1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // These classes wrap the information about a call or function
11 // definition used to handle ABI compliancy.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "TargetInfo.h"
16 #include "ABIInfo.h"
17 #include "CodeGenFunction.h"
18 #include "clang/AST/RecordLayout.h"
19 #include "clang/Frontend/CodeGenOptions.h"
20 #include "llvm/Type.h"
21 #include "llvm/Target/TargetData.h"
22 #include "llvm/ADT/Triple.h"
23 #include "llvm/Support/raw_ostream.h"
24 using namespace clang;
25 using namespace CodeGen;
26 
27 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
28                                llvm::Value *Array,
29                                llvm::Value *Value,
30                                unsigned FirstIndex,
31                                unsigned LastIndex) {
32   // Alternatively, we could emit this as a loop in the source.
33   for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
34     llvm::Value *Cell = Builder.CreateConstInBoundsGEP1_32(Array, I);
35     Builder.CreateStore(Value, Cell);
36   }
37 }
38 
39 static bool isAggregateTypeForABI(QualType T) {
40   return CodeGenFunction::hasAggregateLLVMType(T) ||
41          T->isMemberFunctionPointerType();
42 }
43 
44 ABIInfo::~ABIInfo() {}
45 
46 ASTContext &ABIInfo::getContext() const {
47   return CGT.getContext();
48 }
49 
50 llvm::LLVMContext &ABIInfo::getVMContext() const {
51   return CGT.getLLVMContext();
52 }
53 
54 const llvm::TargetData &ABIInfo::getTargetData() const {
55   return CGT.getTargetData();
56 }
57 
58 
59 void ABIArgInfo::dump() const {
60   raw_ostream &OS = llvm::errs();
61   OS << "(ABIArgInfo Kind=";
62   switch (TheKind) {
63   case Direct:
64     OS << "Direct Type=";
65     if (llvm::Type *Ty = getCoerceToType())
66       Ty->print(OS);
67     else
68       OS << "null";
69     break;
70   case Extend:
71     OS << "Extend";
72     break;
73   case Ignore:
74     OS << "Ignore";
75     break;
76   case Indirect:
77     OS << "Indirect Align=" << getIndirectAlign()
78        << " ByVal=" << getIndirectByVal()
79        << " Realign=" << getIndirectRealign();
80     break;
81   case Expand:
82     OS << "Expand";
83     break;
84   }
85   OS << ")\n";
86 }
87 
88 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }
89 
90 // If someone can figure out a general rule for this, that would be great.
91 // It's probably just doomed to be platform-dependent, though.
92 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const {
93   // Verified for:
94   //   x86-64     FreeBSD, Linux, Darwin
95   //   x86-32     FreeBSD, Linux, Darwin
96   //   PowerPC    Linux, Darwin
97   //   ARM        Darwin (*not* EABI)
98   return 32;
99 }
100 
101 bool TargetCodeGenInfo::isNoProtoCallVariadic(
102                                        const CodeGen::CGFunctionInfo &) const {
103   // The following conventions are known to require this to be false:
104   //   x86_stdcall
105   //   MIPS
106   // For everything else, we just prefer false unless we opt out.
107   return false;
108 }
109 
110 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
111 
112 /// isEmptyField - Return true iff a the field is "empty", that is it
113 /// is an unnamed bit-field or an (array of) empty record(s).
114 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
115                          bool AllowArrays) {
116   if (FD->isUnnamedBitfield())
117     return true;
118 
119   QualType FT = FD->getType();
120 
121   // Constant arrays of empty records count as empty, strip them off.
122   // Constant arrays of zero length always count as empty.
123   if (AllowArrays)
124     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
125       if (AT->getSize() == 0)
126         return true;
127       FT = AT->getElementType();
128     }
129 
130   const RecordType *RT = FT->getAs<RecordType>();
131   if (!RT)
132     return false;
133 
134   // C++ record fields are never empty, at least in the Itanium ABI.
135   //
136   // FIXME: We should use a predicate for whether this behavior is true in the
137   // current ABI.
138   if (isa<CXXRecordDecl>(RT->getDecl()))
139     return false;
140 
141   return isEmptyRecord(Context, FT, AllowArrays);
142 }
143 
144 /// isEmptyRecord - Return true iff a structure contains only empty
145 /// fields. Note that a structure with a flexible array member is not
146 /// considered empty.
147 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
148   const RecordType *RT = T->getAs<RecordType>();
149   if (!RT)
150     return 0;
151   const RecordDecl *RD = RT->getDecl();
152   if (RD->hasFlexibleArrayMember())
153     return false;
154 
155   // If this is a C++ record, check the bases first.
156   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
157     for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
158            e = CXXRD->bases_end(); i != e; ++i)
159       if (!isEmptyRecord(Context, i->getType(), true))
160         return false;
161 
162   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
163          i != e; ++i)
164     if (!isEmptyField(Context, *i, AllowArrays))
165       return false;
166   return true;
167 }
168 
169 /// hasNonTrivialDestructorOrCopyConstructor - Determine if a type has either
170 /// a non-trivial destructor or a non-trivial copy constructor.
171 static bool hasNonTrivialDestructorOrCopyConstructor(const RecordType *RT) {
172   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
173   if (!RD)
174     return false;
175 
176   return !RD->hasTrivialDestructor() || !RD->hasTrivialCopyConstructor();
177 }
178 
179 /// isRecordWithNonTrivialDestructorOrCopyConstructor - Determine if a type is
180 /// a record type with either a non-trivial destructor or a non-trivial copy
181 /// constructor.
182 static bool isRecordWithNonTrivialDestructorOrCopyConstructor(QualType T) {
183   const RecordType *RT = T->getAs<RecordType>();
184   if (!RT)
185     return false;
186 
187   return hasNonTrivialDestructorOrCopyConstructor(RT);
188 }
189 
190 /// isSingleElementStruct - Determine if a structure is a "single
191 /// element struct", i.e. it has exactly one non-empty field or
192 /// exactly one field which is itself a single element
193 /// struct. Structures with flexible array members are never
194 /// considered single element structs.
195 ///
196 /// \return The field declaration for the single non-empty field, if
197 /// it exists.
198 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
199   const RecordType *RT = T->getAsStructureType();
200   if (!RT)
201     return 0;
202 
203   const RecordDecl *RD = RT->getDecl();
204   if (RD->hasFlexibleArrayMember())
205     return 0;
206 
207   const Type *Found = 0;
208 
209   // If this is a C++ record, check the bases first.
210   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
211     for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
212            e = CXXRD->bases_end(); i != e; ++i) {
213       // Ignore empty records.
214       if (isEmptyRecord(Context, i->getType(), true))
215         continue;
216 
217       // If we already found an element then this isn't a single-element struct.
218       if (Found)
219         return 0;
220 
221       // If this is non-empty and not a single element struct, the composite
222       // cannot be a single element struct.
223       Found = isSingleElementStruct(i->getType(), Context);
224       if (!Found)
225         return 0;
226     }
227   }
228 
229   // Check for single element.
230   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
231          i != e; ++i) {
232     const FieldDecl *FD = *i;
233     QualType FT = FD->getType();
234 
235     // Ignore empty fields.
236     if (isEmptyField(Context, FD, true))
237       continue;
238 
239     // If we already found an element then this isn't a single-element
240     // struct.
241     if (Found)
242       return 0;
243 
244     // Treat single element arrays as the element.
245     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
246       if (AT->getSize().getZExtValue() != 1)
247         break;
248       FT = AT->getElementType();
249     }
250 
251     if (!isAggregateTypeForABI(FT)) {
252       Found = FT.getTypePtr();
253     } else {
254       Found = isSingleElementStruct(FT, Context);
255       if (!Found)
256         return 0;
257     }
258   }
259 
260   // We don't consider a struct a single-element struct if it has
261   // padding beyond the element type.
262   if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T))
263     return 0;
264 
265   return Found;
266 }
267 
268 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
269   if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
270       !Ty->isAnyComplexType() && !Ty->isEnumeralType() &&
271       !Ty->isBlockPointerType())
272     return false;
273 
274   uint64_t Size = Context.getTypeSize(Ty);
275   return Size == 32 || Size == 64;
276 }
277 
278 /// canExpandIndirectArgument - Test whether an argument type which is to be
279 /// passed indirectly (on the stack) would have the equivalent layout if it was
280 /// expanded into separate arguments. If so, we prefer to do the latter to avoid
281 /// inhibiting optimizations.
282 ///
283 // FIXME: This predicate is missing many cases, currently it just follows
284 // llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We
285 // should probably make this smarter, or better yet make the LLVM backend
286 // capable of handling it.
287 static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) {
288   // We can only expand structure types.
289   const RecordType *RT = Ty->getAs<RecordType>();
290   if (!RT)
291     return false;
292 
293   // We can only expand (C) structures.
294   //
295   // FIXME: This needs to be generalized to handle classes as well.
296   const RecordDecl *RD = RT->getDecl();
297   if (!RD->isStruct() || isa<CXXRecordDecl>(RD))
298     return false;
299 
300   uint64_t Size = 0;
301 
302   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
303          i != e; ++i) {
304     const FieldDecl *FD = *i;
305 
306     if (!is32Or64BitBasicType(FD->getType(), Context))
307       return false;
308 
309     // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
310     // how to expand them yet, and the predicate for telling if a bitfield still
311     // counts as "basic" is more complicated than what we were doing previously.
312     if (FD->isBitField())
313       return false;
314 
315     Size += Context.getTypeSize(FD->getType());
316   }
317 
318   // Make sure there are not any holes in the struct.
319   if (Size != Context.getTypeSize(Ty))
320     return false;
321 
322   return true;
323 }
324 
325 namespace {
326 /// DefaultABIInfo - The default implementation for ABI specific
327 /// details. This implementation provides information which results in
328 /// self-consistent and sensible LLVM IR generation, but does not
329 /// conform to any particular ABI.
330 class DefaultABIInfo : public ABIInfo {
331 public:
332   DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
333 
334   ABIArgInfo classifyReturnType(QualType RetTy) const;
335   ABIArgInfo classifyArgumentType(QualType RetTy) const;
336 
337   virtual void computeInfo(CGFunctionInfo &FI) const {
338     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
339     for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
340          it != ie; ++it)
341       it->info = classifyArgumentType(it->type);
342   }
343 
344   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
345                                  CodeGenFunction &CGF) const;
346 };
347 
348 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
349 public:
350   DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
351     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
352 };
353 
354 llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
355                                        CodeGenFunction &CGF) const {
356   return 0;
357 }
358 
359 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
360   if (isAggregateTypeForABI(Ty)) {
361     // Records with non trivial destructors/constructors should not be passed
362     // by value.
363     if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
364       return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
365 
366     return ABIArgInfo::getIndirect(0);
367   }
368 
369   // Treat an enum type as its underlying type.
370   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
371     Ty = EnumTy->getDecl()->getIntegerType();
372 
373   return (Ty->isPromotableIntegerType() ?
374           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
375 }
376 
377 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
378   if (RetTy->isVoidType())
379     return ABIArgInfo::getIgnore();
380 
381   if (isAggregateTypeForABI(RetTy))
382     return ABIArgInfo::getIndirect(0);
383 
384   // Treat an enum type as its underlying type.
385   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
386     RetTy = EnumTy->getDecl()->getIntegerType();
387 
388   return (RetTy->isPromotableIntegerType() ?
389           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
390 }
391 
392 /// UseX86_MMXType - Return true if this is an MMX type that should use the special
393 /// x86_mmx type.
394 bool UseX86_MMXType(llvm::Type *IRType) {
395   // If the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>, use the
396   // special x86_mmx type.
397   return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
398     cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
399     IRType->getScalarSizeInBits() != 64;
400 }
401 
402 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
403                                           StringRef Constraint,
404                                           llvm::Type* Ty) {
405   if ((Constraint == "y" || Constraint == "&y") && Ty->isVectorTy())
406     return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
407   return Ty;
408 }
409 
410 //===----------------------------------------------------------------------===//
411 // X86-32 ABI Implementation
412 //===----------------------------------------------------------------------===//
413 
414 /// X86_32ABIInfo - The X86-32 ABI information.
415 class X86_32ABIInfo : public ABIInfo {
416   static const unsigned MinABIStackAlignInBytes = 4;
417 
418   bool IsDarwinVectorABI;
419   bool IsSmallStructInRegABI;
420   bool IsMMXDisabled;
421 
422   static bool isRegisterSize(unsigned Size) {
423     return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
424   }
425 
426   static bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context);
427 
428   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
429   /// such that the argument will be passed in memory.
430   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal = true) const;
431 
432   /// \brief Return the alignment to use for the given type on the stack.
433   unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
434 
435 public:
436 
437   ABIArgInfo classifyReturnType(QualType RetTy) const;
438   ABIArgInfo classifyArgumentType(QualType RetTy) const;
439 
440   virtual void computeInfo(CGFunctionInfo &FI) const {
441     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
442     for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
443          it != ie; ++it)
444       it->info = classifyArgumentType(it->type);
445   }
446 
447   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
448                                  CodeGenFunction &CGF) const;
449 
450   X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p, bool m)
451     : ABIInfo(CGT), IsDarwinVectorABI(d), IsSmallStructInRegABI(p),
452       IsMMXDisabled(m) {}
453 };
454 
455 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
456 public:
457   X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p, bool m)
458     :TargetCodeGenInfo(new X86_32ABIInfo(CGT, d, p, m)) {}
459 
460   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
461                            CodeGen::CodeGenModule &CGM) const;
462 
463   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
464     // Darwin uses different dwarf register numbers for EH.
465     if (CGM.isTargetDarwin()) return 5;
466 
467     return 4;
468   }
469 
470   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
471                                llvm::Value *Address) const;
472 
473   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
474                                   StringRef Constraint,
475                                   llvm::Type* Ty) const {
476     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
477   }
478 
479 };
480 
481 }
482 
483 /// shouldReturnTypeInRegister - Determine if the given type should be
484 /// passed in a register (for the Darwin ABI).
485 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
486                                                ASTContext &Context) {
487   uint64_t Size = Context.getTypeSize(Ty);
488 
489   // Type must be register sized.
490   if (!isRegisterSize(Size))
491     return false;
492 
493   if (Ty->isVectorType()) {
494     // 64- and 128- bit vectors inside structures are not returned in
495     // registers.
496     if (Size == 64 || Size == 128)
497       return false;
498 
499     return true;
500   }
501 
502   // If this is a builtin, pointer, enum, complex type, member pointer, or
503   // member function pointer it is ok.
504   if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
505       Ty->isAnyComplexType() || Ty->isEnumeralType() ||
506       Ty->isBlockPointerType() || Ty->isMemberPointerType())
507     return true;
508 
509   // Arrays are treated like records.
510   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
511     return shouldReturnTypeInRegister(AT->getElementType(), Context);
512 
513   // Otherwise, it must be a record type.
514   const RecordType *RT = Ty->getAs<RecordType>();
515   if (!RT) return false;
516 
517   // FIXME: Traverse bases here too.
518 
519   // Structure types are passed in register if all fields would be
520   // passed in a register.
521   for (RecordDecl::field_iterator i = RT->getDecl()->field_begin(),
522          e = RT->getDecl()->field_end(); i != e; ++i) {
523     const FieldDecl *FD = *i;
524 
525     // Empty fields are ignored.
526     if (isEmptyField(Context, FD, true))
527       continue;
528 
529     // Check fields recursively.
530     if (!shouldReturnTypeInRegister(FD->getType(), Context))
531       return false;
532   }
533 
534   return true;
535 }
536 
537 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy) const {
538   if (RetTy->isVoidType())
539     return ABIArgInfo::getIgnore();
540 
541   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
542     // On Darwin, some vectors are returned in registers.
543     if (IsDarwinVectorABI) {
544       uint64_t Size = getContext().getTypeSize(RetTy);
545 
546       // 128-bit vectors are a special case; they are returned in
547       // registers and we need to make sure to pick a type the LLVM
548       // backend will like.
549       if (Size == 128)
550         return ABIArgInfo::getDirect(llvm::VectorType::get(
551                   llvm::Type::getInt64Ty(getVMContext()), 2));
552 
553       // Always return in register if it fits in a general purpose
554       // register, or if it is 64 bits and has a single element.
555       if ((Size == 8 || Size == 16 || Size == 32) ||
556           (Size == 64 && VT->getNumElements() == 1))
557         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
558                                                             Size));
559 
560       return ABIArgInfo::getIndirect(0);
561     }
562 
563     return ABIArgInfo::getDirect();
564   }
565 
566   if (isAggregateTypeForABI(RetTy)) {
567     if (const RecordType *RT = RetTy->getAs<RecordType>()) {
568       // Structures with either a non-trivial destructor or a non-trivial
569       // copy constructor are always indirect.
570       if (hasNonTrivialDestructorOrCopyConstructor(RT))
571         return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
572 
573       // Structures with flexible arrays are always indirect.
574       if (RT->getDecl()->hasFlexibleArrayMember())
575         return ABIArgInfo::getIndirect(0);
576     }
577 
578     // If specified, structs and unions are always indirect.
579     if (!IsSmallStructInRegABI && !RetTy->isAnyComplexType())
580       return ABIArgInfo::getIndirect(0);
581 
582     // Small structures which are register sized are generally returned
583     // in a register.
584     if (X86_32ABIInfo::shouldReturnTypeInRegister(RetTy, getContext())) {
585       uint64_t Size = getContext().getTypeSize(RetTy);
586 
587       // As a special-case, if the struct is a "single-element" struct, and
588       // the field is of type "float" or "double", return it in a
589       // floating-point register.  We apply a similar transformation for
590       // pointer types to improve the quality of the generated IR.
591       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
592         if (SeltTy->isRealFloatingType() || SeltTy->hasPointerRepresentation())
593           return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
594 
595       // FIXME: We should be able to narrow this integer in cases with dead
596       // padding.
597       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
598     }
599 
600     return ABIArgInfo::getIndirect(0);
601   }
602 
603   // Treat an enum type as its underlying type.
604   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
605     RetTy = EnumTy->getDecl()->getIntegerType();
606 
607   return (RetTy->isPromotableIntegerType() ?
608           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
609 }
610 
611 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) {
612   const RecordType *RT = Ty->getAs<RecordType>();
613   if (!RT)
614     return 0;
615   const RecordDecl *RD = RT->getDecl();
616 
617   // If this is a C++ record, check the bases first.
618   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
619     for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
620            e = CXXRD->bases_end(); i != e; ++i)
621       if (!isRecordWithSSEVectorType(Context, i->getType()))
622         return false;
623 
624   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
625        i != e; ++i) {
626     QualType FT = i->getType();
627 
628     if (FT->getAs<VectorType>() && Context.getTypeSize(FT) == 128)
629       return true;
630 
631     if (isRecordWithSSEVectorType(Context, FT))
632       return true;
633   }
634 
635   return false;
636 }
637 
638 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
639                                                  unsigned Align) const {
640   // Otherwise, if the alignment is less than or equal to the minimum ABI
641   // alignment, just use the default; the backend will handle this.
642   if (Align <= MinABIStackAlignInBytes)
643     return 0; // Use default alignment.
644 
645   // On non-Darwin, the stack type alignment is always 4.
646   if (!IsDarwinVectorABI) {
647     // Set explicit alignment, since we may need to realign the top.
648     return MinABIStackAlignInBytes;
649   }
650 
651   // Otherwise, if the type contains an SSE vector type, the alignment is 16.
652   if (Align >= 16 && isRecordWithSSEVectorType(getContext(), Ty))
653     return 16;
654 
655   return MinABIStackAlignInBytes;
656 }
657 
658 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal) const {
659   if (!ByVal)
660     return ABIArgInfo::getIndirect(0, false);
661 
662   // Compute the byval alignment.
663   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
664   unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
665   if (StackAlign == 0)
666     return ABIArgInfo::getIndirect(4);
667 
668   // If the stack alignment is less than the type alignment, realign the
669   // argument.
670   if (StackAlign < TypeAlign)
671     return ABIArgInfo::getIndirect(StackAlign, /*ByVal=*/true,
672                                    /*Realign=*/true);
673 
674   return ABIArgInfo::getIndirect(StackAlign);
675 }
676 
677 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty) const {
678   // FIXME: Set alignment on indirect arguments.
679   if (isAggregateTypeForABI(Ty)) {
680     // Structures with flexible arrays are always indirect.
681     if (const RecordType *RT = Ty->getAs<RecordType>()) {
682       // Structures with either a non-trivial destructor or a non-trivial
683       // copy constructor are always indirect.
684       if (hasNonTrivialDestructorOrCopyConstructor(RT))
685         return getIndirectResult(Ty, /*ByVal=*/false);
686 
687       if (RT->getDecl()->hasFlexibleArrayMember())
688         return getIndirectResult(Ty);
689     }
690 
691     // Ignore empty structs/unions.
692     if (isEmptyRecord(getContext(), Ty, true))
693       return ABIArgInfo::getIgnore();
694 
695     // Expand small (<= 128-bit) record types when we know that the stack layout
696     // of those arguments will match the struct. This is important because the
697     // LLVM backend isn't smart enough to remove byval, which inhibits many
698     // optimizations.
699     if (getContext().getTypeSize(Ty) <= 4*32 &&
700         canExpandIndirectArgument(Ty, getContext()))
701       return ABIArgInfo::getExpand();
702 
703     return getIndirectResult(Ty);
704   }
705 
706   if (const VectorType *VT = Ty->getAs<VectorType>()) {
707     // On Darwin, some vectors are passed in memory, we handle this by passing
708     // it as an i8/i16/i32/i64.
709     if (IsDarwinVectorABI) {
710       uint64_t Size = getContext().getTypeSize(Ty);
711       if ((Size == 8 || Size == 16 || Size == 32) ||
712           (Size == 64 && VT->getNumElements() == 1))
713         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
714                                                             Size));
715     }
716 
717     llvm::Type *IRType = CGT.ConvertType(Ty);
718     if (UseX86_MMXType(IRType)) {
719       if (IsMMXDisabled)
720         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
721                                                             64));
722       ABIArgInfo AAI = ABIArgInfo::getDirect(IRType);
723       AAI.setCoerceToType(llvm::Type::getX86_MMXTy(getVMContext()));
724       return AAI;
725     }
726 
727     return ABIArgInfo::getDirect();
728   }
729 
730 
731   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
732     Ty = EnumTy->getDecl()->getIntegerType();
733 
734   return (Ty->isPromotableIntegerType() ?
735           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
736 }
737 
738 llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
739                                       CodeGenFunction &CGF) const {
740   llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
741   llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
742 
743   CGBuilderTy &Builder = CGF.Builder;
744   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
745                                                        "ap");
746   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
747 
748   // Compute if the address needs to be aligned
749   unsigned Align = CGF.getContext().getTypeAlignInChars(Ty).getQuantity();
750   Align = getTypeStackAlignInBytes(Ty, Align);
751   Align = std::max(Align, 4U);
752   if (Align > 4) {
753     // addr = (addr + align - 1) & -align;
754     llvm::Value *Offset =
755       llvm::ConstantInt::get(CGF.Int32Ty, Align - 1);
756     Addr = CGF.Builder.CreateGEP(Addr, Offset);
757     llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(Addr,
758                                                     CGF.Int32Ty);
759     llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -Align);
760     Addr = CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
761                                       Addr->getType(),
762                                       "ap.cur.aligned");
763   }
764 
765   llvm::Type *PTy =
766     llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
767   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
768 
769   uint64_t Offset =
770     llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, Align);
771   llvm::Value *NextAddr =
772     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
773                       "ap.next");
774   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
775 
776   return AddrTyped;
777 }
778 
779 void X86_32TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
780                                                   llvm::GlobalValue *GV,
781                                             CodeGen::CodeGenModule &CGM) const {
782   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
783     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
784       // Get the LLVM function.
785       llvm::Function *Fn = cast<llvm::Function>(GV);
786 
787       // Now add the 'alignstack' attribute with a value of 16.
788       Fn->addFnAttr(llvm::Attribute::constructStackAlignmentFromInt(16));
789     }
790   }
791 }
792 
793 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
794                                                CodeGen::CodeGenFunction &CGF,
795                                                llvm::Value *Address) const {
796   CodeGen::CGBuilderTy &Builder = CGF.Builder;
797   llvm::LLVMContext &Context = CGF.getLLVMContext();
798 
799   llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
800   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
801 
802   // 0-7 are the eight integer registers;  the order is different
803   //   on Darwin (for EH), but the range is the same.
804   // 8 is %eip.
805   AssignToArrayRange(Builder, Address, Four8, 0, 8);
806 
807   if (CGF.CGM.isTargetDarwin()) {
808     // 12-16 are st(0..4).  Not sure why we stop at 4.
809     // These have size 16, which is sizeof(long double) on
810     // platforms with 8-byte alignment for that type.
811     llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
812     AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
813 
814   } else {
815     // 9 is %eflags, which doesn't get a size on Darwin for some
816     // reason.
817     Builder.CreateStore(Four8, Builder.CreateConstInBoundsGEP1_32(Address, 9));
818 
819     // 11-16 are st(0..5).  Not sure why we stop at 5.
820     // These have size 12, which is sizeof(long double) on
821     // platforms with 4-byte alignment for that type.
822     llvm::Value *Twelve8 = llvm::ConstantInt::get(i8, 12);
823     AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
824   }
825 
826   return false;
827 }
828 
829 //===----------------------------------------------------------------------===//
830 // X86-64 ABI Implementation
831 //===----------------------------------------------------------------------===//
832 
833 
834 namespace {
835 /// X86_64ABIInfo - The X86_64 ABI information.
836 class X86_64ABIInfo : public ABIInfo {
837   enum Class {
838     Integer = 0,
839     SSE,
840     SSEUp,
841     X87,
842     X87Up,
843     ComplexX87,
844     NoClass,
845     Memory
846   };
847 
848   /// merge - Implement the X86_64 ABI merging algorithm.
849   ///
850   /// Merge an accumulating classification \arg Accum with a field
851   /// classification \arg Field.
852   ///
853   /// \param Accum - The accumulating classification. This should
854   /// always be either NoClass or the result of a previous merge
855   /// call. In addition, this should never be Memory (the caller
856   /// should just return Memory for the aggregate).
857   static Class merge(Class Accum, Class Field);
858 
859   /// postMerge - Implement the X86_64 ABI post merging algorithm.
860   ///
861   /// Post merger cleanup, reduces a malformed Hi and Lo pair to
862   /// final MEMORY or SSE classes when necessary.
863   ///
864   /// \param AggregateSize - The size of the current aggregate in
865   /// the classification process.
866   ///
867   /// \param Lo - The classification for the parts of the type
868   /// residing in the low word of the containing object.
869   ///
870   /// \param Hi - The classification for the parts of the type
871   /// residing in the higher words of the containing object.
872   ///
873   void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
874 
875   /// classify - Determine the x86_64 register classes in which the
876   /// given type T should be passed.
877   ///
878   /// \param Lo - The classification for the parts of the type
879   /// residing in the low word of the containing object.
880   ///
881   /// \param Hi - The classification for the parts of the type
882   /// residing in the high word of the containing object.
883   ///
884   /// \param OffsetBase - The bit offset of this type in the
885   /// containing object.  Some parameters are classified different
886   /// depending on whether they straddle an eightbyte boundary.
887   ///
888   /// If a word is unused its result will be NoClass; if a type should
889   /// be passed in Memory then at least the classification of \arg Lo
890   /// will be Memory.
891   ///
892   /// The \arg Lo class will be NoClass iff the argument is ignored.
893   ///
894   /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
895   /// also be ComplexX87.
896   void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi) const;
897 
898   llvm::Type *GetByteVectorType(QualType Ty) const;
899   llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
900                                  unsigned IROffset, QualType SourceTy,
901                                  unsigned SourceOffset) const;
902   llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
903                                      unsigned IROffset, QualType SourceTy,
904                                      unsigned SourceOffset) const;
905 
906   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
907   /// such that the argument will be returned in memory.
908   ABIArgInfo getIndirectReturnResult(QualType Ty) const;
909 
910   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
911   /// such that the argument will be passed in memory.
912   ABIArgInfo getIndirectResult(QualType Ty) const;
913 
914   ABIArgInfo classifyReturnType(QualType RetTy) const;
915 
916   ABIArgInfo classifyArgumentType(QualType Ty,
917                                   unsigned &neededInt,
918                                   unsigned &neededSSE) const;
919 
920   bool IsIllegalVectorType(QualType Ty) const;
921 
922   /// The 0.98 ABI revision clarified a lot of ambiguities,
923   /// unfortunately in ways that were not always consistent with
924   /// certain previous compilers.  In particular, platforms which
925   /// required strict binary compatibility with older versions of GCC
926   /// may need to exempt themselves.
927   bool honorsRevision0_98() const {
928     return !getContext().getTargetInfo().getTriple().isOSDarwin();
929   }
930 
931   bool HasAVX;
932 
933 public:
934   X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, bool hasavx) :
935       ABIInfo(CGT), HasAVX(hasavx) {}
936 
937   virtual void computeInfo(CGFunctionInfo &FI) const;
938 
939   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
940                                  CodeGenFunction &CGF) const;
941 };
942 
943 /// WinX86_64ABIInfo - The Windows X86_64 ABI information.
944 class WinX86_64ABIInfo : public ABIInfo {
945 
946   ABIArgInfo classify(QualType Ty) const;
947 
948 public:
949   WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
950 
951   virtual void computeInfo(CGFunctionInfo &FI) const;
952 
953   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
954                                  CodeGenFunction &CGF) const;
955 };
956 
957 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
958 public:
959   X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX)
960     : TargetCodeGenInfo(new X86_64ABIInfo(CGT, HasAVX)) {}
961 
962   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
963     return 7;
964   }
965 
966   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
967                                llvm::Value *Address) const {
968     CodeGen::CGBuilderTy &Builder = CGF.Builder;
969     llvm::LLVMContext &Context = CGF.getLLVMContext();
970 
971     llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
972     llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
973 
974     // 0-15 are the 16 integer registers.
975     // 16 is %rip.
976     AssignToArrayRange(Builder, Address, Eight8, 0, 16);
977 
978     return false;
979   }
980 
981   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
982                                   StringRef Constraint,
983                                   llvm::Type* Ty) const {
984     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
985   }
986 
987   bool isNoProtoCallVariadic(const CodeGen::CGFunctionInfo &FI) const {
988     // The default CC on x86-64 sets %al to the number of SSA
989     // registers used, and GCC sets this when calling an unprototyped
990     // function, so we override the default behavior.  However, don't do
991     // that when AVX types are involved.
992     if (FI.getCallingConvention() == llvm::CallingConv::C) {
993       bool HasAVXType = false;
994       for (CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
995                                               ie = FI.arg_end();
996            it != ie; ++it) {
997         if (it->info.isDirect()) {
998           llvm::Type *Ty = it->info.getCoerceToType();
999           if (llvm::VectorType *VTy = dyn_cast_or_null<llvm::VectorType>(Ty)) {
1000             if (VTy->getBitWidth() > 128) {
1001               HasAVXType = true;
1002               break;
1003             }
1004           }
1005         }
1006       }
1007       if (!HasAVXType)
1008         return true;
1009     }
1010 
1011     return TargetCodeGenInfo::isNoProtoCallVariadic(FI);
1012   }
1013 
1014 };
1015 
1016 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
1017 public:
1018   WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
1019     : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {}
1020 
1021   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
1022     return 7;
1023   }
1024 
1025   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1026                                llvm::Value *Address) const {
1027     CodeGen::CGBuilderTy &Builder = CGF.Builder;
1028     llvm::LLVMContext &Context = CGF.getLLVMContext();
1029 
1030     llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
1031     llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
1032 
1033     // 0-15 are the 16 integer registers.
1034     // 16 is %rip.
1035     AssignToArrayRange(Builder, Address, Eight8, 0, 16);
1036 
1037     return false;
1038   }
1039 };
1040 
1041 }
1042 
1043 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
1044                               Class &Hi) const {
1045   // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
1046   //
1047   // (a) If one of the classes is Memory, the whole argument is passed in
1048   //     memory.
1049   //
1050   // (b) If X87UP is not preceded by X87, the whole argument is passed in
1051   //     memory.
1052   //
1053   // (c) If the size of the aggregate exceeds two eightbytes and the first
1054   //     eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
1055   //     argument is passed in memory. NOTE: This is necessary to keep the
1056   //     ABI working for processors that don't support the __m256 type.
1057   //
1058   // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
1059   //
1060   // Some of these are enforced by the merging logic.  Others can arise
1061   // only with unions; for example:
1062   //   union { _Complex double; unsigned; }
1063   //
1064   // Note that clauses (b) and (c) were added in 0.98.
1065   //
1066   if (Hi == Memory)
1067     Lo = Memory;
1068   if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
1069     Lo = Memory;
1070   if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
1071     Lo = Memory;
1072   if (Hi == SSEUp && Lo != SSE)
1073     Hi = SSE;
1074 }
1075 
1076 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
1077   // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
1078   // classified recursively so that always two fields are
1079   // considered. The resulting class is calculated according to
1080   // the classes of the fields in the eightbyte:
1081   //
1082   // (a) If both classes are equal, this is the resulting class.
1083   //
1084   // (b) If one of the classes is NO_CLASS, the resulting class is
1085   // the other class.
1086   //
1087   // (c) If one of the classes is MEMORY, the result is the MEMORY
1088   // class.
1089   //
1090   // (d) If one of the classes is INTEGER, the result is the
1091   // INTEGER.
1092   //
1093   // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
1094   // MEMORY is used as class.
1095   //
1096   // (f) Otherwise class SSE is used.
1097 
1098   // Accum should never be memory (we should have returned) or
1099   // ComplexX87 (because this cannot be passed in a structure).
1100   assert((Accum != Memory && Accum != ComplexX87) &&
1101          "Invalid accumulated classification during merge.");
1102   if (Accum == Field || Field == NoClass)
1103     return Accum;
1104   if (Field == Memory)
1105     return Memory;
1106   if (Accum == NoClass)
1107     return Field;
1108   if (Accum == Integer || Field == Integer)
1109     return Integer;
1110   if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
1111       Accum == X87 || Accum == X87Up)
1112     return Memory;
1113   return SSE;
1114 }
1115 
1116 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
1117                              Class &Lo, Class &Hi) const {
1118   // FIXME: This code can be simplified by introducing a simple value class for
1119   // Class pairs with appropriate constructor methods for the various
1120   // situations.
1121 
1122   // FIXME: Some of the split computations are wrong; unaligned vectors
1123   // shouldn't be passed in registers for example, so there is no chance they
1124   // can straddle an eightbyte. Verify & simplify.
1125 
1126   Lo = Hi = NoClass;
1127 
1128   Class &Current = OffsetBase < 64 ? Lo : Hi;
1129   Current = Memory;
1130 
1131   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
1132     BuiltinType::Kind k = BT->getKind();
1133 
1134     if (k == BuiltinType::Void) {
1135       Current = NoClass;
1136     } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
1137       Lo = Integer;
1138       Hi = Integer;
1139     } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
1140       Current = Integer;
1141     } else if (k == BuiltinType::Float || k == BuiltinType::Double) {
1142       Current = SSE;
1143     } else if (k == BuiltinType::LongDouble) {
1144       Lo = X87;
1145       Hi = X87Up;
1146     }
1147     // FIXME: _Decimal32 and _Decimal64 are SSE.
1148     // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
1149     return;
1150   }
1151 
1152   if (const EnumType *ET = Ty->getAs<EnumType>()) {
1153     // Classify the underlying integer type.
1154     classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi);
1155     return;
1156   }
1157 
1158   if (Ty->hasPointerRepresentation()) {
1159     Current = Integer;
1160     return;
1161   }
1162 
1163   if (Ty->isMemberPointerType()) {
1164     if (Ty->isMemberFunctionPointerType())
1165       Lo = Hi = Integer;
1166     else
1167       Current = Integer;
1168     return;
1169   }
1170 
1171   if (const VectorType *VT = Ty->getAs<VectorType>()) {
1172     uint64_t Size = getContext().getTypeSize(VT);
1173     if (Size == 32) {
1174       // gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x
1175       // float> as integer.
1176       Current = Integer;
1177 
1178       // If this type crosses an eightbyte boundary, it should be
1179       // split.
1180       uint64_t EB_Real = (OffsetBase) / 64;
1181       uint64_t EB_Imag = (OffsetBase + Size - 1) / 64;
1182       if (EB_Real != EB_Imag)
1183         Hi = Lo;
1184     } else if (Size == 64) {
1185       // gcc passes <1 x double> in memory. :(
1186       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double))
1187         return;
1188 
1189       // gcc passes <1 x long long> as INTEGER.
1190       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong) ||
1191           VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULongLong) ||
1192           VT->getElementType()->isSpecificBuiltinType(BuiltinType::Long) ||
1193           VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULong))
1194         Current = Integer;
1195       else
1196         Current = SSE;
1197 
1198       // If this type crosses an eightbyte boundary, it should be
1199       // split.
1200       if (OffsetBase && OffsetBase != 64)
1201         Hi = Lo;
1202     } else if (Size == 128 || (HasAVX && Size == 256)) {
1203       // Arguments of 256-bits are split into four eightbyte chunks. The
1204       // least significant one belongs to class SSE and all the others to class
1205       // SSEUP. The original Lo and Hi design considers that types can't be
1206       // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
1207       // This design isn't correct for 256-bits, but since there're no cases
1208       // where the upper parts would need to be inspected, avoid adding
1209       // complexity and just consider Hi to match the 64-256 part.
1210       Lo = SSE;
1211       Hi = SSEUp;
1212     }
1213     return;
1214   }
1215 
1216   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
1217     QualType ET = getContext().getCanonicalType(CT->getElementType());
1218 
1219     uint64_t Size = getContext().getTypeSize(Ty);
1220     if (ET->isIntegralOrEnumerationType()) {
1221       if (Size <= 64)
1222         Current = Integer;
1223       else if (Size <= 128)
1224         Lo = Hi = Integer;
1225     } else if (ET == getContext().FloatTy)
1226       Current = SSE;
1227     else if (ET == getContext().DoubleTy)
1228       Lo = Hi = SSE;
1229     else if (ET == getContext().LongDoubleTy)
1230       Current = ComplexX87;
1231 
1232     // If this complex type crosses an eightbyte boundary then it
1233     // should be split.
1234     uint64_t EB_Real = (OffsetBase) / 64;
1235     uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
1236     if (Hi == NoClass && EB_Real != EB_Imag)
1237       Hi = Lo;
1238 
1239     return;
1240   }
1241 
1242   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
1243     // Arrays are treated like structures.
1244 
1245     uint64_t Size = getContext().getTypeSize(Ty);
1246 
1247     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
1248     // than four eightbytes, ..., it has class MEMORY.
1249     if (Size > 256)
1250       return;
1251 
1252     // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
1253     // fields, it has class MEMORY.
1254     //
1255     // Only need to check alignment of array base.
1256     if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
1257       return;
1258 
1259     // Otherwise implement simplified merge. We could be smarter about
1260     // this, but it isn't worth it and would be harder to verify.
1261     Current = NoClass;
1262     uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
1263     uint64_t ArraySize = AT->getSize().getZExtValue();
1264 
1265     // The only case a 256-bit wide vector could be used is when the array
1266     // contains a single 256-bit element. Since Lo and Hi logic isn't extended
1267     // to work for sizes wider than 128, early check and fallback to memory.
1268     if (Size > 128 && EltSize != 256)
1269       return;
1270 
1271     for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
1272       Class FieldLo, FieldHi;
1273       classify(AT->getElementType(), Offset, FieldLo, FieldHi);
1274       Lo = merge(Lo, FieldLo);
1275       Hi = merge(Hi, FieldHi);
1276       if (Lo == Memory || Hi == Memory)
1277         break;
1278     }
1279 
1280     postMerge(Size, Lo, Hi);
1281     assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
1282     return;
1283   }
1284 
1285   if (const RecordType *RT = Ty->getAs<RecordType>()) {
1286     uint64_t Size = getContext().getTypeSize(Ty);
1287 
1288     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
1289     // than four eightbytes, ..., it has class MEMORY.
1290     if (Size > 256)
1291       return;
1292 
1293     // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
1294     // copy constructor or a non-trivial destructor, it is passed by invisible
1295     // reference.
1296     if (hasNonTrivialDestructorOrCopyConstructor(RT))
1297       return;
1298 
1299     const RecordDecl *RD = RT->getDecl();
1300 
1301     // Assume variable sized types are passed in memory.
1302     if (RD->hasFlexibleArrayMember())
1303       return;
1304 
1305     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
1306 
1307     // Reset Lo class, this will be recomputed.
1308     Current = NoClass;
1309 
1310     // If this is a C++ record, classify the bases first.
1311     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1312       for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
1313              e = CXXRD->bases_end(); i != e; ++i) {
1314         assert(!i->isVirtual() && !i->getType()->isDependentType() &&
1315                "Unexpected base class!");
1316         const CXXRecordDecl *Base =
1317           cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
1318 
1319         // Classify this field.
1320         //
1321         // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
1322         // single eightbyte, each is classified separately. Each eightbyte gets
1323         // initialized to class NO_CLASS.
1324         Class FieldLo, FieldHi;
1325         uint64_t Offset = OffsetBase + Layout.getBaseClassOffsetInBits(Base);
1326         classify(i->getType(), Offset, FieldLo, FieldHi);
1327         Lo = merge(Lo, FieldLo);
1328         Hi = merge(Hi, FieldHi);
1329         if (Lo == Memory || Hi == Memory)
1330           break;
1331       }
1332     }
1333 
1334     // Classify the fields one at a time, merging the results.
1335     unsigned idx = 0;
1336     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1337            i != e; ++i, ++idx) {
1338       uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
1339       bool BitField = i->isBitField();
1340 
1341       // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
1342       // four eightbytes, or it contains unaligned fields, it has class MEMORY.
1343       //
1344       // The only case a 256-bit wide vector could be used is when the struct
1345       // contains a single 256-bit element. Since Lo and Hi logic isn't extended
1346       // to work for sizes wider than 128, early check and fallback to memory.
1347       //
1348       if (Size > 128 && getContext().getTypeSize(i->getType()) != 256) {
1349         Lo = Memory;
1350         return;
1351       }
1352       // Note, skip this test for bit-fields, see below.
1353       if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
1354         Lo = Memory;
1355         return;
1356       }
1357 
1358       // Classify this field.
1359       //
1360       // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
1361       // exceeds a single eightbyte, each is classified
1362       // separately. Each eightbyte gets initialized to class
1363       // NO_CLASS.
1364       Class FieldLo, FieldHi;
1365 
1366       // Bit-fields require special handling, they do not force the
1367       // structure to be passed in memory even if unaligned, and
1368       // therefore they can straddle an eightbyte.
1369       if (BitField) {
1370         // Ignore padding bit-fields.
1371         if (i->isUnnamedBitfield())
1372           continue;
1373 
1374         uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
1375         uint64_t Size = i->getBitWidthValue(getContext());
1376 
1377         uint64_t EB_Lo = Offset / 64;
1378         uint64_t EB_Hi = (Offset + Size - 1) / 64;
1379         FieldLo = FieldHi = NoClass;
1380         if (EB_Lo) {
1381           assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
1382           FieldLo = NoClass;
1383           FieldHi = Integer;
1384         } else {
1385           FieldLo = Integer;
1386           FieldHi = EB_Hi ? Integer : NoClass;
1387         }
1388       } else
1389         classify(i->getType(), Offset, FieldLo, FieldHi);
1390       Lo = merge(Lo, FieldLo);
1391       Hi = merge(Hi, FieldHi);
1392       if (Lo == Memory || Hi == Memory)
1393         break;
1394     }
1395 
1396     postMerge(Size, Lo, Hi);
1397   }
1398 }
1399 
1400 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
1401   // If this is a scalar LLVM value then assume LLVM will pass it in the right
1402   // place naturally.
1403   if (!isAggregateTypeForABI(Ty)) {
1404     // Treat an enum type as its underlying type.
1405     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1406       Ty = EnumTy->getDecl()->getIntegerType();
1407 
1408     return (Ty->isPromotableIntegerType() ?
1409             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1410   }
1411 
1412   return ABIArgInfo::getIndirect(0);
1413 }
1414 
1415 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
1416   if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
1417     uint64_t Size = getContext().getTypeSize(VecTy);
1418     unsigned LargestVector = HasAVX ? 256 : 128;
1419     if (Size <= 64 || Size > LargestVector)
1420       return true;
1421   }
1422 
1423   return false;
1424 }
1425 
1426 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty) const {
1427   // If this is a scalar LLVM value then assume LLVM will pass it in the right
1428   // place naturally.
1429   if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) {
1430     // Treat an enum type as its underlying type.
1431     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1432       Ty = EnumTy->getDecl()->getIntegerType();
1433 
1434     return (Ty->isPromotableIntegerType() ?
1435             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1436   }
1437 
1438   if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
1439     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
1440 
1441   // Compute the byval alignment. We specify the alignment of the byval in all
1442   // cases so that the mid-level optimizer knows the alignment of the byval.
1443   unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
1444   return ABIArgInfo::getIndirect(Align);
1445 }
1446 
1447 /// GetByteVectorType - The ABI specifies that a value should be passed in an
1448 /// full vector XMM/YMM register.  Pick an LLVM IR type that will be passed as a
1449 /// vector register.
1450 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
1451   llvm::Type *IRType = CGT.ConvertType(Ty);
1452 
1453   // Wrapper structs that just contain vectors are passed just like vectors,
1454   // strip them off if present.
1455   llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType);
1456   while (STy && STy->getNumElements() == 1) {
1457     IRType = STy->getElementType(0);
1458     STy = dyn_cast<llvm::StructType>(IRType);
1459   }
1460 
1461   // If the preferred type is a 16-byte vector, prefer to pass it.
1462   if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(IRType)){
1463     llvm::Type *EltTy = VT->getElementType();
1464     unsigned BitWidth = VT->getBitWidth();
1465     if ((BitWidth >= 128 && BitWidth <= 256) &&
1466         (EltTy->isFloatTy() || EltTy->isDoubleTy() ||
1467          EltTy->isIntegerTy(8) || EltTy->isIntegerTy(16) ||
1468          EltTy->isIntegerTy(32) || EltTy->isIntegerTy(64) ||
1469          EltTy->isIntegerTy(128)))
1470       return VT;
1471   }
1472 
1473   return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 2);
1474 }
1475 
1476 /// BitsContainNoUserData - Return true if the specified [start,end) bit range
1477 /// is known to either be off the end of the specified type or being in
1478 /// alignment padding.  The user type specified is known to be at most 128 bits
1479 /// in size, and have passed through X86_64ABIInfo::classify with a successful
1480 /// classification that put one of the two halves in the INTEGER class.
1481 ///
1482 /// It is conservatively correct to return false.
1483 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
1484                                   unsigned EndBit, ASTContext &Context) {
1485   // If the bytes being queried are off the end of the type, there is no user
1486   // data hiding here.  This handles analysis of builtins, vectors and other
1487   // types that don't contain interesting padding.
1488   unsigned TySize = (unsigned)Context.getTypeSize(Ty);
1489   if (TySize <= StartBit)
1490     return true;
1491 
1492   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
1493     unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
1494     unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
1495 
1496     // Check each element to see if the element overlaps with the queried range.
1497     for (unsigned i = 0; i != NumElts; ++i) {
1498       // If the element is after the span we care about, then we're done..
1499       unsigned EltOffset = i*EltSize;
1500       if (EltOffset >= EndBit) break;
1501 
1502       unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
1503       if (!BitsContainNoUserData(AT->getElementType(), EltStart,
1504                                  EndBit-EltOffset, Context))
1505         return false;
1506     }
1507     // If it overlaps no elements, then it is safe to process as padding.
1508     return true;
1509   }
1510 
1511   if (const RecordType *RT = Ty->getAs<RecordType>()) {
1512     const RecordDecl *RD = RT->getDecl();
1513     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1514 
1515     // If this is a C++ record, check the bases first.
1516     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1517       for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
1518            e = CXXRD->bases_end(); i != e; ++i) {
1519         assert(!i->isVirtual() && !i->getType()->isDependentType() &&
1520                "Unexpected base class!");
1521         const CXXRecordDecl *Base =
1522           cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
1523 
1524         // If the base is after the span we care about, ignore it.
1525         unsigned BaseOffset = (unsigned)Layout.getBaseClassOffsetInBits(Base);
1526         if (BaseOffset >= EndBit) continue;
1527 
1528         unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
1529         if (!BitsContainNoUserData(i->getType(), BaseStart,
1530                                    EndBit-BaseOffset, Context))
1531           return false;
1532       }
1533     }
1534 
1535     // Verify that no field has data that overlaps the region of interest.  Yes
1536     // this could be sped up a lot by being smarter about queried fields,
1537     // however we're only looking at structs up to 16 bytes, so we don't care
1538     // much.
1539     unsigned idx = 0;
1540     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1541          i != e; ++i, ++idx) {
1542       unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
1543 
1544       // If we found a field after the region we care about, then we're done.
1545       if (FieldOffset >= EndBit) break;
1546 
1547       unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
1548       if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
1549                                  Context))
1550         return false;
1551     }
1552 
1553     // If nothing in this record overlapped the area of interest, then we're
1554     // clean.
1555     return true;
1556   }
1557 
1558   return false;
1559 }
1560 
1561 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
1562 /// float member at the specified offset.  For example, {int,{float}} has a
1563 /// float at offset 4.  It is conservatively correct for this routine to return
1564 /// false.
1565 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset,
1566                                   const llvm::TargetData &TD) {
1567   // Base case if we find a float.
1568   if (IROffset == 0 && IRType->isFloatTy())
1569     return true;
1570 
1571   // If this is a struct, recurse into the field at the specified offset.
1572   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
1573     const llvm::StructLayout *SL = TD.getStructLayout(STy);
1574     unsigned Elt = SL->getElementContainingOffset(IROffset);
1575     IROffset -= SL->getElementOffset(Elt);
1576     return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
1577   }
1578 
1579   // If this is an array, recurse into the field at the specified offset.
1580   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
1581     llvm::Type *EltTy = ATy->getElementType();
1582     unsigned EltSize = TD.getTypeAllocSize(EltTy);
1583     IROffset -= IROffset/EltSize*EltSize;
1584     return ContainsFloatAtOffset(EltTy, IROffset, TD);
1585   }
1586 
1587   return false;
1588 }
1589 
1590 
1591 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
1592 /// low 8 bytes of an XMM register, corresponding to the SSE class.
1593 llvm::Type *X86_64ABIInfo::
1594 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
1595                    QualType SourceTy, unsigned SourceOffset) const {
1596   // The only three choices we have are either double, <2 x float>, or float. We
1597   // pass as float if the last 4 bytes is just padding.  This happens for
1598   // structs that contain 3 floats.
1599   if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
1600                             SourceOffset*8+64, getContext()))
1601     return llvm::Type::getFloatTy(getVMContext());
1602 
1603   // We want to pass as <2 x float> if the LLVM IR type contains a float at
1604   // offset+0 and offset+4.  Walk the LLVM IR type to find out if this is the
1605   // case.
1606   if (ContainsFloatAtOffset(IRType, IROffset, getTargetData()) &&
1607       ContainsFloatAtOffset(IRType, IROffset+4, getTargetData()))
1608     return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2);
1609 
1610   return llvm::Type::getDoubleTy(getVMContext());
1611 }
1612 
1613 
1614 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
1615 /// an 8-byte GPR.  This means that we either have a scalar or we are talking
1616 /// about the high or low part of an up-to-16-byte struct.  This routine picks
1617 /// the best LLVM IR type to represent this, which may be i64 or may be anything
1618 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
1619 /// etc).
1620 ///
1621 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
1622 /// the source type.  IROffset is an offset in bytes into the LLVM IR type that
1623 /// the 8-byte value references.  PrefType may be null.
1624 ///
1625 /// SourceTy is the source level type for the entire argument.  SourceOffset is
1626 /// an offset into this that we're processing (which is always either 0 or 8).
1627 ///
1628 llvm::Type *X86_64ABIInfo::
1629 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
1630                        QualType SourceTy, unsigned SourceOffset) const {
1631   // If we're dealing with an un-offset LLVM IR type, then it means that we're
1632   // returning an 8-byte unit starting with it.  See if we can safely use it.
1633   if (IROffset == 0) {
1634     // Pointers and int64's always fill the 8-byte unit.
1635     if (isa<llvm::PointerType>(IRType) || IRType->isIntegerTy(64))
1636       return IRType;
1637 
1638     // If we have a 1/2/4-byte integer, we can use it only if the rest of the
1639     // goodness in the source type is just tail padding.  This is allowed to
1640     // kick in for struct {double,int} on the int, but not on
1641     // struct{double,int,int} because we wouldn't return the second int.  We
1642     // have to do this analysis on the source type because we can't depend on
1643     // unions being lowered a specific way etc.
1644     if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
1645         IRType->isIntegerTy(32)) {
1646       unsigned BitWidth = cast<llvm::IntegerType>(IRType)->getBitWidth();
1647 
1648       if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
1649                                 SourceOffset*8+64, getContext()))
1650         return IRType;
1651     }
1652   }
1653 
1654   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
1655     // If this is a struct, recurse into the field at the specified offset.
1656     const llvm::StructLayout *SL = getTargetData().getStructLayout(STy);
1657     if (IROffset < SL->getSizeInBytes()) {
1658       unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
1659       IROffset -= SL->getElementOffset(FieldIdx);
1660 
1661       return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
1662                                     SourceTy, SourceOffset);
1663     }
1664   }
1665 
1666   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
1667     llvm::Type *EltTy = ATy->getElementType();
1668     unsigned EltSize = getTargetData().getTypeAllocSize(EltTy);
1669     unsigned EltOffset = IROffset/EltSize*EltSize;
1670     return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
1671                                   SourceOffset);
1672   }
1673 
1674   // Okay, we don't have any better idea of what to pass, so we pass this in an
1675   // integer register that isn't too big to fit the rest of the struct.
1676   unsigned TySizeInBytes =
1677     (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
1678 
1679   assert(TySizeInBytes != SourceOffset && "Empty field?");
1680 
1681   // It is always safe to classify this as an integer type up to i64 that
1682   // isn't larger than the structure.
1683   return llvm::IntegerType::get(getVMContext(),
1684                                 std::min(TySizeInBytes-SourceOffset, 8U)*8);
1685 }
1686 
1687 
1688 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
1689 /// be used as elements of a two register pair to pass or return, return a
1690 /// first class aggregate to represent them.  For example, if the low part of
1691 /// a by-value argument should be passed as i32* and the high part as float,
1692 /// return {i32*, float}.
1693 static llvm::Type *
1694 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
1695                            const llvm::TargetData &TD) {
1696   // In order to correctly satisfy the ABI, we need to the high part to start
1697   // at offset 8.  If the high and low parts we inferred are both 4-byte types
1698   // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
1699   // the second element at offset 8.  Check for this:
1700   unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
1701   unsigned HiAlign = TD.getABITypeAlignment(Hi);
1702   unsigned HiStart = llvm::TargetData::RoundUpAlignment(LoSize, HiAlign);
1703   assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
1704 
1705   // To handle this, we have to increase the size of the low part so that the
1706   // second element will start at an 8 byte offset.  We can't increase the size
1707   // of the second element because it might make us access off the end of the
1708   // struct.
1709   if (HiStart != 8) {
1710     // There are only two sorts of types the ABI generation code can produce for
1711     // the low part of a pair that aren't 8 bytes in size: float or i8/i16/i32.
1712     // Promote these to a larger type.
1713     if (Lo->isFloatTy())
1714       Lo = llvm::Type::getDoubleTy(Lo->getContext());
1715     else {
1716       assert(Lo->isIntegerTy() && "Invalid/unknown lo type");
1717       Lo = llvm::Type::getInt64Ty(Lo->getContext());
1718     }
1719   }
1720 
1721   llvm::StructType *Result = llvm::StructType::get(Lo, Hi, NULL);
1722 
1723 
1724   // Verify that the second element is at an 8-byte offset.
1725   assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
1726          "Invalid x86-64 argument pair!");
1727   return Result;
1728 }
1729 
1730 ABIArgInfo X86_64ABIInfo::
1731 classifyReturnType(QualType RetTy) const {
1732   // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
1733   // classification algorithm.
1734   X86_64ABIInfo::Class Lo, Hi;
1735   classify(RetTy, 0, Lo, Hi);
1736 
1737   // Check some invariants.
1738   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
1739   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
1740 
1741   llvm::Type *ResType = 0;
1742   switch (Lo) {
1743   case NoClass:
1744     if (Hi == NoClass)
1745       return ABIArgInfo::getIgnore();
1746     // If the low part is just padding, it takes no register, leave ResType
1747     // null.
1748     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
1749            "Unknown missing lo part");
1750     break;
1751 
1752   case SSEUp:
1753   case X87Up:
1754     llvm_unreachable("Invalid classification for lo word.");
1755 
1756     // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
1757     // hidden argument.
1758   case Memory:
1759     return getIndirectReturnResult(RetTy);
1760 
1761     // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
1762     // available register of the sequence %rax, %rdx is used.
1763   case Integer:
1764     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
1765 
1766     // If we have a sign or zero extended integer, make sure to return Extend
1767     // so that the parameter gets the right LLVM IR attributes.
1768     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
1769       // Treat an enum type as its underlying type.
1770       if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
1771         RetTy = EnumTy->getDecl()->getIntegerType();
1772 
1773       if (RetTy->isIntegralOrEnumerationType() &&
1774           RetTy->isPromotableIntegerType())
1775         return ABIArgInfo::getExtend();
1776     }
1777     break;
1778 
1779     // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
1780     // available SSE register of the sequence %xmm0, %xmm1 is used.
1781   case SSE:
1782     ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
1783     break;
1784 
1785     // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
1786     // returned on the X87 stack in %st0 as 80-bit x87 number.
1787   case X87:
1788     ResType = llvm::Type::getX86_FP80Ty(getVMContext());
1789     break;
1790 
1791     // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
1792     // part of the value is returned in %st0 and the imaginary part in
1793     // %st1.
1794   case ComplexX87:
1795     assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
1796     ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
1797                                     llvm::Type::getX86_FP80Ty(getVMContext()),
1798                                     NULL);
1799     break;
1800   }
1801 
1802   llvm::Type *HighPart = 0;
1803   switch (Hi) {
1804     // Memory was handled previously and X87 should
1805     // never occur as a hi class.
1806   case Memory:
1807   case X87:
1808     llvm_unreachable("Invalid classification for hi word.");
1809 
1810   case ComplexX87: // Previously handled.
1811   case NoClass:
1812     break;
1813 
1814   case Integer:
1815     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
1816     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
1817       return ABIArgInfo::getDirect(HighPart, 8);
1818     break;
1819   case SSE:
1820     HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
1821     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
1822       return ABIArgInfo::getDirect(HighPart, 8);
1823     break;
1824 
1825     // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
1826     // is passed in the next available eightbyte chunk if the last used
1827     // vector register.
1828     //
1829     // SSEUP should always be preceded by SSE, just widen.
1830   case SSEUp:
1831     assert(Lo == SSE && "Unexpected SSEUp classification.");
1832     ResType = GetByteVectorType(RetTy);
1833     break;
1834 
1835     // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
1836     // returned together with the previous X87 value in %st0.
1837   case X87Up:
1838     // If X87Up is preceded by X87, we don't need to do
1839     // anything. However, in some cases with unions it may not be
1840     // preceded by X87. In such situations we follow gcc and pass the
1841     // extra bits in an SSE reg.
1842     if (Lo != X87) {
1843       HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
1844       if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
1845         return ABIArgInfo::getDirect(HighPart, 8);
1846     }
1847     break;
1848   }
1849 
1850   // If a high part was specified, merge it together with the low part.  It is
1851   // known to pass in the high eightbyte of the result.  We do this by forming a
1852   // first class struct aggregate with the high and low part: {low, high}
1853   if (HighPart)
1854     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getTargetData());
1855 
1856   return ABIArgInfo::getDirect(ResType);
1857 }
1858 
1859 ABIArgInfo X86_64ABIInfo::classifyArgumentType(QualType Ty, unsigned &neededInt,
1860                                                unsigned &neededSSE) const {
1861   X86_64ABIInfo::Class Lo, Hi;
1862   classify(Ty, 0, Lo, Hi);
1863 
1864   // Check some invariants.
1865   // FIXME: Enforce these by construction.
1866   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
1867   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
1868 
1869   neededInt = 0;
1870   neededSSE = 0;
1871   llvm::Type *ResType = 0;
1872   switch (Lo) {
1873   case NoClass:
1874     if (Hi == NoClass)
1875       return ABIArgInfo::getIgnore();
1876     // If the low part is just padding, it takes no register, leave ResType
1877     // null.
1878     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
1879            "Unknown missing lo part");
1880     break;
1881 
1882     // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
1883     // on the stack.
1884   case Memory:
1885 
1886     // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
1887     // COMPLEX_X87, it is passed in memory.
1888   case X87:
1889   case ComplexX87:
1890     if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
1891       ++neededInt;
1892     return getIndirectResult(Ty);
1893 
1894   case SSEUp:
1895   case X87Up:
1896     llvm_unreachable("Invalid classification for lo word.");
1897 
1898     // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
1899     // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
1900     // and %r9 is used.
1901   case Integer:
1902     ++neededInt;
1903 
1904     // Pick an 8-byte type based on the preferred type.
1905     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
1906 
1907     // If we have a sign or zero extended integer, make sure to return Extend
1908     // so that the parameter gets the right LLVM IR attributes.
1909     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
1910       // Treat an enum type as its underlying type.
1911       if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1912         Ty = EnumTy->getDecl()->getIntegerType();
1913 
1914       if (Ty->isIntegralOrEnumerationType() &&
1915           Ty->isPromotableIntegerType())
1916         return ABIArgInfo::getExtend();
1917     }
1918 
1919     break;
1920 
1921     // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
1922     // available SSE register is used, the registers are taken in the
1923     // order from %xmm0 to %xmm7.
1924   case SSE: {
1925     llvm::Type *IRType = CGT.ConvertType(Ty);
1926     ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
1927     ++neededSSE;
1928     break;
1929   }
1930   }
1931 
1932   llvm::Type *HighPart = 0;
1933   switch (Hi) {
1934     // Memory was handled previously, ComplexX87 and X87 should
1935     // never occur as hi classes, and X87Up must be preceded by X87,
1936     // which is passed in memory.
1937   case Memory:
1938   case X87:
1939   case ComplexX87:
1940     llvm_unreachable("Invalid classification for hi word.");
1941 
1942   case NoClass: break;
1943 
1944   case Integer:
1945     ++neededInt;
1946     // Pick an 8-byte type based on the preferred type.
1947     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
1948 
1949     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
1950       return ABIArgInfo::getDirect(HighPart, 8);
1951     break;
1952 
1953     // X87Up generally doesn't occur here (long double is passed in
1954     // memory), except in situations involving unions.
1955   case X87Up:
1956   case SSE:
1957     HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
1958 
1959     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
1960       return ABIArgInfo::getDirect(HighPart, 8);
1961 
1962     ++neededSSE;
1963     break;
1964 
1965     // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
1966     // eightbyte is passed in the upper half of the last used SSE
1967     // register.  This only happens when 128-bit vectors are passed.
1968   case SSEUp:
1969     assert(Lo == SSE && "Unexpected SSEUp classification");
1970     ResType = GetByteVectorType(Ty);
1971     break;
1972   }
1973 
1974   // If a high part was specified, merge it together with the low part.  It is
1975   // known to pass in the high eightbyte of the result.  We do this by forming a
1976   // first class struct aggregate with the high and low part: {low, high}
1977   if (HighPart)
1978     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getTargetData());
1979 
1980   return ABIArgInfo::getDirect(ResType);
1981 }
1982 
1983 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
1984 
1985   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
1986 
1987   // Keep track of the number of assigned registers.
1988   unsigned freeIntRegs = 6, freeSSERegs = 8;
1989 
1990   // If the return value is indirect, then the hidden argument is consuming one
1991   // integer register.
1992   if (FI.getReturnInfo().isIndirect())
1993     --freeIntRegs;
1994 
1995   // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
1996   // get assigned (in left-to-right order) for passing as follows...
1997   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
1998        it != ie; ++it) {
1999     unsigned neededInt, neededSSE;
2000     it->info = classifyArgumentType(it->type, neededInt, neededSSE);
2001 
2002     // AMD64-ABI 3.2.3p3: If there are no registers available for any
2003     // eightbyte of an argument, the whole argument is passed on the
2004     // stack. If registers have already been assigned for some
2005     // eightbytes of such an argument, the assignments get reverted.
2006     if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) {
2007       freeIntRegs -= neededInt;
2008       freeSSERegs -= neededSSE;
2009     } else {
2010       it->info = getIndirectResult(it->type);
2011     }
2012   }
2013 }
2014 
2015 static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr,
2016                                         QualType Ty,
2017                                         CodeGenFunction &CGF) {
2018   llvm::Value *overflow_arg_area_p =
2019     CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
2020   llvm::Value *overflow_arg_area =
2021     CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
2022 
2023   // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
2024   // byte boundary if alignment needed by type exceeds 8 byte boundary.
2025   // It isn't stated explicitly in the standard, but in practice we use
2026   // alignment greater than 16 where necessary.
2027   uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
2028   if (Align > 8) {
2029     // overflow_arg_area = (overflow_arg_area + align - 1) & -align;
2030     llvm::Value *Offset =
2031       llvm::ConstantInt::get(CGF.Int64Ty, Align - 1);
2032     overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset);
2033     llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area,
2034                                                     CGF.Int64Ty);
2035     llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, -(uint64_t)Align);
2036     overflow_arg_area =
2037       CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
2038                                  overflow_arg_area->getType(),
2039                                  "overflow_arg_area.align");
2040   }
2041 
2042   // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
2043   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
2044   llvm::Value *Res =
2045     CGF.Builder.CreateBitCast(overflow_arg_area,
2046                               llvm::PointerType::getUnqual(LTy));
2047 
2048   // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
2049   // l->overflow_arg_area + sizeof(type).
2050   // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
2051   // an 8 byte boundary.
2052 
2053   uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
2054   llvm::Value *Offset =
2055       llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7);
2056   overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
2057                                             "overflow_arg_area.next");
2058   CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
2059 
2060   // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
2061   return Res;
2062 }
2063 
2064 llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2065                                       CodeGenFunction &CGF) const {
2066   llvm::LLVMContext &VMContext = CGF.getLLVMContext();
2067 
2068   // Assume that va_list type is correct; should be pointer to LLVM type:
2069   // struct {
2070   //   i32 gp_offset;
2071   //   i32 fp_offset;
2072   //   i8* overflow_arg_area;
2073   //   i8* reg_save_area;
2074   // };
2075   unsigned neededInt, neededSSE;
2076 
2077   Ty = CGF.getContext().getCanonicalType(Ty);
2078   ABIArgInfo AI = classifyArgumentType(Ty, neededInt, neededSSE);
2079 
2080   // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
2081   // in the registers. If not go to step 7.
2082   if (!neededInt && !neededSSE)
2083     return EmitVAArgFromMemory(VAListAddr, Ty, CGF);
2084 
2085   // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
2086   // general purpose registers needed to pass type and num_fp to hold
2087   // the number of floating point registers needed.
2088 
2089   // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
2090   // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
2091   // l->fp_offset > 304 - num_fp * 16 go to step 7.
2092   //
2093   // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
2094   // register save space).
2095 
2096   llvm::Value *InRegs = 0;
2097   llvm::Value *gp_offset_p = 0, *gp_offset = 0;
2098   llvm::Value *fp_offset_p = 0, *fp_offset = 0;
2099   if (neededInt) {
2100     gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
2101     gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
2102     InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
2103     InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
2104   }
2105 
2106   if (neededSSE) {
2107     fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
2108     fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
2109     llvm::Value *FitsInFP =
2110       llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
2111     FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
2112     InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
2113   }
2114 
2115   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
2116   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
2117   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
2118   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
2119 
2120   // Emit code to load the value if it was passed in registers.
2121 
2122   CGF.EmitBlock(InRegBlock);
2123 
2124   // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
2125   // an offset of l->gp_offset and/or l->fp_offset. This may require
2126   // copying to a temporary location in case the parameter is passed
2127   // in different register classes or requires an alignment greater
2128   // than 8 for general purpose registers and 16 for XMM registers.
2129   //
2130   // FIXME: This really results in shameful code when we end up needing to
2131   // collect arguments from different places; often what should result in a
2132   // simple assembling of a structure from scattered addresses has many more
2133   // loads than necessary. Can we clean this up?
2134   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
2135   llvm::Value *RegAddr =
2136     CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(VAListAddr, 3),
2137                            "reg_save_area");
2138   if (neededInt && neededSSE) {
2139     // FIXME: Cleanup.
2140     assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
2141     llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
2142     llvm::Value *Tmp = CGF.CreateTempAlloca(ST);
2143     assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
2144     llvm::Type *TyLo = ST->getElementType(0);
2145     llvm::Type *TyHi = ST->getElementType(1);
2146     assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
2147            "Unexpected ABI info for mixed regs");
2148     llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
2149     llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
2150     llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
2151     llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2152     llvm::Value *RegLoAddr = TyLo->isFloatingPointTy() ? FPAddr : GPAddr;
2153     llvm::Value *RegHiAddr = TyLo->isFloatingPointTy() ? GPAddr : FPAddr;
2154     llvm::Value *V =
2155       CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo));
2156     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
2157     V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi));
2158     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
2159 
2160     RegAddr = CGF.Builder.CreateBitCast(Tmp,
2161                                         llvm::PointerType::getUnqual(LTy));
2162   } else if (neededInt) {
2163     RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
2164     RegAddr = CGF.Builder.CreateBitCast(RegAddr,
2165                                         llvm::PointerType::getUnqual(LTy));
2166   } else if (neededSSE == 1) {
2167     RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2168     RegAddr = CGF.Builder.CreateBitCast(RegAddr,
2169                                         llvm::PointerType::getUnqual(LTy));
2170   } else {
2171     assert(neededSSE == 2 && "Invalid number of needed registers!");
2172     // SSE registers are spaced 16 bytes apart in the register save
2173     // area, we need to collect the two eightbytes together.
2174     llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2175     llvm::Value *RegAddrHi = CGF.Builder.CreateConstGEP1_32(RegAddrLo, 16);
2176     llvm::Type *DoubleTy = llvm::Type::getDoubleTy(VMContext);
2177     llvm::Type *DblPtrTy =
2178       llvm::PointerType::getUnqual(DoubleTy);
2179     llvm::StructType *ST = llvm::StructType::get(DoubleTy,
2180                                                        DoubleTy, NULL);
2181     llvm::Value *V, *Tmp = CGF.CreateTempAlloca(ST);
2182     V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo,
2183                                                          DblPtrTy));
2184     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
2185     V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi,
2186                                                          DblPtrTy));
2187     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
2188     RegAddr = CGF.Builder.CreateBitCast(Tmp,
2189                                         llvm::PointerType::getUnqual(LTy));
2190   }
2191 
2192   // AMD64-ABI 3.5.7p5: Step 5. Set:
2193   // l->gp_offset = l->gp_offset + num_gp * 8
2194   // l->fp_offset = l->fp_offset + num_fp * 16.
2195   if (neededInt) {
2196     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
2197     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
2198                             gp_offset_p);
2199   }
2200   if (neededSSE) {
2201     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
2202     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
2203                             fp_offset_p);
2204   }
2205   CGF.EmitBranch(ContBlock);
2206 
2207   // Emit code to load the value if it was passed in memory.
2208 
2209   CGF.EmitBlock(InMemBlock);
2210   llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF);
2211 
2212   // Return the appropriate result.
2213 
2214   CGF.EmitBlock(ContBlock);
2215   llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(), 2,
2216                                                  "vaarg.addr");
2217   ResAddr->addIncoming(RegAddr, InRegBlock);
2218   ResAddr->addIncoming(MemAddr, InMemBlock);
2219   return ResAddr;
2220 }
2221 
2222 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty) const {
2223 
2224   if (Ty->isVoidType())
2225     return ABIArgInfo::getIgnore();
2226 
2227   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2228     Ty = EnumTy->getDecl()->getIntegerType();
2229 
2230   uint64_t Size = getContext().getTypeSize(Ty);
2231 
2232   if (const RecordType *RT = Ty->getAs<RecordType>()) {
2233     if (hasNonTrivialDestructorOrCopyConstructor(RT) ||
2234         RT->getDecl()->hasFlexibleArrayMember())
2235       return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2236 
2237     // FIXME: mingw-w64-gcc emits 128-bit struct as i128
2238     if (Size == 128 &&
2239         getContext().getTargetInfo().getTriple().getOS() == llvm::Triple::MinGW32)
2240       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2241                                                           Size));
2242 
2243     // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
2244     // not 1, 2, 4, or 8 bytes, must be passed by reference."
2245     if (Size <= 64 &&
2246         (Size & (Size - 1)) == 0)
2247       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2248                                                           Size));
2249 
2250     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2251   }
2252 
2253   if (Ty->isPromotableIntegerType())
2254     return ABIArgInfo::getExtend();
2255 
2256   return ABIArgInfo::getDirect();
2257 }
2258 
2259 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
2260 
2261   QualType RetTy = FI.getReturnType();
2262   FI.getReturnInfo() = classify(RetTy);
2263 
2264   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2265        it != ie; ++it)
2266     it->info = classify(it->type);
2267 }
2268 
2269 llvm::Value *WinX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2270                                       CodeGenFunction &CGF) const {
2271   llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
2272   llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
2273 
2274   CGBuilderTy &Builder = CGF.Builder;
2275   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
2276                                                        "ap");
2277   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
2278   llvm::Type *PTy =
2279     llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
2280   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
2281 
2282   uint64_t Offset =
2283     llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 8);
2284   llvm::Value *NextAddr =
2285     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
2286                       "ap.next");
2287   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
2288 
2289   return AddrTyped;
2290 }
2291 
2292 // PowerPC-32
2293 
2294 namespace {
2295 class PPC32TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
2296 public:
2297   PPC32TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
2298 
2299   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
2300     // This is recovered from gcc output.
2301     return 1; // r1 is the dedicated stack pointer
2302   }
2303 
2304   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2305                                llvm::Value *Address) const;
2306 };
2307 
2308 }
2309 
2310 bool
2311 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2312                                                 llvm::Value *Address) const {
2313   // This is calculated from the LLVM and GCC tables and verified
2314   // against gcc output.  AFAIK all ABIs use the same encoding.
2315 
2316   CodeGen::CGBuilderTy &Builder = CGF.Builder;
2317   llvm::LLVMContext &Context = CGF.getLLVMContext();
2318 
2319   llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
2320   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
2321   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
2322   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
2323 
2324   // 0-31: r0-31, the 4-byte general-purpose registers
2325   AssignToArrayRange(Builder, Address, Four8, 0, 31);
2326 
2327   // 32-63: fp0-31, the 8-byte floating-point registers
2328   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
2329 
2330   // 64-76 are various 4-byte special-purpose registers:
2331   // 64: mq
2332   // 65: lr
2333   // 66: ctr
2334   // 67: ap
2335   // 68-75 cr0-7
2336   // 76: xer
2337   AssignToArrayRange(Builder, Address, Four8, 64, 76);
2338 
2339   // 77-108: v0-31, the 16-byte vector registers
2340   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
2341 
2342   // 109: vrsave
2343   // 110: vscr
2344   // 111: spe_acc
2345   // 112: spefscr
2346   // 113: sfp
2347   AssignToArrayRange(Builder, Address, Four8, 109, 113);
2348 
2349   return false;
2350 }
2351 
2352 
2353 //===----------------------------------------------------------------------===//
2354 // ARM ABI Implementation
2355 //===----------------------------------------------------------------------===//
2356 
2357 namespace {
2358 
2359 class ARMABIInfo : public ABIInfo {
2360 public:
2361   enum ABIKind {
2362     APCS = 0,
2363     AAPCS = 1,
2364     AAPCS_VFP
2365   };
2366 
2367 private:
2368   ABIKind Kind;
2369 
2370 public:
2371   ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) : ABIInfo(CGT), Kind(_Kind) {}
2372 
2373   bool isEABI() const {
2374     StringRef Env = getContext().getTargetInfo().getTriple().getEnvironmentName();
2375     return (Env == "gnueabi" || Env == "eabi");
2376   }
2377 
2378 private:
2379   ABIKind getABIKind() const { return Kind; }
2380 
2381   ABIArgInfo classifyReturnType(QualType RetTy) const;
2382   ABIArgInfo classifyArgumentType(QualType RetTy) const;
2383 
2384   virtual void computeInfo(CGFunctionInfo &FI) const;
2385 
2386   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2387                                  CodeGenFunction &CGF) const;
2388 };
2389 
2390 class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
2391 public:
2392   ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
2393     :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {}
2394 
2395   const ARMABIInfo &getABIInfo() const {
2396     return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo());
2397   }
2398 
2399   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
2400     return 13;
2401   }
2402 
2403   StringRef getARCRetainAutoreleasedReturnValueMarker() const {
2404     return "mov\tr7, r7\t\t@ marker for objc_retainAutoreleaseReturnValue";
2405   }
2406 
2407   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2408                                llvm::Value *Address) const {
2409     CodeGen::CGBuilderTy &Builder = CGF.Builder;
2410     llvm::LLVMContext &Context = CGF.getLLVMContext();
2411 
2412     llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
2413     llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
2414 
2415     // 0-15 are the 16 integer registers.
2416     AssignToArrayRange(Builder, Address, Four8, 0, 15);
2417 
2418     return false;
2419   }
2420 
2421   unsigned getSizeOfUnwindException() const {
2422     if (getABIInfo().isEABI()) return 88;
2423     return TargetCodeGenInfo::getSizeOfUnwindException();
2424   }
2425 };
2426 
2427 }
2428 
2429 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
2430   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2431   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2432        it != ie; ++it)
2433     it->info = classifyArgumentType(it->type);
2434 
2435   // Always honor user-specified calling convention.
2436   if (FI.getCallingConvention() != llvm::CallingConv::C)
2437     return;
2438 
2439   // Calling convention as default by an ABI.
2440   llvm::CallingConv::ID DefaultCC;
2441   if (isEABI())
2442     DefaultCC = llvm::CallingConv::ARM_AAPCS;
2443   else
2444     DefaultCC = llvm::CallingConv::ARM_APCS;
2445 
2446   // If user did not ask for specific calling convention explicitly (e.g. via
2447   // pcs attribute), set effective calling convention if it's different than ABI
2448   // default.
2449   switch (getABIKind()) {
2450   case APCS:
2451     if (DefaultCC != llvm::CallingConv::ARM_APCS)
2452       FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_APCS);
2453     break;
2454   case AAPCS:
2455     if (DefaultCC != llvm::CallingConv::ARM_AAPCS)
2456       FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_AAPCS);
2457     break;
2458   case AAPCS_VFP:
2459     if (DefaultCC != llvm::CallingConv::ARM_AAPCS_VFP)
2460       FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_AAPCS_VFP);
2461     break;
2462   }
2463 }
2464 
2465 /// isHomogeneousAggregate - Return true if a type is an AAPCS-VFP homogeneous
2466 /// aggregate.  If HAMembers is non-null, the number of base elements
2467 /// contained in the type is returned through it; this is used for the
2468 /// recursive calls that check aggregate component types.
2469 static bool isHomogeneousAggregate(QualType Ty, const Type *&Base,
2470                                    ASTContext &Context,
2471                                    uint64_t *HAMembers = 0) {
2472   uint64_t Members;
2473   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
2474     if (!isHomogeneousAggregate(AT->getElementType(), Base, Context, &Members))
2475       return false;
2476     Members *= AT->getSize().getZExtValue();
2477   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
2478     const RecordDecl *RD = RT->getDecl();
2479     if (RD->isUnion() || RD->hasFlexibleArrayMember())
2480       return false;
2481     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
2482       if (!CXXRD->isAggregate())
2483         return false;
2484     }
2485     Members = 0;
2486     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2487          i != e; ++i) {
2488       const FieldDecl *FD = *i;
2489       uint64_t FldMembers;
2490       if (!isHomogeneousAggregate(FD->getType(), Base, Context, &FldMembers))
2491         return false;
2492       Members += FldMembers;
2493     }
2494   } else {
2495     Members = 1;
2496     if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
2497       Members = 2;
2498       Ty = CT->getElementType();
2499     }
2500 
2501     // Homogeneous aggregates for AAPCS-VFP must have base types of float,
2502     // double, or 64-bit or 128-bit vectors.
2503     if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
2504       if (BT->getKind() != BuiltinType::Float &&
2505           BT->getKind() != BuiltinType::Double)
2506         return false;
2507     } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
2508       unsigned VecSize = Context.getTypeSize(VT);
2509       if (VecSize != 64 && VecSize != 128)
2510         return false;
2511     } else {
2512       return false;
2513     }
2514 
2515     // The base type must be the same for all members.  Vector types of the
2516     // same total size are treated as being equivalent here.
2517     const Type *TyPtr = Ty.getTypePtr();
2518     if (!Base)
2519       Base = TyPtr;
2520     if (Base != TyPtr &&
2521         (!Base->isVectorType() || !TyPtr->isVectorType() ||
2522          Context.getTypeSize(Base) != Context.getTypeSize(TyPtr)))
2523       return false;
2524   }
2525 
2526   // Homogeneous Aggregates can have at most 4 members of the base type.
2527   if (HAMembers)
2528     *HAMembers = Members;
2529   return (Members <= 4);
2530 }
2531 
2532 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty) const {
2533   if (!isAggregateTypeForABI(Ty)) {
2534     // Treat an enum type as its underlying type.
2535     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2536       Ty = EnumTy->getDecl()->getIntegerType();
2537 
2538     return (Ty->isPromotableIntegerType() ?
2539             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2540   }
2541 
2542   // Ignore empty records.
2543   if (isEmptyRecord(getContext(), Ty, true))
2544     return ABIArgInfo::getIgnore();
2545 
2546   // Structures with either a non-trivial destructor or a non-trivial
2547   // copy constructor are always indirect.
2548   if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
2549     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2550 
2551   if (getABIKind() == ARMABIInfo::AAPCS_VFP) {
2552     // Homogeneous Aggregates need to be expanded.
2553     const Type *Base = 0;
2554     if (isHomogeneousAggregate(Ty, Base, getContext()))
2555       return ABIArgInfo::getExpand();
2556   }
2557 
2558   // Otherwise, pass by coercing to a structure of the appropriate size.
2559   //
2560   // FIXME: This is kind of nasty... but there isn't much choice because the ARM
2561   // backend doesn't support byval.
2562   // FIXME: This doesn't handle alignment > 64 bits.
2563   llvm::Type* ElemTy;
2564   unsigned SizeRegs;
2565   if (getContext().getTypeAlign(Ty) > 32) {
2566     ElemTy = llvm::Type::getInt64Ty(getVMContext());
2567     SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
2568   } else {
2569     ElemTy = llvm::Type::getInt32Ty(getVMContext());
2570     SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
2571   }
2572 
2573   llvm::Type *STy =
2574     llvm::StructType::get(llvm::ArrayType::get(ElemTy, SizeRegs), NULL);
2575   return ABIArgInfo::getDirect(STy);
2576 }
2577 
2578 static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
2579                               llvm::LLVMContext &VMContext) {
2580   // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
2581   // is called integer-like if its size is less than or equal to one word, and
2582   // the offset of each of its addressable sub-fields is zero.
2583 
2584   uint64_t Size = Context.getTypeSize(Ty);
2585 
2586   // Check that the type fits in a word.
2587   if (Size > 32)
2588     return false;
2589 
2590   // FIXME: Handle vector types!
2591   if (Ty->isVectorType())
2592     return false;
2593 
2594   // Float types are never treated as "integer like".
2595   if (Ty->isRealFloatingType())
2596     return false;
2597 
2598   // If this is a builtin or pointer type then it is ok.
2599   if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
2600     return true;
2601 
2602   // Small complex integer types are "integer like".
2603   if (const ComplexType *CT = Ty->getAs<ComplexType>())
2604     return isIntegerLikeType(CT->getElementType(), Context, VMContext);
2605 
2606   // Single element and zero sized arrays should be allowed, by the definition
2607   // above, but they are not.
2608 
2609   // Otherwise, it must be a record type.
2610   const RecordType *RT = Ty->getAs<RecordType>();
2611   if (!RT) return false;
2612 
2613   // Ignore records with flexible arrays.
2614   const RecordDecl *RD = RT->getDecl();
2615   if (RD->hasFlexibleArrayMember())
2616     return false;
2617 
2618   // Check that all sub-fields are at offset 0, and are themselves "integer
2619   // like".
2620   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
2621 
2622   bool HadField = false;
2623   unsigned idx = 0;
2624   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2625        i != e; ++i, ++idx) {
2626     const FieldDecl *FD = *i;
2627 
2628     // Bit-fields are not addressable, we only need to verify they are "integer
2629     // like". We still have to disallow a subsequent non-bitfield, for example:
2630     //   struct { int : 0; int x }
2631     // is non-integer like according to gcc.
2632     if (FD->isBitField()) {
2633       if (!RD->isUnion())
2634         HadField = true;
2635 
2636       if (!isIntegerLikeType(FD->getType(), Context, VMContext))
2637         return false;
2638 
2639       continue;
2640     }
2641 
2642     // Check if this field is at offset 0.
2643     if (Layout.getFieldOffset(idx) != 0)
2644       return false;
2645 
2646     if (!isIntegerLikeType(FD->getType(), Context, VMContext))
2647       return false;
2648 
2649     // Only allow at most one field in a structure. This doesn't match the
2650     // wording above, but follows gcc in situations with a field following an
2651     // empty structure.
2652     if (!RD->isUnion()) {
2653       if (HadField)
2654         return false;
2655 
2656       HadField = true;
2657     }
2658   }
2659 
2660   return true;
2661 }
2662 
2663 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy) const {
2664   if (RetTy->isVoidType())
2665     return ABIArgInfo::getIgnore();
2666 
2667   // Large vector types should be returned via memory.
2668   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
2669     return ABIArgInfo::getIndirect(0);
2670 
2671   if (!isAggregateTypeForABI(RetTy)) {
2672     // Treat an enum type as its underlying type.
2673     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
2674       RetTy = EnumTy->getDecl()->getIntegerType();
2675 
2676     return (RetTy->isPromotableIntegerType() ?
2677             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2678   }
2679 
2680   // Structures with either a non-trivial destructor or a non-trivial
2681   // copy constructor are always indirect.
2682   if (isRecordWithNonTrivialDestructorOrCopyConstructor(RetTy))
2683     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2684 
2685   // Are we following APCS?
2686   if (getABIKind() == APCS) {
2687     if (isEmptyRecord(getContext(), RetTy, false))
2688       return ABIArgInfo::getIgnore();
2689 
2690     // Complex types are all returned as packed integers.
2691     //
2692     // FIXME: Consider using 2 x vector types if the back end handles them
2693     // correctly.
2694     if (RetTy->isAnyComplexType())
2695       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2696                                               getContext().getTypeSize(RetTy)));
2697 
2698     // Integer like structures are returned in r0.
2699     if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
2700       // Return in the smallest viable integer type.
2701       uint64_t Size = getContext().getTypeSize(RetTy);
2702       if (Size <= 8)
2703         return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
2704       if (Size <= 16)
2705         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
2706       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
2707     }
2708 
2709     // Otherwise return in memory.
2710     return ABIArgInfo::getIndirect(0);
2711   }
2712 
2713   // Otherwise this is an AAPCS variant.
2714 
2715   if (isEmptyRecord(getContext(), RetTy, true))
2716     return ABIArgInfo::getIgnore();
2717 
2718   // Check for homogeneous aggregates with AAPCS-VFP.
2719   if (getABIKind() == AAPCS_VFP) {
2720     const Type *Base = 0;
2721     if (isHomogeneousAggregate(RetTy, Base, getContext()))
2722       // Homogeneous Aggregates are returned directly.
2723       return ABIArgInfo::getDirect();
2724   }
2725 
2726   // Aggregates <= 4 bytes are returned in r0; other aggregates
2727   // are returned indirectly.
2728   uint64_t Size = getContext().getTypeSize(RetTy);
2729   if (Size <= 32) {
2730     // Return in the smallest viable integer type.
2731     if (Size <= 8)
2732       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
2733     if (Size <= 16)
2734       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
2735     return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
2736   }
2737 
2738   return ABIArgInfo::getIndirect(0);
2739 }
2740 
2741 llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2742                                    CodeGenFunction &CGF) const {
2743   llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
2744   llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
2745 
2746   CGBuilderTy &Builder = CGF.Builder;
2747   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
2748                                                        "ap");
2749   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
2750   // Handle address alignment for type alignment > 32 bits
2751   uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8;
2752   if (TyAlign > 4) {
2753     assert((TyAlign & (TyAlign - 1)) == 0 &&
2754            "Alignment is not power of 2!");
2755     llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty);
2756     AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1));
2757     AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1)));
2758     Addr = Builder.CreateIntToPtr(AddrAsInt, BP);
2759   }
2760   llvm::Type *PTy =
2761     llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
2762   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
2763 
2764   uint64_t Offset =
2765     llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
2766   llvm::Value *NextAddr =
2767     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
2768                       "ap.next");
2769   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
2770 
2771   return AddrTyped;
2772 }
2773 
2774 //===----------------------------------------------------------------------===//
2775 // PTX ABI Implementation
2776 //===----------------------------------------------------------------------===//
2777 
2778 namespace {
2779 
2780 class PTXABIInfo : public ABIInfo {
2781 public:
2782   PTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
2783 
2784   ABIArgInfo classifyReturnType(QualType RetTy) const;
2785   ABIArgInfo classifyArgumentType(QualType Ty) const;
2786 
2787   virtual void computeInfo(CGFunctionInfo &FI) const;
2788   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2789                                  CodeGenFunction &CFG) const;
2790 };
2791 
2792 class PTXTargetCodeGenInfo : public TargetCodeGenInfo {
2793 public:
2794   PTXTargetCodeGenInfo(CodeGenTypes &CGT)
2795     : TargetCodeGenInfo(new PTXABIInfo(CGT)) {}
2796 
2797   virtual void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2798                                    CodeGen::CodeGenModule &M) const;
2799 };
2800 
2801 ABIArgInfo PTXABIInfo::classifyReturnType(QualType RetTy) const {
2802   if (RetTy->isVoidType())
2803     return ABIArgInfo::getIgnore();
2804   if (isAggregateTypeForABI(RetTy))
2805     return ABIArgInfo::getIndirect(0);
2806   return ABIArgInfo::getDirect();
2807 }
2808 
2809 ABIArgInfo PTXABIInfo::classifyArgumentType(QualType Ty) const {
2810   if (isAggregateTypeForABI(Ty))
2811     return ABIArgInfo::getIndirect(0);
2812 
2813   return ABIArgInfo::getDirect();
2814 }
2815 
2816 void PTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
2817   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2818   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2819        it != ie; ++it)
2820     it->info = classifyArgumentType(it->type);
2821 
2822   // Always honor user-specified calling convention.
2823   if (FI.getCallingConvention() != llvm::CallingConv::C)
2824     return;
2825 
2826   // Calling convention as default by an ABI.
2827   llvm::CallingConv::ID DefaultCC;
2828   const LangOptions &LangOpts = getContext().getLangOptions();
2829   if (LangOpts.OpenCL || LangOpts.CUDA) {
2830     // If we are in OpenCL or CUDA mode, then default to device functions
2831     DefaultCC = llvm::CallingConv::PTX_Device;
2832   } else {
2833     // If we are in standard C/C++ mode, use the triple to decide on the default
2834     StringRef Env =
2835       getContext().getTargetInfo().getTriple().getEnvironmentName();
2836     if (Env == "device")
2837       DefaultCC = llvm::CallingConv::PTX_Device;
2838     else
2839       DefaultCC = llvm::CallingConv::PTX_Kernel;
2840   }
2841   FI.setEffectiveCallingConvention(DefaultCC);
2842 
2843 }
2844 
2845 llvm::Value *PTXABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2846                                    CodeGenFunction &CFG) const {
2847   llvm_unreachable("PTX does not support varargs");
2848   return 0;
2849 }
2850 
2851 void PTXTargetCodeGenInfo::SetTargetAttributes(const Decl *D,
2852                                                llvm::GlobalValue *GV,
2853                                                CodeGen::CodeGenModule &M) const{
2854   const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
2855   if (!FD) return;
2856 
2857   llvm::Function *F = cast<llvm::Function>(GV);
2858 
2859   // Perform special handling in OpenCL mode
2860   if (M.getLangOptions().OpenCL) {
2861     // Use OpenCL function attributes to set proper calling conventions
2862     // By default, all functions are device functions
2863     if (FD->hasAttr<OpenCLKernelAttr>()) {
2864       // OpenCL __kernel functions get a kernel calling convention
2865       F->setCallingConv(llvm::CallingConv::PTX_Kernel);
2866       // And kernel functions are not subject to inlining
2867       F->addFnAttr(llvm::Attribute::NoInline);
2868     }
2869   }
2870 
2871   // Perform special handling in CUDA mode.
2872   if (M.getLangOptions().CUDA) {
2873     // CUDA __global__ functions get a kernel calling convention.  Since
2874     // __global__ functions cannot be called from the device, we do not
2875     // need to set the noinline attribute.
2876     if (FD->getAttr<CUDAGlobalAttr>())
2877       F->setCallingConv(llvm::CallingConv::PTX_Kernel);
2878   }
2879 }
2880 
2881 }
2882 
2883 //===----------------------------------------------------------------------===//
2884 // MBlaze ABI Implementation
2885 //===----------------------------------------------------------------------===//
2886 
2887 namespace {
2888 
2889 class MBlazeABIInfo : public ABIInfo {
2890 public:
2891   MBlazeABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
2892 
2893   bool isPromotableIntegerType(QualType Ty) const;
2894 
2895   ABIArgInfo classifyReturnType(QualType RetTy) const;
2896   ABIArgInfo classifyArgumentType(QualType RetTy) const;
2897 
2898   virtual void computeInfo(CGFunctionInfo &FI) const {
2899     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2900     for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2901          it != ie; ++it)
2902       it->info = classifyArgumentType(it->type);
2903   }
2904 
2905   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2906                                  CodeGenFunction &CGF) const;
2907 };
2908 
2909 class MBlazeTargetCodeGenInfo : public TargetCodeGenInfo {
2910 public:
2911   MBlazeTargetCodeGenInfo(CodeGenTypes &CGT)
2912     : TargetCodeGenInfo(new MBlazeABIInfo(CGT)) {}
2913   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2914                            CodeGen::CodeGenModule &M) const;
2915 };
2916 
2917 }
2918 
2919 bool MBlazeABIInfo::isPromotableIntegerType(QualType Ty) const {
2920   // MBlaze ABI requires all 8 and 16 bit quantities to be extended.
2921   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
2922     switch (BT->getKind()) {
2923     case BuiltinType::Bool:
2924     case BuiltinType::Char_S:
2925     case BuiltinType::Char_U:
2926     case BuiltinType::SChar:
2927     case BuiltinType::UChar:
2928     case BuiltinType::Short:
2929     case BuiltinType::UShort:
2930       return true;
2931     default:
2932       return false;
2933     }
2934   return false;
2935 }
2936 
2937 llvm::Value *MBlazeABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2938                                       CodeGenFunction &CGF) const {
2939   // FIXME: Implement
2940   return 0;
2941 }
2942 
2943 
2944 ABIArgInfo MBlazeABIInfo::classifyReturnType(QualType RetTy) const {
2945   if (RetTy->isVoidType())
2946     return ABIArgInfo::getIgnore();
2947   if (isAggregateTypeForABI(RetTy))
2948     return ABIArgInfo::getIndirect(0);
2949 
2950   return (isPromotableIntegerType(RetTy) ?
2951           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2952 }
2953 
2954 ABIArgInfo MBlazeABIInfo::classifyArgumentType(QualType Ty) const {
2955   if (isAggregateTypeForABI(Ty))
2956     return ABIArgInfo::getIndirect(0);
2957 
2958   return (isPromotableIntegerType(Ty) ?
2959           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2960 }
2961 
2962 void MBlazeTargetCodeGenInfo::SetTargetAttributes(const Decl *D,
2963                                                   llvm::GlobalValue *GV,
2964                                                   CodeGen::CodeGenModule &M)
2965                                                   const {
2966   const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
2967   if (!FD) return;
2968 
2969   llvm::CallingConv::ID CC = llvm::CallingConv::C;
2970   if (FD->hasAttr<MBlazeInterruptHandlerAttr>())
2971     CC = llvm::CallingConv::MBLAZE_INTR;
2972   else if (FD->hasAttr<MBlazeSaveVolatilesAttr>())
2973     CC = llvm::CallingConv::MBLAZE_SVOL;
2974 
2975   if (CC != llvm::CallingConv::C) {
2976       // Handle 'interrupt_handler' attribute:
2977       llvm::Function *F = cast<llvm::Function>(GV);
2978 
2979       // Step 1: Set ISR calling convention.
2980       F->setCallingConv(CC);
2981 
2982       // Step 2: Add attributes goodness.
2983       F->addFnAttr(llvm::Attribute::NoInline);
2984   }
2985 
2986   // Step 3: Emit _interrupt_handler alias.
2987   if (CC == llvm::CallingConv::MBLAZE_INTR)
2988     new llvm::GlobalAlias(GV->getType(), llvm::Function::ExternalLinkage,
2989                           "_interrupt_handler", GV, &M.getModule());
2990 }
2991 
2992 
2993 //===----------------------------------------------------------------------===//
2994 // MSP430 ABI Implementation
2995 //===----------------------------------------------------------------------===//
2996 
2997 namespace {
2998 
2999 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
3000 public:
3001   MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
3002     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
3003   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
3004                            CodeGen::CodeGenModule &M) const;
3005 };
3006 
3007 }
3008 
3009 void MSP430TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
3010                                                   llvm::GlobalValue *GV,
3011                                              CodeGen::CodeGenModule &M) const {
3012   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
3013     if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) {
3014       // Handle 'interrupt' attribute:
3015       llvm::Function *F = cast<llvm::Function>(GV);
3016 
3017       // Step 1: Set ISR calling convention.
3018       F->setCallingConv(llvm::CallingConv::MSP430_INTR);
3019 
3020       // Step 2: Add attributes goodness.
3021       F->addFnAttr(llvm::Attribute::NoInline);
3022 
3023       // Step 3: Emit ISR vector alias.
3024       unsigned Num = attr->getNumber() + 0xffe0;
3025       new llvm::GlobalAlias(GV->getType(), llvm::Function::ExternalLinkage,
3026                             "vector_" + Twine::utohexstr(Num),
3027                             GV, &M.getModule());
3028     }
3029   }
3030 }
3031 
3032 //===----------------------------------------------------------------------===//
3033 // MIPS ABI Implementation.  This works for both little-endian and
3034 // big-endian variants.
3035 //===----------------------------------------------------------------------===//
3036 
3037 namespace {
3038 class MipsABIInfo : public ABIInfo {
3039   bool IsO32;
3040   unsigned MinABIStackAlignInBytes;
3041   llvm::Type* HandleStructTy(QualType Ty) const;
3042 public:
3043   MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) :
3044     ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8) {}
3045 
3046   ABIArgInfo classifyReturnType(QualType RetTy) const;
3047   ABIArgInfo classifyArgumentType(QualType RetTy) const;
3048   virtual void computeInfo(CGFunctionInfo &FI) const;
3049   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3050                                  CodeGenFunction &CGF) const;
3051 };
3052 
3053 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
3054   unsigned SizeOfUnwindException;
3055 public:
3056   MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32)
3057     : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)),
3058       SizeOfUnwindException(IsO32 ? 24 : 32) {}
3059 
3060   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
3061     return 29;
3062   }
3063 
3064   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3065                                llvm::Value *Address) const;
3066 
3067   unsigned getSizeOfUnwindException() const {
3068     return SizeOfUnwindException;
3069   }
3070 };
3071 }
3072 
3073 // In N32/64, an aligned double precision floating point field is passed in
3074 // a register.
3075 llvm::Type* MipsABIInfo::HandleStructTy(QualType Ty) const {
3076   if (IsO32)
3077     return 0;
3078 
3079   const RecordType *RT = Ty->getAsStructureType();
3080 
3081   if (!RT)
3082     return 0;
3083 
3084   const RecordDecl *RD = RT->getDecl();
3085   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
3086   uint64_t StructSize = getContext().getTypeSize(Ty);
3087   assert(!(StructSize % 8) && "Size of structure must be multiple of 8.");
3088 
3089   SmallVector<llvm::Type*, 8> ArgList;
3090   uint64_t LastOffset = 0;
3091   unsigned idx = 0;
3092   llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64);
3093 
3094   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
3095        i != e; ++i, ++idx) {
3096     const QualType Ty = (*i)->getType();
3097     const BuiltinType *BT = Ty->getAs<BuiltinType>();
3098 
3099     if (!BT || BT->getKind() != BuiltinType::Double)
3100       continue;
3101 
3102     uint64_t Offset = Layout.getFieldOffset(idx);
3103     if (Offset % 64) // Ignore doubles that are not aligned.
3104       continue;
3105 
3106     // Add ((Offset - LastOffset) / 64) args of type i64.
3107     for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j)
3108       ArgList.push_back(I64);
3109 
3110     // Add double type.
3111     ArgList.push_back(llvm::Type::getDoubleTy(getVMContext()));
3112     LastOffset = Offset + 64;
3113   }
3114 
3115   // This structure doesn't have an aligned double field.
3116   if (!LastOffset)
3117     return 0;
3118 
3119   // Add ((StructSize - LastOffset) / 64) args of type i64.
3120   for (unsigned N = (StructSize - LastOffset) / 64; N; --N)
3121     ArgList.push_back(I64);
3122 
3123   // If the size of the remainder is not zero, add one more integer type to
3124   // ArgList.
3125   unsigned R = (StructSize - LastOffset) % 64;
3126   if (R)
3127     ArgList.push_back(llvm::IntegerType::get(getVMContext(), R));
3128 
3129   return llvm::StructType::get(getVMContext(), ArgList);
3130 }
3131 
3132 ABIArgInfo MipsABIInfo::classifyArgumentType(QualType Ty) const {
3133   if (isAggregateTypeForABI(Ty)) {
3134     // Ignore empty aggregates.
3135     if (getContext().getTypeSize(Ty) == 0)
3136       return ABIArgInfo::getIgnore();
3137 
3138     // Records with non trivial destructors/constructors should not be passed
3139     // by value.
3140     if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
3141       return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3142 
3143     llvm::Type *ResType;
3144     if ((ResType = HandleStructTy(Ty)))
3145       return ABIArgInfo::getDirect(ResType);
3146 
3147     return ABIArgInfo::getIndirect(0);
3148   }
3149 
3150   // Treat an enum type as its underlying type.
3151   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3152     Ty = EnumTy->getDecl()->getIntegerType();
3153 
3154   return (Ty->isPromotableIntegerType() ?
3155           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3156 }
3157 
3158 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
3159   if (RetTy->isVoidType())
3160     return ABIArgInfo::getIgnore();
3161 
3162   if (isAggregateTypeForABI(RetTy)) {
3163     if ((IsO32 && RetTy->isAnyComplexType()) ||
3164         (!IsO32 && (getContext().getTypeSize(RetTy) <= 128)))
3165       return ABIArgInfo::getDirect();
3166 
3167     return ABIArgInfo::getIndirect(0);
3168   }
3169 
3170   // Treat an enum type as its underlying type.
3171   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
3172     RetTy = EnumTy->getDecl()->getIntegerType();
3173 
3174   return (RetTy->isPromotableIntegerType() ?
3175           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3176 }
3177 
3178 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
3179   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3180   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3181        it != ie; ++it)
3182     it->info = classifyArgumentType(it->type);
3183 }
3184 
3185 llvm::Value* MipsABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3186                                     CodeGenFunction &CGF) const {
3187   llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
3188   llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
3189 
3190   CGBuilderTy &Builder = CGF.Builder;
3191   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
3192   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
3193   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
3194   llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
3195   llvm::Value *AddrTyped;
3196 
3197   if (TypeAlign > MinABIStackAlignInBytes) {
3198     llvm::Value *AddrAsInt32 = CGF.Builder.CreatePtrToInt(Addr, CGF.Int32Ty);
3199     llvm::Value *Inc = llvm::ConstantInt::get(CGF.Int32Ty, TypeAlign - 1);
3200     llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -TypeAlign);
3201     llvm::Value *Add = CGF.Builder.CreateAdd(AddrAsInt32, Inc);
3202     llvm::Value *And = CGF.Builder.CreateAnd(Add, Mask);
3203     AddrTyped = CGF.Builder.CreateIntToPtr(And, PTy);
3204   }
3205   else
3206     AddrTyped = Builder.CreateBitCast(Addr, PTy);
3207 
3208   llvm::Value *AlignedAddr = Builder.CreateBitCast(AddrTyped, BP);
3209   TypeAlign = std::max(TypeAlign, MinABIStackAlignInBytes);
3210   uint64_t Offset =
3211     llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, TypeAlign);
3212   llvm::Value *NextAddr =
3213     Builder.CreateGEP(AlignedAddr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
3214                       "ap.next");
3215   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
3216 
3217   return AddrTyped;
3218 }
3219 
3220 bool
3221 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3222                                                llvm::Value *Address) const {
3223   // This information comes from gcc's implementation, which seems to
3224   // as canonical as it gets.
3225 
3226   CodeGen::CGBuilderTy &Builder = CGF.Builder;
3227   llvm::LLVMContext &Context = CGF.getLLVMContext();
3228 
3229   // Everything on MIPS is 4 bytes.  Double-precision FP registers
3230   // are aliased to pairs of single-precision FP registers.
3231   llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
3232   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
3233 
3234   // 0-31 are the general purpose registers, $0 - $31.
3235   // 32-63 are the floating-point registers, $f0 - $f31.
3236   // 64 and 65 are the multiply/divide registers, $hi and $lo.
3237   // 66 is the (notional, I think) register for signal-handler return.
3238   AssignToArrayRange(Builder, Address, Four8, 0, 65);
3239 
3240   // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
3241   // They are one bit wide and ignored here.
3242 
3243   // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
3244   // (coprocessor 1 is the FP unit)
3245   // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
3246   // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
3247   // 176-181 are the DSP accumulator registers.
3248   AssignToArrayRange(Builder, Address, Four8, 80, 181);
3249 
3250   return false;
3251 }
3252 
3253 //===----------------------------------------------------------------------===//
3254 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults.
3255 // Currently subclassed only to implement custom OpenCL C function attribute
3256 // handling.
3257 //===----------------------------------------------------------------------===//
3258 
3259 namespace {
3260 
3261 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo {
3262 public:
3263   TCETargetCodeGenInfo(CodeGenTypes &CGT)
3264     : DefaultTargetCodeGenInfo(CGT) {}
3265 
3266   virtual void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
3267                                    CodeGen::CodeGenModule &M) const;
3268 };
3269 
3270 void TCETargetCodeGenInfo::SetTargetAttributes(const Decl *D,
3271                                                llvm::GlobalValue *GV,
3272                                                CodeGen::CodeGenModule &M) const {
3273   const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
3274   if (!FD) return;
3275 
3276   llvm::Function *F = cast<llvm::Function>(GV);
3277 
3278   if (M.getLangOptions().OpenCL) {
3279     if (FD->hasAttr<OpenCLKernelAttr>()) {
3280       // OpenCL C Kernel functions are not subject to inlining
3281       F->addFnAttr(llvm::Attribute::NoInline);
3282 
3283       if (FD->hasAttr<ReqdWorkGroupSizeAttr>()) {
3284 
3285         // Convert the reqd_work_group_size() attributes to metadata.
3286         llvm::LLVMContext &Context = F->getContext();
3287         llvm::NamedMDNode *OpenCLMetadata =
3288             M.getModule().getOrInsertNamedMetadata("opencl.kernel_wg_size_info");
3289 
3290         SmallVector<llvm::Value*, 5> Operands;
3291         Operands.push_back(F);
3292 
3293         Operands.push_back(llvm::Constant::getIntegerValue(
3294                              llvm::Type::getInt32Ty(Context),
3295                              llvm::APInt(
3296                                32,
3297                                FD->getAttr<ReqdWorkGroupSizeAttr>()->getXDim())));
3298         Operands.push_back(llvm::Constant::getIntegerValue(
3299                              llvm::Type::getInt32Ty(Context),
3300                              llvm::APInt(
3301                                32,
3302                                FD->getAttr<ReqdWorkGroupSizeAttr>()->getYDim())));
3303         Operands.push_back(llvm::Constant::getIntegerValue(
3304                              llvm::Type::getInt32Ty(Context),
3305                              llvm::APInt(
3306                                32,
3307                                FD->getAttr<ReqdWorkGroupSizeAttr>()->getZDim())));
3308 
3309         // Add a boolean constant operand for "required" (true) or "hint" (false)
3310         // for implementing the work_group_size_hint attr later. Currently
3311         // always true as the hint is not yet implemented.
3312         Operands.push_back(llvm::ConstantInt::getTrue(llvm::Type::getInt1Ty(Context)));
3313 
3314         OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands));
3315       }
3316     }
3317   }
3318 }
3319 
3320 }
3321 
3322 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
3323   if (TheTargetCodeGenInfo)
3324     return *TheTargetCodeGenInfo;
3325 
3326   const llvm::Triple &Triple = getContext().getTargetInfo().getTriple();
3327   switch (Triple.getArch()) {
3328   default:
3329     return *(TheTargetCodeGenInfo = new DefaultTargetCodeGenInfo(Types));
3330 
3331   case llvm::Triple::mips:
3332   case llvm::Triple::mipsel:
3333     return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, true));
3334 
3335   case llvm::Triple::mips64:
3336   case llvm::Triple::mips64el:
3337     return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, false));
3338 
3339   case llvm::Triple::arm:
3340   case llvm::Triple::thumb:
3341     {
3342       ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
3343 
3344       if (strcmp(getContext().getTargetInfo().getABI(), "apcs-gnu") == 0)
3345         Kind = ARMABIInfo::APCS;
3346       else if (CodeGenOpts.FloatABI == "hard")
3347         Kind = ARMABIInfo::AAPCS_VFP;
3348 
3349       return *(TheTargetCodeGenInfo = new ARMTargetCodeGenInfo(Types, Kind));
3350     }
3351 
3352   case llvm::Triple::ppc:
3353     return *(TheTargetCodeGenInfo = new PPC32TargetCodeGenInfo(Types));
3354 
3355   case llvm::Triple::ptx32:
3356   case llvm::Triple::ptx64:
3357     return *(TheTargetCodeGenInfo = new PTXTargetCodeGenInfo(Types));
3358 
3359   case llvm::Triple::mblaze:
3360     return *(TheTargetCodeGenInfo = new MBlazeTargetCodeGenInfo(Types));
3361 
3362   case llvm::Triple::msp430:
3363     return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo(Types));
3364 
3365   case llvm::Triple::tce:
3366     return *(TheTargetCodeGenInfo = new TCETargetCodeGenInfo(Types));
3367 
3368   case llvm::Triple::x86: {
3369     bool DisableMMX = strcmp(getContext().getTargetInfo().getABI(), "no-mmx") == 0;
3370 
3371     if (Triple.isOSDarwin())
3372       return *(TheTargetCodeGenInfo =
3373                new X86_32TargetCodeGenInfo(Types, true, true, DisableMMX));
3374 
3375     switch (Triple.getOS()) {
3376     case llvm::Triple::Cygwin:
3377     case llvm::Triple::MinGW32:
3378     case llvm::Triple::AuroraUX:
3379     case llvm::Triple::DragonFly:
3380     case llvm::Triple::FreeBSD:
3381     case llvm::Triple::OpenBSD:
3382     case llvm::Triple::NetBSD:
3383       return *(TheTargetCodeGenInfo =
3384                new X86_32TargetCodeGenInfo(Types, false, true, DisableMMX));
3385 
3386     default:
3387       return *(TheTargetCodeGenInfo =
3388                new X86_32TargetCodeGenInfo(Types, false, false, DisableMMX));
3389     }
3390   }
3391 
3392   case llvm::Triple::x86_64: {
3393     bool HasAVX = strcmp(getContext().getTargetInfo().getABI(), "avx") == 0;
3394 
3395     switch (Triple.getOS()) {
3396     case llvm::Triple::Win32:
3397     case llvm::Triple::MinGW32:
3398     case llvm::Triple::Cygwin:
3399       return *(TheTargetCodeGenInfo = new WinX86_64TargetCodeGenInfo(Types));
3400     default:
3401       return *(TheTargetCodeGenInfo = new X86_64TargetCodeGenInfo(Types,
3402                                                                   HasAVX));
3403     }
3404   }
3405   }
3406 }
3407