIArgInfo::getDirect(); 1682 } 1683 1684 void X86_32ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI, CCState &State, 1685 bool &UsedInAlloca) const { 1686 // Vectorcall x86 works subtly different than in x64, so the format is 1687 // a bit different than the x64 version. First, all vector types (not HVAs) 1688 // are assigned, with the first 6 ending up in the YMM0-5 or XMM0-5 registers. 1689 // This differs from the x64 implementation, where the first 6 by INDEX get 1690 // registers. 1691 // After that, integers AND HVAs are assigned Left to Right in the same pass. 1692 // Integers are passed as ECX/EDX if one is available (in order). HVAs will 1693 // first take up the remaining YMM/XMM registers. If insufficient registers 1694 // remain but an integer register (ECX/EDX) is available, it will be passed 1695 // in that, else, on the stack. 1696 for (auto &I : FI.arguments()) { 1697 // First pass do all the vector types. 1698 const Type *Base = nullptr; 1699 uint64_t NumElts = 0; 1700 const QualType& Ty = I.type; 1701 if ((Ty->isVectorType() || Ty->isBuiltinType()) && 1702 isHomogeneousAggregate(Ty, Base, NumElts)) { 1703 if (State.FreeSSERegs >= NumElts) { 1704 State.FreeSSERegs -= NumElts; 1705 I.info = ABIArgInfo::getDirect(); 1706 } else { 1707 I.info = classifyArgumentType(Ty, State); 1708 } 1709 UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca); 1710 } 1711 } 1712 1713 for (auto &I : FI.arguments()) { 1714 // Second pass, do the rest! 1715 const Type *Base = nullptr; 1716 uint64_t NumElts = 0; 1717 const QualType& Ty = I.type; 1718 bool IsHva = isHomogeneousAggregate(Ty, Base, NumElts); 1719 1720 if (IsHva && !Ty->isVectorType() && !Ty->isBuiltinType()) { 1721 // Assign true HVAs (non vector/native FP types). 1722 if (State.FreeSSERegs >= NumElts) { 1723 State.FreeSSERegs -= NumElts; 1724 I.info = getDirectX86Hva(); 1725 } else { 1726 I.info = getIndirectResult(Ty, /*ByVal=*/false, State); 1727 } 1728 } else if (!IsHva) { 1729 // Assign all Non-HVAs, so this will exclude Vector/FP args. 1730 I.info = classifyArgumentType(Ty, State); 1731 UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca); 1732 } 1733 } 1734 } 1735 1736 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const { 1737 CCState State(FI.getCallingConvention()); 1738 if (IsMCUABI) 1739 State.FreeRegs = 3; 1740 else if (State.CC == llvm::CallingConv::X86_FastCall) 1741 State.FreeRegs = 2; 1742 else if (State.CC == llvm::CallingConv::X86_VectorCall) { 1743 State.FreeRegs = 2; 1744 State.FreeSSERegs = 6; 1745 } else if (FI.getHasRegParm()) 1746 State.FreeRegs = FI.getRegParm(); 1747 else if (State.CC == llvm::CallingConv::X86_RegCall) { 1748 State.FreeRegs = 5; 1749 State.FreeSSERegs = 8; 1750 } else 1751 State.FreeRegs = DefaultNumRegisterParameters; 1752 1753 if (!getCXXABI().classifyReturnType(FI)) { 1754 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State); 1755 } else if (FI.getReturnInfo().isIndirect()) { 1756 // The C++ ABI is not aware of register usage, so we have to check if the 1757 // return value was sret and put it in a register ourselves if appropriate. 1758 if (State.FreeRegs) { 1759 --State.FreeRegs; // The sret parameter consumes a register. 1760 if (!IsMCUABI) 1761 FI.getReturnInfo().setInReg(true); 1762 } 1763 } 1764 1765 // The chain argument effectively gives us another free register. 1766 if (FI.isChainCall()) 1767 ++State.FreeRegs; 1768 1769 bool UsedInAlloca = false; 1770 if (State.CC == llvm::CallingConv::X86_VectorCall) { 1771 computeVectorCallArgs(FI, State, UsedInAlloca); 1772 } else { 1773 // If not vectorcall, revert to normal behavior. 1774 for (auto &I : FI.arguments()) { 1775 I.info = classifyArgumentType(I.type, State); 1776 UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca); 1777 } 1778 } 1779 1780 // If we needed to use inalloca for any argument, do a second pass and rewrite 1781 // all the memory arguments to use inalloca. 1782 if (UsedInAlloca) 1783 rewriteWithInAlloca(FI); 1784 } 1785 1786 void 1787 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1788 CharUnits &StackOffset, ABIArgInfo &Info, 1789 QualType Type) const { 1790 // Arguments are always 4-byte-aligned. 1791 CharUnits FieldAlign = CharUnits::fromQuantity(4); 1792 1793 assert(StackOffset.isMultipleOf(FieldAlign) && "unaligned inalloca struct"); 1794 Info = ABIArgInfo::getInAlloca(FrameFields.size()); 1795 FrameFields.push_back(CGT.ConvertTypeForMem(Type)); 1796 StackOffset += getContext().getTypeSizeInChars(Type); 1797 1798 // Insert padding bytes to respect alignment. 1799 CharUnits FieldEnd = StackOffset; 1800 StackOffset = FieldEnd.alignTo(FieldAlign); 1801 if (StackOffset != FieldEnd) { 1802 CharUnits NumBytes = StackOffset - FieldEnd; 1803 llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext()); 1804 Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity()); 1805 FrameFields.push_back(Ty); 1806 } 1807 } 1808 1809 static bool isArgInAlloca(const ABIArgInfo &Info) { 1810 // Leave ignored and inreg arguments alone. 1811 switch (Info.getKind()) { 1812 case ABIArgInfo::InAlloca: 1813 return true; 1814 case ABIArgInfo::Indirect: 1815 assert(Info.getIndirectByVal()); 1816 return true; 1817 case ABIArgInfo::Ignore: 1818 return false; 1819 case ABIArgInfo::Direct: 1820 case ABIArgInfo::Extend: 1821 if (Info.getInReg()) 1822 return false; 1823 return true; 1824 case ABIArgInfo::Expand: 1825 case ABIArgInfo::CoerceAndExpand: 1826 // These are aggregate types which are never passed in registers when 1827 // inalloca is involved. 1828 return true; 1829 } 1830 llvm_unreachable("invalid enum"); 1831 } 1832 1833 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const { 1834 assert(IsWin32StructABI && "inalloca only supported on win32"); 1835 1836 // Build a packed struct type for all of the arguments in memory. 1837 SmallVector<llvm::Type *, 6> FrameFields; 1838 1839 // The stack alignment is always 4. 1840 CharUnits StackAlign = CharUnits::fromQuantity(4); 1841 1842 CharUnits StackOffset; 1843 CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end(); 1844 1845 // Put 'this' into the struct before 'sret', if necessary. 1846 bool IsThisCall = 1847 FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall; 1848 ABIArgInfo &Ret = FI.getReturnInfo(); 1849 if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall && 1850 isArgInAlloca(I->info)) { 1851 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 1852 ++I; 1853 } 1854 1855 // Put the sret parameter into the inalloca struct if it's in memory. 1856 if (Ret.isIndirect() && !Ret.getInReg()) { 1857 CanQualType PtrTy = getContext().getPointerType(FI.getReturnType()); 1858 addFieldToArgStruct(FrameFields, StackOffset, Ret, PtrTy); 1859 // On Windows, the hidden sret parameter is always returned in eax. 1860 Ret.setInAllocaSRet(IsWin32StructABI); 1861 } 1862 1863 // Skip the 'this' parameter in ecx. 1864 if (IsThisCall) 1865 ++I; 1866 1867 // Put arguments passed in memory into the struct. 1868 for (; I != E; ++I) { 1869 if (isArgInAlloca(I->info)) 1870 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 1871 } 1872 1873 FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields, 1874 /*isPacked=*/true), 1875 StackAlign); 1876 } 1877 1878 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF, 1879 Address VAListAddr, QualType Ty) const { 1880 1881 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 1882 1883 // x86-32 changes the alignment of certain arguments on the stack. 1884 // 1885 // Just messing with TypeInfo like this works because we never pass 1886 // anything indirectly. 1887 TypeInfo.second = CharUnits::fromQuantity( 1888 getTypeStackAlignInBytes(Ty, TypeInfo.second.getQuantity())); 1889 1890 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 1891 TypeInfo, CharUnits::fromQuantity(4), 1892 /*AllowHigherAlign*/ true); 1893 } 1894 1895 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI( 1896 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 1897 assert(Triple.getArch() == llvm::Triple::x86); 1898 1899 switch (Opts.getStructReturnConvention()) { 1900 case CodeGenOptions::SRCK_Default: 1901 break; 1902 case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return 1903 return false; 1904 case CodeGenOptions::SRCK_InRegs: // -freg-struct-return 1905 return true; 1906 } 1907 1908 if (Triple.isOSDarwin() || Triple.isOSIAMCU()) 1909 return true; 1910 1911 switch (Triple.getOS()) { 1912 case llvm::Triple::DragonFly: 1913 case llvm::Triple::FreeBSD: 1914 case llvm::Triple::OpenBSD: 1915 case llvm::Triple::Win32: 1916 return true; 1917 default: 1918 return false; 1919 } 1920 } 1921 1922 void X86_32TargetCodeGenInfo::setTargetAttributes( 1923 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM, 1924 ForDefinition_t IsForDefinition) const { 1925 if (!IsForDefinition) 1926 return; 1927 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 1928 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 1929 // Get the LLVM function. 1930 llvm::Function *Fn = cast<llvm::Function>(GV); 1931 1932 // Now add the 'alignstack' attribute with a value of 16. 1933 llvm::AttrBuilder B; 1934 B.addStackAlignmentAttr(16); 1935 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 1936 } 1937 if (FD->hasAttr<AnyX86InterruptAttr>()) { 1938 llvm::Function *Fn = cast<llvm::Function>(GV); 1939 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 1940 } 1941 } 1942 } 1943 1944 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable( 1945 CodeGen::CodeGenFunction &CGF, 1946 llvm::Value *Address) const { 1947 CodeGen::CGBuilderTy &Builder = CGF.Builder; 1948 1949 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 1950 1951 // 0-7 are the eight integer registers; the order is different 1952 // on Darwin (for EH), but the range is the same. 1953 // 8 is %eip. 1954 AssignToArrayRange(Builder, Address, Four8, 0, 8); 1955 1956 if (CGF.CGM.getTarget().getTriple().isOSDarwin()) { 1957 // 12-16 are st(0..4). Not sure why we stop at 4. 1958 // These have size 16, which is sizeof(long double) on 1959 // platforms with 8-byte alignment for that type. 1960 llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16); 1961 AssignToArrayRange(Builder, Address, Sixteen8, 12, 16); 1962 1963 } else { 1964 // 9 is %eflags, which doesn't get a size on Darwin for some 1965 // reason. 1966 Builder.CreateAlignedStore( 1967 Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9), 1968 CharUnits::One()); 1969 1970 // 11-16 are st(0..5). Not sure why we stop at 5. 1971 // These have size 12, which is sizeof(long double) on 1972 // platforms with 4-byte alignment for that type. 1973 llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12); 1974 AssignToArrayRange(Builder, Address, Twelve8, 11, 16); 1975 } 1976 1977 return false; 1978 } 1979 1980 //===----------------------------------------------------------------------===// 1981 // X86-64 ABI Implementation 1982 //===----------------------------------------------------------------------===// 1983 1984 1985 namespace { 1986 /// The AVX ABI level for X86 targets. 1987 enum class X86AVXABILevel { 1988 None, 1989 AVX, 1990 AVX512 1991 }; 1992 1993 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel. 1994 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) { 1995 switch (AVXLevel) { 1996 case X86AVXABILevel::AVX512: 1997 return 512; 1998 case X86AVXABILevel::AVX: 1999 return 256; 2000 case X86AVXABILevel::None: 2001 return 128; 2002 } 2003 llvm_unreachable("Unknown AVXLevel"); 2004 } 2005 2006 /// X86_64ABIInfo - The X86_64 ABI information. 2007 class X86_64ABIInfo : public SwiftABIInfo { 2008 enum Class { 2009 Integer = 0, 2010 SSE, 2011 SSEUp, 2012 X87, 2013 X87Up, 2014 ComplexX87, 2015 NoClass, 2016 Memory 2017 }; 2018 2019 /// merge - Implement the X86_64 ABI merging algorithm. 2020 /// 2021 /// Merge an accumulating classification \arg Accum with a field 2022 /// classification \arg Field. 2023 /// 2024 /// \param Accum - The accumulating classification. This should 2025 /// always be either NoClass or the result of a previous merge 2026 /// call. In addition, this should never be Memory (the caller 2027 /// should just return Memory for the aggregate). 2028 static Class merge(Class Accum, Class Field); 2029 2030 /// postMerge - Implement the X86_64 ABI post merging algorithm. 2031 /// 2032 /// Post merger cleanup, reduces a malformed Hi and Lo pair to 2033 /// final MEMORY or SSE classes when necessary. 2034 /// 2035 /// \param AggregateSize - The size of the current aggregate in 2036 /// the classification process. 2037 /// 2038 /// \param Lo - The classification for the parts of the type 2039 /// residing in the low word of the containing object. 2040 /// 2041 /// \param Hi - The classification for the parts of the type 2042 /// residing in the higher words of the containing object. 2043 /// 2044 void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const; 2045 2046 /// classify - Determine the x86_64 register classes in which the 2047 /// given type T should be passed. 2048 /// 2049 /// \param Lo - The classification for the parts of the type 2050 /// residing in the low word of the containing object. 2051 /// 2052 /// \param Hi - The classification for the parts of the type 2053 /// residing in the high word of the containing object. 2054 /// 2055 /// \param OffsetBase - The bit offset of this type in the 2056 /// containing object. Some parameters are classified different 2057 /// depending on whether they straddle an eightbyte boundary. 2058 /// 2059 /// \param isNamedArg - Whether the argument in question is a "named" 2060 /// argument, as used in AMD64-ABI 3.5.7. 2061 /// 2062 /// If a word is unused its result will be NoClass; if a type should 2063 /// be passed in Memory then at least the classification of \arg Lo 2064 /// will be Memory. 2065 /// 2066 /// The \arg Lo class will be NoClass iff the argument is ignored. 2067 /// 2068 /// If the \arg Lo class is ComplexX87, then the \arg Hi class will 2069 /// also be ComplexX87. 2070 void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi, 2071 bool isNamedArg) const; 2072 2073 llvm::Type *GetByteVectorType(QualType Ty) const; 2074 llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType, 2075 unsigned IROffset, QualType SourceTy, 2076 unsigned SourceOffset) const; 2077 llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType, 2078 unsigned IROffset, QualType SourceTy, 2079 unsigned SourceOffset) const; 2080 2081 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 2082 /// such that the argument will be returned in memory. 2083 ABIArgInfo getIndirectReturnResult(QualType Ty) const; 2084 2085 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 2086 /// such that the argument will be passed in memory. 2087 /// 2088 /// \param freeIntRegs - The number of free integer registers remaining 2089 /// available. 2090 ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const; 2091 2092 ABIArgInfo classifyReturnType(QualType RetTy) const; 2093 2094 ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs, 2095 unsigned &neededInt, unsigned &neededSSE, 2096 bool isNamedArg) const; 2097 2098 ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt, 2099 unsigned &NeededSSE) const; 2100 2101 ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 2102 unsigned &NeededSSE) const; 2103 2104 bool IsIllegalVectorType(QualType Ty) const; 2105 2106 /// The 0.98 ABI revision clarified a lot of ambiguities, 2107 /// unfortunately in ways that were not always consistent with 2108 /// certain previous compilers. In particular, platforms which 2109 /// required strict binary compatibility with older versions of GCC 2110 /// may need to exempt themselves. 2111 bool honorsRevision0_98() const { 2112 return !getTarget().getTriple().isOSDarwin(); 2113 } 2114 2115 /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to 2116 /// classify it as INTEGER (for compatibility with older clang compilers). 2117 bool classifyIntegerMMXAsSSE() const { 2118 // Clang <= 3.8 did not do this. 2119 if (getCodeGenOpts().getClangABICompat() <= 2120 CodeGenOptions::ClangABI::Ver3_8) 2121 return false; 2122 2123 const llvm::Triple &Triple = getTarget().getTriple(); 2124 if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::PS4) 2125 return false; 2126 if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10) 2127 return false; 2128 return true; 2129 } 2130 2131 X86AVXABILevel AVXLevel; 2132 // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on 2133 // 64-bit hardware. 2134 bool Has64BitPointers; 2135 2136 public: 2137 X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) : 2138 SwiftABIInfo(CGT), AVXLevel(AVXLevel), 2139 Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) { 2140 } 2141 2142 bool isPassedUsingAVXType(QualType type) const { 2143 unsigned neededInt, neededSSE; 2144 // The freeIntRegs argument doesn't matter here. 2145 ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE, 2146 /*isNamedArg*/true); 2147 if (info.isDirect()) { 2148 llvm::Type *ty = info.getCoerceToType(); 2149 if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty)) 2150 return (vectorTy->getBitWidth() > 128); 2151 } 2152 return false; 2153 } 2154 2155 void computeInfo(CGFunctionInfo &FI) const override; 2156 2157 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2158 QualType Ty) const override; 2159 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 2160 QualType Ty) const override; 2161 2162 bool has64BitPointers() const { 2163 return Has64BitPointers; 2164 } 2165 2166 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 2167 bool asReturnValue) const override { 2168 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2169 } 2170 bool isSwiftErrorInRegister() const override { 2171 return true; 2172 } 2173 }; 2174 2175 /// WinX86_64ABIInfo - The Windows X86_64 ABI information. 2176 class WinX86_64ABIInfo : public SwiftABIInfo { 2177 public: 2178 WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) 2179 : SwiftABIInfo(CGT), 2180 IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {} 2181 2182 void computeInfo(CGFunctionInfo &FI) const override; 2183 2184 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2185 QualType Ty) const override; 2186 2187 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 2188 // FIXME: Assumes vectorcall is in use. 2189 return isX86VectorTypeForVectorCall(getContext(), Ty); 2190 } 2191 2192 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 2193 uint64_t NumMembers) const override { 2194 // FIXME: Assumes vectorcall is in use. 2195 return isX86VectorCallAggregateSmallEnough(NumMembers); 2196 } 2197 2198 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type *> scalars, 2199 bool asReturnValue) const override { 2200 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2201 } 2202 2203 bool isSwiftErrorInRegister() const override { 2204 return true; 2205 } 2206 2207 private: 2208 ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType, 2209 bool IsVectorCall, bool IsRegCall) const; 2210 ABIArgInfo reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs, 2211 const ABIArgInfo ¤t) const; 2212 void computeVectorCallArgs(CGFunctionInfo &FI, unsigned FreeSSERegs, 2213 bool IsVectorCall, bool IsRegCall) const; 2214 2215 bool IsMingw64; 2216 }; 2217 2218 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2219 public: 2220 X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2221 : TargetCodeGenInfo(new X86_64ABIInfo(CGT, AVXLevel)) {} 2222 2223 const X86_64ABIInfo &getABIInfo() const { 2224 return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo()); 2225 } 2226 2227 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2228 return 7; 2229 } 2230 2231 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2232 llvm::Value *Address) const override { 2233 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2234 2235 // 0-15 are the 16 integer registers. 2236 // 16 is %rip. 2237 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2238 return false; 2239 } 2240 2241 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 2242 StringRef Constraint, 2243 llvm::Type* Ty) const override { 2244 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 2245 } 2246 2247 bool isNoProtoCallVariadic(const CallArgList &args, 2248 const FunctionNoProtoType *fnType) const override { 2249 // The default CC on x86-64 sets %al to the number of SSA 2250 // registers used, and GCC sets this when calling an unprototyped 2251 // function, so we override the default behavior. However, don't do 2252 // that when AVX types are involved: the ABI explicitly states it is 2253 // undefined, and it doesn't work in practice because of how the ABI 2254 // defines varargs anyway. 2255 if (fnType->getCallConv() == CC_C) { 2256 bool HasAVXType = false; 2257 for (CallArgList::const_iterator 2258 it = args.begin(), ie = args.end(); it != ie; ++it) { 2259 if (getABIInfo().isPassedUsingAVXType(it->Ty)) { 2260 HasAVXType = true; 2261 break; 2262 } 2263 } 2264 2265 if (!HasAVXType) 2266 return true; 2267 } 2268 2269 return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType); 2270 } 2271 2272 llvm::Constant * 2273 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 2274 unsigned Sig = (0xeb << 0) | // jmp rel8 2275 (0x06 << 8) | // .+0x08 2276 ('v' << 16) | 2277 ('2' << 24); 2278 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 2279 } 2280 2281 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2282 CodeGen::CodeGenModule &CGM, 2283 ForDefinition_t IsForDefinition) const override { 2284 if (!IsForDefinition) 2285 return; 2286 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2287 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2288 // Get the LLVM function. 2289 auto *Fn = cast<llvm::Function>(GV); 2290 2291 // Now add the 'alignstack' attribute with a value of 16. 2292 llvm::AttrBuilder B; 2293 B.addStackAlignmentAttr(16); 2294 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 2295 } 2296 if (FD->hasAttr<AnyX86InterruptAttr>()) { 2297 llvm::Function *Fn = cast<llvm::Function>(GV); 2298 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2299 } 2300 } 2301 } 2302 }; 2303 2304 class PS4TargetCodeGenInfo : public X86_64TargetCodeGenInfo { 2305 public: 2306 PS4TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2307 : X86_64TargetCodeGenInfo(CGT, AVXLevel) {} 2308 2309 void getDependentLibraryOption(llvm::StringRef Lib, 2310 llvm::SmallString<24> &Opt) const override { 2311 Opt = "\01"; 2312 // If the argument contains a space, enclose it in quotes. 2313 if (Lib.find(" ") != StringRef::npos) 2314 Opt += "\"" + Lib.str() + "\""; 2315 else 2316 Opt += Lib; 2317 } 2318 }; 2319 2320 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) { 2321 // If the argument does not end in .lib, automatically add the suffix. 2322 // If the argument contains a space, enclose it in quotes. 2323 // This matches the behavior of MSVC. 2324 bool Quote = (Lib.find(" ") != StringRef::npos); 2325 std::string ArgStr = Quote ? "\"" : ""; 2326 ArgStr += Lib; 2327 if (!Lib.endswith_lower(".lib")) 2328 ArgStr += ".lib"; 2329 ArgStr += Quote ? "\"" : ""; 2330 return ArgStr; 2331 } 2332 2333 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo { 2334 public: 2335 WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2336 bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI, 2337 unsigned NumRegisterParameters) 2338 : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI, 2339 Win32StructABI, NumRegisterParameters, false) {} 2340 2341 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2342 CodeGen::CodeGenModule &CGM, 2343 ForDefinition_t IsForDefinition) const override; 2344 2345 void getDependentLibraryOption(llvm::StringRef Lib, 2346 llvm::SmallString<24> &Opt) const override { 2347 Opt = "/DEFAULTLIB:"; 2348 Opt += qualifyWindowsLibrary(Lib); 2349 } 2350 2351 void getDetectMismatchOption(llvm::StringRef Name, 2352 llvm::StringRef Value, 2353 llvm::SmallString<32> &Opt) const override { 2354 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2355 } 2356 }; 2357 2358 static void addStackProbeSizeTargetAttribute(const Decl *D, 2359 llvm::GlobalValue *GV, 2360 CodeGen::CodeGenModule &CGM) { 2361 if (D && isa<FunctionDecl>(D)) { 2362 if (CGM.getCodeGenOpts().StackProbeSize != 4096) { 2363 llvm::Function *Fn = cast<llvm::Function>(GV); 2364 2365 Fn->addFnAttr("stack-probe-size", 2366 llvm::utostr(CGM.getCodeGenOpts().StackProbeSize)); 2367 } 2368 } 2369 } 2370 2371 void WinX86_32TargetCodeGenInfo::setTargetAttributes( 2372 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM, 2373 ForDefinition_t IsForDefinition) const { 2374 X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM, IsForDefinition); 2375 if (!IsForDefinition) 2376 return; 2377 addStackProbeSizeTargetAttribute(D, GV, CGM); 2378 } 2379 2380 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2381 public: 2382 WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2383 X86AVXABILevel AVXLevel) 2384 : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {} 2385 2386 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2387 CodeGen::CodeGenModule &CGM, 2388 ForDefinition_t IsForDefinition) const override; 2389 2390 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2391 return 7; 2392 } 2393 2394 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2395 llvm::Value *Address) const override { 2396 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2397 2398 // 0-15 are the 16 integer registers. 2399 // 16 is %rip. 2400 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2401 return false; 2402 } 2403 2404 void getDependentLibraryOption(llvm::StringRef Lib, 2405 llvm::SmallString<24> &Opt) const override { 2406 Opt = "/DEFAULTLIB:"; 2407 Opt += qualifyWindowsLibrary(Lib); 2408 } 2409 2410 void getDetectMismatchOption(llvm::StringRef Name, 2411 llvm::StringRef Value, 2412 llvm::SmallString<32> &Opt) const override { 2413 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2414 } 2415 }; 2416 2417 void WinX86_64TargetCodeGenInfo::setTargetAttributes( 2418 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM, 2419 ForDefinition_t IsForDefinition) const { 2420 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM, IsForDefinition); 2421 if (!IsForDefinition) 2422 return; 2423 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2424 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2425 // Get the LLVM function. 2426 auto *Fn = cast<llvm::Function>(GV); 2427 2428 // Now add the 'alignstack' attribute with a value of 16. 2429 llvm::AttrBuilder B; 2430 B.addStackAlignmentAttr(16); 2431 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 2432 } 2433 if (FD->hasAttr<AnyX86InterruptAttr>()) { 2434 llvm::Function *Fn = cast<llvm::Function>(GV); 2435 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2436 } 2437 } 2438 2439 addStackProbeSizeTargetAttribute(D, GV, CGM); 2440 } 2441 } 2442 2443 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo, 2444 Class &Hi) const { 2445 // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done: 2446 // 2447 // (a) If one of the classes is Memory, the whole argument is passed in 2448 // memory. 2449 // 2450 // (b) If X87UP is not preceded by X87, the whole argument is passed in 2451 // memory. 2452 // 2453 // (c) If the size of the aggregate exceeds two eightbytes and the first 2454 // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole 2455 // argument is passed in memory. NOTE: This is necessary to keep the 2456 // ABI working for processors that don't support the __m256 type. 2457 // 2458 // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE. 2459 // 2460 // Some of these are enforced by the merging logic. Others can arise 2461 // only with unions; for example: 2462 // union { _Complex double; unsigned; } 2463 // 2464 // Note that clauses (b) and (c) were added in 0.98. 2465 // 2466 if (Hi == Memory) 2467 Lo = Memory; 2468 if (Hi == X87Up && Lo != X87 && honorsRevision0_98()) 2469 Lo = Memory; 2470 if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp)) 2471 Lo = Memory; 2472 if (Hi == SSEUp && Lo != SSE) 2473 Hi = SSE; 2474 } 2475 2476 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) { 2477 // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is 2478 // classified recursively so that always two fields are 2479 // considered. The resulting class is calculated according to 2480 // the classes of the fields in the eightbyte: 2481 // 2482 // (a) If both classes are equal, this is the resulting class. 2483 // 2484 // (b) If one of the classes is NO_CLASS, the resulting class is 2485 // the other class. 2486 // 2487 // (c) If one of the classes is MEMORY, the result is the MEMORY 2488 // class. 2489 // 2490 // (d) If one of the classes is INTEGER, the result is the 2491 // INTEGER. 2492 // 2493 // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class, 2494 // MEMORY is used as class. 2495 // 2496 // (f) Otherwise class SSE is used. 2497 2498 // Accum should never be memory (we should have returned) or 2499 // ComplexX87 (because this cannot be passed in a structure). 2500 assert((Accum != Memory && Accum != ComplexX87) && 2501 "Invalid accumulated classification during merge."); 2502 if (Accum == Field || Field == NoClass) 2503 return Accum; 2504 if (Field == Memory) 2505 return Memory; 2506 if (Accum == NoClass) 2507 return Field; 2508 if (Accum == Integer || Field == Integer) 2509 return Integer; 2510 if (Field == X87 || Field == X87Up || Field == ComplexX87 || 2511 Accum == X87 || Accum == X87Up) 2512 return Memory; 2513 return SSE; 2514 } 2515 2516 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, 2517 Class &Lo, Class &Hi, bool isNamedArg) const { 2518 // FIXME: This code can be simplified by introducing a simple value class for 2519 // Class pairs with appropriate constructor methods for the various 2520 // situations. 2521 2522 // FIXME: Some of the split computations are wrong; unaligned vectors 2523 // shouldn't be passed in registers for example, so there is no chance they 2524 // can straddle an eightbyte. Verify & simplify. 2525 2526 Lo = Hi = NoClass; 2527 2528 Class &Current = OffsetBase < 64 ? Lo : Hi; 2529 Current = Memory; 2530 2531 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 2532 BuiltinType::Kind k = BT->getKind(); 2533 2534 if (k == BuiltinType::Void) { 2535 Current = NoClass; 2536 } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) { 2537 Lo = Integer; 2538 Hi = Integer; 2539 } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) { 2540 Current = Integer; 2541 } else if (k == BuiltinType::Float || k == BuiltinType::Double) { 2542 Current = SSE; 2543 } else if (k == BuiltinType::LongDouble) { 2544 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2545 if (LDF == &llvm::APFloat::IEEEquad()) { 2546 Lo = SSE; 2547 Hi = SSEUp; 2548 } else if (LDF == &llvm::APFloat::x87DoubleExtended()) { 2549 Lo = X87; 2550 Hi = X87Up; 2551 } else if (LDF == &llvm::APFloat::IEEEdouble()) { 2552 Current = SSE; 2553 } else 2554 llvm_unreachable("unexpected long double representation!"); 2555 } 2556 // FIXME: _Decimal32 and _Decimal64 are SSE. 2557 // FIXME: _float128 and _Decimal128 are (SSE, SSEUp). 2558 return; 2559 } 2560 2561 if (const EnumType *ET = Ty->getAs<EnumType>()) { 2562 // Classify the underlying integer type. 2563 classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg); 2564 return; 2565 } 2566 2567 if (Ty->hasPointerRepresentation()) { 2568 Current = Integer; 2569 return; 2570 } 2571 2572 if (Ty->isMemberPointerType()) { 2573 if (Ty->isMemberFunctionPointerType()) { 2574 if (Has64BitPointers) { 2575 // If Has64BitPointers, this is an {i64, i64}, so classify both 2576 // Lo and Hi now. 2577 Lo = Hi = Integer; 2578 } else { 2579 // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that 2580 // straddles an eightbyte boundary, Hi should be classified as well. 2581 uint64_t EB_FuncPtr = (OffsetBase) / 64; 2582 uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64; 2583 if (EB_FuncPtr != EB_ThisAdj) { 2584 Lo = Hi = Integer; 2585 } else { 2586 Current = Integer; 2587 } 2588 } 2589 } else { 2590 Current = Integer; 2591 } 2592 return; 2593 } 2594 2595 if (const VectorType *VT = Ty->getAs<VectorType>()) { 2596 uint64_t Size = getContext().getTypeSize(VT); 2597 if (Size == 1 || Size == 8 || Size == 16 || Size == 32) { 2598 // gcc passes the following as integer: 2599 // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float> 2600 // 2 bytes - <2 x char>, <1 x short> 2601 // 1 byte - <1 x char> 2602 Current = Integer; 2603 2604 // If this type crosses an eightbyte boundary, it should be 2605 // split. 2606 uint64_t EB_Lo = (OffsetBase) / 64; 2607 uint64_t EB_Hi = (OffsetBase + Size - 1) / 64; 2608 if (EB_Lo != EB_Hi) 2609 Hi = Lo; 2610 } else if (Size == 64) { 2611 QualType ElementType = VT->getElementType(); 2612 2613 // gcc passes <1 x double> in memory. :( 2614 if (ElementType->isSpecificBuiltinType(BuiltinType::Double)) 2615 return; 2616 2617 // gcc passes <1 x long long> as SSE but clang used to unconditionally 2618 // pass them as integer. For platforms where clang is the de facto 2619 // platform compiler, we must continue to use integer. 2620 if (!classifyIntegerMMXAsSSE() && 2621 (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) || 2622 ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) || 2623 ElementType->isSpecificBuiltinType(BuiltinType::Long) || 2624 ElementType->isSpecificBuiltinType(BuiltinType::ULong))) 2625 Current = Integer; 2626 else 2627 Current = SSE; 2628 2629 // If this type crosses an eightbyte boundary, it should be 2630 // split. 2631 if (OffsetBase && OffsetBase != 64) 2632 Hi = Lo; 2633 } else if (Size == 128 || 2634 (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) { 2635 // Arguments of 256-bits are split into four eightbyte chunks. The 2636 // least significant one belongs to class SSE and all the others to class 2637 // SSEUP. The original Lo and Hi design considers that types can't be 2638 // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense. 2639 // This design isn't correct for 256-bits, but since there're no cases 2640 // where the upper parts would need to be inspected, avoid adding 2641 // complexity and just consider Hi to match the 64-256 part. 2642 // 2643 // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in 2644 // registers if they are "named", i.e. not part of the "..." of a 2645 // variadic function. 2646 // 2647 // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are 2648 // split into eight eightbyte chunks, one SSE and seven SSEUP. 2649 Lo = SSE; 2650 Hi = SSEUp; 2651 } 2652 return; 2653 } 2654 2655 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 2656 QualType ET = getContext().getCanonicalType(CT->getElementType()); 2657 2658 uint64_t Size = getContext().getTypeSize(Ty); 2659 if (ET->isIntegralOrEnumerationType()) { 2660 if (Size <= 64) 2661 Current = Integer; 2662 else if (Size <= 128) 2663 Lo = Hi = Integer; 2664 } else if (ET == getContext().FloatTy) { 2665 Current = SSE; 2666 } else if (ET == getContext().DoubleTy) { 2667 Lo = Hi = SSE; 2668 } else if (ET == getContext().LongDoubleTy) { 2669 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2670 if (LDF == &llvm::APFloat::IEEEquad()) 2671 Current = Memory; 2672 else if (LDF == &llvm::APFloat::x87DoubleExtended()) 2673 Current = ComplexX87; 2674 else if (LDF == &llvm::APFloat::IEEEdouble()) 2675 Lo = Hi = SSE; 2676 else 2677 llvm_unreachable("unexpected long double representation!"); 2678 } 2679 2680 // If this complex type crosses an eightbyte boundary then it 2681 // should be split. 2682 uint64_t EB_Real = (OffsetBase) / 64; 2683 uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64; 2684 if (Hi == NoClass && EB_Real != EB_Imag) 2685 Hi = Lo; 2686 2687 return; 2688 } 2689 2690 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 2691 // Arrays are treated like structures. 2692 2693 uint64_t Size = getContext().getTypeSize(Ty); 2694 2695 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 2696 // than eight eightbytes, ..., it has class MEMORY. 2697 if (Size > 512) 2698 return; 2699 2700 // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned 2701 // fields, it has class MEMORY. 2702 // 2703 // Only need to check alignment of array base. 2704 if (OffsetBase % getContext().getTypeAlign(AT->getElementType())) 2705 return; 2706 2707 // Otherwise implement simplified merge. We could be smarter about 2708 // this, but it isn't worth it and would be harder to verify. 2709 Current = NoClass; 2710 uint64_t EltSize = getContext().getTypeSize(AT->getElementType()); 2711 uint64_t ArraySize = AT->getSize().getZExtValue(); 2712 2713 // The only case a 256-bit wide vector could be used is when the array 2714 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 2715 // to work for sizes wider than 128, early check and fallback to memory. 2716 // 2717 if (Size > 128 && 2718 (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel))) 2719 return; 2720 2721 for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) { 2722 Class FieldLo, FieldHi; 2723 classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg); 2724 Lo = merge(Lo, FieldLo); 2725 Hi = merge(Hi, FieldHi); 2726 if (Lo == Memory || Hi == Memory) 2727 break; 2728 } 2729 2730 postMerge(Size, Lo, Hi); 2731 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification."); 2732 return; 2733 } 2734 2735 if (const RecordType *RT = Ty->getAs<RecordType>()) { 2736 uint64_t Size = getContext().getTypeSize(Ty); 2737 2738 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 2739 // than eight eightbytes, ..., it has class MEMORY. 2740 if (Size > 512) 2741 return; 2742 2743 // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial 2744 // copy constructor or a non-trivial destructor, it is passed by invisible 2745 // reference. 2746 if (getRecordArgABI(RT, getCXXABI())) 2747 return; 2748 2749 const RecordDecl *RD = RT->getDecl(); 2750 2751 // Assume variable sized types are passed in memory. 2752 if (RD->hasFlexibleArrayMember()) 2753 return; 2754 2755 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 2756 2757 // Reset Lo class, this will be recomputed. 2758 Current = NoClass; 2759 2760 // If this is a C++ record, classify the bases first. 2761 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 2762 for (const auto &I : CXXRD->bases()) { 2763 assert(!I.isVirtual() && !I.getType()->isDependentType() && 2764 "Unexpected base class!"); 2765 const CXXRecordDecl *Base = 2766 cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); 2767 2768 // Classify this field. 2769 // 2770 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a 2771 // single eightbyte, each is classified separately. Each eightbyte gets 2772 // initialized to class NO_CLASS. 2773 Class FieldLo, FieldHi; 2774 uint64_t Offset = 2775 OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base)); 2776 classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg); 2777 Lo = merge(Lo, FieldLo); 2778 Hi = merge(Hi, FieldHi); 2779 if (Lo == Memory || Hi == Memory) { 2780 postMerge(Size, Lo, Hi); 2781 return; 2782 } 2783 } 2784 } 2785 2786 // Classify the fields one at a time, merging the results. 2787 unsigned idx = 0; 2788 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 2789 i != e; ++i, ++idx) { 2790 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 2791 bool BitField = i->isBitField(); 2792 2793 // Ignore padding bit-fields. 2794 if (BitField && i->isUnnamedBitfield()) 2795 continue; 2796 2797 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than 2798 // four eightbytes, or it contains unaligned fields, it has class MEMORY. 2799 // 2800 // The only case a 256-bit wide vector could be used is when the struct 2801 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 2802 // to work for sizes wider than 128, early check and fallback to memory. 2803 // 2804 if (Size > 128 && (Size != getContext().getTypeSize(i->getType()) || 2805 Size > getNativeVectorSizeForAVXABI(AVXLevel))) { 2806 Lo = Memory; 2807 postMerge(Size, Lo, Hi); 2808 return; 2809 } 2810 // Note, skip this test for bit-fields, see below. 2811 if (!BitField && Offset % getContext().getTypeAlign(i->getType())) { 2812 Lo = Memory; 2813 postMerge(Size, Lo, Hi); 2814 return; 2815 } 2816 2817 // Classify this field. 2818 // 2819 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate 2820 // exceeds a single eightbyte, each is classified 2821 // separately. Each eightbyte gets initialized to class 2822 // NO_CLASS. 2823 Class FieldLo, FieldHi; 2824 2825 // Bit-fields require special handling, they do not force the 2826 // structure to be passed in memory even if unaligned, and 2827 // therefore they can straddle an eightbyte. 2828 if (BitField) { 2829 assert(!i->isUnnamedBitfield()); 2830 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 2831 uint64_t Size = i->getBitWidthValue(getContext()); 2832 2833 uint64_t EB_Lo = Offset / 64; 2834 uint64_t EB_Hi = (Offset + Size - 1) / 64; 2835 2836 if (EB_Lo) { 2837 assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes."); 2838 FieldLo = NoClass; 2839 FieldHi = Integer; 2840 } else { 2841 FieldLo = Integer; 2842 FieldHi = EB_Hi ? Integer : NoClass; 2843 } 2844 } else 2845 classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg); 2846 Lo = merge(Lo, FieldLo); 2847 Hi = merge(Hi, FieldHi); 2848 if (Lo == Memory || Hi == Memory) 2849 break; 2850 } 2851 2852 postMerge(Size, Lo, Hi); 2853 } 2854 } 2855 2856 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const { 2857 // If this is a scalar LLVM value then assume LLVM will pass it in the right 2858 // place naturally. 2859 if (!isAggregateTypeForABI(Ty)) { 2860 // Treat an enum type as its underlying type. 2861 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2862 Ty = EnumTy->getDecl()->getIntegerType(); 2863 2864 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 2865 : ABIArgInfo::getDirect()); 2866 } 2867 2868 return getNaturalAlignIndirect(Ty); 2869 } 2870 2871 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const { 2872 if (const VectorType *VecTy = Ty->getAs<VectorType>()) { 2873 uint64_t Size = getContext().getTypeSize(VecTy); 2874 unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel); 2875 if (Size <= 64 || Size > LargestVector) 2876 return true; 2877 } 2878 2879 return false; 2880 } 2881 2882 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty, 2883 unsigned freeIntRegs) const { 2884 // If this is a scalar LLVM value then assume LLVM will pass it in the right 2885 // place naturally. 2886 // 2887 // This assumption is optimistic, as there could be free registers available 2888 // when we need to pass this argument in memory, and LLVM could try to pass 2889 // the argument in the free register. This does not seem to happen currently, 2890 // but this code would be much safer if we could mark the argument with 2891 // 'onstack'. See PR12193. 2892 if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) { 2893 // Treat an enum type as its underlying type. 2894 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2895 Ty = EnumTy->getDecl()->getIntegerType(); 2896 2897 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 2898 : ABIArgInfo::getDirect()); 2899 } 2900 2901 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 2902 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 2903 2904 // Compute the byval alignment. We specify the alignment of the byval in all 2905 // cases so that the mid-level optimizer knows the alignment of the byval. 2906 unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U); 2907 2908 // Attempt to avoid passing indirect results using byval when possible. This 2909 // is important for good codegen. 2910 // 2911 // We do this by coercing the value into a scalar type which the backend can 2912 // handle naturally (i.e., without using byval). 2913 // 2914 // For simplicity, we currently only do this when we have exhausted all of the 2915 // free integer registers. Doing this when there are free integer registers 2916 // would require more care, as we would have to ensure that the coerced value 2917 // did not claim the unused register. That would require either reording the 2918 // arguments to the function (so that any subsequent inreg values came first), 2919 // or only doing this optimization when there were no following arguments that 2920 // might be inreg. 2921 // 2922 // We currently expect it to be rare (particularly in well written code) for 2923 // arguments to be passed on the stack when there are still free integer 2924 // registers available (this would typically imply large structs being passed 2925 // by value), so this seems like a fair tradeoff for now. 2926 // 2927 // We can revisit this if the backend grows support for 'onstack' parameter 2928 // attributes. See PR12193. 2929 if (freeIntRegs == 0) { 2930 uint64_t Size = getContext().getTypeSize(Ty); 2931 2932 // If this type fits in an eightbyte, coerce it into the matching integral 2933 // type, which will end up on the stack (with alignment 8). 2934 if (Align == 8 && Size <= 64) 2935 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 2936 Size)); 2937 } 2938 2939 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align)); 2940 } 2941 2942 /// The ABI specifies that a value should be passed in a full vector XMM/YMM 2943 /// register. Pick an LLVM IR type that will be passed as a vector register. 2944 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const { 2945 // Wrapper structs/arrays that only contain vectors are passed just like 2946 // vectors; strip them off if present. 2947 if (const Type *InnerTy = isSingleElementStruct(Ty, getContext())) 2948 Ty = QualType(InnerTy, 0); 2949 2950 llvm::Type *IRType = CGT.ConvertType(Ty); 2951 if (isa<llvm::VectorType>(IRType) || 2952 IRType->getTypeID() == llvm::Type::FP128TyID) 2953 return IRType; 2954 2955 // We couldn't find the preferred IR vector type for 'Ty'. 2956 uint64_t Size = getContext().getTypeSize(Ty); 2957 assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!"); 2958 2959 // Return a LLVM IR vector type based on the size of 'Ty'. 2960 return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 2961 Size / 64); 2962 } 2963 2964 /// BitsContainNoUserData - Return true if the specified [start,end) bit range 2965 /// is known to either be off the end of the specified type or being in 2966 /// alignment padding. The user type specified is known to be at most 128 bits 2967 /// in size, and have passed through X86_64ABIInfo::classify with a successful 2968 /// classification that put one of the two halves in the INTEGER class. 2969 /// 2970 /// It is conservatively correct to return false. 2971 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit, 2972 unsigned EndBit, ASTContext &Context) { 2973 // If the bytes being queried are off the end of the type, there is no user 2974 // data hiding here. This handles analysis of builtins, vectors and other 2975 // types that don't contain interesting padding. 2976 unsigned TySize = (unsigned)Context.getTypeSize(Ty); 2977 if (TySize <= StartBit) 2978 return true; 2979 2980 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 2981 unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType()); 2982 unsigned NumElts = (unsigned)AT->getSize().getZExtValue(); 2983 2984 // Check each element to see if the element overlaps with the queried range. 2985 for (unsigned i = 0; i != NumElts; ++i) { 2986 // If the element is after the span we care about, then we're done.. 2987 unsigned EltOffset = i*EltSize; 2988 if (EltOffset >= EndBit) break; 2989 2990 unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0; 2991 if (!BitsContainNoUserData(AT->getElementType(), EltStart, 2992 EndBit-EltOffset, Context)) 2993 return false; 2994 } 2995 // If it overlaps no elements, then it is safe to process as padding. 2996 return true; 2997 } 2998 2999 if (const RecordType *RT = Ty->getAs<RecordType>()) { 3000 const RecordDecl *RD = RT->getDecl(); 3001 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 3002 3003 // If this is a C++ record, check the bases first. 3004 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 3005 for (const auto &I : CXXRD->bases()) { 3006 assert(!I.isVirtual() && !I.getType()->isDependentType() && 3007 "Unexpected base class!"); 3008 const CXXRecordDecl *Base = 3009 cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); 3010 3011 // If the base is after the span we care about, ignore it. 3012 unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base)); 3013 if (BaseOffset >= EndBit) continue; 3014 3015 unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0; 3016 if (!BitsContainNoUserData(I.getType(), BaseStart, 3017 EndBit-BaseOffset, Context)) 3018 return false; 3019 } 3020 } 3021 3022 // Verify that no field has data that overlaps the region of interest. Yes 3023 // this could be sped up a lot by being smarter about queried fields, 3024 // however we're only looking at structs up to 16 bytes, so we don't care 3025 // much. 3026 unsigned idx = 0; 3027 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 3028 i != e; ++i, ++idx) { 3029 unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx); 3030 3031 // If we found a field after the region we care about, then we're done. 3032 if (FieldOffset >= EndBit) break; 3033 3034 unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0; 3035 if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset, 3036 Context)) 3037 return false; 3038 } 3039 3040 // If nothing in this record overlapped the area of interest, then we're 3041 // clean. 3042 return true; 3043 } 3044 3045 return false; 3046 } 3047 3048 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a 3049 /// float member at the specified offset. For example, {int,{float}} has a 3050 /// float at offset 4. It is conservatively correct for this routine to return 3051 /// false. 3052 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset, 3053 const llvm::DataLayout &TD) { 3054 // Base case if we find a float. 3055 if (IROffset == 0 && IRType->isFloatTy()) 3056 return true; 3057 3058 // If this is a struct, recurse into the field at the specified offset. 3059 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 3060 const llvm::StructLayout *SL = TD.getStructLayout(STy); 3061 unsigned Elt = SL->getElementContainingOffset(IROffset); 3062 IROffset -= SL->getElementOffset(Elt); 3063 return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD); 3064 } 3065 3066 // If this is an array, recurse into the field at the specified offset. 3067 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 3068 llvm::Type *EltTy = ATy->getElementType(); 3069 unsigned EltSize = TD.getTypeAllocSize(EltTy); 3070 IROffset -= IROffset/EltSize*EltSize; 3071 return ContainsFloatAtOffset(EltTy, IROffset, TD); 3072 } 3073 3074 return false; 3075 } 3076 3077 3078 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the 3079 /// low 8 bytes of an XMM register, corresponding to the SSE class. 3080 llvm::Type *X86_64ABIInfo:: 3081 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3082 QualType SourceTy, unsigned SourceOffset) const { 3083 // The only three choices we have are either double, <2 x float>, or float. We 3084 // pass as float if the last 4 bytes is just padding. This happens for 3085 // structs that contain 3 floats. 3086 if (BitsContainNoUserData(SourceTy, SourceOffset*8+32, 3087 SourceOffset*8+64, getContext())) 3088 return llvm::Type::getFloatTy(getVMContext()); 3089 3090 // We want to pass as <2 x float> if the LLVM IR type contains a float at 3091 // offset+0 and offset+4. Walk the LLVM IR type to find out if this is the 3092 // case. 3093 if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) && 3094 ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout())) 3095 return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2); 3096 3097 return llvm::Type::getDoubleTy(getVMContext()); 3098 } 3099 3100 3101 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in 3102 /// an 8-byte GPR. This means that we either have a scalar or we are talking 3103 /// about the high or low part of an up-to-16-byte struct. This routine picks 3104 /// the best LLVM IR type to represent this, which may be i64 or may be anything 3105 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*, 3106 /// etc). 3107 /// 3108 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for 3109 /// the source type. IROffset is an offset in bytes into the LLVM IR type that 3110 /// the 8-byte value references. PrefType may be null. 3111 /// 3112 /// SourceTy is the source-level type for the entire argument. SourceOffset is 3113 /// an offset into this that we're processing (which is always either 0 or 8). 3114 /// 3115 llvm::Type *X86_64ABIInfo:: 3116 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3117 QualType SourceTy, unsigned SourceOffset) const { 3118 // If we're dealing with an un-offset LLVM IR type, then it means that we're 3119 // returning an 8-byte unit starting with it. See if we can safely use it. 3120 if (IROffset == 0) { 3121 // Pointers and int64's always fill the 8-byte unit. 3122 if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) || 3123 IRType->isIntegerTy(64)) 3124 return IRType; 3125 3126 // If we have a 1/2/4-byte integer, we can use it only if the rest of the 3127 // goodness in the source type is just tail padding. This is allowed to 3128 // kick in for struct {double,int} on the int, but not on 3129 // struct{double,int,int} because we wouldn't return the second int. We 3130 // have to do this analysis on the source type because we can't depend on 3131 // unions being lowered a specific way etc. 3132 if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) || 3133 IRType->isIntegerTy(32) || 3134 (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) { 3135 unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 : 3136 cast<llvm::IntegerType>(IRType)->getBitWidth(); 3137 3138 if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth, 3139 SourceOffset*8+64, getContext())) 3140 return IRType; 3141 } 3142 } 3143 3144 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 3145 // If this is a struct, recurse into the field at the specified offset. 3146 const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy); 3147 if (IROffset < SL->getSizeInBytes()) { 3148 unsigned FieldIdx = SL->getElementContainingOffset(IROffset); 3149 IROffset -= SL->getElementOffset(FieldIdx); 3150 3151 return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset, 3152 SourceTy, SourceOffset); 3153 } 3154 } 3155 3156 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 3157 llvm::Type *EltTy = ATy->getElementType(); 3158 unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy); 3159 unsigned EltOffset = IROffset/EltSize*EltSize; 3160 return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy, 3161 SourceOffset); 3162 } 3163 3164 // Okay, we don't have any better idea of what to pass, so we pass this in an 3165 // integer register that isn't too big to fit the rest of the struct. 3166 unsigned TySizeInBytes = 3167 (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity(); 3168 3169 assert(TySizeInBytes != SourceOffset && "Empty field?"); 3170 3171 // It is always safe to classify this as an integer type up to i64 that 3172 // isn't larger than the structure. 3173 return llvm::IntegerType::get(getVMContext(), 3174 std::min(TySizeInBytes-SourceOffset, 8U)*8); 3175 } 3176 3177 3178 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally 3179 /// be used as elements of a two register pair to pass or return, return a 3180 /// first class aggregate to represent them. For example, if the low part of 3181 /// a by-value argument should be passed as i32* and the high part as float, 3182 /// return {i32*, float}. 3183 static llvm::Type * 3184 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi, 3185 const llvm::DataLayout &TD) { 3186 // In order to correctly satisfy the ABI, we need to the high part to start 3187 // at offset 8. If the high and low parts we inferred are both 4-byte types 3188 // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have 3189 // the second element at offset 8. Check for this: 3190 unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo); 3191 unsigned HiAlign = TD.getABITypeAlignment(Hi); 3192 unsigned HiStart = llvm::alignTo(LoSize, HiAlign); 3193 assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!"); 3194 3195 // To handle this, we have to increase the size of the low part so that the 3196 // second element will start at an 8 byte offset. We can't increase the size 3197 // of the second element because it might make us access off the end of the 3198 // struct. 3199 if (HiStart != 8) { 3200 // There are usually two sorts of types the ABI generation code can produce 3201 // for the low part of a pair that aren't 8 bytes in size: float or 3202 // i8/i16/i32. This can also include pointers when they are 32-bit (X32 and 3203 // NaCl). 3204 // Promote these to a larger type. 3205 if (Lo->isFloatTy()) 3206 Lo = llvm::Type::getDoubleTy(Lo->getContext()); 3207 else { 3208 assert((Lo->isIntegerTy() || Lo->isPointerTy()) 3209 && "Invalid/unknown lo type"); 3210 Lo = llvm::Type::getInt64Ty(Lo->getContext()); 3211 } 3212 } 3213 3214 llvm::StructType *Result = llvm::StructType::get(Lo, Hi); 3215 3216 // Verify that the second element is at an 8-byte offset. 3217 assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 && 3218 "Invalid x86-64 argument pair!"); 3219 return Result; 3220 } 3221 3222 ABIArgInfo X86_64ABIInfo:: 3223 classifyReturnType(QualType RetTy) const { 3224 // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the 3225 // classification algorithm. 3226 X86_64ABIInfo::Class Lo, Hi; 3227 classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true); 3228 3229 // Check some invariants. 3230 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3231 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3232 3233 llvm::Type *ResType = nullptr; 3234 switch (Lo) { 3235 case NoClass: 3236 if (Hi == NoClass) 3237 return ABIArgInfo::getIgnore(); 3238 // If the low part is just padding, it takes no register, leave ResType 3239 // null. 3240 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3241 "Unknown missing lo part"); 3242 break; 3243 3244 case SSEUp: 3245 case X87Up: 3246 llvm_unreachable("Invalid classification for lo word."); 3247 3248 // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via 3249 // hidden argument. 3250 case Memory: 3251 return getIndirectReturnResult(RetTy); 3252 3253 // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next 3254 // available register of the sequence %rax, %rdx is used. 3255 case Integer: 3256 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3257 3258 // If we have a sign or zero extended integer, make sure to return Extend 3259 // so that the parameter gets the right LLVM IR attributes. 3260 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3261 // Treat an enum type as its underlying type. 3262 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 3263 RetTy = EnumTy->getDecl()->getIntegerType(); 3264 3265 if (RetTy->isIntegralOrEnumerationType() && 3266 RetTy->isPromotableIntegerType()) 3267 return ABIArgInfo::getExtend(RetTy); 3268 } 3269 break; 3270 3271 // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next 3272 // available SSE register of the sequence %xmm0, %xmm1 is used. 3273 case SSE: 3274 ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3275 break; 3276 3277 // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is 3278 // returned on the X87 stack in %st0 as 80-bit x87 number. 3279 case X87: 3280 ResType = llvm::Type::getX86_FP80Ty(getVMContext()); 3281 break; 3282 3283 // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real 3284 // part of the value is returned in %st0 and the imaginary part in 3285 // %st1. 3286 case ComplexX87: 3287 assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification."); 3288 ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()), 3289 llvm::Type::getX86_FP80Ty(getVMContext())); 3290 break; 3291 } 3292 3293 llvm::Type *HighPart = nullptr; 3294 switch (Hi) { 3295 // Memory was handled previously and X87 should 3296 // never occur as a hi class. 3297 case Memory: 3298 case X87: 3299 llvm_unreachable("Invalid classification for hi word."); 3300 3301 case ComplexX87: // Previously handled. 3302 case NoClass: 3303 break; 3304 3305 case Integer: 3306 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3307 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3308 return ABIArgInfo::getDirect(HighPart, 8); 3309 break; 3310 case SSE: 3311 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3312 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3313 return ABIArgInfo::getDirect(HighPart, 8); 3314 break; 3315 3316 // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte 3317 // is passed in the next available eightbyte chunk if the last used 3318 // vector register. 3319 // 3320 // SSEUP should always be preceded by SSE, just widen. 3321 case SSEUp: 3322 assert(Lo == SSE && "Unexpected SSEUp classification."); 3323 ResType = GetByteVectorType(RetTy); 3324 break; 3325 3326 // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is 3327 // returned together with the previous X87 value in %st0. 3328 case X87Up: 3329 // If X87Up is preceded by X87, we don't need to do 3330 // anything. However, in some cases with unions it may not be 3331 // preceded by X87. In such situations we follow gcc and pass the 3332 // extra bits in an SSE reg. 3333 if (Lo != X87) { 3334 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3335 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3336 return ABIArgInfo::getDirect(HighPart, 8); 3337 } 3338 break; 3339 } 3340 3341 // If a high part was specified, merge it together with the low part. It is 3342 // known to pass in the high eightbyte of the result. We do this by forming a 3343 // first class struct aggregate with the high and low part: {low, high} 3344 if (HighPart) 3345 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3346 3347 return ABIArgInfo::getDirect(ResType); 3348 } 3349 3350 ABIArgInfo X86_64ABIInfo::classifyArgumentType( 3351 QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE, 3352 bool isNamedArg) 3353 const 3354 { 3355 Ty = useFirstFieldIfTransparentUnion(Ty); 3356 3357 X86_64ABIInfo::Class Lo, Hi; 3358 classify(Ty, 0, Lo, Hi, isNamedArg); 3359 3360 // Check some invariants. 3361 // FIXME: Enforce these by construction. 3362 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3363 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3364 3365 neededInt = 0; 3366 neededSSE = 0; 3367 llvm::Type *ResType = nullptr; 3368 switch (Lo) { 3369 case NoClass: 3370 if (Hi == NoClass) 3371 return ABIArgInfo::getIgnore(); 3372 // If the low part is just padding, it takes no register, leave ResType 3373 // null. 3374 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3375 "Unknown missing lo part"); 3376 break; 3377 3378 // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument 3379 // on the stack. 3380 case Memory: 3381 3382 // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or 3383 // COMPLEX_X87, it is passed in memory. 3384 case X87: 3385 case ComplexX87: 3386 if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect) 3387 ++neededInt; 3388 return getIndirectResult(Ty, freeIntRegs); 3389 3390 case SSEUp: 3391 case X87Up: 3392 llvm_unreachable("Invalid classification for lo word."); 3393 3394 // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next 3395 // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8 3396 // and %r9 is used. 3397 case Integer: 3398 ++neededInt; 3399 3400 // Pick an 8-byte type based on the preferred type. 3401 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0); 3402 3403 // If we have a sign or zero extended integer, make sure to return Extend 3404 // so that the parameter gets the right LLVM IR attributes. 3405 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3406 // Treat an enum type as its underlying type. 3407 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3408 Ty = EnumTy->getDecl()->getIntegerType(); 3409 3410 if (Ty->isIntegralOrEnumerationType() && 3411 Ty->isPromotableIntegerType()) 3412 return ABIArgInfo::getExtend(Ty); 3413 } 3414 3415 break; 3416 3417 // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next 3418 // available SSE register is used, the registers are taken in the 3419 // order from %xmm0 to %xmm7. 3420 case SSE: { 3421 llvm::Type *IRType = CGT.ConvertType(Ty); 3422 ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0); 3423 ++neededSSE; 3424 break; 3425 } 3426 } 3427 3428 llvm::Type *HighPart = nullptr; 3429 switch (Hi) { 3430 // Memory was handled previously, ComplexX87 and X87 should 3431 // never occur as hi classes, and X87Up must be preceded by X87, 3432 // which is passed in memory. 3433 case Memory: 3434 case X87: 3435 case ComplexX87: 3436 llvm_unreachable("Invalid classification for hi word."); 3437 3438 case NoClass: break; 3439 3440 case Integer: 3441 ++neededInt; 3442 // Pick an 8-byte type based on the preferred type. 3443 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3444 3445 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3446 return ABIArgInfo::getDirect(HighPart, 8); 3447 break; 3448 3449 // X87Up generally doesn't occur here (long double is passed in 3450 // memory), except in situations involving unions. 3451 case X87Up: 3452 case SSE: 3453 HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3454 3455 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3456 return ABIArgInfo::getDirect(HighPart, 8); 3457 3458 ++neededSSE; 3459 break; 3460 3461 // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the 3462 // eightbyte is passed in the upper half of the last used SSE 3463 // register. This only happens when 128-bit vectors are passed. 3464 case SSEUp: 3465 assert(Lo == SSE && "Unexpected SSEUp classification"); 3466 ResType = GetByteVectorType(Ty); 3467 break; 3468 } 3469 3470 // If a high part was specified, merge it together with the low part. It is 3471 // known to pass in the high eightbyte of the result. We do this by forming a 3472 // first class struct aggregate with the high and low part: {low, high} 3473 if (HighPart) 3474 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3475 3476 return ABIArgInfo::getDirect(ResType); 3477 } 3478 3479 ABIArgInfo 3480 X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 3481 unsigned &NeededSSE) const { 3482 auto RT = Ty->getAs<RecordType>(); 3483 assert(RT && "classifyRegCallStructType only valid with struct types"); 3484 3485 if (RT->getDecl()->hasFlexibleArrayMember()) 3486 return getIndirectReturnResult(Ty); 3487 3488 // Sum up bases 3489 if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 3490 if (CXXRD->isDynamicClass()) { 3491 NeededInt = NeededSSE = 0; 3492 return getIndirectReturnResult(Ty); 3493 } 3494 3495 for (const auto &I : CXXRD->bases()) 3496 if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE) 3497 .isIndirect()) { 3498 NeededInt = NeededSSE = 0; 3499 return getIndirectReturnResult(Ty); 3500 } 3501 } 3502 3503 // Sum up members 3504 for (const auto *FD : RT->getDecl()->fields()) { 3505 if (FD->getType()->isRecordType() && !FD->getType()->isUnionType()) { 3506 if (classifyRegCallStructTypeImpl(FD->getType(), NeededInt, NeededSSE) 3507 .isIndirect()) { 3508 NeededInt = NeededSSE = 0; 3509 return getIndirectReturnResult(Ty); 3510 } 3511 } else { 3512 unsigned LocalNeededInt, LocalNeededSSE; 3513 if (classifyArgumentType(FD->getType(), UINT_MAX, LocalNeededInt, 3514 LocalNeededSSE, true) 3515 .isIndirect()) { 3516 NeededInt = NeededSSE = 0; 3517 return getIndirectReturnResult(Ty); 3518 } 3519 NeededInt += LocalNeededInt; 3520 NeededSSE += LocalNeededSSE; 3521 } 3522 } 3523 3524 return ABIArgInfo::getDirect(); 3525 } 3526 3527 ABIArgInfo X86_64ABIInfo::classifyRegCallStructType(QualType Ty, 3528 unsigned &NeededInt, 3529 unsigned &NeededSSE) const { 3530 3531 NeededInt = 0; 3532 NeededSSE = 0; 3533 3534 return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE); 3535 } 3536 3537 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 3538 3539 bool IsRegCall = FI.getCallingConvention() == llvm::CallingConv::X86_RegCall; 3540 3541 // Keep track of the number of assigned registers. 3542 unsigned FreeIntRegs = IsRegCall ? 11 : 6; 3543 unsigned FreeSSERegs = IsRegCall ? 16 : 8; 3544 unsigned NeededInt, NeededSSE; 3545 3546 if (!getCXXABI().classifyReturnType(FI)) { 3547 if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() && 3548 !FI.getReturnType()->getTypePtr()->isUnionType()) { 3549 FI.getReturnInfo() = 3550 classifyRegCallStructType(FI.getReturnType(), NeededInt, NeededSSE); 3551 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 3552 FreeIntRegs -= NeededInt; 3553 FreeSSERegs -= NeededSSE; 3554 } else { 3555 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 3556 } 3557 } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>()) { 3558 // Complex Long Double Type is passed in Memory when Regcall 3559 // calling convention is used. 3560 const ComplexType *CT = FI.getReturnType()->getAs<ComplexType>(); 3561 if (getContext().getCanonicalType(CT->getElementType()) == 3562 getContext().LongDoubleTy) 3563 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 3564 } else 3565 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 3566 } 3567 3568 // If the return value is indirect, then the hidden argument is consuming one 3569 // integer register. 3570 if (FI.getReturnInfo().isIndirect()) 3571 --FreeIntRegs; 3572 3573 // The chain argument effectively gives us another free register. 3574 if (FI.isChainCall()) 3575 ++FreeIntRegs; 3576 3577 unsigned NumRequiredArgs = FI.getNumRequiredArgs(); 3578 // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers 3579 // get assigned (in left-to-right order) for passing as follows... 3580 unsigned ArgNo = 0; 3581 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 3582 it != ie; ++it, ++ArgNo) { 3583 bool IsNamedArg = ArgNo < NumRequiredArgs; 3584 3585 if (IsRegCall && it->type->isStructureOrClassType()) 3586 it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE); 3587 else 3588 it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt, 3589 NeededSSE, IsNamedArg); 3590 3591 // AMD64-ABI 3.2.3p3: If there are no registers available for any 3592 // eightbyte of an argument, the whole argument is passed on the 3593 // stack. If registers have already been assigned for some 3594 // eightbytes of such an argument, the assignments get reverted. 3595 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 3596 FreeIntRegs -= NeededInt; 3597 FreeSSERegs -= NeededSSE; 3598 } else { 3599 it->info = getIndirectResult(it->type, FreeIntRegs); 3600 } 3601 } 3602 } 3603 3604 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF, 3605 Address VAListAddr, QualType Ty) { 3606 Address overflow_arg_area_p = CGF.Builder.CreateStructGEP( 3607 VAListAddr, 2, CharUnits::fromQuantity(8), "overflow_arg_area_p"); 3608 llvm::Value *overflow_arg_area = 3609 CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area"); 3610 3611 // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16 3612 // byte boundary if alignment needed by type exceeds 8 byte boundary. 3613 // It isn't stated explicitly in the standard, but in practice we use 3614 // alignment greater than 16 where necessary. 3615 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 3616 if (Align > CharUnits::fromQuantity(8)) { 3617 overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area, 3618 Align); 3619 } 3620 3621 // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area. 3622 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 3623 llvm::Value *Res = 3624 CGF.Builder.CreateBitCast(overflow_arg_area, 3625 llvm::PointerType::getUnqual(LTy)); 3626 3627 // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to: 3628 // l->overflow_arg_area + sizeof(type). 3629 // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to 3630 // an 8 byte boundary. 3631 3632 uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8; 3633 llvm::Value *Offset = 3634 llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7); 3635 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset, 3636 "overflow_arg_area.next"); 3637 CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p); 3638 3639 // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type. 3640 return Address(Res, Align); 3641 } 3642 3643 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 3644 QualType Ty) const { 3645 // Assume that va_list type is correct; should be pointer to LLVM type: 3646 // struct { 3647 // i32 gp_offset; 3648 // i32 fp_offset; 3649 // i8* overflow_arg_area; 3650 // i8* reg_save_area; 3651 // }; 3652 unsigned neededInt, neededSSE; 3653 3654 Ty = getContext().getCanonicalType(Ty); 3655 ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE, 3656 /*isNamedArg*/false); 3657 3658 // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed 3659 // in the registers. If not go to step 7. 3660 if (!neededInt && !neededSSE) 3661 return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 3662 3663 // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of 3664 // general purpose registers needed to pass type and num_fp to hold 3665 // the number of floating point registers needed. 3666 3667 // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into 3668 // registers. In the case: l->gp_offset > 48 - num_gp * 8 or 3669 // l->fp_offset > 304 - num_fp * 16 go to step 7. 3670 // 3671 // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of 3672 // register save space). 3673 3674 llvm::Value *InRegs = nullptr; 3675 Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid(); 3676 llvm::Value *gp_offset = nullptr, *fp_offset = nullptr; 3677 if (neededInt) { 3678 gp_offset_p = 3679 CGF.Builder.CreateStructGEP(VAListAddr, 0, CharUnits::Zero(), 3680 "gp_offset_p"); 3681 gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset"); 3682 InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8); 3683 InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp"); 3684 } 3685 3686 if (neededSSE) { 3687 fp_offset_p = 3688 CGF.Builder.CreateStructGEP(VAListAddr, 1, CharUnits::fromQuantity(4), 3689 "fp_offset_p"); 3690 fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset"); 3691 llvm::Value *FitsInFP = 3692 llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16); 3693 FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp"); 3694 InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP; 3695 } 3696 3697 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 3698 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 3699 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 3700 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 3701 3702 // Emit code to load the value if it was passed in registers. 3703 3704 CGF.EmitBlock(InRegBlock); 3705 3706 // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with 3707 // an offset of l->gp_offset and/or l->fp_offset. This may require 3708 // copying to a temporary location in case the parameter is passed 3709 // in different register classes or requires an alignment greater 3710 // than 8 for general purpose registers and 16 for XMM registers. 3711 // 3712 // FIXME: This really results in shameful code when we end up needing to 3713 // collect arguments from different places; often what should result in a 3714 // simple assembling of a structure from scattered addresses has many more 3715 // loads than necessary. Can we clean this up? 3716 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 3717 llvm::Value *RegSaveArea = CGF.Builder.CreateLoad( 3718 CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(16)), 3719 "reg_save_area"); 3720 3721 Address RegAddr = Address::invalid(); 3722 if (neededInt && neededSSE) { 3723 // FIXME: Cleanup. 3724 assert(AI.isDirect() && "Unexpected ABI info for mixed regs"); 3725 llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType()); 3726 Address Tmp = CGF.CreateMemTemp(Ty); 3727 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 3728 assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs"); 3729 llvm::Type *TyLo = ST->getElementType(0); 3730 llvm::Type *TyHi = ST->getElementType(1); 3731 assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) && 3732 "Unexpected ABI info for mixed regs"); 3733 llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo); 3734 llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi); 3735 llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegSaveArea, gp_offset); 3736 llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegSaveArea, fp_offset); 3737 llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr; 3738 llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr; 3739 3740 // Copy the first element. 3741 // FIXME: Our choice of alignment here and below is probably pessimistic. 3742 llvm::Value *V = CGF.Builder.CreateAlignedLoad( 3743 TyLo, CGF.Builder.CreateBitCast(RegLoAddr, PTyLo), 3744 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyLo))); 3745 CGF.Builder.CreateStore(V, 3746 CGF.Builder.CreateStructGEP(Tmp, 0, CharUnits::Zero())); 3747 3748 // Copy the second element. 3749 V = CGF.Builder.CreateAlignedLoad( 3750 TyHi, CGF.Builder.CreateBitCast(RegHiAddr, PTyHi), 3751 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyHi))); 3752 CharUnits Offset = CharUnits::fromQuantity( 3753 getDataLayout().getStructLayout(ST)->getElementOffset(1)); 3754 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1, Offset)); 3755 3756 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 3757 } else if (neededInt) { 3758 RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, gp_offset), 3759 CharUnits::fromQuantity(8)); 3760 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 3761 3762 // Copy to a temporary if necessary to ensure the appropriate alignment. 3763 std::pair<CharUnits, CharUnits> SizeAlign = 3764 getContext().getTypeInfoInChars(Ty); 3765 uint64_t TySize = SizeAlign.first.getQuantity(); 3766 CharUnits TyAlign = SizeAlign.second; 3767 3768 // Copy into a temporary if the type is more aligned than the 3769 // register save area. 3770 if (TyAlign.getQuantity() > 8) { 3771 Address Tmp = CGF.CreateMemTemp(Ty); 3772 CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false); 3773 RegAddr = Tmp; 3774 } 3775 3776 } else if (neededSSE == 1) { 3777 RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset), 3778 CharUnits::fromQuantity(16)); 3779 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 3780 } else { 3781 assert(neededSSE == 2 && "Invalid number of needed registers!"); 3782 // SSE registers are spaced 16 bytes apart in the register save 3783 // area, we need to collect the two eightbytes together. 3784 // The ABI isn't explicit about this, but it seems reasonable 3785 // to assume that the slots are 16-byte aligned, since the stack is 3786 // naturally 16-byte aligned and the prologue is expected to store 3787 // all the SSE registers to the RSA. 3788 Address RegAddrLo = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset), 3789 CharUnits::fromQuantity(16)); 3790 Address RegAddrHi = 3791 CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo, 3792 CharUnits::fromQuantity(16)); 3793 llvm::Type *DoubleTy = CGF.DoubleTy; 3794 llvm::StructType *ST = llvm::StructType::get(DoubleTy, DoubleTy); 3795 llvm::Value *V; 3796 Address Tmp = CGF.CreateMemTemp(Ty); 3797 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 3798 V = CGF.Builder.CreateLoad( 3799 CGF.Builder.CreateElementBitCast(RegAddrLo, DoubleTy)); 3800 CGF.Builder.CreateStore(V, 3801 CGF.Builder.CreateStructGEP(Tmp, 0, CharUnits::Zero())); 3802 V = CGF.Builder.CreateLoad( 3803 CGF.Builder.CreateElementBitCast(RegAddrHi, DoubleTy)); 3804 CGF.Builder.CreateStore(V, 3805 CGF.Builder.CreateStructGEP(Tmp, 1, CharUnits::fromQuantity(8))); 3806 3807 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 3808 } 3809 3810 // AMD64-ABI 3.5.7p5: Step 5. Set: 3811 // l->gp_offset = l->gp_offset + num_gp * 8 3812 // l->fp_offset = l->fp_offset + num_fp * 16. 3813 if (neededInt) { 3814 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8); 3815 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset), 3816 gp_offset_p); 3817 } 3818 if (neededSSE) { 3819 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16); 3820 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset), 3821 fp_offset_p); 3822 } 3823 CGF.EmitBranch(ContBlock); 3824 3825 // Emit code to load the value if it was passed in memory. 3826 3827 CGF.EmitBlock(InMemBlock); 3828 Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 3829 3830 // Return the appropriate result. 3831 3832 CGF.EmitBlock(ContBlock); 3833 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock, 3834 "vaarg.addr"); 3835 return ResAddr; 3836 } 3837 3838 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 3839 QualType Ty) const { 3840 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 3841 CGF.getContext().getTypeInfoInChars(Ty), 3842 CharUnits::fromQuantity(8), 3843 /*allowHigherAlign*/ false); 3844 } 3845 3846 ABIArgInfo 3847 WinX86_64ABIInfo::reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs, 3848 const ABIArgInfo ¤t) const { 3849 // Assumes vectorCall calling convention. 3850 const Type *Base = nullptr; 3851 uint64_t NumElts = 0; 3852 3853 if (!Ty->isBuiltinType() && !Ty->isVectorType() && 3854 isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) { 3855 FreeSSERegs -= NumElts; 3856 return getDirectX86Hva(); 3857 } 3858 return current; 3859 } 3860 3861 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs, 3862 bool IsReturnType, bool IsVectorCall, 3863 bool IsRegCall) const { 3864 3865 if (Ty->isVoidType()) 3866 return ABIArgInfo::getIgnore(); 3867 3868 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3869 Ty = EnumTy->getDecl()->getIntegerType(); 3870 3871 TypeInfo Info = getContext().getTypeInfo(Ty); 3872 uint64_t Width = Info.Width; 3873 CharUnits Align = getContext().toCharUnitsFromBits(Info.Align); 3874 3875 const RecordType *RT = Ty->getAs<RecordType>(); 3876 if (RT) { 3877 if (!IsReturnType) { 3878 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI())) 3879 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 3880 } 3881 3882 if (RT->getDecl()->hasFlexibleArrayMember()) 3883 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 3884 3885 } 3886 3887 const Type *Base = nullptr; 3888 uint64_t NumElts = 0; 3889 // vectorcall adds the concept of a homogenous vector aggregate, similar to 3890 // other targets. 3891 if ((IsVectorCall || IsRegCall) && 3892 isHomogeneousAggregate(Ty, Base, NumElts)) { 3893 if (IsRegCall) { 3894 if (FreeSSERegs >= NumElts) { 3895 FreeSSERegs -= NumElts; 3896 if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType()) 3897 return ABIArgInfo::getDirect(); 3898 return ABIArgInfo::getExpand(); 3899 } 3900 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3901 } else if (IsVectorCall) { 3902 if (FreeSSERegs >= NumElts && 3903 (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) { 3904 FreeSSERegs -= NumElts; 3905 return ABIArgInfo::getDirect(); 3906 } else if (IsReturnType) { 3907 return ABIArgInfo::getExpand(); 3908 } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) { 3909 // HVAs are delayed and reclassified in the 2nd step. 3910 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3911 } 3912 } 3913 } 3914 3915 if (Ty->isMemberPointerType()) { 3916 // If the member pointer is represented by an LLVM int or ptr, pass it 3917 // directly. 3918 llvm::Type *LLTy = CGT.ConvertType(Ty); 3919 if (LLTy->isPointerTy() || LLTy->isIntegerTy()) 3920 return ABIArgInfo::getDirect(); 3921 } 3922 3923 if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) { 3924 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 3925 // not 1, 2, 4, or 8 bytes, must be passed by reference." 3926 if (Width > 64 || !llvm::isPowerOf2_64(Width)) 3927 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 3928 3929 // Otherwise, coerce it to a small integer. 3930 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width)); 3931 } 3932 3933 // Bool type is always extended to the ABI, other builtin types are not 3934 // extended. 3935 const BuiltinType *BT = Ty->getAs<BuiltinType>(); 3936 if (BT && BT->getKind() == BuiltinType::Bool) 3937 return ABIArgInfo::getExtend(Ty); 3938 3939 // Mingw64 GCC uses the old 80 bit extended precision floating point unit. It 3940 // passes them indirectly through memory. 3941 if (IsMingw64 && BT && BT->getKind() == BuiltinType::LongDouble) { 3942 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 3943 if (LDF == &llvm::APFloat::x87DoubleExtended()) 3944 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3945 } 3946 3947 return ABIArgInfo::getDirect(); 3948 } 3949 3950 void WinX86_64ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI, 3951 unsigned FreeSSERegs, 3952 bool IsVectorCall, 3953 bool IsRegCall) const { 3954 unsigned Count = 0; 3955 for (auto &I : FI.arguments()) { 3956 // Vectorcall in x64 only permits the first 6 arguments to be passed 3957 // as XMM/YMM registers. 3958 if (Count < VectorcallMaxParamNumAsReg) 3959 I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall); 3960 else { 3961 // Since these cannot be passed in registers, pretend no registers 3962 // are left. 3963 unsigned ZeroSSERegsAvail = 0; 3964 I.info = classify(I.type, /*FreeSSERegs=*/ZeroSSERegsAvail, false, 3965 IsVectorCall, IsRegCall); 3966 } 3967 ++Count; 3968 } 3969 3970 for (auto &I : FI.arguments()) { 3971 I.info = reclassifyHvaArgType(I.type, FreeSSERegs, I.info); 3972 } 3973 } 3974 3975 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 3976 bool IsVectorCall = 3977 FI.getCallingConvention() == llvm::CallingConv::X86_VectorCall; 3978 bool IsRegCall = FI.getCallingConvention() == llvm::CallingConv::X86_RegCall; 3979 3980 unsigned FreeSSERegs = 0; 3981 if (IsVectorCall) { 3982 // We can use up to 4 SSE return registers with vectorcall. 3983 FreeSSERegs = 4; 3984 } else if (IsRegCall) { 3985 // RegCall gives us 16 SSE registers. 3986 FreeSSERegs = 16; 3987 } 3988 3989 if (!getCXXABI().classifyReturnType(FI)) 3990 FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true, 3991 IsVectorCall, IsRegCall); 3992 3993 if (IsVectorCall) { 3994 // We can use up to 6 SSE register parameters with vectorcall. 3995 FreeSSERegs = 6; 3996 } else if (IsRegCall) { 3997 // RegCall gives us 16 SSE registers, we can reuse the return registers. 3998 FreeSSERegs = 16; 3999 } 4000 4001 if (IsVectorCall) { 4002 computeVectorCallArgs(FI, FreeSSERegs, IsVectorCall, IsRegCall); 4003 } else { 4004 for (auto &I : FI.arguments()) 4005 I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall); 4006 } 4007 4008 } 4009 4010 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4011 QualType Ty) const { 4012 4013 bool IsIndirect = false; 4014 4015 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4016 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4017 if (isAggregateTypeForABI(Ty) || Ty->isMemberPointerType()) { 4018 uint64_t Width = getContext().getTypeSize(Ty); 4019 IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width); 4020 } 4021 4022 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 4023 CGF.getContext().getTypeInfoInChars(Ty), 4024 CharUnits::fromQuantity(8), 4025 /*allowHigherAlign*/ false); 4026 } 4027 4028 // PowerPC-32 4029 namespace { 4030 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information. 4031 class PPC32_SVR4_ABIInfo : public DefaultABIInfo { 4032 bool IsSoftFloatABI; 4033 4034 CharUnits getParamTypeAlignment(QualType Ty) const; 4035 4036 public: 4037 PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI) 4038 : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI) {} 4039 4040 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4041 QualType Ty) const override; 4042 }; 4043 4044 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo { 4045 public: 4046 PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI) 4047 : TargetCodeGenInfo(new PPC32_SVR4_ABIInfo(CGT, SoftFloatABI)) {} 4048 4049 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4050 // This is recovered from gcc output. 4051 return 1; // r1 is the dedicated stack pointer 4052 } 4053 4054 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4055 llvm::Value *Address) const override; 4056 }; 4057 } 4058 4059 CharUnits PPC32_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 4060 // Complex types are passed just like their elements 4061 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 4062 Ty = CTy->getElementType(); 4063 4064 if (Ty->isVectorType()) 4065 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 4066 : 4); 4067 4068 // For single-element float/vector structs, we consider the whole type 4069 // to have the same alignment requirements as its single element. 4070 const Type *AlignTy = nullptr; 4071 if (const Type *EltType = isSingleElementStruct(Ty, getContext())) { 4072 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 4073 if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) || 4074 (BT && BT->isFloatingPoint())) 4075 AlignTy = EltType; 4076 } 4077 4078 if (AlignTy) 4079 return CharUnits::fromQuantity(AlignTy->isVectorType() ? 16 : 4); 4080 return CharUnits::fromQuantity(4); 4081 } 4082 4083 // TODO: this implementation is now likely redundant with 4084 // DefaultABIInfo::EmitVAArg. 4085 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList, 4086 QualType Ty) const { 4087 if (getTarget().getTriple().isOSDarwin()) { 4088 auto TI = getContext().getTypeInfoInChars(Ty); 4089 TI.second = getParamTypeAlignment(Ty); 4090 4091 CharUnits SlotSize = CharUnits::fromQuantity(4); 4092 return emitVoidPtrVAArg(CGF, VAList, Ty, 4093 classifyArgumentType(Ty).isIndirect(), TI, SlotSize, 4094 /*AllowHigherAlign=*/true); 4095 } 4096 4097 const unsigned OverflowLimit = 8; 4098 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 4099 // TODO: Implement this. For now ignore. 4100 (void)CTy; 4101 return Address::invalid(); // FIXME? 4102 } 4103 4104 // struct __va_list_tag { 4105 // unsigned char gpr; 4106 // unsigned char fpr; 4107 // unsigned short reserved; 4108 // void *overflow_arg_area; 4109 // void *reg_save_area; 4110 // }; 4111 4112 bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64; 4113 bool isInt = 4114 Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType(); 4115 bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64; 4116 4117 // All aggregates are passed indirectly? That doesn't seem consistent 4118 // with the argument-lowering code. 4119 bool isIndirect = Ty->isAggregateType(); 4120 4121 CGBuilderTy &Builder = CGF.Builder; 4122 4123 // The calling convention either uses 1-2 GPRs or 1 FPR. 4124 Address NumRegsAddr = Address::invalid(); 4125 if (isInt || IsSoftFloatABI) { 4126 NumRegsAddr = Builder.CreateStructGEP(VAList, 0, CharUnits::Zero(), "gpr"); 4127 } else { 4128 NumRegsAddr = Builder.CreateStructGEP(VAList, 1, CharUnits::One(), "fpr"); 4129 } 4130 4131 llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs"); 4132 4133 // "Align" the register count when TY is i64. 4134 if (isI64 || (isF64 && IsSoftFloatABI)) { 4135 NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1)); 4136 NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U)); 4137 } 4138 4139 llvm::Value *CC = 4140 Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond"); 4141 4142 llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs"); 4143 llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow"); 4144 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 4145 4146 Builder.CreateCondBr(CC, UsingRegs, UsingOverflow); 4147 4148 llvm::Type *DirectTy = CGF.ConvertType(Ty); 4149 if (isIndirect) DirectTy = DirectTy->getPointerTo(0); 4150 4151 // Case 1: consume registers. 4152 Address RegAddr = Address::invalid(); 4153 { 4154 CGF.EmitBlock(UsingRegs); 4155 4156 Address RegSaveAreaPtr = 4157 Builder.CreateStructGEP(VAList, 4, CharUnits::fromQuantity(8)); 4158 RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr), 4159 CharUnits::fromQuantity(8)); 4160 assert(RegAddr.getElementType() == CGF.Int8Ty); 4161 4162 // Floating-point registers start after the general-purpose registers. 4163 if (!(isInt || IsSoftFloatABI)) { 4164 RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr, 4165 CharUnits::fromQuantity(32)); 4166 } 4167 4168 // Get the address of the saved value by scaling the number of 4169 // registers we've used by the number of 4170 CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8); 4171 llvm::Value *RegOffset = 4172 Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity())); 4173 RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty, 4174 RegAddr.getPointer(), RegOffset), 4175 RegAddr.getAlignment().alignmentOfArrayElement(RegSize)); 4176 RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy); 4177 4178 // Increase the used-register count. 4179 NumRegs = 4180 Builder.CreateAdd(NumRegs, 4181 Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1)); 4182 Builder.CreateStore(NumRegs, NumRegsAddr); 4183 4184 CGF.EmitBranch(Cont); 4185 } 4186 4187 // Case 2: consume space in the overflow area. 4188 Address MemAddr = Address::invalid(); 4189 { 4190 CGF.EmitBlock(UsingOverflow); 4191 4192 Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr); 4193 4194 // Everything in the overflow area is rounded up to a size of at least 4. 4195 CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4); 4196 4197 CharUnits Size; 4198 if (!isIndirect) { 4199 auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty); 4200 Size = TypeInfo.first.alignTo(OverflowAreaAlign); 4201 } else { 4202 Size = CGF.getPointerSize(); 4203 } 4204 4205 Address OverflowAreaAddr = 4206 Builder.CreateStructGEP(VAList, 3, CharUnits::fromQuantity(4)); 4207 Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"), 4208 OverflowAreaAlign); 4209 // Round up address of argument to alignment 4210 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 4211 if (Align > OverflowAreaAlign) { 4212 llvm::Value *Ptr = OverflowArea.getPointer(); 4213 OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align), 4214 Align); 4215 } 4216 4217 MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy); 4218 4219 // Increase the overflow area. 4220 OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size); 4221 Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr); 4222 CGF.EmitBranch(Cont); 4223 } 4224 4225 CGF.EmitBlock(Cont); 4226 4227 // Merge the cases with a phi. 4228 Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow, 4229 "vaarg.addr"); 4230 4231 // Load the pointer if the argument was passed indirectly. 4232 if (isIndirect) { 4233 Result = Address(Builder.CreateLoad(Result, "aggr"), 4234 getContext().getTypeAlignInChars(Ty)); 4235 } 4236 4237 return Result; 4238 } 4239 4240 bool 4241 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4242 llvm::Value *Address) const { 4243 // This is calculated from the LLVM and GCC tables and verified 4244 // against gcc output. AFAIK all ABIs use the same encoding. 4245 4246 CodeGen::CGBuilderTy &Builder = CGF.Builder; 4247 4248 llvm::IntegerType *i8 = CGF.Int8Ty; 4249 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 4250 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 4251 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 4252 4253 // 0-31: r0-31, the 4-byte general-purpose registers 4254 AssignToArrayRange(Builder, Address, Four8, 0, 31); 4255 4256 // 32-63: fp0-31, the 8-byte floating-point registers 4257 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 4258 4259 // 64-76 are various 4-byte special-purpose registers: 4260 // 64: mq 4261 // 65: lr 4262 // 66: ctr 4263 // 67: ap 4264 // 68-75 cr0-7 4265 // 76: xer 4266 AssignToArrayRange(Builder, Address, Four8, 64, 76); 4267 4268 // 77-108: v0-31, the 16-byte vector registers 4269 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 4270 4271 // 109: vrsave 4272 // 110: vscr 4273 // 111: spe_acc 4274 // 112: spefscr 4275 // 113: sfp 4276 AssignToArrayRange(Builder, Address, Four8, 109, 113); 4277 4278 return false; 4279 } 4280 4281 // PowerPC-64 4282 4283 namespace { 4284 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information. 4285 class PPC64_SVR4_ABIInfo : public ABIInfo { 4286 public: 4287 enum ABIKind { 4288 ELFv1 = 0, 4289 ELFv2 4290 }; 4291 4292 private: 4293 static const unsigned GPRBits = 64; 4294 ABIKind Kind; 4295 bool HasQPX; 4296 bool IsSoftFloatABI; 4297 4298 // A vector of float or double will be promoted to <4 x f32> or <4 x f64> and 4299 // will be passed in a QPX register. 4300 bool IsQPXVectorTy(const Type *Ty) const { 4301 if (!HasQPX) 4302 return false; 4303 4304 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4305 unsigned NumElements = VT->getNumElements(); 4306 if (NumElements == 1) 4307 return false; 4308 4309 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) { 4310 if (getContext().getTypeSize(Ty) <= 256) 4311 return true; 4312 } else if (VT->getElementType()-> 4313 isSpecificBuiltinType(BuiltinType::Float)) { 4314 if (getContext().getTypeSize(Ty) <= 128) 4315 return true; 4316 } 4317 } 4318 4319 return false; 4320 } 4321 4322 bool IsQPXVectorTy(QualType Ty) const { 4323 return IsQPXVectorTy(Ty.getTypePtr()); 4324 } 4325 4326 public: 4327 PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, bool HasQPX, 4328 bool SoftFloatABI) 4329 : ABIInfo(CGT), Kind(Kind), HasQPX(HasQPX), 4330 IsSoftFloatABI(SoftFloatABI) {} 4331 4332 bool isPromotableTypeForABI(QualType Ty) const; 4333 CharUnits getParamTypeAlignment(QualType Ty) const; 4334 4335 ABIArgInfo classifyReturnType(QualType RetTy) const; 4336 ABIArgInfo classifyArgumentType(QualType Ty) const; 4337 4338 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 4339 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 4340 uint64_t Members) const override; 4341 4342 // TODO: We can add more logic to computeInfo to improve performance. 4343 // Example: For aggregate arguments that fit in a register, we could 4344 // use getDirectInReg (as is done below for structs containing a single 4345 // floating-point value) to avoid pushing them to memory on function 4346 // entry. This would require changing the logic in PPCISelLowering 4347 // when lowering the parameters in the caller and args in the callee. 4348 void computeInfo(CGFunctionInfo &FI) const override { 4349 if (!getCXXABI().classifyReturnType(FI)) 4350 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4351 for (auto &I : FI.arguments()) { 4352 // We rely on the default argument classification for the most part. 4353 // One exception: An aggregate containing a single floating-point 4354 // or vector item must be passed in a register if one is available. 4355 const Type *T = isSingleElementStruct(I.type, getContext()); 4356 if (T) { 4357 const BuiltinType *BT = T->getAs<BuiltinType>(); 4358 if (IsQPXVectorTy(T) || 4359 (T->isVectorType() && getContext().getTypeSize(T) == 128) || 4360 (BT && BT->isFloatingPoint())) { 4361 QualType QT(T, 0); 4362 I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT)); 4363 continue; 4364 } 4365 } 4366 I.info = classifyArgumentType(I.type); 4367 } 4368 } 4369 4370 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4371 QualType Ty) const override; 4372 }; 4373 4374 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo { 4375 4376 public: 4377 PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT, 4378 PPC64_SVR4_ABIInfo::ABIKind Kind, bool HasQPX, 4379 bool SoftFloatABI) 4380 : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT, Kind, HasQPX, 4381 SoftFloatABI)) {} 4382 4383 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4384 // This is recovered from gcc output. 4385 return 1; // r1 is the dedicated stack pointer 4386 } 4387 4388 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4389 llvm::Value *Address) const override; 4390 }; 4391 4392 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo { 4393 public: 4394 PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {} 4395 4396 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4397 // This is recovered from gcc output. 4398 return 1; // r1 is the dedicated stack pointer 4399 } 4400 4401 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4402 llvm::Value *Address) const override; 4403 }; 4404 4405 } 4406 4407 // Return true if the ABI requires Ty to be passed sign- or zero- 4408 // extended to 64 bits. 4409 bool 4410 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const { 4411 // Treat an enum type as its underlying type. 4412 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4413 Ty = EnumTy->getDecl()->getIntegerType(); 4414 4415 // Promotable integer types are required to be promoted by the ABI. 4416 if (Ty->isPromotableIntegerType()) 4417 return true; 4418 4419 // In addition to the usual promotable integer types, we also need to 4420 // extend all 32-bit types, since the ABI requires promotion to 64 bits. 4421 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 4422 switch (BT->getKind()) { 4423 case BuiltinType::Int: 4424 case BuiltinType::UInt: 4425 return true; 4426 default: 4427 break; 4428 } 4429 4430 return false; 4431 } 4432 4433 /// isAlignedParamType - Determine whether a type requires 16-byte or 4434 /// higher alignment in the parameter area. Always returns at least 8. 4435 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 4436 // Complex types are passed just like their elements. 4437 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 4438 Ty = CTy->getElementType(); 4439 4440 // Only vector types of size 16 bytes need alignment (larger types are 4441 // passed via reference, smaller types are not aligned). 4442 if (IsQPXVectorTy(Ty)) { 4443 if (getContext().getTypeSize(Ty) > 128) 4444 return CharUnits::fromQuantity(32); 4445 4446 return CharUnits::fromQuantity(16); 4447 } else if (Ty->isVectorType()) { 4448 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8); 4449 } 4450 4451 // For single-element float/vector structs, we consider the whole type 4452 // to have the same alignment requirements as its single element. 4453 const Type *AlignAsType = nullptr; 4454 const Type *EltType = isSingleElementStruct(Ty, getContext()); 4455 if (EltType) { 4456 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 4457 if (IsQPXVectorTy(EltType) || (EltType->isVectorType() && 4458 getContext().getTypeSize(EltType) == 128) || 4459 (BT && BT->isFloatingPoint())) 4460 AlignAsType = EltType; 4461 } 4462 4463 // Likewise for ELFv2 homogeneous aggregates. 4464 const Type *Base = nullptr; 4465 uint64_t Members = 0; 4466 if (!AlignAsType && Kind == ELFv2 && 4467 isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members)) 4468 AlignAsType = Base; 4469 4470 // With special case aggregates, only vector base types need alignment. 4471 if (AlignAsType && IsQPXVectorTy(AlignAsType)) { 4472 if (getContext().getTypeSize(AlignAsType) > 128) 4473 return CharUnits::fromQuantity(32); 4474 4475 return CharUnits::fromQuantity(16); 4476 } else if (AlignAsType) { 4477 return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8); 4478 } 4479 4480 // Otherwise, we only need alignment for any aggregate type that 4481 // has an alignment requirement of >= 16 bytes. 4482 if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) { 4483 if (HasQPX && getContext().getTypeAlign(Ty) >= 256) 4484 return CharUnits::fromQuantity(32); 4485 return CharUnits::fromQuantity(16); 4486 } 4487 4488 return CharUnits::fromQuantity(8); 4489 } 4490 4491 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous 4492 /// aggregate. Base is set to the base element type, and Members is set 4493 /// to the number of base elements. 4494 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base, 4495 uint64_t &Members) const { 4496 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 4497 uint64_t NElements = AT->getSize().getZExtValue(); 4498 if (NElements == 0) 4499 return false; 4500 if (!isHomogeneousAggregate(AT->getElementType(), Base, Members)) 4501 return false; 4502 Members *= NElements; 4503 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 4504 const RecordDecl *RD = RT->getDecl(); 4505 if (RD->hasFlexibleArrayMember()) 4506 return false; 4507 4508 Members = 0; 4509 4510 // If this is a C++ record, check the bases first. 4511 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 4512 for (const auto &I : CXXRD->bases()) { 4513 // Ignore empty records. 4514 if (isEmptyRecord(getContext(), I.getType(), true)) 4515 continue; 4516 4517 uint64_t FldMembers; 4518 if (!isHomogeneousAggregate(I.getType(), Base, FldMembers)) 4519 return false; 4520 4521 Members += FldMembers; 4522 } 4523 } 4524 4525 for (const auto *FD : RD->fields()) { 4526 // Ignore (non-zero arrays of) empty records. 4527 QualType FT = FD->getType(); 4528 while (const ConstantArrayType *AT = 4529 getContext().getAsConstantArrayType(FT)) { 4530 if (AT->getSize().getZExtValue() == 0) 4531 return false; 4532 FT = AT->getElementType(); 4533 } 4534 if (isEmptyRecord(getContext(), FT, true)) 4535 continue; 4536 4537 // For compatibility with GCC, ignore empty bitfields in C++ mode. 4538 if (getContext().getLangOpts().CPlusPlus && 4539 FD->isBitField() && FD->getBitWidthValue(getContext()) == 0) 4540 continue; 4541 4542 uint64_t FldMembers; 4543 if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers)) 4544 return false; 4545 4546 Members = (RD->isUnion() ? 4547 std::max(Members, FldMembers) : Members + FldMembers); 4548 } 4549 4550 if (!Base) 4551 return false; 4552 4553 // Ensure there is no padding. 4554 if (getContext().getTypeSize(Base) * Members != 4555 getContext().getTypeSize(Ty)) 4556 return false; 4557 } else { 4558 Members = 1; 4559 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 4560 Members = 2; 4561 Ty = CT->getElementType(); 4562 } 4563 4564 // Most ABIs only support float, double, and some vector type widths. 4565 if (!isHomogeneousAggregateBaseType(Ty)) 4566 return false; 4567 4568 // The base type must be the same for all members. Types that 4569 // agree in both total size and mode (float vs. vector) are 4570 // treated as being equivalent here. 4571 const Type *TyPtr = Ty.getTypePtr(); 4572 if (!Base) { 4573 Base = TyPtr; 4574 // If it's a non-power-of-2 vector, its size is already a power-of-2, 4575 // so make sure to widen it explicitly. 4576 if (const VectorType *VT = Base->getAs<VectorType>()) { 4577 QualType EltTy = VT->getElementType(); 4578 unsigned NumElements = 4579 getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy); 4580 Base = getContext() 4581 .getVectorType(EltTy, NumElements, VT->getVectorKind()) 4582 .getTypePtr(); 4583 } 4584 } 4585 4586 if (Base->isVectorType() != TyPtr->isVectorType() || 4587 getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr)) 4588 return false; 4589 } 4590 return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members); 4591 } 4592 4593 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 4594 // Homogeneous aggregates for ELFv2 must have base types of float, 4595 // double, long double, or 128-bit vectors. 4596 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 4597 if (BT->getKind() == BuiltinType::Float || 4598 BT->getKind() == BuiltinType::Double || 4599 BT->getKind() == BuiltinType::LongDouble) { 4600 if (IsSoftFloatABI) 4601 return false; 4602 return true; 4603 } 4604 } 4605 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4606 if (getContext().getTypeSize(VT) == 128 || IsQPXVectorTy(Ty)) 4607 return true; 4608 } 4609 return false; 4610 } 4611 4612 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough( 4613 const Type *Base, uint64_t Members) const { 4614 // Vector types require one register, floating point types require one 4615 // or two registers depending on their size. 4616 uint32_t NumRegs = 4617 Base->isVectorType() ? 1 : (getContext().getTypeSize(Base) + 63) / 64; 4618 4619 // Homogeneous Aggregates may occupy at most 8 registers. 4620 return Members * NumRegs <= 8; 4621 } 4622 4623 ABIArgInfo 4624 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const { 4625 Ty = useFirstFieldIfTransparentUnion(Ty); 4626 4627 if (Ty->isAnyComplexType()) 4628 return ABIArgInfo::getDirect(); 4629 4630 // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes) 4631 // or via reference (larger than 16 bytes). 4632 if (Ty->isVectorType() && !IsQPXVectorTy(Ty)) { 4633 uint64_t Size = getContext().getTypeSize(Ty); 4634 if (Size > 128) 4635 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4636 else if (Size < 128) { 4637 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 4638 return ABIArgInfo::getDirect(CoerceTy); 4639 } 4640 } 4641 4642 if (isAggregateTypeForABI(Ty)) { 4643 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 4644 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 4645 4646 uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity(); 4647 uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); 4648 4649 // ELFv2 homogeneous aggregates are passed as array types. 4650 const Type *Base = nullptr; 4651 uint64_t Members = 0; 4652 if (Kind == ELFv2 && 4653 isHomogeneousAggregate(Ty, Base, Members)) { 4654 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 4655 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 4656 return ABIArgInfo::getDirect(CoerceTy); 4657 } 4658 4659 // If an aggregate may end up fully in registers, we do not 4660 // use the ByVal method, but pass the aggregate as array. 4661 // This is usually beneficial since we avoid forcing the 4662 // back-end to store the argument to memory. 4663 uint64_t Bits = getContext().getTypeSize(Ty); 4664 if (Bits > 0 && Bits <= 8 * GPRBits) { 4665 llvm::Type *CoerceTy; 4666 4667 // Types up to 8 bytes are passed as integer type (which will be 4668 // properly aligned in the argument save area doubleword). 4669 if (Bits <= GPRBits) 4670 CoerceTy = 4671 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 4672 // Larger types are passed as arrays, with the base type selected 4673 // according to the required alignment in the save area. 4674 else { 4675 uint64_t RegBits = ABIAlign * 8; 4676 uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits; 4677 llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits); 4678 CoerceTy = llvm::ArrayType::get(RegTy, NumRegs); 4679 } 4680 4681 return ABIArgInfo::getDirect(CoerceTy); 4682 } 4683 4684 // All other aggregates are passed ByVal. 4685 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 4686 /*ByVal=*/true, 4687 /*Realign=*/TyAlign > ABIAlign); 4688 } 4689 4690 return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 4691 : ABIArgInfo::getDirect()); 4692 } 4693 4694 ABIArgInfo 4695 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { 4696 if (RetTy->isVoidType()) 4697 return ABIArgInfo::getIgnore(); 4698 4699 if (RetTy->isAnyComplexType()) 4700 return ABIArgInfo::getDirect(); 4701 4702 // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes) 4703 // or via reference (larger than 16 bytes). 4704 if (RetTy->isVectorType() && !IsQPXVectorTy(RetTy)) { 4705 uint64_t Size = getContext().getTypeSize(RetTy); 4706 if (Size > 128) 4707 return getNaturalAlignIndirect(RetTy); 4708 else if (Size < 128) { 4709 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 4710 return ABIArgInfo::getDirect(CoerceTy); 4711 } 4712 } 4713 4714 if (isAggregateTypeForABI(RetTy)) { 4715 // ELFv2 homogeneous aggregates are returned as array types. 4716 const Type *Base = nullptr; 4717 uint64_t Members = 0; 4718 if (Kind == ELFv2 && 4719 isHomogeneousAggregate(RetTy, Base, Members)) { 4720 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 4721 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 4722 return ABIArgInfo::getDirect(CoerceTy); 4723 } 4724 4725 // ELFv2 small aggregates are returned in up to two registers. 4726 uint64_t Bits = getContext().getTypeSize(RetTy); 4727 if (Kind == ELFv2 && Bits <= 2 * GPRBits) { 4728 if (Bits == 0) 4729 return ABIArgInfo::getIgnore(); 4730 4731 llvm::Type *CoerceTy; 4732 if (Bits > GPRBits) { 4733 CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits); 4734 CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy); 4735 } else 4736 CoerceTy = 4737 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 4738 return ABIArgInfo::getDirect(CoerceTy); 4739 } 4740 4741 // All other aggregates are returned indirectly. 4742 return getNaturalAlignIndirect(RetTy); 4743 } 4744 4745 return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 4746 : ABIArgInfo::getDirect()); 4747 } 4748 4749 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine. 4750 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4751 QualType Ty) const { 4752 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 4753 TypeInfo.second = getParamTypeAlignment(Ty); 4754 4755 CharUnits SlotSize = CharUnits::fromQuantity(8); 4756 4757 // If we have a complex type and the base type is smaller than 8 bytes, 4758 // the ABI calls for the real and imaginary parts to be right-adjusted 4759 // in separate doublewords. However, Clang expects us to produce a 4760 // pointer to a structure with the two parts packed tightly. So generate 4761 // loads of the real and imaginary parts relative to the va_list pointer, 4762 // and store them to a temporary structure. 4763 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 4764 CharUnits EltSize = TypeInfo.first / 2; 4765 if (EltSize < SlotSize) { 4766 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty, 4767 SlotSize * 2, SlotSize, 4768 SlotSize, /*AllowHigher*/ true); 4769 4770 Address RealAddr = Addr; 4771 Address ImagAddr = RealAddr; 4772 if (CGF.CGM.getDataLayout().isBigEndian()) { 4773 RealAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, 4774 SlotSize - EltSize); 4775 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr, 4776 2 * SlotSize - EltSize); 4777 } else { 4778 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize); 4779 } 4780 4781 llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType()); 4782 RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy); 4783 ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy); 4784 llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal"); 4785 llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag"); 4786 4787 Address Temp = CGF.CreateMemTemp(Ty, "vacplx"); 4788 CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty), 4789 /*init*/ true); 4790 return Temp; 4791 } 4792 } 4793 4794 // Otherwise, just use the general rule. 4795 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 4796 TypeInfo, SlotSize, /*AllowHigher*/ true); 4797 } 4798 4799 static bool 4800 PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4801 llvm::Value *Address) { 4802 // This is calculated from the LLVM and GCC tables and verified 4803 // against gcc output. AFAIK all ABIs use the same encoding. 4804 4805 CodeGen::CGBuilderTy &Builder = CGF.Builder; 4806 4807 llvm::IntegerType *i8 = CGF.Int8Ty; 4808 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 4809 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 4810 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 4811 4812 // 0-31: r0-31, the 8-byte general-purpose registers 4813 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 4814 4815 // 32-63: fp0-31, the 8-byte floating-point registers 4816 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 4817 4818 // 64-67 are various 8-byte special-purpose registers: 4819 // 64: mq 4820 // 65: lr 4821 // 66: ctr 4822 // 67: ap 4823 AssignToArrayRange(Builder, Address, Eight8, 64, 67); 4824 4825 // 68-76 are various 4-byte special-purpose registers: 4826 // 68-75 cr0-7 4827 // 76: xer 4828 AssignToArrayRange(Builder, Address, Four8, 68, 76); 4829 4830 // 77-108: v0-31, the 16-byte vector registers 4831 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 4832 4833 // 109: vrsave 4834 // 110: vscr 4835 // 111: spe_acc 4836 // 112: spefscr 4837 // 113: sfp 4838 // 114: tfhar 4839 // 115: tfiar 4840 // 116: texasr 4841 AssignToArrayRange(Builder, Address, Eight8, 109, 116); 4842 4843 return false; 4844 } 4845 4846 bool 4847 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable( 4848 CodeGen::CodeGenFunction &CGF, 4849 llvm::Value *Address) const { 4850 4851 return PPC64_initDwarfEHRegSizeTable(CGF, Address); 4852 } 4853 4854 bool 4855 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4856 llvm::Value *Address) const { 4857 4858 return PPC64_initDwarfEHRegSizeTable(CGF, Address); 4859 } 4860 4861 //===----------------------------------------------------------------------===// 4862 // AArch64 ABI Implementation 4863 //===----------------------------------------------------------------------===// 4864 4865 namespace { 4866 4867 class AArch64ABIInfo : public SwiftABIInfo { 4868 public: 4869 enum ABIKind { 4870 AAPCS = 0, 4871 DarwinPCS, 4872 Win64 4873 }; 4874 4875 private: 4876 ABIKind Kind; 4877 4878 public: 4879 AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind) 4880 : SwiftABIInfo(CGT), Kind(Kind) {} 4881 4882 private: 4883 ABIKind getABIKind() const { return Kind; } 4884 bool isDarwinPCS() const { return Kind == DarwinPCS; } 4885 4886 ABIArgInfo classifyReturnType(QualType RetTy) const; 4887 ABIArgInfo classifyArgumentType(QualType RetTy) const; 4888 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 4889 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 4890 uint64_t Members) const override; 4891 4892 bool isIllegalVectorType(QualType Ty) const; 4893 4894 void computeInfo(CGFunctionInfo &FI) const override { 4895 if (!getCXXABI().classifyReturnType(FI)) 4896 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4897 4898 for (auto &it : FI.arguments()) 4899 it.info = classifyArgumentType(it.type); 4900 } 4901 4902 Address EmitDarwinVAArg(Address VAListAddr, QualType Ty, 4903 CodeGenFunction &CGF) const; 4904 4905 Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty, 4906 CodeGenFunction &CGF) const; 4907 4908 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4909 QualType Ty) const override { 4910 return Kind == Win64 ? EmitMSVAArg(CGF, VAListAddr, Ty) 4911 : isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF) 4912 : EmitAAPCSVAArg(VAListAddr, Ty, CGF); 4913 } 4914 4915 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 4916 QualType Ty) const override; 4917 4918 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 4919 bool asReturnValue) const override { 4920 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 4921 } 4922 bool isSwiftErrorInRegister() const override { 4923 return true; 4924 } 4925 4926 bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy, 4927 unsigned elts) const override; 4928 }; 4929 4930 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo { 4931 public: 4932 AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind) 4933 : TargetCodeGenInfo(new AArch64ABIInfo(CGT, Kind)) {} 4934 4935 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 4936 return "mov\tfp, fp\t\t// marker for objc_retainAutoreleaseReturnValue"; 4937 } 4938 4939 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4940 return 31; 4941 } 4942 4943 bool doesReturnSlotInterfereWithArgs() const override { return false; } 4944 }; 4945 4946 class WindowsAArch64TargetCodeGenInfo : public AArch64TargetCodeGenInfo { 4947 public: 4948 WindowsAArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind K) 4949 : AArch64TargetCodeGenInfo(CGT, K) {} 4950 4951 void getDependentLibraryOption(llvm::StringRef Lib, 4952 llvm::SmallString<24> &Opt) const override { 4953 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); 4954 } 4955 4956 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, 4957 llvm::SmallString<32> &Opt) const override { 4958 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 4959 } 4960 }; 4961 } 4962 4963 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const { 4964 Ty = useFirstFieldIfTransparentUnion(Ty); 4965 4966 // Handle illegal vector types here. 4967 if (isIllegalVectorType(Ty)) { 4968 uint64_t Size = getContext().getTypeSize(Ty); 4969 // Android promotes <2 x i8> to i16, not i32 4970 if (isAndroid() && (Size <= 16)) { 4971 llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext()); 4972 return ABIArgInfo::getDirect(ResType); 4973 } 4974 if (Size <= 32) { 4975 llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext()); 4976 return ABIArgInfo::getDirect(ResType); 4977 } 4978 if (Size == 64) { 4979 llvm::Type *ResType = 4980 llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2); 4981 return ABIArgInfo::getDirect(ResType); 4982 } 4983 if (Size == 128) { 4984 llvm::Type *ResType = 4985 llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4); 4986 return ABIArgInfo::getDirect(ResType); 4987 } 4988 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4989 } 4990 4991 if (!isAggregateTypeForABI(Ty)) { 4992 // Treat an enum type as its underlying type. 4993 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4994 Ty = EnumTy->getDecl()->getIntegerType(); 4995 4996 return (Ty->isPromotableIntegerType() && isDarwinPCS() 4997 ? ABIArgInfo::getExtend(Ty) 4998 : ABIArgInfo::getDirect()); 4999 } 5000 5001 // Structures with either a non-trivial destructor or a non-trivial 5002 // copy constructor are always indirect. 5003 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 5004 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 5005 CGCXXABI::RAA_DirectInMemory); 5006 } 5007 5008 // Empty records are always ignored on Darwin, but actually passed in C++ mode 5009 // elsewhere for GNU compatibility. 5010 uint64_t Size = getContext().getTypeSize(Ty); 5011 bool IsEmpty = isEmptyRecord(getContext(), Ty, true); 5012 if (IsEmpty || Size == 0) { 5013 if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS()) 5014 return ABIArgInfo::getIgnore(); 5015 5016 // GNU C mode. The only argument that gets ignored is an empty one with size 5017 // 0. 5018 if (IsEmpty && Size == 0) 5019 return ABIArgInfo::getIgnore(); 5020 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 5021 } 5022 5023 // Homogeneous Floating-point Aggregates (HFAs) need to be expanded. 5024 const Type *Base = nullptr; 5025 uint64_t Members = 0; 5026 if (isHomogeneousAggregate(Ty, Base, Members)) { 5027 return ABIArgInfo::getDirect( 5028 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members)); 5029 } 5030 5031 // Aggregates <= 16 bytes are passed directly in registers or on the stack. 5032 if (Size <= 128) { 5033 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 5034 // same size and alignment. 5035 if (getTarget().isRenderScriptTarget()) { 5036 return coerceToIntArray(Ty, getContext(), getVMContext()); 5037 } 5038 unsigned Alignment = getContext().getTypeAlign(Ty); 5039 Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes 5040 5041 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 5042 // For aggregates with 16-byte alignment, we use i128. 5043 if (Alignment < 128 && Size == 128) { 5044 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); 5045 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 5046 } 5047 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 5048 } 5049 5050 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5051 } 5052 5053 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy) const { 5054 if (RetTy->isVoidType()) 5055 return ABIArgInfo::getIgnore(); 5056 5057 // Large vector types should be returned via memory. 5058 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) 5059 return getNaturalAlignIndirect(RetTy); 5060 5061 if (!isAggregateTypeForABI(RetTy)) { 5062 // Treat an enum type as its underlying type. 5063 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5064 RetTy = EnumTy->getDecl()->getIntegerType(); 5065 5066 return (RetTy->isPromotableIntegerType() && isDarwinPCS() 5067 ? ABIArgInfo::getExtend(RetTy) 5068 : ABIArgInfo::getDirect()); 5069 } 5070 5071 uint64_t Size = getContext().getTypeSize(RetTy); 5072 if (isEmptyRecord(getContext(), RetTy, true) || Size == 0) 5073 return ABIArgInfo::getIgnore(); 5074 5075 const Type *Base = nullptr; 5076 uint64_t Members = 0; 5077 if (isHomogeneousAggregate(RetTy, Base, Members)) 5078 // Homogeneous Floating-point Aggregates (HFAs) are returned directly. 5079 return ABIArgInfo::getDirect(); 5080 5081 // Aggregates <= 16 bytes are returned directly in registers or on the stack. 5082 if (Size <= 128) { 5083 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 5084 // same size and alignment. 5085 if (getTarget().isRenderScriptTarget()) { 5086 return coerceToIntArray(RetTy, getContext(), getVMContext()); 5087 } 5088 unsigned Alignment = getContext().getTypeAlign(RetTy); 5089 Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes 5090 5091 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 5092 // For aggregates with 16-byte alignment, we use i128. 5093 if (Alignment < 128 && Size == 128) { 5094 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); 5095 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 5096 } 5097 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 5098 } 5099 5100 return getNaturalAlignIndirect(RetTy); 5101 } 5102 5103 /// isIllegalVectorType - check whether the vector type is legal for AArch64. 5104 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const { 5105 if (const VectorType *VT = Ty->getAs<VectorType>()) { 5106 // Check whether VT is legal. 5107 unsigned NumElements = VT->getNumElements(); 5108 uint64_t Size = getContext().getTypeSize(VT); 5109 // NumElements should be power of 2. 5110 if (!llvm::isPowerOf2_32(NumElements)) 5111 return true; 5112 return Size != 64 && (Size != 128 || NumElements == 1); 5113 } 5114 return false; 5115 } 5116 5117 bool AArch64ABIInfo::isLegalVectorTypeForSwift(CharUnits totalSize, 5118 llvm::Type *eltTy, 5119 unsigned elts) const { 5120 if (!llvm::isPowerOf2_32(elts)) 5121 return false; 5122 if (totalSize.getQuantity() != 8 && 5123 (totalSize.getQuantity() != 16 || elts == 1)) 5124 return false; 5125 return true; 5126 } 5127 5128 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 5129 // Homogeneous aggregates for AAPCS64 must have base types of a floating 5130 // point type or a short-vector type. This is the same as the 32-bit ABI, 5131 // but with the difference that any floating-point type is allowed, 5132 // including __fp16. 5133 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 5134 if (BT->isFloatingPoint()) 5135 return true; 5136 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 5137 unsigned VecSize = getContext().getTypeSize(VT); 5138 if (VecSize == 64 || VecSize == 128) 5139 return true; 5140 } 5141 return false; 5142 } 5143 5144 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 5145 uint64_t Members) const { 5146 return Members <= 4; 5147 } 5148 5149 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr, 5150 QualType Ty, 5151 CodeGenFunction &CGF) const { 5152 ABIArgInfo AI = classifyArgumentType(Ty); 5153 bool IsIndirect = AI.isIndirect(); 5154 5155 llvm::Type *BaseTy = CGF.ConvertType(Ty); 5156 if (IsIndirect) 5157 BaseTy = llvm::PointerType::getUnqual(BaseTy); 5158 else if (AI.getCoerceToType()) 5159 BaseTy = AI.getCoerceToType(); 5160 5161 unsigned NumRegs = 1; 5162 if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) { 5163 BaseTy = ArrTy->getElementType(); 5164 NumRegs = ArrTy->getNumElements(); 5165 } 5166 bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy(); 5167 5168 // The AArch64 va_list type and handling is specified in the Procedure Call 5169 // Standard, section B.4: 5170 // 5171 // struct { 5172 // void *__stack; 5173 // void *__gr_top; 5174 // void *__vr_top; 5175 // int __gr_offs; 5176 // int __vr_offs; 5177 // }; 5178 5179 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); 5180 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 5181 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); 5182 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 5183 5184 auto TyInfo = getContext().getTypeInfoInChars(Ty); 5185 CharUnits TyAlign = TyInfo.second; 5186 5187 Address reg_offs_p = Address::invalid(); 5188 llvm::Value *reg_offs = nullptr; 5189 int reg_top_index; 5190 CharUnits reg_top_offset; 5191 int RegSize = IsIndirect ? 8 : TyInfo.first.getQuantity(); 5192 if (!IsFPR) { 5193 // 3 is the field number of __gr_offs 5194 reg_offs_p = 5195 CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(24), 5196 "gr_offs_p"); 5197 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs"); 5198 reg_top_index = 1; // field number for __gr_top 5199 reg_top_offset = CharUnits::fromQuantity(8); 5200 RegSize = llvm::alignTo(RegSize, 8); 5201 } else { 5202 // 4 is the field number of __vr_offs. 5203 reg_offs_p = 5204 CGF.Builder.CreateStructGEP(VAListAddr, 4, CharUnits::fromQuantity(28), 5205 "vr_offs_p"); 5206 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs"); 5207 reg_top_index = 2; // field number for __vr_top 5208 reg_top_offset = CharUnits::fromQuantity(16); 5209 RegSize = 16 * NumRegs; 5210 } 5211 5212 //======================================= 5213 // Find out where argument was passed 5214 //======================================= 5215 5216 // If reg_offs >= 0 we're already using the stack for this type of 5217 // argument. We don't want to keep updating reg_offs (in case it overflows, 5218 // though anyone passing 2GB of arguments, each at most 16 bytes, deserves 5219 // whatever they get). 5220 llvm::Value *UsingStack = nullptr; 5221 UsingStack = CGF.Builder.CreateICmpSGE( 5222 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0)); 5223 5224 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock); 5225 5226 // Otherwise, at least some kind of argument could go in these registers, the 5227 // question is whether this particular type is too big. 5228 CGF.EmitBlock(MaybeRegBlock); 5229 5230 // Integer arguments may need to correct register alignment (for example a 5231 // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we 5232 // align __gr_offs to calculate the potential address. 5233 if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) { 5234 int Align = TyAlign.getQuantity(); 5235 5236 reg_offs = CGF.Builder.CreateAdd( 5237 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1), 5238 "align_regoffs"); 5239 reg_offs = CGF.Builder.CreateAnd( 5240 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align), 5241 "aligned_regoffs"); 5242 } 5243 5244 // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list. 5245 // The fact that this is done unconditionally reflects the fact that 5246 // allocating an argument to the stack also uses up all the remaining 5247 // registers of the appropriate kind. 5248 llvm::Value *NewOffset = nullptr; 5249 NewOffset = CGF.Builder.CreateAdd( 5250 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs"); 5251 CGF.Builder.CreateStore(NewOffset, reg_offs_p); 5252 5253 // Now we're in a position to decide whether this argument really was in 5254 // registers or not. 5255 llvm::Value *InRegs = nullptr; 5256 InRegs = CGF.Builder.CreateICmpSLE( 5257 NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg"); 5258 5259 CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock); 5260 5261 //======================================= 5262 // Argument was in registers 5263 //======================================= 5264 5265 // Now we emit the code for if the argument was originally passed in 5266 // registers. First start the appropriate block: 5267 CGF.EmitBlock(InRegBlock); 5268 5269 llvm::Value *reg_top = nullptr; 5270 Address reg_top_p = CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, 5271 reg_top_offset, "reg_top_p"); 5272 reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top"); 5273 Address BaseAddr(CGF.Builder.CreateInBoundsGEP(reg_top, reg_offs), 5274 CharUnits::fromQuantity(IsFPR ? 16 : 8)); 5275 Address RegAddr = Address::invalid(); 5276 llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty); 5277 5278 if (IsIndirect) { 5279 // If it's been passed indirectly (actually a struct), whatever we find from 5280 // stored registers or on the stack will actually be a struct **. 5281 MemTy = llvm::PointerType::getUnqual(MemTy); 5282 } 5283 5284 const Type *Base = nullptr; 5285 uint64_t NumMembers = 0; 5286 bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers); 5287 if (IsHFA && NumMembers > 1) { 5288 // Homogeneous aggregates passed in registers will have their elements split 5289 // and stored 16-bytes apart regardless of size (they're notionally in qN, 5290 // qN+1, ...). We reload and store into a temporary local variable 5291 // contiguously. 5292 assert(!IsIndirect && "Homogeneous aggregates should be passed directly"); 5293 auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0)); 5294 llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0)); 5295 llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers); 5296 Address Tmp = CGF.CreateTempAlloca(HFATy, 5297 std::max(TyAlign, BaseTyInfo.second)); 5298 5299 // On big-endian platforms, the value will be right-aligned in its slot. 5300 int Offset = 0; 5301 if (CGF.CGM.getDataLayout().isBigEndian() && 5302 BaseTyInfo.first.getQuantity() < 16) 5303 Offset = 16 - BaseTyInfo.first.getQuantity(); 5304 5305 for (unsigned i = 0; i < NumMembers; ++i) { 5306 CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset); 5307 Address LoadAddr = 5308 CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset); 5309 LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy); 5310 5311 Address StoreAddr = 5312 CGF.Builder.CreateConstArrayGEP(Tmp, i, BaseTyInfo.first); 5313 5314 llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr); 5315 CGF.Builder.CreateStore(Elem, StoreAddr); 5316 } 5317 5318 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy); 5319 } else { 5320 // Otherwise the object is contiguous in memory. 5321 5322 // It might be right-aligned in its slot. 5323 CharUnits SlotSize = BaseAddr.getAlignment(); 5324 if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect && 5325 (IsHFA || !isAggregateTypeForABI(Ty)) && 5326 TyInfo.first < SlotSize) { 5327 CharUnits Offset = SlotSize - TyInfo.first; 5328 BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset); 5329 } 5330 5331 RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy); 5332 } 5333 5334 CGF.EmitBranch(ContBlock); 5335 5336 //======================================= 5337 // Argument was on the stack 5338 //======================================= 5339 CGF.EmitBlock(OnStackBlock); 5340 5341 Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, 5342 CharUnits::Zero(), "stack_p"); 5343 llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack"); 5344 5345 // Again, stack arguments may need realignment. In this case both integer and 5346 // floating-point ones might be affected. 5347 if (!IsIndirect && TyAlign.getQuantity() > 8) { 5348 int Align = TyAlign.getQuantity(); 5349 5350 OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty); 5351 5352 OnStackPtr = CGF.Builder.CreateAdd( 5353 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1), 5354 "align_stack"); 5355 OnStackPtr = CGF.Builder.CreateAnd( 5356 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align), 5357 "align_stack"); 5358 5359 OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy); 5360 } 5361 Address OnStackAddr(OnStackPtr, 5362 std::max(CharUnits::fromQuantity(8), TyAlign)); 5363 5364 // All stack slots are multiples of 8 bytes. 5365 CharUnits StackSlotSize = CharUnits::fromQuantity(8); 5366 CharUnits StackSize; 5367 if (IsIndirect) 5368 StackSize = StackSlotSize; 5369 else 5370 StackSize = TyInfo.first.alignTo(StackSlotSize); 5371 5372 llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize); 5373 llvm::Value *NewStack = 5374 CGF.Builder.CreateInBoundsGEP(OnStackPtr, StackSizeC, "new_stack"); 5375 5376 // Write the new value of __stack for the next call to va_arg 5377 CGF.Builder.CreateStore(NewStack, stack_p); 5378 5379 if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) && 5380 TyInfo.first < StackSlotSize) { 5381 CharUnits Offset = StackSlotSize - TyInfo.first; 5382 OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset); 5383 } 5384 5385 OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy); 5386 5387 CGF.EmitBranch(ContBlock); 5388 5389 //======================================= 5390 // Tidy up 5391 //======================================= 5392 CGF.EmitBlock(ContBlock); 5393 5394 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 5395 OnStackAddr, OnStackBlock, "vaargs.addr"); 5396 5397 if (IsIndirect) 5398 return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"), 5399 TyInfo.second); 5400 5401 return ResAddr; 5402 } 5403 5404 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty, 5405 CodeGenFunction &CGF) const { 5406 // The backend's lowering doesn't support va_arg for aggregates or 5407 // illegal vector types. Lower VAArg here for these cases and use 5408 // the LLVM va_arg instruction for everything else. 5409 if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty)) 5410 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 5411 5412 CharUnits SlotSize = CharUnits::fromQuantity(8); 5413 5414 // Empty records are ignored for parameter passing purposes. 5415 if (isEmptyRecord(getContext(), Ty, true)) { 5416 Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 5417 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 5418 return Addr; 5419 } 5420 5421 // The size of the actual thing passed, which might end up just 5422 // being a pointer for indirect types. 5423 auto TyInfo = getContext().getTypeInfoInChars(Ty); 5424 5425 // Arguments bigger than 16 bytes which aren't homogeneous 5426 // aggregates should be passed indirectly. 5427 bool IsIndirect = false; 5428 if (TyInfo.first.getQuantity() > 16) { 5429 const Type *Base = nullptr; 5430 uint64_t Members = 0; 5431 IsIndirect = !isHomogeneousAggregate(Ty, Base, Members); 5432 } 5433 5434 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 5435 TyInfo, SlotSize, /*AllowHigherAlign*/ true); 5436 } 5437 5438 Address AArch64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 5439 QualType Ty) const { 5440 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 5441 CGF.getContext().getTypeInfoInChars(Ty), 5442 CharUnits::fromQuantity(8), 5443 /*allowHigherAlign*/ false); 5444 } 5445 5446 //===----------------------------------------------------------------------===// 5447 // ARM ABI Implementation 5448 //===----------------------------------------------------------------------===// 5449 5450 namespace { 5451 5452 class ARMABIInfo : public SwiftABIInfo { 5453 public: 5454 enum ABIKind { 5455 APCS = 0, 5456 AAPCS = 1, 5457 AAPCS_VFP = 2, 5458 AAPCS16_VFP = 3, 5459 }; 5460 5461 private: 5462 ABIKind Kind; 5463 5464 public: 5465 ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) 5466 : SwiftABIInfo(CGT), Kind(_Kind) { 5467 setCCs(); 5468 } 5469 5470 bool isEABI() const { 5471 switch (getTarget().getTriple().getEnvironment()) { 5472 case llvm::Triple::Android: 5473 case llvm::Triple::EABI: 5474 case llvm::Triple::EABIHF: 5475 case llvm::Triple::GNUEABI: 5476 case llvm::Triple::GNUEABIHF: 5477 case llvm::Triple::MuslEABI: 5478 case llvm::Triple::MuslEABIHF: 5479 return true; 5480 default: 5481 return false; 5482 } 5483 } 5484 5485 bool isEABIHF() const { 5486 switch (getTarget().getTriple().getEnvironment()) { 5487 case llvm::Triple::EABIHF: 5488 case llvm::Triple::GNUEABIHF: 5489 case llvm::Triple::MuslEABIHF: 5490 return true; 5491 default: 5492 return false; 5493 } 5494 } 5495 5496 ABIKind getABIKind() const { return Kind; } 5497 5498 private: 5499 ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic) const; 5500 ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic) const; 5501 bool isIllegalVectorType(QualType Ty) const; 5502 5503 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 5504 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 5505 uint64_t Members) const override; 5506 5507 void computeInfo(CGFunctionInfo &FI) const override; 5508 5509 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5510 QualType Ty) const override; 5511 5512 llvm::CallingConv::ID getLLVMDefaultCC() const; 5513 llvm::CallingConv::ID getABIDefaultCC() const; 5514 void setCCs(); 5515 5516 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 5517 bool asReturnValue) const override { 5518 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 5519 } 5520 bool isSwiftErrorInRegister() const override { 5521 return true; 5522 } 5523 bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy, 5524 unsigned elts) const override; 5525 }; 5526 5527 class ARMTargetCodeGenInfo : public TargetCodeGenInfo { 5528 public: 5529 ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 5530 :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {} 5531 5532 const ARMABIInfo &getABIInfo() const { 5533 return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo()); 5534 } 5535 5536 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 5537 return 13; 5538 } 5539 5540 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 5541 return "mov\tr7, r7\t\t// marker for objc_retainAutoreleaseReturnValue"; 5542 } 5543 5544 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5545 llvm::Value *Address) const override { 5546 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 5547 5548 // 0-15 are the 16 integer registers. 5549 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15); 5550 return false; 5551 } 5552 5553 unsigned getSizeOfUnwindException() const override { 5554 if (getABIInfo().isEABI()) return 88; 5555 return TargetCodeGenInfo::getSizeOfUnwindException(); 5556 } 5557 5558 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5559 CodeGen::CodeGenModule &CGM, 5560 ForDefinition_t IsForDefinition) const override { 5561 if (!IsForDefinition) 5562 return; 5563 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 5564 if (!FD) 5565 return; 5566 5567 const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>(); 5568 if (!Attr) 5569 return; 5570 5571 const char *Kind; 5572 switch (Attr->getInterrupt()) { 5573 case ARMInterruptAttr::Generic: Kind = ""; break; 5574 case ARMInterruptAttr::IRQ: Kind = "IRQ"; break; 5575 case ARMInterruptAttr::FIQ: Kind = "FIQ"; break; 5576 case ARMInterruptAttr::SWI: Kind = "SWI"; break; 5577 case ARMInterruptAttr::ABORT: Kind = "ABORT"; break; 5578 case ARMInterruptAttr::UNDEF: Kind = "UNDEF"; break; 5579 } 5580 5581 llvm::Function *Fn = cast<llvm::Function>(GV); 5582 5583 Fn->addFnAttr("interrupt", Kind); 5584 5585 ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind(); 5586 if (ABI == ARMABIInfo::APCS) 5587 return; 5588 5589 // AAPCS guarantees that sp will be 8-byte aligned on any public interface, 5590 // however this is not necessarily true on taking any interrupt. Instruct 5591 // the backend to perform a realignment as part of the function prologue. 5592 llvm::AttrBuilder B; 5593 B.addStackAlignmentAttr(8); 5594 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 5595 } 5596 }; 5597 5598 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo { 5599 public: 5600 WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 5601 : ARMTargetCodeGenInfo(CGT, K) {} 5602 5603 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5604 CodeGen::CodeGenModule &CGM, 5605 ForDefinition_t IsForDefinition) const override; 5606 5607 void getDependentLibraryOption(llvm::StringRef Lib, 5608 llvm::SmallString<24> &Opt) const override { 5609 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); 5610 } 5611 5612 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, 5613 llvm::SmallString<32> &Opt) const override { 5614 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 5615 } 5616 }; 5617 5618 void WindowsARMTargetCodeGenInfo::setTargetAttributes( 5619 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM, 5620 ForDefinition_t IsForDefinition) const { 5621 ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM, IsForDefinition); 5622 if (!IsForDefinition) 5623 return; 5624 addStackProbeSizeTargetAttribute(D, GV, CGM); 5625 } 5626 } 5627 5628 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const { 5629 if (!getCXXABI().classifyReturnType(FI)) 5630 FI.getReturnInfo() = 5631 classifyReturnType(FI.getReturnType(), FI.isVariadic()); 5632 5633 for (auto &I : FI.arguments()) 5634 I.info = classifyArgumentType(I.type, FI.isVariadic()); 5635 5636 // Always honor user-specified calling convention. 5637 if (FI.getCallingConvention() != llvm::CallingConv::C) 5638 return; 5639 5640 llvm::CallingConv::ID cc = getRuntimeCC(); 5641 if (cc != llvm::CallingConv::C) 5642 FI.setEffectiveCallingConvention(cc); 5643 } 5644 5645 /// Return the default calling convention that LLVM will use. 5646 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const { 5647 // The default calling convention that LLVM will infer. 5648 if (isEABIHF() || getTarget().getTriple().isWatchABI()) 5649 return llvm::CallingConv::ARM_AAPCS_VFP; 5650 else if (isEABI()) 5651 return llvm::CallingConv::ARM_AAPCS; 5652 else 5653 return llvm::CallingConv::ARM_APCS; 5654 } 5655 5656 /// Return the calling convention that our ABI would like us to use 5657 /// as the C calling convention. 5658 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const { 5659 switch (getABIKind()) { 5660 case APCS: return llvm::CallingConv::ARM_APCS; 5661 case AAPCS: return llvm::CallingConv::ARM_AAPCS; 5662 case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 5663 case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 5664 } 5665 llvm_unreachable("bad ABI kind"); 5666 } 5667 5668 void ARMABIInfo::setCCs() { 5669 assert(getRuntimeCC() == llvm::CallingConv::C); 5670 5671 // Don't muddy up the IR with a ton of explicit annotations if 5672 // they'd just match what LLVM will infer from the triple. 5673 llvm::CallingConv::ID abiCC = getABIDefaultCC(); 5674 if (abiCC != getLLVMDefaultCC()) 5675 RuntimeCC = abiCC; 5676 5677 // AAPCS apparently requires runtime support functions to be soft-float, but 5678 // that's almost certainly for historic reasons (Thumb1 not supporting VFP 5679 // most likely). It's more convenient for AAPCS16_VFP to be hard-float. 5680 5681 // The Run-time ABI for the ARM Architecture section 4.1.2 requires 5682 // AEABI-complying FP helper functions to use the base AAPCS. 5683 // These AEABI functions are expanded in the ARM llvm backend, all the builtin 5684 // support functions emitted by clang such as the _Complex helpers follow the 5685 // abiCC. 5686 if (abiCC != getLLVMDefaultCC()) 5687 BuiltinCC = abiCC; 5688 } 5689 5690 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, 5691 bool isVariadic) const { 5692 // 6.1.2.1 The following argument types are VFP CPRCs: 5693 // A single-precision floating-point type (including promoted 5694 // half-precision types); A double-precision floating-point type; 5695 // A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate 5696 // with a Base Type of a single- or double-precision floating-point type, 5697 // 64-bit containerized vectors or 128-bit containerized vectors with one 5698 // to four Elements. 5699 bool IsEffectivelyAAPCS_VFP = getABIKind() == AAPCS_VFP && !isVariadic; 5700 5701 Ty = useFirstFieldIfTransparentUnion(Ty); 5702 5703 // Handle illegal vector types here. 5704 if (isIllegalVectorType(Ty)) { 5705 uint64_t Size = getContext().getTypeSize(Ty); 5706 if (Size <= 32) { 5707 llvm::Type *ResType = 5708 llvm::Type::getInt32Ty(getVMContext()); 5709 return ABIArgInfo::getDirect(ResType); 5710 } 5711 if (Size == 64) { 5712 llvm::Type *ResType = llvm::VectorType::get( 5713 llvm::Type::getInt32Ty(getVMContext()), 2); 5714 return ABIArgInfo::getDirect(ResType); 5715 } 5716 if (Size == 128) { 5717 llvm::Type *ResType = llvm::VectorType::get( 5718 llvm::Type::getInt32Ty(getVMContext()), 4); 5719 return ABIArgInfo::getDirect(ResType); 5720 } 5721 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5722 } 5723 5724 // _Float16 and __fp16 get passed as if it were an int or float, but with 5725 // the top 16 bits unspecified. This is not done for OpenCL as it handles the 5726 // half type natively, and does not need to interwork with AAPCS code. 5727 if ((Ty->isFloat16Type() || Ty->isHalfType()) && 5728 !getContext().getLangOpts().NativeHalfArgsAndReturns) { 5729 llvm::Type *ResType = IsEffectivelyAAPCS_VFP ? 5730 llvm::Type::getFloatTy(getVMContext()) : 5731 llvm::Type::getInt32Ty(getVMContext()); 5732 return ABIArgInfo::getDirect(ResType); 5733 } 5734 5735 if (!isAggregateTypeForABI(Ty)) { 5736 // Treat an enum type as its underlying type. 5737 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 5738 Ty = EnumTy->getDecl()->getIntegerType(); 5739 } 5740 5741 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 5742 : ABIArgInfo::getDirect()); 5743 } 5744 5745 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 5746 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 5747 } 5748 5749 // Ignore empty records. 5750 if (isEmptyRecord(getContext(), Ty, true)) 5751 return ABIArgInfo::getIgnore(); 5752 5753 if (IsEffectivelyAAPCS_VFP) { 5754 // Homogeneous Aggregates need to be expanded when we can fit the aggregate 5755 // into VFP registers. 5756 const Type *Base = nullptr; 5757 uint64_t Members = 0; 5758 if (isHomogeneousAggregate(Ty, Base, Members)) { 5759 assert(Base && "Base class should be set for homogeneous aggregate"); 5760 // Base can be a floating-point or a vector. 5761 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); 5762 } 5763 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 5764 // WatchOS does have homogeneous aggregates. Note that we intentionally use 5765 // this convention even for a variadic function: the backend will use GPRs 5766 // if needed. 5767 const Type *Base = nullptr; 5768 uint64_t Members = 0; 5769 if (isHomogeneousAggregate(Ty, Base, Members)) { 5770 assert(Base && Members <= 4 && "unexpected homogeneous aggregate"); 5771 llvm::Type *Ty = 5772 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members); 5773 return ABIArgInfo::getDirect(Ty, 0, nullptr, false); 5774 } 5775 } 5776 5777 if (getABIKind() == ARMABIInfo::AAPCS16_VFP && 5778 getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) { 5779 // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're 5780 // bigger than 128-bits, they get placed in space allocated by the caller, 5781 // and a pointer is passed. 5782 return ABIArgInfo::getIndirect( 5783 CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false); 5784 } 5785 5786 // Support byval for ARM. 5787 // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at 5788 // most 8-byte. We realign the indirect argument if type alignment is bigger 5789 // than ABI alignment. 5790 uint64_t ABIAlign = 4; 5791 uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8; 5792 if (getABIKind() == ARMABIInfo::AAPCS_VFP || 5793 getABIKind() == ARMABIInfo::AAPCS) 5794 ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8); 5795 5796 if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) { 5797 assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval"); 5798 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 5799 /*ByVal=*/true, 5800 /*Realign=*/TyAlign > ABIAlign); 5801 } 5802 5803 // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of 5804 // same size and alignment. 5805 if (getTarget().isRenderScriptTarget()) { 5806 return coerceToIntArray(Ty, getContext(), getVMContext()); 5807 } 5808 5809 // Otherwise, pass by coercing to a structure of the appropriate size. 5810 llvm::Type* ElemTy; 5811 unsigned SizeRegs; 5812 // FIXME: Try to match the types of the arguments more accurately where 5813 // we can. 5814 if (getContext().getTypeAlign(Ty) <= 32) { 5815 ElemTy = llvm::Type::getInt32Ty(getVMContext()); 5816 SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32; 5817 } else { 5818 ElemTy = llvm::Type::getInt64Ty(getVMContext()); 5819 SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64; 5820 } 5821 5822 return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs)); 5823 } 5824 5825 static bool isIntegerLikeType(QualType Ty, ASTContext &Context, 5826 llvm::LLVMContext &VMContext) { 5827 // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure 5828 // is called integer-like if its size is less than or equal to one word, and 5829 // the offset of each of its addressable sub-fields is zero. 5830 5831 uint64_t Size = Context.getTypeSize(Ty); 5832 5833 // Check that the type fits in a word. 5834 if (Size > 32) 5835 return false; 5836 5837 // FIXME: Handle vector types! 5838 if (Ty->isVectorType()) 5839 return false; 5840 5841 // Float types are never treated as "integer like". 5842 if (Ty->isRealFloatingType()) 5843 return false; 5844 5845 // If this is a builtin or pointer type then it is ok. 5846 if (Ty->getAs<BuiltinType>() || Ty->isPointerType()) 5847 return true; 5848 5849 // Small complex integer types are "integer like". 5850 if (const ComplexType *CT = Ty->getAs<ComplexType>()) 5851 return isIntegerLikeType(CT->getElementType(), Context, VMContext); 5852 5853 // Single element and zero sized arrays should be allowed, by the definition 5854 // above, but they are not. 5855 5856 // Otherwise, it must be a record type. 5857 const RecordType *RT = Ty->getAs<RecordType>(); 5858 if (!RT) return false; 5859 5860 // Ignore records with flexible arrays. 5861 const RecordDecl *RD = RT->getDecl(); 5862 if (RD->hasFlexibleArrayMember()) 5863 return false; 5864 5865 // Check that all sub-fields are at offset 0, and are themselves "integer 5866 // like". 5867 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 5868 5869 bool HadField = false; 5870 unsigned idx = 0; 5871 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 5872 i != e; ++i, ++idx) { 5873 const FieldDecl *FD = *i; 5874 5875 // Bit-fields are not addressable, we only need to verify they are "integer 5876 // like". We still have to disallow a subsequent non-bitfield, for example: 5877 // struct { int : 0; int x } 5878 // is non-integer like according to gcc. 5879 if (FD->isBitField()) { 5880 if (!RD->isUnion()) 5881 HadField = true; 5882 5883 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 5884 return false; 5885 5886 continue; 5887 } 5888 5889 // Check if this field is at offset 0. 5890 if (Layout.getFieldOffset(idx) != 0) 5891 return false; 5892 5893 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 5894 return false; 5895 5896 // Only allow at most one field in a structure. This doesn't match the 5897 // wording above, but follows gcc in situations with a field following an 5898 // empty structure. 5899 if (!RD->isUnion()) { 5900 if (HadField) 5901 return false; 5902 5903 HadField = true; 5904 } 5905 } 5906 5907 return true; 5908 } 5909 5910 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, 5911 bool isVariadic) const { 5912 bool IsEffectivelyAAPCS_VFP = 5913 (getABIKind() == AAPCS_VFP || getABIKind() == AAPCS16_VFP) && !isVariadic; 5914 5915 if (RetTy->isVoidType()) 5916 return ABIArgInfo::getIgnore(); 5917 5918 // Large vector types should be returned via memory. 5919 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) { 5920 return getNaturalAlignIndirect(RetTy); 5921 } 5922 5923 // _Float16 and __fp16 get returned as if it were an int or float, but with 5924 // the top 16 bits unspecified. This is not done for OpenCL as it handles the 5925 // half type natively, and does not need to interwork with AAPCS code. 5926 if ((RetTy->isFloat16Type() || RetTy->isHalfType()) && 5927 !getContext().getLangOpts().NativeHalfArgsAndReturns) { 5928 llvm::Type *ResType = IsEffectivelyAAPCS_VFP ? 5929 llvm::Type::getFloatTy(getVMContext()) : 5930 llvm::Type::getInt32Ty(getVMContext()); 5931 return ABIArgInfo::getDirect(ResType); 5932 } 5933 5934 if (!isAggregateTypeForABI(RetTy)) { 5935 // Treat an enum type as its underlying type. 5936 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5937 RetTy = EnumTy->getDecl()->getIntegerType(); 5938 5939 return RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 5940 : ABIArgInfo::getDirect(); 5941 } 5942 5943 // Are we following APCS? 5944 if (getABIKind() == APCS) { 5945 if (isEmptyRecord(getContext(), RetTy, false)) 5946 return ABIArgInfo::getIgnore(); 5947 5948 // Complex types are all returned as packed integers. 5949 // 5950 // FIXME: Consider using 2 x vector types if the back end handles them 5951 // correctly. 5952 if (RetTy->isAnyComplexType()) 5953 return ABIArgInfo::getDirect(llvm::IntegerType::get( 5954 getVMContext(), getContext().getTypeSize(RetTy))); 5955 5956 // Integer like structures are returned in r0. 5957 if (isIntegerLikeType(RetTy, getContext(), getVMContext())) { 5958 // Return in the smallest viable integer type. 5959 uint64_t Size = getContext().getTypeSize(RetTy); 5960 if (Size <= 8) 5961 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 5962 if (Size <= 16) 5963 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 5964 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 5965 } 5966 5967 // Otherwise return in memory. 5968 return getNaturalAlignIndirect(RetTy); 5969 } 5970 5971 // Otherwise this is an AAPCS variant. 5972 5973 if (isEmptyRecord(getContext(), RetTy, true)) 5974 return ABIArgInfo::getIgnore(); 5975 5976 // Check for homogeneous aggregates with AAPCS-VFP. 5977 if (IsEffectivelyAAPCS_VFP) { 5978 const Type *Base = nullptr; 5979 uint64_t Members = 0; 5980 if (isHomogeneousAggregate(RetTy, Base, Members)) { 5981 assert(Base && "Base class should be set for homogeneous aggregate"); 5982 // Homogeneous Aggregates are returned directly. 5983 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); 5984 } 5985 } 5986 5987 // Aggregates <= 4 bytes are returned in r0; other aggregates 5988 // are returned indirectly. 5989 uint64_t Size = getContext().getTypeSize(RetTy); 5990 if (Size <= 32) { 5991 // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of 5992 // same size and alignment. 5993 if (getTarget().isRenderScriptTarget()) { 5994 return coerceToIntArray(RetTy, getContext(), getVMContext()); 5995 } 5996 if (getDataLayout().isBigEndian()) 5997 // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4) 5998 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 5999 6000 // Return in the smallest viable integer type. 6001 if (Size <= 8) 6002 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6003 if (Size <= 16) 6004 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6005 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6006 } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) { 6007 llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext()); 6008 llvm::Type *CoerceTy = 6009 llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32); 6010 return ABIArgInfo::getDirect(CoerceTy); 6011 } 6012 6013 return getNaturalAlignIndirect(RetTy); 6014 } 6015 6016 /// isIllegalVector - check whether Ty is an illegal vector type. 6017 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const { 6018 if (const VectorType *VT = Ty->getAs<VectorType> ()) { 6019 if (isAndroid()) { 6020 // Android shipped using Clang 3.1, which supported a slightly different 6021 // vector ABI. The primary differences were that 3-element vector types 6022 // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path 6023 // accepts that legacy behavior for Android only. 6024 // Check whether VT is legal. 6025 unsigned NumElements = VT->getNumElements(); 6026 // NumElements should be power of 2 or equal to 3. 6027 if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3) 6028 return true; 6029 } else { 6030 // Check whether VT is legal. 6031 unsigned NumElements = VT->getNumElements(); 6032 uint64_t Size = getContext().getTypeSize(VT); 6033 // NumElements should be power of 2. 6034 if (!llvm::isPowerOf2_32(NumElements)) 6035 return true; 6036 // Size should be greater than 32 bits. 6037 return Size <= 32; 6038 } 6039 } 6040 return false; 6041 } 6042 6043 bool ARMABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, 6044 llvm::Type *eltTy, 6045 unsigned numElts) const { 6046 if (!llvm::isPowerOf2_32(numElts)) 6047 return false; 6048 unsigned size = getDataLayout().getTypeStoreSizeInBits(eltTy); 6049 if (size > 64) 6050 return false; 6051 if (vectorSize.getQuantity() != 8 && 6052 (vectorSize.getQuantity() != 16 || numElts == 1)) 6053 return false; 6054 return true; 6055 } 6056 6057 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 6058 // Homogeneous aggregates for AAPCS-VFP must have base types of float, 6059 // double, or 64-bit or 128-bit vectors. 6060 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 6061 if (BT->getKind() == BuiltinType::Float || 6062 BT->getKind() == BuiltinType::Double || 6063 BT->getKind() == BuiltinType::LongDouble) 6064 return true; 6065 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 6066 unsigned VecSize = getContext().getTypeSize(VT); 6067 if (VecSize == 64 || VecSize == 128) 6068 return true; 6069 } 6070 return false; 6071 } 6072 6073 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 6074 uint64_t Members) const { 6075 return Members <= 4; 6076 } 6077 6078 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6079 QualType Ty) const { 6080 CharUnits SlotSize = CharUnits::fromQuantity(4); 6081 6082 // Empty records are ignored for parameter passing purposes. 6083 if (isEmptyRecord(getContext(), Ty, true)) { 6084 Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize); 6085 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 6086 return Addr; 6087 } 6088 6089 auto TyInfo = getContext().getTypeInfoInChars(Ty); 6090 CharUnits TyAlignForABI = TyInfo.second; 6091 6092 // Use indirect if size of the illegal vector is bigger than 16 bytes. 6093 bool IsIndirect = false; 6094 const Type *Base = nullptr; 6095 uint64_t Members = 0; 6096 if (TyInfo.first > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) { 6097 IsIndirect = true; 6098 6099 // ARMv7k passes structs bigger than 16 bytes indirectly, in space 6100 // allocated by the caller. 6101 } else if (TyInfo.first > CharUnits::fromQuantity(16) && 6102 getABIKind() == ARMABIInfo::AAPCS16_VFP && 6103 !isHomogeneousAggregate(Ty, Base, Members)) { 6104 IsIndirect = true; 6105 6106 // Otherwise, bound the type's ABI alignment. 6107 // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for 6108 // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte. 6109 // Our callers should be prepared to handle an under-aligned address. 6110 } else if (getABIKind() == ARMABIInfo::AAPCS_VFP || 6111 getABIKind() == ARMABIInfo::AAPCS) { 6112 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 6113 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8)); 6114 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 6115 // ARMv7k allows type alignment up to 16 bytes. 6116 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 6117 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16)); 6118 } else { 6119 TyAlignForABI = CharUnits::fromQuantity(4); 6120 } 6121 TyInfo.second = TyAlignForABI; 6122 6123 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo, 6124 SlotSize, /*AllowHigherAlign*/ true); 6125 } 6126 6127 //===----------------------------------------------------------------------===// 6128 // NVPTX ABI Implementation 6129 //===----------------------------------------------------------------------===// 6130 6131 namespace { 6132 6133 class NVPTXABIInfo : public ABIInfo { 6134 public: 6135 NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 6136 6137 ABIArgInfo classifyReturnType(QualType RetTy) const; 6138 ABIArgInfo classifyArgumentType(QualType Ty) const; 6139 6140 void computeInfo(CGFunctionInfo &FI) const override; 6141 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6142 QualType Ty) const override; 6143 }; 6144 6145 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo { 6146 public: 6147 NVPTXTargetCodeGenInfo(CodeGenTypes &CGT) 6148 : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {} 6149 6150 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6151 CodeGen::CodeGenModule &M, 6152 ForDefinition_t IsForDefinition) const override; 6153 6154 private: 6155 // Adds a NamedMDNode with F, Name, and Operand as operands, and adds the 6156 // resulting MDNode to the nvvm.annotations MDNode. 6157 static void addNVVMMetadata(llvm::Function *F, StringRef Name, int Operand); 6158 }; 6159 6160 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const { 6161 if (RetTy->isVoidType()) 6162 return ABIArgInfo::getIgnore(); 6163 6164 // note: this is different from default ABI 6165 if (!RetTy->isScalarType()) 6166 return ABIArgInfo::getDirect(); 6167 6168 // Treat an enum type as its underlying type. 6169 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 6170 RetTy = EnumTy->getDecl()->getIntegerType(); 6171 6172 return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 6173 : ABIArgInfo::getDirect()); 6174 } 6175 6176 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const { 6177 // Treat an enum type as its underlying type. 6178 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 6179 Ty = EnumTy->getDecl()->getIntegerType(); 6180 6181 // Return aggregates type as indirect by value 6182 if (isAggregateTypeForABI(Ty)) 6183 return getNaturalAlignIndirect(Ty, /* byval */ true); 6184 6185 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 6186 : ABIArgInfo::getDirect()); 6187 } 6188 6189 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const { 6190 if (!getCXXABI().classifyReturnType(FI)) 6191 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 6192 for (auto &I : FI.arguments()) 6193 I.info = classifyArgumentType(I.type); 6194 6195 // Always honor user-specified calling convention. 6196 if (FI.getCallingConvention() != llvm::CallingConv::C) 6197 return; 6198 6199 FI.setEffectiveCallingConvention(getRuntimeCC()); 6200 } 6201 6202 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6203 QualType Ty) const { 6204 llvm_unreachable("NVPTX does not support varargs"); 6205 } 6206 6207 void NVPTXTargetCodeGenInfo::setTargetAttributes( 6208 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M, 6209 ForDefinition_t IsForDefinition) const { 6210 if (!IsForDefinition) 6211 return; 6212 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 6213 if (!FD) return; 6214 6215 llvm::Function *F = cast<llvm::Function>(GV); 6216 6217 // Perform special handling in OpenCL mode 6218 if (M.getLangOpts().OpenCL) { 6219 // Use OpenCL function attributes to check for kernel functions 6220 // By default, all functions are device functions 6221 if (FD->hasAttr<OpenCLKernelAttr>()) { 6222 // OpenCL __kernel functions get kernel metadata 6223 // Create !{<func-ref>, metadata !"kernel", i32 1} node 6224 addNVVMMetadata(F, "kernel", 1); 6225 // And kernel functions are not subject to inlining 6226 F->addFnAttr(llvm::Attribute::NoInline); 6227 } 6228 } 6229 6230 // Perform special handling in CUDA mode. 6231 if (M.getLangOpts().CUDA) { 6232 // CUDA __global__ functions get a kernel metadata entry. Since 6233 // __global__ functions cannot be called from the device, we do not 6234 // need to set the noinline attribute. 6235 if (FD->hasAttr<CUDAGlobalAttr>()) { 6236 // Create !{<func-ref>, metadata !"kernel", i32 1} node 6237 addNVVMMetadata(F, "kernel", 1); 6238 } 6239 if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) { 6240 // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node 6241 llvm::APSInt MaxThreads(32); 6242 MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext()); 6243 if (MaxThreads > 0) 6244 addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue()); 6245 6246 // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was 6247 // not specified in __launch_bounds__ or if the user specified a 0 value, 6248 // we don't have to add a PTX directive. 6249 if (Attr->getMinBlocks()) { 6250 llvm::APSInt MinBlocks(32); 6251 MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext()); 6252 if (MinBlocks > 0) 6253 // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node 6254 addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue()); 6255 } 6256 } 6257 } 6258 } 6259 6260 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::Function *F, StringRef Name, 6261 int Operand) { 6262 llvm::Module *M = F->getParent(); 6263 llvm::LLVMContext &Ctx = M->getContext(); 6264 6265 // Get "nvvm.annotations" metadata node 6266 llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations"); 6267 6268 llvm::Metadata *MDVals[] = { 6269 llvm::ConstantAsMetadata::get(F), llvm::MDString::get(Ctx, Name), 6270 llvm::ConstantAsMetadata::get( 6271 llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))}; 6272 // Append metadata to nvvm.annotations 6273 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 6274 } 6275 } 6276 6277 //===----------------------------------------------------------------------===// 6278 // SystemZ ABI Implementation 6279 //===----------------------------------------------------------------------===// 6280 6281 namespace { 6282 6283 class SystemZABIInfo : public SwiftABIInfo { 6284 bool HasVector; 6285 6286 public: 6287 SystemZABIInfo(CodeGenTypes &CGT, bool HV) 6288 : SwiftABIInfo(CGT), HasVector(HV) {} 6289 6290 bool isPromotableIntegerType(QualType Ty) const; 6291 bool isCompoundType(QualType Ty) const; 6292 bool isVectorArgumentType(QualType Ty) const; 6293 bool isFPArgumentType(QualType Ty) const; 6294 QualType GetSingleElementType(QualType Ty) const; 6295 6296 ABIArgInfo classifyReturnType(QualType RetTy) const; 6297 ABIArgInfo classifyArgumentType(QualType ArgTy) const; 6298 6299 void computeInfo(CGFunctionInfo &FI) const override { 6300 if (!getCXXABI().classifyReturnType(FI)) 6301 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 6302 for (auto &I : FI.arguments()) 6303 I.info = classifyArgumentType(I.type); 6304 } 6305 6306 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6307 QualType Ty) const override; 6308 6309 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 6310 bool asReturnValue) const override { 6311 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 6312 } 6313 bool isSwiftErrorInRegister() const override { 6314 return false; 6315 } 6316 }; 6317 6318 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo { 6319 public: 6320 SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector) 6321 : TargetCodeGenInfo(new SystemZABIInfo(CGT, HasVector)) {} 6322 }; 6323 6324 } 6325 6326 bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const { 6327 // Treat an enum type as its underlying type. 6328 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 6329 Ty = EnumTy->getDecl()->getIntegerType(); 6330 6331 // Promotable integer types are required to be promoted by the ABI. 6332 if (Ty->isPromotableIntegerType()) 6333 return true; 6334 6335 // 32-bit values must also be promoted. 6336 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 6337 switch (BT->getKind()) { 6338 case BuiltinType::Int: 6339 case BuiltinType::UInt: 6340 return true; 6341 default: 6342 return false; 6343 } 6344 return false; 6345 } 6346 6347 bool SystemZABIInfo::isCompoundType(QualType Ty) const { 6348 return (Ty->isAnyComplexType() || 6349 Ty->isVectorType() || 6350 isAggregateTypeForABI(Ty)); 6351 } 6352 6353 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const { 6354 return (HasVector && 6355 Ty->isVectorType() && 6356 getContext().getTypeSize(Ty) <= 128); 6357 } 6358 6359 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const { 6360 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 6361 switch (BT->getKind()) { 6362 case BuiltinType::Float: 6363 case BuiltinType::Double: 6364 return true; 6365 default: 6366 return false; 6367 } 6368 6369 return false; 6370 } 6371 6372 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const { 6373 if (const RecordType *RT = Ty->getAsStructureType()) { 6374 const RecordDecl *RD = RT->getDecl(); 6375 QualType Found; 6376 6377 // If this is a C++ record, check the bases first. 6378 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 6379 for (const auto &I : CXXRD->bases()) { 6380 QualType Base = I.getType(); 6381 6382 // Empty bases don't affect things either way. 6383 if (isEmptyRecord(getContext(), Base, true)) 6384 continue; 6385 6386 if (!Found.isNull()) 6387 return Ty; 6388 Found = GetSingleElementType(Base); 6389 } 6390 6391 // Check the fields. 6392 for (const auto *FD : RD->fields()) { 6393 // For compatibility with GCC, ignore empty bitfields in C++ mode. 6394 // Unlike isSingleElementStruct(), empty structure and array fields 6395 // do count. So do anonymous bitfields that aren't zero-sized. 6396 if (getContext().getLangOpts().CPlusPlus && 6397 FD->isBitField() && FD->getBitWidthValue(getContext()) == 0) 6398 continue; 6399 6400 // Unlike isSingleElementStruct(), arrays do not count. 6401 // Nested structures still do though. 6402 if (!Found.isNull()) 6403 return Ty; 6404 Found = GetSingleElementType(FD->getType()); 6405 } 6406 6407 // Unlike isSingleElementStruct(), trailing padding is allowed. 6408 // An 8-byte aligned struct s { float f; } is passed as a double. 6409 if (!Found.isNull()) 6410 return Found; 6411 } 6412 6413 return Ty; 6414 } 6415 6416 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6417 QualType Ty) const { 6418 // Assume that va_list type is correct; should be pointer to LLVM type: 6419 // struct { 6420 // i64 __gpr; 6421 // i64 __fpr; 6422 // i8 *__overflow_arg_area; 6423 // i8 *__reg_save_area; 6424 // }; 6425 6426 // Every non-vector argument occupies 8 bytes and is passed by preference 6427 // in either GPRs or FPRs. Vector arguments occupy 8 or 16 bytes and are 6428 // always passed on the stack. 6429 Ty = getContext().getCanonicalType(Ty); 6430 auto TyInfo = getContext().getTypeInfoInChars(Ty); 6431 llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty); 6432 llvm::Type *DirectTy = ArgTy; 6433 ABIArgInfo AI = classifyArgumentType(Ty); 6434 bool IsIndirect = AI.isIndirect(); 6435 bool InFPRs = false; 6436 bool IsVector = false; 6437 CharUnits UnpaddedSize; 6438 CharUnits DirectAlign; 6439 if (IsIndirect) { 6440 DirectTy = llvm::PointerType::getUnqual(DirectTy); 6441 UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8); 6442 } else { 6443 if (AI.getCoerceToType()) 6444 ArgTy = AI.getCoerceToType(); 6445 InFPRs = ArgTy->isFloatTy() || ArgTy->isDoubleTy(); 6446 IsVector = ArgTy->isVectorTy(); 6447 UnpaddedSize = TyInfo.first; 6448 DirectAlign = TyInfo.second; 6449 } 6450 CharUnits PaddedSize = CharUnits::fromQuantity(8); 6451 if (IsVector && UnpaddedSize > PaddedSize) 6452 PaddedSize = CharUnits::fromQuantity(16); 6453 assert((UnpaddedSize <= PaddedSize) && "Invalid argument size."); 6454 6455 CharUnits Padding = (PaddedSize - UnpaddedSize); 6456 6457 llvm::Type *IndexTy = CGF.Int64Ty; 6458 llvm::Value *PaddedSizeV = 6459 llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity()); 6460 6461 if (IsVector) { 6462 // Work out the address of a vector argument on the stack. 6463 // Vector arguments are always passed in the high bits of a 6464 // single (8 byte) or double (16 byte) stack slot. 6465 Address OverflowArgAreaPtr = 6466 CGF.Builder.CreateStructGEP(VAListAddr, 2, CharUnits::fromQuantity(16), 6467 "overflow_arg_area_ptr"); 6468 Address OverflowArgArea = 6469 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 6470 TyInfo.second); 6471 Address MemAddr = 6472 CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr"); 6473 6474 // Update overflow_arg_area_ptr pointer 6475 llvm::Value *NewOverflowArgArea = 6476 CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV, 6477 "overflow_arg_area"); 6478 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 6479 6480 return MemAddr; 6481 } 6482 6483 assert(PaddedSize.getQuantity() == 8); 6484 6485 unsigned MaxRegs, RegCountField, RegSaveIndex; 6486 CharUnits RegPadding; 6487 if (InFPRs) { 6488 MaxRegs = 4; // Maximum of 4 FPR arguments 6489 RegCountField = 1; // __fpr 6490 RegSaveIndex = 16; // save offset for f0 6491 RegPadding = CharUnits(); // floats are passed in the high bits of an FPR 6492 } else { 6493 MaxRegs = 5; // Maximum of 5 GPR arguments 6494 RegCountField = 0; // __gpr 6495 RegSaveIndex = 2; // save offset for r2 6496 RegPadding = Padding; // values are passed in the low bits of a GPR 6497 } 6498 6499 Address RegCountPtr = CGF.Builder.CreateStructGEP( 6500 VAListAddr, RegCountField, RegCountField * CharUnits::fromQuantity(8), 6501 "reg_count_ptr"); 6502 llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count"); 6503 llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs); 6504 llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV, 6505 "fits_in_regs"); 6506 6507 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 6508 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 6509 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 6510 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 6511 6512 // Emit code to load the value if it was passed in registers. 6513 CGF.EmitBlock(InRegBlock); 6514 6515 // Work out the address of an argument register. 6516 llvm::Value *ScaledRegCount = 6517 CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count"); 6518 llvm::Value *RegBase = 6519 llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity() 6520 + RegPadding.getQuantity()); 6521 llvm::Value *RegOffset = 6522 CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset"); 6523 Address RegSaveAreaPtr = 6524 CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(24), 6525 "reg_save_area_ptr"); 6526 llvm::Value *RegSaveArea = 6527 CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area"); 6528 Address RawRegAddr(CGF.Builder.CreateGEP(RegSaveArea, RegOffset, 6529 "raw_reg_addr"), 6530 PaddedSize); 6531 Address RegAddr = 6532 CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr"); 6533 6534 // Update the register count 6535 llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1); 6536 llvm::Value *NewRegCount = 6537 CGF.Builder.CreateAdd(RegCount, One, "reg_count"); 6538 CGF.Builder.CreateStore(NewRegCount, RegCountPtr); 6539 CGF.EmitBranch(ContBlock); 6540 6541 // Emit code to load the value if it was passed in memory. 6542 CGF.EmitBlock(InMemBlock); 6543 6544 // Work out the address of a stack argument. 6545 Address OverflowArgAreaPtr = CGF.Builder.CreateStructGEP( 6546 VAListAddr, 2, CharUnits::fromQuantity(16), "overflow_arg_area_ptr"); 6547 Address OverflowArgArea = 6548 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 6549 PaddedSize); 6550 Address RawMemAddr = 6551 CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr"); 6552 Address MemAddr = 6553 CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr"); 6554 6555 // Update overflow_arg_area_ptr pointer 6556 llvm::Value *NewOverflowArgArea = 6557 CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV, 6558 "overflow_arg_area"); 6559 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 6560 CGF.EmitBranch(ContBlock); 6561 6562 // Return the appropriate result. 6563 CGF.EmitBlock(ContBlock); 6564 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 6565 MemAddr, InMemBlock, "va_arg.addr"); 6566 6567 if (IsIndirect) 6568 ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"), 6569 TyInfo.second); 6570 6571 return ResAddr; 6572 } 6573 6574 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const { 6575 if (RetTy->isVoidType()) 6576 return ABIArgInfo::getIgnore(); 6577 if (isVectorArgumentType(RetTy)) 6578 return ABIArgInfo::getDirect(); 6579 if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64) 6580 return getNaturalAlignIndirect(RetTy); 6581 return (isPromotableIntegerType(RetTy) ? ABIArgInfo::getExtend(RetTy) 6582 : ABIArgInfo::getDirect()); 6583 } 6584 6585 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const { 6586 // Handle the generic C++ ABI. 6587 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 6588 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 6589 6590 // Integers and enums are extended to full register width. 6591 if (isPromotableIntegerType(Ty)) 6592 return ABIArgInfo::getExtend(Ty); 6593 6594 // Handle vector types and vector-like structure types. Note that 6595 // as opposed to float-like structure types, we do not allow any 6596 // padding for vector-like structures, so verify the sizes match. 6597 uint64_t Size = getContext().getTypeSize(Ty); 6598 QualType SingleElementTy = GetSingleElementType(Ty); 6599 if (isVectorArgumentType(SingleElementTy) && 6600 getContext().getTypeSize(SingleElementTy) == Size) 6601 return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy)); 6602 6603 // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly. 6604 if (Size != 8 && Size != 16 && Size != 32 && Size != 64) 6605 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6606 6607 // Handle small structures. 6608 if (const RecordType *RT = Ty->getAs<RecordType>()) { 6609 // Structures with flexible arrays have variable length, so really 6610 // fail the size test above. 6611 const RecordDecl *RD = RT->getDecl(); 6612 if (RD->hasFlexibleArrayMember()) 6613 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6614 6615 // The structure is passed as an unextended integer, a float, or a double. 6616 llvm::Type *PassTy; 6617 if (isFPArgumentType(SingleElementTy)) { 6618 assert(Size == 32 || Size == 64); 6619 if (Size == 32) 6620 PassTy = llvm::Type::getFloatTy(getVMContext()); 6621 else 6622 PassTy = llvm::Type::getDoubleTy(getVMContext()); 6623 } else 6624 PassTy = llvm::IntegerType::get(getVMContext(), Size); 6625 return ABIArgInfo::getDirect(PassTy); 6626 } 6627 6628 // Non-structure compounds are passed indirectly. 6629 if (isCompoundType(Ty)) 6630 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6631 6632 return ABIArgInfo::getDirect(nullptr); 6633 } 6634 6635 //===----------------------------------------------------------------------===// 6636 // MSP430 ABI Implementation 6637 //===----------------------------------------------------------------------===// 6638 6639 namespace { 6640 6641 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo { 6642 public: 6643 MSP430TargetCodeGenInfo(CodeGenTypes &CGT) 6644 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 6645 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6646 CodeGen::CodeGenModule &M, 6647 ForDefinition_t IsForDefinition) const override; 6648 }; 6649 6650 } 6651 6652 void MSP430TargetCodeGenInfo::setTargetAttributes( 6653 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M, 6654 ForDefinition_t IsForDefinition) const { 6655 if (!IsForDefinition) 6656 return; 6657 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 6658 if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) { 6659 // Handle 'interrupt' attribute: 6660 llvm::Function *F = cast<llvm::Function>(GV); 6661 6662 // Step 1: Set ISR calling convention. 6663 F->setCallingConv(llvm::CallingConv::MSP430_INTR); 6664 6665 // Step 2: Add attributes goodness. 6666 F->addFnAttr(llvm::Attribute::NoInline); 6667 6668 // Step 3: Emit ISR vector alias. 6669 unsigned Num = attr->getNumber() / 2; 6670 llvm::GlobalAlias::create(llvm::Function::ExternalLinkage, 6671 "__isr_" + Twine(Num), F); 6672 } 6673 } 6674 } 6675 6676 //===----------------------------------------------------------------------===// 6677 // MIPS ABI Implementation. This works for both little-endian and 6678 // big-endian variants. 6679 //===----------------------------------------------------------------------===// 6680 6681 namespace { 6682 class MipsABIInfo : public ABIInfo { 6683 bool IsO32; 6684 unsigned MinABIStackAlignInBytes, StackAlignInBytes; 6685 void CoerceToIntArgs(uint64_t TySize, 6686 SmallVectorImpl<llvm::Type *> &ArgList) const; 6687 llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const; 6688 llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const; 6689 llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const; 6690 public: 6691 MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) : 6692 ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8), 6693 StackAlignInBytes(IsO32 ? 8 : 16) {} 6694 6695 ABIArgInfo classifyReturnType(QualType RetTy) const; 6696 ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const; 6697 void computeInfo(CGFunctionInfo &FI) const override; 6698 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6699 QualType Ty) const override; 6700 ABIArgInfo extendType(QualType Ty) const; 6701 }; 6702 6703 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo { 6704 unsigned SizeOfUnwindException; 6705 public: 6706 MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32) 6707 : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)), 6708 SizeOfUnwindException(IsO32 ? 24 : 32) {} 6709 6710 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 6711 return 29; 6712 } 6713 6714 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6715 CodeGen::CodeGenModule &CGM, 6716 ForDefinition_t IsForDefinition) const override { 6717 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 6718 if (!FD) return; 6719 llvm::Function *Fn = cast<llvm::Function>(GV); 6720 6721 if (FD->hasAttr<MipsLongCallAttr>()) 6722 Fn->addFnAttr("long-call"); 6723 else if (FD->hasAttr<MipsShortCallAttr>()) 6724 Fn->addFnAttr("short-call"); 6725 6726 // Other attributes do not have a meaning for declarations. 6727 if (!IsForDefinition) 6728 return; 6729 6730 if (FD->hasAttr<Mips16Attr>()) { 6731 Fn->addFnAttr("mips16"); 6732 } 6733 else if (FD->hasAttr<NoMips16Attr>()) { 6734 Fn->addFnAttr("nomips16"); 6735 } 6736 6737 if (FD->hasAttr<MicroMipsAttr>()) 6738 Fn->addFnAttr("micromips"); 6739 else if (FD->hasAttr<NoMicroMipsAttr>()) 6740 Fn->addFnAttr("nomicromips"); 6741 6742 const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>(); 6743 if (!Attr) 6744 return; 6745 6746 const char *Kind; 6747 switch (Attr->getInterrupt()) { 6748 case MipsInterruptAttr::eic: Kind = "eic"; break; 6749 case MipsInterruptAttr::sw0: Kind = "sw0"; break; 6750 case MipsInterruptAttr::sw1: Kind = "sw1"; break; 6751 case MipsInterruptAttr::hw0: Kind = "hw0"; break; 6752 case MipsInterruptAttr::hw1: Kind = "hw1"; break; 6753 case MipsInterruptAttr::hw2: Kind = "hw2"; break; 6754 case MipsInterruptAttr::hw3: Kind = "hw3"; break; 6755 case MipsInterruptAttr::hw4: Kind = "hw4"; break; 6756 case MipsInterruptAttr::hw5: Kind = "hw5"; break; 6757 } 6758 6759 Fn->addFnAttr("interrupt", Kind); 6760 6761 } 6762 6763 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 6764 llvm::Value *Address) const override; 6765 6766 unsigned getSizeOfUnwindException() const override { 6767 return SizeOfUnwindException; 6768 } 6769 }; 6770 } 6771 6772 void MipsABIInfo::CoerceToIntArgs( 6773 uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const { 6774 llvm::IntegerType *IntTy = 6775 llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8); 6776 6777 // Add (TySize / MinABIStackAlignInBytes) args of IntTy. 6778 for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N) 6779 ArgList.push_back(IntTy); 6780 6781 // If necessary, add one more integer type to ArgList. 6782 unsigned R = TySize % (MinABIStackAlignInBytes * 8); 6783 6784 if (R) 6785 ArgList.push_back(llvm::IntegerType::get(getVMContext(), R)); 6786 } 6787 6788 // In N32/64, an aligned double precision floating point field is passed in 6789 // a register. 6790 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const { 6791 SmallVector<llvm::Type*, 8> ArgList, IntArgList; 6792 6793 if (IsO32) { 6794 CoerceToIntArgs(TySize, ArgList); 6795 return llvm::StructType::get(getVMContext(), ArgList); 6796 } 6797 6798 if (Ty->isComplexType()) 6799 return CGT.ConvertType(Ty); 6800 6801 const RecordType *RT = Ty->getAs<RecordType>(); 6802 6803 // Unions/vectors are passed in integer registers. 6804 if (!RT || !RT->isStructureOrClassType()) { 6805 CoerceToIntArgs(TySize, ArgList); 6806 return llvm::StructType::get(getVMContext(), ArgList); 6807 } 6808 6809 const RecordDecl *RD = RT->getDecl(); 6810 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 6811 assert(!(TySize % 8) && "Size of structure must be multiple of 8."); 6812 6813 uint64_t LastOffset = 0; 6814 unsigned idx = 0; 6815 llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64); 6816 6817 // Iterate over fields in the struct/class and check if there are any aligned 6818 // double fields. 6819 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 6820 i != e; ++i, ++idx) { 6821 const QualType Ty = i->getType(); 6822 const BuiltinType *BT = Ty->getAs<BuiltinType>(); 6823 6824 if (!BT || BT->getKind() != BuiltinType::Double) 6825 continue; 6826 6827 uint64_t Offset = Layout.getFieldOffset(idx); 6828 if (Offset % 64) // Ignore doubles that are not aligned. 6829 continue; 6830 6831 // Add ((Offset - LastOffset) / 64) args of type i64. 6832 for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j) 6833 ArgList.push_back(I64); 6834 6835 // Add double type. 6836 ArgList.push_back(llvm::Type::getDoubleTy(getVMContext())); 6837 LastOffset = Offset + 64; 6838 } 6839 6840 CoerceToIntArgs(TySize - LastOffset, IntArgList); 6841 ArgList.append(IntArgList.begin(), IntArgList.end()); 6842 6843 return llvm::StructType::get(getVMContext(), ArgList); 6844 } 6845 6846 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset, 6847 uint64_t Offset) const { 6848 if (OrigOffset + MinABIStackAlignInBytes > Offset) 6849 return nullptr; 6850 6851 return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8); 6852 } 6853 6854 ABIArgInfo 6855 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const { 6856 Ty = useFirstFieldIfTransparentUnion(Ty); 6857 6858 uint64_t OrigOffset = Offset; 6859 uint64_t TySize = getContext().getTypeSize(Ty); 6860 uint64_t Align = getContext().getTypeAlign(Ty) / 8; 6861 6862 Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes), 6863 (uint64_t)StackAlignInBytes); 6864 unsigned CurrOffset = llvm::alignTo(Offset, Align); 6865 Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8; 6866 6867 if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) { 6868 // Ignore empty aggregates. 6869 if (TySize == 0) 6870 return ABIArgInfo::getIgnore(); 6871 6872 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 6873 Offset = OrigOffset + MinABIStackAlignInBytes; 6874 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 6875 } 6876 6877 // If we have reached here, aggregates are passed directly by coercing to 6878 // another structure type. Padding is inserted if the offset of the 6879 // aggregate is unaligned. 6880 ABIArgInfo ArgInfo = 6881 ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0, 6882 getPaddingType(OrigOffset, CurrOffset)); 6883 ArgInfo.setInReg(true); 6884 return ArgInfo; 6885 } 6886 6887 // Treat an enum type as its underlying type. 6888 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 6889 Ty = EnumTy->getDecl()->getIntegerType(); 6890 6891 // All integral types are promoted to the GPR width. 6892 if (Ty->isIntegralOrEnumerationType()) 6893 return extendType(Ty); 6894 6895 return ABIArgInfo::getDirect( 6896 nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset)); 6897 } 6898 6899 llvm::Type* 6900 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const { 6901 const RecordType *RT = RetTy->getAs<RecordType>(); 6902 SmallVector<llvm::Type*, 8> RTList; 6903 6904 if (RT && RT->isStructureOrClassType()) { 6905 const RecordDecl *RD = RT->getDecl(); 6906 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 6907 unsigned FieldCnt = Layout.getFieldCount(); 6908 6909 // N32/64 returns struct/classes in floating point registers if the 6910 // following conditions are met: 6911 // 1. The size of the struct/class is no larger than 128-bit. 6912 // 2. The struct/class has one or two fields all of which are floating 6913 // point types. 6914 // 3. The offset of the first field is zero (this follows what gcc does). 6915 // 6916 // Any other composite results are returned in integer registers. 6917 // 6918 if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) { 6919 RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end(); 6920 for (; b != e; ++b) { 6921 const BuiltinType *BT = b->getType()->getAs<BuiltinType>(); 6922 6923 if (!BT || !BT->isFloatingPoint()) 6924 break; 6925 6926 RTList.push_back(CGT.ConvertType(b->getType())); 6927 } 6928 6929 if (b == e) 6930 return llvm::StructType::get(getVMContext(), RTList, 6931 RD->hasAttr<PackedAttr>()); 6932 6933 RTList.clear(); 6934 } 6935 } 6936 6937 CoerceToIntArgs(Size, RTList); 6938 return llvm::StructType::get(getVMContext(), RTList); 6939 } 6940 6941 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const { 6942 uint64_t Size = getContext().getTypeSize(RetTy); 6943 6944 if (RetTy->isVoidType()) 6945 return ABIArgInfo::getIgnore(); 6946 6947 // O32 doesn't treat zero-sized structs differently from other structs. 6948 // However, N32/N64 ignores zero sized return values. 6949 if (!IsO32 && Size == 0) 6950 return ABIArgInfo::getIgnore(); 6951 6952 if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) { 6953 if (Size <= 128) { 6954 if (RetTy->isAnyComplexType()) 6955 return ABIArgInfo::getDirect(); 6956 6957 // O32 returns integer vectors in registers and N32/N64 returns all small 6958 // aggregates in registers. 6959 if (!IsO32 || 6960 (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) { 6961 ABIArgInfo ArgInfo = 6962 ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size)); 6963 ArgInfo.setInReg(true); 6964 return ArgInfo; 6965 } 6966 } 6967 6968 return getNaturalAlignIndirect(RetTy); 6969 } 6970 6971 // Treat an enum type as its underlying type. 6972 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 6973 RetTy = EnumTy->getDecl()->getIntegerType(); 6974 6975 return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 6976 : ABIArgInfo::getDirect()); 6977 } 6978 6979 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const { 6980 ABIArgInfo &RetInfo = FI.getReturnInfo(); 6981 if (!getCXXABI().classifyReturnType(FI)) 6982 RetInfo = classifyReturnType(FI.getReturnType()); 6983 6984 // Check if a pointer to an aggregate is passed as a hidden argument. 6985 uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0; 6986 6987 for (auto &I : FI.arguments()) 6988 I.info = classifyArgumentType(I.type, Offset); 6989 } 6990 6991 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6992 QualType OrigTy) const { 6993 QualType Ty = OrigTy; 6994 6995 // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64. 6996 // Pointers are also promoted in the same way but this only matters for N32. 6997 unsigned SlotSizeInBits = IsO32 ? 32 : 64; 6998 unsigned PtrWidth = getTarget().getPointerWidth(0); 6999 bool DidPromote = false; 7000 if ((Ty->isIntegerType() && 7001 getContext().getIntWidth(Ty) < SlotSizeInBits) || 7002 (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) { 7003 DidPromote = true; 7004 Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits, 7005 Ty->isSignedIntegerType()); 7006 } 7007 7008 auto TyInfo = getContext().getTypeInfoInChars(Ty); 7009 7010 // The alignment of things in the argument area is never larger than 7011 // StackAlignInBytes. 7012 TyInfo.second = 7013 std::min(TyInfo.second, CharUnits::fromQuantity(StackAlignInBytes)); 7014 7015 // MinABIStackAlignInBytes is the size of argument slots on the stack. 7016 CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes); 7017 7018 Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 7019 TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true); 7020 7021 7022 // If there was a promotion, "unpromote" into a temporary. 7023 // TODO: can we just use a pointer into a subset of the original slot? 7024 if (DidPromote) { 7025 Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp"); 7026 llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr); 7027 7028 // Truncate down to the right width. 7029 llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType() 7030 : CGF.IntPtrTy); 7031 llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy); 7032 if (OrigTy->isPointerType()) 7033 V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType()); 7034 7035 CGF.Builder.CreateStore(V, Temp); 7036 Addr = Temp; 7037 } 7038 7039 return Addr; 7040 } 7041 7042 ABIArgInfo MipsABIInfo::extendType(QualType Ty) const { 7043 int TySize = getContext().getTypeSize(Ty); 7044 7045 // MIPS64 ABI requires unsigned 32 bit integers to be sign extended. 7046 if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 7047 return ABIArgInfo::getSignExtend(Ty); 7048 7049 return ABIArgInfo::getExtend(Ty); 7050 } 7051 7052 bool 7053 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 7054 llvm::Value *Address) const { 7055 // This information comes from gcc's implementation, which seems to 7056 // as canonical as it gets. 7057 7058 // Everything on MIPS is 4 bytes. Double-precision FP registers 7059 // are aliased to pairs of single-precision FP registers. 7060 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 7061 7062 // 0-31 are the general purpose registers, $0 - $31. 7063 // 32-63 are the floating-point registers, $f0 - $f31. 7064 // 64 and 65 are the multiply/divide registers, $hi and $lo. 7065 // 66 is the (notional, I think) register for signal-handler return. 7066 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65); 7067 7068 // 67-74 are the floating-point status registers, $fcc0 - $fcc7. 7069 // They are one bit wide and ignored here. 7070 7071 // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31. 7072 // (coprocessor 1 is the FP unit) 7073 // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31. 7074 // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31. 7075 // 176-181 are the DSP accumulator registers. 7076 AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181); 7077 return false; 7078 } 7079 7080 //===----------------------------------------------------------------------===// 7081 // AVR ABI Implementation. 7082 //===----------------------------------------------------------------------===// 7083 7084 namespace { 7085 class AVRTargetCodeGenInfo : public TargetCodeGenInfo { 7086 public: 7087 AVRTargetCodeGenInfo(CodeGenTypes &CGT) 7088 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) { } 7089 7090 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7091 CodeGen::CodeGenModule &CGM, 7092 ForDefinition_t IsForDefinition) const override { 7093 if (!IsForDefinition) 7094 return; 7095 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 7096 if (!FD) return; 7097 auto *Fn = cast<llvm::Function>(GV); 7098 7099 if (FD->getAttr<AVRInterruptAttr>()) 7100 Fn->addFnAttr("interrupt"); 7101 7102 if (FD->getAttr<AVRSignalAttr>()) 7103 Fn->addFnAttr("signal"); 7104 } 7105 }; 7106 } 7107 7108 //===----------------------------------------------------------------------===// 7109 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults. 7110 // Currently subclassed only to implement custom OpenCL C function attribute 7111 // handling. 7112 //===----------------------------------------------------------------------===// 7113 7114 namespace { 7115 7116 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo { 7117 public: 7118 TCETargetCodeGenInfo(CodeGenTypes &CGT) 7119 : DefaultTargetCodeGenInfo(CGT) {} 7120 7121 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7122 CodeGen::CodeGenModule &M, 7123 ForDefinition_t IsForDefinition) const override; 7124 }; 7125 7126 void TCETargetCodeGenInfo::setTargetAttributes( 7127 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M, 7128 ForDefinition_t IsForDefinition) const { 7129 if (!IsForDefinition) 7130 return; 7131 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 7132 if (!FD) return; 7133 7134 llvm::Function *F = cast<llvm::Function>(GV); 7135 7136 if (M.getLangOpts().OpenCL) { 7137 if (FD->hasAttr<OpenCLKernelAttr>()) { 7138 // OpenCL C Kernel functions are not subject to inlining 7139 F->addFnAttr(llvm::Attribute::NoInline); 7140 const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>(); 7141 if (Attr) { 7142 // Convert the reqd_work_group_size() attributes to metadata. 7143 llvm::LLVMContext &Context = F->getContext(); 7144 llvm::NamedMDNode *OpenCLMetadata = 7145 M.getModule().getOrInsertNamedMetadata( 7146 "opencl.kernel_wg_size_info"); 7147 7148 SmallVector<llvm::Metadata *, 5> Operands; 7149 Operands.push_back(llvm::ConstantAsMetadata::get(F)); 7150 7151 Operands.push_back( 7152 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 7153 M.Int32Ty, llvm::APInt(32, Attr->getXDim())))); 7154 Operands.push_back( 7155 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 7156 M.Int32Ty, llvm::APInt(32, Attr->getYDim())))); 7157 Operands.push_back( 7158 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 7159 M.Int32Ty, llvm::APInt(32, Attr->getZDim())))); 7160 7161 // Add a boolean constant operand for "required" (true) or "hint" 7162 // (false) for implementing the work_group_size_hint attr later. 7163 // Currently always true as the hint is not yet implemented. 7164 Operands.push_back( 7165 llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context))); 7166 OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands)); 7167 } 7168 } 7169 } 7170 } 7171 7172 } 7173 7174 //===----------------------------------------------------------------------===// 7175 // Hexagon ABI Implementation 7176 //===----------------------------------------------------------------------===// 7177 7178 namespace { 7179 7180 class HexagonABIInfo : public ABIInfo { 7181 7182 7183 public: 7184 HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 7185 7186 private: 7187 7188 ABIArgInfo classifyReturnType(QualType RetTy) const; 7189 ABIArgInfo classifyArgumentType(QualType RetTy) const; 7190 7191 void computeInfo(CGFunctionInfo &FI) const override; 7192 7193 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7194 QualType Ty) const override; 7195 }; 7196 7197 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo { 7198 public: 7199 HexagonTargetCodeGenInfo(CodeGenTypes &CGT) 7200 :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {} 7201 7202 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 7203 return 29; 7204 } 7205 }; 7206 7207 } 7208 7209 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const { 7210 if (!getCXXABI().classifyReturnType(FI)) 7211 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7212 for (auto &I : FI.arguments()) 7213 I.info = classifyArgumentType(I.type); 7214 } 7215 7216 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const { 7217 if (!isAggregateTypeForABI(Ty)) { 7218 // Treat an enum type as its underlying type. 7219 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7220 Ty = EnumTy->getDecl()->getIntegerType(); 7221 7222 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 7223 : ABIArgInfo::getDirect()); 7224 } 7225 7226 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 7227 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7228 7229 // Ignore empty records. 7230 if (isEmptyRecord(getContext(), Ty, true)) 7231 return ABIArgInfo::getIgnore(); 7232 7233 uint64_t Size = getContext().getTypeSize(Ty); 7234 if (Size > 64) 7235 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 7236 // Pass in the smallest viable integer type. 7237 else if (Size > 32) 7238 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); 7239 else if (Size > 16) 7240 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 7241 else if (Size > 8) 7242 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 7243 else 7244 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 7245 } 7246 7247 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const { 7248 if (RetTy->isVoidType()) 7249 return ABIArgInfo::getIgnore(); 7250 7251 // Large vector types should be returned via memory. 7252 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64) 7253 return getNaturalAlignIndirect(RetTy); 7254 7255 if (!isAggregateTypeForABI(RetTy)) { 7256 // Treat an enum type as its underlying type. 7257 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 7258 RetTy = EnumTy->getDecl()->getIntegerType(); 7259 7260 return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 7261 : ABIArgInfo::getDirect()); 7262 } 7263 7264 if (isEmptyRecord(getContext(), RetTy, true)) 7265 return ABIArgInfo::getIgnore(); 7266 7267 // Aggregates <= 8 bytes are returned in r0; other aggregates 7268 // are returned indirectly. 7269 uint64_t Size = getContext().getTypeSize(RetTy); 7270 if (Size <= 64) { 7271 // Return in the smallest viable integer type. 7272 if (Size <= 8) 7273 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 7274 if (Size <= 16) 7275 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 7276 if (Size <= 32) 7277 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 7278 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); 7279 } 7280 7281 return getNaturalAlignIndirect(RetTy, /*ByVal=*/true); 7282 } 7283 7284 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7285 QualType Ty) const { 7286 // FIXME: Someone needs to audit that this handle alignment correctly. 7287 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 7288 getContext().getTypeInfoInChars(Ty), 7289 CharUnits::fromQuantity(4), 7290 /*AllowHigherAlign*/ true); 7291 } 7292 7293 //===----------------------------------------------------------------------===// 7294 // Lanai ABI Implementation 7295 //===----------------------------------------------------------------------===// 7296 7297 namespace { 7298 class LanaiABIInfo : public DefaultABIInfo { 7299 public: 7300 LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 7301 7302 bool shouldUseInReg(QualType Ty, CCState &State) const; 7303 7304 void computeInfo(CGFunctionInfo &FI) const override { 7305 CCState State(FI.getCallingConvention()); 7306 // Lanai uses 4 registers to pass arguments unless the function has the 7307 // regparm attribute set. 7308 if (FI.getHasRegParm()) { 7309 State.FreeRegs = FI.getRegParm(); 7310 } else { 7311 State.FreeRegs = 4; 7312 } 7313 7314 if (!getCXXABI().classifyReturnType(FI)) 7315 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7316 for (auto &I : FI.arguments()) 7317 I.info = classifyArgumentType(I.type, State); 7318 } 7319 7320 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 7321 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 7322 }; 7323 } // end anonymous namespace 7324 7325 bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const { 7326 unsigned Size = getContext().getTypeSize(Ty); 7327 unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U; 7328 7329 if (SizeInRegs == 0) 7330 return false; 7331 7332 if (SizeInRegs > State.FreeRegs) { 7333 State.FreeRegs = 0; 7334 return false; 7335 } 7336 7337 State.FreeRegs -= SizeInRegs; 7338 7339 return true; 7340 } 7341 7342 ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal, 7343 CCState &State) const { 7344 if (!ByVal) { 7345 if (State.FreeRegs) { 7346 --State.FreeRegs; // Non-byval indirects just use one pointer. 7347 return getNaturalAlignIndirectInReg(Ty); 7348 } 7349 return getNaturalAlignIndirect(Ty, false); 7350 } 7351 7352 // Compute the byval alignment. 7353 const unsigned MinABIStackAlignInBytes = 4; 7354 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 7355 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true, 7356 /*Realign=*/TypeAlign > 7357 MinABIStackAlignInBytes); 7358 } 7359 7360 ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty, 7361 CCState &State) const { 7362 // Check with the C++ ABI first. 7363 const RecordType *RT = Ty->getAs<RecordType>(); 7364 if (RT) { 7365 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 7366 if (RAA == CGCXXABI::RAA_Indirect) { 7367 return getIndirectResult(Ty, /*ByVal=*/false, State); 7368 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 7369 return getNaturalAlignIndirect(Ty, /*ByRef=*/true); 7370 } 7371 } 7372 7373 if (isAggregateTypeForABI(Ty)) { 7374 // Structures with flexible arrays are always indirect. 7375 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 7376 return getIndirectResult(Ty, /*ByVal=*/true, State); 7377 7378 // Ignore empty structs/unions. 7379 if (isEmptyRecord(getContext(), Ty, true)) 7380 return ABIArgInfo::getIgnore(); 7381 7382 llvm::LLVMContext &LLVMContext = getVMContext(); 7383 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; 7384 if (SizeInRegs <= State.FreeRegs) { 7385 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 7386 SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32); 7387 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 7388 State.FreeRegs -= SizeInRegs; 7389 return ABIArgInfo::getDirectInReg(Result); 7390 } else { 7391 State.FreeRegs = 0; 7392 } 7393 return getIndirectResult(Ty, true, State); 7394 } 7395 7396 // Treat an enum type as its underlying type. 7397 if (const auto *EnumTy = Ty->getAs<EnumType>()) 7398 Ty = EnumTy->getDecl()->getIntegerType(); 7399 7400 bool InReg = shouldUseInReg(Ty, State); 7401 if (Ty->isPromotableIntegerType()) { 7402 if (InReg) 7403 return ABIArgInfo::getDirectInReg(); 7404 return ABIArgInfo::getExtend(Ty); 7405 } 7406 if (InReg) 7407 return ABIArgInfo::getDirectInReg(); 7408 return ABIArgInfo::getDirect(); 7409 } 7410 7411 namespace { 7412 class LanaiTargetCodeGenInfo : public TargetCodeGenInfo { 7413 public: 7414 LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 7415 : TargetCodeGenInfo(new LanaiABIInfo(CGT)) {} 7416 }; 7417 } 7418 7419 //===----------------------------------------------------------------------===// 7420 // AMDGPU ABI Implementation 7421 //===----------------------------------------------------------------------===// 7422 7423 namespace { 7424 7425 class AMDGPUABIInfo final : public DefaultABIInfo { 7426 private: 7427 static const unsigned MaxNumRegsForArgsRet = 16; 7428 7429 unsigned numRegsForType(QualType Ty) const; 7430 7431 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 7432 bool isHomogeneousAggregateSmallEnough(const Type *Base, 7433 uint64_t Members) const override; 7434 7435 public: 7436 explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) : 7437 DefaultABIInfo(CGT) {} 7438 7439 ABIArgInfo classifyReturnType(QualType RetTy) const; 7440 ABIArgInfo classifyKernelArgumentType(QualType Ty) const; 7441 ABIArgInfo classifyArgumentType(QualType Ty, unsigned &NumRegsLeft) const; 7442 7443 void computeInfo(CGFunctionInfo &FI) const override; 7444 }; 7445 7446 bool AMDGPUABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 7447 return true; 7448 } 7449 7450 bool AMDGPUABIInfo::isHomogeneousAggregateSmallEnough( 7451 const Type *Base, uint64_t Members) const { 7452 uint32_t NumRegs = (getContext().getTypeSize(Base) + 31) / 32; 7453 7454 // Homogeneous Aggregates may occupy at most 16 registers. 7455 return Members * NumRegs <= MaxNumRegsForArgsRet; 7456 } 7457 7458 /// Estimate number of registers the type will use when passed in registers. 7459 unsigned AMDGPUABIInfo::numRegsForType(QualType Ty) const { 7460 unsigned NumRegs = 0; 7461 7462 if (const VectorType *VT = Ty->getAs<VectorType>()) { 7463 // Compute from the number of elements. The reported size is based on the 7464 // in-memory size, which includes the padding 4th element for 3-vectors. 7465 QualType EltTy = VT->getElementType(); 7466 unsigned EltSize = getContext().getTypeSize(EltTy); 7467 7468 // 16-bit element vectors should be passed as packed. 7469 if (EltSize == 16) 7470 return (VT->getNumElements() + 1) / 2; 7471 7472 unsigned EltNumRegs = (EltSize + 31) / 32; 7473 return EltNumRegs * VT->getNumElements(); 7474 } 7475 7476 if (const RecordType *RT = Ty->getAs<RecordType>()) { 7477 const RecordDecl *RD = RT->getDecl(); 7478 assert(!RD->hasFlexibleArrayMember()); 7479 7480 for (const FieldDecl *Field : RD->fields()) { 7481 QualType FieldTy = Field->getType(); 7482 NumRegs += numRegsForType(FieldTy); 7483 } 7484 7485 return NumRegs; 7486 } 7487 7488 return (getContext().getTypeSize(Ty) + 31) / 32; 7489 } 7490 7491 void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const { 7492 llvm::CallingConv::ID CC = FI.getCallingConvention(); 7493 7494 if (!getCXXABI().classifyReturnType(FI)) 7495 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7496 7497 unsigned NumRegsLeft = MaxNumRegsForArgsRet; 7498 for (auto &Arg : FI.arguments()) { 7499 if (CC == llvm::CallingConv::AMDGPU_KERNEL) { 7500 Arg.info = classifyKernelArgumentType(Arg.type); 7501 } else { 7502 Arg.info = classifyArgumentType(Arg.type, NumRegsLeft); 7503 } 7504 } 7505 } 7506 7507 ABIArgInfo AMDGPUABIInfo::classifyReturnType(QualType RetTy) const { 7508 if (isAggregateTypeForABI(RetTy)) { 7509 // Records with non-trivial destructors/copy-constructors should not be 7510 // returned by value. 7511 if (!getRecordArgABI(RetTy, getCXXABI())) { 7512 // Ignore empty structs/unions. 7513 if (isEmptyRecord(getContext(), RetTy, true)) 7514 return ABIArgInfo::getIgnore(); 7515 7516 // Lower single-element structs to just return a regular value. 7517 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 7518 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 7519 7520 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 7521 const RecordDecl *RD = RT->getDecl(); 7522 if (RD->hasFlexibleArrayMember()) 7523 return DefaultABIInfo::classifyReturnType(RetTy); 7524 } 7525 7526 // Pack aggregates <= 4 bytes into single VGPR or pair. 7527 uint64_t Size = getContext().getTypeSize(RetTy); 7528 if (Size <= 16) 7529 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 7530 7531 if (Size <= 32) 7532 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 7533 7534 if (Size <= 64) { 7535 llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext()); 7536 return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2)); 7537 } 7538 7539 if (numRegsForType(RetTy) <= MaxNumRegsForArgsRet) 7540 return ABIArgInfo::getDirect(); 7541 } 7542 } 7543 7544 // Otherwise just do the default thing. 7545 return DefaultABIInfo::classifyReturnType(RetTy); 7546 } 7547 7548 /// For kernels all parameters are really passed in a special buffer. It doesn't 7549 /// make sense to pass anything byval, so everything must be direct. 7550 ABIArgInfo AMDGPUABIInfo::classifyKernelArgumentType(QualType Ty) const { 7551 Ty = useFirstFieldIfTransparentUnion(Ty); 7552 7553 // TODO: Can we omit empty structs? 7554 7555 // Coerce single element structs to its element. 7556 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 7557 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 7558 7559 // If we set CanBeFlattened to true, CodeGen will expand the struct to its 7560 // individual elements, which confuses the Clover OpenCL backend; therefore we 7561 // have to set it to false here. Other args of getDirect() are just defaults. 7562 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); 7563 } 7564 7565 ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty, 7566 unsigned &NumRegsLeft) const { 7567 assert(NumRegsLeft <= MaxNumRegsForArgsRet && "register estimate underflow"); 7568 7569 Ty = useFirstFieldIfTransparentUnion(Ty); 7570 7571 if (isAggregateTypeForABI(Ty)) { 7572 // Records with non-trivial destructors/copy-constructors should not be 7573 // passed by value. 7574 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 7575 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7576 7577 // Ignore empty structs/unions. 7578 if (isEmptyRecord(getContext(), Ty, true)) 7579 return ABIArgInfo::getIgnore(); 7580 7581 // Lower single-element structs to just pass a regular value. TODO: We 7582 // could do reasonable-size multiple-element structs too, using getExpand(), 7583 // though watch out for things like bitfields. 7584 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 7585 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 7586 7587 if (const RecordType *RT = Ty->getAs<RecordType>()) { 7588 const RecordDecl *RD = RT->getDecl(); 7589 if (RD->hasFlexibleArrayMember()) 7590 return DefaultABIInfo::classifyArgumentType(Ty); 7591 } 7592 7593 // Pack aggregates <= 8 bytes into single VGPR or pair. 7594 uint64_t Size = getContext().getTypeSize(Ty); 7595 if (Size <= 64) { 7596 unsigned NumRegs = (Size + 31) / 32; 7597 NumRegsLeft -= std::min(NumRegsLeft, NumRegs); 7598 7599 if (Size <= 16) 7600 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 7601 7602 if (Size <= 32) 7603 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 7604 7605 // XXX: Should this be i64 instead, and should the limit increase? 7606 llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext()); 7607 return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2)); 7608 } 7609 7610 if (NumRegsLeft > 0) { 7611 unsigned NumRegs = numRegsForType(Ty); 7612 if (NumRegsLeft >= NumRegs) { 7613 NumRegsLeft -= NumRegs; 7614 return ABIArgInfo::getDirect(); 7615 } 7616 } 7617 } 7618 7619 // Otherwise just do the default thing. 7620 ABIArgInfo ArgInfo = DefaultABIInfo::classifyArgumentType(Ty); 7621 if (!ArgInfo.isIndirect()) { 7622 unsigned NumRegs = numRegsForType(Ty); 7623 NumRegsLeft -= std::min(NumRegs, NumRegsLeft); 7624 } 7625 7626 return ArgInfo; 7627 } 7628 7629 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo { 7630 public: 7631 AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT) 7632 : TargetCodeGenInfo(new AMDGPUABIInfo(CGT)) {} 7633 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7634 CodeGen::CodeGenModule &M, 7635 ForDefinition_t IsForDefinition) const override; 7636 unsigned getOpenCLKernelCallingConv() const override; 7637 7638 llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM, 7639 llvm::PointerType *T, QualType QT) const override; 7640 7641 LangAS getASTAllocaAddressSpace() const override { 7642 return getLangASFromTargetAS( 7643 getABIInfo().getDataLayout().getAllocaAddrSpace()); 7644 } 7645 LangAS getGlobalVarAddressSpace(CodeGenModule &CGM, 7646 const VarDecl *D) const override; 7647 llvm::SyncScope::ID getLLVMSyncScopeID(SyncScope S, 7648 llvm::LLVMContext &C) const override; 7649 llvm::Function * 7650 createEnqueuedBlockKernel(CodeGenFunction &CGF, 7651 llvm::Function *BlockInvokeFunc, 7652 llvm::Value *BlockLiteral) const override; 7653 }; 7654 } 7655 7656 void AMDGPUTargetCodeGenInfo::setTargetAttributes( 7657 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M, 7658 ForDefinition_t IsForDefinition) const { 7659 if (!IsForDefinition) 7660 return; 7661 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 7662 if (!FD) 7663 return; 7664 7665 llvm::Function *F = cast<llvm::Function>(GV); 7666 7667 const auto *ReqdWGS = M.getLangOpts().OpenCL ? 7668 FD->getAttr<ReqdWorkGroupSizeAttr>() : nullptr; 7669 const auto *FlatWGS = FD->getAttr<AMDGPUFlatWorkGroupSizeAttr>(); 7670 if (ReqdWGS || FlatWGS) { 7671 unsigned Min = FlatWGS ? FlatWGS->getMin() : 0; 7672 unsigned Max = FlatWGS ? FlatWGS->getMax() : 0; 7673 if (ReqdWGS && Min == 0 && Max == 0) 7674 Min = Max = ReqdWGS->getXDim() * ReqdWGS->getYDim() * ReqdWGS->getZDim(); 7675 7676 if (Min != 0) { 7677 assert(Min <= Max && "Min must be less than or equal Max"); 7678 7679 std::string AttrVal = llvm::utostr(Min) + "," + llvm::utostr(Max); 7680 F->addFnAttr("amdgpu-flat-work-group-size", AttrVal); 7681 } else 7682 assert(Max == 0 && "Max must be zero"); 7683 } 7684 7685 if (const auto *Attr = FD->getAttr<AMDGPUWavesPerEUAttr>()) { 7686 unsigned Min = Attr->getMin(); 7687 unsigned Max = Attr->getMax(); 7688 7689 if (Min != 0) { 7690 assert((Max == 0 || Min <= Max) && "Min must be less than or equal Max"); 7691 7692 std::string AttrVal = llvm::utostr(Min); 7693 if (Max != 0) 7694 AttrVal = AttrVal + "," + llvm::utostr(Max); 7695 F->addFnAttr("amdgpu-waves-per-eu", AttrVal); 7696 } else 7697 assert(Max == 0 && "Max must be zero"); 7698 } 7699 7700 if (const auto *Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) { 7701 unsigned NumSGPR = Attr->getNumSGPR(); 7702 7703 if (NumSGPR != 0) 7704 F->addFnAttr("amdgpu-num-sgpr", llvm::utostr(NumSGPR)); 7705 } 7706 7707 if (const auto *Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) { 7708 uint32_t NumVGPR = Attr->getNumVGPR(); 7709 7710 if (NumVGPR != 0) 7711 F->addFnAttr("amdgpu-num-vgpr", llvm::utostr(NumVGPR)); 7712 } 7713 } 7714 7715 unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 7716 return llvm::CallingConv::AMDGPU_KERNEL; 7717 } 7718 7719 // Currently LLVM assumes null pointers always have value 0, 7720 // which results in incorrectly transformed IR. Therefore, instead of 7721 // emitting null pointers in private and local address spaces, a null 7722 // pointer in generic address space is emitted which is casted to a 7723 // pointer in local or private address space. 7724 llvm::Constant *AMDGPUTargetCodeGenInfo::getNullPointer( 7725 const CodeGen::CodeGenModule &CGM, llvm::PointerType *PT, 7726 QualType QT) const { 7727 if (CGM.getContext().getTargetNullPointerValue(QT) == 0) 7728 return llvm::ConstantPointerNull::get(PT); 7729 7730 auto &Ctx = CGM.getContext(); 7731 auto NPT = llvm::PointerType::get(PT->getElementType(), 7732 Ctx.getTargetAddressSpace(LangAS::opencl_generic)); 7733 return llvm::ConstantExpr::getAddrSpaceCast( 7734 llvm::ConstantPointerNull::get(NPT), PT); 7735 } 7736 7737 LangAS 7738 AMDGPUTargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM, 7739 const VarDecl *D) const { 7740 assert(!CGM.getLangOpts().OpenCL && 7741 !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && 7742 "Address space agnostic languages only"); 7743 LangAS DefaultGlobalAS = getLangASFromTargetAS( 7744 CGM.getContext().getTargetAddressSpace(LangAS::opencl_global)); 7745 if (!D) 7746 return DefaultGlobalAS; 7747 7748 LangAS AddrSpace = D->getType().getAddressSpace(); 7749 assert(AddrSpace == LangAS::Default || isTargetAddressSpace(AddrSpace)); 7750 if (AddrSpace != LangAS::Default) 7751 return AddrSpace; 7752 7753 if (CGM.isTypeConstant(D->getType(), false)) { 7754 if (auto ConstAS = CGM.getTarget().getConstantAddressSpace()) 7755 return ConstAS.getValue(); 7756 } 7757 return DefaultGlobalAS; 7758 } 7759 7760 llvm::SyncScope::ID 7761 AMDGPUTargetCodeGenInfo::getLLVMSyncScopeID(SyncScope S, 7762 llvm::LLVMContext &C) const { 7763 StringRef Name; 7764 switch (S) { 7765 case SyncScope::OpenCLWorkGroup: 7766 Name = "workgroup"; 7767 break; 7768 case SyncScope::OpenCLDevice: 7769 Name = "agent"; 7770 break; 7771 case SyncScope::OpenCLAllSVMDevices: 7772 Name = ""; 7773 break; 7774 case SyncScope::OpenCLSubGroup: 7775 Name = "subgroup"; 7776 } 7777 return C.getOrInsertSyncScopeID(Name); 7778 } 7779 7780 //===----------------------------------------------------------------------===// 7781 // SPARC v8 ABI Implementation. 7782 // Based on the SPARC Compliance Definition version 2.4.1. 7783 // 7784 // Ensures that complex values are passed in registers. 7785 // 7786 namespace { 7787 class SparcV8ABIInfo : public DefaultABIInfo { 7788 public: 7789 SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 7790 7791 private: 7792 ABIArgInfo classifyReturnType(QualType RetTy) const; 7793 void computeInfo(CGFunctionInfo &FI) const override; 7794 }; 7795 } // end anonymous namespace 7796 7797 7798 ABIArgInfo 7799 SparcV8ABIInfo::classifyReturnType(QualType Ty) const { 7800 if (Ty->isAnyComplexType()) { 7801 return ABIArgInfo::getDirect(); 7802 } 7803 else { 7804 return DefaultABIInfo::classifyReturnType(Ty); 7805 } 7806 } 7807 7808 void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const { 7809 7810 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7811 for (auto &Arg : FI.arguments()) 7812 Arg.info = classifyArgumentType(Arg.type); 7813 } 7814 7815 namespace { 7816 class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo { 7817 public: 7818 SparcV8TargetCodeGenInfo(CodeGenTypes &CGT) 7819 : TargetCodeGenInfo(new SparcV8ABIInfo(CGT)) {} 7820 }; 7821 } // end anonymous namespace 7822 7823 //===----------------------------------------------------------------------===// 7824 // SPARC v9 ABI Implementation. 7825 // Based on the SPARC Compliance Definition version 2.4.1. 7826 // 7827 // Function arguments a mapped to a nominal "parameter array" and promoted to 7828 // registers depending on their type. Each argument occupies 8 or 16 bytes in 7829 // the array, structs larger than 16 bytes are passed indirectly. 7830 // 7831 // One case requires special care: 7832 // 7833 // struct mixed { 7834 // int i; 7835 // float f; 7836 // }; 7837 // 7838 // When a struct mixed is passed by value, it only occupies 8 bytes in the 7839 // parameter array, but the int is passed in an integer register, and the float 7840 // is passed in a floating point register. This is represented as two arguments 7841 // with the LLVM IR inreg attribute: 7842 // 7843 // declare void f(i32 inreg %i, float inreg %f) 7844 // 7845 // The code generator will only allocate 4 bytes from the parameter array for 7846 // the inreg arguments. All other arguments are allocated a multiple of 8 7847 // bytes. 7848 // 7849 namespace { 7850 class SparcV9ABIInfo : public ABIInfo { 7851 public: 7852 SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 7853 7854 private: 7855 ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const; 7856 void computeInfo(CGFunctionInfo &FI) const override; 7857 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7858 QualType Ty) const override; 7859 7860 // Coercion type builder for structs passed in registers. The coercion type 7861 // serves two purposes: 7862 // 7863 // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned' 7864 // in registers. 7865 // 2. Expose aligned floating point elements as first-level elements, so the 7866 // code generator knows to pass them in floating point registers. 7867 // 7868 // We also compute the InReg flag which indicates that the struct contains 7869 // aligned 32-bit floats. 7870 // 7871 struct CoerceBuilder { 7872 llvm::LLVMContext &Context; 7873 const llvm::DataLayout &DL; 7874 SmallVector<llvm::Type*, 8> Elems; 7875 uint64_t Size; 7876 bool InReg; 7877 7878 CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl) 7879 : Context(c), DL(dl), Size(0), InReg(false) {} 7880 7881 // Pad Elems with integers until Size is ToSize. 7882 void pad(uint64_t ToSize) { 7883 assert(ToSize >= Size && "Cannot remove elements"); 7884 if (ToSize == Size) 7885 return; 7886 7887 // Finish the current 64-bit word. 7888 uint64_t Aligned = llvm::alignTo(Size, 64); 7889 if (Aligned > Size && Aligned <= ToSize) { 7890 Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size)); 7891 Size = Aligned; 7892 } 7893 7894 // Add whole 64-bit words. 7895 while (Size + 64 <= ToSize) { 7896 Elems.push_back(llvm::Type::getInt64Ty(Context)); 7897 Size += 64; 7898 } 7899 7900 // Final in-word padding. 7901 if (Size < ToSize) { 7902 Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size)); 7903 Size = ToSize; 7904 } 7905 } 7906 7907 // Add a floating point element at Offset. 7908 void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) { 7909 // Unaligned floats are treated as integers. 7910 if (Offset % Bits) 7911 return; 7912 // The InReg flag is only required if there are any floats < 64 bits. 7913 if (Bits < 64) 7914 InReg = true; 7915 pad(Offset); 7916 Elems.push_back(Ty); 7917 Size = Offset + Bits; 7918 } 7919 7920 // Add a struct type to the coercion type, starting at Offset (in bits). 7921 void addStruct(uint64_t Offset, llvm::StructType *StrTy) { 7922 const llvm::StructLayout *Layout = DL.getStructLayout(StrTy); 7923 for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) { 7924 llvm::Type *ElemTy = StrTy->getElementType(i); 7925 uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i); 7926 switch (ElemTy->getTypeID()) { 7927 case llvm::Type::StructTyID: 7928 addStruct(ElemOffset, cast<llvm::StructType>(ElemTy)); 7929 break; 7930 case llvm::Type::FloatTyID: 7931 addFloat(ElemOffset, ElemTy, 32); 7932 break; 7933 case llvm::Type::DoubleTyID: 7934 addFloat(ElemOffset, ElemTy, 64); 7935 break; 7936 case llvm::Type::FP128TyID: 7937 addFloat(ElemOffset, ElemTy, 128); 7938 break; 7939 case llvm::Type::PointerTyID: 7940 if (ElemOffset % 64 == 0) { 7941 pad(ElemOffset); 7942 Elems.push_back(ElemTy); 7943 Size += 64; 7944 } 7945 break; 7946 default: 7947 break; 7948 } 7949 } 7950 } 7951 7952 // Check if Ty is a usable substitute for the coercion type. 7953 bool isUsableType(llvm::StructType *Ty) const { 7954 return llvm::makeArrayRef(Elems) == Ty->elements(); 7955 } 7956 7957 // Get the coercion type as a literal struct type. 7958 llvm::Type *getType() const { 7959 if (Elems.size() == 1) 7960 return Elems.front(); 7961 else 7962 return llvm::StructType::get(Context, Elems); 7963 } 7964 }; 7965 }; 7966 } // end anonymous namespace 7967 7968 ABIArgInfo 7969 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const { 7970 if (Ty->isVoidType()) 7971 return ABIArgInfo::getIgnore(); 7972 7973 uint64_t Size = getContext().getTypeSize(Ty); 7974 7975 // Anything too big to fit in registers is passed with an explicit indirect 7976 // pointer / sret pointer. 7977 if (Size > SizeLimit) 7978 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 7979 7980 // Treat an enum type as its underlying type. 7981 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7982 Ty = EnumTy->getDecl()->getIntegerType(); 7983 7984 // Integer types smaller than a register are extended. 7985 if (Size < 64 && Ty->isIntegerType()) 7986 return ABIArgInfo::getExtend(Ty); 7987 7988 // Other non-aggregates go in registers. 7989 if (!isAggregateTypeForABI(Ty)) 7990 return ABIArgInfo::getDirect(); 7991 7992 // If a C++ object has either a non-trivial copy constructor or a non-trivial 7993 // destructor, it is passed with an explicit indirect pointer / sret pointer. 7994 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 7995 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7996 7997 // This is a small aggregate type that should be passed in registers. 7998 // Build a coercion type from the LLVM struct type. 7999 llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty)); 8000 if (!StrTy) 8001 return ABIArgInfo::getDirect(); 8002 8003 CoerceBuilder CB(getVMContext(), getDataLayout()); 8004 CB.addStruct(0, StrTy); 8005 CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64)); 8006 8007 // Try to use the original type for coercion. 8008 llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType(); 8009 8010 if (CB.InReg) 8011 return ABIArgInfo::getDirectInReg(CoerceTy); 8012 else 8013 return ABIArgInfo::getDirect(CoerceTy); 8014 } 8015 8016 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8017 QualType Ty) const { 8018 ABIArgInfo AI = classifyType(Ty, 16 * 8); 8019 llvm::Type *ArgTy = CGT.ConvertType(Ty); 8020 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 8021 AI.setCoerceToType(ArgTy); 8022 8023 CharUnits SlotSize = CharUnits::fromQuantity(8); 8024 8025 CGBuilderTy &Builder = CGF.Builder; 8026 Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 8027 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 8028 8029 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 8030 8031 Address ArgAddr = Address::invalid(); 8032 CharUnits Stride; 8033 switch (AI.getKind()) { 8034 case ABIArgInfo::Expand: 8035 case ABIArgInfo::CoerceAndExpand: 8036 case ABIArgInfo::InAlloca: 8037 llvm_unreachable("Unsupported ABI kind for va_arg"); 8038 8039 case ABIArgInfo::Extend: { 8040 Stride = SlotSize; 8041 CharUnits Offset = SlotSize - TypeInfo.first; 8042 ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend"); 8043 break; 8044 } 8045 8046 case ABIArgInfo::Direct: { 8047 auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType()); 8048 Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize); 8049 ArgAddr = Addr; 8050 break; 8051 } 8052 8053 case ABIArgInfo::Indirect: 8054 Stride = SlotSize; 8055 ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect"); 8056 ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"), 8057 TypeInfo.second); 8058 break; 8059 8060 case ABIArgInfo::Ignore: 8061 return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.second); 8062 } 8063 8064 // Update VAList. 8065 llvm::Value *NextPtr = 8066 Builder.CreateConstInBoundsByteGEP(Addr.getPointer(), Stride, "ap.next"); 8067 Builder.CreateStore(NextPtr, VAListAddr); 8068 8069 return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr"); 8070 } 8071 8072 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const { 8073 FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8); 8074 for (auto &I : FI.arguments()) 8075 I.info = classifyType(I.type, 16 * 8); 8076 } 8077 8078 namespace { 8079 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo { 8080 public: 8081 SparcV9TargetCodeGenInfo(CodeGenTypes &CGT) 8082 : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {} 8083 8084 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 8085 return 14; 8086 } 8087 8088 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 8089 llvm::Value *Address) const override; 8090 }; 8091 } // end anonymous namespace 8092 8093 bool 8094 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 8095 llvm::Value *Address) const { 8096 // This is calculated from the LLVM and GCC tables and verified 8097 // against gcc output. AFAIK all ABIs use the same encoding. 8098 8099 CodeGen::CGBuilderTy &Builder = CGF.Builder; 8100 8101 llvm::IntegerType *i8 = CGF.Int8Ty; 8102 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 8103 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 8104 8105 // 0-31: the 8-byte general-purpose registers 8106 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 8107 8108 // 32-63: f0-31, the 4-byte floating-point registers 8109 AssignToArrayRange(Builder, Address, Four8, 32, 63); 8110 8111 // Y = 64 8112 // PSR = 65 8113 // WIM = 66 8114 // TBR = 67 8115 // PC = 68 8116 // NPC = 69 8117 // FSR = 70 8118 // CSR = 71 8119 AssignToArrayRange(Builder, Address, Eight8, 64, 71); 8120 8121 // 72-87: d0-15, the 8-byte floating-point registers 8122 AssignToArrayRange(Builder, Address, Eight8, 72, 87); 8123 8124 return false; 8125 } 8126 8127 8128 //===----------------------------------------------------------------------===// 8129 // XCore ABI Implementation 8130 //===----------------------------------------------------------------------===// 8131 8132 namespace { 8133 8134 /// A SmallStringEnc instance is used to build up the TypeString by passing 8135 /// it by reference between functions that append to it. 8136 typedef llvm::SmallString<128> SmallStringEnc; 8137 8138 /// TypeStringCache caches the meta encodings of Types. 8139 /// 8140 /// The reason for caching TypeStrings is two fold: 8141 /// 1. To cache a type's encoding for later uses; 8142 /// 2. As a means to break recursive member type inclusion. 8143 /// 8144 /// A cache Entry can have a Status of: 8145 /// NonRecursive: The type encoding is not recursive; 8146 /// Recursive: The type encoding is recursive; 8147 /// Incomplete: An incomplete TypeString; 8148 /// IncompleteUsed: An incomplete TypeString that has been used in a 8149 /// Recursive type encoding. 8150 /// 8151 /// A NonRecursive entry will have all of its sub-members expanded as fully 8152 /// as possible. Whilst it may contain types which are recursive, the type 8153 /// itself is not recursive and thus its encoding may be safely used whenever 8154 /// the type is encountered. 8155 /// 8156 /// A Recursive entry will have all of its sub-members expanded as fully as 8157 /// possible. The type itself is recursive and it may contain other types which 8158 /// are recursive. The Recursive encoding must not be used during the expansion 8159 /// of a recursive type's recursive branch. For simplicity the code uses 8160 /// IncompleteCount to reject all usage of Recursive encodings for member types. 8161 /// 8162 /// An Incomplete entry is always a RecordType and only encodes its 8163 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and 8164 /// are placed into the cache during type expansion as a means to identify and 8165 /// handle recursive inclusion of types as sub-members. If there is recursion 8166 /// the entry becomes IncompleteUsed. 8167 /// 8168 /// During the expansion of a RecordType's members: 8169 /// 8170 /// If the cache contains a NonRecursive encoding for the member type, the 8171 /// cached encoding is used; 8172 /// 8173 /// If the cache contains a Recursive encoding for the member type, the 8174 /// cached encoding is 'Swapped' out, as it may be incorrect, and... 8175 /// 8176 /// If the member is a RecordType, an Incomplete encoding is placed into the 8177 /// cache to break potential recursive inclusion of itself as a sub-member; 8178 /// 8179 /// Once a member RecordType has been expanded, its temporary incomplete 8180 /// entry is removed from the cache. If a Recursive encoding was swapped out 8181 /// it is swapped back in; 8182 /// 8183 /// If an incomplete entry is used to expand a sub-member, the incomplete 8184 /// entry is marked as IncompleteUsed. The cache keeps count of how many 8185 /// IncompleteUsed entries it currently contains in IncompleteUsedCount; 8186 /// 8187 /// If a member's encoding is found to be a NonRecursive or Recursive viz: 8188 /// IncompleteUsedCount==0, the member's encoding is added to the cache. 8189 /// Else the member is part of a recursive type and thus the recursion has 8190 /// been exited too soon for the encoding to be correct for the member. 8191 /// 8192 class TypeStringCache { 8193 enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed}; 8194 struct Entry { 8195 std::string Str; // The encoded TypeString for the type. 8196 enum Status State; // Information about the encoding in 'Str'. 8197 std::string Swapped; // A temporary place holder for a Recursive encoding 8198 // during the expansion of RecordType's members. 8199 }; 8200 std::map<const IdentifierInfo *, struct Entry> Map; 8201 unsigned IncompleteCount; // Number of Incomplete entries in the Map. 8202 unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map. 8203 public: 8204 TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {} 8205 void addIncomplete(const IdentifierInfo *ID, std::string StubEnc); 8206 bool removeIncomplete(const IdentifierInfo *ID); 8207 void addIfComplete(const IdentifierInfo *ID, StringRef Str, 8208 bool IsRecursive); 8209 StringRef lookupStr(const IdentifierInfo *ID); 8210 }; 8211 8212 /// TypeString encodings for enum & union fields must be order. 8213 /// FieldEncoding is a helper for this ordering process. 8214 class FieldEncoding { 8215 bool HasName; 8216 std::string Enc; 8217 public: 8218 FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {} 8219 StringRef str() { return Enc; } 8220 bool operator<(const FieldEncoding &rhs) const { 8221 if (HasName != rhs.HasName) return HasName; 8222 return Enc < rhs.Enc; 8223 } 8224 }; 8225 8226 class XCoreABIInfo : public DefaultABIInfo { 8227 public: 8228 XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 8229 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8230 QualType Ty) const override; 8231 }; 8232 8233 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo { 8234 mutable TypeStringCache TSC; 8235 public: 8236 XCoreTargetCodeGenInfo(CodeGenTypes &CGT) 8237 :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {} 8238 void emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 8239 CodeGen::CodeGenModule &M) const override; 8240 }; 8241 8242 } // End anonymous namespace. 8243 8244 // TODO: this implementation is likely now redundant with the default 8245 // EmitVAArg. 8246 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8247 QualType Ty) const { 8248 CGBuilderTy &Builder = CGF.Builder; 8249 8250 // Get the VAList. 8251 CharUnits SlotSize = CharUnits::fromQuantity(4); 8252 Address AP(Builder.CreateLoad(VAListAddr), SlotSize); 8253 8254 // Handle the argument. 8255 ABIArgInfo AI = classifyArgumentType(Ty); 8256 CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty); 8257 llvm::Type *ArgTy = CGT.ConvertType(Ty); 8258 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 8259 AI.setCoerceToType(ArgTy); 8260 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 8261 8262 Address Val = Address::invalid(); 8263 CharUnits ArgSize = CharUnits::Zero(); 8264 switch (AI.getKind()) { 8265 case ABIArgInfo::Expand: 8266 case ABIArgInfo::CoerceAndExpand: 8267 case ABIArgInfo::InAlloca: 8268 llvm_unreachable("Unsupported ABI kind for va_arg"); 8269 case ABIArgInfo::Ignore: 8270 Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign); 8271 ArgSize = CharUnits::Zero(); 8272 break; 8273 case ABIArgInfo::Extend: 8274 case ABIArgInfo::Direct: 8275 Val = Builder.CreateBitCast(AP, ArgPtrTy); 8276 ArgSize = CharUnits::fromQuantity( 8277 getDataLayout().getTypeAllocSize(AI.getCoerceToType())); 8278 ArgSize = ArgSize.alignTo(SlotSize); 8279 break; 8280 case ABIArgInfo::Indirect: 8281 Val = Builder.CreateElementBitCast(AP, ArgPtrTy); 8282 Val = Address(Builder.CreateLoad(Val), TypeAlign); 8283 ArgSize = SlotSize; 8284 break; 8285 } 8286 8287 // Increment the VAList. 8288 if (!ArgSize.isZero()) { 8289 llvm::Value *APN = 8290 Builder.CreateConstInBoundsByteGEP(AP.getPointer(), ArgSize); 8291 Builder.CreateStore(APN, VAListAddr); 8292 } 8293 8294 return Val; 8295 } 8296 8297 /// During the expansion of a RecordType, an incomplete TypeString is placed 8298 /// into the cache as a means to identify and break recursion. 8299 /// If there is a Recursive encoding in the cache, it is swapped out and will 8300 /// be reinserted by removeIncomplete(). 8301 /// All other types of encoding should have been used rather than arriving here. 8302 void TypeStringCache::addIncomplete(const IdentifierInfo *ID, 8303 std::string StubEnc) { 8304 if (!ID) 8305 return; 8306 Entry &E = Map[ID]; 8307 assert( (E.Str.empty() || E.State == Recursive) && 8308 "Incorrectly use of addIncomplete"); 8309 assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()"); 8310 E.Swapped.swap(E.Str); // swap out the Recursive 8311 E.Str.swap(StubEnc); 8312 E.State = Incomplete; 8313 ++IncompleteCount; 8314 } 8315 8316 /// Once the RecordType has been expanded, the temporary incomplete TypeString 8317 /// must be removed from the cache. 8318 /// If a Recursive was swapped out by addIncomplete(), it will be replaced. 8319 /// Returns true if the RecordType was defined recursively. 8320 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) { 8321 if (!ID) 8322 return false; 8323 auto I = Map.find(ID); 8324 assert(I != Map.end() && "Entry not present"); 8325 Entry &E = I->second; 8326 assert( (E.State == Incomplete || 8327 E.State == IncompleteUsed) && 8328 "Entry must be an incomplete type"); 8329 bool IsRecursive = false; 8330 if (E.State == IncompleteUsed) { 8331 // We made use of our Incomplete encoding, thus we are recursive. 8332 IsRecursive = true; 8333 --IncompleteUsedCount; 8334 } 8335 if (E.Swapped.empty()) 8336 Map.erase(I); 8337 else { 8338 // Swap the Recursive back. 8339 E.Swapped.swap(E.Str); 8340 E.Swapped.clear(); 8341 E.State = Recursive; 8342 } 8343 --IncompleteCount; 8344 return IsRecursive; 8345 } 8346 8347 /// Add the encoded TypeString to the cache only if it is NonRecursive or 8348 /// Recursive (viz: all sub-members were expanded as fully as possible). 8349 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str, 8350 bool IsRecursive) { 8351 if (!ID || IncompleteUsedCount) 8352 return; // No key or it is is an incomplete sub-type so don't add. 8353 Entry &E = Map[ID]; 8354 if (IsRecursive && !E.Str.empty()) { 8355 assert(E.State==Recursive && E.Str.size() == Str.size() && 8356 "This is not the same Recursive entry"); 8357 // The parent container was not recursive after all, so we could have used 8358 // this Recursive sub-member entry after all, but we assumed the worse when 8359 // we started viz: IncompleteCount!=0. 8360 return; 8361 } 8362 assert(E.Str.empty() && "Entry already present"); 8363 E.Str = Str.str(); 8364 E.State = IsRecursive? Recursive : NonRecursive; 8365 } 8366 8367 /// Return a cached TypeString encoding for the ID. If there isn't one, or we 8368 /// are recursively expanding a type (IncompleteCount != 0) and the cached 8369 /// encoding is Recursive, return an empty StringRef. 8370 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) { 8371 if (!ID) 8372 return StringRef(); // We have no key. 8373 auto I = Map.find(ID); 8374 if (I == Map.end()) 8375 return StringRef(); // We have no encoding. 8376 Entry &E = I->second; 8377 if (E.State == Recursive && IncompleteCount) 8378 return StringRef(); // We don't use Recursive encodings for member types. 8379 8380 if (E.State == Incomplete) { 8381 // The incomplete type is being used to break out of recursion. 8382 E.State = IncompleteUsed; 8383 ++IncompleteUsedCount; 8384 } 8385 return E.Str; 8386 } 8387 8388 /// The XCore ABI includes a type information section that communicates symbol 8389 /// type information to the linker. The linker uses this information to verify 8390 /// safety/correctness of things such as array bound and pointers et al. 8391 /// The ABI only requires C (and XC) language modules to emit TypeStrings. 8392 /// This type information (TypeString) is emitted into meta data for all global 8393 /// symbols: definitions, declarations, functions & variables. 8394 /// 8395 /// The TypeString carries type, qualifier, name, size & value details. 8396 /// Please see 'Tools Development Guide' section 2.16.2 for format details: 8397 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf 8398 /// The output is tested by test/CodeGen/xcore-stringtype.c. 8399 /// 8400 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 8401 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC); 8402 8403 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols. 8404 void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 8405 CodeGen::CodeGenModule &CGM) const { 8406 SmallStringEnc Enc; 8407 if (getTypeString(Enc, D, CGM, TSC)) { 8408 llvm::LLVMContext &Ctx = CGM.getModule().getContext(); 8409 llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV), 8410 llvm::MDString::get(Ctx, Enc.str())}; 8411 llvm::NamedMDNode *MD = 8412 CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings"); 8413 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 8414 } 8415 } 8416 8417 //===----------------------------------------------------------------------===// 8418 // SPIR ABI Implementation 8419 //===----------------------------------------------------------------------===// 8420 8421 namespace { 8422 class SPIRTargetCodeGenInfo : public TargetCodeGenInfo { 8423 public: 8424 SPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 8425 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 8426 unsigned getOpenCLKernelCallingConv() const override; 8427 }; 8428 8429 } // End anonymous namespace. 8430 8431 namespace clang { 8432 namespace CodeGen { 8433 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) { 8434 DefaultABIInfo SPIRABI(CGM.getTypes()); 8435 SPIRABI.computeInfo(FI); 8436 } 8437 } 8438 } 8439 8440 unsigned SPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 8441 return llvm::CallingConv::SPIR_KERNEL; 8442 } 8443 8444 static bool appendType(SmallStringEnc &Enc, QualType QType, 8445 const CodeGen::CodeGenModule &CGM, 8446 TypeStringCache &TSC); 8447 8448 /// Helper function for appendRecordType(). 8449 /// Builds a SmallVector containing the encoded field types in declaration 8450 /// order. 8451 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE, 8452 const RecordDecl *RD, 8453 const CodeGen::CodeGenModule &CGM, 8454 TypeStringCache &TSC) { 8455 for (const auto *Field : RD->fields()) { 8456 SmallStringEnc Enc; 8457 Enc += "m("; 8458 Enc += Field->getName(); 8459 Enc += "){"; 8460 if (Field->isBitField()) { 8461 Enc += "b("; 8462 llvm::raw_svector_ostream OS(Enc); 8463 OS << Field->getBitWidthValue(CGM.getContext()); 8464 Enc += ':'; 8465 } 8466 if (!appendType(Enc, Field->getType(), CGM, TSC)) 8467 return false; 8468 if (Field->isBitField()) 8469 Enc += ')'; 8470 Enc += '}'; 8471 FE.emplace_back(!Field->getName().empty(), Enc); 8472 } 8473 return true; 8474 } 8475 8476 /// Appends structure and union types to Enc and adds encoding to cache. 8477 /// Recursively calls appendType (via extractFieldType) for each field. 8478 /// Union types have their fields ordered according to the ABI. 8479 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT, 8480 const CodeGen::CodeGenModule &CGM, 8481 TypeStringCache &TSC, const IdentifierInfo *ID) { 8482 // Append the cached TypeString if we have one. 8483 StringRef TypeString = TSC.lookupStr(ID); 8484 if (!TypeString.empty()) { 8485 Enc += TypeString; 8486 return true; 8487 } 8488 8489 // Start to emit an incomplete TypeString. 8490 size_t Start = Enc.size(); 8491 Enc += (RT->isUnionType()? 'u' : 's'); 8492 Enc += '('; 8493 if (ID) 8494 Enc += ID->getName(); 8495 Enc += "){"; 8496 8497 // We collect all encoded fields and order as necessary. 8498 bool IsRecursive = false; 8499 const RecordDecl *RD = RT->getDecl()->getDefinition(); 8500 if (RD && !RD->field_empty()) { 8501 // An incomplete TypeString stub is placed in the cache for this RecordType 8502 // so that recursive calls to this RecordType will use it whilst building a 8503 // complete TypeString for this RecordType. 8504 SmallVector<FieldEncoding, 16> FE; 8505 std::string StubEnc(Enc.substr(Start).str()); 8506 StubEnc += '}'; // StubEnc now holds a valid incomplete TypeString. 8507 TSC.addIncomplete(ID, std::move(StubEnc)); 8508 if (!extractFieldType(FE, RD, CGM, TSC)) { 8509 (void) TSC.removeIncomplete(ID); 8510 return false; 8511 } 8512 IsRecursive = TSC.removeIncomplete(ID); 8513 // The ABI requires unions to be sorted but not structures. 8514 // See FieldEncoding::operator< for sort algorithm. 8515 if (RT->isUnionType()) 8516 std::sort(FE.begin(), FE.end()); 8517 // We can now complete the TypeString. 8518 unsigned E = FE.size(); 8519 for (unsigned I = 0; I != E; ++I) { 8520 if (I) 8521 Enc += ','; 8522 Enc += FE[I].str(); 8523 } 8524 } 8525 Enc += '}'; 8526 TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive); 8527 return true; 8528 } 8529 8530 /// Appends enum types to Enc and adds the encoding to the cache. 8531 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET, 8532 TypeStringCache &TSC, 8533 const IdentifierInfo *ID) { 8534 // Append the cached TypeString if we have one. 8535 StringRef TypeString = TSC.lookupStr(ID); 8536 if (!TypeString.empty()) { 8537 Enc += TypeString; 8538 return true; 8539 } 8540 8541 size_t Start = Enc.size(); 8542 Enc += "e("; 8543 if (ID) 8544 Enc += ID->getName(); 8545 Enc += "){"; 8546 8547 // We collect all encoded enumerations and order them alphanumerically. 8548 if (const EnumDecl *ED = ET->getDecl()->getDefinition()) { 8549 SmallVector<FieldEncoding, 16> FE; 8550 for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E; 8551 ++I) { 8552 SmallStringEnc EnumEnc; 8553 EnumEnc += "m("; 8554 EnumEnc += I->getName(); 8555 EnumEnc += "){"; 8556 I->getInitVal().toString(EnumEnc); 8557 EnumEnc += '}'; 8558 FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc)); 8559 } 8560 std::sort(FE.begin(), FE.end()); 8561 unsigned E = FE.size(); 8562 for (unsigned I = 0; I != E; ++I) { 8563 if (I) 8564 Enc += ','; 8565 Enc += FE[I].str(); 8566 } 8567 } 8568 Enc += '}'; 8569 TSC.addIfComplete(ID, Enc.substr(Start), false); 8570 return true; 8571 } 8572 8573 /// Appends type's qualifier to Enc. 8574 /// This is done prior to appending the type's encoding. 8575 static void appendQualifier(SmallStringEnc &Enc, QualType QT) { 8576 // Qualifiers are emitted in alphabetical order. 8577 static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"}; 8578 int Lookup = 0; 8579 if (QT.isConstQualified()) 8580 Lookup += 1<<0; 8581 if (QT.isRestrictQualified()) 8582 Lookup += 1<<1; 8583 if (QT.isVolatileQualified()) 8584 Lookup += 1<<2; 8585 Enc += Table[Lookup]; 8586 } 8587 8588 /// Appends built-in types to Enc. 8589 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) { 8590 const char *EncType; 8591 switch (BT->getKind()) { 8592 case BuiltinType::Void: 8593 EncType = "0"; 8594 break; 8595 case BuiltinType::Bool: 8596 EncType = "b"; 8597 break; 8598 case BuiltinType::Char_U: 8599 EncType = "uc"; 8600 break; 8601 case BuiltinType::UChar: 8602 EncType = "uc"; 8603 break; 8604 case BuiltinType::SChar: 8605 EncType = "sc"; 8606 break; 8607 case BuiltinType::UShort: 8608 EncType = "us"; 8609 break; 8610 case BuiltinType::Short: 8611 EncType = "ss"; 8612 break; 8613 case BuiltinType::UInt: 8614 EncType = "ui"; 8615 break; 8616 case BuiltinType::Int: 8617 EncType = "si"; 8618 break; 8619 case BuiltinType::ULong: 8620 EncType = "ul"; 8621 break; 8622 case BuiltinType::Long: 8623 EncType = "sl"; 8624 break; 8625 case BuiltinType::ULongLong: 8626 EncType = "ull"; 8627 break; 8628 case BuiltinType::LongLong: 8629 EncType = "sll"; 8630 break; 8631 case BuiltinType::Float: 8632 EncType = "ft"; 8633 break; 8634 case BuiltinType::Double: 8635 EncType = "d"; 8636 break; 8637 case BuiltinType::LongDouble: 8638 EncType = "ld"; 8639 break; 8640 default: 8641 return false; 8642 } 8643 Enc += EncType; 8644 return true; 8645 } 8646 8647 /// Appends a pointer encoding to Enc before calling appendType for the pointee. 8648 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT, 8649 const CodeGen::CodeGenModule &CGM, 8650 TypeStringCache &TSC) { 8651 Enc += "p("; 8652 if (!appendType(Enc, PT->getPointeeType(), CGM, TSC)) 8653 return false; 8654 Enc += ')'; 8655 return true; 8656 } 8657 8658 /// Appends array encoding to Enc before calling appendType for the element. 8659 static bool appendArrayType(SmallStringEnc &Enc, QualType QT, 8660 const ArrayType *AT, 8661 const CodeGen::CodeGenModule &CGM, 8662 TypeStringCache &TSC, StringRef NoSizeEnc) { 8663 if (AT->getSizeModifier() != ArrayType::Normal) 8664 return false; 8665 Enc += "a("; 8666 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) 8667 CAT->getSize().toStringUnsigned(Enc); 8668 else 8669 Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "". 8670 Enc += ':'; 8671 // The Qualifiers should be attached to the type rather than the array. 8672 appendQualifier(Enc, QT); 8673 if (!appendType(Enc, AT->getElementType(), CGM, TSC)) 8674 return false; 8675 Enc += ')'; 8676 return true; 8677 } 8678 8679 /// Appends a function encoding to Enc, calling appendType for the return type 8680 /// and the arguments. 8681 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT, 8682 const CodeGen::CodeGenModule &CGM, 8683 TypeStringCache &TSC) { 8684 Enc += "f{"; 8685 if (!appendType(Enc, FT->getReturnType(), CGM, TSC)) 8686 return false; 8687 Enc += "}("; 8688 if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) { 8689 // N.B. we are only interested in the adjusted param types. 8690 auto I = FPT->param_type_begin(); 8691 auto E = FPT->param_type_end(); 8692 if (I != E) { 8693 do { 8694 if (!appendType(Enc, *I, CGM, TSC)) 8695 return false; 8696 ++I; 8697 if (I != E) 8698 Enc += ','; 8699 } while (I != E); 8700 if (FPT->isVariadic()) 8701 Enc += ",va"; 8702 } else { 8703 if (FPT->isVariadic()) 8704 Enc += "va"; 8705 else 8706 Enc += '0'; 8707 } 8708 } 8709 Enc += ')'; 8710 return true; 8711 } 8712 8713 /// Handles the type's qualifier before dispatching a call to handle specific 8714 /// type encodings. 8715 static bool appendType(SmallStringEnc &Enc, QualType QType, 8716 const CodeGen::CodeGenModule &CGM, 8717 TypeStringCache &TSC) { 8718 8719 QualType QT = QType.getCanonicalType(); 8720 8721 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) 8722 // The Qualifiers should be attached to the type rather than the array. 8723 // Thus we don't call appendQualifier() here. 8724 return appendArrayType(Enc, QT, AT, CGM, TSC, ""); 8725 8726 appendQualifier(Enc, QT); 8727 8728 if (const BuiltinType *BT = QT->getAs<BuiltinType>()) 8729 return appendBuiltinType(Enc, BT); 8730 8731 if (const PointerType *PT = QT->getAs<PointerType>()) 8732 return appendPointerType(Enc, PT, CGM, TSC); 8733 8734 if (const EnumType *ET = QT->getAs<EnumType>()) 8735 return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier()); 8736 8737 if (const RecordType *RT = QT->getAsStructureType()) 8738 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 8739 8740 if (const RecordType *RT = QT->getAsUnionType()) 8741 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 8742 8743 if (const FunctionType *FT = QT->getAs<FunctionType>()) 8744 return appendFunctionType(Enc, FT, CGM, TSC); 8745 8746 return false; 8747 } 8748 8749 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 8750 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) { 8751 if (!D) 8752 return false; 8753 8754 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 8755 if (FD->getLanguageLinkage() != CLanguageLinkage) 8756 return false; 8757 return appendType(Enc, FD->getType(), CGM, TSC); 8758 } 8759 8760 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 8761 if (VD->getLanguageLinkage() != CLanguageLinkage) 8762 return false; 8763 QualType QT = VD->getType().getCanonicalType(); 8764 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) { 8765 // Global ArrayTypes are given a size of '*' if the size is unknown. 8766 // The Qualifiers should be attached to the type rather than the array. 8767 // Thus we don't call appendQualifier() here. 8768 return appendArrayType(Enc, QT, AT, CGM, TSC, "*"); 8769 } 8770 return appendType(Enc, QT, CGM, TSC); 8771 } 8772 return false; 8773 } 8774 8775 //===----------------------------------------------------------------------===// 8776 // RISCV ABI Implementation 8777 //===----------------------------------------------------------------------===// 8778 8779 namespace { 8780 class RISCVABIInfo : public DefaultABIInfo { 8781 private: 8782 unsigned XLen; // Size of the integer ('x') registers in bits. 8783 static const int NumArgGPRs = 8; 8784 8785 public: 8786 RISCVABIInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen) 8787 : DefaultABIInfo(CGT), XLen(XLen) {} 8788 8789 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 8790 // non-virtual, but computeInfo is virtual, so we overload it. 8791 void computeInfo(CGFunctionInfo &FI) const override; 8792 8793 ABIArgInfo classifyArgumentType(QualType Ty, bool IsFixed, 8794 int &ArgGPRsLeft) const; 8795 ABIArgInfo classifyReturnType(QualType RetTy) const; 8796 8797 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8798 QualType Ty) const override; 8799 8800 ABIArgInfo extendType(QualType Ty) const; 8801 }; 8802 } // end anonymous namespace 8803 8804 void RISCVABIInfo::computeInfo(CGFunctionInfo &FI) const { 8805 QualType RetTy = FI.getReturnType(); 8806 if (!getCXXABI().classifyReturnType(FI)) 8807 FI.getReturnInfo() = classifyReturnType(RetTy); 8808 8809 // IsRetIndirect is true if classifyArgumentType indicated the value should 8810 // be passed indirect or if the type size is greater than 2*xlen. e.g. fp128 8811 // is passed direct in LLVM IR, relying on the backend lowering code to 8812 // rewrite the argument list and pass indirectly on RV32. 8813 bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect || 8814 getContext().getTypeSize(RetTy) > (2 * XLen); 8815 8816 // We must track the number of GPRs used in order to conform to the RISC-V 8817 // ABI, as integer scalars passed in registers should have signext/zeroext 8818 // when promoted, but are anyext if passed on the stack. As GPR usage is 8819 // different for variadic arguments, we must also track whether we are 8820 // examining a vararg or not. 8821 int ArgGPRsLeft = IsRetIndirect ? NumArgGPRs - 1 : NumArgGPRs; 8822 int NumFixedArgs = FI.getNumRequiredArgs(); 8823 8824 int ArgNum = 0; 8825 for (auto &ArgInfo : FI.arguments()) { 8826 bool IsFixed = ArgNum < NumFixedArgs; 8827 ArgInfo.info = classifyArgumentType(ArgInfo.type, IsFixed, ArgGPRsLeft); 8828 ArgNum++; 8829 } 8830 } 8831 8832 ABIArgInfo RISCVABIInfo::classifyArgumentType(QualType Ty, bool IsFixed, 8833 int &ArgGPRsLeft) const { 8834 assert(ArgGPRsLeft <= NumArgGPRs && "Arg GPR tracking underflow"); 8835 Ty = useFirstFieldIfTransparentUnion(Ty); 8836 8837 // Structures with either a non-trivial destructor or a non-trivial 8838 // copy constructor are always passed indirectly. 8839 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 8840 if (ArgGPRsLeft) 8841 ArgGPRsLeft -= 1; 8842 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 8843 CGCXXABI::RAA_DirectInMemory); 8844 } 8845 8846 // Ignore empty structs/unions. 8847 if (isEmptyRecord(getContext(), Ty, true)) 8848 return ABIArgInfo::getIgnore(); 8849 8850 uint64_t Size = getContext().getTypeSize(Ty); 8851 uint64_t NeededAlign = getContext().getTypeAlign(Ty); 8852 bool MustUseStack = false; 8853 // Determine the number of GPRs needed to pass the current argument 8854 // according to the ABI. 2*XLen-aligned varargs are passed in "aligned" 8855 // register pairs, so may consume 3 registers. 8856 int NeededArgGPRs = 1; 8857 if (!IsFixed && NeededAlign == 2 * XLen) 8858 NeededArgGPRs = 2 + (ArgGPRsLeft % 2); 8859 else if (Size > XLen && Size <= 2 * XLen) 8860 NeededArgGPRs = 2; 8861 8862 if (NeededArgGPRs > ArgGPRsLeft) { 8863 MustUseStack = true; 8864 NeededArgGPRs = ArgGPRsLeft; 8865 } 8866 8867 ArgGPRsLeft -= NeededArgGPRs; 8868 8869 if (!isAggregateTypeForABI(Ty) && !Ty->isVectorType()) { 8870 // Treat an enum type as its underlying type. 8871 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 8872 Ty = EnumTy->getDecl()->getIntegerType(); 8873 8874 // All integral types are promoted to XLen width, unless passed on the 8875 // stack. 8876 if (Size < XLen && Ty->isIntegralOrEnumerationType() && !MustUseStack) { 8877 return extendType(Ty); 8878 } 8879 8880 return ABIArgInfo::getDirect(); 8881 } 8882 8883 // Aggregates which are <= 2*XLen will be passed in registers if possible, 8884 // so coerce to integers. 8885 if (Size <= 2 * XLen) { 8886 unsigned Alignment = getContext().getTypeAlign(Ty); 8887 8888 // Use a single XLen int if possible, 2*XLen if 2*XLen alignment is 8889 // required, and a 2-element XLen array if only XLen alignment is required. 8890 if (Size <= XLen) { 8891 return ABIArgInfo::getDirect( 8892 llvm::IntegerType::get(getVMContext(), XLen)); 8893 } else if (Alignment == 2 * XLen) { 8894 return ABIArgInfo::getDirect( 8895 llvm::IntegerType::get(getVMContext(), 2 * XLen)); 8896 } else { 8897 return ABIArgInfo::getDirect(llvm::ArrayType::get( 8898 llvm::IntegerType::get(getVMContext(), XLen), 2)); 8899 } 8900 } 8901 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 8902 } 8903 8904 ABIArgInfo RISCVABIInfo::classifyReturnType(QualType RetTy) const { 8905 if (RetTy->isVoidType()) 8906 return ABIArgInfo::getIgnore(); 8907 8908 int ArgGPRsLeft = 2; 8909 8910 // The rules for return and argument types are the same, so defer to 8911 // classifyArgumentType. 8912 return classifyArgumentType(RetTy, /*IsFixed=*/true, ArgGPRsLeft); 8913 } 8914 8915 Address RISCVABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8916 QualType Ty) const { 8917 CharUnits SlotSize = CharUnits::fromQuantity(XLen / 8); 8918 8919 // Empty records are ignored for parameter passing purposes. 8920 if (isEmptyRecord(getContext(), Ty, true)) { 8921 Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize); 8922 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 8923 return Addr; 8924 } 8925 8926 std::pair<CharUnits, CharUnits> SizeAndAlign = 8927 getContext().getTypeInfoInChars(Ty); 8928 8929 // Arguments bigger than 2*Xlen bytes are passed indirectly. 8930 bool IsIndirect = SizeAndAlign.first > 2 * SlotSize; 8931 8932 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, SizeAndAlign, 8933 SlotSize, /*AllowHigherAlign=*/true); 8934 } 8935 8936 ABIArgInfo RISCVABIInfo::extendType(QualType Ty) const { 8937 int TySize = getContext().getTypeSize(Ty); 8938 // RV64 ABI requires unsigned 32 bit integers to be sign extended. 8939 if (XLen == 64 && Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 8940 return ABIArgInfo::getSignExtend(Ty); 8941 return ABIArgInfo::getExtend(Ty); 8942 } 8943 8944 namespace { 8945 class RISCVTargetCodeGenInfo : public TargetCodeGenInfo { 8946 public: 8947 RISCVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen) 8948 : TargetCodeGenInfo(new RISCVABIInfo(CGT, XLen)) {} 8949 }; 8950 } // namespace 8951 8952 //===----------------------------------------------------------------------===// 8953 // Driver code 8954 //===----------------------------------------------------------------------===// 8955 8956 bool CodeGenModule::supportsCOMDAT() const { 8957 return getTriple().supportsCOMDAT(); 8958 } 8959 8960 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { 8961 if (TheTargetCodeGenInfo) 8962 return *TheTargetCodeGenInfo; 8963 8964 // Helper to set the unique_ptr while still keeping the return value. 8965 auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & { 8966 this->TheTargetCodeGenInfo.reset(P); 8967 return *P; 8968 }; 8969 8970 const llvm::Triple &Triple = getTarget().getTriple(); 8971 switch (Triple.getArch()) { 8972 default: 8973 return SetCGInfo(new DefaultTargetCodeGenInfo(Types)); 8974 8975 case llvm::Triple::le32: 8976 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 8977 case llvm::Triple::mips: 8978 case llvm::Triple::mipsel: 8979 if (Triple.getOS() == llvm::Triple::NaCl) 8980 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 8981 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true)); 8982 8983 case llvm::Triple::mips64: 8984 case llvm::Triple::mips64el: 8985 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false)); 8986 8987 case llvm::Triple::avr: 8988 return SetCGInfo(new AVRTargetCodeGenInfo(Types)); 8989 8990 case llvm::Triple::aarch64: 8991 case llvm::Triple::aarch64_be: { 8992 AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS; 8993 if (getTarget().getABI() == "darwinpcs") 8994 Kind = AArch64ABIInfo::DarwinPCS; 8995 else if (Triple.isOSWindows()) 8996 return SetCGInfo( 8997 new WindowsAArch64TargetCodeGenInfo(Types, AArch64ABIInfo::Win64)); 8998 8999 return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind)); 9000 } 9001 9002 case llvm::Triple::wasm32: 9003 case llvm::Triple::wasm64: 9004 return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types)); 9005 9006 case llvm::Triple::arm: 9007 case llvm::Triple::armeb: 9008 case llvm::Triple::thumb: 9009 case llvm::Triple::thumbeb: { 9010 if (Triple.getOS() == llvm::Triple::Win32) { 9011 return SetCGInfo( 9012 new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP)); 9013 } 9014 9015 ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS; 9016 StringRef ABIStr = getTarget().getABI(); 9017 if (ABIStr == "apcs-gnu") 9018 Kind = ARMABIInfo::APCS; 9019 else if (ABIStr == "aapcs16") 9020 Kind = ARMABIInfo::AAPCS16_VFP; 9021 else if (CodeGenOpts.FloatABI == "hard" || 9022 (CodeGenOpts.FloatABI != "soft" && 9023 (Triple.getEnvironment() == llvm::Triple::GNUEABIHF || 9024 Triple.getEnvironment() == llvm::Triple::MuslEABIHF || 9025 Triple.getEnvironment() == llvm::Triple::EABIHF))) 9026 Kind = ARMABIInfo::AAPCS_VFP; 9027 9028 return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind)); 9029 } 9030 9031 case llvm::Triple::ppc: 9032 return SetCGInfo( 9033 new PPC32TargetCodeGenInfo(Types, CodeGenOpts.FloatABI == "soft")); 9034 case llvm::Triple::ppc64: 9035 if (Triple.isOSBinFormatELF()) { 9036 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1; 9037 if (getTarget().getABI() == "elfv2") 9038 Kind = PPC64_SVR4_ABIInfo::ELFv2; 9039 bool HasQPX = getTarget().getABI() == "elfv1-qpx"; 9040 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 9041 9042 return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX, 9043 IsSoftFloat)); 9044 } else 9045 return SetCGInfo(new PPC64TargetCodeGenInfo(Types)); 9046 case llvm::Triple::ppc64le: { 9047 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); 9048 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2; 9049 if (getTarget().getABI() == "elfv1" || getTarget().getABI() == "elfv1-qpx") 9050 Kind = PPC64_SVR4_ABIInfo::ELFv1; 9051 bool HasQPX = getTarget().getABI() == "elfv1-qpx"; 9052 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 9053 9054 return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX, 9055 IsSoftFloat)); 9056 } 9057 9058 case llvm::Triple::nvptx: 9059 case llvm::Triple::nvptx64: 9060 return SetCGInfo(new NVPTXTargetCodeGenInfo(Types)); 9061 9062 case llvm::Triple::msp430: 9063 return SetCGInfo(new MSP430TargetCodeGenInfo(Types)); 9064 9065 case llvm::Triple::riscv32: 9066 return SetCGInfo(new RISCVTargetCodeGenInfo(Types, 32)); 9067 case llvm::Triple::riscv64: 9068 return SetCGInfo(new RISCVTargetCodeGenInfo(Types, 64)); 9069 9070 case llvm::Triple::systemz: { 9071 bool HasVector = getTarget().getABI() == "vector"; 9072 return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector)); 9073 } 9074 9075 case llvm::Triple::tce: 9076 case llvm::Triple::tcele: 9077 return SetCGInfo(new TCETargetCodeGenInfo(Types)); 9078 9079 case llvm::Triple::x86: { 9080 bool IsDarwinVectorABI = Triple.isOSDarwin(); 9081 bool RetSmallStructInRegABI = 9082 X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 9083 bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing(); 9084 9085 if (Triple.getOS() == llvm::Triple::Win32) { 9086 return SetCGInfo(new WinX86_32TargetCodeGenInfo( 9087 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 9088 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters)); 9089 } else { 9090 return SetCGInfo(new X86_32TargetCodeGenInfo( 9091 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 9092 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters, 9093 CodeGenOpts.FloatABI == "soft")); 9094 } 9095 } 9096 9097 case llvm::Triple::x86_64: { 9098 StringRef ABI = getTarget().getABI(); 9099 X86AVXABILevel AVXLevel = 9100 (ABI == "avx512" 9101 ? X86AVXABILevel::AVX512 9102 : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None); 9103 9104 switch (Triple.getOS()) { 9105 case llvm::Triple::Win32: 9106 return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel)); 9107 case llvm::Triple::PS4: 9108 return SetCGInfo(new PS4TargetCodeGenInfo(Types, AVXLevel)); 9109 default: 9110 return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel)); 9111 } 9112 } 9113 case llvm::Triple::hexagon: 9114 return SetCGInfo(new HexagonTargetCodeGenInfo(Types)); 9115 case llvm::Triple::lanai: 9116 return SetCGInfo(new LanaiTargetCodeGenInfo(Types)); 9117 case llvm::Triple::r600: 9118 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 9119 case llvm::Triple::amdgcn: 9120 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 9121 case llvm::Triple::sparc: 9122 return SetCGInfo(new SparcV8TargetCodeGenInfo(Types)); 9123 case llvm::Triple::sparcv9: 9124 return SetCGInfo(new SparcV9TargetCodeGenInfo(Types)); 9125 case llvm::Triple::xcore: 9126 return SetCGInfo(new XCoreTargetCodeGenInfo(Types)); 9127 case llvm::Triple::spir: 9128 case llvm::Triple::spir64: 9129 return SetCGInfo(new SPIRTargetCodeGenInfo(Types)); 9130 } 9131 } 9132 9133 /// Create an OpenCL kernel for an enqueued block. 9134 /// 9135 /// The kernel has the same function type as the block invoke function. Its 9136 /// name is the name of the block invoke function postfixed with "_kernel". 9137 /// It simply calls the block invoke function then returns. 9138 llvm::Function * 9139 TargetCodeGenInfo::createEnqueuedBlockKernel(CodeGenFunction &CGF, 9140 llvm::Function *Invoke, 9141 llvm::Value *BlockLiteral) const { 9142 auto *InvokeFT = Invoke->getFunctionType(); 9143 llvm::SmallVector<llvm::Type *, 2> ArgTys; 9144 for (auto &P : InvokeFT->params()) 9145 ArgTys.push_back(P); 9146 auto &C = CGF.getLLVMContext(); 9147 std::string Name = Invoke->getName().str() + "_kernel"; 9148 auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false); 9149 auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name, 9150 &CGF.CGM.getModule()); 9151 auto IP = CGF.Builder.saveIP(); 9152 auto *BB = llvm::BasicBlock::Create(C, "entry", F); 9153 auto &Builder = CGF.Builder; 9154 Builder.SetInsertPoint(BB); 9155 llvm::SmallVector<llvm::Value *, 2> Args; 9156 for (auto &A : F->args()) 9157 Args.push_back(&A); 9158 Builder.CreateCall(Invoke, Args); 9159 Builder.CreateRetVoid(); 9160 Builder.restoreIP(IP); 9161 return F; 9162 } 9163 9164 /// Create an OpenCL kernel for an enqueued block. 9165 /// 9166 /// The type of the first argument (the block literal) is the struct type 9167 /// of the block literal instead of a pointer type. The first argument 9168 /// (block literal) is passed directly by value to the kernel. The kernel 9169 /// allocates the same type of struct on stack and stores the block literal 9170 /// to it and passes its pointer to the block invoke function. The kernel 9171 /// has "enqueued-block" function attribute and kernel argument metadata. 9172 llvm::Function *AMDGPUTargetCodeGenInfo::createEnqueuedBlockKernel( 9173 CodeGenFunction &CGF, llvm::Function *Invoke, 9174 llvm::Value *BlockLiteral) const { 9175 auto &Builder = CGF.Builder; 9176 auto &C = CGF.getLLVMContext(); 9177 9178 auto *BlockTy = BlockLiteral->getType()->getPointerElementType(); 9179 auto *InvokeFT = Invoke->getFunctionType(); 9180 llvm::SmallVector<llvm::Type *, 2> ArgTys; 9181 llvm::SmallVector<llvm::Metadata *, 8> AddressQuals; 9182 llvm::SmallVector<llvm::Metadata *, 8> AccessQuals; 9183 llvm::SmallVector<llvm::Metadata *, 8> ArgTypeNames; 9184 llvm::SmallVector<llvm::Metadata *, 8> ArgBaseTypeNames; 9185 llvm::SmallVector<llvm::Metadata *, 8> ArgTypeQuals; 9186 llvm::SmallVector<llvm::Metadata *, 8> ArgNames; 9187 9188 ArgTys.push_back(BlockTy); 9189 ArgTypeNames.push_back(llvm::MDString::get(C, "__block_literal")); 9190 AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(0))); 9191 ArgBaseTypeNames.push_back(llvm::MDString::get(C, "__block_literal")); 9192 ArgTypeQuals.push_back(llvm::MDString::get(C, "")); 9193 AccessQuals.push_back(llvm::MDString::get(C, "none")); 9194 ArgNames.push_back(llvm::MDString::get(C, "block_literal")); 9195 for (unsigned I = 1, E = InvokeFT->getNumParams(); I < E; ++I) { 9196 ArgTys.push_back(InvokeFT->getParamType(I)); 9197 ArgTypeNames.push_back(llvm::MDString::get(C, "void*")); 9198 AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(3))); 9199 AccessQuals.push_back(llvm::MDString::get(C, "none")); 9200 ArgBaseTypeNames.push_back(llvm::MDString::get(C, "void*")); 9201 ArgTypeQuals.push_back(llvm::MDString::get(C, "")); 9202 ArgNames.push_back( 9203 llvm::MDString::get(C, (Twine("local_arg") + Twine(I)).str())); 9204 } 9205 std::string Name = Invoke->getName().str() + "_kernel"; 9206 auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false); 9207 auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name, 9208 &CGF.CGM.getModule()); 9209 F->addFnAttr("enqueued-block"); 9210 auto IP = CGF.Builder.saveIP(); 9211 auto *BB = llvm::BasicBlock::Create(C, "entry", F); 9212 Builder.SetInsertPoint(BB); 9213 unsigned BlockAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(BlockTy); 9214 auto *BlockPtr = Builder.CreateAlloca(BlockTy, nullptr); 9215 BlockPtr->setAlignment(BlockAlign); 9216 Builder.CreateAlignedStore(F->arg_begin(), BlockPtr, BlockAlign); 9217 auto *Cast = Builder.CreatePointerCast(BlockPtr, InvokeFT->getParamType(0)); 9218 llvm::SmallVector<llvm::Value *, 2> Args; 9219 Args.push_back(Cast); 9220 for (auto I = F->arg_begin() + 1, E = F->arg_end(); I != E; ++I) 9221 Args.push_back(I); 9222 Builder.CreateCall(Invoke, Args); 9223 Builder.CreateRetVoid(); 9224 Builder.restoreIP(IP); 9225 9226 F->setMetadata("kernel_arg_addr_space", llvm::MDNode::get(C, AddressQuals)); 9227 F->setMetadata("kernel_arg_access_qual", llvm::MDNode::get(C, AccessQuals)); 9228 F->setMetadata("kernel_arg_type", llvm::MDNode::get(C, ArgTypeNames)); 9229 F->setMetadata("kernel_arg_base_type", 9230 llvm::MDNode::get(C, ArgBaseTypeNames)); 9231 F->setMetadata("kernel_arg_type_qual", llvm::MDNode::get(C, ArgTypeQuals)); 9232 if (CGF.CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 9233 F->setMetadata("kernel_arg_name", llvm::MDNode::get(C, ArgNames)); 9234 9235 return F; 9236 } 9237