1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // These classes wrap the information about a call or function 11 // definition used to handle ABI compliancy. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "TargetInfo.h" 16 #include "ABIInfo.h" 17 #include "CGCXXABI.h" 18 #include "CGValue.h" 19 #include "CodeGenFunction.h" 20 #include "clang/AST/RecordLayout.h" 21 #include "clang/CodeGen/CGFunctionInfo.h" 22 #include "clang/Frontend/CodeGenOptions.h" 23 #include "llvm/ADT/StringExtras.h" 24 #include "llvm/ADT/Triple.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/Type.h" 27 #include "llvm/Support/raw_ostream.h" 28 #include <algorithm> // std::sort 29 30 using namespace clang; 31 using namespace CodeGen; 32 33 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder, 34 llvm::Value *Array, 35 llvm::Value *Value, 36 unsigned FirstIndex, 37 unsigned LastIndex) { 38 // Alternatively, we could emit this as a loop in the source. 39 for (unsigned I = FirstIndex; I <= LastIndex; ++I) { 40 llvm::Value *Cell = 41 Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I); 42 Builder.CreateStore(Value, Cell); 43 } 44 } 45 46 static bool isAggregateTypeForABI(QualType T) { 47 return !CodeGenFunction::hasScalarEvaluationKind(T) || 48 T->isMemberFunctionPointerType(); 49 } 50 51 ABIInfo::~ABIInfo() {} 52 53 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT, 54 CGCXXABI &CXXABI) { 55 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); 56 if (!RD) 57 return CGCXXABI::RAA_Default; 58 return CXXABI.getRecordArgABI(RD); 59 } 60 61 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T, 62 CGCXXABI &CXXABI) { 63 const RecordType *RT = T->getAs<RecordType>(); 64 if (!RT) 65 return CGCXXABI::RAA_Default; 66 return getRecordArgABI(RT, CXXABI); 67 } 68 69 /// Pass transparent unions as if they were the type of the first element. Sema 70 /// should ensure that all elements of the union have the same "machine type". 71 static QualType useFirstFieldIfTransparentUnion(QualType Ty) { 72 if (const RecordType *UT = Ty->getAsUnionType()) { 73 const RecordDecl *UD = UT->getDecl(); 74 if (UD->hasAttr<TransparentUnionAttr>()) { 75 assert(!UD->field_empty() && "sema created an empty transparent union"); 76 return UD->field_begin()->getType(); 77 } 78 } 79 return Ty; 80 } 81 82 CGCXXABI &ABIInfo::getCXXABI() const { 83 return CGT.getCXXABI(); 84 } 85 86 ASTContext &ABIInfo::getContext() const { 87 return CGT.getContext(); 88 } 89 90 llvm::LLVMContext &ABIInfo::getVMContext() const { 91 return CGT.getLLVMContext(); 92 } 93 94 const llvm::DataLayout &ABIInfo::getDataLayout() const { 95 return CGT.getDataLayout(); 96 } 97 98 const TargetInfo &ABIInfo::getTarget() const { 99 return CGT.getTarget(); 100 } 101 102 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 103 return false; 104 } 105 106 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 107 uint64_t Members) const { 108 return false; 109 } 110 111 bool ABIInfo::shouldSignExtUnsignedType(QualType Ty) const { 112 return false; 113 } 114 115 void ABIArgInfo::dump() const { 116 raw_ostream &OS = llvm::errs(); 117 OS << "(ABIArgInfo Kind="; 118 switch (TheKind) { 119 case Direct: 120 OS << "Direct Type="; 121 if (llvm::Type *Ty = getCoerceToType()) 122 Ty->print(OS); 123 else 124 OS << "null"; 125 break; 126 case Extend: 127 OS << "Extend"; 128 break; 129 case Ignore: 130 OS << "Ignore"; 131 break; 132 case InAlloca: 133 OS << "InAlloca Offset=" << getInAllocaFieldIndex(); 134 break; 135 case Indirect: 136 OS << "Indirect Align=" << getIndirectAlign() 137 << " ByVal=" << getIndirectByVal() 138 << " Realign=" << getIndirectRealign(); 139 break; 140 case Expand: 141 OS << "Expand"; 142 break; 143 } 144 OS << ")\n"; 145 } 146 147 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; } 148 149 // If someone can figure out a general rule for this, that would be great. 150 // It's probably just doomed to be platform-dependent, though. 151 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const { 152 // Verified for: 153 // x86-64 FreeBSD, Linux, Darwin 154 // x86-32 FreeBSD, Linux, Darwin 155 // PowerPC Linux, Darwin 156 // ARM Darwin (*not* EABI) 157 // AArch64 Linux 158 return 32; 159 } 160 161 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args, 162 const FunctionNoProtoType *fnType) const { 163 // The following conventions are known to require this to be false: 164 // x86_stdcall 165 // MIPS 166 // For everything else, we just prefer false unless we opt out. 167 return false; 168 } 169 170 void 171 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib, 172 llvm::SmallString<24> &Opt) const { 173 // This assumes the user is passing a library name like "rt" instead of a 174 // filename like "librt.a/so", and that they don't care whether it's static or 175 // dynamic. 176 Opt = "-l"; 177 Opt += Lib; 178 } 179 180 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays); 181 182 /// isEmptyField - Return true iff a the field is "empty", that is it 183 /// is an unnamed bit-field or an (array of) empty record(s). 184 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD, 185 bool AllowArrays) { 186 if (FD->isUnnamedBitfield()) 187 return true; 188 189 QualType FT = FD->getType(); 190 191 // Constant arrays of empty records count as empty, strip them off. 192 // Constant arrays of zero length always count as empty. 193 if (AllowArrays) 194 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 195 if (AT->getSize() == 0) 196 return true; 197 FT = AT->getElementType(); 198 } 199 200 const RecordType *RT = FT->getAs<RecordType>(); 201 if (!RT) 202 return false; 203 204 // C++ record fields are never empty, at least in the Itanium ABI. 205 // 206 // FIXME: We should use a predicate for whether this behavior is true in the 207 // current ABI. 208 if (isa<CXXRecordDecl>(RT->getDecl())) 209 return false; 210 211 return isEmptyRecord(Context, FT, AllowArrays); 212 } 213 214 /// isEmptyRecord - Return true iff a structure contains only empty 215 /// fields. Note that a structure with a flexible array member is not 216 /// considered empty. 217 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) { 218 const RecordType *RT = T->getAs<RecordType>(); 219 if (!RT) 220 return 0; 221 const RecordDecl *RD = RT->getDecl(); 222 if (RD->hasFlexibleArrayMember()) 223 return false; 224 225 // If this is a C++ record, check the bases first. 226 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 227 for (const auto &I : CXXRD->bases()) 228 if (!isEmptyRecord(Context, I.getType(), true)) 229 return false; 230 231 for (const auto *I : RD->fields()) 232 if (!isEmptyField(Context, I, AllowArrays)) 233 return false; 234 return true; 235 } 236 237 /// isSingleElementStruct - Determine if a structure is a "single 238 /// element struct", i.e. it has exactly one non-empty field or 239 /// exactly one field which is itself a single element 240 /// struct. Structures with flexible array members are never 241 /// considered single element structs. 242 /// 243 /// \return The field declaration for the single non-empty field, if 244 /// it exists. 245 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) { 246 const RecordType *RT = T->getAs<RecordType>(); 247 if (!RT) 248 return nullptr; 249 250 const RecordDecl *RD = RT->getDecl(); 251 if (RD->hasFlexibleArrayMember()) 252 return nullptr; 253 254 const Type *Found = nullptr; 255 256 // If this is a C++ record, check the bases first. 257 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 258 for (const auto &I : CXXRD->bases()) { 259 // Ignore empty records. 260 if (isEmptyRecord(Context, I.getType(), true)) 261 continue; 262 263 // If we already found an element then this isn't a single-element struct. 264 if (Found) 265 return nullptr; 266 267 // If this is non-empty and not a single element struct, the composite 268 // cannot be a single element struct. 269 Found = isSingleElementStruct(I.getType(), Context); 270 if (!Found) 271 return nullptr; 272 } 273 } 274 275 // Check for single element. 276 for (const auto *FD : RD->fields()) { 277 QualType FT = FD->getType(); 278 279 // Ignore empty fields. 280 if (isEmptyField(Context, FD, true)) 281 continue; 282 283 // If we already found an element then this isn't a single-element 284 // struct. 285 if (Found) 286 return nullptr; 287 288 // Treat single element arrays as the element. 289 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 290 if (AT->getSize().getZExtValue() != 1) 291 break; 292 FT = AT->getElementType(); 293 } 294 295 if (!isAggregateTypeForABI(FT)) { 296 Found = FT.getTypePtr(); 297 } else { 298 Found = isSingleElementStruct(FT, Context); 299 if (!Found) 300 return nullptr; 301 } 302 } 303 304 // We don't consider a struct a single-element struct if it has 305 // padding beyond the element type. 306 if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T)) 307 return nullptr; 308 309 return Found; 310 } 311 312 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) { 313 // Treat complex types as the element type. 314 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 315 Ty = CTy->getElementType(); 316 317 // Check for a type which we know has a simple scalar argument-passing 318 // convention without any padding. (We're specifically looking for 32 319 // and 64-bit integer and integer-equivalents, float, and double.) 320 if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() && 321 !Ty->isEnumeralType() && !Ty->isBlockPointerType()) 322 return false; 323 324 uint64_t Size = Context.getTypeSize(Ty); 325 return Size == 32 || Size == 64; 326 } 327 328 /// canExpandIndirectArgument - Test whether an argument type which is to be 329 /// passed indirectly (on the stack) would have the equivalent layout if it was 330 /// expanded into separate arguments. If so, we prefer to do the latter to avoid 331 /// inhibiting optimizations. 332 /// 333 // FIXME: This predicate is missing many cases, currently it just follows 334 // llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We 335 // should probably make this smarter, or better yet make the LLVM backend 336 // capable of handling it. 337 static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) { 338 // We can only expand structure types. 339 const RecordType *RT = Ty->getAs<RecordType>(); 340 if (!RT) 341 return false; 342 343 // We can only expand (C) structures. 344 // 345 // FIXME: This needs to be generalized to handle classes as well. 346 const RecordDecl *RD = RT->getDecl(); 347 if (!RD->isStruct()) 348 return false; 349 350 // We try to expand CLike CXXRecordDecl. 351 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 352 if (!CXXRD->isCLike()) 353 return false; 354 } 355 356 uint64_t Size = 0; 357 358 for (const auto *FD : RD->fields()) { 359 if (!is32Or64BitBasicType(FD->getType(), Context)) 360 return false; 361 362 // FIXME: Reject bit-fields wholesale; there are two problems, we don't know 363 // how to expand them yet, and the predicate for telling if a bitfield still 364 // counts as "basic" is more complicated than what we were doing previously. 365 if (FD->isBitField()) 366 return false; 367 368 Size += Context.getTypeSize(FD->getType()); 369 } 370 371 // Make sure there are not any holes in the struct. 372 if (Size != Context.getTypeSize(Ty)) 373 return false; 374 375 return true; 376 } 377 378 namespace { 379 /// DefaultABIInfo - The default implementation for ABI specific 380 /// details. This implementation provides information which results in 381 /// self-consistent and sensible LLVM IR generation, but does not 382 /// conform to any particular ABI. 383 class DefaultABIInfo : public ABIInfo { 384 public: 385 DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 386 387 ABIArgInfo classifyReturnType(QualType RetTy) const; 388 ABIArgInfo classifyArgumentType(QualType RetTy) const; 389 390 void computeInfo(CGFunctionInfo &FI) const override { 391 if (!getCXXABI().classifyReturnType(FI)) 392 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 393 for (auto &I : FI.arguments()) 394 I.info = classifyArgumentType(I.type); 395 } 396 397 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 398 CodeGenFunction &CGF) const override; 399 }; 400 401 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo { 402 public: 403 DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 404 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 405 }; 406 407 llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 408 CodeGenFunction &CGF) const { 409 return nullptr; 410 } 411 412 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const { 413 Ty = useFirstFieldIfTransparentUnion(Ty); 414 415 if (isAggregateTypeForABI(Ty)) { 416 // Records with non-trivial destructors/copy-constructors should not be 417 // passed by value. 418 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 419 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 420 421 return ABIArgInfo::getIndirect(0); 422 } 423 424 // Treat an enum type as its underlying type. 425 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 426 Ty = EnumTy->getDecl()->getIntegerType(); 427 428 return (Ty->isPromotableIntegerType() ? 429 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 430 } 431 432 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const { 433 if (RetTy->isVoidType()) 434 return ABIArgInfo::getIgnore(); 435 436 if (isAggregateTypeForABI(RetTy)) 437 return ABIArgInfo::getIndirect(0); 438 439 // Treat an enum type as its underlying type. 440 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 441 RetTy = EnumTy->getDecl()->getIntegerType(); 442 443 return (RetTy->isPromotableIntegerType() ? 444 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 445 } 446 447 //===----------------------------------------------------------------------===// 448 // le32/PNaCl bitcode ABI Implementation 449 // 450 // This is a simplified version of the x86_32 ABI. Arguments and return values 451 // are always passed on the stack. 452 //===----------------------------------------------------------------------===// 453 454 class PNaClABIInfo : public ABIInfo { 455 public: 456 PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 457 458 ABIArgInfo classifyReturnType(QualType RetTy) const; 459 ABIArgInfo classifyArgumentType(QualType RetTy) const; 460 461 void computeInfo(CGFunctionInfo &FI) const override; 462 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 463 CodeGenFunction &CGF) const override; 464 }; 465 466 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo { 467 public: 468 PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 469 : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {} 470 }; 471 472 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const { 473 if (!getCXXABI().classifyReturnType(FI)) 474 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 475 476 for (auto &I : FI.arguments()) 477 I.info = classifyArgumentType(I.type); 478 } 479 480 llvm::Value *PNaClABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 481 CodeGenFunction &CGF) const { 482 return nullptr; 483 } 484 485 /// \brief Classify argument of given type \p Ty. 486 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const { 487 if (isAggregateTypeForABI(Ty)) { 488 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 489 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 490 return ABIArgInfo::getIndirect(0); 491 } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 492 // Treat an enum type as its underlying type. 493 Ty = EnumTy->getDecl()->getIntegerType(); 494 } else if (Ty->isFloatingType()) { 495 // Floating-point types don't go inreg. 496 return ABIArgInfo::getDirect(); 497 } 498 499 return (Ty->isPromotableIntegerType() ? 500 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 501 } 502 503 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const { 504 if (RetTy->isVoidType()) 505 return ABIArgInfo::getIgnore(); 506 507 // In the PNaCl ABI we always return records/structures on the stack. 508 if (isAggregateTypeForABI(RetTy)) 509 return ABIArgInfo::getIndirect(0); 510 511 // Treat an enum type as its underlying type. 512 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 513 RetTy = EnumTy->getDecl()->getIntegerType(); 514 515 return (RetTy->isPromotableIntegerType() ? 516 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 517 } 518 519 /// IsX86_MMXType - Return true if this is an MMX type. 520 bool IsX86_MMXType(llvm::Type *IRType) { 521 // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>. 522 return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 && 523 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() && 524 IRType->getScalarSizeInBits() != 64; 525 } 526 527 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 528 StringRef Constraint, 529 llvm::Type* Ty) { 530 if ((Constraint == "y" || Constraint == "&y") && Ty->isVectorTy()) { 531 if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) { 532 // Invalid MMX constraint 533 return nullptr; 534 } 535 536 return llvm::Type::getX86_MMXTy(CGF.getLLVMContext()); 537 } 538 539 // No operation needed 540 return Ty; 541 } 542 543 /// Returns true if this type can be passed in SSE registers with the 544 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64. 545 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) { 546 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 547 if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) 548 return true; 549 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 550 // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX 551 // registers specially. 552 unsigned VecSize = Context.getTypeSize(VT); 553 if (VecSize == 128 || VecSize == 256 || VecSize == 512) 554 return true; 555 } 556 return false; 557 } 558 559 /// Returns true if this aggregate is small enough to be passed in SSE registers 560 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64. 561 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) { 562 return NumMembers <= 4; 563 } 564 565 //===----------------------------------------------------------------------===// 566 // X86-32 ABI Implementation 567 //===----------------------------------------------------------------------===// 568 569 /// \brief Similar to llvm::CCState, but for Clang. 570 struct CCState { 571 CCState(unsigned CC) : CC(CC), FreeRegs(0), FreeSSERegs(0) {} 572 573 unsigned CC; 574 unsigned FreeRegs; 575 unsigned FreeSSERegs; 576 }; 577 578 /// X86_32ABIInfo - The X86-32 ABI information. 579 class X86_32ABIInfo : public ABIInfo { 580 enum Class { 581 Integer, 582 Float 583 }; 584 585 static const unsigned MinABIStackAlignInBytes = 4; 586 587 bool IsDarwinVectorABI; 588 bool IsSmallStructInRegABI; 589 bool IsWin32StructABI; 590 unsigned DefaultNumRegisterParameters; 591 592 static bool isRegisterSize(unsigned Size) { 593 return (Size == 8 || Size == 16 || Size == 32 || Size == 64); 594 } 595 596 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 597 // FIXME: Assumes vectorcall is in use. 598 return isX86VectorTypeForVectorCall(getContext(), Ty); 599 } 600 601 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 602 uint64_t NumMembers) const override { 603 // FIXME: Assumes vectorcall is in use. 604 return isX86VectorCallAggregateSmallEnough(NumMembers); 605 } 606 607 bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const; 608 609 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 610 /// such that the argument will be passed in memory. 611 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 612 613 ABIArgInfo getIndirectReturnResult(CCState &State) const; 614 615 /// \brief Return the alignment to use for the given type on the stack. 616 unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const; 617 618 Class classify(QualType Ty) const; 619 ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const; 620 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 621 bool shouldUseInReg(QualType Ty, CCState &State, bool &NeedsPadding) const; 622 623 /// \brief Rewrite the function info so that all memory arguments use 624 /// inalloca. 625 void rewriteWithInAlloca(CGFunctionInfo &FI) const; 626 627 void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 628 unsigned &StackOffset, ABIArgInfo &Info, 629 QualType Type) const; 630 631 public: 632 633 void computeInfo(CGFunctionInfo &FI) const override; 634 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 635 CodeGenFunction &CGF) const override; 636 637 X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p, bool w, 638 unsigned r) 639 : ABIInfo(CGT), IsDarwinVectorABI(d), IsSmallStructInRegABI(p), 640 IsWin32StructABI(w), DefaultNumRegisterParameters(r) {} 641 }; 642 643 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo { 644 public: 645 X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 646 bool d, bool p, bool w, unsigned r) 647 :TargetCodeGenInfo(new X86_32ABIInfo(CGT, d, p, w, r)) {} 648 649 static bool isStructReturnInRegABI( 650 const llvm::Triple &Triple, const CodeGenOptions &Opts); 651 652 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 653 CodeGen::CodeGenModule &CGM) const override; 654 655 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 656 // Darwin uses different dwarf register numbers for EH. 657 if (CGM.getTarget().getTriple().isOSDarwin()) return 5; 658 return 4; 659 } 660 661 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 662 llvm::Value *Address) const override; 663 664 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 665 StringRef Constraint, 666 llvm::Type* Ty) const override { 667 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 668 } 669 670 void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue, 671 std::string &Constraints, 672 std::vector<llvm::Type *> &ResultRegTypes, 673 std::vector<llvm::Type *> &ResultTruncRegTypes, 674 std::vector<LValue> &ResultRegDests, 675 std::string &AsmString, 676 unsigned NumOutputs) const override; 677 678 llvm::Constant * 679 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 680 unsigned Sig = (0xeb << 0) | // jmp rel8 681 (0x06 << 8) | // .+0x08 682 ('F' << 16) | 683 ('T' << 24); 684 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 685 } 686 }; 687 688 } 689 690 /// Rewrite input constraint references after adding some output constraints. 691 /// In the case where there is one output and one input and we add one output, 692 /// we need to replace all operand references greater than or equal to 1: 693 /// mov $0, $1 694 /// mov eax, $1 695 /// The result will be: 696 /// mov $0, $2 697 /// mov eax, $2 698 static void rewriteInputConstraintReferences(unsigned FirstIn, 699 unsigned NumNewOuts, 700 std::string &AsmString) { 701 std::string Buf; 702 llvm::raw_string_ostream OS(Buf); 703 size_t Pos = 0; 704 while (Pos < AsmString.size()) { 705 size_t DollarStart = AsmString.find('$', Pos); 706 if (DollarStart == std::string::npos) 707 DollarStart = AsmString.size(); 708 size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart); 709 if (DollarEnd == std::string::npos) 710 DollarEnd = AsmString.size(); 711 OS << StringRef(&AsmString[Pos], DollarEnd - Pos); 712 Pos = DollarEnd; 713 size_t NumDollars = DollarEnd - DollarStart; 714 if (NumDollars % 2 != 0 && Pos < AsmString.size()) { 715 // We have an operand reference. 716 size_t DigitStart = Pos; 717 size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart); 718 if (DigitEnd == std::string::npos) 719 DigitEnd = AsmString.size(); 720 StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart); 721 unsigned OperandIndex; 722 if (!OperandStr.getAsInteger(10, OperandIndex)) { 723 if (OperandIndex >= FirstIn) 724 OperandIndex += NumNewOuts; 725 OS << OperandIndex; 726 } else { 727 OS << OperandStr; 728 } 729 Pos = DigitEnd; 730 } 731 } 732 AsmString = std::move(OS.str()); 733 } 734 735 /// Add output constraints for EAX:EDX because they are return registers. 736 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs( 737 CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints, 738 std::vector<llvm::Type *> &ResultRegTypes, 739 std::vector<llvm::Type *> &ResultTruncRegTypes, 740 std::vector<LValue> &ResultRegDests, std::string &AsmString, 741 unsigned NumOutputs) const { 742 uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType()); 743 744 // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is 745 // larger. 746 if (!Constraints.empty()) 747 Constraints += ','; 748 if (RetWidth <= 32) { 749 Constraints += "={eax}"; 750 ResultRegTypes.push_back(CGF.Int32Ty); 751 } else { 752 // Use the 'A' constraint for EAX:EDX. 753 Constraints += "=A"; 754 ResultRegTypes.push_back(CGF.Int64Ty); 755 } 756 757 // Truncate EAX or EAX:EDX to an integer of the appropriate size. 758 llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth); 759 ResultTruncRegTypes.push_back(CoerceTy); 760 761 // Coerce the integer by bitcasting the return slot pointer. 762 ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(), 763 CoerceTy->getPointerTo())); 764 ResultRegDests.push_back(ReturnSlot); 765 766 rewriteInputConstraintReferences(NumOutputs, 1, AsmString); 767 } 768 769 /// shouldReturnTypeInRegister - Determine if the given type should be 770 /// passed in a register (for the Darwin ABI). 771 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty, 772 ASTContext &Context) const { 773 uint64_t Size = Context.getTypeSize(Ty); 774 775 // Type must be register sized. 776 if (!isRegisterSize(Size)) 777 return false; 778 779 if (Ty->isVectorType()) { 780 // 64- and 128- bit vectors inside structures are not returned in 781 // registers. 782 if (Size == 64 || Size == 128) 783 return false; 784 785 return true; 786 } 787 788 // If this is a builtin, pointer, enum, complex type, member pointer, or 789 // member function pointer it is ok. 790 if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() || 791 Ty->isAnyComplexType() || Ty->isEnumeralType() || 792 Ty->isBlockPointerType() || Ty->isMemberPointerType()) 793 return true; 794 795 // Arrays are treated like records. 796 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) 797 return shouldReturnTypeInRegister(AT->getElementType(), Context); 798 799 // Otherwise, it must be a record type. 800 const RecordType *RT = Ty->getAs<RecordType>(); 801 if (!RT) return false; 802 803 // FIXME: Traverse bases here too. 804 805 // Structure types are passed in register if all fields would be 806 // passed in a register. 807 for (const auto *FD : RT->getDecl()->fields()) { 808 // Empty fields are ignored. 809 if (isEmptyField(Context, FD, true)) 810 continue; 811 812 // Check fields recursively. 813 if (!shouldReturnTypeInRegister(FD->getType(), Context)) 814 return false; 815 } 816 return true; 817 } 818 819 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(CCState &State) const { 820 // If the return value is indirect, then the hidden argument is consuming one 821 // integer register. 822 if (State.FreeRegs) { 823 --State.FreeRegs; 824 return ABIArgInfo::getIndirectInReg(/*Align=*/0, /*ByVal=*/false); 825 } 826 return ABIArgInfo::getIndirect(/*Align=*/0, /*ByVal=*/false); 827 } 828 829 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, 830 CCState &State) const { 831 if (RetTy->isVoidType()) 832 return ABIArgInfo::getIgnore(); 833 834 const Type *Base = nullptr; 835 uint64_t NumElts = 0; 836 if (State.CC == llvm::CallingConv::X86_VectorCall && 837 isHomogeneousAggregate(RetTy, Base, NumElts)) { 838 // The LLVM struct type for such an aggregate should lower properly. 839 return ABIArgInfo::getDirect(); 840 } 841 842 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 843 // On Darwin, some vectors are returned in registers. 844 if (IsDarwinVectorABI) { 845 uint64_t Size = getContext().getTypeSize(RetTy); 846 847 // 128-bit vectors are a special case; they are returned in 848 // registers and we need to make sure to pick a type the LLVM 849 // backend will like. 850 if (Size == 128) 851 return ABIArgInfo::getDirect(llvm::VectorType::get( 852 llvm::Type::getInt64Ty(getVMContext()), 2)); 853 854 // Always return in register if it fits in a general purpose 855 // register, or if it is 64 bits and has a single element. 856 if ((Size == 8 || Size == 16 || Size == 32) || 857 (Size == 64 && VT->getNumElements() == 1)) 858 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 859 Size)); 860 861 return getIndirectReturnResult(State); 862 } 863 864 return ABIArgInfo::getDirect(); 865 } 866 867 if (isAggregateTypeForABI(RetTy)) { 868 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 869 // Structures with flexible arrays are always indirect. 870 if (RT->getDecl()->hasFlexibleArrayMember()) 871 return getIndirectReturnResult(State); 872 } 873 874 // If specified, structs and unions are always indirect. 875 if (!IsSmallStructInRegABI && !RetTy->isAnyComplexType()) 876 return getIndirectReturnResult(State); 877 878 // Small structures which are register sized are generally returned 879 // in a register. 880 if (shouldReturnTypeInRegister(RetTy, getContext())) { 881 uint64_t Size = getContext().getTypeSize(RetTy); 882 883 // As a special-case, if the struct is a "single-element" struct, and 884 // the field is of type "float" or "double", return it in a 885 // floating-point register. (MSVC does not apply this special case.) 886 // We apply a similar transformation for pointer types to improve the 887 // quality of the generated IR. 888 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 889 if ((!IsWin32StructABI && SeltTy->isRealFloatingType()) 890 || SeltTy->hasPointerRepresentation()) 891 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 892 893 // FIXME: We should be able to narrow this integer in cases with dead 894 // padding. 895 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size)); 896 } 897 898 return getIndirectReturnResult(State); 899 } 900 901 // Treat an enum type as its underlying type. 902 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 903 RetTy = EnumTy->getDecl()->getIntegerType(); 904 905 return (RetTy->isPromotableIntegerType() ? 906 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 907 } 908 909 static bool isSSEVectorType(ASTContext &Context, QualType Ty) { 910 return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128; 911 } 912 913 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) { 914 const RecordType *RT = Ty->getAs<RecordType>(); 915 if (!RT) 916 return 0; 917 const RecordDecl *RD = RT->getDecl(); 918 919 // If this is a C++ record, check the bases first. 920 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 921 for (const auto &I : CXXRD->bases()) 922 if (!isRecordWithSSEVectorType(Context, I.getType())) 923 return false; 924 925 for (const auto *i : RD->fields()) { 926 QualType FT = i->getType(); 927 928 if (isSSEVectorType(Context, FT)) 929 return true; 930 931 if (isRecordWithSSEVectorType(Context, FT)) 932 return true; 933 } 934 935 return false; 936 } 937 938 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty, 939 unsigned Align) const { 940 // Otherwise, if the alignment is less than or equal to the minimum ABI 941 // alignment, just use the default; the backend will handle this. 942 if (Align <= MinABIStackAlignInBytes) 943 return 0; // Use default alignment. 944 945 // On non-Darwin, the stack type alignment is always 4. 946 if (!IsDarwinVectorABI) { 947 // Set explicit alignment, since we may need to realign the top. 948 return MinABIStackAlignInBytes; 949 } 950 951 // Otherwise, if the type contains an SSE vector type, the alignment is 16. 952 if (Align >= 16 && (isSSEVectorType(getContext(), Ty) || 953 isRecordWithSSEVectorType(getContext(), Ty))) 954 return 16; 955 956 return MinABIStackAlignInBytes; 957 } 958 959 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal, 960 CCState &State) const { 961 if (!ByVal) { 962 if (State.FreeRegs) { 963 --State.FreeRegs; // Non-byval indirects just use one pointer. 964 return ABIArgInfo::getIndirectInReg(0, false); 965 } 966 return ABIArgInfo::getIndirect(0, false); 967 } 968 969 // Compute the byval alignment. 970 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 971 unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign); 972 if (StackAlign == 0) 973 return ABIArgInfo::getIndirect(4, /*ByVal=*/true); 974 975 // If the stack alignment is less than the type alignment, realign the 976 // argument. 977 bool Realign = TypeAlign > StackAlign; 978 return ABIArgInfo::getIndirect(StackAlign, /*ByVal=*/true, Realign); 979 } 980 981 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const { 982 const Type *T = isSingleElementStruct(Ty, getContext()); 983 if (!T) 984 T = Ty.getTypePtr(); 985 986 if (const BuiltinType *BT = T->getAs<BuiltinType>()) { 987 BuiltinType::Kind K = BT->getKind(); 988 if (K == BuiltinType::Float || K == BuiltinType::Double) 989 return Float; 990 } 991 return Integer; 992 } 993 994 bool X86_32ABIInfo::shouldUseInReg(QualType Ty, CCState &State, 995 bool &NeedsPadding) const { 996 NeedsPadding = false; 997 Class C = classify(Ty); 998 if (C == Float) 999 return false; 1000 1001 unsigned Size = getContext().getTypeSize(Ty); 1002 unsigned SizeInRegs = (Size + 31) / 32; 1003 1004 if (SizeInRegs == 0) 1005 return false; 1006 1007 if (SizeInRegs > State.FreeRegs) { 1008 State.FreeRegs = 0; 1009 return false; 1010 } 1011 1012 State.FreeRegs -= SizeInRegs; 1013 1014 if (State.CC == llvm::CallingConv::X86_FastCall || 1015 State.CC == llvm::CallingConv::X86_VectorCall) { 1016 if (Size > 32) 1017 return false; 1018 1019 if (Ty->isIntegralOrEnumerationType()) 1020 return true; 1021 1022 if (Ty->isPointerType()) 1023 return true; 1024 1025 if (Ty->isReferenceType()) 1026 return true; 1027 1028 if (State.FreeRegs) 1029 NeedsPadding = true; 1030 1031 return false; 1032 } 1033 1034 return true; 1035 } 1036 1037 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, 1038 CCState &State) const { 1039 // FIXME: Set alignment on indirect arguments. 1040 1041 Ty = useFirstFieldIfTransparentUnion(Ty); 1042 1043 // Check with the C++ ABI first. 1044 const RecordType *RT = Ty->getAs<RecordType>(); 1045 if (RT) { 1046 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 1047 if (RAA == CGCXXABI::RAA_Indirect) { 1048 return getIndirectResult(Ty, false, State); 1049 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 1050 // The field index doesn't matter, we'll fix it up later. 1051 return ABIArgInfo::getInAlloca(/*FieldIndex=*/0); 1052 } 1053 } 1054 1055 // vectorcall adds the concept of a homogenous vector aggregate, similar 1056 // to other targets. 1057 const Type *Base = nullptr; 1058 uint64_t NumElts = 0; 1059 if (State.CC == llvm::CallingConv::X86_VectorCall && 1060 isHomogeneousAggregate(Ty, Base, NumElts)) { 1061 if (State.FreeSSERegs >= NumElts) { 1062 State.FreeSSERegs -= NumElts; 1063 if (Ty->isBuiltinType() || Ty->isVectorType()) 1064 return ABIArgInfo::getDirect(); 1065 return ABIArgInfo::getExpand(); 1066 } 1067 return getIndirectResult(Ty, /*ByVal=*/false, State); 1068 } 1069 1070 if (isAggregateTypeForABI(Ty)) { 1071 if (RT) { 1072 // Structs are always byval on win32, regardless of what they contain. 1073 if (IsWin32StructABI) 1074 return getIndirectResult(Ty, true, State); 1075 1076 // Structures with flexible arrays are always indirect. 1077 if (RT->getDecl()->hasFlexibleArrayMember()) 1078 return getIndirectResult(Ty, true, State); 1079 } 1080 1081 // Ignore empty structs/unions. 1082 if (isEmptyRecord(getContext(), Ty, true)) 1083 return ABIArgInfo::getIgnore(); 1084 1085 llvm::LLVMContext &LLVMContext = getVMContext(); 1086 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 1087 bool NeedsPadding; 1088 if (shouldUseInReg(Ty, State, NeedsPadding)) { 1089 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; 1090 SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32); 1091 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 1092 return ABIArgInfo::getDirectInReg(Result); 1093 } 1094 llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr; 1095 1096 // Expand small (<= 128-bit) record types when we know that the stack layout 1097 // of those arguments will match the struct. This is important because the 1098 // LLVM backend isn't smart enough to remove byval, which inhibits many 1099 // optimizations. 1100 if (getContext().getTypeSize(Ty) <= 4*32 && 1101 canExpandIndirectArgument(Ty, getContext())) 1102 return ABIArgInfo::getExpandWithPadding( 1103 State.CC == llvm::CallingConv::X86_FastCall || 1104 State.CC == llvm::CallingConv::X86_VectorCall, 1105 PaddingType); 1106 1107 return getIndirectResult(Ty, true, State); 1108 } 1109 1110 if (const VectorType *VT = Ty->getAs<VectorType>()) { 1111 // On Darwin, some vectors are passed in memory, we handle this by passing 1112 // it as an i8/i16/i32/i64. 1113 if (IsDarwinVectorABI) { 1114 uint64_t Size = getContext().getTypeSize(Ty); 1115 if ((Size == 8 || Size == 16 || Size == 32) || 1116 (Size == 64 && VT->getNumElements() == 1)) 1117 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1118 Size)); 1119 } 1120 1121 if (IsX86_MMXType(CGT.ConvertType(Ty))) 1122 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64)); 1123 1124 return ABIArgInfo::getDirect(); 1125 } 1126 1127 1128 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 1129 Ty = EnumTy->getDecl()->getIntegerType(); 1130 1131 bool NeedsPadding; 1132 bool InReg = shouldUseInReg(Ty, State, NeedsPadding); 1133 1134 if (Ty->isPromotableIntegerType()) { 1135 if (InReg) 1136 return ABIArgInfo::getExtendInReg(); 1137 return ABIArgInfo::getExtend(); 1138 } 1139 if (InReg) 1140 return ABIArgInfo::getDirectInReg(); 1141 return ABIArgInfo::getDirect(); 1142 } 1143 1144 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const { 1145 CCState State(FI.getCallingConvention()); 1146 if (State.CC == llvm::CallingConv::X86_FastCall) 1147 State.FreeRegs = 2; 1148 else if (State.CC == llvm::CallingConv::X86_VectorCall) { 1149 State.FreeRegs = 2; 1150 State.FreeSSERegs = 6; 1151 } else if (FI.getHasRegParm()) 1152 State.FreeRegs = FI.getRegParm(); 1153 else 1154 State.FreeRegs = DefaultNumRegisterParameters; 1155 1156 if (!getCXXABI().classifyReturnType(FI)) { 1157 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State); 1158 } else if (FI.getReturnInfo().isIndirect()) { 1159 // The C++ ABI is not aware of register usage, so we have to check if the 1160 // return value was sret and put it in a register ourselves if appropriate. 1161 if (State.FreeRegs) { 1162 --State.FreeRegs; // The sret parameter consumes a register. 1163 FI.getReturnInfo().setInReg(true); 1164 } 1165 } 1166 1167 // The chain argument effectively gives us another free register. 1168 if (FI.isChainCall()) 1169 ++State.FreeRegs; 1170 1171 bool UsedInAlloca = false; 1172 for (auto &I : FI.arguments()) { 1173 I.info = classifyArgumentType(I.type, State); 1174 UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca); 1175 } 1176 1177 // If we needed to use inalloca for any argument, do a second pass and rewrite 1178 // all the memory arguments to use inalloca. 1179 if (UsedInAlloca) 1180 rewriteWithInAlloca(FI); 1181 } 1182 1183 void 1184 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1185 unsigned &StackOffset, 1186 ABIArgInfo &Info, QualType Type) const { 1187 assert(StackOffset % 4U == 0 && "unaligned inalloca struct"); 1188 Info = ABIArgInfo::getInAlloca(FrameFields.size()); 1189 FrameFields.push_back(CGT.ConvertTypeForMem(Type)); 1190 StackOffset += getContext().getTypeSizeInChars(Type).getQuantity(); 1191 1192 // Insert padding bytes to respect alignment. For x86_32, each argument is 4 1193 // byte aligned. 1194 if (StackOffset % 4U) { 1195 unsigned OldOffset = StackOffset; 1196 StackOffset = llvm::RoundUpToAlignment(StackOffset, 4U); 1197 unsigned NumBytes = StackOffset - OldOffset; 1198 assert(NumBytes); 1199 llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext()); 1200 Ty = llvm::ArrayType::get(Ty, NumBytes); 1201 FrameFields.push_back(Ty); 1202 } 1203 } 1204 1205 static bool isArgInAlloca(const ABIArgInfo &Info) { 1206 // Leave ignored and inreg arguments alone. 1207 switch (Info.getKind()) { 1208 case ABIArgInfo::InAlloca: 1209 return true; 1210 case ABIArgInfo::Indirect: 1211 assert(Info.getIndirectByVal()); 1212 return true; 1213 case ABIArgInfo::Ignore: 1214 return false; 1215 case ABIArgInfo::Direct: 1216 case ABIArgInfo::Extend: 1217 case ABIArgInfo::Expand: 1218 if (Info.getInReg()) 1219 return false; 1220 return true; 1221 } 1222 llvm_unreachable("invalid enum"); 1223 } 1224 1225 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const { 1226 assert(IsWin32StructABI && "inalloca only supported on win32"); 1227 1228 // Build a packed struct type for all of the arguments in memory. 1229 SmallVector<llvm::Type *, 6> FrameFields; 1230 1231 unsigned StackOffset = 0; 1232 CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end(); 1233 1234 // Put 'this' into the struct before 'sret', if necessary. 1235 bool IsThisCall = 1236 FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall; 1237 ABIArgInfo &Ret = FI.getReturnInfo(); 1238 if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall && 1239 isArgInAlloca(I->info)) { 1240 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 1241 ++I; 1242 } 1243 1244 // Put the sret parameter into the inalloca struct if it's in memory. 1245 if (Ret.isIndirect() && !Ret.getInReg()) { 1246 CanQualType PtrTy = getContext().getPointerType(FI.getReturnType()); 1247 addFieldToArgStruct(FrameFields, StackOffset, Ret, PtrTy); 1248 // On Windows, the hidden sret parameter is always returned in eax. 1249 Ret.setInAllocaSRet(IsWin32StructABI); 1250 } 1251 1252 // Skip the 'this' parameter in ecx. 1253 if (IsThisCall) 1254 ++I; 1255 1256 // Put arguments passed in memory into the struct. 1257 for (; I != E; ++I) { 1258 if (isArgInAlloca(I->info)) 1259 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 1260 } 1261 1262 FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields, 1263 /*isPacked=*/true)); 1264 } 1265 1266 llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 1267 CodeGenFunction &CGF) const { 1268 llvm::Type *BPP = CGF.Int8PtrPtrTy; 1269 1270 CGBuilderTy &Builder = CGF.Builder; 1271 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, 1272 "ap"); 1273 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 1274 1275 // Compute if the address needs to be aligned 1276 unsigned Align = CGF.getContext().getTypeAlignInChars(Ty).getQuantity(); 1277 Align = getTypeStackAlignInBytes(Ty, Align); 1278 Align = std::max(Align, 4U); 1279 if (Align > 4) { 1280 // addr = (addr + align - 1) & -align; 1281 llvm::Value *Offset = 1282 llvm::ConstantInt::get(CGF.Int32Ty, Align - 1); 1283 Addr = CGF.Builder.CreateGEP(Addr, Offset); 1284 llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(Addr, 1285 CGF.Int32Ty); 1286 llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -Align); 1287 Addr = CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask), 1288 Addr->getType(), 1289 "ap.cur.aligned"); 1290 } 1291 1292 llvm::Type *PTy = 1293 llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 1294 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); 1295 1296 uint64_t Offset = 1297 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, Align); 1298 llvm::Value *NextAddr = 1299 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), 1300 "ap.next"); 1301 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 1302 1303 return AddrTyped; 1304 } 1305 1306 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI( 1307 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 1308 assert(Triple.getArch() == llvm::Triple::x86); 1309 1310 switch (Opts.getStructReturnConvention()) { 1311 case CodeGenOptions::SRCK_Default: 1312 break; 1313 case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return 1314 return false; 1315 case CodeGenOptions::SRCK_InRegs: // -freg-struct-return 1316 return true; 1317 } 1318 1319 if (Triple.isOSDarwin()) 1320 return true; 1321 1322 switch (Triple.getOS()) { 1323 case llvm::Triple::DragonFly: 1324 case llvm::Triple::FreeBSD: 1325 case llvm::Triple::OpenBSD: 1326 case llvm::Triple::Bitrig: 1327 case llvm::Triple::Win32: 1328 return true; 1329 default: 1330 return false; 1331 } 1332 } 1333 1334 void X86_32TargetCodeGenInfo::setTargetAttributes(const Decl *D, 1335 llvm::GlobalValue *GV, 1336 CodeGen::CodeGenModule &CGM) const { 1337 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1338 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 1339 // Get the LLVM function. 1340 llvm::Function *Fn = cast<llvm::Function>(GV); 1341 1342 // Now add the 'alignstack' attribute with a value of 16. 1343 llvm::AttrBuilder B; 1344 B.addStackAlignmentAttr(16); 1345 Fn->addAttributes(llvm::AttributeSet::FunctionIndex, 1346 llvm::AttributeSet::get(CGM.getLLVMContext(), 1347 llvm::AttributeSet::FunctionIndex, 1348 B)); 1349 } 1350 } 1351 } 1352 1353 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable( 1354 CodeGen::CodeGenFunction &CGF, 1355 llvm::Value *Address) const { 1356 CodeGen::CGBuilderTy &Builder = CGF.Builder; 1357 1358 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 1359 1360 // 0-7 are the eight integer registers; the order is different 1361 // on Darwin (for EH), but the range is the same. 1362 // 8 is %eip. 1363 AssignToArrayRange(Builder, Address, Four8, 0, 8); 1364 1365 if (CGF.CGM.getTarget().getTriple().isOSDarwin()) { 1366 // 12-16 are st(0..4). Not sure why we stop at 4. 1367 // These have size 16, which is sizeof(long double) on 1368 // platforms with 8-byte alignment for that type. 1369 llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16); 1370 AssignToArrayRange(Builder, Address, Sixteen8, 12, 16); 1371 1372 } else { 1373 // 9 is %eflags, which doesn't get a size on Darwin for some 1374 // reason. 1375 Builder.CreateStore( 1376 Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9)); 1377 1378 // 11-16 are st(0..5). Not sure why we stop at 5. 1379 // These have size 12, which is sizeof(long double) on 1380 // platforms with 4-byte alignment for that type. 1381 llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12); 1382 AssignToArrayRange(Builder, Address, Twelve8, 11, 16); 1383 } 1384 1385 return false; 1386 } 1387 1388 //===----------------------------------------------------------------------===// 1389 // X86-64 ABI Implementation 1390 //===----------------------------------------------------------------------===// 1391 1392 1393 namespace { 1394 /// The AVX ABI level for X86 targets. 1395 enum class X86AVXABILevel { 1396 None, 1397 AVX, 1398 AVX512 1399 }; 1400 1401 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel. 1402 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) { 1403 switch (AVXLevel) { 1404 case X86AVXABILevel::AVX512: 1405 return 512; 1406 case X86AVXABILevel::AVX: 1407 return 256; 1408 case X86AVXABILevel::None: 1409 return 128; 1410 } 1411 llvm_unreachable("Unknown AVXLevel"); 1412 } 1413 1414 /// X86_64ABIInfo - The X86_64 ABI information. 1415 class X86_64ABIInfo : public ABIInfo { 1416 enum Class { 1417 Integer = 0, 1418 SSE, 1419 SSEUp, 1420 X87, 1421 X87Up, 1422 ComplexX87, 1423 NoClass, 1424 Memory 1425 }; 1426 1427 /// merge - Implement the X86_64 ABI merging algorithm. 1428 /// 1429 /// Merge an accumulating classification \arg Accum with a field 1430 /// classification \arg Field. 1431 /// 1432 /// \param Accum - The accumulating classification. This should 1433 /// always be either NoClass or the result of a previous merge 1434 /// call. In addition, this should never be Memory (the caller 1435 /// should just return Memory for the aggregate). 1436 static Class merge(Class Accum, Class Field); 1437 1438 /// postMerge - Implement the X86_64 ABI post merging algorithm. 1439 /// 1440 /// Post merger cleanup, reduces a malformed Hi and Lo pair to 1441 /// final MEMORY or SSE classes when necessary. 1442 /// 1443 /// \param AggregateSize - The size of the current aggregate in 1444 /// the classification process. 1445 /// 1446 /// \param Lo - The classification for the parts of the type 1447 /// residing in the low word of the containing object. 1448 /// 1449 /// \param Hi - The classification for the parts of the type 1450 /// residing in the higher words of the containing object. 1451 /// 1452 void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const; 1453 1454 /// classify - Determine the x86_64 register classes in which the 1455 /// given type T should be passed. 1456 /// 1457 /// \param Lo - The classification for the parts of the type 1458 /// residing in the low word of the containing object. 1459 /// 1460 /// \param Hi - The classification for the parts of the type 1461 /// residing in the high word of the containing object. 1462 /// 1463 /// \param OffsetBase - The bit offset of this type in the 1464 /// containing object. Some parameters are classified different 1465 /// depending on whether they straddle an eightbyte boundary. 1466 /// 1467 /// \param isNamedArg - Whether the argument in question is a "named" 1468 /// argument, as used in AMD64-ABI 3.5.7. 1469 /// 1470 /// If a word is unused its result will be NoClass; if a type should 1471 /// be passed in Memory then at least the classification of \arg Lo 1472 /// will be Memory. 1473 /// 1474 /// The \arg Lo class will be NoClass iff the argument is ignored. 1475 /// 1476 /// If the \arg Lo class is ComplexX87, then the \arg Hi class will 1477 /// also be ComplexX87. 1478 void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi, 1479 bool isNamedArg) const; 1480 1481 llvm::Type *GetByteVectorType(QualType Ty) const; 1482 llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType, 1483 unsigned IROffset, QualType SourceTy, 1484 unsigned SourceOffset) const; 1485 llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType, 1486 unsigned IROffset, QualType SourceTy, 1487 unsigned SourceOffset) const; 1488 1489 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 1490 /// such that the argument will be returned in memory. 1491 ABIArgInfo getIndirectReturnResult(QualType Ty) const; 1492 1493 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 1494 /// such that the argument will be passed in memory. 1495 /// 1496 /// \param freeIntRegs - The number of free integer registers remaining 1497 /// available. 1498 ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const; 1499 1500 ABIArgInfo classifyReturnType(QualType RetTy) const; 1501 1502 ABIArgInfo classifyArgumentType(QualType Ty, 1503 unsigned freeIntRegs, 1504 unsigned &neededInt, 1505 unsigned &neededSSE, 1506 bool isNamedArg) const; 1507 1508 bool IsIllegalVectorType(QualType Ty) const; 1509 1510 /// The 0.98 ABI revision clarified a lot of ambiguities, 1511 /// unfortunately in ways that were not always consistent with 1512 /// certain previous compilers. In particular, platforms which 1513 /// required strict binary compatibility with older versions of GCC 1514 /// may need to exempt themselves. 1515 bool honorsRevision0_98() const { 1516 return !getTarget().getTriple().isOSDarwin(); 1517 } 1518 1519 X86AVXABILevel AVXLevel; 1520 // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on 1521 // 64-bit hardware. 1522 bool Has64BitPointers; 1523 1524 public: 1525 X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) : 1526 ABIInfo(CGT), AVXLevel(AVXLevel), 1527 Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) { 1528 } 1529 1530 bool isPassedUsingAVXType(QualType type) const { 1531 unsigned neededInt, neededSSE; 1532 // The freeIntRegs argument doesn't matter here. 1533 ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE, 1534 /*isNamedArg*/true); 1535 if (info.isDirect()) { 1536 llvm::Type *ty = info.getCoerceToType(); 1537 if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty)) 1538 return (vectorTy->getBitWidth() > 128); 1539 } 1540 return false; 1541 } 1542 1543 void computeInfo(CGFunctionInfo &FI) const override; 1544 1545 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 1546 CodeGenFunction &CGF) const override; 1547 1548 bool has64BitPointers() const { 1549 return Has64BitPointers; 1550 } 1551 }; 1552 1553 /// WinX86_64ABIInfo - The Windows X86_64 ABI information. 1554 class WinX86_64ABIInfo : public ABIInfo { 1555 1556 ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, 1557 bool IsReturnType) const; 1558 1559 public: 1560 WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 1561 1562 void computeInfo(CGFunctionInfo &FI) const override; 1563 1564 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 1565 CodeGenFunction &CGF) const override; 1566 1567 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 1568 // FIXME: Assumes vectorcall is in use. 1569 return isX86VectorTypeForVectorCall(getContext(), Ty); 1570 } 1571 1572 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 1573 uint64_t NumMembers) const override { 1574 // FIXME: Assumes vectorcall is in use. 1575 return isX86VectorCallAggregateSmallEnough(NumMembers); 1576 } 1577 }; 1578 1579 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo { 1580 public: 1581 X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 1582 : TargetCodeGenInfo(new X86_64ABIInfo(CGT, AVXLevel)) {} 1583 1584 const X86_64ABIInfo &getABIInfo() const { 1585 return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo()); 1586 } 1587 1588 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 1589 return 7; 1590 } 1591 1592 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 1593 llvm::Value *Address) const override { 1594 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 1595 1596 // 0-15 are the 16 integer registers. 1597 // 16 is %rip. 1598 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 1599 return false; 1600 } 1601 1602 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 1603 StringRef Constraint, 1604 llvm::Type* Ty) const override { 1605 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 1606 } 1607 1608 bool isNoProtoCallVariadic(const CallArgList &args, 1609 const FunctionNoProtoType *fnType) const override { 1610 // The default CC on x86-64 sets %al to the number of SSA 1611 // registers used, and GCC sets this when calling an unprototyped 1612 // function, so we override the default behavior. However, don't do 1613 // that when AVX types are involved: the ABI explicitly states it is 1614 // undefined, and it doesn't work in practice because of how the ABI 1615 // defines varargs anyway. 1616 if (fnType->getCallConv() == CC_C) { 1617 bool HasAVXType = false; 1618 for (CallArgList::const_iterator 1619 it = args.begin(), ie = args.end(); it != ie; ++it) { 1620 if (getABIInfo().isPassedUsingAVXType(it->Ty)) { 1621 HasAVXType = true; 1622 break; 1623 } 1624 } 1625 1626 if (!HasAVXType) 1627 return true; 1628 } 1629 1630 return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType); 1631 } 1632 1633 llvm::Constant * 1634 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 1635 unsigned Sig; 1636 if (getABIInfo().has64BitPointers()) 1637 Sig = (0xeb << 0) | // jmp rel8 1638 (0x0a << 8) | // .+0x0c 1639 ('F' << 16) | 1640 ('T' << 24); 1641 else 1642 Sig = (0xeb << 0) | // jmp rel8 1643 (0x06 << 8) | // .+0x08 1644 ('F' << 16) | 1645 ('T' << 24); 1646 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 1647 } 1648 }; 1649 1650 class PS4TargetCodeGenInfo : public X86_64TargetCodeGenInfo { 1651 public: 1652 PS4TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 1653 : X86_64TargetCodeGenInfo(CGT, AVXLevel) {} 1654 1655 void getDependentLibraryOption(llvm::StringRef Lib, 1656 llvm::SmallString<24> &Opt) const override { 1657 Opt = "\01"; 1658 // If the argument contains a space, enclose it in quotes. 1659 if (Lib.find(" ") != StringRef::npos) 1660 Opt += "\"" + Lib.str() + "\""; 1661 else 1662 Opt += Lib; 1663 } 1664 }; 1665 1666 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) { 1667 // If the argument does not end in .lib, automatically add the suffix. 1668 // If the argument contains a space, enclose it in quotes. 1669 // This matches the behavior of MSVC. 1670 bool Quote = (Lib.find(" ") != StringRef::npos); 1671 std::string ArgStr = Quote ? "\"" : ""; 1672 ArgStr += Lib; 1673 if (!Lib.endswith_lower(".lib")) 1674 ArgStr += ".lib"; 1675 ArgStr += Quote ? "\"" : ""; 1676 return ArgStr; 1677 } 1678 1679 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo { 1680 public: 1681 WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 1682 bool d, bool p, bool w, unsigned RegParms) 1683 : X86_32TargetCodeGenInfo(CGT, d, p, w, RegParms) {} 1684 1685 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 1686 CodeGen::CodeGenModule &CGM) const override; 1687 1688 void getDependentLibraryOption(llvm::StringRef Lib, 1689 llvm::SmallString<24> &Opt) const override { 1690 Opt = "/DEFAULTLIB:"; 1691 Opt += qualifyWindowsLibrary(Lib); 1692 } 1693 1694 void getDetectMismatchOption(llvm::StringRef Name, 1695 llvm::StringRef Value, 1696 llvm::SmallString<32> &Opt) const override { 1697 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 1698 } 1699 }; 1700 1701 static void addStackProbeSizeTargetAttribute(const Decl *D, 1702 llvm::GlobalValue *GV, 1703 CodeGen::CodeGenModule &CGM) { 1704 if (isa<FunctionDecl>(D)) { 1705 if (CGM.getCodeGenOpts().StackProbeSize != 4096) { 1706 llvm::Function *Fn = cast<llvm::Function>(GV); 1707 1708 Fn->addFnAttr("stack-probe-size", 1709 llvm::utostr(CGM.getCodeGenOpts().StackProbeSize)); 1710 } 1711 } 1712 } 1713 1714 void WinX86_32TargetCodeGenInfo::setTargetAttributes(const Decl *D, 1715 llvm::GlobalValue *GV, 1716 CodeGen::CodeGenModule &CGM) const { 1717 X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 1718 1719 addStackProbeSizeTargetAttribute(D, GV, CGM); 1720 } 1721 1722 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo { 1723 public: 1724 WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 1725 X86AVXABILevel AVXLevel) 1726 : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {} 1727 1728 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 1729 CodeGen::CodeGenModule &CGM) const override; 1730 1731 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 1732 return 7; 1733 } 1734 1735 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 1736 llvm::Value *Address) const override { 1737 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 1738 1739 // 0-15 are the 16 integer registers. 1740 // 16 is %rip. 1741 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 1742 return false; 1743 } 1744 1745 void getDependentLibraryOption(llvm::StringRef Lib, 1746 llvm::SmallString<24> &Opt) const override { 1747 Opt = "/DEFAULTLIB:"; 1748 Opt += qualifyWindowsLibrary(Lib); 1749 } 1750 1751 void getDetectMismatchOption(llvm::StringRef Name, 1752 llvm::StringRef Value, 1753 llvm::SmallString<32> &Opt) const override { 1754 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 1755 } 1756 }; 1757 1758 void WinX86_64TargetCodeGenInfo::setTargetAttributes(const Decl *D, 1759 llvm::GlobalValue *GV, 1760 CodeGen::CodeGenModule &CGM) const { 1761 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 1762 1763 addStackProbeSizeTargetAttribute(D, GV, CGM); 1764 } 1765 } 1766 1767 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo, 1768 Class &Hi) const { 1769 // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done: 1770 // 1771 // (a) If one of the classes is Memory, the whole argument is passed in 1772 // memory. 1773 // 1774 // (b) If X87UP is not preceded by X87, the whole argument is passed in 1775 // memory. 1776 // 1777 // (c) If the size of the aggregate exceeds two eightbytes and the first 1778 // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole 1779 // argument is passed in memory. NOTE: This is necessary to keep the 1780 // ABI working for processors that don't support the __m256 type. 1781 // 1782 // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE. 1783 // 1784 // Some of these are enforced by the merging logic. Others can arise 1785 // only with unions; for example: 1786 // union { _Complex double; unsigned; } 1787 // 1788 // Note that clauses (b) and (c) were added in 0.98. 1789 // 1790 if (Hi == Memory) 1791 Lo = Memory; 1792 if (Hi == X87Up && Lo != X87 && honorsRevision0_98()) 1793 Lo = Memory; 1794 if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp)) 1795 Lo = Memory; 1796 if (Hi == SSEUp && Lo != SSE) 1797 Hi = SSE; 1798 } 1799 1800 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) { 1801 // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is 1802 // classified recursively so that always two fields are 1803 // considered. The resulting class is calculated according to 1804 // the classes of the fields in the eightbyte: 1805 // 1806 // (a) If both classes are equal, this is the resulting class. 1807 // 1808 // (b) If one of the classes is NO_CLASS, the resulting class is 1809 // the other class. 1810 // 1811 // (c) If one of the classes is MEMORY, the result is the MEMORY 1812 // class. 1813 // 1814 // (d) If one of the classes is INTEGER, the result is the 1815 // INTEGER. 1816 // 1817 // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class, 1818 // MEMORY is used as class. 1819 // 1820 // (f) Otherwise class SSE is used. 1821 1822 // Accum should never be memory (we should have returned) or 1823 // ComplexX87 (because this cannot be passed in a structure). 1824 assert((Accum != Memory && Accum != ComplexX87) && 1825 "Invalid accumulated classification during merge."); 1826 if (Accum == Field || Field == NoClass) 1827 return Accum; 1828 if (Field == Memory) 1829 return Memory; 1830 if (Accum == NoClass) 1831 return Field; 1832 if (Accum == Integer || Field == Integer) 1833 return Integer; 1834 if (Field == X87 || Field == X87Up || Field == ComplexX87 || 1835 Accum == X87 || Accum == X87Up) 1836 return Memory; 1837 return SSE; 1838 } 1839 1840 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, 1841 Class &Lo, Class &Hi, bool isNamedArg) const { 1842 // FIXME: This code can be simplified by introducing a simple value class for 1843 // Class pairs with appropriate constructor methods for the various 1844 // situations. 1845 1846 // FIXME: Some of the split computations are wrong; unaligned vectors 1847 // shouldn't be passed in registers for example, so there is no chance they 1848 // can straddle an eightbyte. Verify & simplify. 1849 1850 Lo = Hi = NoClass; 1851 1852 Class &Current = OffsetBase < 64 ? Lo : Hi; 1853 Current = Memory; 1854 1855 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 1856 BuiltinType::Kind k = BT->getKind(); 1857 1858 if (k == BuiltinType::Void) { 1859 Current = NoClass; 1860 } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) { 1861 Lo = Integer; 1862 Hi = Integer; 1863 } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) { 1864 Current = Integer; 1865 } else if (k == BuiltinType::Float || k == BuiltinType::Double) { 1866 Current = SSE; 1867 } else if (k == BuiltinType::LongDouble) { 1868 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 1869 if (LDF == &llvm::APFloat::IEEEquad) { 1870 Lo = SSE; 1871 Hi = SSEUp; 1872 } else if (LDF == &llvm::APFloat::x87DoubleExtended) { 1873 Lo = X87; 1874 Hi = X87Up; 1875 } else if (LDF == &llvm::APFloat::IEEEdouble) { 1876 Current = SSE; 1877 } else 1878 llvm_unreachable("unexpected long double representation!"); 1879 } 1880 // FIXME: _Decimal32 and _Decimal64 are SSE. 1881 // FIXME: _float128 and _Decimal128 are (SSE, SSEUp). 1882 return; 1883 } 1884 1885 if (const EnumType *ET = Ty->getAs<EnumType>()) { 1886 // Classify the underlying integer type. 1887 classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg); 1888 return; 1889 } 1890 1891 if (Ty->hasPointerRepresentation()) { 1892 Current = Integer; 1893 return; 1894 } 1895 1896 if (Ty->isMemberPointerType()) { 1897 if (Ty->isMemberFunctionPointerType()) { 1898 if (Has64BitPointers) { 1899 // If Has64BitPointers, this is an {i64, i64}, so classify both 1900 // Lo and Hi now. 1901 Lo = Hi = Integer; 1902 } else { 1903 // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that 1904 // straddles an eightbyte boundary, Hi should be classified as well. 1905 uint64_t EB_FuncPtr = (OffsetBase) / 64; 1906 uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64; 1907 if (EB_FuncPtr != EB_ThisAdj) { 1908 Lo = Hi = Integer; 1909 } else { 1910 Current = Integer; 1911 } 1912 } 1913 } else { 1914 Current = Integer; 1915 } 1916 return; 1917 } 1918 1919 if (const VectorType *VT = Ty->getAs<VectorType>()) { 1920 uint64_t Size = getContext().getTypeSize(VT); 1921 if (Size == 1 || Size == 8 || Size == 16 || Size == 32) { 1922 // gcc passes the following as integer: 1923 // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float> 1924 // 2 bytes - <2 x char>, <1 x short> 1925 // 1 byte - <1 x char> 1926 Current = Integer; 1927 1928 // If this type crosses an eightbyte boundary, it should be 1929 // split. 1930 uint64_t EB_Lo = (OffsetBase) / 64; 1931 uint64_t EB_Hi = (OffsetBase + Size - 1) / 64; 1932 if (EB_Lo != EB_Hi) 1933 Hi = Lo; 1934 } else if (Size == 64) { 1935 // gcc passes <1 x double> in memory. :( 1936 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) 1937 return; 1938 1939 // gcc passes <1 x long long> as INTEGER. 1940 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong) || 1941 VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULongLong) || 1942 VT->getElementType()->isSpecificBuiltinType(BuiltinType::Long) || 1943 VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULong)) 1944 Current = Integer; 1945 else 1946 Current = SSE; 1947 1948 // If this type crosses an eightbyte boundary, it should be 1949 // split. 1950 if (OffsetBase && OffsetBase != 64) 1951 Hi = Lo; 1952 } else if (Size == 128 || 1953 (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) { 1954 // Arguments of 256-bits are split into four eightbyte chunks. The 1955 // least significant one belongs to class SSE and all the others to class 1956 // SSEUP. The original Lo and Hi design considers that types can't be 1957 // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense. 1958 // This design isn't correct for 256-bits, but since there're no cases 1959 // where the upper parts would need to be inspected, avoid adding 1960 // complexity and just consider Hi to match the 64-256 part. 1961 // 1962 // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in 1963 // registers if they are "named", i.e. not part of the "..." of a 1964 // variadic function. 1965 // 1966 // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are 1967 // split into eight eightbyte chunks, one SSE and seven SSEUP. 1968 Lo = SSE; 1969 Hi = SSEUp; 1970 } 1971 return; 1972 } 1973 1974 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 1975 QualType ET = getContext().getCanonicalType(CT->getElementType()); 1976 1977 uint64_t Size = getContext().getTypeSize(Ty); 1978 if (ET->isIntegralOrEnumerationType()) { 1979 if (Size <= 64) 1980 Current = Integer; 1981 else if (Size <= 128) 1982 Lo = Hi = Integer; 1983 } else if (ET == getContext().FloatTy) { 1984 Current = SSE; 1985 } else if (ET == getContext().DoubleTy) { 1986 Lo = Hi = SSE; 1987 } else if (ET == getContext().LongDoubleTy) { 1988 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 1989 if (LDF == &llvm::APFloat::IEEEquad) 1990 Current = Memory; 1991 else if (LDF == &llvm::APFloat::x87DoubleExtended) 1992 Current = ComplexX87; 1993 else if (LDF == &llvm::APFloat::IEEEdouble) 1994 Lo = Hi = SSE; 1995 else 1996 llvm_unreachable("unexpected long double representation!"); 1997 } 1998 1999 // If this complex type crosses an eightbyte boundary then it 2000 // should be split. 2001 uint64_t EB_Real = (OffsetBase) / 64; 2002 uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64; 2003 if (Hi == NoClass && EB_Real != EB_Imag) 2004 Hi = Lo; 2005 2006 return; 2007 } 2008 2009 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 2010 // Arrays are treated like structures. 2011 2012 uint64_t Size = getContext().getTypeSize(Ty); 2013 2014 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 2015 // than four eightbytes, ..., it has class MEMORY. 2016 if (Size > 256) 2017 return; 2018 2019 // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned 2020 // fields, it has class MEMORY. 2021 // 2022 // Only need to check alignment of array base. 2023 if (OffsetBase % getContext().getTypeAlign(AT->getElementType())) 2024 return; 2025 2026 // Otherwise implement simplified merge. We could be smarter about 2027 // this, but it isn't worth it and would be harder to verify. 2028 Current = NoClass; 2029 uint64_t EltSize = getContext().getTypeSize(AT->getElementType()); 2030 uint64_t ArraySize = AT->getSize().getZExtValue(); 2031 2032 // The only case a 256-bit wide vector could be used is when the array 2033 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 2034 // to work for sizes wider than 128, early check and fallback to memory. 2035 if (Size > 128 && EltSize != 256) 2036 return; 2037 2038 for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) { 2039 Class FieldLo, FieldHi; 2040 classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg); 2041 Lo = merge(Lo, FieldLo); 2042 Hi = merge(Hi, FieldHi); 2043 if (Lo == Memory || Hi == Memory) 2044 break; 2045 } 2046 2047 postMerge(Size, Lo, Hi); 2048 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification."); 2049 return; 2050 } 2051 2052 if (const RecordType *RT = Ty->getAs<RecordType>()) { 2053 uint64_t Size = getContext().getTypeSize(Ty); 2054 2055 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 2056 // than four eightbytes, ..., it has class MEMORY. 2057 if (Size > 256) 2058 return; 2059 2060 // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial 2061 // copy constructor or a non-trivial destructor, it is passed by invisible 2062 // reference. 2063 if (getRecordArgABI(RT, getCXXABI())) 2064 return; 2065 2066 const RecordDecl *RD = RT->getDecl(); 2067 2068 // Assume variable sized types are passed in memory. 2069 if (RD->hasFlexibleArrayMember()) 2070 return; 2071 2072 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 2073 2074 // Reset Lo class, this will be recomputed. 2075 Current = NoClass; 2076 2077 // If this is a C++ record, classify the bases first. 2078 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 2079 for (const auto &I : CXXRD->bases()) { 2080 assert(!I.isVirtual() && !I.getType()->isDependentType() && 2081 "Unexpected base class!"); 2082 const CXXRecordDecl *Base = 2083 cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); 2084 2085 // Classify this field. 2086 // 2087 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a 2088 // single eightbyte, each is classified separately. Each eightbyte gets 2089 // initialized to class NO_CLASS. 2090 Class FieldLo, FieldHi; 2091 uint64_t Offset = 2092 OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base)); 2093 classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg); 2094 Lo = merge(Lo, FieldLo); 2095 Hi = merge(Hi, FieldHi); 2096 if (Lo == Memory || Hi == Memory) { 2097 postMerge(Size, Lo, Hi); 2098 return; 2099 } 2100 } 2101 } 2102 2103 // Classify the fields one at a time, merging the results. 2104 unsigned idx = 0; 2105 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 2106 i != e; ++i, ++idx) { 2107 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 2108 bool BitField = i->isBitField(); 2109 2110 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than 2111 // four eightbytes, or it contains unaligned fields, it has class MEMORY. 2112 // 2113 // The only case a 256-bit wide vector could be used is when the struct 2114 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 2115 // to work for sizes wider than 128, early check and fallback to memory. 2116 // 2117 if (Size > 128 && getContext().getTypeSize(i->getType()) != 256) { 2118 Lo = Memory; 2119 postMerge(Size, Lo, Hi); 2120 return; 2121 } 2122 // Note, skip this test for bit-fields, see below. 2123 if (!BitField && Offset % getContext().getTypeAlign(i->getType())) { 2124 Lo = Memory; 2125 postMerge(Size, Lo, Hi); 2126 return; 2127 } 2128 2129 // Classify this field. 2130 // 2131 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate 2132 // exceeds a single eightbyte, each is classified 2133 // separately. Each eightbyte gets initialized to class 2134 // NO_CLASS. 2135 Class FieldLo, FieldHi; 2136 2137 // Bit-fields require special handling, they do not force the 2138 // structure to be passed in memory even if unaligned, and 2139 // therefore they can straddle an eightbyte. 2140 if (BitField) { 2141 // Ignore padding bit-fields. 2142 if (i->isUnnamedBitfield()) 2143 continue; 2144 2145 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 2146 uint64_t Size = i->getBitWidthValue(getContext()); 2147 2148 uint64_t EB_Lo = Offset / 64; 2149 uint64_t EB_Hi = (Offset + Size - 1) / 64; 2150 2151 if (EB_Lo) { 2152 assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes."); 2153 FieldLo = NoClass; 2154 FieldHi = Integer; 2155 } else { 2156 FieldLo = Integer; 2157 FieldHi = EB_Hi ? Integer : NoClass; 2158 } 2159 } else 2160 classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg); 2161 Lo = merge(Lo, FieldLo); 2162 Hi = merge(Hi, FieldHi); 2163 if (Lo == Memory || Hi == Memory) 2164 break; 2165 } 2166 2167 postMerge(Size, Lo, Hi); 2168 } 2169 } 2170 2171 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const { 2172 // If this is a scalar LLVM value then assume LLVM will pass it in the right 2173 // place naturally. 2174 if (!isAggregateTypeForABI(Ty)) { 2175 // Treat an enum type as its underlying type. 2176 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2177 Ty = EnumTy->getDecl()->getIntegerType(); 2178 2179 return (Ty->isPromotableIntegerType() ? 2180 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 2181 } 2182 2183 return ABIArgInfo::getIndirect(0); 2184 } 2185 2186 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const { 2187 if (const VectorType *VecTy = Ty->getAs<VectorType>()) { 2188 uint64_t Size = getContext().getTypeSize(VecTy); 2189 unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel); 2190 if (Size <= 64 || Size > LargestVector) 2191 return true; 2192 } 2193 2194 return false; 2195 } 2196 2197 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty, 2198 unsigned freeIntRegs) const { 2199 // If this is a scalar LLVM value then assume LLVM will pass it in the right 2200 // place naturally. 2201 // 2202 // This assumption is optimistic, as there could be free registers available 2203 // when we need to pass this argument in memory, and LLVM could try to pass 2204 // the argument in the free register. This does not seem to happen currently, 2205 // but this code would be much safer if we could mark the argument with 2206 // 'onstack'. See PR12193. 2207 if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) { 2208 // Treat an enum type as its underlying type. 2209 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2210 Ty = EnumTy->getDecl()->getIntegerType(); 2211 2212 return (Ty->isPromotableIntegerType() ? 2213 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 2214 } 2215 2216 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 2217 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 2218 2219 // Compute the byval alignment. We specify the alignment of the byval in all 2220 // cases so that the mid-level optimizer knows the alignment of the byval. 2221 unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U); 2222 2223 // Attempt to avoid passing indirect results using byval when possible. This 2224 // is important for good codegen. 2225 // 2226 // We do this by coercing the value into a scalar type which the backend can 2227 // handle naturally (i.e., without using byval). 2228 // 2229 // For simplicity, we currently only do this when we have exhausted all of the 2230 // free integer registers. Doing this when there are free integer registers 2231 // would require more care, as we would have to ensure that the coerced value 2232 // did not claim the unused register. That would require either reording the 2233 // arguments to the function (so that any subsequent inreg values came first), 2234 // or only doing this optimization when there were no following arguments that 2235 // might be inreg. 2236 // 2237 // We currently expect it to be rare (particularly in well written code) for 2238 // arguments to be passed on the stack when there are still free integer 2239 // registers available (this would typically imply large structs being passed 2240 // by value), so this seems like a fair tradeoff for now. 2241 // 2242 // We can revisit this if the backend grows support for 'onstack' parameter 2243 // attributes. See PR12193. 2244 if (freeIntRegs == 0) { 2245 uint64_t Size = getContext().getTypeSize(Ty); 2246 2247 // If this type fits in an eightbyte, coerce it into the matching integral 2248 // type, which will end up on the stack (with alignment 8). 2249 if (Align == 8 && Size <= 64) 2250 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 2251 Size)); 2252 } 2253 2254 return ABIArgInfo::getIndirect(Align); 2255 } 2256 2257 /// The ABI specifies that a value should be passed in a full vector XMM/YMM 2258 /// register. Pick an LLVM IR type that will be passed as a vector register. 2259 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const { 2260 // Wrapper structs/arrays that only contain vectors are passed just like 2261 // vectors; strip them off if present. 2262 if (const Type *InnerTy = isSingleElementStruct(Ty, getContext())) 2263 Ty = QualType(InnerTy, 0); 2264 2265 llvm::Type *IRType = CGT.ConvertType(Ty); 2266 if (isa<llvm::VectorType>(IRType) || 2267 IRType->getTypeID() == llvm::Type::FP128TyID) 2268 return IRType; 2269 2270 // We couldn't find the preferred IR vector type for 'Ty'. 2271 uint64_t Size = getContext().getTypeSize(Ty); 2272 assert((Size == 128 || Size == 256) && "Invalid type found!"); 2273 2274 // Return a LLVM IR vector type based on the size of 'Ty'. 2275 return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 2276 Size / 64); 2277 } 2278 2279 /// BitsContainNoUserData - Return true if the specified [start,end) bit range 2280 /// is known to either be off the end of the specified type or being in 2281 /// alignment padding. The user type specified is known to be at most 128 bits 2282 /// in size, and have passed through X86_64ABIInfo::classify with a successful 2283 /// classification that put one of the two halves in the INTEGER class. 2284 /// 2285 /// It is conservatively correct to return false. 2286 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit, 2287 unsigned EndBit, ASTContext &Context) { 2288 // If the bytes being queried are off the end of the type, there is no user 2289 // data hiding here. This handles analysis of builtins, vectors and other 2290 // types that don't contain interesting padding. 2291 unsigned TySize = (unsigned)Context.getTypeSize(Ty); 2292 if (TySize <= StartBit) 2293 return true; 2294 2295 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 2296 unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType()); 2297 unsigned NumElts = (unsigned)AT->getSize().getZExtValue(); 2298 2299 // Check each element to see if the element overlaps with the queried range. 2300 for (unsigned i = 0; i != NumElts; ++i) { 2301 // If the element is after the span we care about, then we're done.. 2302 unsigned EltOffset = i*EltSize; 2303 if (EltOffset >= EndBit) break; 2304 2305 unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0; 2306 if (!BitsContainNoUserData(AT->getElementType(), EltStart, 2307 EndBit-EltOffset, Context)) 2308 return false; 2309 } 2310 // If it overlaps no elements, then it is safe to process as padding. 2311 return true; 2312 } 2313 2314 if (const RecordType *RT = Ty->getAs<RecordType>()) { 2315 const RecordDecl *RD = RT->getDecl(); 2316 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 2317 2318 // If this is a C++ record, check the bases first. 2319 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 2320 for (const auto &I : CXXRD->bases()) { 2321 assert(!I.isVirtual() && !I.getType()->isDependentType() && 2322 "Unexpected base class!"); 2323 const CXXRecordDecl *Base = 2324 cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); 2325 2326 // If the base is after the span we care about, ignore it. 2327 unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base)); 2328 if (BaseOffset >= EndBit) continue; 2329 2330 unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0; 2331 if (!BitsContainNoUserData(I.getType(), BaseStart, 2332 EndBit-BaseOffset, Context)) 2333 return false; 2334 } 2335 } 2336 2337 // Verify that no field has data that overlaps the region of interest. Yes 2338 // this could be sped up a lot by being smarter about queried fields, 2339 // however we're only looking at structs up to 16 bytes, so we don't care 2340 // much. 2341 unsigned idx = 0; 2342 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 2343 i != e; ++i, ++idx) { 2344 unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx); 2345 2346 // If we found a field after the region we care about, then we're done. 2347 if (FieldOffset >= EndBit) break; 2348 2349 unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0; 2350 if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset, 2351 Context)) 2352 return false; 2353 } 2354 2355 // If nothing in this record overlapped the area of interest, then we're 2356 // clean. 2357 return true; 2358 } 2359 2360 return false; 2361 } 2362 2363 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a 2364 /// float member at the specified offset. For example, {int,{float}} has a 2365 /// float at offset 4. It is conservatively correct for this routine to return 2366 /// false. 2367 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset, 2368 const llvm::DataLayout &TD) { 2369 // Base case if we find a float. 2370 if (IROffset == 0 && IRType->isFloatTy()) 2371 return true; 2372 2373 // If this is a struct, recurse into the field at the specified offset. 2374 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 2375 const llvm::StructLayout *SL = TD.getStructLayout(STy); 2376 unsigned Elt = SL->getElementContainingOffset(IROffset); 2377 IROffset -= SL->getElementOffset(Elt); 2378 return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD); 2379 } 2380 2381 // If this is an array, recurse into the field at the specified offset. 2382 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 2383 llvm::Type *EltTy = ATy->getElementType(); 2384 unsigned EltSize = TD.getTypeAllocSize(EltTy); 2385 IROffset -= IROffset/EltSize*EltSize; 2386 return ContainsFloatAtOffset(EltTy, IROffset, TD); 2387 } 2388 2389 return false; 2390 } 2391 2392 2393 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the 2394 /// low 8 bytes of an XMM register, corresponding to the SSE class. 2395 llvm::Type *X86_64ABIInfo:: 2396 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset, 2397 QualType SourceTy, unsigned SourceOffset) const { 2398 // The only three choices we have are either double, <2 x float>, or float. We 2399 // pass as float if the last 4 bytes is just padding. This happens for 2400 // structs that contain 3 floats. 2401 if (BitsContainNoUserData(SourceTy, SourceOffset*8+32, 2402 SourceOffset*8+64, getContext())) 2403 return llvm::Type::getFloatTy(getVMContext()); 2404 2405 // We want to pass as <2 x float> if the LLVM IR type contains a float at 2406 // offset+0 and offset+4. Walk the LLVM IR type to find out if this is the 2407 // case. 2408 if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) && 2409 ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout())) 2410 return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2); 2411 2412 return llvm::Type::getDoubleTy(getVMContext()); 2413 } 2414 2415 2416 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in 2417 /// an 8-byte GPR. This means that we either have a scalar or we are talking 2418 /// about the high or low part of an up-to-16-byte struct. This routine picks 2419 /// the best LLVM IR type to represent this, which may be i64 or may be anything 2420 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*, 2421 /// etc). 2422 /// 2423 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for 2424 /// the source type. IROffset is an offset in bytes into the LLVM IR type that 2425 /// the 8-byte value references. PrefType may be null. 2426 /// 2427 /// SourceTy is the source-level type for the entire argument. SourceOffset is 2428 /// an offset into this that we're processing (which is always either 0 or 8). 2429 /// 2430 llvm::Type *X86_64ABIInfo:: 2431 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset, 2432 QualType SourceTy, unsigned SourceOffset) const { 2433 // If we're dealing with an un-offset LLVM IR type, then it means that we're 2434 // returning an 8-byte unit starting with it. See if we can safely use it. 2435 if (IROffset == 0) { 2436 // Pointers and int64's always fill the 8-byte unit. 2437 if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) || 2438 IRType->isIntegerTy(64)) 2439 return IRType; 2440 2441 // If we have a 1/2/4-byte integer, we can use it only if the rest of the 2442 // goodness in the source type is just tail padding. This is allowed to 2443 // kick in for struct {double,int} on the int, but not on 2444 // struct{double,int,int} because we wouldn't return the second int. We 2445 // have to do this analysis on the source type because we can't depend on 2446 // unions being lowered a specific way etc. 2447 if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) || 2448 IRType->isIntegerTy(32) || 2449 (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) { 2450 unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 : 2451 cast<llvm::IntegerType>(IRType)->getBitWidth(); 2452 2453 if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth, 2454 SourceOffset*8+64, getContext())) 2455 return IRType; 2456 } 2457 } 2458 2459 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 2460 // If this is a struct, recurse into the field at the specified offset. 2461 const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy); 2462 if (IROffset < SL->getSizeInBytes()) { 2463 unsigned FieldIdx = SL->getElementContainingOffset(IROffset); 2464 IROffset -= SL->getElementOffset(FieldIdx); 2465 2466 return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset, 2467 SourceTy, SourceOffset); 2468 } 2469 } 2470 2471 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 2472 llvm::Type *EltTy = ATy->getElementType(); 2473 unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy); 2474 unsigned EltOffset = IROffset/EltSize*EltSize; 2475 return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy, 2476 SourceOffset); 2477 } 2478 2479 // Okay, we don't have any better idea of what to pass, so we pass this in an 2480 // integer register that isn't too big to fit the rest of the struct. 2481 unsigned TySizeInBytes = 2482 (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity(); 2483 2484 assert(TySizeInBytes != SourceOffset && "Empty field?"); 2485 2486 // It is always safe to classify this as an integer type up to i64 that 2487 // isn't larger than the structure. 2488 return llvm::IntegerType::get(getVMContext(), 2489 std::min(TySizeInBytes-SourceOffset, 8U)*8); 2490 } 2491 2492 2493 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally 2494 /// be used as elements of a two register pair to pass or return, return a 2495 /// first class aggregate to represent them. For example, if the low part of 2496 /// a by-value argument should be passed as i32* and the high part as float, 2497 /// return {i32*, float}. 2498 static llvm::Type * 2499 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi, 2500 const llvm::DataLayout &TD) { 2501 // In order to correctly satisfy the ABI, we need to the high part to start 2502 // at offset 8. If the high and low parts we inferred are both 4-byte types 2503 // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have 2504 // the second element at offset 8. Check for this: 2505 unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo); 2506 unsigned HiAlign = TD.getABITypeAlignment(Hi); 2507 unsigned HiStart = llvm::RoundUpToAlignment(LoSize, HiAlign); 2508 assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!"); 2509 2510 // To handle this, we have to increase the size of the low part so that the 2511 // second element will start at an 8 byte offset. We can't increase the size 2512 // of the second element because it might make us access off the end of the 2513 // struct. 2514 if (HiStart != 8) { 2515 // There are usually two sorts of types the ABI generation code can produce 2516 // for the low part of a pair that aren't 8 bytes in size: float or 2517 // i8/i16/i32. This can also include pointers when they are 32-bit (X32 and 2518 // NaCl). 2519 // Promote these to a larger type. 2520 if (Lo->isFloatTy()) 2521 Lo = llvm::Type::getDoubleTy(Lo->getContext()); 2522 else { 2523 assert((Lo->isIntegerTy() || Lo->isPointerTy()) 2524 && "Invalid/unknown lo type"); 2525 Lo = llvm::Type::getInt64Ty(Lo->getContext()); 2526 } 2527 } 2528 2529 llvm::StructType *Result = llvm::StructType::get(Lo, Hi, nullptr); 2530 2531 2532 // Verify that the second element is at an 8-byte offset. 2533 assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 && 2534 "Invalid x86-64 argument pair!"); 2535 return Result; 2536 } 2537 2538 ABIArgInfo X86_64ABIInfo:: 2539 classifyReturnType(QualType RetTy) const { 2540 // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the 2541 // classification algorithm. 2542 X86_64ABIInfo::Class Lo, Hi; 2543 classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true); 2544 2545 // Check some invariants. 2546 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 2547 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 2548 2549 llvm::Type *ResType = nullptr; 2550 switch (Lo) { 2551 case NoClass: 2552 if (Hi == NoClass) 2553 return ABIArgInfo::getIgnore(); 2554 // If the low part is just padding, it takes no register, leave ResType 2555 // null. 2556 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 2557 "Unknown missing lo part"); 2558 break; 2559 2560 case SSEUp: 2561 case X87Up: 2562 llvm_unreachable("Invalid classification for lo word."); 2563 2564 // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via 2565 // hidden argument. 2566 case Memory: 2567 return getIndirectReturnResult(RetTy); 2568 2569 // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next 2570 // available register of the sequence %rax, %rdx is used. 2571 case Integer: 2572 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 2573 2574 // If we have a sign or zero extended integer, make sure to return Extend 2575 // so that the parameter gets the right LLVM IR attributes. 2576 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 2577 // Treat an enum type as its underlying type. 2578 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 2579 RetTy = EnumTy->getDecl()->getIntegerType(); 2580 2581 if (RetTy->isIntegralOrEnumerationType() && 2582 RetTy->isPromotableIntegerType()) 2583 return ABIArgInfo::getExtend(); 2584 } 2585 break; 2586 2587 // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next 2588 // available SSE register of the sequence %xmm0, %xmm1 is used. 2589 case SSE: 2590 ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 2591 break; 2592 2593 // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is 2594 // returned on the X87 stack in %st0 as 80-bit x87 number. 2595 case X87: 2596 ResType = llvm::Type::getX86_FP80Ty(getVMContext()); 2597 break; 2598 2599 // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real 2600 // part of the value is returned in %st0 and the imaginary part in 2601 // %st1. 2602 case ComplexX87: 2603 assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification."); 2604 ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()), 2605 llvm::Type::getX86_FP80Ty(getVMContext()), 2606 nullptr); 2607 break; 2608 } 2609 2610 llvm::Type *HighPart = nullptr; 2611 switch (Hi) { 2612 // Memory was handled previously and X87 should 2613 // never occur as a hi class. 2614 case Memory: 2615 case X87: 2616 llvm_unreachable("Invalid classification for hi word."); 2617 2618 case ComplexX87: // Previously handled. 2619 case NoClass: 2620 break; 2621 2622 case Integer: 2623 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 2624 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 2625 return ABIArgInfo::getDirect(HighPart, 8); 2626 break; 2627 case SSE: 2628 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 2629 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 2630 return ABIArgInfo::getDirect(HighPart, 8); 2631 break; 2632 2633 // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte 2634 // is passed in the next available eightbyte chunk if the last used 2635 // vector register. 2636 // 2637 // SSEUP should always be preceded by SSE, just widen. 2638 case SSEUp: 2639 assert(Lo == SSE && "Unexpected SSEUp classification."); 2640 ResType = GetByteVectorType(RetTy); 2641 break; 2642 2643 // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is 2644 // returned together with the previous X87 value in %st0. 2645 case X87Up: 2646 // If X87Up is preceded by X87, we don't need to do 2647 // anything. However, in some cases with unions it may not be 2648 // preceded by X87. In such situations we follow gcc and pass the 2649 // extra bits in an SSE reg. 2650 if (Lo != X87) { 2651 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 2652 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 2653 return ABIArgInfo::getDirect(HighPart, 8); 2654 } 2655 break; 2656 } 2657 2658 // If a high part was specified, merge it together with the low part. It is 2659 // known to pass in the high eightbyte of the result. We do this by forming a 2660 // first class struct aggregate with the high and low part: {low, high} 2661 if (HighPart) 2662 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 2663 2664 return ABIArgInfo::getDirect(ResType); 2665 } 2666 2667 ABIArgInfo X86_64ABIInfo::classifyArgumentType( 2668 QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE, 2669 bool isNamedArg) 2670 const 2671 { 2672 Ty = useFirstFieldIfTransparentUnion(Ty); 2673 2674 X86_64ABIInfo::Class Lo, Hi; 2675 classify(Ty, 0, Lo, Hi, isNamedArg); 2676 2677 // Check some invariants. 2678 // FIXME: Enforce these by construction. 2679 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 2680 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 2681 2682 neededInt = 0; 2683 neededSSE = 0; 2684 llvm::Type *ResType = nullptr; 2685 switch (Lo) { 2686 case NoClass: 2687 if (Hi == NoClass) 2688 return ABIArgInfo::getIgnore(); 2689 // If the low part is just padding, it takes no register, leave ResType 2690 // null. 2691 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 2692 "Unknown missing lo part"); 2693 break; 2694 2695 // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument 2696 // on the stack. 2697 case Memory: 2698 2699 // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or 2700 // COMPLEX_X87, it is passed in memory. 2701 case X87: 2702 case ComplexX87: 2703 if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect) 2704 ++neededInt; 2705 return getIndirectResult(Ty, freeIntRegs); 2706 2707 case SSEUp: 2708 case X87Up: 2709 llvm_unreachable("Invalid classification for lo word."); 2710 2711 // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next 2712 // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8 2713 // and %r9 is used. 2714 case Integer: 2715 ++neededInt; 2716 2717 // Pick an 8-byte type based on the preferred type. 2718 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0); 2719 2720 // If we have a sign or zero extended integer, make sure to return Extend 2721 // so that the parameter gets the right LLVM IR attributes. 2722 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 2723 // Treat an enum type as its underlying type. 2724 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2725 Ty = EnumTy->getDecl()->getIntegerType(); 2726 2727 if (Ty->isIntegralOrEnumerationType() && 2728 Ty->isPromotableIntegerType()) 2729 return ABIArgInfo::getExtend(); 2730 } 2731 2732 break; 2733 2734 // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next 2735 // available SSE register is used, the registers are taken in the 2736 // order from %xmm0 to %xmm7. 2737 case SSE: { 2738 llvm::Type *IRType = CGT.ConvertType(Ty); 2739 ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0); 2740 ++neededSSE; 2741 break; 2742 } 2743 } 2744 2745 llvm::Type *HighPart = nullptr; 2746 switch (Hi) { 2747 // Memory was handled previously, ComplexX87 and X87 should 2748 // never occur as hi classes, and X87Up must be preceded by X87, 2749 // which is passed in memory. 2750 case Memory: 2751 case X87: 2752 case ComplexX87: 2753 llvm_unreachable("Invalid classification for hi word."); 2754 2755 case NoClass: break; 2756 2757 case Integer: 2758 ++neededInt; 2759 // Pick an 8-byte type based on the preferred type. 2760 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 2761 2762 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 2763 return ABIArgInfo::getDirect(HighPart, 8); 2764 break; 2765 2766 // X87Up generally doesn't occur here (long double is passed in 2767 // memory), except in situations involving unions. 2768 case X87Up: 2769 case SSE: 2770 HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 2771 2772 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 2773 return ABIArgInfo::getDirect(HighPart, 8); 2774 2775 ++neededSSE; 2776 break; 2777 2778 // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the 2779 // eightbyte is passed in the upper half of the last used SSE 2780 // register. This only happens when 128-bit vectors are passed. 2781 case SSEUp: 2782 assert(Lo == SSE && "Unexpected SSEUp classification"); 2783 ResType = GetByteVectorType(Ty); 2784 break; 2785 } 2786 2787 // If a high part was specified, merge it together with the low part. It is 2788 // known to pass in the high eightbyte of the result. We do this by forming a 2789 // first class struct aggregate with the high and low part: {low, high} 2790 if (HighPart) 2791 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 2792 2793 return ABIArgInfo::getDirect(ResType); 2794 } 2795 2796 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 2797 2798 if (!getCXXABI().classifyReturnType(FI)) 2799 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 2800 2801 // Keep track of the number of assigned registers. 2802 unsigned freeIntRegs = 6, freeSSERegs = 8; 2803 2804 // If the return value is indirect, then the hidden argument is consuming one 2805 // integer register. 2806 if (FI.getReturnInfo().isIndirect()) 2807 --freeIntRegs; 2808 2809 // The chain argument effectively gives us another free register. 2810 if (FI.isChainCall()) 2811 ++freeIntRegs; 2812 2813 unsigned NumRequiredArgs = FI.getNumRequiredArgs(); 2814 // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers 2815 // get assigned (in left-to-right order) for passing as follows... 2816 unsigned ArgNo = 0; 2817 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 2818 it != ie; ++it, ++ArgNo) { 2819 bool IsNamedArg = ArgNo < NumRequiredArgs; 2820 2821 unsigned neededInt, neededSSE; 2822 it->info = classifyArgumentType(it->type, freeIntRegs, neededInt, 2823 neededSSE, IsNamedArg); 2824 2825 // AMD64-ABI 3.2.3p3: If there are no registers available for any 2826 // eightbyte of an argument, the whole argument is passed on the 2827 // stack. If registers have already been assigned for some 2828 // eightbytes of such an argument, the assignments get reverted. 2829 if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) { 2830 freeIntRegs -= neededInt; 2831 freeSSERegs -= neededSSE; 2832 } else { 2833 it->info = getIndirectResult(it->type, freeIntRegs); 2834 } 2835 } 2836 } 2837 2838 static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr, 2839 QualType Ty, 2840 CodeGenFunction &CGF) { 2841 llvm::Value *overflow_arg_area_p = CGF.Builder.CreateStructGEP( 2842 nullptr, VAListAddr, 2, "overflow_arg_area_p"); 2843 llvm::Value *overflow_arg_area = 2844 CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area"); 2845 2846 // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16 2847 // byte boundary if alignment needed by type exceeds 8 byte boundary. 2848 // It isn't stated explicitly in the standard, but in practice we use 2849 // alignment greater than 16 where necessary. 2850 uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8; 2851 if (Align > 8) { 2852 // overflow_arg_area = (overflow_arg_area + align - 1) & -align; 2853 llvm::Value *Offset = 2854 llvm::ConstantInt::get(CGF.Int64Ty, Align - 1); 2855 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset); 2856 llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area, 2857 CGF.Int64Ty); 2858 llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, -(uint64_t)Align); 2859 overflow_arg_area = 2860 CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask), 2861 overflow_arg_area->getType(), 2862 "overflow_arg_area.align"); 2863 } 2864 2865 // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area. 2866 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 2867 llvm::Value *Res = 2868 CGF.Builder.CreateBitCast(overflow_arg_area, 2869 llvm::PointerType::getUnqual(LTy)); 2870 2871 // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to: 2872 // l->overflow_arg_area + sizeof(type). 2873 // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to 2874 // an 8 byte boundary. 2875 2876 uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8; 2877 llvm::Value *Offset = 2878 llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7); 2879 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset, 2880 "overflow_arg_area.next"); 2881 CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p); 2882 2883 // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type. 2884 return Res; 2885 } 2886 2887 llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 2888 CodeGenFunction &CGF) const { 2889 // Assume that va_list type is correct; should be pointer to LLVM type: 2890 // struct { 2891 // i32 gp_offset; 2892 // i32 fp_offset; 2893 // i8* overflow_arg_area; 2894 // i8* reg_save_area; 2895 // }; 2896 unsigned neededInt, neededSSE; 2897 2898 Ty = CGF.getContext().getCanonicalType(Ty); 2899 ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE, 2900 /*isNamedArg*/false); 2901 2902 // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed 2903 // in the registers. If not go to step 7. 2904 if (!neededInt && !neededSSE) 2905 return EmitVAArgFromMemory(VAListAddr, Ty, CGF); 2906 2907 // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of 2908 // general purpose registers needed to pass type and num_fp to hold 2909 // the number of floating point registers needed. 2910 2911 // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into 2912 // registers. In the case: l->gp_offset > 48 - num_gp * 8 or 2913 // l->fp_offset > 304 - num_fp * 16 go to step 7. 2914 // 2915 // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of 2916 // register save space). 2917 2918 llvm::Value *InRegs = nullptr; 2919 llvm::Value *gp_offset_p = nullptr, *gp_offset = nullptr; 2920 llvm::Value *fp_offset_p = nullptr, *fp_offset = nullptr; 2921 if (neededInt) { 2922 gp_offset_p = 2923 CGF.Builder.CreateStructGEP(nullptr, VAListAddr, 0, "gp_offset_p"); 2924 gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset"); 2925 InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8); 2926 InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp"); 2927 } 2928 2929 if (neededSSE) { 2930 fp_offset_p = 2931 CGF.Builder.CreateStructGEP(nullptr, VAListAddr, 1, "fp_offset_p"); 2932 fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset"); 2933 llvm::Value *FitsInFP = 2934 llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16); 2935 FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp"); 2936 InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP; 2937 } 2938 2939 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 2940 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 2941 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 2942 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 2943 2944 // Emit code to load the value if it was passed in registers. 2945 2946 CGF.EmitBlock(InRegBlock); 2947 2948 // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with 2949 // an offset of l->gp_offset and/or l->fp_offset. This may require 2950 // copying to a temporary location in case the parameter is passed 2951 // in different register classes or requires an alignment greater 2952 // than 8 for general purpose registers and 16 for XMM registers. 2953 // 2954 // FIXME: This really results in shameful code when we end up needing to 2955 // collect arguments from different places; often what should result in a 2956 // simple assembling of a structure from scattered addresses has many more 2957 // loads than necessary. Can we clean this up? 2958 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 2959 llvm::Value *RegAddr = CGF.Builder.CreateLoad( 2960 CGF.Builder.CreateStructGEP(nullptr, VAListAddr, 3), "reg_save_area"); 2961 if (neededInt && neededSSE) { 2962 // FIXME: Cleanup. 2963 assert(AI.isDirect() && "Unexpected ABI info for mixed regs"); 2964 llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType()); 2965 llvm::Value *Tmp = CGF.CreateMemTemp(Ty); 2966 Tmp = CGF.Builder.CreateBitCast(Tmp, ST->getPointerTo()); 2967 assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs"); 2968 llvm::Type *TyLo = ST->getElementType(0); 2969 llvm::Type *TyHi = ST->getElementType(1); 2970 assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) && 2971 "Unexpected ABI info for mixed regs"); 2972 llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo); 2973 llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi); 2974 llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset); 2975 llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset); 2976 llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr; 2977 llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr; 2978 llvm::Value *V = 2979 CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo)); 2980 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(ST, Tmp, 0)); 2981 V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi)); 2982 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(ST, Tmp, 1)); 2983 2984 RegAddr = CGF.Builder.CreateBitCast(Tmp, 2985 llvm::PointerType::getUnqual(LTy)); 2986 } else if (neededInt) { 2987 RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset); 2988 RegAddr = CGF.Builder.CreateBitCast(RegAddr, 2989 llvm::PointerType::getUnqual(LTy)); 2990 2991 // Copy to a temporary if necessary to ensure the appropriate alignment. 2992 std::pair<CharUnits, CharUnits> SizeAlign = 2993 CGF.getContext().getTypeInfoInChars(Ty); 2994 uint64_t TySize = SizeAlign.first.getQuantity(); 2995 unsigned TyAlign = SizeAlign.second.getQuantity(); 2996 if (TyAlign > 8) { 2997 llvm::Value *Tmp = CGF.CreateMemTemp(Ty); 2998 CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, 8, false); 2999 RegAddr = Tmp; 3000 } 3001 } else if (neededSSE == 1) { 3002 RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset); 3003 RegAddr = CGF.Builder.CreateBitCast(RegAddr, 3004 llvm::PointerType::getUnqual(LTy)); 3005 } else { 3006 assert(neededSSE == 2 && "Invalid number of needed registers!"); 3007 // SSE registers are spaced 16 bytes apart in the register save 3008 // area, we need to collect the two eightbytes together. 3009 llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset); 3010 llvm::Value *RegAddrHi = CGF.Builder.CreateConstGEP1_32(RegAddrLo, 16); 3011 llvm::Type *DoubleTy = CGF.DoubleTy; 3012 llvm::Type *DblPtrTy = 3013 llvm::PointerType::getUnqual(DoubleTy); 3014 llvm::StructType *ST = llvm::StructType::get(DoubleTy, DoubleTy, nullptr); 3015 llvm::Value *V, *Tmp = CGF.CreateMemTemp(Ty); 3016 Tmp = CGF.Builder.CreateBitCast(Tmp, ST->getPointerTo()); 3017 V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo, 3018 DblPtrTy)); 3019 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(ST, Tmp, 0)); 3020 V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi, 3021 DblPtrTy)); 3022 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(ST, Tmp, 1)); 3023 RegAddr = CGF.Builder.CreateBitCast(Tmp, 3024 llvm::PointerType::getUnqual(LTy)); 3025 } 3026 3027 // AMD64-ABI 3.5.7p5: Step 5. Set: 3028 // l->gp_offset = l->gp_offset + num_gp * 8 3029 // l->fp_offset = l->fp_offset + num_fp * 16. 3030 if (neededInt) { 3031 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8); 3032 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset), 3033 gp_offset_p); 3034 } 3035 if (neededSSE) { 3036 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16); 3037 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset), 3038 fp_offset_p); 3039 } 3040 CGF.EmitBranch(ContBlock); 3041 3042 // Emit code to load the value if it was passed in memory. 3043 3044 CGF.EmitBlock(InMemBlock); 3045 llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF); 3046 3047 // Return the appropriate result. 3048 3049 CGF.EmitBlock(ContBlock); 3050 llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(), 2, 3051 "vaarg.addr"); 3052 ResAddr->addIncoming(RegAddr, InRegBlock); 3053 ResAddr->addIncoming(MemAddr, InMemBlock); 3054 return ResAddr; 3055 } 3056 3057 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs, 3058 bool IsReturnType) const { 3059 3060 if (Ty->isVoidType()) 3061 return ABIArgInfo::getIgnore(); 3062 3063 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3064 Ty = EnumTy->getDecl()->getIntegerType(); 3065 3066 TypeInfo Info = getContext().getTypeInfo(Ty); 3067 uint64_t Width = Info.Width; 3068 unsigned Align = getContext().toCharUnitsFromBits(Info.Align).getQuantity(); 3069 3070 const RecordType *RT = Ty->getAs<RecordType>(); 3071 if (RT) { 3072 if (!IsReturnType) { 3073 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI())) 3074 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 3075 } 3076 3077 if (RT->getDecl()->hasFlexibleArrayMember()) 3078 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 3079 3080 // FIXME: mingw-w64-gcc emits 128-bit struct as i128 3081 if (Width == 128 && getTarget().getTriple().isWindowsGNUEnvironment()) 3082 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 3083 Width)); 3084 } 3085 3086 // vectorcall adds the concept of a homogenous vector aggregate, similar to 3087 // other targets. 3088 const Type *Base = nullptr; 3089 uint64_t NumElts = 0; 3090 if (FreeSSERegs && isHomogeneousAggregate(Ty, Base, NumElts)) { 3091 if (FreeSSERegs >= NumElts) { 3092 FreeSSERegs -= NumElts; 3093 if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType()) 3094 return ABIArgInfo::getDirect(); 3095 return ABIArgInfo::getExpand(); 3096 } 3097 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3098 } 3099 3100 3101 if (Ty->isMemberPointerType()) { 3102 // If the member pointer is represented by an LLVM int or ptr, pass it 3103 // directly. 3104 llvm::Type *LLTy = CGT.ConvertType(Ty); 3105 if (LLTy->isPointerTy() || LLTy->isIntegerTy()) 3106 return ABIArgInfo::getDirect(); 3107 } 3108 3109 if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) { 3110 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 3111 // not 1, 2, 4, or 8 bytes, must be passed by reference." 3112 if (Width > 64 || !llvm::isPowerOf2_64(Width)) 3113 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 3114 3115 // Otherwise, coerce it to a small integer. 3116 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width)); 3117 } 3118 3119 // Bool type is always extended to the ABI, other builtin types are not 3120 // extended. 3121 const BuiltinType *BT = Ty->getAs<BuiltinType>(); 3122 if (BT && BT->getKind() == BuiltinType::Bool) 3123 return ABIArgInfo::getExtend(); 3124 3125 return ABIArgInfo::getDirect(); 3126 } 3127 3128 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 3129 bool IsVectorCall = 3130 FI.getCallingConvention() == llvm::CallingConv::X86_VectorCall; 3131 3132 // We can use up to 4 SSE return registers with vectorcall. 3133 unsigned FreeSSERegs = IsVectorCall ? 4 : 0; 3134 if (!getCXXABI().classifyReturnType(FI)) 3135 FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true); 3136 3137 // We can use up to 6 SSE register parameters with vectorcall. 3138 FreeSSERegs = IsVectorCall ? 6 : 0; 3139 for (auto &I : FI.arguments()) 3140 I.info = classify(I.type, FreeSSERegs, false); 3141 } 3142 3143 llvm::Value *WinX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 3144 CodeGenFunction &CGF) const { 3145 llvm::Type *BPP = CGF.Int8PtrPtrTy; 3146 3147 CGBuilderTy &Builder = CGF.Builder; 3148 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, 3149 "ap"); 3150 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 3151 llvm::Type *PTy = 3152 llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 3153 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); 3154 3155 uint64_t Offset = 3156 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 8); 3157 llvm::Value *NextAddr = 3158 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), 3159 "ap.next"); 3160 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 3161 3162 return AddrTyped; 3163 } 3164 3165 // PowerPC-32 3166 namespace { 3167 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information. 3168 class PPC32_SVR4_ABIInfo : public DefaultABIInfo { 3169 public: 3170 PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 3171 3172 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 3173 CodeGenFunction &CGF) const override; 3174 }; 3175 3176 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo { 3177 public: 3178 PPC32TargetCodeGenInfo(CodeGenTypes &CGT) 3179 : TargetCodeGenInfo(new PPC32_SVR4_ABIInfo(CGT)) {} 3180 3181 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 3182 // This is recovered from gcc output. 3183 return 1; // r1 is the dedicated stack pointer 3184 } 3185 3186 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 3187 llvm::Value *Address) const override; 3188 }; 3189 3190 } 3191 3192 llvm::Value *PPC32_SVR4_ABIInfo::EmitVAArg(llvm::Value *VAListAddr, 3193 QualType Ty, 3194 CodeGenFunction &CGF) const { 3195 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 3196 // TODO: Implement this. For now ignore. 3197 (void)CTy; 3198 return nullptr; 3199 } 3200 3201 bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64; 3202 bool isInt = 3203 Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType(); 3204 llvm::Type *CharPtr = CGF.Int8PtrTy; 3205 llvm::Type *CharPtrPtr = CGF.Int8PtrPtrTy; 3206 3207 CGBuilderTy &Builder = CGF.Builder; 3208 llvm::Value *GPRPtr = Builder.CreateBitCast(VAListAddr, CharPtr, "gprptr"); 3209 llvm::Value *GPRPtrAsInt = Builder.CreatePtrToInt(GPRPtr, CGF.Int32Ty); 3210 llvm::Value *FPRPtrAsInt = 3211 Builder.CreateAdd(GPRPtrAsInt, Builder.getInt32(1)); 3212 llvm::Value *FPRPtr = Builder.CreateIntToPtr(FPRPtrAsInt, CharPtr); 3213 llvm::Value *OverflowAreaPtrAsInt = 3214 Builder.CreateAdd(FPRPtrAsInt, Builder.getInt32(3)); 3215 llvm::Value *OverflowAreaPtr = 3216 Builder.CreateIntToPtr(OverflowAreaPtrAsInt, CharPtrPtr); 3217 llvm::Value *RegsaveAreaPtrAsInt = 3218 Builder.CreateAdd(OverflowAreaPtrAsInt, Builder.getInt32(4)); 3219 llvm::Value *RegsaveAreaPtr = 3220 Builder.CreateIntToPtr(RegsaveAreaPtrAsInt, CharPtrPtr); 3221 llvm::Value *GPR = Builder.CreateLoad(GPRPtr, false, "gpr"); 3222 // Align GPR when TY is i64. 3223 if (isI64) { 3224 llvm::Value *GPRAnd = Builder.CreateAnd(GPR, Builder.getInt8(1)); 3225 llvm::Value *CC64 = Builder.CreateICmpEQ(GPRAnd, Builder.getInt8(1)); 3226 llvm::Value *GPRPlusOne = Builder.CreateAdd(GPR, Builder.getInt8(1)); 3227 GPR = Builder.CreateSelect(CC64, GPRPlusOne, GPR); 3228 } 3229 llvm::Value *FPR = Builder.CreateLoad(FPRPtr, false, "fpr"); 3230 llvm::Value *OverflowArea = 3231 Builder.CreateLoad(OverflowAreaPtr, false, "overflow_area"); 3232 llvm::Value *OverflowAreaAsInt = 3233 Builder.CreatePtrToInt(OverflowArea, CGF.Int32Ty); 3234 llvm::Value *RegsaveArea = 3235 Builder.CreateLoad(RegsaveAreaPtr, false, "regsave_area"); 3236 llvm::Value *RegsaveAreaAsInt = 3237 Builder.CreatePtrToInt(RegsaveArea, CGF.Int32Ty); 3238 3239 llvm::Value *CC = 3240 Builder.CreateICmpULT(isInt ? GPR : FPR, Builder.getInt8(8), "cond"); 3241 3242 llvm::Value *RegConstant = 3243 Builder.CreateMul(isInt ? GPR : FPR, Builder.getInt8(isInt ? 4 : 8)); 3244 3245 llvm::Value *OurReg = Builder.CreateAdd( 3246 RegsaveAreaAsInt, Builder.CreateSExt(RegConstant, CGF.Int32Ty)); 3247 3248 if (Ty->isFloatingType()) 3249 OurReg = Builder.CreateAdd(OurReg, Builder.getInt32(32)); 3250 3251 llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs"); 3252 llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow"); 3253 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 3254 3255 Builder.CreateCondBr(CC, UsingRegs, UsingOverflow); 3256 3257 CGF.EmitBlock(UsingRegs); 3258 3259 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 3260 llvm::Value *Result1 = Builder.CreateIntToPtr(OurReg, PTy); 3261 // Increase the GPR/FPR indexes. 3262 if (isInt) { 3263 GPR = Builder.CreateAdd(GPR, Builder.getInt8(isI64 ? 2 : 1)); 3264 Builder.CreateStore(GPR, GPRPtr); 3265 } else { 3266 FPR = Builder.CreateAdd(FPR, Builder.getInt8(1)); 3267 Builder.CreateStore(FPR, FPRPtr); 3268 } 3269 CGF.EmitBranch(Cont); 3270 3271 CGF.EmitBlock(UsingOverflow); 3272 3273 // Increase the overflow area. 3274 llvm::Value *Result2 = Builder.CreateIntToPtr(OverflowAreaAsInt, PTy); 3275 OverflowAreaAsInt = 3276 Builder.CreateAdd(OverflowAreaAsInt, Builder.getInt32(isInt ? 4 : 8)); 3277 Builder.CreateStore(Builder.CreateIntToPtr(OverflowAreaAsInt, CharPtr), 3278 OverflowAreaPtr); 3279 CGF.EmitBranch(Cont); 3280 3281 CGF.EmitBlock(Cont); 3282 3283 llvm::PHINode *Result = CGF.Builder.CreatePHI(PTy, 2, "vaarg.addr"); 3284 Result->addIncoming(Result1, UsingRegs); 3285 Result->addIncoming(Result2, UsingOverflow); 3286 3287 if (Ty->isAggregateType()) { 3288 llvm::Value *AGGPtr = Builder.CreateBitCast(Result, CharPtrPtr, "aggrptr"); 3289 return Builder.CreateLoad(AGGPtr, false, "aggr"); 3290 } 3291 3292 return Result; 3293 } 3294 3295 bool 3296 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 3297 llvm::Value *Address) const { 3298 // This is calculated from the LLVM and GCC tables and verified 3299 // against gcc output. AFAIK all ABIs use the same encoding. 3300 3301 CodeGen::CGBuilderTy &Builder = CGF.Builder; 3302 3303 llvm::IntegerType *i8 = CGF.Int8Ty; 3304 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 3305 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 3306 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 3307 3308 // 0-31: r0-31, the 4-byte general-purpose registers 3309 AssignToArrayRange(Builder, Address, Four8, 0, 31); 3310 3311 // 32-63: fp0-31, the 8-byte floating-point registers 3312 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 3313 3314 // 64-76 are various 4-byte special-purpose registers: 3315 // 64: mq 3316 // 65: lr 3317 // 66: ctr 3318 // 67: ap 3319 // 68-75 cr0-7 3320 // 76: xer 3321 AssignToArrayRange(Builder, Address, Four8, 64, 76); 3322 3323 // 77-108: v0-31, the 16-byte vector registers 3324 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 3325 3326 // 109: vrsave 3327 // 110: vscr 3328 // 111: spe_acc 3329 // 112: spefscr 3330 // 113: sfp 3331 AssignToArrayRange(Builder, Address, Four8, 109, 113); 3332 3333 return false; 3334 } 3335 3336 // PowerPC-64 3337 3338 namespace { 3339 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information. 3340 class PPC64_SVR4_ABIInfo : public DefaultABIInfo { 3341 public: 3342 enum ABIKind { 3343 ELFv1 = 0, 3344 ELFv2 3345 }; 3346 3347 private: 3348 static const unsigned GPRBits = 64; 3349 ABIKind Kind; 3350 bool HasQPX; 3351 3352 // A vector of float or double will be promoted to <4 x f32> or <4 x f64> and 3353 // will be passed in a QPX register. 3354 bool IsQPXVectorTy(const Type *Ty) const { 3355 if (!HasQPX) 3356 return false; 3357 3358 if (const VectorType *VT = Ty->getAs<VectorType>()) { 3359 unsigned NumElements = VT->getNumElements(); 3360 if (NumElements == 1) 3361 return false; 3362 3363 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) { 3364 if (getContext().getTypeSize(Ty) <= 256) 3365 return true; 3366 } else if (VT->getElementType()-> 3367 isSpecificBuiltinType(BuiltinType::Float)) { 3368 if (getContext().getTypeSize(Ty) <= 128) 3369 return true; 3370 } 3371 } 3372 3373 return false; 3374 } 3375 3376 bool IsQPXVectorTy(QualType Ty) const { 3377 return IsQPXVectorTy(Ty.getTypePtr()); 3378 } 3379 3380 public: 3381 PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, bool HasQPX) 3382 : DefaultABIInfo(CGT), Kind(Kind), HasQPX(HasQPX) {} 3383 3384 bool isPromotableTypeForABI(QualType Ty) const; 3385 bool isAlignedParamType(QualType Ty, bool &Align32) const; 3386 3387 ABIArgInfo classifyReturnType(QualType RetTy) const; 3388 ABIArgInfo classifyArgumentType(QualType Ty) const; 3389 3390 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 3391 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 3392 uint64_t Members) const override; 3393 3394 // TODO: We can add more logic to computeInfo to improve performance. 3395 // Example: For aggregate arguments that fit in a register, we could 3396 // use getDirectInReg (as is done below for structs containing a single 3397 // floating-point value) to avoid pushing them to memory on function 3398 // entry. This would require changing the logic in PPCISelLowering 3399 // when lowering the parameters in the caller and args in the callee. 3400 void computeInfo(CGFunctionInfo &FI) const override { 3401 if (!getCXXABI().classifyReturnType(FI)) 3402 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 3403 for (auto &I : FI.arguments()) { 3404 // We rely on the default argument classification for the most part. 3405 // One exception: An aggregate containing a single floating-point 3406 // or vector item must be passed in a register if one is available. 3407 const Type *T = isSingleElementStruct(I.type, getContext()); 3408 if (T) { 3409 const BuiltinType *BT = T->getAs<BuiltinType>(); 3410 if (IsQPXVectorTy(T) || 3411 (T->isVectorType() && getContext().getTypeSize(T) == 128) || 3412 (BT && BT->isFloatingPoint())) { 3413 QualType QT(T, 0); 3414 I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT)); 3415 continue; 3416 } 3417 } 3418 I.info = classifyArgumentType(I.type); 3419 } 3420 } 3421 3422 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 3423 CodeGenFunction &CGF) const override; 3424 }; 3425 3426 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo { 3427 3428 public: 3429 PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT, 3430 PPC64_SVR4_ABIInfo::ABIKind Kind, bool HasQPX) 3431 : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT, Kind, HasQPX)) {} 3432 3433 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 3434 // This is recovered from gcc output. 3435 return 1; // r1 is the dedicated stack pointer 3436 } 3437 3438 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 3439 llvm::Value *Address) const override; 3440 }; 3441 3442 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo { 3443 public: 3444 PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {} 3445 3446 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 3447 // This is recovered from gcc output. 3448 return 1; // r1 is the dedicated stack pointer 3449 } 3450 3451 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 3452 llvm::Value *Address) const override; 3453 }; 3454 3455 } 3456 3457 // Return true if the ABI requires Ty to be passed sign- or zero- 3458 // extended to 64 bits. 3459 bool 3460 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const { 3461 // Treat an enum type as its underlying type. 3462 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3463 Ty = EnumTy->getDecl()->getIntegerType(); 3464 3465 // Promotable integer types are required to be promoted by the ABI. 3466 if (Ty->isPromotableIntegerType()) 3467 return true; 3468 3469 // In addition to the usual promotable integer types, we also need to 3470 // extend all 32-bit types, since the ABI requires promotion to 64 bits. 3471 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 3472 switch (BT->getKind()) { 3473 case BuiltinType::Int: 3474 case BuiltinType::UInt: 3475 return true; 3476 default: 3477 break; 3478 } 3479 3480 return false; 3481 } 3482 3483 /// isAlignedParamType - Determine whether a type requires 16-byte 3484 /// alignment in the parameter area. 3485 bool 3486 PPC64_SVR4_ABIInfo::isAlignedParamType(QualType Ty, bool &Align32) const { 3487 Align32 = false; 3488 3489 // Complex types are passed just like their elements. 3490 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 3491 Ty = CTy->getElementType(); 3492 3493 // Only vector types of size 16 bytes need alignment (larger types are 3494 // passed via reference, smaller types are not aligned). 3495 if (IsQPXVectorTy(Ty)) { 3496 if (getContext().getTypeSize(Ty) > 128) 3497 Align32 = true; 3498 3499 return true; 3500 } else if (Ty->isVectorType()) { 3501 return getContext().getTypeSize(Ty) == 128; 3502 } 3503 3504 // For single-element float/vector structs, we consider the whole type 3505 // to have the same alignment requirements as its single element. 3506 const Type *AlignAsType = nullptr; 3507 const Type *EltType = isSingleElementStruct(Ty, getContext()); 3508 if (EltType) { 3509 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 3510 if (IsQPXVectorTy(EltType) || (EltType->isVectorType() && 3511 getContext().getTypeSize(EltType) == 128) || 3512 (BT && BT->isFloatingPoint())) 3513 AlignAsType = EltType; 3514 } 3515 3516 // Likewise for ELFv2 homogeneous aggregates. 3517 const Type *Base = nullptr; 3518 uint64_t Members = 0; 3519 if (!AlignAsType && Kind == ELFv2 && 3520 isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members)) 3521 AlignAsType = Base; 3522 3523 // With special case aggregates, only vector base types need alignment. 3524 if (AlignAsType && IsQPXVectorTy(AlignAsType)) { 3525 if (getContext().getTypeSize(AlignAsType) > 128) 3526 Align32 = true; 3527 3528 return true; 3529 } else if (AlignAsType) { 3530 return AlignAsType->isVectorType(); 3531 } 3532 3533 // Otherwise, we only need alignment for any aggregate type that 3534 // has an alignment requirement of >= 16 bytes. 3535 if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) { 3536 if (HasQPX && getContext().getTypeAlign(Ty) >= 256) 3537 Align32 = true; 3538 return true; 3539 } 3540 3541 return false; 3542 } 3543 3544 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous 3545 /// aggregate. Base is set to the base element type, and Members is set 3546 /// to the number of base elements. 3547 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base, 3548 uint64_t &Members) const { 3549 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 3550 uint64_t NElements = AT->getSize().getZExtValue(); 3551 if (NElements == 0) 3552 return false; 3553 if (!isHomogeneousAggregate(AT->getElementType(), Base, Members)) 3554 return false; 3555 Members *= NElements; 3556 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 3557 const RecordDecl *RD = RT->getDecl(); 3558 if (RD->hasFlexibleArrayMember()) 3559 return false; 3560 3561 Members = 0; 3562 3563 // If this is a C++ record, check the bases first. 3564 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 3565 for (const auto &I : CXXRD->bases()) { 3566 // Ignore empty records. 3567 if (isEmptyRecord(getContext(), I.getType(), true)) 3568 continue; 3569 3570 uint64_t FldMembers; 3571 if (!isHomogeneousAggregate(I.getType(), Base, FldMembers)) 3572 return false; 3573 3574 Members += FldMembers; 3575 } 3576 } 3577 3578 for (const auto *FD : RD->fields()) { 3579 // Ignore (non-zero arrays of) empty records. 3580 QualType FT = FD->getType(); 3581 while (const ConstantArrayType *AT = 3582 getContext().getAsConstantArrayType(FT)) { 3583 if (AT->getSize().getZExtValue() == 0) 3584 return false; 3585 FT = AT->getElementType(); 3586 } 3587 if (isEmptyRecord(getContext(), FT, true)) 3588 continue; 3589 3590 // For compatibility with GCC, ignore empty bitfields in C++ mode. 3591 if (getContext().getLangOpts().CPlusPlus && 3592 FD->isBitField() && FD->getBitWidthValue(getContext()) == 0) 3593 continue; 3594 3595 uint64_t FldMembers; 3596 if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers)) 3597 return false; 3598 3599 Members = (RD->isUnion() ? 3600 std::max(Members, FldMembers) : Members + FldMembers); 3601 } 3602 3603 if (!Base) 3604 return false; 3605 3606 // Ensure there is no padding. 3607 if (getContext().getTypeSize(Base) * Members != 3608 getContext().getTypeSize(Ty)) 3609 return false; 3610 } else { 3611 Members = 1; 3612 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 3613 Members = 2; 3614 Ty = CT->getElementType(); 3615 } 3616 3617 // Most ABIs only support float, double, and some vector type widths. 3618 if (!isHomogeneousAggregateBaseType(Ty)) 3619 return false; 3620 3621 // The base type must be the same for all members. Types that 3622 // agree in both total size and mode (float vs. vector) are 3623 // treated as being equivalent here. 3624 const Type *TyPtr = Ty.getTypePtr(); 3625 if (!Base) 3626 Base = TyPtr; 3627 3628 if (Base->isVectorType() != TyPtr->isVectorType() || 3629 getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr)) 3630 return false; 3631 } 3632 return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members); 3633 } 3634 3635 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 3636 // Homogeneous aggregates for ELFv2 must have base types of float, 3637 // double, long double, or 128-bit vectors. 3638 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 3639 if (BT->getKind() == BuiltinType::Float || 3640 BT->getKind() == BuiltinType::Double || 3641 BT->getKind() == BuiltinType::LongDouble) 3642 return true; 3643 } 3644 if (const VectorType *VT = Ty->getAs<VectorType>()) { 3645 if (getContext().getTypeSize(VT) == 128 || IsQPXVectorTy(Ty)) 3646 return true; 3647 } 3648 return false; 3649 } 3650 3651 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough( 3652 const Type *Base, uint64_t Members) const { 3653 // Vector types require one register, floating point types require one 3654 // or two registers depending on their size. 3655 uint32_t NumRegs = 3656 Base->isVectorType() ? 1 : (getContext().getTypeSize(Base) + 63) / 64; 3657 3658 // Homogeneous Aggregates may occupy at most 8 registers. 3659 return Members * NumRegs <= 8; 3660 } 3661 3662 ABIArgInfo 3663 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const { 3664 Ty = useFirstFieldIfTransparentUnion(Ty); 3665 3666 if (Ty->isAnyComplexType()) 3667 return ABIArgInfo::getDirect(); 3668 3669 // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes) 3670 // or via reference (larger than 16 bytes). 3671 if (Ty->isVectorType() && !IsQPXVectorTy(Ty)) { 3672 uint64_t Size = getContext().getTypeSize(Ty); 3673 if (Size > 128) 3674 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 3675 else if (Size < 128) { 3676 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 3677 return ABIArgInfo::getDirect(CoerceTy); 3678 } 3679 } 3680 3681 if (isAggregateTypeForABI(Ty)) { 3682 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 3683 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 3684 3685 bool Align32; 3686 uint64_t ABIAlign = isAlignedParamType(Ty, Align32) ? 3687 (Align32 ? 32 : 16) : 8; 3688 uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8; 3689 3690 // ELFv2 homogeneous aggregates are passed as array types. 3691 const Type *Base = nullptr; 3692 uint64_t Members = 0; 3693 if (Kind == ELFv2 && 3694 isHomogeneousAggregate(Ty, Base, Members)) { 3695 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 3696 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 3697 return ABIArgInfo::getDirect(CoerceTy); 3698 } 3699 3700 // If an aggregate may end up fully in registers, we do not 3701 // use the ByVal method, but pass the aggregate as array. 3702 // This is usually beneficial since we avoid forcing the 3703 // back-end to store the argument to memory. 3704 uint64_t Bits = getContext().getTypeSize(Ty); 3705 if (Bits > 0 && Bits <= 8 * GPRBits) { 3706 llvm::Type *CoerceTy; 3707 3708 // Types up to 8 bytes are passed as integer type (which will be 3709 // properly aligned in the argument save area doubleword). 3710 if (Bits <= GPRBits) 3711 CoerceTy = llvm::IntegerType::get(getVMContext(), 3712 llvm::RoundUpToAlignment(Bits, 8)); 3713 // Larger types are passed as arrays, with the base type selected 3714 // according to the required alignment in the save area. 3715 else { 3716 uint64_t RegBits = ABIAlign * 8; 3717 uint64_t NumRegs = llvm::RoundUpToAlignment(Bits, RegBits) / RegBits; 3718 llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits); 3719 CoerceTy = llvm::ArrayType::get(RegTy, NumRegs); 3720 } 3721 3722 return ABIArgInfo::getDirect(CoerceTy); 3723 } 3724 3725 // All other aggregates are passed ByVal. 3726 return ABIArgInfo::getIndirect(ABIAlign, /*ByVal=*/true, 3727 /*Realign=*/TyAlign > ABIAlign); 3728 } 3729 3730 return (isPromotableTypeForABI(Ty) ? 3731 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 3732 } 3733 3734 ABIArgInfo 3735 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { 3736 if (RetTy->isVoidType()) 3737 return ABIArgInfo::getIgnore(); 3738 3739 if (RetTy->isAnyComplexType()) 3740 return ABIArgInfo::getDirect(); 3741 3742 // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes) 3743 // or via reference (larger than 16 bytes). 3744 if (RetTy->isVectorType() && !IsQPXVectorTy(RetTy)) { 3745 uint64_t Size = getContext().getTypeSize(RetTy); 3746 if (Size > 128) 3747 return ABIArgInfo::getIndirect(0); 3748 else if (Size < 128) { 3749 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 3750 return ABIArgInfo::getDirect(CoerceTy); 3751 } 3752 } 3753 3754 if (isAggregateTypeForABI(RetTy)) { 3755 // ELFv2 homogeneous aggregates are returned as array types. 3756 const Type *Base = nullptr; 3757 uint64_t Members = 0; 3758 if (Kind == ELFv2 && 3759 isHomogeneousAggregate(RetTy, Base, Members)) { 3760 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 3761 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 3762 return ABIArgInfo::getDirect(CoerceTy); 3763 } 3764 3765 // ELFv2 small aggregates are returned in up to two registers. 3766 uint64_t Bits = getContext().getTypeSize(RetTy); 3767 if (Kind == ELFv2 && Bits <= 2 * GPRBits) { 3768 if (Bits == 0) 3769 return ABIArgInfo::getIgnore(); 3770 3771 llvm::Type *CoerceTy; 3772 if (Bits > GPRBits) { 3773 CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits); 3774 CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy, nullptr); 3775 } else 3776 CoerceTy = llvm::IntegerType::get(getVMContext(), 3777 llvm::RoundUpToAlignment(Bits, 8)); 3778 return ABIArgInfo::getDirect(CoerceTy); 3779 } 3780 3781 // All other aggregates are returned indirectly. 3782 return ABIArgInfo::getIndirect(0); 3783 } 3784 3785 return (isPromotableTypeForABI(RetTy) ? 3786 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 3787 } 3788 3789 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine. 3790 llvm::Value *PPC64_SVR4_ABIInfo::EmitVAArg(llvm::Value *VAListAddr, 3791 QualType Ty, 3792 CodeGenFunction &CGF) const { 3793 llvm::Type *BP = CGF.Int8PtrTy; 3794 llvm::Type *BPP = CGF.Int8PtrPtrTy; 3795 3796 CGBuilderTy &Builder = CGF.Builder; 3797 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); 3798 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 3799 3800 // Handle types that require 16-byte alignment in the parameter save area. 3801 bool Align32; 3802 if (isAlignedParamType(Ty, Align32)) { 3803 llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty); 3804 AddrAsInt = Builder.CreateAdd(AddrAsInt, 3805 Builder.getInt64(Align32 ? 31 : 15)); 3806 AddrAsInt = Builder.CreateAnd(AddrAsInt, 3807 Builder.getInt64(Align32 ? -32 : -16)); 3808 Addr = Builder.CreateIntToPtr(AddrAsInt, BP, "ap.align"); 3809 } 3810 3811 // Update the va_list pointer. The pointer should be bumped by the 3812 // size of the object. We can trust getTypeSize() except for a complex 3813 // type whose base type is smaller than a doubleword. For these, the 3814 // size of the object is 16 bytes; see below for further explanation. 3815 unsigned SizeInBytes = CGF.getContext().getTypeSize(Ty) / 8; 3816 QualType BaseTy; 3817 unsigned CplxBaseSize = 0; 3818 3819 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 3820 BaseTy = CTy->getElementType(); 3821 CplxBaseSize = CGF.getContext().getTypeSize(BaseTy) / 8; 3822 if (CplxBaseSize < 8) 3823 SizeInBytes = 16; 3824 } 3825 3826 unsigned Offset = llvm::RoundUpToAlignment(SizeInBytes, 8); 3827 llvm::Value *NextAddr = 3828 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int64Ty, Offset), 3829 "ap.next"); 3830 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 3831 3832 // If we have a complex type and the base type is smaller than 8 bytes, 3833 // the ABI calls for the real and imaginary parts to be right-adjusted 3834 // in separate doublewords. However, Clang expects us to produce a 3835 // pointer to a structure with the two parts packed tightly. So generate 3836 // loads of the real and imaginary parts relative to the va_list pointer, 3837 // and store them to a temporary structure. 3838 if (CplxBaseSize && CplxBaseSize < 8) { 3839 llvm::Value *RealAddr = Builder.CreatePtrToInt(Addr, CGF.Int64Ty); 3840 llvm::Value *ImagAddr = RealAddr; 3841 if (CGF.CGM.getDataLayout().isBigEndian()) { 3842 RealAddr = 3843 Builder.CreateAdd(RealAddr, Builder.getInt64(8 - CplxBaseSize)); 3844 ImagAddr = 3845 Builder.CreateAdd(ImagAddr, Builder.getInt64(16 - CplxBaseSize)); 3846 } else { 3847 ImagAddr = Builder.CreateAdd(ImagAddr, Builder.getInt64(8)); 3848 } 3849 llvm::Type *PBaseTy = llvm::PointerType::getUnqual(CGF.ConvertType(BaseTy)); 3850 RealAddr = Builder.CreateIntToPtr(RealAddr, PBaseTy); 3851 ImagAddr = Builder.CreateIntToPtr(ImagAddr, PBaseTy); 3852 llvm::Value *Real = Builder.CreateLoad(RealAddr, false, ".vareal"); 3853 llvm::Value *Imag = Builder.CreateLoad(ImagAddr, false, ".vaimag"); 3854 llvm::AllocaInst *Ptr = 3855 CGF.CreateTempAlloca(CGT.ConvertTypeForMem(Ty), "vacplx"); 3856 llvm::Value *RealPtr = 3857 Builder.CreateStructGEP(Ptr->getAllocatedType(), Ptr, 0, ".real"); 3858 llvm::Value *ImagPtr = 3859 Builder.CreateStructGEP(Ptr->getAllocatedType(), Ptr, 1, ".imag"); 3860 Builder.CreateStore(Real, RealPtr, false); 3861 Builder.CreateStore(Imag, ImagPtr, false); 3862 return Ptr; 3863 } 3864 3865 // If the argument is smaller than 8 bytes, it is right-adjusted in 3866 // its doubleword slot. Adjust the pointer to pick it up from the 3867 // correct offset. 3868 if (SizeInBytes < 8 && CGF.CGM.getDataLayout().isBigEndian()) { 3869 llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty); 3870 AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt64(8 - SizeInBytes)); 3871 Addr = Builder.CreateIntToPtr(AddrAsInt, BP); 3872 } 3873 3874 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 3875 return Builder.CreateBitCast(Addr, PTy); 3876 } 3877 3878 static bool 3879 PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 3880 llvm::Value *Address) { 3881 // This is calculated from the LLVM and GCC tables and verified 3882 // against gcc output. AFAIK all ABIs use the same encoding. 3883 3884 CodeGen::CGBuilderTy &Builder = CGF.Builder; 3885 3886 llvm::IntegerType *i8 = CGF.Int8Ty; 3887 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 3888 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 3889 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 3890 3891 // 0-31: r0-31, the 8-byte general-purpose registers 3892 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 3893 3894 // 32-63: fp0-31, the 8-byte floating-point registers 3895 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 3896 3897 // 64-76 are various 4-byte special-purpose registers: 3898 // 64: mq 3899 // 65: lr 3900 // 66: ctr 3901 // 67: ap 3902 // 68-75 cr0-7 3903 // 76: xer 3904 AssignToArrayRange(Builder, Address, Four8, 64, 76); 3905 3906 // 77-108: v0-31, the 16-byte vector registers 3907 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 3908 3909 // 109: vrsave 3910 // 110: vscr 3911 // 111: spe_acc 3912 // 112: spefscr 3913 // 113: sfp 3914 AssignToArrayRange(Builder, Address, Four8, 109, 113); 3915 3916 return false; 3917 } 3918 3919 bool 3920 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable( 3921 CodeGen::CodeGenFunction &CGF, 3922 llvm::Value *Address) const { 3923 3924 return PPC64_initDwarfEHRegSizeTable(CGF, Address); 3925 } 3926 3927 bool 3928 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 3929 llvm::Value *Address) const { 3930 3931 return PPC64_initDwarfEHRegSizeTable(CGF, Address); 3932 } 3933 3934 //===----------------------------------------------------------------------===// 3935 // AArch64 ABI Implementation 3936 //===----------------------------------------------------------------------===// 3937 3938 namespace { 3939 3940 class AArch64ABIInfo : public ABIInfo { 3941 public: 3942 enum ABIKind { 3943 AAPCS = 0, 3944 DarwinPCS 3945 }; 3946 3947 private: 3948 ABIKind Kind; 3949 3950 public: 3951 AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind) : ABIInfo(CGT), Kind(Kind) {} 3952 3953 private: 3954 ABIKind getABIKind() const { return Kind; } 3955 bool isDarwinPCS() const { return Kind == DarwinPCS; } 3956 3957 ABIArgInfo classifyReturnType(QualType RetTy) const; 3958 ABIArgInfo classifyArgumentType(QualType RetTy) const; 3959 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 3960 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 3961 uint64_t Members) const override; 3962 3963 bool isIllegalVectorType(QualType Ty) const; 3964 3965 void computeInfo(CGFunctionInfo &FI) const override { 3966 if (!getCXXABI().classifyReturnType(FI)) 3967 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 3968 3969 for (auto &it : FI.arguments()) 3970 it.info = classifyArgumentType(it.type); 3971 } 3972 3973 llvm::Value *EmitDarwinVAArg(llvm::Value *VAListAddr, QualType Ty, 3974 CodeGenFunction &CGF) const; 3975 3976 llvm::Value *EmitAAPCSVAArg(llvm::Value *VAListAddr, QualType Ty, 3977 CodeGenFunction &CGF) const; 3978 3979 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 3980 CodeGenFunction &CGF) const override { 3981 return isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF) 3982 : EmitAAPCSVAArg(VAListAddr, Ty, CGF); 3983 } 3984 }; 3985 3986 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo { 3987 public: 3988 AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind) 3989 : TargetCodeGenInfo(new AArch64ABIInfo(CGT, Kind)) {} 3990 3991 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 3992 return "mov\tfp, fp\t\t; marker for objc_retainAutoreleaseReturnValue"; 3993 } 3994 3995 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 3996 return 31; 3997 } 3998 3999 bool doesReturnSlotInterfereWithArgs() const override { return false; } 4000 }; 4001 } 4002 4003 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const { 4004 Ty = useFirstFieldIfTransparentUnion(Ty); 4005 4006 // Handle illegal vector types here. 4007 if (isIllegalVectorType(Ty)) { 4008 uint64_t Size = getContext().getTypeSize(Ty); 4009 if (Size <= 32) { 4010 llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext()); 4011 return ABIArgInfo::getDirect(ResType); 4012 } 4013 if (Size == 64) { 4014 llvm::Type *ResType = 4015 llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2); 4016 return ABIArgInfo::getDirect(ResType); 4017 } 4018 if (Size == 128) { 4019 llvm::Type *ResType = 4020 llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4); 4021 return ABIArgInfo::getDirect(ResType); 4022 } 4023 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 4024 } 4025 4026 if (!isAggregateTypeForABI(Ty)) { 4027 // Treat an enum type as its underlying type. 4028 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4029 Ty = EnumTy->getDecl()->getIntegerType(); 4030 4031 return (Ty->isPromotableIntegerType() && isDarwinPCS() 4032 ? ABIArgInfo::getExtend() 4033 : ABIArgInfo::getDirect()); 4034 } 4035 4036 // Structures with either a non-trivial destructor or a non-trivial 4037 // copy constructor are always indirect. 4038 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 4039 return ABIArgInfo::getIndirect(0, /*ByVal=*/RAA == 4040 CGCXXABI::RAA_DirectInMemory); 4041 } 4042 4043 // Empty records are always ignored on Darwin, but actually passed in C++ mode 4044 // elsewhere for GNU compatibility. 4045 if (isEmptyRecord(getContext(), Ty, true)) { 4046 if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS()) 4047 return ABIArgInfo::getIgnore(); 4048 4049 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 4050 } 4051 4052 // Homogeneous Floating-point Aggregates (HFAs) need to be expanded. 4053 const Type *Base = nullptr; 4054 uint64_t Members = 0; 4055 if (isHomogeneousAggregate(Ty, Base, Members)) { 4056 return ABIArgInfo::getDirect( 4057 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members)); 4058 } 4059 4060 // Aggregates <= 16 bytes are passed directly in registers or on the stack. 4061 uint64_t Size = getContext().getTypeSize(Ty); 4062 if (Size <= 128) { 4063 unsigned Alignment = getContext().getTypeAlign(Ty); 4064 Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes 4065 4066 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 4067 // For aggregates with 16-byte alignment, we use i128. 4068 if (Alignment < 128 && Size == 128) { 4069 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); 4070 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 4071 } 4072 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 4073 } 4074 4075 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 4076 } 4077 4078 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy) const { 4079 if (RetTy->isVoidType()) 4080 return ABIArgInfo::getIgnore(); 4081 4082 // Large vector types should be returned via memory. 4083 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) 4084 return ABIArgInfo::getIndirect(0); 4085 4086 if (!isAggregateTypeForABI(RetTy)) { 4087 // Treat an enum type as its underlying type. 4088 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 4089 RetTy = EnumTy->getDecl()->getIntegerType(); 4090 4091 return (RetTy->isPromotableIntegerType() && isDarwinPCS() 4092 ? ABIArgInfo::getExtend() 4093 : ABIArgInfo::getDirect()); 4094 } 4095 4096 if (isEmptyRecord(getContext(), RetTy, true)) 4097 return ABIArgInfo::getIgnore(); 4098 4099 const Type *Base = nullptr; 4100 uint64_t Members = 0; 4101 if (isHomogeneousAggregate(RetTy, Base, Members)) 4102 // Homogeneous Floating-point Aggregates (HFAs) are returned directly. 4103 return ABIArgInfo::getDirect(); 4104 4105 // Aggregates <= 16 bytes are returned directly in registers or on the stack. 4106 uint64_t Size = getContext().getTypeSize(RetTy); 4107 if (Size <= 128) { 4108 unsigned Alignment = getContext().getTypeAlign(RetTy); 4109 Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes 4110 4111 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 4112 // For aggregates with 16-byte alignment, we use i128. 4113 if (Alignment < 128 && Size == 128) { 4114 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); 4115 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 4116 } 4117 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 4118 } 4119 4120 return ABIArgInfo::getIndirect(0); 4121 } 4122 4123 /// isIllegalVectorType - check whether the vector type is legal for AArch64. 4124 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const { 4125 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4126 // Check whether VT is legal. 4127 unsigned NumElements = VT->getNumElements(); 4128 uint64_t Size = getContext().getTypeSize(VT); 4129 // NumElements should be power of 2 between 1 and 16. 4130 if ((NumElements & (NumElements - 1)) != 0 || NumElements > 16) 4131 return true; 4132 return Size != 64 && (Size != 128 || NumElements == 1); 4133 } 4134 return false; 4135 } 4136 4137 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 4138 // Homogeneous aggregates for AAPCS64 must have base types of a floating 4139 // point type or a short-vector type. This is the same as the 32-bit ABI, 4140 // but with the difference that any floating-point type is allowed, 4141 // including __fp16. 4142 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 4143 if (BT->isFloatingPoint()) 4144 return true; 4145 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 4146 unsigned VecSize = getContext().getTypeSize(VT); 4147 if (VecSize == 64 || VecSize == 128) 4148 return true; 4149 } 4150 return false; 4151 } 4152 4153 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 4154 uint64_t Members) const { 4155 return Members <= 4; 4156 } 4157 4158 llvm::Value *AArch64ABIInfo::EmitAAPCSVAArg(llvm::Value *VAListAddr, 4159 QualType Ty, 4160 CodeGenFunction &CGF) const { 4161 ABIArgInfo AI = classifyArgumentType(Ty); 4162 bool IsIndirect = AI.isIndirect(); 4163 4164 llvm::Type *BaseTy = CGF.ConvertType(Ty); 4165 if (IsIndirect) 4166 BaseTy = llvm::PointerType::getUnqual(BaseTy); 4167 else if (AI.getCoerceToType()) 4168 BaseTy = AI.getCoerceToType(); 4169 4170 unsigned NumRegs = 1; 4171 if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) { 4172 BaseTy = ArrTy->getElementType(); 4173 NumRegs = ArrTy->getNumElements(); 4174 } 4175 bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy(); 4176 4177 // The AArch64 va_list type and handling is specified in the Procedure Call 4178 // Standard, section B.4: 4179 // 4180 // struct { 4181 // void *__stack; 4182 // void *__gr_top; 4183 // void *__vr_top; 4184 // int __gr_offs; 4185 // int __vr_offs; 4186 // }; 4187 4188 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); 4189 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 4190 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); 4191 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 4192 auto &Ctx = CGF.getContext(); 4193 4194 llvm::Value *reg_offs_p = nullptr, *reg_offs = nullptr; 4195 int reg_top_index; 4196 int RegSize = IsIndirect ? 8 : getContext().getTypeSize(Ty) / 8; 4197 if (!IsFPR) { 4198 // 3 is the field number of __gr_offs 4199 reg_offs_p = 4200 CGF.Builder.CreateStructGEP(nullptr, VAListAddr, 3, "gr_offs_p"); 4201 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs"); 4202 reg_top_index = 1; // field number for __gr_top 4203 RegSize = llvm::RoundUpToAlignment(RegSize, 8); 4204 } else { 4205 // 4 is the field number of __vr_offs. 4206 reg_offs_p = 4207 CGF.Builder.CreateStructGEP(nullptr, VAListAddr, 4, "vr_offs_p"); 4208 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs"); 4209 reg_top_index = 2; // field number for __vr_top 4210 RegSize = 16 * NumRegs; 4211 } 4212 4213 //======================================= 4214 // Find out where argument was passed 4215 //======================================= 4216 4217 // If reg_offs >= 0 we're already using the stack for this type of 4218 // argument. We don't want to keep updating reg_offs (in case it overflows, 4219 // though anyone passing 2GB of arguments, each at most 16 bytes, deserves 4220 // whatever they get). 4221 llvm::Value *UsingStack = nullptr; 4222 UsingStack = CGF.Builder.CreateICmpSGE( 4223 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0)); 4224 4225 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock); 4226 4227 // Otherwise, at least some kind of argument could go in these registers, the 4228 // question is whether this particular type is too big. 4229 CGF.EmitBlock(MaybeRegBlock); 4230 4231 // Integer arguments may need to correct register alignment (for example a 4232 // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we 4233 // align __gr_offs to calculate the potential address. 4234 if (!IsFPR && !IsIndirect && Ctx.getTypeAlign(Ty) > 64) { 4235 int Align = Ctx.getTypeAlign(Ty) / 8; 4236 4237 reg_offs = CGF.Builder.CreateAdd( 4238 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1), 4239 "align_regoffs"); 4240 reg_offs = CGF.Builder.CreateAnd( 4241 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align), 4242 "aligned_regoffs"); 4243 } 4244 4245 // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list. 4246 llvm::Value *NewOffset = nullptr; 4247 NewOffset = CGF.Builder.CreateAdd( 4248 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs"); 4249 CGF.Builder.CreateStore(NewOffset, reg_offs_p); 4250 4251 // Now we're in a position to decide whether this argument really was in 4252 // registers or not. 4253 llvm::Value *InRegs = nullptr; 4254 InRegs = CGF.Builder.CreateICmpSLE( 4255 NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg"); 4256 4257 CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock); 4258 4259 //======================================= 4260 // Argument was in registers 4261 //======================================= 4262 4263 // Now we emit the code for if the argument was originally passed in 4264 // registers. First start the appropriate block: 4265 CGF.EmitBlock(InRegBlock); 4266 4267 llvm::Value *reg_top_p = nullptr, *reg_top = nullptr; 4268 reg_top_p = CGF.Builder.CreateStructGEP(nullptr, VAListAddr, reg_top_index, 4269 "reg_top_p"); 4270 reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top"); 4271 llvm::Value *BaseAddr = CGF.Builder.CreateGEP(reg_top, reg_offs); 4272 llvm::Value *RegAddr = nullptr; 4273 llvm::Type *MemTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); 4274 4275 if (IsIndirect) { 4276 // If it's been passed indirectly (actually a struct), whatever we find from 4277 // stored registers or on the stack will actually be a struct **. 4278 MemTy = llvm::PointerType::getUnqual(MemTy); 4279 } 4280 4281 const Type *Base = nullptr; 4282 uint64_t NumMembers = 0; 4283 bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers); 4284 if (IsHFA && NumMembers > 1) { 4285 // Homogeneous aggregates passed in registers will have their elements split 4286 // and stored 16-bytes apart regardless of size (they're notionally in qN, 4287 // qN+1, ...). We reload and store into a temporary local variable 4288 // contiguously. 4289 assert(!IsIndirect && "Homogeneous aggregates should be passed directly"); 4290 llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0)); 4291 llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers); 4292 llvm::AllocaInst *Tmp = CGF.CreateTempAlloca(HFATy); 4293 int Offset = 0; 4294 4295 if (CGF.CGM.getDataLayout().isBigEndian() && Ctx.getTypeSize(Base) < 128) 4296 Offset = 16 - Ctx.getTypeSize(Base) / 8; 4297 for (unsigned i = 0; i < NumMembers; ++i) { 4298 llvm::Value *BaseOffset = 4299 llvm::ConstantInt::get(CGF.Int32Ty, 16 * i + Offset); 4300 llvm::Value *LoadAddr = CGF.Builder.CreateGEP(BaseAddr, BaseOffset); 4301 LoadAddr = CGF.Builder.CreateBitCast( 4302 LoadAddr, llvm::PointerType::getUnqual(BaseTy)); 4303 llvm::Value *StoreAddr = 4304 CGF.Builder.CreateStructGEP(Tmp->getAllocatedType(), Tmp, i); 4305 4306 llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr); 4307 CGF.Builder.CreateStore(Elem, StoreAddr); 4308 } 4309 4310 RegAddr = CGF.Builder.CreateBitCast(Tmp, MemTy); 4311 } else { 4312 // Otherwise the object is contiguous in memory 4313 unsigned BeAlign = reg_top_index == 2 ? 16 : 8; 4314 if (CGF.CGM.getDataLayout().isBigEndian() && 4315 (IsHFA || !isAggregateTypeForABI(Ty)) && 4316 Ctx.getTypeSize(Ty) < (BeAlign * 8)) { 4317 int Offset = BeAlign - Ctx.getTypeSize(Ty) / 8; 4318 BaseAddr = CGF.Builder.CreatePtrToInt(BaseAddr, CGF.Int64Ty); 4319 4320 BaseAddr = CGF.Builder.CreateAdd( 4321 BaseAddr, llvm::ConstantInt::get(CGF.Int64Ty, Offset), "align_be"); 4322 4323 BaseAddr = CGF.Builder.CreateIntToPtr(BaseAddr, CGF.Int8PtrTy); 4324 } 4325 4326 RegAddr = CGF.Builder.CreateBitCast(BaseAddr, MemTy); 4327 } 4328 4329 CGF.EmitBranch(ContBlock); 4330 4331 //======================================= 4332 // Argument was on the stack 4333 //======================================= 4334 CGF.EmitBlock(OnStackBlock); 4335 4336 llvm::Value *stack_p = nullptr, *OnStackAddr = nullptr; 4337 stack_p = CGF.Builder.CreateStructGEP(nullptr, VAListAddr, 0, "stack_p"); 4338 OnStackAddr = CGF.Builder.CreateLoad(stack_p, "stack"); 4339 4340 // Again, stack arguments may need realigmnent. In this case both integer and 4341 // floating-point ones might be affected. 4342 if (!IsIndirect && Ctx.getTypeAlign(Ty) > 64) { 4343 int Align = Ctx.getTypeAlign(Ty) / 8; 4344 4345 OnStackAddr = CGF.Builder.CreatePtrToInt(OnStackAddr, CGF.Int64Ty); 4346 4347 OnStackAddr = CGF.Builder.CreateAdd( 4348 OnStackAddr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1), 4349 "align_stack"); 4350 OnStackAddr = CGF.Builder.CreateAnd( 4351 OnStackAddr, llvm::ConstantInt::get(CGF.Int64Ty, -Align), 4352 "align_stack"); 4353 4354 OnStackAddr = CGF.Builder.CreateIntToPtr(OnStackAddr, CGF.Int8PtrTy); 4355 } 4356 4357 uint64_t StackSize; 4358 if (IsIndirect) 4359 StackSize = 8; 4360 else 4361 StackSize = Ctx.getTypeSize(Ty) / 8; 4362 4363 // All stack slots are 8 bytes 4364 StackSize = llvm::RoundUpToAlignment(StackSize, 8); 4365 4366 llvm::Value *StackSizeC = llvm::ConstantInt::get(CGF.Int32Ty, StackSize); 4367 llvm::Value *NewStack = 4368 CGF.Builder.CreateGEP(OnStackAddr, StackSizeC, "new_stack"); 4369 4370 // Write the new value of __stack for the next call to va_arg 4371 CGF.Builder.CreateStore(NewStack, stack_p); 4372 4373 if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) && 4374 Ctx.getTypeSize(Ty) < 64) { 4375 int Offset = 8 - Ctx.getTypeSize(Ty) / 8; 4376 OnStackAddr = CGF.Builder.CreatePtrToInt(OnStackAddr, CGF.Int64Ty); 4377 4378 OnStackAddr = CGF.Builder.CreateAdd( 4379 OnStackAddr, llvm::ConstantInt::get(CGF.Int64Ty, Offset), "align_be"); 4380 4381 OnStackAddr = CGF.Builder.CreateIntToPtr(OnStackAddr, CGF.Int8PtrTy); 4382 } 4383 4384 OnStackAddr = CGF.Builder.CreateBitCast(OnStackAddr, MemTy); 4385 4386 CGF.EmitBranch(ContBlock); 4387 4388 //======================================= 4389 // Tidy up 4390 //======================================= 4391 CGF.EmitBlock(ContBlock); 4392 4393 llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(MemTy, 2, "vaarg.addr"); 4394 ResAddr->addIncoming(RegAddr, InRegBlock); 4395 ResAddr->addIncoming(OnStackAddr, OnStackBlock); 4396 4397 if (IsIndirect) 4398 return CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"); 4399 4400 return ResAddr; 4401 } 4402 4403 llvm::Value *AArch64ABIInfo::EmitDarwinVAArg(llvm::Value *VAListAddr, 4404 QualType Ty, 4405 CodeGenFunction &CGF) const { 4406 // We do not support va_arg for aggregates or illegal vector types. 4407 // Lower VAArg here for these cases and use the LLVM va_arg instruction for 4408 // other cases. 4409 if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty)) 4410 return nullptr; 4411 4412 uint64_t Size = CGF.getContext().getTypeSize(Ty) / 8; 4413 uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8; 4414 4415 const Type *Base = nullptr; 4416 uint64_t Members = 0; 4417 bool isHA = isHomogeneousAggregate(Ty, Base, Members); 4418 4419 bool isIndirect = false; 4420 // Arguments bigger than 16 bytes which aren't homogeneous aggregates should 4421 // be passed indirectly. 4422 if (Size > 16 && !isHA) { 4423 isIndirect = true; 4424 Size = 8; 4425 Align = 8; 4426 } 4427 4428 llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext()); 4429 llvm::Type *BPP = llvm::PointerType::getUnqual(BP); 4430 4431 CGBuilderTy &Builder = CGF.Builder; 4432 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); 4433 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 4434 4435 if (isEmptyRecord(getContext(), Ty, true)) { 4436 // These are ignored for parameter passing purposes. 4437 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 4438 return Builder.CreateBitCast(Addr, PTy); 4439 } 4440 4441 const uint64_t MinABIAlign = 8; 4442 if (Align > MinABIAlign) { 4443 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, Align - 1); 4444 Addr = Builder.CreateGEP(Addr, Offset); 4445 llvm::Value *AsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty); 4446 llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, ~(Align - 1)); 4447 llvm::Value *Aligned = Builder.CreateAnd(AsInt, Mask); 4448 Addr = Builder.CreateIntToPtr(Aligned, BP, "ap.align"); 4449 } 4450 4451 uint64_t Offset = llvm::RoundUpToAlignment(Size, MinABIAlign); 4452 llvm::Value *NextAddr = Builder.CreateGEP( 4453 Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), "ap.next"); 4454 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 4455 4456 if (isIndirect) 4457 Addr = Builder.CreateLoad(Builder.CreateBitCast(Addr, BPP)); 4458 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 4459 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); 4460 4461 return AddrTyped; 4462 } 4463 4464 //===----------------------------------------------------------------------===// 4465 // ARM ABI Implementation 4466 //===----------------------------------------------------------------------===// 4467 4468 namespace { 4469 4470 class ARMABIInfo : public ABIInfo { 4471 public: 4472 enum ABIKind { 4473 APCS = 0, 4474 AAPCS = 1, 4475 AAPCS_VFP 4476 }; 4477 4478 private: 4479 ABIKind Kind; 4480 4481 public: 4482 ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) : ABIInfo(CGT), Kind(_Kind) { 4483 setCCs(); 4484 } 4485 4486 bool isEABI() const { 4487 switch (getTarget().getTriple().getEnvironment()) { 4488 case llvm::Triple::Android: 4489 case llvm::Triple::EABI: 4490 case llvm::Triple::EABIHF: 4491 case llvm::Triple::GNUEABI: 4492 case llvm::Triple::GNUEABIHF: 4493 return true; 4494 default: 4495 return false; 4496 } 4497 } 4498 4499 bool isEABIHF() const { 4500 switch (getTarget().getTriple().getEnvironment()) { 4501 case llvm::Triple::EABIHF: 4502 case llvm::Triple::GNUEABIHF: 4503 return true; 4504 default: 4505 return false; 4506 } 4507 } 4508 4509 ABIKind getABIKind() const { return Kind; } 4510 4511 private: 4512 ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic) const; 4513 ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic) const; 4514 bool isIllegalVectorType(QualType Ty) const; 4515 4516 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 4517 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 4518 uint64_t Members) const override; 4519 4520 void computeInfo(CGFunctionInfo &FI) const override; 4521 4522 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 4523 CodeGenFunction &CGF) const override; 4524 4525 llvm::CallingConv::ID getLLVMDefaultCC() const; 4526 llvm::CallingConv::ID getABIDefaultCC() const; 4527 void setCCs(); 4528 }; 4529 4530 class ARMTargetCodeGenInfo : public TargetCodeGenInfo { 4531 public: 4532 ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 4533 :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {} 4534 4535 const ARMABIInfo &getABIInfo() const { 4536 return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo()); 4537 } 4538 4539 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4540 return 13; 4541 } 4542 4543 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 4544 return "mov\tr7, r7\t\t@ marker for objc_retainAutoreleaseReturnValue"; 4545 } 4546 4547 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4548 llvm::Value *Address) const override { 4549 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 4550 4551 // 0-15 are the 16 integer registers. 4552 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15); 4553 return false; 4554 } 4555 4556 unsigned getSizeOfUnwindException() const override { 4557 if (getABIInfo().isEABI()) return 88; 4558 return TargetCodeGenInfo::getSizeOfUnwindException(); 4559 } 4560 4561 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 4562 CodeGen::CodeGenModule &CGM) const override { 4563 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); 4564 if (!FD) 4565 return; 4566 4567 const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>(); 4568 if (!Attr) 4569 return; 4570 4571 const char *Kind; 4572 switch (Attr->getInterrupt()) { 4573 case ARMInterruptAttr::Generic: Kind = ""; break; 4574 case ARMInterruptAttr::IRQ: Kind = "IRQ"; break; 4575 case ARMInterruptAttr::FIQ: Kind = "FIQ"; break; 4576 case ARMInterruptAttr::SWI: Kind = "SWI"; break; 4577 case ARMInterruptAttr::ABORT: Kind = "ABORT"; break; 4578 case ARMInterruptAttr::UNDEF: Kind = "UNDEF"; break; 4579 } 4580 4581 llvm::Function *Fn = cast<llvm::Function>(GV); 4582 4583 Fn->addFnAttr("interrupt", Kind); 4584 4585 if (cast<ARMABIInfo>(getABIInfo()).getABIKind() == ARMABIInfo::APCS) 4586 return; 4587 4588 // AAPCS guarantees that sp will be 8-byte aligned on any public interface, 4589 // however this is not necessarily true on taking any interrupt. Instruct 4590 // the backend to perform a realignment as part of the function prologue. 4591 llvm::AttrBuilder B; 4592 B.addStackAlignmentAttr(8); 4593 Fn->addAttributes(llvm::AttributeSet::FunctionIndex, 4594 llvm::AttributeSet::get(CGM.getLLVMContext(), 4595 llvm::AttributeSet::FunctionIndex, 4596 B)); 4597 } 4598 }; 4599 4600 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo { 4601 void addStackProbeSizeTargetAttribute(const Decl *D, llvm::GlobalValue *GV, 4602 CodeGen::CodeGenModule &CGM) const; 4603 4604 public: 4605 WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 4606 : ARMTargetCodeGenInfo(CGT, K) {} 4607 4608 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 4609 CodeGen::CodeGenModule &CGM) const override; 4610 }; 4611 4612 void WindowsARMTargetCodeGenInfo::addStackProbeSizeTargetAttribute( 4613 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 4614 if (!isa<FunctionDecl>(D)) 4615 return; 4616 if (CGM.getCodeGenOpts().StackProbeSize == 4096) 4617 return; 4618 4619 llvm::Function *F = cast<llvm::Function>(GV); 4620 F->addFnAttr("stack-probe-size", 4621 llvm::utostr(CGM.getCodeGenOpts().StackProbeSize)); 4622 } 4623 4624 void WindowsARMTargetCodeGenInfo::setTargetAttributes( 4625 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 4626 ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 4627 addStackProbeSizeTargetAttribute(D, GV, CGM); 4628 } 4629 } 4630 4631 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const { 4632 if (!getCXXABI().classifyReturnType(FI)) 4633 FI.getReturnInfo() = 4634 classifyReturnType(FI.getReturnType(), FI.isVariadic()); 4635 4636 for (auto &I : FI.arguments()) 4637 I.info = classifyArgumentType(I.type, FI.isVariadic()); 4638 4639 // Always honor user-specified calling convention. 4640 if (FI.getCallingConvention() != llvm::CallingConv::C) 4641 return; 4642 4643 llvm::CallingConv::ID cc = getRuntimeCC(); 4644 if (cc != llvm::CallingConv::C) 4645 FI.setEffectiveCallingConvention(cc); 4646 } 4647 4648 /// Return the default calling convention that LLVM will use. 4649 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const { 4650 // The default calling convention that LLVM will infer. 4651 if (isEABIHF()) 4652 return llvm::CallingConv::ARM_AAPCS_VFP; 4653 else if (isEABI()) 4654 return llvm::CallingConv::ARM_AAPCS; 4655 else 4656 return llvm::CallingConv::ARM_APCS; 4657 } 4658 4659 /// Return the calling convention that our ABI would like us to use 4660 /// as the C calling convention. 4661 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const { 4662 switch (getABIKind()) { 4663 case APCS: return llvm::CallingConv::ARM_APCS; 4664 case AAPCS: return llvm::CallingConv::ARM_AAPCS; 4665 case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 4666 } 4667 llvm_unreachable("bad ABI kind"); 4668 } 4669 4670 void ARMABIInfo::setCCs() { 4671 assert(getRuntimeCC() == llvm::CallingConv::C); 4672 4673 // Don't muddy up the IR with a ton of explicit annotations if 4674 // they'd just match what LLVM will infer from the triple. 4675 llvm::CallingConv::ID abiCC = getABIDefaultCC(); 4676 if (abiCC != getLLVMDefaultCC()) 4677 RuntimeCC = abiCC; 4678 4679 BuiltinCC = (getABIKind() == APCS ? 4680 llvm::CallingConv::ARM_APCS : llvm::CallingConv::ARM_AAPCS); 4681 } 4682 4683 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, 4684 bool isVariadic) const { 4685 // 6.1.2.1 The following argument types are VFP CPRCs: 4686 // A single-precision floating-point type (including promoted 4687 // half-precision types); A double-precision floating-point type; 4688 // A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate 4689 // with a Base Type of a single- or double-precision floating-point type, 4690 // 64-bit containerized vectors or 128-bit containerized vectors with one 4691 // to four Elements. 4692 bool IsEffectivelyAAPCS_VFP = getABIKind() == AAPCS_VFP && !isVariadic; 4693 4694 Ty = useFirstFieldIfTransparentUnion(Ty); 4695 4696 // Handle illegal vector types here. 4697 if (isIllegalVectorType(Ty)) { 4698 uint64_t Size = getContext().getTypeSize(Ty); 4699 if (Size <= 32) { 4700 llvm::Type *ResType = 4701 llvm::Type::getInt32Ty(getVMContext()); 4702 return ABIArgInfo::getDirect(ResType); 4703 } 4704 if (Size == 64) { 4705 llvm::Type *ResType = llvm::VectorType::get( 4706 llvm::Type::getInt32Ty(getVMContext()), 2); 4707 return ABIArgInfo::getDirect(ResType); 4708 } 4709 if (Size == 128) { 4710 llvm::Type *ResType = llvm::VectorType::get( 4711 llvm::Type::getInt32Ty(getVMContext()), 4); 4712 return ABIArgInfo::getDirect(ResType); 4713 } 4714 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 4715 } 4716 4717 if (!isAggregateTypeForABI(Ty)) { 4718 // Treat an enum type as its underlying type. 4719 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 4720 Ty = EnumTy->getDecl()->getIntegerType(); 4721 } 4722 4723 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend() 4724 : ABIArgInfo::getDirect()); 4725 } 4726 4727 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 4728 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 4729 } 4730 4731 // Ignore empty records. 4732 if (isEmptyRecord(getContext(), Ty, true)) 4733 return ABIArgInfo::getIgnore(); 4734 4735 if (IsEffectivelyAAPCS_VFP) { 4736 // Homogeneous Aggregates need to be expanded when we can fit the aggregate 4737 // into VFP registers. 4738 const Type *Base = nullptr; 4739 uint64_t Members = 0; 4740 if (isHomogeneousAggregate(Ty, Base, Members)) { 4741 assert(Base && "Base class should be set for homogeneous aggregate"); 4742 // Base can be a floating-point or a vector. 4743 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); 4744 } 4745 } 4746 4747 // Support byval for ARM. 4748 // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at 4749 // most 8-byte. We realign the indirect argument if type alignment is bigger 4750 // than ABI alignment. 4751 uint64_t ABIAlign = 4; 4752 uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8; 4753 if (getABIKind() == ARMABIInfo::AAPCS_VFP || 4754 getABIKind() == ARMABIInfo::AAPCS) 4755 ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8); 4756 4757 if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) { 4758 return ABIArgInfo::getIndirect(ABIAlign, /*ByVal=*/true, 4759 /*Realign=*/TyAlign > ABIAlign); 4760 } 4761 4762 // Otherwise, pass by coercing to a structure of the appropriate size. 4763 llvm::Type* ElemTy; 4764 unsigned SizeRegs; 4765 // FIXME: Try to match the types of the arguments more accurately where 4766 // we can. 4767 if (getContext().getTypeAlign(Ty) <= 32) { 4768 ElemTy = llvm::Type::getInt32Ty(getVMContext()); 4769 SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32; 4770 } else { 4771 ElemTy = llvm::Type::getInt64Ty(getVMContext()); 4772 SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64; 4773 } 4774 4775 return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs)); 4776 } 4777 4778 static bool isIntegerLikeType(QualType Ty, ASTContext &Context, 4779 llvm::LLVMContext &VMContext) { 4780 // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure 4781 // is called integer-like if its size is less than or equal to one word, and 4782 // the offset of each of its addressable sub-fields is zero. 4783 4784 uint64_t Size = Context.getTypeSize(Ty); 4785 4786 // Check that the type fits in a word. 4787 if (Size > 32) 4788 return false; 4789 4790 // FIXME: Handle vector types! 4791 if (Ty->isVectorType()) 4792 return false; 4793 4794 // Float types are never treated as "integer like". 4795 if (Ty->isRealFloatingType()) 4796 return false; 4797 4798 // If this is a builtin or pointer type then it is ok. 4799 if (Ty->getAs<BuiltinType>() || Ty->isPointerType()) 4800 return true; 4801 4802 // Small complex integer types are "integer like". 4803 if (const ComplexType *CT = Ty->getAs<ComplexType>()) 4804 return isIntegerLikeType(CT->getElementType(), Context, VMContext); 4805 4806 // Single element and zero sized arrays should be allowed, by the definition 4807 // above, but they are not. 4808 4809 // Otherwise, it must be a record type. 4810 const RecordType *RT = Ty->getAs<RecordType>(); 4811 if (!RT) return false; 4812 4813 // Ignore records with flexible arrays. 4814 const RecordDecl *RD = RT->getDecl(); 4815 if (RD->hasFlexibleArrayMember()) 4816 return false; 4817 4818 // Check that all sub-fields are at offset 0, and are themselves "integer 4819 // like". 4820 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 4821 4822 bool HadField = false; 4823 unsigned idx = 0; 4824 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 4825 i != e; ++i, ++idx) { 4826 const FieldDecl *FD = *i; 4827 4828 // Bit-fields are not addressable, we only need to verify they are "integer 4829 // like". We still have to disallow a subsequent non-bitfield, for example: 4830 // struct { int : 0; int x } 4831 // is non-integer like according to gcc. 4832 if (FD->isBitField()) { 4833 if (!RD->isUnion()) 4834 HadField = true; 4835 4836 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 4837 return false; 4838 4839 continue; 4840 } 4841 4842 // Check if this field is at offset 0. 4843 if (Layout.getFieldOffset(idx) != 0) 4844 return false; 4845 4846 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 4847 return false; 4848 4849 // Only allow at most one field in a structure. This doesn't match the 4850 // wording above, but follows gcc in situations with a field following an 4851 // empty structure. 4852 if (!RD->isUnion()) { 4853 if (HadField) 4854 return false; 4855 4856 HadField = true; 4857 } 4858 } 4859 4860 return true; 4861 } 4862 4863 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, 4864 bool isVariadic) const { 4865 bool IsEffectivelyAAPCS_VFP = getABIKind() == AAPCS_VFP && !isVariadic; 4866 4867 if (RetTy->isVoidType()) 4868 return ABIArgInfo::getIgnore(); 4869 4870 // Large vector types should be returned via memory. 4871 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) { 4872 return ABIArgInfo::getIndirect(0); 4873 } 4874 4875 if (!isAggregateTypeForABI(RetTy)) { 4876 // Treat an enum type as its underlying type. 4877 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 4878 RetTy = EnumTy->getDecl()->getIntegerType(); 4879 4880 return RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend() 4881 : ABIArgInfo::getDirect(); 4882 } 4883 4884 // Are we following APCS? 4885 if (getABIKind() == APCS) { 4886 if (isEmptyRecord(getContext(), RetTy, false)) 4887 return ABIArgInfo::getIgnore(); 4888 4889 // Complex types are all returned as packed integers. 4890 // 4891 // FIXME: Consider using 2 x vector types if the back end handles them 4892 // correctly. 4893 if (RetTy->isAnyComplexType()) 4894 return ABIArgInfo::getDirect(llvm::IntegerType::get( 4895 getVMContext(), getContext().getTypeSize(RetTy))); 4896 4897 // Integer like structures are returned in r0. 4898 if (isIntegerLikeType(RetTy, getContext(), getVMContext())) { 4899 // Return in the smallest viable integer type. 4900 uint64_t Size = getContext().getTypeSize(RetTy); 4901 if (Size <= 8) 4902 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 4903 if (Size <= 16) 4904 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 4905 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 4906 } 4907 4908 // Otherwise return in memory. 4909 return ABIArgInfo::getIndirect(0); 4910 } 4911 4912 // Otherwise this is an AAPCS variant. 4913 4914 if (isEmptyRecord(getContext(), RetTy, true)) 4915 return ABIArgInfo::getIgnore(); 4916 4917 // Check for homogeneous aggregates with AAPCS-VFP. 4918 if (IsEffectivelyAAPCS_VFP) { 4919 const Type *Base = nullptr; 4920 uint64_t Members; 4921 if (isHomogeneousAggregate(RetTy, Base, Members)) { 4922 assert(Base && "Base class should be set for homogeneous aggregate"); 4923 // Homogeneous Aggregates are returned directly. 4924 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); 4925 } 4926 } 4927 4928 // Aggregates <= 4 bytes are returned in r0; other aggregates 4929 // are returned indirectly. 4930 uint64_t Size = getContext().getTypeSize(RetTy); 4931 if (Size <= 32) { 4932 if (getDataLayout().isBigEndian()) 4933 // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4) 4934 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 4935 4936 // Return in the smallest viable integer type. 4937 if (Size <= 8) 4938 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 4939 if (Size <= 16) 4940 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 4941 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 4942 } 4943 4944 return ABIArgInfo::getIndirect(0); 4945 } 4946 4947 /// isIllegalVector - check whether Ty is an illegal vector type. 4948 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const { 4949 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4950 // Check whether VT is legal. 4951 unsigned NumElements = VT->getNumElements(); 4952 uint64_t Size = getContext().getTypeSize(VT); 4953 // NumElements should be power of 2. 4954 if ((NumElements & (NumElements - 1)) != 0) 4955 return true; 4956 // Size should be greater than 32 bits. 4957 return Size <= 32; 4958 } 4959 return false; 4960 } 4961 4962 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 4963 // Homogeneous aggregates for AAPCS-VFP must have base types of float, 4964 // double, or 64-bit or 128-bit vectors. 4965 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 4966 if (BT->getKind() == BuiltinType::Float || 4967 BT->getKind() == BuiltinType::Double || 4968 BT->getKind() == BuiltinType::LongDouble) 4969 return true; 4970 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 4971 unsigned VecSize = getContext().getTypeSize(VT); 4972 if (VecSize == 64 || VecSize == 128) 4973 return true; 4974 } 4975 return false; 4976 } 4977 4978 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 4979 uint64_t Members) const { 4980 return Members <= 4; 4981 } 4982 4983 llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 4984 CodeGenFunction &CGF) const { 4985 llvm::Type *BP = CGF.Int8PtrTy; 4986 llvm::Type *BPP = CGF.Int8PtrPtrTy; 4987 4988 CGBuilderTy &Builder = CGF.Builder; 4989 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); 4990 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 4991 4992 if (isEmptyRecord(getContext(), Ty, true)) { 4993 // These are ignored for parameter passing purposes. 4994 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 4995 return Builder.CreateBitCast(Addr, PTy); 4996 } 4997 4998 uint64_t Size = CGF.getContext().getTypeSize(Ty) / 8; 4999 uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8; 5000 bool IsIndirect = false; 5001 5002 // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for 5003 // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte. 5004 if (getABIKind() == ARMABIInfo::AAPCS_VFP || 5005 getABIKind() == ARMABIInfo::AAPCS) 5006 TyAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8); 5007 else 5008 TyAlign = 4; 5009 // Use indirect if size of the illegal vector is bigger than 16 bytes. 5010 if (isIllegalVectorType(Ty) && Size > 16) { 5011 IsIndirect = true; 5012 Size = 4; 5013 TyAlign = 4; 5014 } 5015 5016 // Handle address alignment for ABI alignment > 4 bytes. 5017 if (TyAlign > 4) { 5018 assert((TyAlign & (TyAlign - 1)) == 0 && 5019 "Alignment is not power of 2!"); 5020 llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty); 5021 AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1)); 5022 AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1))); 5023 Addr = Builder.CreateIntToPtr(AddrAsInt, BP, "ap.align"); 5024 } 5025 5026 uint64_t Offset = 5027 llvm::RoundUpToAlignment(Size, 4); 5028 llvm::Value *NextAddr = 5029 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), 5030 "ap.next"); 5031 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 5032 5033 if (IsIndirect) 5034 Addr = Builder.CreateLoad(Builder.CreateBitCast(Addr, BPP)); 5035 else if (TyAlign < CGF.getContext().getTypeAlign(Ty) / 8) { 5036 // We can't directly cast ap.cur to pointer to a vector type, since ap.cur 5037 // may not be correctly aligned for the vector type. We create an aligned 5038 // temporary space and copy the content over from ap.cur to the temporary 5039 // space. This is necessary if the natural alignment of the type is greater 5040 // than the ABI alignment. 5041 llvm::Type *I8PtrTy = Builder.getInt8PtrTy(); 5042 CharUnits CharSize = getContext().getTypeSizeInChars(Ty); 5043 llvm::Value *AlignedTemp = CGF.CreateTempAlloca(CGF.ConvertType(Ty), 5044 "var.align"); 5045 llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy); 5046 llvm::Value *Src = Builder.CreateBitCast(Addr, I8PtrTy); 5047 Builder.CreateMemCpy(Dst, Src, 5048 llvm::ConstantInt::get(CGF.IntPtrTy, CharSize.getQuantity()), 5049 TyAlign, false); 5050 Addr = AlignedTemp; //The content is in aligned location. 5051 } 5052 llvm::Type *PTy = 5053 llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 5054 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); 5055 5056 return AddrTyped; 5057 } 5058 5059 //===----------------------------------------------------------------------===// 5060 // NVPTX ABI Implementation 5061 //===----------------------------------------------------------------------===// 5062 5063 namespace { 5064 5065 class NVPTXABIInfo : public ABIInfo { 5066 public: 5067 NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 5068 5069 ABIArgInfo classifyReturnType(QualType RetTy) const; 5070 ABIArgInfo classifyArgumentType(QualType Ty) const; 5071 5072 void computeInfo(CGFunctionInfo &FI) const override; 5073 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5074 CodeGenFunction &CFG) const override; 5075 }; 5076 5077 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo { 5078 public: 5079 NVPTXTargetCodeGenInfo(CodeGenTypes &CGT) 5080 : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {} 5081 5082 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5083 CodeGen::CodeGenModule &M) const override; 5084 private: 5085 // Adds a NamedMDNode with F, Name, and Operand as operands, and adds the 5086 // resulting MDNode to the nvvm.annotations MDNode. 5087 static void addNVVMMetadata(llvm::Function *F, StringRef Name, int Operand); 5088 }; 5089 5090 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const { 5091 if (RetTy->isVoidType()) 5092 return ABIArgInfo::getIgnore(); 5093 5094 // note: this is different from default ABI 5095 if (!RetTy->isScalarType()) 5096 return ABIArgInfo::getDirect(); 5097 5098 // Treat an enum type as its underlying type. 5099 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5100 RetTy = EnumTy->getDecl()->getIntegerType(); 5101 5102 return (RetTy->isPromotableIntegerType() ? 5103 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 5104 } 5105 5106 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const { 5107 // Treat an enum type as its underlying type. 5108 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5109 Ty = EnumTy->getDecl()->getIntegerType(); 5110 5111 // Return aggregates type as indirect by value 5112 if (isAggregateTypeForABI(Ty)) 5113 return ABIArgInfo::getIndirect(0, /* byval */ true); 5114 5115 return (Ty->isPromotableIntegerType() ? 5116 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 5117 } 5118 5119 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const { 5120 if (!getCXXABI().classifyReturnType(FI)) 5121 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 5122 for (auto &I : FI.arguments()) 5123 I.info = classifyArgumentType(I.type); 5124 5125 // Always honor user-specified calling convention. 5126 if (FI.getCallingConvention() != llvm::CallingConv::C) 5127 return; 5128 5129 FI.setEffectiveCallingConvention(getRuntimeCC()); 5130 } 5131 5132 llvm::Value *NVPTXABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5133 CodeGenFunction &CFG) const { 5134 llvm_unreachable("NVPTX does not support varargs"); 5135 } 5136 5137 void NVPTXTargetCodeGenInfo:: 5138 setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5139 CodeGen::CodeGenModule &M) const{ 5140 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); 5141 if (!FD) return; 5142 5143 llvm::Function *F = cast<llvm::Function>(GV); 5144 5145 // Perform special handling in OpenCL mode 5146 if (M.getLangOpts().OpenCL) { 5147 // Use OpenCL function attributes to check for kernel functions 5148 // By default, all functions are device functions 5149 if (FD->hasAttr<OpenCLKernelAttr>()) { 5150 // OpenCL __kernel functions get kernel metadata 5151 // Create !{<func-ref>, metadata !"kernel", i32 1} node 5152 addNVVMMetadata(F, "kernel", 1); 5153 // And kernel functions are not subject to inlining 5154 F->addFnAttr(llvm::Attribute::NoInline); 5155 } 5156 } 5157 5158 // Perform special handling in CUDA mode. 5159 if (M.getLangOpts().CUDA) { 5160 // CUDA __global__ functions get a kernel metadata entry. Since 5161 // __global__ functions cannot be called from the device, we do not 5162 // need to set the noinline attribute. 5163 if (FD->hasAttr<CUDAGlobalAttr>()) { 5164 // Create !{<func-ref>, metadata !"kernel", i32 1} node 5165 addNVVMMetadata(F, "kernel", 1); 5166 } 5167 if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) { 5168 // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node 5169 llvm::APSInt MaxThreads(32); 5170 MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext()); 5171 if (MaxThreads > 0) 5172 addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue()); 5173 5174 // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was 5175 // not specified in __launch_bounds__ or if the user specified a 0 value, 5176 // we don't have to add a PTX directive. 5177 if (Attr->getMinBlocks()) { 5178 llvm::APSInt MinBlocks(32); 5179 MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext()); 5180 if (MinBlocks > 0) 5181 // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node 5182 addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue()); 5183 } 5184 } 5185 } 5186 } 5187 5188 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::Function *F, StringRef Name, 5189 int Operand) { 5190 llvm::Module *M = F->getParent(); 5191 llvm::LLVMContext &Ctx = M->getContext(); 5192 5193 // Get "nvvm.annotations" metadata node 5194 llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations"); 5195 5196 llvm::Metadata *MDVals[] = { 5197 llvm::ConstantAsMetadata::get(F), llvm::MDString::get(Ctx, Name), 5198 llvm::ConstantAsMetadata::get( 5199 llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))}; 5200 // Append metadata to nvvm.annotations 5201 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 5202 } 5203 } 5204 5205 //===----------------------------------------------------------------------===// 5206 // SystemZ ABI Implementation 5207 //===----------------------------------------------------------------------===// 5208 5209 namespace { 5210 5211 class SystemZABIInfo : public ABIInfo { 5212 bool HasVector; 5213 5214 public: 5215 SystemZABIInfo(CodeGenTypes &CGT, bool HV) 5216 : ABIInfo(CGT), HasVector(HV) {} 5217 5218 bool isPromotableIntegerType(QualType Ty) const; 5219 bool isCompoundType(QualType Ty) const; 5220 bool isVectorArgumentType(QualType Ty) const; 5221 bool isFPArgumentType(QualType Ty) const; 5222 QualType GetSingleElementType(QualType Ty) const; 5223 5224 ABIArgInfo classifyReturnType(QualType RetTy) const; 5225 ABIArgInfo classifyArgumentType(QualType ArgTy) const; 5226 5227 void computeInfo(CGFunctionInfo &FI) const override { 5228 if (!getCXXABI().classifyReturnType(FI)) 5229 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 5230 for (auto &I : FI.arguments()) 5231 I.info = classifyArgumentType(I.type); 5232 } 5233 5234 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5235 CodeGenFunction &CGF) const override; 5236 }; 5237 5238 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo { 5239 public: 5240 SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector) 5241 : TargetCodeGenInfo(new SystemZABIInfo(CGT, HasVector)) {} 5242 }; 5243 5244 } 5245 5246 bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const { 5247 // Treat an enum type as its underlying type. 5248 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5249 Ty = EnumTy->getDecl()->getIntegerType(); 5250 5251 // Promotable integer types are required to be promoted by the ABI. 5252 if (Ty->isPromotableIntegerType()) 5253 return true; 5254 5255 // 32-bit values must also be promoted. 5256 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 5257 switch (BT->getKind()) { 5258 case BuiltinType::Int: 5259 case BuiltinType::UInt: 5260 return true; 5261 default: 5262 return false; 5263 } 5264 return false; 5265 } 5266 5267 bool SystemZABIInfo::isCompoundType(QualType Ty) const { 5268 return (Ty->isAnyComplexType() || 5269 Ty->isVectorType() || 5270 isAggregateTypeForABI(Ty)); 5271 } 5272 5273 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const { 5274 return (HasVector && 5275 Ty->isVectorType() && 5276 getContext().getTypeSize(Ty) <= 128); 5277 } 5278 5279 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const { 5280 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 5281 switch (BT->getKind()) { 5282 case BuiltinType::Float: 5283 case BuiltinType::Double: 5284 return true; 5285 default: 5286 return false; 5287 } 5288 5289 return false; 5290 } 5291 5292 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const { 5293 if (const RecordType *RT = Ty->getAsStructureType()) { 5294 const RecordDecl *RD = RT->getDecl(); 5295 QualType Found; 5296 5297 // If this is a C++ record, check the bases first. 5298 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 5299 for (const auto &I : CXXRD->bases()) { 5300 QualType Base = I.getType(); 5301 5302 // Empty bases don't affect things either way. 5303 if (isEmptyRecord(getContext(), Base, true)) 5304 continue; 5305 5306 if (!Found.isNull()) 5307 return Ty; 5308 Found = GetSingleElementType(Base); 5309 } 5310 5311 // Check the fields. 5312 for (const auto *FD : RD->fields()) { 5313 // For compatibility with GCC, ignore empty bitfields in C++ mode. 5314 // Unlike isSingleElementStruct(), empty structure and array fields 5315 // do count. So do anonymous bitfields that aren't zero-sized. 5316 if (getContext().getLangOpts().CPlusPlus && 5317 FD->isBitField() && FD->getBitWidthValue(getContext()) == 0) 5318 continue; 5319 5320 // Unlike isSingleElementStruct(), arrays do not count. 5321 // Nested structures still do though. 5322 if (!Found.isNull()) 5323 return Ty; 5324 Found = GetSingleElementType(FD->getType()); 5325 } 5326 5327 // Unlike isSingleElementStruct(), trailing padding is allowed. 5328 // An 8-byte aligned struct s { float f; } is passed as a double. 5329 if (!Found.isNull()) 5330 return Found; 5331 } 5332 5333 return Ty; 5334 } 5335 5336 llvm::Value *SystemZABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5337 CodeGenFunction &CGF) const { 5338 // Assume that va_list type is correct; should be pointer to LLVM type: 5339 // struct { 5340 // i64 __gpr; 5341 // i64 __fpr; 5342 // i8 *__overflow_arg_area; 5343 // i8 *__reg_save_area; 5344 // }; 5345 5346 // Every non-vector argument occupies 8 bytes and is passed by preference 5347 // in either GPRs or FPRs. Vector arguments occupy 8 or 16 bytes and are 5348 // always passed on the stack. 5349 Ty = CGF.getContext().getCanonicalType(Ty); 5350 llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty); 5351 llvm::Type *APTy = llvm::PointerType::getUnqual(ArgTy); 5352 ABIArgInfo AI = classifyArgumentType(Ty); 5353 bool IsIndirect = AI.isIndirect(); 5354 bool InFPRs = false; 5355 bool IsVector = false; 5356 unsigned UnpaddedBitSize; 5357 if (IsIndirect) { 5358 APTy = llvm::PointerType::getUnqual(APTy); 5359 UnpaddedBitSize = 64; 5360 } else { 5361 if (AI.getCoerceToType()) 5362 ArgTy = AI.getCoerceToType(); 5363 InFPRs = ArgTy->isFloatTy() || ArgTy->isDoubleTy(); 5364 IsVector = ArgTy->isVectorTy(); 5365 UnpaddedBitSize = getContext().getTypeSize(Ty); 5366 } 5367 unsigned PaddedBitSize = (IsVector && UnpaddedBitSize > 64) ? 128 : 64; 5368 assert((UnpaddedBitSize <= PaddedBitSize) && "Invalid argument size."); 5369 5370 unsigned PaddedSize = PaddedBitSize / 8; 5371 unsigned Padding = (PaddedBitSize - UnpaddedBitSize) / 8; 5372 5373 llvm::Type *IndexTy = CGF.Int64Ty; 5374 llvm::Value *PaddedSizeV = llvm::ConstantInt::get(IndexTy, PaddedSize); 5375 5376 if (IsVector) { 5377 // Work out the address of a vector argument on the stack. 5378 // Vector arguments are always passed in the high bits of a 5379 // single (8 byte) or double (16 byte) stack slot. 5380 llvm::Value *OverflowArgAreaPtr = 5381 CGF.Builder.CreateStructGEP(nullptr, VAListAddr, 2, 5382 "overflow_arg_area_ptr"); 5383 llvm::Value *OverflowArgArea = 5384 CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"); 5385 llvm::Value *MemAddr = 5386 CGF.Builder.CreateBitCast(OverflowArgArea, APTy, "mem_addr"); 5387 5388 // Update overflow_arg_area_ptr pointer 5389 llvm::Value *NewOverflowArgArea = 5390 CGF.Builder.CreateGEP(OverflowArgArea, PaddedSizeV, "overflow_arg_area"); 5391 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 5392 5393 return MemAddr; 5394 } 5395 5396 unsigned MaxRegs, RegCountField, RegSaveIndex, RegPadding; 5397 if (InFPRs) { 5398 MaxRegs = 4; // Maximum of 4 FPR arguments 5399 RegCountField = 1; // __fpr 5400 RegSaveIndex = 16; // save offset for f0 5401 RegPadding = 0; // floats are passed in the high bits of an FPR 5402 } else { 5403 MaxRegs = 5; // Maximum of 5 GPR arguments 5404 RegCountField = 0; // __gpr 5405 RegSaveIndex = 2; // save offset for r2 5406 RegPadding = Padding; // values are passed in the low bits of a GPR 5407 } 5408 5409 llvm::Value *RegCountPtr = CGF.Builder.CreateStructGEP( 5410 nullptr, VAListAddr, RegCountField, "reg_count_ptr"); 5411 llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count"); 5412 llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs); 5413 llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV, 5414 "fits_in_regs"); 5415 5416 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 5417 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 5418 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 5419 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 5420 5421 // Emit code to load the value if it was passed in registers. 5422 CGF.EmitBlock(InRegBlock); 5423 5424 // Work out the address of an argument register. 5425 llvm::Value *ScaledRegCount = 5426 CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count"); 5427 llvm::Value *RegBase = 5428 llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize + RegPadding); 5429 llvm::Value *RegOffset = 5430 CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset"); 5431 llvm::Value *RegSaveAreaPtr = 5432 CGF.Builder.CreateStructGEP(nullptr, VAListAddr, 3, "reg_save_area_ptr"); 5433 llvm::Value *RegSaveArea = 5434 CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area"); 5435 llvm::Value *RawRegAddr = 5436 CGF.Builder.CreateGEP(RegSaveArea, RegOffset, "raw_reg_addr"); 5437 llvm::Value *RegAddr = 5438 CGF.Builder.CreateBitCast(RawRegAddr, APTy, "reg_addr"); 5439 5440 // Update the register count 5441 llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1); 5442 llvm::Value *NewRegCount = 5443 CGF.Builder.CreateAdd(RegCount, One, "reg_count"); 5444 CGF.Builder.CreateStore(NewRegCount, RegCountPtr); 5445 CGF.EmitBranch(ContBlock); 5446 5447 // Emit code to load the value if it was passed in memory. 5448 CGF.EmitBlock(InMemBlock); 5449 5450 // Work out the address of a stack argument. 5451 llvm::Value *OverflowArgAreaPtr = CGF.Builder.CreateStructGEP( 5452 nullptr, VAListAddr, 2, "overflow_arg_area_ptr"); 5453 llvm::Value *OverflowArgArea = 5454 CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"); 5455 llvm::Value *PaddingV = llvm::ConstantInt::get(IndexTy, Padding); 5456 llvm::Value *RawMemAddr = 5457 CGF.Builder.CreateGEP(OverflowArgArea, PaddingV, "raw_mem_addr"); 5458 llvm::Value *MemAddr = 5459 CGF.Builder.CreateBitCast(RawMemAddr, APTy, "mem_addr"); 5460 5461 // Update overflow_arg_area_ptr pointer 5462 llvm::Value *NewOverflowArgArea = 5463 CGF.Builder.CreateGEP(OverflowArgArea, PaddedSizeV, "overflow_arg_area"); 5464 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 5465 CGF.EmitBranch(ContBlock); 5466 5467 // Return the appropriate result. 5468 CGF.EmitBlock(ContBlock); 5469 llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(APTy, 2, "va_arg.addr"); 5470 ResAddr->addIncoming(RegAddr, InRegBlock); 5471 ResAddr->addIncoming(MemAddr, InMemBlock); 5472 5473 if (IsIndirect) 5474 return CGF.Builder.CreateLoad(ResAddr, "indirect_arg"); 5475 5476 return ResAddr; 5477 } 5478 5479 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const { 5480 if (RetTy->isVoidType()) 5481 return ABIArgInfo::getIgnore(); 5482 if (isVectorArgumentType(RetTy)) 5483 return ABIArgInfo::getDirect(); 5484 if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64) 5485 return ABIArgInfo::getIndirect(0); 5486 return (isPromotableIntegerType(RetTy) ? 5487 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 5488 } 5489 5490 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const { 5491 // Handle the generic C++ ABI. 5492 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 5493 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 5494 5495 // Integers and enums are extended to full register width. 5496 if (isPromotableIntegerType(Ty)) 5497 return ABIArgInfo::getExtend(); 5498 5499 // Handle vector types and vector-like structure types. Note that 5500 // as opposed to float-like structure types, we do not allow any 5501 // padding for vector-like structures, so verify the sizes match. 5502 uint64_t Size = getContext().getTypeSize(Ty); 5503 QualType SingleElementTy = GetSingleElementType(Ty); 5504 if (isVectorArgumentType(SingleElementTy) && 5505 getContext().getTypeSize(SingleElementTy) == Size) 5506 return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy)); 5507 5508 // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly. 5509 if (Size != 8 && Size != 16 && Size != 32 && Size != 64) 5510 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 5511 5512 // Handle small structures. 5513 if (const RecordType *RT = Ty->getAs<RecordType>()) { 5514 // Structures with flexible arrays have variable length, so really 5515 // fail the size test above. 5516 const RecordDecl *RD = RT->getDecl(); 5517 if (RD->hasFlexibleArrayMember()) 5518 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 5519 5520 // The structure is passed as an unextended integer, a float, or a double. 5521 llvm::Type *PassTy; 5522 if (isFPArgumentType(SingleElementTy)) { 5523 assert(Size == 32 || Size == 64); 5524 if (Size == 32) 5525 PassTy = llvm::Type::getFloatTy(getVMContext()); 5526 else 5527 PassTy = llvm::Type::getDoubleTy(getVMContext()); 5528 } else 5529 PassTy = llvm::IntegerType::get(getVMContext(), Size); 5530 return ABIArgInfo::getDirect(PassTy); 5531 } 5532 5533 // Non-structure compounds are passed indirectly. 5534 if (isCompoundType(Ty)) 5535 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 5536 5537 return ABIArgInfo::getDirect(nullptr); 5538 } 5539 5540 //===----------------------------------------------------------------------===// 5541 // MSP430 ABI Implementation 5542 //===----------------------------------------------------------------------===// 5543 5544 namespace { 5545 5546 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo { 5547 public: 5548 MSP430TargetCodeGenInfo(CodeGenTypes &CGT) 5549 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 5550 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5551 CodeGen::CodeGenModule &M) const override; 5552 }; 5553 5554 } 5555 5556 void MSP430TargetCodeGenInfo::setTargetAttributes(const Decl *D, 5557 llvm::GlobalValue *GV, 5558 CodeGen::CodeGenModule &M) const { 5559 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 5560 if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) { 5561 // Handle 'interrupt' attribute: 5562 llvm::Function *F = cast<llvm::Function>(GV); 5563 5564 // Step 1: Set ISR calling convention. 5565 F->setCallingConv(llvm::CallingConv::MSP430_INTR); 5566 5567 // Step 2: Add attributes goodness. 5568 F->addFnAttr(llvm::Attribute::NoInline); 5569 5570 // Step 3: Emit ISR vector alias. 5571 unsigned Num = attr->getNumber() / 2; 5572 llvm::GlobalAlias::create(llvm::Function::ExternalLinkage, 5573 "__isr_" + Twine(Num), F); 5574 } 5575 } 5576 } 5577 5578 //===----------------------------------------------------------------------===// 5579 // MIPS ABI Implementation. This works for both little-endian and 5580 // big-endian variants. 5581 //===----------------------------------------------------------------------===// 5582 5583 namespace { 5584 class MipsABIInfo : public ABIInfo { 5585 bool IsO32; 5586 unsigned MinABIStackAlignInBytes, StackAlignInBytes; 5587 void CoerceToIntArgs(uint64_t TySize, 5588 SmallVectorImpl<llvm::Type *> &ArgList) const; 5589 llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const; 5590 llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const; 5591 llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const; 5592 public: 5593 MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) : 5594 ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8), 5595 StackAlignInBytes(IsO32 ? 8 : 16) {} 5596 5597 ABIArgInfo classifyReturnType(QualType RetTy) const; 5598 ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const; 5599 void computeInfo(CGFunctionInfo &FI) const override; 5600 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5601 CodeGenFunction &CGF) const override; 5602 bool shouldSignExtUnsignedType(QualType Ty) const override; 5603 }; 5604 5605 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo { 5606 unsigned SizeOfUnwindException; 5607 public: 5608 MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32) 5609 : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)), 5610 SizeOfUnwindException(IsO32 ? 24 : 32) {} 5611 5612 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 5613 return 29; 5614 } 5615 5616 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5617 CodeGen::CodeGenModule &CGM) const override { 5618 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); 5619 if (!FD) return; 5620 llvm::Function *Fn = cast<llvm::Function>(GV); 5621 if (FD->hasAttr<Mips16Attr>()) { 5622 Fn->addFnAttr("mips16"); 5623 } 5624 else if (FD->hasAttr<NoMips16Attr>()) { 5625 Fn->addFnAttr("nomips16"); 5626 } 5627 } 5628 5629 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5630 llvm::Value *Address) const override; 5631 5632 unsigned getSizeOfUnwindException() const override { 5633 return SizeOfUnwindException; 5634 } 5635 }; 5636 } 5637 5638 void MipsABIInfo::CoerceToIntArgs( 5639 uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const { 5640 llvm::IntegerType *IntTy = 5641 llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8); 5642 5643 // Add (TySize / MinABIStackAlignInBytes) args of IntTy. 5644 for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N) 5645 ArgList.push_back(IntTy); 5646 5647 // If necessary, add one more integer type to ArgList. 5648 unsigned R = TySize % (MinABIStackAlignInBytes * 8); 5649 5650 if (R) 5651 ArgList.push_back(llvm::IntegerType::get(getVMContext(), R)); 5652 } 5653 5654 // In N32/64, an aligned double precision floating point field is passed in 5655 // a register. 5656 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const { 5657 SmallVector<llvm::Type*, 8> ArgList, IntArgList; 5658 5659 if (IsO32) { 5660 CoerceToIntArgs(TySize, ArgList); 5661 return llvm::StructType::get(getVMContext(), ArgList); 5662 } 5663 5664 if (Ty->isComplexType()) 5665 return CGT.ConvertType(Ty); 5666 5667 const RecordType *RT = Ty->getAs<RecordType>(); 5668 5669 // Unions/vectors are passed in integer registers. 5670 if (!RT || !RT->isStructureOrClassType()) { 5671 CoerceToIntArgs(TySize, ArgList); 5672 return llvm::StructType::get(getVMContext(), ArgList); 5673 } 5674 5675 const RecordDecl *RD = RT->getDecl(); 5676 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 5677 assert(!(TySize % 8) && "Size of structure must be multiple of 8."); 5678 5679 uint64_t LastOffset = 0; 5680 unsigned idx = 0; 5681 llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64); 5682 5683 // Iterate over fields in the struct/class and check if there are any aligned 5684 // double fields. 5685 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 5686 i != e; ++i, ++idx) { 5687 const QualType Ty = i->getType(); 5688 const BuiltinType *BT = Ty->getAs<BuiltinType>(); 5689 5690 if (!BT || BT->getKind() != BuiltinType::Double) 5691 continue; 5692 5693 uint64_t Offset = Layout.getFieldOffset(idx); 5694 if (Offset % 64) // Ignore doubles that are not aligned. 5695 continue; 5696 5697 // Add ((Offset - LastOffset) / 64) args of type i64. 5698 for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j) 5699 ArgList.push_back(I64); 5700 5701 // Add double type. 5702 ArgList.push_back(llvm::Type::getDoubleTy(getVMContext())); 5703 LastOffset = Offset + 64; 5704 } 5705 5706 CoerceToIntArgs(TySize - LastOffset, IntArgList); 5707 ArgList.append(IntArgList.begin(), IntArgList.end()); 5708 5709 return llvm::StructType::get(getVMContext(), ArgList); 5710 } 5711 5712 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset, 5713 uint64_t Offset) const { 5714 if (OrigOffset + MinABIStackAlignInBytes > Offset) 5715 return nullptr; 5716 5717 return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8); 5718 } 5719 5720 ABIArgInfo 5721 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const { 5722 Ty = useFirstFieldIfTransparentUnion(Ty); 5723 5724 uint64_t OrigOffset = Offset; 5725 uint64_t TySize = getContext().getTypeSize(Ty); 5726 uint64_t Align = getContext().getTypeAlign(Ty) / 8; 5727 5728 Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes), 5729 (uint64_t)StackAlignInBytes); 5730 unsigned CurrOffset = llvm::RoundUpToAlignment(Offset, Align); 5731 Offset = CurrOffset + llvm::RoundUpToAlignment(TySize, Align * 8) / 8; 5732 5733 if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) { 5734 // Ignore empty aggregates. 5735 if (TySize == 0) 5736 return ABIArgInfo::getIgnore(); 5737 5738 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 5739 Offset = OrigOffset + MinABIStackAlignInBytes; 5740 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 5741 } 5742 5743 // If we have reached here, aggregates are passed directly by coercing to 5744 // another structure type. Padding is inserted if the offset of the 5745 // aggregate is unaligned. 5746 ABIArgInfo ArgInfo = 5747 ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0, 5748 getPaddingType(OrigOffset, CurrOffset)); 5749 ArgInfo.setInReg(true); 5750 return ArgInfo; 5751 } 5752 5753 // Treat an enum type as its underlying type. 5754 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5755 Ty = EnumTy->getDecl()->getIntegerType(); 5756 5757 // All integral types are promoted to the GPR width. 5758 if (Ty->isIntegralOrEnumerationType()) 5759 return ABIArgInfo::getExtend(); 5760 5761 return ABIArgInfo::getDirect( 5762 nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset)); 5763 } 5764 5765 llvm::Type* 5766 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const { 5767 const RecordType *RT = RetTy->getAs<RecordType>(); 5768 SmallVector<llvm::Type*, 8> RTList; 5769 5770 if (RT && RT->isStructureOrClassType()) { 5771 const RecordDecl *RD = RT->getDecl(); 5772 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 5773 unsigned FieldCnt = Layout.getFieldCount(); 5774 5775 // N32/64 returns struct/classes in floating point registers if the 5776 // following conditions are met: 5777 // 1. The size of the struct/class is no larger than 128-bit. 5778 // 2. The struct/class has one or two fields all of which are floating 5779 // point types. 5780 // 3. The offset of the first field is zero (this follows what gcc does). 5781 // 5782 // Any other composite results are returned in integer registers. 5783 // 5784 if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) { 5785 RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end(); 5786 for (; b != e; ++b) { 5787 const BuiltinType *BT = b->getType()->getAs<BuiltinType>(); 5788 5789 if (!BT || !BT->isFloatingPoint()) 5790 break; 5791 5792 RTList.push_back(CGT.ConvertType(b->getType())); 5793 } 5794 5795 if (b == e) 5796 return llvm::StructType::get(getVMContext(), RTList, 5797 RD->hasAttr<PackedAttr>()); 5798 5799 RTList.clear(); 5800 } 5801 } 5802 5803 CoerceToIntArgs(Size, RTList); 5804 return llvm::StructType::get(getVMContext(), RTList); 5805 } 5806 5807 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const { 5808 uint64_t Size = getContext().getTypeSize(RetTy); 5809 5810 if (RetTy->isVoidType()) 5811 return ABIArgInfo::getIgnore(); 5812 5813 // O32 doesn't treat zero-sized structs differently from other structs. 5814 // However, N32/N64 ignores zero sized return values. 5815 if (!IsO32 && Size == 0) 5816 return ABIArgInfo::getIgnore(); 5817 5818 if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) { 5819 if (Size <= 128) { 5820 if (RetTy->isAnyComplexType()) 5821 return ABIArgInfo::getDirect(); 5822 5823 // O32 returns integer vectors in registers and N32/N64 returns all small 5824 // aggregates in registers. 5825 if (!IsO32 || 5826 (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) { 5827 ABIArgInfo ArgInfo = 5828 ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size)); 5829 ArgInfo.setInReg(true); 5830 return ArgInfo; 5831 } 5832 } 5833 5834 return ABIArgInfo::getIndirect(0); 5835 } 5836 5837 // Treat an enum type as its underlying type. 5838 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5839 RetTy = EnumTy->getDecl()->getIntegerType(); 5840 5841 return (RetTy->isPromotableIntegerType() ? 5842 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 5843 } 5844 5845 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const { 5846 ABIArgInfo &RetInfo = FI.getReturnInfo(); 5847 if (!getCXXABI().classifyReturnType(FI)) 5848 RetInfo = classifyReturnType(FI.getReturnType()); 5849 5850 // Check if a pointer to an aggregate is passed as a hidden argument. 5851 uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0; 5852 5853 for (auto &I : FI.arguments()) 5854 I.info = classifyArgumentType(I.type, Offset); 5855 } 5856 5857 llvm::Value* MipsABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5858 CodeGenFunction &CGF) const { 5859 llvm::Type *BP = CGF.Int8PtrTy; 5860 llvm::Type *BPP = CGF.Int8PtrPtrTy; 5861 5862 // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64. 5863 // Pointers are also promoted in the same way but this only matters for N32. 5864 unsigned SlotSizeInBits = IsO32 ? 32 : 64; 5865 unsigned PtrWidth = getTarget().getPointerWidth(0); 5866 if ((Ty->isIntegerType() && 5867 CGF.getContext().getIntWidth(Ty) < SlotSizeInBits) || 5868 (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) { 5869 Ty = CGF.getContext().getIntTypeForBitwidth(SlotSizeInBits, 5870 Ty->isSignedIntegerType()); 5871 } 5872 5873 CGBuilderTy &Builder = CGF.Builder; 5874 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); 5875 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 5876 int64_t TypeAlign = 5877 std::min(getContext().getTypeAlign(Ty) / 8, StackAlignInBytes); 5878 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 5879 llvm::Value *AddrTyped; 5880 llvm::IntegerType *IntTy = (PtrWidth == 32) ? CGF.Int32Ty : CGF.Int64Ty; 5881 5882 if (TypeAlign > MinABIStackAlignInBytes) { 5883 llvm::Value *AddrAsInt = CGF.Builder.CreatePtrToInt(Addr, IntTy); 5884 llvm::Value *Inc = llvm::ConstantInt::get(IntTy, TypeAlign - 1); 5885 llvm::Value *Mask = llvm::ConstantInt::get(IntTy, -TypeAlign); 5886 llvm::Value *Add = CGF.Builder.CreateAdd(AddrAsInt, Inc); 5887 llvm::Value *And = CGF.Builder.CreateAnd(Add, Mask); 5888 AddrTyped = CGF.Builder.CreateIntToPtr(And, PTy); 5889 } 5890 else 5891 AddrTyped = Builder.CreateBitCast(Addr, PTy); 5892 5893 llvm::Value *AlignedAddr = Builder.CreateBitCast(AddrTyped, BP); 5894 TypeAlign = std::max((unsigned)TypeAlign, MinABIStackAlignInBytes); 5895 unsigned ArgSizeInBits = CGF.getContext().getTypeSize(Ty); 5896 uint64_t Offset = llvm::RoundUpToAlignment(ArgSizeInBits / 8, TypeAlign); 5897 llvm::Value *NextAddr = 5898 Builder.CreateGEP(AlignedAddr, llvm::ConstantInt::get(IntTy, Offset), 5899 "ap.next"); 5900 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 5901 5902 return AddrTyped; 5903 } 5904 5905 bool MipsABIInfo::shouldSignExtUnsignedType(QualType Ty) const { 5906 int TySize = getContext().getTypeSize(Ty); 5907 5908 // MIPS64 ABI requires unsigned 32 bit integers to be sign extended. 5909 if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 5910 return true; 5911 5912 return false; 5913 } 5914 5915 bool 5916 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5917 llvm::Value *Address) const { 5918 // This information comes from gcc's implementation, which seems to 5919 // as canonical as it gets. 5920 5921 // Everything on MIPS is 4 bytes. Double-precision FP registers 5922 // are aliased to pairs of single-precision FP registers. 5923 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 5924 5925 // 0-31 are the general purpose registers, $0 - $31. 5926 // 32-63 are the floating-point registers, $f0 - $f31. 5927 // 64 and 65 are the multiply/divide registers, $hi and $lo. 5928 // 66 is the (notional, I think) register for signal-handler return. 5929 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65); 5930 5931 // 67-74 are the floating-point status registers, $fcc0 - $fcc7. 5932 // They are one bit wide and ignored here. 5933 5934 // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31. 5935 // (coprocessor 1 is the FP unit) 5936 // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31. 5937 // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31. 5938 // 176-181 are the DSP accumulator registers. 5939 AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181); 5940 return false; 5941 } 5942 5943 //===----------------------------------------------------------------------===// 5944 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults. 5945 // Currently subclassed only to implement custom OpenCL C function attribute 5946 // handling. 5947 //===----------------------------------------------------------------------===// 5948 5949 namespace { 5950 5951 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo { 5952 public: 5953 TCETargetCodeGenInfo(CodeGenTypes &CGT) 5954 : DefaultTargetCodeGenInfo(CGT) {} 5955 5956 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5957 CodeGen::CodeGenModule &M) const override; 5958 }; 5959 5960 void TCETargetCodeGenInfo::setTargetAttributes( 5961 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 5962 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); 5963 if (!FD) return; 5964 5965 llvm::Function *F = cast<llvm::Function>(GV); 5966 5967 if (M.getLangOpts().OpenCL) { 5968 if (FD->hasAttr<OpenCLKernelAttr>()) { 5969 // OpenCL C Kernel functions are not subject to inlining 5970 F->addFnAttr(llvm::Attribute::NoInline); 5971 const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>(); 5972 if (Attr) { 5973 // Convert the reqd_work_group_size() attributes to metadata. 5974 llvm::LLVMContext &Context = F->getContext(); 5975 llvm::NamedMDNode *OpenCLMetadata = 5976 M.getModule().getOrInsertNamedMetadata( 5977 "opencl.kernel_wg_size_info"); 5978 5979 SmallVector<llvm::Metadata *, 5> Operands; 5980 Operands.push_back(llvm::ConstantAsMetadata::get(F)); 5981 5982 Operands.push_back( 5983 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 5984 M.Int32Ty, llvm::APInt(32, Attr->getXDim())))); 5985 Operands.push_back( 5986 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 5987 M.Int32Ty, llvm::APInt(32, Attr->getYDim())))); 5988 Operands.push_back( 5989 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 5990 M.Int32Ty, llvm::APInt(32, Attr->getZDim())))); 5991 5992 // Add a boolean constant operand for "required" (true) or "hint" 5993 // (false) for implementing the work_group_size_hint attr later. 5994 // Currently always true as the hint is not yet implemented. 5995 Operands.push_back( 5996 llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context))); 5997 OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands)); 5998 } 5999 } 6000 } 6001 } 6002 6003 } 6004 6005 //===----------------------------------------------------------------------===// 6006 // Hexagon ABI Implementation 6007 //===----------------------------------------------------------------------===// 6008 6009 namespace { 6010 6011 class HexagonABIInfo : public ABIInfo { 6012 6013 6014 public: 6015 HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 6016 6017 private: 6018 6019 ABIArgInfo classifyReturnType(QualType RetTy) const; 6020 ABIArgInfo classifyArgumentType(QualType RetTy) const; 6021 6022 void computeInfo(CGFunctionInfo &FI) const override; 6023 6024 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 6025 CodeGenFunction &CGF) const override; 6026 }; 6027 6028 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo { 6029 public: 6030 HexagonTargetCodeGenInfo(CodeGenTypes &CGT) 6031 :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {} 6032 6033 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 6034 return 29; 6035 } 6036 }; 6037 6038 } 6039 6040 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const { 6041 if (!getCXXABI().classifyReturnType(FI)) 6042 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 6043 for (auto &I : FI.arguments()) 6044 I.info = classifyArgumentType(I.type); 6045 } 6046 6047 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const { 6048 if (!isAggregateTypeForABI(Ty)) { 6049 // Treat an enum type as its underlying type. 6050 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 6051 Ty = EnumTy->getDecl()->getIntegerType(); 6052 6053 return (Ty->isPromotableIntegerType() ? 6054 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 6055 } 6056 6057 // Ignore empty records. 6058 if (isEmptyRecord(getContext(), Ty, true)) 6059 return ABIArgInfo::getIgnore(); 6060 6061 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 6062 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 6063 6064 uint64_t Size = getContext().getTypeSize(Ty); 6065 if (Size > 64) 6066 return ABIArgInfo::getIndirect(0, /*ByVal=*/true); 6067 // Pass in the smallest viable integer type. 6068 else if (Size > 32) 6069 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); 6070 else if (Size > 16) 6071 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6072 else if (Size > 8) 6073 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6074 else 6075 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6076 } 6077 6078 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const { 6079 if (RetTy->isVoidType()) 6080 return ABIArgInfo::getIgnore(); 6081 6082 // Large vector types should be returned via memory. 6083 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64) 6084 return ABIArgInfo::getIndirect(0); 6085 6086 if (!isAggregateTypeForABI(RetTy)) { 6087 // Treat an enum type as its underlying type. 6088 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 6089 RetTy = EnumTy->getDecl()->getIntegerType(); 6090 6091 return (RetTy->isPromotableIntegerType() ? 6092 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 6093 } 6094 6095 if (isEmptyRecord(getContext(), RetTy, true)) 6096 return ABIArgInfo::getIgnore(); 6097 6098 // Aggregates <= 8 bytes are returned in r0; other aggregates 6099 // are returned indirectly. 6100 uint64_t Size = getContext().getTypeSize(RetTy); 6101 if (Size <= 64) { 6102 // Return in the smallest viable integer type. 6103 if (Size <= 8) 6104 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6105 if (Size <= 16) 6106 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6107 if (Size <= 32) 6108 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6109 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); 6110 } 6111 6112 return ABIArgInfo::getIndirect(0, /*ByVal=*/true); 6113 } 6114 6115 llvm::Value *HexagonABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 6116 CodeGenFunction &CGF) const { 6117 // FIXME: Need to handle alignment 6118 llvm::Type *BPP = CGF.Int8PtrPtrTy; 6119 6120 CGBuilderTy &Builder = CGF.Builder; 6121 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, 6122 "ap"); 6123 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 6124 llvm::Type *PTy = 6125 llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 6126 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); 6127 6128 uint64_t Offset = 6129 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4); 6130 llvm::Value *NextAddr = 6131 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), 6132 "ap.next"); 6133 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 6134 6135 return AddrTyped; 6136 } 6137 6138 //===----------------------------------------------------------------------===// 6139 // AMDGPU ABI Implementation 6140 //===----------------------------------------------------------------------===// 6141 6142 namespace { 6143 6144 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo { 6145 public: 6146 AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT) 6147 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 6148 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6149 CodeGen::CodeGenModule &M) const override; 6150 }; 6151 6152 } 6153 6154 void AMDGPUTargetCodeGenInfo::setTargetAttributes( 6155 const Decl *D, 6156 llvm::GlobalValue *GV, 6157 CodeGen::CodeGenModule &M) const { 6158 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); 6159 if (!FD) 6160 return; 6161 6162 if (const auto Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) { 6163 llvm::Function *F = cast<llvm::Function>(GV); 6164 uint32_t NumVGPR = Attr->getNumVGPR(); 6165 if (NumVGPR != 0) 6166 F->addFnAttr("amdgpu_num_vgpr", llvm::utostr(NumVGPR)); 6167 } 6168 6169 if (const auto Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) { 6170 llvm::Function *F = cast<llvm::Function>(GV); 6171 unsigned NumSGPR = Attr->getNumSGPR(); 6172 if (NumSGPR != 0) 6173 F->addFnAttr("amdgpu_num_sgpr", llvm::utostr(NumSGPR)); 6174 } 6175 } 6176 6177 6178 //===----------------------------------------------------------------------===// 6179 // SPARC v9 ABI Implementation. 6180 // Based on the SPARC Compliance Definition version 2.4.1. 6181 // 6182 // Function arguments a mapped to a nominal "parameter array" and promoted to 6183 // registers depending on their type. Each argument occupies 8 or 16 bytes in 6184 // the array, structs larger than 16 bytes are passed indirectly. 6185 // 6186 // One case requires special care: 6187 // 6188 // struct mixed { 6189 // int i; 6190 // float f; 6191 // }; 6192 // 6193 // When a struct mixed is passed by value, it only occupies 8 bytes in the 6194 // parameter array, but the int is passed in an integer register, and the float 6195 // is passed in a floating point register. This is represented as two arguments 6196 // with the LLVM IR inreg attribute: 6197 // 6198 // declare void f(i32 inreg %i, float inreg %f) 6199 // 6200 // The code generator will only allocate 4 bytes from the parameter array for 6201 // the inreg arguments. All other arguments are allocated a multiple of 8 6202 // bytes. 6203 // 6204 namespace { 6205 class SparcV9ABIInfo : public ABIInfo { 6206 public: 6207 SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 6208 6209 private: 6210 ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const; 6211 void computeInfo(CGFunctionInfo &FI) const override; 6212 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 6213 CodeGenFunction &CGF) const override; 6214 6215 // Coercion type builder for structs passed in registers. The coercion type 6216 // serves two purposes: 6217 // 6218 // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned' 6219 // in registers. 6220 // 2. Expose aligned floating point elements as first-level elements, so the 6221 // code generator knows to pass them in floating point registers. 6222 // 6223 // We also compute the InReg flag which indicates that the struct contains 6224 // aligned 32-bit floats. 6225 // 6226 struct CoerceBuilder { 6227 llvm::LLVMContext &Context; 6228 const llvm::DataLayout &DL; 6229 SmallVector<llvm::Type*, 8> Elems; 6230 uint64_t Size; 6231 bool InReg; 6232 6233 CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl) 6234 : Context(c), DL(dl), Size(0), InReg(false) {} 6235 6236 // Pad Elems with integers until Size is ToSize. 6237 void pad(uint64_t ToSize) { 6238 assert(ToSize >= Size && "Cannot remove elements"); 6239 if (ToSize == Size) 6240 return; 6241 6242 // Finish the current 64-bit word. 6243 uint64_t Aligned = llvm::RoundUpToAlignment(Size, 64); 6244 if (Aligned > Size && Aligned <= ToSize) { 6245 Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size)); 6246 Size = Aligned; 6247 } 6248 6249 // Add whole 64-bit words. 6250 while (Size + 64 <= ToSize) { 6251 Elems.push_back(llvm::Type::getInt64Ty(Context)); 6252 Size += 64; 6253 } 6254 6255 // Final in-word padding. 6256 if (Size < ToSize) { 6257 Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size)); 6258 Size = ToSize; 6259 } 6260 } 6261 6262 // Add a floating point element at Offset. 6263 void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) { 6264 // Unaligned floats are treated as integers. 6265 if (Offset % Bits) 6266 return; 6267 // The InReg flag is only required if there are any floats < 64 bits. 6268 if (Bits < 64) 6269 InReg = true; 6270 pad(Offset); 6271 Elems.push_back(Ty); 6272 Size = Offset + Bits; 6273 } 6274 6275 // Add a struct type to the coercion type, starting at Offset (in bits). 6276 void addStruct(uint64_t Offset, llvm::StructType *StrTy) { 6277 const llvm::StructLayout *Layout = DL.getStructLayout(StrTy); 6278 for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) { 6279 llvm::Type *ElemTy = StrTy->getElementType(i); 6280 uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i); 6281 switch (ElemTy->getTypeID()) { 6282 case llvm::Type::StructTyID: 6283 addStruct(ElemOffset, cast<llvm::StructType>(ElemTy)); 6284 break; 6285 case llvm::Type::FloatTyID: 6286 addFloat(ElemOffset, ElemTy, 32); 6287 break; 6288 case llvm::Type::DoubleTyID: 6289 addFloat(ElemOffset, ElemTy, 64); 6290 break; 6291 case llvm::Type::FP128TyID: 6292 addFloat(ElemOffset, ElemTy, 128); 6293 break; 6294 case llvm::Type::PointerTyID: 6295 if (ElemOffset % 64 == 0) { 6296 pad(ElemOffset); 6297 Elems.push_back(ElemTy); 6298 Size += 64; 6299 } 6300 break; 6301 default: 6302 break; 6303 } 6304 } 6305 } 6306 6307 // Check if Ty is a usable substitute for the coercion type. 6308 bool isUsableType(llvm::StructType *Ty) const { 6309 return llvm::makeArrayRef(Elems) == Ty->elements(); 6310 } 6311 6312 // Get the coercion type as a literal struct type. 6313 llvm::Type *getType() const { 6314 if (Elems.size() == 1) 6315 return Elems.front(); 6316 else 6317 return llvm::StructType::get(Context, Elems); 6318 } 6319 }; 6320 }; 6321 } // end anonymous namespace 6322 6323 ABIArgInfo 6324 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const { 6325 if (Ty->isVoidType()) 6326 return ABIArgInfo::getIgnore(); 6327 6328 uint64_t Size = getContext().getTypeSize(Ty); 6329 6330 // Anything too big to fit in registers is passed with an explicit indirect 6331 // pointer / sret pointer. 6332 if (Size > SizeLimit) 6333 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 6334 6335 // Treat an enum type as its underlying type. 6336 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 6337 Ty = EnumTy->getDecl()->getIntegerType(); 6338 6339 // Integer types smaller than a register are extended. 6340 if (Size < 64 && Ty->isIntegerType()) 6341 return ABIArgInfo::getExtend(); 6342 6343 // Other non-aggregates go in registers. 6344 if (!isAggregateTypeForABI(Ty)) 6345 return ABIArgInfo::getDirect(); 6346 6347 // If a C++ object has either a non-trivial copy constructor or a non-trivial 6348 // destructor, it is passed with an explicit indirect pointer / sret pointer. 6349 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 6350 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 6351 6352 // This is a small aggregate type that should be passed in registers. 6353 // Build a coercion type from the LLVM struct type. 6354 llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty)); 6355 if (!StrTy) 6356 return ABIArgInfo::getDirect(); 6357 6358 CoerceBuilder CB(getVMContext(), getDataLayout()); 6359 CB.addStruct(0, StrTy); 6360 CB.pad(llvm::RoundUpToAlignment(CB.DL.getTypeSizeInBits(StrTy), 64)); 6361 6362 // Try to use the original type for coercion. 6363 llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType(); 6364 6365 if (CB.InReg) 6366 return ABIArgInfo::getDirectInReg(CoerceTy); 6367 else 6368 return ABIArgInfo::getDirect(CoerceTy); 6369 } 6370 6371 llvm::Value *SparcV9ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 6372 CodeGenFunction &CGF) const { 6373 ABIArgInfo AI = classifyType(Ty, 16 * 8); 6374 llvm::Type *ArgTy = CGT.ConvertType(Ty); 6375 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 6376 AI.setCoerceToType(ArgTy); 6377 6378 llvm::Type *BPP = CGF.Int8PtrPtrTy; 6379 CGBuilderTy &Builder = CGF.Builder; 6380 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); 6381 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 6382 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 6383 llvm::Value *ArgAddr; 6384 unsigned Stride; 6385 6386 switch (AI.getKind()) { 6387 case ABIArgInfo::Expand: 6388 case ABIArgInfo::InAlloca: 6389 llvm_unreachable("Unsupported ABI kind for va_arg"); 6390 6391 case ABIArgInfo::Extend: 6392 Stride = 8; 6393 ArgAddr = Builder 6394 .CreateConstGEP1_32(Addr, 8 - getDataLayout().getTypeAllocSize(ArgTy), 6395 "extend"); 6396 break; 6397 6398 case ABIArgInfo::Direct: 6399 Stride = getDataLayout().getTypeAllocSize(AI.getCoerceToType()); 6400 ArgAddr = Addr; 6401 break; 6402 6403 case ABIArgInfo::Indirect: 6404 Stride = 8; 6405 ArgAddr = Builder.CreateBitCast(Addr, 6406 llvm::PointerType::getUnqual(ArgPtrTy), 6407 "indirect"); 6408 ArgAddr = Builder.CreateLoad(ArgAddr, "indirect.arg"); 6409 break; 6410 6411 case ABIArgInfo::Ignore: 6412 return llvm::UndefValue::get(ArgPtrTy); 6413 } 6414 6415 // Update VAList. 6416 Addr = Builder.CreateConstGEP1_32(Addr, Stride, "ap.next"); 6417 Builder.CreateStore(Addr, VAListAddrAsBPP); 6418 6419 return Builder.CreatePointerCast(ArgAddr, ArgPtrTy, "arg.addr"); 6420 } 6421 6422 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const { 6423 FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8); 6424 for (auto &I : FI.arguments()) 6425 I.info = classifyType(I.type, 16 * 8); 6426 } 6427 6428 namespace { 6429 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo { 6430 public: 6431 SparcV9TargetCodeGenInfo(CodeGenTypes &CGT) 6432 : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {} 6433 6434 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 6435 return 14; 6436 } 6437 6438 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 6439 llvm::Value *Address) const override; 6440 }; 6441 } // end anonymous namespace 6442 6443 bool 6444 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 6445 llvm::Value *Address) const { 6446 // This is calculated from the LLVM and GCC tables and verified 6447 // against gcc output. AFAIK all ABIs use the same encoding. 6448 6449 CodeGen::CGBuilderTy &Builder = CGF.Builder; 6450 6451 llvm::IntegerType *i8 = CGF.Int8Ty; 6452 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 6453 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 6454 6455 // 0-31: the 8-byte general-purpose registers 6456 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 6457 6458 // 32-63: f0-31, the 4-byte floating-point registers 6459 AssignToArrayRange(Builder, Address, Four8, 32, 63); 6460 6461 // Y = 64 6462 // PSR = 65 6463 // WIM = 66 6464 // TBR = 67 6465 // PC = 68 6466 // NPC = 69 6467 // FSR = 70 6468 // CSR = 71 6469 AssignToArrayRange(Builder, Address, Eight8, 64, 71); 6470 6471 // 72-87: d0-15, the 8-byte floating-point registers 6472 AssignToArrayRange(Builder, Address, Eight8, 72, 87); 6473 6474 return false; 6475 } 6476 6477 6478 //===----------------------------------------------------------------------===// 6479 // XCore ABI Implementation 6480 //===----------------------------------------------------------------------===// 6481 6482 namespace { 6483 6484 /// A SmallStringEnc instance is used to build up the TypeString by passing 6485 /// it by reference between functions that append to it. 6486 typedef llvm::SmallString<128> SmallStringEnc; 6487 6488 /// TypeStringCache caches the meta encodings of Types. 6489 /// 6490 /// The reason for caching TypeStrings is two fold: 6491 /// 1. To cache a type's encoding for later uses; 6492 /// 2. As a means to break recursive member type inclusion. 6493 /// 6494 /// A cache Entry can have a Status of: 6495 /// NonRecursive: The type encoding is not recursive; 6496 /// Recursive: The type encoding is recursive; 6497 /// Incomplete: An incomplete TypeString; 6498 /// IncompleteUsed: An incomplete TypeString that has been used in a 6499 /// Recursive type encoding. 6500 /// 6501 /// A NonRecursive entry will have all of its sub-members expanded as fully 6502 /// as possible. Whilst it may contain types which are recursive, the type 6503 /// itself is not recursive and thus its encoding may be safely used whenever 6504 /// the type is encountered. 6505 /// 6506 /// A Recursive entry will have all of its sub-members expanded as fully as 6507 /// possible. The type itself is recursive and it may contain other types which 6508 /// are recursive. The Recursive encoding must not be used during the expansion 6509 /// of a recursive type's recursive branch. For simplicity the code uses 6510 /// IncompleteCount to reject all usage of Recursive encodings for member types. 6511 /// 6512 /// An Incomplete entry is always a RecordType and only encodes its 6513 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and 6514 /// are placed into the cache during type expansion as a means to identify and 6515 /// handle recursive inclusion of types as sub-members. If there is recursion 6516 /// the entry becomes IncompleteUsed. 6517 /// 6518 /// During the expansion of a RecordType's members: 6519 /// 6520 /// If the cache contains a NonRecursive encoding for the member type, the 6521 /// cached encoding is used; 6522 /// 6523 /// If the cache contains a Recursive encoding for the member type, the 6524 /// cached encoding is 'Swapped' out, as it may be incorrect, and... 6525 /// 6526 /// If the member is a RecordType, an Incomplete encoding is placed into the 6527 /// cache to break potential recursive inclusion of itself as a sub-member; 6528 /// 6529 /// Once a member RecordType has been expanded, its temporary incomplete 6530 /// entry is removed from the cache. If a Recursive encoding was swapped out 6531 /// it is swapped back in; 6532 /// 6533 /// If an incomplete entry is used to expand a sub-member, the incomplete 6534 /// entry is marked as IncompleteUsed. The cache keeps count of how many 6535 /// IncompleteUsed entries it currently contains in IncompleteUsedCount; 6536 /// 6537 /// If a member's encoding is found to be a NonRecursive or Recursive viz: 6538 /// IncompleteUsedCount==0, the member's encoding is added to the cache. 6539 /// Else the member is part of a recursive type and thus the recursion has 6540 /// been exited too soon for the encoding to be correct for the member. 6541 /// 6542 class TypeStringCache { 6543 enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed}; 6544 struct Entry { 6545 std::string Str; // The encoded TypeString for the type. 6546 enum Status State; // Information about the encoding in 'Str'. 6547 std::string Swapped; // A temporary place holder for a Recursive encoding 6548 // during the expansion of RecordType's members. 6549 }; 6550 std::map<const IdentifierInfo *, struct Entry> Map; 6551 unsigned IncompleteCount; // Number of Incomplete entries in the Map. 6552 unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map. 6553 public: 6554 TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {} 6555 void addIncomplete(const IdentifierInfo *ID, std::string StubEnc); 6556 bool removeIncomplete(const IdentifierInfo *ID); 6557 void addIfComplete(const IdentifierInfo *ID, StringRef Str, 6558 bool IsRecursive); 6559 StringRef lookupStr(const IdentifierInfo *ID); 6560 }; 6561 6562 /// TypeString encodings for enum & union fields must be order. 6563 /// FieldEncoding is a helper for this ordering process. 6564 class FieldEncoding { 6565 bool HasName; 6566 std::string Enc; 6567 public: 6568 FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {} 6569 StringRef str() {return Enc.c_str();} 6570 bool operator<(const FieldEncoding &rhs) const { 6571 if (HasName != rhs.HasName) return HasName; 6572 return Enc < rhs.Enc; 6573 } 6574 }; 6575 6576 class XCoreABIInfo : public DefaultABIInfo { 6577 public: 6578 XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 6579 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 6580 CodeGenFunction &CGF) const override; 6581 }; 6582 6583 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo { 6584 mutable TypeStringCache TSC; 6585 public: 6586 XCoreTargetCodeGenInfo(CodeGenTypes &CGT) 6587 :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {} 6588 void emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 6589 CodeGen::CodeGenModule &M) const override; 6590 }; 6591 6592 } // End anonymous namespace. 6593 6594 llvm::Value *XCoreABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 6595 CodeGenFunction &CGF) const { 6596 CGBuilderTy &Builder = CGF.Builder; 6597 6598 // Get the VAList. 6599 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, 6600 CGF.Int8PtrPtrTy); 6601 llvm::Value *AP = Builder.CreateLoad(VAListAddrAsBPP); 6602 6603 // Handle the argument. 6604 ABIArgInfo AI = classifyArgumentType(Ty); 6605 llvm::Type *ArgTy = CGT.ConvertType(Ty); 6606 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 6607 AI.setCoerceToType(ArgTy); 6608 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 6609 llvm::Value *Val; 6610 uint64_t ArgSize = 0; 6611 switch (AI.getKind()) { 6612 case ABIArgInfo::Expand: 6613 case ABIArgInfo::InAlloca: 6614 llvm_unreachable("Unsupported ABI kind for va_arg"); 6615 case ABIArgInfo::Ignore: 6616 Val = llvm::UndefValue::get(ArgPtrTy); 6617 ArgSize = 0; 6618 break; 6619 case ABIArgInfo::Extend: 6620 case ABIArgInfo::Direct: 6621 Val = Builder.CreatePointerCast(AP, ArgPtrTy); 6622 ArgSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType()); 6623 if (ArgSize < 4) 6624 ArgSize = 4; 6625 break; 6626 case ABIArgInfo::Indirect: 6627 llvm::Value *ArgAddr; 6628 ArgAddr = Builder.CreateBitCast(AP, llvm::PointerType::getUnqual(ArgPtrTy)); 6629 ArgAddr = Builder.CreateLoad(ArgAddr); 6630 Val = Builder.CreatePointerCast(ArgAddr, ArgPtrTy); 6631 ArgSize = 4; 6632 break; 6633 } 6634 6635 // Increment the VAList. 6636 if (ArgSize) { 6637 llvm::Value *APN = Builder.CreateConstGEP1_32(AP, ArgSize); 6638 Builder.CreateStore(APN, VAListAddrAsBPP); 6639 } 6640 return Val; 6641 } 6642 6643 /// During the expansion of a RecordType, an incomplete TypeString is placed 6644 /// into the cache as a means to identify and break recursion. 6645 /// If there is a Recursive encoding in the cache, it is swapped out and will 6646 /// be reinserted by removeIncomplete(). 6647 /// All other types of encoding should have been used rather than arriving here. 6648 void TypeStringCache::addIncomplete(const IdentifierInfo *ID, 6649 std::string StubEnc) { 6650 if (!ID) 6651 return; 6652 Entry &E = Map[ID]; 6653 assert( (E.Str.empty() || E.State == Recursive) && 6654 "Incorrectly use of addIncomplete"); 6655 assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()"); 6656 E.Swapped.swap(E.Str); // swap out the Recursive 6657 E.Str.swap(StubEnc); 6658 E.State = Incomplete; 6659 ++IncompleteCount; 6660 } 6661 6662 /// Once the RecordType has been expanded, the temporary incomplete TypeString 6663 /// must be removed from the cache. 6664 /// If a Recursive was swapped out by addIncomplete(), it will be replaced. 6665 /// Returns true if the RecordType was defined recursively. 6666 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) { 6667 if (!ID) 6668 return false; 6669 auto I = Map.find(ID); 6670 assert(I != Map.end() && "Entry not present"); 6671 Entry &E = I->second; 6672 assert( (E.State == Incomplete || 6673 E.State == IncompleteUsed) && 6674 "Entry must be an incomplete type"); 6675 bool IsRecursive = false; 6676 if (E.State == IncompleteUsed) { 6677 // We made use of our Incomplete encoding, thus we are recursive. 6678 IsRecursive = true; 6679 --IncompleteUsedCount; 6680 } 6681 if (E.Swapped.empty()) 6682 Map.erase(I); 6683 else { 6684 // Swap the Recursive back. 6685 E.Swapped.swap(E.Str); 6686 E.Swapped.clear(); 6687 E.State = Recursive; 6688 } 6689 --IncompleteCount; 6690 return IsRecursive; 6691 } 6692 6693 /// Add the encoded TypeString to the cache only if it is NonRecursive or 6694 /// Recursive (viz: all sub-members were expanded as fully as possible). 6695 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str, 6696 bool IsRecursive) { 6697 if (!ID || IncompleteUsedCount) 6698 return; // No key or it is is an incomplete sub-type so don't add. 6699 Entry &E = Map[ID]; 6700 if (IsRecursive && !E.Str.empty()) { 6701 assert(E.State==Recursive && E.Str.size() == Str.size() && 6702 "This is not the same Recursive entry"); 6703 // The parent container was not recursive after all, so we could have used 6704 // this Recursive sub-member entry after all, but we assumed the worse when 6705 // we started viz: IncompleteCount!=0. 6706 return; 6707 } 6708 assert(E.Str.empty() && "Entry already present"); 6709 E.Str = Str.str(); 6710 E.State = IsRecursive? Recursive : NonRecursive; 6711 } 6712 6713 /// Return a cached TypeString encoding for the ID. If there isn't one, or we 6714 /// are recursively expanding a type (IncompleteCount != 0) and the cached 6715 /// encoding is Recursive, return an empty StringRef. 6716 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) { 6717 if (!ID) 6718 return StringRef(); // We have no key. 6719 auto I = Map.find(ID); 6720 if (I == Map.end()) 6721 return StringRef(); // We have no encoding. 6722 Entry &E = I->second; 6723 if (E.State == Recursive && IncompleteCount) 6724 return StringRef(); // We don't use Recursive encodings for member types. 6725 6726 if (E.State == Incomplete) { 6727 // The incomplete type is being used to break out of recursion. 6728 E.State = IncompleteUsed; 6729 ++IncompleteUsedCount; 6730 } 6731 return E.Str.c_str(); 6732 } 6733 6734 /// The XCore ABI includes a type information section that communicates symbol 6735 /// type information to the linker. The linker uses this information to verify 6736 /// safety/correctness of things such as array bound and pointers et al. 6737 /// The ABI only requires C (and XC) language modules to emit TypeStrings. 6738 /// This type information (TypeString) is emitted into meta data for all global 6739 /// symbols: definitions, declarations, functions & variables. 6740 /// 6741 /// The TypeString carries type, qualifier, name, size & value details. 6742 /// Please see 'Tools Development Guide' section 2.16.2 for format details: 6743 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf 6744 /// The output is tested by test/CodeGen/xcore-stringtype.c. 6745 /// 6746 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 6747 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC); 6748 6749 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols. 6750 void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 6751 CodeGen::CodeGenModule &CGM) const { 6752 SmallStringEnc Enc; 6753 if (getTypeString(Enc, D, CGM, TSC)) { 6754 llvm::LLVMContext &Ctx = CGM.getModule().getContext(); 6755 llvm::SmallVector<llvm::Metadata *, 2> MDVals; 6756 MDVals.push_back(llvm::ConstantAsMetadata::get(GV)); 6757 MDVals.push_back(llvm::MDString::get(Ctx, Enc.str())); 6758 llvm::NamedMDNode *MD = 6759 CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings"); 6760 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 6761 } 6762 } 6763 6764 static bool appendType(SmallStringEnc &Enc, QualType QType, 6765 const CodeGen::CodeGenModule &CGM, 6766 TypeStringCache &TSC); 6767 6768 /// Helper function for appendRecordType(). 6769 /// Builds a SmallVector containing the encoded field types in declaration 6770 /// order. 6771 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE, 6772 const RecordDecl *RD, 6773 const CodeGen::CodeGenModule &CGM, 6774 TypeStringCache &TSC) { 6775 for (const auto *Field : RD->fields()) { 6776 SmallStringEnc Enc; 6777 Enc += "m("; 6778 Enc += Field->getName(); 6779 Enc += "){"; 6780 if (Field->isBitField()) { 6781 Enc += "b("; 6782 llvm::raw_svector_ostream OS(Enc); 6783 OS.resync(); 6784 OS << Field->getBitWidthValue(CGM.getContext()); 6785 OS.flush(); 6786 Enc += ':'; 6787 } 6788 if (!appendType(Enc, Field->getType(), CGM, TSC)) 6789 return false; 6790 if (Field->isBitField()) 6791 Enc += ')'; 6792 Enc += '}'; 6793 FE.emplace_back(!Field->getName().empty(), Enc); 6794 } 6795 return true; 6796 } 6797 6798 /// Appends structure and union types to Enc and adds encoding to cache. 6799 /// Recursively calls appendType (via extractFieldType) for each field. 6800 /// Union types have their fields ordered according to the ABI. 6801 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT, 6802 const CodeGen::CodeGenModule &CGM, 6803 TypeStringCache &TSC, const IdentifierInfo *ID) { 6804 // Append the cached TypeString if we have one. 6805 StringRef TypeString = TSC.lookupStr(ID); 6806 if (!TypeString.empty()) { 6807 Enc += TypeString; 6808 return true; 6809 } 6810 6811 // Start to emit an incomplete TypeString. 6812 size_t Start = Enc.size(); 6813 Enc += (RT->isUnionType()? 'u' : 's'); 6814 Enc += '('; 6815 if (ID) 6816 Enc += ID->getName(); 6817 Enc += "){"; 6818 6819 // We collect all encoded fields and order as necessary. 6820 bool IsRecursive = false; 6821 const RecordDecl *RD = RT->getDecl()->getDefinition(); 6822 if (RD && !RD->field_empty()) { 6823 // An incomplete TypeString stub is placed in the cache for this RecordType 6824 // so that recursive calls to this RecordType will use it whilst building a 6825 // complete TypeString for this RecordType. 6826 SmallVector<FieldEncoding, 16> FE; 6827 std::string StubEnc(Enc.substr(Start).str()); 6828 StubEnc += '}'; // StubEnc now holds a valid incomplete TypeString. 6829 TSC.addIncomplete(ID, std::move(StubEnc)); 6830 if (!extractFieldType(FE, RD, CGM, TSC)) { 6831 (void) TSC.removeIncomplete(ID); 6832 return false; 6833 } 6834 IsRecursive = TSC.removeIncomplete(ID); 6835 // The ABI requires unions to be sorted but not structures. 6836 // See FieldEncoding::operator< for sort algorithm. 6837 if (RT->isUnionType()) 6838 std::sort(FE.begin(), FE.end()); 6839 // We can now complete the TypeString. 6840 unsigned E = FE.size(); 6841 for (unsigned I = 0; I != E; ++I) { 6842 if (I) 6843 Enc += ','; 6844 Enc += FE[I].str(); 6845 } 6846 } 6847 Enc += '}'; 6848 TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive); 6849 return true; 6850 } 6851 6852 /// Appends enum types to Enc and adds the encoding to the cache. 6853 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET, 6854 TypeStringCache &TSC, 6855 const IdentifierInfo *ID) { 6856 // Append the cached TypeString if we have one. 6857 StringRef TypeString = TSC.lookupStr(ID); 6858 if (!TypeString.empty()) { 6859 Enc += TypeString; 6860 return true; 6861 } 6862 6863 size_t Start = Enc.size(); 6864 Enc += "e("; 6865 if (ID) 6866 Enc += ID->getName(); 6867 Enc += "){"; 6868 6869 // We collect all encoded enumerations and order them alphanumerically. 6870 if (const EnumDecl *ED = ET->getDecl()->getDefinition()) { 6871 SmallVector<FieldEncoding, 16> FE; 6872 for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E; 6873 ++I) { 6874 SmallStringEnc EnumEnc; 6875 EnumEnc += "m("; 6876 EnumEnc += I->getName(); 6877 EnumEnc += "){"; 6878 I->getInitVal().toString(EnumEnc); 6879 EnumEnc += '}'; 6880 FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc)); 6881 } 6882 std::sort(FE.begin(), FE.end()); 6883 unsigned E = FE.size(); 6884 for (unsigned I = 0; I != E; ++I) { 6885 if (I) 6886 Enc += ','; 6887 Enc += FE[I].str(); 6888 } 6889 } 6890 Enc += '}'; 6891 TSC.addIfComplete(ID, Enc.substr(Start), false); 6892 return true; 6893 } 6894 6895 /// Appends type's qualifier to Enc. 6896 /// This is done prior to appending the type's encoding. 6897 static void appendQualifier(SmallStringEnc &Enc, QualType QT) { 6898 // Qualifiers are emitted in alphabetical order. 6899 static const char *Table[] = {"","c:","r:","cr:","v:","cv:","rv:","crv:"}; 6900 int Lookup = 0; 6901 if (QT.isConstQualified()) 6902 Lookup += 1<<0; 6903 if (QT.isRestrictQualified()) 6904 Lookup += 1<<1; 6905 if (QT.isVolatileQualified()) 6906 Lookup += 1<<2; 6907 Enc += Table[Lookup]; 6908 } 6909 6910 /// Appends built-in types to Enc. 6911 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) { 6912 const char *EncType; 6913 switch (BT->getKind()) { 6914 case BuiltinType::Void: 6915 EncType = "0"; 6916 break; 6917 case BuiltinType::Bool: 6918 EncType = "b"; 6919 break; 6920 case BuiltinType::Char_U: 6921 EncType = "uc"; 6922 break; 6923 case BuiltinType::UChar: 6924 EncType = "uc"; 6925 break; 6926 case BuiltinType::SChar: 6927 EncType = "sc"; 6928 break; 6929 case BuiltinType::UShort: 6930 EncType = "us"; 6931 break; 6932 case BuiltinType::Short: 6933 EncType = "ss"; 6934 break; 6935 case BuiltinType::UInt: 6936 EncType = "ui"; 6937 break; 6938 case BuiltinType::Int: 6939 EncType = "si"; 6940 break; 6941 case BuiltinType::ULong: 6942 EncType = "ul"; 6943 break; 6944 case BuiltinType::Long: 6945 EncType = "sl"; 6946 break; 6947 case BuiltinType::ULongLong: 6948 EncType = "ull"; 6949 break; 6950 case BuiltinType::LongLong: 6951 EncType = "sll"; 6952 break; 6953 case BuiltinType::Float: 6954 EncType = "ft"; 6955 break; 6956 case BuiltinType::Double: 6957 EncType = "d"; 6958 break; 6959 case BuiltinType::LongDouble: 6960 EncType = "ld"; 6961 break; 6962 default: 6963 return false; 6964 } 6965 Enc += EncType; 6966 return true; 6967 } 6968 6969 /// Appends a pointer encoding to Enc before calling appendType for the pointee. 6970 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT, 6971 const CodeGen::CodeGenModule &CGM, 6972 TypeStringCache &TSC) { 6973 Enc += "p("; 6974 if (!appendType(Enc, PT->getPointeeType(), CGM, TSC)) 6975 return false; 6976 Enc += ')'; 6977 return true; 6978 } 6979 6980 /// Appends array encoding to Enc before calling appendType for the element. 6981 static bool appendArrayType(SmallStringEnc &Enc, QualType QT, 6982 const ArrayType *AT, 6983 const CodeGen::CodeGenModule &CGM, 6984 TypeStringCache &TSC, StringRef NoSizeEnc) { 6985 if (AT->getSizeModifier() != ArrayType::Normal) 6986 return false; 6987 Enc += "a("; 6988 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) 6989 CAT->getSize().toStringUnsigned(Enc); 6990 else 6991 Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "". 6992 Enc += ':'; 6993 // The Qualifiers should be attached to the type rather than the array. 6994 appendQualifier(Enc, QT); 6995 if (!appendType(Enc, AT->getElementType(), CGM, TSC)) 6996 return false; 6997 Enc += ')'; 6998 return true; 6999 } 7000 7001 /// Appends a function encoding to Enc, calling appendType for the return type 7002 /// and the arguments. 7003 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT, 7004 const CodeGen::CodeGenModule &CGM, 7005 TypeStringCache &TSC) { 7006 Enc += "f{"; 7007 if (!appendType(Enc, FT->getReturnType(), CGM, TSC)) 7008 return false; 7009 Enc += "}("; 7010 if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) { 7011 // N.B. we are only interested in the adjusted param types. 7012 auto I = FPT->param_type_begin(); 7013 auto E = FPT->param_type_end(); 7014 if (I != E) { 7015 do { 7016 if (!appendType(Enc, *I, CGM, TSC)) 7017 return false; 7018 ++I; 7019 if (I != E) 7020 Enc += ','; 7021 } while (I != E); 7022 if (FPT->isVariadic()) 7023 Enc += ",va"; 7024 } else { 7025 if (FPT->isVariadic()) 7026 Enc += "va"; 7027 else 7028 Enc += '0'; 7029 } 7030 } 7031 Enc += ')'; 7032 return true; 7033 } 7034 7035 /// Handles the type's qualifier before dispatching a call to handle specific 7036 /// type encodings. 7037 static bool appendType(SmallStringEnc &Enc, QualType QType, 7038 const CodeGen::CodeGenModule &CGM, 7039 TypeStringCache &TSC) { 7040 7041 QualType QT = QType.getCanonicalType(); 7042 7043 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) 7044 // The Qualifiers should be attached to the type rather than the array. 7045 // Thus we don't call appendQualifier() here. 7046 return appendArrayType(Enc, QT, AT, CGM, TSC, ""); 7047 7048 appendQualifier(Enc, QT); 7049 7050 if (const BuiltinType *BT = QT->getAs<BuiltinType>()) 7051 return appendBuiltinType(Enc, BT); 7052 7053 if (const PointerType *PT = QT->getAs<PointerType>()) 7054 return appendPointerType(Enc, PT, CGM, TSC); 7055 7056 if (const EnumType *ET = QT->getAs<EnumType>()) 7057 return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier()); 7058 7059 if (const RecordType *RT = QT->getAsStructureType()) 7060 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 7061 7062 if (const RecordType *RT = QT->getAsUnionType()) 7063 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 7064 7065 if (const FunctionType *FT = QT->getAs<FunctionType>()) 7066 return appendFunctionType(Enc, FT, CGM, TSC); 7067 7068 return false; 7069 } 7070 7071 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 7072 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) { 7073 if (!D) 7074 return false; 7075 7076 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 7077 if (FD->getLanguageLinkage() != CLanguageLinkage) 7078 return false; 7079 return appendType(Enc, FD->getType(), CGM, TSC); 7080 } 7081 7082 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 7083 if (VD->getLanguageLinkage() != CLanguageLinkage) 7084 return false; 7085 QualType QT = VD->getType().getCanonicalType(); 7086 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) { 7087 // Global ArrayTypes are given a size of '*' if the size is unknown. 7088 // The Qualifiers should be attached to the type rather than the array. 7089 // Thus we don't call appendQualifier() here. 7090 return appendArrayType(Enc, QT, AT, CGM, TSC, "*"); 7091 } 7092 return appendType(Enc, QT, CGM, TSC); 7093 } 7094 return false; 7095 } 7096 7097 7098 //===----------------------------------------------------------------------===// 7099 // Driver code 7100 //===----------------------------------------------------------------------===// 7101 7102 const llvm::Triple &CodeGenModule::getTriple() const { 7103 return getTarget().getTriple(); 7104 } 7105 7106 bool CodeGenModule::supportsCOMDAT() const { 7107 return !getTriple().isOSBinFormatMachO(); 7108 } 7109 7110 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { 7111 if (TheTargetCodeGenInfo) 7112 return *TheTargetCodeGenInfo; 7113 7114 const llvm::Triple &Triple = getTarget().getTriple(); 7115 switch (Triple.getArch()) { 7116 default: 7117 return *(TheTargetCodeGenInfo = new DefaultTargetCodeGenInfo(Types)); 7118 7119 case llvm::Triple::le32: 7120 return *(TheTargetCodeGenInfo = new PNaClTargetCodeGenInfo(Types)); 7121 case llvm::Triple::mips: 7122 case llvm::Triple::mipsel: 7123 if (Triple.getOS() == llvm::Triple::NaCl) 7124 return *(TheTargetCodeGenInfo = new PNaClTargetCodeGenInfo(Types)); 7125 return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, true)); 7126 7127 case llvm::Triple::mips64: 7128 case llvm::Triple::mips64el: 7129 return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, false)); 7130 7131 case llvm::Triple::aarch64: 7132 case llvm::Triple::aarch64_be: { 7133 AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS; 7134 if (getTarget().getABI() == "darwinpcs") 7135 Kind = AArch64ABIInfo::DarwinPCS; 7136 7137 return *(TheTargetCodeGenInfo = new AArch64TargetCodeGenInfo(Types, Kind)); 7138 } 7139 7140 case llvm::Triple::arm: 7141 case llvm::Triple::armeb: 7142 case llvm::Triple::thumb: 7143 case llvm::Triple::thumbeb: 7144 { 7145 if (Triple.getOS() == llvm::Triple::Win32) { 7146 TheTargetCodeGenInfo = 7147 new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP); 7148 return *TheTargetCodeGenInfo; 7149 } 7150 7151 ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS; 7152 if (getTarget().getABI() == "apcs-gnu") 7153 Kind = ARMABIInfo::APCS; 7154 else if (CodeGenOpts.FloatABI == "hard" || 7155 (CodeGenOpts.FloatABI != "soft" && 7156 Triple.getEnvironment() == llvm::Triple::GNUEABIHF)) 7157 Kind = ARMABIInfo::AAPCS_VFP; 7158 7159 return *(TheTargetCodeGenInfo = new ARMTargetCodeGenInfo(Types, Kind)); 7160 } 7161 7162 case llvm::Triple::ppc: 7163 return *(TheTargetCodeGenInfo = new PPC32TargetCodeGenInfo(Types)); 7164 case llvm::Triple::ppc64: 7165 if (Triple.isOSBinFormatELF()) { 7166 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1; 7167 if (getTarget().getABI() == "elfv2") 7168 Kind = PPC64_SVR4_ABIInfo::ELFv2; 7169 bool HasQPX = getTarget().getABI() == "elfv1-qpx"; 7170 7171 return *(TheTargetCodeGenInfo = 7172 new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX)); 7173 } else 7174 return *(TheTargetCodeGenInfo = new PPC64TargetCodeGenInfo(Types)); 7175 case llvm::Triple::ppc64le: { 7176 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); 7177 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2; 7178 if (getTarget().getABI() == "elfv1" || getTarget().getABI() == "elfv1-qpx") 7179 Kind = PPC64_SVR4_ABIInfo::ELFv1; 7180 bool HasQPX = getTarget().getABI() == "elfv1-qpx"; 7181 7182 return *(TheTargetCodeGenInfo = 7183 new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX)); 7184 } 7185 7186 case llvm::Triple::nvptx: 7187 case llvm::Triple::nvptx64: 7188 return *(TheTargetCodeGenInfo = new NVPTXTargetCodeGenInfo(Types)); 7189 7190 case llvm::Triple::msp430: 7191 return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo(Types)); 7192 7193 case llvm::Triple::systemz: { 7194 bool HasVector = getTarget().getABI() == "vector"; 7195 return *(TheTargetCodeGenInfo = new SystemZTargetCodeGenInfo(Types, 7196 HasVector)); 7197 } 7198 7199 case llvm::Triple::tce: 7200 return *(TheTargetCodeGenInfo = new TCETargetCodeGenInfo(Types)); 7201 7202 case llvm::Triple::x86: { 7203 bool IsDarwinVectorABI = Triple.isOSDarwin(); 7204 bool IsSmallStructInRegABI = 7205 X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 7206 bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing(); 7207 7208 if (Triple.getOS() == llvm::Triple::Win32) { 7209 return *(TheTargetCodeGenInfo = new WinX86_32TargetCodeGenInfo( 7210 Types, IsDarwinVectorABI, IsSmallStructInRegABI, 7211 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters)); 7212 } else { 7213 return *(TheTargetCodeGenInfo = new X86_32TargetCodeGenInfo( 7214 Types, IsDarwinVectorABI, IsSmallStructInRegABI, 7215 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters)); 7216 } 7217 } 7218 7219 case llvm::Triple::x86_64: { 7220 StringRef ABI = getTarget().getABI(); 7221 X86AVXABILevel AVXLevel = (ABI == "avx512" ? X86AVXABILevel::AVX512 : 7222 ABI == "avx" ? X86AVXABILevel::AVX : 7223 X86AVXABILevel::None); 7224 7225 switch (Triple.getOS()) { 7226 case llvm::Triple::Win32: 7227 return *(TheTargetCodeGenInfo = 7228 new WinX86_64TargetCodeGenInfo(Types, AVXLevel)); 7229 case llvm::Triple::PS4: 7230 return *(TheTargetCodeGenInfo = 7231 new PS4TargetCodeGenInfo(Types, AVXLevel)); 7232 default: 7233 return *(TheTargetCodeGenInfo = 7234 new X86_64TargetCodeGenInfo(Types, AVXLevel)); 7235 } 7236 } 7237 case llvm::Triple::hexagon: 7238 return *(TheTargetCodeGenInfo = new HexagonTargetCodeGenInfo(Types)); 7239 case llvm::Triple::r600: 7240 return *(TheTargetCodeGenInfo = new AMDGPUTargetCodeGenInfo(Types)); 7241 case llvm::Triple::amdgcn: 7242 return *(TheTargetCodeGenInfo = new AMDGPUTargetCodeGenInfo(Types)); 7243 case llvm::Triple::sparcv9: 7244 return *(TheTargetCodeGenInfo = new SparcV9TargetCodeGenInfo(Types)); 7245 case llvm::Triple::xcore: 7246 return *(TheTargetCodeGenInfo = new XCoreTargetCodeGenInfo(Types)); 7247 } 7248 } 7249