1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // These classes wrap the information about a call or function 11 // definition used to handle ABI compliancy. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "TargetInfo.h" 16 #include "ABIInfo.h" 17 #include "CGCXXABI.h" 18 #include "CGValue.h" 19 #include "CodeGenFunction.h" 20 #include "clang/AST/RecordLayout.h" 21 #include "clang/CodeGen/CGFunctionInfo.h" 22 #include "clang/Frontend/CodeGenOptions.h" 23 #include "llvm/ADT/StringExtras.h" 24 #include "llvm/ADT/Triple.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/Type.h" 27 #include "llvm/Support/raw_ostream.h" 28 #include <algorithm> // std::sort 29 30 using namespace clang; 31 using namespace CodeGen; 32 33 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder, 34 llvm::Value *Array, 35 llvm::Value *Value, 36 unsigned FirstIndex, 37 unsigned LastIndex) { 38 // Alternatively, we could emit this as a loop in the source. 39 for (unsigned I = FirstIndex; I <= LastIndex; ++I) { 40 llvm::Value *Cell = 41 Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I); 42 Builder.CreateStore(Value, Cell); 43 } 44 } 45 46 static bool isAggregateTypeForABI(QualType T) { 47 return !CodeGenFunction::hasScalarEvaluationKind(T) || 48 T->isMemberFunctionPointerType(); 49 } 50 51 ABIInfo::~ABIInfo() {} 52 53 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT, 54 CGCXXABI &CXXABI) { 55 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); 56 if (!RD) 57 return CGCXXABI::RAA_Default; 58 return CXXABI.getRecordArgABI(RD); 59 } 60 61 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T, 62 CGCXXABI &CXXABI) { 63 const RecordType *RT = T->getAs<RecordType>(); 64 if (!RT) 65 return CGCXXABI::RAA_Default; 66 return getRecordArgABI(RT, CXXABI); 67 } 68 69 /// Pass transparent unions as if they were the type of the first element. Sema 70 /// should ensure that all elements of the union have the same "machine type". 71 static QualType useFirstFieldIfTransparentUnion(QualType Ty) { 72 if (const RecordType *UT = Ty->getAsUnionType()) { 73 const RecordDecl *UD = UT->getDecl(); 74 if (UD->hasAttr<TransparentUnionAttr>()) { 75 assert(!UD->field_empty() && "sema created an empty transparent union"); 76 return UD->field_begin()->getType(); 77 } 78 } 79 return Ty; 80 } 81 82 CGCXXABI &ABIInfo::getCXXABI() const { 83 return CGT.getCXXABI(); 84 } 85 86 ASTContext &ABIInfo::getContext() const { 87 return CGT.getContext(); 88 } 89 90 llvm::LLVMContext &ABIInfo::getVMContext() const { 91 return CGT.getLLVMContext(); 92 } 93 94 const llvm::DataLayout &ABIInfo::getDataLayout() const { 95 return CGT.getDataLayout(); 96 } 97 98 const TargetInfo &ABIInfo::getTarget() const { 99 return CGT.getTarget(); 100 } 101 102 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 103 return false; 104 } 105 106 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 107 uint64_t Members) const { 108 return false; 109 } 110 111 bool ABIInfo::shouldSignExtUnsignedType(QualType Ty) const { 112 return false; 113 } 114 115 void ABIArgInfo::dump() const { 116 raw_ostream &OS = llvm::errs(); 117 OS << "(ABIArgInfo Kind="; 118 switch (TheKind) { 119 case Direct: 120 OS << "Direct Type="; 121 if (llvm::Type *Ty = getCoerceToType()) 122 Ty->print(OS); 123 else 124 OS << "null"; 125 break; 126 case Extend: 127 OS << "Extend"; 128 break; 129 case Ignore: 130 OS << "Ignore"; 131 break; 132 case InAlloca: 133 OS << "InAlloca Offset=" << getInAllocaFieldIndex(); 134 break; 135 case Indirect: 136 OS << "Indirect Align=" << getIndirectAlign() 137 << " ByVal=" << getIndirectByVal() 138 << " Realign=" << getIndirectRealign(); 139 break; 140 case Expand: 141 OS << "Expand"; 142 break; 143 } 144 OS << ")\n"; 145 } 146 147 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; } 148 149 // If someone can figure out a general rule for this, that would be great. 150 // It's probably just doomed to be platform-dependent, though. 151 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const { 152 // Verified for: 153 // x86-64 FreeBSD, Linux, Darwin 154 // x86-32 FreeBSD, Linux, Darwin 155 // PowerPC Linux, Darwin 156 // ARM Darwin (*not* EABI) 157 // AArch64 Linux 158 return 32; 159 } 160 161 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args, 162 const FunctionNoProtoType *fnType) const { 163 // The following conventions are known to require this to be false: 164 // x86_stdcall 165 // MIPS 166 // For everything else, we just prefer false unless we opt out. 167 return false; 168 } 169 170 void 171 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib, 172 llvm::SmallString<24> &Opt) const { 173 // This assumes the user is passing a library name like "rt" instead of a 174 // filename like "librt.a/so", and that they don't care whether it's static or 175 // dynamic. 176 Opt = "-l"; 177 Opt += Lib; 178 } 179 180 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays); 181 182 /// isEmptyField - Return true iff a the field is "empty", that is it 183 /// is an unnamed bit-field or an (array of) empty record(s). 184 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD, 185 bool AllowArrays) { 186 if (FD->isUnnamedBitfield()) 187 return true; 188 189 QualType FT = FD->getType(); 190 191 // Constant arrays of empty records count as empty, strip them off. 192 // Constant arrays of zero length always count as empty. 193 if (AllowArrays) 194 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 195 if (AT->getSize() == 0) 196 return true; 197 FT = AT->getElementType(); 198 } 199 200 const RecordType *RT = FT->getAs<RecordType>(); 201 if (!RT) 202 return false; 203 204 // C++ record fields are never empty, at least in the Itanium ABI. 205 // 206 // FIXME: We should use a predicate for whether this behavior is true in the 207 // current ABI. 208 if (isa<CXXRecordDecl>(RT->getDecl())) 209 return false; 210 211 return isEmptyRecord(Context, FT, AllowArrays); 212 } 213 214 /// isEmptyRecord - Return true iff a structure contains only empty 215 /// fields. Note that a structure with a flexible array member is not 216 /// considered empty. 217 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) { 218 const RecordType *RT = T->getAs<RecordType>(); 219 if (!RT) 220 return 0; 221 const RecordDecl *RD = RT->getDecl(); 222 if (RD->hasFlexibleArrayMember()) 223 return false; 224 225 // If this is a C++ record, check the bases first. 226 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 227 for (const auto &I : CXXRD->bases()) 228 if (!isEmptyRecord(Context, I.getType(), true)) 229 return false; 230 231 for (const auto *I : RD->fields()) 232 if (!isEmptyField(Context, I, AllowArrays)) 233 return false; 234 return true; 235 } 236 237 /// isSingleElementStruct - Determine if a structure is a "single 238 /// element struct", i.e. it has exactly one non-empty field or 239 /// exactly one field which is itself a single element 240 /// struct. Structures with flexible array members are never 241 /// considered single element structs. 242 /// 243 /// \return The field declaration for the single non-empty field, if 244 /// it exists. 245 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) { 246 const RecordType *RT = T->getAs<RecordType>(); 247 if (!RT) 248 return nullptr; 249 250 const RecordDecl *RD = RT->getDecl(); 251 if (RD->hasFlexibleArrayMember()) 252 return nullptr; 253 254 const Type *Found = nullptr; 255 256 // If this is a C++ record, check the bases first. 257 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 258 for (const auto &I : CXXRD->bases()) { 259 // Ignore empty records. 260 if (isEmptyRecord(Context, I.getType(), true)) 261 continue; 262 263 // If we already found an element then this isn't a single-element struct. 264 if (Found) 265 return nullptr; 266 267 // If this is non-empty and not a single element struct, the composite 268 // cannot be a single element struct. 269 Found = isSingleElementStruct(I.getType(), Context); 270 if (!Found) 271 return nullptr; 272 } 273 } 274 275 // Check for single element. 276 for (const auto *FD : RD->fields()) { 277 QualType FT = FD->getType(); 278 279 // Ignore empty fields. 280 if (isEmptyField(Context, FD, true)) 281 continue; 282 283 // If we already found an element then this isn't a single-element 284 // struct. 285 if (Found) 286 return nullptr; 287 288 // Treat single element arrays as the element. 289 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 290 if (AT->getSize().getZExtValue() != 1) 291 break; 292 FT = AT->getElementType(); 293 } 294 295 if (!isAggregateTypeForABI(FT)) { 296 Found = FT.getTypePtr(); 297 } else { 298 Found = isSingleElementStruct(FT, Context); 299 if (!Found) 300 return nullptr; 301 } 302 } 303 304 // We don't consider a struct a single-element struct if it has 305 // padding beyond the element type. 306 if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T)) 307 return nullptr; 308 309 return Found; 310 } 311 312 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) { 313 // Treat complex types as the element type. 314 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 315 Ty = CTy->getElementType(); 316 317 // Check for a type which we know has a simple scalar argument-passing 318 // convention without any padding. (We're specifically looking for 32 319 // and 64-bit integer and integer-equivalents, float, and double.) 320 if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() && 321 !Ty->isEnumeralType() && !Ty->isBlockPointerType()) 322 return false; 323 324 uint64_t Size = Context.getTypeSize(Ty); 325 return Size == 32 || Size == 64; 326 } 327 328 /// canExpandIndirectArgument - Test whether an argument type which is to be 329 /// passed indirectly (on the stack) would have the equivalent layout if it was 330 /// expanded into separate arguments. If so, we prefer to do the latter to avoid 331 /// inhibiting optimizations. 332 /// 333 // FIXME: This predicate is missing many cases, currently it just follows 334 // llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We 335 // should probably make this smarter, or better yet make the LLVM backend 336 // capable of handling it. 337 static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) { 338 // We can only expand structure types. 339 const RecordType *RT = Ty->getAs<RecordType>(); 340 if (!RT) 341 return false; 342 343 // We can only expand (C) structures. 344 // 345 // FIXME: This needs to be generalized to handle classes as well. 346 const RecordDecl *RD = RT->getDecl(); 347 if (!RD->isStruct()) 348 return false; 349 350 // We try to expand CLike CXXRecordDecl. 351 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 352 if (!CXXRD->isCLike()) 353 return false; 354 } 355 356 uint64_t Size = 0; 357 358 for (const auto *FD : RD->fields()) { 359 if (!is32Or64BitBasicType(FD->getType(), Context)) 360 return false; 361 362 // FIXME: Reject bit-fields wholesale; there are two problems, we don't know 363 // how to expand them yet, and the predicate for telling if a bitfield still 364 // counts as "basic" is more complicated than what we were doing previously. 365 if (FD->isBitField()) 366 return false; 367 368 Size += Context.getTypeSize(FD->getType()); 369 } 370 371 // Make sure there are not any holes in the struct. 372 if (Size != Context.getTypeSize(Ty)) 373 return false; 374 375 return true; 376 } 377 378 namespace { 379 /// DefaultABIInfo - The default implementation for ABI specific 380 /// details. This implementation provides information which results in 381 /// self-consistent and sensible LLVM IR generation, but does not 382 /// conform to any particular ABI. 383 class DefaultABIInfo : public ABIInfo { 384 public: 385 DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 386 387 ABIArgInfo classifyReturnType(QualType RetTy) const; 388 ABIArgInfo classifyArgumentType(QualType RetTy) const; 389 390 void computeInfo(CGFunctionInfo &FI) const override { 391 if (!getCXXABI().classifyReturnType(FI)) 392 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 393 for (auto &I : FI.arguments()) 394 I.info = classifyArgumentType(I.type); 395 } 396 397 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 398 CodeGenFunction &CGF) const override; 399 }; 400 401 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo { 402 public: 403 DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 404 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 405 }; 406 407 llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 408 CodeGenFunction &CGF) const { 409 return nullptr; 410 } 411 412 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const { 413 Ty = useFirstFieldIfTransparentUnion(Ty); 414 415 if (isAggregateTypeForABI(Ty)) { 416 // Records with non-trivial destructors/copy-constructors should not be 417 // passed by value. 418 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 419 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 420 421 return ABIArgInfo::getIndirect(0); 422 } 423 424 // Treat an enum type as its underlying type. 425 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 426 Ty = EnumTy->getDecl()->getIntegerType(); 427 428 return (Ty->isPromotableIntegerType() ? 429 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 430 } 431 432 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const { 433 if (RetTy->isVoidType()) 434 return ABIArgInfo::getIgnore(); 435 436 if (isAggregateTypeForABI(RetTy)) 437 return ABIArgInfo::getIndirect(0); 438 439 // Treat an enum type as its underlying type. 440 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 441 RetTy = EnumTy->getDecl()->getIntegerType(); 442 443 return (RetTy->isPromotableIntegerType() ? 444 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 445 } 446 447 //===----------------------------------------------------------------------===// 448 // le32/PNaCl bitcode ABI Implementation 449 // 450 // This is a simplified version of the x86_32 ABI. Arguments and return values 451 // are always passed on the stack. 452 //===----------------------------------------------------------------------===// 453 454 class PNaClABIInfo : public ABIInfo { 455 public: 456 PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 457 458 ABIArgInfo classifyReturnType(QualType RetTy) const; 459 ABIArgInfo classifyArgumentType(QualType RetTy) const; 460 461 void computeInfo(CGFunctionInfo &FI) const override; 462 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 463 CodeGenFunction &CGF) const override; 464 }; 465 466 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo { 467 public: 468 PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 469 : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {} 470 }; 471 472 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const { 473 if (!getCXXABI().classifyReturnType(FI)) 474 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 475 476 for (auto &I : FI.arguments()) 477 I.info = classifyArgumentType(I.type); 478 } 479 480 llvm::Value *PNaClABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 481 CodeGenFunction &CGF) const { 482 return nullptr; 483 } 484 485 /// \brief Classify argument of given type \p Ty. 486 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const { 487 if (isAggregateTypeForABI(Ty)) { 488 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 489 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 490 return ABIArgInfo::getIndirect(0); 491 } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 492 // Treat an enum type as its underlying type. 493 Ty = EnumTy->getDecl()->getIntegerType(); 494 } else if (Ty->isFloatingType()) { 495 // Floating-point types don't go inreg. 496 return ABIArgInfo::getDirect(); 497 } 498 499 return (Ty->isPromotableIntegerType() ? 500 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 501 } 502 503 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const { 504 if (RetTy->isVoidType()) 505 return ABIArgInfo::getIgnore(); 506 507 // In the PNaCl ABI we always return records/structures on the stack. 508 if (isAggregateTypeForABI(RetTy)) 509 return ABIArgInfo::getIndirect(0); 510 511 // Treat an enum type as its underlying type. 512 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 513 RetTy = EnumTy->getDecl()->getIntegerType(); 514 515 return (RetTy->isPromotableIntegerType() ? 516 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 517 } 518 519 /// IsX86_MMXType - Return true if this is an MMX type. 520 bool IsX86_MMXType(llvm::Type *IRType) { 521 // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>. 522 return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 && 523 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() && 524 IRType->getScalarSizeInBits() != 64; 525 } 526 527 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 528 StringRef Constraint, 529 llvm::Type* Ty) { 530 if ((Constraint == "y" || Constraint == "&y") && Ty->isVectorTy()) { 531 if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) { 532 // Invalid MMX constraint 533 return nullptr; 534 } 535 536 return llvm::Type::getX86_MMXTy(CGF.getLLVMContext()); 537 } 538 539 // No operation needed 540 return Ty; 541 } 542 543 /// Returns true if this type can be passed in SSE registers with the 544 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64. 545 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) { 546 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 547 if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) 548 return true; 549 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 550 // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX 551 // registers specially. 552 unsigned VecSize = Context.getTypeSize(VT); 553 if (VecSize == 128 || VecSize == 256 || VecSize == 512) 554 return true; 555 } 556 return false; 557 } 558 559 /// Returns true if this aggregate is small enough to be passed in SSE registers 560 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64. 561 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) { 562 return NumMembers <= 4; 563 } 564 565 //===----------------------------------------------------------------------===// 566 // X86-32 ABI Implementation 567 //===----------------------------------------------------------------------===// 568 569 /// \brief Similar to llvm::CCState, but for Clang. 570 struct CCState { 571 CCState(unsigned CC) : CC(CC), FreeRegs(0), FreeSSERegs(0) {} 572 573 unsigned CC; 574 unsigned FreeRegs; 575 unsigned FreeSSERegs; 576 }; 577 578 /// X86_32ABIInfo - The X86-32 ABI information. 579 class X86_32ABIInfo : public ABIInfo { 580 enum Class { 581 Integer, 582 Float 583 }; 584 585 static const unsigned MinABIStackAlignInBytes = 4; 586 587 bool IsDarwinVectorABI; 588 bool IsSmallStructInRegABI; 589 bool IsWin32StructABI; 590 unsigned DefaultNumRegisterParameters; 591 592 static bool isRegisterSize(unsigned Size) { 593 return (Size == 8 || Size == 16 || Size == 32 || Size == 64); 594 } 595 596 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 597 // FIXME: Assumes vectorcall is in use. 598 return isX86VectorTypeForVectorCall(getContext(), Ty); 599 } 600 601 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 602 uint64_t NumMembers) const override { 603 // FIXME: Assumes vectorcall is in use. 604 return isX86VectorCallAggregateSmallEnough(NumMembers); 605 } 606 607 bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const; 608 609 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 610 /// such that the argument will be passed in memory. 611 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 612 613 ABIArgInfo getIndirectReturnResult(CCState &State) const; 614 615 /// \brief Return the alignment to use for the given type on the stack. 616 unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const; 617 618 Class classify(QualType Ty) const; 619 ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const; 620 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 621 bool shouldUseInReg(QualType Ty, CCState &State, bool &NeedsPadding) const; 622 623 /// \brief Rewrite the function info so that all memory arguments use 624 /// inalloca. 625 void rewriteWithInAlloca(CGFunctionInfo &FI) const; 626 627 void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 628 unsigned &StackOffset, ABIArgInfo &Info, 629 QualType Type) const; 630 631 public: 632 633 void computeInfo(CGFunctionInfo &FI) const override; 634 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 635 CodeGenFunction &CGF) const override; 636 637 X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p, bool w, 638 unsigned r) 639 : ABIInfo(CGT), IsDarwinVectorABI(d), IsSmallStructInRegABI(p), 640 IsWin32StructABI(w), DefaultNumRegisterParameters(r) {} 641 }; 642 643 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo { 644 public: 645 X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 646 bool d, bool p, bool w, unsigned r) 647 :TargetCodeGenInfo(new X86_32ABIInfo(CGT, d, p, w, r)) {} 648 649 static bool isStructReturnInRegABI( 650 const llvm::Triple &Triple, const CodeGenOptions &Opts); 651 652 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 653 CodeGen::CodeGenModule &CGM) const override; 654 655 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 656 // Darwin uses different dwarf register numbers for EH. 657 if (CGM.getTarget().getTriple().isOSDarwin()) return 5; 658 return 4; 659 } 660 661 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 662 llvm::Value *Address) const override; 663 664 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 665 StringRef Constraint, 666 llvm::Type* Ty) const override { 667 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 668 } 669 670 void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue, 671 std::string &Constraints, 672 std::vector<llvm::Type *> &ResultRegTypes, 673 std::vector<llvm::Type *> &ResultTruncRegTypes, 674 std::vector<LValue> &ResultRegDests, 675 std::string &AsmString, 676 unsigned NumOutputs) const override; 677 678 llvm::Constant * 679 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 680 unsigned Sig = (0xeb << 0) | // jmp rel8 681 (0x06 << 8) | // .+0x08 682 ('F' << 16) | 683 ('T' << 24); 684 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 685 } 686 }; 687 688 } 689 690 /// Rewrite input constraint references after adding some output constraints. 691 /// In the case where there is one output and one input and we add one output, 692 /// we need to replace all operand references greater than or equal to 1: 693 /// mov $0, $1 694 /// mov eax, $1 695 /// The result will be: 696 /// mov $0, $2 697 /// mov eax, $2 698 static void rewriteInputConstraintReferences(unsigned FirstIn, 699 unsigned NumNewOuts, 700 std::string &AsmString) { 701 std::string Buf; 702 llvm::raw_string_ostream OS(Buf); 703 size_t Pos = 0; 704 while (Pos < AsmString.size()) { 705 size_t DollarStart = AsmString.find('$', Pos); 706 if (DollarStart == std::string::npos) 707 DollarStart = AsmString.size(); 708 size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart); 709 if (DollarEnd == std::string::npos) 710 DollarEnd = AsmString.size(); 711 OS << StringRef(&AsmString[Pos], DollarEnd - Pos); 712 Pos = DollarEnd; 713 size_t NumDollars = DollarEnd - DollarStart; 714 if (NumDollars % 2 != 0 && Pos < AsmString.size()) { 715 // We have an operand reference. 716 size_t DigitStart = Pos; 717 size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart); 718 if (DigitEnd == std::string::npos) 719 DigitEnd = AsmString.size(); 720 StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart); 721 unsigned OperandIndex; 722 if (!OperandStr.getAsInteger(10, OperandIndex)) { 723 if (OperandIndex >= FirstIn) 724 OperandIndex += NumNewOuts; 725 OS << OperandIndex; 726 } else { 727 OS << OperandStr; 728 } 729 Pos = DigitEnd; 730 } 731 } 732 AsmString = std::move(OS.str()); 733 } 734 735 /// Add output constraints for EAX:EDX because they are return registers. 736 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs( 737 CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints, 738 std::vector<llvm::Type *> &ResultRegTypes, 739 std::vector<llvm::Type *> &ResultTruncRegTypes, 740 std::vector<LValue> &ResultRegDests, std::string &AsmString, 741 unsigned NumOutputs) const { 742 uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType()); 743 744 // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is 745 // larger. 746 if (!Constraints.empty()) 747 Constraints += ','; 748 if (RetWidth <= 32) { 749 Constraints += "={eax}"; 750 ResultRegTypes.push_back(CGF.Int32Ty); 751 } else { 752 // Use the 'A' constraint for EAX:EDX. 753 Constraints += "=A"; 754 ResultRegTypes.push_back(CGF.Int64Ty); 755 } 756 757 // Truncate EAX or EAX:EDX to an integer of the appropriate size. 758 llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth); 759 ResultTruncRegTypes.push_back(CoerceTy); 760 761 // Coerce the integer by bitcasting the return slot pointer. 762 ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(), 763 CoerceTy->getPointerTo())); 764 ResultRegDests.push_back(ReturnSlot); 765 766 rewriteInputConstraintReferences(NumOutputs, 1, AsmString); 767 } 768 769 /// shouldReturnTypeInRegister - Determine if the given type should be 770 /// passed in a register (for the Darwin ABI). 771 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty, 772 ASTContext &Context) const { 773 uint64_t Size = Context.getTypeSize(Ty); 774 775 // Type must be register sized. 776 if (!isRegisterSize(Size)) 777 return false; 778 779 if (Ty->isVectorType()) { 780 // 64- and 128- bit vectors inside structures are not returned in 781 // registers. 782 if (Size == 64 || Size == 128) 783 return false; 784 785 return true; 786 } 787 788 // If this is a builtin, pointer, enum, complex type, member pointer, or 789 // member function pointer it is ok. 790 if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() || 791 Ty->isAnyComplexType() || Ty->isEnumeralType() || 792 Ty->isBlockPointerType() || Ty->isMemberPointerType()) 793 return true; 794 795 // Arrays are treated like records. 796 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) 797 return shouldReturnTypeInRegister(AT->getElementType(), Context); 798 799 // Otherwise, it must be a record type. 800 const RecordType *RT = Ty->getAs<RecordType>(); 801 if (!RT) return false; 802 803 // FIXME: Traverse bases here too. 804 805 // Structure types are passed in register if all fields would be 806 // passed in a register. 807 for (const auto *FD : RT->getDecl()->fields()) { 808 // Empty fields are ignored. 809 if (isEmptyField(Context, FD, true)) 810 continue; 811 812 // Check fields recursively. 813 if (!shouldReturnTypeInRegister(FD->getType(), Context)) 814 return false; 815 } 816 return true; 817 } 818 819 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(CCState &State) const { 820 // If the return value is indirect, then the hidden argument is consuming one 821 // integer register. 822 if (State.FreeRegs) { 823 --State.FreeRegs; 824 return ABIArgInfo::getIndirectInReg(/*Align=*/0, /*ByVal=*/false); 825 } 826 return ABIArgInfo::getIndirect(/*Align=*/0, /*ByVal=*/false); 827 } 828 829 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, 830 CCState &State) const { 831 if (RetTy->isVoidType()) 832 return ABIArgInfo::getIgnore(); 833 834 const Type *Base = nullptr; 835 uint64_t NumElts = 0; 836 if (State.CC == llvm::CallingConv::X86_VectorCall && 837 isHomogeneousAggregate(RetTy, Base, NumElts)) { 838 // The LLVM struct type for such an aggregate should lower properly. 839 return ABIArgInfo::getDirect(); 840 } 841 842 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 843 // On Darwin, some vectors are returned in registers. 844 if (IsDarwinVectorABI) { 845 uint64_t Size = getContext().getTypeSize(RetTy); 846 847 // 128-bit vectors are a special case; they are returned in 848 // registers and we need to make sure to pick a type the LLVM 849 // backend will like. 850 if (Size == 128) 851 return ABIArgInfo::getDirect(llvm::VectorType::get( 852 llvm::Type::getInt64Ty(getVMContext()), 2)); 853 854 // Always return in register if it fits in a general purpose 855 // register, or if it is 64 bits and has a single element. 856 if ((Size == 8 || Size == 16 || Size == 32) || 857 (Size == 64 && VT->getNumElements() == 1)) 858 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 859 Size)); 860 861 return getIndirectReturnResult(State); 862 } 863 864 return ABIArgInfo::getDirect(); 865 } 866 867 if (isAggregateTypeForABI(RetTy)) { 868 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 869 // Structures with flexible arrays are always indirect. 870 if (RT->getDecl()->hasFlexibleArrayMember()) 871 return getIndirectReturnResult(State); 872 } 873 874 // If specified, structs and unions are always indirect. 875 if (!IsSmallStructInRegABI && !RetTy->isAnyComplexType()) 876 return getIndirectReturnResult(State); 877 878 // Small structures which are register sized are generally returned 879 // in a register. 880 if (shouldReturnTypeInRegister(RetTy, getContext())) { 881 uint64_t Size = getContext().getTypeSize(RetTy); 882 883 // As a special-case, if the struct is a "single-element" struct, and 884 // the field is of type "float" or "double", return it in a 885 // floating-point register. (MSVC does not apply this special case.) 886 // We apply a similar transformation for pointer types to improve the 887 // quality of the generated IR. 888 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 889 if ((!IsWin32StructABI && SeltTy->isRealFloatingType()) 890 || SeltTy->hasPointerRepresentation()) 891 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 892 893 // FIXME: We should be able to narrow this integer in cases with dead 894 // padding. 895 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size)); 896 } 897 898 return getIndirectReturnResult(State); 899 } 900 901 // Treat an enum type as its underlying type. 902 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 903 RetTy = EnumTy->getDecl()->getIntegerType(); 904 905 return (RetTy->isPromotableIntegerType() ? 906 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 907 } 908 909 static bool isSSEVectorType(ASTContext &Context, QualType Ty) { 910 return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128; 911 } 912 913 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) { 914 const RecordType *RT = Ty->getAs<RecordType>(); 915 if (!RT) 916 return 0; 917 const RecordDecl *RD = RT->getDecl(); 918 919 // If this is a C++ record, check the bases first. 920 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 921 for (const auto &I : CXXRD->bases()) 922 if (!isRecordWithSSEVectorType(Context, I.getType())) 923 return false; 924 925 for (const auto *i : RD->fields()) { 926 QualType FT = i->getType(); 927 928 if (isSSEVectorType(Context, FT)) 929 return true; 930 931 if (isRecordWithSSEVectorType(Context, FT)) 932 return true; 933 } 934 935 return false; 936 } 937 938 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty, 939 unsigned Align) const { 940 // Otherwise, if the alignment is less than or equal to the minimum ABI 941 // alignment, just use the default; the backend will handle this. 942 if (Align <= MinABIStackAlignInBytes) 943 return 0; // Use default alignment. 944 945 // On non-Darwin, the stack type alignment is always 4. 946 if (!IsDarwinVectorABI) { 947 // Set explicit alignment, since we may need to realign the top. 948 return MinABIStackAlignInBytes; 949 } 950 951 // Otherwise, if the type contains an SSE vector type, the alignment is 16. 952 if (Align >= 16 && (isSSEVectorType(getContext(), Ty) || 953 isRecordWithSSEVectorType(getContext(), Ty))) 954 return 16; 955 956 return MinABIStackAlignInBytes; 957 } 958 959 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal, 960 CCState &State) const { 961 if (!ByVal) { 962 if (State.FreeRegs) { 963 --State.FreeRegs; // Non-byval indirects just use one pointer. 964 return ABIArgInfo::getIndirectInReg(0, false); 965 } 966 return ABIArgInfo::getIndirect(0, false); 967 } 968 969 // Compute the byval alignment. 970 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 971 unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign); 972 if (StackAlign == 0) 973 return ABIArgInfo::getIndirect(4, /*ByVal=*/true); 974 975 // If the stack alignment is less than the type alignment, realign the 976 // argument. 977 bool Realign = TypeAlign > StackAlign; 978 return ABIArgInfo::getIndirect(StackAlign, /*ByVal=*/true, Realign); 979 } 980 981 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const { 982 const Type *T = isSingleElementStruct(Ty, getContext()); 983 if (!T) 984 T = Ty.getTypePtr(); 985 986 if (const BuiltinType *BT = T->getAs<BuiltinType>()) { 987 BuiltinType::Kind K = BT->getKind(); 988 if (K == BuiltinType::Float || K == BuiltinType::Double) 989 return Float; 990 } 991 return Integer; 992 } 993 994 bool X86_32ABIInfo::shouldUseInReg(QualType Ty, CCState &State, 995 bool &NeedsPadding) const { 996 NeedsPadding = false; 997 Class C = classify(Ty); 998 if (C == Float) 999 return false; 1000 1001 unsigned Size = getContext().getTypeSize(Ty); 1002 unsigned SizeInRegs = (Size + 31) / 32; 1003 1004 if (SizeInRegs == 0) 1005 return false; 1006 1007 if (SizeInRegs > State.FreeRegs) { 1008 State.FreeRegs = 0; 1009 return false; 1010 } 1011 1012 State.FreeRegs -= SizeInRegs; 1013 1014 if (State.CC == llvm::CallingConv::X86_FastCall || 1015 State.CC == llvm::CallingConv::X86_VectorCall) { 1016 if (Size > 32) 1017 return false; 1018 1019 if (Ty->isIntegralOrEnumerationType()) 1020 return true; 1021 1022 if (Ty->isPointerType()) 1023 return true; 1024 1025 if (Ty->isReferenceType()) 1026 return true; 1027 1028 if (State.FreeRegs) 1029 NeedsPadding = true; 1030 1031 return false; 1032 } 1033 1034 return true; 1035 } 1036 1037 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, 1038 CCState &State) const { 1039 // FIXME: Set alignment on indirect arguments. 1040 1041 Ty = useFirstFieldIfTransparentUnion(Ty); 1042 1043 // Check with the C++ ABI first. 1044 const RecordType *RT = Ty->getAs<RecordType>(); 1045 if (RT) { 1046 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 1047 if (RAA == CGCXXABI::RAA_Indirect) { 1048 return getIndirectResult(Ty, false, State); 1049 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 1050 // The field index doesn't matter, we'll fix it up later. 1051 return ABIArgInfo::getInAlloca(/*FieldIndex=*/0); 1052 } 1053 } 1054 1055 // vectorcall adds the concept of a homogenous vector aggregate, similar 1056 // to other targets. 1057 const Type *Base = nullptr; 1058 uint64_t NumElts = 0; 1059 if (State.CC == llvm::CallingConv::X86_VectorCall && 1060 isHomogeneousAggregate(Ty, Base, NumElts)) { 1061 if (State.FreeSSERegs >= NumElts) { 1062 State.FreeSSERegs -= NumElts; 1063 if (Ty->isBuiltinType() || Ty->isVectorType()) 1064 return ABIArgInfo::getDirect(); 1065 return ABIArgInfo::getExpand(); 1066 } 1067 return getIndirectResult(Ty, /*ByVal=*/false, State); 1068 } 1069 1070 if (isAggregateTypeForABI(Ty)) { 1071 if (RT) { 1072 // Structs are always byval on win32, regardless of what they contain. 1073 if (IsWin32StructABI) 1074 return getIndirectResult(Ty, true, State); 1075 1076 // Structures with flexible arrays are always indirect. 1077 if (RT->getDecl()->hasFlexibleArrayMember()) 1078 return getIndirectResult(Ty, true, State); 1079 } 1080 1081 // Ignore empty structs/unions. 1082 if (isEmptyRecord(getContext(), Ty, true)) 1083 return ABIArgInfo::getIgnore(); 1084 1085 llvm::LLVMContext &LLVMContext = getVMContext(); 1086 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 1087 bool NeedsPadding; 1088 if (shouldUseInReg(Ty, State, NeedsPadding)) { 1089 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; 1090 SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32); 1091 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 1092 return ABIArgInfo::getDirectInReg(Result); 1093 } 1094 llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr; 1095 1096 // Expand small (<= 128-bit) record types when we know that the stack layout 1097 // of those arguments will match the struct. This is important because the 1098 // LLVM backend isn't smart enough to remove byval, which inhibits many 1099 // optimizations. 1100 if (getContext().getTypeSize(Ty) <= 4*32 && 1101 canExpandIndirectArgument(Ty, getContext())) 1102 return ABIArgInfo::getExpandWithPadding( 1103 State.CC == llvm::CallingConv::X86_FastCall || 1104 State.CC == llvm::CallingConv::X86_VectorCall, 1105 PaddingType); 1106 1107 return getIndirectResult(Ty, true, State); 1108 } 1109 1110 if (const VectorType *VT = Ty->getAs<VectorType>()) { 1111 // On Darwin, some vectors are passed in memory, we handle this by passing 1112 // it as an i8/i16/i32/i64. 1113 if (IsDarwinVectorABI) { 1114 uint64_t Size = getContext().getTypeSize(Ty); 1115 if ((Size == 8 || Size == 16 || Size == 32) || 1116 (Size == 64 && VT->getNumElements() == 1)) 1117 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1118 Size)); 1119 } 1120 1121 if (IsX86_MMXType(CGT.ConvertType(Ty))) 1122 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64)); 1123 1124 return ABIArgInfo::getDirect(); 1125 } 1126 1127 1128 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 1129 Ty = EnumTy->getDecl()->getIntegerType(); 1130 1131 bool NeedsPadding; 1132 bool InReg = shouldUseInReg(Ty, State, NeedsPadding); 1133 1134 if (Ty->isPromotableIntegerType()) { 1135 if (InReg) 1136 return ABIArgInfo::getExtendInReg(); 1137 return ABIArgInfo::getExtend(); 1138 } 1139 if (InReg) 1140 return ABIArgInfo::getDirectInReg(); 1141 return ABIArgInfo::getDirect(); 1142 } 1143 1144 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const { 1145 CCState State(FI.getCallingConvention()); 1146 if (State.CC == llvm::CallingConv::X86_FastCall) 1147 State.FreeRegs = 2; 1148 else if (State.CC == llvm::CallingConv::X86_VectorCall) { 1149 State.FreeRegs = 2; 1150 State.FreeSSERegs = 6; 1151 } else if (FI.getHasRegParm()) 1152 State.FreeRegs = FI.getRegParm(); 1153 else 1154 State.FreeRegs = DefaultNumRegisterParameters; 1155 1156 if (!getCXXABI().classifyReturnType(FI)) { 1157 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State); 1158 } else if (FI.getReturnInfo().isIndirect()) { 1159 // The C++ ABI is not aware of register usage, so we have to check if the 1160 // return value was sret and put it in a register ourselves if appropriate. 1161 if (State.FreeRegs) { 1162 --State.FreeRegs; // The sret parameter consumes a register. 1163 FI.getReturnInfo().setInReg(true); 1164 } 1165 } 1166 1167 // The chain argument effectively gives us another free register. 1168 if (FI.isChainCall()) 1169 ++State.FreeRegs; 1170 1171 bool UsedInAlloca = false; 1172 for (auto &I : FI.arguments()) { 1173 I.info = classifyArgumentType(I.type, State); 1174 UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca); 1175 } 1176 1177 // If we needed to use inalloca for any argument, do a second pass and rewrite 1178 // all the memory arguments to use inalloca. 1179 if (UsedInAlloca) 1180 rewriteWithInAlloca(FI); 1181 } 1182 1183 void 1184 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1185 unsigned &StackOffset, 1186 ABIArgInfo &Info, QualType Type) const { 1187 assert(StackOffset % 4U == 0 && "unaligned inalloca struct"); 1188 Info = ABIArgInfo::getInAlloca(FrameFields.size()); 1189 FrameFields.push_back(CGT.ConvertTypeForMem(Type)); 1190 StackOffset += getContext().getTypeSizeInChars(Type).getQuantity(); 1191 1192 // Insert padding bytes to respect alignment. For x86_32, each argument is 4 1193 // byte aligned. 1194 if (StackOffset % 4U) { 1195 unsigned OldOffset = StackOffset; 1196 StackOffset = llvm::RoundUpToAlignment(StackOffset, 4U); 1197 unsigned NumBytes = StackOffset - OldOffset; 1198 assert(NumBytes); 1199 llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext()); 1200 Ty = llvm::ArrayType::get(Ty, NumBytes); 1201 FrameFields.push_back(Ty); 1202 } 1203 } 1204 1205 static bool isArgInAlloca(const ABIArgInfo &Info) { 1206 // Leave ignored and inreg arguments alone. 1207 switch (Info.getKind()) { 1208 case ABIArgInfo::InAlloca: 1209 return true; 1210 case ABIArgInfo::Indirect: 1211 assert(Info.getIndirectByVal()); 1212 return true; 1213 case ABIArgInfo::Ignore: 1214 return false; 1215 case ABIArgInfo::Direct: 1216 case ABIArgInfo::Extend: 1217 case ABIArgInfo::Expand: 1218 if (Info.getInReg()) 1219 return false; 1220 return true; 1221 } 1222 llvm_unreachable("invalid enum"); 1223 } 1224 1225 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const { 1226 assert(IsWin32StructABI && "inalloca only supported on win32"); 1227 1228 // Build a packed struct type for all of the arguments in memory. 1229 SmallVector<llvm::Type *, 6> FrameFields; 1230 1231 unsigned StackOffset = 0; 1232 CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end(); 1233 1234 // Put 'this' into the struct before 'sret', if necessary. 1235 bool IsThisCall = 1236 FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall; 1237 ABIArgInfo &Ret = FI.getReturnInfo(); 1238 if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall && 1239 isArgInAlloca(I->info)) { 1240 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 1241 ++I; 1242 } 1243 1244 // Put the sret parameter into the inalloca struct if it's in memory. 1245 if (Ret.isIndirect() && !Ret.getInReg()) { 1246 CanQualType PtrTy = getContext().getPointerType(FI.getReturnType()); 1247 addFieldToArgStruct(FrameFields, StackOffset, Ret, PtrTy); 1248 // On Windows, the hidden sret parameter is always returned in eax. 1249 Ret.setInAllocaSRet(IsWin32StructABI); 1250 } 1251 1252 // Skip the 'this' parameter in ecx. 1253 if (IsThisCall) 1254 ++I; 1255 1256 // Put arguments passed in memory into the struct. 1257 for (; I != E; ++I) { 1258 if (isArgInAlloca(I->info)) 1259 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 1260 } 1261 1262 FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields, 1263 /*isPacked=*/true)); 1264 } 1265 1266 llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 1267 CodeGenFunction &CGF) const { 1268 llvm::Type *BPP = CGF.Int8PtrPtrTy; 1269 1270 CGBuilderTy &Builder = CGF.Builder; 1271 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, 1272 "ap"); 1273 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 1274 1275 // Compute if the address needs to be aligned 1276 unsigned Align = CGF.getContext().getTypeAlignInChars(Ty).getQuantity(); 1277 Align = getTypeStackAlignInBytes(Ty, Align); 1278 Align = std::max(Align, 4U); 1279 if (Align > 4) { 1280 // addr = (addr + align - 1) & -align; 1281 llvm::Value *Offset = 1282 llvm::ConstantInt::get(CGF.Int32Ty, Align - 1); 1283 Addr = CGF.Builder.CreateGEP(Addr, Offset); 1284 llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(Addr, 1285 CGF.Int32Ty); 1286 llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -Align); 1287 Addr = CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask), 1288 Addr->getType(), 1289 "ap.cur.aligned"); 1290 } 1291 1292 llvm::Type *PTy = 1293 llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 1294 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); 1295 1296 uint64_t Offset = 1297 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, Align); 1298 llvm::Value *NextAddr = 1299 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), 1300 "ap.next"); 1301 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 1302 1303 return AddrTyped; 1304 } 1305 1306 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI( 1307 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 1308 assert(Triple.getArch() == llvm::Triple::x86); 1309 1310 switch (Opts.getStructReturnConvention()) { 1311 case CodeGenOptions::SRCK_Default: 1312 break; 1313 case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return 1314 return false; 1315 case CodeGenOptions::SRCK_InRegs: // -freg-struct-return 1316 return true; 1317 } 1318 1319 if (Triple.isOSDarwin()) 1320 return true; 1321 1322 switch (Triple.getOS()) { 1323 case llvm::Triple::DragonFly: 1324 case llvm::Triple::FreeBSD: 1325 case llvm::Triple::OpenBSD: 1326 case llvm::Triple::Bitrig: 1327 case llvm::Triple::Win32: 1328 return true; 1329 default: 1330 return false; 1331 } 1332 } 1333 1334 void X86_32TargetCodeGenInfo::setTargetAttributes(const Decl *D, 1335 llvm::GlobalValue *GV, 1336 CodeGen::CodeGenModule &CGM) const { 1337 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1338 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 1339 // Get the LLVM function. 1340 llvm::Function *Fn = cast<llvm::Function>(GV); 1341 1342 // Now add the 'alignstack' attribute with a value of 16. 1343 llvm::AttrBuilder B; 1344 B.addStackAlignmentAttr(16); 1345 Fn->addAttributes(llvm::AttributeSet::FunctionIndex, 1346 llvm::AttributeSet::get(CGM.getLLVMContext(), 1347 llvm::AttributeSet::FunctionIndex, 1348 B)); 1349 } 1350 } 1351 } 1352 1353 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable( 1354 CodeGen::CodeGenFunction &CGF, 1355 llvm::Value *Address) const { 1356 CodeGen::CGBuilderTy &Builder = CGF.Builder; 1357 1358 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 1359 1360 // 0-7 are the eight integer registers; the order is different 1361 // on Darwin (for EH), but the range is the same. 1362 // 8 is %eip. 1363 AssignToArrayRange(Builder, Address, Four8, 0, 8); 1364 1365 if (CGF.CGM.getTarget().getTriple().isOSDarwin()) { 1366 // 12-16 are st(0..4). Not sure why we stop at 4. 1367 // These have size 16, which is sizeof(long double) on 1368 // platforms with 8-byte alignment for that type. 1369 llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16); 1370 AssignToArrayRange(Builder, Address, Sixteen8, 12, 16); 1371 1372 } else { 1373 // 9 is %eflags, which doesn't get a size on Darwin for some 1374 // reason. 1375 Builder.CreateStore( 1376 Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9)); 1377 1378 // 11-16 are st(0..5). Not sure why we stop at 5. 1379 // These have size 12, which is sizeof(long double) on 1380 // platforms with 4-byte alignment for that type. 1381 llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12); 1382 AssignToArrayRange(Builder, Address, Twelve8, 11, 16); 1383 } 1384 1385 return false; 1386 } 1387 1388 //===----------------------------------------------------------------------===// 1389 // X86-64 ABI Implementation 1390 //===----------------------------------------------------------------------===// 1391 1392 1393 namespace { 1394 /// The AVX ABI level for X86 targets. 1395 enum class X86AVXABILevel { 1396 None, 1397 AVX, 1398 AVX512 1399 }; 1400 1401 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel. 1402 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) { 1403 switch (AVXLevel) { 1404 case X86AVXABILevel::AVX512: 1405 return 512; 1406 case X86AVXABILevel::AVX: 1407 return 256; 1408 case X86AVXABILevel::None: 1409 return 128; 1410 } 1411 llvm_unreachable("Unknown AVXLevel"); 1412 } 1413 1414 /// X86_64ABIInfo - The X86_64 ABI information. 1415 class X86_64ABIInfo : public ABIInfo { 1416 enum Class { 1417 Integer = 0, 1418 SSE, 1419 SSEUp, 1420 X87, 1421 X87Up, 1422 ComplexX87, 1423 NoClass, 1424 Memory 1425 }; 1426 1427 /// merge - Implement the X86_64 ABI merging algorithm. 1428 /// 1429 /// Merge an accumulating classification \arg Accum with a field 1430 /// classification \arg Field. 1431 /// 1432 /// \param Accum - The accumulating classification. This should 1433 /// always be either NoClass or the result of a previous merge 1434 /// call. In addition, this should never be Memory (the caller 1435 /// should just return Memory for the aggregate). 1436 static Class merge(Class Accum, Class Field); 1437 1438 /// postMerge - Implement the X86_64 ABI post merging algorithm. 1439 /// 1440 /// Post merger cleanup, reduces a malformed Hi and Lo pair to 1441 /// final MEMORY or SSE classes when necessary. 1442 /// 1443 /// \param AggregateSize - The size of the current aggregate in 1444 /// the classification process. 1445 /// 1446 /// \param Lo - The classification for the parts of the type 1447 /// residing in the low word of the containing object. 1448 /// 1449 /// \param Hi - The classification for the parts of the type 1450 /// residing in the higher words of the containing object. 1451 /// 1452 void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const; 1453 1454 /// classify - Determine the x86_64 register classes in which the 1455 /// given type T should be passed. 1456 /// 1457 /// \param Lo - The classification for the parts of the type 1458 /// residing in the low word of the containing object. 1459 /// 1460 /// \param Hi - The classification for the parts of the type 1461 /// residing in the high word of the containing object. 1462 /// 1463 /// \param OffsetBase - The bit offset of this type in the 1464 /// containing object. Some parameters are classified different 1465 /// depending on whether they straddle an eightbyte boundary. 1466 /// 1467 /// \param isNamedArg - Whether the argument in question is a "named" 1468 /// argument, as used in AMD64-ABI 3.5.7. 1469 /// 1470 /// If a word is unused its result will be NoClass; if a type should 1471 /// be passed in Memory then at least the classification of \arg Lo 1472 /// will be Memory. 1473 /// 1474 /// The \arg Lo class will be NoClass iff the argument is ignored. 1475 /// 1476 /// If the \arg Lo class is ComplexX87, then the \arg Hi class will 1477 /// also be ComplexX87. 1478 void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi, 1479 bool isNamedArg) const; 1480 1481 llvm::Type *GetByteVectorType(QualType Ty) const; 1482 llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType, 1483 unsigned IROffset, QualType SourceTy, 1484 unsigned SourceOffset) const; 1485 llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType, 1486 unsigned IROffset, QualType SourceTy, 1487 unsigned SourceOffset) const; 1488 1489 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 1490 /// such that the argument will be returned in memory. 1491 ABIArgInfo getIndirectReturnResult(QualType Ty) const; 1492 1493 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 1494 /// such that the argument will be passed in memory. 1495 /// 1496 /// \param freeIntRegs - The number of free integer registers remaining 1497 /// available. 1498 ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const; 1499 1500 ABIArgInfo classifyReturnType(QualType RetTy) const; 1501 1502 ABIArgInfo classifyArgumentType(QualType Ty, 1503 unsigned freeIntRegs, 1504 unsigned &neededInt, 1505 unsigned &neededSSE, 1506 bool isNamedArg) const; 1507 1508 bool IsIllegalVectorType(QualType Ty) const; 1509 1510 /// The 0.98 ABI revision clarified a lot of ambiguities, 1511 /// unfortunately in ways that were not always consistent with 1512 /// certain previous compilers. In particular, platforms which 1513 /// required strict binary compatibility with older versions of GCC 1514 /// may need to exempt themselves. 1515 bool honorsRevision0_98() const { 1516 return !getTarget().getTriple().isOSDarwin(); 1517 } 1518 1519 X86AVXABILevel AVXLevel; 1520 // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on 1521 // 64-bit hardware. 1522 bool Has64BitPointers; 1523 1524 public: 1525 X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) : 1526 ABIInfo(CGT), AVXLevel(AVXLevel), 1527 Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) { 1528 } 1529 1530 bool isPassedUsingAVXType(QualType type) const { 1531 unsigned neededInt, neededSSE; 1532 // The freeIntRegs argument doesn't matter here. 1533 ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE, 1534 /*isNamedArg*/true); 1535 if (info.isDirect()) { 1536 llvm::Type *ty = info.getCoerceToType(); 1537 if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty)) 1538 return (vectorTy->getBitWidth() > 128); 1539 } 1540 return false; 1541 } 1542 1543 void computeInfo(CGFunctionInfo &FI) const override; 1544 1545 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 1546 CodeGenFunction &CGF) const override; 1547 1548 bool has64BitPointers() const { 1549 return Has64BitPointers; 1550 } 1551 }; 1552 1553 /// WinX86_64ABIInfo - The Windows X86_64 ABI information. 1554 class WinX86_64ABIInfo : public ABIInfo { 1555 1556 ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, 1557 bool IsReturnType) const; 1558 1559 public: 1560 WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 1561 1562 void computeInfo(CGFunctionInfo &FI) const override; 1563 1564 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 1565 CodeGenFunction &CGF) const override; 1566 1567 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 1568 // FIXME: Assumes vectorcall is in use. 1569 return isX86VectorTypeForVectorCall(getContext(), Ty); 1570 } 1571 1572 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 1573 uint64_t NumMembers) const override { 1574 // FIXME: Assumes vectorcall is in use. 1575 return isX86VectorCallAggregateSmallEnough(NumMembers); 1576 } 1577 }; 1578 1579 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo { 1580 public: 1581 X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 1582 : TargetCodeGenInfo(new X86_64ABIInfo(CGT, AVXLevel)) {} 1583 1584 const X86_64ABIInfo &getABIInfo() const { 1585 return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo()); 1586 } 1587 1588 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 1589 return 7; 1590 } 1591 1592 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 1593 llvm::Value *Address) const override { 1594 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 1595 1596 // 0-15 are the 16 integer registers. 1597 // 16 is %rip. 1598 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 1599 return false; 1600 } 1601 1602 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 1603 StringRef Constraint, 1604 llvm::Type* Ty) const override { 1605 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 1606 } 1607 1608 bool isNoProtoCallVariadic(const CallArgList &args, 1609 const FunctionNoProtoType *fnType) const override { 1610 // The default CC on x86-64 sets %al to the number of SSA 1611 // registers used, and GCC sets this when calling an unprototyped 1612 // function, so we override the default behavior. However, don't do 1613 // that when AVX types are involved: the ABI explicitly states it is 1614 // undefined, and it doesn't work in practice because of how the ABI 1615 // defines varargs anyway. 1616 if (fnType->getCallConv() == CC_C) { 1617 bool HasAVXType = false; 1618 for (CallArgList::const_iterator 1619 it = args.begin(), ie = args.end(); it != ie; ++it) { 1620 if (getABIInfo().isPassedUsingAVXType(it->Ty)) { 1621 HasAVXType = true; 1622 break; 1623 } 1624 } 1625 1626 if (!HasAVXType) 1627 return true; 1628 } 1629 1630 return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType); 1631 } 1632 1633 llvm::Constant * 1634 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 1635 unsigned Sig; 1636 if (getABIInfo().has64BitPointers()) 1637 Sig = (0xeb << 0) | // jmp rel8 1638 (0x0a << 8) | // .+0x0c 1639 ('F' << 16) | 1640 ('T' << 24); 1641 else 1642 Sig = (0xeb << 0) | // jmp rel8 1643 (0x06 << 8) | // .+0x08 1644 ('F' << 16) | 1645 ('T' << 24); 1646 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 1647 } 1648 }; 1649 1650 class PS4TargetCodeGenInfo : public X86_64TargetCodeGenInfo { 1651 public: 1652 PS4TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 1653 : X86_64TargetCodeGenInfo(CGT, AVXLevel) {} 1654 1655 void getDependentLibraryOption(llvm::StringRef Lib, 1656 llvm::SmallString<24> &Opt) const override { 1657 Opt = "\01"; 1658 Opt += Lib; 1659 } 1660 }; 1661 1662 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) { 1663 // If the argument does not end in .lib, automatically add the suffix. 1664 // If the argument contains a space, enclose it in quotes. 1665 // This matches the behavior of MSVC. 1666 bool Quote = (Lib.find(" ") != StringRef::npos); 1667 std::string ArgStr = Quote ? "\"" : ""; 1668 ArgStr += Lib; 1669 if (!Lib.endswith_lower(".lib")) 1670 ArgStr += ".lib"; 1671 ArgStr += Quote ? "\"" : ""; 1672 return ArgStr; 1673 } 1674 1675 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo { 1676 public: 1677 WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 1678 bool d, bool p, bool w, unsigned RegParms) 1679 : X86_32TargetCodeGenInfo(CGT, d, p, w, RegParms) {} 1680 1681 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 1682 CodeGen::CodeGenModule &CGM) const override; 1683 1684 void getDependentLibraryOption(llvm::StringRef Lib, 1685 llvm::SmallString<24> &Opt) const override { 1686 Opt = "/DEFAULTLIB:"; 1687 Opt += qualifyWindowsLibrary(Lib); 1688 } 1689 1690 void getDetectMismatchOption(llvm::StringRef Name, 1691 llvm::StringRef Value, 1692 llvm::SmallString<32> &Opt) const override { 1693 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 1694 } 1695 }; 1696 1697 static void addStackProbeSizeTargetAttribute(const Decl *D, 1698 llvm::GlobalValue *GV, 1699 CodeGen::CodeGenModule &CGM) { 1700 if (isa<FunctionDecl>(D)) { 1701 if (CGM.getCodeGenOpts().StackProbeSize != 4096) { 1702 llvm::Function *Fn = cast<llvm::Function>(GV); 1703 1704 Fn->addFnAttr("stack-probe-size", 1705 llvm::utostr(CGM.getCodeGenOpts().StackProbeSize)); 1706 } 1707 } 1708 } 1709 1710 void WinX86_32TargetCodeGenInfo::setTargetAttributes(const Decl *D, 1711 llvm::GlobalValue *GV, 1712 CodeGen::CodeGenModule &CGM) const { 1713 X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 1714 1715 addStackProbeSizeTargetAttribute(D, GV, CGM); 1716 } 1717 1718 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo { 1719 public: 1720 WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 1721 X86AVXABILevel AVXLevel) 1722 : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {} 1723 1724 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 1725 CodeGen::CodeGenModule &CGM) const override; 1726 1727 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 1728 return 7; 1729 } 1730 1731 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 1732 llvm::Value *Address) const override { 1733 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 1734 1735 // 0-15 are the 16 integer registers. 1736 // 16 is %rip. 1737 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 1738 return false; 1739 } 1740 1741 void getDependentLibraryOption(llvm::StringRef Lib, 1742 llvm::SmallString<24> &Opt) const override { 1743 Opt = "/DEFAULTLIB:"; 1744 Opt += qualifyWindowsLibrary(Lib); 1745 } 1746 1747 void getDetectMismatchOption(llvm::StringRef Name, 1748 llvm::StringRef Value, 1749 llvm::SmallString<32> &Opt) const override { 1750 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 1751 } 1752 }; 1753 1754 void WinX86_64TargetCodeGenInfo::setTargetAttributes(const Decl *D, 1755 llvm::GlobalValue *GV, 1756 CodeGen::CodeGenModule &CGM) const { 1757 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 1758 1759 addStackProbeSizeTargetAttribute(D, GV, CGM); 1760 } 1761 } 1762 1763 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo, 1764 Class &Hi) const { 1765 // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done: 1766 // 1767 // (a) If one of the classes is Memory, the whole argument is passed in 1768 // memory. 1769 // 1770 // (b) If X87UP is not preceded by X87, the whole argument is passed in 1771 // memory. 1772 // 1773 // (c) If the size of the aggregate exceeds two eightbytes and the first 1774 // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole 1775 // argument is passed in memory. NOTE: This is necessary to keep the 1776 // ABI working for processors that don't support the __m256 type. 1777 // 1778 // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE. 1779 // 1780 // Some of these are enforced by the merging logic. Others can arise 1781 // only with unions; for example: 1782 // union { _Complex double; unsigned; } 1783 // 1784 // Note that clauses (b) and (c) were added in 0.98. 1785 // 1786 if (Hi == Memory) 1787 Lo = Memory; 1788 if (Hi == X87Up && Lo != X87 && honorsRevision0_98()) 1789 Lo = Memory; 1790 if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp)) 1791 Lo = Memory; 1792 if (Hi == SSEUp && Lo != SSE) 1793 Hi = SSE; 1794 } 1795 1796 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) { 1797 // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is 1798 // classified recursively so that always two fields are 1799 // considered. The resulting class is calculated according to 1800 // the classes of the fields in the eightbyte: 1801 // 1802 // (a) If both classes are equal, this is the resulting class. 1803 // 1804 // (b) If one of the classes is NO_CLASS, the resulting class is 1805 // the other class. 1806 // 1807 // (c) If one of the classes is MEMORY, the result is the MEMORY 1808 // class. 1809 // 1810 // (d) If one of the classes is INTEGER, the result is the 1811 // INTEGER. 1812 // 1813 // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class, 1814 // MEMORY is used as class. 1815 // 1816 // (f) Otherwise class SSE is used. 1817 1818 // Accum should never be memory (we should have returned) or 1819 // ComplexX87 (because this cannot be passed in a structure). 1820 assert((Accum != Memory && Accum != ComplexX87) && 1821 "Invalid accumulated classification during merge."); 1822 if (Accum == Field || Field == NoClass) 1823 return Accum; 1824 if (Field == Memory) 1825 return Memory; 1826 if (Accum == NoClass) 1827 return Field; 1828 if (Accum == Integer || Field == Integer) 1829 return Integer; 1830 if (Field == X87 || Field == X87Up || Field == ComplexX87 || 1831 Accum == X87 || Accum == X87Up) 1832 return Memory; 1833 return SSE; 1834 } 1835 1836 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, 1837 Class &Lo, Class &Hi, bool isNamedArg) const { 1838 // FIXME: This code can be simplified by introducing a simple value class for 1839 // Class pairs with appropriate constructor methods for the various 1840 // situations. 1841 1842 // FIXME: Some of the split computations are wrong; unaligned vectors 1843 // shouldn't be passed in registers for example, so there is no chance they 1844 // can straddle an eightbyte. Verify & simplify. 1845 1846 Lo = Hi = NoClass; 1847 1848 Class &Current = OffsetBase < 64 ? Lo : Hi; 1849 Current = Memory; 1850 1851 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 1852 BuiltinType::Kind k = BT->getKind(); 1853 1854 if (k == BuiltinType::Void) { 1855 Current = NoClass; 1856 } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) { 1857 Lo = Integer; 1858 Hi = Integer; 1859 } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) { 1860 Current = Integer; 1861 } else if ((k == BuiltinType::Float || k == BuiltinType::Double) || 1862 (k == BuiltinType::LongDouble && 1863 getTarget().getTriple().isOSNaCl())) { 1864 Current = SSE; 1865 } else if (k == BuiltinType::LongDouble) { 1866 Lo = X87; 1867 Hi = X87Up; 1868 } 1869 // FIXME: _Decimal32 and _Decimal64 are SSE. 1870 // FIXME: _float128 and _Decimal128 are (SSE, SSEUp). 1871 return; 1872 } 1873 1874 if (const EnumType *ET = Ty->getAs<EnumType>()) { 1875 // Classify the underlying integer type. 1876 classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg); 1877 return; 1878 } 1879 1880 if (Ty->hasPointerRepresentation()) { 1881 Current = Integer; 1882 return; 1883 } 1884 1885 if (Ty->isMemberPointerType()) { 1886 if (Ty->isMemberFunctionPointerType()) { 1887 if (Has64BitPointers) { 1888 // If Has64BitPointers, this is an {i64, i64}, so classify both 1889 // Lo and Hi now. 1890 Lo = Hi = Integer; 1891 } else { 1892 // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that 1893 // straddles an eightbyte boundary, Hi should be classified as well. 1894 uint64_t EB_FuncPtr = (OffsetBase) / 64; 1895 uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64; 1896 if (EB_FuncPtr != EB_ThisAdj) { 1897 Lo = Hi = Integer; 1898 } else { 1899 Current = Integer; 1900 } 1901 } 1902 } else { 1903 Current = Integer; 1904 } 1905 return; 1906 } 1907 1908 if (const VectorType *VT = Ty->getAs<VectorType>()) { 1909 uint64_t Size = getContext().getTypeSize(VT); 1910 if (Size == 32) { 1911 // gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x 1912 // float> as integer. 1913 Current = Integer; 1914 1915 // If this type crosses an eightbyte boundary, it should be 1916 // split. 1917 uint64_t EB_Real = (OffsetBase) / 64; 1918 uint64_t EB_Imag = (OffsetBase + Size - 1) / 64; 1919 if (EB_Real != EB_Imag) 1920 Hi = Lo; 1921 } else if (Size == 64) { 1922 // gcc passes <1 x double> in memory. :( 1923 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) 1924 return; 1925 1926 // gcc passes <1 x long long> as INTEGER. 1927 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong) || 1928 VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULongLong) || 1929 VT->getElementType()->isSpecificBuiltinType(BuiltinType::Long) || 1930 VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULong)) 1931 Current = Integer; 1932 else 1933 Current = SSE; 1934 1935 // If this type crosses an eightbyte boundary, it should be 1936 // split. 1937 if (OffsetBase && OffsetBase != 64) 1938 Hi = Lo; 1939 } else if (Size == 128 || 1940 (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) { 1941 // Arguments of 256-bits are split into four eightbyte chunks. The 1942 // least significant one belongs to class SSE and all the others to class 1943 // SSEUP. The original Lo and Hi design considers that types can't be 1944 // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense. 1945 // This design isn't correct for 256-bits, but since there're no cases 1946 // where the upper parts would need to be inspected, avoid adding 1947 // complexity and just consider Hi to match the 64-256 part. 1948 // 1949 // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in 1950 // registers if they are "named", i.e. not part of the "..." of a 1951 // variadic function. 1952 // 1953 // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are 1954 // split into eight eightbyte chunks, one SSE and seven SSEUP. 1955 Lo = SSE; 1956 Hi = SSEUp; 1957 } 1958 return; 1959 } 1960 1961 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 1962 QualType ET = getContext().getCanonicalType(CT->getElementType()); 1963 1964 uint64_t Size = getContext().getTypeSize(Ty); 1965 if (ET->isIntegralOrEnumerationType()) { 1966 if (Size <= 64) 1967 Current = Integer; 1968 else if (Size <= 128) 1969 Lo = Hi = Integer; 1970 } else if (ET == getContext().FloatTy) 1971 Current = SSE; 1972 else if (ET == getContext().DoubleTy || 1973 (ET == getContext().LongDoubleTy && 1974 getTarget().getTriple().isOSNaCl())) 1975 Lo = Hi = SSE; 1976 else if (ET == getContext().LongDoubleTy) 1977 Current = ComplexX87; 1978 1979 // If this complex type crosses an eightbyte boundary then it 1980 // should be split. 1981 uint64_t EB_Real = (OffsetBase) / 64; 1982 uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64; 1983 if (Hi == NoClass && EB_Real != EB_Imag) 1984 Hi = Lo; 1985 1986 return; 1987 } 1988 1989 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 1990 // Arrays are treated like structures. 1991 1992 uint64_t Size = getContext().getTypeSize(Ty); 1993 1994 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 1995 // than four eightbytes, ..., it has class MEMORY. 1996 if (Size > 256) 1997 return; 1998 1999 // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned 2000 // fields, it has class MEMORY. 2001 // 2002 // Only need to check alignment of array base. 2003 if (OffsetBase % getContext().getTypeAlign(AT->getElementType())) 2004 return; 2005 2006 // Otherwise implement simplified merge. We could be smarter about 2007 // this, but it isn't worth it and would be harder to verify. 2008 Current = NoClass; 2009 uint64_t EltSize = getContext().getTypeSize(AT->getElementType()); 2010 uint64_t ArraySize = AT->getSize().getZExtValue(); 2011 2012 // The only case a 256-bit wide vector could be used is when the array 2013 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 2014 // to work for sizes wider than 128, early check and fallback to memory. 2015 if (Size > 128 && EltSize != 256) 2016 return; 2017 2018 for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) { 2019 Class FieldLo, FieldHi; 2020 classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg); 2021 Lo = merge(Lo, FieldLo); 2022 Hi = merge(Hi, FieldHi); 2023 if (Lo == Memory || Hi == Memory) 2024 break; 2025 } 2026 2027 postMerge(Size, Lo, Hi); 2028 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification."); 2029 return; 2030 } 2031 2032 if (const RecordType *RT = Ty->getAs<RecordType>()) { 2033 uint64_t Size = getContext().getTypeSize(Ty); 2034 2035 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 2036 // than four eightbytes, ..., it has class MEMORY. 2037 if (Size > 256) 2038 return; 2039 2040 // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial 2041 // copy constructor or a non-trivial destructor, it is passed by invisible 2042 // reference. 2043 if (getRecordArgABI(RT, getCXXABI())) 2044 return; 2045 2046 const RecordDecl *RD = RT->getDecl(); 2047 2048 // Assume variable sized types are passed in memory. 2049 if (RD->hasFlexibleArrayMember()) 2050 return; 2051 2052 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 2053 2054 // Reset Lo class, this will be recomputed. 2055 Current = NoClass; 2056 2057 // If this is a C++ record, classify the bases first. 2058 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 2059 for (const auto &I : CXXRD->bases()) { 2060 assert(!I.isVirtual() && !I.getType()->isDependentType() && 2061 "Unexpected base class!"); 2062 const CXXRecordDecl *Base = 2063 cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); 2064 2065 // Classify this field. 2066 // 2067 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a 2068 // single eightbyte, each is classified separately. Each eightbyte gets 2069 // initialized to class NO_CLASS. 2070 Class FieldLo, FieldHi; 2071 uint64_t Offset = 2072 OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base)); 2073 classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg); 2074 Lo = merge(Lo, FieldLo); 2075 Hi = merge(Hi, FieldHi); 2076 if (Lo == Memory || Hi == Memory) 2077 break; 2078 } 2079 } 2080 2081 // Classify the fields one at a time, merging the results. 2082 unsigned idx = 0; 2083 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 2084 i != e; ++i, ++idx) { 2085 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 2086 bool BitField = i->isBitField(); 2087 2088 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than 2089 // four eightbytes, or it contains unaligned fields, it has class MEMORY. 2090 // 2091 // The only case a 256-bit wide vector could be used is when the struct 2092 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 2093 // to work for sizes wider than 128, early check and fallback to memory. 2094 // 2095 if (Size > 128 && getContext().getTypeSize(i->getType()) != 256) { 2096 Lo = Memory; 2097 return; 2098 } 2099 // Note, skip this test for bit-fields, see below. 2100 if (!BitField && Offset % getContext().getTypeAlign(i->getType())) { 2101 Lo = Memory; 2102 return; 2103 } 2104 2105 // Classify this field. 2106 // 2107 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate 2108 // exceeds a single eightbyte, each is classified 2109 // separately. Each eightbyte gets initialized to class 2110 // NO_CLASS. 2111 Class FieldLo, FieldHi; 2112 2113 // Bit-fields require special handling, they do not force the 2114 // structure to be passed in memory even if unaligned, and 2115 // therefore they can straddle an eightbyte. 2116 if (BitField) { 2117 // Ignore padding bit-fields. 2118 if (i->isUnnamedBitfield()) 2119 continue; 2120 2121 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 2122 uint64_t Size = i->getBitWidthValue(getContext()); 2123 2124 uint64_t EB_Lo = Offset / 64; 2125 uint64_t EB_Hi = (Offset + Size - 1) / 64; 2126 2127 if (EB_Lo) { 2128 assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes."); 2129 FieldLo = NoClass; 2130 FieldHi = Integer; 2131 } else { 2132 FieldLo = Integer; 2133 FieldHi = EB_Hi ? Integer : NoClass; 2134 } 2135 } else 2136 classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg); 2137 Lo = merge(Lo, FieldLo); 2138 Hi = merge(Hi, FieldHi); 2139 if (Lo == Memory || Hi == Memory) 2140 break; 2141 } 2142 2143 postMerge(Size, Lo, Hi); 2144 } 2145 } 2146 2147 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const { 2148 // If this is a scalar LLVM value then assume LLVM will pass it in the right 2149 // place naturally. 2150 if (!isAggregateTypeForABI(Ty)) { 2151 // Treat an enum type as its underlying type. 2152 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2153 Ty = EnumTy->getDecl()->getIntegerType(); 2154 2155 return (Ty->isPromotableIntegerType() ? 2156 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 2157 } 2158 2159 return ABIArgInfo::getIndirect(0); 2160 } 2161 2162 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const { 2163 if (const VectorType *VecTy = Ty->getAs<VectorType>()) { 2164 uint64_t Size = getContext().getTypeSize(VecTy); 2165 unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel); 2166 if (Size <= 64 || Size > LargestVector) 2167 return true; 2168 } 2169 2170 return false; 2171 } 2172 2173 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty, 2174 unsigned freeIntRegs) const { 2175 // If this is a scalar LLVM value then assume LLVM will pass it in the right 2176 // place naturally. 2177 // 2178 // This assumption is optimistic, as there could be free registers available 2179 // when we need to pass this argument in memory, and LLVM could try to pass 2180 // the argument in the free register. This does not seem to happen currently, 2181 // but this code would be much safer if we could mark the argument with 2182 // 'onstack'. See PR12193. 2183 if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) { 2184 // Treat an enum type as its underlying type. 2185 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2186 Ty = EnumTy->getDecl()->getIntegerType(); 2187 2188 return (Ty->isPromotableIntegerType() ? 2189 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 2190 } 2191 2192 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 2193 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 2194 2195 // Compute the byval alignment. We specify the alignment of the byval in all 2196 // cases so that the mid-level optimizer knows the alignment of the byval. 2197 unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U); 2198 2199 // Attempt to avoid passing indirect results using byval when possible. This 2200 // is important for good codegen. 2201 // 2202 // We do this by coercing the value into a scalar type which the backend can 2203 // handle naturally (i.e., without using byval). 2204 // 2205 // For simplicity, we currently only do this when we have exhausted all of the 2206 // free integer registers. Doing this when there are free integer registers 2207 // would require more care, as we would have to ensure that the coerced value 2208 // did not claim the unused register. That would require either reording the 2209 // arguments to the function (so that any subsequent inreg values came first), 2210 // or only doing this optimization when there were no following arguments that 2211 // might be inreg. 2212 // 2213 // We currently expect it to be rare (particularly in well written code) for 2214 // arguments to be passed on the stack when there are still free integer 2215 // registers available (this would typically imply large structs being passed 2216 // by value), so this seems like a fair tradeoff for now. 2217 // 2218 // We can revisit this if the backend grows support for 'onstack' parameter 2219 // attributes. See PR12193. 2220 if (freeIntRegs == 0) { 2221 uint64_t Size = getContext().getTypeSize(Ty); 2222 2223 // If this type fits in an eightbyte, coerce it into the matching integral 2224 // type, which will end up on the stack (with alignment 8). 2225 if (Align == 8 && Size <= 64) 2226 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 2227 Size)); 2228 } 2229 2230 return ABIArgInfo::getIndirect(Align); 2231 } 2232 2233 /// The ABI specifies that a value should be passed in a full vector XMM/YMM 2234 /// register. Pick an LLVM IR type that will be passed as a vector register. 2235 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const { 2236 // Wrapper structs/arrays that only contain vectors are passed just like 2237 // vectors; strip them off if present. 2238 if (const Type *InnerTy = isSingleElementStruct(Ty, getContext())) 2239 Ty = QualType(InnerTy, 0); 2240 2241 llvm::Type *IRType = CGT.ConvertType(Ty); 2242 if(isa<llvm::VectorType>(IRType)) 2243 return IRType; 2244 2245 // We couldn't find the preferred IR vector type for 'Ty'. 2246 uint64_t Size = getContext().getTypeSize(Ty); 2247 assert((Size == 128 || Size == 256) && "Invalid type found!"); 2248 2249 // Return a LLVM IR vector type based on the size of 'Ty'. 2250 return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 2251 Size / 64); 2252 } 2253 2254 /// BitsContainNoUserData - Return true if the specified [start,end) bit range 2255 /// is known to either be off the end of the specified type or being in 2256 /// alignment padding. The user type specified is known to be at most 128 bits 2257 /// in size, and have passed through X86_64ABIInfo::classify with a successful 2258 /// classification that put one of the two halves in the INTEGER class. 2259 /// 2260 /// It is conservatively correct to return false. 2261 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit, 2262 unsigned EndBit, ASTContext &Context) { 2263 // If the bytes being queried are off the end of the type, there is no user 2264 // data hiding here. This handles analysis of builtins, vectors and other 2265 // types that don't contain interesting padding. 2266 unsigned TySize = (unsigned)Context.getTypeSize(Ty); 2267 if (TySize <= StartBit) 2268 return true; 2269 2270 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 2271 unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType()); 2272 unsigned NumElts = (unsigned)AT->getSize().getZExtValue(); 2273 2274 // Check each element to see if the element overlaps with the queried range. 2275 for (unsigned i = 0; i != NumElts; ++i) { 2276 // If the element is after the span we care about, then we're done.. 2277 unsigned EltOffset = i*EltSize; 2278 if (EltOffset >= EndBit) break; 2279 2280 unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0; 2281 if (!BitsContainNoUserData(AT->getElementType(), EltStart, 2282 EndBit-EltOffset, Context)) 2283 return false; 2284 } 2285 // If it overlaps no elements, then it is safe to process as padding. 2286 return true; 2287 } 2288 2289 if (const RecordType *RT = Ty->getAs<RecordType>()) { 2290 const RecordDecl *RD = RT->getDecl(); 2291 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 2292 2293 // If this is a C++ record, check the bases first. 2294 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 2295 for (const auto &I : CXXRD->bases()) { 2296 assert(!I.isVirtual() && !I.getType()->isDependentType() && 2297 "Unexpected base class!"); 2298 const CXXRecordDecl *Base = 2299 cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); 2300 2301 // If the base is after the span we care about, ignore it. 2302 unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base)); 2303 if (BaseOffset >= EndBit) continue; 2304 2305 unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0; 2306 if (!BitsContainNoUserData(I.getType(), BaseStart, 2307 EndBit-BaseOffset, Context)) 2308 return false; 2309 } 2310 } 2311 2312 // Verify that no field has data that overlaps the region of interest. Yes 2313 // this could be sped up a lot by being smarter about queried fields, 2314 // however we're only looking at structs up to 16 bytes, so we don't care 2315 // much. 2316 unsigned idx = 0; 2317 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 2318 i != e; ++i, ++idx) { 2319 unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx); 2320 2321 // If we found a field after the region we care about, then we're done. 2322 if (FieldOffset >= EndBit) break; 2323 2324 unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0; 2325 if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset, 2326 Context)) 2327 return false; 2328 } 2329 2330 // If nothing in this record overlapped the area of interest, then we're 2331 // clean. 2332 return true; 2333 } 2334 2335 return false; 2336 } 2337 2338 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a 2339 /// float member at the specified offset. For example, {int,{float}} has a 2340 /// float at offset 4. It is conservatively correct for this routine to return 2341 /// false. 2342 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset, 2343 const llvm::DataLayout &TD) { 2344 // Base case if we find a float. 2345 if (IROffset == 0 && IRType->isFloatTy()) 2346 return true; 2347 2348 // If this is a struct, recurse into the field at the specified offset. 2349 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 2350 const llvm::StructLayout *SL = TD.getStructLayout(STy); 2351 unsigned Elt = SL->getElementContainingOffset(IROffset); 2352 IROffset -= SL->getElementOffset(Elt); 2353 return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD); 2354 } 2355 2356 // If this is an array, recurse into the field at the specified offset. 2357 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 2358 llvm::Type *EltTy = ATy->getElementType(); 2359 unsigned EltSize = TD.getTypeAllocSize(EltTy); 2360 IROffset -= IROffset/EltSize*EltSize; 2361 return ContainsFloatAtOffset(EltTy, IROffset, TD); 2362 } 2363 2364 return false; 2365 } 2366 2367 2368 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the 2369 /// low 8 bytes of an XMM register, corresponding to the SSE class. 2370 llvm::Type *X86_64ABIInfo:: 2371 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset, 2372 QualType SourceTy, unsigned SourceOffset) const { 2373 // The only three choices we have are either double, <2 x float>, or float. We 2374 // pass as float if the last 4 bytes is just padding. This happens for 2375 // structs that contain 3 floats. 2376 if (BitsContainNoUserData(SourceTy, SourceOffset*8+32, 2377 SourceOffset*8+64, getContext())) 2378 return llvm::Type::getFloatTy(getVMContext()); 2379 2380 // We want to pass as <2 x float> if the LLVM IR type contains a float at 2381 // offset+0 and offset+4. Walk the LLVM IR type to find out if this is the 2382 // case. 2383 if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) && 2384 ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout())) 2385 return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2); 2386 2387 return llvm::Type::getDoubleTy(getVMContext()); 2388 } 2389 2390 2391 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in 2392 /// an 8-byte GPR. This means that we either have a scalar or we are talking 2393 /// about the high or low part of an up-to-16-byte struct. This routine picks 2394 /// the best LLVM IR type to represent this, which may be i64 or may be anything 2395 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*, 2396 /// etc). 2397 /// 2398 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for 2399 /// the source type. IROffset is an offset in bytes into the LLVM IR type that 2400 /// the 8-byte value references. PrefType may be null. 2401 /// 2402 /// SourceTy is the source-level type for the entire argument. SourceOffset is 2403 /// an offset into this that we're processing (which is always either 0 or 8). 2404 /// 2405 llvm::Type *X86_64ABIInfo:: 2406 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset, 2407 QualType SourceTy, unsigned SourceOffset) const { 2408 // If we're dealing with an un-offset LLVM IR type, then it means that we're 2409 // returning an 8-byte unit starting with it. See if we can safely use it. 2410 if (IROffset == 0) { 2411 // Pointers and int64's always fill the 8-byte unit. 2412 if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) || 2413 IRType->isIntegerTy(64)) 2414 return IRType; 2415 2416 // If we have a 1/2/4-byte integer, we can use it only if the rest of the 2417 // goodness in the source type is just tail padding. This is allowed to 2418 // kick in for struct {double,int} on the int, but not on 2419 // struct{double,int,int} because we wouldn't return the second int. We 2420 // have to do this analysis on the source type because we can't depend on 2421 // unions being lowered a specific way etc. 2422 if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) || 2423 IRType->isIntegerTy(32) || 2424 (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) { 2425 unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 : 2426 cast<llvm::IntegerType>(IRType)->getBitWidth(); 2427 2428 if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth, 2429 SourceOffset*8+64, getContext())) 2430 return IRType; 2431 } 2432 } 2433 2434 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 2435 // If this is a struct, recurse into the field at the specified offset. 2436 const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy); 2437 if (IROffset < SL->getSizeInBytes()) { 2438 unsigned FieldIdx = SL->getElementContainingOffset(IROffset); 2439 IROffset -= SL->getElementOffset(FieldIdx); 2440 2441 return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset, 2442 SourceTy, SourceOffset); 2443 } 2444 } 2445 2446 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 2447 llvm::Type *EltTy = ATy->getElementType(); 2448 unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy); 2449 unsigned EltOffset = IROffset/EltSize*EltSize; 2450 return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy, 2451 SourceOffset); 2452 } 2453 2454 // Okay, we don't have any better idea of what to pass, so we pass this in an 2455 // integer register that isn't too big to fit the rest of the struct. 2456 unsigned TySizeInBytes = 2457 (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity(); 2458 2459 assert(TySizeInBytes != SourceOffset && "Empty field?"); 2460 2461 // It is always safe to classify this as an integer type up to i64 that 2462 // isn't larger than the structure. 2463 return llvm::IntegerType::get(getVMContext(), 2464 std::min(TySizeInBytes-SourceOffset, 8U)*8); 2465 } 2466 2467 2468 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally 2469 /// be used as elements of a two register pair to pass or return, return a 2470 /// first class aggregate to represent them. For example, if the low part of 2471 /// a by-value argument should be passed as i32* and the high part as float, 2472 /// return {i32*, float}. 2473 static llvm::Type * 2474 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi, 2475 const llvm::DataLayout &TD) { 2476 // In order to correctly satisfy the ABI, we need to the high part to start 2477 // at offset 8. If the high and low parts we inferred are both 4-byte types 2478 // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have 2479 // the second element at offset 8. Check for this: 2480 unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo); 2481 unsigned HiAlign = TD.getABITypeAlignment(Hi); 2482 unsigned HiStart = llvm::RoundUpToAlignment(LoSize, HiAlign); 2483 assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!"); 2484 2485 // To handle this, we have to increase the size of the low part so that the 2486 // second element will start at an 8 byte offset. We can't increase the size 2487 // of the second element because it might make us access off the end of the 2488 // struct. 2489 if (HiStart != 8) { 2490 // There are usually two sorts of types the ABI generation code can produce 2491 // for the low part of a pair that aren't 8 bytes in size: float or 2492 // i8/i16/i32. This can also include pointers when they are 32-bit (X32 and 2493 // NaCl). 2494 // Promote these to a larger type. 2495 if (Lo->isFloatTy()) 2496 Lo = llvm::Type::getDoubleTy(Lo->getContext()); 2497 else { 2498 assert((Lo->isIntegerTy() || Lo->isPointerTy()) 2499 && "Invalid/unknown lo type"); 2500 Lo = llvm::Type::getInt64Ty(Lo->getContext()); 2501 } 2502 } 2503 2504 llvm::StructType *Result = llvm::StructType::get(Lo, Hi, nullptr); 2505 2506 2507 // Verify that the second element is at an 8-byte offset. 2508 assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 && 2509 "Invalid x86-64 argument pair!"); 2510 return Result; 2511 } 2512 2513 ABIArgInfo X86_64ABIInfo:: 2514 classifyReturnType(QualType RetTy) const { 2515 // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the 2516 // classification algorithm. 2517 X86_64ABIInfo::Class Lo, Hi; 2518 classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true); 2519 2520 // Check some invariants. 2521 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 2522 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 2523 2524 llvm::Type *ResType = nullptr; 2525 switch (Lo) { 2526 case NoClass: 2527 if (Hi == NoClass) 2528 return ABIArgInfo::getIgnore(); 2529 // If the low part is just padding, it takes no register, leave ResType 2530 // null. 2531 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 2532 "Unknown missing lo part"); 2533 break; 2534 2535 case SSEUp: 2536 case X87Up: 2537 llvm_unreachable("Invalid classification for lo word."); 2538 2539 // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via 2540 // hidden argument. 2541 case Memory: 2542 return getIndirectReturnResult(RetTy); 2543 2544 // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next 2545 // available register of the sequence %rax, %rdx is used. 2546 case Integer: 2547 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 2548 2549 // If we have a sign or zero extended integer, make sure to return Extend 2550 // so that the parameter gets the right LLVM IR attributes. 2551 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 2552 // Treat an enum type as its underlying type. 2553 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 2554 RetTy = EnumTy->getDecl()->getIntegerType(); 2555 2556 if (RetTy->isIntegralOrEnumerationType() && 2557 RetTy->isPromotableIntegerType()) 2558 return ABIArgInfo::getExtend(); 2559 } 2560 break; 2561 2562 // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next 2563 // available SSE register of the sequence %xmm0, %xmm1 is used. 2564 case SSE: 2565 ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 2566 break; 2567 2568 // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is 2569 // returned on the X87 stack in %st0 as 80-bit x87 number. 2570 case X87: 2571 ResType = llvm::Type::getX86_FP80Ty(getVMContext()); 2572 break; 2573 2574 // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real 2575 // part of the value is returned in %st0 and the imaginary part in 2576 // %st1. 2577 case ComplexX87: 2578 assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification."); 2579 ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()), 2580 llvm::Type::getX86_FP80Ty(getVMContext()), 2581 nullptr); 2582 break; 2583 } 2584 2585 llvm::Type *HighPart = nullptr; 2586 switch (Hi) { 2587 // Memory was handled previously and X87 should 2588 // never occur as a hi class. 2589 case Memory: 2590 case X87: 2591 llvm_unreachable("Invalid classification for hi word."); 2592 2593 case ComplexX87: // Previously handled. 2594 case NoClass: 2595 break; 2596 2597 case Integer: 2598 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 2599 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 2600 return ABIArgInfo::getDirect(HighPart, 8); 2601 break; 2602 case SSE: 2603 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 2604 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 2605 return ABIArgInfo::getDirect(HighPart, 8); 2606 break; 2607 2608 // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte 2609 // is passed in the next available eightbyte chunk if the last used 2610 // vector register. 2611 // 2612 // SSEUP should always be preceded by SSE, just widen. 2613 case SSEUp: 2614 assert(Lo == SSE && "Unexpected SSEUp classification."); 2615 ResType = GetByteVectorType(RetTy); 2616 break; 2617 2618 // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is 2619 // returned together with the previous X87 value in %st0. 2620 case X87Up: 2621 // If X87Up is preceded by X87, we don't need to do 2622 // anything. However, in some cases with unions it may not be 2623 // preceded by X87. In such situations we follow gcc and pass the 2624 // extra bits in an SSE reg. 2625 if (Lo != X87) { 2626 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 2627 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 2628 return ABIArgInfo::getDirect(HighPart, 8); 2629 } 2630 break; 2631 } 2632 2633 // If a high part was specified, merge it together with the low part. It is 2634 // known to pass in the high eightbyte of the result. We do this by forming a 2635 // first class struct aggregate with the high and low part: {low, high} 2636 if (HighPart) 2637 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 2638 2639 return ABIArgInfo::getDirect(ResType); 2640 } 2641 2642 ABIArgInfo X86_64ABIInfo::classifyArgumentType( 2643 QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE, 2644 bool isNamedArg) 2645 const 2646 { 2647 Ty = useFirstFieldIfTransparentUnion(Ty); 2648 2649 X86_64ABIInfo::Class Lo, Hi; 2650 classify(Ty, 0, Lo, Hi, isNamedArg); 2651 2652 // Check some invariants. 2653 // FIXME: Enforce these by construction. 2654 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 2655 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 2656 2657 neededInt = 0; 2658 neededSSE = 0; 2659 llvm::Type *ResType = nullptr; 2660 switch (Lo) { 2661 case NoClass: 2662 if (Hi == NoClass) 2663 return ABIArgInfo::getIgnore(); 2664 // If the low part is just padding, it takes no register, leave ResType 2665 // null. 2666 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 2667 "Unknown missing lo part"); 2668 break; 2669 2670 // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument 2671 // on the stack. 2672 case Memory: 2673 2674 // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or 2675 // COMPLEX_X87, it is passed in memory. 2676 case X87: 2677 case ComplexX87: 2678 if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect) 2679 ++neededInt; 2680 return getIndirectResult(Ty, freeIntRegs); 2681 2682 case SSEUp: 2683 case X87Up: 2684 llvm_unreachable("Invalid classification for lo word."); 2685 2686 // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next 2687 // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8 2688 // and %r9 is used. 2689 case Integer: 2690 ++neededInt; 2691 2692 // Pick an 8-byte type based on the preferred type. 2693 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0); 2694 2695 // If we have a sign or zero extended integer, make sure to return Extend 2696 // so that the parameter gets the right LLVM IR attributes. 2697 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 2698 // Treat an enum type as its underlying type. 2699 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2700 Ty = EnumTy->getDecl()->getIntegerType(); 2701 2702 if (Ty->isIntegralOrEnumerationType() && 2703 Ty->isPromotableIntegerType()) 2704 return ABIArgInfo::getExtend(); 2705 } 2706 2707 break; 2708 2709 // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next 2710 // available SSE register is used, the registers are taken in the 2711 // order from %xmm0 to %xmm7. 2712 case SSE: { 2713 llvm::Type *IRType = CGT.ConvertType(Ty); 2714 ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0); 2715 ++neededSSE; 2716 break; 2717 } 2718 } 2719 2720 llvm::Type *HighPart = nullptr; 2721 switch (Hi) { 2722 // Memory was handled previously, ComplexX87 and X87 should 2723 // never occur as hi classes, and X87Up must be preceded by X87, 2724 // which is passed in memory. 2725 case Memory: 2726 case X87: 2727 case ComplexX87: 2728 llvm_unreachable("Invalid classification for hi word."); 2729 2730 case NoClass: break; 2731 2732 case Integer: 2733 ++neededInt; 2734 // Pick an 8-byte type based on the preferred type. 2735 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 2736 2737 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 2738 return ABIArgInfo::getDirect(HighPart, 8); 2739 break; 2740 2741 // X87Up generally doesn't occur here (long double is passed in 2742 // memory), except in situations involving unions. 2743 case X87Up: 2744 case SSE: 2745 HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 2746 2747 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 2748 return ABIArgInfo::getDirect(HighPart, 8); 2749 2750 ++neededSSE; 2751 break; 2752 2753 // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the 2754 // eightbyte is passed in the upper half of the last used SSE 2755 // register. This only happens when 128-bit vectors are passed. 2756 case SSEUp: 2757 assert(Lo == SSE && "Unexpected SSEUp classification"); 2758 ResType = GetByteVectorType(Ty); 2759 break; 2760 } 2761 2762 // If a high part was specified, merge it together with the low part. It is 2763 // known to pass in the high eightbyte of the result. We do this by forming a 2764 // first class struct aggregate with the high and low part: {low, high} 2765 if (HighPart) 2766 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 2767 2768 return ABIArgInfo::getDirect(ResType); 2769 } 2770 2771 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 2772 2773 if (!getCXXABI().classifyReturnType(FI)) 2774 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 2775 2776 // Keep track of the number of assigned registers. 2777 unsigned freeIntRegs = 6, freeSSERegs = 8; 2778 2779 // If the return value is indirect, then the hidden argument is consuming one 2780 // integer register. 2781 if (FI.getReturnInfo().isIndirect()) 2782 --freeIntRegs; 2783 2784 // The chain argument effectively gives us another free register. 2785 if (FI.isChainCall()) 2786 ++freeIntRegs; 2787 2788 unsigned NumRequiredArgs = FI.getNumRequiredArgs(); 2789 // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers 2790 // get assigned (in left-to-right order) for passing as follows... 2791 unsigned ArgNo = 0; 2792 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 2793 it != ie; ++it, ++ArgNo) { 2794 bool IsNamedArg = ArgNo < NumRequiredArgs; 2795 2796 unsigned neededInt, neededSSE; 2797 it->info = classifyArgumentType(it->type, freeIntRegs, neededInt, 2798 neededSSE, IsNamedArg); 2799 2800 // AMD64-ABI 3.2.3p3: If there are no registers available for any 2801 // eightbyte of an argument, the whole argument is passed on the 2802 // stack. If registers have already been assigned for some 2803 // eightbytes of such an argument, the assignments get reverted. 2804 if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) { 2805 freeIntRegs -= neededInt; 2806 freeSSERegs -= neededSSE; 2807 } else { 2808 it->info = getIndirectResult(it->type, freeIntRegs); 2809 } 2810 } 2811 } 2812 2813 static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr, 2814 QualType Ty, 2815 CodeGenFunction &CGF) { 2816 llvm::Value *overflow_arg_area_p = CGF.Builder.CreateStructGEP( 2817 nullptr, VAListAddr, 2, "overflow_arg_area_p"); 2818 llvm::Value *overflow_arg_area = 2819 CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area"); 2820 2821 // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16 2822 // byte boundary if alignment needed by type exceeds 8 byte boundary. 2823 // It isn't stated explicitly in the standard, but in practice we use 2824 // alignment greater than 16 where necessary. 2825 uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8; 2826 if (Align > 8) { 2827 // overflow_arg_area = (overflow_arg_area + align - 1) & -align; 2828 llvm::Value *Offset = 2829 llvm::ConstantInt::get(CGF.Int64Ty, Align - 1); 2830 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset); 2831 llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area, 2832 CGF.Int64Ty); 2833 llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, -(uint64_t)Align); 2834 overflow_arg_area = 2835 CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask), 2836 overflow_arg_area->getType(), 2837 "overflow_arg_area.align"); 2838 } 2839 2840 // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area. 2841 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 2842 llvm::Value *Res = 2843 CGF.Builder.CreateBitCast(overflow_arg_area, 2844 llvm::PointerType::getUnqual(LTy)); 2845 2846 // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to: 2847 // l->overflow_arg_area + sizeof(type). 2848 // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to 2849 // an 8 byte boundary. 2850 2851 uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8; 2852 llvm::Value *Offset = 2853 llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7); 2854 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset, 2855 "overflow_arg_area.next"); 2856 CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p); 2857 2858 // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type. 2859 return Res; 2860 } 2861 2862 llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 2863 CodeGenFunction &CGF) const { 2864 // Assume that va_list type is correct; should be pointer to LLVM type: 2865 // struct { 2866 // i32 gp_offset; 2867 // i32 fp_offset; 2868 // i8* overflow_arg_area; 2869 // i8* reg_save_area; 2870 // }; 2871 unsigned neededInt, neededSSE; 2872 2873 Ty = CGF.getContext().getCanonicalType(Ty); 2874 ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE, 2875 /*isNamedArg*/false); 2876 2877 // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed 2878 // in the registers. If not go to step 7. 2879 if (!neededInt && !neededSSE) 2880 return EmitVAArgFromMemory(VAListAddr, Ty, CGF); 2881 2882 // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of 2883 // general purpose registers needed to pass type and num_fp to hold 2884 // the number of floating point registers needed. 2885 2886 // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into 2887 // registers. In the case: l->gp_offset > 48 - num_gp * 8 or 2888 // l->fp_offset > 304 - num_fp * 16 go to step 7. 2889 // 2890 // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of 2891 // register save space). 2892 2893 llvm::Value *InRegs = nullptr; 2894 llvm::Value *gp_offset_p = nullptr, *gp_offset = nullptr; 2895 llvm::Value *fp_offset_p = nullptr, *fp_offset = nullptr; 2896 if (neededInt) { 2897 gp_offset_p = 2898 CGF.Builder.CreateStructGEP(nullptr, VAListAddr, 0, "gp_offset_p"); 2899 gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset"); 2900 InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8); 2901 InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp"); 2902 } 2903 2904 if (neededSSE) { 2905 fp_offset_p = 2906 CGF.Builder.CreateStructGEP(nullptr, VAListAddr, 1, "fp_offset_p"); 2907 fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset"); 2908 llvm::Value *FitsInFP = 2909 llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16); 2910 FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp"); 2911 InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP; 2912 } 2913 2914 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 2915 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 2916 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 2917 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 2918 2919 // Emit code to load the value if it was passed in registers. 2920 2921 CGF.EmitBlock(InRegBlock); 2922 2923 // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with 2924 // an offset of l->gp_offset and/or l->fp_offset. This may require 2925 // copying to a temporary location in case the parameter is passed 2926 // in different register classes or requires an alignment greater 2927 // than 8 for general purpose registers and 16 for XMM registers. 2928 // 2929 // FIXME: This really results in shameful code when we end up needing to 2930 // collect arguments from different places; often what should result in a 2931 // simple assembling of a structure from scattered addresses has many more 2932 // loads than necessary. Can we clean this up? 2933 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 2934 llvm::Value *RegAddr = CGF.Builder.CreateLoad( 2935 CGF.Builder.CreateStructGEP(nullptr, VAListAddr, 3), "reg_save_area"); 2936 if (neededInt && neededSSE) { 2937 // FIXME: Cleanup. 2938 assert(AI.isDirect() && "Unexpected ABI info for mixed regs"); 2939 llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType()); 2940 llvm::Value *Tmp = CGF.CreateMemTemp(Ty); 2941 Tmp = CGF.Builder.CreateBitCast(Tmp, ST->getPointerTo()); 2942 assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs"); 2943 llvm::Type *TyLo = ST->getElementType(0); 2944 llvm::Type *TyHi = ST->getElementType(1); 2945 assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) && 2946 "Unexpected ABI info for mixed regs"); 2947 llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo); 2948 llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi); 2949 llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset); 2950 llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset); 2951 llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr; 2952 llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr; 2953 llvm::Value *V = 2954 CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo)); 2955 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(ST, Tmp, 0)); 2956 V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi)); 2957 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(ST, Tmp, 1)); 2958 2959 RegAddr = CGF.Builder.CreateBitCast(Tmp, 2960 llvm::PointerType::getUnqual(LTy)); 2961 } else if (neededInt) { 2962 RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset); 2963 RegAddr = CGF.Builder.CreateBitCast(RegAddr, 2964 llvm::PointerType::getUnqual(LTy)); 2965 2966 // Copy to a temporary if necessary to ensure the appropriate alignment. 2967 std::pair<CharUnits, CharUnits> SizeAlign = 2968 CGF.getContext().getTypeInfoInChars(Ty); 2969 uint64_t TySize = SizeAlign.first.getQuantity(); 2970 unsigned TyAlign = SizeAlign.second.getQuantity(); 2971 if (TyAlign > 8) { 2972 llvm::Value *Tmp = CGF.CreateMemTemp(Ty); 2973 CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, 8, false); 2974 RegAddr = Tmp; 2975 } 2976 } else if (neededSSE == 1) { 2977 RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset); 2978 RegAddr = CGF.Builder.CreateBitCast(RegAddr, 2979 llvm::PointerType::getUnqual(LTy)); 2980 } else { 2981 assert(neededSSE == 2 && "Invalid number of needed registers!"); 2982 // SSE registers are spaced 16 bytes apart in the register save 2983 // area, we need to collect the two eightbytes together. 2984 llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset); 2985 llvm::Value *RegAddrHi = CGF.Builder.CreateConstGEP1_32(RegAddrLo, 16); 2986 llvm::Type *DoubleTy = CGF.DoubleTy; 2987 llvm::Type *DblPtrTy = 2988 llvm::PointerType::getUnqual(DoubleTy); 2989 llvm::StructType *ST = llvm::StructType::get(DoubleTy, DoubleTy, nullptr); 2990 llvm::Value *V, *Tmp = CGF.CreateMemTemp(Ty); 2991 Tmp = CGF.Builder.CreateBitCast(Tmp, ST->getPointerTo()); 2992 V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo, 2993 DblPtrTy)); 2994 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(ST, Tmp, 0)); 2995 V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi, 2996 DblPtrTy)); 2997 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(ST, Tmp, 1)); 2998 RegAddr = CGF.Builder.CreateBitCast(Tmp, 2999 llvm::PointerType::getUnqual(LTy)); 3000 } 3001 3002 // AMD64-ABI 3.5.7p5: Step 5. Set: 3003 // l->gp_offset = l->gp_offset + num_gp * 8 3004 // l->fp_offset = l->fp_offset + num_fp * 16. 3005 if (neededInt) { 3006 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8); 3007 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset), 3008 gp_offset_p); 3009 } 3010 if (neededSSE) { 3011 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16); 3012 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset), 3013 fp_offset_p); 3014 } 3015 CGF.EmitBranch(ContBlock); 3016 3017 // Emit code to load the value if it was passed in memory. 3018 3019 CGF.EmitBlock(InMemBlock); 3020 llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF); 3021 3022 // Return the appropriate result. 3023 3024 CGF.EmitBlock(ContBlock); 3025 llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(), 2, 3026 "vaarg.addr"); 3027 ResAddr->addIncoming(RegAddr, InRegBlock); 3028 ResAddr->addIncoming(MemAddr, InMemBlock); 3029 return ResAddr; 3030 } 3031 3032 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs, 3033 bool IsReturnType) const { 3034 3035 if (Ty->isVoidType()) 3036 return ABIArgInfo::getIgnore(); 3037 3038 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3039 Ty = EnumTy->getDecl()->getIntegerType(); 3040 3041 TypeInfo Info = getContext().getTypeInfo(Ty); 3042 uint64_t Width = Info.Width; 3043 unsigned Align = getContext().toCharUnitsFromBits(Info.Align).getQuantity(); 3044 3045 const RecordType *RT = Ty->getAs<RecordType>(); 3046 if (RT) { 3047 if (!IsReturnType) { 3048 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI())) 3049 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 3050 } 3051 3052 if (RT->getDecl()->hasFlexibleArrayMember()) 3053 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 3054 3055 // FIXME: mingw-w64-gcc emits 128-bit struct as i128 3056 if (Width == 128 && getTarget().getTriple().isWindowsGNUEnvironment()) 3057 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 3058 Width)); 3059 } 3060 3061 // vectorcall adds the concept of a homogenous vector aggregate, similar to 3062 // other targets. 3063 const Type *Base = nullptr; 3064 uint64_t NumElts = 0; 3065 if (FreeSSERegs && isHomogeneousAggregate(Ty, Base, NumElts)) { 3066 if (FreeSSERegs >= NumElts) { 3067 FreeSSERegs -= NumElts; 3068 if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType()) 3069 return ABIArgInfo::getDirect(); 3070 return ABIArgInfo::getExpand(); 3071 } 3072 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3073 } 3074 3075 3076 if (Ty->isMemberPointerType()) { 3077 // If the member pointer is represented by an LLVM int or ptr, pass it 3078 // directly. 3079 llvm::Type *LLTy = CGT.ConvertType(Ty); 3080 if (LLTy->isPointerTy() || LLTy->isIntegerTy()) 3081 return ABIArgInfo::getDirect(); 3082 } 3083 3084 if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) { 3085 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 3086 // not 1, 2, 4, or 8 bytes, must be passed by reference." 3087 if (Width > 64 || !llvm::isPowerOf2_64(Width)) 3088 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 3089 3090 // Otherwise, coerce it to a small integer. 3091 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width)); 3092 } 3093 3094 // Bool type is always extended to the ABI, other builtin types are not 3095 // extended. 3096 const BuiltinType *BT = Ty->getAs<BuiltinType>(); 3097 if (BT && BT->getKind() == BuiltinType::Bool) 3098 return ABIArgInfo::getExtend(); 3099 3100 return ABIArgInfo::getDirect(); 3101 } 3102 3103 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 3104 bool IsVectorCall = 3105 FI.getCallingConvention() == llvm::CallingConv::X86_VectorCall; 3106 3107 // We can use up to 4 SSE return registers with vectorcall. 3108 unsigned FreeSSERegs = IsVectorCall ? 4 : 0; 3109 if (!getCXXABI().classifyReturnType(FI)) 3110 FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true); 3111 3112 // We can use up to 6 SSE register parameters with vectorcall. 3113 FreeSSERegs = IsVectorCall ? 6 : 0; 3114 for (auto &I : FI.arguments()) 3115 I.info = classify(I.type, FreeSSERegs, false); 3116 } 3117 3118 llvm::Value *WinX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 3119 CodeGenFunction &CGF) const { 3120 llvm::Type *BPP = CGF.Int8PtrPtrTy; 3121 3122 CGBuilderTy &Builder = CGF.Builder; 3123 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, 3124 "ap"); 3125 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 3126 llvm::Type *PTy = 3127 llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 3128 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); 3129 3130 uint64_t Offset = 3131 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 8); 3132 llvm::Value *NextAddr = 3133 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), 3134 "ap.next"); 3135 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 3136 3137 return AddrTyped; 3138 } 3139 3140 // PowerPC-32 3141 namespace { 3142 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information. 3143 class PPC32_SVR4_ABIInfo : public DefaultABIInfo { 3144 public: 3145 PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 3146 3147 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 3148 CodeGenFunction &CGF) const override; 3149 }; 3150 3151 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo { 3152 public: 3153 PPC32TargetCodeGenInfo(CodeGenTypes &CGT) 3154 : TargetCodeGenInfo(new PPC32_SVR4_ABIInfo(CGT)) {} 3155 3156 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 3157 // This is recovered from gcc output. 3158 return 1; // r1 is the dedicated stack pointer 3159 } 3160 3161 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 3162 llvm::Value *Address) const override; 3163 }; 3164 3165 } 3166 3167 llvm::Value *PPC32_SVR4_ABIInfo::EmitVAArg(llvm::Value *VAListAddr, 3168 QualType Ty, 3169 CodeGenFunction &CGF) const { 3170 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 3171 // TODO: Implement this. For now ignore. 3172 (void)CTy; 3173 return nullptr; 3174 } 3175 3176 bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64; 3177 bool isInt = 3178 Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType(); 3179 llvm::Type *CharPtr = CGF.Int8PtrTy; 3180 llvm::Type *CharPtrPtr = CGF.Int8PtrPtrTy; 3181 3182 CGBuilderTy &Builder = CGF.Builder; 3183 llvm::Value *GPRPtr = Builder.CreateBitCast(VAListAddr, CharPtr, "gprptr"); 3184 llvm::Value *GPRPtrAsInt = Builder.CreatePtrToInt(GPRPtr, CGF.Int32Ty); 3185 llvm::Value *FPRPtrAsInt = 3186 Builder.CreateAdd(GPRPtrAsInt, Builder.getInt32(1)); 3187 llvm::Value *FPRPtr = Builder.CreateIntToPtr(FPRPtrAsInt, CharPtr); 3188 llvm::Value *OverflowAreaPtrAsInt = 3189 Builder.CreateAdd(FPRPtrAsInt, Builder.getInt32(3)); 3190 llvm::Value *OverflowAreaPtr = 3191 Builder.CreateIntToPtr(OverflowAreaPtrAsInt, CharPtrPtr); 3192 llvm::Value *RegsaveAreaPtrAsInt = 3193 Builder.CreateAdd(OverflowAreaPtrAsInt, Builder.getInt32(4)); 3194 llvm::Value *RegsaveAreaPtr = 3195 Builder.CreateIntToPtr(RegsaveAreaPtrAsInt, CharPtrPtr); 3196 llvm::Value *GPR = Builder.CreateLoad(GPRPtr, false, "gpr"); 3197 // Align GPR when TY is i64. 3198 if (isI64) { 3199 llvm::Value *GPRAnd = Builder.CreateAnd(GPR, Builder.getInt8(1)); 3200 llvm::Value *CC64 = Builder.CreateICmpEQ(GPRAnd, Builder.getInt8(1)); 3201 llvm::Value *GPRPlusOne = Builder.CreateAdd(GPR, Builder.getInt8(1)); 3202 GPR = Builder.CreateSelect(CC64, GPRPlusOne, GPR); 3203 } 3204 llvm::Value *FPR = Builder.CreateLoad(FPRPtr, false, "fpr"); 3205 llvm::Value *OverflowArea = 3206 Builder.CreateLoad(OverflowAreaPtr, false, "overflow_area"); 3207 llvm::Value *OverflowAreaAsInt = 3208 Builder.CreatePtrToInt(OverflowArea, CGF.Int32Ty); 3209 llvm::Value *RegsaveArea = 3210 Builder.CreateLoad(RegsaveAreaPtr, false, "regsave_area"); 3211 llvm::Value *RegsaveAreaAsInt = 3212 Builder.CreatePtrToInt(RegsaveArea, CGF.Int32Ty); 3213 3214 llvm::Value *CC = 3215 Builder.CreateICmpULT(isInt ? GPR : FPR, Builder.getInt8(8), "cond"); 3216 3217 llvm::Value *RegConstant = 3218 Builder.CreateMul(isInt ? GPR : FPR, Builder.getInt8(isInt ? 4 : 8)); 3219 3220 llvm::Value *OurReg = Builder.CreateAdd( 3221 RegsaveAreaAsInt, Builder.CreateSExt(RegConstant, CGF.Int32Ty)); 3222 3223 if (Ty->isFloatingType()) 3224 OurReg = Builder.CreateAdd(OurReg, Builder.getInt32(32)); 3225 3226 llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs"); 3227 llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow"); 3228 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 3229 3230 Builder.CreateCondBr(CC, UsingRegs, UsingOverflow); 3231 3232 CGF.EmitBlock(UsingRegs); 3233 3234 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 3235 llvm::Value *Result1 = Builder.CreateIntToPtr(OurReg, PTy); 3236 // Increase the GPR/FPR indexes. 3237 if (isInt) { 3238 GPR = Builder.CreateAdd(GPR, Builder.getInt8(isI64 ? 2 : 1)); 3239 Builder.CreateStore(GPR, GPRPtr); 3240 } else { 3241 FPR = Builder.CreateAdd(FPR, Builder.getInt8(1)); 3242 Builder.CreateStore(FPR, FPRPtr); 3243 } 3244 CGF.EmitBranch(Cont); 3245 3246 CGF.EmitBlock(UsingOverflow); 3247 3248 // Increase the overflow area. 3249 llvm::Value *Result2 = Builder.CreateIntToPtr(OverflowAreaAsInt, PTy); 3250 OverflowAreaAsInt = 3251 Builder.CreateAdd(OverflowAreaAsInt, Builder.getInt32(isInt ? 4 : 8)); 3252 Builder.CreateStore(Builder.CreateIntToPtr(OverflowAreaAsInt, CharPtr), 3253 OverflowAreaPtr); 3254 CGF.EmitBranch(Cont); 3255 3256 CGF.EmitBlock(Cont); 3257 3258 llvm::PHINode *Result = CGF.Builder.CreatePHI(PTy, 2, "vaarg.addr"); 3259 Result->addIncoming(Result1, UsingRegs); 3260 Result->addIncoming(Result2, UsingOverflow); 3261 3262 if (Ty->isAggregateType()) { 3263 llvm::Value *AGGPtr = Builder.CreateBitCast(Result, CharPtrPtr, "aggrptr"); 3264 return Builder.CreateLoad(AGGPtr, false, "aggr"); 3265 } 3266 3267 return Result; 3268 } 3269 3270 bool 3271 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 3272 llvm::Value *Address) const { 3273 // This is calculated from the LLVM and GCC tables and verified 3274 // against gcc output. AFAIK all ABIs use the same encoding. 3275 3276 CodeGen::CGBuilderTy &Builder = CGF.Builder; 3277 3278 llvm::IntegerType *i8 = CGF.Int8Ty; 3279 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 3280 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 3281 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 3282 3283 // 0-31: r0-31, the 4-byte general-purpose registers 3284 AssignToArrayRange(Builder, Address, Four8, 0, 31); 3285 3286 // 32-63: fp0-31, the 8-byte floating-point registers 3287 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 3288 3289 // 64-76 are various 4-byte special-purpose registers: 3290 // 64: mq 3291 // 65: lr 3292 // 66: ctr 3293 // 67: ap 3294 // 68-75 cr0-7 3295 // 76: xer 3296 AssignToArrayRange(Builder, Address, Four8, 64, 76); 3297 3298 // 77-108: v0-31, the 16-byte vector registers 3299 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 3300 3301 // 109: vrsave 3302 // 110: vscr 3303 // 111: spe_acc 3304 // 112: spefscr 3305 // 113: sfp 3306 AssignToArrayRange(Builder, Address, Four8, 109, 113); 3307 3308 return false; 3309 } 3310 3311 // PowerPC-64 3312 3313 namespace { 3314 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information. 3315 class PPC64_SVR4_ABIInfo : public DefaultABIInfo { 3316 public: 3317 enum ABIKind { 3318 ELFv1 = 0, 3319 ELFv2 3320 }; 3321 3322 private: 3323 static const unsigned GPRBits = 64; 3324 ABIKind Kind; 3325 bool HasQPX; 3326 3327 // A vector of float or double will be promoted to <4 x f32> or <4 x f64> and 3328 // will be passed in a QPX register. 3329 bool IsQPXVectorTy(const Type *Ty) const { 3330 if (!HasQPX) 3331 return false; 3332 3333 if (const VectorType *VT = Ty->getAs<VectorType>()) { 3334 unsigned NumElements = VT->getNumElements(); 3335 if (NumElements == 1) 3336 return false; 3337 3338 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) { 3339 if (getContext().getTypeSize(Ty) <= 256) 3340 return true; 3341 } else if (VT->getElementType()-> 3342 isSpecificBuiltinType(BuiltinType::Float)) { 3343 if (getContext().getTypeSize(Ty) <= 128) 3344 return true; 3345 } 3346 } 3347 3348 return false; 3349 } 3350 3351 bool IsQPXVectorTy(QualType Ty) const { 3352 return IsQPXVectorTy(Ty.getTypePtr()); 3353 } 3354 3355 public: 3356 PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, bool HasQPX) 3357 : DefaultABIInfo(CGT), Kind(Kind), HasQPX(HasQPX) {} 3358 3359 bool isPromotableTypeForABI(QualType Ty) const; 3360 bool isAlignedParamType(QualType Ty, bool &Align32) const; 3361 3362 ABIArgInfo classifyReturnType(QualType RetTy) const; 3363 ABIArgInfo classifyArgumentType(QualType Ty) const; 3364 3365 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 3366 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 3367 uint64_t Members) const override; 3368 3369 // TODO: We can add more logic to computeInfo to improve performance. 3370 // Example: For aggregate arguments that fit in a register, we could 3371 // use getDirectInReg (as is done below for structs containing a single 3372 // floating-point value) to avoid pushing them to memory on function 3373 // entry. This would require changing the logic in PPCISelLowering 3374 // when lowering the parameters in the caller and args in the callee. 3375 void computeInfo(CGFunctionInfo &FI) const override { 3376 if (!getCXXABI().classifyReturnType(FI)) 3377 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 3378 for (auto &I : FI.arguments()) { 3379 // We rely on the default argument classification for the most part. 3380 // One exception: An aggregate containing a single floating-point 3381 // or vector item must be passed in a register if one is available. 3382 const Type *T = isSingleElementStruct(I.type, getContext()); 3383 if (T) { 3384 const BuiltinType *BT = T->getAs<BuiltinType>(); 3385 if (IsQPXVectorTy(T) || 3386 (T->isVectorType() && getContext().getTypeSize(T) == 128) || 3387 (BT && BT->isFloatingPoint())) { 3388 QualType QT(T, 0); 3389 I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT)); 3390 continue; 3391 } 3392 } 3393 I.info = classifyArgumentType(I.type); 3394 } 3395 } 3396 3397 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 3398 CodeGenFunction &CGF) const override; 3399 }; 3400 3401 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo { 3402 3403 public: 3404 PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT, 3405 PPC64_SVR4_ABIInfo::ABIKind Kind, bool HasQPX) 3406 : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT, Kind, HasQPX)) {} 3407 3408 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 3409 // This is recovered from gcc output. 3410 return 1; // r1 is the dedicated stack pointer 3411 } 3412 3413 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 3414 llvm::Value *Address) const override; 3415 }; 3416 3417 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo { 3418 public: 3419 PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {} 3420 3421 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 3422 // This is recovered from gcc output. 3423 return 1; // r1 is the dedicated stack pointer 3424 } 3425 3426 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 3427 llvm::Value *Address) const override; 3428 }; 3429 3430 } 3431 3432 // Return true if the ABI requires Ty to be passed sign- or zero- 3433 // extended to 64 bits. 3434 bool 3435 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const { 3436 // Treat an enum type as its underlying type. 3437 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3438 Ty = EnumTy->getDecl()->getIntegerType(); 3439 3440 // Promotable integer types are required to be promoted by the ABI. 3441 if (Ty->isPromotableIntegerType()) 3442 return true; 3443 3444 // In addition to the usual promotable integer types, we also need to 3445 // extend all 32-bit types, since the ABI requires promotion to 64 bits. 3446 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 3447 switch (BT->getKind()) { 3448 case BuiltinType::Int: 3449 case BuiltinType::UInt: 3450 return true; 3451 default: 3452 break; 3453 } 3454 3455 return false; 3456 } 3457 3458 /// isAlignedParamType - Determine whether a type requires 16-byte 3459 /// alignment in the parameter area. 3460 bool 3461 PPC64_SVR4_ABIInfo::isAlignedParamType(QualType Ty, bool &Align32) const { 3462 Align32 = false; 3463 3464 // Complex types are passed just like their elements. 3465 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 3466 Ty = CTy->getElementType(); 3467 3468 // Only vector types of size 16 bytes need alignment (larger types are 3469 // passed via reference, smaller types are not aligned). 3470 if (IsQPXVectorTy(Ty)) { 3471 if (getContext().getTypeSize(Ty) > 128) 3472 Align32 = true; 3473 3474 return true; 3475 } else if (Ty->isVectorType()) { 3476 return getContext().getTypeSize(Ty) == 128; 3477 } 3478 3479 // For single-element float/vector structs, we consider the whole type 3480 // to have the same alignment requirements as its single element. 3481 const Type *AlignAsType = nullptr; 3482 const Type *EltType = isSingleElementStruct(Ty, getContext()); 3483 if (EltType) { 3484 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 3485 if (IsQPXVectorTy(EltType) || (EltType->isVectorType() && 3486 getContext().getTypeSize(EltType) == 128) || 3487 (BT && BT->isFloatingPoint())) 3488 AlignAsType = EltType; 3489 } 3490 3491 // Likewise for ELFv2 homogeneous aggregates. 3492 const Type *Base = nullptr; 3493 uint64_t Members = 0; 3494 if (!AlignAsType && Kind == ELFv2 && 3495 isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members)) 3496 AlignAsType = Base; 3497 3498 // With special case aggregates, only vector base types need alignment. 3499 if (AlignAsType && IsQPXVectorTy(AlignAsType)) { 3500 if (getContext().getTypeSize(AlignAsType) > 128) 3501 Align32 = true; 3502 3503 return true; 3504 } else if (AlignAsType) { 3505 return AlignAsType->isVectorType(); 3506 } 3507 3508 // Otherwise, we only need alignment for any aggregate type that 3509 // has an alignment requirement of >= 16 bytes. 3510 if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) { 3511 if (HasQPX && getContext().getTypeAlign(Ty) >= 256) 3512 Align32 = true; 3513 return true; 3514 } 3515 3516 return false; 3517 } 3518 3519 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous 3520 /// aggregate. Base is set to the base element type, and Members is set 3521 /// to the number of base elements. 3522 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base, 3523 uint64_t &Members) const { 3524 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 3525 uint64_t NElements = AT->getSize().getZExtValue(); 3526 if (NElements == 0) 3527 return false; 3528 if (!isHomogeneousAggregate(AT->getElementType(), Base, Members)) 3529 return false; 3530 Members *= NElements; 3531 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 3532 const RecordDecl *RD = RT->getDecl(); 3533 if (RD->hasFlexibleArrayMember()) 3534 return false; 3535 3536 Members = 0; 3537 3538 // If this is a C++ record, check the bases first. 3539 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 3540 for (const auto &I : CXXRD->bases()) { 3541 // Ignore empty records. 3542 if (isEmptyRecord(getContext(), I.getType(), true)) 3543 continue; 3544 3545 uint64_t FldMembers; 3546 if (!isHomogeneousAggregate(I.getType(), Base, FldMembers)) 3547 return false; 3548 3549 Members += FldMembers; 3550 } 3551 } 3552 3553 for (const auto *FD : RD->fields()) { 3554 // Ignore (non-zero arrays of) empty records. 3555 QualType FT = FD->getType(); 3556 while (const ConstantArrayType *AT = 3557 getContext().getAsConstantArrayType(FT)) { 3558 if (AT->getSize().getZExtValue() == 0) 3559 return false; 3560 FT = AT->getElementType(); 3561 } 3562 if (isEmptyRecord(getContext(), FT, true)) 3563 continue; 3564 3565 // For compatibility with GCC, ignore empty bitfields in C++ mode. 3566 if (getContext().getLangOpts().CPlusPlus && 3567 FD->isBitField() && FD->getBitWidthValue(getContext()) == 0) 3568 continue; 3569 3570 uint64_t FldMembers; 3571 if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers)) 3572 return false; 3573 3574 Members = (RD->isUnion() ? 3575 std::max(Members, FldMembers) : Members + FldMembers); 3576 } 3577 3578 if (!Base) 3579 return false; 3580 3581 // Ensure there is no padding. 3582 if (getContext().getTypeSize(Base) * Members != 3583 getContext().getTypeSize(Ty)) 3584 return false; 3585 } else { 3586 Members = 1; 3587 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 3588 Members = 2; 3589 Ty = CT->getElementType(); 3590 } 3591 3592 // Most ABIs only support float, double, and some vector type widths. 3593 if (!isHomogeneousAggregateBaseType(Ty)) 3594 return false; 3595 3596 // The base type must be the same for all members. Types that 3597 // agree in both total size and mode (float vs. vector) are 3598 // treated as being equivalent here. 3599 const Type *TyPtr = Ty.getTypePtr(); 3600 if (!Base) 3601 Base = TyPtr; 3602 3603 if (Base->isVectorType() != TyPtr->isVectorType() || 3604 getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr)) 3605 return false; 3606 } 3607 return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members); 3608 } 3609 3610 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 3611 // Homogeneous aggregates for ELFv2 must have base types of float, 3612 // double, long double, or 128-bit vectors. 3613 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 3614 if (BT->getKind() == BuiltinType::Float || 3615 BT->getKind() == BuiltinType::Double || 3616 BT->getKind() == BuiltinType::LongDouble) 3617 return true; 3618 } 3619 if (const VectorType *VT = Ty->getAs<VectorType>()) { 3620 if (getContext().getTypeSize(VT) == 128 || IsQPXVectorTy(Ty)) 3621 return true; 3622 } 3623 return false; 3624 } 3625 3626 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough( 3627 const Type *Base, uint64_t Members) const { 3628 // Vector types require one register, floating point types require one 3629 // or two registers depending on their size. 3630 uint32_t NumRegs = 3631 Base->isVectorType() ? 1 : (getContext().getTypeSize(Base) + 63) / 64; 3632 3633 // Homogeneous Aggregates may occupy at most 8 registers. 3634 return Members * NumRegs <= 8; 3635 } 3636 3637 ABIArgInfo 3638 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const { 3639 Ty = useFirstFieldIfTransparentUnion(Ty); 3640 3641 if (Ty->isAnyComplexType()) 3642 return ABIArgInfo::getDirect(); 3643 3644 // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes) 3645 // or via reference (larger than 16 bytes). 3646 if (Ty->isVectorType() && !IsQPXVectorTy(Ty)) { 3647 uint64_t Size = getContext().getTypeSize(Ty); 3648 if (Size > 128) 3649 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 3650 else if (Size < 128) { 3651 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 3652 return ABIArgInfo::getDirect(CoerceTy); 3653 } 3654 } 3655 3656 if (isAggregateTypeForABI(Ty)) { 3657 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 3658 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 3659 3660 bool Align32; 3661 uint64_t ABIAlign = isAlignedParamType(Ty, Align32) ? 3662 (Align32 ? 32 : 16) : 8; 3663 uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8; 3664 3665 // ELFv2 homogeneous aggregates are passed as array types. 3666 const Type *Base = nullptr; 3667 uint64_t Members = 0; 3668 if (Kind == ELFv2 && 3669 isHomogeneousAggregate(Ty, Base, Members)) { 3670 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 3671 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 3672 return ABIArgInfo::getDirect(CoerceTy); 3673 } 3674 3675 // If an aggregate may end up fully in registers, we do not 3676 // use the ByVal method, but pass the aggregate as array. 3677 // This is usually beneficial since we avoid forcing the 3678 // back-end to store the argument to memory. 3679 uint64_t Bits = getContext().getTypeSize(Ty); 3680 if (Bits > 0 && Bits <= 8 * GPRBits) { 3681 llvm::Type *CoerceTy; 3682 3683 // Types up to 8 bytes are passed as integer type (which will be 3684 // properly aligned in the argument save area doubleword). 3685 if (Bits <= GPRBits) 3686 CoerceTy = llvm::IntegerType::get(getVMContext(), 3687 llvm::RoundUpToAlignment(Bits, 8)); 3688 // Larger types are passed as arrays, with the base type selected 3689 // according to the required alignment in the save area. 3690 else { 3691 uint64_t RegBits = ABIAlign * 8; 3692 uint64_t NumRegs = llvm::RoundUpToAlignment(Bits, RegBits) / RegBits; 3693 llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits); 3694 CoerceTy = llvm::ArrayType::get(RegTy, NumRegs); 3695 } 3696 3697 return ABIArgInfo::getDirect(CoerceTy); 3698 } 3699 3700 // All other aggregates are passed ByVal. 3701 return ABIArgInfo::getIndirect(ABIAlign, /*ByVal=*/true, 3702 /*Realign=*/TyAlign > ABIAlign); 3703 } 3704 3705 return (isPromotableTypeForABI(Ty) ? 3706 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 3707 } 3708 3709 ABIArgInfo 3710 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { 3711 if (RetTy->isVoidType()) 3712 return ABIArgInfo::getIgnore(); 3713 3714 if (RetTy->isAnyComplexType()) 3715 return ABIArgInfo::getDirect(); 3716 3717 // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes) 3718 // or via reference (larger than 16 bytes). 3719 if (RetTy->isVectorType() && !IsQPXVectorTy(RetTy)) { 3720 uint64_t Size = getContext().getTypeSize(RetTy); 3721 if (Size > 128) 3722 return ABIArgInfo::getIndirect(0); 3723 else if (Size < 128) { 3724 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 3725 return ABIArgInfo::getDirect(CoerceTy); 3726 } 3727 } 3728 3729 if (isAggregateTypeForABI(RetTy)) { 3730 // ELFv2 homogeneous aggregates are returned as array types. 3731 const Type *Base = nullptr; 3732 uint64_t Members = 0; 3733 if (Kind == ELFv2 && 3734 isHomogeneousAggregate(RetTy, Base, Members)) { 3735 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 3736 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 3737 return ABIArgInfo::getDirect(CoerceTy); 3738 } 3739 3740 // ELFv2 small aggregates are returned in up to two registers. 3741 uint64_t Bits = getContext().getTypeSize(RetTy); 3742 if (Kind == ELFv2 && Bits <= 2 * GPRBits) { 3743 if (Bits == 0) 3744 return ABIArgInfo::getIgnore(); 3745 3746 llvm::Type *CoerceTy; 3747 if (Bits > GPRBits) { 3748 CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits); 3749 CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy, nullptr); 3750 } else 3751 CoerceTy = llvm::IntegerType::get(getVMContext(), 3752 llvm::RoundUpToAlignment(Bits, 8)); 3753 return ABIArgInfo::getDirect(CoerceTy); 3754 } 3755 3756 // All other aggregates are returned indirectly. 3757 return ABIArgInfo::getIndirect(0); 3758 } 3759 3760 return (isPromotableTypeForABI(RetTy) ? 3761 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 3762 } 3763 3764 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine. 3765 llvm::Value *PPC64_SVR4_ABIInfo::EmitVAArg(llvm::Value *VAListAddr, 3766 QualType Ty, 3767 CodeGenFunction &CGF) const { 3768 llvm::Type *BP = CGF.Int8PtrTy; 3769 llvm::Type *BPP = CGF.Int8PtrPtrTy; 3770 3771 CGBuilderTy &Builder = CGF.Builder; 3772 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); 3773 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 3774 3775 // Handle types that require 16-byte alignment in the parameter save area. 3776 bool Align32; 3777 if (isAlignedParamType(Ty, Align32)) { 3778 llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty); 3779 AddrAsInt = Builder.CreateAdd(AddrAsInt, 3780 Builder.getInt64(Align32 ? 31 : 15)); 3781 AddrAsInt = Builder.CreateAnd(AddrAsInt, 3782 Builder.getInt64(Align32 ? -32 : -16)); 3783 Addr = Builder.CreateIntToPtr(AddrAsInt, BP, "ap.align"); 3784 } 3785 3786 // Update the va_list pointer. The pointer should be bumped by the 3787 // size of the object. We can trust getTypeSize() except for a complex 3788 // type whose base type is smaller than a doubleword. For these, the 3789 // size of the object is 16 bytes; see below for further explanation. 3790 unsigned SizeInBytes = CGF.getContext().getTypeSize(Ty) / 8; 3791 QualType BaseTy; 3792 unsigned CplxBaseSize = 0; 3793 3794 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 3795 BaseTy = CTy->getElementType(); 3796 CplxBaseSize = CGF.getContext().getTypeSize(BaseTy) / 8; 3797 if (CplxBaseSize < 8) 3798 SizeInBytes = 16; 3799 } 3800 3801 unsigned Offset = llvm::RoundUpToAlignment(SizeInBytes, 8); 3802 llvm::Value *NextAddr = 3803 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int64Ty, Offset), 3804 "ap.next"); 3805 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 3806 3807 // If we have a complex type and the base type is smaller than 8 bytes, 3808 // the ABI calls for the real and imaginary parts to be right-adjusted 3809 // in separate doublewords. However, Clang expects us to produce a 3810 // pointer to a structure with the two parts packed tightly. So generate 3811 // loads of the real and imaginary parts relative to the va_list pointer, 3812 // and store them to a temporary structure. 3813 if (CplxBaseSize && CplxBaseSize < 8) { 3814 llvm::Value *RealAddr = Builder.CreatePtrToInt(Addr, CGF.Int64Ty); 3815 llvm::Value *ImagAddr = RealAddr; 3816 if (CGF.CGM.getDataLayout().isBigEndian()) { 3817 RealAddr = 3818 Builder.CreateAdd(RealAddr, Builder.getInt64(8 - CplxBaseSize)); 3819 ImagAddr = 3820 Builder.CreateAdd(ImagAddr, Builder.getInt64(16 - CplxBaseSize)); 3821 } else { 3822 ImagAddr = Builder.CreateAdd(ImagAddr, Builder.getInt64(8)); 3823 } 3824 llvm::Type *PBaseTy = llvm::PointerType::getUnqual(CGF.ConvertType(BaseTy)); 3825 RealAddr = Builder.CreateIntToPtr(RealAddr, PBaseTy); 3826 ImagAddr = Builder.CreateIntToPtr(ImagAddr, PBaseTy); 3827 llvm::Value *Real = Builder.CreateLoad(RealAddr, false, ".vareal"); 3828 llvm::Value *Imag = Builder.CreateLoad(ImagAddr, false, ".vaimag"); 3829 llvm::AllocaInst *Ptr = 3830 CGF.CreateTempAlloca(CGT.ConvertTypeForMem(Ty), "vacplx"); 3831 llvm::Value *RealPtr = 3832 Builder.CreateStructGEP(Ptr->getAllocatedType(), Ptr, 0, ".real"); 3833 llvm::Value *ImagPtr = 3834 Builder.CreateStructGEP(Ptr->getAllocatedType(), Ptr, 1, ".imag"); 3835 Builder.CreateStore(Real, RealPtr, false); 3836 Builder.CreateStore(Imag, ImagPtr, false); 3837 return Ptr; 3838 } 3839 3840 // If the argument is smaller than 8 bytes, it is right-adjusted in 3841 // its doubleword slot. Adjust the pointer to pick it up from the 3842 // correct offset. 3843 if (SizeInBytes < 8 && CGF.CGM.getDataLayout().isBigEndian()) { 3844 llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty); 3845 AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt64(8 - SizeInBytes)); 3846 Addr = Builder.CreateIntToPtr(AddrAsInt, BP); 3847 } 3848 3849 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 3850 return Builder.CreateBitCast(Addr, PTy); 3851 } 3852 3853 static bool 3854 PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 3855 llvm::Value *Address) { 3856 // This is calculated from the LLVM and GCC tables and verified 3857 // against gcc output. AFAIK all ABIs use the same encoding. 3858 3859 CodeGen::CGBuilderTy &Builder = CGF.Builder; 3860 3861 llvm::IntegerType *i8 = CGF.Int8Ty; 3862 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 3863 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 3864 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 3865 3866 // 0-31: r0-31, the 8-byte general-purpose registers 3867 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 3868 3869 // 32-63: fp0-31, the 8-byte floating-point registers 3870 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 3871 3872 // 64-76 are various 4-byte special-purpose registers: 3873 // 64: mq 3874 // 65: lr 3875 // 66: ctr 3876 // 67: ap 3877 // 68-75 cr0-7 3878 // 76: xer 3879 AssignToArrayRange(Builder, Address, Four8, 64, 76); 3880 3881 // 77-108: v0-31, the 16-byte vector registers 3882 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 3883 3884 // 109: vrsave 3885 // 110: vscr 3886 // 111: spe_acc 3887 // 112: spefscr 3888 // 113: sfp 3889 AssignToArrayRange(Builder, Address, Four8, 109, 113); 3890 3891 return false; 3892 } 3893 3894 bool 3895 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable( 3896 CodeGen::CodeGenFunction &CGF, 3897 llvm::Value *Address) const { 3898 3899 return PPC64_initDwarfEHRegSizeTable(CGF, Address); 3900 } 3901 3902 bool 3903 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 3904 llvm::Value *Address) const { 3905 3906 return PPC64_initDwarfEHRegSizeTable(CGF, Address); 3907 } 3908 3909 //===----------------------------------------------------------------------===// 3910 // AArch64 ABI Implementation 3911 //===----------------------------------------------------------------------===// 3912 3913 namespace { 3914 3915 class AArch64ABIInfo : public ABIInfo { 3916 public: 3917 enum ABIKind { 3918 AAPCS = 0, 3919 DarwinPCS 3920 }; 3921 3922 private: 3923 ABIKind Kind; 3924 3925 public: 3926 AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind) : ABIInfo(CGT), Kind(Kind) {} 3927 3928 private: 3929 ABIKind getABIKind() const { return Kind; } 3930 bool isDarwinPCS() const { return Kind == DarwinPCS; } 3931 3932 ABIArgInfo classifyReturnType(QualType RetTy) const; 3933 ABIArgInfo classifyArgumentType(QualType RetTy) const; 3934 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 3935 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 3936 uint64_t Members) const override; 3937 3938 bool isIllegalVectorType(QualType Ty) const; 3939 3940 void computeInfo(CGFunctionInfo &FI) const override { 3941 if (!getCXXABI().classifyReturnType(FI)) 3942 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 3943 3944 for (auto &it : FI.arguments()) 3945 it.info = classifyArgumentType(it.type); 3946 } 3947 3948 llvm::Value *EmitDarwinVAArg(llvm::Value *VAListAddr, QualType Ty, 3949 CodeGenFunction &CGF) const; 3950 3951 llvm::Value *EmitAAPCSVAArg(llvm::Value *VAListAddr, QualType Ty, 3952 CodeGenFunction &CGF) const; 3953 3954 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 3955 CodeGenFunction &CGF) const override { 3956 return isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF) 3957 : EmitAAPCSVAArg(VAListAddr, Ty, CGF); 3958 } 3959 }; 3960 3961 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo { 3962 public: 3963 AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind) 3964 : TargetCodeGenInfo(new AArch64ABIInfo(CGT, Kind)) {} 3965 3966 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 3967 return "mov\tfp, fp\t\t; marker for objc_retainAutoreleaseReturnValue"; 3968 } 3969 3970 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 3971 return 31; 3972 } 3973 3974 bool doesReturnSlotInterfereWithArgs() const override { return false; } 3975 }; 3976 } 3977 3978 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const { 3979 Ty = useFirstFieldIfTransparentUnion(Ty); 3980 3981 // Handle illegal vector types here. 3982 if (isIllegalVectorType(Ty)) { 3983 uint64_t Size = getContext().getTypeSize(Ty); 3984 if (Size <= 32) { 3985 llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext()); 3986 return ABIArgInfo::getDirect(ResType); 3987 } 3988 if (Size == 64) { 3989 llvm::Type *ResType = 3990 llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2); 3991 return ABIArgInfo::getDirect(ResType); 3992 } 3993 if (Size == 128) { 3994 llvm::Type *ResType = 3995 llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4); 3996 return ABIArgInfo::getDirect(ResType); 3997 } 3998 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 3999 } 4000 4001 if (!isAggregateTypeForABI(Ty)) { 4002 // Treat an enum type as its underlying type. 4003 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4004 Ty = EnumTy->getDecl()->getIntegerType(); 4005 4006 return (Ty->isPromotableIntegerType() && isDarwinPCS() 4007 ? ABIArgInfo::getExtend() 4008 : ABIArgInfo::getDirect()); 4009 } 4010 4011 // Structures with either a non-trivial destructor or a non-trivial 4012 // copy constructor are always indirect. 4013 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 4014 return ABIArgInfo::getIndirect(0, /*ByVal=*/RAA == 4015 CGCXXABI::RAA_DirectInMemory); 4016 } 4017 4018 // Empty records are always ignored on Darwin, but actually passed in C++ mode 4019 // elsewhere for GNU compatibility. 4020 if (isEmptyRecord(getContext(), Ty, true)) { 4021 if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS()) 4022 return ABIArgInfo::getIgnore(); 4023 4024 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 4025 } 4026 4027 // Homogeneous Floating-point Aggregates (HFAs) need to be expanded. 4028 const Type *Base = nullptr; 4029 uint64_t Members = 0; 4030 if (isHomogeneousAggregate(Ty, Base, Members)) { 4031 return ABIArgInfo::getDirect( 4032 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members)); 4033 } 4034 4035 // Aggregates <= 16 bytes are passed directly in registers or on the stack. 4036 uint64_t Size = getContext().getTypeSize(Ty); 4037 if (Size <= 128) { 4038 unsigned Alignment = getContext().getTypeAlign(Ty); 4039 Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes 4040 4041 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 4042 // For aggregates with 16-byte alignment, we use i128. 4043 if (Alignment < 128 && Size == 128) { 4044 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); 4045 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 4046 } 4047 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 4048 } 4049 4050 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 4051 } 4052 4053 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy) const { 4054 if (RetTy->isVoidType()) 4055 return ABIArgInfo::getIgnore(); 4056 4057 // Large vector types should be returned via memory. 4058 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) 4059 return ABIArgInfo::getIndirect(0); 4060 4061 if (!isAggregateTypeForABI(RetTy)) { 4062 // Treat an enum type as its underlying type. 4063 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 4064 RetTy = EnumTy->getDecl()->getIntegerType(); 4065 4066 return (RetTy->isPromotableIntegerType() && isDarwinPCS() 4067 ? ABIArgInfo::getExtend() 4068 : ABIArgInfo::getDirect()); 4069 } 4070 4071 if (isEmptyRecord(getContext(), RetTy, true)) 4072 return ABIArgInfo::getIgnore(); 4073 4074 const Type *Base = nullptr; 4075 uint64_t Members = 0; 4076 if (isHomogeneousAggregate(RetTy, Base, Members)) 4077 // Homogeneous Floating-point Aggregates (HFAs) are returned directly. 4078 return ABIArgInfo::getDirect(); 4079 4080 // Aggregates <= 16 bytes are returned directly in registers or on the stack. 4081 uint64_t Size = getContext().getTypeSize(RetTy); 4082 if (Size <= 128) { 4083 unsigned Alignment = getContext().getTypeAlign(RetTy); 4084 Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes 4085 4086 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 4087 // For aggregates with 16-byte alignment, we use i128. 4088 if (Alignment < 128 && Size == 128) { 4089 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); 4090 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 4091 } 4092 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 4093 } 4094 4095 return ABIArgInfo::getIndirect(0); 4096 } 4097 4098 /// isIllegalVectorType - check whether the vector type is legal for AArch64. 4099 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const { 4100 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4101 // Check whether VT is legal. 4102 unsigned NumElements = VT->getNumElements(); 4103 uint64_t Size = getContext().getTypeSize(VT); 4104 // NumElements should be power of 2 between 1 and 16. 4105 if ((NumElements & (NumElements - 1)) != 0 || NumElements > 16) 4106 return true; 4107 return Size != 64 && (Size != 128 || NumElements == 1); 4108 } 4109 return false; 4110 } 4111 4112 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 4113 // Homogeneous aggregates for AAPCS64 must have base types of a floating 4114 // point type or a short-vector type. This is the same as the 32-bit ABI, 4115 // but with the difference that any floating-point type is allowed, 4116 // including __fp16. 4117 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 4118 if (BT->isFloatingPoint()) 4119 return true; 4120 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 4121 unsigned VecSize = getContext().getTypeSize(VT); 4122 if (VecSize == 64 || VecSize == 128) 4123 return true; 4124 } 4125 return false; 4126 } 4127 4128 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 4129 uint64_t Members) const { 4130 return Members <= 4; 4131 } 4132 4133 llvm::Value *AArch64ABIInfo::EmitAAPCSVAArg(llvm::Value *VAListAddr, 4134 QualType Ty, 4135 CodeGenFunction &CGF) const { 4136 ABIArgInfo AI = classifyArgumentType(Ty); 4137 bool IsIndirect = AI.isIndirect(); 4138 4139 llvm::Type *BaseTy = CGF.ConvertType(Ty); 4140 if (IsIndirect) 4141 BaseTy = llvm::PointerType::getUnqual(BaseTy); 4142 else if (AI.getCoerceToType()) 4143 BaseTy = AI.getCoerceToType(); 4144 4145 unsigned NumRegs = 1; 4146 if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) { 4147 BaseTy = ArrTy->getElementType(); 4148 NumRegs = ArrTy->getNumElements(); 4149 } 4150 bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy(); 4151 4152 // The AArch64 va_list type and handling is specified in the Procedure Call 4153 // Standard, section B.4: 4154 // 4155 // struct { 4156 // void *__stack; 4157 // void *__gr_top; 4158 // void *__vr_top; 4159 // int __gr_offs; 4160 // int __vr_offs; 4161 // }; 4162 4163 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); 4164 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 4165 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); 4166 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 4167 auto &Ctx = CGF.getContext(); 4168 4169 llvm::Value *reg_offs_p = nullptr, *reg_offs = nullptr; 4170 int reg_top_index; 4171 int RegSize = IsIndirect ? 8 : getContext().getTypeSize(Ty) / 8; 4172 if (!IsFPR) { 4173 // 3 is the field number of __gr_offs 4174 reg_offs_p = 4175 CGF.Builder.CreateStructGEP(nullptr, VAListAddr, 3, "gr_offs_p"); 4176 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs"); 4177 reg_top_index = 1; // field number for __gr_top 4178 RegSize = llvm::RoundUpToAlignment(RegSize, 8); 4179 } else { 4180 // 4 is the field number of __vr_offs. 4181 reg_offs_p = 4182 CGF.Builder.CreateStructGEP(nullptr, VAListAddr, 4, "vr_offs_p"); 4183 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs"); 4184 reg_top_index = 2; // field number for __vr_top 4185 RegSize = 16 * NumRegs; 4186 } 4187 4188 //======================================= 4189 // Find out where argument was passed 4190 //======================================= 4191 4192 // If reg_offs >= 0 we're already using the stack for this type of 4193 // argument. We don't want to keep updating reg_offs (in case it overflows, 4194 // though anyone passing 2GB of arguments, each at most 16 bytes, deserves 4195 // whatever they get). 4196 llvm::Value *UsingStack = nullptr; 4197 UsingStack = CGF.Builder.CreateICmpSGE( 4198 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0)); 4199 4200 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock); 4201 4202 // Otherwise, at least some kind of argument could go in these registers, the 4203 // question is whether this particular type is too big. 4204 CGF.EmitBlock(MaybeRegBlock); 4205 4206 // Integer arguments may need to correct register alignment (for example a 4207 // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we 4208 // align __gr_offs to calculate the potential address. 4209 if (!IsFPR && !IsIndirect && Ctx.getTypeAlign(Ty) > 64) { 4210 int Align = Ctx.getTypeAlign(Ty) / 8; 4211 4212 reg_offs = CGF.Builder.CreateAdd( 4213 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1), 4214 "align_regoffs"); 4215 reg_offs = CGF.Builder.CreateAnd( 4216 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align), 4217 "aligned_regoffs"); 4218 } 4219 4220 // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list. 4221 llvm::Value *NewOffset = nullptr; 4222 NewOffset = CGF.Builder.CreateAdd( 4223 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs"); 4224 CGF.Builder.CreateStore(NewOffset, reg_offs_p); 4225 4226 // Now we're in a position to decide whether this argument really was in 4227 // registers or not. 4228 llvm::Value *InRegs = nullptr; 4229 InRegs = CGF.Builder.CreateICmpSLE( 4230 NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg"); 4231 4232 CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock); 4233 4234 //======================================= 4235 // Argument was in registers 4236 //======================================= 4237 4238 // Now we emit the code for if the argument was originally passed in 4239 // registers. First start the appropriate block: 4240 CGF.EmitBlock(InRegBlock); 4241 4242 llvm::Value *reg_top_p = nullptr, *reg_top = nullptr; 4243 reg_top_p = CGF.Builder.CreateStructGEP(nullptr, VAListAddr, reg_top_index, 4244 "reg_top_p"); 4245 reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top"); 4246 llvm::Value *BaseAddr = CGF.Builder.CreateGEP(reg_top, reg_offs); 4247 llvm::Value *RegAddr = nullptr; 4248 llvm::Type *MemTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); 4249 4250 if (IsIndirect) { 4251 // If it's been passed indirectly (actually a struct), whatever we find from 4252 // stored registers or on the stack will actually be a struct **. 4253 MemTy = llvm::PointerType::getUnqual(MemTy); 4254 } 4255 4256 const Type *Base = nullptr; 4257 uint64_t NumMembers = 0; 4258 bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers); 4259 if (IsHFA && NumMembers > 1) { 4260 // Homogeneous aggregates passed in registers will have their elements split 4261 // and stored 16-bytes apart regardless of size (they're notionally in qN, 4262 // qN+1, ...). We reload and store into a temporary local variable 4263 // contiguously. 4264 assert(!IsIndirect && "Homogeneous aggregates should be passed directly"); 4265 llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0)); 4266 llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers); 4267 llvm::AllocaInst *Tmp = CGF.CreateTempAlloca(HFATy); 4268 int Offset = 0; 4269 4270 if (CGF.CGM.getDataLayout().isBigEndian() && Ctx.getTypeSize(Base) < 128) 4271 Offset = 16 - Ctx.getTypeSize(Base) / 8; 4272 for (unsigned i = 0; i < NumMembers; ++i) { 4273 llvm::Value *BaseOffset = 4274 llvm::ConstantInt::get(CGF.Int32Ty, 16 * i + Offset); 4275 llvm::Value *LoadAddr = CGF.Builder.CreateGEP(BaseAddr, BaseOffset); 4276 LoadAddr = CGF.Builder.CreateBitCast( 4277 LoadAddr, llvm::PointerType::getUnqual(BaseTy)); 4278 llvm::Value *StoreAddr = 4279 CGF.Builder.CreateStructGEP(Tmp->getAllocatedType(), Tmp, i); 4280 4281 llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr); 4282 CGF.Builder.CreateStore(Elem, StoreAddr); 4283 } 4284 4285 RegAddr = CGF.Builder.CreateBitCast(Tmp, MemTy); 4286 } else { 4287 // Otherwise the object is contiguous in memory 4288 unsigned BeAlign = reg_top_index == 2 ? 16 : 8; 4289 if (CGF.CGM.getDataLayout().isBigEndian() && 4290 (IsHFA || !isAggregateTypeForABI(Ty)) && 4291 Ctx.getTypeSize(Ty) < (BeAlign * 8)) { 4292 int Offset = BeAlign - Ctx.getTypeSize(Ty) / 8; 4293 BaseAddr = CGF.Builder.CreatePtrToInt(BaseAddr, CGF.Int64Ty); 4294 4295 BaseAddr = CGF.Builder.CreateAdd( 4296 BaseAddr, llvm::ConstantInt::get(CGF.Int64Ty, Offset), "align_be"); 4297 4298 BaseAddr = CGF.Builder.CreateIntToPtr(BaseAddr, CGF.Int8PtrTy); 4299 } 4300 4301 RegAddr = CGF.Builder.CreateBitCast(BaseAddr, MemTy); 4302 } 4303 4304 CGF.EmitBranch(ContBlock); 4305 4306 //======================================= 4307 // Argument was on the stack 4308 //======================================= 4309 CGF.EmitBlock(OnStackBlock); 4310 4311 llvm::Value *stack_p = nullptr, *OnStackAddr = nullptr; 4312 stack_p = CGF.Builder.CreateStructGEP(nullptr, VAListAddr, 0, "stack_p"); 4313 OnStackAddr = CGF.Builder.CreateLoad(stack_p, "stack"); 4314 4315 // Again, stack arguments may need realigmnent. In this case both integer and 4316 // floating-point ones might be affected. 4317 if (!IsIndirect && Ctx.getTypeAlign(Ty) > 64) { 4318 int Align = Ctx.getTypeAlign(Ty) / 8; 4319 4320 OnStackAddr = CGF.Builder.CreatePtrToInt(OnStackAddr, CGF.Int64Ty); 4321 4322 OnStackAddr = CGF.Builder.CreateAdd( 4323 OnStackAddr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1), 4324 "align_stack"); 4325 OnStackAddr = CGF.Builder.CreateAnd( 4326 OnStackAddr, llvm::ConstantInt::get(CGF.Int64Ty, -Align), 4327 "align_stack"); 4328 4329 OnStackAddr = CGF.Builder.CreateIntToPtr(OnStackAddr, CGF.Int8PtrTy); 4330 } 4331 4332 uint64_t StackSize; 4333 if (IsIndirect) 4334 StackSize = 8; 4335 else 4336 StackSize = Ctx.getTypeSize(Ty) / 8; 4337 4338 // All stack slots are 8 bytes 4339 StackSize = llvm::RoundUpToAlignment(StackSize, 8); 4340 4341 llvm::Value *StackSizeC = llvm::ConstantInt::get(CGF.Int32Ty, StackSize); 4342 llvm::Value *NewStack = 4343 CGF.Builder.CreateGEP(OnStackAddr, StackSizeC, "new_stack"); 4344 4345 // Write the new value of __stack for the next call to va_arg 4346 CGF.Builder.CreateStore(NewStack, stack_p); 4347 4348 if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) && 4349 Ctx.getTypeSize(Ty) < 64) { 4350 int Offset = 8 - Ctx.getTypeSize(Ty) / 8; 4351 OnStackAddr = CGF.Builder.CreatePtrToInt(OnStackAddr, CGF.Int64Ty); 4352 4353 OnStackAddr = CGF.Builder.CreateAdd( 4354 OnStackAddr, llvm::ConstantInt::get(CGF.Int64Ty, Offset), "align_be"); 4355 4356 OnStackAddr = CGF.Builder.CreateIntToPtr(OnStackAddr, CGF.Int8PtrTy); 4357 } 4358 4359 OnStackAddr = CGF.Builder.CreateBitCast(OnStackAddr, MemTy); 4360 4361 CGF.EmitBranch(ContBlock); 4362 4363 //======================================= 4364 // Tidy up 4365 //======================================= 4366 CGF.EmitBlock(ContBlock); 4367 4368 llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(MemTy, 2, "vaarg.addr"); 4369 ResAddr->addIncoming(RegAddr, InRegBlock); 4370 ResAddr->addIncoming(OnStackAddr, OnStackBlock); 4371 4372 if (IsIndirect) 4373 return CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"); 4374 4375 return ResAddr; 4376 } 4377 4378 llvm::Value *AArch64ABIInfo::EmitDarwinVAArg(llvm::Value *VAListAddr, 4379 QualType Ty, 4380 CodeGenFunction &CGF) const { 4381 // We do not support va_arg for aggregates or illegal vector types. 4382 // Lower VAArg here for these cases and use the LLVM va_arg instruction for 4383 // other cases. 4384 if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty)) 4385 return nullptr; 4386 4387 uint64_t Size = CGF.getContext().getTypeSize(Ty) / 8; 4388 uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8; 4389 4390 const Type *Base = nullptr; 4391 uint64_t Members = 0; 4392 bool isHA = isHomogeneousAggregate(Ty, Base, Members); 4393 4394 bool isIndirect = false; 4395 // Arguments bigger than 16 bytes which aren't homogeneous aggregates should 4396 // be passed indirectly. 4397 if (Size > 16 && !isHA) { 4398 isIndirect = true; 4399 Size = 8; 4400 Align = 8; 4401 } 4402 4403 llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext()); 4404 llvm::Type *BPP = llvm::PointerType::getUnqual(BP); 4405 4406 CGBuilderTy &Builder = CGF.Builder; 4407 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); 4408 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 4409 4410 if (isEmptyRecord(getContext(), Ty, true)) { 4411 // These are ignored for parameter passing purposes. 4412 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 4413 return Builder.CreateBitCast(Addr, PTy); 4414 } 4415 4416 const uint64_t MinABIAlign = 8; 4417 if (Align > MinABIAlign) { 4418 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, Align - 1); 4419 Addr = Builder.CreateGEP(Addr, Offset); 4420 llvm::Value *AsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty); 4421 llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, ~(Align - 1)); 4422 llvm::Value *Aligned = Builder.CreateAnd(AsInt, Mask); 4423 Addr = Builder.CreateIntToPtr(Aligned, BP, "ap.align"); 4424 } 4425 4426 uint64_t Offset = llvm::RoundUpToAlignment(Size, MinABIAlign); 4427 llvm::Value *NextAddr = Builder.CreateGEP( 4428 Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), "ap.next"); 4429 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 4430 4431 if (isIndirect) 4432 Addr = Builder.CreateLoad(Builder.CreateBitCast(Addr, BPP)); 4433 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 4434 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); 4435 4436 return AddrTyped; 4437 } 4438 4439 //===----------------------------------------------------------------------===// 4440 // ARM ABI Implementation 4441 //===----------------------------------------------------------------------===// 4442 4443 namespace { 4444 4445 class ARMABIInfo : public ABIInfo { 4446 public: 4447 enum ABIKind { 4448 APCS = 0, 4449 AAPCS = 1, 4450 AAPCS_VFP 4451 }; 4452 4453 private: 4454 ABIKind Kind; 4455 4456 public: 4457 ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) : ABIInfo(CGT), Kind(_Kind) { 4458 setCCs(); 4459 } 4460 4461 bool isEABI() const { 4462 switch (getTarget().getTriple().getEnvironment()) { 4463 case llvm::Triple::Android: 4464 case llvm::Triple::EABI: 4465 case llvm::Triple::EABIHF: 4466 case llvm::Triple::GNUEABI: 4467 case llvm::Triple::GNUEABIHF: 4468 return true; 4469 default: 4470 return false; 4471 } 4472 } 4473 4474 bool isEABIHF() const { 4475 switch (getTarget().getTriple().getEnvironment()) { 4476 case llvm::Triple::EABIHF: 4477 case llvm::Triple::GNUEABIHF: 4478 return true; 4479 default: 4480 return false; 4481 } 4482 } 4483 4484 ABIKind getABIKind() const { return Kind; } 4485 4486 private: 4487 ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic) const; 4488 ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic) const; 4489 bool isIllegalVectorType(QualType Ty) const; 4490 4491 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 4492 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 4493 uint64_t Members) const override; 4494 4495 void computeInfo(CGFunctionInfo &FI) const override; 4496 4497 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 4498 CodeGenFunction &CGF) const override; 4499 4500 llvm::CallingConv::ID getLLVMDefaultCC() const; 4501 llvm::CallingConv::ID getABIDefaultCC() const; 4502 void setCCs(); 4503 }; 4504 4505 class ARMTargetCodeGenInfo : public TargetCodeGenInfo { 4506 public: 4507 ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 4508 :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {} 4509 4510 const ARMABIInfo &getABIInfo() const { 4511 return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo()); 4512 } 4513 4514 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4515 return 13; 4516 } 4517 4518 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 4519 return "mov\tr7, r7\t\t@ marker for objc_retainAutoreleaseReturnValue"; 4520 } 4521 4522 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4523 llvm::Value *Address) const override { 4524 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 4525 4526 // 0-15 are the 16 integer registers. 4527 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15); 4528 return false; 4529 } 4530 4531 unsigned getSizeOfUnwindException() const override { 4532 if (getABIInfo().isEABI()) return 88; 4533 return TargetCodeGenInfo::getSizeOfUnwindException(); 4534 } 4535 4536 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 4537 CodeGen::CodeGenModule &CGM) const override { 4538 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); 4539 if (!FD) 4540 return; 4541 4542 const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>(); 4543 if (!Attr) 4544 return; 4545 4546 const char *Kind; 4547 switch (Attr->getInterrupt()) { 4548 case ARMInterruptAttr::Generic: Kind = ""; break; 4549 case ARMInterruptAttr::IRQ: Kind = "IRQ"; break; 4550 case ARMInterruptAttr::FIQ: Kind = "FIQ"; break; 4551 case ARMInterruptAttr::SWI: Kind = "SWI"; break; 4552 case ARMInterruptAttr::ABORT: Kind = "ABORT"; break; 4553 case ARMInterruptAttr::UNDEF: Kind = "UNDEF"; break; 4554 } 4555 4556 llvm::Function *Fn = cast<llvm::Function>(GV); 4557 4558 Fn->addFnAttr("interrupt", Kind); 4559 4560 if (cast<ARMABIInfo>(getABIInfo()).getABIKind() == ARMABIInfo::APCS) 4561 return; 4562 4563 // AAPCS guarantees that sp will be 8-byte aligned on any public interface, 4564 // however this is not necessarily true on taking any interrupt. Instruct 4565 // the backend to perform a realignment as part of the function prologue. 4566 llvm::AttrBuilder B; 4567 B.addStackAlignmentAttr(8); 4568 Fn->addAttributes(llvm::AttributeSet::FunctionIndex, 4569 llvm::AttributeSet::get(CGM.getLLVMContext(), 4570 llvm::AttributeSet::FunctionIndex, 4571 B)); 4572 } 4573 }; 4574 4575 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo { 4576 void addStackProbeSizeTargetAttribute(const Decl *D, llvm::GlobalValue *GV, 4577 CodeGen::CodeGenModule &CGM) const; 4578 4579 public: 4580 WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 4581 : ARMTargetCodeGenInfo(CGT, K) {} 4582 4583 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 4584 CodeGen::CodeGenModule &CGM) const override; 4585 }; 4586 4587 void WindowsARMTargetCodeGenInfo::addStackProbeSizeTargetAttribute( 4588 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 4589 if (!isa<FunctionDecl>(D)) 4590 return; 4591 if (CGM.getCodeGenOpts().StackProbeSize == 4096) 4592 return; 4593 4594 llvm::Function *F = cast<llvm::Function>(GV); 4595 F->addFnAttr("stack-probe-size", 4596 llvm::utostr(CGM.getCodeGenOpts().StackProbeSize)); 4597 } 4598 4599 void WindowsARMTargetCodeGenInfo::setTargetAttributes( 4600 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 4601 ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 4602 addStackProbeSizeTargetAttribute(D, GV, CGM); 4603 } 4604 } 4605 4606 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const { 4607 if (!getCXXABI().classifyReturnType(FI)) 4608 FI.getReturnInfo() = 4609 classifyReturnType(FI.getReturnType(), FI.isVariadic()); 4610 4611 for (auto &I : FI.arguments()) 4612 I.info = classifyArgumentType(I.type, FI.isVariadic()); 4613 4614 // Always honor user-specified calling convention. 4615 if (FI.getCallingConvention() != llvm::CallingConv::C) 4616 return; 4617 4618 llvm::CallingConv::ID cc = getRuntimeCC(); 4619 if (cc != llvm::CallingConv::C) 4620 FI.setEffectiveCallingConvention(cc); 4621 } 4622 4623 /// Return the default calling convention that LLVM will use. 4624 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const { 4625 // The default calling convention that LLVM will infer. 4626 if (isEABIHF()) 4627 return llvm::CallingConv::ARM_AAPCS_VFP; 4628 else if (isEABI()) 4629 return llvm::CallingConv::ARM_AAPCS; 4630 else 4631 return llvm::CallingConv::ARM_APCS; 4632 } 4633 4634 /// Return the calling convention that our ABI would like us to use 4635 /// as the C calling convention. 4636 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const { 4637 switch (getABIKind()) { 4638 case APCS: return llvm::CallingConv::ARM_APCS; 4639 case AAPCS: return llvm::CallingConv::ARM_AAPCS; 4640 case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 4641 } 4642 llvm_unreachable("bad ABI kind"); 4643 } 4644 4645 void ARMABIInfo::setCCs() { 4646 assert(getRuntimeCC() == llvm::CallingConv::C); 4647 4648 // Don't muddy up the IR with a ton of explicit annotations if 4649 // they'd just match what LLVM will infer from the triple. 4650 llvm::CallingConv::ID abiCC = getABIDefaultCC(); 4651 if (abiCC != getLLVMDefaultCC()) 4652 RuntimeCC = abiCC; 4653 4654 BuiltinCC = (getABIKind() == APCS ? 4655 llvm::CallingConv::ARM_APCS : llvm::CallingConv::ARM_AAPCS); 4656 } 4657 4658 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, 4659 bool isVariadic) const { 4660 // 6.1.2.1 The following argument types are VFP CPRCs: 4661 // A single-precision floating-point type (including promoted 4662 // half-precision types); A double-precision floating-point type; 4663 // A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate 4664 // with a Base Type of a single- or double-precision floating-point type, 4665 // 64-bit containerized vectors or 128-bit containerized vectors with one 4666 // to four Elements. 4667 bool IsEffectivelyAAPCS_VFP = getABIKind() == AAPCS_VFP && !isVariadic; 4668 4669 Ty = useFirstFieldIfTransparentUnion(Ty); 4670 4671 // Handle illegal vector types here. 4672 if (isIllegalVectorType(Ty)) { 4673 uint64_t Size = getContext().getTypeSize(Ty); 4674 if (Size <= 32) { 4675 llvm::Type *ResType = 4676 llvm::Type::getInt32Ty(getVMContext()); 4677 return ABIArgInfo::getDirect(ResType); 4678 } 4679 if (Size == 64) { 4680 llvm::Type *ResType = llvm::VectorType::get( 4681 llvm::Type::getInt32Ty(getVMContext()), 2); 4682 return ABIArgInfo::getDirect(ResType); 4683 } 4684 if (Size == 128) { 4685 llvm::Type *ResType = llvm::VectorType::get( 4686 llvm::Type::getInt32Ty(getVMContext()), 4); 4687 return ABIArgInfo::getDirect(ResType); 4688 } 4689 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 4690 } 4691 4692 if (!isAggregateTypeForABI(Ty)) { 4693 // Treat an enum type as its underlying type. 4694 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 4695 Ty = EnumTy->getDecl()->getIntegerType(); 4696 } 4697 4698 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend() 4699 : ABIArgInfo::getDirect()); 4700 } 4701 4702 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 4703 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 4704 } 4705 4706 // Ignore empty records. 4707 if (isEmptyRecord(getContext(), Ty, true)) 4708 return ABIArgInfo::getIgnore(); 4709 4710 if (IsEffectivelyAAPCS_VFP) { 4711 // Homogeneous Aggregates need to be expanded when we can fit the aggregate 4712 // into VFP registers. 4713 const Type *Base = nullptr; 4714 uint64_t Members = 0; 4715 if (isHomogeneousAggregate(Ty, Base, Members)) { 4716 assert(Base && "Base class should be set for homogeneous aggregate"); 4717 // Base can be a floating-point or a vector. 4718 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); 4719 } 4720 } 4721 4722 // Support byval for ARM. 4723 // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at 4724 // most 8-byte. We realign the indirect argument if type alignment is bigger 4725 // than ABI alignment. 4726 uint64_t ABIAlign = 4; 4727 uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8; 4728 if (getABIKind() == ARMABIInfo::AAPCS_VFP || 4729 getABIKind() == ARMABIInfo::AAPCS) 4730 ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8); 4731 4732 if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) { 4733 return ABIArgInfo::getIndirect(ABIAlign, /*ByVal=*/true, 4734 /*Realign=*/TyAlign > ABIAlign); 4735 } 4736 4737 // Otherwise, pass by coercing to a structure of the appropriate size. 4738 llvm::Type* ElemTy; 4739 unsigned SizeRegs; 4740 // FIXME: Try to match the types of the arguments more accurately where 4741 // we can. 4742 if (getContext().getTypeAlign(Ty) <= 32) { 4743 ElemTy = llvm::Type::getInt32Ty(getVMContext()); 4744 SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32; 4745 } else { 4746 ElemTy = llvm::Type::getInt64Ty(getVMContext()); 4747 SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64; 4748 } 4749 4750 return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs)); 4751 } 4752 4753 static bool isIntegerLikeType(QualType Ty, ASTContext &Context, 4754 llvm::LLVMContext &VMContext) { 4755 // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure 4756 // is called integer-like if its size is less than or equal to one word, and 4757 // the offset of each of its addressable sub-fields is zero. 4758 4759 uint64_t Size = Context.getTypeSize(Ty); 4760 4761 // Check that the type fits in a word. 4762 if (Size > 32) 4763 return false; 4764 4765 // FIXME: Handle vector types! 4766 if (Ty->isVectorType()) 4767 return false; 4768 4769 // Float types are never treated as "integer like". 4770 if (Ty->isRealFloatingType()) 4771 return false; 4772 4773 // If this is a builtin or pointer type then it is ok. 4774 if (Ty->getAs<BuiltinType>() || Ty->isPointerType()) 4775 return true; 4776 4777 // Small complex integer types are "integer like". 4778 if (const ComplexType *CT = Ty->getAs<ComplexType>()) 4779 return isIntegerLikeType(CT->getElementType(), Context, VMContext); 4780 4781 // Single element and zero sized arrays should be allowed, by the definition 4782 // above, but they are not. 4783 4784 // Otherwise, it must be a record type. 4785 const RecordType *RT = Ty->getAs<RecordType>(); 4786 if (!RT) return false; 4787 4788 // Ignore records with flexible arrays. 4789 const RecordDecl *RD = RT->getDecl(); 4790 if (RD->hasFlexibleArrayMember()) 4791 return false; 4792 4793 // Check that all sub-fields are at offset 0, and are themselves "integer 4794 // like". 4795 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 4796 4797 bool HadField = false; 4798 unsigned idx = 0; 4799 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 4800 i != e; ++i, ++idx) { 4801 const FieldDecl *FD = *i; 4802 4803 // Bit-fields are not addressable, we only need to verify they are "integer 4804 // like". We still have to disallow a subsequent non-bitfield, for example: 4805 // struct { int : 0; int x } 4806 // is non-integer like according to gcc. 4807 if (FD->isBitField()) { 4808 if (!RD->isUnion()) 4809 HadField = true; 4810 4811 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 4812 return false; 4813 4814 continue; 4815 } 4816 4817 // Check if this field is at offset 0. 4818 if (Layout.getFieldOffset(idx) != 0) 4819 return false; 4820 4821 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 4822 return false; 4823 4824 // Only allow at most one field in a structure. This doesn't match the 4825 // wording above, but follows gcc in situations with a field following an 4826 // empty structure. 4827 if (!RD->isUnion()) { 4828 if (HadField) 4829 return false; 4830 4831 HadField = true; 4832 } 4833 } 4834 4835 return true; 4836 } 4837 4838 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, 4839 bool isVariadic) const { 4840 bool IsEffectivelyAAPCS_VFP = getABIKind() == AAPCS_VFP && !isVariadic; 4841 4842 if (RetTy->isVoidType()) 4843 return ABIArgInfo::getIgnore(); 4844 4845 // Large vector types should be returned via memory. 4846 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) { 4847 return ABIArgInfo::getIndirect(0); 4848 } 4849 4850 if (!isAggregateTypeForABI(RetTy)) { 4851 // Treat an enum type as its underlying type. 4852 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 4853 RetTy = EnumTy->getDecl()->getIntegerType(); 4854 4855 return RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend() 4856 : ABIArgInfo::getDirect(); 4857 } 4858 4859 // Are we following APCS? 4860 if (getABIKind() == APCS) { 4861 if (isEmptyRecord(getContext(), RetTy, false)) 4862 return ABIArgInfo::getIgnore(); 4863 4864 // Complex types are all returned as packed integers. 4865 // 4866 // FIXME: Consider using 2 x vector types if the back end handles them 4867 // correctly. 4868 if (RetTy->isAnyComplexType()) 4869 return ABIArgInfo::getDirect(llvm::IntegerType::get( 4870 getVMContext(), getContext().getTypeSize(RetTy))); 4871 4872 // Integer like structures are returned in r0. 4873 if (isIntegerLikeType(RetTy, getContext(), getVMContext())) { 4874 // Return in the smallest viable integer type. 4875 uint64_t Size = getContext().getTypeSize(RetTy); 4876 if (Size <= 8) 4877 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 4878 if (Size <= 16) 4879 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 4880 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 4881 } 4882 4883 // Otherwise return in memory. 4884 return ABIArgInfo::getIndirect(0); 4885 } 4886 4887 // Otherwise this is an AAPCS variant. 4888 4889 if (isEmptyRecord(getContext(), RetTy, true)) 4890 return ABIArgInfo::getIgnore(); 4891 4892 // Check for homogeneous aggregates with AAPCS-VFP. 4893 if (IsEffectivelyAAPCS_VFP) { 4894 const Type *Base = nullptr; 4895 uint64_t Members; 4896 if (isHomogeneousAggregate(RetTy, Base, Members)) { 4897 assert(Base && "Base class should be set for homogeneous aggregate"); 4898 // Homogeneous Aggregates are returned directly. 4899 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); 4900 } 4901 } 4902 4903 // Aggregates <= 4 bytes are returned in r0; other aggregates 4904 // are returned indirectly. 4905 uint64_t Size = getContext().getTypeSize(RetTy); 4906 if (Size <= 32) { 4907 if (getDataLayout().isBigEndian()) 4908 // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4) 4909 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 4910 4911 // Return in the smallest viable integer type. 4912 if (Size <= 8) 4913 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 4914 if (Size <= 16) 4915 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 4916 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 4917 } 4918 4919 return ABIArgInfo::getIndirect(0); 4920 } 4921 4922 /// isIllegalVector - check whether Ty is an illegal vector type. 4923 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const { 4924 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4925 // Check whether VT is legal. 4926 unsigned NumElements = VT->getNumElements(); 4927 uint64_t Size = getContext().getTypeSize(VT); 4928 // NumElements should be power of 2. 4929 if ((NumElements & (NumElements - 1)) != 0) 4930 return true; 4931 // Size should be greater than 32 bits. 4932 return Size <= 32; 4933 } 4934 return false; 4935 } 4936 4937 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 4938 // Homogeneous aggregates for AAPCS-VFP must have base types of float, 4939 // double, or 64-bit or 128-bit vectors. 4940 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 4941 if (BT->getKind() == BuiltinType::Float || 4942 BT->getKind() == BuiltinType::Double || 4943 BT->getKind() == BuiltinType::LongDouble) 4944 return true; 4945 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 4946 unsigned VecSize = getContext().getTypeSize(VT); 4947 if (VecSize == 64 || VecSize == 128) 4948 return true; 4949 } 4950 return false; 4951 } 4952 4953 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 4954 uint64_t Members) const { 4955 return Members <= 4; 4956 } 4957 4958 llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 4959 CodeGenFunction &CGF) const { 4960 llvm::Type *BP = CGF.Int8PtrTy; 4961 llvm::Type *BPP = CGF.Int8PtrPtrTy; 4962 4963 CGBuilderTy &Builder = CGF.Builder; 4964 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); 4965 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 4966 4967 if (isEmptyRecord(getContext(), Ty, true)) { 4968 // These are ignored for parameter passing purposes. 4969 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 4970 return Builder.CreateBitCast(Addr, PTy); 4971 } 4972 4973 uint64_t Size = CGF.getContext().getTypeSize(Ty) / 8; 4974 uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8; 4975 bool IsIndirect = false; 4976 4977 // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for 4978 // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte. 4979 if (getABIKind() == ARMABIInfo::AAPCS_VFP || 4980 getABIKind() == ARMABIInfo::AAPCS) 4981 TyAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8); 4982 else 4983 TyAlign = 4; 4984 // Use indirect if size of the illegal vector is bigger than 16 bytes. 4985 if (isIllegalVectorType(Ty) && Size > 16) { 4986 IsIndirect = true; 4987 Size = 4; 4988 TyAlign = 4; 4989 } 4990 4991 // Handle address alignment for ABI alignment > 4 bytes. 4992 if (TyAlign > 4) { 4993 assert((TyAlign & (TyAlign - 1)) == 0 && 4994 "Alignment is not power of 2!"); 4995 llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty); 4996 AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1)); 4997 AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1))); 4998 Addr = Builder.CreateIntToPtr(AddrAsInt, BP, "ap.align"); 4999 } 5000 5001 uint64_t Offset = 5002 llvm::RoundUpToAlignment(Size, 4); 5003 llvm::Value *NextAddr = 5004 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), 5005 "ap.next"); 5006 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 5007 5008 if (IsIndirect) 5009 Addr = Builder.CreateLoad(Builder.CreateBitCast(Addr, BPP)); 5010 else if (TyAlign < CGF.getContext().getTypeAlign(Ty) / 8) { 5011 // We can't directly cast ap.cur to pointer to a vector type, since ap.cur 5012 // may not be correctly aligned for the vector type. We create an aligned 5013 // temporary space and copy the content over from ap.cur to the temporary 5014 // space. This is necessary if the natural alignment of the type is greater 5015 // than the ABI alignment. 5016 llvm::Type *I8PtrTy = Builder.getInt8PtrTy(); 5017 CharUnits CharSize = getContext().getTypeSizeInChars(Ty); 5018 llvm::Value *AlignedTemp = CGF.CreateTempAlloca(CGF.ConvertType(Ty), 5019 "var.align"); 5020 llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy); 5021 llvm::Value *Src = Builder.CreateBitCast(Addr, I8PtrTy); 5022 Builder.CreateMemCpy(Dst, Src, 5023 llvm::ConstantInt::get(CGF.IntPtrTy, CharSize.getQuantity()), 5024 TyAlign, false); 5025 Addr = AlignedTemp; //The content is in aligned location. 5026 } 5027 llvm::Type *PTy = 5028 llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 5029 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); 5030 5031 return AddrTyped; 5032 } 5033 5034 //===----------------------------------------------------------------------===// 5035 // NVPTX ABI Implementation 5036 //===----------------------------------------------------------------------===// 5037 5038 namespace { 5039 5040 class NVPTXABIInfo : public ABIInfo { 5041 public: 5042 NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 5043 5044 ABIArgInfo classifyReturnType(QualType RetTy) const; 5045 ABIArgInfo classifyArgumentType(QualType Ty) const; 5046 5047 void computeInfo(CGFunctionInfo &FI) const override; 5048 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5049 CodeGenFunction &CFG) const override; 5050 }; 5051 5052 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo { 5053 public: 5054 NVPTXTargetCodeGenInfo(CodeGenTypes &CGT) 5055 : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {} 5056 5057 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5058 CodeGen::CodeGenModule &M) const override; 5059 private: 5060 // Adds a NamedMDNode with F, Name, and Operand as operands, and adds the 5061 // resulting MDNode to the nvvm.annotations MDNode. 5062 static void addNVVMMetadata(llvm::Function *F, StringRef Name, int Operand); 5063 }; 5064 5065 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const { 5066 if (RetTy->isVoidType()) 5067 return ABIArgInfo::getIgnore(); 5068 5069 // note: this is different from default ABI 5070 if (!RetTy->isScalarType()) 5071 return ABIArgInfo::getDirect(); 5072 5073 // Treat an enum type as its underlying type. 5074 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5075 RetTy = EnumTy->getDecl()->getIntegerType(); 5076 5077 return (RetTy->isPromotableIntegerType() ? 5078 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 5079 } 5080 5081 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const { 5082 // Treat an enum type as its underlying type. 5083 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5084 Ty = EnumTy->getDecl()->getIntegerType(); 5085 5086 // Return aggregates type as indirect by value 5087 if (isAggregateTypeForABI(Ty)) 5088 return ABIArgInfo::getIndirect(0, /* byval */ true); 5089 5090 return (Ty->isPromotableIntegerType() ? 5091 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 5092 } 5093 5094 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const { 5095 if (!getCXXABI().classifyReturnType(FI)) 5096 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 5097 for (auto &I : FI.arguments()) 5098 I.info = classifyArgumentType(I.type); 5099 5100 // Always honor user-specified calling convention. 5101 if (FI.getCallingConvention() != llvm::CallingConv::C) 5102 return; 5103 5104 FI.setEffectiveCallingConvention(getRuntimeCC()); 5105 } 5106 5107 llvm::Value *NVPTXABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5108 CodeGenFunction &CFG) const { 5109 llvm_unreachable("NVPTX does not support varargs"); 5110 } 5111 5112 void NVPTXTargetCodeGenInfo:: 5113 setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5114 CodeGen::CodeGenModule &M) const{ 5115 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); 5116 if (!FD) return; 5117 5118 llvm::Function *F = cast<llvm::Function>(GV); 5119 5120 // Perform special handling in OpenCL mode 5121 if (M.getLangOpts().OpenCL) { 5122 // Use OpenCL function attributes to check for kernel functions 5123 // By default, all functions are device functions 5124 if (FD->hasAttr<OpenCLKernelAttr>()) { 5125 // OpenCL __kernel functions get kernel metadata 5126 // Create !{<func-ref>, metadata !"kernel", i32 1} node 5127 addNVVMMetadata(F, "kernel", 1); 5128 // And kernel functions are not subject to inlining 5129 F->addFnAttr(llvm::Attribute::NoInline); 5130 } 5131 } 5132 5133 // Perform special handling in CUDA mode. 5134 if (M.getLangOpts().CUDA) { 5135 // CUDA __global__ functions get a kernel metadata entry. Since 5136 // __global__ functions cannot be called from the device, we do not 5137 // need to set the noinline attribute. 5138 if (FD->hasAttr<CUDAGlobalAttr>()) { 5139 // Create !{<func-ref>, metadata !"kernel", i32 1} node 5140 addNVVMMetadata(F, "kernel", 1); 5141 } 5142 if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) { 5143 // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node 5144 llvm::APSInt MaxThreads(32); 5145 MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext()); 5146 if (MaxThreads > 0) 5147 addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue()); 5148 5149 // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was 5150 // not specified in __launch_bounds__ or if the user specified a 0 value, 5151 // we don't have to add a PTX directive. 5152 if (Attr->getMinBlocks()) { 5153 llvm::APSInt MinBlocks(32); 5154 MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext()); 5155 if (MinBlocks > 0) 5156 // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node 5157 addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue()); 5158 } 5159 } 5160 } 5161 } 5162 5163 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::Function *F, StringRef Name, 5164 int Operand) { 5165 llvm::Module *M = F->getParent(); 5166 llvm::LLVMContext &Ctx = M->getContext(); 5167 5168 // Get "nvvm.annotations" metadata node 5169 llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations"); 5170 5171 llvm::Metadata *MDVals[] = { 5172 llvm::ConstantAsMetadata::get(F), llvm::MDString::get(Ctx, Name), 5173 llvm::ConstantAsMetadata::get( 5174 llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))}; 5175 // Append metadata to nvvm.annotations 5176 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 5177 } 5178 } 5179 5180 //===----------------------------------------------------------------------===// 5181 // SystemZ ABI Implementation 5182 //===----------------------------------------------------------------------===// 5183 5184 namespace { 5185 5186 class SystemZABIInfo : public ABIInfo { 5187 bool HasVector; 5188 5189 public: 5190 SystemZABIInfo(CodeGenTypes &CGT, bool HV) 5191 : ABIInfo(CGT), HasVector(HV) {} 5192 5193 bool isPromotableIntegerType(QualType Ty) const; 5194 bool isCompoundType(QualType Ty) const; 5195 bool isVectorArgumentType(QualType Ty) const; 5196 bool isFPArgumentType(QualType Ty) const; 5197 QualType GetSingleElementType(QualType Ty) const; 5198 5199 ABIArgInfo classifyReturnType(QualType RetTy) const; 5200 ABIArgInfo classifyArgumentType(QualType ArgTy) const; 5201 5202 void computeInfo(CGFunctionInfo &FI) const override { 5203 if (!getCXXABI().classifyReturnType(FI)) 5204 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 5205 for (auto &I : FI.arguments()) 5206 I.info = classifyArgumentType(I.type); 5207 } 5208 5209 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5210 CodeGenFunction &CGF) const override; 5211 }; 5212 5213 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo { 5214 public: 5215 SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector) 5216 : TargetCodeGenInfo(new SystemZABIInfo(CGT, HasVector)) {} 5217 }; 5218 5219 } 5220 5221 bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const { 5222 // Treat an enum type as its underlying type. 5223 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5224 Ty = EnumTy->getDecl()->getIntegerType(); 5225 5226 // Promotable integer types are required to be promoted by the ABI. 5227 if (Ty->isPromotableIntegerType()) 5228 return true; 5229 5230 // 32-bit values must also be promoted. 5231 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 5232 switch (BT->getKind()) { 5233 case BuiltinType::Int: 5234 case BuiltinType::UInt: 5235 return true; 5236 default: 5237 return false; 5238 } 5239 return false; 5240 } 5241 5242 bool SystemZABIInfo::isCompoundType(QualType Ty) const { 5243 return (Ty->isAnyComplexType() || 5244 Ty->isVectorType() || 5245 isAggregateTypeForABI(Ty)); 5246 } 5247 5248 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const { 5249 return (HasVector && 5250 Ty->isVectorType() && 5251 getContext().getTypeSize(Ty) <= 128); 5252 } 5253 5254 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const { 5255 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 5256 switch (BT->getKind()) { 5257 case BuiltinType::Float: 5258 case BuiltinType::Double: 5259 return true; 5260 default: 5261 return false; 5262 } 5263 5264 return false; 5265 } 5266 5267 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const { 5268 if (const RecordType *RT = Ty->getAsStructureType()) { 5269 const RecordDecl *RD = RT->getDecl(); 5270 QualType Found; 5271 5272 // If this is a C++ record, check the bases first. 5273 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 5274 for (const auto &I : CXXRD->bases()) { 5275 QualType Base = I.getType(); 5276 5277 // Empty bases don't affect things either way. 5278 if (isEmptyRecord(getContext(), Base, true)) 5279 continue; 5280 5281 if (!Found.isNull()) 5282 return Ty; 5283 Found = GetSingleElementType(Base); 5284 } 5285 5286 // Check the fields. 5287 for (const auto *FD : RD->fields()) { 5288 // For compatibility with GCC, ignore empty bitfields in C++ mode. 5289 // Unlike isSingleElementStruct(), empty structure and array fields 5290 // do count. So do anonymous bitfields that aren't zero-sized. 5291 if (getContext().getLangOpts().CPlusPlus && 5292 FD->isBitField() && FD->getBitWidthValue(getContext()) == 0) 5293 continue; 5294 5295 // Unlike isSingleElementStruct(), arrays do not count. 5296 // Nested structures still do though. 5297 if (!Found.isNull()) 5298 return Ty; 5299 Found = GetSingleElementType(FD->getType()); 5300 } 5301 5302 // Unlike isSingleElementStruct(), trailing padding is allowed. 5303 // An 8-byte aligned struct s { float f; } is passed as a double. 5304 if (!Found.isNull()) 5305 return Found; 5306 } 5307 5308 return Ty; 5309 } 5310 5311 llvm::Value *SystemZABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5312 CodeGenFunction &CGF) const { 5313 // Assume that va_list type is correct; should be pointer to LLVM type: 5314 // struct { 5315 // i64 __gpr; 5316 // i64 __fpr; 5317 // i8 *__overflow_arg_area; 5318 // i8 *__reg_save_area; 5319 // }; 5320 5321 // Every non-vector argument occupies 8 bytes and is passed by preference 5322 // in either GPRs or FPRs. Vector arguments occupy 8 or 16 bytes and are 5323 // always passed on the stack. 5324 Ty = CGF.getContext().getCanonicalType(Ty); 5325 llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty); 5326 llvm::Type *APTy = llvm::PointerType::getUnqual(ArgTy); 5327 ABIArgInfo AI = classifyArgumentType(Ty); 5328 bool IsIndirect = AI.isIndirect(); 5329 bool InFPRs = false; 5330 bool IsVector = false; 5331 unsigned UnpaddedBitSize; 5332 if (IsIndirect) { 5333 APTy = llvm::PointerType::getUnqual(APTy); 5334 UnpaddedBitSize = 64; 5335 } else { 5336 if (AI.getCoerceToType()) 5337 ArgTy = AI.getCoerceToType(); 5338 InFPRs = ArgTy->isFloatTy() || ArgTy->isDoubleTy(); 5339 IsVector = ArgTy->isVectorTy(); 5340 UnpaddedBitSize = getContext().getTypeSize(Ty); 5341 } 5342 unsigned PaddedBitSize = (IsVector && UnpaddedBitSize > 64) ? 128 : 64; 5343 assert((UnpaddedBitSize <= PaddedBitSize) && "Invalid argument size."); 5344 5345 unsigned PaddedSize = PaddedBitSize / 8; 5346 unsigned Padding = (PaddedBitSize - UnpaddedBitSize) / 8; 5347 5348 llvm::Type *IndexTy = CGF.Int64Ty; 5349 llvm::Value *PaddedSizeV = llvm::ConstantInt::get(IndexTy, PaddedSize); 5350 5351 if (IsVector) { 5352 // Work out the address of a vector argument on the stack. 5353 // Vector arguments are always passed in the high bits of a 5354 // single (8 byte) or double (16 byte) stack slot. 5355 llvm::Value *OverflowArgAreaPtr = 5356 CGF.Builder.CreateStructGEP(nullptr, VAListAddr, 2, 5357 "overflow_arg_area_ptr"); 5358 llvm::Value *OverflowArgArea = 5359 CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"); 5360 llvm::Value *MemAddr = 5361 CGF.Builder.CreateBitCast(OverflowArgArea, APTy, "mem_addr"); 5362 5363 // Update overflow_arg_area_ptr pointer 5364 llvm::Value *NewOverflowArgArea = 5365 CGF.Builder.CreateGEP(OverflowArgArea, PaddedSizeV, "overflow_arg_area"); 5366 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 5367 5368 return MemAddr; 5369 } 5370 5371 unsigned MaxRegs, RegCountField, RegSaveIndex, RegPadding; 5372 if (InFPRs) { 5373 MaxRegs = 4; // Maximum of 4 FPR arguments 5374 RegCountField = 1; // __fpr 5375 RegSaveIndex = 16; // save offset for f0 5376 RegPadding = 0; // floats are passed in the high bits of an FPR 5377 } else { 5378 MaxRegs = 5; // Maximum of 5 GPR arguments 5379 RegCountField = 0; // __gpr 5380 RegSaveIndex = 2; // save offset for r2 5381 RegPadding = Padding; // values are passed in the low bits of a GPR 5382 } 5383 5384 llvm::Value *RegCountPtr = CGF.Builder.CreateStructGEP( 5385 nullptr, VAListAddr, RegCountField, "reg_count_ptr"); 5386 llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count"); 5387 llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs); 5388 llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV, 5389 "fits_in_regs"); 5390 5391 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 5392 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 5393 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 5394 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 5395 5396 // Emit code to load the value if it was passed in registers. 5397 CGF.EmitBlock(InRegBlock); 5398 5399 // Work out the address of an argument register. 5400 llvm::Value *ScaledRegCount = 5401 CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count"); 5402 llvm::Value *RegBase = 5403 llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize + RegPadding); 5404 llvm::Value *RegOffset = 5405 CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset"); 5406 llvm::Value *RegSaveAreaPtr = 5407 CGF.Builder.CreateStructGEP(nullptr, VAListAddr, 3, "reg_save_area_ptr"); 5408 llvm::Value *RegSaveArea = 5409 CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area"); 5410 llvm::Value *RawRegAddr = 5411 CGF.Builder.CreateGEP(RegSaveArea, RegOffset, "raw_reg_addr"); 5412 llvm::Value *RegAddr = 5413 CGF.Builder.CreateBitCast(RawRegAddr, APTy, "reg_addr"); 5414 5415 // Update the register count 5416 llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1); 5417 llvm::Value *NewRegCount = 5418 CGF.Builder.CreateAdd(RegCount, One, "reg_count"); 5419 CGF.Builder.CreateStore(NewRegCount, RegCountPtr); 5420 CGF.EmitBranch(ContBlock); 5421 5422 // Emit code to load the value if it was passed in memory. 5423 CGF.EmitBlock(InMemBlock); 5424 5425 // Work out the address of a stack argument. 5426 llvm::Value *OverflowArgAreaPtr = CGF.Builder.CreateStructGEP( 5427 nullptr, VAListAddr, 2, "overflow_arg_area_ptr"); 5428 llvm::Value *OverflowArgArea = 5429 CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"); 5430 llvm::Value *PaddingV = llvm::ConstantInt::get(IndexTy, Padding); 5431 llvm::Value *RawMemAddr = 5432 CGF.Builder.CreateGEP(OverflowArgArea, PaddingV, "raw_mem_addr"); 5433 llvm::Value *MemAddr = 5434 CGF.Builder.CreateBitCast(RawMemAddr, APTy, "mem_addr"); 5435 5436 // Update overflow_arg_area_ptr pointer 5437 llvm::Value *NewOverflowArgArea = 5438 CGF.Builder.CreateGEP(OverflowArgArea, PaddedSizeV, "overflow_arg_area"); 5439 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 5440 CGF.EmitBranch(ContBlock); 5441 5442 // Return the appropriate result. 5443 CGF.EmitBlock(ContBlock); 5444 llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(APTy, 2, "va_arg.addr"); 5445 ResAddr->addIncoming(RegAddr, InRegBlock); 5446 ResAddr->addIncoming(MemAddr, InMemBlock); 5447 5448 if (IsIndirect) 5449 return CGF.Builder.CreateLoad(ResAddr, "indirect_arg"); 5450 5451 return ResAddr; 5452 } 5453 5454 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const { 5455 if (RetTy->isVoidType()) 5456 return ABIArgInfo::getIgnore(); 5457 if (isVectorArgumentType(RetTy)) 5458 return ABIArgInfo::getDirect(); 5459 if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64) 5460 return ABIArgInfo::getIndirect(0); 5461 return (isPromotableIntegerType(RetTy) ? 5462 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 5463 } 5464 5465 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const { 5466 // Handle the generic C++ ABI. 5467 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 5468 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 5469 5470 // Integers and enums are extended to full register width. 5471 if (isPromotableIntegerType(Ty)) 5472 return ABIArgInfo::getExtend(); 5473 5474 // Handle vector types and vector-like structure types. Note that 5475 // as opposed to float-like structure types, we do not allow any 5476 // padding for vector-like structures, so verify the sizes match. 5477 uint64_t Size = getContext().getTypeSize(Ty); 5478 QualType SingleElementTy = GetSingleElementType(Ty); 5479 if (isVectorArgumentType(SingleElementTy) && 5480 getContext().getTypeSize(SingleElementTy) == Size) 5481 return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy)); 5482 5483 // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly. 5484 if (Size != 8 && Size != 16 && Size != 32 && Size != 64) 5485 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 5486 5487 // Handle small structures. 5488 if (const RecordType *RT = Ty->getAs<RecordType>()) { 5489 // Structures with flexible arrays have variable length, so really 5490 // fail the size test above. 5491 const RecordDecl *RD = RT->getDecl(); 5492 if (RD->hasFlexibleArrayMember()) 5493 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 5494 5495 // The structure is passed as an unextended integer, a float, or a double. 5496 llvm::Type *PassTy; 5497 if (isFPArgumentType(SingleElementTy)) { 5498 assert(Size == 32 || Size == 64); 5499 if (Size == 32) 5500 PassTy = llvm::Type::getFloatTy(getVMContext()); 5501 else 5502 PassTy = llvm::Type::getDoubleTy(getVMContext()); 5503 } else 5504 PassTy = llvm::IntegerType::get(getVMContext(), Size); 5505 return ABIArgInfo::getDirect(PassTy); 5506 } 5507 5508 // Non-structure compounds are passed indirectly. 5509 if (isCompoundType(Ty)) 5510 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 5511 5512 return ABIArgInfo::getDirect(nullptr); 5513 } 5514 5515 //===----------------------------------------------------------------------===// 5516 // MSP430 ABI Implementation 5517 //===----------------------------------------------------------------------===// 5518 5519 namespace { 5520 5521 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo { 5522 public: 5523 MSP430TargetCodeGenInfo(CodeGenTypes &CGT) 5524 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 5525 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5526 CodeGen::CodeGenModule &M) const override; 5527 }; 5528 5529 } 5530 5531 void MSP430TargetCodeGenInfo::setTargetAttributes(const Decl *D, 5532 llvm::GlobalValue *GV, 5533 CodeGen::CodeGenModule &M) const { 5534 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 5535 if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) { 5536 // Handle 'interrupt' attribute: 5537 llvm::Function *F = cast<llvm::Function>(GV); 5538 5539 // Step 1: Set ISR calling convention. 5540 F->setCallingConv(llvm::CallingConv::MSP430_INTR); 5541 5542 // Step 2: Add attributes goodness. 5543 F->addFnAttr(llvm::Attribute::NoInline); 5544 5545 // Step 3: Emit ISR vector alias. 5546 unsigned Num = attr->getNumber() / 2; 5547 llvm::GlobalAlias::create(llvm::Function::ExternalLinkage, 5548 "__isr_" + Twine(Num), F); 5549 } 5550 } 5551 } 5552 5553 //===----------------------------------------------------------------------===// 5554 // MIPS ABI Implementation. This works for both little-endian and 5555 // big-endian variants. 5556 //===----------------------------------------------------------------------===// 5557 5558 namespace { 5559 class MipsABIInfo : public ABIInfo { 5560 bool IsO32; 5561 unsigned MinABIStackAlignInBytes, StackAlignInBytes; 5562 void CoerceToIntArgs(uint64_t TySize, 5563 SmallVectorImpl<llvm::Type *> &ArgList) const; 5564 llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const; 5565 llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const; 5566 llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const; 5567 public: 5568 MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) : 5569 ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8), 5570 StackAlignInBytes(IsO32 ? 8 : 16) {} 5571 5572 ABIArgInfo classifyReturnType(QualType RetTy) const; 5573 ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const; 5574 void computeInfo(CGFunctionInfo &FI) const override; 5575 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5576 CodeGenFunction &CGF) const override; 5577 bool shouldSignExtUnsignedType(QualType Ty) const override; 5578 }; 5579 5580 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo { 5581 unsigned SizeOfUnwindException; 5582 public: 5583 MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32) 5584 : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)), 5585 SizeOfUnwindException(IsO32 ? 24 : 32) {} 5586 5587 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 5588 return 29; 5589 } 5590 5591 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5592 CodeGen::CodeGenModule &CGM) const override { 5593 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); 5594 if (!FD) return; 5595 llvm::Function *Fn = cast<llvm::Function>(GV); 5596 if (FD->hasAttr<Mips16Attr>()) { 5597 Fn->addFnAttr("mips16"); 5598 } 5599 else if (FD->hasAttr<NoMips16Attr>()) { 5600 Fn->addFnAttr("nomips16"); 5601 } 5602 } 5603 5604 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5605 llvm::Value *Address) const override; 5606 5607 unsigned getSizeOfUnwindException() const override { 5608 return SizeOfUnwindException; 5609 } 5610 }; 5611 } 5612 5613 void MipsABIInfo::CoerceToIntArgs( 5614 uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const { 5615 llvm::IntegerType *IntTy = 5616 llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8); 5617 5618 // Add (TySize / MinABIStackAlignInBytes) args of IntTy. 5619 for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N) 5620 ArgList.push_back(IntTy); 5621 5622 // If necessary, add one more integer type to ArgList. 5623 unsigned R = TySize % (MinABIStackAlignInBytes * 8); 5624 5625 if (R) 5626 ArgList.push_back(llvm::IntegerType::get(getVMContext(), R)); 5627 } 5628 5629 // In N32/64, an aligned double precision floating point field is passed in 5630 // a register. 5631 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const { 5632 SmallVector<llvm::Type*, 8> ArgList, IntArgList; 5633 5634 if (IsO32) { 5635 CoerceToIntArgs(TySize, ArgList); 5636 return llvm::StructType::get(getVMContext(), ArgList); 5637 } 5638 5639 if (Ty->isComplexType()) 5640 return CGT.ConvertType(Ty); 5641 5642 const RecordType *RT = Ty->getAs<RecordType>(); 5643 5644 // Unions/vectors are passed in integer registers. 5645 if (!RT || !RT->isStructureOrClassType()) { 5646 CoerceToIntArgs(TySize, ArgList); 5647 return llvm::StructType::get(getVMContext(), ArgList); 5648 } 5649 5650 const RecordDecl *RD = RT->getDecl(); 5651 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 5652 assert(!(TySize % 8) && "Size of structure must be multiple of 8."); 5653 5654 uint64_t LastOffset = 0; 5655 unsigned idx = 0; 5656 llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64); 5657 5658 // Iterate over fields in the struct/class and check if there are any aligned 5659 // double fields. 5660 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 5661 i != e; ++i, ++idx) { 5662 const QualType Ty = i->getType(); 5663 const BuiltinType *BT = Ty->getAs<BuiltinType>(); 5664 5665 if (!BT || BT->getKind() != BuiltinType::Double) 5666 continue; 5667 5668 uint64_t Offset = Layout.getFieldOffset(idx); 5669 if (Offset % 64) // Ignore doubles that are not aligned. 5670 continue; 5671 5672 // Add ((Offset - LastOffset) / 64) args of type i64. 5673 for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j) 5674 ArgList.push_back(I64); 5675 5676 // Add double type. 5677 ArgList.push_back(llvm::Type::getDoubleTy(getVMContext())); 5678 LastOffset = Offset + 64; 5679 } 5680 5681 CoerceToIntArgs(TySize - LastOffset, IntArgList); 5682 ArgList.append(IntArgList.begin(), IntArgList.end()); 5683 5684 return llvm::StructType::get(getVMContext(), ArgList); 5685 } 5686 5687 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset, 5688 uint64_t Offset) const { 5689 if (OrigOffset + MinABIStackAlignInBytes > Offset) 5690 return nullptr; 5691 5692 return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8); 5693 } 5694 5695 ABIArgInfo 5696 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const { 5697 Ty = useFirstFieldIfTransparentUnion(Ty); 5698 5699 uint64_t OrigOffset = Offset; 5700 uint64_t TySize = getContext().getTypeSize(Ty); 5701 uint64_t Align = getContext().getTypeAlign(Ty) / 8; 5702 5703 Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes), 5704 (uint64_t)StackAlignInBytes); 5705 unsigned CurrOffset = llvm::RoundUpToAlignment(Offset, Align); 5706 Offset = CurrOffset + llvm::RoundUpToAlignment(TySize, Align * 8) / 8; 5707 5708 if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) { 5709 // Ignore empty aggregates. 5710 if (TySize == 0) 5711 return ABIArgInfo::getIgnore(); 5712 5713 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 5714 Offset = OrigOffset + MinABIStackAlignInBytes; 5715 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 5716 } 5717 5718 // If we have reached here, aggregates are passed directly by coercing to 5719 // another structure type. Padding is inserted if the offset of the 5720 // aggregate is unaligned. 5721 ABIArgInfo ArgInfo = 5722 ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0, 5723 getPaddingType(OrigOffset, CurrOffset)); 5724 ArgInfo.setInReg(true); 5725 return ArgInfo; 5726 } 5727 5728 // Treat an enum type as its underlying type. 5729 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5730 Ty = EnumTy->getDecl()->getIntegerType(); 5731 5732 // All integral types are promoted to the GPR width. 5733 if (Ty->isIntegralOrEnumerationType()) 5734 return ABIArgInfo::getExtend(); 5735 5736 return ABIArgInfo::getDirect( 5737 nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset)); 5738 } 5739 5740 llvm::Type* 5741 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const { 5742 const RecordType *RT = RetTy->getAs<RecordType>(); 5743 SmallVector<llvm::Type*, 8> RTList; 5744 5745 if (RT && RT->isStructureOrClassType()) { 5746 const RecordDecl *RD = RT->getDecl(); 5747 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 5748 unsigned FieldCnt = Layout.getFieldCount(); 5749 5750 // N32/64 returns struct/classes in floating point registers if the 5751 // following conditions are met: 5752 // 1. The size of the struct/class is no larger than 128-bit. 5753 // 2. The struct/class has one or two fields all of which are floating 5754 // point types. 5755 // 3. The offset of the first field is zero (this follows what gcc does). 5756 // 5757 // Any other composite results are returned in integer registers. 5758 // 5759 if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) { 5760 RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end(); 5761 for (; b != e; ++b) { 5762 const BuiltinType *BT = b->getType()->getAs<BuiltinType>(); 5763 5764 if (!BT || !BT->isFloatingPoint()) 5765 break; 5766 5767 RTList.push_back(CGT.ConvertType(b->getType())); 5768 } 5769 5770 if (b == e) 5771 return llvm::StructType::get(getVMContext(), RTList, 5772 RD->hasAttr<PackedAttr>()); 5773 5774 RTList.clear(); 5775 } 5776 } 5777 5778 CoerceToIntArgs(Size, RTList); 5779 return llvm::StructType::get(getVMContext(), RTList); 5780 } 5781 5782 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const { 5783 uint64_t Size = getContext().getTypeSize(RetTy); 5784 5785 if (RetTy->isVoidType()) 5786 return ABIArgInfo::getIgnore(); 5787 5788 // O32 doesn't treat zero-sized structs differently from other structs. 5789 // However, N32/N64 ignores zero sized return values. 5790 if (!IsO32 && Size == 0) 5791 return ABIArgInfo::getIgnore(); 5792 5793 if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) { 5794 if (Size <= 128) { 5795 if (RetTy->isAnyComplexType()) 5796 return ABIArgInfo::getDirect(); 5797 5798 // O32 returns integer vectors in registers and N32/N64 returns all small 5799 // aggregates in registers. 5800 if (!IsO32 || 5801 (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) { 5802 ABIArgInfo ArgInfo = 5803 ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size)); 5804 ArgInfo.setInReg(true); 5805 return ArgInfo; 5806 } 5807 } 5808 5809 return ABIArgInfo::getIndirect(0); 5810 } 5811 5812 // Treat an enum type as its underlying type. 5813 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5814 RetTy = EnumTy->getDecl()->getIntegerType(); 5815 5816 return (RetTy->isPromotableIntegerType() ? 5817 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 5818 } 5819 5820 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const { 5821 ABIArgInfo &RetInfo = FI.getReturnInfo(); 5822 if (!getCXXABI().classifyReturnType(FI)) 5823 RetInfo = classifyReturnType(FI.getReturnType()); 5824 5825 // Check if a pointer to an aggregate is passed as a hidden argument. 5826 uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0; 5827 5828 for (auto &I : FI.arguments()) 5829 I.info = classifyArgumentType(I.type, Offset); 5830 } 5831 5832 llvm::Value* MipsABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5833 CodeGenFunction &CGF) const { 5834 llvm::Type *BP = CGF.Int8PtrTy; 5835 llvm::Type *BPP = CGF.Int8PtrPtrTy; 5836 5837 // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64. 5838 // Pointers are also promoted in the same way but this only matters for N32. 5839 unsigned SlotSizeInBits = IsO32 ? 32 : 64; 5840 unsigned PtrWidth = getTarget().getPointerWidth(0); 5841 if ((Ty->isIntegerType() && 5842 CGF.getContext().getIntWidth(Ty) < SlotSizeInBits) || 5843 (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) { 5844 Ty = CGF.getContext().getIntTypeForBitwidth(SlotSizeInBits, 5845 Ty->isSignedIntegerType()); 5846 } 5847 5848 CGBuilderTy &Builder = CGF.Builder; 5849 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); 5850 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 5851 int64_t TypeAlign = 5852 std::min(getContext().getTypeAlign(Ty) / 8, StackAlignInBytes); 5853 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 5854 llvm::Value *AddrTyped; 5855 llvm::IntegerType *IntTy = (PtrWidth == 32) ? CGF.Int32Ty : CGF.Int64Ty; 5856 5857 if (TypeAlign > MinABIStackAlignInBytes) { 5858 llvm::Value *AddrAsInt = CGF.Builder.CreatePtrToInt(Addr, IntTy); 5859 llvm::Value *Inc = llvm::ConstantInt::get(IntTy, TypeAlign - 1); 5860 llvm::Value *Mask = llvm::ConstantInt::get(IntTy, -TypeAlign); 5861 llvm::Value *Add = CGF.Builder.CreateAdd(AddrAsInt, Inc); 5862 llvm::Value *And = CGF.Builder.CreateAnd(Add, Mask); 5863 AddrTyped = CGF.Builder.CreateIntToPtr(And, PTy); 5864 } 5865 else 5866 AddrTyped = Builder.CreateBitCast(Addr, PTy); 5867 5868 llvm::Value *AlignedAddr = Builder.CreateBitCast(AddrTyped, BP); 5869 TypeAlign = std::max((unsigned)TypeAlign, MinABIStackAlignInBytes); 5870 unsigned ArgSizeInBits = CGF.getContext().getTypeSize(Ty); 5871 uint64_t Offset = llvm::RoundUpToAlignment(ArgSizeInBits / 8, TypeAlign); 5872 llvm::Value *NextAddr = 5873 Builder.CreateGEP(AlignedAddr, llvm::ConstantInt::get(IntTy, Offset), 5874 "ap.next"); 5875 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 5876 5877 return AddrTyped; 5878 } 5879 5880 bool MipsABIInfo::shouldSignExtUnsignedType(QualType Ty) const { 5881 int TySize = getContext().getTypeSize(Ty); 5882 5883 // MIPS64 ABI requires unsigned 32 bit integers to be sign extended. 5884 if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 5885 return true; 5886 5887 return false; 5888 } 5889 5890 bool 5891 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5892 llvm::Value *Address) const { 5893 // This information comes from gcc's implementation, which seems to 5894 // as canonical as it gets. 5895 5896 // Everything on MIPS is 4 bytes. Double-precision FP registers 5897 // are aliased to pairs of single-precision FP registers. 5898 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 5899 5900 // 0-31 are the general purpose registers, $0 - $31. 5901 // 32-63 are the floating-point registers, $f0 - $f31. 5902 // 64 and 65 are the multiply/divide registers, $hi and $lo. 5903 // 66 is the (notional, I think) register for signal-handler return. 5904 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65); 5905 5906 // 67-74 are the floating-point status registers, $fcc0 - $fcc7. 5907 // They are one bit wide and ignored here. 5908 5909 // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31. 5910 // (coprocessor 1 is the FP unit) 5911 // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31. 5912 // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31. 5913 // 176-181 are the DSP accumulator registers. 5914 AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181); 5915 return false; 5916 } 5917 5918 //===----------------------------------------------------------------------===// 5919 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults. 5920 // Currently subclassed only to implement custom OpenCL C function attribute 5921 // handling. 5922 //===----------------------------------------------------------------------===// 5923 5924 namespace { 5925 5926 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo { 5927 public: 5928 TCETargetCodeGenInfo(CodeGenTypes &CGT) 5929 : DefaultTargetCodeGenInfo(CGT) {} 5930 5931 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5932 CodeGen::CodeGenModule &M) const override; 5933 }; 5934 5935 void TCETargetCodeGenInfo::setTargetAttributes( 5936 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 5937 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); 5938 if (!FD) return; 5939 5940 llvm::Function *F = cast<llvm::Function>(GV); 5941 5942 if (M.getLangOpts().OpenCL) { 5943 if (FD->hasAttr<OpenCLKernelAttr>()) { 5944 // OpenCL C Kernel functions are not subject to inlining 5945 F->addFnAttr(llvm::Attribute::NoInline); 5946 const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>(); 5947 if (Attr) { 5948 // Convert the reqd_work_group_size() attributes to metadata. 5949 llvm::LLVMContext &Context = F->getContext(); 5950 llvm::NamedMDNode *OpenCLMetadata = 5951 M.getModule().getOrInsertNamedMetadata( 5952 "opencl.kernel_wg_size_info"); 5953 5954 SmallVector<llvm::Metadata *, 5> Operands; 5955 Operands.push_back(llvm::ConstantAsMetadata::get(F)); 5956 5957 Operands.push_back( 5958 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 5959 M.Int32Ty, llvm::APInt(32, Attr->getXDim())))); 5960 Operands.push_back( 5961 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 5962 M.Int32Ty, llvm::APInt(32, Attr->getYDim())))); 5963 Operands.push_back( 5964 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 5965 M.Int32Ty, llvm::APInt(32, Attr->getZDim())))); 5966 5967 // Add a boolean constant operand for "required" (true) or "hint" 5968 // (false) for implementing the work_group_size_hint attr later. 5969 // Currently always true as the hint is not yet implemented. 5970 Operands.push_back( 5971 llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context))); 5972 OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands)); 5973 } 5974 } 5975 } 5976 } 5977 5978 } 5979 5980 //===----------------------------------------------------------------------===// 5981 // Hexagon ABI Implementation 5982 //===----------------------------------------------------------------------===// 5983 5984 namespace { 5985 5986 class HexagonABIInfo : public ABIInfo { 5987 5988 5989 public: 5990 HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 5991 5992 private: 5993 5994 ABIArgInfo classifyReturnType(QualType RetTy) const; 5995 ABIArgInfo classifyArgumentType(QualType RetTy) const; 5996 5997 void computeInfo(CGFunctionInfo &FI) const override; 5998 5999 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 6000 CodeGenFunction &CGF) const override; 6001 }; 6002 6003 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo { 6004 public: 6005 HexagonTargetCodeGenInfo(CodeGenTypes &CGT) 6006 :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {} 6007 6008 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 6009 return 29; 6010 } 6011 }; 6012 6013 } 6014 6015 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const { 6016 if (!getCXXABI().classifyReturnType(FI)) 6017 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 6018 for (auto &I : FI.arguments()) 6019 I.info = classifyArgumentType(I.type); 6020 } 6021 6022 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const { 6023 if (!isAggregateTypeForABI(Ty)) { 6024 // Treat an enum type as its underlying type. 6025 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 6026 Ty = EnumTy->getDecl()->getIntegerType(); 6027 6028 return (Ty->isPromotableIntegerType() ? 6029 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 6030 } 6031 6032 // Ignore empty records. 6033 if (isEmptyRecord(getContext(), Ty, true)) 6034 return ABIArgInfo::getIgnore(); 6035 6036 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 6037 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 6038 6039 uint64_t Size = getContext().getTypeSize(Ty); 6040 if (Size > 64) 6041 return ABIArgInfo::getIndirect(0, /*ByVal=*/true); 6042 // Pass in the smallest viable integer type. 6043 else if (Size > 32) 6044 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); 6045 else if (Size > 16) 6046 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6047 else if (Size > 8) 6048 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6049 else 6050 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6051 } 6052 6053 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const { 6054 if (RetTy->isVoidType()) 6055 return ABIArgInfo::getIgnore(); 6056 6057 // Large vector types should be returned via memory. 6058 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64) 6059 return ABIArgInfo::getIndirect(0); 6060 6061 if (!isAggregateTypeForABI(RetTy)) { 6062 // Treat an enum type as its underlying type. 6063 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 6064 RetTy = EnumTy->getDecl()->getIntegerType(); 6065 6066 return (RetTy->isPromotableIntegerType() ? 6067 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 6068 } 6069 6070 if (isEmptyRecord(getContext(), RetTy, true)) 6071 return ABIArgInfo::getIgnore(); 6072 6073 // Aggregates <= 8 bytes are returned in r0; other aggregates 6074 // are returned indirectly. 6075 uint64_t Size = getContext().getTypeSize(RetTy); 6076 if (Size <= 64) { 6077 // Return in the smallest viable integer type. 6078 if (Size <= 8) 6079 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6080 if (Size <= 16) 6081 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6082 if (Size <= 32) 6083 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6084 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); 6085 } 6086 6087 return ABIArgInfo::getIndirect(0, /*ByVal=*/true); 6088 } 6089 6090 llvm::Value *HexagonABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 6091 CodeGenFunction &CGF) const { 6092 // FIXME: Need to handle alignment 6093 llvm::Type *BPP = CGF.Int8PtrPtrTy; 6094 6095 CGBuilderTy &Builder = CGF.Builder; 6096 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, 6097 "ap"); 6098 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 6099 llvm::Type *PTy = 6100 llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 6101 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); 6102 6103 uint64_t Offset = 6104 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4); 6105 llvm::Value *NextAddr = 6106 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), 6107 "ap.next"); 6108 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 6109 6110 return AddrTyped; 6111 } 6112 6113 //===----------------------------------------------------------------------===// 6114 // AMDGPU ABI Implementation 6115 //===----------------------------------------------------------------------===// 6116 6117 namespace { 6118 6119 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo { 6120 public: 6121 AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT) 6122 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 6123 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6124 CodeGen::CodeGenModule &M) const override; 6125 }; 6126 6127 } 6128 6129 void AMDGPUTargetCodeGenInfo::setTargetAttributes( 6130 const Decl *D, 6131 llvm::GlobalValue *GV, 6132 CodeGen::CodeGenModule &M) const { 6133 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); 6134 if (!FD) 6135 return; 6136 6137 if (const auto Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) { 6138 llvm::Function *F = cast<llvm::Function>(GV); 6139 uint32_t NumVGPR = Attr->getNumVGPR(); 6140 if (NumVGPR != 0) 6141 F->addFnAttr("amdgpu_num_vgpr", llvm::utostr(NumVGPR)); 6142 } 6143 6144 if (const auto Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) { 6145 llvm::Function *F = cast<llvm::Function>(GV); 6146 unsigned NumSGPR = Attr->getNumSGPR(); 6147 if (NumSGPR != 0) 6148 F->addFnAttr("amdgpu_num_sgpr", llvm::utostr(NumSGPR)); 6149 } 6150 } 6151 6152 6153 //===----------------------------------------------------------------------===// 6154 // SPARC v9 ABI Implementation. 6155 // Based on the SPARC Compliance Definition version 2.4.1. 6156 // 6157 // Function arguments a mapped to a nominal "parameter array" and promoted to 6158 // registers depending on their type. Each argument occupies 8 or 16 bytes in 6159 // the array, structs larger than 16 bytes are passed indirectly. 6160 // 6161 // One case requires special care: 6162 // 6163 // struct mixed { 6164 // int i; 6165 // float f; 6166 // }; 6167 // 6168 // When a struct mixed is passed by value, it only occupies 8 bytes in the 6169 // parameter array, but the int is passed in an integer register, and the float 6170 // is passed in a floating point register. This is represented as two arguments 6171 // with the LLVM IR inreg attribute: 6172 // 6173 // declare void f(i32 inreg %i, float inreg %f) 6174 // 6175 // The code generator will only allocate 4 bytes from the parameter array for 6176 // the inreg arguments. All other arguments are allocated a multiple of 8 6177 // bytes. 6178 // 6179 namespace { 6180 class SparcV9ABIInfo : public ABIInfo { 6181 public: 6182 SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 6183 6184 private: 6185 ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const; 6186 void computeInfo(CGFunctionInfo &FI) const override; 6187 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 6188 CodeGenFunction &CGF) const override; 6189 6190 // Coercion type builder for structs passed in registers. The coercion type 6191 // serves two purposes: 6192 // 6193 // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned' 6194 // in registers. 6195 // 2. Expose aligned floating point elements as first-level elements, so the 6196 // code generator knows to pass them in floating point registers. 6197 // 6198 // We also compute the InReg flag which indicates that the struct contains 6199 // aligned 32-bit floats. 6200 // 6201 struct CoerceBuilder { 6202 llvm::LLVMContext &Context; 6203 const llvm::DataLayout &DL; 6204 SmallVector<llvm::Type*, 8> Elems; 6205 uint64_t Size; 6206 bool InReg; 6207 6208 CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl) 6209 : Context(c), DL(dl), Size(0), InReg(false) {} 6210 6211 // Pad Elems with integers until Size is ToSize. 6212 void pad(uint64_t ToSize) { 6213 assert(ToSize >= Size && "Cannot remove elements"); 6214 if (ToSize == Size) 6215 return; 6216 6217 // Finish the current 64-bit word. 6218 uint64_t Aligned = llvm::RoundUpToAlignment(Size, 64); 6219 if (Aligned > Size && Aligned <= ToSize) { 6220 Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size)); 6221 Size = Aligned; 6222 } 6223 6224 // Add whole 64-bit words. 6225 while (Size + 64 <= ToSize) { 6226 Elems.push_back(llvm::Type::getInt64Ty(Context)); 6227 Size += 64; 6228 } 6229 6230 // Final in-word padding. 6231 if (Size < ToSize) { 6232 Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size)); 6233 Size = ToSize; 6234 } 6235 } 6236 6237 // Add a floating point element at Offset. 6238 void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) { 6239 // Unaligned floats are treated as integers. 6240 if (Offset % Bits) 6241 return; 6242 // The InReg flag is only required if there are any floats < 64 bits. 6243 if (Bits < 64) 6244 InReg = true; 6245 pad(Offset); 6246 Elems.push_back(Ty); 6247 Size = Offset + Bits; 6248 } 6249 6250 // Add a struct type to the coercion type, starting at Offset (in bits). 6251 void addStruct(uint64_t Offset, llvm::StructType *StrTy) { 6252 const llvm::StructLayout *Layout = DL.getStructLayout(StrTy); 6253 for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) { 6254 llvm::Type *ElemTy = StrTy->getElementType(i); 6255 uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i); 6256 switch (ElemTy->getTypeID()) { 6257 case llvm::Type::StructTyID: 6258 addStruct(ElemOffset, cast<llvm::StructType>(ElemTy)); 6259 break; 6260 case llvm::Type::FloatTyID: 6261 addFloat(ElemOffset, ElemTy, 32); 6262 break; 6263 case llvm::Type::DoubleTyID: 6264 addFloat(ElemOffset, ElemTy, 64); 6265 break; 6266 case llvm::Type::FP128TyID: 6267 addFloat(ElemOffset, ElemTy, 128); 6268 break; 6269 case llvm::Type::PointerTyID: 6270 if (ElemOffset % 64 == 0) { 6271 pad(ElemOffset); 6272 Elems.push_back(ElemTy); 6273 Size += 64; 6274 } 6275 break; 6276 default: 6277 break; 6278 } 6279 } 6280 } 6281 6282 // Check if Ty is a usable substitute for the coercion type. 6283 bool isUsableType(llvm::StructType *Ty) const { 6284 return llvm::makeArrayRef(Elems) == Ty->elements(); 6285 } 6286 6287 // Get the coercion type as a literal struct type. 6288 llvm::Type *getType() const { 6289 if (Elems.size() == 1) 6290 return Elems.front(); 6291 else 6292 return llvm::StructType::get(Context, Elems); 6293 } 6294 }; 6295 }; 6296 } // end anonymous namespace 6297 6298 ABIArgInfo 6299 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const { 6300 if (Ty->isVoidType()) 6301 return ABIArgInfo::getIgnore(); 6302 6303 uint64_t Size = getContext().getTypeSize(Ty); 6304 6305 // Anything too big to fit in registers is passed with an explicit indirect 6306 // pointer / sret pointer. 6307 if (Size > SizeLimit) 6308 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 6309 6310 // Treat an enum type as its underlying type. 6311 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 6312 Ty = EnumTy->getDecl()->getIntegerType(); 6313 6314 // Integer types smaller than a register are extended. 6315 if (Size < 64 && Ty->isIntegerType()) 6316 return ABIArgInfo::getExtend(); 6317 6318 // Other non-aggregates go in registers. 6319 if (!isAggregateTypeForABI(Ty)) 6320 return ABIArgInfo::getDirect(); 6321 6322 // If a C++ object has either a non-trivial copy constructor or a non-trivial 6323 // destructor, it is passed with an explicit indirect pointer / sret pointer. 6324 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 6325 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 6326 6327 // This is a small aggregate type that should be passed in registers. 6328 // Build a coercion type from the LLVM struct type. 6329 llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty)); 6330 if (!StrTy) 6331 return ABIArgInfo::getDirect(); 6332 6333 CoerceBuilder CB(getVMContext(), getDataLayout()); 6334 CB.addStruct(0, StrTy); 6335 CB.pad(llvm::RoundUpToAlignment(CB.DL.getTypeSizeInBits(StrTy), 64)); 6336 6337 // Try to use the original type for coercion. 6338 llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType(); 6339 6340 if (CB.InReg) 6341 return ABIArgInfo::getDirectInReg(CoerceTy); 6342 else 6343 return ABIArgInfo::getDirect(CoerceTy); 6344 } 6345 6346 llvm::Value *SparcV9ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 6347 CodeGenFunction &CGF) const { 6348 ABIArgInfo AI = classifyType(Ty, 16 * 8); 6349 llvm::Type *ArgTy = CGT.ConvertType(Ty); 6350 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 6351 AI.setCoerceToType(ArgTy); 6352 6353 llvm::Type *BPP = CGF.Int8PtrPtrTy; 6354 CGBuilderTy &Builder = CGF.Builder; 6355 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); 6356 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 6357 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 6358 llvm::Value *ArgAddr; 6359 unsigned Stride; 6360 6361 switch (AI.getKind()) { 6362 case ABIArgInfo::Expand: 6363 case ABIArgInfo::InAlloca: 6364 llvm_unreachable("Unsupported ABI kind for va_arg"); 6365 6366 case ABIArgInfo::Extend: 6367 Stride = 8; 6368 ArgAddr = Builder 6369 .CreateConstGEP1_32(Addr, 8 - getDataLayout().getTypeAllocSize(ArgTy), 6370 "extend"); 6371 break; 6372 6373 case ABIArgInfo::Direct: 6374 Stride = getDataLayout().getTypeAllocSize(AI.getCoerceToType()); 6375 ArgAddr = Addr; 6376 break; 6377 6378 case ABIArgInfo::Indirect: 6379 Stride = 8; 6380 ArgAddr = Builder.CreateBitCast(Addr, 6381 llvm::PointerType::getUnqual(ArgPtrTy), 6382 "indirect"); 6383 ArgAddr = Builder.CreateLoad(ArgAddr, "indirect.arg"); 6384 break; 6385 6386 case ABIArgInfo::Ignore: 6387 return llvm::UndefValue::get(ArgPtrTy); 6388 } 6389 6390 // Update VAList. 6391 Addr = Builder.CreateConstGEP1_32(Addr, Stride, "ap.next"); 6392 Builder.CreateStore(Addr, VAListAddrAsBPP); 6393 6394 return Builder.CreatePointerCast(ArgAddr, ArgPtrTy, "arg.addr"); 6395 } 6396 6397 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const { 6398 FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8); 6399 for (auto &I : FI.arguments()) 6400 I.info = classifyType(I.type, 16 * 8); 6401 } 6402 6403 namespace { 6404 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo { 6405 public: 6406 SparcV9TargetCodeGenInfo(CodeGenTypes &CGT) 6407 : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {} 6408 6409 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 6410 return 14; 6411 } 6412 6413 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 6414 llvm::Value *Address) const override; 6415 }; 6416 } // end anonymous namespace 6417 6418 bool 6419 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 6420 llvm::Value *Address) const { 6421 // This is calculated from the LLVM and GCC tables and verified 6422 // against gcc output. AFAIK all ABIs use the same encoding. 6423 6424 CodeGen::CGBuilderTy &Builder = CGF.Builder; 6425 6426 llvm::IntegerType *i8 = CGF.Int8Ty; 6427 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 6428 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 6429 6430 // 0-31: the 8-byte general-purpose registers 6431 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 6432 6433 // 32-63: f0-31, the 4-byte floating-point registers 6434 AssignToArrayRange(Builder, Address, Four8, 32, 63); 6435 6436 // Y = 64 6437 // PSR = 65 6438 // WIM = 66 6439 // TBR = 67 6440 // PC = 68 6441 // NPC = 69 6442 // FSR = 70 6443 // CSR = 71 6444 AssignToArrayRange(Builder, Address, Eight8, 64, 71); 6445 6446 // 72-87: d0-15, the 8-byte floating-point registers 6447 AssignToArrayRange(Builder, Address, Eight8, 72, 87); 6448 6449 return false; 6450 } 6451 6452 6453 //===----------------------------------------------------------------------===// 6454 // XCore ABI Implementation 6455 //===----------------------------------------------------------------------===// 6456 6457 namespace { 6458 6459 /// A SmallStringEnc instance is used to build up the TypeString by passing 6460 /// it by reference between functions that append to it. 6461 typedef llvm::SmallString<128> SmallStringEnc; 6462 6463 /// TypeStringCache caches the meta encodings of Types. 6464 /// 6465 /// The reason for caching TypeStrings is two fold: 6466 /// 1. To cache a type's encoding for later uses; 6467 /// 2. As a means to break recursive member type inclusion. 6468 /// 6469 /// A cache Entry can have a Status of: 6470 /// NonRecursive: The type encoding is not recursive; 6471 /// Recursive: The type encoding is recursive; 6472 /// Incomplete: An incomplete TypeString; 6473 /// IncompleteUsed: An incomplete TypeString that has been used in a 6474 /// Recursive type encoding. 6475 /// 6476 /// A NonRecursive entry will have all of its sub-members expanded as fully 6477 /// as possible. Whilst it may contain types which are recursive, the type 6478 /// itself is not recursive and thus its encoding may be safely used whenever 6479 /// the type is encountered. 6480 /// 6481 /// A Recursive entry will have all of its sub-members expanded as fully as 6482 /// possible. The type itself is recursive and it may contain other types which 6483 /// are recursive. The Recursive encoding must not be used during the expansion 6484 /// of a recursive type's recursive branch. For simplicity the code uses 6485 /// IncompleteCount to reject all usage of Recursive encodings for member types. 6486 /// 6487 /// An Incomplete entry is always a RecordType and only encodes its 6488 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and 6489 /// are placed into the cache during type expansion as a means to identify and 6490 /// handle recursive inclusion of types as sub-members. If there is recursion 6491 /// the entry becomes IncompleteUsed. 6492 /// 6493 /// During the expansion of a RecordType's members: 6494 /// 6495 /// If the cache contains a NonRecursive encoding for the member type, the 6496 /// cached encoding is used; 6497 /// 6498 /// If the cache contains a Recursive encoding for the member type, the 6499 /// cached encoding is 'Swapped' out, as it may be incorrect, and... 6500 /// 6501 /// If the member is a RecordType, an Incomplete encoding is placed into the 6502 /// cache to break potential recursive inclusion of itself as a sub-member; 6503 /// 6504 /// Once a member RecordType has been expanded, its temporary incomplete 6505 /// entry is removed from the cache. If a Recursive encoding was swapped out 6506 /// it is swapped back in; 6507 /// 6508 /// If an incomplete entry is used to expand a sub-member, the incomplete 6509 /// entry is marked as IncompleteUsed. The cache keeps count of how many 6510 /// IncompleteUsed entries it currently contains in IncompleteUsedCount; 6511 /// 6512 /// If a member's encoding is found to be a NonRecursive or Recursive viz: 6513 /// IncompleteUsedCount==0, the member's encoding is added to the cache. 6514 /// Else the member is part of a recursive type and thus the recursion has 6515 /// been exited too soon for the encoding to be correct for the member. 6516 /// 6517 class TypeStringCache { 6518 enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed}; 6519 struct Entry { 6520 std::string Str; // The encoded TypeString for the type. 6521 enum Status State; // Information about the encoding in 'Str'. 6522 std::string Swapped; // A temporary place holder for a Recursive encoding 6523 // during the expansion of RecordType's members. 6524 }; 6525 std::map<const IdentifierInfo *, struct Entry> Map; 6526 unsigned IncompleteCount; // Number of Incomplete entries in the Map. 6527 unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map. 6528 public: 6529 TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {}; 6530 void addIncomplete(const IdentifierInfo *ID, std::string StubEnc); 6531 bool removeIncomplete(const IdentifierInfo *ID); 6532 void addIfComplete(const IdentifierInfo *ID, StringRef Str, 6533 bool IsRecursive); 6534 StringRef lookupStr(const IdentifierInfo *ID); 6535 }; 6536 6537 /// TypeString encodings for enum & union fields must be order. 6538 /// FieldEncoding is a helper for this ordering process. 6539 class FieldEncoding { 6540 bool HasName; 6541 std::string Enc; 6542 public: 6543 FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {}; 6544 StringRef str() {return Enc.c_str();}; 6545 bool operator<(const FieldEncoding &rhs) const { 6546 if (HasName != rhs.HasName) return HasName; 6547 return Enc < rhs.Enc; 6548 } 6549 }; 6550 6551 class XCoreABIInfo : public DefaultABIInfo { 6552 public: 6553 XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 6554 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 6555 CodeGenFunction &CGF) const override; 6556 }; 6557 6558 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo { 6559 mutable TypeStringCache TSC; 6560 public: 6561 XCoreTargetCodeGenInfo(CodeGenTypes &CGT) 6562 :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {} 6563 void emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 6564 CodeGen::CodeGenModule &M) const override; 6565 }; 6566 6567 } // End anonymous namespace. 6568 6569 llvm::Value *XCoreABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 6570 CodeGenFunction &CGF) const { 6571 CGBuilderTy &Builder = CGF.Builder; 6572 6573 // Get the VAList. 6574 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, 6575 CGF.Int8PtrPtrTy); 6576 llvm::Value *AP = Builder.CreateLoad(VAListAddrAsBPP); 6577 6578 // Handle the argument. 6579 ABIArgInfo AI = classifyArgumentType(Ty); 6580 llvm::Type *ArgTy = CGT.ConvertType(Ty); 6581 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 6582 AI.setCoerceToType(ArgTy); 6583 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 6584 llvm::Value *Val; 6585 uint64_t ArgSize = 0; 6586 switch (AI.getKind()) { 6587 case ABIArgInfo::Expand: 6588 case ABIArgInfo::InAlloca: 6589 llvm_unreachable("Unsupported ABI kind for va_arg"); 6590 case ABIArgInfo::Ignore: 6591 Val = llvm::UndefValue::get(ArgPtrTy); 6592 ArgSize = 0; 6593 break; 6594 case ABIArgInfo::Extend: 6595 case ABIArgInfo::Direct: 6596 Val = Builder.CreatePointerCast(AP, ArgPtrTy); 6597 ArgSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType()); 6598 if (ArgSize < 4) 6599 ArgSize = 4; 6600 break; 6601 case ABIArgInfo::Indirect: 6602 llvm::Value *ArgAddr; 6603 ArgAddr = Builder.CreateBitCast(AP, llvm::PointerType::getUnqual(ArgPtrTy)); 6604 ArgAddr = Builder.CreateLoad(ArgAddr); 6605 Val = Builder.CreatePointerCast(ArgAddr, ArgPtrTy); 6606 ArgSize = 4; 6607 break; 6608 } 6609 6610 // Increment the VAList. 6611 if (ArgSize) { 6612 llvm::Value *APN = Builder.CreateConstGEP1_32(AP, ArgSize); 6613 Builder.CreateStore(APN, VAListAddrAsBPP); 6614 } 6615 return Val; 6616 } 6617 6618 /// During the expansion of a RecordType, an incomplete TypeString is placed 6619 /// into the cache as a means to identify and break recursion. 6620 /// If there is a Recursive encoding in the cache, it is swapped out and will 6621 /// be reinserted by removeIncomplete(). 6622 /// All other types of encoding should have been used rather than arriving here. 6623 void TypeStringCache::addIncomplete(const IdentifierInfo *ID, 6624 std::string StubEnc) { 6625 if (!ID) 6626 return; 6627 Entry &E = Map[ID]; 6628 assert( (E.Str.empty() || E.State == Recursive) && 6629 "Incorrectly use of addIncomplete"); 6630 assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()"); 6631 E.Swapped.swap(E.Str); // swap out the Recursive 6632 E.Str.swap(StubEnc); 6633 E.State = Incomplete; 6634 ++IncompleteCount; 6635 } 6636 6637 /// Once the RecordType has been expanded, the temporary incomplete TypeString 6638 /// must be removed from the cache. 6639 /// If a Recursive was swapped out by addIncomplete(), it will be replaced. 6640 /// Returns true if the RecordType was defined recursively. 6641 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) { 6642 if (!ID) 6643 return false; 6644 auto I = Map.find(ID); 6645 assert(I != Map.end() && "Entry not present"); 6646 Entry &E = I->second; 6647 assert( (E.State == Incomplete || 6648 E.State == IncompleteUsed) && 6649 "Entry must be an incomplete type"); 6650 bool IsRecursive = false; 6651 if (E.State == IncompleteUsed) { 6652 // We made use of our Incomplete encoding, thus we are recursive. 6653 IsRecursive = true; 6654 --IncompleteUsedCount; 6655 } 6656 if (E.Swapped.empty()) 6657 Map.erase(I); 6658 else { 6659 // Swap the Recursive back. 6660 E.Swapped.swap(E.Str); 6661 E.Swapped.clear(); 6662 E.State = Recursive; 6663 } 6664 --IncompleteCount; 6665 return IsRecursive; 6666 } 6667 6668 /// Add the encoded TypeString to the cache only if it is NonRecursive or 6669 /// Recursive (viz: all sub-members were expanded as fully as possible). 6670 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str, 6671 bool IsRecursive) { 6672 if (!ID || IncompleteUsedCount) 6673 return; // No key or it is is an incomplete sub-type so don't add. 6674 Entry &E = Map[ID]; 6675 if (IsRecursive && !E.Str.empty()) { 6676 assert(E.State==Recursive && E.Str.size() == Str.size() && 6677 "This is not the same Recursive entry"); 6678 // The parent container was not recursive after all, so we could have used 6679 // this Recursive sub-member entry after all, but we assumed the worse when 6680 // we started viz: IncompleteCount!=0. 6681 return; 6682 } 6683 assert(E.Str.empty() && "Entry already present"); 6684 E.Str = Str.str(); 6685 E.State = IsRecursive? Recursive : NonRecursive; 6686 } 6687 6688 /// Return a cached TypeString encoding for the ID. If there isn't one, or we 6689 /// are recursively expanding a type (IncompleteCount != 0) and the cached 6690 /// encoding is Recursive, return an empty StringRef. 6691 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) { 6692 if (!ID) 6693 return StringRef(); // We have no key. 6694 auto I = Map.find(ID); 6695 if (I == Map.end()) 6696 return StringRef(); // We have no encoding. 6697 Entry &E = I->second; 6698 if (E.State == Recursive && IncompleteCount) 6699 return StringRef(); // We don't use Recursive encodings for member types. 6700 6701 if (E.State == Incomplete) { 6702 // The incomplete type is being used to break out of recursion. 6703 E.State = IncompleteUsed; 6704 ++IncompleteUsedCount; 6705 } 6706 return E.Str.c_str(); 6707 } 6708 6709 /// The XCore ABI includes a type information section that communicates symbol 6710 /// type information to the linker. The linker uses this information to verify 6711 /// safety/correctness of things such as array bound and pointers et al. 6712 /// The ABI only requires C (and XC) language modules to emit TypeStrings. 6713 /// This type information (TypeString) is emitted into meta data for all global 6714 /// symbols: definitions, declarations, functions & variables. 6715 /// 6716 /// The TypeString carries type, qualifier, name, size & value details. 6717 /// Please see 'Tools Development Guide' section 2.16.2 for format details: 6718 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf 6719 /// The output is tested by test/CodeGen/xcore-stringtype.c. 6720 /// 6721 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 6722 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC); 6723 6724 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols. 6725 void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 6726 CodeGen::CodeGenModule &CGM) const { 6727 SmallStringEnc Enc; 6728 if (getTypeString(Enc, D, CGM, TSC)) { 6729 llvm::LLVMContext &Ctx = CGM.getModule().getContext(); 6730 llvm::SmallVector<llvm::Metadata *, 2> MDVals; 6731 MDVals.push_back(llvm::ConstantAsMetadata::get(GV)); 6732 MDVals.push_back(llvm::MDString::get(Ctx, Enc.str())); 6733 llvm::NamedMDNode *MD = 6734 CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings"); 6735 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 6736 } 6737 } 6738 6739 static bool appendType(SmallStringEnc &Enc, QualType QType, 6740 const CodeGen::CodeGenModule &CGM, 6741 TypeStringCache &TSC); 6742 6743 /// Helper function for appendRecordType(). 6744 /// Builds a SmallVector containing the encoded field types in declaration 6745 /// order. 6746 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE, 6747 const RecordDecl *RD, 6748 const CodeGen::CodeGenModule &CGM, 6749 TypeStringCache &TSC) { 6750 for (const auto *Field : RD->fields()) { 6751 SmallStringEnc Enc; 6752 Enc += "m("; 6753 Enc += Field->getName(); 6754 Enc += "){"; 6755 if (Field->isBitField()) { 6756 Enc += "b("; 6757 llvm::raw_svector_ostream OS(Enc); 6758 OS.resync(); 6759 OS << Field->getBitWidthValue(CGM.getContext()); 6760 OS.flush(); 6761 Enc += ':'; 6762 } 6763 if (!appendType(Enc, Field->getType(), CGM, TSC)) 6764 return false; 6765 if (Field->isBitField()) 6766 Enc += ')'; 6767 Enc += '}'; 6768 FE.emplace_back(!Field->getName().empty(), Enc); 6769 } 6770 return true; 6771 } 6772 6773 /// Appends structure and union types to Enc and adds encoding to cache. 6774 /// Recursively calls appendType (via extractFieldType) for each field. 6775 /// Union types have their fields ordered according to the ABI. 6776 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT, 6777 const CodeGen::CodeGenModule &CGM, 6778 TypeStringCache &TSC, const IdentifierInfo *ID) { 6779 // Append the cached TypeString if we have one. 6780 StringRef TypeString = TSC.lookupStr(ID); 6781 if (!TypeString.empty()) { 6782 Enc += TypeString; 6783 return true; 6784 } 6785 6786 // Start to emit an incomplete TypeString. 6787 size_t Start = Enc.size(); 6788 Enc += (RT->isUnionType()? 'u' : 's'); 6789 Enc += '('; 6790 if (ID) 6791 Enc += ID->getName(); 6792 Enc += "){"; 6793 6794 // We collect all encoded fields and order as necessary. 6795 bool IsRecursive = false; 6796 const RecordDecl *RD = RT->getDecl()->getDefinition(); 6797 if (RD && !RD->field_empty()) { 6798 // An incomplete TypeString stub is placed in the cache for this RecordType 6799 // so that recursive calls to this RecordType will use it whilst building a 6800 // complete TypeString for this RecordType. 6801 SmallVector<FieldEncoding, 16> FE; 6802 std::string StubEnc(Enc.substr(Start).str()); 6803 StubEnc += '}'; // StubEnc now holds a valid incomplete TypeString. 6804 TSC.addIncomplete(ID, std::move(StubEnc)); 6805 if (!extractFieldType(FE, RD, CGM, TSC)) { 6806 (void) TSC.removeIncomplete(ID); 6807 return false; 6808 } 6809 IsRecursive = TSC.removeIncomplete(ID); 6810 // The ABI requires unions to be sorted but not structures. 6811 // See FieldEncoding::operator< for sort algorithm. 6812 if (RT->isUnionType()) 6813 std::sort(FE.begin(), FE.end()); 6814 // We can now complete the TypeString. 6815 unsigned E = FE.size(); 6816 for (unsigned I = 0; I != E; ++I) { 6817 if (I) 6818 Enc += ','; 6819 Enc += FE[I].str(); 6820 } 6821 } 6822 Enc += '}'; 6823 TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive); 6824 return true; 6825 } 6826 6827 /// Appends enum types to Enc and adds the encoding to the cache. 6828 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET, 6829 TypeStringCache &TSC, 6830 const IdentifierInfo *ID) { 6831 // Append the cached TypeString if we have one. 6832 StringRef TypeString = TSC.lookupStr(ID); 6833 if (!TypeString.empty()) { 6834 Enc += TypeString; 6835 return true; 6836 } 6837 6838 size_t Start = Enc.size(); 6839 Enc += "e("; 6840 if (ID) 6841 Enc += ID->getName(); 6842 Enc += "){"; 6843 6844 // We collect all encoded enumerations and order them alphanumerically. 6845 if (const EnumDecl *ED = ET->getDecl()->getDefinition()) { 6846 SmallVector<FieldEncoding, 16> FE; 6847 for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E; 6848 ++I) { 6849 SmallStringEnc EnumEnc; 6850 EnumEnc += "m("; 6851 EnumEnc += I->getName(); 6852 EnumEnc += "){"; 6853 I->getInitVal().toString(EnumEnc); 6854 EnumEnc += '}'; 6855 FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc)); 6856 } 6857 std::sort(FE.begin(), FE.end()); 6858 unsigned E = FE.size(); 6859 for (unsigned I = 0; I != E; ++I) { 6860 if (I) 6861 Enc += ','; 6862 Enc += FE[I].str(); 6863 } 6864 } 6865 Enc += '}'; 6866 TSC.addIfComplete(ID, Enc.substr(Start), false); 6867 return true; 6868 } 6869 6870 /// Appends type's qualifier to Enc. 6871 /// This is done prior to appending the type's encoding. 6872 static void appendQualifier(SmallStringEnc &Enc, QualType QT) { 6873 // Qualifiers are emitted in alphabetical order. 6874 static const char *Table[] = {"","c:","r:","cr:","v:","cv:","rv:","crv:"}; 6875 int Lookup = 0; 6876 if (QT.isConstQualified()) 6877 Lookup += 1<<0; 6878 if (QT.isRestrictQualified()) 6879 Lookup += 1<<1; 6880 if (QT.isVolatileQualified()) 6881 Lookup += 1<<2; 6882 Enc += Table[Lookup]; 6883 } 6884 6885 /// Appends built-in types to Enc. 6886 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) { 6887 const char *EncType; 6888 switch (BT->getKind()) { 6889 case BuiltinType::Void: 6890 EncType = "0"; 6891 break; 6892 case BuiltinType::Bool: 6893 EncType = "b"; 6894 break; 6895 case BuiltinType::Char_U: 6896 EncType = "uc"; 6897 break; 6898 case BuiltinType::UChar: 6899 EncType = "uc"; 6900 break; 6901 case BuiltinType::SChar: 6902 EncType = "sc"; 6903 break; 6904 case BuiltinType::UShort: 6905 EncType = "us"; 6906 break; 6907 case BuiltinType::Short: 6908 EncType = "ss"; 6909 break; 6910 case BuiltinType::UInt: 6911 EncType = "ui"; 6912 break; 6913 case BuiltinType::Int: 6914 EncType = "si"; 6915 break; 6916 case BuiltinType::ULong: 6917 EncType = "ul"; 6918 break; 6919 case BuiltinType::Long: 6920 EncType = "sl"; 6921 break; 6922 case BuiltinType::ULongLong: 6923 EncType = "ull"; 6924 break; 6925 case BuiltinType::LongLong: 6926 EncType = "sll"; 6927 break; 6928 case BuiltinType::Float: 6929 EncType = "ft"; 6930 break; 6931 case BuiltinType::Double: 6932 EncType = "d"; 6933 break; 6934 case BuiltinType::LongDouble: 6935 EncType = "ld"; 6936 break; 6937 default: 6938 return false; 6939 } 6940 Enc += EncType; 6941 return true; 6942 } 6943 6944 /// Appends a pointer encoding to Enc before calling appendType for the pointee. 6945 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT, 6946 const CodeGen::CodeGenModule &CGM, 6947 TypeStringCache &TSC) { 6948 Enc += "p("; 6949 if (!appendType(Enc, PT->getPointeeType(), CGM, TSC)) 6950 return false; 6951 Enc += ')'; 6952 return true; 6953 } 6954 6955 /// Appends array encoding to Enc before calling appendType for the element. 6956 static bool appendArrayType(SmallStringEnc &Enc, QualType QT, 6957 const ArrayType *AT, 6958 const CodeGen::CodeGenModule &CGM, 6959 TypeStringCache &TSC, StringRef NoSizeEnc) { 6960 if (AT->getSizeModifier() != ArrayType::Normal) 6961 return false; 6962 Enc += "a("; 6963 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) 6964 CAT->getSize().toStringUnsigned(Enc); 6965 else 6966 Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "". 6967 Enc += ':'; 6968 // The Qualifiers should be attached to the type rather than the array. 6969 appendQualifier(Enc, QT); 6970 if (!appendType(Enc, AT->getElementType(), CGM, TSC)) 6971 return false; 6972 Enc += ')'; 6973 return true; 6974 } 6975 6976 /// Appends a function encoding to Enc, calling appendType for the return type 6977 /// and the arguments. 6978 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT, 6979 const CodeGen::CodeGenModule &CGM, 6980 TypeStringCache &TSC) { 6981 Enc += "f{"; 6982 if (!appendType(Enc, FT->getReturnType(), CGM, TSC)) 6983 return false; 6984 Enc += "}("; 6985 if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) { 6986 // N.B. we are only interested in the adjusted param types. 6987 auto I = FPT->param_type_begin(); 6988 auto E = FPT->param_type_end(); 6989 if (I != E) { 6990 do { 6991 if (!appendType(Enc, *I, CGM, TSC)) 6992 return false; 6993 ++I; 6994 if (I != E) 6995 Enc += ','; 6996 } while (I != E); 6997 if (FPT->isVariadic()) 6998 Enc += ",va"; 6999 } else { 7000 if (FPT->isVariadic()) 7001 Enc += "va"; 7002 else 7003 Enc += '0'; 7004 } 7005 } 7006 Enc += ')'; 7007 return true; 7008 } 7009 7010 /// Handles the type's qualifier before dispatching a call to handle specific 7011 /// type encodings. 7012 static bool appendType(SmallStringEnc &Enc, QualType QType, 7013 const CodeGen::CodeGenModule &CGM, 7014 TypeStringCache &TSC) { 7015 7016 QualType QT = QType.getCanonicalType(); 7017 7018 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) 7019 // The Qualifiers should be attached to the type rather than the array. 7020 // Thus we don't call appendQualifier() here. 7021 return appendArrayType(Enc, QT, AT, CGM, TSC, ""); 7022 7023 appendQualifier(Enc, QT); 7024 7025 if (const BuiltinType *BT = QT->getAs<BuiltinType>()) 7026 return appendBuiltinType(Enc, BT); 7027 7028 if (const PointerType *PT = QT->getAs<PointerType>()) 7029 return appendPointerType(Enc, PT, CGM, TSC); 7030 7031 if (const EnumType *ET = QT->getAs<EnumType>()) 7032 return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier()); 7033 7034 if (const RecordType *RT = QT->getAsStructureType()) 7035 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 7036 7037 if (const RecordType *RT = QT->getAsUnionType()) 7038 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 7039 7040 if (const FunctionType *FT = QT->getAs<FunctionType>()) 7041 return appendFunctionType(Enc, FT, CGM, TSC); 7042 7043 return false; 7044 } 7045 7046 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 7047 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) { 7048 if (!D) 7049 return false; 7050 7051 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 7052 if (FD->getLanguageLinkage() != CLanguageLinkage) 7053 return false; 7054 return appendType(Enc, FD->getType(), CGM, TSC); 7055 } 7056 7057 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 7058 if (VD->getLanguageLinkage() != CLanguageLinkage) 7059 return false; 7060 QualType QT = VD->getType().getCanonicalType(); 7061 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) { 7062 // Global ArrayTypes are given a size of '*' if the size is unknown. 7063 // The Qualifiers should be attached to the type rather than the array. 7064 // Thus we don't call appendQualifier() here. 7065 return appendArrayType(Enc, QT, AT, CGM, TSC, "*"); 7066 } 7067 return appendType(Enc, QT, CGM, TSC); 7068 } 7069 return false; 7070 } 7071 7072 7073 //===----------------------------------------------------------------------===// 7074 // Driver code 7075 //===----------------------------------------------------------------------===// 7076 7077 const llvm::Triple &CodeGenModule::getTriple() const { 7078 return getTarget().getTriple(); 7079 } 7080 7081 bool CodeGenModule::supportsCOMDAT() const { 7082 return !getTriple().isOSBinFormatMachO(); 7083 } 7084 7085 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { 7086 if (TheTargetCodeGenInfo) 7087 return *TheTargetCodeGenInfo; 7088 7089 const llvm::Triple &Triple = getTarget().getTriple(); 7090 switch (Triple.getArch()) { 7091 default: 7092 return *(TheTargetCodeGenInfo = new DefaultTargetCodeGenInfo(Types)); 7093 7094 case llvm::Triple::le32: 7095 return *(TheTargetCodeGenInfo = new PNaClTargetCodeGenInfo(Types)); 7096 case llvm::Triple::mips: 7097 case llvm::Triple::mipsel: 7098 return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, true)); 7099 7100 case llvm::Triple::mips64: 7101 case llvm::Triple::mips64el: 7102 return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, false)); 7103 7104 case llvm::Triple::aarch64: 7105 case llvm::Triple::aarch64_be: { 7106 AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS; 7107 if (getTarget().getABI() == "darwinpcs") 7108 Kind = AArch64ABIInfo::DarwinPCS; 7109 7110 return *(TheTargetCodeGenInfo = new AArch64TargetCodeGenInfo(Types, Kind)); 7111 } 7112 7113 case llvm::Triple::arm: 7114 case llvm::Triple::armeb: 7115 case llvm::Triple::thumb: 7116 case llvm::Triple::thumbeb: 7117 { 7118 if (Triple.getOS() == llvm::Triple::Win32) { 7119 TheTargetCodeGenInfo = 7120 new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP); 7121 return *TheTargetCodeGenInfo; 7122 } 7123 7124 ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS; 7125 if (getTarget().getABI() == "apcs-gnu") 7126 Kind = ARMABIInfo::APCS; 7127 else if (CodeGenOpts.FloatABI == "hard" || 7128 (CodeGenOpts.FloatABI != "soft" && 7129 Triple.getEnvironment() == llvm::Triple::GNUEABIHF)) 7130 Kind = ARMABIInfo::AAPCS_VFP; 7131 7132 return *(TheTargetCodeGenInfo = new ARMTargetCodeGenInfo(Types, Kind)); 7133 } 7134 7135 case llvm::Triple::ppc: 7136 return *(TheTargetCodeGenInfo = new PPC32TargetCodeGenInfo(Types)); 7137 case llvm::Triple::ppc64: 7138 if (Triple.isOSBinFormatELF()) { 7139 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1; 7140 if (getTarget().getABI() == "elfv2") 7141 Kind = PPC64_SVR4_ABIInfo::ELFv2; 7142 bool HasQPX = getTarget().getABI() == "elfv1-qpx"; 7143 7144 return *(TheTargetCodeGenInfo = 7145 new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX)); 7146 } else 7147 return *(TheTargetCodeGenInfo = new PPC64TargetCodeGenInfo(Types)); 7148 case llvm::Triple::ppc64le: { 7149 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); 7150 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2; 7151 if (getTarget().getABI() == "elfv1" || getTarget().getABI() == "elfv1-qpx") 7152 Kind = PPC64_SVR4_ABIInfo::ELFv1; 7153 bool HasQPX = getTarget().getABI() == "elfv1-qpx"; 7154 7155 return *(TheTargetCodeGenInfo = 7156 new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX)); 7157 } 7158 7159 case llvm::Triple::nvptx: 7160 case llvm::Triple::nvptx64: 7161 return *(TheTargetCodeGenInfo = new NVPTXTargetCodeGenInfo(Types)); 7162 7163 case llvm::Triple::msp430: 7164 return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo(Types)); 7165 7166 case llvm::Triple::systemz: { 7167 bool HasVector = getTarget().getABI() == "vector"; 7168 return *(TheTargetCodeGenInfo = new SystemZTargetCodeGenInfo(Types, 7169 HasVector)); 7170 } 7171 7172 case llvm::Triple::tce: 7173 return *(TheTargetCodeGenInfo = new TCETargetCodeGenInfo(Types)); 7174 7175 case llvm::Triple::x86: { 7176 bool IsDarwinVectorABI = Triple.isOSDarwin(); 7177 bool IsSmallStructInRegABI = 7178 X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 7179 bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing(); 7180 7181 if (Triple.getOS() == llvm::Triple::Win32) { 7182 return *(TheTargetCodeGenInfo = new WinX86_32TargetCodeGenInfo( 7183 Types, IsDarwinVectorABI, IsSmallStructInRegABI, 7184 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters)); 7185 } else { 7186 return *(TheTargetCodeGenInfo = new X86_32TargetCodeGenInfo( 7187 Types, IsDarwinVectorABI, IsSmallStructInRegABI, 7188 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters)); 7189 } 7190 } 7191 7192 case llvm::Triple::x86_64: { 7193 StringRef ABI = getTarget().getABI(); 7194 X86AVXABILevel AVXLevel = (ABI == "avx512" ? X86AVXABILevel::AVX512 : 7195 ABI == "avx" ? X86AVXABILevel::AVX : 7196 X86AVXABILevel::None); 7197 7198 switch (Triple.getOS()) { 7199 case llvm::Triple::Win32: 7200 return *(TheTargetCodeGenInfo = 7201 new WinX86_64TargetCodeGenInfo(Types, AVXLevel)); 7202 case llvm::Triple::PS4: 7203 return *(TheTargetCodeGenInfo = 7204 new PS4TargetCodeGenInfo(Types, AVXLevel)); 7205 default: 7206 return *(TheTargetCodeGenInfo = 7207 new X86_64TargetCodeGenInfo(Types, AVXLevel)); 7208 } 7209 } 7210 case llvm::Triple::hexagon: 7211 return *(TheTargetCodeGenInfo = new HexagonTargetCodeGenInfo(Types)); 7212 case llvm::Triple::r600: 7213 return *(TheTargetCodeGenInfo = new AMDGPUTargetCodeGenInfo(Types)); 7214 case llvm::Triple::amdgcn: 7215 return *(TheTargetCodeGenInfo = new AMDGPUTargetCodeGenInfo(Types)); 7216 case llvm::Triple::sparcv9: 7217 return *(TheTargetCodeGenInfo = new SparcV9TargetCodeGenInfo(Types)); 7218 case llvm::Triple::xcore: 7219 return *(TheTargetCodeGenInfo = new XCoreTargetCodeGenInfo(Types)); 7220 } 7221 } 7222