1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // These classes wrap the information about a call or function
11 // definition used to handle ABI compliancy.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "TargetInfo.h"
16 #include "ABIInfo.h"
17 #include "CGCXXABI.h"
18 #include "CGValue.h"
19 #include "CodeGenFunction.h"
20 #include "clang/AST/RecordLayout.h"
21 #include "clang/CodeGen/CGFunctionInfo.h"
22 #include "clang/Frontend/CodeGenOptions.h"
23 #include "llvm/ADT/StringExtras.h"
24 #include "llvm/ADT/Triple.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/Type.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include <algorithm>    // std::sort
29 
30 using namespace clang;
31 using namespace CodeGen;
32 
33 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
34                                llvm::Value *Array,
35                                llvm::Value *Value,
36                                unsigned FirstIndex,
37                                unsigned LastIndex) {
38   // Alternatively, we could emit this as a loop in the source.
39   for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
40     llvm::Value *Cell =
41         Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I);
42     Builder.CreateStore(Value, Cell);
43   }
44 }
45 
46 static bool isAggregateTypeForABI(QualType T) {
47   return !CodeGenFunction::hasScalarEvaluationKind(T) ||
48          T->isMemberFunctionPointerType();
49 }
50 
51 ABIInfo::~ABIInfo() {}
52 
53 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT,
54                                               CGCXXABI &CXXABI) {
55   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
56   if (!RD)
57     return CGCXXABI::RAA_Default;
58   return CXXABI.getRecordArgABI(RD);
59 }
60 
61 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T,
62                                               CGCXXABI &CXXABI) {
63   const RecordType *RT = T->getAs<RecordType>();
64   if (!RT)
65     return CGCXXABI::RAA_Default;
66   return getRecordArgABI(RT, CXXABI);
67 }
68 
69 /// Pass transparent unions as if they were the type of the first element. Sema
70 /// should ensure that all elements of the union have the same "machine type".
71 static QualType useFirstFieldIfTransparentUnion(QualType Ty) {
72   if (const RecordType *UT = Ty->getAsUnionType()) {
73     const RecordDecl *UD = UT->getDecl();
74     if (UD->hasAttr<TransparentUnionAttr>()) {
75       assert(!UD->field_empty() && "sema created an empty transparent union");
76       return UD->field_begin()->getType();
77     }
78   }
79   return Ty;
80 }
81 
82 CGCXXABI &ABIInfo::getCXXABI() const {
83   return CGT.getCXXABI();
84 }
85 
86 ASTContext &ABIInfo::getContext() const {
87   return CGT.getContext();
88 }
89 
90 llvm::LLVMContext &ABIInfo::getVMContext() const {
91   return CGT.getLLVMContext();
92 }
93 
94 const llvm::DataLayout &ABIInfo::getDataLayout() const {
95   return CGT.getDataLayout();
96 }
97 
98 const TargetInfo &ABIInfo::getTarget() const {
99   return CGT.getTarget();
100 }
101 
102 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
103   return false;
104 }
105 
106 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
107                                                 uint64_t Members) const {
108   return false;
109 }
110 
111 bool ABIInfo::shouldSignExtUnsignedType(QualType Ty) const {
112   return false;
113 }
114 
115 void ABIArgInfo::dump() const {
116   raw_ostream &OS = llvm::errs();
117   OS << "(ABIArgInfo Kind=";
118   switch (TheKind) {
119   case Direct:
120     OS << "Direct Type=";
121     if (llvm::Type *Ty = getCoerceToType())
122       Ty->print(OS);
123     else
124       OS << "null";
125     break;
126   case Extend:
127     OS << "Extend";
128     break;
129   case Ignore:
130     OS << "Ignore";
131     break;
132   case InAlloca:
133     OS << "InAlloca Offset=" << getInAllocaFieldIndex();
134     break;
135   case Indirect:
136     OS << "Indirect Align=" << getIndirectAlign()
137        << " ByVal=" << getIndirectByVal()
138        << " Realign=" << getIndirectRealign();
139     break;
140   case Expand:
141     OS << "Expand";
142     break;
143   }
144   OS << ")\n";
145 }
146 
147 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }
148 
149 // If someone can figure out a general rule for this, that would be great.
150 // It's probably just doomed to be platform-dependent, though.
151 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const {
152   // Verified for:
153   //   x86-64     FreeBSD, Linux, Darwin
154   //   x86-32     FreeBSD, Linux, Darwin
155   //   PowerPC    Linux, Darwin
156   //   ARM        Darwin (*not* EABI)
157   //   AArch64    Linux
158   return 32;
159 }
160 
161 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args,
162                                      const FunctionNoProtoType *fnType) const {
163   // The following conventions are known to require this to be false:
164   //   x86_stdcall
165   //   MIPS
166   // For everything else, we just prefer false unless we opt out.
167   return false;
168 }
169 
170 void
171 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib,
172                                              llvm::SmallString<24> &Opt) const {
173   // This assumes the user is passing a library name like "rt" instead of a
174   // filename like "librt.a/so", and that they don't care whether it's static or
175   // dynamic.
176   Opt = "-l";
177   Opt += Lib;
178 }
179 
180 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
181 
182 /// isEmptyField - Return true iff a the field is "empty", that is it
183 /// is an unnamed bit-field or an (array of) empty record(s).
184 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
185                          bool AllowArrays) {
186   if (FD->isUnnamedBitfield())
187     return true;
188 
189   QualType FT = FD->getType();
190 
191   // Constant arrays of empty records count as empty, strip them off.
192   // Constant arrays of zero length always count as empty.
193   if (AllowArrays)
194     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
195       if (AT->getSize() == 0)
196         return true;
197       FT = AT->getElementType();
198     }
199 
200   const RecordType *RT = FT->getAs<RecordType>();
201   if (!RT)
202     return false;
203 
204   // C++ record fields are never empty, at least in the Itanium ABI.
205   //
206   // FIXME: We should use a predicate for whether this behavior is true in the
207   // current ABI.
208   if (isa<CXXRecordDecl>(RT->getDecl()))
209     return false;
210 
211   return isEmptyRecord(Context, FT, AllowArrays);
212 }
213 
214 /// isEmptyRecord - Return true iff a structure contains only empty
215 /// fields. Note that a structure with a flexible array member is not
216 /// considered empty.
217 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
218   const RecordType *RT = T->getAs<RecordType>();
219   if (!RT)
220     return 0;
221   const RecordDecl *RD = RT->getDecl();
222   if (RD->hasFlexibleArrayMember())
223     return false;
224 
225   // If this is a C++ record, check the bases first.
226   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
227     for (const auto &I : CXXRD->bases())
228       if (!isEmptyRecord(Context, I.getType(), true))
229         return false;
230 
231   for (const auto *I : RD->fields())
232     if (!isEmptyField(Context, I, AllowArrays))
233       return false;
234   return true;
235 }
236 
237 /// isSingleElementStruct - Determine if a structure is a "single
238 /// element struct", i.e. it has exactly one non-empty field or
239 /// exactly one field which is itself a single element
240 /// struct. Structures with flexible array members are never
241 /// considered single element structs.
242 ///
243 /// \return The field declaration for the single non-empty field, if
244 /// it exists.
245 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
246   const RecordType *RT = T->getAs<RecordType>();
247   if (!RT)
248     return nullptr;
249 
250   const RecordDecl *RD = RT->getDecl();
251   if (RD->hasFlexibleArrayMember())
252     return nullptr;
253 
254   const Type *Found = nullptr;
255 
256   // If this is a C++ record, check the bases first.
257   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
258     for (const auto &I : CXXRD->bases()) {
259       // Ignore empty records.
260       if (isEmptyRecord(Context, I.getType(), true))
261         continue;
262 
263       // If we already found an element then this isn't a single-element struct.
264       if (Found)
265         return nullptr;
266 
267       // If this is non-empty and not a single element struct, the composite
268       // cannot be a single element struct.
269       Found = isSingleElementStruct(I.getType(), Context);
270       if (!Found)
271         return nullptr;
272     }
273   }
274 
275   // Check for single element.
276   for (const auto *FD : RD->fields()) {
277     QualType FT = FD->getType();
278 
279     // Ignore empty fields.
280     if (isEmptyField(Context, FD, true))
281       continue;
282 
283     // If we already found an element then this isn't a single-element
284     // struct.
285     if (Found)
286       return nullptr;
287 
288     // Treat single element arrays as the element.
289     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
290       if (AT->getSize().getZExtValue() != 1)
291         break;
292       FT = AT->getElementType();
293     }
294 
295     if (!isAggregateTypeForABI(FT)) {
296       Found = FT.getTypePtr();
297     } else {
298       Found = isSingleElementStruct(FT, Context);
299       if (!Found)
300         return nullptr;
301     }
302   }
303 
304   // We don't consider a struct a single-element struct if it has
305   // padding beyond the element type.
306   if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T))
307     return nullptr;
308 
309   return Found;
310 }
311 
312 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
313   // Treat complex types as the element type.
314   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
315     Ty = CTy->getElementType();
316 
317   // Check for a type which we know has a simple scalar argument-passing
318   // convention without any padding.  (We're specifically looking for 32
319   // and 64-bit integer and integer-equivalents, float, and double.)
320   if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
321       !Ty->isEnumeralType() && !Ty->isBlockPointerType())
322     return false;
323 
324   uint64_t Size = Context.getTypeSize(Ty);
325   return Size == 32 || Size == 64;
326 }
327 
328 /// canExpandIndirectArgument - Test whether an argument type which is to be
329 /// passed indirectly (on the stack) would have the equivalent layout if it was
330 /// expanded into separate arguments. If so, we prefer to do the latter to avoid
331 /// inhibiting optimizations.
332 ///
333 // FIXME: This predicate is missing many cases, currently it just follows
334 // llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We
335 // should probably make this smarter, or better yet make the LLVM backend
336 // capable of handling it.
337 static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) {
338   // We can only expand structure types.
339   const RecordType *RT = Ty->getAs<RecordType>();
340   if (!RT)
341     return false;
342 
343   // We can only expand (C) structures.
344   //
345   // FIXME: This needs to be generalized to handle classes as well.
346   const RecordDecl *RD = RT->getDecl();
347   if (!RD->isStruct())
348     return false;
349 
350   // We try to expand CLike CXXRecordDecl.
351   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
352     if (!CXXRD->isCLike())
353       return false;
354   }
355 
356   uint64_t Size = 0;
357 
358   for (const auto *FD : RD->fields()) {
359     if (!is32Or64BitBasicType(FD->getType(), Context))
360       return false;
361 
362     // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
363     // how to expand them yet, and the predicate for telling if a bitfield still
364     // counts as "basic" is more complicated than what we were doing previously.
365     if (FD->isBitField())
366       return false;
367 
368     Size += Context.getTypeSize(FD->getType());
369   }
370 
371   // Make sure there are not any holes in the struct.
372   if (Size != Context.getTypeSize(Ty))
373     return false;
374 
375   return true;
376 }
377 
378 namespace {
379 /// DefaultABIInfo - The default implementation for ABI specific
380 /// details. This implementation provides information which results in
381 /// self-consistent and sensible LLVM IR generation, but does not
382 /// conform to any particular ABI.
383 class DefaultABIInfo : public ABIInfo {
384 public:
385   DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
386 
387   ABIArgInfo classifyReturnType(QualType RetTy) const;
388   ABIArgInfo classifyArgumentType(QualType RetTy) const;
389 
390   void computeInfo(CGFunctionInfo &FI) const override {
391     if (!getCXXABI().classifyReturnType(FI))
392       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
393     for (auto &I : FI.arguments())
394       I.info = classifyArgumentType(I.type);
395   }
396 
397   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
398                          CodeGenFunction &CGF) const override;
399 };
400 
401 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
402 public:
403   DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
404     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
405 };
406 
407 llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
408                                        CodeGenFunction &CGF) const {
409   return nullptr;
410 }
411 
412 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
413   Ty = useFirstFieldIfTransparentUnion(Ty);
414 
415   if (isAggregateTypeForABI(Ty)) {
416     // Records with non-trivial destructors/copy-constructors should not be
417     // passed by value.
418     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
419       return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
420 
421     return ABIArgInfo::getIndirect(0);
422   }
423 
424   // Treat an enum type as its underlying type.
425   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
426     Ty = EnumTy->getDecl()->getIntegerType();
427 
428   return (Ty->isPromotableIntegerType() ?
429           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
430 }
431 
432 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
433   if (RetTy->isVoidType())
434     return ABIArgInfo::getIgnore();
435 
436   if (isAggregateTypeForABI(RetTy))
437     return ABIArgInfo::getIndirect(0);
438 
439   // Treat an enum type as its underlying type.
440   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
441     RetTy = EnumTy->getDecl()->getIntegerType();
442 
443   return (RetTy->isPromotableIntegerType() ?
444           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
445 }
446 
447 //===----------------------------------------------------------------------===//
448 // le32/PNaCl bitcode ABI Implementation
449 //
450 // This is a simplified version of the x86_32 ABI.  Arguments and return values
451 // are always passed on the stack.
452 //===----------------------------------------------------------------------===//
453 
454 class PNaClABIInfo : public ABIInfo {
455  public:
456   PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
457 
458   ABIArgInfo classifyReturnType(QualType RetTy) const;
459   ABIArgInfo classifyArgumentType(QualType RetTy) const;
460 
461   void computeInfo(CGFunctionInfo &FI) const override;
462   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
463                          CodeGenFunction &CGF) const override;
464 };
465 
466 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo {
467  public:
468   PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
469     : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {}
470 };
471 
472 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const {
473   if (!getCXXABI().classifyReturnType(FI))
474     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
475 
476   for (auto &I : FI.arguments())
477     I.info = classifyArgumentType(I.type);
478 }
479 
480 llvm::Value *PNaClABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
481                                        CodeGenFunction &CGF) const {
482   return nullptr;
483 }
484 
485 /// \brief Classify argument of given type \p Ty.
486 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const {
487   if (isAggregateTypeForABI(Ty)) {
488     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
489       return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
490     return ABIArgInfo::getIndirect(0);
491   } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
492     // Treat an enum type as its underlying type.
493     Ty = EnumTy->getDecl()->getIntegerType();
494   } else if (Ty->isFloatingType()) {
495     // Floating-point types don't go inreg.
496     return ABIArgInfo::getDirect();
497   }
498 
499   return (Ty->isPromotableIntegerType() ?
500           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
501 }
502 
503 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const {
504   if (RetTy->isVoidType())
505     return ABIArgInfo::getIgnore();
506 
507   // In the PNaCl ABI we always return records/structures on the stack.
508   if (isAggregateTypeForABI(RetTy))
509     return ABIArgInfo::getIndirect(0);
510 
511   // Treat an enum type as its underlying type.
512   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
513     RetTy = EnumTy->getDecl()->getIntegerType();
514 
515   return (RetTy->isPromotableIntegerType() ?
516           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
517 }
518 
519 /// IsX86_MMXType - Return true if this is an MMX type.
520 bool IsX86_MMXType(llvm::Type *IRType) {
521   // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>.
522   return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
523     cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
524     IRType->getScalarSizeInBits() != 64;
525 }
526 
527 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
528                                           StringRef Constraint,
529                                           llvm::Type* Ty) {
530   if ((Constraint == "y" || Constraint == "&y") && Ty->isVectorTy()) {
531     if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) {
532       // Invalid MMX constraint
533       return nullptr;
534     }
535 
536     return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
537   }
538 
539   // No operation needed
540   return Ty;
541 }
542 
543 /// Returns true if this type can be passed in SSE registers with the
544 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64.
545 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) {
546   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
547     if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half)
548       return true;
549   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
550     // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX
551     // registers specially.
552     unsigned VecSize = Context.getTypeSize(VT);
553     if (VecSize == 128 || VecSize == 256 || VecSize == 512)
554       return true;
555   }
556   return false;
557 }
558 
559 /// Returns true if this aggregate is small enough to be passed in SSE registers
560 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64.
561 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) {
562   return NumMembers <= 4;
563 }
564 
565 //===----------------------------------------------------------------------===//
566 // X86-32 ABI Implementation
567 //===----------------------------------------------------------------------===//
568 
569 /// \brief Similar to llvm::CCState, but for Clang.
570 struct CCState {
571   CCState(unsigned CC) : CC(CC), FreeRegs(0), FreeSSERegs(0) {}
572 
573   unsigned CC;
574   unsigned FreeRegs;
575   unsigned FreeSSERegs;
576 };
577 
578 /// X86_32ABIInfo - The X86-32 ABI information.
579 class X86_32ABIInfo : public ABIInfo {
580   enum Class {
581     Integer,
582     Float
583   };
584 
585   static const unsigned MinABIStackAlignInBytes = 4;
586 
587   bool IsDarwinVectorABI;
588   bool IsSmallStructInRegABI;
589   bool IsWin32StructABI;
590   unsigned DefaultNumRegisterParameters;
591 
592   static bool isRegisterSize(unsigned Size) {
593     return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
594   }
595 
596   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
597     // FIXME: Assumes vectorcall is in use.
598     return isX86VectorTypeForVectorCall(getContext(), Ty);
599   }
600 
601   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
602                                          uint64_t NumMembers) const override {
603     // FIXME: Assumes vectorcall is in use.
604     return isX86VectorCallAggregateSmallEnough(NumMembers);
605   }
606 
607   bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const;
608 
609   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
610   /// such that the argument will be passed in memory.
611   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
612 
613   ABIArgInfo getIndirectReturnResult(CCState &State) const;
614 
615   /// \brief Return the alignment to use for the given type on the stack.
616   unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
617 
618   Class classify(QualType Ty) const;
619   ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const;
620   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
621   bool shouldUseInReg(QualType Ty, CCState &State, bool &NeedsPadding) const;
622 
623   /// \brief Rewrite the function info so that all memory arguments use
624   /// inalloca.
625   void rewriteWithInAlloca(CGFunctionInfo &FI) const;
626 
627   void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
628                            unsigned &StackOffset, ABIArgInfo &Info,
629                            QualType Type) const;
630 
631 public:
632 
633   void computeInfo(CGFunctionInfo &FI) const override;
634   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
635                          CodeGenFunction &CGF) const override;
636 
637   X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p, bool w,
638                 unsigned r)
639     : ABIInfo(CGT), IsDarwinVectorABI(d), IsSmallStructInRegABI(p),
640       IsWin32StructABI(w), DefaultNumRegisterParameters(r) {}
641 };
642 
643 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
644 public:
645   X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
646       bool d, bool p, bool w, unsigned r)
647     :TargetCodeGenInfo(new X86_32ABIInfo(CGT, d, p, w, r)) {}
648 
649   static bool isStructReturnInRegABI(
650       const llvm::Triple &Triple, const CodeGenOptions &Opts);
651 
652   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
653                            CodeGen::CodeGenModule &CGM) const override;
654 
655   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
656     // Darwin uses different dwarf register numbers for EH.
657     if (CGM.getTarget().getTriple().isOSDarwin()) return 5;
658     return 4;
659   }
660 
661   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
662                                llvm::Value *Address) const override;
663 
664   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
665                                   StringRef Constraint,
666                                   llvm::Type* Ty) const override {
667     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
668   }
669 
670   void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue,
671                                 std::string &Constraints,
672                                 std::vector<llvm::Type *> &ResultRegTypes,
673                                 std::vector<llvm::Type *> &ResultTruncRegTypes,
674                                 std::vector<LValue> &ResultRegDests,
675                                 std::string &AsmString,
676                                 unsigned NumOutputs) const override;
677 
678   llvm::Constant *
679   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
680     unsigned Sig = (0xeb << 0) |  // jmp rel8
681                    (0x06 << 8) |  //           .+0x08
682                    ('F' << 16) |
683                    ('T' << 24);
684     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
685   }
686 };
687 
688 }
689 
690 /// Rewrite input constraint references after adding some output constraints.
691 /// In the case where there is one output and one input and we add one output,
692 /// we need to replace all operand references greater than or equal to 1:
693 ///     mov $0, $1
694 ///     mov eax, $1
695 /// The result will be:
696 ///     mov $0, $2
697 ///     mov eax, $2
698 static void rewriteInputConstraintReferences(unsigned FirstIn,
699                                              unsigned NumNewOuts,
700                                              std::string &AsmString) {
701   std::string Buf;
702   llvm::raw_string_ostream OS(Buf);
703   size_t Pos = 0;
704   while (Pos < AsmString.size()) {
705     size_t DollarStart = AsmString.find('$', Pos);
706     if (DollarStart == std::string::npos)
707       DollarStart = AsmString.size();
708     size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart);
709     if (DollarEnd == std::string::npos)
710       DollarEnd = AsmString.size();
711     OS << StringRef(&AsmString[Pos], DollarEnd - Pos);
712     Pos = DollarEnd;
713     size_t NumDollars = DollarEnd - DollarStart;
714     if (NumDollars % 2 != 0 && Pos < AsmString.size()) {
715       // We have an operand reference.
716       size_t DigitStart = Pos;
717       size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart);
718       if (DigitEnd == std::string::npos)
719         DigitEnd = AsmString.size();
720       StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart);
721       unsigned OperandIndex;
722       if (!OperandStr.getAsInteger(10, OperandIndex)) {
723         if (OperandIndex >= FirstIn)
724           OperandIndex += NumNewOuts;
725         OS << OperandIndex;
726       } else {
727         OS << OperandStr;
728       }
729       Pos = DigitEnd;
730     }
731   }
732   AsmString = std::move(OS.str());
733 }
734 
735 /// Add output constraints for EAX:EDX because they are return registers.
736 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs(
737     CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints,
738     std::vector<llvm::Type *> &ResultRegTypes,
739     std::vector<llvm::Type *> &ResultTruncRegTypes,
740     std::vector<LValue> &ResultRegDests, std::string &AsmString,
741     unsigned NumOutputs) const {
742   uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType());
743 
744   // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is
745   // larger.
746   if (!Constraints.empty())
747     Constraints += ',';
748   if (RetWidth <= 32) {
749     Constraints += "={eax}";
750     ResultRegTypes.push_back(CGF.Int32Ty);
751   } else {
752     // Use the 'A' constraint for EAX:EDX.
753     Constraints += "=A";
754     ResultRegTypes.push_back(CGF.Int64Ty);
755   }
756 
757   // Truncate EAX or EAX:EDX to an integer of the appropriate size.
758   llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth);
759   ResultTruncRegTypes.push_back(CoerceTy);
760 
761   // Coerce the integer by bitcasting the return slot pointer.
762   ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(),
763                                                   CoerceTy->getPointerTo()));
764   ResultRegDests.push_back(ReturnSlot);
765 
766   rewriteInputConstraintReferences(NumOutputs, 1, AsmString);
767 }
768 
769 /// shouldReturnTypeInRegister - Determine if the given type should be
770 /// passed in a register (for the Darwin ABI).
771 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
772                                                ASTContext &Context) const {
773   uint64_t Size = Context.getTypeSize(Ty);
774 
775   // Type must be register sized.
776   if (!isRegisterSize(Size))
777     return false;
778 
779   if (Ty->isVectorType()) {
780     // 64- and 128- bit vectors inside structures are not returned in
781     // registers.
782     if (Size == 64 || Size == 128)
783       return false;
784 
785     return true;
786   }
787 
788   // If this is a builtin, pointer, enum, complex type, member pointer, or
789   // member function pointer it is ok.
790   if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
791       Ty->isAnyComplexType() || Ty->isEnumeralType() ||
792       Ty->isBlockPointerType() || Ty->isMemberPointerType())
793     return true;
794 
795   // Arrays are treated like records.
796   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
797     return shouldReturnTypeInRegister(AT->getElementType(), Context);
798 
799   // Otherwise, it must be a record type.
800   const RecordType *RT = Ty->getAs<RecordType>();
801   if (!RT) return false;
802 
803   // FIXME: Traverse bases here too.
804 
805   // Structure types are passed in register if all fields would be
806   // passed in a register.
807   for (const auto *FD : RT->getDecl()->fields()) {
808     // Empty fields are ignored.
809     if (isEmptyField(Context, FD, true))
810       continue;
811 
812     // Check fields recursively.
813     if (!shouldReturnTypeInRegister(FD->getType(), Context))
814       return false;
815   }
816   return true;
817 }
818 
819 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(CCState &State) const {
820   // If the return value is indirect, then the hidden argument is consuming one
821   // integer register.
822   if (State.FreeRegs) {
823     --State.FreeRegs;
824     return ABIArgInfo::getIndirectInReg(/*Align=*/0, /*ByVal=*/false);
825   }
826   return ABIArgInfo::getIndirect(/*Align=*/0, /*ByVal=*/false);
827 }
828 
829 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
830                                              CCState &State) const {
831   if (RetTy->isVoidType())
832     return ABIArgInfo::getIgnore();
833 
834   const Type *Base = nullptr;
835   uint64_t NumElts = 0;
836   if (State.CC == llvm::CallingConv::X86_VectorCall &&
837       isHomogeneousAggregate(RetTy, Base, NumElts)) {
838     // The LLVM struct type for such an aggregate should lower properly.
839     return ABIArgInfo::getDirect();
840   }
841 
842   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
843     // On Darwin, some vectors are returned in registers.
844     if (IsDarwinVectorABI) {
845       uint64_t Size = getContext().getTypeSize(RetTy);
846 
847       // 128-bit vectors are a special case; they are returned in
848       // registers and we need to make sure to pick a type the LLVM
849       // backend will like.
850       if (Size == 128)
851         return ABIArgInfo::getDirect(llvm::VectorType::get(
852                   llvm::Type::getInt64Ty(getVMContext()), 2));
853 
854       // Always return in register if it fits in a general purpose
855       // register, or if it is 64 bits and has a single element.
856       if ((Size == 8 || Size == 16 || Size == 32) ||
857           (Size == 64 && VT->getNumElements() == 1))
858         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
859                                                             Size));
860 
861       return getIndirectReturnResult(State);
862     }
863 
864     return ABIArgInfo::getDirect();
865   }
866 
867   if (isAggregateTypeForABI(RetTy)) {
868     if (const RecordType *RT = RetTy->getAs<RecordType>()) {
869       // Structures with flexible arrays are always indirect.
870       if (RT->getDecl()->hasFlexibleArrayMember())
871         return getIndirectReturnResult(State);
872     }
873 
874     // If specified, structs and unions are always indirect.
875     if (!IsSmallStructInRegABI && !RetTy->isAnyComplexType())
876       return getIndirectReturnResult(State);
877 
878     // Small structures which are register sized are generally returned
879     // in a register.
880     if (shouldReturnTypeInRegister(RetTy, getContext())) {
881       uint64_t Size = getContext().getTypeSize(RetTy);
882 
883       // As a special-case, if the struct is a "single-element" struct, and
884       // the field is of type "float" or "double", return it in a
885       // floating-point register. (MSVC does not apply this special case.)
886       // We apply a similar transformation for pointer types to improve the
887       // quality of the generated IR.
888       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
889         if ((!IsWin32StructABI && SeltTy->isRealFloatingType())
890             || SeltTy->hasPointerRepresentation())
891           return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
892 
893       // FIXME: We should be able to narrow this integer in cases with dead
894       // padding.
895       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
896     }
897 
898     return getIndirectReturnResult(State);
899   }
900 
901   // Treat an enum type as its underlying type.
902   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
903     RetTy = EnumTy->getDecl()->getIntegerType();
904 
905   return (RetTy->isPromotableIntegerType() ?
906           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
907 }
908 
909 static bool isSSEVectorType(ASTContext &Context, QualType Ty) {
910   return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128;
911 }
912 
913 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) {
914   const RecordType *RT = Ty->getAs<RecordType>();
915   if (!RT)
916     return 0;
917   const RecordDecl *RD = RT->getDecl();
918 
919   // If this is a C++ record, check the bases first.
920   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
921     for (const auto &I : CXXRD->bases())
922       if (!isRecordWithSSEVectorType(Context, I.getType()))
923         return false;
924 
925   for (const auto *i : RD->fields()) {
926     QualType FT = i->getType();
927 
928     if (isSSEVectorType(Context, FT))
929       return true;
930 
931     if (isRecordWithSSEVectorType(Context, FT))
932       return true;
933   }
934 
935   return false;
936 }
937 
938 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
939                                                  unsigned Align) const {
940   // Otherwise, if the alignment is less than or equal to the minimum ABI
941   // alignment, just use the default; the backend will handle this.
942   if (Align <= MinABIStackAlignInBytes)
943     return 0; // Use default alignment.
944 
945   // On non-Darwin, the stack type alignment is always 4.
946   if (!IsDarwinVectorABI) {
947     // Set explicit alignment, since we may need to realign the top.
948     return MinABIStackAlignInBytes;
949   }
950 
951   // Otherwise, if the type contains an SSE vector type, the alignment is 16.
952   if (Align >= 16 && (isSSEVectorType(getContext(), Ty) ||
953                       isRecordWithSSEVectorType(getContext(), Ty)))
954     return 16;
955 
956   return MinABIStackAlignInBytes;
957 }
958 
959 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal,
960                                             CCState &State) const {
961   if (!ByVal) {
962     if (State.FreeRegs) {
963       --State.FreeRegs; // Non-byval indirects just use one pointer.
964       return ABIArgInfo::getIndirectInReg(0, false);
965     }
966     return ABIArgInfo::getIndirect(0, false);
967   }
968 
969   // Compute the byval alignment.
970   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
971   unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
972   if (StackAlign == 0)
973     return ABIArgInfo::getIndirect(4, /*ByVal=*/true);
974 
975   // If the stack alignment is less than the type alignment, realign the
976   // argument.
977   bool Realign = TypeAlign > StackAlign;
978   return ABIArgInfo::getIndirect(StackAlign, /*ByVal=*/true, Realign);
979 }
980 
981 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const {
982   const Type *T = isSingleElementStruct(Ty, getContext());
983   if (!T)
984     T = Ty.getTypePtr();
985 
986   if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
987     BuiltinType::Kind K = BT->getKind();
988     if (K == BuiltinType::Float || K == BuiltinType::Double)
989       return Float;
990   }
991   return Integer;
992 }
993 
994 bool X86_32ABIInfo::shouldUseInReg(QualType Ty, CCState &State,
995                                    bool &NeedsPadding) const {
996   NeedsPadding = false;
997   Class C = classify(Ty);
998   if (C == Float)
999     return false;
1000 
1001   unsigned Size = getContext().getTypeSize(Ty);
1002   unsigned SizeInRegs = (Size + 31) / 32;
1003 
1004   if (SizeInRegs == 0)
1005     return false;
1006 
1007   if (SizeInRegs > State.FreeRegs) {
1008     State.FreeRegs = 0;
1009     return false;
1010   }
1011 
1012   State.FreeRegs -= SizeInRegs;
1013 
1014   if (State.CC == llvm::CallingConv::X86_FastCall ||
1015       State.CC == llvm::CallingConv::X86_VectorCall) {
1016     if (Size > 32)
1017       return false;
1018 
1019     if (Ty->isIntegralOrEnumerationType())
1020       return true;
1021 
1022     if (Ty->isPointerType())
1023       return true;
1024 
1025     if (Ty->isReferenceType())
1026       return true;
1027 
1028     if (State.FreeRegs)
1029       NeedsPadding = true;
1030 
1031     return false;
1032   }
1033 
1034   return true;
1035 }
1036 
1037 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
1038                                                CCState &State) const {
1039   // FIXME: Set alignment on indirect arguments.
1040 
1041   Ty = useFirstFieldIfTransparentUnion(Ty);
1042 
1043   // Check with the C++ ABI first.
1044   const RecordType *RT = Ty->getAs<RecordType>();
1045   if (RT) {
1046     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
1047     if (RAA == CGCXXABI::RAA_Indirect) {
1048       return getIndirectResult(Ty, false, State);
1049     } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
1050       // The field index doesn't matter, we'll fix it up later.
1051       return ABIArgInfo::getInAlloca(/*FieldIndex=*/0);
1052     }
1053   }
1054 
1055   // vectorcall adds the concept of a homogenous vector aggregate, similar
1056   // to other targets.
1057   const Type *Base = nullptr;
1058   uint64_t NumElts = 0;
1059   if (State.CC == llvm::CallingConv::X86_VectorCall &&
1060       isHomogeneousAggregate(Ty, Base, NumElts)) {
1061     if (State.FreeSSERegs >= NumElts) {
1062       State.FreeSSERegs -= NumElts;
1063       if (Ty->isBuiltinType() || Ty->isVectorType())
1064         return ABIArgInfo::getDirect();
1065       return ABIArgInfo::getExpand();
1066     }
1067     return getIndirectResult(Ty, /*ByVal=*/false, State);
1068   }
1069 
1070   if (isAggregateTypeForABI(Ty)) {
1071     if (RT) {
1072       // Structs are always byval on win32, regardless of what they contain.
1073       if (IsWin32StructABI)
1074         return getIndirectResult(Ty, true, State);
1075 
1076       // Structures with flexible arrays are always indirect.
1077       if (RT->getDecl()->hasFlexibleArrayMember())
1078         return getIndirectResult(Ty, true, State);
1079     }
1080 
1081     // Ignore empty structs/unions.
1082     if (isEmptyRecord(getContext(), Ty, true))
1083       return ABIArgInfo::getIgnore();
1084 
1085     llvm::LLVMContext &LLVMContext = getVMContext();
1086     llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
1087     bool NeedsPadding;
1088     if (shouldUseInReg(Ty, State, NeedsPadding)) {
1089       unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
1090       SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32);
1091       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
1092       return ABIArgInfo::getDirectInReg(Result);
1093     }
1094     llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr;
1095 
1096     // Expand small (<= 128-bit) record types when we know that the stack layout
1097     // of those arguments will match the struct. This is important because the
1098     // LLVM backend isn't smart enough to remove byval, which inhibits many
1099     // optimizations.
1100     if (getContext().getTypeSize(Ty) <= 4*32 &&
1101         canExpandIndirectArgument(Ty, getContext()))
1102       return ABIArgInfo::getExpandWithPadding(
1103           State.CC == llvm::CallingConv::X86_FastCall ||
1104               State.CC == llvm::CallingConv::X86_VectorCall,
1105           PaddingType);
1106 
1107     return getIndirectResult(Ty, true, State);
1108   }
1109 
1110   if (const VectorType *VT = Ty->getAs<VectorType>()) {
1111     // On Darwin, some vectors are passed in memory, we handle this by passing
1112     // it as an i8/i16/i32/i64.
1113     if (IsDarwinVectorABI) {
1114       uint64_t Size = getContext().getTypeSize(Ty);
1115       if ((Size == 8 || Size == 16 || Size == 32) ||
1116           (Size == 64 && VT->getNumElements() == 1))
1117         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1118                                                             Size));
1119     }
1120 
1121     if (IsX86_MMXType(CGT.ConvertType(Ty)))
1122       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64));
1123 
1124     return ABIArgInfo::getDirect();
1125   }
1126 
1127 
1128   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1129     Ty = EnumTy->getDecl()->getIntegerType();
1130 
1131   bool NeedsPadding;
1132   bool InReg = shouldUseInReg(Ty, State, NeedsPadding);
1133 
1134   if (Ty->isPromotableIntegerType()) {
1135     if (InReg)
1136       return ABIArgInfo::getExtendInReg();
1137     return ABIArgInfo::getExtend();
1138   }
1139   if (InReg)
1140     return ABIArgInfo::getDirectInReg();
1141   return ABIArgInfo::getDirect();
1142 }
1143 
1144 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
1145   CCState State(FI.getCallingConvention());
1146   if (State.CC == llvm::CallingConv::X86_FastCall)
1147     State.FreeRegs = 2;
1148   else if (State.CC == llvm::CallingConv::X86_VectorCall) {
1149     State.FreeRegs = 2;
1150     State.FreeSSERegs = 6;
1151   } else if (FI.getHasRegParm())
1152     State.FreeRegs = FI.getRegParm();
1153   else
1154     State.FreeRegs = DefaultNumRegisterParameters;
1155 
1156   if (!getCXXABI().classifyReturnType(FI)) {
1157     FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State);
1158   } else if (FI.getReturnInfo().isIndirect()) {
1159     // The C++ ABI is not aware of register usage, so we have to check if the
1160     // return value was sret and put it in a register ourselves if appropriate.
1161     if (State.FreeRegs) {
1162       --State.FreeRegs;  // The sret parameter consumes a register.
1163       FI.getReturnInfo().setInReg(true);
1164     }
1165   }
1166 
1167   // The chain argument effectively gives us another free register.
1168   if (FI.isChainCall())
1169     ++State.FreeRegs;
1170 
1171   bool UsedInAlloca = false;
1172   for (auto &I : FI.arguments()) {
1173     I.info = classifyArgumentType(I.type, State);
1174     UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca);
1175   }
1176 
1177   // If we needed to use inalloca for any argument, do a second pass and rewrite
1178   // all the memory arguments to use inalloca.
1179   if (UsedInAlloca)
1180     rewriteWithInAlloca(FI);
1181 }
1182 
1183 void
1184 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
1185                                    unsigned &StackOffset,
1186                                    ABIArgInfo &Info, QualType Type) const {
1187   assert(StackOffset % 4U == 0 && "unaligned inalloca struct");
1188   Info = ABIArgInfo::getInAlloca(FrameFields.size());
1189   FrameFields.push_back(CGT.ConvertTypeForMem(Type));
1190   StackOffset += getContext().getTypeSizeInChars(Type).getQuantity();
1191 
1192   // Insert padding bytes to respect alignment.  For x86_32, each argument is 4
1193   // byte aligned.
1194   if (StackOffset % 4U) {
1195     unsigned OldOffset = StackOffset;
1196     StackOffset = llvm::RoundUpToAlignment(StackOffset, 4U);
1197     unsigned NumBytes = StackOffset - OldOffset;
1198     assert(NumBytes);
1199     llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext());
1200     Ty = llvm::ArrayType::get(Ty, NumBytes);
1201     FrameFields.push_back(Ty);
1202   }
1203 }
1204 
1205 static bool isArgInAlloca(const ABIArgInfo &Info) {
1206   // Leave ignored and inreg arguments alone.
1207   switch (Info.getKind()) {
1208   case ABIArgInfo::InAlloca:
1209     return true;
1210   case ABIArgInfo::Indirect:
1211     assert(Info.getIndirectByVal());
1212     return true;
1213   case ABIArgInfo::Ignore:
1214     return false;
1215   case ABIArgInfo::Direct:
1216   case ABIArgInfo::Extend:
1217   case ABIArgInfo::Expand:
1218     if (Info.getInReg())
1219       return false;
1220     return true;
1221   }
1222   llvm_unreachable("invalid enum");
1223 }
1224 
1225 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const {
1226   assert(IsWin32StructABI && "inalloca only supported on win32");
1227 
1228   // Build a packed struct type for all of the arguments in memory.
1229   SmallVector<llvm::Type *, 6> FrameFields;
1230 
1231   unsigned StackOffset = 0;
1232   CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end();
1233 
1234   // Put 'this' into the struct before 'sret', if necessary.
1235   bool IsThisCall =
1236       FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall;
1237   ABIArgInfo &Ret = FI.getReturnInfo();
1238   if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall &&
1239       isArgInAlloca(I->info)) {
1240     addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
1241     ++I;
1242   }
1243 
1244   // Put the sret parameter into the inalloca struct if it's in memory.
1245   if (Ret.isIndirect() && !Ret.getInReg()) {
1246     CanQualType PtrTy = getContext().getPointerType(FI.getReturnType());
1247     addFieldToArgStruct(FrameFields, StackOffset, Ret, PtrTy);
1248     // On Windows, the hidden sret parameter is always returned in eax.
1249     Ret.setInAllocaSRet(IsWin32StructABI);
1250   }
1251 
1252   // Skip the 'this' parameter in ecx.
1253   if (IsThisCall)
1254     ++I;
1255 
1256   // Put arguments passed in memory into the struct.
1257   for (; I != E; ++I) {
1258     if (isArgInAlloca(I->info))
1259       addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
1260   }
1261 
1262   FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields,
1263                                         /*isPacked=*/true));
1264 }
1265 
1266 llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1267                                       CodeGenFunction &CGF) const {
1268   llvm::Type *BPP = CGF.Int8PtrPtrTy;
1269 
1270   CGBuilderTy &Builder = CGF.Builder;
1271   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
1272                                                        "ap");
1273   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
1274 
1275   // Compute if the address needs to be aligned
1276   unsigned Align = CGF.getContext().getTypeAlignInChars(Ty).getQuantity();
1277   Align = getTypeStackAlignInBytes(Ty, Align);
1278   Align = std::max(Align, 4U);
1279   if (Align > 4) {
1280     // addr = (addr + align - 1) & -align;
1281     llvm::Value *Offset =
1282       llvm::ConstantInt::get(CGF.Int32Ty, Align - 1);
1283     Addr = CGF.Builder.CreateGEP(Addr, Offset);
1284     llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(Addr,
1285                                                     CGF.Int32Ty);
1286     llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -Align);
1287     Addr = CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
1288                                       Addr->getType(),
1289                                       "ap.cur.aligned");
1290   }
1291 
1292   llvm::Type *PTy =
1293     llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
1294   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
1295 
1296   uint64_t Offset =
1297     llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, Align);
1298   llvm::Value *NextAddr =
1299     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
1300                       "ap.next");
1301   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
1302 
1303   return AddrTyped;
1304 }
1305 
1306 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI(
1307     const llvm::Triple &Triple, const CodeGenOptions &Opts) {
1308   assert(Triple.getArch() == llvm::Triple::x86);
1309 
1310   switch (Opts.getStructReturnConvention()) {
1311   case CodeGenOptions::SRCK_Default:
1312     break;
1313   case CodeGenOptions::SRCK_OnStack:  // -fpcc-struct-return
1314     return false;
1315   case CodeGenOptions::SRCK_InRegs:  // -freg-struct-return
1316     return true;
1317   }
1318 
1319   if (Triple.isOSDarwin())
1320     return true;
1321 
1322   switch (Triple.getOS()) {
1323   case llvm::Triple::DragonFly:
1324   case llvm::Triple::FreeBSD:
1325   case llvm::Triple::OpenBSD:
1326   case llvm::Triple::Bitrig:
1327   case llvm::Triple::Win32:
1328     return true;
1329   default:
1330     return false;
1331   }
1332 }
1333 
1334 void X86_32TargetCodeGenInfo::setTargetAttributes(const Decl *D,
1335                                                   llvm::GlobalValue *GV,
1336                                             CodeGen::CodeGenModule &CGM) const {
1337   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1338     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
1339       // Get the LLVM function.
1340       llvm::Function *Fn = cast<llvm::Function>(GV);
1341 
1342       // Now add the 'alignstack' attribute with a value of 16.
1343       llvm::AttrBuilder B;
1344       B.addStackAlignmentAttr(16);
1345       Fn->addAttributes(llvm::AttributeSet::FunctionIndex,
1346                       llvm::AttributeSet::get(CGM.getLLVMContext(),
1347                                               llvm::AttributeSet::FunctionIndex,
1348                                               B));
1349     }
1350   }
1351 }
1352 
1353 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
1354                                                CodeGen::CodeGenFunction &CGF,
1355                                                llvm::Value *Address) const {
1356   CodeGen::CGBuilderTy &Builder = CGF.Builder;
1357 
1358   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
1359 
1360   // 0-7 are the eight integer registers;  the order is different
1361   //   on Darwin (for EH), but the range is the same.
1362   // 8 is %eip.
1363   AssignToArrayRange(Builder, Address, Four8, 0, 8);
1364 
1365   if (CGF.CGM.getTarget().getTriple().isOSDarwin()) {
1366     // 12-16 are st(0..4).  Not sure why we stop at 4.
1367     // These have size 16, which is sizeof(long double) on
1368     // platforms with 8-byte alignment for that type.
1369     llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
1370     AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
1371 
1372   } else {
1373     // 9 is %eflags, which doesn't get a size on Darwin for some
1374     // reason.
1375     Builder.CreateStore(
1376         Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9));
1377 
1378     // 11-16 are st(0..5).  Not sure why we stop at 5.
1379     // These have size 12, which is sizeof(long double) on
1380     // platforms with 4-byte alignment for that type.
1381     llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
1382     AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
1383   }
1384 
1385   return false;
1386 }
1387 
1388 //===----------------------------------------------------------------------===//
1389 // X86-64 ABI Implementation
1390 //===----------------------------------------------------------------------===//
1391 
1392 
1393 namespace {
1394 /// The AVX ABI level for X86 targets.
1395 enum class X86AVXABILevel {
1396   None,
1397   AVX,
1398   AVX512
1399 };
1400 
1401 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel.
1402 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) {
1403   switch (AVXLevel) {
1404   case X86AVXABILevel::AVX512:
1405     return 512;
1406   case X86AVXABILevel::AVX:
1407     return 256;
1408   case X86AVXABILevel::None:
1409     return 128;
1410   }
1411   llvm_unreachable("Unknown AVXLevel");
1412 }
1413 
1414 /// X86_64ABIInfo - The X86_64 ABI information.
1415 class X86_64ABIInfo : public ABIInfo {
1416   enum Class {
1417     Integer = 0,
1418     SSE,
1419     SSEUp,
1420     X87,
1421     X87Up,
1422     ComplexX87,
1423     NoClass,
1424     Memory
1425   };
1426 
1427   /// merge - Implement the X86_64 ABI merging algorithm.
1428   ///
1429   /// Merge an accumulating classification \arg Accum with a field
1430   /// classification \arg Field.
1431   ///
1432   /// \param Accum - The accumulating classification. This should
1433   /// always be either NoClass or the result of a previous merge
1434   /// call. In addition, this should never be Memory (the caller
1435   /// should just return Memory for the aggregate).
1436   static Class merge(Class Accum, Class Field);
1437 
1438   /// postMerge - Implement the X86_64 ABI post merging algorithm.
1439   ///
1440   /// Post merger cleanup, reduces a malformed Hi and Lo pair to
1441   /// final MEMORY or SSE classes when necessary.
1442   ///
1443   /// \param AggregateSize - The size of the current aggregate in
1444   /// the classification process.
1445   ///
1446   /// \param Lo - The classification for the parts of the type
1447   /// residing in the low word of the containing object.
1448   ///
1449   /// \param Hi - The classification for the parts of the type
1450   /// residing in the higher words of the containing object.
1451   ///
1452   void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
1453 
1454   /// classify - Determine the x86_64 register classes in which the
1455   /// given type T should be passed.
1456   ///
1457   /// \param Lo - The classification for the parts of the type
1458   /// residing in the low word of the containing object.
1459   ///
1460   /// \param Hi - The classification for the parts of the type
1461   /// residing in the high word of the containing object.
1462   ///
1463   /// \param OffsetBase - The bit offset of this type in the
1464   /// containing object.  Some parameters are classified different
1465   /// depending on whether they straddle an eightbyte boundary.
1466   ///
1467   /// \param isNamedArg - Whether the argument in question is a "named"
1468   /// argument, as used in AMD64-ABI 3.5.7.
1469   ///
1470   /// If a word is unused its result will be NoClass; if a type should
1471   /// be passed in Memory then at least the classification of \arg Lo
1472   /// will be Memory.
1473   ///
1474   /// The \arg Lo class will be NoClass iff the argument is ignored.
1475   ///
1476   /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
1477   /// also be ComplexX87.
1478   void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi,
1479                 bool isNamedArg) const;
1480 
1481   llvm::Type *GetByteVectorType(QualType Ty) const;
1482   llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
1483                                  unsigned IROffset, QualType SourceTy,
1484                                  unsigned SourceOffset) const;
1485   llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
1486                                      unsigned IROffset, QualType SourceTy,
1487                                      unsigned SourceOffset) const;
1488 
1489   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1490   /// such that the argument will be returned in memory.
1491   ABIArgInfo getIndirectReturnResult(QualType Ty) const;
1492 
1493   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1494   /// such that the argument will be passed in memory.
1495   ///
1496   /// \param freeIntRegs - The number of free integer registers remaining
1497   /// available.
1498   ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;
1499 
1500   ABIArgInfo classifyReturnType(QualType RetTy) const;
1501 
1502   ABIArgInfo classifyArgumentType(QualType Ty,
1503                                   unsigned freeIntRegs,
1504                                   unsigned &neededInt,
1505                                   unsigned &neededSSE,
1506                                   bool isNamedArg) const;
1507 
1508   bool IsIllegalVectorType(QualType Ty) const;
1509 
1510   /// The 0.98 ABI revision clarified a lot of ambiguities,
1511   /// unfortunately in ways that were not always consistent with
1512   /// certain previous compilers.  In particular, platforms which
1513   /// required strict binary compatibility with older versions of GCC
1514   /// may need to exempt themselves.
1515   bool honorsRevision0_98() const {
1516     return !getTarget().getTriple().isOSDarwin();
1517   }
1518 
1519   X86AVXABILevel AVXLevel;
1520   // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on
1521   // 64-bit hardware.
1522   bool Has64BitPointers;
1523 
1524 public:
1525   X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) :
1526       ABIInfo(CGT), AVXLevel(AVXLevel),
1527       Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {
1528   }
1529 
1530   bool isPassedUsingAVXType(QualType type) const {
1531     unsigned neededInt, neededSSE;
1532     // The freeIntRegs argument doesn't matter here.
1533     ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE,
1534                                            /*isNamedArg*/true);
1535     if (info.isDirect()) {
1536       llvm::Type *ty = info.getCoerceToType();
1537       if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
1538         return (vectorTy->getBitWidth() > 128);
1539     }
1540     return false;
1541   }
1542 
1543   void computeInfo(CGFunctionInfo &FI) const override;
1544 
1545   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1546                          CodeGenFunction &CGF) const override;
1547 
1548   bool has64BitPointers() const {
1549     return Has64BitPointers;
1550   }
1551 };
1552 
1553 /// WinX86_64ABIInfo - The Windows X86_64 ABI information.
1554 class WinX86_64ABIInfo : public ABIInfo {
1555 
1556   ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs,
1557                       bool IsReturnType) const;
1558 
1559 public:
1560   WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
1561 
1562   void computeInfo(CGFunctionInfo &FI) const override;
1563 
1564   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1565                          CodeGenFunction &CGF) const override;
1566 
1567   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
1568     // FIXME: Assumes vectorcall is in use.
1569     return isX86VectorTypeForVectorCall(getContext(), Ty);
1570   }
1571 
1572   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
1573                                          uint64_t NumMembers) const override {
1574     // FIXME: Assumes vectorcall is in use.
1575     return isX86VectorCallAggregateSmallEnough(NumMembers);
1576   }
1577 };
1578 
1579 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
1580 public:
1581   X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
1582       : TargetCodeGenInfo(new X86_64ABIInfo(CGT, AVXLevel)) {}
1583 
1584   const X86_64ABIInfo &getABIInfo() const {
1585     return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
1586   }
1587 
1588   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
1589     return 7;
1590   }
1591 
1592   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1593                                llvm::Value *Address) const override {
1594     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
1595 
1596     // 0-15 are the 16 integer registers.
1597     // 16 is %rip.
1598     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
1599     return false;
1600   }
1601 
1602   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
1603                                   StringRef Constraint,
1604                                   llvm::Type* Ty) const override {
1605     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
1606   }
1607 
1608   bool isNoProtoCallVariadic(const CallArgList &args,
1609                              const FunctionNoProtoType *fnType) const override {
1610     // The default CC on x86-64 sets %al to the number of SSA
1611     // registers used, and GCC sets this when calling an unprototyped
1612     // function, so we override the default behavior.  However, don't do
1613     // that when AVX types are involved: the ABI explicitly states it is
1614     // undefined, and it doesn't work in practice because of how the ABI
1615     // defines varargs anyway.
1616     if (fnType->getCallConv() == CC_C) {
1617       bool HasAVXType = false;
1618       for (CallArgList::const_iterator
1619              it = args.begin(), ie = args.end(); it != ie; ++it) {
1620         if (getABIInfo().isPassedUsingAVXType(it->Ty)) {
1621           HasAVXType = true;
1622           break;
1623         }
1624       }
1625 
1626       if (!HasAVXType)
1627         return true;
1628     }
1629 
1630     return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
1631   }
1632 
1633   llvm::Constant *
1634   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
1635     unsigned Sig;
1636     if (getABIInfo().has64BitPointers())
1637       Sig = (0xeb << 0) |  // jmp rel8
1638             (0x0a << 8) |  //           .+0x0c
1639             ('F' << 16) |
1640             ('T' << 24);
1641     else
1642       Sig = (0xeb << 0) |  // jmp rel8
1643             (0x06 << 8) |  //           .+0x08
1644             ('F' << 16) |
1645             ('T' << 24);
1646     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
1647   }
1648 };
1649 
1650 class PS4TargetCodeGenInfo : public X86_64TargetCodeGenInfo {
1651 public:
1652   PS4TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
1653     : X86_64TargetCodeGenInfo(CGT, AVXLevel) {}
1654 
1655   void getDependentLibraryOption(llvm::StringRef Lib,
1656                                  llvm::SmallString<24> &Opt) const override {
1657     Opt = "\01";
1658     // If the argument contains a space, enclose it in quotes.
1659     if (Lib.find(" ") != StringRef::npos)
1660       Opt += "\"" + Lib.str() + "\"";
1661     else
1662       Opt += Lib;
1663   }
1664 };
1665 
1666 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) {
1667   // If the argument does not end in .lib, automatically add the suffix.
1668   // If the argument contains a space, enclose it in quotes.
1669   // This matches the behavior of MSVC.
1670   bool Quote = (Lib.find(" ") != StringRef::npos);
1671   std::string ArgStr = Quote ? "\"" : "";
1672   ArgStr += Lib;
1673   if (!Lib.endswith_lower(".lib"))
1674     ArgStr += ".lib";
1675   ArgStr += Quote ? "\"" : "";
1676   return ArgStr;
1677 }
1678 
1679 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo {
1680 public:
1681   WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
1682         bool d, bool p, bool w, unsigned RegParms)
1683     : X86_32TargetCodeGenInfo(CGT, d, p, w, RegParms) {}
1684 
1685   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
1686                            CodeGen::CodeGenModule &CGM) const override;
1687 
1688   void getDependentLibraryOption(llvm::StringRef Lib,
1689                                  llvm::SmallString<24> &Opt) const override {
1690     Opt = "/DEFAULTLIB:";
1691     Opt += qualifyWindowsLibrary(Lib);
1692   }
1693 
1694   void getDetectMismatchOption(llvm::StringRef Name,
1695                                llvm::StringRef Value,
1696                                llvm::SmallString<32> &Opt) const override {
1697     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
1698   }
1699 };
1700 
1701 static void addStackProbeSizeTargetAttribute(const Decl *D,
1702                                              llvm::GlobalValue *GV,
1703                                              CodeGen::CodeGenModule &CGM) {
1704   if (isa<FunctionDecl>(D)) {
1705     if (CGM.getCodeGenOpts().StackProbeSize != 4096) {
1706       llvm::Function *Fn = cast<llvm::Function>(GV);
1707 
1708       Fn->addFnAttr("stack-probe-size",
1709                     llvm::utostr(CGM.getCodeGenOpts().StackProbeSize));
1710     }
1711   }
1712 }
1713 
1714 void WinX86_32TargetCodeGenInfo::setTargetAttributes(const Decl *D,
1715                                                      llvm::GlobalValue *GV,
1716                                             CodeGen::CodeGenModule &CGM) const {
1717   X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
1718 
1719   addStackProbeSizeTargetAttribute(D, GV, CGM);
1720 }
1721 
1722 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
1723 public:
1724   WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
1725                              X86AVXABILevel AVXLevel)
1726       : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {}
1727 
1728   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
1729                            CodeGen::CodeGenModule &CGM) const override;
1730 
1731   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
1732     return 7;
1733   }
1734 
1735   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1736                                llvm::Value *Address) const override {
1737     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
1738 
1739     // 0-15 are the 16 integer registers.
1740     // 16 is %rip.
1741     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
1742     return false;
1743   }
1744 
1745   void getDependentLibraryOption(llvm::StringRef Lib,
1746                                  llvm::SmallString<24> &Opt) const override {
1747     Opt = "/DEFAULTLIB:";
1748     Opt += qualifyWindowsLibrary(Lib);
1749   }
1750 
1751   void getDetectMismatchOption(llvm::StringRef Name,
1752                                llvm::StringRef Value,
1753                                llvm::SmallString<32> &Opt) const override {
1754     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
1755   }
1756 };
1757 
1758 void WinX86_64TargetCodeGenInfo::setTargetAttributes(const Decl *D,
1759                                                      llvm::GlobalValue *GV,
1760                                             CodeGen::CodeGenModule &CGM) const {
1761   TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
1762 
1763   addStackProbeSizeTargetAttribute(D, GV, CGM);
1764 }
1765 }
1766 
1767 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
1768                               Class &Hi) const {
1769   // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
1770   //
1771   // (a) If one of the classes is Memory, the whole argument is passed in
1772   //     memory.
1773   //
1774   // (b) If X87UP is not preceded by X87, the whole argument is passed in
1775   //     memory.
1776   //
1777   // (c) If the size of the aggregate exceeds two eightbytes and the first
1778   //     eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
1779   //     argument is passed in memory. NOTE: This is necessary to keep the
1780   //     ABI working for processors that don't support the __m256 type.
1781   //
1782   // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
1783   //
1784   // Some of these are enforced by the merging logic.  Others can arise
1785   // only with unions; for example:
1786   //   union { _Complex double; unsigned; }
1787   //
1788   // Note that clauses (b) and (c) were added in 0.98.
1789   //
1790   if (Hi == Memory)
1791     Lo = Memory;
1792   if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
1793     Lo = Memory;
1794   if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
1795     Lo = Memory;
1796   if (Hi == SSEUp && Lo != SSE)
1797     Hi = SSE;
1798 }
1799 
1800 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
1801   // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
1802   // classified recursively so that always two fields are
1803   // considered. The resulting class is calculated according to
1804   // the classes of the fields in the eightbyte:
1805   //
1806   // (a) If both classes are equal, this is the resulting class.
1807   //
1808   // (b) If one of the classes is NO_CLASS, the resulting class is
1809   // the other class.
1810   //
1811   // (c) If one of the classes is MEMORY, the result is the MEMORY
1812   // class.
1813   //
1814   // (d) If one of the classes is INTEGER, the result is the
1815   // INTEGER.
1816   //
1817   // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
1818   // MEMORY is used as class.
1819   //
1820   // (f) Otherwise class SSE is used.
1821 
1822   // Accum should never be memory (we should have returned) or
1823   // ComplexX87 (because this cannot be passed in a structure).
1824   assert((Accum != Memory && Accum != ComplexX87) &&
1825          "Invalid accumulated classification during merge.");
1826   if (Accum == Field || Field == NoClass)
1827     return Accum;
1828   if (Field == Memory)
1829     return Memory;
1830   if (Accum == NoClass)
1831     return Field;
1832   if (Accum == Integer || Field == Integer)
1833     return Integer;
1834   if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
1835       Accum == X87 || Accum == X87Up)
1836     return Memory;
1837   return SSE;
1838 }
1839 
1840 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
1841                              Class &Lo, Class &Hi, bool isNamedArg) const {
1842   // FIXME: This code can be simplified by introducing a simple value class for
1843   // Class pairs with appropriate constructor methods for the various
1844   // situations.
1845 
1846   // FIXME: Some of the split computations are wrong; unaligned vectors
1847   // shouldn't be passed in registers for example, so there is no chance they
1848   // can straddle an eightbyte. Verify & simplify.
1849 
1850   Lo = Hi = NoClass;
1851 
1852   Class &Current = OffsetBase < 64 ? Lo : Hi;
1853   Current = Memory;
1854 
1855   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
1856     BuiltinType::Kind k = BT->getKind();
1857 
1858     if (k == BuiltinType::Void) {
1859       Current = NoClass;
1860     } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
1861       Lo = Integer;
1862       Hi = Integer;
1863     } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
1864       Current = Integer;
1865     } else if (k == BuiltinType::Float || k == BuiltinType::Double) {
1866       Current = SSE;
1867     } else if (k == BuiltinType::LongDouble) {
1868       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
1869       if (LDF == &llvm::APFloat::IEEEquad) {
1870         Lo = SSE;
1871         Hi = SSEUp;
1872       } else if (LDF == &llvm::APFloat::x87DoubleExtended) {
1873         Lo = X87;
1874         Hi = X87Up;
1875       } else if (LDF == &llvm::APFloat::IEEEdouble) {
1876         Current = SSE;
1877       } else
1878         llvm_unreachable("unexpected long double representation!");
1879     }
1880     // FIXME: _Decimal32 and _Decimal64 are SSE.
1881     // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
1882     return;
1883   }
1884 
1885   if (const EnumType *ET = Ty->getAs<EnumType>()) {
1886     // Classify the underlying integer type.
1887     classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg);
1888     return;
1889   }
1890 
1891   if (Ty->hasPointerRepresentation()) {
1892     Current = Integer;
1893     return;
1894   }
1895 
1896   if (Ty->isMemberPointerType()) {
1897     if (Ty->isMemberFunctionPointerType()) {
1898       if (Has64BitPointers) {
1899         // If Has64BitPointers, this is an {i64, i64}, so classify both
1900         // Lo and Hi now.
1901         Lo = Hi = Integer;
1902       } else {
1903         // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that
1904         // straddles an eightbyte boundary, Hi should be classified as well.
1905         uint64_t EB_FuncPtr = (OffsetBase) / 64;
1906         uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64;
1907         if (EB_FuncPtr != EB_ThisAdj) {
1908           Lo = Hi = Integer;
1909         } else {
1910           Current = Integer;
1911         }
1912       }
1913     } else {
1914       Current = Integer;
1915     }
1916     return;
1917   }
1918 
1919   if (const VectorType *VT = Ty->getAs<VectorType>()) {
1920     uint64_t Size = getContext().getTypeSize(VT);
1921     if (Size == 1 || Size == 8 || Size == 16 || Size == 32) {
1922       // gcc passes the following as integer:
1923       // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float>
1924       // 2 bytes - <2 x char>, <1 x short>
1925       // 1 byte  - <1 x char>
1926       Current = Integer;
1927 
1928       // If this type crosses an eightbyte boundary, it should be
1929       // split.
1930       uint64_t EB_Lo = (OffsetBase) / 64;
1931       uint64_t EB_Hi = (OffsetBase + Size - 1) / 64;
1932       if (EB_Lo != EB_Hi)
1933         Hi = Lo;
1934     } else if (Size == 64) {
1935       // gcc passes <1 x double> in memory. :(
1936       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double))
1937         return;
1938 
1939       // gcc passes <1 x long long> as INTEGER.
1940       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong) ||
1941           VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULongLong) ||
1942           VT->getElementType()->isSpecificBuiltinType(BuiltinType::Long) ||
1943           VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULong))
1944         Current = Integer;
1945       else
1946         Current = SSE;
1947 
1948       // If this type crosses an eightbyte boundary, it should be
1949       // split.
1950       if (OffsetBase && OffsetBase != 64)
1951         Hi = Lo;
1952     } else if (Size == 128 ||
1953                (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) {
1954       // Arguments of 256-bits are split into four eightbyte chunks. The
1955       // least significant one belongs to class SSE and all the others to class
1956       // SSEUP. The original Lo and Hi design considers that types can't be
1957       // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
1958       // This design isn't correct for 256-bits, but since there're no cases
1959       // where the upper parts would need to be inspected, avoid adding
1960       // complexity and just consider Hi to match the 64-256 part.
1961       //
1962       // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in
1963       // registers if they are "named", i.e. not part of the "..." of a
1964       // variadic function.
1965       //
1966       // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are
1967       // split into eight eightbyte chunks, one SSE and seven SSEUP.
1968       Lo = SSE;
1969       Hi = SSEUp;
1970     }
1971     return;
1972   }
1973 
1974   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
1975     QualType ET = getContext().getCanonicalType(CT->getElementType());
1976 
1977     uint64_t Size = getContext().getTypeSize(Ty);
1978     if (ET->isIntegralOrEnumerationType()) {
1979       if (Size <= 64)
1980         Current = Integer;
1981       else if (Size <= 128)
1982         Lo = Hi = Integer;
1983     } else if (ET == getContext().FloatTy) {
1984       Current = SSE;
1985     } else if (ET == getContext().DoubleTy) {
1986       Lo = Hi = SSE;
1987     } else if (ET == getContext().LongDoubleTy) {
1988       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
1989       if (LDF == &llvm::APFloat::IEEEquad)
1990         Current = Memory;
1991       else if (LDF == &llvm::APFloat::x87DoubleExtended)
1992         Current = ComplexX87;
1993       else if (LDF == &llvm::APFloat::IEEEdouble)
1994         Lo = Hi = SSE;
1995       else
1996         llvm_unreachable("unexpected long double representation!");
1997     }
1998 
1999     // If this complex type crosses an eightbyte boundary then it
2000     // should be split.
2001     uint64_t EB_Real = (OffsetBase) / 64;
2002     uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
2003     if (Hi == NoClass && EB_Real != EB_Imag)
2004       Hi = Lo;
2005 
2006     return;
2007   }
2008 
2009   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
2010     // Arrays are treated like structures.
2011 
2012     uint64_t Size = getContext().getTypeSize(Ty);
2013 
2014     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
2015     // than four eightbytes, ..., it has class MEMORY.
2016     if (Size > 256)
2017       return;
2018 
2019     // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
2020     // fields, it has class MEMORY.
2021     //
2022     // Only need to check alignment of array base.
2023     if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
2024       return;
2025 
2026     // Otherwise implement simplified merge. We could be smarter about
2027     // this, but it isn't worth it and would be harder to verify.
2028     Current = NoClass;
2029     uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
2030     uint64_t ArraySize = AT->getSize().getZExtValue();
2031 
2032     // The only case a 256-bit wide vector could be used is when the array
2033     // contains a single 256-bit element. Since Lo and Hi logic isn't extended
2034     // to work for sizes wider than 128, early check and fallback to memory.
2035     if (Size > 128 && EltSize != 256)
2036       return;
2037 
2038     for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
2039       Class FieldLo, FieldHi;
2040       classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg);
2041       Lo = merge(Lo, FieldLo);
2042       Hi = merge(Hi, FieldHi);
2043       if (Lo == Memory || Hi == Memory)
2044         break;
2045     }
2046 
2047     postMerge(Size, Lo, Hi);
2048     assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
2049     return;
2050   }
2051 
2052   if (const RecordType *RT = Ty->getAs<RecordType>()) {
2053     uint64_t Size = getContext().getTypeSize(Ty);
2054 
2055     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
2056     // than four eightbytes, ..., it has class MEMORY.
2057     if (Size > 256)
2058       return;
2059 
2060     // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
2061     // copy constructor or a non-trivial destructor, it is passed by invisible
2062     // reference.
2063     if (getRecordArgABI(RT, getCXXABI()))
2064       return;
2065 
2066     const RecordDecl *RD = RT->getDecl();
2067 
2068     // Assume variable sized types are passed in memory.
2069     if (RD->hasFlexibleArrayMember())
2070       return;
2071 
2072     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
2073 
2074     // Reset Lo class, this will be recomputed.
2075     Current = NoClass;
2076 
2077     // If this is a C++ record, classify the bases first.
2078     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
2079       for (const auto &I : CXXRD->bases()) {
2080         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
2081                "Unexpected base class!");
2082         const CXXRecordDecl *Base =
2083           cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
2084 
2085         // Classify this field.
2086         //
2087         // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
2088         // single eightbyte, each is classified separately. Each eightbyte gets
2089         // initialized to class NO_CLASS.
2090         Class FieldLo, FieldHi;
2091         uint64_t Offset =
2092           OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base));
2093         classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg);
2094         Lo = merge(Lo, FieldLo);
2095         Hi = merge(Hi, FieldHi);
2096         if (Lo == Memory || Hi == Memory) {
2097           postMerge(Size, Lo, Hi);
2098           return;
2099         }
2100       }
2101     }
2102 
2103     // Classify the fields one at a time, merging the results.
2104     unsigned idx = 0;
2105     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2106            i != e; ++i, ++idx) {
2107       uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
2108       bool BitField = i->isBitField();
2109 
2110       // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
2111       // four eightbytes, or it contains unaligned fields, it has class MEMORY.
2112       //
2113       // The only case a 256-bit wide vector could be used is when the struct
2114       // contains a single 256-bit element. Since Lo and Hi logic isn't extended
2115       // to work for sizes wider than 128, early check and fallback to memory.
2116       //
2117       if (Size > 128 && getContext().getTypeSize(i->getType()) != 256) {
2118         Lo = Memory;
2119         postMerge(Size, Lo, Hi);
2120         return;
2121       }
2122       // Note, skip this test for bit-fields, see below.
2123       if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
2124         Lo = Memory;
2125         postMerge(Size, Lo, Hi);
2126         return;
2127       }
2128 
2129       // Classify this field.
2130       //
2131       // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
2132       // exceeds a single eightbyte, each is classified
2133       // separately. Each eightbyte gets initialized to class
2134       // NO_CLASS.
2135       Class FieldLo, FieldHi;
2136 
2137       // Bit-fields require special handling, they do not force the
2138       // structure to be passed in memory even if unaligned, and
2139       // therefore they can straddle an eightbyte.
2140       if (BitField) {
2141         // Ignore padding bit-fields.
2142         if (i->isUnnamedBitfield())
2143           continue;
2144 
2145         uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
2146         uint64_t Size = i->getBitWidthValue(getContext());
2147 
2148         uint64_t EB_Lo = Offset / 64;
2149         uint64_t EB_Hi = (Offset + Size - 1) / 64;
2150 
2151         if (EB_Lo) {
2152           assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
2153           FieldLo = NoClass;
2154           FieldHi = Integer;
2155         } else {
2156           FieldLo = Integer;
2157           FieldHi = EB_Hi ? Integer : NoClass;
2158         }
2159       } else
2160         classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg);
2161       Lo = merge(Lo, FieldLo);
2162       Hi = merge(Hi, FieldHi);
2163       if (Lo == Memory || Hi == Memory)
2164         break;
2165     }
2166 
2167     postMerge(Size, Lo, Hi);
2168   }
2169 }
2170 
2171 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
2172   // If this is a scalar LLVM value then assume LLVM will pass it in the right
2173   // place naturally.
2174   if (!isAggregateTypeForABI(Ty)) {
2175     // Treat an enum type as its underlying type.
2176     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2177       Ty = EnumTy->getDecl()->getIntegerType();
2178 
2179     return (Ty->isPromotableIntegerType() ?
2180             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2181   }
2182 
2183   return ABIArgInfo::getIndirect(0);
2184 }
2185 
2186 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
2187   if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
2188     uint64_t Size = getContext().getTypeSize(VecTy);
2189     unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel);
2190     if (Size <= 64 || Size > LargestVector)
2191       return true;
2192   }
2193 
2194   return false;
2195 }
2196 
2197 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
2198                                             unsigned freeIntRegs) const {
2199   // If this is a scalar LLVM value then assume LLVM will pass it in the right
2200   // place naturally.
2201   //
2202   // This assumption is optimistic, as there could be free registers available
2203   // when we need to pass this argument in memory, and LLVM could try to pass
2204   // the argument in the free register. This does not seem to happen currently,
2205   // but this code would be much safer if we could mark the argument with
2206   // 'onstack'. See PR12193.
2207   if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) {
2208     // Treat an enum type as its underlying type.
2209     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2210       Ty = EnumTy->getDecl()->getIntegerType();
2211 
2212     return (Ty->isPromotableIntegerType() ?
2213             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2214   }
2215 
2216   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
2217     return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
2218 
2219   // Compute the byval alignment. We specify the alignment of the byval in all
2220   // cases so that the mid-level optimizer knows the alignment of the byval.
2221   unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
2222 
2223   // Attempt to avoid passing indirect results using byval when possible. This
2224   // is important for good codegen.
2225   //
2226   // We do this by coercing the value into a scalar type which the backend can
2227   // handle naturally (i.e., without using byval).
2228   //
2229   // For simplicity, we currently only do this when we have exhausted all of the
2230   // free integer registers. Doing this when there are free integer registers
2231   // would require more care, as we would have to ensure that the coerced value
2232   // did not claim the unused register. That would require either reording the
2233   // arguments to the function (so that any subsequent inreg values came first),
2234   // or only doing this optimization when there were no following arguments that
2235   // might be inreg.
2236   //
2237   // We currently expect it to be rare (particularly in well written code) for
2238   // arguments to be passed on the stack when there are still free integer
2239   // registers available (this would typically imply large structs being passed
2240   // by value), so this seems like a fair tradeoff for now.
2241   //
2242   // We can revisit this if the backend grows support for 'onstack' parameter
2243   // attributes. See PR12193.
2244   if (freeIntRegs == 0) {
2245     uint64_t Size = getContext().getTypeSize(Ty);
2246 
2247     // If this type fits in an eightbyte, coerce it into the matching integral
2248     // type, which will end up on the stack (with alignment 8).
2249     if (Align == 8 && Size <= 64)
2250       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2251                                                           Size));
2252   }
2253 
2254   return ABIArgInfo::getIndirect(Align);
2255 }
2256 
2257 /// The ABI specifies that a value should be passed in a full vector XMM/YMM
2258 /// register. Pick an LLVM IR type that will be passed as a vector register.
2259 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
2260   // Wrapper structs/arrays that only contain vectors are passed just like
2261   // vectors; strip them off if present.
2262   if (const Type *InnerTy = isSingleElementStruct(Ty, getContext()))
2263     Ty = QualType(InnerTy, 0);
2264 
2265   llvm::Type *IRType = CGT.ConvertType(Ty);
2266   if (isa<llvm::VectorType>(IRType) ||
2267       IRType->getTypeID() == llvm::Type::FP128TyID)
2268     return IRType;
2269 
2270   // We couldn't find the preferred IR vector type for 'Ty'.
2271   uint64_t Size = getContext().getTypeSize(Ty);
2272   assert((Size == 128 || Size == 256) && "Invalid type found!");
2273 
2274   // Return a LLVM IR vector type based on the size of 'Ty'.
2275   return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()),
2276                                Size / 64);
2277 }
2278 
2279 /// BitsContainNoUserData - Return true if the specified [start,end) bit range
2280 /// is known to either be off the end of the specified type or being in
2281 /// alignment padding.  The user type specified is known to be at most 128 bits
2282 /// in size, and have passed through X86_64ABIInfo::classify with a successful
2283 /// classification that put one of the two halves in the INTEGER class.
2284 ///
2285 /// It is conservatively correct to return false.
2286 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
2287                                   unsigned EndBit, ASTContext &Context) {
2288   // If the bytes being queried are off the end of the type, there is no user
2289   // data hiding here.  This handles analysis of builtins, vectors and other
2290   // types that don't contain interesting padding.
2291   unsigned TySize = (unsigned)Context.getTypeSize(Ty);
2292   if (TySize <= StartBit)
2293     return true;
2294 
2295   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
2296     unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
2297     unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
2298 
2299     // Check each element to see if the element overlaps with the queried range.
2300     for (unsigned i = 0; i != NumElts; ++i) {
2301       // If the element is after the span we care about, then we're done..
2302       unsigned EltOffset = i*EltSize;
2303       if (EltOffset >= EndBit) break;
2304 
2305       unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
2306       if (!BitsContainNoUserData(AT->getElementType(), EltStart,
2307                                  EndBit-EltOffset, Context))
2308         return false;
2309     }
2310     // If it overlaps no elements, then it is safe to process as padding.
2311     return true;
2312   }
2313 
2314   if (const RecordType *RT = Ty->getAs<RecordType>()) {
2315     const RecordDecl *RD = RT->getDecl();
2316     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
2317 
2318     // If this is a C++ record, check the bases first.
2319     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
2320       for (const auto &I : CXXRD->bases()) {
2321         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
2322                "Unexpected base class!");
2323         const CXXRecordDecl *Base =
2324           cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
2325 
2326         // If the base is after the span we care about, ignore it.
2327         unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base));
2328         if (BaseOffset >= EndBit) continue;
2329 
2330         unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
2331         if (!BitsContainNoUserData(I.getType(), BaseStart,
2332                                    EndBit-BaseOffset, Context))
2333           return false;
2334       }
2335     }
2336 
2337     // Verify that no field has data that overlaps the region of interest.  Yes
2338     // this could be sped up a lot by being smarter about queried fields,
2339     // however we're only looking at structs up to 16 bytes, so we don't care
2340     // much.
2341     unsigned idx = 0;
2342     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2343          i != e; ++i, ++idx) {
2344       unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
2345 
2346       // If we found a field after the region we care about, then we're done.
2347       if (FieldOffset >= EndBit) break;
2348 
2349       unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
2350       if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
2351                                  Context))
2352         return false;
2353     }
2354 
2355     // If nothing in this record overlapped the area of interest, then we're
2356     // clean.
2357     return true;
2358   }
2359 
2360   return false;
2361 }
2362 
2363 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
2364 /// float member at the specified offset.  For example, {int,{float}} has a
2365 /// float at offset 4.  It is conservatively correct for this routine to return
2366 /// false.
2367 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset,
2368                                   const llvm::DataLayout &TD) {
2369   // Base case if we find a float.
2370   if (IROffset == 0 && IRType->isFloatTy())
2371     return true;
2372 
2373   // If this is a struct, recurse into the field at the specified offset.
2374   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
2375     const llvm::StructLayout *SL = TD.getStructLayout(STy);
2376     unsigned Elt = SL->getElementContainingOffset(IROffset);
2377     IROffset -= SL->getElementOffset(Elt);
2378     return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
2379   }
2380 
2381   // If this is an array, recurse into the field at the specified offset.
2382   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
2383     llvm::Type *EltTy = ATy->getElementType();
2384     unsigned EltSize = TD.getTypeAllocSize(EltTy);
2385     IROffset -= IROffset/EltSize*EltSize;
2386     return ContainsFloatAtOffset(EltTy, IROffset, TD);
2387   }
2388 
2389   return false;
2390 }
2391 
2392 
2393 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
2394 /// low 8 bytes of an XMM register, corresponding to the SSE class.
2395 llvm::Type *X86_64ABIInfo::
2396 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
2397                    QualType SourceTy, unsigned SourceOffset) const {
2398   // The only three choices we have are either double, <2 x float>, or float. We
2399   // pass as float if the last 4 bytes is just padding.  This happens for
2400   // structs that contain 3 floats.
2401   if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
2402                             SourceOffset*8+64, getContext()))
2403     return llvm::Type::getFloatTy(getVMContext());
2404 
2405   // We want to pass as <2 x float> if the LLVM IR type contains a float at
2406   // offset+0 and offset+4.  Walk the LLVM IR type to find out if this is the
2407   // case.
2408   if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) &&
2409       ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout()))
2410     return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2);
2411 
2412   return llvm::Type::getDoubleTy(getVMContext());
2413 }
2414 
2415 
2416 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
2417 /// an 8-byte GPR.  This means that we either have a scalar or we are talking
2418 /// about the high or low part of an up-to-16-byte struct.  This routine picks
2419 /// the best LLVM IR type to represent this, which may be i64 or may be anything
2420 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
2421 /// etc).
2422 ///
2423 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
2424 /// the source type.  IROffset is an offset in bytes into the LLVM IR type that
2425 /// the 8-byte value references.  PrefType may be null.
2426 ///
2427 /// SourceTy is the source-level type for the entire argument.  SourceOffset is
2428 /// an offset into this that we're processing (which is always either 0 or 8).
2429 ///
2430 llvm::Type *X86_64ABIInfo::
2431 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
2432                        QualType SourceTy, unsigned SourceOffset) const {
2433   // If we're dealing with an un-offset LLVM IR type, then it means that we're
2434   // returning an 8-byte unit starting with it.  See if we can safely use it.
2435   if (IROffset == 0) {
2436     // Pointers and int64's always fill the 8-byte unit.
2437     if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) ||
2438         IRType->isIntegerTy(64))
2439       return IRType;
2440 
2441     // If we have a 1/2/4-byte integer, we can use it only if the rest of the
2442     // goodness in the source type is just tail padding.  This is allowed to
2443     // kick in for struct {double,int} on the int, but not on
2444     // struct{double,int,int} because we wouldn't return the second int.  We
2445     // have to do this analysis on the source type because we can't depend on
2446     // unions being lowered a specific way etc.
2447     if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
2448         IRType->isIntegerTy(32) ||
2449         (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) {
2450       unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 :
2451           cast<llvm::IntegerType>(IRType)->getBitWidth();
2452 
2453       if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
2454                                 SourceOffset*8+64, getContext()))
2455         return IRType;
2456     }
2457   }
2458 
2459   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
2460     // If this is a struct, recurse into the field at the specified offset.
2461     const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy);
2462     if (IROffset < SL->getSizeInBytes()) {
2463       unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
2464       IROffset -= SL->getElementOffset(FieldIdx);
2465 
2466       return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
2467                                     SourceTy, SourceOffset);
2468     }
2469   }
2470 
2471   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
2472     llvm::Type *EltTy = ATy->getElementType();
2473     unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy);
2474     unsigned EltOffset = IROffset/EltSize*EltSize;
2475     return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
2476                                   SourceOffset);
2477   }
2478 
2479   // Okay, we don't have any better idea of what to pass, so we pass this in an
2480   // integer register that isn't too big to fit the rest of the struct.
2481   unsigned TySizeInBytes =
2482     (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
2483 
2484   assert(TySizeInBytes != SourceOffset && "Empty field?");
2485 
2486   // It is always safe to classify this as an integer type up to i64 that
2487   // isn't larger than the structure.
2488   return llvm::IntegerType::get(getVMContext(),
2489                                 std::min(TySizeInBytes-SourceOffset, 8U)*8);
2490 }
2491 
2492 
2493 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
2494 /// be used as elements of a two register pair to pass or return, return a
2495 /// first class aggregate to represent them.  For example, if the low part of
2496 /// a by-value argument should be passed as i32* and the high part as float,
2497 /// return {i32*, float}.
2498 static llvm::Type *
2499 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
2500                            const llvm::DataLayout &TD) {
2501   // In order to correctly satisfy the ABI, we need to the high part to start
2502   // at offset 8.  If the high and low parts we inferred are both 4-byte types
2503   // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
2504   // the second element at offset 8.  Check for this:
2505   unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
2506   unsigned HiAlign = TD.getABITypeAlignment(Hi);
2507   unsigned HiStart = llvm::RoundUpToAlignment(LoSize, HiAlign);
2508   assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
2509 
2510   // To handle this, we have to increase the size of the low part so that the
2511   // second element will start at an 8 byte offset.  We can't increase the size
2512   // of the second element because it might make us access off the end of the
2513   // struct.
2514   if (HiStart != 8) {
2515     // There are usually two sorts of types the ABI generation code can produce
2516     // for the low part of a pair that aren't 8 bytes in size: float or
2517     // i8/i16/i32.  This can also include pointers when they are 32-bit (X32 and
2518     // NaCl).
2519     // Promote these to a larger type.
2520     if (Lo->isFloatTy())
2521       Lo = llvm::Type::getDoubleTy(Lo->getContext());
2522     else {
2523       assert((Lo->isIntegerTy() || Lo->isPointerTy())
2524              && "Invalid/unknown lo type");
2525       Lo = llvm::Type::getInt64Ty(Lo->getContext());
2526     }
2527   }
2528 
2529   llvm::StructType *Result = llvm::StructType::get(Lo, Hi, nullptr);
2530 
2531 
2532   // Verify that the second element is at an 8-byte offset.
2533   assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
2534          "Invalid x86-64 argument pair!");
2535   return Result;
2536 }
2537 
2538 ABIArgInfo X86_64ABIInfo::
2539 classifyReturnType(QualType RetTy) const {
2540   // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
2541   // classification algorithm.
2542   X86_64ABIInfo::Class Lo, Hi;
2543   classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true);
2544 
2545   // Check some invariants.
2546   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
2547   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
2548 
2549   llvm::Type *ResType = nullptr;
2550   switch (Lo) {
2551   case NoClass:
2552     if (Hi == NoClass)
2553       return ABIArgInfo::getIgnore();
2554     // If the low part is just padding, it takes no register, leave ResType
2555     // null.
2556     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
2557            "Unknown missing lo part");
2558     break;
2559 
2560   case SSEUp:
2561   case X87Up:
2562     llvm_unreachable("Invalid classification for lo word.");
2563 
2564     // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
2565     // hidden argument.
2566   case Memory:
2567     return getIndirectReturnResult(RetTy);
2568 
2569     // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
2570     // available register of the sequence %rax, %rdx is used.
2571   case Integer:
2572     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
2573 
2574     // If we have a sign or zero extended integer, make sure to return Extend
2575     // so that the parameter gets the right LLVM IR attributes.
2576     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
2577       // Treat an enum type as its underlying type.
2578       if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
2579         RetTy = EnumTy->getDecl()->getIntegerType();
2580 
2581       if (RetTy->isIntegralOrEnumerationType() &&
2582           RetTy->isPromotableIntegerType())
2583         return ABIArgInfo::getExtend();
2584     }
2585     break;
2586 
2587     // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
2588     // available SSE register of the sequence %xmm0, %xmm1 is used.
2589   case SSE:
2590     ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
2591     break;
2592 
2593     // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
2594     // returned on the X87 stack in %st0 as 80-bit x87 number.
2595   case X87:
2596     ResType = llvm::Type::getX86_FP80Ty(getVMContext());
2597     break;
2598 
2599     // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
2600     // part of the value is returned in %st0 and the imaginary part in
2601     // %st1.
2602   case ComplexX87:
2603     assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
2604     ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
2605                                     llvm::Type::getX86_FP80Ty(getVMContext()),
2606                                     nullptr);
2607     break;
2608   }
2609 
2610   llvm::Type *HighPart = nullptr;
2611   switch (Hi) {
2612     // Memory was handled previously and X87 should
2613     // never occur as a hi class.
2614   case Memory:
2615   case X87:
2616     llvm_unreachable("Invalid classification for hi word.");
2617 
2618   case ComplexX87: // Previously handled.
2619   case NoClass:
2620     break;
2621 
2622   case Integer:
2623     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2624     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
2625       return ABIArgInfo::getDirect(HighPart, 8);
2626     break;
2627   case SSE:
2628     HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2629     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
2630       return ABIArgInfo::getDirect(HighPart, 8);
2631     break;
2632 
2633     // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
2634     // is passed in the next available eightbyte chunk if the last used
2635     // vector register.
2636     //
2637     // SSEUP should always be preceded by SSE, just widen.
2638   case SSEUp:
2639     assert(Lo == SSE && "Unexpected SSEUp classification.");
2640     ResType = GetByteVectorType(RetTy);
2641     break;
2642 
2643     // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
2644     // returned together with the previous X87 value in %st0.
2645   case X87Up:
2646     // If X87Up is preceded by X87, we don't need to do
2647     // anything. However, in some cases with unions it may not be
2648     // preceded by X87. In such situations we follow gcc and pass the
2649     // extra bits in an SSE reg.
2650     if (Lo != X87) {
2651       HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2652       if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
2653         return ABIArgInfo::getDirect(HighPart, 8);
2654     }
2655     break;
2656   }
2657 
2658   // If a high part was specified, merge it together with the low part.  It is
2659   // known to pass in the high eightbyte of the result.  We do this by forming a
2660   // first class struct aggregate with the high and low part: {low, high}
2661   if (HighPart)
2662     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
2663 
2664   return ABIArgInfo::getDirect(ResType);
2665 }
2666 
2667 ABIArgInfo X86_64ABIInfo::classifyArgumentType(
2668   QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE,
2669   bool isNamedArg)
2670   const
2671 {
2672   Ty = useFirstFieldIfTransparentUnion(Ty);
2673 
2674   X86_64ABIInfo::Class Lo, Hi;
2675   classify(Ty, 0, Lo, Hi, isNamedArg);
2676 
2677   // Check some invariants.
2678   // FIXME: Enforce these by construction.
2679   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
2680   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
2681 
2682   neededInt = 0;
2683   neededSSE = 0;
2684   llvm::Type *ResType = nullptr;
2685   switch (Lo) {
2686   case NoClass:
2687     if (Hi == NoClass)
2688       return ABIArgInfo::getIgnore();
2689     // If the low part is just padding, it takes no register, leave ResType
2690     // null.
2691     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
2692            "Unknown missing lo part");
2693     break;
2694 
2695     // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
2696     // on the stack.
2697   case Memory:
2698 
2699     // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
2700     // COMPLEX_X87, it is passed in memory.
2701   case X87:
2702   case ComplexX87:
2703     if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect)
2704       ++neededInt;
2705     return getIndirectResult(Ty, freeIntRegs);
2706 
2707   case SSEUp:
2708   case X87Up:
2709     llvm_unreachable("Invalid classification for lo word.");
2710 
2711     // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
2712     // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
2713     // and %r9 is used.
2714   case Integer:
2715     ++neededInt;
2716 
2717     // Pick an 8-byte type based on the preferred type.
2718     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
2719 
2720     // If we have a sign or zero extended integer, make sure to return Extend
2721     // so that the parameter gets the right LLVM IR attributes.
2722     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
2723       // Treat an enum type as its underlying type.
2724       if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2725         Ty = EnumTy->getDecl()->getIntegerType();
2726 
2727       if (Ty->isIntegralOrEnumerationType() &&
2728           Ty->isPromotableIntegerType())
2729         return ABIArgInfo::getExtend();
2730     }
2731 
2732     break;
2733 
2734     // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
2735     // available SSE register is used, the registers are taken in the
2736     // order from %xmm0 to %xmm7.
2737   case SSE: {
2738     llvm::Type *IRType = CGT.ConvertType(Ty);
2739     ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
2740     ++neededSSE;
2741     break;
2742   }
2743   }
2744 
2745   llvm::Type *HighPart = nullptr;
2746   switch (Hi) {
2747     // Memory was handled previously, ComplexX87 and X87 should
2748     // never occur as hi classes, and X87Up must be preceded by X87,
2749     // which is passed in memory.
2750   case Memory:
2751   case X87:
2752   case ComplexX87:
2753     llvm_unreachable("Invalid classification for hi word.");
2754 
2755   case NoClass: break;
2756 
2757   case Integer:
2758     ++neededInt;
2759     // Pick an 8-byte type based on the preferred type.
2760     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
2761 
2762     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
2763       return ABIArgInfo::getDirect(HighPart, 8);
2764     break;
2765 
2766     // X87Up generally doesn't occur here (long double is passed in
2767     // memory), except in situations involving unions.
2768   case X87Up:
2769   case SSE:
2770     HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
2771 
2772     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
2773       return ABIArgInfo::getDirect(HighPart, 8);
2774 
2775     ++neededSSE;
2776     break;
2777 
2778     // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
2779     // eightbyte is passed in the upper half of the last used SSE
2780     // register.  This only happens when 128-bit vectors are passed.
2781   case SSEUp:
2782     assert(Lo == SSE && "Unexpected SSEUp classification");
2783     ResType = GetByteVectorType(Ty);
2784     break;
2785   }
2786 
2787   // If a high part was specified, merge it together with the low part.  It is
2788   // known to pass in the high eightbyte of the result.  We do this by forming a
2789   // first class struct aggregate with the high and low part: {low, high}
2790   if (HighPart)
2791     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
2792 
2793   return ABIArgInfo::getDirect(ResType);
2794 }
2795 
2796 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
2797 
2798   if (!getCXXABI().classifyReturnType(FI))
2799     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2800 
2801   // Keep track of the number of assigned registers.
2802   unsigned freeIntRegs = 6, freeSSERegs = 8;
2803 
2804   // If the return value is indirect, then the hidden argument is consuming one
2805   // integer register.
2806   if (FI.getReturnInfo().isIndirect())
2807     --freeIntRegs;
2808 
2809   // The chain argument effectively gives us another free register.
2810   if (FI.isChainCall())
2811     ++freeIntRegs;
2812 
2813   unsigned NumRequiredArgs = FI.getNumRequiredArgs();
2814   // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
2815   // get assigned (in left-to-right order) for passing as follows...
2816   unsigned ArgNo = 0;
2817   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2818        it != ie; ++it, ++ArgNo) {
2819     bool IsNamedArg = ArgNo < NumRequiredArgs;
2820 
2821     unsigned neededInt, neededSSE;
2822     it->info = classifyArgumentType(it->type, freeIntRegs, neededInt,
2823                                     neededSSE, IsNamedArg);
2824 
2825     // AMD64-ABI 3.2.3p3: If there are no registers available for any
2826     // eightbyte of an argument, the whole argument is passed on the
2827     // stack. If registers have already been assigned for some
2828     // eightbytes of such an argument, the assignments get reverted.
2829     if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) {
2830       freeIntRegs -= neededInt;
2831       freeSSERegs -= neededSSE;
2832     } else {
2833       it->info = getIndirectResult(it->type, freeIntRegs);
2834     }
2835   }
2836 }
2837 
2838 static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr,
2839                                         QualType Ty,
2840                                         CodeGenFunction &CGF) {
2841   llvm::Value *overflow_arg_area_p = CGF.Builder.CreateStructGEP(
2842       nullptr, VAListAddr, 2, "overflow_arg_area_p");
2843   llvm::Value *overflow_arg_area =
2844     CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
2845 
2846   // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
2847   // byte boundary if alignment needed by type exceeds 8 byte boundary.
2848   // It isn't stated explicitly in the standard, but in practice we use
2849   // alignment greater than 16 where necessary.
2850   uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
2851   if (Align > 8) {
2852     // overflow_arg_area = (overflow_arg_area + align - 1) & -align;
2853     llvm::Value *Offset =
2854       llvm::ConstantInt::get(CGF.Int64Ty, Align - 1);
2855     overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset);
2856     llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area,
2857                                                     CGF.Int64Ty);
2858     llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, -(uint64_t)Align);
2859     overflow_arg_area =
2860       CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
2861                                  overflow_arg_area->getType(),
2862                                  "overflow_arg_area.align");
2863   }
2864 
2865   // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
2866   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
2867   llvm::Value *Res =
2868     CGF.Builder.CreateBitCast(overflow_arg_area,
2869                               llvm::PointerType::getUnqual(LTy));
2870 
2871   // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
2872   // l->overflow_arg_area + sizeof(type).
2873   // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
2874   // an 8 byte boundary.
2875 
2876   uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
2877   llvm::Value *Offset =
2878       llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7);
2879   overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
2880                                             "overflow_arg_area.next");
2881   CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
2882 
2883   // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
2884   return Res;
2885 }
2886 
2887 llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2888                                       CodeGenFunction &CGF) const {
2889   // Assume that va_list type is correct; should be pointer to LLVM type:
2890   // struct {
2891   //   i32 gp_offset;
2892   //   i32 fp_offset;
2893   //   i8* overflow_arg_area;
2894   //   i8* reg_save_area;
2895   // };
2896   unsigned neededInt, neededSSE;
2897 
2898   Ty = CGF.getContext().getCanonicalType(Ty);
2899   ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE,
2900                                        /*isNamedArg*/false);
2901 
2902   // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
2903   // in the registers. If not go to step 7.
2904   if (!neededInt && !neededSSE)
2905     return EmitVAArgFromMemory(VAListAddr, Ty, CGF);
2906 
2907   // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
2908   // general purpose registers needed to pass type and num_fp to hold
2909   // the number of floating point registers needed.
2910 
2911   // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
2912   // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
2913   // l->fp_offset > 304 - num_fp * 16 go to step 7.
2914   //
2915   // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
2916   // register save space).
2917 
2918   llvm::Value *InRegs = nullptr;
2919   llvm::Value *gp_offset_p = nullptr, *gp_offset = nullptr;
2920   llvm::Value *fp_offset_p = nullptr, *fp_offset = nullptr;
2921   if (neededInt) {
2922     gp_offset_p =
2923         CGF.Builder.CreateStructGEP(nullptr, VAListAddr, 0, "gp_offset_p");
2924     gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
2925     InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
2926     InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
2927   }
2928 
2929   if (neededSSE) {
2930     fp_offset_p =
2931         CGF.Builder.CreateStructGEP(nullptr, VAListAddr, 1, "fp_offset_p");
2932     fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
2933     llvm::Value *FitsInFP =
2934       llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
2935     FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
2936     InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
2937   }
2938 
2939   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
2940   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
2941   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
2942   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
2943 
2944   // Emit code to load the value if it was passed in registers.
2945 
2946   CGF.EmitBlock(InRegBlock);
2947 
2948   // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
2949   // an offset of l->gp_offset and/or l->fp_offset. This may require
2950   // copying to a temporary location in case the parameter is passed
2951   // in different register classes or requires an alignment greater
2952   // than 8 for general purpose registers and 16 for XMM registers.
2953   //
2954   // FIXME: This really results in shameful code when we end up needing to
2955   // collect arguments from different places; often what should result in a
2956   // simple assembling of a structure from scattered addresses has many more
2957   // loads than necessary. Can we clean this up?
2958   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
2959   llvm::Value *RegAddr = CGF.Builder.CreateLoad(
2960       CGF.Builder.CreateStructGEP(nullptr, VAListAddr, 3), "reg_save_area");
2961   if (neededInt && neededSSE) {
2962     // FIXME: Cleanup.
2963     assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
2964     llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
2965     llvm::Value *Tmp = CGF.CreateMemTemp(Ty);
2966     Tmp = CGF.Builder.CreateBitCast(Tmp, ST->getPointerTo());
2967     assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
2968     llvm::Type *TyLo = ST->getElementType(0);
2969     llvm::Type *TyHi = ST->getElementType(1);
2970     assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
2971            "Unexpected ABI info for mixed regs");
2972     llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
2973     llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
2974     llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
2975     llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2976     llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr;
2977     llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr;
2978     llvm::Value *V =
2979       CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo));
2980     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(ST, Tmp, 0));
2981     V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi));
2982     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(ST, Tmp, 1));
2983 
2984     RegAddr = CGF.Builder.CreateBitCast(Tmp,
2985                                         llvm::PointerType::getUnqual(LTy));
2986   } else if (neededInt) {
2987     RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
2988     RegAddr = CGF.Builder.CreateBitCast(RegAddr,
2989                                         llvm::PointerType::getUnqual(LTy));
2990 
2991     // Copy to a temporary if necessary to ensure the appropriate alignment.
2992     std::pair<CharUnits, CharUnits> SizeAlign =
2993         CGF.getContext().getTypeInfoInChars(Ty);
2994     uint64_t TySize = SizeAlign.first.getQuantity();
2995     unsigned TyAlign = SizeAlign.second.getQuantity();
2996     if (TyAlign > 8) {
2997       llvm::Value *Tmp = CGF.CreateMemTemp(Ty);
2998       CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, 8, false);
2999       RegAddr = Tmp;
3000     }
3001   } else if (neededSSE == 1) {
3002     RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
3003     RegAddr = CGF.Builder.CreateBitCast(RegAddr,
3004                                         llvm::PointerType::getUnqual(LTy));
3005   } else {
3006     assert(neededSSE == 2 && "Invalid number of needed registers!");
3007     // SSE registers are spaced 16 bytes apart in the register save
3008     // area, we need to collect the two eightbytes together.
3009     llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset);
3010     llvm::Value *RegAddrHi = CGF.Builder.CreateConstGEP1_32(RegAddrLo, 16);
3011     llvm::Type *DoubleTy = CGF.DoubleTy;
3012     llvm::Type *DblPtrTy =
3013       llvm::PointerType::getUnqual(DoubleTy);
3014     llvm::StructType *ST = llvm::StructType::get(DoubleTy, DoubleTy, nullptr);
3015     llvm::Value *V, *Tmp = CGF.CreateMemTemp(Ty);
3016     Tmp = CGF.Builder.CreateBitCast(Tmp, ST->getPointerTo());
3017     V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo,
3018                                                          DblPtrTy));
3019     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(ST, Tmp, 0));
3020     V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi,
3021                                                          DblPtrTy));
3022     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(ST, Tmp, 1));
3023     RegAddr = CGF.Builder.CreateBitCast(Tmp,
3024                                         llvm::PointerType::getUnqual(LTy));
3025   }
3026 
3027   // AMD64-ABI 3.5.7p5: Step 5. Set:
3028   // l->gp_offset = l->gp_offset + num_gp * 8
3029   // l->fp_offset = l->fp_offset + num_fp * 16.
3030   if (neededInt) {
3031     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
3032     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
3033                             gp_offset_p);
3034   }
3035   if (neededSSE) {
3036     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
3037     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
3038                             fp_offset_p);
3039   }
3040   CGF.EmitBranch(ContBlock);
3041 
3042   // Emit code to load the value if it was passed in memory.
3043 
3044   CGF.EmitBlock(InMemBlock);
3045   llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF);
3046 
3047   // Return the appropriate result.
3048 
3049   CGF.EmitBlock(ContBlock);
3050   llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(), 2,
3051                                                  "vaarg.addr");
3052   ResAddr->addIncoming(RegAddr, InRegBlock);
3053   ResAddr->addIncoming(MemAddr, InMemBlock);
3054   return ResAddr;
3055 }
3056 
3057 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs,
3058                                       bool IsReturnType) const {
3059 
3060   if (Ty->isVoidType())
3061     return ABIArgInfo::getIgnore();
3062 
3063   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3064     Ty = EnumTy->getDecl()->getIntegerType();
3065 
3066   TypeInfo Info = getContext().getTypeInfo(Ty);
3067   uint64_t Width = Info.Width;
3068   unsigned Align = getContext().toCharUnitsFromBits(Info.Align).getQuantity();
3069 
3070   const RecordType *RT = Ty->getAs<RecordType>();
3071   if (RT) {
3072     if (!IsReturnType) {
3073       if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()))
3074         return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
3075     }
3076 
3077     if (RT->getDecl()->hasFlexibleArrayMember())
3078       return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3079 
3080     // FIXME: mingw-w64-gcc emits 128-bit struct as i128
3081     if (Width == 128 && getTarget().getTriple().isWindowsGNUEnvironment())
3082       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
3083                                                           Width));
3084   }
3085 
3086   // vectorcall adds the concept of a homogenous vector aggregate, similar to
3087   // other targets.
3088   const Type *Base = nullptr;
3089   uint64_t NumElts = 0;
3090   if (FreeSSERegs && isHomogeneousAggregate(Ty, Base, NumElts)) {
3091     if (FreeSSERegs >= NumElts) {
3092       FreeSSERegs -= NumElts;
3093       if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())
3094         return ABIArgInfo::getDirect();
3095       return ABIArgInfo::getExpand();
3096     }
3097     return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3098   }
3099 
3100 
3101   if (Ty->isMemberPointerType()) {
3102     // If the member pointer is represented by an LLVM int or ptr, pass it
3103     // directly.
3104     llvm::Type *LLTy = CGT.ConvertType(Ty);
3105     if (LLTy->isPointerTy() || LLTy->isIntegerTy())
3106       return ABIArgInfo::getDirect();
3107   }
3108 
3109   if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) {
3110     // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
3111     // not 1, 2, 4, or 8 bytes, must be passed by reference."
3112     if (Width > 64 || !llvm::isPowerOf2_64(Width))
3113       return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3114 
3115     // Otherwise, coerce it to a small integer.
3116     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width));
3117   }
3118 
3119   // Bool type is always extended to the ABI, other builtin types are not
3120   // extended.
3121   const BuiltinType *BT = Ty->getAs<BuiltinType>();
3122   if (BT && BT->getKind() == BuiltinType::Bool)
3123     return ABIArgInfo::getExtend();
3124 
3125   return ABIArgInfo::getDirect();
3126 }
3127 
3128 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
3129   bool IsVectorCall =
3130       FI.getCallingConvention() == llvm::CallingConv::X86_VectorCall;
3131 
3132   // We can use up to 4 SSE return registers with vectorcall.
3133   unsigned FreeSSERegs = IsVectorCall ? 4 : 0;
3134   if (!getCXXABI().classifyReturnType(FI))
3135     FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true);
3136 
3137   // We can use up to 6 SSE register parameters with vectorcall.
3138   FreeSSERegs = IsVectorCall ? 6 : 0;
3139   for (auto &I : FI.arguments())
3140     I.info = classify(I.type, FreeSSERegs, false);
3141 }
3142 
3143 llvm::Value *WinX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3144                                       CodeGenFunction &CGF) const {
3145   llvm::Type *BPP = CGF.Int8PtrPtrTy;
3146 
3147   CGBuilderTy &Builder = CGF.Builder;
3148   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
3149                                                        "ap");
3150   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
3151   llvm::Type *PTy =
3152     llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
3153   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
3154 
3155   uint64_t Offset =
3156     llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 8);
3157   llvm::Value *NextAddr =
3158     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
3159                       "ap.next");
3160   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
3161 
3162   return AddrTyped;
3163 }
3164 
3165 // PowerPC-32
3166 namespace {
3167 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information.
3168 class PPC32_SVR4_ABIInfo : public DefaultABIInfo {
3169 public:
3170   PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
3171 
3172   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3173                          CodeGenFunction &CGF) const override;
3174 };
3175 
3176 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo {
3177 public:
3178   PPC32TargetCodeGenInfo(CodeGenTypes &CGT)
3179       : TargetCodeGenInfo(new PPC32_SVR4_ABIInfo(CGT)) {}
3180 
3181   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
3182     // This is recovered from gcc output.
3183     return 1; // r1 is the dedicated stack pointer
3184   }
3185 
3186   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3187                                llvm::Value *Address) const override;
3188 };
3189 
3190 }
3191 
3192 llvm::Value *PPC32_SVR4_ABIInfo::EmitVAArg(llvm::Value *VAListAddr,
3193                                            QualType Ty,
3194                                            CodeGenFunction &CGF) const {
3195   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
3196     // TODO: Implement this. For now ignore.
3197     (void)CTy;
3198     return nullptr;
3199   }
3200 
3201   bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64;
3202   bool isInt =
3203       Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType();
3204   llvm::Type *CharPtr = CGF.Int8PtrTy;
3205   llvm::Type *CharPtrPtr = CGF.Int8PtrPtrTy;
3206 
3207   CGBuilderTy &Builder = CGF.Builder;
3208   llvm::Value *GPRPtr = Builder.CreateBitCast(VAListAddr, CharPtr, "gprptr");
3209   llvm::Value *GPRPtrAsInt = Builder.CreatePtrToInt(GPRPtr, CGF.Int32Ty);
3210   llvm::Value *FPRPtrAsInt =
3211       Builder.CreateAdd(GPRPtrAsInt, Builder.getInt32(1));
3212   llvm::Value *FPRPtr = Builder.CreateIntToPtr(FPRPtrAsInt, CharPtr);
3213   llvm::Value *OverflowAreaPtrAsInt =
3214       Builder.CreateAdd(FPRPtrAsInt, Builder.getInt32(3));
3215   llvm::Value *OverflowAreaPtr =
3216       Builder.CreateIntToPtr(OverflowAreaPtrAsInt, CharPtrPtr);
3217   llvm::Value *RegsaveAreaPtrAsInt =
3218       Builder.CreateAdd(OverflowAreaPtrAsInt, Builder.getInt32(4));
3219   llvm::Value *RegsaveAreaPtr =
3220       Builder.CreateIntToPtr(RegsaveAreaPtrAsInt, CharPtrPtr);
3221   llvm::Value *GPR = Builder.CreateLoad(GPRPtr, false, "gpr");
3222   // Align GPR when TY is i64.
3223   if (isI64) {
3224     llvm::Value *GPRAnd = Builder.CreateAnd(GPR, Builder.getInt8(1));
3225     llvm::Value *CC64 = Builder.CreateICmpEQ(GPRAnd, Builder.getInt8(1));
3226     llvm::Value *GPRPlusOne = Builder.CreateAdd(GPR, Builder.getInt8(1));
3227     GPR = Builder.CreateSelect(CC64, GPRPlusOne, GPR);
3228   }
3229   llvm::Value *FPR = Builder.CreateLoad(FPRPtr, false, "fpr");
3230   llvm::Value *OverflowArea =
3231       Builder.CreateLoad(OverflowAreaPtr, false, "overflow_area");
3232   llvm::Value *OverflowAreaAsInt =
3233       Builder.CreatePtrToInt(OverflowArea, CGF.Int32Ty);
3234   llvm::Value *RegsaveArea =
3235       Builder.CreateLoad(RegsaveAreaPtr, false, "regsave_area");
3236   llvm::Value *RegsaveAreaAsInt =
3237       Builder.CreatePtrToInt(RegsaveArea, CGF.Int32Ty);
3238 
3239   llvm::Value *CC =
3240       Builder.CreateICmpULT(isInt ? GPR : FPR, Builder.getInt8(8), "cond");
3241 
3242   llvm::Value *RegConstant =
3243       Builder.CreateMul(isInt ? GPR : FPR, Builder.getInt8(isInt ? 4 : 8));
3244 
3245   llvm::Value *OurReg = Builder.CreateAdd(
3246       RegsaveAreaAsInt, Builder.CreateSExt(RegConstant, CGF.Int32Ty));
3247 
3248   if (Ty->isFloatingType())
3249     OurReg = Builder.CreateAdd(OurReg, Builder.getInt32(32));
3250 
3251   llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs");
3252   llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow");
3253   llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
3254 
3255   Builder.CreateCondBr(CC, UsingRegs, UsingOverflow);
3256 
3257   CGF.EmitBlock(UsingRegs);
3258 
3259   llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
3260   llvm::Value *Result1 = Builder.CreateIntToPtr(OurReg, PTy);
3261   // Increase the GPR/FPR indexes.
3262   if (isInt) {
3263     GPR = Builder.CreateAdd(GPR, Builder.getInt8(isI64 ? 2 : 1));
3264     Builder.CreateStore(GPR, GPRPtr);
3265   } else {
3266     FPR = Builder.CreateAdd(FPR, Builder.getInt8(1));
3267     Builder.CreateStore(FPR, FPRPtr);
3268   }
3269   CGF.EmitBranch(Cont);
3270 
3271   CGF.EmitBlock(UsingOverflow);
3272 
3273   // Increase the overflow area.
3274   llvm::Value *Result2 = Builder.CreateIntToPtr(OverflowAreaAsInt, PTy);
3275   OverflowAreaAsInt =
3276       Builder.CreateAdd(OverflowAreaAsInt, Builder.getInt32(isInt ? 4 : 8));
3277   Builder.CreateStore(Builder.CreateIntToPtr(OverflowAreaAsInt, CharPtr),
3278                       OverflowAreaPtr);
3279   CGF.EmitBranch(Cont);
3280 
3281   CGF.EmitBlock(Cont);
3282 
3283   llvm::PHINode *Result = CGF.Builder.CreatePHI(PTy, 2, "vaarg.addr");
3284   Result->addIncoming(Result1, UsingRegs);
3285   Result->addIncoming(Result2, UsingOverflow);
3286 
3287   if (Ty->isAggregateType()) {
3288     llvm::Value *AGGPtr = Builder.CreateBitCast(Result, CharPtrPtr, "aggrptr");
3289     return Builder.CreateLoad(AGGPtr, false, "aggr");
3290   }
3291 
3292   return Result;
3293 }
3294 
3295 bool
3296 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3297                                                 llvm::Value *Address) const {
3298   // This is calculated from the LLVM and GCC tables and verified
3299   // against gcc output.  AFAIK all ABIs use the same encoding.
3300 
3301   CodeGen::CGBuilderTy &Builder = CGF.Builder;
3302 
3303   llvm::IntegerType *i8 = CGF.Int8Ty;
3304   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
3305   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
3306   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
3307 
3308   // 0-31: r0-31, the 4-byte general-purpose registers
3309   AssignToArrayRange(Builder, Address, Four8, 0, 31);
3310 
3311   // 32-63: fp0-31, the 8-byte floating-point registers
3312   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
3313 
3314   // 64-76 are various 4-byte special-purpose registers:
3315   // 64: mq
3316   // 65: lr
3317   // 66: ctr
3318   // 67: ap
3319   // 68-75 cr0-7
3320   // 76: xer
3321   AssignToArrayRange(Builder, Address, Four8, 64, 76);
3322 
3323   // 77-108: v0-31, the 16-byte vector registers
3324   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
3325 
3326   // 109: vrsave
3327   // 110: vscr
3328   // 111: spe_acc
3329   // 112: spefscr
3330   // 113: sfp
3331   AssignToArrayRange(Builder, Address, Four8, 109, 113);
3332 
3333   return false;
3334 }
3335 
3336 // PowerPC-64
3337 
3338 namespace {
3339 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information.
3340 class PPC64_SVR4_ABIInfo : public DefaultABIInfo {
3341 public:
3342   enum ABIKind {
3343     ELFv1 = 0,
3344     ELFv2
3345   };
3346 
3347 private:
3348   static const unsigned GPRBits = 64;
3349   ABIKind Kind;
3350   bool HasQPX;
3351 
3352   // A vector of float or double will be promoted to <4 x f32> or <4 x f64> and
3353   // will be passed in a QPX register.
3354   bool IsQPXVectorTy(const Type *Ty) const {
3355     if (!HasQPX)
3356       return false;
3357 
3358     if (const VectorType *VT = Ty->getAs<VectorType>()) {
3359       unsigned NumElements = VT->getNumElements();
3360       if (NumElements == 1)
3361         return false;
3362 
3363       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) {
3364         if (getContext().getTypeSize(Ty) <= 256)
3365           return true;
3366       } else if (VT->getElementType()->
3367                    isSpecificBuiltinType(BuiltinType::Float)) {
3368         if (getContext().getTypeSize(Ty) <= 128)
3369           return true;
3370       }
3371     }
3372 
3373     return false;
3374   }
3375 
3376   bool IsQPXVectorTy(QualType Ty) const {
3377     return IsQPXVectorTy(Ty.getTypePtr());
3378   }
3379 
3380 public:
3381   PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, bool HasQPX)
3382     : DefaultABIInfo(CGT), Kind(Kind), HasQPX(HasQPX) {}
3383 
3384   bool isPromotableTypeForABI(QualType Ty) const;
3385   bool isAlignedParamType(QualType Ty, bool &Align32) const;
3386 
3387   ABIArgInfo classifyReturnType(QualType RetTy) const;
3388   ABIArgInfo classifyArgumentType(QualType Ty) const;
3389 
3390   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
3391   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
3392                                          uint64_t Members) const override;
3393 
3394   // TODO: We can add more logic to computeInfo to improve performance.
3395   // Example: For aggregate arguments that fit in a register, we could
3396   // use getDirectInReg (as is done below for structs containing a single
3397   // floating-point value) to avoid pushing them to memory on function
3398   // entry.  This would require changing the logic in PPCISelLowering
3399   // when lowering the parameters in the caller and args in the callee.
3400   void computeInfo(CGFunctionInfo &FI) const override {
3401     if (!getCXXABI().classifyReturnType(FI))
3402       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3403     for (auto &I : FI.arguments()) {
3404       // We rely on the default argument classification for the most part.
3405       // One exception:  An aggregate containing a single floating-point
3406       // or vector item must be passed in a register if one is available.
3407       const Type *T = isSingleElementStruct(I.type, getContext());
3408       if (T) {
3409         const BuiltinType *BT = T->getAs<BuiltinType>();
3410         if (IsQPXVectorTy(T) ||
3411             (T->isVectorType() && getContext().getTypeSize(T) == 128) ||
3412             (BT && BT->isFloatingPoint())) {
3413           QualType QT(T, 0);
3414           I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT));
3415           continue;
3416         }
3417       }
3418       I.info = classifyArgumentType(I.type);
3419     }
3420   }
3421 
3422   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3423                          CodeGenFunction &CGF) const override;
3424 };
3425 
3426 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo {
3427 
3428 public:
3429   PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT,
3430                                PPC64_SVR4_ABIInfo::ABIKind Kind, bool HasQPX)
3431       : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT, Kind, HasQPX)) {}
3432 
3433   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
3434     // This is recovered from gcc output.
3435     return 1; // r1 is the dedicated stack pointer
3436   }
3437 
3438   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3439                                llvm::Value *Address) const override;
3440 };
3441 
3442 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
3443 public:
3444   PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
3445 
3446   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
3447     // This is recovered from gcc output.
3448     return 1; // r1 is the dedicated stack pointer
3449   }
3450 
3451   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3452                                llvm::Value *Address) const override;
3453 };
3454 
3455 }
3456 
3457 // Return true if the ABI requires Ty to be passed sign- or zero-
3458 // extended to 64 bits.
3459 bool
3460 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const {
3461   // Treat an enum type as its underlying type.
3462   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3463     Ty = EnumTy->getDecl()->getIntegerType();
3464 
3465   // Promotable integer types are required to be promoted by the ABI.
3466   if (Ty->isPromotableIntegerType())
3467     return true;
3468 
3469   // In addition to the usual promotable integer types, we also need to
3470   // extend all 32-bit types, since the ABI requires promotion to 64 bits.
3471   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
3472     switch (BT->getKind()) {
3473     case BuiltinType::Int:
3474     case BuiltinType::UInt:
3475       return true;
3476     default:
3477       break;
3478     }
3479 
3480   return false;
3481 }
3482 
3483 /// isAlignedParamType - Determine whether a type requires 16-byte
3484 /// alignment in the parameter area.
3485 bool
3486 PPC64_SVR4_ABIInfo::isAlignedParamType(QualType Ty, bool &Align32) const {
3487   Align32 = false;
3488 
3489   // Complex types are passed just like their elements.
3490   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
3491     Ty = CTy->getElementType();
3492 
3493   // Only vector types of size 16 bytes need alignment (larger types are
3494   // passed via reference, smaller types are not aligned).
3495   if (IsQPXVectorTy(Ty)) {
3496     if (getContext().getTypeSize(Ty) > 128)
3497       Align32 = true;
3498 
3499     return true;
3500   } else if (Ty->isVectorType()) {
3501     return getContext().getTypeSize(Ty) == 128;
3502   }
3503 
3504   // For single-element float/vector structs, we consider the whole type
3505   // to have the same alignment requirements as its single element.
3506   const Type *AlignAsType = nullptr;
3507   const Type *EltType = isSingleElementStruct(Ty, getContext());
3508   if (EltType) {
3509     const BuiltinType *BT = EltType->getAs<BuiltinType>();
3510     if (IsQPXVectorTy(EltType) || (EltType->isVectorType() &&
3511          getContext().getTypeSize(EltType) == 128) ||
3512         (BT && BT->isFloatingPoint()))
3513       AlignAsType = EltType;
3514   }
3515 
3516   // Likewise for ELFv2 homogeneous aggregates.
3517   const Type *Base = nullptr;
3518   uint64_t Members = 0;
3519   if (!AlignAsType && Kind == ELFv2 &&
3520       isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members))
3521     AlignAsType = Base;
3522 
3523   // With special case aggregates, only vector base types need alignment.
3524   if (AlignAsType && IsQPXVectorTy(AlignAsType)) {
3525     if (getContext().getTypeSize(AlignAsType) > 128)
3526       Align32 = true;
3527 
3528     return true;
3529   } else if (AlignAsType) {
3530     return AlignAsType->isVectorType();
3531   }
3532 
3533   // Otherwise, we only need alignment for any aggregate type that
3534   // has an alignment requirement of >= 16 bytes.
3535   if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) {
3536     if (HasQPX && getContext().getTypeAlign(Ty) >= 256)
3537       Align32 = true;
3538     return true;
3539   }
3540 
3541   return false;
3542 }
3543 
3544 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous
3545 /// aggregate.  Base is set to the base element type, and Members is set
3546 /// to the number of base elements.
3547 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base,
3548                                      uint64_t &Members) const {
3549   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
3550     uint64_t NElements = AT->getSize().getZExtValue();
3551     if (NElements == 0)
3552       return false;
3553     if (!isHomogeneousAggregate(AT->getElementType(), Base, Members))
3554       return false;
3555     Members *= NElements;
3556   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
3557     const RecordDecl *RD = RT->getDecl();
3558     if (RD->hasFlexibleArrayMember())
3559       return false;
3560 
3561     Members = 0;
3562 
3563     // If this is a C++ record, check the bases first.
3564     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
3565       for (const auto &I : CXXRD->bases()) {
3566         // Ignore empty records.
3567         if (isEmptyRecord(getContext(), I.getType(), true))
3568           continue;
3569 
3570         uint64_t FldMembers;
3571         if (!isHomogeneousAggregate(I.getType(), Base, FldMembers))
3572           return false;
3573 
3574         Members += FldMembers;
3575       }
3576     }
3577 
3578     for (const auto *FD : RD->fields()) {
3579       // Ignore (non-zero arrays of) empty records.
3580       QualType FT = FD->getType();
3581       while (const ConstantArrayType *AT =
3582              getContext().getAsConstantArrayType(FT)) {
3583         if (AT->getSize().getZExtValue() == 0)
3584           return false;
3585         FT = AT->getElementType();
3586       }
3587       if (isEmptyRecord(getContext(), FT, true))
3588         continue;
3589 
3590       // For compatibility with GCC, ignore empty bitfields in C++ mode.
3591       if (getContext().getLangOpts().CPlusPlus &&
3592           FD->isBitField() && FD->getBitWidthValue(getContext()) == 0)
3593         continue;
3594 
3595       uint64_t FldMembers;
3596       if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers))
3597         return false;
3598 
3599       Members = (RD->isUnion() ?
3600                  std::max(Members, FldMembers) : Members + FldMembers);
3601     }
3602 
3603     if (!Base)
3604       return false;
3605 
3606     // Ensure there is no padding.
3607     if (getContext().getTypeSize(Base) * Members !=
3608         getContext().getTypeSize(Ty))
3609       return false;
3610   } else {
3611     Members = 1;
3612     if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
3613       Members = 2;
3614       Ty = CT->getElementType();
3615     }
3616 
3617     // Most ABIs only support float, double, and some vector type widths.
3618     if (!isHomogeneousAggregateBaseType(Ty))
3619       return false;
3620 
3621     // The base type must be the same for all members.  Types that
3622     // agree in both total size and mode (float vs. vector) are
3623     // treated as being equivalent here.
3624     const Type *TyPtr = Ty.getTypePtr();
3625     if (!Base)
3626       Base = TyPtr;
3627 
3628     if (Base->isVectorType() != TyPtr->isVectorType() ||
3629         getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr))
3630       return false;
3631   }
3632   return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members);
3633 }
3634 
3635 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
3636   // Homogeneous aggregates for ELFv2 must have base types of float,
3637   // double, long double, or 128-bit vectors.
3638   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
3639     if (BT->getKind() == BuiltinType::Float ||
3640         BT->getKind() == BuiltinType::Double ||
3641         BT->getKind() == BuiltinType::LongDouble)
3642       return true;
3643   }
3644   if (const VectorType *VT = Ty->getAs<VectorType>()) {
3645     if (getContext().getTypeSize(VT) == 128 || IsQPXVectorTy(Ty))
3646       return true;
3647   }
3648   return false;
3649 }
3650 
3651 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough(
3652     const Type *Base, uint64_t Members) const {
3653   // Vector types require one register, floating point types require one
3654   // or two registers depending on their size.
3655   uint32_t NumRegs =
3656       Base->isVectorType() ? 1 : (getContext().getTypeSize(Base) + 63) / 64;
3657 
3658   // Homogeneous Aggregates may occupy at most 8 registers.
3659   return Members * NumRegs <= 8;
3660 }
3661 
3662 ABIArgInfo
3663 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const {
3664   Ty = useFirstFieldIfTransparentUnion(Ty);
3665 
3666   if (Ty->isAnyComplexType())
3667     return ABIArgInfo::getDirect();
3668 
3669   // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes)
3670   // or via reference (larger than 16 bytes).
3671   if (Ty->isVectorType() && !IsQPXVectorTy(Ty)) {
3672     uint64_t Size = getContext().getTypeSize(Ty);
3673     if (Size > 128)
3674       return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3675     else if (Size < 128) {
3676       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
3677       return ABIArgInfo::getDirect(CoerceTy);
3678     }
3679   }
3680 
3681   if (isAggregateTypeForABI(Ty)) {
3682     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
3683       return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
3684 
3685     bool Align32;
3686     uint64_t ABIAlign = isAlignedParamType(Ty, Align32) ?
3687                           (Align32 ? 32 : 16) : 8;
3688     uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8;
3689 
3690     // ELFv2 homogeneous aggregates are passed as array types.
3691     const Type *Base = nullptr;
3692     uint64_t Members = 0;
3693     if (Kind == ELFv2 &&
3694         isHomogeneousAggregate(Ty, Base, Members)) {
3695       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
3696       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
3697       return ABIArgInfo::getDirect(CoerceTy);
3698     }
3699 
3700     // If an aggregate may end up fully in registers, we do not
3701     // use the ByVal method, but pass the aggregate as array.
3702     // This is usually beneficial since we avoid forcing the
3703     // back-end to store the argument to memory.
3704     uint64_t Bits = getContext().getTypeSize(Ty);
3705     if (Bits > 0 && Bits <= 8 * GPRBits) {
3706       llvm::Type *CoerceTy;
3707 
3708       // Types up to 8 bytes are passed as integer type (which will be
3709       // properly aligned in the argument save area doubleword).
3710       if (Bits <= GPRBits)
3711         CoerceTy = llvm::IntegerType::get(getVMContext(),
3712                                           llvm::RoundUpToAlignment(Bits, 8));
3713       // Larger types are passed as arrays, with the base type selected
3714       // according to the required alignment in the save area.
3715       else {
3716         uint64_t RegBits = ABIAlign * 8;
3717         uint64_t NumRegs = llvm::RoundUpToAlignment(Bits, RegBits) / RegBits;
3718         llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits);
3719         CoerceTy = llvm::ArrayType::get(RegTy, NumRegs);
3720       }
3721 
3722       return ABIArgInfo::getDirect(CoerceTy);
3723     }
3724 
3725     // All other aggregates are passed ByVal.
3726     return ABIArgInfo::getIndirect(ABIAlign, /*ByVal=*/true,
3727                                    /*Realign=*/TyAlign > ABIAlign);
3728   }
3729 
3730   return (isPromotableTypeForABI(Ty) ?
3731           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3732 }
3733 
3734 ABIArgInfo
3735 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
3736   if (RetTy->isVoidType())
3737     return ABIArgInfo::getIgnore();
3738 
3739   if (RetTy->isAnyComplexType())
3740     return ABIArgInfo::getDirect();
3741 
3742   // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes)
3743   // or via reference (larger than 16 bytes).
3744   if (RetTy->isVectorType() && !IsQPXVectorTy(RetTy)) {
3745     uint64_t Size = getContext().getTypeSize(RetTy);
3746     if (Size > 128)
3747       return ABIArgInfo::getIndirect(0);
3748     else if (Size < 128) {
3749       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
3750       return ABIArgInfo::getDirect(CoerceTy);
3751     }
3752   }
3753 
3754   if (isAggregateTypeForABI(RetTy)) {
3755     // ELFv2 homogeneous aggregates are returned as array types.
3756     const Type *Base = nullptr;
3757     uint64_t Members = 0;
3758     if (Kind == ELFv2 &&
3759         isHomogeneousAggregate(RetTy, Base, Members)) {
3760       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
3761       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
3762       return ABIArgInfo::getDirect(CoerceTy);
3763     }
3764 
3765     // ELFv2 small aggregates are returned in up to two registers.
3766     uint64_t Bits = getContext().getTypeSize(RetTy);
3767     if (Kind == ELFv2 && Bits <= 2 * GPRBits) {
3768       if (Bits == 0)
3769         return ABIArgInfo::getIgnore();
3770 
3771       llvm::Type *CoerceTy;
3772       if (Bits > GPRBits) {
3773         CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits);
3774         CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy, nullptr);
3775       } else
3776         CoerceTy = llvm::IntegerType::get(getVMContext(),
3777                                           llvm::RoundUpToAlignment(Bits, 8));
3778       return ABIArgInfo::getDirect(CoerceTy);
3779     }
3780 
3781     // All other aggregates are returned indirectly.
3782     return ABIArgInfo::getIndirect(0);
3783   }
3784 
3785   return (isPromotableTypeForABI(RetTy) ?
3786           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3787 }
3788 
3789 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine.
3790 llvm::Value *PPC64_SVR4_ABIInfo::EmitVAArg(llvm::Value *VAListAddr,
3791                                            QualType Ty,
3792                                            CodeGenFunction &CGF) const {
3793   llvm::Type *BP = CGF.Int8PtrTy;
3794   llvm::Type *BPP = CGF.Int8PtrPtrTy;
3795 
3796   CGBuilderTy &Builder = CGF.Builder;
3797   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
3798   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
3799 
3800   // Handle types that require 16-byte alignment in the parameter save area.
3801   bool Align32;
3802   if (isAlignedParamType(Ty, Align32)) {
3803     llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty);
3804     AddrAsInt = Builder.CreateAdd(AddrAsInt,
3805                                   Builder.getInt64(Align32 ? 31 : 15));
3806     AddrAsInt = Builder.CreateAnd(AddrAsInt,
3807                                   Builder.getInt64(Align32 ? -32 : -16));
3808     Addr = Builder.CreateIntToPtr(AddrAsInt, BP, "ap.align");
3809   }
3810 
3811   // Update the va_list pointer.  The pointer should be bumped by the
3812   // size of the object.  We can trust getTypeSize() except for a complex
3813   // type whose base type is smaller than a doubleword.  For these, the
3814   // size of the object is 16 bytes; see below for further explanation.
3815   unsigned SizeInBytes = CGF.getContext().getTypeSize(Ty) / 8;
3816   QualType BaseTy;
3817   unsigned CplxBaseSize = 0;
3818 
3819   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
3820     BaseTy = CTy->getElementType();
3821     CplxBaseSize = CGF.getContext().getTypeSize(BaseTy) / 8;
3822     if (CplxBaseSize < 8)
3823       SizeInBytes = 16;
3824   }
3825 
3826   unsigned Offset = llvm::RoundUpToAlignment(SizeInBytes, 8);
3827   llvm::Value *NextAddr =
3828     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int64Ty, Offset),
3829                       "ap.next");
3830   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
3831 
3832   // If we have a complex type and the base type is smaller than 8 bytes,
3833   // the ABI calls for the real and imaginary parts to be right-adjusted
3834   // in separate doublewords.  However, Clang expects us to produce a
3835   // pointer to a structure with the two parts packed tightly.  So generate
3836   // loads of the real and imaginary parts relative to the va_list pointer,
3837   // and store them to a temporary structure.
3838   if (CplxBaseSize && CplxBaseSize < 8) {
3839     llvm::Value *RealAddr = Builder.CreatePtrToInt(Addr, CGF.Int64Ty);
3840     llvm::Value *ImagAddr = RealAddr;
3841     if (CGF.CGM.getDataLayout().isBigEndian()) {
3842       RealAddr =
3843           Builder.CreateAdd(RealAddr, Builder.getInt64(8 - CplxBaseSize));
3844       ImagAddr =
3845           Builder.CreateAdd(ImagAddr, Builder.getInt64(16 - CplxBaseSize));
3846     } else {
3847       ImagAddr = Builder.CreateAdd(ImagAddr, Builder.getInt64(8));
3848     }
3849     llvm::Type *PBaseTy = llvm::PointerType::getUnqual(CGF.ConvertType(BaseTy));
3850     RealAddr = Builder.CreateIntToPtr(RealAddr, PBaseTy);
3851     ImagAddr = Builder.CreateIntToPtr(ImagAddr, PBaseTy);
3852     llvm::Value *Real = Builder.CreateLoad(RealAddr, false, ".vareal");
3853     llvm::Value *Imag = Builder.CreateLoad(ImagAddr, false, ".vaimag");
3854     llvm::AllocaInst *Ptr =
3855         CGF.CreateTempAlloca(CGT.ConvertTypeForMem(Ty), "vacplx");
3856     llvm::Value *RealPtr =
3857         Builder.CreateStructGEP(Ptr->getAllocatedType(), Ptr, 0, ".real");
3858     llvm::Value *ImagPtr =
3859         Builder.CreateStructGEP(Ptr->getAllocatedType(), Ptr, 1, ".imag");
3860     Builder.CreateStore(Real, RealPtr, false);
3861     Builder.CreateStore(Imag, ImagPtr, false);
3862     return Ptr;
3863   }
3864 
3865   // If the argument is smaller than 8 bytes, it is right-adjusted in
3866   // its doubleword slot.  Adjust the pointer to pick it up from the
3867   // correct offset.
3868   if (SizeInBytes < 8 && CGF.CGM.getDataLayout().isBigEndian()) {
3869     llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty);
3870     AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt64(8 - SizeInBytes));
3871     Addr = Builder.CreateIntToPtr(AddrAsInt, BP);
3872   }
3873 
3874   llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
3875   return Builder.CreateBitCast(Addr, PTy);
3876 }
3877 
3878 static bool
3879 PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3880                               llvm::Value *Address) {
3881   // This is calculated from the LLVM and GCC tables and verified
3882   // against gcc output.  AFAIK all ABIs use the same encoding.
3883 
3884   CodeGen::CGBuilderTy &Builder = CGF.Builder;
3885 
3886   llvm::IntegerType *i8 = CGF.Int8Ty;
3887   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
3888   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
3889   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
3890 
3891   // 0-31: r0-31, the 8-byte general-purpose registers
3892   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
3893 
3894   // 32-63: fp0-31, the 8-byte floating-point registers
3895   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
3896 
3897   // 64-76 are various 4-byte special-purpose registers:
3898   // 64: mq
3899   // 65: lr
3900   // 66: ctr
3901   // 67: ap
3902   // 68-75 cr0-7
3903   // 76: xer
3904   AssignToArrayRange(Builder, Address, Four8, 64, 76);
3905 
3906   // 77-108: v0-31, the 16-byte vector registers
3907   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
3908 
3909   // 109: vrsave
3910   // 110: vscr
3911   // 111: spe_acc
3912   // 112: spefscr
3913   // 113: sfp
3914   AssignToArrayRange(Builder, Address, Four8, 109, 113);
3915 
3916   return false;
3917 }
3918 
3919 bool
3920 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable(
3921   CodeGen::CodeGenFunction &CGF,
3922   llvm::Value *Address) const {
3923 
3924   return PPC64_initDwarfEHRegSizeTable(CGF, Address);
3925 }
3926 
3927 bool
3928 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3929                                                 llvm::Value *Address) const {
3930 
3931   return PPC64_initDwarfEHRegSizeTable(CGF, Address);
3932 }
3933 
3934 //===----------------------------------------------------------------------===//
3935 // AArch64 ABI Implementation
3936 //===----------------------------------------------------------------------===//
3937 
3938 namespace {
3939 
3940 class AArch64ABIInfo : public ABIInfo {
3941 public:
3942   enum ABIKind {
3943     AAPCS = 0,
3944     DarwinPCS
3945   };
3946 
3947 private:
3948   ABIKind Kind;
3949 
3950 public:
3951   AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind) : ABIInfo(CGT), Kind(Kind) {}
3952 
3953 private:
3954   ABIKind getABIKind() const { return Kind; }
3955   bool isDarwinPCS() const { return Kind == DarwinPCS; }
3956 
3957   ABIArgInfo classifyReturnType(QualType RetTy) const;
3958   ABIArgInfo classifyArgumentType(QualType RetTy) const;
3959   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
3960   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
3961                                          uint64_t Members) const override;
3962 
3963   bool isIllegalVectorType(QualType Ty) const;
3964 
3965   void computeInfo(CGFunctionInfo &FI) const override {
3966     if (!getCXXABI().classifyReturnType(FI))
3967       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3968 
3969     for (auto &it : FI.arguments())
3970       it.info = classifyArgumentType(it.type);
3971   }
3972 
3973   llvm::Value *EmitDarwinVAArg(llvm::Value *VAListAddr, QualType Ty,
3974                                CodeGenFunction &CGF) const;
3975 
3976   llvm::Value *EmitAAPCSVAArg(llvm::Value *VAListAddr, QualType Ty,
3977                               CodeGenFunction &CGF) const;
3978 
3979   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3980                          CodeGenFunction &CGF) const override {
3981     return isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF)
3982                          : EmitAAPCSVAArg(VAListAddr, Ty, CGF);
3983   }
3984 };
3985 
3986 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo {
3987 public:
3988   AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind)
3989       : TargetCodeGenInfo(new AArch64ABIInfo(CGT, Kind)) {}
3990 
3991   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
3992     return "mov\tfp, fp\t\t; marker for objc_retainAutoreleaseReturnValue";
3993   }
3994 
3995   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
3996     return 31;
3997   }
3998 
3999   bool doesReturnSlotInterfereWithArgs() const override { return false; }
4000 };
4001 }
4002 
4003 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const {
4004   Ty = useFirstFieldIfTransparentUnion(Ty);
4005 
4006   // Handle illegal vector types here.
4007   if (isIllegalVectorType(Ty)) {
4008     uint64_t Size = getContext().getTypeSize(Ty);
4009     if (Size <= 32) {
4010       llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext());
4011       return ABIArgInfo::getDirect(ResType);
4012     }
4013     if (Size == 64) {
4014       llvm::Type *ResType =
4015           llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2);
4016       return ABIArgInfo::getDirect(ResType);
4017     }
4018     if (Size == 128) {
4019       llvm::Type *ResType =
4020           llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4);
4021       return ABIArgInfo::getDirect(ResType);
4022     }
4023     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
4024   }
4025 
4026   if (!isAggregateTypeForABI(Ty)) {
4027     // Treat an enum type as its underlying type.
4028     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4029       Ty = EnumTy->getDecl()->getIntegerType();
4030 
4031     return (Ty->isPromotableIntegerType() && isDarwinPCS()
4032                 ? ABIArgInfo::getExtend()
4033                 : ABIArgInfo::getDirect());
4034   }
4035 
4036   // Structures with either a non-trivial destructor or a non-trivial
4037   // copy constructor are always indirect.
4038   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
4039     return ABIArgInfo::getIndirect(0, /*ByVal=*/RAA ==
4040                                    CGCXXABI::RAA_DirectInMemory);
4041   }
4042 
4043   // Empty records are always ignored on Darwin, but actually passed in C++ mode
4044   // elsewhere for GNU compatibility.
4045   if (isEmptyRecord(getContext(), Ty, true)) {
4046     if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS())
4047       return ABIArgInfo::getIgnore();
4048 
4049     return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
4050   }
4051 
4052   // Homogeneous Floating-point Aggregates (HFAs) need to be expanded.
4053   const Type *Base = nullptr;
4054   uint64_t Members = 0;
4055   if (isHomogeneousAggregate(Ty, Base, Members)) {
4056     return ABIArgInfo::getDirect(
4057         llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members));
4058   }
4059 
4060   // Aggregates <= 16 bytes are passed directly in registers or on the stack.
4061   uint64_t Size = getContext().getTypeSize(Ty);
4062   if (Size <= 128) {
4063     unsigned Alignment = getContext().getTypeAlign(Ty);
4064     Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes
4065 
4066     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
4067     // For aggregates with 16-byte alignment, we use i128.
4068     if (Alignment < 128 && Size == 128) {
4069       llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
4070       return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
4071     }
4072     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
4073   }
4074 
4075   return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
4076 }
4077 
4078 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy) const {
4079   if (RetTy->isVoidType())
4080     return ABIArgInfo::getIgnore();
4081 
4082   // Large vector types should be returned via memory.
4083   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
4084     return ABIArgInfo::getIndirect(0);
4085 
4086   if (!isAggregateTypeForABI(RetTy)) {
4087     // Treat an enum type as its underlying type.
4088     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
4089       RetTy = EnumTy->getDecl()->getIntegerType();
4090 
4091     return (RetTy->isPromotableIntegerType() && isDarwinPCS()
4092                 ? ABIArgInfo::getExtend()
4093                 : ABIArgInfo::getDirect());
4094   }
4095 
4096   if (isEmptyRecord(getContext(), RetTy, true))
4097     return ABIArgInfo::getIgnore();
4098 
4099   const Type *Base = nullptr;
4100   uint64_t Members = 0;
4101   if (isHomogeneousAggregate(RetTy, Base, Members))
4102     // Homogeneous Floating-point Aggregates (HFAs) are returned directly.
4103     return ABIArgInfo::getDirect();
4104 
4105   // Aggregates <= 16 bytes are returned directly in registers or on the stack.
4106   uint64_t Size = getContext().getTypeSize(RetTy);
4107   if (Size <= 128) {
4108     unsigned Alignment = getContext().getTypeAlign(RetTy);
4109     Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes
4110 
4111     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
4112     // For aggregates with 16-byte alignment, we use i128.
4113     if (Alignment < 128 && Size == 128) {
4114       llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
4115       return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
4116     }
4117     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
4118   }
4119 
4120   return ABIArgInfo::getIndirect(0);
4121 }
4122 
4123 /// isIllegalVectorType - check whether the vector type is legal for AArch64.
4124 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const {
4125   if (const VectorType *VT = Ty->getAs<VectorType>()) {
4126     // Check whether VT is legal.
4127     unsigned NumElements = VT->getNumElements();
4128     uint64_t Size = getContext().getTypeSize(VT);
4129     // NumElements should be power of 2 between 1 and 16.
4130     if ((NumElements & (NumElements - 1)) != 0 || NumElements > 16)
4131       return true;
4132     return Size != 64 && (Size != 128 || NumElements == 1);
4133   }
4134   return false;
4135 }
4136 
4137 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
4138   // Homogeneous aggregates for AAPCS64 must have base types of a floating
4139   // point type or a short-vector type. This is the same as the 32-bit ABI,
4140   // but with the difference that any floating-point type is allowed,
4141   // including __fp16.
4142   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
4143     if (BT->isFloatingPoint())
4144       return true;
4145   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
4146     unsigned VecSize = getContext().getTypeSize(VT);
4147     if (VecSize == 64 || VecSize == 128)
4148       return true;
4149   }
4150   return false;
4151 }
4152 
4153 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
4154                                                        uint64_t Members) const {
4155   return Members <= 4;
4156 }
4157 
4158 llvm::Value *AArch64ABIInfo::EmitAAPCSVAArg(llvm::Value *VAListAddr,
4159                                             QualType Ty,
4160                                             CodeGenFunction &CGF) const {
4161   ABIArgInfo AI = classifyArgumentType(Ty);
4162   bool IsIndirect = AI.isIndirect();
4163 
4164   llvm::Type *BaseTy = CGF.ConvertType(Ty);
4165   if (IsIndirect)
4166     BaseTy = llvm::PointerType::getUnqual(BaseTy);
4167   else if (AI.getCoerceToType())
4168     BaseTy = AI.getCoerceToType();
4169 
4170   unsigned NumRegs = 1;
4171   if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) {
4172     BaseTy = ArrTy->getElementType();
4173     NumRegs = ArrTy->getNumElements();
4174   }
4175   bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy();
4176 
4177   // The AArch64 va_list type and handling is specified in the Procedure Call
4178   // Standard, section B.4:
4179   //
4180   // struct {
4181   //   void *__stack;
4182   //   void *__gr_top;
4183   //   void *__vr_top;
4184   //   int __gr_offs;
4185   //   int __vr_offs;
4186   // };
4187 
4188   llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
4189   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
4190   llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
4191   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
4192   auto &Ctx = CGF.getContext();
4193 
4194   llvm::Value *reg_offs_p = nullptr, *reg_offs = nullptr;
4195   int reg_top_index;
4196   int RegSize = IsIndirect ? 8 : getContext().getTypeSize(Ty) / 8;
4197   if (!IsFPR) {
4198     // 3 is the field number of __gr_offs
4199     reg_offs_p =
4200         CGF.Builder.CreateStructGEP(nullptr, VAListAddr, 3, "gr_offs_p");
4201     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs");
4202     reg_top_index = 1; // field number for __gr_top
4203     RegSize = llvm::RoundUpToAlignment(RegSize, 8);
4204   } else {
4205     // 4 is the field number of __vr_offs.
4206     reg_offs_p =
4207         CGF.Builder.CreateStructGEP(nullptr, VAListAddr, 4, "vr_offs_p");
4208     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs");
4209     reg_top_index = 2; // field number for __vr_top
4210     RegSize = 16 * NumRegs;
4211   }
4212 
4213   //=======================================
4214   // Find out where argument was passed
4215   //=======================================
4216 
4217   // If reg_offs >= 0 we're already using the stack for this type of
4218   // argument. We don't want to keep updating reg_offs (in case it overflows,
4219   // though anyone passing 2GB of arguments, each at most 16 bytes, deserves
4220   // whatever they get).
4221   llvm::Value *UsingStack = nullptr;
4222   UsingStack = CGF.Builder.CreateICmpSGE(
4223       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0));
4224 
4225   CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock);
4226 
4227   // Otherwise, at least some kind of argument could go in these registers, the
4228   // question is whether this particular type is too big.
4229   CGF.EmitBlock(MaybeRegBlock);
4230 
4231   // Integer arguments may need to correct register alignment (for example a
4232   // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we
4233   // align __gr_offs to calculate the potential address.
4234   if (!IsFPR && !IsIndirect && Ctx.getTypeAlign(Ty) > 64) {
4235     int Align = Ctx.getTypeAlign(Ty) / 8;
4236 
4237     reg_offs = CGF.Builder.CreateAdd(
4238         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1),
4239         "align_regoffs");
4240     reg_offs = CGF.Builder.CreateAnd(
4241         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align),
4242         "aligned_regoffs");
4243   }
4244 
4245   // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list.
4246   llvm::Value *NewOffset = nullptr;
4247   NewOffset = CGF.Builder.CreateAdd(
4248       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs");
4249   CGF.Builder.CreateStore(NewOffset, reg_offs_p);
4250 
4251   // Now we're in a position to decide whether this argument really was in
4252   // registers or not.
4253   llvm::Value *InRegs = nullptr;
4254   InRegs = CGF.Builder.CreateICmpSLE(
4255       NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg");
4256 
4257   CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock);
4258 
4259   //=======================================
4260   // Argument was in registers
4261   //=======================================
4262 
4263   // Now we emit the code for if the argument was originally passed in
4264   // registers. First start the appropriate block:
4265   CGF.EmitBlock(InRegBlock);
4266 
4267   llvm::Value *reg_top_p = nullptr, *reg_top = nullptr;
4268   reg_top_p = CGF.Builder.CreateStructGEP(nullptr, VAListAddr, reg_top_index,
4269                                           "reg_top_p");
4270   reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top");
4271   llvm::Value *BaseAddr = CGF.Builder.CreateGEP(reg_top, reg_offs);
4272   llvm::Value *RegAddr = nullptr;
4273   llvm::Type *MemTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
4274 
4275   if (IsIndirect) {
4276     // If it's been passed indirectly (actually a struct), whatever we find from
4277     // stored registers or on the stack will actually be a struct **.
4278     MemTy = llvm::PointerType::getUnqual(MemTy);
4279   }
4280 
4281   const Type *Base = nullptr;
4282   uint64_t NumMembers = 0;
4283   bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers);
4284   if (IsHFA && NumMembers > 1) {
4285     // Homogeneous aggregates passed in registers will have their elements split
4286     // and stored 16-bytes apart regardless of size (they're notionally in qN,
4287     // qN+1, ...). We reload and store into a temporary local variable
4288     // contiguously.
4289     assert(!IsIndirect && "Homogeneous aggregates should be passed directly");
4290     llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0));
4291     llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers);
4292     llvm::AllocaInst *Tmp = CGF.CreateTempAlloca(HFATy);
4293     int Offset = 0;
4294 
4295     if (CGF.CGM.getDataLayout().isBigEndian() && Ctx.getTypeSize(Base) < 128)
4296       Offset = 16 - Ctx.getTypeSize(Base) / 8;
4297     for (unsigned i = 0; i < NumMembers; ++i) {
4298       llvm::Value *BaseOffset =
4299           llvm::ConstantInt::get(CGF.Int32Ty, 16 * i + Offset);
4300       llvm::Value *LoadAddr = CGF.Builder.CreateGEP(BaseAddr, BaseOffset);
4301       LoadAddr = CGF.Builder.CreateBitCast(
4302           LoadAddr, llvm::PointerType::getUnqual(BaseTy));
4303       llvm::Value *StoreAddr =
4304           CGF.Builder.CreateStructGEP(Tmp->getAllocatedType(), Tmp, i);
4305 
4306       llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr);
4307       CGF.Builder.CreateStore(Elem, StoreAddr);
4308     }
4309 
4310     RegAddr = CGF.Builder.CreateBitCast(Tmp, MemTy);
4311   } else {
4312     // Otherwise the object is contiguous in memory
4313     unsigned BeAlign = reg_top_index == 2 ? 16 : 8;
4314     if (CGF.CGM.getDataLayout().isBigEndian() &&
4315         (IsHFA || !isAggregateTypeForABI(Ty)) &&
4316         Ctx.getTypeSize(Ty) < (BeAlign * 8)) {
4317       int Offset = BeAlign - Ctx.getTypeSize(Ty) / 8;
4318       BaseAddr = CGF.Builder.CreatePtrToInt(BaseAddr, CGF.Int64Ty);
4319 
4320       BaseAddr = CGF.Builder.CreateAdd(
4321           BaseAddr, llvm::ConstantInt::get(CGF.Int64Ty, Offset), "align_be");
4322 
4323       BaseAddr = CGF.Builder.CreateIntToPtr(BaseAddr, CGF.Int8PtrTy);
4324     }
4325 
4326     RegAddr = CGF.Builder.CreateBitCast(BaseAddr, MemTy);
4327   }
4328 
4329   CGF.EmitBranch(ContBlock);
4330 
4331   //=======================================
4332   // Argument was on the stack
4333   //=======================================
4334   CGF.EmitBlock(OnStackBlock);
4335 
4336   llvm::Value *stack_p = nullptr, *OnStackAddr = nullptr;
4337   stack_p = CGF.Builder.CreateStructGEP(nullptr, VAListAddr, 0, "stack_p");
4338   OnStackAddr = CGF.Builder.CreateLoad(stack_p, "stack");
4339 
4340   // Again, stack arguments may need realigmnent. In this case both integer and
4341   // floating-point ones might be affected.
4342   if (!IsIndirect && Ctx.getTypeAlign(Ty) > 64) {
4343     int Align = Ctx.getTypeAlign(Ty) / 8;
4344 
4345     OnStackAddr = CGF.Builder.CreatePtrToInt(OnStackAddr, CGF.Int64Ty);
4346 
4347     OnStackAddr = CGF.Builder.CreateAdd(
4348         OnStackAddr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1),
4349         "align_stack");
4350     OnStackAddr = CGF.Builder.CreateAnd(
4351         OnStackAddr, llvm::ConstantInt::get(CGF.Int64Ty, -Align),
4352         "align_stack");
4353 
4354     OnStackAddr = CGF.Builder.CreateIntToPtr(OnStackAddr, CGF.Int8PtrTy);
4355   }
4356 
4357   uint64_t StackSize;
4358   if (IsIndirect)
4359     StackSize = 8;
4360   else
4361     StackSize = Ctx.getTypeSize(Ty) / 8;
4362 
4363   // All stack slots are 8 bytes
4364   StackSize = llvm::RoundUpToAlignment(StackSize, 8);
4365 
4366   llvm::Value *StackSizeC = llvm::ConstantInt::get(CGF.Int32Ty, StackSize);
4367   llvm::Value *NewStack =
4368       CGF.Builder.CreateGEP(OnStackAddr, StackSizeC, "new_stack");
4369 
4370   // Write the new value of __stack for the next call to va_arg
4371   CGF.Builder.CreateStore(NewStack, stack_p);
4372 
4373   if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) &&
4374       Ctx.getTypeSize(Ty) < 64) {
4375     int Offset = 8 - Ctx.getTypeSize(Ty) / 8;
4376     OnStackAddr = CGF.Builder.CreatePtrToInt(OnStackAddr, CGF.Int64Ty);
4377 
4378     OnStackAddr = CGF.Builder.CreateAdd(
4379         OnStackAddr, llvm::ConstantInt::get(CGF.Int64Ty, Offset), "align_be");
4380 
4381     OnStackAddr = CGF.Builder.CreateIntToPtr(OnStackAddr, CGF.Int8PtrTy);
4382   }
4383 
4384   OnStackAddr = CGF.Builder.CreateBitCast(OnStackAddr, MemTy);
4385 
4386   CGF.EmitBranch(ContBlock);
4387 
4388   //=======================================
4389   // Tidy up
4390   //=======================================
4391   CGF.EmitBlock(ContBlock);
4392 
4393   llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(MemTy, 2, "vaarg.addr");
4394   ResAddr->addIncoming(RegAddr, InRegBlock);
4395   ResAddr->addIncoming(OnStackAddr, OnStackBlock);
4396 
4397   if (IsIndirect)
4398     return CGF.Builder.CreateLoad(ResAddr, "vaarg.addr");
4399 
4400   return ResAddr;
4401 }
4402 
4403 llvm::Value *AArch64ABIInfo::EmitDarwinVAArg(llvm::Value *VAListAddr,
4404                                              QualType Ty,
4405                                              CodeGenFunction &CGF) const {
4406   // We do not support va_arg for aggregates or illegal vector types.
4407   // Lower VAArg here for these cases and use the LLVM va_arg instruction for
4408   // other cases.
4409   if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty))
4410     return nullptr;
4411 
4412   uint64_t Size = CGF.getContext().getTypeSize(Ty) / 8;
4413   uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
4414 
4415   const Type *Base = nullptr;
4416   uint64_t Members = 0;
4417   bool isHA = isHomogeneousAggregate(Ty, Base, Members);
4418 
4419   bool isIndirect = false;
4420   // Arguments bigger than 16 bytes which aren't homogeneous aggregates should
4421   // be passed indirectly.
4422   if (Size > 16 && !isHA) {
4423     isIndirect = true;
4424     Size = 8;
4425     Align = 8;
4426   }
4427 
4428   llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
4429   llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
4430 
4431   CGBuilderTy &Builder = CGF.Builder;
4432   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
4433   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
4434 
4435   if (isEmptyRecord(getContext(), Ty, true)) {
4436     // These are ignored for parameter passing purposes.
4437     llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
4438     return Builder.CreateBitCast(Addr, PTy);
4439   }
4440 
4441   const uint64_t MinABIAlign = 8;
4442   if (Align > MinABIAlign) {
4443     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, Align - 1);
4444     Addr = Builder.CreateGEP(Addr, Offset);
4445     llvm::Value *AsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty);
4446     llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, ~(Align - 1));
4447     llvm::Value *Aligned = Builder.CreateAnd(AsInt, Mask);
4448     Addr = Builder.CreateIntToPtr(Aligned, BP, "ap.align");
4449   }
4450 
4451   uint64_t Offset = llvm::RoundUpToAlignment(Size, MinABIAlign);
4452   llvm::Value *NextAddr = Builder.CreateGEP(
4453       Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), "ap.next");
4454   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
4455 
4456   if (isIndirect)
4457     Addr = Builder.CreateLoad(Builder.CreateBitCast(Addr, BPP));
4458   llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
4459   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
4460 
4461   return AddrTyped;
4462 }
4463 
4464 //===----------------------------------------------------------------------===//
4465 // ARM ABI Implementation
4466 //===----------------------------------------------------------------------===//
4467 
4468 namespace {
4469 
4470 class ARMABIInfo : public ABIInfo {
4471 public:
4472   enum ABIKind {
4473     APCS = 0,
4474     AAPCS = 1,
4475     AAPCS_VFP
4476   };
4477 
4478 private:
4479   ABIKind Kind;
4480 
4481 public:
4482   ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) : ABIInfo(CGT), Kind(_Kind) {
4483     setCCs();
4484   }
4485 
4486   bool isEABI() const {
4487     switch (getTarget().getTriple().getEnvironment()) {
4488     case llvm::Triple::Android:
4489     case llvm::Triple::EABI:
4490     case llvm::Triple::EABIHF:
4491     case llvm::Triple::GNUEABI:
4492     case llvm::Triple::GNUEABIHF:
4493       return true;
4494     default:
4495       return false;
4496     }
4497   }
4498 
4499   bool isEABIHF() const {
4500     switch (getTarget().getTriple().getEnvironment()) {
4501     case llvm::Triple::EABIHF:
4502     case llvm::Triple::GNUEABIHF:
4503       return true;
4504     default:
4505       return false;
4506     }
4507   }
4508 
4509   ABIKind getABIKind() const { return Kind; }
4510 
4511 private:
4512   ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic) const;
4513   ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic) const;
4514   bool isIllegalVectorType(QualType Ty) const;
4515 
4516   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
4517   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
4518                                          uint64_t Members) const override;
4519 
4520   void computeInfo(CGFunctionInfo &FI) const override;
4521 
4522   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4523                          CodeGenFunction &CGF) const override;
4524 
4525   llvm::CallingConv::ID getLLVMDefaultCC() const;
4526   llvm::CallingConv::ID getABIDefaultCC() const;
4527   void setCCs();
4528 };
4529 
4530 class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
4531 public:
4532   ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
4533     :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {}
4534 
4535   const ARMABIInfo &getABIInfo() const {
4536     return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo());
4537   }
4538 
4539   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4540     return 13;
4541   }
4542 
4543   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
4544     return "mov\tr7, r7\t\t@ marker for objc_retainAutoreleaseReturnValue";
4545   }
4546 
4547   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4548                                llvm::Value *Address) const override {
4549     llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
4550 
4551     // 0-15 are the 16 integer registers.
4552     AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15);
4553     return false;
4554   }
4555 
4556   unsigned getSizeOfUnwindException() const override {
4557     if (getABIInfo().isEABI()) return 88;
4558     return TargetCodeGenInfo::getSizeOfUnwindException();
4559   }
4560 
4561   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
4562                            CodeGen::CodeGenModule &CGM) const override {
4563     const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
4564     if (!FD)
4565       return;
4566 
4567     const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>();
4568     if (!Attr)
4569       return;
4570 
4571     const char *Kind;
4572     switch (Attr->getInterrupt()) {
4573     case ARMInterruptAttr::Generic: Kind = ""; break;
4574     case ARMInterruptAttr::IRQ:     Kind = "IRQ"; break;
4575     case ARMInterruptAttr::FIQ:     Kind = "FIQ"; break;
4576     case ARMInterruptAttr::SWI:     Kind = "SWI"; break;
4577     case ARMInterruptAttr::ABORT:   Kind = "ABORT"; break;
4578     case ARMInterruptAttr::UNDEF:   Kind = "UNDEF"; break;
4579     }
4580 
4581     llvm::Function *Fn = cast<llvm::Function>(GV);
4582 
4583     Fn->addFnAttr("interrupt", Kind);
4584 
4585     if (cast<ARMABIInfo>(getABIInfo()).getABIKind() == ARMABIInfo::APCS)
4586       return;
4587 
4588     // AAPCS guarantees that sp will be 8-byte aligned on any public interface,
4589     // however this is not necessarily true on taking any interrupt. Instruct
4590     // the backend to perform a realignment as part of the function prologue.
4591     llvm::AttrBuilder B;
4592     B.addStackAlignmentAttr(8);
4593     Fn->addAttributes(llvm::AttributeSet::FunctionIndex,
4594                       llvm::AttributeSet::get(CGM.getLLVMContext(),
4595                                               llvm::AttributeSet::FunctionIndex,
4596                                               B));
4597   }
4598 };
4599 
4600 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo {
4601   void addStackProbeSizeTargetAttribute(const Decl *D, llvm::GlobalValue *GV,
4602                                         CodeGen::CodeGenModule &CGM) const;
4603 
4604 public:
4605   WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
4606       : ARMTargetCodeGenInfo(CGT, K) {}
4607 
4608   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
4609                            CodeGen::CodeGenModule &CGM) const override;
4610 };
4611 
4612 void WindowsARMTargetCodeGenInfo::addStackProbeSizeTargetAttribute(
4613     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
4614   if (!isa<FunctionDecl>(D))
4615     return;
4616   if (CGM.getCodeGenOpts().StackProbeSize == 4096)
4617     return;
4618 
4619   llvm::Function *F = cast<llvm::Function>(GV);
4620   F->addFnAttr("stack-probe-size",
4621                llvm::utostr(CGM.getCodeGenOpts().StackProbeSize));
4622 }
4623 
4624 void WindowsARMTargetCodeGenInfo::setTargetAttributes(
4625     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
4626   ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
4627   addStackProbeSizeTargetAttribute(D, GV, CGM);
4628 }
4629 }
4630 
4631 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
4632   if (!getCXXABI().classifyReturnType(FI))
4633     FI.getReturnInfo() =
4634         classifyReturnType(FI.getReturnType(), FI.isVariadic());
4635 
4636   for (auto &I : FI.arguments())
4637     I.info = classifyArgumentType(I.type, FI.isVariadic());
4638 
4639   // Always honor user-specified calling convention.
4640   if (FI.getCallingConvention() != llvm::CallingConv::C)
4641     return;
4642 
4643   llvm::CallingConv::ID cc = getRuntimeCC();
4644   if (cc != llvm::CallingConv::C)
4645     FI.setEffectiveCallingConvention(cc);
4646 }
4647 
4648 /// Return the default calling convention that LLVM will use.
4649 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const {
4650   // The default calling convention that LLVM will infer.
4651   if (isEABIHF())
4652     return llvm::CallingConv::ARM_AAPCS_VFP;
4653   else if (isEABI())
4654     return llvm::CallingConv::ARM_AAPCS;
4655   else
4656     return llvm::CallingConv::ARM_APCS;
4657 }
4658 
4659 /// Return the calling convention that our ABI would like us to use
4660 /// as the C calling convention.
4661 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const {
4662   switch (getABIKind()) {
4663   case APCS: return llvm::CallingConv::ARM_APCS;
4664   case AAPCS: return llvm::CallingConv::ARM_AAPCS;
4665   case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
4666   }
4667   llvm_unreachable("bad ABI kind");
4668 }
4669 
4670 void ARMABIInfo::setCCs() {
4671   assert(getRuntimeCC() == llvm::CallingConv::C);
4672 
4673   // Don't muddy up the IR with a ton of explicit annotations if
4674   // they'd just match what LLVM will infer from the triple.
4675   llvm::CallingConv::ID abiCC = getABIDefaultCC();
4676   if (abiCC != getLLVMDefaultCC())
4677     RuntimeCC = abiCC;
4678 
4679   BuiltinCC = (getABIKind() == APCS ?
4680                llvm::CallingConv::ARM_APCS : llvm::CallingConv::ARM_AAPCS);
4681 }
4682 
4683 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty,
4684                                             bool isVariadic) const {
4685   // 6.1.2.1 The following argument types are VFP CPRCs:
4686   //   A single-precision floating-point type (including promoted
4687   //   half-precision types); A double-precision floating-point type;
4688   //   A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate
4689   //   with a Base Type of a single- or double-precision floating-point type,
4690   //   64-bit containerized vectors or 128-bit containerized vectors with one
4691   //   to four Elements.
4692   bool IsEffectivelyAAPCS_VFP = getABIKind() == AAPCS_VFP && !isVariadic;
4693 
4694   Ty = useFirstFieldIfTransparentUnion(Ty);
4695 
4696   // Handle illegal vector types here.
4697   if (isIllegalVectorType(Ty)) {
4698     uint64_t Size = getContext().getTypeSize(Ty);
4699     if (Size <= 32) {
4700       llvm::Type *ResType =
4701           llvm::Type::getInt32Ty(getVMContext());
4702       return ABIArgInfo::getDirect(ResType);
4703     }
4704     if (Size == 64) {
4705       llvm::Type *ResType = llvm::VectorType::get(
4706           llvm::Type::getInt32Ty(getVMContext()), 2);
4707       return ABIArgInfo::getDirect(ResType);
4708     }
4709     if (Size == 128) {
4710       llvm::Type *ResType = llvm::VectorType::get(
4711           llvm::Type::getInt32Ty(getVMContext()), 4);
4712       return ABIArgInfo::getDirect(ResType);
4713     }
4714     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
4715   }
4716 
4717   if (!isAggregateTypeForABI(Ty)) {
4718     // Treat an enum type as its underlying type.
4719     if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
4720       Ty = EnumTy->getDecl()->getIntegerType();
4721     }
4722 
4723     return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend()
4724                                           : ABIArgInfo::getDirect());
4725   }
4726 
4727   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
4728     return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
4729   }
4730 
4731   // Ignore empty records.
4732   if (isEmptyRecord(getContext(), Ty, true))
4733     return ABIArgInfo::getIgnore();
4734 
4735   if (IsEffectivelyAAPCS_VFP) {
4736     // Homogeneous Aggregates need to be expanded when we can fit the aggregate
4737     // into VFP registers.
4738     const Type *Base = nullptr;
4739     uint64_t Members = 0;
4740     if (isHomogeneousAggregate(Ty, Base, Members)) {
4741       assert(Base && "Base class should be set for homogeneous aggregate");
4742       // Base can be a floating-point or a vector.
4743       return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
4744     }
4745   }
4746 
4747   // Support byval for ARM.
4748   // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at
4749   // most 8-byte. We realign the indirect argument if type alignment is bigger
4750   // than ABI alignment.
4751   uint64_t ABIAlign = 4;
4752   uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8;
4753   if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
4754        getABIKind() == ARMABIInfo::AAPCS)
4755     ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
4756 
4757   if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) {
4758     return ABIArgInfo::getIndirect(ABIAlign, /*ByVal=*/true,
4759            /*Realign=*/TyAlign > ABIAlign);
4760   }
4761 
4762   // Otherwise, pass by coercing to a structure of the appropriate size.
4763   llvm::Type* ElemTy;
4764   unsigned SizeRegs;
4765   // FIXME: Try to match the types of the arguments more accurately where
4766   // we can.
4767   if (getContext().getTypeAlign(Ty) <= 32) {
4768     ElemTy = llvm::Type::getInt32Ty(getVMContext());
4769     SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
4770   } else {
4771     ElemTy = llvm::Type::getInt64Ty(getVMContext());
4772     SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
4773   }
4774 
4775   return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs));
4776 }
4777 
4778 static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
4779                               llvm::LLVMContext &VMContext) {
4780   // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
4781   // is called integer-like if its size is less than or equal to one word, and
4782   // the offset of each of its addressable sub-fields is zero.
4783 
4784   uint64_t Size = Context.getTypeSize(Ty);
4785 
4786   // Check that the type fits in a word.
4787   if (Size > 32)
4788     return false;
4789 
4790   // FIXME: Handle vector types!
4791   if (Ty->isVectorType())
4792     return false;
4793 
4794   // Float types are never treated as "integer like".
4795   if (Ty->isRealFloatingType())
4796     return false;
4797 
4798   // If this is a builtin or pointer type then it is ok.
4799   if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
4800     return true;
4801 
4802   // Small complex integer types are "integer like".
4803   if (const ComplexType *CT = Ty->getAs<ComplexType>())
4804     return isIntegerLikeType(CT->getElementType(), Context, VMContext);
4805 
4806   // Single element and zero sized arrays should be allowed, by the definition
4807   // above, but they are not.
4808 
4809   // Otherwise, it must be a record type.
4810   const RecordType *RT = Ty->getAs<RecordType>();
4811   if (!RT) return false;
4812 
4813   // Ignore records with flexible arrays.
4814   const RecordDecl *RD = RT->getDecl();
4815   if (RD->hasFlexibleArrayMember())
4816     return false;
4817 
4818   // Check that all sub-fields are at offset 0, and are themselves "integer
4819   // like".
4820   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
4821 
4822   bool HadField = false;
4823   unsigned idx = 0;
4824   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
4825        i != e; ++i, ++idx) {
4826     const FieldDecl *FD = *i;
4827 
4828     // Bit-fields are not addressable, we only need to verify they are "integer
4829     // like". We still have to disallow a subsequent non-bitfield, for example:
4830     //   struct { int : 0; int x }
4831     // is non-integer like according to gcc.
4832     if (FD->isBitField()) {
4833       if (!RD->isUnion())
4834         HadField = true;
4835 
4836       if (!isIntegerLikeType(FD->getType(), Context, VMContext))
4837         return false;
4838 
4839       continue;
4840     }
4841 
4842     // Check if this field is at offset 0.
4843     if (Layout.getFieldOffset(idx) != 0)
4844       return false;
4845 
4846     if (!isIntegerLikeType(FD->getType(), Context, VMContext))
4847       return false;
4848 
4849     // Only allow at most one field in a structure. This doesn't match the
4850     // wording above, but follows gcc in situations with a field following an
4851     // empty structure.
4852     if (!RD->isUnion()) {
4853       if (HadField)
4854         return false;
4855 
4856       HadField = true;
4857     }
4858   }
4859 
4860   return true;
4861 }
4862 
4863 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy,
4864                                           bool isVariadic) const {
4865   bool IsEffectivelyAAPCS_VFP = getABIKind() == AAPCS_VFP && !isVariadic;
4866 
4867   if (RetTy->isVoidType())
4868     return ABIArgInfo::getIgnore();
4869 
4870   // Large vector types should be returned via memory.
4871   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) {
4872     return ABIArgInfo::getIndirect(0);
4873   }
4874 
4875   if (!isAggregateTypeForABI(RetTy)) {
4876     // Treat an enum type as its underlying type.
4877     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
4878       RetTy = EnumTy->getDecl()->getIntegerType();
4879 
4880     return RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend()
4881                                             : ABIArgInfo::getDirect();
4882   }
4883 
4884   // Are we following APCS?
4885   if (getABIKind() == APCS) {
4886     if (isEmptyRecord(getContext(), RetTy, false))
4887       return ABIArgInfo::getIgnore();
4888 
4889     // Complex types are all returned as packed integers.
4890     //
4891     // FIXME: Consider using 2 x vector types if the back end handles them
4892     // correctly.
4893     if (RetTy->isAnyComplexType())
4894       return ABIArgInfo::getDirect(llvm::IntegerType::get(
4895           getVMContext(), getContext().getTypeSize(RetTy)));
4896 
4897     // Integer like structures are returned in r0.
4898     if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
4899       // Return in the smallest viable integer type.
4900       uint64_t Size = getContext().getTypeSize(RetTy);
4901       if (Size <= 8)
4902         return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
4903       if (Size <= 16)
4904         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
4905       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
4906     }
4907 
4908     // Otherwise return in memory.
4909     return ABIArgInfo::getIndirect(0);
4910   }
4911 
4912   // Otherwise this is an AAPCS variant.
4913 
4914   if (isEmptyRecord(getContext(), RetTy, true))
4915     return ABIArgInfo::getIgnore();
4916 
4917   // Check for homogeneous aggregates with AAPCS-VFP.
4918   if (IsEffectivelyAAPCS_VFP) {
4919     const Type *Base = nullptr;
4920     uint64_t Members;
4921     if (isHomogeneousAggregate(RetTy, Base, Members)) {
4922       assert(Base && "Base class should be set for homogeneous aggregate");
4923       // Homogeneous Aggregates are returned directly.
4924       return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
4925     }
4926   }
4927 
4928   // Aggregates <= 4 bytes are returned in r0; other aggregates
4929   // are returned indirectly.
4930   uint64_t Size = getContext().getTypeSize(RetTy);
4931   if (Size <= 32) {
4932     if (getDataLayout().isBigEndian())
4933       // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4)
4934       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
4935 
4936     // Return in the smallest viable integer type.
4937     if (Size <= 8)
4938       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
4939     if (Size <= 16)
4940       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
4941     return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
4942   }
4943 
4944   return ABIArgInfo::getIndirect(0);
4945 }
4946 
4947 /// isIllegalVector - check whether Ty is an illegal vector type.
4948 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const {
4949   if (const VectorType *VT = Ty->getAs<VectorType>()) {
4950     // Check whether VT is legal.
4951     unsigned NumElements = VT->getNumElements();
4952     uint64_t Size = getContext().getTypeSize(VT);
4953     // NumElements should be power of 2.
4954     if ((NumElements & (NumElements - 1)) != 0)
4955       return true;
4956     // Size should be greater than 32 bits.
4957     return Size <= 32;
4958   }
4959   return false;
4960 }
4961 
4962 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
4963   // Homogeneous aggregates for AAPCS-VFP must have base types of float,
4964   // double, or 64-bit or 128-bit vectors.
4965   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
4966     if (BT->getKind() == BuiltinType::Float ||
4967         BT->getKind() == BuiltinType::Double ||
4968         BT->getKind() == BuiltinType::LongDouble)
4969       return true;
4970   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
4971     unsigned VecSize = getContext().getTypeSize(VT);
4972     if (VecSize == 64 || VecSize == 128)
4973       return true;
4974   }
4975   return false;
4976 }
4977 
4978 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
4979                                                    uint64_t Members) const {
4980   return Members <= 4;
4981 }
4982 
4983 llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4984                                    CodeGenFunction &CGF) const {
4985   llvm::Type *BP = CGF.Int8PtrTy;
4986   llvm::Type *BPP = CGF.Int8PtrPtrTy;
4987 
4988   CGBuilderTy &Builder = CGF.Builder;
4989   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
4990   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
4991 
4992   if (isEmptyRecord(getContext(), Ty, true)) {
4993     // These are ignored for parameter passing purposes.
4994     llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
4995     return Builder.CreateBitCast(Addr, PTy);
4996   }
4997 
4998   uint64_t Size = CGF.getContext().getTypeSize(Ty) / 8;
4999   uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8;
5000   bool IsIndirect = false;
5001 
5002   // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for
5003   // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte.
5004   if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
5005       getABIKind() == ARMABIInfo::AAPCS)
5006     TyAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
5007   else
5008     TyAlign = 4;
5009   // Use indirect if size of the illegal vector is bigger than 16 bytes.
5010   if (isIllegalVectorType(Ty) && Size > 16) {
5011     IsIndirect = true;
5012     Size = 4;
5013     TyAlign = 4;
5014   }
5015 
5016   // Handle address alignment for ABI alignment > 4 bytes.
5017   if (TyAlign > 4) {
5018     assert((TyAlign & (TyAlign - 1)) == 0 &&
5019            "Alignment is not power of 2!");
5020     llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty);
5021     AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1));
5022     AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1)));
5023     Addr = Builder.CreateIntToPtr(AddrAsInt, BP, "ap.align");
5024   }
5025 
5026   uint64_t Offset =
5027     llvm::RoundUpToAlignment(Size, 4);
5028   llvm::Value *NextAddr =
5029     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
5030                       "ap.next");
5031   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
5032 
5033   if (IsIndirect)
5034     Addr = Builder.CreateLoad(Builder.CreateBitCast(Addr, BPP));
5035   else if (TyAlign < CGF.getContext().getTypeAlign(Ty) / 8) {
5036     // We can't directly cast ap.cur to pointer to a vector type, since ap.cur
5037     // may not be correctly aligned for the vector type. We create an aligned
5038     // temporary space and copy the content over from ap.cur to the temporary
5039     // space. This is necessary if the natural alignment of the type is greater
5040     // than the ABI alignment.
5041     llvm::Type *I8PtrTy = Builder.getInt8PtrTy();
5042     CharUnits CharSize = getContext().getTypeSizeInChars(Ty);
5043     llvm::Value *AlignedTemp = CGF.CreateTempAlloca(CGF.ConvertType(Ty),
5044                                                     "var.align");
5045     llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy);
5046     llvm::Value *Src = Builder.CreateBitCast(Addr, I8PtrTy);
5047     Builder.CreateMemCpy(Dst, Src,
5048         llvm::ConstantInt::get(CGF.IntPtrTy, CharSize.getQuantity()),
5049         TyAlign, false);
5050     Addr = AlignedTemp; //The content is in aligned location.
5051   }
5052   llvm::Type *PTy =
5053     llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
5054   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
5055 
5056   return AddrTyped;
5057 }
5058 
5059 //===----------------------------------------------------------------------===//
5060 // NVPTX ABI Implementation
5061 //===----------------------------------------------------------------------===//
5062 
5063 namespace {
5064 
5065 class NVPTXABIInfo : public ABIInfo {
5066 public:
5067   NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
5068 
5069   ABIArgInfo classifyReturnType(QualType RetTy) const;
5070   ABIArgInfo classifyArgumentType(QualType Ty) const;
5071 
5072   void computeInfo(CGFunctionInfo &FI) const override;
5073   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5074                          CodeGenFunction &CFG) const override;
5075 };
5076 
5077 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo {
5078 public:
5079   NVPTXTargetCodeGenInfo(CodeGenTypes &CGT)
5080     : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {}
5081 
5082   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5083                            CodeGen::CodeGenModule &M) const override;
5084 private:
5085   // Adds a NamedMDNode with F, Name, and Operand as operands, and adds the
5086   // resulting MDNode to the nvvm.annotations MDNode.
5087   static void addNVVMMetadata(llvm::Function *F, StringRef Name, int Operand);
5088 };
5089 
5090 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const {
5091   if (RetTy->isVoidType())
5092     return ABIArgInfo::getIgnore();
5093 
5094   // note: this is different from default ABI
5095   if (!RetTy->isScalarType())
5096     return ABIArgInfo::getDirect();
5097 
5098   // Treat an enum type as its underlying type.
5099   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5100     RetTy = EnumTy->getDecl()->getIntegerType();
5101 
5102   return (RetTy->isPromotableIntegerType() ?
5103           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5104 }
5105 
5106 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const {
5107   // Treat an enum type as its underlying type.
5108   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5109     Ty = EnumTy->getDecl()->getIntegerType();
5110 
5111   // Return aggregates type as indirect by value
5112   if (isAggregateTypeForABI(Ty))
5113     return ABIArgInfo::getIndirect(0, /* byval */ true);
5114 
5115   return (Ty->isPromotableIntegerType() ?
5116           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5117 }
5118 
5119 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
5120   if (!getCXXABI().classifyReturnType(FI))
5121     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
5122   for (auto &I : FI.arguments())
5123     I.info = classifyArgumentType(I.type);
5124 
5125   // Always honor user-specified calling convention.
5126   if (FI.getCallingConvention() != llvm::CallingConv::C)
5127     return;
5128 
5129   FI.setEffectiveCallingConvention(getRuntimeCC());
5130 }
5131 
5132 llvm::Value *NVPTXABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5133                                      CodeGenFunction &CFG) const {
5134   llvm_unreachable("NVPTX does not support varargs");
5135 }
5136 
5137 void NVPTXTargetCodeGenInfo::
5138 setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5139                     CodeGen::CodeGenModule &M) const{
5140   const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
5141   if (!FD) return;
5142 
5143   llvm::Function *F = cast<llvm::Function>(GV);
5144 
5145   // Perform special handling in OpenCL mode
5146   if (M.getLangOpts().OpenCL) {
5147     // Use OpenCL function attributes to check for kernel functions
5148     // By default, all functions are device functions
5149     if (FD->hasAttr<OpenCLKernelAttr>()) {
5150       // OpenCL __kernel functions get kernel metadata
5151       // Create !{<func-ref>, metadata !"kernel", i32 1} node
5152       addNVVMMetadata(F, "kernel", 1);
5153       // And kernel functions are not subject to inlining
5154       F->addFnAttr(llvm::Attribute::NoInline);
5155     }
5156   }
5157 
5158   // Perform special handling in CUDA mode.
5159   if (M.getLangOpts().CUDA) {
5160     // CUDA __global__ functions get a kernel metadata entry.  Since
5161     // __global__ functions cannot be called from the device, we do not
5162     // need to set the noinline attribute.
5163     if (FD->hasAttr<CUDAGlobalAttr>()) {
5164       // Create !{<func-ref>, metadata !"kernel", i32 1} node
5165       addNVVMMetadata(F, "kernel", 1);
5166     }
5167     if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) {
5168       // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node
5169       llvm::APSInt MaxThreads(32);
5170       MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext());
5171       if (MaxThreads > 0)
5172         addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue());
5173 
5174       // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was
5175       // not specified in __launch_bounds__ or if the user specified a 0 value,
5176       // we don't have to add a PTX directive.
5177       if (Attr->getMinBlocks()) {
5178         llvm::APSInt MinBlocks(32);
5179         MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext());
5180         if (MinBlocks > 0)
5181           // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node
5182           addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue());
5183       }
5184     }
5185   }
5186 }
5187 
5188 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::Function *F, StringRef Name,
5189                                              int Operand) {
5190   llvm::Module *M = F->getParent();
5191   llvm::LLVMContext &Ctx = M->getContext();
5192 
5193   // Get "nvvm.annotations" metadata node
5194   llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations");
5195 
5196   llvm::Metadata *MDVals[] = {
5197       llvm::ConstantAsMetadata::get(F), llvm::MDString::get(Ctx, Name),
5198       llvm::ConstantAsMetadata::get(
5199           llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))};
5200   // Append metadata to nvvm.annotations
5201   MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
5202 }
5203 }
5204 
5205 //===----------------------------------------------------------------------===//
5206 // SystemZ ABI Implementation
5207 //===----------------------------------------------------------------------===//
5208 
5209 namespace {
5210 
5211 class SystemZABIInfo : public ABIInfo {
5212   bool HasVector;
5213 
5214 public:
5215   SystemZABIInfo(CodeGenTypes &CGT, bool HV)
5216     : ABIInfo(CGT), HasVector(HV) {}
5217 
5218   bool isPromotableIntegerType(QualType Ty) const;
5219   bool isCompoundType(QualType Ty) const;
5220   bool isVectorArgumentType(QualType Ty) const;
5221   bool isFPArgumentType(QualType Ty) const;
5222   QualType GetSingleElementType(QualType Ty) const;
5223 
5224   ABIArgInfo classifyReturnType(QualType RetTy) const;
5225   ABIArgInfo classifyArgumentType(QualType ArgTy) const;
5226 
5227   void computeInfo(CGFunctionInfo &FI) const override {
5228     if (!getCXXABI().classifyReturnType(FI))
5229       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
5230     for (auto &I : FI.arguments())
5231       I.info = classifyArgumentType(I.type);
5232   }
5233 
5234   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5235                          CodeGenFunction &CGF) const override;
5236 };
5237 
5238 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
5239 public:
5240   SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector)
5241     : TargetCodeGenInfo(new SystemZABIInfo(CGT, HasVector)) {}
5242 };
5243 
5244 }
5245 
5246 bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const {
5247   // Treat an enum type as its underlying type.
5248   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5249     Ty = EnumTy->getDecl()->getIntegerType();
5250 
5251   // Promotable integer types are required to be promoted by the ABI.
5252   if (Ty->isPromotableIntegerType())
5253     return true;
5254 
5255   // 32-bit values must also be promoted.
5256   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
5257     switch (BT->getKind()) {
5258     case BuiltinType::Int:
5259     case BuiltinType::UInt:
5260       return true;
5261     default:
5262       return false;
5263     }
5264   return false;
5265 }
5266 
5267 bool SystemZABIInfo::isCompoundType(QualType Ty) const {
5268   return (Ty->isAnyComplexType() ||
5269           Ty->isVectorType() ||
5270           isAggregateTypeForABI(Ty));
5271 }
5272 
5273 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const {
5274   return (HasVector &&
5275           Ty->isVectorType() &&
5276           getContext().getTypeSize(Ty) <= 128);
5277 }
5278 
5279 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const {
5280   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
5281     switch (BT->getKind()) {
5282     case BuiltinType::Float:
5283     case BuiltinType::Double:
5284       return true;
5285     default:
5286       return false;
5287     }
5288 
5289   return false;
5290 }
5291 
5292 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const {
5293   if (const RecordType *RT = Ty->getAsStructureType()) {
5294     const RecordDecl *RD = RT->getDecl();
5295     QualType Found;
5296 
5297     // If this is a C++ record, check the bases first.
5298     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
5299       for (const auto &I : CXXRD->bases()) {
5300         QualType Base = I.getType();
5301 
5302         // Empty bases don't affect things either way.
5303         if (isEmptyRecord(getContext(), Base, true))
5304           continue;
5305 
5306         if (!Found.isNull())
5307           return Ty;
5308         Found = GetSingleElementType(Base);
5309       }
5310 
5311     // Check the fields.
5312     for (const auto *FD : RD->fields()) {
5313       // For compatibility with GCC, ignore empty bitfields in C++ mode.
5314       // Unlike isSingleElementStruct(), empty structure and array fields
5315       // do count.  So do anonymous bitfields that aren't zero-sized.
5316       if (getContext().getLangOpts().CPlusPlus &&
5317           FD->isBitField() && FD->getBitWidthValue(getContext()) == 0)
5318         continue;
5319 
5320       // Unlike isSingleElementStruct(), arrays do not count.
5321       // Nested structures still do though.
5322       if (!Found.isNull())
5323         return Ty;
5324       Found = GetSingleElementType(FD->getType());
5325     }
5326 
5327     // Unlike isSingleElementStruct(), trailing padding is allowed.
5328     // An 8-byte aligned struct s { float f; } is passed as a double.
5329     if (!Found.isNull())
5330       return Found;
5331   }
5332 
5333   return Ty;
5334 }
5335 
5336 llvm::Value *SystemZABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5337                                        CodeGenFunction &CGF) const {
5338   // Assume that va_list type is correct; should be pointer to LLVM type:
5339   // struct {
5340   //   i64 __gpr;
5341   //   i64 __fpr;
5342   //   i8 *__overflow_arg_area;
5343   //   i8 *__reg_save_area;
5344   // };
5345 
5346   // Every non-vector argument occupies 8 bytes and is passed by preference
5347   // in either GPRs or FPRs.  Vector arguments occupy 8 or 16 bytes and are
5348   // always passed on the stack.
5349   Ty = CGF.getContext().getCanonicalType(Ty);
5350   llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty);
5351   llvm::Type *APTy = llvm::PointerType::getUnqual(ArgTy);
5352   ABIArgInfo AI = classifyArgumentType(Ty);
5353   bool IsIndirect = AI.isIndirect();
5354   bool InFPRs = false;
5355   bool IsVector = false;
5356   unsigned UnpaddedBitSize;
5357   if (IsIndirect) {
5358     APTy = llvm::PointerType::getUnqual(APTy);
5359     UnpaddedBitSize = 64;
5360   } else {
5361     if (AI.getCoerceToType())
5362       ArgTy = AI.getCoerceToType();
5363     InFPRs = ArgTy->isFloatTy() || ArgTy->isDoubleTy();
5364     IsVector = ArgTy->isVectorTy();
5365     UnpaddedBitSize = getContext().getTypeSize(Ty);
5366   }
5367   unsigned PaddedBitSize = (IsVector && UnpaddedBitSize > 64) ? 128 : 64;
5368   assert((UnpaddedBitSize <= PaddedBitSize) && "Invalid argument size.");
5369 
5370   unsigned PaddedSize = PaddedBitSize / 8;
5371   unsigned Padding = (PaddedBitSize - UnpaddedBitSize) / 8;
5372 
5373   llvm::Type *IndexTy = CGF.Int64Ty;
5374   llvm::Value *PaddedSizeV = llvm::ConstantInt::get(IndexTy, PaddedSize);
5375 
5376   if (IsVector) {
5377     // Work out the address of a vector argument on the stack.
5378     // Vector arguments are always passed in the high bits of a
5379     // single (8 byte) or double (16 byte) stack slot.
5380     llvm::Value *OverflowArgAreaPtr =
5381       CGF.Builder.CreateStructGEP(nullptr, VAListAddr, 2,
5382                                   "overflow_arg_area_ptr");
5383     llvm::Value *OverflowArgArea =
5384       CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area");
5385     llvm::Value *MemAddr =
5386       CGF.Builder.CreateBitCast(OverflowArgArea, APTy, "mem_addr");
5387 
5388     // Update overflow_arg_area_ptr pointer
5389     llvm::Value *NewOverflowArgArea =
5390       CGF.Builder.CreateGEP(OverflowArgArea, PaddedSizeV, "overflow_arg_area");
5391     CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
5392 
5393     return MemAddr;
5394   }
5395 
5396   unsigned MaxRegs, RegCountField, RegSaveIndex, RegPadding;
5397   if (InFPRs) {
5398     MaxRegs = 4; // Maximum of 4 FPR arguments
5399     RegCountField = 1; // __fpr
5400     RegSaveIndex = 16; // save offset for f0
5401     RegPadding = 0; // floats are passed in the high bits of an FPR
5402   } else {
5403     MaxRegs = 5; // Maximum of 5 GPR arguments
5404     RegCountField = 0; // __gpr
5405     RegSaveIndex = 2; // save offset for r2
5406     RegPadding = Padding; // values are passed in the low bits of a GPR
5407   }
5408 
5409   llvm::Value *RegCountPtr = CGF.Builder.CreateStructGEP(
5410       nullptr, VAListAddr, RegCountField, "reg_count_ptr");
5411   llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count");
5412   llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs);
5413   llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV,
5414                                                  "fits_in_regs");
5415 
5416   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
5417   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
5418   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
5419   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
5420 
5421   // Emit code to load the value if it was passed in registers.
5422   CGF.EmitBlock(InRegBlock);
5423 
5424   // Work out the address of an argument register.
5425   llvm::Value *ScaledRegCount =
5426     CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count");
5427   llvm::Value *RegBase =
5428     llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize + RegPadding);
5429   llvm::Value *RegOffset =
5430     CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset");
5431   llvm::Value *RegSaveAreaPtr =
5432       CGF.Builder.CreateStructGEP(nullptr, VAListAddr, 3, "reg_save_area_ptr");
5433   llvm::Value *RegSaveArea =
5434     CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area");
5435   llvm::Value *RawRegAddr =
5436     CGF.Builder.CreateGEP(RegSaveArea, RegOffset, "raw_reg_addr");
5437   llvm::Value *RegAddr =
5438     CGF.Builder.CreateBitCast(RawRegAddr, APTy, "reg_addr");
5439 
5440   // Update the register count
5441   llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1);
5442   llvm::Value *NewRegCount =
5443     CGF.Builder.CreateAdd(RegCount, One, "reg_count");
5444   CGF.Builder.CreateStore(NewRegCount, RegCountPtr);
5445   CGF.EmitBranch(ContBlock);
5446 
5447   // Emit code to load the value if it was passed in memory.
5448   CGF.EmitBlock(InMemBlock);
5449 
5450   // Work out the address of a stack argument.
5451   llvm::Value *OverflowArgAreaPtr = CGF.Builder.CreateStructGEP(
5452       nullptr, VAListAddr, 2, "overflow_arg_area_ptr");
5453   llvm::Value *OverflowArgArea =
5454     CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area");
5455   llvm::Value *PaddingV = llvm::ConstantInt::get(IndexTy, Padding);
5456   llvm::Value *RawMemAddr =
5457     CGF.Builder.CreateGEP(OverflowArgArea, PaddingV, "raw_mem_addr");
5458   llvm::Value *MemAddr =
5459     CGF.Builder.CreateBitCast(RawMemAddr, APTy, "mem_addr");
5460 
5461   // Update overflow_arg_area_ptr pointer
5462   llvm::Value *NewOverflowArgArea =
5463     CGF.Builder.CreateGEP(OverflowArgArea, PaddedSizeV, "overflow_arg_area");
5464   CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
5465   CGF.EmitBranch(ContBlock);
5466 
5467   // Return the appropriate result.
5468   CGF.EmitBlock(ContBlock);
5469   llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(APTy, 2, "va_arg.addr");
5470   ResAddr->addIncoming(RegAddr, InRegBlock);
5471   ResAddr->addIncoming(MemAddr, InMemBlock);
5472 
5473   if (IsIndirect)
5474     return CGF.Builder.CreateLoad(ResAddr, "indirect_arg");
5475 
5476   return ResAddr;
5477 }
5478 
5479 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const {
5480   if (RetTy->isVoidType())
5481     return ABIArgInfo::getIgnore();
5482   if (isVectorArgumentType(RetTy))
5483     return ABIArgInfo::getDirect();
5484   if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64)
5485     return ABIArgInfo::getIndirect(0);
5486   return (isPromotableIntegerType(RetTy) ?
5487           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5488 }
5489 
5490 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const {
5491   // Handle the generic C++ ABI.
5492   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
5493     return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
5494 
5495   // Integers and enums are extended to full register width.
5496   if (isPromotableIntegerType(Ty))
5497     return ABIArgInfo::getExtend();
5498 
5499   // Handle vector types and vector-like structure types.  Note that
5500   // as opposed to float-like structure types, we do not allow any
5501   // padding for vector-like structures, so verify the sizes match.
5502   uint64_t Size = getContext().getTypeSize(Ty);
5503   QualType SingleElementTy = GetSingleElementType(Ty);
5504   if (isVectorArgumentType(SingleElementTy) &&
5505       getContext().getTypeSize(SingleElementTy) == Size)
5506     return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy));
5507 
5508   // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly.
5509   if (Size != 8 && Size != 16 && Size != 32 && Size != 64)
5510     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
5511 
5512   // Handle small structures.
5513   if (const RecordType *RT = Ty->getAs<RecordType>()) {
5514     // Structures with flexible arrays have variable length, so really
5515     // fail the size test above.
5516     const RecordDecl *RD = RT->getDecl();
5517     if (RD->hasFlexibleArrayMember())
5518       return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
5519 
5520     // The structure is passed as an unextended integer, a float, or a double.
5521     llvm::Type *PassTy;
5522     if (isFPArgumentType(SingleElementTy)) {
5523       assert(Size == 32 || Size == 64);
5524       if (Size == 32)
5525         PassTy = llvm::Type::getFloatTy(getVMContext());
5526       else
5527         PassTy = llvm::Type::getDoubleTy(getVMContext());
5528     } else
5529       PassTy = llvm::IntegerType::get(getVMContext(), Size);
5530     return ABIArgInfo::getDirect(PassTy);
5531   }
5532 
5533   // Non-structure compounds are passed indirectly.
5534   if (isCompoundType(Ty))
5535     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
5536 
5537   return ABIArgInfo::getDirect(nullptr);
5538 }
5539 
5540 //===----------------------------------------------------------------------===//
5541 // MSP430 ABI Implementation
5542 //===----------------------------------------------------------------------===//
5543 
5544 namespace {
5545 
5546 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
5547 public:
5548   MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
5549     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
5550   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5551                            CodeGen::CodeGenModule &M) const override;
5552 };
5553 
5554 }
5555 
5556 void MSP430TargetCodeGenInfo::setTargetAttributes(const Decl *D,
5557                                                   llvm::GlobalValue *GV,
5558                                              CodeGen::CodeGenModule &M) const {
5559   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
5560     if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) {
5561       // Handle 'interrupt' attribute:
5562       llvm::Function *F = cast<llvm::Function>(GV);
5563 
5564       // Step 1: Set ISR calling convention.
5565       F->setCallingConv(llvm::CallingConv::MSP430_INTR);
5566 
5567       // Step 2: Add attributes goodness.
5568       F->addFnAttr(llvm::Attribute::NoInline);
5569 
5570       // Step 3: Emit ISR vector alias.
5571       unsigned Num = attr->getNumber() / 2;
5572       llvm::GlobalAlias::create(llvm::Function::ExternalLinkage,
5573                                 "__isr_" + Twine(Num), F);
5574     }
5575   }
5576 }
5577 
5578 //===----------------------------------------------------------------------===//
5579 // MIPS ABI Implementation.  This works for both little-endian and
5580 // big-endian variants.
5581 //===----------------------------------------------------------------------===//
5582 
5583 namespace {
5584 class MipsABIInfo : public ABIInfo {
5585   bool IsO32;
5586   unsigned MinABIStackAlignInBytes, StackAlignInBytes;
5587   void CoerceToIntArgs(uint64_t TySize,
5588                        SmallVectorImpl<llvm::Type *> &ArgList) const;
5589   llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const;
5590   llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const;
5591   llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const;
5592 public:
5593   MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) :
5594     ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8),
5595     StackAlignInBytes(IsO32 ? 8 : 16) {}
5596 
5597   ABIArgInfo classifyReturnType(QualType RetTy) const;
5598   ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const;
5599   void computeInfo(CGFunctionInfo &FI) const override;
5600   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5601                          CodeGenFunction &CGF) const override;
5602   bool shouldSignExtUnsignedType(QualType Ty) const override;
5603 };
5604 
5605 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
5606   unsigned SizeOfUnwindException;
5607 public:
5608   MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32)
5609     : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)),
5610       SizeOfUnwindException(IsO32 ? 24 : 32) {}
5611 
5612   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
5613     return 29;
5614   }
5615 
5616   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5617                            CodeGen::CodeGenModule &CGM) const override {
5618     const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
5619     if (!FD) return;
5620     llvm::Function *Fn = cast<llvm::Function>(GV);
5621     if (FD->hasAttr<Mips16Attr>()) {
5622       Fn->addFnAttr("mips16");
5623     }
5624     else if (FD->hasAttr<NoMips16Attr>()) {
5625       Fn->addFnAttr("nomips16");
5626     }
5627   }
5628 
5629   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5630                                llvm::Value *Address) const override;
5631 
5632   unsigned getSizeOfUnwindException() const override {
5633     return SizeOfUnwindException;
5634   }
5635 };
5636 }
5637 
5638 void MipsABIInfo::CoerceToIntArgs(
5639     uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const {
5640   llvm::IntegerType *IntTy =
5641     llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
5642 
5643   // Add (TySize / MinABIStackAlignInBytes) args of IntTy.
5644   for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N)
5645     ArgList.push_back(IntTy);
5646 
5647   // If necessary, add one more integer type to ArgList.
5648   unsigned R = TySize % (MinABIStackAlignInBytes * 8);
5649 
5650   if (R)
5651     ArgList.push_back(llvm::IntegerType::get(getVMContext(), R));
5652 }
5653 
5654 // In N32/64, an aligned double precision floating point field is passed in
5655 // a register.
5656 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const {
5657   SmallVector<llvm::Type*, 8> ArgList, IntArgList;
5658 
5659   if (IsO32) {
5660     CoerceToIntArgs(TySize, ArgList);
5661     return llvm::StructType::get(getVMContext(), ArgList);
5662   }
5663 
5664   if (Ty->isComplexType())
5665     return CGT.ConvertType(Ty);
5666 
5667   const RecordType *RT = Ty->getAs<RecordType>();
5668 
5669   // Unions/vectors are passed in integer registers.
5670   if (!RT || !RT->isStructureOrClassType()) {
5671     CoerceToIntArgs(TySize, ArgList);
5672     return llvm::StructType::get(getVMContext(), ArgList);
5673   }
5674 
5675   const RecordDecl *RD = RT->getDecl();
5676   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
5677   assert(!(TySize % 8) && "Size of structure must be multiple of 8.");
5678 
5679   uint64_t LastOffset = 0;
5680   unsigned idx = 0;
5681   llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64);
5682 
5683   // Iterate over fields in the struct/class and check if there are any aligned
5684   // double fields.
5685   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
5686        i != e; ++i, ++idx) {
5687     const QualType Ty = i->getType();
5688     const BuiltinType *BT = Ty->getAs<BuiltinType>();
5689 
5690     if (!BT || BT->getKind() != BuiltinType::Double)
5691       continue;
5692 
5693     uint64_t Offset = Layout.getFieldOffset(idx);
5694     if (Offset % 64) // Ignore doubles that are not aligned.
5695       continue;
5696 
5697     // Add ((Offset - LastOffset) / 64) args of type i64.
5698     for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j)
5699       ArgList.push_back(I64);
5700 
5701     // Add double type.
5702     ArgList.push_back(llvm::Type::getDoubleTy(getVMContext()));
5703     LastOffset = Offset + 64;
5704   }
5705 
5706   CoerceToIntArgs(TySize - LastOffset, IntArgList);
5707   ArgList.append(IntArgList.begin(), IntArgList.end());
5708 
5709   return llvm::StructType::get(getVMContext(), ArgList);
5710 }
5711 
5712 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset,
5713                                         uint64_t Offset) const {
5714   if (OrigOffset + MinABIStackAlignInBytes > Offset)
5715     return nullptr;
5716 
5717   return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8);
5718 }
5719 
5720 ABIArgInfo
5721 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const {
5722   Ty = useFirstFieldIfTransparentUnion(Ty);
5723 
5724   uint64_t OrigOffset = Offset;
5725   uint64_t TySize = getContext().getTypeSize(Ty);
5726   uint64_t Align = getContext().getTypeAlign(Ty) / 8;
5727 
5728   Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes),
5729                    (uint64_t)StackAlignInBytes);
5730   unsigned CurrOffset = llvm::RoundUpToAlignment(Offset, Align);
5731   Offset = CurrOffset + llvm::RoundUpToAlignment(TySize, Align * 8) / 8;
5732 
5733   if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) {
5734     // Ignore empty aggregates.
5735     if (TySize == 0)
5736       return ABIArgInfo::getIgnore();
5737 
5738     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
5739       Offset = OrigOffset + MinABIStackAlignInBytes;
5740       return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
5741     }
5742 
5743     // If we have reached here, aggregates are passed directly by coercing to
5744     // another structure type. Padding is inserted if the offset of the
5745     // aggregate is unaligned.
5746     ABIArgInfo ArgInfo =
5747         ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0,
5748                               getPaddingType(OrigOffset, CurrOffset));
5749     ArgInfo.setInReg(true);
5750     return ArgInfo;
5751   }
5752 
5753   // Treat an enum type as its underlying type.
5754   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5755     Ty = EnumTy->getDecl()->getIntegerType();
5756 
5757   // All integral types are promoted to the GPR width.
5758   if (Ty->isIntegralOrEnumerationType())
5759     return ABIArgInfo::getExtend();
5760 
5761   return ABIArgInfo::getDirect(
5762       nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset));
5763 }
5764 
5765 llvm::Type*
5766 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const {
5767   const RecordType *RT = RetTy->getAs<RecordType>();
5768   SmallVector<llvm::Type*, 8> RTList;
5769 
5770   if (RT && RT->isStructureOrClassType()) {
5771     const RecordDecl *RD = RT->getDecl();
5772     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
5773     unsigned FieldCnt = Layout.getFieldCount();
5774 
5775     // N32/64 returns struct/classes in floating point registers if the
5776     // following conditions are met:
5777     // 1. The size of the struct/class is no larger than 128-bit.
5778     // 2. The struct/class has one or two fields all of which are floating
5779     //    point types.
5780     // 3. The offset of the first field is zero (this follows what gcc does).
5781     //
5782     // Any other composite results are returned in integer registers.
5783     //
5784     if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) {
5785       RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end();
5786       for (; b != e; ++b) {
5787         const BuiltinType *BT = b->getType()->getAs<BuiltinType>();
5788 
5789         if (!BT || !BT->isFloatingPoint())
5790           break;
5791 
5792         RTList.push_back(CGT.ConvertType(b->getType()));
5793       }
5794 
5795       if (b == e)
5796         return llvm::StructType::get(getVMContext(), RTList,
5797                                      RD->hasAttr<PackedAttr>());
5798 
5799       RTList.clear();
5800     }
5801   }
5802 
5803   CoerceToIntArgs(Size, RTList);
5804   return llvm::StructType::get(getVMContext(), RTList);
5805 }
5806 
5807 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
5808   uint64_t Size = getContext().getTypeSize(RetTy);
5809 
5810   if (RetTy->isVoidType())
5811     return ABIArgInfo::getIgnore();
5812 
5813   // O32 doesn't treat zero-sized structs differently from other structs.
5814   // However, N32/N64 ignores zero sized return values.
5815   if (!IsO32 && Size == 0)
5816     return ABIArgInfo::getIgnore();
5817 
5818   if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) {
5819     if (Size <= 128) {
5820       if (RetTy->isAnyComplexType())
5821         return ABIArgInfo::getDirect();
5822 
5823       // O32 returns integer vectors in registers and N32/N64 returns all small
5824       // aggregates in registers.
5825       if (!IsO32 ||
5826           (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) {
5827         ABIArgInfo ArgInfo =
5828             ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
5829         ArgInfo.setInReg(true);
5830         return ArgInfo;
5831       }
5832     }
5833 
5834     return ABIArgInfo::getIndirect(0);
5835   }
5836 
5837   // Treat an enum type as its underlying type.
5838   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5839     RetTy = EnumTy->getDecl()->getIntegerType();
5840 
5841   return (RetTy->isPromotableIntegerType() ?
5842           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5843 }
5844 
5845 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
5846   ABIArgInfo &RetInfo = FI.getReturnInfo();
5847   if (!getCXXABI().classifyReturnType(FI))
5848     RetInfo = classifyReturnType(FI.getReturnType());
5849 
5850   // Check if a pointer to an aggregate is passed as a hidden argument.
5851   uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0;
5852 
5853   for (auto &I : FI.arguments())
5854     I.info = classifyArgumentType(I.type, Offset);
5855 }
5856 
5857 llvm::Value* MipsABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5858                                     CodeGenFunction &CGF) const {
5859   llvm::Type *BP = CGF.Int8PtrTy;
5860   llvm::Type *BPP = CGF.Int8PtrPtrTy;
5861 
5862   // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64.
5863   // Pointers are also promoted in the same way but this only matters for N32.
5864   unsigned SlotSizeInBits = IsO32 ? 32 : 64;
5865   unsigned PtrWidth = getTarget().getPointerWidth(0);
5866   if ((Ty->isIntegerType() &&
5867           CGF.getContext().getIntWidth(Ty) < SlotSizeInBits) ||
5868       (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) {
5869     Ty = CGF.getContext().getIntTypeForBitwidth(SlotSizeInBits,
5870                                                 Ty->isSignedIntegerType());
5871   }
5872 
5873   CGBuilderTy &Builder = CGF.Builder;
5874   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
5875   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
5876   int64_t TypeAlign =
5877       std::min(getContext().getTypeAlign(Ty) / 8, StackAlignInBytes);
5878   llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
5879   llvm::Value *AddrTyped;
5880   llvm::IntegerType *IntTy = (PtrWidth == 32) ? CGF.Int32Ty : CGF.Int64Ty;
5881 
5882   if (TypeAlign > MinABIStackAlignInBytes) {
5883     llvm::Value *AddrAsInt = CGF.Builder.CreatePtrToInt(Addr, IntTy);
5884     llvm::Value *Inc = llvm::ConstantInt::get(IntTy, TypeAlign - 1);
5885     llvm::Value *Mask = llvm::ConstantInt::get(IntTy, -TypeAlign);
5886     llvm::Value *Add = CGF.Builder.CreateAdd(AddrAsInt, Inc);
5887     llvm::Value *And = CGF.Builder.CreateAnd(Add, Mask);
5888     AddrTyped = CGF.Builder.CreateIntToPtr(And, PTy);
5889   }
5890   else
5891     AddrTyped = Builder.CreateBitCast(Addr, PTy);
5892 
5893   llvm::Value *AlignedAddr = Builder.CreateBitCast(AddrTyped, BP);
5894   TypeAlign = std::max((unsigned)TypeAlign, MinABIStackAlignInBytes);
5895   unsigned ArgSizeInBits = CGF.getContext().getTypeSize(Ty);
5896   uint64_t Offset = llvm::RoundUpToAlignment(ArgSizeInBits / 8, TypeAlign);
5897   llvm::Value *NextAddr =
5898     Builder.CreateGEP(AlignedAddr, llvm::ConstantInt::get(IntTy, Offset),
5899                       "ap.next");
5900   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
5901 
5902   return AddrTyped;
5903 }
5904 
5905 bool MipsABIInfo::shouldSignExtUnsignedType(QualType Ty) const {
5906   int TySize = getContext().getTypeSize(Ty);
5907 
5908   // MIPS64 ABI requires unsigned 32 bit integers to be sign extended.
5909   if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
5910     return true;
5911 
5912   return false;
5913 }
5914 
5915 bool
5916 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5917                                                llvm::Value *Address) const {
5918   // This information comes from gcc's implementation, which seems to
5919   // as canonical as it gets.
5920 
5921   // Everything on MIPS is 4 bytes.  Double-precision FP registers
5922   // are aliased to pairs of single-precision FP registers.
5923   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
5924 
5925   // 0-31 are the general purpose registers, $0 - $31.
5926   // 32-63 are the floating-point registers, $f0 - $f31.
5927   // 64 and 65 are the multiply/divide registers, $hi and $lo.
5928   // 66 is the (notional, I think) register for signal-handler return.
5929   AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65);
5930 
5931   // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
5932   // They are one bit wide and ignored here.
5933 
5934   // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
5935   // (coprocessor 1 is the FP unit)
5936   // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
5937   // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
5938   // 176-181 are the DSP accumulator registers.
5939   AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181);
5940   return false;
5941 }
5942 
5943 //===----------------------------------------------------------------------===//
5944 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults.
5945 // Currently subclassed only to implement custom OpenCL C function attribute
5946 // handling.
5947 //===----------------------------------------------------------------------===//
5948 
5949 namespace {
5950 
5951 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo {
5952 public:
5953   TCETargetCodeGenInfo(CodeGenTypes &CGT)
5954     : DefaultTargetCodeGenInfo(CGT) {}
5955 
5956   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5957                            CodeGen::CodeGenModule &M) const override;
5958 };
5959 
5960 void TCETargetCodeGenInfo::setTargetAttributes(
5961     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
5962   const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
5963   if (!FD) return;
5964 
5965   llvm::Function *F = cast<llvm::Function>(GV);
5966 
5967   if (M.getLangOpts().OpenCL) {
5968     if (FD->hasAttr<OpenCLKernelAttr>()) {
5969       // OpenCL C Kernel functions are not subject to inlining
5970       F->addFnAttr(llvm::Attribute::NoInline);
5971       const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>();
5972       if (Attr) {
5973         // Convert the reqd_work_group_size() attributes to metadata.
5974         llvm::LLVMContext &Context = F->getContext();
5975         llvm::NamedMDNode *OpenCLMetadata =
5976             M.getModule().getOrInsertNamedMetadata(
5977                 "opencl.kernel_wg_size_info");
5978 
5979         SmallVector<llvm::Metadata *, 5> Operands;
5980         Operands.push_back(llvm::ConstantAsMetadata::get(F));
5981 
5982         Operands.push_back(
5983             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
5984                 M.Int32Ty, llvm::APInt(32, Attr->getXDim()))));
5985         Operands.push_back(
5986             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
5987                 M.Int32Ty, llvm::APInt(32, Attr->getYDim()))));
5988         Operands.push_back(
5989             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
5990                 M.Int32Ty, llvm::APInt(32, Attr->getZDim()))));
5991 
5992         // Add a boolean constant operand for "required" (true) or "hint"
5993         // (false) for implementing the work_group_size_hint attr later.
5994         // Currently always true as the hint is not yet implemented.
5995         Operands.push_back(
5996             llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context)));
5997         OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands));
5998       }
5999     }
6000   }
6001 }
6002 
6003 }
6004 
6005 //===----------------------------------------------------------------------===//
6006 // Hexagon ABI Implementation
6007 //===----------------------------------------------------------------------===//
6008 
6009 namespace {
6010 
6011 class HexagonABIInfo : public ABIInfo {
6012 
6013 
6014 public:
6015   HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
6016 
6017 private:
6018 
6019   ABIArgInfo classifyReturnType(QualType RetTy) const;
6020   ABIArgInfo classifyArgumentType(QualType RetTy) const;
6021 
6022   void computeInfo(CGFunctionInfo &FI) const override;
6023 
6024   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
6025                          CodeGenFunction &CGF) const override;
6026 };
6027 
6028 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo {
6029 public:
6030   HexagonTargetCodeGenInfo(CodeGenTypes &CGT)
6031     :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {}
6032 
6033   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
6034     return 29;
6035   }
6036 };
6037 
6038 }
6039 
6040 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const {
6041   if (!getCXXABI().classifyReturnType(FI))
6042     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
6043   for (auto &I : FI.arguments())
6044     I.info = classifyArgumentType(I.type);
6045 }
6046 
6047 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const {
6048   if (!isAggregateTypeForABI(Ty)) {
6049     // Treat an enum type as its underlying type.
6050     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
6051       Ty = EnumTy->getDecl()->getIntegerType();
6052 
6053     return (Ty->isPromotableIntegerType() ?
6054             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
6055   }
6056 
6057   // Ignore empty records.
6058   if (isEmptyRecord(getContext(), Ty, true))
6059     return ABIArgInfo::getIgnore();
6060 
6061   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
6062     return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
6063 
6064   uint64_t Size = getContext().getTypeSize(Ty);
6065   if (Size > 64)
6066     return ABIArgInfo::getIndirect(0, /*ByVal=*/true);
6067     // Pass in the smallest viable integer type.
6068   else if (Size > 32)
6069       return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
6070   else if (Size > 16)
6071       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6072   else if (Size > 8)
6073       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
6074   else
6075       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
6076 }
6077 
6078 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const {
6079   if (RetTy->isVoidType())
6080     return ABIArgInfo::getIgnore();
6081 
6082   // Large vector types should be returned via memory.
6083   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64)
6084     return ABIArgInfo::getIndirect(0);
6085 
6086   if (!isAggregateTypeForABI(RetTy)) {
6087     // Treat an enum type as its underlying type.
6088     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
6089       RetTy = EnumTy->getDecl()->getIntegerType();
6090 
6091     return (RetTy->isPromotableIntegerType() ?
6092             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
6093   }
6094 
6095   if (isEmptyRecord(getContext(), RetTy, true))
6096     return ABIArgInfo::getIgnore();
6097 
6098   // Aggregates <= 8 bytes are returned in r0; other aggregates
6099   // are returned indirectly.
6100   uint64_t Size = getContext().getTypeSize(RetTy);
6101   if (Size <= 64) {
6102     // Return in the smallest viable integer type.
6103     if (Size <= 8)
6104       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
6105     if (Size <= 16)
6106       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
6107     if (Size <= 32)
6108       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6109     return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
6110   }
6111 
6112   return ABIArgInfo::getIndirect(0, /*ByVal=*/true);
6113 }
6114 
6115 llvm::Value *HexagonABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
6116                                        CodeGenFunction &CGF) const {
6117   // FIXME: Need to handle alignment
6118   llvm::Type *BPP = CGF.Int8PtrPtrTy;
6119 
6120   CGBuilderTy &Builder = CGF.Builder;
6121   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
6122                                                        "ap");
6123   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
6124   llvm::Type *PTy =
6125     llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
6126   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
6127 
6128   uint64_t Offset =
6129     llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
6130   llvm::Value *NextAddr =
6131     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
6132                       "ap.next");
6133   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
6134 
6135   return AddrTyped;
6136 }
6137 
6138 //===----------------------------------------------------------------------===//
6139 // AMDGPU ABI Implementation
6140 //===----------------------------------------------------------------------===//
6141 
6142 namespace {
6143 
6144 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo {
6145 public:
6146   AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT)
6147     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
6148   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6149                            CodeGen::CodeGenModule &M) const override;
6150 };
6151 
6152 }
6153 
6154 void AMDGPUTargetCodeGenInfo::setTargetAttributes(
6155   const Decl *D,
6156   llvm::GlobalValue *GV,
6157   CodeGen::CodeGenModule &M) const {
6158   const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
6159   if (!FD)
6160     return;
6161 
6162   if (const auto Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) {
6163     llvm::Function *F = cast<llvm::Function>(GV);
6164     uint32_t NumVGPR = Attr->getNumVGPR();
6165     if (NumVGPR != 0)
6166       F->addFnAttr("amdgpu_num_vgpr", llvm::utostr(NumVGPR));
6167   }
6168 
6169   if (const auto Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) {
6170     llvm::Function *F = cast<llvm::Function>(GV);
6171     unsigned NumSGPR = Attr->getNumSGPR();
6172     if (NumSGPR != 0)
6173       F->addFnAttr("amdgpu_num_sgpr", llvm::utostr(NumSGPR));
6174   }
6175 }
6176 
6177 
6178 //===----------------------------------------------------------------------===//
6179 // SPARC v9 ABI Implementation.
6180 // Based on the SPARC Compliance Definition version 2.4.1.
6181 //
6182 // Function arguments a mapped to a nominal "parameter array" and promoted to
6183 // registers depending on their type. Each argument occupies 8 or 16 bytes in
6184 // the array, structs larger than 16 bytes are passed indirectly.
6185 //
6186 // One case requires special care:
6187 //
6188 //   struct mixed {
6189 //     int i;
6190 //     float f;
6191 //   };
6192 //
6193 // When a struct mixed is passed by value, it only occupies 8 bytes in the
6194 // parameter array, but the int is passed in an integer register, and the float
6195 // is passed in a floating point register. This is represented as two arguments
6196 // with the LLVM IR inreg attribute:
6197 //
6198 //   declare void f(i32 inreg %i, float inreg %f)
6199 //
6200 // The code generator will only allocate 4 bytes from the parameter array for
6201 // the inreg arguments. All other arguments are allocated a multiple of 8
6202 // bytes.
6203 //
6204 namespace {
6205 class SparcV9ABIInfo : public ABIInfo {
6206 public:
6207   SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
6208 
6209 private:
6210   ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const;
6211   void computeInfo(CGFunctionInfo &FI) const override;
6212   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
6213                          CodeGenFunction &CGF) const override;
6214 
6215   // Coercion type builder for structs passed in registers. The coercion type
6216   // serves two purposes:
6217   //
6218   // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned'
6219   //    in registers.
6220   // 2. Expose aligned floating point elements as first-level elements, so the
6221   //    code generator knows to pass them in floating point registers.
6222   //
6223   // We also compute the InReg flag which indicates that the struct contains
6224   // aligned 32-bit floats.
6225   //
6226   struct CoerceBuilder {
6227     llvm::LLVMContext &Context;
6228     const llvm::DataLayout &DL;
6229     SmallVector<llvm::Type*, 8> Elems;
6230     uint64_t Size;
6231     bool InReg;
6232 
6233     CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl)
6234       : Context(c), DL(dl), Size(0), InReg(false) {}
6235 
6236     // Pad Elems with integers until Size is ToSize.
6237     void pad(uint64_t ToSize) {
6238       assert(ToSize >= Size && "Cannot remove elements");
6239       if (ToSize == Size)
6240         return;
6241 
6242       // Finish the current 64-bit word.
6243       uint64_t Aligned = llvm::RoundUpToAlignment(Size, 64);
6244       if (Aligned > Size && Aligned <= ToSize) {
6245         Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size));
6246         Size = Aligned;
6247       }
6248 
6249       // Add whole 64-bit words.
6250       while (Size + 64 <= ToSize) {
6251         Elems.push_back(llvm::Type::getInt64Ty(Context));
6252         Size += 64;
6253       }
6254 
6255       // Final in-word padding.
6256       if (Size < ToSize) {
6257         Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size));
6258         Size = ToSize;
6259       }
6260     }
6261 
6262     // Add a floating point element at Offset.
6263     void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) {
6264       // Unaligned floats are treated as integers.
6265       if (Offset % Bits)
6266         return;
6267       // The InReg flag is only required if there are any floats < 64 bits.
6268       if (Bits < 64)
6269         InReg = true;
6270       pad(Offset);
6271       Elems.push_back(Ty);
6272       Size = Offset + Bits;
6273     }
6274 
6275     // Add a struct type to the coercion type, starting at Offset (in bits).
6276     void addStruct(uint64_t Offset, llvm::StructType *StrTy) {
6277       const llvm::StructLayout *Layout = DL.getStructLayout(StrTy);
6278       for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) {
6279         llvm::Type *ElemTy = StrTy->getElementType(i);
6280         uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i);
6281         switch (ElemTy->getTypeID()) {
6282         case llvm::Type::StructTyID:
6283           addStruct(ElemOffset, cast<llvm::StructType>(ElemTy));
6284           break;
6285         case llvm::Type::FloatTyID:
6286           addFloat(ElemOffset, ElemTy, 32);
6287           break;
6288         case llvm::Type::DoubleTyID:
6289           addFloat(ElemOffset, ElemTy, 64);
6290           break;
6291         case llvm::Type::FP128TyID:
6292           addFloat(ElemOffset, ElemTy, 128);
6293           break;
6294         case llvm::Type::PointerTyID:
6295           if (ElemOffset % 64 == 0) {
6296             pad(ElemOffset);
6297             Elems.push_back(ElemTy);
6298             Size += 64;
6299           }
6300           break;
6301         default:
6302           break;
6303         }
6304       }
6305     }
6306 
6307     // Check if Ty is a usable substitute for the coercion type.
6308     bool isUsableType(llvm::StructType *Ty) const {
6309       return llvm::makeArrayRef(Elems) == Ty->elements();
6310     }
6311 
6312     // Get the coercion type as a literal struct type.
6313     llvm::Type *getType() const {
6314       if (Elems.size() == 1)
6315         return Elems.front();
6316       else
6317         return llvm::StructType::get(Context, Elems);
6318     }
6319   };
6320 };
6321 } // end anonymous namespace
6322 
6323 ABIArgInfo
6324 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const {
6325   if (Ty->isVoidType())
6326     return ABIArgInfo::getIgnore();
6327 
6328   uint64_t Size = getContext().getTypeSize(Ty);
6329 
6330   // Anything too big to fit in registers is passed with an explicit indirect
6331   // pointer / sret pointer.
6332   if (Size > SizeLimit)
6333     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
6334 
6335   // Treat an enum type as its underlying type.
6336   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
6337     Ty = EnumTy->getDecl()->getIntegerType();
6338 
6339   // Integer types smaller than a register are extended.
6340   if (Size < 64 && Ty->isIntegerType())
6341     return ABIArgInfo::getExtend();
6342 
6343   // Other non-aggregates go in registers.
6344   if (!isAggregateTypeForABI(Ty))
6345     return ABIArgInfo::getDirect();
6346 
6347   // If a C++ object has either a non-trivial copy constructor or a non-trivial
6348   // destructor, it is passed with an explicit indirect pointer / sret pointer.
6349   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
6350     return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
6351 
6352   // This is a small aggregate type that should be passed in registers.
6353   // Build a coercion type from the LLVM struct type.
6354   llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty));
6355   if (!StrTy)
6356     return ABIArgInfo::getDirect();
6357 
6358   CoerceBuilder CB(getVMContext(), getDataLayout());
6359   CB.addStruct(0, StrTy);
6360   CB.pad(llvm::RoundUpToAlignment(CB.DL.getTypeSizeInBits(StrTy), 64));
6361 
6362   // Try to use the original type for coercion.
6363   llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType();
6364 
6365   if (CB.InReg)
6366     return ABIArgInfo::getDirectInReg(CoerceTy);
6367   else
6368     return ABIArgInfo::getDirect(CoerceTy);
6369 }
6370 
6371 llvm::Value *SparcV9ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
6372                                        CodeGenFunction &CGF) const {
6373   ABIArgInfo AI = classifyType(Ty, 16 * 8);
6374   llvm::Type *ArgTy = CGT.ConvertType(Ty);
6375   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
6376     AI.setCoerceToType(ArgTy);
6377 
6378   llvm::Type *BPP = CGF.Int8PtrPtrTy;
6379   CGBuilderTy &Builder = CGF.Builder;
6380   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
6381   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
6382   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
6383   llvm::Value *ArgAddr;
6384   unsigned Stride;
6385 
6386   switch (AI.getKind()) {
6387   case ABIArgInfo::Expand:
6388   case ABIArgInfo::InAlloca:
6389     llvm_unreachable("Unsupported ABI kind for va_arg");
6390 
6391   case ABIArgInfo::Extend:
6392     Stride = 8;
6393     ArgAddr = Builder
6394       .CreateConstGEP1_32(Addr, 8 - getDataLayout().getTypeAllocSize(ArgTy),
6395                           "extend");
6396     break;
6397 
6398   case ABIArgInfo::Direct:
6399     Stride = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
6400     ArgAddr = Addr;
6401     break;
6402 
6403   case ABIArgInfo::Indirect:
6404     Stride = 8;
6405     ArgAddr = Builder.CreateBitCast(Addr,
6406                                     llvm::PointerType::getUnqual(ArgPtrTy),
6407                                     "indirect");
6408     ArgAddr = Builder.CreateLoad(ArgAddr, "indirect.arg");
6409     break;
6410 
6411   case ABIArgInfo::Ignore:
6412     return llvm::UndefValue::get(ArgPtrTy);
6413   }
6414 
6415   // Update VAList.
6416   Addr = Builder.CreateConstGEP1_32(Addr, Stride, "ap.next");
6417   Builder.CreateStore(Addr, VAListAddrAsBPP);
6418 
6419   return Builder.CreatePointerCast(ArgAddr, ArgPtrTy, "arg.addr");
6420 }
6421 
6422 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const {
6423   FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8);
6424   for (auto &I : FI.arguments())
6425     I.info = classifyType(I.type, 16 * 8);
6426 }
6427 
6428 namespace {
6429 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo {
6430 public:
6431   SparcV9TargetCodeGenInfo(CodeGenTypes &CGT)
6432     : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {}
6433 
6434   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
6435     return 14;
6436   }
6437 
6438   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
6439                                llvm::Value *Address) const override;
6440 };
6441 } // end anonymous namespace
6442 
6443 bool
6444 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
6445                                                 llvm::Value *Address) const {
6446   // This is calculated from the LLVM and GCC tables and verified
6447   // against gcc output.  AFAIK all ABIs use the same encoding.
6448 
6449   CodeGen::CGBuilderTy &Builder = CGF.Builder;
6450 
6451   llvm::IntegerType *i8 = CGF.Int8Ty;
6452   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
6453   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
6454 
6455   // 0-31: the 8-byte general-purpose registers
6456   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
6457 
6458   // 32-63: f0-31, the 4-byte floating-point registers
6459   AssignToArrayRange(Builder, Address, Four8, 32, 63);
6460 
6461   //   Y   = 64
6462   //   PSR = 65
6463   //   WIM = 66
6464   //   TBR = 67
6465   //   PC  = 68
6466   //   NPC = 69
6467   //   FSR = 70
6468   //   CSR = 71
6469   AssignToArrayRange(Builder, Address, Eight8, 64, 71);
6470 
6471   // 72-87: d0-15, the 8-byte floating-point registers
6472   AssignToArrayRange(Builder, Address, Eight8, 72, 87);
6473 
6474   return false;
6475 }
6476 
6477 
6478 //===----------------------------------------------------------------------===//
6479 // XCore ABI Implementation
6480 //===----------------------------------------------------------------------===//
6481 
6482 namespace {
6483 
6484 /// A SmallStringEnc instance is used to build up the TypeString by passing
6485 /// it by reference between functions that append to it.
6486 typedef llvm::SmallString<128> SmallStringEnc;
6487 
6488 /// TypeStringCache caches the meta encodings of Types.
6489 ///
6490 /// The reason for caching TypeStrings is two fold:
6491 ///   1. To cache a type's encoding for later uses;
6492 ///   2. As a means to break recursive member type inclusion.
6493 ///
6494 /// A cache Entry can have a Status of:
6495 ///   NonRecursive:   The type encoding is not recursive;
6496 ///   Recursive:      The type encoding is recursive;
6497 ///   Incomplete:     An incomplete TypeString;
6498 ///   IncompleteUsed: An incomplete TypeString that has been used in a
6499 ///                   Recursive type encoding.
6500 ///
6501 /// A NonRecursive entry will have all of its sub-members expanded as fully
6502 /// as possible. Whilst it may contain types which are recursive, the type
6503 /// itself is not recursive and thus its encoding may be safely used whenever
6504 /// the type is encountered.
6505 ///
6506 /// A Recursive entry will have all of its sub-members expanded as fully as
6507 /// possible. The type itself is recursive and it may contain other types which
6508 /// are recursive. The Recursive encoding must not be used during the expansion
6509 /// of a recursive type's recursive branch. For simplicity the code uses
6510 /// IncompleteCount to reject all usage of Recursive encodings for member types.
6511 ///
6512 /// An Incomplete entry is always a RecordType and only encodes its
6513 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and
6514 /// are placed into the cache during type expansion as a means to identify and
6515 /// handle recursive inclusion of types as sub-members. If there is recursion
6516 /// the entry becomes IncompleteUsed.
6517 ///
6518 /// During the expansion of a RecordType's members:
6519 ///
6520 ///   If the cache contains a NonRecursive encoding for the member type, the
6521 ///   cached encoding is used;
6522 ///
6523 ///   If the cache contains a Recursive encoding for the member type, the
6524 ///   cached encoding is 'Swapped' out, as it may be incorrect, and...
6525 ///
6526 ///   If the member is a RecordType, an Incomplete encoding is placed into the
6527 ///   cache to break potential recursive inclusion of itself as a sub-member;
6528 ///
6529 ///   Once a member RecordType has been expanded, its temporary incomplete
6530 ///   entry is removed from the cache. If a Recursive encoding was swapped out
6531 ///   it is swapped back in;
6532 ///
6533 ///   If an incomplete entry is used to expand a sub-member, the incomplete
6534 ///   entry is marked as IncompleteUsed. The cache keeps count of how many
6535 ///   IncompleteUsed entries it currently contains in IncompleteUsedCount;
6536 ///
6537 ///   If a member's encoding is found to be a NonRecursive or Recursive viz:
6538 ///   IncompleteUsedCount==0, the member's encoding is added to the cache.
6539 ///   Else the member is part of a recursive type and thus the recursion has
6540 ///   been exited too soon for the encoding to be correct for the member.
6541 ///
6542 class TypeStringCache {
6543   enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed};
6544   struct Entry {
6545     std::string Str;     // The encoded TypeString for the type.
6546     enum Status State;   // Information about the encoding in 'Str'.
6547     std::string Swapped; // A temporary place holder for a Recursive encoding
6548                          // during the expansion of RecordType's members.
6549   };
6550   std::map<const IdentifierInfo *, struct Entry> Map;
6551   unsigned IncompleteCount;     // Number of Incomplete entries in the Map.
6552   unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map.
6553 public:
6554   TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {}
6555   void addIncomplete(const IdentifierInfo *ID, std::string StubEnc);
6556   bool removeIncomplete(const IdentifierInfo *ID);
6557   void addIfComplete(const IdentifierInfo *ID, StringRef Str,
6558                      bool IsRecursive);
6559   StringRef lookupStr(const IdentifierInfo *ID);
6560 };
6561 
6562 /// TypeString encodings for enum & union fields must be order.
6563 /// FieldEncoding is a helper for this ordering process.
6564 class FieldEncoding {
6565   bool HasName;
6566   std::string Enc;
6567 public:
6568   FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {}
6569   StringRef str() {return Enc.c_str();}
6570   bool operator<(const FieldEncoding &rhs) const {
6571     if (HasName != rhs.HasName) return HasName;
6572     return Enc < rhs.Enc;
6573   }
6574 };
6575 
6576 class XCoreABIInfo : public DefaultABIInfo {
6577 public:
6578   XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
6579   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
6580                          CodeGenFunction &CGF) const override;
6581 };
6582 
6583 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo {
6584   mutable TypeStringCache TSC;
6585 public:
6586   XCoreTargetCodeGenInfo(CodeGenTypes &CGT)
6587     :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {}
6588   void emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
6589                     CodeGen::CodeGenModule &M) const override;
6590 };
6591 
6592 } // End anonymous namespace.
6593 
6594 llvm::Value *XCoreABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
6595                                      CodeGenFunction &CGF) const {
6596   CGBuilderTy &Builder = CGF.Builder;
6597 
6598   // Get the VAList.
6599   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr,
6600                                                        CGF.Int8PtrPtrTy);
6601   llvm::Value *AP = Builder.CreateLoad(VAListAddrAsBPP);
6602 
6603   // Handle the argument.
6604   ABIArgInfo AI = classifyArgumentType(Ty);
6605   llvm::Type *ArgTy = CGT.ConvertType(Ty);
6606   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
6607     AI.setCoerceToType(ArgTy);
6608   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
6609   llvm::Value *Val;
6610   uint64_t ArgSize = 0;
6611   switch (AI.getKind()) {
6612   case ABIArgInfo::Expand:
6613   case ABIArgInfo::InAlloca:
6614     llvm_unreachable("Unsupported ABI kind for va_arg");
6615   case ABIArgInfo::Ignore:
6616     Val = llvm::UndefValue::get(ArgPtrTy);
6617     ArgSize = 0;
6618     break;
6619   case ABIArgInfo::Extend:
6620   case ABIArgInfo::Direct:
6621     Val = Builder.CreatePointerCast(AP, ArgPtrTy);
6622     ArgSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
6623     if (ArgSize < 4)
6624       ArgSize = 4;
6625     break;
6626   case ABIArgInfo::Indirect:
6627     llvm::Value *ArgAddr;
6628     ArgAddr = Builder.CreateBitCast(AP, llvm::PointerType::getUnqual(ArgPtrTy));
6629     ArgAddr = Builder.CreateLoad(ArgAddr);
6630     Val = Builder.CreatePointerCast(ArgAddr, ArgPtrTy);
6631     ArgSize = 4;
6632     break;
6633   }
6634 
6635   // Increment the VAList.
6636   if (ArgSize) {
6637     llvm::Value *APN = Builder.CreateConstGEP1_32(AP, ArgSize);
6638     Builder.CreateStore(APN, VAListAddrAsBPP);
6639   }
6640   return Val;
6641 }
6642 
6643 /// During the expansion of a RecordType, an incomplete TypeString is placed
6644 /// into the cache as a means to identify and break recursion.
6645 /// If there is a Recursive encoding in the cache, it is swapped out and will
6646 /// be reinserted by removeIncomplete().
6647 /// All other types of encoding should have been used rather than arriving here.
6648 void TypeStringCache::addIncomplete(const IdentifierInfo *ID,
6649                                     std::string StubEnc) {
6650   if (!ID)
6651     return;
6652   Entry &E = Map[ID];
6653   assert( (E.Str.empty() || E.State == Recursive) &&
6654          "Incorrectly use of addIncomplete");
6655   assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()");
6656   E.Swapped.swap(E.Str); // swap out the Recursive
6657   E.Str.swap(StubEnc);
6658   E.State = Incomplete;
6659   ++IncompleteCount;
6660 }
6661 
6662 /// Once the RecordType has been expanded, the temporary incomplete TypeString
6663 /// must be removed from the cache.
6664 /// If a Recursive was swapped out by addIncomplete(), it will be replaced.
6665 /// Returns true if the RecordType was defined recursively.
6666 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) {
6667   if (!ID)
6668     return false;
6669   auto I = Map.find(ID);
6670   assert(I != Map.end() && "Entry not present");
6671   Entry &E = I->second;
6672   assert( (E.State == Incomplete ||
6673            E.State == IncompleteUsed) &&
6674          "Entry must be an incomplete type");
6675   bool IsRecursive = false;
6676   if (E.State == IncompleteUsed) {
6677     // We made use of our Incomplete encoding, thus we are recursive.
6678     IsRecursive = true;
6679     --IncompleteUsedCount;
6680   }
6681   if (E.Swapped.empty())
6682     Map.erase(I);
6683   else {
6684     // Swap the Recursive back.
6685     E.Swapped.swap(E.Str);
6686     E.Swapped.clear();
6687     E.State = Recursive;
6688   }
6689   --IncompleteCount;
6690   return IsRecursive;
6691 }
6692 
6693 /// Add the encoded TypeString to the cache only if it is NonRecursive or
6694 /// Recursive (viz: all sub-members were expanded as fully as possible).
6695 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str,
6696                                     bool IsRecursive) {
6697   if (!ID || IncompleteUsedCount)
6698     return; // No key or it is is an incomplete sub-type so don't add.
6699   Entry &E = Map[ID];
6700   if (IsRecursive && !E.Str.empty()) {
6701     assert(E.State==Recursive && E.Str.size() == Str.size() &&
6702            "This is not the same Recursive entry");
6703     // The parent container was not recursive after all, so we could have used
6704     // this Recursive sub-member entry after all, but we assumed the worse when
6705     // we started viz: IncompleteCount!=0.
6706     return;
6707   }
6708   assert(E.Str.empty() && "Entry already present");
6709   E.Str = Str.str();
6710   E.State = IsRecursive? Recursive : NonRecursive;
6711 }
6712 
6713 /// Return a cached TypeString encoding for the ID. If there isn't one, or we
6714 /// are recursively expanding a type (IncompleteCount != 0) and the cached
6715 /// encoding is Recursive, return an empty StringRef.
6716 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) {
6717   if (!ID)
6718     return StringRef();   // We have no key.
6719   auto I = Map.find(ID);
6720   if (I == Map.end())
6721     return StringRef();   // We have no encoding.
6722   Entry &E = I->second;
6723   if (E.State == Recursive && IncompleteCount)
6724     return StringRef();   // We don't use Recursive encodings for member types.
6725 
6726   if (E.State == Incomplete) {
6727     // The incomplete type is being used to break out of recursion.
6728     E.State = IncompleteUsed;
6729     ++IncompleteUsedCount;
6730   }
6731   return E.Str.c_str();
6732 }
6733 
6734 /// The XCore ABI includes a type information section that communicates symbol
6735 /// type information to the linker. The linker uses this information to verify
6736 /// safety/correctness of things such as array bound and pointers et al.
6737 /// The ABI only requires C (and XC) language modules to emit TypeStrings.
6738 /// This type information (TypeString) is emitted into meta data for all global
6739 /// symbols: definitions, declarations, functions & variables.
6740 ///
6741 /// The TypeString carries type, qualifier, name, size & value details.
6742 /// Please see 'Tools Development Guide' section 2.16.2 for format details:
6743 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf
6744 /// The output is tested by test/CodeGen/xcore-stringtype.c.
6745 ///
6746 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
6747                           CodeGen::CodeGenModule &CGM, TypeStringCache &TSC);
6748 
6749 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols.
6750 void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
6751                                           CodeGen::CodeGenModule &CGM) const {
6752   SmallStringEnc Enc;
6753   if (getTypeString(Enc, D, CGM, TSC)) {
6754     llvm::LLVMContext &Ctx = CGM.getModule().getContext();
6755     llvm::SmallVector<llvm::Metadata *, 2> MDVals;
6756     MDVals.push_back(llvm::ConstantAsMetadata::get(GV));
6757     MDVals.push_back(llvm::MDString::get(Ctx, Enc.str()));
6758     llvm::NamedMDNode *MD =
6759       CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings");
6760     MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
6761   }
6762 }
6763 
6764 static bool appendType(SmallStringEnc &Enc, QualType QType,
6765                        const CodeGen::CodeGenModule &CGM,
6766                        TypeStringCache &TSC);
6767 
6768 /// Helper function for appendRecordType().
6769 /// Builds a SmallVector containing the encoded field types in declaration
6770 /// order.
6771 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE,
6772                              const RecordDecl *RD,
6773                              const CodeGen::CodeGenModule &CGM,
6774                              TypeStringCache &TSC) {
6775   for (const auto *Field : RD->fields()) {
6776     SmallStringEnc Enc;
6777     Enc += "m(";
6778     Enc += Field->getName();
6779     Enc += "){";
6780     if (Field->isBitField()) {
6781       Enc += "b(";
6782       llvm::raw_svector_ostream OS(Enc);
6783       OS.resync();
6784       OS << Field->getBitWidthValue(CGM.getContext());
6785       OS.flush();
6786       Enc += ':';
6787     }
6788     if (!appendType(Enc, Field->getType(), CGM, TSC))
6789       return false;
6790     if (Field->isBitField())
6791       Enc += ')';
6792     Enc += '}';
6793     FE.emplace_back(!Field->getName().empty(), Enc);
6794   }
6795   return true;
6796 }
6797 
6798 /// Appends structure and union types to Enc and adds encoding to cache.
6799 /// Recursively calls appendType (via extractFieldType) for each field.
6800 /// Union types have their fields ordered according to the ABI.
6801 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT,
6802                              const CodeGen::CodeGenModule &CGM,
6803                              TypeStringCache &TSC, const IdentifierInfo *ID) {
6804   // Append the cached TypeString if we have one.
6805   StringRef TypeString = TSC.lookupStr(ID);
6806   if (!TypeString.empty()) {
6807     Enc += TypeString;
6808     return true;
6809   }
6810 
6811   // Start to emit an incomplete TypeString.
6812   size_t Start = Enc.size();
6813   Enc += (RT->isUnionType()? 'u' : 's');
6814   Enc += '(';
6815   if (ID)
6816     Enc += ID->getName();
6817   Enc += "){";
6818 
6819   // We collect all encoded fields and order as necessary.
6820   bool IsRecursive = false;
6821   const RecordDecl *RD = RT->getDecl()->getDefinition();
6822   if (RD && !RD->field_empty()) {
6823     // An incomplete TypeString stub is placed in the cache for this RecordType
6824     // so that recursive calls to this RecordType will use it whilst building a
6825     // complete TypeString for this RecordType.
6826     SmallVector<FieldEncoding, 16> FE;
6827     std::string StubEnc(Enc.substr(Start).str());
6828     StubEnc += '}';  // StubEnc now holds a valid incomplete TypeString.
6829     TSC.addIncomplete(ID, std::move(StubEnc));
6830     if (!extractFieldType(FE, RD, CGM, TSC)) {
6831       (void) TSC.removeIncomplete(ID);
6832       return false;
6833     }
6834     IsRecursive = TSC.removeIncomplete(ID);
6835     // The ABI requires unions to be sorted but not structures.
6836     // See FieldEncoding::operator< for sort algorithm.
6837     if (RT->isUnionType())
6838       std::sort(FE.begin(), FE.end());
6839     // We can now complete the TypeString.
6840     unsigned E = FE.size();
6841     for (unsigned I = 0; I != E; ++I) {
6842       if (I)
6843         Enc += ',';
6844       Enc += FE[I].str();
6845     }
6846   }
6847   Enc += '}';
6848   TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive);
6849   return true;
6850 }
6851 
6852 /// Appends enum types to Enc and adds the encoding to the cache.
6853 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET,
6854                            TypeStringCache &TSC,
6855                            const IdentifierInfo *ID) {
6856   // Append the cached TypeString if we have one.
6857   StringRef TypeString = TSC.lookupStr(ID);
6858   if (!TypeString.empty()) {
6859     Enc += TypeString;
6860     return true;
6861   }
6862 
6863   size_t Start = Enc.size();
6864   Enc += "e(";
6865   if (ID)
6866     Enc += ID->getName();
6867   Enc += "){";
6868 
6869   // We collect all encoded enumerations and order them alphanumerically.
6870   if (const EnumDecl *ED = ET->getDecl()->getDefinition()) {
6871     SmallVector<FieldEncoding, 16> FE;
6872     for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E;
6873          ++I) {
6874       SmallStringEnc EnumEnc;
6875       EnumEnc += "m(";
6876       EnumEnc += I->getName();
6877       EnumEnc += "){";
6878       I->getInitVal().toString(EnumEnc);
6879       EnumEnc += '}';
6880       FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc));
6881     }
6882     std::sort(FE.begin(), FE.end());
6883     unsigned E = FE.size();
6884     for (unsigned I = 0; I != E; ++I) {
6885       if (I)
6886         Enc += ',';
6887       Enc += FE[I].str();
6888     }
6889   }
6890   Enc += '}';
6891   TSC.addIfComplete(ID, Enc.substr(Start), false);
6892   return true;
6893 }
6894 
6895 /// Appends type's qualifier to Enc.
6896 /// This is done prior to appending the type's encoding.
6897 static void appendQualifier(SmallStringEnc &Enc, QualType QT) {
6898   // Qualifiers are emitted in alphabetical order.
6899   static const char *Table[] = {"","c:","r:","cr:","v:","cv:","rv:","crv:"};
6900   int Lookup = 0;
6901   if (QT.isConstQualified())
6902     Lookup += 1<<0;
6903   if (QT.isRestrictQualified())
6904     Lookup += 1<<1;
6905   if (QT.isVolatileQualified())
6906     Lookup += 1<<2;
6907   Enc += Table[Lookup];
6908 }
6909 
6910 /// Appends built-in types to Enc.
6911 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) {
6912   const char *EncType;
6913   switch (BT->getKind()) {
6914     case BuiltinType::Void:
6915       EncType = "0";
6916       break;
6917     case BuiltinType::Bool:
6918       EncType = "b";
6919       break;
6920     case BuiltinType::Char_U:
6921       EncType = "uc";
6922       break;
6923     case BuiltinType::UChar:
6924       EncType = "uc";
6925       break;
6926     case BuiltinType::SChar:
6927       EncType = "sc";
6928       break;
6929     case BuiltinType::UShort:
6930       EncType = "us";
6931       break;
6932     case BuiltinType::Short:
6933       EncType = "ss";
6934       break;
6935     case BuiltinType::UInt:
6936       EncType = "ui";
6937       break;
6938     case BuiltinType::Int:
6939       EncType = "si";
6940       break;
6941     case BuiltinType::ULong:
6942       EncType = "ul";
6943       break;
6944     case BuiltinType::Long:
6945       EncType = "sl";
6946       break;
6947     case BuiltinType::ULongLong:
6948       EncType = "ull";
6949       break;
6950     case BuiltinType::LongLong:
6951       EncType = "sll";
6952       break;
6953     case BuiltinType::Float:
6954       EncType = "ft";
6955       break;
6956     case BuiltinType::Double:
6957       EncType = "d";
6958       break;
6959     case BuiltinType::LongDouble:
6960       EncType = "ld";
6961       break;
6962     default:
6963       return false;
6964   }
6965   Enc += EncType;
6966   return true;
6967 }
6968 
6969 /// Appends a pointer encoding to Enc before calling appendType for the pointee.
6970 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT,
6971                               const CodeGen::CodeGenModule &CGM,
6972                               TypeStringCache &TSC) {
6973   Enc += "p(";
6974   if (!appendType(Enc, PT->getPointeeType(), CGM, TSC))
6975     return false;
6976   Enc += ')';
6977   return true;
6978 }
6979 
6980 /// Appends array encoding to Enc before calling appendType for the element.
6981 static bool appendArrayType(SmallStringEnc &Enc, QualType QT,
6982                             const ArrayType *AT,
6983                             const CodeGen::CodeGenModule &CGM,
6984                             TypeStringCache &TSC, StringRef NoSizeEnc) {
6985   if (AT->getSizeModifier() != ArrayType::Normal)
6986     return false;
6987   Enc += "a(";
6988   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
6989     CAT->getSize().toStringUnsigned(Enc);
6990   else
6991     Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "".
6992   Enc += ':';
6993   // The Qualifiers should be attached to the type rather than the array.
6994   appendQualifier(Enc, QT);
6995   if (!appendType(Enc, AT->getElementType(), CGM, TSC))
6996     return false;
6997   Enc += ')';
6998   return true;
6999 }
7000 
7001 /// Appends a function encoding to Enc, calling appendType for the return type
7002 /// and the arguments.
7003 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT,
7004                              const CodeGen::CodeGenModule &CGM,
7005                              TypeStringCache &TSC) {
7006   Enc += "f{";
7007   if (!appendType(Enc, FT->getReturnType(), CGM, TSC))
7008     return false;
7009   Enc += "}(";
7010   if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) {
7011     // N.B. we are only interested in the adjusted param types.
7012     auto I = FPT->param_type_begin();
7013     auto E = FPT->param_type_end();
7014     if (I != E) {
7015       do {
7016         if (!appendType(Enc, *I, CGM, TSC))
7017           return false;
7018         ++I;
7019         if (I != E)
7020           Enc += ',';
7021       } while (I != E);
7022       if (FPT->isVariadic())
7023         Enc += ",va";
7024     } else {
7025       if (FPT->isVariadic())
7026         Enc += "va";
7027       else
7028         Enc += '0';
7029     }
7030   }
7031   Enc += ')';
7032   return true;
7033 }
7034 
7035 /// Handles the type's qualifier before dispatching a call to handle specific
7036 /// type encodings.
7037 static bool appendType(SmallStringEnc &Enc, QualType QType,
7038                        const CodeGen::CodeGenModule &CGM,
7039                        TypeStringCache &TSC) {
7040 
7041   QualType QT = QType.getCanonicalType();
7042 
7043   if (const ArrayType *AT = QT->getAsArrayTypeUnsafe())
7044     // The Qualifiers should be attached to the type rather than the array.
7045     // Thus we don't call appendQualifier() here.
7046     return appendArrayType(Enc, QT, AT, CGM, TSC, "");
7047 
7048   appendQualifier(Enc, QT);
7049 
7050   if (const BuiltinType *BT = QT->getAs<BuiltinType>())
7051     return appendBuiltinType(Enc, BT);
7052 
7053   if (const PointerType *PT = QT->getAs<PointerType>())
7054     return appendPointerType(Enc, PT, CGM, TSC);
7055 
7056   if (const EnumType *ET = QT->getAs<EnumType>())
7057     return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier());
7058 
7059   if (const RecordType *RT = QT->getAsStructureType())
7060     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
7061 
7062   if (const RecordType *RT = QT->getAsUnionType())
7063     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
7064 
7065   if (const FunctionType *FT = QT->getAs<FunctionType>())
7066     return appendFunctionType(Enc, FT, CGM, TSC);
7067 
7068   return false;
7069 }
7070 
7071 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
7072                           CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) {
7073   if (!D)
7074     return false;
7075 
7076   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
7077     if (FD->getLanguageLinkage() != CLanguageLinkage)
7078       return false;
7079     return appendType(Enc, FD->getType(), CGM, TSC);
7080   }
7081 
7082   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
7083     if (VD->getLanguageLinkage() != CLanguageLinkage)
7084       return false;
7085     QualType QT = VD->getType().getCanonicalType();
7086     if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) {
7087       // Global ArrayTypes are given a size of '*' if the size is unknown.
7088       // The Qualifiers should be attached to the type rather than the array.
7089       // Thus we don't call appendQualifier() here.
7090       return appendArrayType(Enc, QT, AT, CGM, TSC, "*");
7091     }
7092     return appendType(Enc, QT, CGM, TSC);
7093   }
7094   return false;
7095 }
7096 
7097 
7098 //===----------------------------------------------------------------------===//
7099 // Driver code
7100 //===----------------------------------------------------------------------===//
7101 
7102 const llvm::Triple &CodeGenModule::getTriple() const {
7103   return getTarget().getTriple();
7104 }
7105 
7106 bool CodeGenModule::supportsCOMDAT() const {
7107   return !getTriple().isOSBinFormatMachO();
7108 }
7109 
7110 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
7111   if (TheTargetCodeGenInfo)
7112     return *TheTargetCodeGenInfo;
7113 
7114   const llvm::Triple &Triple = getTarget().getTriple();
7115   switch (Triple.getArch()) {
7116   default:
7117     return *(TheTargetCodeGenInfo = new DefaultTargetCodeGenInfo(Types));
7118 
7119   case llvm::Triple::le32:
7120     return *(TheTargetCodeGenInfo = new PNaClTargetCodeGenInfo(Types));
7121   case llvm::Triple::mips:
7122   case llvm::Triple::mipsel:
7123     if (Triple.getOS() == llvm::Triple::NaCl)
7124       return *(TheTargetCodeGenInfo = new PNaClTargetCodeGenInfo(Types));
7125     return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, true));
7126 
7127   case llvm::Triple::mips64:
7128   case llvm::Triple::mips64el:
7129     return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, false));
7130 
7131   case llvm::Triple::aarch64:
7132   case llvm::Triple::aarch64_be: {
7133     AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS;
7134     if (getTarget().getABI() == "darwinpcs")
7135       Kind = AArch64ABIInfo::DarwinPCS;
7136 
7137     return *(TheTargetCodeGenInfo = new AArch64TargetCodeGenInfo(Types, Kind));
7138   }
7139 
7140   case llvm::Triple::arm:
7141   case llvm::Triple::armeb:
7142   case llvm::Triple::thumb:
7143   case llvm::Triple::thumbeb:
7144     {
7145       if (Triple.getOS() == llvm::Triple::Win32) {
7146         TheTargetCodeGenInfo =
7147             new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP);
7148         return *TheTargetCodeGenInfo;
7149       }
7150 
7151       ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
7152       if (getTarget().getABI() == "apcs-gnu")
7153         Kind = ARMABIInfo::APCS;
7154       else if (CodeGenOpts.FloatABI == "hard" ||
7155                (CodeGenOpts.FloatABI != "soft" &&
7156                 Triple.getEnvironment() == llvm::Triple::GNUEABIHF))
7157         Kind = ARMABIInfo::AAPCS_VFP;
7158 
7159       return *(TheTargetCodeGenInfo = new ARMTargetCodeGenInfo(Types, Kind));
7160     }
7161 
7162   case llvm::Triple::ppc:
7163     return *(TheTargetCodeGenInfo = new PPC32TargetCodeGenInfo(Types));
7164   case llvm::Triple::ppc64:
7165     if (Triple.isOSBinFormatELF()) {
7166       PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1;
7167       if (getTarget().getABI() == "elfv2")
7168         Kind = PPC64_SVR4_ABIInfo::ELFv2;
7169       bool HasQPX = getTarget().getABI() == "elfv1-qpx";
7170 
7171       return *(TheTargetCodeGenInfo =
7172                new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX));
7173     } else
7174       return *(TheTargetCodeGenInfo = new PPC64TargetCodeGenInfo(Types));
7175   case llvm::Triple::ppc64le: {
7176     assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
7177     PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2;
7178     if (getTarget().getABI() == "elfv1" || getTarget().getABI() == "elfv1-qpx")
7179       Kind = PPC64_SVR4_ABIInfo::ELFv1;
7180     bool HasQPX = getTarget().getABI() == "elfv1-qpx";
7181 
7182     return *(TheTargetCodeGenInfo =
7183              new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX));
7184   }
7185 
7186   case llvm::Triple::nvptx:
7187   case llvm::Triple::nvptx64:
7188     return *(TheTargetCodeGenInfo = new NVPTXTargetCodeGenInfo(Types));
7189 
7190   case llvm::Triple::msp430:
7191     return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo(Types));
7192 
7193   case llvm::Triple::systemz: {
7194     bool HasVector = getTarget().getABI() == "vector";
7195     return *(TheTargetCodeGenInfo = new SystemZTargetCodeGenInfo(Types,
7196                                                                  HasVector));
7197   }
7198 
7199   case llvm::Triple::tce:
7200     return *(TheTargetCodeGenInfo = new TCETargetCodeGenInfo(Types));
7201 
7202   case llvm::Triple::x86: {
7203     bool IsDarwinVectorABI = Triple.isOSDarwin();
7204     bool IsSmallStructInRegABI =
7205         X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
7206     bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing();
7207 
7208     if (Triple.getOS() == llvm::Triple::Win32) {
7209       return *(TheTargetCodeGenInfo = new WinX86_32TargetCodeGenInfo(
7210                    Types, IsDarwinVectorABI, IsSmallStructInRegABI,
7211                    IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters));
7212     } else {
7213       return *(TheTargetCodeGenInfo = new X86_32TargetCodeGenInfo(
7214                    Types, IsDarwinVectorABI, IsSmallStructInRegABI,
7215                    IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters));
7216     }
7217   }
7218 
7219   case llvm::Triple::x86_64: {
7220     StringRef ABI = getTarget().getABI();
7221     X86AVXABILevel AVXLevel = (ABI == "avx512" ? X86AVXABILevel::AVX512 :
7222                                ABI == "avx" ? X86AVXABILevel::AVX :
7223                                X86AVXABILevel::None);
7224 
7225     switch (Triple.getOS()) {
7226     case llvm::Triple::Win32:
7227       return *(TheTargetCodeGenInfo =
7228                    new WinX86_64TargetCodeGenInfo(Types, AVXLevel));
7229     case llvm::Triple::PS4:
7230       return *(TheTargetCodeGenInfo =
7231                    new PS4TargetCodeGenInfo(Types, AVXLevel));
7232     default:
7233       return *(TheTargetCodeGenInfo =
7234                    new X86_64TargetCodeGenInfo(Types, AVXLevel));
7235     }
7236   }
7237   case llvm::Triple::hexagon:
7238     return *(TheTargetCodeGenInfo = new HexagonTargetCodeGenInfo(Types));
7239   case llvm::Triple::r600:
7240     return *(TheTargetCodeGenInfo = new AMDGPUTargetCodeGenInfo(Types));
7241   case llvm::Triple::amdgcn:
7242     return *(TheTargetCodeGenInfo = new AMDGPUTargetCodeGenInfo(Types));
7243   case llvm::Triple::sparcv9:
7244     return *(TheTargetCodeGenInfo = new SparcV9TargetCodeGenInfo(Types));
7245   case llvm::Triple::xcore:
7246     return *(TheTargetCodeGenInfo = new XCoreTargetCodeGenInfo(Types));
7247   }
7248 }
7249