1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // These classes wrap the information about a call or function
11 // definition used to handle ABI compliancy.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "TargetInfo.h"
16 #include "ABIInfo.h"
17 #include "CGCXXABI.h"
18 #include "CGValue.h"
19 #include "CodeGenFunction.h"
20 #include "clang/AST/RecordLayout.h"
21 #include "clang/CodeGen/CGFunctionInfo.h"
22 #include "clang/CodeGen/SwiftCallingConv.h"
23 #include "clang/Frontend/CodeGenOptions.h"
24 #include "llvm/ADT/StringExtras.h"
25 #include "llvm/ADT/Triple.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/Type.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include <algorithm>    // std::sort
30 
31 using namespace clang;
32 using namespace CodeGen;
33 
34 // Helper for coercing an aggregate argument or return value into an integer
35 // array of the same size (including padding) and alignment.  This alternate
36 // coercion happens only for the RenderScript ABI and can be removed after
37 // runtimes that rely on it are no longer supported.
38 //
39 // RenderScript assumes that the size of the argument / return value in the IR
40 // is the same as the size of the corresponding qualified type. This helper
41 // coerces the aggregate type into an array of the same size (including
42 // padding).  This coercion is used in lieu of expansion of struct members or
43 // other canonical coercions that return a coerced-type of larger size.
44 //
45 // Ty          - The argument / return value type
46 // Context     - The associated ASTContext
47 // LLVMContext - The associated LLVMContext
48 static ABIArgInfo coerceToIntArray(QualType Ty,
49                                    ASTContext &Context,
50                                    llvm::LLVMContext &LLVMContext) {
51   // Alignment and Size are measured in bits.
52   const uint64_t Size = Context.getTypeSize(Ty);
53   const uint64_t Alignment = Context.getTypeAlign(Ty);
54   llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment);
55   const uint64_t NumElements = (Size + Alignment - 1) / Alignment;
56   return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements));
57 }
58 
59 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
60                                llvm::Value *Array,
61                                llvm::Value *Value,
62                                unsigned FirstIndex,
63                                unsigned LastIndex) {
64   // Alternatively, we could emit this as a loop in the source.
65   for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
66     llvm::Value *Cell =
67         Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I);
68     Builder.CreateAlignedStore(Value, Cell, CharUnits::One());
69   }
70 }
71 
72 static bool isAggregateTypeForABI(QualType T) {
73   return !CodeGenFunction::hasScalarEvaluationKind(T) ||
74          T->isMemberFunctionPointerType();
75 }
76 
77 ABIArgInfo
78 ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByRef, bool Realign,
79                                  llvm::Type *Padding) const {
80   return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty),
81                                  ByRef, Realign, Padding);
82 }
83 
84 ABIArgInfo
85 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const {
86   return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty),
87                                       /*ByRef*/ false, Realign);
88 }
89 
90 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
91                              QualType Ty) const {
92   return Address::invalid();
93 }
94 
95 ABIInfo::~ABIInfo() {}
96 
97 /// Does the given lowering require more than the given number of
98 /// registers when expanded?
99 ///
100 /// This is intended to be the basis of a reasonable basic implementation
101 /// of should{Pass,Return}IndirectlyForSwift.
102 ///
103 /// For most targets, a limit of four total registers is reasonable; this
104 /// limits the amount of code required in order to move around the value
105 /// in case it wasn't produced immediately prior to the call by the caller
106 /// (or wasn't produced in exactly the right registers) or isn't used
107 /// immediately within the callee.  But some targets may need to further
108 /// limit the register count due to an inability to support that many
109 /// return registers.
110 static bool occupiesMoreThan(CodeGenTypes &cgt,
111                              ArrayRef<llvm::Type*> scalarTypes,
112                              unsigned maxAllRegisters) {
113   unsigned intCount = 0, fpCount = 0;
114   for (llvm::Type *type : scalarTypes) {
115     if (type->isPointerTy()) {
116       intCount++;
117     } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) {
118       auto ptrWidth = cgt.getTarget().getPointerWidth(0);
119       intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth;
120     } else {
121       assert(type->isVectorTy() || type->isFloatingPointTy());
122       fpCount++;
123     }
124   }
125 
126   return (intCount + fpCount > maxAllRegisters);
127 }
128 
129 bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize,
130                                              llvm::Type *eltTy,
131                                              unsigned numElts) const {
132   // The default implementation of this assumes that the target guarantees
133   // 128-bit SIMD support but nothing more.
134   return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16);
135 }
136 
137 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT,
138                                               CGCXXABI &CXXABI) {
139   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
140   if (!RD)
141     return CGCXXABI::RAA_Default;
142   return CXXABI.getRecordArgABI(RD);
143 }
144 
145 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T,
146                                               CGCXXABI &CXXABI) {
147   const RecordType *RT = T->getAs<RecordType>();
148   if (!RT)
149     return CGCXXABI::RAA_Default;
150   return getRecordArgABI(RT, CXXABI);
151 }
152 
153 /// Pass transparent unions as if they were the type of the first element. Sema
154 /// should ensure that all elements of the union have the same "machine type".
155 static QualType useFirstFieldIfTransparentUnion(QualType Ty) {
156   if (const RecordType *UT = Ty->getAsUnionType()) {
157     const RecordDecl *UD = UT->getDecl();
158     if (UD->hasAttr<TransparentUnionAttr>()) {
159       assert(!UD->field_empty() && "sema created an empty transparent union");
160       return UD->field_begin()->getType();
161     }
162   }
163   return Ty;
164 }
165 
166 CGCXXABI &ABIInfo::getCXXABI() const {
167   return CGT.getCXXABI();
168 }
169 
170 ASTContext &ABIInfo::getContext() const {
171   return CGT.getContext();
172 }
173 
174 llvm::LLVMContext &ABIInfo::getVMContext() const {
175   return CGT.getLLVMContext();
176 }
177 
178 const llvm::DataLayout &ABIInfo::getDataLayout() const {
179   return CGT.getDataLayout();
180 }
181 
182 const TargetInfo &ABIInfo::getTarget() const {
183   return CGT.getTarget();
184 }
185 
186 bool ABIInfo:: isAndroid() const { return getTarget().getTriple().isAndroid(); }
187 
188 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
189   return false;
190 }
191 
192 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
193                                                 uint64_t Members) const {
194   return false;
195 }
196 
197 bool ABIInfo::shouldSignExtUnsignedType(QualType Ty) const {
198   return false;
199 }
200 
201 LLVM_DUMP_METHOD void ABIArgInfo::dump() const {
202   raw_ostream &OS = llvm::errs();
203   OS << "(ABIArgInfo Kind=";
204   switch (TheKind) {
205   case Direct:
206     OS << "Direct Type=";
207     if (llvm::Type *Ty = getCoerceToType())
208       Ty->print(OS);
209     else
210       OS << "null";
211     break;
212   case Extend:
213     OS << "Extend";
214     break;
215   case Ignore:
216     OS << "Ignore";
217     break;
218   case InAlloca:
219     OS << "InAlloca Offset=" << getInAllocaFieldIndex();
220     break;
221   case Indirect:
222     OS << "Indirect Align=" << getIndirectAlign().getQuantity()
223        << " ByVal=" << getIndirectByVal()
224        << " Realign=" << getIndirectRealign();
225     break;
226   case Expand:
227     OS << "Expand";
228     break;
229   case CoerceAndExpand:
230     OS << "CoerceAndExpand Type=";
231     getCoerceAndExpandType()->print(OS);
232     break;
233   }
234   OS << ")\n";
235 }
236 
237 // Dynamically round a pointer up to a multiple of the given alignment.
238 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF,
239                                                   llvm::Value *Ptr,
240                                                   CharUnits Align) {
241   llvm::Value *PtrAsInt = Ptr;
242   // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align;
243   PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy);
244   PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt,
245         llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1));
246   PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt,
247            llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity()));
248   PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt,
249                                         Ptr->getType(),
250                                         Ptr->getName() + ".aligned");
251   return PtrAsInt;
252 }
253 
254 /// Emit va_arg for a platform using the common void* representation,
255 /// where arguments are simply emitted in an array of slots on the stack.
256 ///
257 /// This version implements the core direct-value passing rules.
258 ///
259 /// \param SlotSize - The size and alignment of a stack slot.
260 ///   Each argument will be allocated to a multiple of this number of
261 ///   slots, and all the slots will be aligned to this value.
262 /// \param AllowHigherAlign - The slot alignment is not a cap;
263 ///   an argument type with an alignment greater than the slot size
264 ///   will be emitted on a higher-alignment address, potentially
265 ///   leaving one or more empty slots behind as padding.  If this
266 ///   is false, the returned address might be less-aligned than
267 ///   DirectAlign.
268 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF,
269                                       Address VAListAddr,
270                                       llvm::Type *DirectTy,
271                                       CharUnits DirectSize,
272                                       CharUnits DirectAlign,
273                                       CharUnits SlotSize,
274                                       bool AllowHigherAlign) {
275   // Cast the element type to i8* if necessary.  Some platforms define
276   // va_list as a struct containing an i8* instead of just an i8*.
277   if (VAListAddr.getElementType() != CGF.Int8PtrTy)
278     VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy);
279 
280   llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur");
281 
282   // If the CC aligns values higher than the slot size, do so if needed.
283   Address Addr = Address::invalid();
284   if (AllowHigherAlign && DirectAlign > SlotSize) {
285     Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign),
286                                                  DirectAlign);
287   } else {
288     Addr = Address(Ptr, SlotSize);
289   }
290 
291   // Advance the pointer past the argument, then store that back.
292   CharUnits FullDirectSize = DirectSize.alignTo(SlotSize);
293   llvm::Value *NextPtr =
294     CGF.Builder.CreateConstInBoundsByteGEP(Addr.getPointer(), FullDirectSize,
295                                            "argp.next");
296   CGF.Builder.CreateStore(NextPtr, VAListAddr);
297 
298   // If the argument is smaller than a slot, and this is a big-endian
299   // target, the argument will be right-adjusted in its slot.
300   if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() &&
301       !DirectTy->isStructTy()) {
302     Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize);
303   }
304 
305   Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy);
306   return Addr;
307 }
308 
309 /// Emit va_arg for a platform using the common void* representation,
310 /// where arguments are simply emitted in an array of slots on the stack.
311 ///
312 /// \param IsIndirect - Values of this type are passed indirectly.
313 /// \param ValueInfo - The size and alignment of this type, generally
314 ///   computed with getContext().getTypeInfoInChars(ValueTy).
315 /// \param SlotSizeAndAlign - The size and alignment of a stack slot.
316 ///   Each argument will be allocated to a multiple of this number of
317 ///   slots, and all the slots will be aligned to this value.
318 /// \param AllowHigherAlign - The slot alignment is not a cap;
319 ///   an argument type with an alignment greater than the slot size
320 ///   will be emitted on a higher-alignment address, potentially
321 ///   leaving one or more empty slots behind as padding.
322 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr,
323                                 QualType ValueTy, bool IsIndirect,
324                                 std::pair<CharUnits, CharUnits> ValueInfo,
325                                 CharUnits SlotSizeAndAlign,
326                                 bool AllowHigherAlign) {
327   // The size and alignment of the value that was passed directly.
328   CharUnits DirectSize, DirectAlign;
329   if (IsIndirect) {
330     DirectSize = CGF.getPointerSize();
331     DirectAlign = CGF.getPointerAlign();
332   } else {
333     DirectSize = ValueInfo.first;
334     DirectAlign = ValueInfo.second;
335   }
336 
337   // Cast the address we've calculated to the right type.
338   llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy);
339   if (IsIndirect)
340     DirectTy = DirectTy->getPointerTo(0);
341 
342   Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy,
343                                         DirectSize, DirectAlign,
344                                         SlotSizeAndAlign,
345                                         AllowHigherAlign);
346 
347   if (IsIndirect) {
348     Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.second);
349   }
350 
351   return Addr;
352 
353 }
354 
355 static Address emitMergePHI(CodeGenFunction &CGF,
356                             Address Addr1, llvm::BasicBlock *Block1,
357                             Address Addr2, llvm::BasicBlock *Block2,
358                             const llvm::Twine &Name = "") {
359   assert(Addr1.getType() == Addr2.getType());
360   llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name);
361   PHI->addIncoming(Addr1.getPointer(), Block1);
362   PHI->addIncoming(Addr2.getPointer(), Block2);
363   CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment());
364   return Address(PHI, Align);
365 }
366 
367 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }
368 
369 // If someone can figure out a general rule for this, that would be great.
370 // It's probably just doomed to be platform-dependent, though.
371 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const {
372   // Verified for:
373   //   x86-64     FreeBSD, Linux, Darwin
374   //   x86-32     FreeBSD, Linux, Darwin
375   //   PowerPC    Linux, Darwin
376   //   ARM        Darwin (*not* EABI)
377   //   AArch64    Linux
378   return 32;
379 }
380 
381 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args,
382                                      const FunctionNoProtoType *fnType) const {
383   // The following conventions are known to require this to be false:
384   //   x86_stdcall
385   //   MIPS
386   // For everything else, we just prefer false unless we opt out.
387   return false;
388 }
389 
390 void
391 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib,
392                                              llvm::SmallString<24> &Opt) const {
393   // This assumes the user is passing a library name like "rt" instead of a
394   // filename like "librt.a/so", and that they don't care whether it's static or
395   // dynamic.
396   Opt = "-l";
397   Opt += Lib;
398 }
399 
400 unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const {
401   // OpenCL kernels are called via an explicit runtime API with arguments
402   // set with clSetKernelArg(), not as normal sub-functions.
403   // Return SPIR_KERNEL by default as the kernel calling convention to
404   // ensure the fingerprint is fixed such way that each OpenCL argument
405   // gets one matching argument in the produced kernel function argument
406   // list to enable feasible implementation of clSetKernelArg() with
407   // aggregates etc. In case we would use the default C calling conv here,
408   // clSetKernelArg() might break depending on the target-specific
409   // conventions; different targets might split structs passed as values
410   // to multiple function arguments etc.
411   return llvm::CallingConv::SPIR_KERNEL;
412 }
413 
414 llvm::Constant *TargetCodeGenInfo::getNullPointer(const CodeGen::CodeGenModule &CGM,
415     llvm::PointerType *T, QualType QT) const {
416   return llvm::ConstantPointerNull::get(T);
417 }
418 
419 unsigned TargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM,
420                                                      const VarDecl *D) const {
421   assert(!CGM.getLangOpts().OpenCL &&
422          !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) &&
423          "Address space agnostic languages only");
424   return D ? D->getType().getAddressSpace()
425            : static_cast<unsigned>(LangAS::Default);
426 }
427 
428 llvm::Value *TargetCodeGenInfo::performAddrSpaceCast(
429     CodeGen::CodeGenFunction &CGF, llvm::Value *Src, unsigned SrcAddr,
430     unsigned DestAddr, llvm::Type *DestTy, bool isNonNull) const {
431   // Since target may map different address spaces in AST to the same address
432   // space, an address space conversion may end up as a bitcast.
433   if (auto *C = dyn_cast<llvm::Constant>(Src))
434     return performAddrSpaceCast(CGF.CGM, C, SrcAddr, DestAddr, DestTy);
435   return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DestTy);
436 }
437 
438 llvm::Constant *
439 TargetCodeGenInfo::performAddrSpaceCast(CodeGenModule &CGM, llvm::Constant *Src,
440                                         unsigned SrcAddr, unsigned DestAddr,
441                                         llvm::Type *DestTy) const {
442   // Since target may map different address spaces in AST to the same address
443   // space, an address space conversion may end up as a bitcast.
444   return llvm::ConstantExpr::getPointerCast(Src, DestTy);
445 }
446 
447 llvm::SyncScope::ID
448 TargetCodeGenInfo::getLLVMSyncScopeID(SyncScope S, llvm::LLVMContext &C) const {
449   return C.getOrInsertSyncScopeID(""); /* default sync scope */
450 }
451 
452 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
453 
454 /// isEmptyField - Return true iff a the field is "empty", that is it
455 /// is an unnamed bit-field or an (array of) empty record(s).
456 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
457                          bool AllowArrays) {
458   if (FD->isUnnamedBitfield())
459     return true;
460 
461   QualType FT = FD->getType();
462 
463   // Constant arrays of empty records count as empty, strip them off.
464   // Constant arrays of zero length always count as empty.
465   if (AllowArrays)
466     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
467       if (AT->getSize() == 0)
468         return true;
469       FT = AT->getElementType();
470     }
471 
472   const RecordType *RT = FT->getAs<RecordType>();
473   if (!RT)
474     return false;
475 
476   // C++ record fields are never empty, at least in the Itanium ABI.
477   //
478   // FIXME: We should use a predicate for whether this behavior is true in the
479   // current ABI.
480   if (isa<CXXRecordDecl>(RT->getDecl()))
481     return false;
482 
483   return isEmptyRecord(Context, FT, AllowArrays);
484 }
485 
486 /// isEmptyRecord - Return true iff a structure contains only empty
487 /// fields. Note that a structure with a flexible array member is not
488 /// considered empty.
489 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
490   const RecordType *RT = T->getAs<RecordType>();
491   if (!RT)
492     return false;
493   const RecordDecl *RD = RT->getDecl();
494   if (RD->hasFlexibleArrayMember())
495     return false;
496 
497   // If this is a C++ record, check the bases first.
498   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
499     for (const auto &I : CXXRD->bases())
500       if (!isEmptyRecord(Context, I.getType(), true))
501         return false;
502 
503   for (const auto *I : RD->fields())
504     if (!isEmptyField(Context, I, AllowArrays))
505       return false;
506   return true;
507 }
508 
509 /// isSingleElementStruct - Determine if a structure is a "single
510 /// element struct", i.e. it has exactly one non-empty field or
511 /// exactly one field which is itself a single element
512 /// struct. Structures with flexible array members are never
513 /// considered single element structs.
514 ///
515 /// \return The field declaration for the single non-empty field, if
516 /// it exists.
517 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
518   const RecordType *RT = T->getAs<RecordType>();
519   if (!RT)
520     return nullptr;
521 
522   const RecordDecl *RD = RT->getDecl();
523   if (RD->hasFlexibleArrayMember())
524     return nullptr;
525 
526   const Type *Found = nullptr;
527 
528   // If this is a C++ record, check the bases first.
529   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
530     for (const auto &I : CXXRD->bases()) {
531       // Ignore empty records.
532       if (isEmptyRecord(Context, I.getType(), true))
533         continue;
534 
535       // If we already found an element then this isn't a single-element struct.
536       if (Found)
537         return nullptr;
538 
539       // If this is non-empty and not a single element struct, the composite
540       // cannot be a single element struct.
541       Found = isSingleElementStruct(I.getType(), Context);
542       if (!Found)
543         return nullptr;
544     }
545   }
546 
547   // Check for single element.
548   for (const auto *FD : RD->fields()) {
549     QualType FT = FD->getType();
550 
551     // Ignore empty fields.
552     if (isEmptyField(Context, FD, true))
553       continue;
554 
555     // If we already found an element then this isn't a single-element
556     // struct.
557     if (Found)
558       return nullptr;
559 
560     // Treat single element arrays as the element.
561     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
562       if (AT->getSize().getZExtValue() != 1)
563         break;
564       FT = AT->getElementType();
565     }
566 
567     if (!isAggregateTypeForABI(FT)) {
568       Found = FT.getTypePtr();
569     } else {
570       Found = isSingleElementStruct(FT, Context);
571       if (!Found)
572         return nullptr;
573     }
574   }
575 
576   // We don't consider a struct a single-element struct if it has
577   // padding beyond the element type.
578   if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T))
579     return nullptr;
580 
581   return Found;
582 }
583 
584 namespace {
585 Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty,
586                        const ABIArgInfo &AI) {
587   // This default implementation defers to the llvm backend's va_arg
588   // instruction. It can handle only passing arguments directly
589   // (typically only handled in the backend for primitive types), or
590   // aggregates passed indirectly by pointer (NOTE: if the "byval"
591   // flag has ABI impact in the callee, this implementation cannot
592   // work.)
593 
594   // Only a few cases are covered here at the moment -- those needed
595   // by the default abi.
596   llvm::Value *Val;
597 
598   if (AI.isIndirect()) {
599     assert(!AI.getPaddingType() &&
600            "Unexpected PaddingType seen in arginfo in generic VAArg emitter!");
601     assert(
602         !AI.getIndirectRealign() &&
603         "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!");
604 
605     auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty);
606     CharUnits TyAlignForABI = TyInfo.second;
607 
608     llvm::Type *BaseTy =
609         llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
610     llvm::Value *Addr =
611         CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy);
612     return Address(Addr, TyAlignForABI);
613   } else {
614     assert((AI.isDirect() || AI.isExtend()) &&
615            "Unexpected ArgInfo Kind in generic VAArg emitter!");
616 
617     assert(!AI.getInReg() &&
618            "Unexpected InReg seen in arginfo in generic VAArg emitter!");
619     assert(!AI.getPaddingType() &&
620            "Unexpected PaddingType seen in arginfo in generic VAArg emitter!");
621     assert(!AI.getDirectOffset() &&
622            "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!");
623     assert(!AI.getCoerceToType() &&
624            "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!");
625 
626     Address Temp = CGF.CreateMemTemp(Ty, "varet");
627     Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), CGF.ConvertType(Ty));
628     CGF.Builder.CreateStore(Val, Temp);
629     return Temp;
630   }
631 }
632 
633 /// DefaultABIInfo - The default implementation for ABI specific
634 /// details. This implementation provides information which results in
635 /// self-consistent and sensible LLVM IR generation, but does not
636 /// conform to any particular ABI.
637 class DefaultABIInfo : public ABIInfo {
638 public:
639   DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
640 
641   ABIArgInfo classifyReturnType(QualType RetTy) const;
642   ABIArgInfo classifyArgumentType(QualType RetTy) const;
643 
644   void computeInfo(CGFunctionInfo &FI) const override {
645     if (!getCXXABI().classifyReturnType(FI))
646       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
647     for (auto &I : FI.arguments())
648       I.info = classifyArgumentType(I.type);
649   }
650 
651   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
652                     QualType Ty) const override {
653     return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty));
654   }
655 };
656 
657 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
658 public:
659   DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
660     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
661 };
662 
663 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
664   Ty = useFirstFieldIfTransparentUnion(Ty);
665 
666   if (isAggregateTypeForABI(Ty)) {
667     // Records with non-trivial destructors/copy-constructors should not be
668     // passed by value.
669     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
670       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
671 
672     return getNaturalAlignIndirect(Ty);
673   }
674 
675   // Treat an enum type as its underlying type.
676   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
677     Ty = EnumTy->getDecl()->getIntegerType();
678 
679   return (Ty->isPromotableIntegerType() ?
680           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
681 }
682 
683 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
684   if (RetTy->isVoidType())
685     return ABIArgInfo::getIgnore();
686 
687   if (isAggregateTypeForABI(RetTy))
688     return getNaturalAlignIndirect(RetTy);
689 
690   // Treat an enum type as its underlying type.
691   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
692     RetTy = EnumTy->getDecl()->getIntegerType();
693 
694   return (RetTy->isPromotableIntegerType() ?
695           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
696 }
697 
698 //===----------------------------------------------------------------------===//
699 // WebAssembly ABI Implementation
700 //
701 // This is a very simple ABI that relies a lot on DefaultABIInfo.
702 //===----------------------------------------------------------------------===//
703 
704 class WebAssemblyABIInfo final : public DefaultABIInfo {
705 public:
706   explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT)
707       : DefaultABIInfo(CGT) {}
708 
709 private:
710   ABIArgInfo classifyReturnType(QualType RetTy) const;
711   ABIArgInfo classifyArgumentType(QualType Ty) const;
712 
713   // DefaultABIInfo's classifyReturnType and classifyArgumentType are
714   // non-virtual, but computeInfo and EmitVAArg are virtual, so we
715   // overload them.
716   void computeInfo(CGFunctionInfo &FI) const override {
717     if (!getCXXABI().classifyReturnType(FI))
718       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
719     for (auto &Arg : FI.arguments())
720       Arg.info = classifyArgumentType(Arg.type);
721   }
722 
723   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
724                     QualType Ty) const override;
725 };
726 
727 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo {
728 public:
729   explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
730       : TargetCodeGenInfo(new WebAssemblyABIInfo(CGT)) {}
731 };
732 
733 /// \brief Classify argument of given type \p Ty.
734 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const {
735   Ty = useFirstFieldIfTransparentUnion(Ty);
736 
737   if (isAggregateTypeForABI(Ty)) {
738     // Records with non-trivial destructors/copy-constructors should not be
739     // passed by value.
740     if (auto RAA = getRecordArgABI(Ty, getCXXABI()))
741       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
742     // Ignore empty structs/unions.
743     if (isEmptyRecord(getContext(), Ty, true))
744       return ABIArgInfo::getIgnore();
745     // Lower single-element structs to just pass a regular value. TODO: We
746     // could do reasonable-size multiple-element structs too, using getExpand(),
747     // though watch out for things like bitfields.
748     if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
749       return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
750   }
751 
752   // Otherwise just do the default thing.
753   return DefaultABIInfo::classifyArgumentType(Ty);
754 }
755 
756 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const {
757   if (isAggregateTypeForABI(RetTy)) {
758     // Records with non-trivial destructors/copy-constructors should not be
759     // returned by value.
760     if (!getRecordArgABI(RetTy, getCXXABI())) {
761       // Ignore empty structs/unions.
762       if (isEmptyRecord(getContext(), RetTy, true))
763         return ABIArgInfo::getIgnore();
764       // Lower single-element structs to just return a regular value. TODO: We
765       // could do reasonable-size multiple-element structs too, using
766       // ABIArgInfo::getDirect().
767       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
768         return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
769     }
770   }
771 
772   // Otherwise just do the default thing.
773   return DefaultABIInfo::classifyReturnType(RetTy);
774 }
775 
776 Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
777                                       QualType Ty) const {
778   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect=*/ false,
779                           getContext().getTypeInfoInChars(Ty),
780                           CharUnits::fromQuantity(4),
781                           /*AllowHigherAlign=*/ true);
782 }
783 
784 //===----------------------------------------------------------------------===//
785 // le32/PNaCl bitcode ABI Implementation
786 //
787 // This is a simplified version of the x86_32 ABI.  Arguments and return values
788 // are always passed on the stack.
789 //===----------------------------------------------------------------------===//
790 
791 class PNaClABIInfo : public ABIInfo {
792  public:
793   PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
794 
795   ABIArgInfo classifyReturnType(QualType RetTy) const;
796   ABIArgInfo classifyArgumentType(QualType RetTy) const;
797 
798   void computeInfo(CGFunctionInfo &FI) const override;
799   Address EmitVAArg(CodeGenFunction &CGF,
800                     Address VAListAddr, QualType Ty) const override;
801 };
802 
803 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo {
804  public:
805   PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
806     : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {}
807 };
808 
809 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const {
810   if (!getCXXABI().classifyReturnType(FI))
811     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
812 
813   for (auto &I : FI.arguments())
814     I.info = classifyArgumentType(I.type);
815 }
816 
817 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
818                                 QualType Ty) const {
819   // The PNaCL ABI is a bit odd, in that varargs don't use normal
820   // function classification. Structs get passed directly for varargs
821   // functions, through a rewriting transform in
822   // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows
823   // this target to actually support a va_arg instructions with an
824   // aggregate type, unlike other targets.
825   return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect());
826 }
827 
828 /// \brief Classify argument of given type \p Ty.
829 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const {
830   if (isAggregateTypeForABI(Ty)) {
831     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
832       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
833     return getNaturalAlignIndirect(Ty);
834   } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
835     // Treat an enum type as its underlying type.
836     Ty = EnumTy->getDecl()->getIntegerType();
837   } else if (Ty->isFloatingType()) {
838     // Floating-point types don't go inreg.
839     return ABIArgInfo::getDirect();
840   }
841 
842   return (Ty->isPromotableIntegerType() ?
843           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
844 }
845 
846 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const {
847   if (RetTy->isVoidType())
848     return ABIArgInfo::getIgnore();
849 
850   // In the PNaCl ABI we always return records/structures on the stack.
851   if (isAggregateTypeForABI(RetTy))
852     return getNaturalAlignIndirect(RetTy);
853 
854   // Treat an enum type as its underlying type.
855   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
856     RetTy = EnumTy->getDecl()->getIntegerType();
857 
858   return (RetTy->isPromotableIntegerType() ?
859           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
860 }
861 
862 /// IsX86_MMXType - Return true if this is an MMX type.
863 bool IsX86_MMXType(llvm::Type *IRType) {
864   // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>.
865   return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
866     cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
867     IRType->getScalarSizeInBits() != 64;
868 }
869 
870 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
871                                           StringRef Constraint,
872                                           llvm::Type* Ty) {
873   if ((Constraint == "y" || Constraint == "&y") && Ty->isVectorTy()) {
874     if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) {
875       // Invalid MMX constraint
876       return nullptr;
877     }
878 
879     return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
880   }
881 
882   // No operation needed
883   return Ty;
884 }
885 
886 /// Returns true if this type can be passed in SSE registers with the
887 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64.
888 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) {
889   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
890     if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) {
891       if (BT->getKind() == BuiltinType::LongDouble) {
892         if (&Context.getTargetInfo().getLongDoubleFormat() ==
893             &llvm::APFloat::x87DoubleExtended())
894           return false;
895       }
896       return true;
897     }
898   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
899     // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX
900     // registers specially.
901     unsigned VecSize = Context.getTypeSize(VT);
902     if (VecSize == 128 || VecSize == 256 || VecSize == 512)
903       return true;
904   }
905   return false;
906 }
907 
908 /// Returns true if this aggregate is small enough to be passed in SSE registers
909 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64.
910 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) {
911   return NumMembers <= 4;
912 }
913 
914 /// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86.
915 static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) {
916   auto AI = ABIArgInfo::getDirect(T);
917   AI.setInReg(true);
918   AI.setCanBeFlattened(false);
919   return AI;
920 }
921 
922 //===----------------------------------------------------------------------===//
923 // X86-32 ABI Implementation
924 //===----------------------------------------------------------------------===//
925 
926 /// \brief Similar to llvm::CCState, but for Clang.
927 struct CCState {
928   CCState(unsigned CC) : CC(CC), FreeRegs(0), FreeSSERegs(0) {}
929 
930   unsigned CC;
931   unsigned FreeRegs;
932   unsigned FreeSSERegs;
933 };
934 
935 enum {
936   // Vectorcall only allows the first 6 parameters to be passed in registers.
937   VectorcallMaxParamNumAsReg = 6
938 };
939 
940 /// X86_32ABIInfo - The X86-32 ABI information.
941 class X86_32ABIInfo : public SwiftABIInfo {
942   enum Class {
943     Integer,
944     Float
945   };
946 
947   static const unsigned MinABIStackAlignInBytes = 4;
948 
949   bool IsDarwinVectorABI;
950   bool IsRetSmallStructInRegABI;
951   bool IsWin32StructABI;
952   bool IsSoftFloatABI;
953   bool IsMCUABI;
954   unsigned DefaultNumRegisterParameters;
955 
956   static bool isRegisterSize(unsigned Size) {
957     return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
958   }
959 
960   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
961     // FIXME: Assumes vectorcall is in use.
962     return isX86VectorTypeForVectorCall(getContext(), Ty);
963   }
964 
965   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
966                                          uint64_t NumMembers) const override {
967     // FIXME: Assumes vectorcall is in use.
968     return isX86VectorCallAggregateSmallEnough(NumMembers);
969   }
970 
971   bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const;
972 
973   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
974   /// such that the argument will be passed in memory.
975   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
976 
977   ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const;
978 
979   /// \brief Return the alignment to use for the given type on the stack.
980   unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
981 
982   Class classify(QualType Ty) const;
983   ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const;
984   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
985 
986   /// \brief Updates the number of available free registers, returns
987   /// true if any registers were allocated.
988   bool updateFreeRegs(QualType Ty, CCState &State) const;
989 
990   bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg,
991                                 bool &NeedsPadding) const;
992   bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const;
993 
994   bool canExpandIndirectArgument(QualType Ty) const;
995 
996   /// \brief Rewrite the function info so that all memory arguments use
997   /// inalloca.
998   void rewriteWithInAlloca(CGFunctionInfo &FI) const;
999 
1000   void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
1001                            CharUnits &StackOffset, ABIArgInfo &Info,
1002                            QualType Type) const;
1003   void computeVectorCallArgs(CGFunctionInfo &FI, CCState &State,
1004                              bool &UsedInAlloca) const;
1005 
1006 public:
1007 
1008   void computeInfo(CGFunctionInfo &FI) const override;
1009   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
1010                     QualType Ty) const override;
1011 
1012   X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
1013                 bool RetSmallStructInRegABI, bool Win32StructABI,
1014                 unsigned NumRegisterParameters, bool SoftFloatABI)
1015     : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI),
1016       IsRetSmallStructInRegABI(RetSmallStructInRegABI),
1017       IsWin32StructABI(Win32StructABI),
1018       IsSoftFloatABI(SoftFloatABI),
1019       IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()),
1020       DefaultNumRegisterParameters(NumRegisterParameters) {}
1021 
1022   bool shouldPassIndirectlyForSwift(CharUnits totalSize,
1023                                     ArrayRef<llvm::Type*> scalars,
1024                                     bool asReturnValue) const override {
1025     // LLVM's x86-32 lowering currently only assigns up to three
1026     // integer registers and three fp registers.  Oddly, it'll use up to
1027     // four vector registers for vectors, but those can overlap with the
1028     // scalar registers.
1029     return occupiesMoreThan(CGT, scalars, /*total*/ 3);
1030   }
1031 
1032   bool isSwiftErrorInRegister() const override {
1033     // x86-32 lowering does not support passing swifterror in a register.
1034     return false;
1035   }
1036 };
1037 
1038 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
1039 public:
1040   X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
1041                           bool RetSmallStructInRegABI, bool Win32StructABI,
1042                           unsigned NumRegisterParameters, bool SoftFloatABI)
1043       : TargetCodeGenInfo(new X86_32ABIInfo(
1044             CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI,
1045             NumRegisterParameters, SoftFloatABI)) {}
1046 
1047   static bool isStructReturnInRegABI(
1048       const llvm::Triple &Triple, const CodeGenOptions &Opts);
1049 
1050   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
1051                            CodeGen::CodeGenModule &CGM,
1052                            ForDefinition_t IsForDefinition) const override;
1053 
1054   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
1055     // Darwin uses different dwarf register numbers for EH.
1056     if (CGM.getTarget().getTriple().isOSDarwin()) return 5;
1057     return 4;
1058   }
1059 
1060   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1061                                llvm::Value *Address) const override;
1062 
1063   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
1064                                   StringRef Constraint,
1065                                   llvm::Type* Ty) const override {
1066     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
1067   }
1068 
1069   void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue,
1070                                 std::string &Constraints,
1071                                 std::vector<llvm::Type *> &ResultRegTypes,
1072                                 std::vector<llvm::Type *> &ResultTruncRegTypes,
1073                                 std::vector<LValue> &ResultRegDests,
1074                                 std::string &AsmString,
1075                                 unsigned NumOutputs) const override;
1076 
1077   llvm::Constant *
1078   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
1079     unsigned Sig = (0xeb << 0) |  // jmp rel8
1080                    (0x06 << 8) |  //           .+0x08
1081                    ('F' << 16) |
1082                    ('T' << 24);
1083     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
1084   }
1085 
1086   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
1087     return "movl\t%ebp, %ebp"
1088            "\t\t## marker for objc_retainAutoreleaseReturnValue";
1089   }
1090 };
1091 
1092 }
1093 
1094 /// Rewrite input constraint references after adding some output constraints.
1095 /// In the case where there is one output and one input and we add one output,
1096 /// we need to replace all operand references greater than or equal to 1:
1097 ///     mov $0, $1
1098 ///     mov eax, $1
1099 /// The result will be:
1100 ///     mov $0, $2
1101 ///     mov eax, $2
1102 static void rewriteInputConstraintReferences(unsigned FirstIn,
1103                                              unsigned NumNewOuts,
1104                                              std::string &AsmString) {
1105   std::string Buf;
1106   llvm::raw_string_ostream OS(Buf);
1107   size_t Pos = 0;
1108   while (Pos < AsmString.size()) {
1109     size_t DollarStart = AsmString.find('$', Pos);
1110     if (DollarStart == std::string::npos)
1111       DollarStart = AsmString.size();
1112     size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart);
1113     if (DollarEnd == std::string::npos)
1114       DollarEnd = AsmString.size();
1115     OS << StringRef(&AsmString[Pos], DollarEnd - Pos);
1116     Pos = DollarEnd;
1117     size_t NumDollars = DollarEnd - DollarStart;
1118     if (NumDollars % 2 != 0 && Pos < AsmString.size()) {
1119       // We have an operand reference.
1120       size_t DigitStart = Pos;
1121       size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart);
1122       if (DigitEnd == std::string::npos)
1123         DigitEnd = AsmString.size();
1124       StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart);
1125       unsigned OperandIndex;
1126       if (!OperandStr.getAsInteger(10, OperandIndex)) {
1127         if (OperandIndex >= FirstIn)
1128           OperandIndex += NumNewOuts;
1129         OS << OperandIndex;
1130       } else {
1131         OS << OperandStr;
1132       }
1133       Pos = DigitEnd;
1134     }
1135   }
1136   AsmString = std::move(OS.str());
1137 }
1138 
1139 /// Add output constraints for EAX:EDX because they are return registers.
1140 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs(
1141     CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints,
1142     std::vector<llvm::Type *> &ResultRegTypes,
1143     std::vector<llvm::Type *> &ResultTruncRegTypes,
1144     std::vector<LValue> &ResultRegDests, std::string &AsmString,
1145     unsigned NumOutputs) const {
1146   uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType());
1147 
1148   // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is
1149   // larger.
1150   if (!Constraints.empty())
1151     Constraints += ',';
1152   if (RetWidth <= 32) {
1153     Constraints += "={eax}";
1154     ResultRegTypes.push_back(CGF.Int32Ty);
1155   } else {
1156     // Use the 'A' constraint for EAX:EDX.
1157     Constraints += "=A";
1158     ResultRegTypes.push_back(CGF.Int64Ty);
1159   }
1160 
1161   // Truncate EAX or EAX:EDX to an integer of the appropriate size.
1162   llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth);
1163   ResultTruncRegTypes.push_back(CoerceTy);
1164 
1165   // Coerce the integer by bitcasting the return slot pointer.
1166   ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(),
1167                                                   CoerceTy->getPointerTo()));
1168   ResultRegDests.push_back(ReturnSlot);
1169 
1170   rewriteInputConstraintReferences(NumOutputs, 1, AsmString);
1171 }
1172 
1173 /// shouldReturnTypeInRegister - Determine if the given type should be
1174 /// returned in a register (for the Darwin and MCU ABI).
1175 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
1176                                                ASTContext &Context) const {
1177   uint64_t Size = Context.getTypeSize(Ty);
1178 
1179   // For i386, type must be register sized.
1180   // For the MCU ABI, it only needs to be <= 8-byte
1181   if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size)))
1182    return false;
1183 
1184   if (Ty->isVectorType()) {
1185     // 64- and 128- bit vectors inside structures are not returned in
1186     // registers.
1187     if (Size == 64 || Size == 128)
1188       return false;
1189 
1190     return true;
1191   }
1192 
1193   // If this is a builtin, pointer, enum, complex type, member pointer, or
1194   // member function pointer it is ok.
1195   if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
1196       Ty->isAnyComplexType() || Ty->isEnumeralType() ||
1197       Ty->isBlockPointerType() || Ty->isMemberPointerType())
1198     return true;
1199 
1200   // Arrays are treated like records.
1201   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
1202     return shouldReturnTypeInRegister(AT->getElementType(), Context);
1203 
1204   // Otherwise, it must be a record type.
1205   const RecordType *RT = Ty->getAs<RecordType>();
1206   if (!RT) return false;
1207 
1208   // FIXME: Traverse bases here too.
1209 
1210   // Structure types are passed in register if all fields would be
1211   // passed in a register.
1212   for (const auto *FD : RT->getDecl()->fields()) {
1213     // Empty fields are ignored.
1214     if (isEmptyField(Context, FD, true))
1215       continue;
1216 
1217     // Check fields recursively.
1218     if (!shouldReturnTypeInRegister(FD->getType(), Context))
1219       return false;
1220   }
1221   return true;
1222 }
1223 
1224 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
1225   // Treat complex types as the element type.
1226   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
1227     Ty = CTy->getElementType();
1228 
1229   // Check for a type which we know has a simple scalar argument-passing
1230   // convention without any padding.  (We're specifically looking for 32
1231   // and 64-bit integer and integer-equivalents, float, and double.)
1232   if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
1233       !Ty->isEnumeralType() && !Ty->isBlockPointerType())
1234     return false;
1235 
1236   uint64_t Size = Context.getTypeSize(Ty);
1237   return Size == 32 || Size == 64;
1238 }
1239 
1240 static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD,
1241                           uint64_t &Size) {
1242   for (const auto *FD : RD->fields()) {
1243     // Scalar arguments on the stack get 4 byte alignment on x86. If the
1244     // argument is smaller than 32-bits, expanding the struct will create
1245     // alignment padding.
1246     if (!is32Or64BitBasicType(FD->getType(), Context))
1247       return false;
1248 
1249     // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
1250     // how to expand them yet, and the predicate for telling if a bitfield still
1251     // counts as "basic" is more complicated than what we were doing previously.
1252     if (FD->isBitField())
1253       return false;
1254 
1255     Size += Context.getTypeSize(FD->getType());
1256   }
1257   return true;
1258 }
1259 
1260 static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD,
1261                                  uint64_t &Size) {
1262   // Don't do this if there are any non-empty bases.
1263   for (const CXXBaseSpecifier &Base : RD->bases()) {
1264     if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(),
1265                               Size))
1266       return false;
1267   }
1268   if (!addFieldSizes(Context, RD, Size))
1269     return false;
1270   return true;
1271 }
1272 
1273 /// Test whether an argument type which is to be passed indirectly (on the
1274 /// stack) would have the equivalent layout if it was expanded into separate
1275 /// arguments. If so, we prefer to do the latter to avoid inhibiting
1276 /// optimizations.
1277 bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const {
1278   // We can only expand structure types.
1279   const RecordType *RT = Ty->getAs<RecordType>();
1280   if (!RT)
1281     return false;
1282   const RecordDecl *RD = RT->getDecl();
1283   uint64_t Size = 0;
1284   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1285     if (!IsWin32StructABI) {
1286       // On non-Windows, we have to conservatively match our old bitcode
1287       // prototypes in order to be ABI-compatible at the bitcode level.
1288       if (!CXXRD->isCLike())
1289         return false;
1290     } else {
1291       // Don't do this for dynamic classes.
1292       if (CXXRD->isDynamicClass())
1293         return false;
1294     }
1295     if (!addBaseAndFieldSizes(getContext(), CXXRD, Size))
1296       return false;
1297   } else {
1298     if (!addFieldSizes(getContext(), RD, Size))
1299       return false;
1300   }
1301 
1302   // We can do this if there was no alignment padding.
1303   return Size == getContext().getTypeSize(Ty);
1304 }
1305 
1306 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const {
1307   // If the return value is indirect, then the hidden argument is consuming one
1308   // integer register.
1309   if (State.FreeRegs) {
1310     --State.FreeRegs;
1311     if (!IsMCUABI)
1312       return getNaturalAlignIndirectInReg(RetTy);
1313   }
1314   return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
1315 }
1316 
1317 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
1318                                              CCState &State) const {
1319   if (RetTy->isVoidType())
1320     return ABIArgInfo::getIgnore();
1321 
1322   const Type *Base = nullptr;
1323   uint64_t NumElts = 0;
1324   if ((State.CC == llvm::CallingConv::X86_VectorCall ||
1325        State.CC == llvm::CallingConv::X86_RegCall) &&
1326       isHomogeneousAggregate(RetTy, Base, NumElts)) {
1327     // The LLVM struct type for such an aggregate should lower properly.
1328     return ABIArgInfo::getDirect();
1329   }
1330 
1331   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
1332     // On Darwin, some vectors are returned in registers.
1333     if (IsDarwinVectorABI) {
1334       uint64_t Size = getContext().getTypeSize(RetTy);
1335 
1336       // 128-bit vectors are a special case; they are returned in
1337       // registers and we need to make sure to pick a type the LLVM
1338       // backend will like.
1339       if (Size == 128)
1340         return ABIArgInfo::getDirect(llvm::VectorType::get(
1341                   llvm::Type::getInt64Ty(getVMContext()), 2));
1342 
1343       // Always return in register if it fits in a general purpose
1344       // register, or if it is 64 bits and has a single element.
1345       if ((Size == 8 || Size == 16 || Size == 32) ||
1346           (Size == 64 && VT->getNumElements() == 1))
1347         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1348                                                             Size));
1349 
1350       return getIndirectReturnResult(RetTy, State);
1351     }
1352 
1353     return ABIArgInfo::getDirect();
1354   }
1355 
1356   if (isAggregateTypeForABI(RetTy)) {
1357     if (const RecordType *RT = RetTy->getAs<RecordType>()) {
1358       // Structures with flexible arrays are always indirect.
1359       if (RT->getDecl()->hasFlexibleArrayMember())
1360         return getIndirectReturnResult(RetTy, State);
1361     }
1362 
1363     // If specified, structs and unions are always indirect.
1364     if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType())
1365       return getIndirectReturnResult(RetTy, State);
1366 
1367     // Ignore empty structs/unions.
1368     if (isEmptyRecord(getContext(), RetTy, true))
1369       return ABIArgInfo::getIgnore();
1370 
1371     // Small structures which are register sized are generally returned
1372     // in a register.
1373     if (shouldReturnTypeInRegister(RetTy, getContext())) {
1374       uint64_t Size = getContext().getTypeSize(RetTy);
1375 
1376       // As a special-case, if the struct is a "single-element" struct, and
1377       // the field is of type "float" or "double", return it in a
1378       // floating-point register. (MSVC does not apply this special case.)
1379       // We apply a similar transformation for pointer types to improve the
1380       // quality of the generated IR.
1381       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
1382         if ((!IsWin32StructABI && SeltTy->isRealFloatingType())
1383             || SeltTy->hasPointerRepresentation())
1384           return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
1385 
1386       // FIXME: We should be able to narrow this integer in cases with dead
1387       // padding.
1388       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
1389     }
1390 
1391     return getIndirectReturnResult(RetTy, State);
1392   }
1393 
1394   // Treat an enum type as its underlying type.
1395   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
1396     RetTy = EnumTy->getDecl()->getIntegerType();
1397 
1398   return (RetTy->isPromotableIntegerType() ?
1399           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1400 }
1401 
1402 static bool isSSEVectorType(ASTContext &Context, QualType Ty) {
1403   return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128;
1404 }
1405 
1406 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) {
1407   const RecordType *RT = Ty->getAs<RecordType>();
1408   if (!RT)
1409     return 0;
1410   const RecordDecl *RD = RT->getDecl();
1411 
1412   // If this is a C++ record, check the bases first.
1413   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
1414     for (const auto &I : CXXRD->bases())
1415       if (!isRecordWithSSEVectorType(Context, I.getType()))
1416         return false;
1417 
1418   for (const auto *i : RD->fields()) {
1419     QualType FT = i->getType();
1420 
1421     if (isSSEVectorType(Context, FT))
1422       return true;
1423 
1424     if (isRecordWithSSEVectorType(Context, FT))
1425       return true;
1426   }
1427 
1428   return false;
1429 }
1430 
1431 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
1432                                                  unsigned Align) const {
1433   // Otherwise, if the alignment is less than or equal to the minimum ABI
1434   // alignment, just use the default; the backend will handle this.
1435   if (Align <= MinABIStackAlignInBytes)
1436     return 0; // Use default alignment.
1437 
1438   // On non-Darwin, the stack type alignment is always 4.
1439   if (!IsDarwinVectorABI) {
1440     // Set explicit alignment, since we may need to realign the top.
1441     return MinABIStackAlignInBytes;
1442   }
1443 
1444   // Otherwise, if the type contains an SSE vector type, the alignment is 16.
1445   if (Align >= 16 && (isSSEVectorType(getContext(), Ty) ||
1446                       isRecordWithSSEVectorType(getContext(), Ty)))
1447     return 16;
1448 
1449   return MinABIStackAlignInBytes;
1450 }
1451 
1452 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal,
1453                                             CCState &State) const {
1454   if (!ByVal) {
1455     if (State.FreeRegs) {
1456       --State.FreeRegs; // Non-byval indirects just use one pointer.
1457       if (!IsMCUABI)
1458         return getNaturalAlignIndirectInReg(Ty);
1459     }
1460     return getNaturalAlignIndirect(Ty, false);
1461   }
1462 
1463   // Compute the byval alignment.
1464   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
1465   unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
1466   if (StackAlign == 0)
1467     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true);
1468 
1469   // If the stack alignment is less than the type alignment, realign the
1470   // argument.
1471   bool Realign = TypeAlign > StackAlign;
1472   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign),
1473                                  /*ByVal=*/true, Realign);
1474 }
1475 
1476 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const {
1477   const Type *T = isSingleElementStruct(Ty, getContext());
1478   if (!T)
1479     T = Ty.getTypePtr();
1480 
1481   if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
1482     BuiltinType::Kind K = BT->getKind();
1483     if (K == BuiltinType::Float || K == BuiltinType::Double)
1484       return Float;
1485   }
1486   return Integer;
1487 }
1488 
1489 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const {
1490   if (!IsSoftFloatABI) {
1491     Class C = classify(Ty);
1492     if (C == Float)
1493       return false;
1494   }
1495 
1496   unsigned Size = getContext().getTypeSize(Ty);
1497   unsigned SizeInRegs = (Size + 31) / 32;
1498 
1499   if (SizeInRegs == 0)
1500     return false;
1501 
1502   if (!IsMCUABI) {
1503     if (SizeInRegs > State.FreeRegs) {
1504       State.FreeRegs = 0;
1505       return false;
1506     }
1507   } else {
1508     // The MCU psABI allows passing parameters in-reg even if there are
1509     // earlier parameters that are passed on the stack. Also,
1510     // it does not allow passing >8-byte structs in-register,
1511     // even if there are 3 free registers available.
1512     if (SizeInRegs > State.FreeRegs || SizeInRegs > 2)
1513       return false;
1514   }
1515 
1516   State.FreeRegs -= SizeInRegs;
1517   return true;
1518 }
1519 
1520 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State,
1521                                              bool &InReg,
1522                                              bool &NeedsPadding) const {
1523   // On Windows, aggregates other than HFAs are never passed in registers, and
1524   // they do not consume register slots. Homogenous floating-point aggregates
1525   // (HFAs) have already been dealt with at this point.
1526   if (IsWin32StructABI && isAggregateTypeForABI(Ty))
1527     return false;
1528 
1529   NeedsPadding = false;
1530   InReg = !IsMCUABI;
1531 
1532   if (!updateFreeRegs(Ty, State))
1533     return false;
1534 
1535   if (IsMCUABI)
1536     return true;
1537 
1538   if (State.CC == llvm::CallingConv::X86_FastCall ||
1539       State.CC == llvm::CallingConv::X86_VectorCall ||
1540       State.CC == llvm::CallingConv::X86_RegCall) {
1541     if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs)
1542       NeedsPadding = true;
1543 
1544     return false;
1545   }
1546 
1547   return true;
1548 }
1549 
1550 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const {
1551   if (!updateFreeRegs(Ty, State))
1552     return false;
1553 
1554   if (IsMCUABI)
1555     return false;
1556 
1557   if (State.CC == llvm::CallingConv::X86_FastCall ||
1558       State.CC == llvm::CallingConv::X86_VectorCall ||
1559       State.CC == llvm::CallingConv::X86_RegCall) {
1560     if (getContext().getTypeSize(Ty) > 32)
1561       return false;
1562 
1563     return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() ||
1564         Ty->isReferenceType());
1565   }
1566 
1567   return true;
1568 }
1569 
1570 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
1571                                                CCState &State) const {
1572   // FIXME: Set alignment on indirect arguments.
1573 
1574   Ty = useFirstFieldIfTransparentUnion(Ty);
1575 
1576   // Check with the C++ ABI first.
1577   const RecordType *RT = Ty->getAs<RecordType>();
1578   if (RT) {
1579     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
1580     if (RAA == CGCXXABI::RAA_Indirect) {
1581       return getIndirectResult(Ty, false, State);
1582     } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
1583       // The field index doesn't matter, we'll fix it up later.
1584       return ABIArgInfo::getInAlloca(/*FieldIndex=*/0);
1585     }
1586   }
1587 
1588   // Regcall uses the concept of a homogenous vector aggregate, similar
1589   // to other targets.
1590   const Type *Base = nullptr;
1591   uint64_t NumElts = 0;
1592   if (State.CC == llvm::CallingConv::X86_RegCall &&
1593       isHomogeneousAggregate(Ty, Base, NumElts)) {
1594 
1595     if (State.FreeSSERegs >= NumElts) {
1596       State.FreeSSERegs -= NumElts;
1597       if (Ty->isBuiltinType() || Ty->isVectorType())
1598         return ABIArgInfo::getDirect();
1599       return ABIArgInfo::getExpand();
1600     }
1601     return getIndirectResult(Ty, /*ByVal=*/false, State);
1602   }
1603 
1604   if (isAggregateTypeForABI(Ty)) {
1605     // Structures with flexible arrays are always indirect.
1606     // FIXME: This should not be byval!
1607     if (RT && RT->getDecl()->hasFlexibleArrayMember())
1608       return getIndirectResult(Ty, true, State);
1609 
1610     // Ignore empty structs/unions on non-Windows.
1611     if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true))
1612       return ABIArgInfo::getIgnore();
1613 
1614     llvm::LLVMContext &LLVMContext = getVMContext();
1615     llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
1616     bool NeedsPadding = false;
1617     bool InReg;
1618     if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) {
1619       unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
1620       SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32);
1621       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
1622       if (InReg)
1623         return ABIArgInfo::getDirectInReg(Result);
1624       else
1625         return ABIArgInfo::getDirect(Result);
1626     }
1627     llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr;
1628 
1629     // Expand small (<= 128-bit) record types when we know that the stack layout
1630     // of those arguments will match the struct. This is important because the
1631     // LLVM backend isn't smart enough to remove byval, which inhibits many
1632     // optimizations.
1633     // Don't do this for the MCU if there are still free integer registers
1634     // (see X86_64 ABI for full explanation).
1635     if (getContext().getTypeSize(Ty) <= 4 * 32 &&
1636         (!IsMCUABI || State.FreeRegs == 0) && canExpandIndirectArgument(Ty))
1637       return ABIArgInfo::getExpandWithPadding(
1638           State.CC == llvm::CallingConv::X86_FastCall ||
1639               State.CC == llvm::CallingConv::X86_VectorCall ||
1640               State.CC == llvm::CallingConv::X86_RegCall,
1641           PaddingType);
1642 
1643     return getIndirectResult(Ty, true, State);
1644   }
1645 
1646   if (const VectorType *VT = Ty->getAs<VectorType>()) {
1647     // On Darwin, some vectors are passed in memory, we handle this by passing
1648     // it as an i8/i16/i32/i64.
1649     if (IsDarwinVectorABI) {
1650       uint64_t Size = getContext().getTypeSize(Ty);
1651       if ((Size == 8 || Size == 16 || Size == 32) ||
1652           (Size == 64 && VT->getNumElements() == 1))
1653         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1654                                                             Size));
1655     }
1656 
1657     if (IsX86_MMXType(CGT.ConvertType(Ty)))
1658       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64));
1659 
1660     return ABIArgInfo::getDirect();
1661   }
1662 
1663 
1664   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1665     Ty = EnumTy->getDecl()->getIntegerType();
1666 
1667   bool InReg = shouldPrimitiveUseInReg(Ty, State);
1668 
1669   if (Ty->isPromotableIntegerType()) {
1670     if (InReg)
1671       return ABIArgInfo::getExtendInReg();
1672     return ABIArgInfo::getExtend();
1673   }
1674 
1675   if (InReg)
1676     return ABIArgInfo::getDirectInReg();
1677   return ABIArgInfo::getDirect();
1678 }
1679 
1680 void X86_32ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI, CCState &State,
1681                                           bool &UsedInAlloca) const {
1682   // Vectorcall x86 works subtly different than in x64, so the format is
1683   // a bit different than the x64 version.  First, all vector types (not HVAs)
1684   // are assigned, with the first 6 ending up in the YMM0-5 or XMM0-5 registers.
1685   // This differs from the x64 implementation, where the first 6 by INDEX get
1686   // registers.
1687   // After that, integers AND HVAs are assigned Left to Right in the same pass.
1688   // Integers are passed as ECX/EDX if one is available (in order).  HVAs will
1689   // first take up the remaining YMM/XMM registers. If insufficient registers
1690   // remain but an integer register (ECX/EDX) is available, it will be passed
1691   // in that, else, on the stack.
1692   for (auto &I : FI.arguments()) {
1693     // First pass do all the vector types.
1694     const Type *Base = nullptr;
1695     uint64_t NumElts = 0;
1696     const QualType& Ty = I.type;
1697     if ((Ty->isVectorType() || Ty->isBuiltinType()) &&
1698         isHomogeneousAggregate(Ty, Base, NumElts)) {
1699       if (State.FreeSSERegs >= NumElts) {
1700         State.FreeSSERegs -= NumElts;
1701         I.info = ABIArgInfo::getDirect();
1702       } else {
1703         I.info = classifyArgumentType(Ty, State);
1704       }
1705       UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca);
1706     }
1707   }
1708 
1709   for (auto &I : FI.arguments()) {
1710     // Second pass, do the rest!
1711     const Type *Base = nullptr;
1712     uint64_t NumElts = 0;
1713     const QualType& Ty = I.type;
1714     bool IsHva = isHomogeneousAggregate(Ty, Base, NumElts);
1715 
1716     if (IsHva && !Ty->isVectorType() && !Ty->isBuiltinType()) {
1717       // Assign true HVAs (non vector/native FP types).
1718       if (State.FreeSSERegs >= NumElts) {
1719         State.FreeSSERegs -= NumElts;
1720         I.info = getDirectX86Hva();
1721       } else {
1722         I.info = getIndirectResult(Ty, /*ByVal=*/false, State);
1723       }
1724     } else if (!IsHva) {
1725       // Assign all Non-HVAs, so this will exclude Vector/FP args.
1726       I.info = classifyArgumentType(Ty, State);
1727       UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca);
1728     }
1729   }
1730 }
1731 
1732 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
1733   CCState State(FI.getCallingConvention());
1734   if (IsMCUABI)
1735     State.FreeRegs = 3;
1736   else if (State.CC == llvm::CallingConv::X86_FastCall)
1737     State.FreeRegs = 2;
1738   else if (State.CC == llvm::CallingConv::X86_VectorCall) {
1739     State.FreeRegs = 2;
1740     State.FreeSSERegs = 6;
1741   } else if (FI.getHasRegParm())
1742     State.FreeRegs = FI.getRegParm();
1743   else if (State.CC == llvm::CallingConv::X86_RegCall) {
1744     State.FreeRegs = 5;
1745     State.FreeSSERegs = 8;
1746   } else
1747     State.FreeRegs = DefaultNumRegisterParameters;
1748 
1749   if (!getCXXABI().classifyReturnType(FI)) {
1750     FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State);
1751   } else if (FI.getReturnInfo().isIndirect()) {
1752     // The C++ ABI is not aware of register usage, so we have to check if the
1753     // return value was sret and put it in a register ourselves if appropriate.
1754     if (State.FreeRegs) {
1755       --State.FreeRegs;  // The sret parameter consumes a register.
1756       if (!IsMCUABI)
1757         FI.getReturnInfo().setInReg(true);
1758     }
1759   }
1760 
1761   // The chain argument effectively gives us another free register.
1762   if (FI.isChainCall())
1763     ++State.FreeRegs;
1764 
1765   bool UsedInAlloca = false;
1766   if (State.CC == llvm::CallingConv::X86_VectorCall) {
1767     computeVectorCallArgs(FI, State, UsedInAlloca);
1768   } else {
1769     // If not vectorcall, revert to normal behavior.
1770     for (auto &I : FI.arguments()) {
1771       I.info = classifyArgumentType(I.type, State);
1772       UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca);
1773     }
1774   }
1775 
1776   // If we needed to use inalloca for any argument, do a second pass and rewrite
1777   // all the memory arguments to use inalloca.
1778   if (UsedInAlloca)
1779     rewriteWithInAlloca(FI);
1780 }
1781 
1782 void
1783 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
1784                                    CharUnits &StackOffset, ABIArgInfo &Info,
1785                                    QualType Type) const {
1786   // Arguments are always 4-byte-aligned.
1787   CharUnits FieldAlign = CharUnits::fromQuantity(4);
1788 
1789   assert(StackOffset.isMultipleOf(FieldAlign) && "unaligned inalloca struct");
1790   Info = ABIArgInfo::getInAlloca(FrameFields.size());
1791   FrameFields.push_back(CGT.ConvertTypeForMem(Type));
1792   StackOffset += getContext().getTypeSizeInChars(Type);
1793 
1794   // Insert padding bytes to respect alignment.
1795   CharUnits FieldEnd = StackOffset;
1796   StackOffset = FieldEnd.alignTo(FieldAlign);
1797   if (StackOffset != FieldEnd) {
1798     CharUnits NumBytes = StackOffset - FieldEnd;
1799     llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext());
1800     Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity());
1801     FrameFields.push_back(Ty);
1802   }
1803 }
1804 
1805 static bool isArgInAlloca(const ABIArgInfo &Info) {
1806   // Leave ignored and inreg arguments alone.
1807   switch (Info.getKind()) {
1808   case ABIArgInfo::InAlloca:
1809     return true;
1810   case ABIArgInfo::Indirect:
1811     assert(Info.getIndirectByVal());
1812     return true;
1813   case ABIArgInfo::Ignore:
1814     return false;
1815   case ABIArgInfo::Direct:
1816   case ABIArgInfo::Extend:
1817     if (Info.getInReg())
1818       return false;
1819     return true;
1820   case ABIArgInfo::Expand:
1821   case ABIArgInfo::CoerceAndExpand:
1822     // These are aggregate types which are never passed in registers when
1823     // inalloca is involved.
1824     return true;
1825   }
1826   llvm_unreachable("invalid enum");
1827 }
1828 
1829 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const {
1830   assert(IsWin32StructABI && "inalloca only supported on win32");
1831 
1832   // Build a packed struct type for all of the arguments in memory.
1833   SmallVector<llvm::Type *, 6> FrameFields;
1834 
1835   // The stack alignment is always 4.
1836   CharUnits StackAlign = CharUnits::fromQuantity(4);
1837 
1838   CharUnits StackOffset;
1839   CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end();
1840 
1841   // Put 'this' into the struct before 'sret', if necessary.
1842   bool IsThisCall =
1843       FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall;
1844   ABIArgInfo &Ret = FI.getReturnInfo();
1845   if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall &&
1846       isArgInAlloca(I->info)) {
1847     addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
1848     ++I;
1849   }
1850 
1851   // Put the sret parameter into the inalloca struct if it's in memory.
1852   if (Ret.isIndirect() && !Ret.getInReg()) {
1853     CanQualType PtrTy = getContext().getPointerType(FI.getReturnType());
1854     addFieldToArgStruct(FrameFields, StackOffset, Ret, PtrTy);
1855     // On Windows, the hidden sret parameter is always returned in eax.
1856     Ret.setInAllocaSRet(IsWin32StructABI);
1857   }
1858 
1859   // Skip the 'this' parameter in ecx.
1860   if (IsThisCall)
1861     ++I;
1862 
1863   // Put arguments passed in memory into the struct.
1864   for (; I != E; ++I) {
1865     if (isArgInAlloca(I->info))
1866       addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
1867   }
1868 
1869   FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields,
1870                                         /*isPacked=*/true),
1871                   StackAlign);
1872 }
1873 
1874 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF,
1875                                  Address VAListAddr, QualType Ty) const {
1876 
1877   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
1878 
1879   // x86-32 changes the alignment of certain arguments on the stack.
1880   //
1881   // Just messing with TypeInfo like this works because we never pass
1882   // anything indirectly.
1883   TypeInfo.second = CharUnits::fromQuantity(
1884                 getTypeStackAlignInBytes(Ty, TypeInfo.second.getQuantity()));
1885 
1886   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
1887                           TypeInfo, CharUnits::fromQuantity(4),
1888                           /*AllowHigherAlign*/ true);
1889 }
1890 
1891 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI(
1892     const llvm::Triple &Triple, const CodeGenOptions &Opts) {
1893   assert(Triple.getArch() == llvm::Triple::x86);
1894 
1895   switch (Opts.getStructReturnConvention()) {
1896   case CodeGenOptions::SRCK_Default:
1897     break;
1898   case CodeGenOptions::SRCK_OnStack:  // -fpcc-struct-return
1899     return false;
1900   case CodeGenOptions::SRCK_InRegs:  // -freg-struct-return
1901     return true;
1902   }
1903 
1904   if (Triple.isOSDarwin() || Triple.isOSIAMCU())
1905     return true;
1906 
1907   switch (Triple.getOS()) {
1908   case llvm::Triple::DragonFly:
1909   case llvm::Triple::FreeBSD:
1910   case llvm::Triple::OpenBSD:
1911   case llvm::Triple::Win32:
1912     return true;
1913   default:
1914     return false;
1915   }
1916 }
1917 
1918 void X86_32TargetCodeGenInfo::setTargetAttributes(
1919     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM,
1920     ForDefinition_t IsForDefinition) const {
1921   if (!IsForDefinition)
1922     return;
1923   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
1924     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
1925       // Get the LLVM function.
1926       llvm::Function *Fn = cast<llvm::Function>(GV);
1927 
1928       // Now add the 'alignstack' attribute with a value of 16.
1929       llvm::AttrBuilder B;
1930       B.addStackAlignmentAttr(16);
1931       Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
1932     }
1933     if (FD->hasAttr<AnyX86InterruptAttr>()) {
1934       llvm::Function *Fn = cast<llvm::Function>(GV);
1935       Fn->setCallingConv(llvm::CallingConv::X86_INTR);
1936     }
1937   }
1938 }
1939 
1940 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
1941                                                CodeGen::CodeGenFunction &CGF,
1942                                                llvm::Value *Address) const {
1943   CodeGen::CGBuilderTy &Builder = CGF.Builder;
1944 
1945   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
1946 
1947   // 0-7 are the eight integer registers;  the order is different
1948   //   on Darwin (for EH), but the range is the same.
1949   // 8 is %eip.
1950   AssignToArrayRange(Builder, Address, Four8, 0, 8);
1951 
1952   if (CGF.CGM.getTarget().getTriple().isOSDarwin()) {
1953     // 12-16 are st(0..4).  Not sure why we stop at 4.
1954     // These have size 16, which is sizeof(long double) on
1955     // platforms with 8-byte alignment for that type.
1956     llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
1957     AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
1958 
1959   } else {
1960     // 9 is %eflags, which doesn't get a size on Darwin for some
1961     // reason.
1962     Builder.CreateAlignedStore(
1963         Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9),
1964                                CharUnits::One());
1965 
1966     // 11-16 are st(0..5).  Not sure why we stop at 5.
1967     // These have size 12, which is sizeof(long double) on
1968     // platforms with 4-byte alignment for that type.
1969     llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
1970     AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
1971   }
1972 
1973   return false;
1974 }
1975 
1976 //===----------------------------------------------------------------------===//
1977 // X86-64 ABI Implementation
1978 //===----------------------------------------------------------------------===//
1979 
1980 
1981 namespace {
1982 /// The AVX ABI level for X86 targets.
1983 enum class X86AVXABILevel {
1984   None,
1985   AVX,
1986   AVX512
1987 };
1988 
1989 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel.
1990 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) {
1991   switch (AVXLevel) {
1992   case X86AVXABILevel::AVX512:
1993     return 512;
1994   case X86AVXABILevel::AVX:
1995     return 256;
1996   case X86AVXABILevel::None:
1997     return 128;
1998   }
1999   llvm_unreachable("Unknown AVXLevel");
2000 }
2001 
2002 /// X86_64ABIInfo - The X86_64 ABI information.
2003 class X86_64ABIInfo : public SwiftABIInfo {
2004   enum Class {
2005     Integer = 0,
2006     SSE,
2007     SSEUp,
2008     X87,
2009     X87Up,
2010     ComplexX87,
2011     NoClass,
2012     Memory
2013   };
2014 
2015   /// merge - Implement the X86_64 ABI merging algorithm.
2016   ///
2017   /// Merge an accumulating classification \arg Accum with a field
2018   /// classification \arg Field.
2019   ///
2020   /// \param Accum - The accumulating classification. This should
2021   /// always be either NoClass or the result of a previous merge
2022   /// call. In addition, this should never be Memory (the caller
2023   /// should just return Memory for the aggregate).
2024   static Class merge(Class Accum, Class Field);
2025 
2026   /// postMerge - Implement the X86_64 ABI post merging algorithm.
2027   ///
2028   /// Post merger cleanup, reduces a malformed Hi and Lo pair to
2029   /// final MEMORY or SSE classes when necessary.
2030   ///
2031   /// \param AggregateSize - The size of the current aggregate in
2032   /// the classification process.
2033   ///
2034   /// \param Lo - The classification for the parts of the type
2035   /// residing in the low word of the containing object.
2036   ///
2037   /// \param Hi - The classification for the parts of the type
2038   /// residing in the higher words of the containing object.
2039   ///
2040   void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
2041 
2042   /// classify - Determine the x86_64 register classes in which the
2043   /// given type T should be passed.
2044   ///
2045   /// \param Lo - The classification for the parts of the type
2046   /// residing in the low word of the containing object.
2047   ///
2048   /// \param Hi - The classification for the parts of the type
2049   /// residing in the high word of the containing object.
2050   ///
2051   /// \param OffsetBase - The bit offset of this type in the
2052   /// containing object.  Some parameters are classified different
2053   /// depending on whether they straddle an eightbyte boundary.
2054   ///
2055   /// \param isNamedArg - Whether the argument in question is a "named"
2056   /// argument, as used in AMD64-ABI 3.5.7.
2057   ///
2058   /// If a word is unused its result will be NoClass; if a type should
2059   /// be passed in Memory then at least the classification of \arg Lo
2060   /// will be Memory.
2061   ///
2062   /// The \arg Lo class will be NoClass iff the argument is ignored.
2063   ///
2064   /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
2065   /// also be ComplexX87.
2066   void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi,
2067                 bool isNamedArg) const;
2068 
2069   llvm::Type *GetByteVectorType(QualType Ty) const;
2070   llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
2071                                  unsigned IROffset, QualType SourceTy,
2072                                  unsigned SourceOffset) const;
2073   llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
2074                                      unsigned IROffset, QualType SourceTy,
2075                                      unsigned SourceOffset) const;
2076 
2077   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
2078   /// such that the argument will be returned in memory.
2079   ABIArgInfo getIndirectReturnResult(QualType Ty) const;
2080 
2081   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
2082   /// such that the argument will be passed in memory.
2083   ///
2084   /// \param freeIntRegs - The number of free integer registers remaining
2085   /// available.
2086   ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;
2087 
2088   ABIArgInfo classifyReturnType(QualType RetTy) const;
2089 
2090   ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs,
2091                                   unsigned &neededInt, unsigned &neededSSE,
2092                                   bool isNamedArg) const;
2093 
2094   ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt,
2095                                        unsigned &NeededSSE) const;
2096 
2097   ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
2098                                            unsigned &NeededSSE) const;
2099 
2100   bool IsIllegalVectorType(QualType Ty) const;
2101 
2102   /// The 0.98 ABI revision clarified a lot of ambiguities,
2103   /// unfortunately in ways that were not always consistent with
2104   /// certain previous compilers.  In particular, platforms which
2105   /// required strict binary compatibility with older versions of GCC
2106   /// may need to exempt themselves.
2107   bool honorsRevision0_98() const {
2108     return !getTarget().getTriple().isOSDarwin();
2109   }
2110 
2111   /// GCC classifies <1 x long long> as SSE but compatibility with older clang
2112   // compilers require us to classify it as INTEGER.
2113   bool classifyIntegerMMXAsSSE() const {
2114     const llvm::Triple &Triple = getTarget().getTriple();
2115     if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::PS4)
2116       return false;
2117     if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10)
2118       return false;
2119     return true;
2120   }
2121 
2122   X86AVXABILevel AVXLevel;
2123   // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on
2124   // 64-bit hardware.
2125   bool Has64BitPointers;
2126 
2127 public:
2128   X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) :
2129       SwiftABIInfo(CGT), AVXLevel(AVXLevel),
2130       Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {
2131   }
2132 
2133   bool isPassedUsingAVXType(QualType type) const {
2134     unsigned neededInt, neededSSE;
2135     // The freeIntRegs argument doesn't matter here.
2136     ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE,
2137                                            /*isNamedArg*/true);
2138     if (info.isDirect()) {
2139       llvm::Type *ty = info.getCoerceToType();
2140       if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
2141         return (vectorTy->getBitWidth() > 128);
2142     }
2143     return false;
2144   }
2145 
2146   void computeInfo(CGFunctionInfo &FI) const override;
2147 
2148   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
2149                     QualType Ty) const override;
2150   Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
2151                       QualType Ty) const override;
2152 
2153   bool has64BitPointers() const {
2154     return Has64BitPointers;
2155   }
2156 
2157   bool shouldPassIndirectlyForSwift(CharUnits totalSize,
2158                                     ArrayRef<llvm::Type*> scalars,
2159                                     bool asReturnValue) const override {
2160     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
2161   }
2162   bool isSwiftErrorInRegister() const override {
2163     return true;
2164   }
2165 };
2166 
2167 /// WinX86_64ABIInfo - The Windows X86_64 ABI information.
2168 class WinX86_64ABIInfo : public SwiftABIInfo {
2169 public:
2170   WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT)
2171       : SwiftABIInfo(CGT),
2172         IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {}
2173 
2174   void computeInfo(CGFunctionInfo &FI) const override;
2175 
2176   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
2177                     QualType Ty) const override;
2178 
2179   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
2180     // FIXME: Assumes vectorcall is in use.
2181     return isX86VectorTypeForVectorCall(getContext(), Ty);
2182   }
2183 
2184   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
2185                                          uint64_t NumMembers) const override {
2186     // FIXME: Assumes vectorcall is in use.
2187     return isX86VectorCallAggregateSmallEnough(NumMembers);
2188   }
2189 
2190   bool shouldPassIndirectlyForSwift(CharUnits totalSize,
2191                                     ArrayRef<llvm::Type *> scalars,
2192                                     bool asReturnValue) const override {
2193     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
2194   }
2195 
2196   bool isSwiftErrorInRegister() const override {
2197     return true;
2198   }
2199 
2200 private:
2201   ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType,
2202                       bool IsVectorCall, bool IsRegCall) const;
2203   ABIArgInfo reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs,
2204                                       const ABIArgInfo &current) const;
2205   void computeVectorCallArgs(CGFunctionInfo &FI, unsigned FreeSSERegs,
2206                              bool IsVectorCall, bool IsRegCall) const;
2207 
2208     bool IsMingw64;
2209 };
2210 
2211 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
2212 public:
2213   X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
2214       : TargetCodeGenInfo(new X86_64ABIInfo(CGT, AVXLevel)) {}
2215 
2216   const X86_64ABIInfo &getABIInfo() const {
2217     return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
2218   }
2219 
2220   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
2221     return 7;
2222   }
2223 
2224   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2225                                llvm::Value *Address) const override {
2226     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
2227 
2228     // 0-15 are the 16 integer registers.
2229     // 16 is %rip.
2230     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
2231     return false;
2232   }
2233 
2234   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
2235                                   StringRef Constraint,
2236                                   llvm::Type* Ty) const override {
2237     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
2238   }
2239 
2240   bool isNoProtoCallVariadic(const CallArgList &args,
2241                              const FunctionNoProtoType *fnType) const override {
2242     // The default CC on x86-64 sets %al to the number of SSA
2243     // registers used, and GCC sets this when calling an unprototyped
2244     // function, so we override the default behavior.  However, don't do
2245     // that when AVX types are involved: the ABI explicitly states it is
2246     // undefined, and it doesn't work in practice because of how the ABI
2247     // defines varargs anyway.
2248     if (fnType->getCallConv() == CC_C) {
2249       bool HasAVXType = false;
2250       for (CallArgList::const_iterator
2251              it = args.begin(), ie = args.end(); it != ie; ++it) {
2252         if (getABIInfo().isPassedUsingAVXType(it->Ty)) {
2253           HasAVXType = true;
2254           break;
2255         }
2256       }
2257 
2258       if (!HasAVXType)
2259         return true;
2260     }
2261 
2262     return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
2263   }
2264 
2265   llvm::Constant *
2266   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
2267     unsigned Sig;
2268     if (getABIInfo().has64BitPointers())
2269       Sig = (0xeb << 0) |  // jmp rel8
2270             (0x0a << 8) |  //           .+0x0c
2271             ('F' << 16) |
2272             ('T' << 24);
2273     else
2274       Sig = (0xeb << 0) |  // jmp rel8
2275             (0x06 << 8) |  //           .+0x08
2276             ('F' << 16) |
2277             ('T' << 24);
2278     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
2279   }
2280 
2281   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2282                            CodeGen::CodeGenModule &CGM,
2283                            ForDefinition_t IsForDefinition) const override {
2284     if (!IsForDefinition)
2285       return;
2286     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
2287       if (FD->hasAttr<AnyX86InterruptAttr>()) {
2288         llvm::Function *Fn = cast<llvm::Function>(GV);
2289         Fn->setCallingConv(llvm::CallingConv::X86_INTR);
2290       }
2291     }
2292   }
2293 };
2294 
2295 class PS4TargetCodeGenInfo : public X86_64TargetCodeGenInfo {
2296 public:
2297   PS4TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
2298     : X86_64TargetCodeGenInfo(CGT, AVXLevel) {}
2299 
2300   void getDependentLibraryOption(llvm::StringRef Lib,
2301                                  llvm::SmallString<24> &Opt) const override {
2302     Opt = "\01";
2303     // If the argument contains a space, enclose it in quotes.
2304     if (Lib.find(" ") != StringRef::npos)
2305       Opt += "\"" + Lib.str() + "\"";
2306     else
2307       Opt += Lib;
2308   }
2309 };
2310 
2311 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) {
2312   // If the argument does not end in .lib, automatically add the suffix.
2313   // If the argument contains a space, enclose it in quotes.
2314   // This matches the behavior of MSVC.
2315   bool Quote = (Lib.find(" ") != StringRef::npos);
2316   std::string ArgStr = Quote ? "\"" : "";
2317   ArgStr += Lib;
2318   if (!Lib.endswith_lower(".lib"))
2319     ArgStr += ".lib";
2320   ArgStr += Quote ? "\"" : "";
2321   return ArgStr;
2322 }
2323 
2324 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo {
2325 public:
2326   WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
2327         bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI,
2328         unsigned NumRegisterParameters)
2329     : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI,
2330         Win32StructABI, NumRegisterParameters, false) {}
2331 
2332   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2333                            CodeGen::CodeGenModule &CGM,
2334                            ForDefinition_t IsForDefinition) const override;
2335 
2336   void getDependentLibraryOption(llvm::StringRef Lib,
2337                                  llvm::SmallString<24> &Opt) const override {
2338     Opt = "/DEFAULTLIB:";
2339     Opt += qualifyWindowsLibrary(Lib);
2340   }
2341 
2342   void getDetectMismatchOption(llvm::StringRef Name,
2343                                llvm::StringRef Value,
2344                                llvm::SmallString<32> &Opt) const override {
2345     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
2346   }
2347 };
2348 
2349 static void addStackProbeSizeTargetAttribute(const Decl *D,
2350                                              llvm::GlobalValue *GV,
2351                                              CodeGen::CodeGenModule &CGM) {
2352   if (D && isa<FunctionDecl>(D)) {
2353     if (CGM.getCodeGenOpts().StackProbeSize != 4096) {
2354       llvm::Function *Fn = cast<llvm::Function>(GV);
2355 
2356       Fn->addFnAttr("stack-probe-size",
2357                     llvm::utostr(CGM.getCodeGenOpts().StackProbeSize));
2358     }
2359   }
2360 }
2361 
2362 void WinX86_32TargetCodeGenInfo::setTargetAttributes(
2363     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM,
2364     ForDefinition_t IsForDefinition) const {
2365   X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM, IsForDefinition);
2366   if (!IsForDefinition)
2367     return;
2368   addStackProbeSizeTargetAttribute(D, GV, CGM);
2369 }
2370 
2371 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
2372 public:
2373   WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
2374                              X86AVXABILevel AVXLevel)
2375       : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {}
2376 
2377   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2378                            CodeGen::CodeGenModule &CGM,
2379                            ForDefinition_t IsForDefinition) const override;
2380 
2381   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
2382     return 7;
2383   }
2384 
2385   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2386                                llvm::Value *Address) const override {
2387     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
2388 
2389     // 0-15 are the 16 integer registers.
2390     // 16 is %rip.
2391     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
2392     return false;
2393   }
2394 
2395   void getDependentLibraryOption(llvm::StringRef Lib,
2396                                  llvm::SmallString<24> &Opt) const override {
2397     Opt = "/DEFAULTLIB:";
2398     Opt += qualifyWindowsLibrary(Lib);
2399   }
2400 
2401   void getDetectMismatchOption(llvm::StringRef Name,
2402                                llvm::StringRef Value,
2403                                llvm::SmallString<32> &Opt) const override {
2404     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
2405   }
2406 };
2407 
2408 void WinX86_64TargetCodeGenInfo::setTargetAttributes(
2409     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM,
2410     ForDefinition_t IsForDefinition) const {
2411   TargetCodeGenInfo::setTargetAttributes(D, GV, CGM, IsForDefinition);
2412   if (!IsForDefinition)
2413     return;
2414   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
2415     if (FD->hasAttr<AnyX86InterruptAttr>()) {
2416       llvm::Function *Fn = cast<llvm::Function>(GV);
2417       Fn->setCallingConv(llvm::CallingConv::X86_INTR);
2418     }
2419   }
2420 
2421   addStackProbeSizeTargetAttribute(D, GV, CGM);
2422 }
2423 }
2424 
2425 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
2426                               Class &Hi) const {
2427   // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
2428   //
2429   // (a) If one of the classes is Memory, the whole argument is passed in
2430   //     memory.
2431   //
2432   // (b) If X87UP is not preceded by X87, the whole argument is passed in
2433   //     memory.
2434   //
2435   // (c) If the size of the aggregate exceeds two eightbytes and the first
2436   //     eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
2437   //     argument is passed in memory. NOTE: This is necessary to keep the
2438   //     ABI working for processors that don't support the __m256 type.
2439   //
2440   // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
2441   //
2442   // Some of these are enforced by the merging logic.  Others can arise
2443   // only with unions; for example:
2444   //   union { _Complex double; unsigned; }
2445   //
2446   // Note that clauses (b) and (c) were added in 0.98.
2447   //
2448   if (Hi == Memory)
2449     Lo = Memory;
2450   if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
2451     Lo = Memory;
2452   if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
2453     Lo = Memory;
2454   if (Hi == SSEUp && Lo != SSE)
2455     Hi = SSE;
2456 }
2457 
2458 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
2459   // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
2460   // classified recursively so that always two fields are
2461   // considered. The resulting class is calculated according to
2462   // the classes of the fields in the eightbyte:
2463   //
2464   // (a) If both classes are equal, this is the resulting class.
2465   //
2466   // (b) If one of the classes is NO_CLASS, the resulting class is
2467   // the other class.
2468   //
2469   // (c) If one of the classes is MEMORY, the result is the MEMORY
2470   // class.
2471   //
2472   // (d) If one of the classes is INTEGER, the result is the
2473   // INTEGER.
2474   //
2475   // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
2476   // MEMORY is used as class.
2477   //
2478   // (f) Otherwise class SSE is used.
2479 
2480   // Accum should never be memory (we should have returned) or
2481   // ComplexX87 (because this cannot be passed in a structure).
2482   assert((Accum != Memory && Accum != ComplexX87) &&
2483          "Invalid accumulated classification during merge.");
2484   if (Accum == Field || Field == NoClass)
2485     return Accum;
2486   if (Field == Memory)
2487     return Memory;
2488   if (Accum == NoClass)
2489     return Field;
2490   if (Accum == Integer || Field == Integer)
2491     return Integer;
2492   if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
2493       Accum == X87 || Accum == X87Up)
2494     return Memory;
2495   return SSE;
2496 }
2497 
2498 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
2499                              Class &Lo, Class &Hi, bool isNamedArg) const {
2500   // FIXME: This code can be simplified by introducing a simple value class for
2501   // Class pairs with appropriate constructor methods for the various
2502   // situations.
2503 
2504   // FIXME: Some of the split computations are wrong; unaligned vectors
2505   // shouldn't be passed in registers for example, so there is no chance they
2506   // can straddle an eightbyte. Verify & simplify.
2507 
2508   Lo = Hi = NoClass;
2509 
2510   Class &Current = OffsetBase < 64 ? Lo : Hi;
2511   Current = Memory;
2512 
2513   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
2514     BuiltinType::Kind k = BT->getKind();
2515 
2516     if (k == BuiltinType::Void) {
2517       Current = NoClass;
2518     } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
2519       Lo = Integer;
2520       Hi = Integer;
2521     } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
2522       Current = Integer;
2523     } else if (k == BuiltinType::Float || k == BuiltinType::Double) {
2524       Current = SSE;
2525     } else if (k == BuiltinType::LongDouble) {
2526       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
2527       if (LDF == &llvm::APFloat::IEEEquad()) {
2528         Lo = SSE;
2529         Hi = SSEUp;
2530       } else if (LDF == &llvm::APFloat::x87DoubleExtended()) {
2531         Lo = X87;
2532         Hi = X87Up;
2533       } else if (LDF == &llvm::APFloat::IEEEdouble()) {
2534         Current = SSE;
2535       } else
2536         llvm_unreachable("unexpected long double representation!");
2537     }
2538     // FIXME: _Decimal32 and _Decimal64 are SSE.
2539     // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
2540     return;
2541   }
2542 
2543   if (const EnumType *ET = Ty->getAs<EnumType>()) {
2544     // Classify the underlying integer type.
2545     classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg);
2546     return;
2547   }
2548 
2549   if (Ty->hasPointerRepresentation()) {
2550     Current = Integer;
2551     return;
2552   }
2553 
2554   if (Ty->isMemberPointerType()) {
2555     if (Ty->isMemberFunctionPointerType()) {
2556       if (Has64BitPointers) {
2557         // If Has64BitPointers, this is an {i64, i64}, so classify both
2558         // Lo and Hi now.
2559         Lo = Hi = Integer;
2560       } else {
2561         // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that
2562         // straddles an eightbyte boundary, Hi should be classified as well.
2563         uint64_t EB_FuncPtr = (OffsetBase) / 64;
2564         uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64;
2565         if (EB_FuncPtr != EB_ThisAdj) {
2566           Lo = Hi = Integer;
2567         } else {
2568           Current = Integer;
2569         }
2570       }
2571     } else {
2572       Current = Integer;
2573     }
2574     return;
2575   }
2576 
2577   if (const VectorType *VT = Ty->getAs<VectorType>()) {
2578     uint64_t Size = getContext().getTypeSize(VT);
2579     if (Size == 1 || Size == 8 || Size == 16 || Size == 32) {
2580       // gcc passes the following as integer:
2581       // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float>
2582       // 2 bytes - <2 x char>, <1 x short>
2583       // 1 byte  - <1 x char>
2584       Current = Integer;
2585 
2586       // If this type crosses an eightbyte boundary, it should be
2587       // split.
2588       uint64_t EB_Lo = (OffsetBase) / 64;
2589       uint64_t EB_Hi = (OffsetBase + Size - 1) / 64;
2590       if (EB_Lo != EB_Hi)
2591         Hi = Lo;
2592     } else if (Size == 64) {
2593       QualType ElementType = VT->getElementType();
2594 
2595       // gcc passes <1 x double> in memory. :(
2596       if (ElementType->isSpecificBuiltinType(BuiltinType::Double))
2597         return;
2598 
2599       // gcc passes <1 x long long> as SSE but clang used to unconditionally
2600       // pass them as integer.  For platforms where clang is the de facto
2601       // platform compiler, we must continue to use integer.
2602       if (!classifyIntegerMMXAsSSE() &&
2603           (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) ||
2604            ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) ||
2605            ElementType->isSpecificBuiltinType(BuiltinType::Long) ||
2606            ElementType->isSpecificBuiltinType(BuiltinType::ULong)))
2607         Current = Integer;
2608       else
2609         Current = SSE;
2610 
2611       // If this type crosses an eightbyte boundary, it should be
2612       // split.
2613       if (OffsetBase && OffsetBase != 64)
2614         Hi = Lo;
2615     } else if (Size == 128 ||
2616                (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) {
2617       // Arguments of 256-bits are split into four eightbyte chunks. The
2618       // least significant one belongs to class SSE and all the others to class
2619       // SSEUP. The original Lo and Hi design considers that types can't be
2620       // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
2621       // This design isn't correct for 256-bits, but since there're no cases
2622       // where the upper parts would need to be inspected, avoid adding
2623       // complexity and just consider Hi to match the 64-256 part.
2624       //
2625       // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in
2626       // registers if they are "named", i.e. not part of the "..." of a
2627       // variadic function.
2628       //
2629       // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are
2630       // split into eight eightbyte chunks, one SSE and seven SSEUP.
2631       Lo = SSE;
2632       Hi = SSEUp;
2633     }
2634     return;
2635   }
2636 
2637   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
2638     QualType ET = getContext().getCanonicalType(CT->getElementType());
2639 
2640     uint64_t Size = getContext().getTypeSize(Ty);
2641     if (ET->isIntegralOrEnumerationType()) {
2642       if (Size <= 64)
2643         Current = Integer;
2644       else if (Size <= 128)
2645         Lo = Hi = Integer;
2646     } else if (ET == getContext().FloatTy) {
2647       Current = SSE;
2648     } else if (ET == getContext().DoubleTy) {
2649       Lo = Hi = SSE;
2650     } else if (ET == getContext().LongDoubleTy) {
2651       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
2652       if (LDF == &llvm::APFloat::IEEEquad())
2653         Current = Memory;
2654       else if (LDF == &llvm::APFloat::x87DoubleExtended())
2655         Current = ComplexX87;
2656       else if (LDF == &llvm::APFloat::IEEEdouble())
2657         Lo = Hi = SSE;
2658       else
2659         llvm_unreachable("unexpected long double representation!");
2660     }
2661 
2662     // If this complex type crosses an eightbyte boundary then it
2663     // should be split.
2664     uint64_t EB_Real = (OffsetBase) / 64;
2665     uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
2666     if (Hi == NoClass && EB_Real != EB_Imag)
2667       Hi = Lo;
2668 
2669     return;
2670   }
2671 
2672   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
2673     // Arrays are treated like structures.
2674 
2675     uint64_t Size = getContext().getTypeSize(Ty);
2676 
2677     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
2678     // than eight eightbytes, ..., it has class MEMORY.
2679     if (Size > 512)
2680       return;
2681 
2682     // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
2683     // fields, it has class MEMORY.
2684     //
2685     // Only need to check alignment of array base.
2686     if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
2687       return;
2688 
2689     // Otherwise implement simplified merge. We could be smarter about
2690     // this, but it isn't worth it and would be harder to verify.
2691     Current = NoClass;
2692     uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
2693     uint64_t ArraySize = AT->getSize().getZExtValue();
2694 
2695     // The only case a 256-bit wide vector could be used is when the array
2696     // contains a single 256-bit element. Since Lo and Hi logic isn't extended
2697     // to work for sizes wider than 128, early check and fallback to memory.
2698     //
2699     if (Size > 128 &&
2700         (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel)))
2701       return;
2702 
2703     for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
2704       Class FieldLo, FieldHi;
2705       classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg);
2706       Lo = merge(Lo, FieldLo);
2707       Hi = merge(Hi, FieldHi);
2708       if (Lo == Memory || Hi == Memory)
2709         break;
2710     }
2711 
2712     postMerge(Size, Lo, Hi);
2713     assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
2714     return;
2715   }
2716 
2717   if (const RecordType *RT = Ty->getAs<RecordType>()) {
2718     uint64_t Size = getContext().getTypeSize(Ty);
2719 
2720     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
2721     // than eight eightbytes, ..., it has class MEMORY.
2722     if (Size > 512)
2723       return;
2724 
2725     // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
2726     // copy constructor or a non-trivial destructor, it is passed by invisible
2727     // reference.
2728     if (getRecordArgABI(RT, getCXXABI()))
2729       return;
2730 
2731     const RecordDecl *RD = RT->getDecl();
2732 
2733     // Assume variable sized types are passed in memory.
2734     if (RD->hasFlexibleArrayMember())
2735       return;
2736 
2737     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
2738 
2739     // Reset Lo class, this will be recomputed.
2740     Current = NoClass;
2741 
2742     // If this is a C++ record, classify the bases first.
2743     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
2744       for (const auto &I : CXXRD->bases()) {
2745         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
2746                "Unexpected base class!");
2747         const CXXRecordDecl *Base =
2748           cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
2749 
2750         // Classify this field.
2751         //
2752         // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
2753         // single eightbyte, each is classified separately. Each eightbyte gets
2754         // initialized to class NO_CLASS.
2755         Class FieldLo, FieldHi;
2756         uint64_t Offset =
2757           OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base));
2758         classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg);
2759         Lo = merge(Lo, FieldLo);
2760         Hi = merge(Hi, FieldHi);
2761         if (Lo == Memory || Hi == Memory) {
2762           postMerge(Size, Lo, Hi);
2763           return;
2764         }
2765       }
2766     }
2767 
2768     // Classify the fields one at a time, merging the results.
2769     unsigned idx = 0;
2770     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2771            i != e; ++i, ++idx) {
2772       uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
2773       bool BitField = i->isBitField();
2774 
2775       // Ignore padding bit-fields.
2776       if (BitField && i->isUnnamedBitfield())
2777         continue;
2778 
2779       // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
2780       // four eightbytes, or it contains unaligned fields, it has class MEMORY.
2781       //
2782       // The only case a 256-bit wide vector could be used is when the struct
2783       // contains a single 256-bit element. Since Lo and Hi logic isn't extended
2784       // to work for sizes wider than 128, early check and fallback to memory.
2785       //
2786       if (Size > 128 && (Size != getContext().getTypeSize(i->getType()) ||
2787                          Size > getNativeVectorSizeForAVXABI(AVXLevel))) {
2788         Lo = Memory;
2789         postMerge(Size, Lo, Hi);
2790         return;
2791       }
2792       // Note, skip this test for bit-fields, see below.
2793       if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
2794         Lo = Memory;
2795         postMerge(Size, Lo, Hi);
2796         return;
2797       }
2798 
2799       // Classify this field.
2800       //
2801       // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
2802       // exceeds a single eightbyte, each is classified
2803       // separately. Each eightbyte gets initialized to class
2804       // NO_CLASS.
2805       Class FieldLo, FieldHi;
2806 
2807       // Bit-fields require special handling, they do not force the
2808       // structure to be passed in memory even if unaligned, and
2809       // therefore they can straddle an eightbyte.
2810       if (BitField) {
2811         assert(!i->isUnnamedBitfield());
2812         uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
2813         uint64_t Size = i->getBitWidthValue(getContext());
2814 
2815         uint64_t EB_Lo = Offset / 64;
2816         uint64_t EB_Hi = (Offset + Size - 1) / 64;
2817 
2818         if (EB_Lo) {
2819           assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
2820           FieldLo = NoClass;
2821           FieldHi = Integer;
2822         } else {
2823           FieldLo = Integer;
2824           FieldHi = EB_Hi ? Integer : NoClass;
2825         }
2826       } else
2827         classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg);
2828       Lo = merge(Lo, FieldLo);
2829       Hi = merge(Hi, FieldHi);
2830       if (Lo == Memory || Hi == Memory)
2831         break;
2832     }
2833 
2834     postMerge(Size, Lo, Hi);
2835   }
2836 }
2837 
2838 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
2839   // If this is a scalar LLVM value then assume LLVM will pass it in the right
2840   // place naturally.
2841   if (!isAggregateTypeForABI(Ty)) {
2842     // Treat an enum type as its underlying type.
2843     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2844       Ty = EnumTy->getDecl()->getIntegerType();
2845 
2846     return (Ty->isPromotableIntegerType() ?
2847             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2848   }
2849 
2850   return getNaturalAlignIndirect(Ty);
2851 }
2852 
2853 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
2854   if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
2855     uint64_t Size = getContext().getTypeSize(VecTy);
2856     unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel);
2857     if (Size <= 64 || Size > LargestVector)
2858       return true;
2859   }
2860 
2861   return false;
2862 }
2863 
2864 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
2865                                             unsigned freeIntRegs) const {
2866   // If this is a scalar LLVM value then assume LLVM will pass it in the right
2867   // place naturally.
2868   //
2869   // This assumption is optimistic, as there could be free registers available
2870   // when we need to pass this argument in memory, and LLVM could try to pass
2871   // the argument in the free register. This does not seem to happen currently,
2872   // but this code would be much safer if we could mark the argument with
2873   // 'onstack'. See PR12193.
2874   if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) {
2875     // Treat an enum type as its underlying type.
2876     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2877       Ty = EnumTy->getDecl()->getIntegerType();
2878 
2879     return (Ty->isPromotableIntegerType() ?
2880             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2881   }
2882 
2883   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
2884     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
2885 
2886   // Compute the byval alignment. We specify the alignment of the byval in all
2887   // cases so that the mid-level optimizer knows the alignment of the byval.
2888   unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
2889 
2890   // Attempt to avoid passing indirect results using byval when possible. This
2891   // is important for good codegen.
2892   //
2893   // We do this by coercing the value into a scalar type which the backend can
2894   // handle naturally (i.e., without using byval).
2895   //
2896   // For simplicity, we currently only do this when we have exhausted all of the
2897   // free integer registers. Doing this when there are free integer registers
2898   // would require more care, as we would have to ensure that the coerced value
2899   // did not claim the unused register. That would require either reording the
2900   // arguments to the function (so that any subsequent inreg values came first),
2901   // or only doing this optimization when there were no following arguments that
2902   // might be inreg.
2903   //
2904   // We currently expect it to be rare (particularly in well written code) for
2905   // arguments to be passed on the stack when there are still free integer
2906   // registers available (this would typically imply large structs being passed
2907   // by value), so this seems like a fair tradeoff for now.
2908   //
2909   // We can revisit this if the backend grows support for 'onstack' parameter
2910   // attributes. See PR12193.
2911   if (freeIntRegs == 0) {
2912     uint64_t Size = getContext().getTypeSize(Ty);
2913 
2914     // If this type fits in an eightbyte, coerce it into the matching integral
2915     // type, which will end up on the stack (with alignment 8).
2916     if (Align == 8 && Size <= 64)
2917       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2918                                                           Size));
2919   }
2920 
2921   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align));
2922 }
2923 
2924 /// The ABI specifies that a value should be passed in a full vector XMM/YMM
2925 /// register. Pick an LLVM IR type that will be passed as a vector register.
2926 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
2927   // Wrapper structs/arrays that only contain vectors are passed just like
2928   // vectors; strip them off if present.
2929   if (const Type *InnerTy = isSingleElementStruct(Ty, getContext()))
2930     Ty = QualType(InnerTy, 0);
2931 
2932   llvm::Type *IRType = CGT.ConvertType(Ty);
2933   if (isa<llvm::VectorType>(IRType) ||
2934       IRType->getTypeID() == llvm::Type::FP128TyID)
2935     return IRType;
2936 
2937   // We couldn't find the preferred IR vector type for 'Ty'.
2938   uint64_t Size = getContext().getTypeSize(Ty);
2939   assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!");
2940 
2941   // Return a LLVM IR vector type based on the size of 'Ty'.
2942   return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()),
2943                                Size / 64);
2944 }
2945 
2946 /// BitsContainNoUserData - Return true if the specified [start,end) bit range
2947 /// is known to either be off the end of the specified type or being in
2948 /// alignment padding.  The user type specified is known to be at most 128 bits
2949 /// in size, and have passed through X86_64ABIInfo::classify with a successful
2950 /// classification that put one of the two halves in the INTEGER class.
2951 ///
2952 /// It is conservatively correct to return false.
2953 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
2954                                   unsigned EndBit, ASTContext &Context) {
2955   // If the bytes being queried are off the end of the type, there is no user
2956   // data hiding here.  This handles analysis of builtins, vectors and other
2957   // types that don't contain interesting padding.
2958   unsigned TySize = (unsigned)Context.getTypeSize(Ty);
2959   if (TySize <= StartBit)
2960     return true;
2961 
2962   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
2963     unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
2964     unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
2965 
2966     // Check each element to see if the element overlaps with the queried range.
2967     for (unsigned i = 0; i != NumElts; ++i) {
2968       // If the element is after the span we care about, then we're done..
2969       unsigned EltOffset = i*EltSize;
2970       if (EltOffset >= EndBit) break;
2971 
2972       unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
2973       if (!BitsContainNoUserData(AT->getElementType(), EltStart,
2974                                  EndBit-EltOffset, Context))
2975         return false;
2976     }
2977     // If it overlaps no elements, then it is safe to process as padding.
2978     return true;
2979   }
2980 
2981   if (const RecordType *RT = Ty->getAs<RecordType>()) {
2982     const RecordDecl *RD = RT->getDecl();
2983     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
2984 
2985     // If this is a C++ record, check the bases first.
2986     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
2987       for (const auto &I : CXXRD->bases()) {
2988         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
2989                "Unexpected base class!");
2990         const CXXRecordDecl *Base =
2991           cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
2992 
2993         // If the base is after the span we care about, ignore it.
2994         unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base));
2995         if (BaseOffset >= EndBit) continue;
2996 
2997         unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
2998         if (!BitsContainNoUserData(I.getType(), BaseStart,
2999                                    EndBit-BaseOffset, Context))
3000           return false;
3001       }
3002     }
3003 
3004     // Verify that no field has data that overlaps the region of interest.  Yes
3005     // this could be sped up a lot by being smarter about queried fields,
3006     // however we're only looking at structs up to 16 bytes, so we don't care
3007     // much.
3008     unsigned idx = 0;
3009     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
3010          i != e; ++i, ++idx) {
3011       unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
3012 
3013       // If we found a field after the region we care about, then we're done.
3014       if (FieldOffset >= EndBit) break;
3015 
3016       unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
3017       if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
3018                                  Context))
3019         return false;
3020     }
3021 
3022     // If nothing in this record overlapped the area of interest, then we're
3023     // clean.
3024     return true;
3025   }
3026 
3027   return false;
3028 }
3029 
3030 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
3031 /// float member at the specified offset.  For example, {int,{float}} has a
3032 /// float at offset 4.  It is conservatively correct for this routine to return
3033 /// false.
3034 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset,
3035                                   const llvm::DataLayout &TD) {
3036   // Base case if we find a float.
3037   if (IROffset == 0 && IRType->isFloatTy())
3038     return true;
3039 
3040   // If this is a struct, recurse into the field at the specified offset.
3041   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
3042     const llvm::StructLayout *SL = TD.getStructLayout(STy);
3043     unsigned Elt = SL->getElementContainingOffset(IROffset);
3044     IROffset -= SL->getElementOffset(Elt);
3045     return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
3046   }
3047 
3048   // If this is an array, recurse into the field at the specified offset.
3049   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
3050     llvm::Type *EltTy = ATy->getElementType();
3051     unsigned EltSize = TD.getTypeAllocSize(EltTy);
3052     IROffset -= IROffset/EltSize*EltSize;
3053     return ContainsFloatAtOffset(EltTy, IROffset, TD);
3054   }
3055 
3056   return false;
3057 }
3058 
3059 
3060 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
3061 /// low 8 bytes of an XMM register, corresponding to the SSE class.
3062 llvm::Type *X86_64ABIInfo::
3063 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
3064                    QualType SourceTy, unsigned SourceOffset) const {
3065   // The only three choices we have are either double, <2 x float>, or float. We
3066   // pass as float if the last 4 bytes is just padding.  This happens for
3067   // structs that contain 3 floats.
3068   if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
3069                             SourceOffset*8+64, getContext()))
3070     return llvm::Type::getFloatTy(getVMContext());
3071 
3072   // We want to pass as <2 x float> if the LLVM IR type contains a float at
3073   // offset+0 and offset+4.  Walk the LLVM IR type to find out if this is the
3074   // case.
3075   if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) &&
3076       ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout()))
3077     return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2);
3078 
3079   return llvm::Type::getDoubleTy(getVMContext());
3080 }
3081 
3082 
3083 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
3084 /// an 8-byte GPR.  This means that we either have a scalar or we are talking
3085 /// about the high or low part of an up-to-16-byte struct.  This routine picks
3086 /// the best LLVM IR type to represent this, which may be i64 or may be anything
3087 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
3088 /// etc).
3089 ///
3090 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
3091 /// the source type.  IROffset is an offset in bytes into the LLVM IR type that
3092 /// the 8-byte value references.  PrefType may be null.
3093 ///
3094 /// SourceTy is the source-level type for the entire argument.  SourceOffset is
3095 /// an offset into this that we're processing (which is always either 0 or 8).
3096 ///
3097 llvm::Type *X86_64ABIInfo::
3098 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
3099                        QualType SourceTy, unsigned SourceOffset) const {
3100   // If we're dealing with an un-offset LLVM IR type, then it means that we're
3101   // returning an 8-byte unit starting with it.  See if we can safely use it.
3102   if (IROffset == 0) {
3103     // Pointers and int64's always fill the 8-byte unit.
3104     if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) ||
3105         IRType->isIntegerTy(64))
3106       return IRType;
3107 
3108     // If we have a 1/2/4-byte integer, we can use it only if the rest of the
3109     // goodness in the source type is just tail padding.  This is allowed to
3110     // kick in for struct {double,int} on the int, but not on
3111     // struct{double,int,int} because we wouldn't return the second int.  We
3112     // have to do this analysis on the source type because we can't depend on
3113     // unions being lowered a specific way etc.
3114     if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
3115         IRType->isIntegerTy(32) ||
3116         (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) {
3117       unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 :
3118           cast<llvm::IntegerType>(IRType)->getBitWidth();
3119 
3120       if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
3121                                 SourceOffset*8+64, getContext()))
3122         return IRType;
3123     }
3124   }
3125 
3126   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
3127     // If this is a struct, recurse into the field at the specified offset.
3128     const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy);
3129     if (IROffset < SL->getSizeInBytes()) {
3130       unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
3131       IROffset -= SL->getElementOffset(FieldIdx);
3132 
3133       return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
3134                                     SourceTy, SourceOffset);
3135     }
3136   }
3137 
3138   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
3139     llvm::Type *EltTy = ATy->getElementType();
3140     unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy);
3141     unsigned EltOffset = IROffset/EltSize*EltSize;
3142     return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
3143                                   SourceOffset);
3144   }
3145 
3146   // Okay, we don't have any better idea of what to pass, so we pass this in an
3147   // integer register that isn't too big to fit the rest of the struct.
3148   unsigned TySizeInBytes =
3149     (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
3150 
3151   assert(TySizeInBytes != SourceOffset && "Empty field?");
3152 
3153   // It is always safe to classify this as an integer type up to i64 that
3154   // isn't larger than the structure.
3155   return llvm::IntegerType::get(getVMContext(),
3156                                 std::min(TySizeInBytes-SourceOffset, 8U)*8);
3157 }
3158 
3159 
3160 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
3161 /// be used as elements of a two register pair to pass or return, return a
3162 /// first class aggregate to represent them.  For example, if the low part of
3163 /// a by-value argument should be passed as i32* and the high part as float,
3164 /// return {i32*, float}.
3165 static llvm::Type *
3166 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
3167                            const llvm::DataLayout &TD) {
3168   // In order to correctly satisfy the ABI, we need to the high part to start
3169   // at offset 8.  If the high and low parts we inferred are both 4-byte types
3170   // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
3171   // the second element at offset 8.  Check for this:
3172   unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
3173   unsigned HiAlign = TD.getABITypeAlignment(Hi);
3174   unsigned HiStart = llvm::alignTo(LoSize, HiAlign);
3175   assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
3176 
3177   // To handle this, we have to increase the size of the low part so that the
3178   // second element will start at an 8 byte offset.  We can't increase the size
3179   // of the second element because it might make us access off the end of the
3180   // struct.
3181   if (HiStart != 8) {
3182     // There are usually two sorts of types the ABI generation code can produce
3183     // for the low part of a pair that aren't 8 bytes in size: float or
3184     // i8/i16/i32.  This can also include pointers when they are 32-bit (X32 and
3185     // NaCl).
3186     // Promote these to a larger type.
3187     if (Lo->isFloatTy())
3188       Lo = llvm::Type::getDoubleTy(Lo->getContext());
3189     else {
3190       assert((Lo->isIntegerTy() || Lo->isPointerTy())
3191              && "Invalid/unknown lo type");
3192       Lo = llvm::Type::getInt64Ty(Lo->getContext());
3193     }
3194   }
3195 
3196   llvm::StructType *Result = llvm::StructType::get(Lo, Hi);
3197 
3198   // Verify that the second element is at an 8-byte offset.
3199   assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
3200          "Invalid x86-64 argument pair!");
3201   return Result;
3202 }
3203 
3204 ABIArgInfo X86_64ABIInfo::
3205 classifyReturnType(QualType RetTy) const {
3206   // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
3207   // classification algorithm.
3208   X86_64ABIInfo::Class Lo, Hi;
3209   classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true);
3210 
3211   // Check some invariants.
3212   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
3213   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
3214 
3215   llvm::Type *ResType = nullptr;
3216   switch (Lo) {
3217   case NoClass:
3218     if (Hi == NoClass)
3219       return ABIArgInfo::getIgnore();
3220     // If the low part is just padding, it takes no register, leave ResType
3221     // null.
3222     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
3223            "Unknown missing lo part");
3224     break;
3225 
3226   case SSEUp:
3227   case X87Up:
3228     llvm_unreachable("Invalid classification for lo word.");
3229 
3230     // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
3231     // hidden argument.
3232   case Memory:
3233     return getIndirectReturnResult(RetTy);
3234 
3235     // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
3236     // available register of the sequence %rax, %rdx is used.
3237   case Integer:
3238     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
3239 
3240     // If we have a sign or zero extended integer, make sure to return Extend
3241     // so that the parameter gets the right LLVM IR attributes.
3242     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
3243       // Treat an enum type as its underlying type.
3244       if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
3245         RetTy = EnumTy->getDecl()->getIntegerType();
3246 
3247       if (RetTy->isIntegralOrEnumerationType() &&
3248           RetTy->isPromotableIntegerType())
3249         return ABIArgInfo::getExtend();
3250     }
3251     break;
3252 
3253     // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
3254     // available SSE register of the sequence %xmm0, %xmm1 is used.
3255   case SSE:
3256     ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
3257     break;
3258 
3259     // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
3260     // returned on the X87 stack in %st0 as 80-bit x87 number.
3261   case X87:
3262     ResType = llvm::Type::getX86_FP80Ty(getVMContext());
3263     break;
3264 
3265     // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
3266     // part of the value is returned in %st0 and the imaginary part in
3267     // %st1.
3268   case ComplexX87:
3269     assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
3270     ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
3271                                     llvm::Type::getX86_FP80Ty(getVMContext()));
3272     break;
3273   }
3274 
3275   llvm::Type *HighPart = nullptr;
3276   switch (Hi) {
3277     // Memory was handled previously and X87 should
3278     // never occur as a hi class.
3279   case Memory:
3280   case X87:
3281     llvm_unreachable("Invalid classification for hi word.");
3282 
3283   case ComplexX87: // Previously handled.
3284   case NoClass:
3285     break;
3286 
3287   case Integer:
3288     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3289     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3290       return ABIArgInfo::getDirect(HighPart, 8);
3291     break;
3292   case SSE:
3293     HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3294     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3295       return ABIArgInfo::getDirect(HighPart, 8);
3296     break;
3297 
3298     // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
3299     // is passed in the next available eightbyte chunk if the last used
3300     // vector register.
3301     //
3302     // SSEUP should always be preceded by SSE, just widen.
3303   case SSEUp:
3304     assert(Lo == SSE && "Unexpected SSEUp classification.");
3305     ResType = GetByteVectorType(RetTy);
3306     break;
3307 
3308     // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
3309     // returned together with the previous X87 value in %st0.
3310   case X87Up:
3311     // If X87Up is preceded by X87, we don't need to do
3312     // anything. However, in some cases with unions it may not be
3313     // preceded by X87. In such situations we follow gcc and pass the
3314     // extra bits in an SSE reg.
3315     if (Lo != X87) {
3316       HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3317       if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3318         return ABIArgInfo::getDirect(HighPart, 8);
3319     }
3320     break;
3321   }
3322 
3323   // If a high part was specified, merge it together with the low part.  It is
3324   // known to pass in the high eightbyte of the result.  We do this by forming a
3325   // first class struct aggregate with the high and low part: {low, high}
3326   if (HighPart)
3327     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
3328 
3329   return ABIArgInfo::getDirect(ResType);
3330 }
3331 
3332 ABIArgInfo X86_64ABIInfo::classifyArgumentType(
3333   QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE,
3334   bool isNamedArg)
3335   const
3336 {
3337   Ty = useFirstFieldIfTransparentUnion(Ty);
3338 
3339   X86_64ABIInfo::Class Lo, Hi;
3340   classify(Ty, 0, Lo, Hi, isNamedArg);
3341 
3342   // Check some invariants.
3343   // FIXME: Enforce these by construction.
3344   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
3345   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
3346 
3347   neededInt = 0;
3348   neededSSE = 0;
3349   llvm::Type *ResType = nullptr;
3350   switch (Lo) {
3351   case NoClass:
3352     if (Hi == NoClass)
3353       return ABIArgInfo::getIgnore();
3354     // If the low part is just padding, it takes no register, leave ResType
3355     // null.
3356     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
3357            "Unknown missing lo part");
3358     break;
3359 
3360     // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
3361     // on the stack.
3362   case Memory:
3363 
3364     // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
3365     // COMPLEX_X87, it is passed in memory.
3366   case X87:
3367   case ComplexX87:
3368     if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect)
3369       ++neededInt;
3370     return getIndirectResult(Ty, freeIntRegs);
3371 
3372   case SSEUp:
3373   case X87Up:
3374     llvm_unreachable("Invalid classification for lo word.");
3375 
3376     // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
3377     // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
3378     // and %r9 is used.
3379   case Integer:
3380     ++neededInt;
3381 
3382     // Pick an 8-byte type based on the preferred type.
3383     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
3384 
3385     // If we have a sign or zero extended integer, make sure to return Extend
3386     // so that the parameter gets the right LLVM IR attributes.
3387     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
3388       // Treat an enum type as its underlying type.
3389       if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3390         Ty = EnumTy->getDecl()->getIntegerType();
3391 
3392       if (Ty->isIntegralOrEnumerationType() &&
3393           Ty->isPromotableIntegerType())
3394         return ABIArgInfo::getExtend();
3395     }
3396 
3397     break;
3398 
3399     // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
3400     // available SSE register is used, the registers are taken in the
3401     // order from %xmm0 to %xmm7.
3402   case SSE: {
3403     llvm::Type *IRType = CGT.ConvertType(Ty);
3404     ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
3405     ++neededSSE;
3406     break;
3407   }
3408   }
3409 
3410   llvm::Type *HighPart = nullptr;
3411   switch (Hi) {
3412     // Memory was handled previously, ComplexX87 and X87 should
3413     // never occur as hi classes, and X87Up must be preceded by X87,
3414     // which is passed in memory.
3415   case Memory:
3416   case X87:
3417   case ComplexX87:
3418     llvm_unreachable("Invalid classification for hi word.");
3419 
3420   case NoClass: break;
3421 
3422   case Integer:
3423     ++neededInt;
3424     // Pick an 8-byte type based on the preferred type.
3425     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
3426 
3427     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
3428       return ABIArgInfo::getDirect(HighPart, 8);
3429     break;
3430 
3431     // X87Up generally doesn't occur here (long double is passed in
3432     // memory), except in situations involving unions.
3433   case X87Up:
3434   case SSE:
3435     HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
3436 
3437     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
3438       return ABIArgInfo::getDirect(HighPart, 8);
3439 
3440     ++neededSSE;
3441     break;
3442 
3443     // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
3444     // eightbyte is passed in the upper half of the last used SSE
3445     // register.  This only happens when 128-bit vectors are passed.
3446   case SSEUp:
3447     assert(Lo == SSE && "Unexpected SSEUp classification");
3448     ResType = GetByteVectorType(Ty);
3449     break;
3450   }
3451 
3452   // If a high part was specified, merge it together with the low part.  It is
3453   // known to pass in the high eightbyte of the result.  We do this by forming a
3454   // first class struct aggregate with the high and low part: {low, high}
3455   if (HighPart)
3456     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
3457 
3458   return ABIArgInfo::getDirect(ResType);
3459 }
3460 
3461 ABIArgInfo
3462 X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
3463                                              unsigned &NeededSSE) const {
3464   auto RT = Ty->getAs<RecordType>();
3465   assert(RT && "classifyRegCallStructType only valid with struct types");
3466 
3467   if (RT->getDecl()->hasFlexibleArrayMember())
3468     return getIndirectReturnResult(Ty);
3469 
3470   // Sum up bases
3471   if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
3472     if (CXXRD->isDynamicClass()) {
3473       NeededInt = NeededSSE = 0;
3474       return getIndirectReturnResult(Ty);
3475     }
3476 
3477     for (const auto &I : CXXRD->bases())
3478       if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE)
3479               .isIndirect()) {
3480         NeededInt = NeededSSE = 0;
3481         return getIndirectReturnResult(Ty);
3482       }
3483   }
3484 
3485   // Sum up members
3486   for (const auto *FD : RT->getDecl()->fields()) {
3487     if (FD->getType()->isRecordType() && !FD->getType()->isUnionType()) {
3488       if (classifyRegCallStructTypeImpl(FD->getType(), NeededInt, NeededSSE)
3489               .isIndirect()) {
3490         NeededInt = NeededSSE = 0;
3491         return getIndirectReturnResult(Ty);
3492       }
3493     } else {
3494       unsigned LocalNeededInt, LocalNeededSSE;
3495       if (classifyArgumentType(FD->getType(), UINT_MAX, LocalNeededInt,
3496                                LocalNeededSSE, true)
3497               .isIndirect()) {
3498         NeededInt = NeededSSE = 0;
3499         return getIndirectReturnResult(Ty);
3500       }
3501       NeededInt += LocalNeededInt;
3502       NeededSSE += LocalNeededSSE;
3503     }
3504   }
3505 
3506   return ABIArgInfo::getDirect();
3507 }
3508 
3509 ABIArgInfo X86_64ABIInfo::classifyRegCallStructType(QualType Ty,
3510                                                     unsigned &NeededInt,
3511                                                     unsigned &NeededSSE) const {
3512 
3513   NeededInt = 0;
3514   NeededSSE = 0;
3515 
3516   return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE);
3517 }
3518 
3519 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
3520 
3521   bool IsRegCall = FI.getCallingConvention() == llvm::CallingConv::X86_RegCall;
3522 
3523   // Keep track of the number of assigned registers.
3524   unsigned FreeIntRegs = IsRegCall ? 11 : 6;
3525   unsigned FreeSSERegs = IsRegCall ? 16 : 8;
3526   unsigned NeededInt, NeededSSE;
3527 
3528   if (!getCXXABI().classifyReturnType(FI)) {
3529     if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() &&
3530         !FI.getReturnType()->getTypePtr()->isUnionType()) {
3531       FI.getReturnInfo() =
3532           classifyRegCallStructType(FI.getReturnType(), NeededInt, NeededSSE);
3533       if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
3534         FreeIntRegs -= NeededInt;
3535         FreeSSERegs -= NeededSSE;
3536       } else {
3537         FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType());
3538       }
3539     } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>()) {
3540       // Complex Long Double Type is passed in Memory when Regcall
3541       // calling convention is used.
3542       const ComplexType *CT = FI.getReturnType()->getAs<ComplexType>();
3543       if (getContext().getCanonicalType(CT->getElementType()) ==
3544           getContext().LongDoubleTy)
3545         FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType());
3546     } else
3547       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3548   }
3549 
3550   // If the return value is indirect, then the hidden argument is consuming one
3551   // integer register.
3552   if (FI.getReturnInfo().isIndirect())
3553     --FreeIntRegs;
3554 
3555   // The chain argument effectively gives us another free register.
3556   if (FI.isChainCall())
3557     ++FreeIntRegs;
3558 
3559   unsigned NumRequiredArgs = FI.getNumRequiredArgs();
3560   // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
3561   // get assigned (in left-to-right order) for passing as follows...
3562   unsigned ArgNo = 0;
3563   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3564        it != ie; ++it, ++ArgNo) {
3565     bool IsNamedArg = ArgNo < NumRequiredArgs;
3566 
3567     if (IsRegCall && it->type->isStructureOrClassType())
3568       it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE);
3569     else
3570       it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt,
3571                                       NeededSSE, IsNamedArg);
3572 
3573     // AMD64-ABI 3.2.3p3: If there are no registers available for any
3574     // eightbyte of an argument, the whole argument is passed on the
3575     // stack. If registers have already been assigned for some
3576     // eightbytes of such an argument, the assignments get reverted.
3577     if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
3578       FreeIntRegs -= NeededInt;
3579       FreeSSERegs -= NeededSSE;
3580     } else {
3581       it->info = getIndirectResult(it->type, FreeIntRegs);
3582     }
3583   }
3584 }
3585 
3586 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF,
3587                                          Address VAListAddr, QualType Ty) {
3588   Address overflow_arg_area_p = CGF.Builder.CreateStructGEP(
3589       VAListAddr, 2, CharUnits::fromQuantity(8), "overflow_arg_area_p");
3590   llvm::Value *overflow_arg_area =
3591     CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
3592 
3593   // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
3594   // byte boundary if alignment needed by type exceeds 8 byte boundary.
3595   // It isn't stated explicitly in the standard, but in practice we use
3596   // alignment greater than 16 where necessary.
3597   CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
3598   if (Align > CharUnits::fromQuantity(8)) {
3599     overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area,
3600                                                       Align);
3601   }
3602 
3603   // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
3604   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
3605   llvm::Value *Res =
3606     CGF.Builder.CreateBitCast(overflow_arg_area,
3607                               llvm::PointerType::getUnqual(LTy));
3608 
3609   // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
3610   // l->overflow_arg_area + sizeof(type).
3611   // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
3612   // an 8 byte boundary.
3613 
3614   uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
3615   llvm::Value *Offset =
3616       llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7);
3617   overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
3618                                             "overflow_arg_area.next");
3619   CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
3620 
3621   // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
3622   return Address(Res, Align);
3623 }
3624 
3625 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
3626                                  QualType Ty) const {
3627   // Assume that va_list type is correct; should be pointer to LLVM type:
3628   // struct {
3629   //   i32 gp_offset;
3630   //   i32 fp_offset;
3631   //   i8* overflow_arg_area;
3632   //   i8* reg_save_area;
3633   // };
3634   unsigned neededInt, neededSSE;
3635 
3636   Ty = getContext().getCanonicalType(Ty);
3637   ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE,
3638                                        /*isNamedArg*/false);
3639 
3640   // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
3641   // in the registers. If not go to step 7.
3642   if (!neededInt && !neededSSE)
3643     return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
3644 
3645   // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
3646   // general purpose registers needed to pass type and num_fp to hold
3647   // the number of floating point registers needed.
3648 
3649   // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
3650   // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
3651   // l->fp_offset > 304 - num_fp * 16 go to step 7.
3652   //
3653   // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
3654   // register save space).
3655 
3656   llvm::Value *InRegs = nullptr;
3657   Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid();
3658   llvm::Value *gp_offset = nullptr, *fp_offset = nullptr;
3659   if (neededInt) {
3660     gp_offset_p =
3661         CGF.Builder.CreateStructGEP(VAListAddr, 0, CharUnits::Zero(),
3662                                     "gp_offset_p");
3663     gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
3664     InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
3665     InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
3666   }
3667 
3668   if (neededSSE) {
3669     fp_offset_p =
3670         CGF.Builder.CreateStructGEP(VAListAddr, 1, CharUnits::fromQuantity(4),
3671                                     "fp_offset_p");
3672     fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
3673     llvm::Value *FitsInFP =
3674       llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
3675     FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
3676     InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
3677   }
3678 
3679   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
3680   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
3681   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
3682   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
3683 
3684   // Emit code to load the value if it was passed in registers.
3685 
3686   CGF.EmitBlock(InRegBlock);
3687 
3688   // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
3689   // an offset of l->gp_offset and/or l->fp_offset. This may require
3690   // copying to a temporary location in case the parameter is passed
3691   // in different register classes or requires an alignment greater
3692   // than 8 for general purpose registers and 16 for XMM registers.
3693   //
3694   // FIXME: This really results in shameful code when we end up needing to
3695   // collect arguments from different places; often what should result in a
3696   // simple assembling of a structure from scattered addresses has many more
3697   // loads than necessary. Can we clean this up?
3698   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
3699   llvm::Value *RegSaveArea = CGF.Builder.CreateLoad(
3700       CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(16)),
3701                                   "reg_save_area");
3702 
3703   Address RegAddr = Address::invalid();
3704   if (neededInt && neededSSE) {
3705     // FIXME: Cleanup.
3706     assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
3707     llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
3708     Address Tmp = CGF.CreateMemTemp(Ty);
3709     Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
3710     assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
3711     llvm::Type *TyLo = ST->getElementType(0);
3712     llvm::Type *TyHi = ST->getElementType(1);
3713     assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
3714            "Unexpected ABI info for mixed regs");
3715     llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
3716     llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
3717     llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegSaveArea, gp_offset);
3718     llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegSaveArea, fp_offset);
3719     llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr;
3720     llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr;
3721 
3722     // Copy the first element.
3723     // FIXME: Our choice of alignment here and below is probably pessimistic.
3724     llvm::Value *V = CGF.Builder.CreateAlignedLoad(
3725         TyLo, CGF.Builder.CreateBitCast(RegLoAddr, PTyLo),
3726         CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyLo)));
3727     CGF.Builder.CreateStore(V,
3728                     CGF.Builder.CreateStructGEP(Tmp, 0, CharUnits::Zero()));
3729 
3730     // Copy the second element.
3731     V = CGF.Builder.CreateAlignedLoad(
3732         TyHi, CGF.Builder.CreateBitCast(RegHiAddr, PTyHi),
3733         CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyHi)));
3734     CharUnits Offset = CharUnits::fromQuantity(
3735                    getDataLayout().getStructLayout(ST)->getElementOffset(1));
3736     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1, Offset));
3737 
3738     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
3739   } else if (neededInt) {
3740     RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, gp_offset),
3741                       CharUnits::fromQuantity(8));
3742     RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
3743 
3744     // Copy to a temporary if necessary to ensure the appropriate alignment.
3745     std::pair<CharUnits, CharUnits> SizeAlign =
3746         getContext().getTypeInfoInChars(Ty);
3747     uint64_t TySize = SizeAlign.first.getQuantity();
3748     CharUnits TyAlign = SizeAlign.second;
3749 
3750     // Copy into a temporary if the type is more aligned than the
3751     // register save area.
3752     if (TyAlign.getQuantity() > 8) {
3753       Address Tmp = CGF.CreateMemTemp(Ty);
3754       CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false);
3755       RegAddr = Tmp;
3756     }
3757 
3758   } else if (neededSSE == 1) {
3759     RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset),
3760                       CharUnits::fromQuantity(16));
3761     RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
3762   } else {
3763     assert(neededSSE == 2 && "Invalid number of needed registers!");
3764     // SSE registers are spaced 16 bytes apart in the register save
3765     // area, we need to collect the two eightbytes together.
3766     // The ABI isn't explicit about this, but it seems reasonable
3767     // to assume that the slots are 16-byte aligned, since the stack is
3768     // naturally 16-byte aligned and the prologue is expected to store
3769     // all the SSE registers to the RSA.
3770     Address RegAddrLo = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset),
3771                                 CharUnits::fromQuantity(16));
3772     Address RegAddrHi =
3773       CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo,
3774                                              CharUnits::fromQuantity(16));
3775     llvm::Type *DoubleTy = CGF.DoubleTy;
3776     llvm::StructType *ST = llvm::StructType::get(DoubleTy, DoubleTy);
3777     llvm::Value *V;
3778     Address Tmp = CGF.CreateMemTemp(Ty);
3779     Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
3780     V = CGF.Builder.CreateLoad(
3781                    CGF.Builder.CreateElementBitCast(RegAddrLo, DoubleTy));
3782     CGF.Builder.CreateStore(V,
3783                    CGF.Builder.CreateStructGEP(Tmp, 0, CharUnits::Zero()));
3784     V = CGF.Builder.CreateLoad(
3785                    CGF.Builder.CreateElementBitCast(RegAddrHi, DoubleTy));
3786     CGF.Builder.CreateStore(V,
3787           CGF.Builder.CreateStructGEP(Tmp, 1, CharUnits::fromQuantity(8)));
3788 
3789     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
3790   }
3791 
3792   // AMD64-ABI 3.5.7p5: Step 5. Set:
3793   // l->gp_offset = l->gp_offset + num_gp * 8
3794   // l->fp_offset = l->fp_offset + num_fp * 16.
3795   if (neededInt) {
3796     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
3797     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
3798                             gp_offset_p);
3799   }
3800   if (neededSSE) {
3801     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
3802     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
3803                             fp_offset_p);
3804   }
3805   CGF.EmitBranch(ContBlock);
3806 
3807   // Emit code to load the value if it was passed in memory.
3808 
3809   CGF.EmitBlock(InMemBlock);
3810   Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
3811 
3812   // Return the appropriate result.
3813 
3814   CGF.EmitBlock(ContBlock);
3815   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock,
3816                                  "vaarg.addr");
3817   return ResAddr;
3818 }
3819 
3820 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
3821                                    QualType Ty) const {
3822   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
3823                           CGF.getContext().getTypeInfoInChars(Ty),
3824                           CharUnits::fromQuantity(8),
3825                           /*allowHigherAlign*/ false);
3826 }
3827 
3828 ABIArgInfo
3829 WinX86_64ABIInfo::reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs,
3830                                     const ABIArgInfo &current) const {
3831   // Assumes vectorCall calling convention.
3832   const Type *Base = nullptr;
3833   uint64_t NumElts = 0;
3834 
3835   if (!Ty->isBuiltinType() && !Ty->isVectorType() &&
3836       isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) {
3837     FreeSSERegs -= NumElts;
3838     return getDirectX86Hva();
3839   }
3840   return current;
3841 }
3842 
3843 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs,
3844                                       bool IsReturnType, bool IsVectorCall,
3845                                       bool IsRegCall) const {
3846 
3847   if (Ty->isVoidType())
3848     return ABIArgInfo::getIgnore();
3849 
3850   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3851     Ty = EnumTy->getDecl()->getIntegerType();
3852 
3853   TypeInfo Info = getContext().getTypeInfo(Ty);
3854   uint64_t Width = Info.Width;
3855   CharUnits Align = getContext().toCharUnitsFromBits(Info.Align);
3856 
3857   const RecordType *RT = Ty->getAs<RecordType>();
3858   if (RT) {
3859     if (!IsReturnType) {
3860       if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()))
3861         return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
3862     }
3863 
3864     if (RT->getDecl()->hasFlexibleArrayMember())
3865       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
3866 
3867   }
3868 
3869   const Type *Base = nullptr;
3870   uint64_t NumElts = 0;
3871   // vectorcall adds the concept of a homogenous vector aggregate, similar to
3872   // other targets.
3873   if ((IsVectorCall || IsRegCall) &&
3874       isHomogeneousAggregate(Ty, Base, NumElts)) {
3875     if (IsRegCall) {
3876       if (FreeSSERegs >= NumElts) {
3877         FreeSSERegs -= NumElts;
3878         if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())
3879           return ABIArgInfo::getDirect();
3880         return ABIArgInfo::getExpand();
3881       }
3882       return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3883     } else if (IsVectorCall) {
3884       if (FreeSSERegs >= NumElts &&
3885           (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) {
3886         FreeSSERegs -= NumElts;
3887         return ABIArgInfo::getDirect();
3888       } else if (IsReturnType) {
3889         return ABIArgInfo::getExpand();
3890       } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) {
3891         // HVAs are delayed and reclassified in the 2nd step.
3892         return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3893       }
3894     }
3895   }
3896 
3897   if (Ty->isMemberPointerType()) {
3898     // If the member pointer is represented by an LLVM int or ptr, pass it
3899     // directly.
3900     llvm::Type *LLTy = CGT.ConvertType(Ty);
3901     if (LLTy->isPointerTy() || LLTy->isIntegerTy())
3902       return ABIArgInfo::getDirect();
3903   }
3904 
3905   if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) {
3906     // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
3907     // not 1, 2, 4, or 8 bytes, must be passed by reference."
3908     if (Width > 64 || !llvm::isPowerOf2_64(Width))
3909       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
3910 
3911     // Otherwise, coerce it to a small integer.
3912     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width));
3913   }
3914 
3915   // Bool type is always extended to the ABI, other builtin types are not
3916   // extended.
3917   const BuiltinType *BT = Ty->getAs<BuiltinType>();
3918   if (BT && BT->getKind() == BuiltinType::Bool)
3919     return ABIArgInfo::getExtend();
3920 
3921   // Mingw64 GCC uses the old 80 bit extended precision floating point unit. It
3922   // passes them indirectly through memory.
3923   if (IsMingw64 && BT && BT->getKind() == BuiltinType::LongDouble) {
3924     const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
3925     if (LDF == &llvm::APFloat::x87DoubleExtended())
3926       return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3927   }
3928 
3929   return ABIArgInfo::getDirect();
3930 }
3931 
3932 void WinX86_64ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI,
3933                                              unsigned FreeSSERegs,
3934                                              bool IsVectorCall,
3935                                              bool IsRegCall) const {
3936   unsigned Count = 0;
3937   for (auto &I : FI.arguments()) {
3938     // Vectorcall in x64 only permits the first 6 arguments to be passed
3939     // as XMM/YMM registers.
3940     if (Count < VectorcallMaxParamNumAsReg)
3941       I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall);
3942     else {
3943       // Since these cannot be passed in registers, pretend no registers
3944       // are left.
3945       unsigned ZeroSSERegsAvail = 0;
3946       I.info = classify(I.type, /*FreeSSERegs=*/ZeroSSERegsAvail, false,
3947                         IsVectorCall, IsRegCall);
3948     }
3949     ++Count;
3950   }
3951 
3952   for (auto &I : FI.arguments()) {
3953     I.info = reclassifyHvaArgType(I.type, FreeSSERegs, I.info);
3954   }
3955 }
3956 
3957 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
3958   bool IsVectorCall =
3959       FI.getCallingConvention() == llvm::CallingConv::X86_VectorCall;
3960   bool IsRegCall = FI.getCallingConvention() == llvm::CallingConv::X86_RegCall;
3961 
3962   unsigned FreeSSERegs = 0;
3963   if (IsVectorCall) {
3964     // We can use up to 4 SSE return registers with vectorcall.
3965     FreeSSERegs = 4;
3966   } else if (IsRegCall) {
3967     // RegCall gives us 16 SSE registers.
3968     FreeSSERegs = 16;
3969   }
3970 
3971   if (!getCXXABI().classifyReturnType(FI))
3972     FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true,
3973                                   IsVectorCall, IsRegCall);
3974 
3975   if (IsVectorCall) {
3976     // We can use up to 6 SSE register parameters with vectorcall.
3977     FreeSSERegs = 6;
3978   } else if (IsRegCall) {
3979     // RegCall gives us 16 SSE registers, we can reuse the return registers.
3980     FreeSSERegs = 16;
3981   }
3982 
3983   if (IsVectorCall) {
3984     computeVectorCallArgs(FI, FreeSSERegs, IsVectorCall, IsRegCall);
3985   } else {
3986     for (auto &I : FI.arguments())
3987       I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall);
3988   }
3989 
3990 }
3991 
3992 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
3993                                     QualType Ty) const {
3994 
3995   bool IsIndirect = false;
3996 
3997   // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
3998   // not 1, 2, 4, or 8 bytes, must be passed by reference."
3999   if (isAggregateTypeForABI(Ty) || Ty->isMemberPointerType()) {
4000     uint64_t Width = getContext().getTypeSize(Ty);
4001     IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width);
4002   }
4003 
4004   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
4005                           CGF.getContext().getTypeInfoInChars(Ty),
4006                           CharUnits::fromQuantity(8),
4007                           /*allowHigherAlign*/ false);
4008 }
4009 
4010 // PowerPC-32
4011 namespace {
4012 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information.
4013 class PPC32_SVR4_ABIInfo : public DefaultABIInfo {
4014 bool IsSoftFloatABI;
4015 public:
4016   PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI)
4017       : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI) {}
4018 
4019   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4020                     QualType Ty) const override;
4021 };
4022 
4023 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo {
4024 public:
4025   PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI)
4026       : TargetCodeGenInfo(new PPC32_SVR4_ABIInfo(CGT, SoftFloatABI)) {}
4027 
4028   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4029     // This is recovered from gcc output.
4030     return 1; // r1 is the dedicated stack pointer
4031   }
4032 
4033   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4034                                llvm::Value *Address) const override;
4035 };
4036 
4037 }
4038 
4039 // TODO: this implementation is now likely redundant with
4040 // DefaultABIInfo::EmitVAArg.
4041 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList,
4042                                       QualType Ty) const {
4043   const unsigned OverflowLimit = 8;
4044   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
4045     // TODO: Implement this. For now ignore.
4046     (void)CTy;
4047     return Address::invalid(); // FIXME?
4048   }
4049 
4050   // struct __va_list_tag {
4051   //   unsigned char gpr;
4052   //   unsigned char fpr;
4053   //   unsigned short reserved;
4054   //   void *overflow_arg_area;
4055   //   void *reg_save_area;
4056   // };
4057 
4058   bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64;
4059   bool isInt =
4060       Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType();
4061   bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64;
4062 
4063   // All aggregates are passed indirectly?  That doesn't seem consistent
4064   // with the argument-lowering code.
4065   bool isIndirect = Ty->isAggregateType();
4066 
4067   CGBuilderTy &Builder = CGF.Builder;
4068 
4069   // The calling convention either uses 1-2 GPRs or 1 FPR.
4070   Address NumRegsAddr = Address::invalid();
4071   if (isInt || IsSoftFloatABI) {
4072     NumRegsAddr = Builder.CreateStructGEP(VAList, 0, CharUnits::Zero(), "gpr");
4073   } else {
4074     NumRegsAddr = Builder.CreateStructGEP(VAList, 1, CharUnits::One(), "fpr");
4075   }
4076 
4077   llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs");
4078 
4079   // "Align" the register count when TY is i64.
4080   if (isI64 || (isF64 && IsSoftFloatABI)) {
4081     NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1));
4082     NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U));
4083   }
4084 
4085   llvm::Value *CC =
4086       Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond");
4087 
4088   llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs");
4089   llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow");
4090   llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
4091 
4092   Builder.CreateCondBr(CC, UsingRegs, UsingOverflow);
4093 
4094   llvm::Type *DirectTy = CGF.ConvertType(Ty);
4095   if (isIndirect) DirectTy = DirectTy->getPointerTo(0);
4096 
4097   // Case 1: consume registers.
4098   Address RegAddr = Address::invalid();
4099   {
4100     CGF.EmitBlock(UsingRegs);
4101 
4102     Address RegSaveAreaPtr =
4103       Builder.CreateStructGEP(VAList, 4, CharUnits::fromQuantity(8));
4104     RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr),
4105                       CharUnits::fromQuantity(8));
4106     assert(RegAddr.getElementType() == CGF.Int8Ty);
4107 
4108     // Floating-point registers start after the general-purpose registers.
4109     if (!(isInt || IsSoftFloatABI)) {
4110       RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr,
4111                                                    CharUnits::fromQuantity(32));
4112     }
4113 
4114     // Get the address of the saved value by scaling the number of
4115     // registers we've used by the number of
4116     CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8);
4117     llvm::Value *RegOffset =
4118       Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity()));
4119     RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty,
4120                                             RegAddr.getPointer(), RegOffset),
4121                       RegAddr.getAlignment().alignmentOfArrayElement(RegSize));
4122     RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy);
4123 
4124     // Increase the used-register count.
4125     NumRegs =
4126       Builder.CreateAdd(NumRegs,
4127                         Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1));
4128     Builder.CreateStore(NumRegs, NumRegsAddr);
4129 
4130     CGF.EmitBranch(Cont);
4131   }
4132 
4133   // Case 2: consume space in the overflow area.
4134   Address MemAddr = Address::invalid();
4135   {
4136     CGF.EmitBlock(UsingOverflow);
4137 
4138     Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr);
4139 
4140     // Everything in the overflow area is rounded up to a size of at least 4.
4141     CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4);
4142 
4143     CharUnits Size;
4144     if (!isIndirect) {
4145       auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty);
4146       Size = TypeInfo.first.alignTo(OverflowAreaAlign);
4147     } else {
4148       Size = CGF.getPointerSize();
4149     }
4150 
4151     Address OverflowAreaAddr =
4152       Builder.CreateStructGEP(VAList, 3, CharUnits::fromQuantity(4));
4153     Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"),
4154                          OverflowAreaAlign);
4155     // Round up address of argument to alignment
4156     CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
4157     if (Align > OverflowAreaAlign) {
4158       llvm::Value *Ptr = OverflowArea.getPointer();
4159       OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align),
4160                                                            Align);
4161     }
4162 
4163     MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy);
4164 
4165     // Increase the overflow area.
4166     OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size);
4167     Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr);
4168     CGF.EmitBranch(Cont);
4169   }
4170 
4171   CGF.EmitBlock(Cont);
4172 
4173   // Merge the cases with a phi.
4174   Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow,
4175                                 "vaarg.addr");
4176 
4177   // Load the pointer if the argument was passed indirectly.
4178   if (isIndirect) {
4179     Result = Address(Builder.CreateLoad(Result, "aggr"),
4180                      getContext().getTypeAlignInChars(Ty));
4181   }
4182 
4183   return Result;
4184 }
4185 
4186 bool
4187 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4188                                                 llvm::Value *Address) const {
4189   // This is calculated from the LLVM and GCC tables and verified
4190   // against gcc output.  AFAIK all ABIs use the same encoding.
4191 
4192   CodeGen::CGBuilderTy &Builder = CGF.Builder;
4193 
4194   llvm::IntegerType *i8 = CGF.Int8Ty;
4195   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
4196   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
4197   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
4198 
4199   // 0-31: r0-31, the 4-byte general-purpose registers
4200   AssignToArrayRange(Builder, Address, Four8, 0, 31);
4201 
4202   // 32-63: fp0-31, the 8-byte floating-point registers
4203   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
4204 
4205   // 64-76 are various 4-byte special-purpose registers:
4206   // 64: mq
4207   // 65: lr
4208   // 66: ctr
4209   // 67: ap
4210   // 68-75 cr0-7
4211   // 76: xer
4212   AssignToArrayRange(Builder, Address, Four8, 64, 76);
4213 
4214   // 77-108: v0-31, the 16-byte vector registers
4215   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
4216 
4217   // 109: vrsave
4218   // 110: vscr
4219   // 111: spe_acc
4220   // 112: spefscr
4221   // 113: sfp
4222   AssignToArrayRange(Builder, Address, Four8, 109, 113);
4223 
4224   return false;
4225 }
4226 
4227 // PowerPC-64
4228 
4229 namespace {
4230 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information.
4231 class PPC64_SVR4_ABIInfo : public ABIInfo {
4232 public:
4233   enum ABIKind {
4234     ELFv1 = 0,
4235     ELFv2
4236   };
4237 
4238 private:
4239   static const unsigned GPRBits = 64;
4240   ABIKind Kind;
4241   bool HasQPX;
4242   bool IsSoftFloatABI;
4243 
4244   // A vector of float or double will be promoted to <4 x f32> or <4 x f64> and
4245   // will be passed in a QPX register.
4246   bool IsQPXVectorTy(const Type *Ty) const {
4247     if (!HasQPX)
4248       return false;
4249 
4250     if (const VectorType *VT = Ty->getAs<VectorType>()) {
4251       unsigned NumElements = VT->getNumElements();
4252       if (NumElements == 1)
4253         return false;
4254 
4255       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) {
4256         if (getContext().getTypeSize(Ty) <= 256)
4257           return true;
4258       } else if (VT->getElementType()->
4259                    isSpecificBuiltinType(BuiltinType::Float)) {
4260         if (getContext().getTypeSize(Ty) <= 128)
4261           return true;
4262       }
4263     }
4264 
4265     return false;
4266   }
4267 
4268   bool IsQPXVectorTy(QualType Ty) const {
4269     return IsQPXVectorTy(Ty.getTypePtr());
4270   }
4271 
4272 public:
4273   PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, bool HasQPX,
4274                      bool SoftFloatABI)
4275       : ABIInfo(CGT), Kind(Kind), HasQPX(HasQPX),
4276         IsSoftFloatABI(SoftFloatABI) {}
4277 
4278   bool isPromotableTypeForABI(QualType Ty) const;
4279   CharUnits getParamTypeAlignment(QualType Ty) const;
4280 
4281   ABIArgInfo classifyReturnType(QualType RetTy) const;
4282   ABIArgInfo classifyArgumentType(QualType Ty) const;
4283 
4284   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
4285   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
4286                                          uint64_t Members) const override;
4287 
4288   // TODO: We can add more logic to computeInfo to improve performance.
4289   // Example: For aggregate arguments that fit in a register, we could
4290   // use getDirectInReg (as is done below for structs containing a single
4291   // floating-point value) to avoid pushing them to memory on function
4292   // entry.  This would require changing the logic in PPCISelLowering
4293   // when lowering the parameters in the caller and args in the callee.
4294   void computeInfo(CGFunctionInfo &FI) const override {
4295     if (!getCXXABI().classifyReturnType(FI))
4296       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4297     for (auto &I : FI.arguments()) {
4298       // We rely on the default argument classification for the most part.
4299       // One exception:  An aggregate containing a single floating-point
4300       // or vector item must be passed in a register if one is available.
4301       const Type *T = isSingleElementStruct(I.type, getContext());
4302       if (T) {
4303         const BuiltinType *BT = T->getAs<BuiltinType>();
4304         if (IsQPXVectorTy(T) ||
4305             (T->isVectorType() && getContext().getTypeSize(T) == 128) ||
4306             (BT && BT->isFloatingPoint())) {
4307           QualType QT(T, 0);
4308           I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT));
4309           continue;
4310         }
4311       }
4312       I.info = classifyArgumentType(I.type);
4313     }
4314   }
4315 
4316   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4317                     QualType Ty) const override;
4318 };
4319 
4320 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo {
4321 
4322 public:
4323   PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT,
4324                                PPC64_SVR4_ABIInfo::ABIKind Kind, bool HasQPX,
4325                                bool SoftFloatABI)
4326       : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT, Kind, HasQPX,
4327                                                  SoftFloatABI)) {}
4328 
4329   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4330     // This is recovered from gcc output.
4331     return 1; // r1 is the dedicated stack pointer
4332   }
4333 
4334   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4335                                llvm::Value *Address) const override;
4336 };
4337 
4338 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
4339 public:
4340   PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
4341 
4342   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4343     // This is recovered from gcc output.
4344     return 1; // r1 is the dedicated stack pointer
4345   }
4346 
4347   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4348                                llvm::Value *Address) const override;
4349 };
4350 
4351 }
4352 
4353 // Return true if the ABI requires Ty to be passed sign- or zero-
4354 // extended to 64 bits.
4355 bool
4356 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const {
4357   // Treat an enum type as its underlying type.
4358   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4359     Ty = EnumTy->getDecl()->getIntegerType();
4360 
4361   // Promotable integer types are required to be promoted by the ABI.
4362   if (Ty->isPromotableIntegerType())
4363     return true;
4364 
4365   // In addition to the usual promotable integer types, we also need to
4366   // extend all 32-bit types, since the ABI requires promotion to 64 bits.
4367   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
4368     switch (BT->getKind()) {
4369     case BuiltinType::Int:
4370     case BuiltinType::UInt:
4371       return true;
4372     default:
4373       break;
4374     }
4375 
4376   return false;
4377 }
4378 
4379 /// isAlignedParamType - Determine whether a type requires 16-byte or
4380 /// higher alignment in the parameter area.  Always returns at least 8.
4381 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const {
4382   // Complex types are passed just like their elements.
4383   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
4384     Ty = CTy->getElementType();
4385 
4386   // Only vector types of size 16 bytes need alignment (larger types are
4387   // passed via reference, smaller types are not aligned).
4388   if (IsQPXVectorTy(Ty)) {
4389     if (getContext().getTypeSize(Ty) > 128)
4390       return CharUnits::fromQuantity(32);
4391 
4392     return CharUnits::fromQuantity(16);
4393   } else if (Ty->isVectorType()) {
4394     return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8);
4395   }
4396 
4397   // For single-element float/vector structs, we consider the whole type
4398   // to have the same alignment requirements as its single element.
4399   const Type *AlignAsType = nullptr;
4400   const Type *EltType = isSingleElementStruct(Ty, getContext());
4401   if (EltType) {
4402     const BuiltinType *BT = EltType->getAs<BuiltinType>();
4403     if (IsQPXVectorTy(EltType) || (EltType->isVectorType() &&
4404          getContext().getTypeSize(EltType) == 128) ||
4405         (BT && BT->isFloatingPoint()))
4406       AlignAsType = EltType;
4407   }
4408 
4409   // Likewise for ELFv2 homogeneous aggregates.
4410   const Type *Base = nullptr;
4411   uint64_t Members = 0;
4412   if (!AlignAsType && Kind == ELFv2 &&
4413       isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members))
4414     AlignAsType = Base;
4415 
4416   // With special case aggregates, only vector base types need alignment.
4417   if (AlignAsType && IsQPXVectorTy(AlignAsType)) {
4418     if (getContext().getTypeSize(AlignAsType) > 128)
4419       return CharUnits::fromQuantity(32);
4420 
4421     return CharUnits::fromQuantity(16);
4422   } else if (AlignAsType) {
4423     return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8);
4424   }
4425 
4426   // Otherwise, we only need alignment for any aggregate type that
4427   // has an alignment requirement of >= 16 bytes.
4428   if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) {
4429     if (HasQPX && getContext().getTypeAlign(Ty) >= 256)
4430       return CharUnits::fromQuantity(32);
4431     return CharUnits::fromQuantity(16);
4432   }
4433 
4434   return CharUnits::fromQuantity(8);
4435 }
4436 
4437 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous
4438 /// aggregate.  Base is set to the base element type, and Members is set
4439 /// to the number of base elements.
4440 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base,
4441                                      uint64_t &Members) const {
4442   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
4443     uint64_t NElements = AT->getSize().getZExtValue();
4444     if (NElements == 0)
4445       return false;
4446     if (!isHomogeneousAggregate(AT->getElementType(), Base, Members))
4447       return false;
4448     Members *= NElements;
4449   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
4450     const RecordDecl *RD = RT->getDecl();
4451     if (RD->hasFlexibleArrayMember())
4452       return false;
4453 
4454     Members = 0;
4455 
4456     // If this is a C++ record, check the bases first.
4457     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
4458       for (const auto &I : CXXRD->bases()) {
4459         // Ignore empty records.
4460         if (isEmptyRecord(getContext(), I.getType(), true))
4461           continue;
4462 
4463         uint64_t FldMembers;
4464         if (!isHomogeneousAggregate(I.getType(), Base, FldMembers))
4465           return false;
4466 
4467         Members += FldMembers;
4468       }
4469     }
4470 
4471     for (const auto *FD : RD->fields()) {
4472       // Ignore (non-zero arrays of) empty records.
4473       QualType FT = FD->getType();
4474       while (const ConstantArrayType *AT =
4475              getContext().getAsConstantArrayType(FT)) {
4476         if (AT->getSize().getZExtValue() == 0)
4477           return false;
4478         FT = AT->getElementType();
4479       }
4480       if (isEmptyRecord(getContext(), FT, true))
4481         continue;
4482 
4483       // For compatibility with GCC, ignore empty bitfields in C++ mode.
4484       if (getContext().getLangOpts().CPlusPlus &&
4485           FD->isBitField() && FD->getBitWidthValue(getContext()) == 0)
4486         continue;
4487 
4488       uint64_t FldMembers;
4489       if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers))
4490         return false;
4491 
4492       Members = (RD->isUnion() ?
4493                  std::max(Members, FldMembers) : Members + FldMembers);
4494     }
4495 
4496     if (!Base)
4497       return false;
4498 
4499     // Ensure there is no padding.
4500     if (getContext().getTypeSize(Base) * Members !=
4501         getContext().getTypeSize(Ty))
4502       return false;
4503   } else {
4504     Members = 1;
4505     if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
4506       Members = 2;
4507       Ty = CT->getElementType();
4508     }
4509 
4510     // Most ABIs only support float, double, and some vector type widths.
4511     if (!isHomogeneousAggregateBaseType(Ty))
4512       return false;
4513 
4514     // The base type must be the same for all members.  Types that
4515     // agree in both total size and mode (float vs. vector) are
4516     // treated as being equivalent here.
4517     const Type *TyPtr = Ty.getTypePtr();
4518     if (!Base) {
4519       Base = TyPtr;
4520       // If it's a non-power-of-2 vector, its size is already a power-of-2,
4521       // so make sure to widen it explicitly.
4522       if (const VectorType *VT = Base->getAs<VectorType>()) {
4523         QualType EltTy = VT->getElementType();
4524         unsigned NumElements =
4525             getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy);
4526         Base = getContext()
4527                    .getVectorType(EltTy, NumElements, VT->getVectorKind())
4528                    .getTypePtr();
4529       }
4530     }
4531 
4532     if (Base->isVectorType() != TyPtr->isVectorType() ||
4533         getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr))
4534       return false;
4535   }
4536   return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members);
4537 }
4538 
4539 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
4540   // Homogeneous aggregates for ELFv2 must have base types of float,
4541   // double, long double, or 128-bit vectors.
4542   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
4543     if (BT->getKind() == BuiltinType::Float ||
4544         BT->getKind() == BuiltinType::Double ||
4545         BT->getKind() == BuiltinType::LongDouble) {
4546       if (IsSoftFloatABI)
4547         return false;
4548       return true;
4549     }
4550   }
4551   if (const VectorType *VT = Ty->getAs<VectorType>()) {
4552     if (getContext().getTypeSize(VT) == 128 || IsQPXVectorTy(Ty))
4553       return true;
4554   }
4555   return false;
4556 }
4557 
4558 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough(
4559     const Type *Base, uint64_t Members) const {
4560   // Vector types require one register, floating point types require one
4561   // or two registers depending on their size.
4562   uint32_t NumRegs =
4563       Base->isVectorType() ? 1 : (getContext().getTypeSize(Base) + 63) / 64;
4564 
4565   // Homogeneous Aggregates may occupy at most 8 registers.
4566   return Members * NumRegs <= 8;
4567 }
4568 
4569 ABIArgInfo
4570 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const {
4571   Ty = useFirstFieldIfTransparentUnion(Ty);
4572 
4573   if (Ty->isAnyComplexType())
4574     return ABIArgInfo::getDirect();
4575 
4576   // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes)
4577   // or via reference (larger than 16 bytes).
4578   if (Ty->isVectorType() && !IsQPXVectorTy(Ty)) {
4579     uint64_t Size = getContext().getTypeSize(Ty);
4580     if (Size > 128)
4581       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
4582     else if (Size < 128) {
4583       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
4584       return ABIArgInfo::getDirect(CoerceTy);
4585     }
4586   }
4587 
4588   if (isAggregateTypeForABI(Ty)) {
4589     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
4590       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
4591 
4592     uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity();
4593     uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity();
4594 
4595     // ELFv2 homogeneous aggregates are passed as array types.
4596     const Type *Base = nullptr;
4597     uint64_t Members = 0;
4598     if (Kind == ELFv2 &&
4599         isHomogeneousAggregate(Ty, Base, Members)) {
4600       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
4601       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
4602       return ABIArgInfo::getDirect(CoerceTy);
4603     }
4604 
4605     // If an aggregate may end up fully in registers, we do not
4606     // use the ByVal method, but pass the aggregate as array.
4607     // This is usually beneficial since we avoid forcing the
4608     // back-end to store the argument to memory.
4609     uint64_t Bits = getContext().getTypeSize(Ty);
4610     if (Bits > 0 && Bits <= 8 * GPRBits) {
4611       llvm::Type *CoerceTy;
4612 
4613       // Types up to 8 bytes are passed as integer type (which will be
4614       // properly aligned in the argument save area doubleword).
4615       if (Bits <= GPRBits)
4616         CoerceTy =
4617             llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8));
4618       // Larger types are passed as arrays, with the base type selected
4619       // according to the required alignment in the save area.
4620       else {
4621         uint64_t RegBits = ABIAlign * 8;
4622         uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits;
4623         llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits);
4624         CoerceTy = llvm::ArrayType::get(RegTy, NumRegs);
4625       }
4626 
4627       return ABIArgInfo::getDirect(CoerceTy);
4628     }
4629 
4630     // All other aggregates are passed ByVal.
4631     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
4632                                    /*ByVal=*/true,
4633                                    /*Realign=*/TyAlign > ABIAlign);
4634   }
4635 
4636   return (isPromotableTypeForABI(Ty) ?
4637           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
4638 }
4639 
4640 ABIArgInfo
4641 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
4642   if (RetTy->isVoidType())
4643     return ABIArgInfo::getIgnore();
4644 
4645   if (RetTy->isAnyComplexType())
4646     return ABIArgInfo::getDirect();
4647 
4648   // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes)
4649   // or via reference (larger than 16 bytes).
4650   if (RetTy->isVectorType() && !IsQPXVectorTy(RetTy)) {
4651     uint64_t Size = getContext().getTypeSize(RetTy);
4652     if (Size > 128)
4653       return getNaturalAlignIndirect(RetTy);
4654     else if (Size < 128) {
4655       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
4656       return ABIArgInfo::getDirect(CoerceTy);
4657     }
4658   }
4659 
4660   if (isAggregateTypeForABI(RetTy)) {
4661     // ELFv2 homogeneous aggregates are returned as array types.
4662     const Type *Base = nullptr;
4663     uint64_t Members = 0;
4664     if (Kind == ELFv2 &&
4665         isHomogeneousAggregate(RetTy, Base, Members)) {
4666       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
4667       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
4668       return ABIArgInfo::getDirect(CoerceTy);
4669     }
4670 
4671     // ELFv2 small aggregates are returned in up to two registers.
4672     uint64_t Bits = getContext().getTypeSize(RetTy);
4673     if (Kind == ELFv2 && Bits <= 2 * GPRBits) {
4674       if (Bits == 0)
4675         return ABIArgInfo::getIgnore();
4676 
4677       llvm::Type *CoerceTy;
4678       if (Bits > GPRBits) {
4679         CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits);
4680         CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy);
4681       } else
4682         CoerceTy =
4683             llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8));
4684       return ABIArgInfo::getDirect(CoerceTy);
4685     }
4686 
4687     // All other aggregates are returned indirectly.
4688     return getNaturalAlignIndirect(RetTy);
4689   }
4690 
4691   return (isPromotableTypeForABI(RetTy) ?
4692           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
4693 }
4694 
4695 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine.
4696 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4697                                       QualType Ty) const {
4698   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
4699   TypeInfo.second = getParamTypeAlignment(Ty);
4700 
4701   CharUnits SlotSize = CharUnits::fromQuantity(8);
4702 
4703   // If we have a complex type and the base type is smaller than 8 bytes,
4704   // the ABI calls for the real and imaginary parts to be right-adjusted
4705   // in separate doublewords.  However, Clang expects us to produce a
4706   // pointer to a structure with the two parts packed tightly.  So generate
4707   // loads of the real and imaginary parts relative to the va_list pointer,
4708   // and store them to a temporary structure.
4709   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
4710     CharUnits EltSize = TypeInfo.first / 2;
4711     if (EltSize < SlotSize) {
4712       Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty,
4713                                             SlotSize * 2, SlotSize,
4714                                             SlotSize, /*AllowHigher*/ true);
4715 
4716       Address RealAddr = Addr;
4717       Address ImagAddr = RealAddr;
4718       if (CGF.CGM.getDataLayout().isBigEndian()) {
4719         RealAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr,
4720                                                           SlotSize - EltSize);
4721         ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr,
4722                                                       2 * SlotSize - EltSize);
4723       } else {
4724         ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize);
4725       }
4726 
4727       llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType());
4728       RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy);
4729       ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy);
4730       llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal");
4731       llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag");
4732 
4733       Address Temp = CGF.CreateMemTemp(Ty, "vacplx");
4734       CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty),
4735                              /*init*/ true);
4736       return Temp;
4737     }
4738   }
4739 
4740   // Otherwise, just use the general rule.
4741   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
4742                           TypeInfo, SlotSize, /*AllowHigher*/ true);
4743 }
4744 
4745 static bool
4746 PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4747                               llvm::Value *Address) {
4748   // This is calculated from the LLVM and GCC tables and verified
4749   // against gcc output.  AFAIK all ABIs use the same encoding.
4750 
4751   CodeGen::CGBuilderTy &Builder = CGF.Builder;
4752 
4753   llvm::IntegerType *i8 = CGF.Int8Ty;
4754   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
4755   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
4756   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
4757 
4758   // 0-31: r0-31, the 8-byte general-purpose registers
4759   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
4760 
4761   // 32-63: fp0-31, the 8-byte floating-point registers
4762   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
4763 
4764   // 64-67 are various 8-byte special-purpose registers:
4765   // 64: mq
4766   // 65: lr
4767   // 66: ctr
4768   // 67: ap
4769   AssignToArrayRange(Builder, Address, Eight8, 64, 67);
4770 
4771   // 68-76 are various 4-byte special-purpose registers:
4772   // 68-75 cr0-7
4773   // 76: xer
4774   AssignToArrayRange(Builder, Address, Four8, 68, 76);
4775 
4776   // 77-108: v0-31, the 16-byte vector registers
4777   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
4778 
4779   // 109: vrsave
4780   // 110: vscr
4781   // 111: spe_acc
4782   // 112: spefscr
4783   // 113: sfp
4784   // 114: tfhar
4785   // 115: tfiar
4786   // 116: texasr
4787   AssignToArrayRange(Builder, Address, Eight8, 109, 116);
4788 
4789   return false;
4790 }
4791 
4792 bool
4793 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable(
4794   CodeGen::CodeGenFunction &CGF,
4795   llvm::Value *Address) const {
4796 
4797   return PPC64_initDwarfEHRegSizeTable(CGF, Address);
4798 }
4799 
4800 bool
4801 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4802                                                 llvm::Value *Address) const {
4803 
4804   return PPC64_initDwarfEHRegSizeTable(CGF, Address);
4805 }
4806 
4807 //===----------------------------------------------------------------------===//
4808 // AArch64 ABI Implementation
4809 //===----------------------------------------------------------------------===//
4810 
4811 namespace {
4812 
4813 class AArch64ABIInfo : public SwiftABIInfo {
4814 public:
4815   enum ABIKind {
4816     AAPCS = 0,
4817     DarwinPCS,
4818     Win64
4819   };
4820 
4821 private:
4822   ABIKind Kind;
4823 
4824 public:
4825   AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind)
4826     : SwiftABIInfo(CGT), Kind(Kind) {}
4827 
4828 private:
4829   ABIKind getABIKind() const { return Kind; }
4830   bool isDarwinPCS() const { return Kind == DarwinPCS; }
4831 
4832   ABIArgInfo classifyReturnType(QualType RetTy) const;
4833   ABIArgInfo classifyArgumentType(QualType RetTy) const;
4834   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
4835   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
4836                                          uint64_t Members) const override;
4837 
4838   bool isIllegalVectorType(QualType Ty) const;
4839 
4840   void computeInfo(CGFunctionInfo &FI) const override {
4841     if (!getCXXABI().classifyReturnType(FI))
4842       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4843 
4844     for (auto &it : FI.arguments())
4845       it.info = classifyArgumentType(it.type);
4846   }
4847 
4848   Address EmitDarwinVAArg(Address VAListAddr, QualType Ty,
4849                           CodeGenFunction &CGF) const;
4850 
4851   Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty,
4852                          CodeGenFunction &CGF) const;
4853 
4854   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4855                     QualType Ty) const override {
4856     return Kind == Win64 ? EmitMSVAArg(CGF, VAListAddr, Ty)
4857                          : isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF)
4858                                          : EmitAAPCSVAArg(VAListAddr, Ty, CGF);
4859   }
4860 
4861   Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
4862                       QualType Ty) const override;
4863 
4864   bool shouldPassIndirectlyForSwift(CharUnits totalSize,
4865                                     ArrayRef<llvm::Type*> scalars,
4866                                     bool asReturnValue) const override {
4867     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
4868   }
4869   bool isSwiftErrorInRegister() const override {
4870     return true;
4871   }
4872 
4873   bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy,
4874                                  unsigned elts) const override;
4875 };
4876 
4877 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo {
4878 public:
4879   AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind)
4880       : TargetCodeGenInfo(new AArch64ABIInfo(CGT, Kind)) {}
4881 
4882   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
4883     return "mov\tfp, fp\t\t# marker for objc_retainAutoreleaseReturnValue";
4884   }
4885 
4886   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4887     return 31;
4888   }
4889 
4890   bool doesReturnSlotInterfereWithArgs() const override { return false; }
4891 };
4892 
4893 class WindowsAArch64TargetCodeGenInfo : public AArch64TargetCodeGenInfo {
4894 public:
4895   WindowsAArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind K)
4896       : AArch64TargetCodeGenInfo(CGT, K) {}
4897 
4898   void getDependentLibraryOption(llvm::StringRef Lib,
4899                                  llvm::SmallString<24> &Opt) const override {
4900     Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib);
4901   }
4902 
4903   void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value,
4904                                llvm::SmallString<32> &Opt) const override {
4905     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
4906   }
4907 };
4908 }
4909 
4910 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const {
4911   Ty = useFirstFieldIfTransparentUnion(Ty);
4912 
4913   // Handle illegal vector types here.
4914   if (isIllegalVectorType(Ty)) {
4915     uint64_t Size = getContext().getTypeSize(Ty);
4916     // Android promotes <2 x i8> to i16, not i32
4917     if (isAndroid() && (Size <= 16)) {
4918       llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext());
4919       return ABIArgInfo::getDirect(ResType);
4920     }
4921     if (Size <= 32) {
4922       llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext());
4923       return ABIArgInfo::getDirect(ResType);
4924     }
4925     if (Size == 64) {
4926       llvm::Type *ResType =
4927           llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2);
4928       return ABIArgInfo::getDirect(ResType);
4929     }
4930     if (Size == 128) {
4931       llvm::Type *ResType =
4932           llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4);
4933       return ABIArgInfo::getDirect(ResType);
4934     }
4935     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
4936   }
4937 
4938   if (!isAggregateTypeForABI(Ty)) {
4939     // Treat an enum type as its underlying type.
4940     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4941       Ty = EnumTy->getDecl()->getIntegerType();
4942 
4943     return (Ty->isPromotableIntegerType() && isDarwinPCS()
4944                 ? ABIArgInfo::getExtend()
4945                 : ABIArgInfo::getDirect());
4946   }
4947 
4948   // Structures with either a non-trivial destructor or a non-trivial
4949   // copy constructor are always indirect.
4950   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
4951     return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
4952                                      CGCXXABI::RAA_DirectInMemory);
4953   }
4954 
4955   // Empty records are always ignored on Darwin, but actually passed in C++ mode
4956   // elsewhere for GNU compatibility.
4957   uint64_t Size = getContext().getTypeSize(Ty);
4958   bool IsEmpty = isEmptyRecord(getContext(), Ty, true);
4959   if (IsEmpty || Size == 0) {
4960     if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS())
4961       return ABIArgInfo::getIgnore();
4962 
4963     // GNU C mode. The only argument that gets ignored is an empty one with size
4964     // 0.
4965     if (IsEmpty && Size == 0)
4966       return ABIArgInfo::getIgnore();
4967     return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
4968   }
4969 
4970   // Homogeneous Floating-point Aggregates (HFAs) need to be expanded.
4971   const Type *Base = nullptr;
4972   uint64_t Members = 0;
4973   if (isHomogeneousAggregate(Ty, Base, Members)) {
4974     return ABIArgInfo::getDirect(
4975         llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members));
4976   }
4977 
4978   // Aggregates <= 16 bytes are passed directly in registers or on the stack.
4979   if (Size <= 128) {
4980     // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of
4981     // same size and alignment.
4982     if (getTarget().isRenderScriptTarget()) {
4983       return coerceToIntArray(Ty, getContext(), getVMContext());
4984     }
4985     unsigned Alignment = getContext().getTypeAlign(Ty);
4986     Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes
4987 
4988     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
4989     // For aggregates with 16-byte alignment, we use i128.
4990     if (Alignment < 128 && Size == 128) {
4991       llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
4992       return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
4993     }
4994     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
4995   }
4996 
4997   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
4998 }
4999 
5000 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy) const {
5001   if (RetTy->isVoidType())
5002     return ABIArgInfo::getIgnore();
5003 
5004   // Large vector types should be returned via memory.
5005   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
5006     return getNaturalAlignIndirect(RetTy);
5007 
5008   if (!isAggregateTypeForABI(RetTy)) {
5009     // Treat an enum type as its underlying type.
5010     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5011       RetTy = EnumTy->getDecl()->getIntegerType();
5012 
5013     return (RetTy->isPromotableIntegerType() && isDarwinPCS()
5014                 ? ABIArgInfo::getExtend()
5015                 : ABIArgInfo::getDirect());
5016   }
5017 
5018   uint64_t Size = getContext().getTypeSize(RetTy);
5019   if (isEmptyRecord(getContext(), RetTy, true) || Size == 0)
5020     return ABIArgInfo::getIgnore();
5021 
5022   const Type *Base = nullptr;
5023   uint64_t Members = 0;
5024   if (isHomogeneousAggregate(RetTy, Base, Members))
5025     // Homogeneous Floating-point Aggregates (HFAs) are returned directly.
5026     return ABIArgInfo::getDirect();
5027 
5028   // Aggregates <= 16 bytes are returned directly in registers or on the stack.
5029   if (Size <= 128) {
5030     // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of
5031     // same size and alignment.
5032     if (getTarget().isRenderScriptTarget()) {
5033       return coerceToIntArray(RetTy, getContext(), getVMContext());
5034     }
5035     unsigned Alignment = getContext().getTypeAlign(RetTy);
5036     Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes
5037 
5038     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
5039     // For aggregates with 16-byte alignment, we use i128.
5040     if (Alignment < 128 && Size == 128) {
5041       llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
5042       return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
5043     }
5044     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
5045   }
5046 
5047   return getNaturalAlignIndirect(RetTy);
5048 }
5049 
5050 /// isIllegalVectorType - check whether the vector type is legal for AArch64.
5051 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const {
5052   if (const VectorType *VT = Ty->getAs<VectorType>()) {
5053     // Check whether VT is legal.
5054     unsigned NumElements = VT->getNumElements();
5055     uint64_t Size = getContext().getTypeSize(VT);
5056     // NumElements should be power of 2.
5057     if (!llvm::isPowerOf2_32(NumElements))
5058       return true;
5059     return Size != 64 && (Size != 128 || NumElements == 1);
5060   }
5061   return false;
5062 }
5063 
5064 bool AArch64ABIInfo::isLegalVectorTypeForSwift(CharUnits totalSize,
5065                                                llvm::Type *eltTy,
5066                                                unsigned elts) const {
5067   if (!llvm::isPowerOf2_32(elts))
5068     return false;
5069   if (totalSize.getQuantity() != 8 &&
5070       (totalSize.getQuantity() != 16 || elts == 1))
5071     return false;
5072   return true;
5073 }
5074 
5075 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
5076   // Homogeneous aggregates for AAPCS64 must have base types of a floating
5077   // point type or a short-vector type. This is the same as the 32-bit ABI,
5078   // but with the difference that any floating-point type is allowed,
5079   // including __fp16.
5080   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
5081     if (BT->isFloatingPoint())
5082       return true;
5083   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
5084     unsigned VecSize = getContext().getTypeSize(VT);
5085     if (VecSize == 64 || VecSize == 128)
5086       return true;
5087   }
5088   return false;
5089 }
5090 
5091 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
5092                                                        uint64_t Members) const {
5093   return Members <= 4;
5094 }
5095 
5096 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr,
5097                                             QualType Ty,
5098                                             CodeGenFunction &CGF) const {
5099   ABIArgInfo AI = classifyArgumentType(Ty);
5100   bool IsIndirect = AI.isIndirect();
5101 
5102   llvm::Type *BaseTy = CGF.ConvertType(Ty);
5103   if (IsIndirect)
5104     BaseTy = llvm::PointerType::getUnqual(BaseTy);
5105   else if (AI.getCoerceToType())
5106     BaseTy = AI.getCoerceToType();
5107 
5108   unsigned NumRegs = 1;
5109   if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) {
5110     BaseTy = ArrTy->getElementType();
5111     NumRegs = ArrTy->getNumElements();
5112   }
5113   bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy();
5114 
5115   // The AArch64 va_list type and handling is specified in the Procedure Call
5116   // Standard, section B.4:
5117   //
5118   // struct {
5119   //   void *__stack;
5120   //   void *__gr_top;
5121   //   void *__vr_top;
5122   //   int __gr_offs;
5123   //   int __vr_offs;
5124   // };
5125 
5126   llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
5127   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
5128   llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
5129   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
5130 
5131   auto TyInfo = getContext().getTypeInfoInChars(Ty);
5132   CharUnits TyAlign = TyInfo.second;
5133 
5134   Address reg_offs_p = Address::invalid();
5135   llvm::Value *reg_offs = nullptr;
5136   int reg_top_index;
5137   CharUnits reg_top_offset;
5138   int RegSize = IsIndirect ? 8 : TyInfo.first.getQuantity();
5139   if (!IsFPR) {
5140     // 3 is the field number of __gr_offs
5141     reg_offs_p =
5142         CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(24),
5143                                     "gr_offs_p");
5144     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs");
5145     reg_top_index = 1; // field number for __gr_top
5146     reg_top_offset = CharUnits::fromQuantity(8);
5147     RegSize = llvm::alignTo(RegSize, 8);
5148   } else {
5149     // 4 is the field number of __vr_offs.
5150     reg_offs_p =
5151         CGF.Builder.CreateStructGEP(VAListAddr, 4, CharUnits::fromQuantity(28),
5152                                     "vr_offs_p");
5153     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs");
5154     reg_top_index = 2; // field number for __vr_top
5155     reg_top_offset = CharUnits::fromQuantity(16);
5156     RegSize = 16 * NumRegs;
5157   }
5158 
5159   //=======================================
5160   // Find out where argument was passed
5161   //=======================================
5162 
5163   // If reg_offs >= 0 we're already using the stack for this type of
5164   // argument. We don't want to keep updating reg_offs (in case it overflows,
5165   // though anyone passing 2GB of arguments, each at most 16 bytes, deserves
5166   // whatever they get).
5167   llvm::Value *UsingStack = nullptr;
5168   UsingStack = CGF.Builder.CreateICmpSGE(
5169       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0));
5170 
5171   CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock);
5172 
5173   // Otherwise, at least some kind of argument could go in these registers, the
5174   // question is whether this particular type is too big.
5175   CGF.EmitBlock(MaybeRegBlock);
5176 
5177   // Integer arguments may need to correct register alignment (for example a
5178   // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we
5179   // align __gr_offs to calculate the potential address.
5180   if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) {
5181     int Align = TyAlign.getQuantity();
5182 
5183     reg_offs = CGF.Builder.CreateAdd(
5184         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1),
5185         "align_regoffs");
5186     reg_offs = CGF.Builder.CreateAnd(
5187         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align),
5188         "aligned_regoffs");
5189   }
5190 
5191   // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list.
5192   // The fact that this is done unconditionally reflects the fact that
5193   // allocating an argument to the stack also uses up all the remaining
5194   // registers of the appropriate kind.
5195   llvm::Value *NewOffset = nullptr;
5196   NewOffset = CGF.Builder.CreateAdd(
5197       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs");
5198   CGF.Builder.CreateStore(NewOffset, reg_offs_p);
5199 
5200   // Now we're in a position to decide whether this argument really was in
5201   // registers or not.
5202   llvm::Value *InRegs = nullptr;
5203   InRegs = CGF.Builder.CreateICmpSLE(
5204       NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg");
5205 
5206   CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock);
5207 
5208   //=======================================
5209   // Argument was in registers
5210   //=======================================
5211 
5212   // Now we emit the code for if the argument was originally passed in
5213   // registers. First start the appropriate block:
5214   CGF.EmitBlock(InRegBlock);
5215 
5216   llvm::Value *reg_top = nullptr;
5217   Address reg_top_p = CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index,
5218                                                   reg_top_offset, "reg_top_p");
5219   reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top");
5220   Address BaseAddr(CGF.Builder.CreateInBoundsGEP(reg_top, reg_offs),
5221                    CharUnits::fromQuantity(IsFPR ? 16 : 8));
5222   Address RegAddr = Address::invalid();
5223   llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty);
5224 
5225   if (IsIndirect) {
5226     // If it's been passed indirectly (actually a struct), whatever we find from
5227     // stored registers or on the stack will actually be a struct **.
5228     MemTy = llvm::PointerType::getUnqual(MemTy);
5229   }
5230 
5231   const Type *Base = nullptr;
5232   uint64_t NumMembers = 0;
5233   bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers);
5234   if (IsHFA && NumMembers > 1) {
5235     // Homogeneous aggregates passed in registers will have their elements split
5236     // and stored 16-bytes apart regardless of size (they're notionally in qN,
5237     // qN+1, ...). We reload and store into a temporary local variable
5238     // contiguously.
5239     assert(!IsIndirect && "Homogeneous aggregates should be passed directly");
5240     auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0));
5241     llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0));
5242     llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers);
5243     Address Tmp = CGF.CreateTempAlloca(HFATy,
5244                                        std::max(TyAlign, BaseTyInfo.second));
5245 
5246     // On big-endian platforms, the value will be right-aligned in its slot.
5247     int Offset = 0;
5248     if (CGF.CGM.getDataLayout().isBigEndian() &&
5249         BaseTyInfo.first.getQuantity() < 16)
5250       Offset = 16 - BaseTyInfo.first.getQuantity();
5251 
5252     for (unsigned i = 0; i < NumMembers; ++i) {
5253       CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset);
5254       Address LoadAddr =
5255         CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset);
5256       LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy);
5257 
5258       Address StoreAddr =
5259         CGF.Builder.CreateConstArrayGEP(Tmp, i, BaseTyInfo.first);
5260 
5261       llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr);
5262       CGF.Builder.CreateStore(Elem, StoreAddr);
5263     }
5264 
5265     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy);
5266   } else {
5267     // Otherwise the object is contiguous in memory.
5268 
5269     // It might be right-aligned in its slot.
5270     CharUnits SlotSize = BaseAddr.getAlignment();
5271     if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect &&
5272         (IsHFA || !isAggregateTypeForABI(Ty)) &&
5273         TyInfo.first < SlotSize) {
5274       CharUnits Offset = SlotSize - TyInfo.first;
5275       BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset);
5276     }
5277 
5278     RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy);
5279   }
5280 
5281   CGF.EmitBranch(ContBlock);
5282 
5283   //=======================================
5284   // Argument was on the stack
5285   //=======================================
5286   CGF.EmitBlock(OnStackBlock);
5287 
5288   Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0,
5289                                                 CharUnits::Zero(), "stack_p");
5290   llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack");
5291 
5292   // Again, stack arguments may need realignment. In this case both integer and
5293   // floating-point ones might be affected.
5294   if (!IsIndirect && TyAlign.getQuantity() > 8) {
5295     int Align = TyAlign.getQuantity();
5296 
5297     OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty);
5298 
5299     OnStackPtr = CGF.Builder.CreateAdd(
5300         OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1),
5301         "align_stack");
5302     OnStackPtr = CGF.Builder.CreateAnd(
5303         OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align),
5304         "align_stack");
5305 
5306     OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy);
5307   }
5308   Address OnStackAddr(OnStackPtr,
5309                       std::max(CharUnits::fromQuantity(8), TyAlign));
5310 
5311   // All stack slots are multiples of 8 bytes.
5312   CharUnits StackSlotSize = CharUnits::fromQuantity(8);
5313   CharUnits StackSize;
5314   if (IsIndirect)
5315     StackSize = StackSlotSize;
5316   else
5317     StackSize = TyInfo.first.alignTo(StackSlotSize);
5318 
5319   llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize);
5320   llvm::Value *NewStack =
5321       CGF.Builder.CreateInBoundsGEP(OnStackPtr, StackSizeC, "new_stack");
5322 
5323   // Write the new value of __stack for the next call to va_arg
5324   CGF.Builder.CreateStore(NewStack, stack_p);
5325 
5326   if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) &&
5327       TyInfo.first < StackSlotSize) {
5328     CharUnits Offset = StackSlotSize - TyInfo.first;
5329     OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset);
5330   }
5331 
5332   OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy);
5333 
5334   CGF.EmitBranch(ContBlock);
5335 
5336   //=======================================
5337   // Tidy up
5338   //=======================================
5339   CGF.EmitBlock(ContBlock);
5340 
5341   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
5342                                  OnStackAddr, OnStackBlock, "vaargs.addr");
5343 
5344   if (IsIndirect)
5345     return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"),
5346                    TyInfo.second);
5347 
5348   return ResAddr;
5349 }
5350 
5351 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty,
5352                                         CodeGenFunction &CGF) const {
5353   // The backend's lowering doesn't support va_arg for aggregates or
5354   // illegal vector types.  Lower VAArg here for these cases and use
5355   // the LLVM va_arg instruction for everything else.
5356   if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty))
5357     return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect());
5358 
5359   CharUnits SlotSize = CharUnits::fromQuantity(8);
5360 
5361   // Empty records are ignored for parameter passing purposes.
5362   if (isEmptyRecord(getContext(), Ty, true)) {
5363     Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
5364     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
5365     return Addr;
5366   }
5367 
5368   // The size of the actual thing passed, which might end up just
5369   // being a pointer for indirect types.
5370   auto TyInfo = getContext().getTypeInfoInChars(Ty);
5371 
5372   // Arguments bigger than 16 bytes which aren't homogeneous
5373   // aggregates should be passed indirectly.
5374   bool IsIndirect = false;
5375   if (TyInfo.first.getQuantity() > 16) {
5376     const Type *Base = nullptr;
5377     uint64_t Members = 0;
5378     IsIndirect = !isHomogeneousAggregate(Ty, Base, Members);
5379   }
5380 
5381   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
5382                           TyInfo, SlotSize, /*AllowHigherAlign*/ true);
5383 }
5384 
5385 Address AArch64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
5386                                     QualType Ty) const {
5387   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
5388                           CGF.getContext().getTypeInfoInChars(Ty),
5389                           CharUnits::fromQuantity(8),
5390                           /*allowHigherAlign*/ false);
5391 }
5392 
5393 //===----------------------------------------------------------------------===//
5394 // ARM ABI Implementation
5395 //===----------------------------------------------------------------------===//
5396 
5397 namespace {
5398 
5399 class ARMABIInfo : public SwiftABIInfo {
5400 public:
5401   enum ABIKind {
5402     APCS = 0,
5403     AAPCS = 1,
5404     AAPCS_VFP = 2,
5405     AAPCS16_VFP = 3,
5406   };
5407 
5408 private:
5409   ABIKind Kind;
5410 
5411 public:
5412   ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind)
5413       : SwiftABIInfo(CGT), Kind(_Kind) {
5414     setCCs();
5415   }
5416 
5417   bool isEABI() const {
5418     switch (getTarget().getTriple().getEnvironment()) {
5419     case llvm::Triple::Android:
5420     case llvm::Triple::EABI:
5421     case llvm::Triple::EABIHF:
5422     case llvm::Triple::GNUEABI:
5423     case llvm::Triple::GNUEABIHF:
5424     case llvm::Triple::MuslEABI:
5425     case llvm::Triple::MuslEABIHF:
5426       return true;
5427     default:
5428       return false;
5429     }
5430   }
5431 
5432   bool isEABIHF() const {
5433     switch (getTarget().getTriple().getEnvironment()) {
5434     case llvm::Triple::EABIHF:
5435     case llvm::Triple::GNUEABIHF:
5436     case llvm::Triple::MuslEABIHF:
5437       return true;
5438     default:
5439       return false;
5440     }
5441   }
5442 
5443   ABIKind getABIKind() const { return Kind; }
5444 
5445 private:
5446   ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic) const;
5447   ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic) const;
5448   bool isIllegalVectorType(QualType Ty) const;
5449 
5450   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
5451   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
5452                                          uint64_t Members) const override;
5453 
5454   void computeInfo(CGFunctionInfo &FI) const override;
5455 
5456   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5457                     QualType Ty) const override;
5458 
5459   llvm::CallingConv::ID getLLVMDefaultCC() const;
5460   llvm::CallingConv::ID getABIDefaultCC() const;
5461   void setCCs();
5462 
5463   bool shouldPassIndirectlyForSwift(CharUnits totalSize,
5464                                     ArrayRef<llvm::Type*> scalars,
5465                                     bool asReturnValue) const override {
5466     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
5467   }
5468   bool isSwiftErrorInRegister() const override {
5469     return true;
5470   }
5471   bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy,
5472                                  unsigned elts) const override;
5473 };
5474 
5475 class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
5476 public:
5477   ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
5478     :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {}
5479 
5480   const ARMABIInfo &getABIInfo() const {
5481     return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo());
5482   }
5483 
5484   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
5485     return 13;
5486   }
5487 
5488   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
5489     return "mov\tr7, r7\t\t@ marker for objc_retainAutoreleaseReturnValue";
5490   }
5491 
5492   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5493                                llvm::Value *Address) const override {
5494     llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
5495 
5496     // 0-15 are the 16 integer registers.
5497     AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15);
5498     return false;
5499   }
5500 
5501   unsigned getSizeOfUnwindException() const override {
5502     if (getABIInfo().isEABI()) return 88;
5503     return TargetCodeGenInfo::getSizeOfUnwindException();
5504   }
5505 
5506   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5507                            CodeGen::CodeGenModule &CGM,
5508                            ForDefinition_t IsForDefinition) const override {
5509     if (!IsForDefinition)
5510       return;
5511     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
5512     if (!FD)
5513       return;
5514 
5515     const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>();
5516     if (!Attr)
5517       return;
5518 
5519     const char *Kind;
5520     switch (Attr->getInterrupt()) {
5521     case ARMInterruptAttr::Generic: Kind = ""; break;
5522     case ARMInterruptAttr::IRQ:     Kind = "IRQ"; break;
5523     case ARMInterruptAttr::FIQ:     Kind = "FIQ"; break;
5524     case ARMInterruptAttr::SWI:     Kind = "SWI"; break;
5525     case ARMInterruptAttr::ABORT:   Kind = "ABORT"; break;
5526     case ARMInterruptAttr::UNDEF:   Kind = "UNDEF"; break;
5527     }
5528 
5529     llvm::Function *Fn = cast<llvm::Function>(GV);
5530 
5531     Fn->addFnAttr("interrupt", Kind);
5532 
5533     ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind();
5534     if (ABI == ARMABIInfo::APCS)
5535       return;
5536 
5537     // AAPCS guarantees that sp will be 8-byte aligned on any public interface,
5538     // however this is not necessarily true on taking any interrupt. Instruct
5539     // the backend to perform a realignment as part of the function prologue.
5540     llvm::AttrBuilder B;
5541     B.addStackAlignmentAttr(8);
5542     Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
5543   }
5544 };
5545 
5546 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo {
5547 public:
5548   WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
5549       : ARMTargetCodeGenInfo(CGT, K) {}
5550 
5551   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5552                            CodeGen::CodeGenModule &CGM,
5553                            ForDefinition_t IsForDefinition) const override;
5554 
5555   void getDependentLibraryOption(llvm::StringRef Lib,
5556                                  llvm::SmallString<24> &Opt) const override {
5557     Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib);
5558   }
5559 
5560   void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value,
5561                                llvm::SmallString<32> &Opt) const override {
5562     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
5563   }
5564 };
5565 
5566 void WindowsARMTargetCodeGenInfo::setTargetAttributes(
5567     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM,
5568     ForDefinition_t IsForDefinition) const {
5569   ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM, IsForDefinition);
5570   if (!IsForDefinition)
5571     return;
5572   addStackProbeSizeTargetAttribute(D, GV, CGM);
5573 }
5574 }
5575 
5576 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
5577   if (!getCXXABI().classifyReturnType(FI))
5578     FI.getReturnInfo() =
5579         classifyReturnType(FI.getReturnType(), FI.isVariadic());
5580 
5581   for (auto &I : FI.arguments())
5582     I.info = classifyArgumentType(I.type, FI.isVariadic());
5583 
5584   // Always honor user-specified calling convention.
5585   if (FI.getCallingConvention() != llvm::CallingConv::C)
5586     return;
5587 
5588   llvm::CallingConv::ID cc = getRuntimeCC();
5589   if (cc != llvm::CallingConv::C)
5590     FI.setEffectiveCallingConvention(cc);
5591 }
5592 
5593 /// Return the default calling convention that LLVM will use.
5594 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const {
5595   // The default calling convention that LLVM will infer.
5596   if (isEABIHF() || getTarget().getTriple().isWatchABI())
5597     return llvm::CallingConv::ARM_AAPCS_VFP;
5598   else if (isEABI())
5599     return llvm::CallingConv::ARM_AAPCS;
5600   else
5601     return llvm::CallingConv::ARM_APCS;
5602 }
5603 
5604 /// Return the calling convention that our ABI would like us to use
5605 /// as the C calling convention.
5606 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const {
5607   switch (getABIKind()) {
5608   case APCS: return llvm::CallingConv::ARM_APCS;
5609   case AAPCS: return llvm::CallingConv::ARM_AAPCS;
5610   case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
5611   case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
5612   }
5613   llvm_unreachable("bad ABI kind");
5614 }
5615 
5616 void ARMABIInfo::setCCs() {
5617   assert(getRuntimeCC() == llvm::CallingConv::C);
5618 
5619   // Don't muddy up the IR with a ton of explicit annotations if
5620   // they'd just match what LLVM will infer from the triple.
5621   llvm::CallingConv::ID abiCC = getABIDefaultCC();
5622   if (abiCC != getLLVMDefaultCC())
5623     RuntimeCC = abiCC;
5624 
5625   // AAPCS apparently requires runtime support functions to be soft-float, but
5626   // that's almost certainly for historic reasons (Thumb1 not supporting VFP
5627   // most likely). It's more convenient for AAPCS16_VFP to be hard-float.
5628 
5629   // The Run-time ABI for the ARM Architecture section 4.1.2 requires
5630   // AEABI-complying FP helper functions to use the base AAPCS.
5631   // These AEABI functions are expanded in the ARM llvm backend, all the builtin
5632   // support functions emitted by clang such as the _Complex helpers follow the
5633   // abiCC.
5634   if (abiCC != getLLVMDefaultCC())
5635       BuiltinCC = abiCC;
5636 }
5637 
5638 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty,
5639                                             bool isVariadic) const {
5640   // 6.1.2.1 The following argument types are VFP CPRCs:
5641   //   A single-precision floating-point type (including promoted
5642   //   half-precision types); A double-precision floating-point type;
5643   //   A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate
5644   //   with a Base Type of a single- or double-precision floating-point type,
5645   //   64-bit containerized vectors or 128-bit containerized vectors with one
5646   //   to four Elements.
5647   bool IsEffectivelyAAPCS_VFP = getABIKind() == AAPCS_VFP && !isVariadic;
5648 
5649   Ty = useFirstFieldIfTransparentUnion(Ty);
5650 
5651   // Handle illegal vector types here.
5652   if (isIllegalVectorType(Ty)) {
5653     uint64_t Size = getContext().getTypeSize(Ty);
5654     if (Size <= 32) {
5655       llvm::Type *ResType =
5656           llvm::Type::getInt32Ty(getVMContext());
5657       return ABIArgInfo::getDirect(ResType);
5658     }
5659     if (Size == 64) {
5660       llvm::Type *ResType = llvm::VectorType::get(
5661           llvm::Type::getInt32Ty(getVMContext()), 2);
5662       return ABIArgInfo::getDirect(ResType);
5663     }
5664     if (Size == 128) {
5665       llvm::Type *ResType = llvm::VectorType::get(
5666           llvm::Type::getInt32Ty(getVMContext()), 4);
5667       return ABIArgInfo::getDirect(ResType);
5668     }
5669     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5670   }
5671 
5672   // __fp16 gets passed as if it were an int or float, but with the top 16 bits
5673   // unspecified. This is not done for OpenCL as it handles the half type
5674   // natively, and does not need to interwork with AAPCS code.
5675   if (Ty->isHalfType() && !getContext().getLangOpts().NativeHalfArgsAndReturns) {
5676     llvm::Type *ResType = IsEffectivelyAAPCS_VFP ?
5677       llvm::Type::getFloatTy(getVMContext()) :
5678       llvm::Type::getInt32Ty(getVMContext());
5679     return ABIArgInfo::getDirect(ResType);
5680   }
5681 
5682   if (!isAggregateTypeForABI(Ty)) {
5683     // Treat an enum type as its underlying type.
5684     if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
5685       Ty = EnumTy->getDecl()->getIntegerType();
5686     }
5687 
5688     return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend()
5689                                           : ABIArgInfo::getDirect());
5690   }
5691 
5692   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
5693     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
5694   }
5695 
5696   // Ignore empty records.
5697   if (isEmptyRecord(getContext(), Ty, true))
5698     return ABIArgInfo::getIgnore();
5699 
5700   if (IsEffectivelyAAPCS_VFP) {
5701     // Homogeneous Aggregates need to be expanded when we can fit the aggregate
5702     // into VFP registers.
5703     const Type *Base = nullptr;
5704     uint64_t Members = 0;
5705     if (isHomogeneousAggregate(Ty, Base, Members)) {
5706       assert(Base && "Base class should be set for homogeneous aggregate");
5707       // Base can be a floating-point or a vector.
5708       return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
5709     }
5710   } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) {
5711     // WatchOS does have homogeneous aggregates. Note that we intentionally use
5712     // this convention even for a variadic function: the backend will use GPRs
5713     // if needed.
5714     const Type *Base = nullptr;
5715     uint64_t Members = 0;
5716     if (isHomogeneousAggregate(Ty, Base, Members)) {
5717       assert(Base && Members <= 4 && "unexpected homogeneous aggregate");
5718       llvm::Type *Ty =
5719         llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members);
5720       return ABIArgInfo::getDirect(Ty, 0, nullptr, false);
5721     }
5722   }
5723 
5724   if (getABIKind() == ARMABIInfo::AAPCS16_VFP &&
5725       getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) {
5726     // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're
5727     // bigger than 128-bits, they get placed in space allocated by the caller,
5728     // and a pointer is passed.
5729     return ABIArgInfo::getIndirect(
5730         CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false);
5731   }
5732 
5733   // Support byval for ARM.
5734   // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at
5735   // most 8-byte. We realign the indirect argument if type alignment is bigger
5736   // than ABI alignment.
5737   uint64_t ABIAlign = 4;
5738   uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8;
5739   if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
5740        getABIKind() == ARMABIInfo::AAPCS)
5741     ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
5742 
5743   if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) {
5744     assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval");
5745     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
5746                                    /*ByVal=*/true,
5747                                    /*Realign=*/TyAlign > ABIAlign);
5748   }
5749 
5750   // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of
5751   // same size and alignment.
5752   if (getTarget().isRenderScriptTarget()) {
5753     return coerceToIntArray(Ty, getContext(), getVMContext());
5754   }
5755 
5756   // Otherwise, pass by coercing to a structure of the appropriate size.
5757   llvm::Type* ElemTy;
5758   unsigned SizeRegs;
5759   // FIXME: Try to match the types of the arguments more accurately where
5760   // we can.
5761   if (getContext().getTypeAlign(Ty) <= 32) {
5762     ElemTy = llvm::Type::getInt32Ty(getVMContext());
5763     SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
5764   } else {
5765     ElemTy = llvm::Type::getInt64Ty(getVMContext());
5766     SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
5767   }
5768 
5769   return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs));
5770 }
5771 
5772 static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
5773                               llvm::LLVMContext &VMContext) {
5774   // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
5775   // is called integer-like if its size is less than or equal to one word, and
5776   // the offset of each of its addressable sub-fields is zero.
5777 
5778   uint64_t Size = Context.getTypeSize(Ty);
5779 
5780   // Check that the type fits in a word.
5781   if (Size > 32)
5782     return false;
5783 
5784   // FIXME: Handle vector types!
5785   if (Ty->isVectorType())
5786     return false;
5787 
5788   // Float types are never treated as "integer like".
5789   if (Ty->isRealFloatingType())
5790     return false;
5791 
5792   // If this is a builtin or pointer type then it is ok.
5793   if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
5794     return true;
5795 
5796   // Small complex integer types are "integer like".
5797   if (const ComplexType *CT = Ty->getAs<ComplexType>())
5798     return isIntegerLikeType(CT->getElementType(), Context, VMContext);
5799 
5800   // Single element and zero sized arrays should be allowed, by the definition
5801   // above, but they are not.
5802 
5803   // Otherwise, it must be a record type.
5804   const RecordType *RT = Ty->getAs<RecordType>();
5805   if (!RT) return false;
5806 
5807   // Ignore records with flexible arrays.
5808   const RecordDecl *RD = RT->getDecl();
5809   if (RD->hasFlexibleArrayMember())
5810     return false;
5811 
5812   // Check that all sub-fields are at offset 0, and are themselves "integer
5813   // like".
5814   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
5815 
5816   bool HadField = false;
5817   unsigned idx = 0;
5818   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
5819        i != e; ++i, ++idx) {
5820     const FieldDecl *FD = *i;
5821 
5822     // Bit-fields are not addressable, we only need to verify they are "integer
5823     // like". We still have to disallow a subsequent non-bitfield, for example:
5824     //   struct { int : 0; int x }
5825     // is non-integer like according to gcc.
5826     if (FD->isBitField()) {
5827       if (!RD->isUnion())
5828         HadField = true;
5829 
5830       if (!isIntegerLikeType(FD->getType(), Context, VMContext))
5831         return false;
5832 
5833       continue;
5834     }
5835 
5836     // Check if this field is at offset 0.
5837     if (Layout.getFieldOffset(idx) != 0)
5838       return false;
5839 
5840     if (!isIntegerLikeType(FD->getType(), Context, VMContext))
5841       return false;
5842 
5843     // Only allow at most one field in a structure. This doesn't match the
5844     // wording above, but follows gcc in situations with a field following an
5845     // empty structure.
5846     if (!RD->isUnion()) {
5847       if (HadField)
5848         return false;
5849 
5850       HadField = true;
5851     }
5852   }
5853 
5854   return true;
5855 }
5856 
5857 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy,
5858                                           bool isVariadic) const {
5859   bool IsEffectivelyAAPCS_VFP =
5860       (getABIKind() == AAPCS_VFP || getABIKind() == AAPCS16_VFP) && !isVariadic;
5861 
5862   if (RetTy->isVoidType())
5863     return ABIArgInfo::getIgnore();
5864 
5865   // Large vector types should be returned via memory.
5866   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) {
5867     return getNaturalAlignIndirect(RetTy);
5868   }
5869 
5870   // __fp16 gets returned as if it were an int or float, but with the top 16
5871   // bits unspecified. This is not done for OpenCL as it handles the half type
5872   // natively, and does not need to interwork with AAPCS code.
5873   if (RetTy->isHalfType() && !getContext().getLangOpts().NativeHalfArgsAndReturns) {
5874     llvm::Type *ResType = IsEffectivelyAAPCS_VFP ?
5875       llvm::Type::getFloatTy(getVMContext()) :
5876       llvm::Type::getInt32Ty(getVMContext());
5877     return ABIArgInfo::getDirect(ResType);
5878   }
5879 
5880   if (!isAggregateTypeForABI(RetTy)) {
5881     // Treat an enum type as its underlying type.
5882     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5883       RetTy = EnumTy->getDecl()->getIntegerType();
5884 
5885     return RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend()
5886                                             : ABIArgInfo::getDirect();
5887   }
5888 
5889   // Are we following APCS?
5890   if (getABIKind() == APCS) {
5891     if (isEmptyRecord(getContext(), RetTy, false))
5892       return ABIArgInfo::getIgnore();
5893 
5894     // Complex types are all returned as packed integers.
5895     //
5896     // FIXME: Consider using 2 x vector types if the back end handles them
5897     // correctly.
5898     if (RetTy->isAnyComplexType())
5899       return ABIArgInfo::getDirect(llvm::IntegerType::get(
5900           getVMContext(), getContext().getTypeSize(RetTy)));
5901 
5902     // Integer like structures are returned in r0.
5903     if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
5904       // Return in the smallest viable integer type.
5905       uint64_t Size = getContext().getTypeSize(RetTy);
5906       if (Size <= 8)
5907         return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
5908       if (Size <= 16)
5909         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
5910       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
5911     }
5912 
5913     // Otherwise return in memory.
5914     return getNaturalAlignIndirect(RetTy);
5915   }
5916 
5917   // Otherwise this is an AAPCS variant.
5918 
5919   if (isEmptyRecord(getContext(), RetTy, true))
5920     return ABIArgInfo::getIgnore();
5921 
5922   // Check for homogeneous aggregates with AAPCS-VFP.
5923   if (IsEffectivelyAAPCS_VFP) {
5924     const Type *Base = nullptr;
5925     uint64_t Members = 0;
5926     if (isHomogeneousAggregate(RetTy, Base, Members)) {
5927       assert(Base && "Base class should be set for homogeneous aggregate");
5928       // Homogeneous Aggregates are returned directly.
5929       return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
5930     }
5931   }
5932 
5933   // Aggregates <= 4 bytes are returned in r0; other aggregates
5934   // are returned indirectly.
5935   uint64_t Size = getContext().getTypeSize(RetTy);
5936   if (Size <= 32) {
5937     // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of
5938     // same size and alignment.
5939     if (getTarget().isRenderScriptTarget()) {
5940       return coerceToIntArray(RetTy, getContext(), getVMContext());
5941     }
5942     if (getDataLayout().isBigEndian())
5943       // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4)
5944       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
5945 
5946     // Return in the smallest viable integer type.
5947     if (Size <= 8)
5948       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
5949     if (Size <= 16)
5950       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
5951     return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
5952   } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) {
5953     llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext());
5954     llvm::Type *CoerceTy =
5955         llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32);
5956     return ABIArgInfo::getDirect(CoerceTy);
5957   }
5958 
5959   return getNaturalAlignIndirect(RetTy);
5960 }
5961 
5962 /// isIllegalVector - check whether Ty is an illegal vector type.
5963 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const {
5964   if (const VectorType *VT = Ty->getAs<VectorType> ()) {
5965     if (isAndroid()) {
5966       // Android shipped using Clang 3.1, which supported a slightly different
5967       // vector ABI. The primary differences were that 3-element vector types
5968       // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path
5969       // accepts that legacy behavior for Android only.
5970       // Check whether VT is legal.
5971       unsigned NumElements = VT->getNumElements();
5972       // NumElements should be power of 2 or equal to 3.
5973       if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3)
5974         return true;
5975     } else {
5976       // Check whether VT is legal.
5977       unsigned NumElements = VT->getNumElements();
5978       uint64_t Size = getContext().getTypeSize(VT);
5979       // NumElements should be power of 2.
5980       if (!llvm::isPowerOf2_32(NumElements))
5981         return true;
5982       // Size should be greater than 32 bits.
5983       return Size <= 32;
5984     }
5985   }
5986   return false;
5987 }
5988 
5989 bool ARMABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize,
5990                                            llvm::Type *eltTy,
5991                                            unsigned numElts) const {
5992   if (!llvm::isPowerOf2_32(numElts))
5993     return false;
5994   unsigned size = getDataLayout().getTypeStoreSizeInBits(eltTy);
5995   if (size > 64)
5996     return false;
5997   if (vectorSize.getQuantity() != 8 &&
5998       (vectorSize.getQuantity() != 16 || numElts == 1))
5999     return false;
6000   return true;
6001 }
6002 
6003 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
6004   // Homogeneous aggregates for AAPCS-VFP must have base types of float,
6005   // double, or 64-bit or 128-bit vectors.
6006   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
6007     if (BT->getKind() == BuiltinType::Float ||
6008         BT->getKind() == BuiltinType::Double ||
6009         BT->getKind() == BuiltinType::LongDouble)
6010       return true;
6011   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
6012     unsigned VecSize = getContext().getTypeSize(VT);
6013     if (VecSize == 64 || VecSize == 128)
6014       return true;
6015   }
6016   return false;
6017 }
6018 
6019 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
6020                                                    uint64_t Members) const {
6021   return Members <= 4;
6022 }
6023 
6024 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6025                               QualType Ty) const {
6026   CharUnits SlotSize = CharUnits::fromQuantity(4);
6027 
6028   // Empty records are ignored for parameter passing purposes.
6029   if (isEmptyRecord(getContext(), Ty, true)) {
6030     Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize);
6031     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
6032     return Addr;
6033   }
6034 
6035   auto TyInfo = getContext().getTypeInfoInChars(Ty);
6036   CharUnits TyAlignForABI = TyInfo.second;
6037 
6038   // Use indirect if size of the illegal vector is bigger than 16 bytes.
6039   bool IsIndirect = false;
6040   const Type *Base = nullptr;
6041   uint64_t Members = 0;
6042   if (TyInfo.first > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) {
6043     IsIndirect = true;
6044 
6045   // ARMv7k passes structs bigger than 16 bytes indirectly, in space
6046   // allocated by the caller.
6047   } else if (TyInfo.first > CharUnits::fromQuantity(16) &&
6048              getABIKind() == ARMABIInfo::AAPCS16_VFP &&
6049              !isHomogeneousAggregate(Ty, Base, Members)) {
6050     IsIndirect = true;
6051 
6052   // Otherwise, bound the type's ABI alignment.
6053   // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for
6054   // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte.
6055   // Our callers should be prepared to handle an under-aligned address.
6056   } else if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
6057              getABIKind() == ARMABIInfo::AAPCS) {
6058     TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
6059     TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8));
6060   } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) {
6061     // ARMv7k allows type alignment up to 16 bytes.
6062     TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
6063     TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16));
6064   } else {
6065     TyAlignForABI = CharUnits::fromQuantity(4);
6066   }
6067   TyInfo.second = TyAlignForABI;
6068 
6069   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo,
6070                           SlotSize, /*AllowHigherAlign*/ true);
6071 }
6072 
6073 //===----------------------------------------------------------------------===//
6074 // NVPTX ABI Implementation
6075 //===----------------------------------------------------------------------===//
6076 
6077 namespace {
6078 
6079 class NVPTXABIInfo : public ABIInfo {
6080 public:
6081   NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
6082 
6083   ABIArgInfo classifyReturnType(QualType RetTy) const;
6084   ABIArgInfo classifyArgumentType(QualType Ty) const;
6085 
6086   void computeInfo(CGFunctionInfo &FI) const override;
6087   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6088                     QualType Ty) const override;
6089 };
6090 
6091 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo {
6092 public:
6093   NVPTXTargetCodeGenInfo(CodeGenTypes &CGT)
6094     : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {}
6095 
6096   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6097                            CodeGen::CodeGenModule &M,
6098                            ForDefinition_t IsForDefinition) const override;
6099 
6100 private:
6101   // Adds a NamedMDNode with F, Name, and Operand as operands, and adds the
6102   // resulting MDNode to the nvvm.annotations MDNode.
6103   static void addNVVMMetadata(llvm::Function *F, StringRef Name, int Operand);
6104 };
6105 
6106 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const {
6107   if (RetTy->isVoidType())
6108     return ABIArgInfo::getIgnore();
6109 
6110   // note: this is different from default ABI
6111   if (!RetTy->isScalarType())
6112     return ABIArgInfo::getDirect();
6113 
6114   // Treat an enum type as its underlying type.
6115   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
6116     RetTy = EnumTy->getDecl()->getIntegerType();
6117 
6118   return (RetTy->isPromotableIntegerType() ?
6119           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
6120 }
6121 
6122 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const {
6123   // Treat an enum type as its underlying type.
6124   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
6125     Ty = EnumTy->getDecl()->getIntegerType();
6126 
6127   // Return aggregates type as indirect by value
6128   if (isAggregateTypeForABI(Ty))
6129     return getNaturalAlignIndirect(Ty, /* byval */ true);
6130 
6131   return (Ty->isPromotableIntegerType() ?
6132           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
6133 }
6134 
6135 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
6136   if (!getCXXABI().classifyReturnType(FI))
6137     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
6138   for (auto &I : FI.arguments())
6139     I.info = classifyArgumentType(I.type);
6140 
6141   // Always honor user-specified calling convention.
6142   if (FI.getCallingConvention() != llvm::CallingConv::C)
6143     return;
6144 
6145   FI.setEffectiveCallingConvention(getRuntimeCC());
6146 }
6147 
6148 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6149                                 QualType Ty) const {
6150   llvm_unreachable("NVPTX does not support varargs");
6151 }
6152 
6153 void NVPTXTargetCodeGenInfo::setTargetAttributes(
6154     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M,
6155     ForDefinition_t IsForDefinition) const {
6156   if (!IsForDefinition)
6157     return;
6158   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
6159   if (!FD) return;
6160 
6161   llvm::Function *F = cast<llvm::Function>(GV);
6162 
6163   // Perform special handling in OpenCL mode
6164   if (M.getLangOpts().OpenCL) {
6165     // Use OpenCL function attributes to check for kernel functions
6166     // By default, all functions are device functions
6167     if (FD->hasAttr<OpenCLKernelAttr>()) {
6168       // OpenCL __kernel functions get kernel metadata
6169       // Create !{<func-ref>, metadata !"kernel", i32 1} node
6170       addNVVMMetadata(F, "kernel", 1);
6171       // And kernel functions are not subject to inlining
6172       F->addFnAttr(llvm::Attribute::NoInline);
6173     }
6174   }
6175 
6176   // Perform special handling in CUDA mode.
6177   if (M.getLangOpts().CUDA) {
6178     // CUDA __global__ functions get a kernel metadata entry.  Since
6179     // __global__ functions cannot be called from the device, we do not
6180     // need to set the noinline attribute.
6181     if (FD->hasAttr<CUDAGlobalAttr>()) {
6182       // Create !{<func-ref>, metadata !"kernel", i32 1} node
6183       addNVVMMetadata(F, "kernel", 1);
6184     }
6185     if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) {
6186       // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node
6187       llvm::APSInt MaxThreads(32);
6188       MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext());
6189       if (MaxThreads > 0)
6190         addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue());
6191 
6192       // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was
6193       // not specified in __launch_bounds__ or if the user specified a 0 value,
6194       // we don't have to add a PTX directive.
6195       if (Attr->getMinBlocks()) {
6196         llvm::APSInt MinBlocks(32);
6197         MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext());
6198         if (MinBlocks > 0)
6199           // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node
6200           addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue());
6201       }
6202     }
6203   }
6204 }
6205 
6206 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::Function *F, StringRef Name,
6207                                              int Operand) {
6208   llvm::Module *M = F->getParent();
6209   llvm::LLVMContext &Ctx = M->getContext();
6210 
6211   // Get "nvvm.annotations" metadata node
6212   llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations");
6213 
6214   llvm::Metadata *MDVals[] = {
6215       llvm::ConstantAsMetadata::get(F), llvm::MDString::get(Ctx, Name),
6216       llvm::ConstantAsMetadata::get(
6217           llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))};
6218   // Append metadata to nvvm.annotations
6219   MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
6220 }
6221 }
6222 
6223 //===----------------------------------------------------------------------===//
6224 // SystemZ ABI Implementation
6225 //===----------------------------------------------------------------------===//
6226 
6227 namespace {
6228 
6229 class SystemZABIInfo : public SwiftABIInfo {
6230   bool HasVector;
6231 
6232 public:
6233   SystemZABIInfo(CodeGenTypes &CGT, bool HV)
6234     : SwiftABIInfo(CGT), HasVector(HV) {}
6235 
6236   bool isPromotableIntegerType(QualType Ty) const;
6237   bool isCompoundType(QualType Ty) const;
6238   bool isVectorArgumentType(QualType Ty) const;
6239   bool isFPArgumentType(QualType Ty) const;
6240   QualType GetSingleElementType(QualType Ty) const;
6241 
6242   ABIArgInfo classifyReturnType(QualType RetTy) const;
6243   ABIArgInfo classifyArgumentType(QualType ArgTy) const;
6244 
6245   void computeInfo(CGFunctionInfo &FI) const override {
6246     if (!getCXXABI().classifyReturnType(FI))
6247       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
6248     for (auto &I : FI.arguments())
6249       I.info = classifyArgumentType(I.type);
6250   }
6251 
6252   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6253                     QualType Ty) const override;
6254 
6255   bool shouldPassIndirectlyForSwift(CharUnits totalSize,
6256                                     ArrayRef<llvm::Type*> scalars,
6257                                     bool asReturnValue) const override {
6258     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
6259   }
6260   bool isSwiftErrorInRegister() const override {
6261     return true;
6262   }
6263 };
6264 
6265 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
6266 public:
6267   SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector)
6268     : TargetCodeGenInfo(new SystemZABIInfo(CGT, HasVector)) {}
6269 };
6270 
6271 }
6272 
6273 bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const {
6274   // Treat an enum type as its underlying type.
6275   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
6276     Ty = EnumTy->getDecl()->getIntegerType();
6277 
6278   // Promotable integer types are required to be promoted by the ABI.
6279   if (Ty->isPromotableIntegerType())
6280     return true;
6281 
6282   // 32-bit values must also be promoted.
6283   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
6284     switch (BT->getKind()) {
6285     case BuiltinType::Int:
6286     case BuiltinType::UInt:
6287       return true;
6288     default:
6289       return false;
6290     }
6291   return false;
6292 }
6293 
6294 bool SystemZABIInfo::isCompoundType(QualType Ty) const {
6295   return (Ty->isAnyComplexType() ||
6296           Ty->isVectorType() ||
6297           isAggregateTypeForABI(Ty));
6298 }
6299 
6300 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const {
6301   return (HasVector &&
6302           Ty->isVectorType() &&
6303           getContext().getTypeSize(Ty) <= 128);
6304 }
6305 
6306 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const {
6307   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
6308     switch (BT->getKind()) {
6309     case BuiltinType::Float:
6310     case BuiltinType::Double:
6311       return true;
6312     default:
6313       return false;
6314     }
6315 
6316   return false;
6317 }
6318 
6319 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const {
6320   if (const RecordType *RT = Ty->getAsStructureType()) {
6321     const RecordDecl *RD = RT->getDecl();
6322     QualType Found;
6323 
6324     // If this is a C++ record, check the bases first.
6325     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
6326       for (const auto &I : CXXRD->bases()) {
6327         QualType Base = I.getType();
6328 
6329         // Empty bases don't affect things either way.
6330         if (isEmptyRecord(getContext(), Base, true))
6331           continue;
6332 
6333         if (!Found.isNull())
6334           return Ty;
6335         Found = GetSingleElementType(Base);
6336       }
6337 
6338     // Check the fields.
6339     for (const auto *FD : RD->fields()) {
6340       // For compatibility with GCC, ignore empty bitfields in C++ mode.
6341       // Unlike isSingleElementStruct(), empty structure and array fields
6342       // do count.  So do anonymous bitfields that aren't zero-sized.
6343       if (getContext().getLangOpts().CPlusPlus &&
6344           FD->isBitField() && FD->getBitWidthValue(getContext()) == 0)
6345         continue;
6346 
6347       // Unlike isSingleElementStruct(), arrays do not count.
6348       // Nested structures still do though.
6349       if (!Found.isNull())
6350         return Ty;
6351       Found = GetSingleElementType(FD->getType());
6352     }
6353 
6354     // Unlike isSingleElementStruct(), trailing padding is allowed.
6355     // An 8-byte aligned struct s { float f; } is passed as a double.
6356     if (!Found.isNull())
6357       return Found;
6358   }
6359 
6360   return Ty;
6361 }
6362 
6363 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6364                                   QualType Ty) const {
6365   // Assume that va_list type is correct; should be pointer to LLVM type:
6366   // struct {
6367   //   i64 __gpr;
6368   //   i64 __fpr;
6369   //   i8 *__overflow_arg_area;
6370   //   i8 *__reg_save_area;
6371   // };
6372 
6373   // Every non-vector argument occupies 8 bytes and is passed by preference
6374   // in either GPRs or FPRs.  Vector arguments occupy 8 or 16 bytes and are
6375   // always passed on the stack.
6376   Ty = getContext().getCanonicalType(Ty);
6377   auto TyInfo = getContext().getTypeInfoInChars(Ty);
6378   llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty);
6379   llvm::Type *DirectTy = ArgTy;
6380   ABIArgInfo AI = classifyArgumentType(Ty);
6381   bool IsIndirect = AI.isIndirect();
6382   bool InFPRs = false;
6383   bool IsVector = false;
6384   CharUnits UnpaddedSize;
6385   CharUnits DirectAlign;
6386   if (IsIndirect) {
6387     DirectTy = llvm::PointerType::getUnqual(DirectTy);
6388     UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8);
6389   } else {
6390     if (AI.getCoerceToType())
6391       ArgTy = AI.getCoerceToType();
6392     InFPRs = ArgTy->isFloatTy() || ArgTy->isDoubleTy();
6393     IsVector = ArgTy->isVectorTy();
6394     UnpaddedSize = TyInfo.first;
6395     DirectAlign = TyInfo.second;
6396   }
6397   CharUnits PaddedSize = CharUnits::fromQuantity(8);
6398   if (IsVector && UnpaddedSize > PaddedSize)
6399     PaddedSize = CharUnits::fromQuantity(16);
6400   assert((UnpaddedSize <= PaddedSize) && "Invalid argument size.");
6401 
6402   CharUnits Padding = (PaddedSize - UnpaddedSize);
6403 
6404   llvm::Type *IndexTy = CGF.Int64Ty;
6405   llvm::Value *PaddedSizeV =
6406     llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity());
6407 
6408   if (IsVector) {
6409     // Work out the address of a vector argument on the stack.
6410     // Vector arguments are always passed in the high bits of a
6411     // single (8 byte) or double (16 byte) stack slot.
6412     Address OverflowArgAreaPtr =
6413       CGF.Builder.CreateStructGEP(VAListAddr, 2, CharUnits::fromQuantity(16),
6414                                   "overflow_arg_area_ptr");
6415     Address OverflowArgArea =
6416       Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
6417               TyInfo.second);
6418     Address MemAddr =
6419       CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr");
6420 
6421     // Update overflow_arg_area_ptr pointer
6422     llvm::Value *NewOverflowArgArea =
6423       CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV,
6424                             "overflow_arg_area");
6425     CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
6426 
6427     return MemAddr;
6428   }
6429 
6430   assert(PaddedSize.getQuantity() == 8);
6431 
6432   unsigned MaxRegs, RegCountField, RegSaveIndex;
6433   CharUnits RegPadding;
6434   if (InFPRs) {
6435     MaxRegs = 4; // Maximum of 4 FPR arguments
6436     RegCountField = 1; // __fpr
6437     RegSaveIndex = 16; // save offset for f0
6438     RegPadding = CharUnits(); // floats are passed in the high bits of an FPR
6439   } else {
6440     MaxRegs = 5; // Maximum of 5 GPR arguments
6441     RegCountField = 0; // __gpr
6442     RegSaveIndex = 2; // save offset for r2
6443     RegPadding = Padding; // values are passed in the low bits of a GPR
6444   }
6445 
6446   Address RegCountPtr = CGF.Builder.CreateStructGEP(
6447       VAListAddr, RegCountField, RegCountField * CharUnits::fromQuantity(8),
6448       "reg_count_ptr");
6449   llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count");
6450   llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs);
6451   llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV,
6452                                                  "fits_in_regs");
6453 
6454   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
6455   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
6456   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
6457   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
6458 
6459   // Emit code to load the value if it was passed in registers.
6460   CGF.EmitBlock(InRegBlock);
6461 
6462   // Work out the address of an argument register.
6463   llvm::Value *ScaledRegCount =
6464     CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count");
6465   llvm::Value *RegBase =
6466     llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity()
6467                                       + RegPadding.getQuantity());
6468   llvm::Value *RegOffset =
6469     CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset");
6470   Address RegSaveAreaPtr =
6471       CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(24),
6472                                   "reg_save_area_ptr");
6473   llvm::Value *RegSaveArea =
6474     CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area");
6475   Address RawRegAddr(CGF.Builder.CreateGEP(RegSaveArea, RegOffset,
6476                                            "raw_reg_addr"),
6477                      PaddedSize);
6478   Address RegAddr =
6479     CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr");
6480 
6481   // Update the register count
6482   llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1);
6483   llvm::Value *NewRegCount =
6484     CGF.Builder.CreateAdd(RegCount, One, "reg_count");
6485   CGF.Builder.CreateStore(NewRegCount, RegCountPtr);
6486   CGF.EmitBranch(ContBlock);
6487 
6488   // Emit code to load the value if it was passed in memory.
6489   CGF.EmitBlock(InMemBlock);
6490 
6491   // Work out the address of a stack argument.
6492   Address OverflowArgAreaPtr = CGF.Builder.CreateStructGEP(
6493       VAListAddr, 2, CharUnits::fromQuantity(16), "overflow_arg_area_ptr");
6494   Address OverflowArgArea =
6495     Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
6496             PaddedSize);
6497   Address RawMemAddr =
6498     CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr");
6499   Address MemAddr =
6500     CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr");
6501 
6502   // Update overflow_arg_area_ptr pointer
6503   llvm::Value *NewOverflowArgArea =
6504     CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV,
6505                           "overflow_arg_area");
6506   CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
6507   CGF.EmitBranch(ContBlock);
6508 
6509   // Return the appropriate result.
6510   CGF.EmitBlock(ContBlock);
6511   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
6512                                  MemAddr, InMemBlock, "va_arg.addr");
6513 
6514   if (IsIndirect)
6515     ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"),
6516                       TyInfo.second);
6517 
6518   return ResAddr;
6519 }
6520 
6521 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const {
6522   if (RetTy->isVoidType())
6523     return ABIArgInfo::getIgnore();
6524   if (isVectorArgumentType(RetTy))
6525     return ABIArgInfo::getDirect();
6526   if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64)
6527     return getNaturalAlignIndirect(RetTy);
6528   return (isPromotableIntegerType(RetTy) ?
6529           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
6530 }
6531 
6532 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const {
6533   // Handle the generic C++ ABI.
6534   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
6535     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
6536 
6537   // Integers and enums are extended to full register width.
6538   if (isPromotableIntegerType(Ty))
6539     return ABIArgInfo::getExtend();
6540 
6541   // Handle vector types and vector-like structure types.  Note that
6542   // as opposed to float-like structure types, we do not allow any
6543   // padding for vector-like structures, so verify the sizes match.
6544   uint64_t Size = getContext().getTypeSize(Ty);
6545   QualType SingleElementTy = GetSingleElementType(Ty);
6546   if (isVectorArgumentType(SingleElementTy) &&
6547       getContext().getTypeSize(SingleElementTy) == Size)
6548     return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy));
6549 
6550   // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly.
6551   if (Size != 8 && Size != 16 && Size != 32 && Size != 64)
6552     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
6553 
6554   // Handle small structures.
6555   if (const RecordType *RT = Ty->getAs<RecordType>()) {
6556     // Structures with flexible arrays have variable length, so really
6557     // fail the size test above.
6558     const RecordDecl *RD = RT->getDecl();
6559     if (RD->hasFlexibleArrayMember())
6560       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
6561 
6562     // The structure is passed as an unextended integer, a float, or a double.
6563     llvm::Type *PassTy;
6564     if (isFPArgumentType(SingleElementTy)) {
6565       assert(Size == 32 || Size == 64);
6566       if (Size == 32)
6567         PassTy = llvm::Type::getFloatTy(getVMContext());
6568       else
6569         PassTy = llvm::Type::getDoubleTy(getVMContext());
6570     } else
6571       PassTy = llvm::IntegerType::get(getVMContext(), Size);
6572     return ABIArgInfo::getDirect(PassTy);
6573   }
6574 
6575   // Non-structure compounds are passed indirectly.
6576   if (isCompoundType(Ty))
6577     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
6578 
6579   return ABIArgInfo::getDirect(nullptr);
6580 }
6581 
6582 //===----------------------------------------------------------------------===//
6583 // MSP430 ABI Implementation
6584 //===----------------------------------------------------------------------===//
6585 
6586 namespace {
6587 
6588 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
6589 public:
6590   MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
6591     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
6592   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6593                            CodeGen::CodeGenModule &M,
6594                            ForDefinition_t IsForDefinition) const override;
6595 };
6596 
6597 }
6598 
6599 void MSP430TargetCodeGenInfo::setTargetAttributes(
6600     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M,
6601     ForDefinition_t IsForDefinition) const {
6602   if (!IsForDefinition)
6603     return;
6604   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
6605     if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) {
6606       // Handle 'interrupt' attribute:
6607       llvm::Function *F = cast<llvm::Function>(GV);
6608 
6609       // Step 1: Set ISR calling convention.
6610       F->setCallingConv(llvm::CallingConv::MSP430_INTR);
6611 
6612       // Step 2: Add attributes goodness.
6613       F->addFnAttr(llvm::Attribute::NoInline);
6614 
6615       // Step 3: Emit ISR vector alias.
6616       unsigned Num = attr->getNumber() / 2;
6617       llvm::GlobalAlias::create(llvm::Function::ExternalLinkage,
6618                                 "__isr_" + Twine(Num), F);
6619     }
6620   }
6621 }
6622 
6623 //===----------------------------------------------------------------------===//
6624 // MIPS ABI Implementation.  This works for both little-endian and
6625 // big-endian variants.
6626 //===----------------------------------------------------------------------===//
6627 
6628 namespace {
6629 class MipsABIInfo : public ABIInfo {
6630   bool IsO32;
6631   unsigned MinABIStackAlignInBytes, StackAlignInBytes;
6632   void CoerceToIntArgs(uint64_t TySize,
6633                        SmallVectorImpl<llvm::Type *> &ArgList) const;
6634   llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const;
6635   llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const;
6636   llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const;
6637 public:
6638   MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) :
6639     ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8),
6640     StackAlignInBytes(IsO32 ? 8 : 16) {}
6641 
6642   ABIArgInfo classifyReturnType(QualType RetTy) const;
6643   ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const;
6644   void computeInfo(CGFunctionInfo &FI) const override;
6645   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6646                     QualType Ty) const override;
6647   bool shouldSignExtUnsignedType(QualType Ty) const override;
6648 };
6649 
6650 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
6651   unsigned SizeOfUnwindException;
6652 public:
6653   MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32)
6654     : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)),
6655       SizeOfUnwindException(IsO32 ? 24 : 32) {}
6656 
6657   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
6658     return 29;
6659   }
6660 
6661   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6662                            CodeGen::CodeGenModule &CGM,
6663                            ForDefinition_t IsForDefinition) const override {
6664     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
6665     if (!FD) return;
6666     llvm::Function *Fn = cast<llvm::Function>(GV);
6667 
6668     if (FD->hasAttr<MipsLongCallAttr>())
6669       Fn->addFnAttr("long-call");
6670     else if (FD->hasAttr<MipsShortCallAttr>())
6671       Fn->addFnAttr("short-call");
6672 
6673     // Other attributes do not have a meaning for declarations.
6674     if (!IsForDefinition)
6675       return;
6676 
6677     if (FD->hasAttr<Mips16Attr>()) {
6678       Fn->addFnAttr("mips16");
6679     }
6680     else if (FD->hasAttr<NoMips16Attr>()) {
6681       Fn->addFnAttr("nomips16");
6682     }
6683 
6684     if (FD->hasAttr<MicroMipsAttr>())
6685       Fn->addFnAttr("micromips");
6686     else if (FD->hasAttr<NoMicroMipsAttr>())
6687       Fn->addFnAttr("nomicromips");
6688 
6689     const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>();
6690     if (!Attr)
6691       return;
6692 
6693     const char *Kind;
6694     switch (Attr->getInterrupt()) {
6695     case MipsInterruptAttr::eic:     Kind = "eic"; break;
6696     case MipsInterruptAttr::sw0:     Kind = "sw0"; break;
6697     case MipsInterruptAttr::sw1:     Kind = "sw1"; break;
6698     case MipsInterruptAttr::hw0:     Kind = "hw0"; break;
6699     case MipsInterruptAttr::hw1:     Kind = "hw1"; break;
6700     case MipsInterruptAttr::hw2:     Kind = "hw2"; break;
6701     case MipsInterruptAttr::hw3:     Kind = "hw3"; break;
6702     case MipsInterruptAttr::hw4:     Kind = "hw4"; break;
6703     case MipsInterruptAttr::hw5:     Kind = "hw5"; break;
6704     }
6705 
6706     Fn->addFnAttr("interrupt", Kind);
6707 
6708   }
6709 
6710   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
6711                                llvm::Value *Address) const override;
6712 
6713   unsigned getSizeOfUnwindException() const override {
6714     return SizeOfUnwindException;
6715   }
6716 };
6717 }
6718 
6719 void MipsABIInfo::CoerceToIntArgs(
6720     uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const {
6721   llvm::IntegerType *IntTy =
6722     llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
6723 
6724   // Add (TySize / MinABIStackAlignInBytes) args of IntTy.
6725   for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N)
6726     ArgList.push_back(IntTy);
6727 
6728   // If necessary, add one more integer type to ArgList.
6729   unsigned R = TySize % (MinABIStackAlignInBytes * 8);
6730 
6731   if (R)
6732     ArgList.push_back(llvm::IntegerType::get(getVMContext(), R));
6733 }
6734 
6735 // In N32/64, an aligned double precision floating point field is passed in
6736 // a register.
6737 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const {
6738   SmallVector<llvm::Type*, 8> ArgList, IntArgList;
6739 
6740   if (IsO32) {
6741     CoerceToIntArgs(TySize, ArgList);
6742     return llvm::StructType::get(getVMContext(), ArgList);
6743   }
6744 
6745   if (Ty->isComplexType())
6746     return CGT.ConvertType(Ty);
6747 
6748   const RecordType *RT = Ty->getAs<RecordType>();
6749 
6750   // Unions/vectors are passed in integer registers.
6751   if (!RT || !RT->isStructureOrClassType()) {
6752     CoerceToIntArgs(TySize, ArgList);
6753     return llvm::StructType::get(getVMContext(), ArgList);
6754   }
6755 
6756   const RecordDecl *RD = RT->getDecl();
6757   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
6758   assert(!(TySize % 8) && "Size of structure must be multiple of 8.");
6759 
6760   uint64_t LastOffset = 0;
6761   unsigned idx = 0;
6762   llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64);
6763 
6764   // Iterate over fields in the struct/class and check if there are any aligned
6765   // double fields.
6766   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
6767        i != e; ++i, ++idx) {
6768     const QualType Ty = i->getType();
6769     const BuiltinType *BT = Ty->getAs<BuiltinType>();
6770 
6771     if (!BT || BT->getKind() != BuiltinType::Double)
6772       continue;
6773 
6774     uint64_t Offset = Layout.getFieldOffset(idx);
6775     if (Offset % 64) // Ignore doubles that are not aligned.
6776       continue;
6777 
6778     // Add ((Offset - LastOffset) / 64) args of type i64.
6779     for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j)
6780       ArgList.push_back(I64);
6781 
6782     // Add double type.
6783     ArgList.push_back(llvm::Type::getDoubleTy(getVMContext()));
6784     LastOffset = Offset + 64;
6785   }
6786 
6787   CoerceToIntArgs(TySize - LastOffset, IntArgList);
6788   ArgList.append(IntArgList.begin(), IntArgList.end());
6789 
6790   return llvm::StructType::get(getVMContext(), ArgList);
6791 }
6792 
6793 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset,
6794                                         uint64_t Offset) const {
6795   if (OrigOffset + MinABIStackAlignInBytes > Offset)
6796     return nullptr;
6797 
6798   return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8);
6799 }
6800 
6801 ABIArgInfo
6802 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const {
6803   Ty = useFirstFieldIfTransparentUnion(Ty);
6804 
6805   uint64_t OrigOffset = Offset;
6806   uint64_t TySize = getContext().getTypeSize(Ty);
6807   uint64_t Align = getContext().getTypeAlign(Ty) / 8;
6808 
6809   Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes),
6810                    (uint64_t)StackAlignInBytes);
6811   unsigned CurrOffset = llvm::alignTo(Offset, Align);
6812   Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8;
6813 
6814   if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) {
6815     // Ignore empty aggregates.
6816     if (TySize == 0)
6817       return ABIArgInfo::getIgnore();
6818 
6819     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
6820       Offset = OrigOffset + MinABIStackAlignInBytes;
6821       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
6822     }
6823 
6824     // If we have reached here, aggregates are passed directly by coercing to
6825     // another structure type. Padding is inserted if the offset of the
6826     // aggregate is unaligned.
6827     ABIArgInfo ArgInfo =
6828         ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0,
6829                               getPaddingType(OrigOffset, CurrOffset));
6830     ArgInfo.setInReg(true);
6831     return ArgInfo;
6832   }
6833 
6834   // Treat an enum type as its underlying type.
6835   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
6836     Ty = EnumTy->getDecl()->getIntegerType();
6837 
6838   // All integral types are promoted to the GPR width.
6839   if (Ty->isIntegralOrEnumerationType())
6840     return ABIArgInfo::getExtend();
6841 
6842   return ABIArgInfo::getDirect(
6843       nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset));
6844 }
6845 
6846 llvm::Type*
6847 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const {
6848   const RecordType *RT = RetTy->getAs<RecordType>();
6849   SmallVector<llvm::Type*, 8> RTList;
6850 
6851   if (RT && RT->isStructureOrClassType()) {
6852     const RecordDecl *RD = RT->getDecl();
6853     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
6854     unsigned FieldCnt = Layout.getFieldCount();
6855 
6856     // N32/64 returns struct/classes in floating point registers if the
6857     // following conditions are met:
6858     // 1. The size of the struct/class is no larger than 128-bit.
6859     // 2. The struct/class has one or two fields all of which are floating
6860     //    point types.
6861     // 3. The offset of the first field is zero (this follows what gcc does).
6862     //
6863     // Any other composite results are returned in integer registers.
6864     //
6865     if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) {
6866       RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end();
6867       for (; b != e; ++b) {
6868         const BuiltinType *BT = b->getType()->getAs<BuiltinType>();
6869 
6870         if (!BT || !BT->isFloatingPoint())
6871           break;
6872 
6873         RTList.push_back(CGT.ConvertType(b->getType()));
6874       }
6875 
6876       if (b == e)
6877         return llvm::StructType::get(getVMContext(), RTList,
6878                                      RD->hasAttr<PackedAttr>());
6879 
6880       RTList.clear();
6881     }
6882   }
6883 
6884   CoerceToIntArgs(Size, RTList);
6885   return llvm::StructType::get(getVMContext(), RTList);
6886 }
6887 
6888 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
6889   uint64_t Size = getContext().getTypeSize(RetTy);
6890 
6891   if (RetTy->isVoidType())
6892     return ABIArgInfo::getIgnore();
6893 
6894   // O32 doesn't treat zero-sized structs differently from other structs.
6895   // However, N32/N64 ignores zero sized return values.
6896   if (!IsO32 && Size == 0)
6897     return ABIArgInfo::getIgnore();
6898 
6899   if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) {
6900     if (Size <= 128) {
6901       if (RetTy->isAnyComplexType())
6902         return ABIArgInfo::getDirect();
6903 
6904       // O32 returns integer vectors in registers and N32/N64 returns all small
6905       // aggregates in registers.
6906       if (!IsO32 ||
6907           (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) {
6908         ABIArgInfo ArgInfo =
6909             ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
6910         ArgInfo.setInReg(true);
6911         return ArgInfo;
6912       }
6913     }
6914 
6915     return getNaturalAlignIndirect(RetTy);
6916   }
6917 
6918   // Treat an enum type as its underlying type.
6919   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
6920     RetTy = EnumTy->getDecl()->getIntegerType();
6921 
6922   return (RetTy->isPromotableIntegerType() ?
6923           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
6924 }
6925 
6926 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
6927   ABIArgInfo &RetInfo = FI.getReturnInfo();
6928   if (!getCXXABI().classifyReturnType(FI))
6929     RetInfo = classifyReturnType(FI.getReturnType());
6930 
6931   // Check if a pointer to an aggregate is passed as a hidden argument.
6932   uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0;
6933 
6934   for (auto &I : FI.arguments())
6935     I.info = classifyArgumentType(I.type, Offset);
6936 }
6937 
6938 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6939                                QualType OrigTy) const {
6940   QualType Ty = OrigTy;
6941 
6942   // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64.
6943   // Pointers are also promoted in the same way but this only matters for N32.
6944   unsigned SlotSizeInBits = IsO32 ? 32 : 64;
6945   unsigned PtrWidth = getTarget().getPointerWidth(0);
6946   bool DidPromote = false;
6947   if ((Ty->isIntegerType() &&
6948           getContext().getIntWidth(Ty) < SlotSizeInBits) ||
6949       (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) {
6950     DidPromote = true;
6951     Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits,
6952                                             Ty->isSignedIntegerType());
6953   }
6954 
6955   auto TyInfo = getContext().getTypeInfoInChars(Ty);
6956 
6957   // The alignment of things in the argument area is never larger than
6958   // StackAlignInBytes.
6959   TyInfo.second =
6960     std::min(TyInfo.second, CharUnits::fromQuantity(StackAlignInBytes));
6961 
6962   // MinABIStackAlignInBytes is the size of argument slots on the stack.
6963   CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes);
6964 
6965   Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
6966                           TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true);
6967 
6968 
6969   // If there was a promotion, "unpromote" into a temporary.
6970   // TODO: can we just use a pointer into a subset of the original slot?
6971   if (DidPromote) {
6972     Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp");
6973     llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr);
6974 
6975     // Truncate down to the right width.
6976     llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType()
6977                                                  : CGF.IntPtrTy);
6978     llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy);
6979     if (OrigTy->isPointerType())
6980       V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType());
6981 
6982     CGF.Builder.CreateStore(V, Temp);
6983     Addr = Temp;
6984   }
6985 
6986   return Addr;
6987 }
6988 
6989 bool MipsABIInfo::shouldSignExtUnsignedType(QualType Ty) const {
6990   int TySize = getContext().getTypeSize(Ty);
6991 
6992   // MIPS64 ABI requires unsigned 32 bit integers to be sign extended.
6993   if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
6994     return true;
6995 
6996   return false;
6997 }
6998 
6999 bool
7000 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
7001                                                llvm::Value *Address) const {
7002   // This information comes from gcc's implementation, which seems to
7003   // as canonical as it gets.
7004 
7005   // Everything on MIPS is 4 bytes.  Double-precision FP registers
7006   // are aliased to pairs of single-precision FP registers.
7007   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
7008 
7009   // 0-31 are the general purpose registers, $0 - $31.
7010   // 32-63 are the floating-point registers, $f0 - $f31.
7011   // 64 and 65 are the multiply/divide registers, $hi and $lo.
7012   // 66 is the (notional, I think) register for signal-handler return.
7013   AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65);
7014 
7015   // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
7016   // They are one bit wide and ignored here.
7017 
7018   // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
7019   // (coprocessor 1 is the FP unit)
7020   // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
7021   // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
7022   // 176-181 are the DSP accumulator registers.
7023   AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181);
7024   return false;
7025 }
7026 
7027 //===----------------------------------------------------------------------===//
7028 // AVR ABI Implementation.
7029 //===----------------------------------------------------------------------===//
7030 
7031 namespace {
7032 class AVRTargetCodeGenInfo : public TargetCodeGenInfo {
7033 public:
7034   AVRTargetCodeGenInfo(CodeGenTypes &CGT)
7035     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) { }
7036 
7037   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7038                            CodeGen::CodeGenModule &CGM,
7039                            ForDefinition_t IsForDefinition) const override {
7040     if (!IsForDefinition)
7041       return;
7042     const auto *FD = dyn_cast_or_null<FunctionDecl>(D);
7043     if (!FD) return;
7044     auto *Fn = cast<llvm::Function>(GV);
7045 
7046     if (FD->getAttr<AVRInterruptAttr>())
7047       Fn->addFnAttr("interrupt");
7048 
7049     if (FD->getAttr<AVRSignalAttr>())
7050       Fn->addFnAttr("signal");
7051   }
7052 };
7053 }
7054 
7055 //===----------------------------------------------------------------------===//
7056 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults.
7057 // Currently subclassed only to implement custom OpenCL C function attribute
7058 // handling.
7059 //===----------------------------------------------------------------------===//
7060 
7061 namespace {
7062 
7063 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo {
7064 public:
7065   TCETargetCodeGenInfo(CodeGenTypes &CGT)
7066     : DefaultTargetCodeGenInfo(CGT) {}
7067 
7068   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7069                            CodeGen::CodeGenModule &M,
7070                            ForDefinition_t IsForDefinition) const override;
7071 };
7072 
7073 void TCETargetCodeGenInfo::setTargetAttributes(
7074     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M,
7075     ForDefinition_t IsForDefinition) const {
7076   if (!IsForDefinition)
7077     return;
7078   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
7079   if (!FD) return;
7080 
7081   llvm::Function *F = cast<llvm::Function>(GV);
7082 
7083   if (M.getLangOpts().OpenCL) {
7084     if (FD->hasAttr<OpenCLKernelAttr>()) {
7085       // OpenCL C Kernel functions are not subject to inlining
7086       F->addFnAttr(llvm::Attribute::NoInline);
7087       const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>();
7088       if (Attr) {
7089         // Convert the reqd_work_group_size() attributes to metadata.
7090         llvm::LLVMContext &Context = F->getContext();
7091         llvm::NamedMDNode *OpenCLMetadata =
7092             M.getModule().getOrInsertNamedMetadata(
7093                 "opencl.kernel_wg_size_info");
7094 
7095         SmallVector<llvm::Metadata *, 5> Operands;
7096         Operands.push_back(llvm::ConstantAsMetadata::get(F));
7097 
7098         Operands.push_back(
7099             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
7100                 M.Int32Ty, llvm::APInt(32, Attr->getXDim()))));
7101         Operands.push_back(
7102             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
7103                 M.Int32Ty, llvm::APInt(32, Attr->getYDim()))));
7104         Operands.push_back(
7105             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
7106                 M.Int32Ty, llvm::APInt(32, Attr->getZDim()))));
7107 
7108         // Add a boolean constant operand for "required" (true) or "hint"
7109         // (false) for implementing the work_group_size_hint attr later.
7110         // Currently always true as the hint is not yet implemented.
7111         Operands.push_back(
7112             llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context)));
7113         OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands));
7114       }
7115     }
7116   }
7117 }
7118 
7119 }
7120 
7121 //===----------------------------------------------------------------------===//
7122 // Hexagon ABI Implementation
7123 //===----------------------------------------------------------------------===//
7124 
7125 namespace {
7126 
7127 class HexagonABIInfo : public ABIInfo {
7128 
7129 
7130 public:
7131   HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
7132 
7133 private:
7134 
7135   ABIArgInfo classifyReturnType(QualType RetTy) const;
7136   ABIArgInfo classifyArgumentType(QualType RetTy) const;
7137 
7138   void computeInfo(CGFunctionInfo &FI) const override;
7139 
7140   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7141                     QualType Ty) const override;
7142 };
7143 
7144 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo {
7145 public:
7146   HexagonTargetCodeGenInfo(CodeGenTypes &CGT)
7147     :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {}
7148 
7149   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
7150     return 29;
7151   }
7152 };
7153 
7154 }
7155 
7156 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const {
7157   if (!getCXXABI().classifyReturnType(FI))
7158     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7159   for (auto &I : FI.arguments())
7160     I.info = classifyArgumentType(I.type);
7161 }
7162 
7163 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const {
7164   if (!isAggregateTypeForABI(Ty)) {
7165     // Treat an enum type as its underlying type.
7166     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
7167       Ty = EnumTy->getDecl()->getIntegerType();
7168 
7169     return (Ty->isPromotableIntegerType() ?
7170             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
7171   }
7172 
7173   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
7174     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
7175 
7176   // Ignore empty records.
7177   if (isEmptyRecord(getContext(), Ty, true))
7178     return ABIArgInfo::getIgnore();
7179 
7180   uint64_t Size = getContext().getTypeSize(Ty);
7181   if (Size > 64)
7182     return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
7183     // Pass in the smallest viable integer type.
7184   else if (Size > 32)
7185       return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
7186   else if (Size > 16)
7187       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
7188   else if (Size > 8)
7189       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
7190   else
7191       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
7192 }
7193 
7194 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const {
7195   if (RetTy->isVoidType())
7196     return ABIArgInfo::getIgnore();
7197 
7198   // Large vector types should be returned via memory.
7199   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64)
7200     return getNaturalAlignIndirect(RetTy);
7201 
7202   if (!isAggregateTypeForABI(RetTy)) {
7203     // Treat an enum type as its underlying type.
7204     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
7205       RetTy = EnumTy->getDecl()->getIntegerType();
7206 
7207     return (RetTy->isPromotableIntegerType() ?
7208             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
7209   }
7210 
7211   if (isEmptyRecord(getContext(), RetTy, true))
7212     return ABIArgInfo::getIgnore();
7213 
7214   // Aggregates <= 8 bytes are returned in r0; other aggregates
7215   // are returned indirectly.
7216   uint64_t Size = getContext().getTypeSize(RetTy);
7217   if (Size <= 64) {
7218     // Return in the smallest viable integer type.
7219     if (Size <= 8)
7220       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
7221     if (Size <= 16)
7222       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
7223     if (Size <= 32)
7224       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
7225     return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
7226   }
7227 
7228   return getNaturalAlignIndirect(RetTy, /*ByVal=*/true);
7229 }
7230 
7231 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7232                                   QualType Ty) const {
7233   // FIXME: Someone needs to audit that this handle alignment correctly.
7234   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
7235                           getContext().getTypeInfoInChars(Ty),
7236                           CharUnits::fromQuantity(4),
7237                           /*AllowHigherAlign*/ true);
7238 }
7239 
7240 //===----------------------------------------------------------------------===//
7241 // Lanai ABI Implementation
7242 //===----------------------------------------------------------------------===//
7243 
7244 namespace {
7245 class LanaiABIInfo : public DefaultABIInfo {
7246 public:
7247   LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
7248 
7249   bool shouldUseInReg(QualType Ty, CCState &State) const;
7250 
7251   void computeInfo(CGFunctionInfo &FI) const override {
7252     CCState State(FI.getCallingConvention());
7253     // Lanai uses 4 registers to pass arguments unless the function has the
7254     // regparm attribute set.
7255     if (FI.getHasRegParm()) {
7256       State.FreeRegs = FI.getRegParm();
7257     } else {
7258       State.FreeRegs = 4;
7259     }
7260 
7261     if (!getCXXABI().classifyReturnType(FI))
7262       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7263     for (auto &I : FI.arguments())
7264       I.info = classifyArgumentType(I.type, State);
7265   }
7266 
7267   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
7268   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
7269 };
7270 } // end anonymous namespace
7271 
7272 bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const {
7273   unsigned Size = getContext().getTypeSize(Ty);
7274   unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U;
7275 
7276   if (SizeInRegs == 0)
7277     return false;
7278 
7279   if (SizeInRegs > State.FreeRegs) {
7280     State.FreeRegs = 0;
7281     return false;
7282   }
7283 
7284   State.FreeRegs -= SizeInRegs;
7285 
7286   return true;
7287 }
7288 
7289 ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal,
7290                                            CCState &State) const {
7291   if (!ByVal) {
7292     if (State.FreeRegs) {
7293       --State.FreeRegs; // Non-byval indirects just use one pointer.
7294       return getNaturalAlignIndirectInReg(Ty);
7295     }
7296     return getNaturalAlignIndirect(Ty, false);
7297   }
7298 
7299   // Compute the byval alignment.
7300   const unsigned MinABIStackAlignInBytes = 4;
7301   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
7302   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true,
7303                                  /*Realign=*/TypeAlign >
7304                                      MinABIStackAlignInBytes);
7305 }
7306 
7307 ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty,
7308                                               CCState &State) const {
7309   // Check with the C++ ABI first.
7310   const RecordType *RT = Ty->getAs<RecordType>();
7311   if (RT) {
7312     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
7313     if (RAA == CGCXXABI::RAA_Indirect) {
7314       return getIndirectResult(Ty, /*ByVal=*/false, State);
7315     } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
7316       return getNaturalAlignIndirect(Ty, /*ByRef=*/true);
7317     }
7318   }
7319 
7320   if (isAggregateTypeForABI(Ty)) {
7321     // Structures with flexible arrays are always indirect.
7322     if (RT && RT->getDecl()->hasFlexibleArrayMember())
7323       return getIndirectResult(Ty, /*ByVal=*/true, State);
7324 
7325     // Ignore empty structs/unions.
7326     if (isEmptyRecord(getContext(), Ty, true))
7327       return ABIArgInfo::getIgnore();
7328 
7329     llvm::LLVMContext &LLVMContext = getVMContext();
7330     unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
7331     if (SizeInRegs <= State.FreeRegs) {
7332       llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
7333       SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32);
7334       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
7335       State.FreeRegs -= SizeInRegs;
7336       return ABIArgInfo::getDirectInReg(Result);
7337     } else {
7338       State.FreeRegs = 0;
7339     }
7340     return getIndirectResult(Ty, true, State);
7341   }
7342 
7343   // Treat an enum type as its underlying type.
7344   if (const auto *EnumTy = Ty->getAs<EnumType>())
7345     Ty = EnumTy->getDecl()->getIntegerType();
7346 
7347   bool InReg = shouldUseInReg(Ty, State);
7348   if (Ty->isPromotableIntegerType()) {
7349     if (InReg)
7350       return ABIArgInfo::getDirectInReg();
7351     return ABIArgInfo::getExtend();
7352   }
7353   if (InReg)
7354     return ABIArgInfo::getDirectInReg();
7355   return ABIArgInfo::getDirect();
7356 }
7357 
7358 namespace {
7359 class LanaiTargetCodeGenInfo : public TargetCodeGenInfo {
7360 public:
7361   LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
7362       : TargetCodeGenInfo(new LanaiABIInfo(CGT)) {}
7363 };
7364 }
7365 
7366 //===----------------------------------------------------------------------===//
7367 // AMDGPU ABI Implementation
7368 //===----------------------------------------------------------------------===//
7369 
7370 namespace {
7371 
7372 class AMDGPUABIInfo final : public DefaultABIInfo {
7373 private:
7374   static const unsigned MaxNumRegsForArgsRet = 16;
7375 
7376   unsigned numRegsForType(QualType Ty) const;
7377 
7378   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
7379   bool isHomogeneousAggregateSmallEnough(const Type *Base,
7380                                          uint64_t Members) const override;
7381 
7382 public:
7383   explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) :
7384     DefaultABIInfo(CGT) {}
7385 
7386   ABIArgInfo classifyReturnType(QualType RetTy) const;
7387   ABIArgInfo classifyKernelArgumentType(QualType Ty) const;
7388   ABIArgInfo classifyArgumentType(QualType Ty, unsigned &NumRegsLeft) const;
7389 
7390   void computeInfo(CGFunctionInfo &FI) const override;
7391 };
7392 
7393 bool AMDGPUABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
7394   return true;
7395 }
7396 
7397 bool AMDGPUABIInfo::isHomogeneousAggregateSmallEnough(
7398   const Type *Base, uint64_t Members) const {
7399   uint32_t NumRegs = (getContext().getTypeSize(Base) + 31) / 32;
7400 
7401   // Homogeneous Aggregates may occupy at most 16 registers.
7402   return Members * NumRegs <= MaxNumRegsForArgsRet;
7403 }
7404 
7405 /// Estimate number of registers the type will use when passed in registers.
7406 unsigned AMDGPUABIInfo::numRegsForType(QualType Ty) const {
7407   unsigned NumRegs = 0;
7408 
7409   if (const VectorType *VT = Ty->getAs<VectorType>()) {
7410     // Compute from the number of elements. The reported size is based on the
7411     // in-memory size, which includes the padding 4th element for 3-vectors.
7412     QualType EltTy = VT->getElementType();
7413     unsigned EltSize = getContext().getTypeSize(EltTy);
7414 
7415     // 16-bit element vectors should be passed as packed.
7416     if (EltSize == 16)
7417       return (VT->getNumElements() + 1) / 2;
7418 
7419     unsigned EltNumRegs = (EltSize + 31) / 32;
7420     return EltNumRegs * VT->getNumElements();
7421   }
7422 
7423   if (const RecordType *RT = Ty->getAs<RecordType>()) {
7424     const RecordDecl *RD = RT->getDecl();
7425     assert(!RD->hasFlexibleArrayMember());
7426 
7427     for (const FieldDecl *Field : RD->fields()) {
7428       QualType FieldTy = Field->getType();
7429       NumRegs += numRegsForType(FieldTy);
7430     }
7431 
7432     return NumRegs;
7433   }
7434 
7435   return (getContext().getTypeSize(Ty) + 31) / 32;
7436 }
7437 
7438 void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const {
7439   llvm::CallingConv::ID CC = FI.getCallingConvention();
7440 
7441   if (!getCXXABI().classifyReturnType(FI))
7442     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7443 
7444   unsigned NumRegsLeft = MaxNumRegsForArgsRet;
7445   for (auto &Arg : FI.arguments()) {
7446     if (CC == llvm::CallingConv::AMDGPU_KERNEL) {
7447       Arg.info = classifyKernelArgumentType(Arg.type);
7448     } else {
7449       Arg.info = classifyArgumentType(Arg.type, NumRegsLeft);
7450     }
7451   }
7452 }
7453 
7454 ABIArgInfo AMDGPUABIInfo::classifyReturnType(QualType RetTy) const {
7455   if (isAggregateTypeForABI(RetTy)) {
7456     // Records with non-trivial destructors/copy-constructors should not be
7457     // returned by value.
7458     if (!getRecordArgABI(RetTy, getCXXABI())) {
7459       // Ignore empty structs/unions.
7460       if (isEmptyRecord(getContext(), RetTy, true))
7461         return ABIArgInfo::getIgnore();
7462 
7463       // Lower single-element structs to just return a regular value.
7464       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
7465         return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
7466 
7467       if (const RecordType *RT = RetTy->getAs<RecordType>()) {
7468         const RecordDecl *RD = RT->getDecl();
7469         if (RD->hasFlexibleArrayMember())
7470           return DefaultABIInfo::classifyReturnType(RetTy);
7471       }
7472 
7473       // Pack aggregates <= 4 bytes into single VGPR or pair.
7474       uint64_t Size = getContext().getTypeSize(RetTy);
7475       if (Size <= 16)
7476         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
7477 
7478       if (Size <= 32)
7479         return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
7480 
7481       if (Size <= 64) {
7482         llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext());
7483         return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2));
7484       }
7485 
7486       if (numRegsForType(RetTy) <= MaxNumRegsForArgsRet)
7487         return ABIArgInfo::getDirect();
7488     }
7489   }
7490 
7491   // Otherwise just do the default thing.
7492   return DefaultABIInfo::classifyReturnType(RetTy);
7493 }
7494 
7495 /// For kernels all parameters are really passed in a special buffer. It doesn't
7496 /// make sense to pass anything byval, so everything must be direct.
7497 ABIArgInfo AMDGPUABIInfo::classifyKernelArgumentType(QualType Ty) const {
7498   Ty = useFirstFieldIfTransparentUnion(Ty);
7499 
7500   // TODO: Can we omit empty structs?
7501 
7502   // Coerce single element structs to its element.
7503   if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
7504     return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
7505 
7506   // If we set CanBeFlattened to true, CodeGen will expand the struct to its
7507   // individual elements, which confuses the Clover OpenCL backend; therefore we
7508   // have to set it to false here. Other args of getDirect() are just defaults.
7509   return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
7510 }
7511 
7512 ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty,
7513                                                unsigned &NumRegsLeft) const {
7514   assert(NumRegsLeft <= MaxNumRegsForArgsRet && "register estimate underflow");
7515 
7516   Ty = useFirstFieldIfTransparentUnion(Ty);
7517 
7518   if (isAggregateTypeForABI(Ty)) {
7519     // Records with non-trivial destructors/copy-constructors should not be
7520     // passed by value.
7521     if (auto RAA = getRecordArgABI(Ty, getCXXABI()))
7522       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
7523 
7524     // Ignore empty structs/unions.
7525     if (isEmptyRecord(getContext(), Ty, true))
7526       return ABIArgInfo::getIgnore();
7527 
7528     // Lower single-element structs to just pass a regular value. TODO: We
7529     // could do reasonable-size multiple-element structs too, using getExpand(),
7530     // though watch out for things like bitfields.
7531     if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
7532       return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
7533 
7534     if (const RecordType *RT = Ty->getAs<RecordType>()) {
7535       const RecordDecl *RD = RT->getDecl();
7536       if (RD->hasFlexibleArrayMember())
7537         return DefaultABIInfo::classifyArgumentType(Ty);
7538     }
7539 
7540     // Pack aggregates <= 8 bytes into single VGPR or pair.
7541     uint64_t Size = getContext().getTypeSize(Ty);
7542     if (Size <= 64) {
7543       unsigned NumRegs = (Size + 31) / 32;
7544       NumRegsLeft -= std::min(NumRegsLeft, NumRegs);
7545 
7546       if (Size <= 16)
7547         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
7548 
7549       if (Size <= 32)
7550         return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
7551 
7552       // XXX: Should this be i64 instead, and should the limit increase?
7553       llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext());
7554       return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2));
7555     }
7556 
7557     if (NumRegsLeft > 0) {
7558       unsigned NumRegs = numRegsForType(Ty);
7559       if (NumRegsLeft >= NumRegs) {
7560         NumRegsLeft -= NumRegs;
7561         return ABIArgInfo::getDirect();
7562       }
7563     }
7564   }
7565 
7566   // Otherwise just do the default thing.
7567   ABIArgInfo ArgInfo = DefaultABIInfo::classifyArgumentType(Ty);
7568   if (!ArgInfo.isIndirect()) {
7569     unsigned NumRegs = numRegsForType(Ty);
7570     NumRegsLeft -= std::min(NumRegs, NumRegsLeft);
7571   }
7572 
7573   return ArgInfo;
7574 }
7575 
7576 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo {
7577 public:
7578   AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT)
7579     : TargetCodeGenInfo(new AMDGPUABIInfo(CGT)) {}
7580   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7581                            CodeGen::CodeGenModule &M,
7582                            ForDefinition_t IsForDefinition) const override;
7583   unsigned getOpenCLKernelCallingConv() const override;
7584 
7585   llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM,
7586       llvm::PointerType *T, QualType QT) const override;
7587 
7588   unsigned getASTAllocaAddressSpace() const override {
7589     return LangAS::FirstTargetAddressSpace +
7590            getABIInfo().getDataLayout().getAllocaAddrSpace();
7591   }
7592   unsigned getGlobalVarAddressSpace(CodeGenModule &CGM,
7593                                     const VarDecl *D) const override;
7594   llvm::SyncScope::ID getLLVMSyncScopeID(SyncScope S,
7595                                          llvm::LLVMContext &C) const override;
7596 };
7597 }
7598 
7599 void AMDGPUTargetCodeGenInfo::setTargetAttributes(
7600     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M,
7601     ForDefinition_t IsForDefinition) const {
7602   if (!IsForDefinition)
7603     return;
7604   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
7605   if (!FD)
7606     return;
7607 
7608   llvm::Function *F = cast<llvm::Function>(GV);
7609 
7610   const auto *ReqdWGS = M.getLangOpts().OpenCL ?
7611     FD->getAttr<ReqdWorkGroupSizeAttr>() : nullptr;
7612   const auto *FlatWGS = FD->getAttr<AMDGPUFlatWorkGroupSizeAttr>();
7613   if (ReqdWGS || FlatWGS) {
7614     unsigned Min = FlatWGS ? FlatWGS->getMin() : 0;
7615     unsigned Max = FlatWGS ? FlatWGS->getMax() : 0;
7616     if (ReqdWGS && Min == 0 && Max == 0)
7617       Min = Max = ReqdWGS->getXDim() * ReqdWGS->getYDim() * ReqdWGS->getZDim();
7618 
7619     if (Min != 0) {
7620       assert(Min <= Max && "Min must be less than or equal Max");
7621 
7622       std::string AttrVal = llvm::utostr(Min) + "," + llvm::utostr(Max);
7623       F->addFnAttr("amdgpu-flat-work-group-size", AttrVal);
7624     } else
7625       assert(Max == 0 && "Max must be zero");
7626   }
7627 
7628   if (const auto *Attr = FD->getAttr<AMDGPUWavesPerEUAttr>()) {
7629     unsigned Min = Attr->getMin();
7630     unsigned Max = Attr->getMax();
7631 
7632     if (Min != 0) {
7633       assert((Max == 0 || Min <= Max) && "Min must be less than or equal Max");
7634 
7635       std::string AttrVal = llvm::utostr(Min);
7636       if (Max != 0)
7637         AttrVal = AttrVal + "," + llvm::utostr(Max);
7638       F->addFnAttr("amdgpu-waves-per-eu", AttrVal);
7639     } else
7640       assert(Max == 0 && "Max must be zero");
7641   }
7642 
7643   if (const auto *Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) {
7644     unsigned NumSGPR = Attr->getNumSGPR();
7645 
7646     if (NumSGPR != 0)
7647       F->addFnAttr("amdgpu-num-sgpr", llvm::utostr(NumSGPR));
7648   }
7649 
7650   if (const auto *Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) {
7651     uint32_t NumVGPR = Attr->getNumVGPR();
7652 
7653     if (NumVGPR != 0)
7654       F->addFnAttr("amdgpu-num-vgpr", llvm::utostr(NumVGPR));
7655   }
7656 }
7657 
7658 unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const {
7659   return llvm::CallingConv::AMDGPU_KERNEL;
7660 }
7661 
7662 // Currently LLVM assumes null pointers always have value 0,
7663 // which results in incorrectly transformed IR. Therefore, instead of
7664 // emitting null pointers in private and local address spaces, a null
7665 // pointer in generic address space is emitted which is casted to a
7666 // pointer in local or private address space.
7667 llvm::Constant *AMDGPUTargetCodeGenInfo::getNullPointer(
7668     const CodeGen::CodeGenModule &CGM, llvm::PointerType *PT,
7669     QualType QT) const {
7670   if (CGM.getContext().getTargetNullPointerValue(QT) == 0)
7671     return llvm::ConstantPointerNull::get(PT);
7672 
7673   auto &Ctx = CGM.getContext();
7674   auto NPT = llvm::PointerType::get(PT->getElementType(),
7675       Ctx.getTargetAddressSpace(LangAS::opencl_generic));
7676   return llvm::ConstantExpr::getAddrSpaceCast(
7677       llvm::ConstantPointerNull::get(NPT), PT);
7678 }
7679 
7680 unsigned
7681 AMDGPUTargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM,
7682                                                   const VarDecl *D) const {
7683   assert(!CGM.getLangOpts().OpenCL &&
7684          !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) &&
7685          "Address space agnostic languages only");
7686   unsigned DefaultGlobalAS =
7687       LangAS::FirstTargetAddressSpace +
7688       CGM.getContext().getTargetAddressSpace(LangAS::opencl_global);
7689   if (!D)
7690     return DefaultGlobalAS;
7691 
7692   unsigned AddrSpace = D->getType().getAddressSpace();
7693   assert(AddrSpace == LangAS::Default ||
7694          AddrSpace >= LangAS::FirstTargetAddressSpace);
7695   if (AddrSpace != LangAS::Default)
7696     return AddrSpace;
7697 
7698   if (CGM.isTypeConstant(D->getType(), false)) {
7699     if (auto ConstAS = CGM.getTarget().getConstantAddressSpace())
7700       return ConstAS.getValue();
7701   }
7702   return DefaultGlobalAS;
7703 }
7704 
7705 llvm::SyncScope::ID
7706 AMDGPUTargetCodeGenInfo::getLLVMSyncScopeID(SyncScope S,
7707                                             llvm::LLVMContext &C) const {
7708   StringRef Name;
7709   switch (S) {
7710   case SyncScope::OpenCLWorkGroup:
7711     Name = "workgroup";
7712     break;
7713   case SyncScope::OpenCLDevice:
7714     Name = "agent";
7715     break;
7716   case SyncScope::OpenCLAllSVMDevices:
7717     Name = "";
7718     break;
7719   case SyncScope::OpenCLSubGroup:
7720     Name = "subgroup";
7721   }
7722   return C.getOrInsertSyncScopeID(Name);
7723 }
7724 
7725 //===----------------------------------------------------------------------===//
7726 // SPARC v8 ABI Implementation.
7727 // Based on the SPARC Compliance Definition version 2.4.1.
7728 //
7729 // Ensures that complex values are passed in registers.
7730 //
7731 namespace {
7732 class SparcV8ABIInfo : public DefaultABIInfo {
7733 public:
7734   SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
7735 
7736 private:
7737   ABIArgInfo classifyReturnType(QualType RetTy) const;
7738   void computeInfo(CGFunctionInfo &FI) const override;
7739 };
7740 } // end anonymous namespace
7741 
7742 
7743 ABIArgInfo
7744 SparcV8ABIInfo::classifyReturnType(QualType Ty) const {
7745   if (Ty->isAnyComplexType()) {
7746     return ABIArgInfo::getDirect();
7747   }
7748   else {
7749     return DefaultABIInfo::classifyReturnType(Ty);
7750   }
7751 }
7752 
7753 void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const {
7754 
7755   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7756   for (auto &Arg : FI.arguments())
7757     Arg.info = classifyArgumentType(Arg.type);
7758 }
7759 
7760 namespace {
7761 class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo {
7762 public:
7763   SparcV8TargetCodeGenInfo(CodeGenTypes &CGT)
7764     : TargetCodeGenInfo(new SparcV8ABIInfo(CGT)) {}
7765 };
7766 } // end anonymous namespace
7767 
7768 //===----------------------------------------------------------------------===//
7769 // SPARC v9 ABI Implementation.
7770 // Based on the SPARC Compliance Definition version 2.4.1.
7771 //
7772 // Function arguments a mapped to a nominal "parameter array" and promoted to
7773 // registers depending on their type. Each argument occupies 8 or 16 bytes in
7774 // the array, structs larger than 16 bytes are passed indirectly.
7775 //
7776 // One case requires special care:
7777 //
7778 //   struct mixed {
7779 //     int i;
7780 //     float f;
7781 //   };
7782 //
7783 // When a struct mixed is passed by value, it only occupies 8 bytes in the
7784 // parameter array, but the int is passed in an integer register, and the float
7785 // is passed in a floating point register. This is represented as two arguments
7786 // with the LLVM IR inreg attribute:
7787 //
7788 //   declare void f(i32 inreg %i, float inreg %f)
7789 //
7790 // The code generator will only allocate 4 bytes from the parameter array for
7791 // the inreg arguments. All other arguments are allocated a multiple of 8
7792 // bytes.
7793 //
7794 namespace {
7795 class SparcV9ABIInfo : public ABIInfo {
7796 public:
7797   SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
7798 
7799 private:
7800   ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const;
7801   void computeInfo(CGFunctionInfo &FI) const override;
7802   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7803                     QualType Ty) const override;
7804 
7805   // Coercion type builder for structs passed in registers. The coercion type
7806   // serves two purposes:
7807   //
7808   // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned'
7809   //    in registers.
7810   // 2. Expose aligned floating point elements as first-level elements, so the
7811   //    code generator knows to pass them in floating point registers.
7812   //
7813   // We also compute the InReg flag which indicates that the struct contains
7814   // aligned 32-bit floats.
7815   //
7816   struct CoerceBuilder {
7817     llvm::LLVMContext &Context;
7818     const llvm::DataLayout &DL;
7819     SmallVector<llvm::Type*, 8> Elems;
7820     uint64_t Size;
7821     bool InReg;
7822 
7823     CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl)
7824       : Context(c), DL(dl), Size(0), InReg(false) {}
7825 
7826     // Pad Elems with integers until Size is ToSize.
7827     void pad(uint64_t ToSize) {
7828       assert(ToSize >= Size && "Cannot remove elements");
7829       if (ToSize == Size)
7830         return;
7831 
7832       // Finish the current 64-bit word.
7833       uint64_t Aligned = llvm::alignTo(Size, 64);
7834       if (Aligned > Size && Aligned <= ToSize) {
7835         Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size));
7836         Size = Aligned;
7837       }
7838 
7839       // Add whole 64-bit words.
7840       while (Size + 64 <= ToSize) {
7841         Elems.push_back(llvm::Type::getInt64Ty(Context));
7842         Size += 64;
7843       }
7844 
7845       // Final in-word padding.
7846       if (Size < ToSize) {
7847         Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size));
7848         Size = ToSize;
7849       }
7850     }
7851 
7852     // Add a floating point element at Offset.
7853     void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) {
7854       // Unaligned floats are treated as integers.
7855       if (Offset % Bits)
7856         return;
7857       // The InReg flag is only required if there are any floats < 64 bits.
7858       if (Bits < 64)
7859         InReg = true;
7860       pad(Offset);
7861       Elems.push_back(Ty);
7862       Size = Offset + Bits;
7863     }
7864 
7865     // Add a struct type to the coercion type, starting at Offset (in bits).
7866     void addStruct(uint64_t Offset, llvm::StructType *StrTy) {
7867       const llvm::StructLayout *Layout = DL.getStructLayout(StrTy);
7868       for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) {
7869         llvm::Type *ElemTy = StrTy->getElementType(i);
7870         uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i);
7871         switch (ElemTy->getTypeID()) {
7872         case llvm::Type::StructTyID:
7873           addStruct(ElemOffset, cast<llvm::StructType>(ElemTy));
7874           break;
7875         case llvm::Type::FloatTyID:
7876           addFloat(ElemOffset, ElemTy, 32);
7877           break;
7878         case llvm::Type::DoubleTyID:
7879           addFloat(ElemOffset, ElemTy, 64);
7880           break;
7881         case llvm::Type::FP128TyID:
7882           addFloat(ElemOffset, ElemTy, 128);
7883           break;
7884         case llvm::Type::PointerTyID:
7885           if (ElemOffset % 64 == 0) {
7886             pad(ElemOffset);
7887             Elems.push_back(ElemTy);
7888             Size += 64;
7889           }
7890           break;
7891         default:
7892           break;
7893         }
7894       }
7895     }
7896 
7897     // Check if Ty is a usable substitute for the coercion type.
7898     bool isUsableType(llvm::StructType *Ty) const {
7899       return llvm::makeArrayRef(Elems) == Ty->elements();
7900     }
7901 
7902     // Get the coercion type as a literal struct type.
7903     llvm::Type *getType() const {
7904       if (Elems.size() == 1)
7905         return Elems.front();
7906       else
7907         return llvm::StructType::get(Context, Elems);
7908     }
7909   };
7910 };
7911 } // end anonymous namespace
7912 
7913 ABIArgInfo
7914 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const {
7915   if (Ty->isVoidType())
7916     return ABIArgInfo::getIgnore();
7917 
7918   uint64_t Size = getContext().getTypeSize(Ty);
7919 
7920   // Anything too big to fit in registers is passed with an explicit indirect
7921   // pointer / sret pointer.
7922   if (Size > SizeLimit)
7923     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
7924 
7925   // Treat an enum type as its underlying type.
7926   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
7927     Ty = EnumTy->getDecl()->getIntegerType();
7928 
7929   // Integer types smaller than a register are extended.
7930   if (Size < 64 && Ty->isIntegerType())
7931     return ABIArgInfo::getExtend();
7932 
7933   // Other non-aggregates go in registers.
7934   if (!isAggregateTypeForABI(Ty))
7935     return ABIArgInfo::getDirect();
7936 
7937   // If a C++ object has either a non-trivial copy constructor or a non-trivial
7938   // destructor, it is passed with an explicit indirect pointer / sret pointer.
7939   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
7940     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
7941 
7942   // This is a small aggregate type that should be passed in registers.
7943   // Build a coercion type from the LLVM struct type.
7944   llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty));
7945   if (!StrTy)
7946     return ABIArgInfo::getDirect();
7947 
7948   CoerceBuilder CB(getVMContext(), getDataLayout());
7949   CB.addStruct(0, StrTy);
7950   CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64));
7951 
7952   // Try to use the original type for coercion.
7953   llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType();
7954 
7955   if (CB.InReg)
7956     return ABIArgInfo::getDirectInReg(CoerceTy);
7957   else
7958     return ABIArgInfo::getDirect(CoerceTy);
7959 }
7960 
7961 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7962                                   QualType Ty) const {
7963   ABIArgInfo AI = classifyType(Ty, 16 * 8);
7964   llvm::Type *ArgTy = CGT.ConvertType(Ty);
7965   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
7966     AI.setCoerceToType(ArgTy);
7967 
7968   CharUnits SlotSize = CharUnits::fromQuantity(8);
7969 
7970   CGBuilderTy &Builder = CGF.Builder;
7971   Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
7972   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
7973 
7974   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
7975 
7976   Address ArgAddr = Address::invalid();
7977   CharUnits Stride;
7978   switch (AI.getKind()) {
7979   case ABIArgInfo::Expand:
7980   case ABIArgInfo::CoerceAndExpand:
7981   case ABIArgInfo::InAlloca:
7982     llvm_unreachable("Unsupported ABI kind for va_arg");
7983 
7984   case ABIArgInfo::Extend: {
7985     Stride = SlotSize;
7986     CharUnits Offset = SlotSize - TypeInfo.first;
7987     ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend");
7988     break;
7989   }
7990 
7991   case ABIArgInfo::Direct: {
7992     auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
7993     Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize);
7994     ArgAddr = Addr;
7995     break;
7996   }
7997 
7998   case ABIArgInfo::Indirect:
7999     Stride = SlotSize;
8000     ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect");
8001     ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"),
8002                       TypeInfo.second);
8003     break;
8004 
8005   case ABIArgInfo::Ignore:
8006     return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.second);
8007   }
8008 
8009   // Update VAList.
8010   llvm::Value *NextPtr =
8011     Builder.CreateConstInBoundsByteGEP(Addr.getPointer(), Stride, "ap.next");
8012   Builder.CreateStore(NextPtr, VAListAddr);
8013 
8014   return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr");
8015 }
8016 
8017 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const {
8018   FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8);
8019   for (auto &I : FI.arguments())
8020     I.info = classifyType(I.type, 16 * 8);
8021 }
8022 
8023 namespace {
8024 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo {
8025 public:
8026   SparcV9TargetCodeGenInfo(CodeGenTypes &CGT)
8027     : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {}
8028 
8029   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
8030     return 14;
8031   }
8032 
8033   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
8034                                llvm::Value *Address) const override;
8035 };
8036 } // end anonymous namespace
8037 
8038 bool
8039 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
8040                                                 llvm::Value *Address) const {
8041   // This is calculated from the LLVM and GCC tables and verified
8042   // against gcc output.  AFAIK all ABIs use the same encoding.
8043 
8044   CodeGen::CGBuilderTy &Builder = CGF.Builder;
8045 
8046   llvm::IntegerType *i8 = CGF.Int8Ty;
8047   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
8048   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
8049 
8050   // 0-31: the 8-byte general-purpose registers
8051   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
8052 
8053   // 32-63: f0-31, the 4-byte floating-point registers
8054   AssignToArrayRange(Builder, Address, Four8, 32, 63);
8055 
8056   //   Y   = 64
8057   //   PSR = 65
8058   //   WIM = 66
8059   //   TBR = 67
8060   //   PC  = 68
8061   //   NPC = 69
8062   //   FSR = 70
8063   //   CSR = 71
8064   AssignToArrayRange(Builder, Address, Eight8, 64, 71);
8065 
8066   // 72-87: d0-15, the 8-byte floating-point registers
8067   AssignToArrayRange(Builder, Address, Eight8, 72, 87);
8068 
8069   return false;
8070 }
8071 
8072 
8073 //===----------------------------------------------------------------------===//
8074 // XCore ABI Implementation
8075 //===----------------------------------------------------------------------===//
8076 
8077 namespace {
8078 
8079 /// A SmallStringEnc instance is used to build up the TypeString by passing
8080 /// it by reference between functions that append to it.
8081 typedef llvm::SmallString<128> SmallStringEnc;
8082 
8083 /// TypeStringCache caches the meta encodings of Types.
8084 ///
8085 /// The reason for caching TypeStrings is two fold:
8086 ///   1. To cache a type's encoding for later uses;
8087 ///   2. As a means to break recursive member type inclusion.
8088 ///
8089 /// A cache Entry can have a Status of:
8090 ///   NonRecursive:   The type encoding is not recursive;
8091 ///   Recursive:      The type encoding is recursive;
8092 ///   Incomplete:     An incomplete TypeString;
8093 ///   IncompleteUsed: An incomplete TypeString that has been used in a
8094 ///                   Recursive type encoding.
8095 ///
8096 /// A NonRecursive entry will have all of its sub-members expanded as fully
8097 /// as possible. Whilst it may contain types which are recursive, the type
8098 /// itself is not recursive and thus its encoding may be safely used whenever
8099 /// the type is encountered.
8100 ///
8101 /// A Recursive entry will have all of its sub-members expanded as fully as
8102 /// possible. The type itself is recursive and it may contain other types which
8103 /// are recursive. The Recursive encoding must not be used during the expansion
8104 /// of a recursive type's recursive branch. For simplicity the code uses
8105 /// IncompleteCount to reject all usage of Recursive encodings for member types.
8106 ///
8107 /// An Incomplete entry is always a RecordType and only encodes its
8108 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and
8109 /// are placed into the cache during type expansion as a means to identify and
8110 /// handle recursive inclusion of types as sub-members. If there is recursion
8111 /// the entry becomes IncompleteUsed.
8112 ///
8113 /// During the expansion of a RecordType's members:
8114 ///
8115 ///   If the cache contains a NonRecursive encoding for the member type, the
8116 ///   cached encoding is used;
8117 ///
8118 ///   If the cache contains a Recursive encoding for the member type, the
8119 ///   cached encoding is 'Swapped' out, as it may be incorrect, and...
8120 ///
8121 ///   If the member is a RecordType, an Incomplete encoding is placed into the
8122 ///   cache to break potential recursive inclusion of itself as a sub-member;
8123 ///
8124 ///   Once a member RecordType has been expanded, its temporary incomplete
8125 ///   entry is removed from the cache. If a Recursive encoding was swapped out
8126 ///   it is swapped back in;
8127 ///
8128 ///   If an incomplete entry is used to expand a sub-member, the incomplete
8129 ///   entry is marked as IncompleteUsed. The cache keeps count of how many
8130 ///   IncompleteUsed entries it currently contains in IncompleteUsedCount;
8131 ///
8132 ///   If a member's encoding is found to be a NonRecursive or Recursive viz:
8133 ///   IncompleteUsedCount==0, the member's encoding is added to the cache.
8134 ///   Else the member is part of a recursive type and thus the recursion has
8135 ///   been exited too soon for the encoding to be correct for the member.
8136 ///
8137 class TypeStringCache {
8138   enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed};
8139   struct Entry {
8140     std::string Str;     // The encoded TypeString for the type.
8141     enum Status State;   // Information about the encoding in 'Str'.
8142     std::string Swapped; // A temporary place holder for a Recursive encoding
8143                          // during the expansion of RecordType's members.
8144   };
8145   std::map<const IdentifierInfo *, struct Entry> Map;
8146   unsigned IncompleteCount;     // Number of Incomplete entries in the Map.
8147   unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map.
8148 public:
8149   TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {}
8150   void addIncomplete(const IdentifierInfo *ID, std::string StubEnc);
8151   bool removeIncomplete(const IdentifierInfo *ID);
8152   void addIfComplete(const IdentifierInfo *ID, StringRef Str,
8153                      bool IsRecursive);
8154   StringRef lookupStr(const IdentifierInfo *ID);
8155 };
8156 
8157 /// TypeString encodings for enum & union fields must be order.
8158 /// FieldEncoding is a helper for this ordering process.
8159 class FieldEncoding {
8160   bool HasName;
8161   std::string Enc;
8162 public:
8163   FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {}
8164   StringRef str() { return Enc; }
8165   bool operator<(const FieldEncoding &rhs) const {
8166     if (HasName != rhs.HasName) return HasName;
8167     return Enc < rhs.Enc;
8168   }
8169 };
8170 
8171 class XCoreABIInfo : public DefaultABIInfo {
8172 public:
8173   XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
8174   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8175                     QualType Ty) const override;
8176 };
8177 
8178 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo {
8179   mutable TypeStringCache TSC;
8180 public:
8181   XCoreTargetCodeGenInfo(CodeGenTypes &CGT)
8182     :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {}
8183   void emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
8184                     CodeGen::CodeGenModule &M) const override;
8185 };
8186 
8187 } // End anonymous namespace.
8188 
8189 // TODO: this implementation is likely now redundant with the default
8190 // EmitVAArg.
8191 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8192                                 QualType Ty) const {
8193   CGBuilderTy &Builder = CGF.Builder;
8194 
8195   // Get the VAList.
8196   CharUnits SlotSize = CharUnits::fromQuantity(4);
8197   Address AP(Builder.CreateLoad(VAListAddr), SlotSize);
8198 
8199   // Handle the argument.
8200   ABIArgInfo AI = classifyArgumentType(Ty);
8201   CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty);
8202   llvm::Type *ArgTy = CGT.ConvertType(Ty);
8203   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
8204     AI.setCoerceToType(ArgTy);
8205   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
8206 
8207   Address Val = Address::invalid();
8208   CharUnits ArgSize = CharUnits::Zero();
8209   switch (AI.getKind()) {
8210   case ABIArgInfo::Expand:
8211   case ABIArgInfo::CoerceAndExpand:
8212   case ABIArgInfo::InAlloca:
8213     llvm_unreachable("Unsupported ABI kind for va_arg");
8214   case ABIArgInfo::Ignore:
8215     Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign);
8216     ArgSize = CharUnits::Zero();
8217     break;
8218   case ABIArgInfo::Extend:
8219   case ABIArgInfo::Direct:
8220     Val = Builder.CreateBitCast(AP, ArgPtrTy);
8221     ArgSize = CharUnits::fromQuantity(
8222                        getDataLayout().getTypeAllocSize(AI.getCoerceToType()));
8223     ArgSize = ArgSize.alignTo(SlotSize);
8224     break;
8225   case ABIArgInfo::Indirect:
8226     Val = Builder.CreateElementBitCast(AP, ArgPtrTy);
8227     Val = Address(Builder.CreateLoad(Val), TypeAlign);
8228     ArgSize = SlotSize;
8229     break;
8230   }
8231 
8232   // Increment the VAList.
8233   if (!ArgSize.isZero()) {
8234     llvm::Value *APN =
8235       Builder.CreateConstInBoundsByteGEP(AP.getPointer(), ArgSize);
8236     Builder.CreateStore(APN, VAListAddr);
8237   }
8238 
8239   return Val;
8240 }
8241 
8242 /// During the expansion of a RecordType, an incomplete TypeString is placed
8243 /// into the cache as a means to identify and break recursion.
8244 /// If there is a Recursive encoding in the cache, it is swapped out and will
8245 /// be reinserted by removeIncomplete().
8246 /// All other types of encoding should have been used rather than arriving here.
8247 void TypeStringCache::addIncomplete(const IdentifierInfo *ID,
8248                                     std::string StubEnc) {
8249   if (!ID)
8250     return;
8251   Entry &E = Map[ID];
8252   assert( (E.Str.empty() || E.State == Recursive) &&
8253          "Incorrectly use of addIncomplete");
8254   assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()");
8255   E.Swapped.swap(E.Str); // swap out the Recursive
8256   E.Str.swap(StubEnc);
8257   E.State = Incomplete;
8258   ++IncompleteCount;
8259 }
8260 
8261 /// Once the RecordType has been expanded, the temporary incomplete TypeString
8262 /// must be removed from the cache.
8263 /// If a Recursive was swapped out by addIncomplete(), it will be replaced.
8264 /// Returns true if the RecordType was defined recursively.
8265 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) {
8266   if (!ID)
8267     return false;
8268   auto I = Map.find(ID);
8269   assert(I != Map.end() && "Entry not present");
8270   Entry &E = I->second;
8271   assert( (E.State == Incomplete ||
8272            E.State == IncompleteUsed) &&
8273          "Entry must be an incomplete type");
8274   bool IsRecursive = false;
8275   if (E.State == IncompleteUsed) {
8276     // We made use of our Incomplete encoding, thus we are recursive.
8277     IsRecursive = true;
8278     --IncompleteUsedCount;
8279   }
8280   if (E.Swapped.empty())
8281     Map.erase(I);
8282   else {
8283     // Swap the Recursive back.
8284     E.Swapped.swap(E.Str);
8285     E.Swapped.clear();
8286     E.State = Recursive;
8287   }
8288   --IncompleteCount;
8289   return IsRecursive;
8290 }
8291 
8292 /// Add the encoded TypeString to the cache only if it is NonRecursive or
8293 /// Recursive (viz: all sub-members were expanded as fully as possible).
8294 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str,
8295                                     bool IsRecursive) {
8296   if (!ID || IncompleteUsedCount)
8297     return; // No key or it is is an incomplete sub-type so don't add.
8298   Entry &E = Map[ID];
8299   if (IsRecursive && !E.Str.empty()) {
8300     assert(E.State==Recursive && E.Str.size() == Str.size() &&
8301            "This is not the same Recursive entry");
8302     // The parent container was not recursive after all, so we could have used
8303     // this Recursive sub-member entry after all, but we assumed the worse when
8304     // we started viz: IncompleteCount!=0.
8305     return;
8306   }
8307   assert(E.Str.empty() && "Entry already present");
8308   E.Str = Str.str();
8309   E.State = IsRecursive? Recursive : NonRecursive;
8310 }
8311 
8312 /// Return a cached TypeString encoding for the ID. If there isn't one, or we
8313 /// are recursively expanding a type (IncompleteCount != 0) and the cached
8314 /// encoding is Recursive, return an empty StringRef.
8315 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) {
8316   if (!ID)
8317     return StringRef();   // We have no key.
8318   auto I = Map.find(ID);
8319   if (I == Map.end())
8320     return StringRef();   // We have no encoding.
8321   Entry &E = I->second;
8322   if (E.State == Recursive && IncompleteCount)
8323     return StringRef();   // We don't use Recursive encodings for member types.
8324 
8325   if (E.State == Incomplete) {
8326     // The incomplete type is being used to break out of recursion.
8327     E.State = IncompleteUsed;
8328     ++IncompleteUsedCount;
8329   }
8330   return E.Str;
8331 }
8332 
8333 /// The XCore ABI includes a type information section that communicates symbol
8334 /// type information to the linker. The linker uses this information to verify
8335 /// safety/correctness of things such as array bound and pointers et al.
8336 /// The ABI only requires C (and XC) language modules to emit TypeStrings.
8337 /// This type information (TypeString) is emitted into meta data for all global
8338 /// symbols: definitions, declarations, functions & variables.
8339 ///
8340 /// The TypeString carries type, qualifier, name, size & value details.
8341 /// Please see 'Tools Development Guide' section 2.16.2 for format details:
8342 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf
8343 /// The output is tested by test/CodeGen/xcore-stringtype.c.
8344 ///
8345 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
8346                           CodeGen::CodeGenModule &CGM, TypeStringCache &TSC);
8347 
8348 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols.
8349 void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
8350                                           CodeGen::CodeGenModule &CGM) const {
8351   SmallStringEnc Enc;
8352   if (getTypeString(Enc, D, CGM, TSC)) {
8353     llvm::LLVMContext &Ctx = CGM.getModule().getContext();
8354     llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV),
8355                                 llvm::MDString::get(Ctx, Enc.str())};
8356     llvm::NamedMDNode *MD =
8357       CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings");
8358     MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
8359   }
8360 }
8361 
8362 //===----------------------------------------------------------------------===//
8363 // SPIR ABI Implementation
8364 //===----------------------------------------------------------------------===//
8365 
8366 namespace {
8367 class SPIRTargetCodeGenInfo : public TargetCodeGenInfo {
8368 public:
8369   SPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
8370     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
8371   unsigned getOpenCLKernelCallingConv() const override;
8372 };
8373 
8374 } // End anonymous namespace.
8375 
8376 namespace clang {
8377 namespace CodeGen {
8378 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) {
8379   DefaultABIInfo SPIRABI(CGM.getTypes());
8380   SPIRABI.computeInfo(FI);
8381 }
8382 }
8383 }
8384 
8385 unsigned SPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const {
8386   return llvm::CallingConv::SPIR_KERNEL;
8387 }
8388 
8389 static bool appendType(SmallStringEnc &Enc, QualType QType,
8390                        const CodeGen::CodeGenModule &CGM,
8391                        TypeStringCache &TSC);
8392 
8393 /// Helper function for appendRecordType().
8394 /// Builds a SmallVector containing the encoded field types in declaration
8395 /// order.
8396 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE,
8397                              const RecordDecl *RD,
8398                              const CodeGen::CodeGenModule &CGM,
8399                              TypeStringCache &TSC) {
8400   for (const auto *Field : RD->fields()) {
8401     SmallStringEnc Enc;
8402     Enc += "m(";
8403     Enc += Field->getName();
8404     Enc += "){";
8405     if (Field->isBitField()) {
8406       Enc += "b(";
8407       llvm::raw_svector_ostream OS(Enc);
8408       OS << Field->getBitWidthValue(CGM.getContext());
8409       Enc += ':';
8410     }
8411     if (!appendType(Enc, Field->getType(), CGM, TSC))
8412       return false;
8413     if (Field->isBitField())
8414       Enc += ')';
8415     Enc += '}';
8416     FE.emplace_back(!Field->getName().empty(), Enc);
8417   }
8418   return true;
8419 }
8420 
8421 /// Appends structure and union types to Enc and adds encoding to cache.
8422 /// Recursively calls appendType (via extractFieldType) for each field.
8423 /// Union types have their fields ordered according to the ABI.
8424 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT,
8425                              const CodeGen::CodeGenModule &CGM,
8426                              TypeStringCache &TSC, const IdentifierInfo *ID) {
8427   // Append the cached TypeString if we have one.
8428   StringRef TypeString = TSC.lookupStr(ID);
8429   if (!TypeString.empty()) {
8430     Enc += TypeString;
8431     return true;
8432   }
8433 
8434   // Start to emit an incomplete TypeString.
8435   size_t Start = Enc.size();
8436   Enc += (RT->isUnionType()? 'u' : 's');
8437   Enc += '(';
8438   if (ID)
8439     Enc += ID->getName();
8440   Enc += "){";
8441 
8442   // We collect all encoded fields and order as necessary.
8443   bool IsRecursive = false;
8444   const RecordDecl *RD = RT->getDecl()->getDefinition();
8445   if (RD && !RD->field_empty()) {
8446     // An incomplete TypeString stub is placed in the cache for this RecordType
8447     // so that recursive calls to this RecordType will use it whilst building a
8448     // complete TypeString for this RecordType.
8449     SmallVector<FieldEncoding, 16> FE;
8450     std::string StubEnc(Enc.substr(Start).str());
8451     StubEnc += '}';  // StubEnc now holds a valid incomplete TypeString.
8452     TSC.addIncomplete(ID, std::move(StubEnc));
8453     if (!extractFieldType(FE, RD, CGM, TSC)) {
8454       (void) TSC.removeIncomplete(ID);
8455       return false;
8456     }
8457     IsRecursive = TSC.removeIncomplete(ID);
8458     // The ABI requires unions to be sorted but not structures.
8459     // See FieldEncoding::operator< for sort algorithm.
8460     if (RT->isUnionType())
8461       std::sort(FE.begin(), FE.end());
8462     // We can now complete the TypeString.
8463     unsigned E = FE.size();
8464     for (unsigned I = 0; I != E; ++I) {
8465       if (I)
8466         Enc += ',';
8467       Enc += FE[I].str();
8468     }
8469   }
8470   Enc += '}';
8471   TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive);
8472   return true;
8473 }
8474 
8475 /// Appends enum types to Enc and adds the encoding to the cache.
8476 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET,
8477                            TypeStringCache &TSC,
8478                            const IdentifierInfo *ID) {
8479   // Append the cached TypeString if we have one.
8480   StringRef TypeString = TSC.lookupStr(ID);
8481   if (!TypeString.empty()) {
8482     Enc += TypeString;
8483     return true;
8484   }
8485 
8486   size_t Start = Enc.size();
8487   Enc += "e(";
8488   if (ID)
8489     Enc += ID->getName();
8490   Enc += "){";
8491 
8492   // We collect all encoded enumerations and order them alphanumerically.
8493   if (const EnumDecl *ED = ET->getDecl()->getDefinition()) {
8494     SmallVector<FieldEncoding, 16> FE;
8495     for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E;
8496          ++I) {
8497       SmallStringEnc EnumEnc;
8498       EnumEnc += "m(";
8499       EnumEnc += I->getName();
8500       EnumEnc += "){";
8501       I->getInitVal().toString(EnumEnc);
8502       EnumEnc += '}';
8503       FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc));
8504     }
8505     std::sort(FE.begin(), FE.end());
8506     unsigned E = FE.size();
8507     for (unsigned I = 0; I != E; ++I) {
8508       if (I)
8509         Enc += ',';
8510       Enc += FE[I].str();
8511     }
8512   }
8513   Enc += '}';
8514   TSC.addIfComplete(ID, Enc.substr(Start), false);
8515   return true;
8516 }
8517 
8518 /// Appends type's qualifier to Enc.
8519 /// This is done prior to appending the type's encoding.
8520 static void appendQualifier(SmallStringEnc &Enc, QualType QT) {
8521   // Qualifiers are emitted in alphabetical order.
8522   static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"};
8523   int Lookup = 0;
8524   if (QT.isConstQualified())
8525     Lookup += 1<<0;
8526   if (QT.isRestrictQualified())
8527     Lookup += 1<<1;
8528   if (QT.isVolatileQualified())
8529     Lookup += 1<<2;
8530   Enc += Table[Lookup];
8531 }
8532 
8533 /// Appends built-in types to Enc.
8534 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) {
8535   const char *EncType;
8536   switch (BT->getKind()) {
8537     case BuiltinType::Void:
8538       EncType = "0";
8539       break;
8540     case BuiltinType::Bool:
8541       EncType = "b";
8542       break;
8543     case BuiltinType::Char_U:
8544       EncType = "uc";
8545       break;
8546     case BuiltinType::UChar:
8547       EncType = "uc";
8548       break;
8549     case BuiltinType::SChar:
8550       EncType = "sc";
8551       break;
8552     case BuiltinType::UShort:
8553       EncType = "us";
8554       break;
8555     case BuiltinType::Short:
8556       EncType = "ss";
8557       break;
8558     case BuiltinType::UInt:
8559       EncType = "ui";
8560       break;
8561     case BuiltinType::Int:
8562       EncType = "si";
8563       break;
8564     case BuiltinType::ULong:
8565       EncType = "ul";
8566       break;
8567     case BuiltinType::Long:
8568       EncType = "sl";
8569       break;
8570     case BuiltinType::ULongLong:
8571       EncType = "ull";
8572       break;
8573     case BuiltinType::LongLong:
8574       EncType = "sll";
8575       break;
8576     case BuiltinType::Float:
8577       EncType = "ft";
8578       break;
8579     case BuiltinType::Double:
8580       EncType = "d";
8581       break;
8582     case BuiltinType::LongDouble:
8583       EncType = "ld";
8584       break;
8585     default:
8586       return false;
8587   }
8588   Enc += EncType;
8589   return true;
8590 }
8591 
8592 /// Appends a pointer encoding to Enc before calling appendType for the pointee.
8593 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT,
8594                               const CodeGen::CodeGenModule &CGM,
8595                               TypeStringCache &TSC) {
8596   Enc += "p(";
8597   if (!appendType(Enc, PT->getPointeeType(), CGM, TSC))
8598     return false;
8599   Enc += ')';
8600   return true;
8601 }
8602 
8603 /// Appends array encoding to Enc before calling appendType for the element.
8604 static bool appendArrayType(SmallStringEnc &Enc, QualType QT,
8605                             const ArrayType *AT,
8606                             const CodeGen::CodeGenModule &CGM,
8607                             TypeStringCache &TSC, StringRef NoSizeEnc) {
8608   if (AT->getSizeModifier() != ArrayType::Normal)
8609     return false;
8610   Enc += "a(";
8611   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
8612     CAT->getSize().toStringUnsigned(Enc);
8613   else
8614     Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "".
8615   Enc += ':';
8616   // The Qualifiers should be attached to the type rather than the array.
8617   appendQualifier(Enc, QT);
8618   if (!appendType(Enc, AT->getElementType(), CGM, TSC))
8619     return false;
8620   Enc += ')';
8621   return true;
8622 }
8623 
8624 /// Appends a function encoding to Enc, calling appendType for the return type
8625 /// and the arguments.
8626 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT,
8627                              const CodeGen::CodeGenModule &CGM,
8628                              TypeStringCache &TSC) {
8629   Enc += "f{";
8630   if (!appendType(Enc, FT->getReturnType(), CGM, TSC))
8631     return false;
8632   Enc += "}(";
8633   if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) {
8634     // N.B. we are only interested in the adjusted param types.
8635     auto I = FPT->param_type_begin();
8636     auto E = FPT->param_type_end();
8637     if (I != E) {
8638       do {
8639         if (!appendType(Enc, *I, CGM, TSC))
8640           return false;
8641         ++I;
8642         if (I != E)
8643           Enc += ',';
8644       } while (I != E);
8645       if (FPT->isVariadic())
8646         Enc += ",va";
8647     } else {
8648       if (FPT->isVariadic())
8649         Enc += "va";
8650       else
8651         Enc += '0';
8652     }
8653   }
8654   Enc += ')';
8655   return true;
8656 }
8657 
8658 /// Handles the type's qualifier before dispatching a call to handle specific
8659 /// type encodings.
8660 static bool appendType(SmallStringEnc &Enc, QualType QType,
8661                        const CodeGen::CodeGenModule &CGM,
8662                        TypeStringCache &TSC) {
8663 
8664   QualType QT = QType.getCanonicalType();
8665 
8666   if (const ArrayType *AT = QT->getAsArrayTypeUnsafe())
8667     // The Qualifiers should be attached to the type rather than the array.
8668     // Thus we don't call appendQualifier() here.
8669     return appendArrayType(Enc, QT, AT, CGM, TSC, "");
8670 
8671   appendQualifier(Enc, QT);
8672 
8673   if (const BuiltinType *BT = QT->getAs<BuiltinType>())
8674     return appendBuiltinType(Enc, BT);
8675 
8676   if (const PointerType *PT = QT->getAs<PointerType>())
8677     return appendPointerType(Enc, PT, CGM, TSC);
8678 
8679   if (const EnumType *ET = QT->getAs<EnumType>())
8680     return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier());
8681 
8682   if (const RecordType *RT = QT->getAsStructureType())
8683     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
8684 
8685   if (const RecordType *RT = QT->getAsUnionType())
8686     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
8687 
8688   if (const FunctionType *FT = QT->getAs<FunctionType>())
8689     return appendFunctionType(Enc, FT, CGM, TSC);
8690 
8691   return false;
8692 }
8693 
8694 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
8695                           CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) {
8696   if (!D)
8697     return false;
8698 
8699   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
8700     if (FD->getLanguageLinkage() != CLanguageLinkage)
8701       return false;
8702     return appendType(Enc, FD->getType(), CGM, TSC);
8703   }
8704 
8705   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
8706     if (VD->getLanguageLinkage() != CLanguageLinkage)
8707       return false;
8708     QualType QT = VD->getType().getCanonicalType();
8709     if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) {
8710       // Global ArrayTypes are given a size of '*' if the size is unknown.
8711       // The Qualifiers should be attached to the type rather than the array.
8712       // Thus we don't call appendQualifier() here.
8713       return appendArrayType(Enc, QT, AT, CGM, TSC, "*");
8714     }
8715     return appendType(Enc, QT, CGM, TSC);
8716   }
8717   return false;
8718 }
8719 
8720 
8721 //===----------------------------------------------------------------------===//
8722 // Driver code
8723 //===----------------------------------------------------------------------===//
8724 
8725 bool CodeGenModule::supportsCOMDAT() const {
8726   return getTriple().supportsCOMDAT();
8727 }
8728 
8729 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
8730   if (TheTargetCodeGenInfo)
8731     return *TheTargetCodeGenInfo;
8732 
8733   // Helper to set the unique_ptr while still keeping the return value.
8734   auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & {
8735     this->TheTargetCodeGenInfo.reset(P);
8736     return *P;
8737   };
8738 
8739   const llvm::Triple &Triple = getTarget().getTriple();
8740   switch (Triple.getArch()) {
8741   default:
8742     return SetCGInfo(new DefaultTargetCodeGenInfo(Types));
8743 
8744   case llvm::Triple::le32:
8745     return SetCGInfo(new PNaClTargetCodeGenInfo(Types));
8746   case llvm::Triple::mips:
8747   case llvm::Triple::mipsel:
8748     if (Triple.getOS() == llvm::Triple::NaCl)
8749       return SetCGInfo(new PNaClTargetCodeGenInfo(Types));
8750     return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true));
8751 
8752   case llvm::Triple::mips64:
8753   case llvm::Triple::mips64el:
8754     return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false));
8755 
8756   case llvm::Triple::avr:
8757     return SetCGInfo(new AVRTargetCodeGenInfo(Types));
8758 
8759   case llvm::Triple::aarch64:
8760   case llvm::Triple::aarch64_be: {
8761     AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS;
8762     if (getTarget().getABI() == "darwinpcs")
8763       Kind = AArch64ABIInfo::DarwinPCS;
8764     else if (Triple.isOSWindows())
8765       return SetCGInfo(
8766           new WindowsAArch64TargetCodeGenInfo(Types, AArch64ABIInfo::Win64));
8767 
8768     return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind));
8769   }
8770 
8771   case llvm::Triple::wasm32:
8772   case llvm::Triple::wasm64:
8773     return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types));
8774 
8775   case llvm::Triple::arm:
8776   case llvm::Triple::armeb:
8777   case llvm::Triple::thumb:
8778   case llvm::Triple::thumbeb: {
8779     if (Triple.getOS() == llvm::Triple::Win32) {
8780       return SetCGInfo(
8781           new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP));
8782     }
8783 
8784     ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
8785     StringRef ABIStr = getTarget().getABI();
8786     if (ABIStr == "apcs-gnu")
8787       Kind = ARMABIInfo::APCS;
8788     else if (ABIStr == "aapcs16")
8789       Kind = ARMABIInfo::AAPCS16_VFP;
8790     else if (CodeGenOpts.FloatABI == "hard" ||
8791              (CodeGenOpts.FloatABI != "soft" &&
8792               (Triple.getEnvironment() == llvm::Triple::GNUEABIHF ||
8793                Triple.getEnvironment() == llvm::Triple::MuslEABIHF ||
8794                Triple.getEnvironment() == llvm::Triple::EABIHF)))
8795       Kind = ARMABIInfo::AAPCS_VFP;
8796 
8797     return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind));
8798   }
8799 
8800   case llvm::Triple::ppc:
8801     return SetCGInfo(
8802         new PPC32TargetCodeGenInfo(Types, CodeGenOpts.FloatABI == "soft"));
8803   case llvm::Triple::ppc64:
8804     if (Triple.isOSBinFormatELF()) {
8805       PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1;
8806       if (getTarget().getABI() == "elfv2")
8807         Kind = PPC64_SVR4_ABIInfo::ELFv2;
8808       bool HasQPX = getTarget().getABI() == "elfv1-qpx";
8809       bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
8810 
8811       return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX,
8812                                                         IsSoftFloat));
8813     } else
8814       return SetCGInfo(new PPC64TargetCodeGenInfo(Types));
8815   case llvm::Triple::ppc64le: {
8816     assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
8817     PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2;
8818     if (getTarget().getABI() == "elfv1" || getTarget().getABI() == "elfv1-qpx")
8819       Kind = PPC64_SVR4_ABIInfo::ELFv1;
8820     bool HasQPX = getTarget().getABI() == "elfv1-qpx";
8821     bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
8822 
8823     return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX,
8824                                                       IsSoftFloat));
8825   }
8826 
8827   case llvm::Triple::nvptx:
8828   case llvm::Triple::nvptx64:
8829     return SetCGInfo(new NVPTXTargetCodeGenInfo(Types));
8830 
8831   case llvm::Triple::msp430:
8832     return SetCGInfo(new MSP430TargetCodeGenInfo(Types));
8833 
8834   case llvm::Triple::systemz: {
8835     bool HasVector = getTarget().getABI() == "vector";
8836     return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector));
8837   }
8838 
8839   case llvm::Triple::tce:
8840   case llvm::Triple::tcele:
8841     return SetCGInfo(new TCETargetCodeGenInfo(Types));
8842 
8843   case llvm::Triple::x86: {
8844     bool IsDarwinVectorABI = Triple.isOSDarwin();
8845     bool RetSmallStructInRegABI =
8846         X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
8847     bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing();
8848 
8849     if (Triple.getOS() == llvm::Triple::Win32) {
8850       return SetCGInfo(new WinX86_32TargetCodeGenInfo(
8851           Types, IsDarwinVectorABI, RetSmallStructInRegABI,
8852           IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters));
8853     } else {
8854       return SetCGInfo(new X86_32TargetCodeGenInfo(
8855           Types, IsDarwinVectorABI, RetSmallStructInRegABI,
8856           IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters,
8857           CodeGenOpts.FloatABI == "soft"));
8858     }
8859   }
8860 
8861   case llvm::Triple::x86_64: {
8862     StringRef ABI = getTarget().getABI();
8863     X86AVXABILevel AVXLevel =
8864         (ABI == "avx512"
8865              ? X86AVXABILevel::AVX512
8866              : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None);
8867 
8868     switch (Triple.getOS()) {
8869     case llvm::Triple::Win32:
8870       return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel));
8871     case llvm::Triple::PS4:
8872       return SetCGInfo(new PS4TargetCodeGenInfo(Types, AVXLevel));
8873     default:
8874       return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel));
8875     }
8876   }
8877   case llvm::Triple::hexagon:
8878     return SetCGInfo(new HexagonTargetCodeGenInfo(Types));
8879   case llvm::Triple::lanai:
8880     return SetCGInfo(new LanaiTargetCodeGenInfo(Types));
8881   case llvm::Triple::r600:
8882     return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types));
8883   case llvm::Triple::amdgcn:
8884     return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types));
8885   case llvm::Triple::sparc:
8886     return SetCGInfo(new SparcV8TargetCodeGenInfo(Types));
8887   case llvm::Triple::sparcv9:
8888     return SetCGInfo(new SparcV9TargetCodeGenInfo(Types));
8889   case llvm::Triple::xcore:
8890     return SetCGInfo(new XCoreTargetCodeGenInfo(Types));
8891   case llvm::Triple::spir:
8892   case llvm::Triple::spir64:
8893     return SetCGInfo(new SPIRTargetCodeGenInfo(Types));
8894   }
8895 }
8896