1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // These classes wrap the information about a call or function
11 // definition used to handle ABI compliancy.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "TargetInfo.h"
16 #include "ABIInfo.h"
17 #include "CodeGenFunction.h"
18 #include "clang/AST/RecordLayout.h"
19 #include "llvm/Type.h"
20 #include "llvm/Target/TargetData.h"
21 #include "llvm/ADT/Triple.h"
22 #include "llvm/Support/raw_ostream.h"
23 using namespace clang;
24 using namespace CodeGen;
25 
26 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
27                                llvm::Value *Array,
28                                llvm::Value *Value,
29                                unsigned FirstIndex,
30                                unsigned LastIndex) {
31   // Alternatively, we could emit this as a loop in the source.
32   for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
33     llvm::Value *Cell = Builder.CreateConstInBoundsGEP1_32(Array, I);
34     Builder.CreateStore(Value, Cell);
35   }
36 }
37 
38 static bool isAggregateTypeForABI(QualType T) {
39   return CodeGenFunction::hasAggregateLLVMType(T) ||
40          T->isMemberFunctionPointerType();
41 }
42 
43 ABIInfo::~ABIInfo() {}
44 
45 ASTContext &ABIInfo::getContext() const {
46   return CGT.getContext();
47 }
48 
49 llvm::LLVMContext &ABIInfo::getVMContext() const {
50   return CGT.getLLVMContext();
51 }
52 
53 const llvm::TargetData &ABIInfo::getTargetData() const {
54   return CGT.getTargetData();
55 }
56 
57 
58 void ABIArgInfo::dump() const {
59   llvm::raw_ostream &OS = llvm::errs();
60   OS << "(ABIArgInfo Kind=";
61   switch (TheKind) {
62   case Direct:
63     OS << "Direct Type=";
64     if (const llvm::Type *Ty = getCoerceToType())
65       Ty->print(OS);
66     else
67       OS << "null";
68     break;
69   case Extend:
70     OS << "Extend";
71     break;
72   case Ignore:
73     OS << "Ignore";
74     break;
75   case Indirect:
76     OS << "Indirect Align=" << getIndirectAlign()
77        << " Byal=" << getIndirectByVal()
78        << " Realign=" << getIndirectRealign();
79     break;
80   case Expand:
81     OS << "Expand";
82     break;
83   }
84   OS << ")\n";
85 }
86 
87 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }
88 
89 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
90 
91 /// isEmptyField - Return true iff a the field is "empty", that is it
92 /// is an unnamed bit-field or an (array of) empty record(s).
93 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
94                          bool AllowArrays) {
95   if (FD->isUnnamedBitfield())
96     return true;
97 
98   QualType FT = FD->getType();
99 
100     // Constant arrays of empty records count as empty, strip them off.
101   if (AllowArrays)
102     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT))
103       FT = AT->getElementType();
104 
105   const RecordType *RT = FT->getAs<RecordType>();
106   if (!RT)
107     return false;
108 
109   // C++ record fields are never empty, at least in the Itanium ABI.
110   //
111   // FIXME: We should use a predicate for whether this behavior is true in the
112   // current ABI.
113   if (isa<CXXRecordDecl>(RT->getDecl()))
114     return false;
115 
116   return isEmptyRecord(Context, FT, AllowArrays);
117 }
118 
119 /// isEmptyRecord - Return true iff a structure contains only empty
120 /// fields. Note that a structure with a flexible array member is not
121 /// considered empty.
122 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
123   const RecordType *RT = T->getAs<RecordType>();
124   if (!RT)
125     return 0;
126   const RecordDecl *RD = RT->getDecl();
127   if (RD->hasFlexibleArrayMember())
128     return false;
129 
130   // If this is a C++ record, check the bases first.
131   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
132     for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
133            e = CXXRD->bases_end(); i != e; ++i)
134       if (!isEmptyRecord(Context, i->getType(), true))
135         return false;
136 
137   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
138          i != e; ++i)
139     if (!isEmptyField(Context, *i, AllowArrays))
140       return false;
141   return true;
142 }
143 
144 /// hasNonTrivialDestructorOrCopyConstructor - Determine if a type has either
145 /// a non-trivial destructor or a non-trivial copy constructor.
146 static bool hasNonTrivialDestructorOrCopyConstructor(const RecordType *RT) {
147   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
148   if (!RD)
149     return false;
150 
151   return !RD->hasTrivialDestructor() || !RD->hasTrivialCopyConstructor();
152 }
153 
154 /// isRecordWithNonTrivialDestructorOrCopyConstructor - Determine if a type is
155 /// a record type with either a non-trivial destructor or a non-trivial copy
156 /// constructor.
157 static bool isRecordWithNonTrivialDestructorOrCopyConstructor(QualType T) {
158   const RecordType *RT = T->getAs<RecordType>();
159   if (!RT)
160     return false;
161 
162   return hasNonTrivialDestructorOrCopyConstructor(RT);
163 }
164 
165 /// isSingleElementStruct - Determine if a structure is a "single
166 /// element struct", i.e. it has exactly one non-empty field or
167 /// exactly one field which is itself a single element
168 /// struct. Structures with flexible array members are never
169 /// considered single element structs.
170 ///
171 /// \return The field declaration for the single non-empty field, if
172 /// it exists.
173 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
174   const RecordType *RT = T->getAsStructureType();
175   if (!RT)
176     return 0;
177 
178   const RecordDecl *RD = RT->getDecl();
179   if (RD->hasFlexibleArrayMember())
180     return 0;
181 
182   const Type *Found = 0;
183 
184   // If this is a C++ record, check the bases first.
185   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
186     for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
187            e = CXXRD->bases_end(); i != e; ++i) {
188       // Ignore empty records.
189       if (isEmptyRecord(Context, i->getType(), true))
190         continue;
191 
192       // If we already found an element then this isn't a single-element struct.
193       if (Found)
194         return 0;
195 
196       // If this is non-empty and not a single element struct, the composite
197       // cannot be a single element struct.
198       Found = isSingleElementStruct(i->getType(), Context);
199       if (!Found)
200         return 0;
201     }
202   }
203 
204   // Check for single element.
205   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
206          i != e; ++i) {
207     const FieldDecl *FD = *i;
208     QualType FT = FD->getType();
209 
210     // Ignore empty fields.
211     if (isEmptyField(Context, FD, true))
212       continue;
213 
214     // If we already found an element then this isn't a single-element
215     // struct.
216     if (Found)
217       return 0;
218 
219     // Treat single element arrays as the element.
220     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
221       if (AT->getSize().getZExtValue() != 1)
222         break;
223       FT = AT->getElementType();
224     }
225 
226     if (!isAggregateTypeForABI(FT)) {
227       Found = FT.getTypePtr();
228     } else {
229       Found = isSingleElementStruct(FT, Context);
230       if (!Found)
231         return 0;
232     }
233   }
234 
235   return Found;
236 }
237 
238 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
239   if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
240       !Ty->isAnyComplexType() && !Ty->isEnumeralType() &&
241       !Ty->isBlockPointerType())
242     return false;
243 
244   uint64_t Size = Context.getTypeSize(Ty);
245   return Size == 32 || Size == 64;
246 }
247 
248 /// canExpandIndirectArgument - Test whether an argument type which is to be
249 /// passed indirectly (on the stack) would have the equivalent layout if it was
250 /// expanded into separate arguments. If so, we prefer to do the latter to avoid
251 /// inhibiting optimizations.
252 ///
253 // FIXME: This predicate is missing many cases, currently it just follows
254 // llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We
255 // should probably make this smarter, or better yet make the LLVM backend
256 // capable of handling it.
257 static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) {
258   // We can only expand structure types.
259   const RecordType *RT = Ty->getAs<RecordType>();
260   if (!RT)
261     return false;
262 
263   // We can only expand (C) structures.
264   //
265   // FIXME: This needs to be generalized to handle classes as well.
266   const RecordDecl *RD = RT->getDecl();
267   if (!RD->isStruct() || isa<CXXRecordDecl>(RD))
268     return false;
269 
270   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
271          i != e; ++i) {
272     const FieldDecl *FD = *i;
273 
274     if (!is32Or64BitBasicType(FD->getType(), Context))
275       return false;
276 
277     // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
278     // how to expand them yet, and the predicate for telling if a bitfield still
279     // counts as "basic" is more complicated than what we were doing previously.
280     if (FD->isBitField())
281       return false;
282   }
283 
284   return true;
285 }
286 
287 namespace {
288 /// DefaultABIInfo - The default implementation for ABI specific
289 /// details. This implementation provides information which results in
290 /// self-consistent and sensible LLVM IR generation, but does not
291 /// conform to any particular ABI.
292 class DefaultABIInfo : public ABIInfo {
293 public:
294   DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
295 
296   ABIArgInfo classifyReturnType(QualType RetTy) const;
297   ABIArgInfo classifyArgumentType(QualType RetTy) const;
298 
299   virtual void computeInfo(CGFunctionInfo &FI) const {
300     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
301     for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
302          it != ie; ++it)
303       it->info = classifyArgumentType(it->type);
304   }
305 
306   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
307                                  CodeGenFunction &CGF) const;
308 };
309 
310 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
311 public:
312   DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
313     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
314 };
315 
316 llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
317                                        CodeGenFunction &CGF) const {
318   return 0;
319 }
320 
321 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
322   if (isAggregateTypeForABI(Ty))
323     return ABIArgInfo::getIndirect(0);
324 
325   // Treat an enum type as its underlying type.
326   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
327     Ty = EnumTy->getDecl()->getIntegerType();
328 
329   return (Ty->isPromotableIntegerType() ?
330           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
331 }
332 
333 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
334   if (RetTy->isVoidType())
335     return ABIArgInfo::getIgnore();
336 
337   if (isAggregateTypeForABI(RetTy))
338     return ABIArgInfo::getIndirect(0);
339 
340   // Treat an enum type as its underlying type.
341   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
342     RetTy = EnumTy->getDecl()->getIntegerType();
343 
344   return (RetTy->isPromotableIntegerType() ?
345           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
346 }
347 
348 /// UseX86_MMXType - Return true if this is an MMX type that should use the special
349 /// x86_mmx type.
350 bool UseX86_MMXType(const llvm::Type *IRType) {
351   // If the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>, use the
352   // special x86_mmx type.
353   return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
354     cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
355     IRType->getScalarSizeInBits() != 64;
356 }
357 
358 //===----------------------------------------------------------------------===//
359 // X86-32 ABI Implementation
360 //===----------------------------------------------------------------------===//
361 
362 /// X86_32ABIInfo - The X86-32 ABI information.
363 class X86_32ABIInfo : public ABIInfo {
364   static const unsigned MinABIStackAlignInBytes = 4;
365 
366   bool IsDarwinVectorABI;
367   bool IsSmallStructInRegABI;
368 
369   static bool isRegisterSize(unsigned Size) {
370     return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
371   }
372 
373   static bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context);
374 
375   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
376   /// such that the argument will be passed in memory.
377   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal = true) const;
378 
379   /// \brief Return the alignment to use for the given type on the stack.
380   unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
381 
382 public:
383 
384   ABIArgInfo classifyReturnType(QualType RetTy) const;
385   ABIArgInfo classifyArgumentType(QualType RetTy) const;
386 
387   virtual void computeInfo(CGFunctionInfo &FI) const {
388     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
389     for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
390          it != ie; ++it)
391       it->info = classifyArgumentType(it->type);
392   }
393 
394   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
395                                  CodeGenFunction &CGF) const;
396 
397   X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p)
398     : ABIInfo(CGT), IsDarwinVectorABI(d), IsSmallStructInRegABI(p) {}
399 };
400 
401 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
402 public:
403   X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p)
404     :TargetCodeGenInfo(new X86_32ABIInfo(CGT, d, p)) {}
405 
406   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
407                            CodeGen::CodeGenModule &CGM) const;
408 
409   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
410     // Darwin uses different dwarf register numbers for EH.
411     if (CGM.isTargetDarwin()) return 5;
412 
413     return 4;
414   }
415 
416   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
417                                llvm::Value *Address) const;
418 };
419 
420 }
421 
422 /// shouldReturnTypeInRegister - Determine if the given type should be
423 /// passed in a register (for the Darwin ABI).
424 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
425                                                ASTContext &Context) {
426   uint64_t Size = Context.getTypeSize(Ty);
427 
428   // Type must be register sized.
429   if (!isRegisterSize(Size))
430     return false;
431 
432   if (Ty->isVectorType()) {
433     // 64- and 128- bit vectors inside structures are not returned in
434     // registers.
435     if (Size == 64 || Size == 128)
436       return false;
437 
438     return true;
439   }
440 
441   // If this is a builtin, pointer, enum, complex type, member pointer, or
442   // member function pointer it is ok.
443   if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
444       Ty->isAnyComplexType() || Ty->isEnumeralType() ||
445       Ty->isBlockPointerType() || Ty->isMemberPointerType())
446     return true;
447 
448   // Arrays are treated like records.
449   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
450     return shouldReturnTypeInRegister(AT->getElementType(), Context);
451 
452   // Otherwise, it must be a record type.
453   const RecordType *RT = Ty->getAs<RecordType>();
454   if (!RT) return false;
455 
456   // FIXME: Traverse bases here too.
457 
458   // Structure types are passed in register if all fields would be
459   // passed in a register.
460   for (RecordDecl::field_iterator i = RT->getDecl()->field_begin(),
461          e = RT->getDecl()->field_end(); i != e; ++i) {
462     const FieldDecl *FD = *i;
463 
464     // Empty fields are ignored.
465     if (isEmptyField(Context, FD, true))
466       continue;
467 
468     // Check fields recursively.
469     if (!shouldReturnTypeInRegister(FD->getType(), Context))
470       return false;
471   }
472 
473   return true;
474 }
475 
476 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy) const {
477   if (RetTy->isVoidType())
478     return ABIArgInfo::getIgnore();
479 
480   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
481     // On Darwin, some vectors are returned in registers.
482     if (IsDarwinVectorABI) {
483       uint64_t Size = getContext().getTypeSize(RetTy);
484 
485       // 128-bit vectors are a special case; they are returned in
486       // registers and we need to make sure to pick a type the LLVM
487       // backend will like.
488       if (Size == 128)
489         return ABIArgInfo::getDirect(llvm::VectorType::get(
490                   llvm::Type::getInt64Ty(getVMContext()), 2));
491 
492       // Always return in register if it fits in a general purpose
493       // register, or if it is 64 bits and has a single element.
494       if ((Size == 8 || Size == 16 || Size == 32) ||
495           (Size == 64 && VT->getNumElements() == 1))
496         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
497                                                             Size));
498 
499       return ABIArgInfo::getIndirect(0);
500     }
501 
502     return ABIArgInfo::getDirect();
503   }
504 
505   if (isAggregateTypeForABI(RetTy)) {
506     if (const RecordType *RT = RetTy->getAs<RecordType>()) {
507       // Structures with either a non-trivial destructor or a non-trivial
508       // copy constructor are always indirect.
509       if (hasNonTrivialDestructorOrCopyConstructor(RT))
510         return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
511 
512       // Structures with flexible arrays are always indirect.
513       if (RT->getDecl()->hasFlexibleArrayMember())
514         return ABIArgInfo::getIndirect(0);
515     }
516 
517     // If specified, structs and unions are always indirect.
518     if (!IsSmallStructInRegABI && !RetTy->isAnyComplexType())
519       return ABIArgInfo::getIndirect(0);
520 
521     // Classify "single element" structs as their element type.
522     if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) {
523       if (const BuiltinType *BT = SeltTy->getAs<BuiltinType>()) {
524         if (BT->isIntegerType()) {
525           // We need to use the size of the structure, padding
526           // bit-fields can adjust that to be larger than the single
527           // element type.
528           uint64_t Size = getContext().getTypeSize(RetTy);
529           return ABIArgInfo::getDirect(
530             llvm::IntegerType::get(getVMContext(), (unsigned)Size));
531         }
532 
533         if (BT->getKind() == BuiltinType::Float) {
534           assert(getContext().getTypeSize(RetTy) ==
535                  getContext().getTypeSize(SeltTy) &&
536                  "Unexpect single element structure size!");
537           return ABIArgInfo::getDirect(llvm::Type::getFloatTy(getVMContext()));
538         }
539 
540         if (BT->getKind() == BuiltinType::Double) {
541           assert(getContext().getTypeSize(RetTy) ==
542                  getContext().getTypeSize(SeltTy) &&
543                  "Unexpect single element structure size!");
544           return ABIArgInfo::getDirect(llvm::Type::getDoubleTy(getVMContext()));
545         }
546       } else if (SeltTy->isPointerType()) {
547         // FIXME: It would be really nice if this could come out as the proper
548         // pointer type.
549         const llvm::Type *PtrTy = llvm::Type::getInt8PtrTy(getVMContext());
550         return ABIArgInfo::getDirect(PtrTy);
551       } else if (SeltTy->isVectorType()) {
552         // 64- and 128-bit vectors are never returned in a
553         // register when inside a structure.
554         uint64_t Size = getContext().getTypeSize(RetTy);
555         if (Size == 64 || Size == 128)
556           return ABIArgInfo::getIndirect(0);
557 
558         return classifyReturnType(QualType(SeltTy, 0));
559       }
560     }
561 
562     // Small structures which are register sized are generally returned
563     // in a register.
564     if (X86_32ABIInfo::shouldReturnTypeInRegister(RetTy, getContext())) {
565       uint64_t Size = getContext().getTypeSize(RetTy);
566       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
567     }
568 
569     return ABIArgInfo::getIndirect(0);
570   }
571 
572   // Treat an enum type as its underlying type.
573   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
574     RetTy = EnumTy->getDecl()->getIntegerType();
575 
576   return (RetTy->isPromotableIntegerType() ?
577           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
578 }
579 
580 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) {
581   const RecordType *RT = Ty->getAs<RecordType>();
582   if (!RT)
583     return 0;
584   const RecordDecl *RD = RT->getDecl();
585 
586   // If this is a C++ record, check the bases first.
587   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
588     for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
589            e = CXXRD->bases_end(); i != e; ++i)
590       if (!isRecordWithSSEVectorType(Context, i->getType()))
591         return false;
592 
593   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
594        i != e; ++i) {
595     QualType FT = i->getType();
596 
597     if (FT->getAs<VectorType>() && Context.getTypeSize(Ty) == 128)
598       return true;
599 
600     if (isRecordWithSSEVectorType(Context, FT))
601       return true;
602   }
603 
604   return false;
605 }
606 
607 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
608                                                  unsigned Align) const {
609   // Otherwise, if the alignment is less than or equal to the minimum ABI
610   // alignment, just use the default; the backend will handle this.
611   if (Align <= MinABIStackAlignInBytes)
612     return 0; // Use default alignment.
613 
614   // On non-Darwin, the stack type alignment is always 4.
615   if (!IsDarwinVectorABI) {
616     // Set explicit alignment, since we may need to realign the top.
617     return MinABIStackAlignInBytes;
618   }
619 
620   // Otherwise, if the type contains an SSE vector type, the alignment is 16.
621   if (isRecordWithSSEVectorType(getContext(), Ty))
622     return 16;
623 
624   return MinABIStackAlignInBytes;
625 }
626 
627 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal) const {
628   if (!ByVal)
629     return ABIArgInfo::getIndirect(0, false);
630 
631   // Compute the byval alignment.
632   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
633   unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
634   if (StackAlign == 0)
635     return ABIArgInfo::getIndirect(0);
636 
637   // If the stack alignment is less than the type alignment, realign the
638   // argument.
639   if (StackAlign < TypeAlign)
640     return ABIArgInfo::getIndirect(StackAlign, /*ByVal=*/true,
641                                    /*Realign=*/true);
642 
643   return ABIArgInfo::getIndirect(StackAlign);
644 }
645 
646 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty) const {
647   // FIXME: Set alignment on indirect arguments.
648   if (isAggregateTypeForABI(Ty)) {
649     // Structures with flexible arrays are always indirect.
650     if (const RecordType *RT = Ty->getAs<RecordType>()) {
651       // Structures with either a non-trivial destructor or a non-trivial
652       // copy constructor are always indirect.
653       if (hasNonTrivialDestructorOrCopyConstructor(RT))
654         return getIndirectResult(Ty, /*ByVal=*/false);
655 
656       if (RT->getDecl()->hasFlexibleArrayMember())
657         return getIndirectResult(Ty);
658     }
659 
660     // Ignore empty structs.
661     if (Ty->isStructureType() && getContext().getTypeSize(Ty) == 0)
662       return ABIArgInfo::getIgnore();
663 
664     // Expand small (<= 128-bit) record types when we know that the stack layout
665     // of those arguments will match the struct. This is important because the
666     // LLVM backend isn't smart enough to remove byval, which inhibits many
667     // optimizations.
668     if (getContext().getTypeSize(Ty) <= 4*32 &&
669         canExpandIndirectArgument(Ty, getContext()))
670       return ABIArgInfo::getExpand();
671 
672     return getIndirectResult(Ty);
673   }
674 
675   if (const VectorType *VT = Ty->getAs<VectorType>()) {
676     // On Darwin, some vectors are passed in memory, we handle this by passing
677     // it as an i8/i16/i32/i64.
678     if (IsDarwinVectorABI) {
679       uint64_t Size = getContext().getTypeSize(Ty);
680       if ((Size == 8 || Size == 16 || Size == 32) ||
681           (Size == 64 && VT->getNumElements() == 1))
682         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
683                                                             Size));
684     }
685 
686     const llvm::Type *IRType = CGT.ConvertTypeRecursive(Ty);
687     if (UseX86_MMXType(IRType)) {
688       ABIArgInfo AAI = ABIArgInfo::getDirect(IRType);
689       AAI.setCoerceToType(llvm::Type::getX86_MMXTy(getVMContext()));
690       return AAI;
691     }
692 
693     return ABIArgInfo::getDirect();
694   }
695 
696 
697   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
698     Ty = EnumTy->getDecl()->getIntegerType();
699 
700   return (Ty->isPromotableIntegerType() ?
701           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
702 }
703 
704 llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
705                                       CodeGenFunction &CGF) const {
706   const llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
707   const llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
708 
709   CGBuilderTy &Builder = CGF.Builder;
710   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
711                                                        "ap");
712   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
713   llvm::Type *PTy =
714     llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
715   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
716 
717   uint64_t Offset =
718     llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
719   llvm::Value *NextAddr =
720     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
721                       "ap.next");
722   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
723 
724   return AddrTyped;
725 }
726 
727 void X86_32TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
728                                                   llvm::GlobalValue *GV,
729                                             CodeGen::CodeGenModule &CGM) const {
730   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
731     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
732       // Get the LLVM function.
733       llvm::Function *Fn = cast<llvm::Function>(GV);
734 
735       // Now add the 'alignstack' attribute with a value of 16.
736       Fn->addFnAttr(llvm::Attribute::constructStackAlignmentFromInt(16));
737     }
738   }
739 }
740 
741 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
742                                                CodeGen::CodeGenFunction &CGF,
743                                                llvm::Value *Address) const {
744   CodeGen::CGBuilderTy &Builder = CGF.Builder;
745   llvm::LLVMContext &Context = CGF.getLLVMContext();
746 
747   const llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
748   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
749 
750   // 0-7 are the eight integer registers;  the order is different
751   //   on Darwin (for EH), but the range is the same.
752   // 8 is %eip.
753   AssignToArrayRange(Builder, Address, Four8, 0, 8);
754 
755   if (CGF.CGM.isTargetDarwin()) {
756     // 12-16 are st(0..4).  Not sure why we stop at 4.
757     // These have size 16, which is sizeof(long double) on
758     // platforms with 8-byte alignment for that type.
759     llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
760     AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
761 
762   } else {
763     // 9 is %eflags, which doesn't get a size on Darwin for some
764     // reason.
765     Builder.CreateStore(Four8, Builder.CreateConstInBoundsGEP1_32(Address, 9));
766 
767     // 11-16 are st(0..5).  Not sure why we stop at 5.
768     // These have size 12, which is sizeof(long double) on
769     // platforms with 4-byte alignment for that type.
770     llvm::Value *Twelve8 = llvm::ConstantInt::get(i8, 12);
771     AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
772   }
773 
774   return false;
775 }
776 
777 //===----------------------------------------------------------------------===//
778 // X86-64 ABI Implementation
779 //===----------------------------------------------------------------------===//
780 
781 
782 namespace {
783 /// X86_64ABIInfo - The X86_64 ABI information.
784 class X86_64ABIInfo : public ABIInfo {
785   enum Class {
786     Integer = 0,
787     SSE,
788     SSEUp,
789     X87,
790     X87Up,
791     ComplexX87,
792     NoClass,
793     Memory
794   };
795 
796   /// merge - Implement the X86_64 ABI merging algorithm.
797   ///
798   /// Merge an accumulating classification \arg Accum with a field
799   /// classification \arg Field.
800   ///
801   /// \param Accum - The accumulating classification. This should
802   /// always be either NoClass or the result of a previous merge
803   /// call. In addition, this should never be Memory (the caller
804   /// should just return Memory for the aggregate).
805   static Class merge(Class Accum, Class Field);
806 
807   /// classify - Determine the x86_64 register classes in which the
808   /// given type T should be passed.
809   ///
810   /// \param Lo - The classification for the parts of the type
811   /// residing in the low word of the containing object.
812   ///
813   /// \param Hi - The classification for the parts of the type
814   /// residing in the high word of the containing object.
815   ///
816   /// \param OffsetBase - The bit offset of this type in the
817   /// containing object.  Some parameters are classified different
818   /// depending on whether they straddle an eightbyte boundary.
819   ///
820   /// If a word is unused its result will be NoClass; if a type should
821   /// be passed in Memory then at least the classification of \arg Lo
822   /// will be Memory.
823   ///
824   /// The \arg Lo class will be NoClass iff the argument is ignored.
825   ///
826   /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
827   /// also be ComplexX87.
828   void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi) const;
829 
830   const llvm::Type *Get16ByteVectorType(QualType Ty) const;
831   const llvm::Type *GetSSETypeAtOffset(const llvm::Type *IRType,
832                                        unsigned IROffset, QualType SourceTy,
833                                        unsigned SourceOffset) const;
834   const llvm::Type *GetINTEGERTypeAtOffset(const llvm::Type *IRType,
835                                            unsigned IROffset, QualType SourceTy,
836                                            unsigned SourceOffset) const;
837 
838   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
839   /// such that the argument will be returned in memory.
840   ABIArgInfo getIndirectReturnResult(QualType Ty) const;
841 
842   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
843   /// such that the argument will be passed in memory.
844   ABIArgInfo getIndirectResult(QualType Ty) const;
845 
846   ABIArgInfo classifyReturnType(QualType RetTy) const;
847 
848   ABIArgInfo classifyArgumentType(QualType Ty,
849                                   unsigned &neededInt,
850                                   unsigned &neededSSE) const;
851 
852 public:
853   X86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
854 
855   virtual void computeInfo(CGFunctionInfo &FI) const;
856 
857   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
858                                  CodeGenFunction &CGF) const;
859 };
860 
861 /// WinX86_64ABIInfo - The Windows X86_64 ABI information.
862 class WinX86_64ABIInfo : public ABIInfo {
863 
864   ABIArgInfo classify(QualType Ty) const;
865 
866 public:
867   WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
868 
869   virtual void computeInfo(CGFunctionInfo &FI) const;
870 
871   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
872                                  CodeGenFunction &CGF) const;
873 };
874 
875 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
876 public:
877   X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
878     : TargetCodeGenInfo(new X86_64ABIInfo(CGT)) {}
879 
880   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
881     return 7;
882   }
883 
884   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
885                                llvm::Value *Address) const {
886     CodeGen::CGBuilderTy &Builder = CGF.Builder;
887     llvm::LLVMContext &Context = CGF.getLLVMContext();
888 
889     const llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
890     llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
891 
892     // 0-15 are the 16 integer registers.
893     // 16 is %rip.
894     AssignToArrayRange(Builder, Address, Eight8, 0, 16);
895 
896     return false;
897   }
898 };
899 
900 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
901 public:
902   WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
903     : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {}
904 
905   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
906     return 7;
907   }
908 
909   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
910                                llvm::Value *Address) const {
911     CodeGen::CGBuilderTy &Builder = CGF.Builder;
912     llvm::LLVMContext &Context = CGF.getLLVMContext();
913 
914     const llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
915     llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
916 
917     // 0-15 are the 16 integer registers.
918     // 16 is %rip.
919     AssignToArrayRange(Builder, Address, Eight8, 0, 16);
920 
921     return false;
922   }
923 };
924 
925 }
926 
927 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
928   // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
929   // classified recursively so that always two fields are
930   // considered. The resulting class is calculated according to
931   // the classes of the fields in the eightbyte:
932   //
933   // (a) If both classes are equal, this is the resulting class.
934   //
935   // (b) If one of the classes is NO_CLASS, the resulting class is
936   // the other class.
937   //
938   // (c) If one of the classes is MEMORY, the result is the MEMORY
939   // class.
940   //
941   // (d) If one of the classes is INTEGER, the result is the
942   // INTEGER.
943   //
944   // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
945   // MEMORY is used as class.
946   //
947   // (f) Otherwise class SSE is used.
948 
949   // Accum should never be memory (we should have returned) or
950   // ComplexX87 (because this cannot be passed in a structure).
951   assert((Accum != Memory && Accum != ComplexX87) &&
952          "Invalid accumulated classification during merge.");
953   if (Accum == Field || Field == NoClass)
954     return Accum;
955   if (Field == Memory)
956     return Memory;
957   if (Accum == NoClass)
958     return Field;
959   if (Accum == Integer || Field == Integer)
960     return Integer;
961   if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
962       Accum == X87 || Accum == X87Up)
963     return Memory;
964   return SSE;
965 }
966 
967 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
968                              Class &Lo, Class &Hi) const {
969   // FIXME: This code can be simplified by introducing a simple value class for
970   // Class pairs with appropriate constructor methods for the various
971   // situations.
972 
973   // FIXME: Some of the split computations are wrong; unaligned vectors
974   // shouldn't be passed in registers for example, so there is no chance they
975   // can straddle an eightbyte. Verify & simplify.
976 
977   Lo = Hi = NoClass;
978 
979   Class &Current = OffsetBase < 64 ? Lo : Hi;
980   Current = Memory;
981 
982   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
983     BuiltinType::Kind k = BT->getKind();
984 
985     if (k == BuiltinType::Void) {
986       Current = NoClass;
987     } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
988       Lo = Integer;
989       Hi = Integer;
990     } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
991       Current = Integer;
992     } else if (k == BuiltinType::Float || k == BuiltinType::Double) {
993       Current = SSE;
994     } else if (k == BuiltinType::LongDouble) {
995       Lo = X87;
996       Hi = X87Up;
997     }
998     // FIXME: _Decimal32 and _Decimal64 are SSE.
999     // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
1000     return;
1001   }
1002 
1003   if (const EnumType *ET = Ty->getAs<EnumType>()) {
1004     // Classify the underlying integer type.
1005     classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi);
1006     return;
1007   }
1008 
1009   if (Ty->hasPointerRepresentation()) {
1010     Current = Integer;
1011     return;
1012   }
1013 
1014   if (Ty->isMemberPointerType()) {
1015     if (Ty->isMemberFunctionPointerType())
1016       Lo = Hi = Integer;
1017     else
1018       Current = Integer;
1019     return;
1020   }
1021 
1022   if (const VectorType *VT = Ty->getAs<VectorType>()) {
1023     uint64_t Size = getContext().getTypeSize(VT);
1024     if (Size == 32) {
1025       // gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x
1026       // float> as integer.
1027       Current = Integer;
1028 
1029       // If this type crosses an eightbyte boundary, it should be
1030       // split.
1031       uint64_t EB_Real = (OffsetBase) / 64;
1032       uint64_t EB_Imag = (OffsetBase + Size - 1) / 64;
1033       if (EB_Real != EB_Imag)
1034         Hi = Lo;
1035     } else if (Size == 64) {
1036       // gcc passes <1 x double> in memory. :(
1037       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double))
1038         return;
1039 
1040       // gcc passes <1 x long long> as INTEGER.
1041       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong) ||
1042           VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULongLong) ||
1043           VT->getElementType()->isSpecificBuiltinType(BuiltinType::Long) ||
1044           VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULong))
1045         Current = Integer;
1046       else
1047         Current = SSE;
1048 
1049       // If this type crosses an eightbyte boundary, it should be
1050       // split.
1051       if (OffsetBase && OffsetBase != 64)
1052         Hi = Lo;
1053     } else if (Size == 128) {
1054       Lo = SSE;
1055       Hi = SSEUp;
1056     }
1057     return;
1058   }
1059 
1060   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
1061     QualType ET = getContext().getCanonicalType(CT->getElementType());
1062 
1063     uint64_t Size = getContext().getTypeSize(Ty);
1064     if (ET->isIntegralOrEnumerationType()) {
1065       if (Size <= 64)
1066         Current = Integer;
1067       else if (Size <= 128)
1068         Lo = Hi = Integer;
1069     } else if (ET == getContext().FloatTy)
1070       Current = SSE;
1071     else if (ET == getContext().DoubleTy)
1072       Lo = Hi = SSE;
1073     else if (ET == getContext().LongDoubleTy)
1074       Current = ComplexX87;
1075 
1076     // If this complex type crosses an eightbyte boundary then it
1077     // should be split.
1078     uint64_t EB_Real = (OffsetBase) / 64;
1079     uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
1080     if (Hi == NoClass && EB_Real != EB_Imag)
1081       Hi = Lo;
1082 
1083     return;
1084   }
1085 
1086   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
1087     // Arrays are treated like structures.
1088 
1089     uint64_t Size = getContext().getTypeSize(Ty);
1090 
1091     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
1092     // than two eightbytes, ..., it has class MEMORY.
1093     if (Size > 128)
1094       return;
1095 
1096     // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
1097     // fields, it has class MEMORY.
1098     //
1099     // Only need to check alignment of array base.
1100     if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
1101       return;
1102 
1103     // Otherwise implement simplified merge. We could be smarter about
1104     // this, but it isn't worth it and would be harder to verify.
1105     Current = NoClass;
1106     uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
1107     uint64_t ArraySize = AT->getSize().getZExtValue();
1108     for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
1109       Class FieldLo, FieldHi;
1110       classify(AT->getElementType(), Offset, FieldLo, FieldHi);
1111       Lo = merge(Lo, FieldLo);
1112       Hi = merge(Hi, FieldHi);
1113       if (Lo == Memory || Hi == Memory)
1114         break;
1115     }
1116 
1117     // Do post merger cleanup (see below). Only case we worry about is Memory.
1118     if (Hi == Memory)
1119       Lo = Memory;
1120     assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
1121     return;
1122   }
1123 
1124   if (const RecordType *RT = Ty->getAs<RecordType>()) {
1125     uint64_t Size = getContext().getTypeSize(Ty);
1126 
1127     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
1128     // than two eightbytes, ..., it has class MEMORY.
1129     if (Size > 128)
1130       return;
1131 
1132     // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
1133     // copy constructor or a non-trivial destructor, it is passed by invisible
1134     // reference.
1135     if (hasNonTrivialDestructorOrCopyConstructor(RT))
1136       return;
1137 
1138     const RecordDecl *RD = RT->getDecl();
1139 
1140     // Assume variable sized types are passed in memory.
1141     if (RD->hasFlexibleArrayMember())
1142       return;
1143 
1144     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
1145 
1146     // Reset Lo class, this will be recomputed.
1147     Current = NoClass;
1148 
1149     // If this is a C++ record, classify the bases first.
1150     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1151       for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
1152              e = CXXRD->bases_end(); i != e; ++i) {
1153         assert(!i->isVirtual() && !i->getType()->isDependentType() &&
1154                "Unexpected base class!");
1155         const CXXRecordDecl *Base =
1156           cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
1157 
1158         // Classify this field.
1159         //
1160         // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
1161         // single eightbyte, each is classified separately. Each eightbyte gets
1162         // initialized to class NO_CLASS.
1163         Class FieldLo, FieldHi;
1164         uint64_t Offset = OffsetBase + Layout.getBaseClassOffsetInBits(Base);
1165         classify(i->getType(), Offset, FieldLo, FieldHi);
1166         Lo = merge(Lo, FieldLo);
1167         Hi = merge(Hi, FieldHi);
1168         if (Lo == Memory || Hi == Memory)
1169           break;
1170       }
1171     }
1172 
1173     // Classify the fields one at a time, merging the results.
1174     unsigned idx = 0;
1175     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1176            i != e; ++i, ++idx) {
1177       uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
1178       bool BitField = i->isBitField();
1179 
1180       // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
1181       // fields, it has class MEMORY.
1182       //
1183       // Note, skip this test for bit-fields, see below.
1184       if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
1185         Lo = Memory;
1186         return;
1187       }
1188 
1189       // Classify this field.
1190       //
1191       // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
1192       // exceeds a single eightbyte, each is classified
1193       // separately. Each eightbyte gets initialized to class
1194       // NO_CLASS.
1195       Class FieldLo, FieldHi;
1196 
1197       // Bit-fields require special handling, they do not force the
1198       // structure to be passed in memory even if unaligned, and
1199       // therefore they can straddle an eightbyte.
1200       if (BitField) {
1201         // Ignore padding bit-fields.
1202         if (i->isUnnamedBitfield())
1203           continue;
1204 
1205         uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
1206         uint64_t Size =
1207           i->getBitWidth()->EvaluateAsInt(getContext()).getZExtValue();
1208 
1209         uint64_t EB_Lo = Offset / 64;
1210         uint64_t EB_Hi = (Offset + Size - 1) / 64;
1211         FieldLo = FieldHi = NoClass;
1212         if (EB_Lo) {
1213           assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
1214           FieldLo = NoClass;
1215           FieldHi = Integer;
1216         } else {
1217           FieldLo = Integer;
1218           FieldHi = EB_Hi ? Integer : NoClass;
1219         }
1220       } else
1221         classify(i->getType(), Offset, FieldLo, FieldHi);
1222       Lo = merge(Lo, FieldLo);
1223       Hi = merge(Hi, FieldHi);
1224       if (Lo == Memory || Hi == Memory)
1225         break;
1226     }
1227 
1228     // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
1229     //
1230     // (a) If one of the classes is MEMORY, the whole argument is
1231     // passed in memory.
1232     //
1233     // (b) If SSEUP is not preceeded by SSE, it is converted to SSE.
1234 
1235     // The first of these conditions is guaranteed by how we implement
1236     // the merge (just bail).
1237     //
1238     // The second condition occurs in the case of unions; for example
1239     // union { _Complex double; unsigned; }.
1240     if (Hi == Memory)
1241       Lo = Memory;
1242     if (Hi == SSEUp && Lo != SSE)
1243       Hi = SSE;
1244   }
1245 }
1246 
1247 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
1248   // If this is a scalar LLVM value then assume LLVM will pass it in the right
1249   // place naturally.
1250   if (!isAggregateTypeForABI(Ty)) {
1251     // Treat an enum type as its underlying type.
1252     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1253       Ty = EnumTy->getDecl()->getIntegerType();
1254 
1255     return (Ty->isPromotableIntegerType() ?
1256             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1257   }
1258 
1259   return ABIArgInfo::getIndirect(0);
1260 }
1261 
1262 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty) const {
1263   // If this is a scalar LLVM value then assume LLVM will pass it in the right
1264   // place naturally.
1265   if (!isAggregateTypeForABI(Ty)) {
1266     // Treat an enum type as its underlying type.
1267     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1268       Ty = EnumTy->getDecl()->getIntegerType();
1269 
1270     return (Ty->isPromotableIntegerType() ?
1271             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1272   }
1273 
1274   if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
1275     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
1276 
1277   // Compute the byval alignment. We trust the back-end to honor the
1278   // minimum ABI alignment for byval, to make cleaner IR.
1279   const unsigned MinABIAlign = 8;
1280   unsigned Align = getContext().getTypeAlign(Ty) / 8;
1281   if (Align > MinABIAlign)
1282     return ABIArgInfo::getIndirect(Align);
1283   return ABIArgInfo::getIndirect(0);
1284 }
1285 
1286 /// Get16ByteVectorType - The ABI specifies that a value should be passed in an
1287 /// full vector XMM register.  Pick an LLVM IR type that will be passed as a
1288 /// vector register.
1289 const llvm::Type *X86_64ABIInfo::Get16ByteVectorType(QualType Ty) const {
1290   const llvm::Type *IRType = CGT.ConvertTypeRecursive(Ty);
1291 
1292   // Wrapper structs that just contain vectors are passed just like vectors,
1293   // strip them off if present.
1294   const llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType);
1295   while (STy && STy->getNumElements() == 1) {
1296     IRType = STy->getElementType(0);
1297     STy = dyn_cast<llvm::StructType>(IRType);
1298   }
1299 
1300   // If the preferred type is a 16-byte vector, prefer to pass it.
1301   if (const llvm::VectorType *VT = dyn_cast<llvm::VectorType>(IRType)){
1302     const llvm::Type *EltTy = VT->getElementType();
1303     if (VT->getBitWidth() == 128 &&
1304         (EltTy->isFloatTy() || EltTy->isDoubleTy() ||
1305          EltTy->isIntegerTy(8) || EltTy->isIntegerTy(16) ||
1306          EltTy->isIntegerTy(32) || EltTy->isIntegerTy(64) ||
1307          EltTy->isIntegerTy(128)))
1308       return VT;
1309   }
1310 
1311   return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 2);
1312 }
1313 
1314 /// BitsContainNoUserData - Return true if the specified [start,end) bit range
1315 /// is known to either be off the end of the specified type or being in
1316 /// alignment padding.  The user type specified is known to be at most 128 bits
1317 /// in size, and have passed through X86_64ABIInfo::classify with a successful
1318 /// classification that put one of the two halves in the INTEGER class.
1319 ///
1320 /// It is conservatively correct to return false.
1321 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
1322                                   unsigned EndBit, ASTContext &Context) {
1323   // If the bytes being queried are off the end of the type, there is no user
1324   // data hiding here.  This handles analysis of builtins, vectors and other
1325   // types that don't contain interesting padding.
1326   unsigned TySize = (unsigned)Context.getTypeSize(Ty);
1327   if (TySize <= StartBit)
1328     return true;
1329 
1330   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
1331     unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
1332     unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
1333 
1334     // Check each element to see if the element overlaps with the queried range.
1335     for (unsigned i = 0; i != NumElts; ++i) {
1336       // If the element is after the span we care about, then we're done..
1337       unsigned EltOffset = i*EltSize;
1338       if (EltOffset >= EndBit) break;
1339 
1340       unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
1341       if (!BitsContainNoUserData(AT->getElementType(), EltStart,
1342                                  EndBit-EltOffset, Context))
1343         return false;
1344     }
1345     // If it overlaps no elements, then it is safe to process as padding.
1346     return true;
1347   }
1348 
1349   if (const RecordType *RT = Ty->getAs<RecordType>()) {
1350     const RecordDecl *RD = RT->getDecl();
1351     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1352 
1353     // If this is a C++ record, check the bases first.
1354     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1355       for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
1356            e = CXXRD->bases_end(); i != e; ++i) {
1357         assert(!i->isVirtual() && !i->getType()->isDependentType() &&
1358                "Unexpected base class!");
1359         const CXXRecordDecl *Base =
1360           cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
1361 
1362         // If the base is after the span we care about, ignore it.
1363         unsigned BaseOffset = (unsigned)Layout.getBaseClassOffsetInBits(Base);
1364         if (BaseOffset >= EndBit) continue;
1365 
1366         unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
1367         if (!BitsContainNoUserData(i->getType(), BaseStart,
1368                                    EndBit-BaseOffset, Context))
1369           return false;
1370       }
1371     }
1372 
1373     // Verify that no field has data that overlaps the region of interest.  Yes
1374     // this could be sped up a lot by being smarter about queried fields,
1375     // however we're only looking at structs up to 16 bytes, so we don't care
1376     // much.
1377     unsigned idx = 0;
1378     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1379          i != e; ++i, ++idx) {
1380       unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
1381 
1382       // If we found a field after the region we care about, then we're done.
1383       if (FieldOffset >= EndBit) break;
1384 
1385       unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
1386       if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
1387                                  Context))
1388         return false;
1389     }
1390 
1391     // If nothing in this record overlapped the area of interest, then we're
1392     // clean.
1393     return true;
1394   }
1395 
1396   return false;
1397 }
1398 
1399 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
1400 /// float member at the specified offset.  For example, {int,{float}} has a
1401 /// float at offset 4.  It is conservatively correct for this routine to return
1402 /// false.
1403 static bool ContainsFloatAtOffset(const llvm::Type *IRType, unsigned IROffset,
1404                                   const llvm::TargetData &TD) {
1405   // Base case if we find a float.
1406   if (IROffset == 0 && IRType->isFloatTy())
1407     return true;
1408 
1409   // If this is a struct, recurse into the field at the specified offset.
1410   if (const llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
1411     const llvm::StructLayout *SL = TD.getStructLayout(STy);
1412     unsigned Elt = SL->getElementContainingOffset(IROffset);
1413     IROffset -= SL->getElementOffset(Elt);
1414     return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
1415   }
1416 
1417   // If this is an array, recurse into the field at the specified offset.
1418   if (const llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
1419     const llvm::Type *EltTy = ATy->getElementType();
1420     unsigned EltSize = TD.getTypeAllocSize(EltTy);
1421     IROffset -= IROffset/EltSize*EltSize;
1422     return ContainsFloatAtOffset(EltTy, IROffset, TD);
1423   }
1424 
1425   return false;
1426 }
1427 
1428 
1429 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
1430 /// low 8 bytes of an XMM register, corresponding to the SSE class.
1431 const llvm::Type *X86_64ABIInfo::
1432 GetSSETypeAtOffset(const llvm::Type *IRType, unsigned IROffset,
1433                    QualType SourceTy, unsigned SourceOffset) const {
1434   // The only three choices we have are either double, <2 x float>, or float. We
1435   // pass as float if the last 4 bytes is just padding.  This happens for
1436   // structs that contain 3 floats.
1437   if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
1438                             SourceOffset*8+64, getContext()))
1439     return llvm::Type::getFloatTy(getVMContext());
1440 
1441   // We want to pass as <2 x float> if the LLVM IR type contains a float at
1442   // offset+0 and offset+4.  Walk the LLVM IR type to find out if this is the
1443   // case.
1444   if (ContainsFloatAtOffset(IRType, IROffset, getTargetData()) &&
1445       ContainsFloatAtOffset(IRType, IROffset+4, getTargetData()))
1446     return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2);
1447 
1448   return llvm::Type::getDoubleTy(getVMContext());
1449 }
1450 
1451 
1452 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
1453 /// an 8-byte GPR.  This means that we either have a scalar or we are talking
1454 /// about the high or low part of an up-to-16-byte struct.  This routine picks
1455 /// the best LLVM IR type to represent this, which may be i64 or may be anything
1456 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
1457 /// etc).
1458 ///
1459 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
1460 /// the source type.  IROffset is an offset in bytes into the LLVM IR type that
1461 /// the 8-byte value references.  PrefType may be null.
1462 ///
1463 /// SourceTy is the source level type for the entire argument.  SourceOffset is
1464 /// an offset into this that we're processing (which is always either 0 or 8).
1465 ///
1466 const llvm::Type *X86_64ABIInfo::
1467 GetINTEGERTypeAtOffset(const llvm::Type *IRType, unsigned IROffset,
1468                        QualType SourceTy, unsigned SourceOffset) const {
1469   // If we're dealing with an un-offset LLVM IR type, then it means that we're
1470   // returning an 8-byte unit starting with it.  See if we can safely use it.
1471   if (IROffset == 0) {
1472     // Pointers and int64's always fill the 8-byte unit.
1473     if (isa<llvm::PointerType>(IRType) || IRType->isIntegerTy(64))
1474       return IRType;
1475 
1476     // If we have a 1/2/4-byte integer, we can use it only if the rest of the
1477     // goodness in the source type is just tail padding.  This is allowed to
1478     // kick in for struct {double,int} on the int, but not on
1479     // struct{double,int,int} because we wouldn't return the second int.  We
1480     // have to do this analysis on the source type because we can't depend on
1481     // unions being lowered a specific way etc.
1482     if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
1483         IRType->isIntegerTy(32)) {
1484       unsigned BitWidth = cast<llvm::IntegerType>(IRType)->getBitWidth();
1485 
1486       if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
1487                                 SourceOffset*8+64, getContext()))
1488         return IRType;
1489     }
1490   }
1491 
1492   if (const llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
1493     // If this is a struct, recurse into the field at the specified offset.
1494     const llvm::StructLayout *SL = getTargetData().getStructLayout(STy);
1495     if (IROffset < SL->getSizeInBytes()) {
1496       unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
1497       IROffset -= SL->getElementOffset(FieldIdx);
1498 
1499       return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
1500                                     SourceTy, SourceOffset);
1501     }
1502   }
1503 
1504   if (const llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
1505     const llvm::Type *EltTy = ATy->getElementType();
1506     unsigned EltSize = getTargetData().getTypeAllocSize(EltTy);
1507     unsigned EltOffset = IROffset/EltSize*EltSize;
1508     return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
1509                                   SourceOffset);
1510   }
1511 
1512   // Okay, we don't have any better idea of what to pass, so we pass this in an
1513   // integer register that isn't too big to fit the rest of the struct.
1514   unsigned TySizeInBytes =
1515     (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
1516 
1517   assert(TySizeInBytes != SourceOffset && "Empty field?");
1518 
1519   // It is always safe to classify this as an integer type up to i64 that
1520   // isn't larger than the structure.
1521   return llvm::IntegerType::get(getVMContext(),
1522                                 std::min(TySizeInBytes-SourceOffset, 8U)*8);
1523 }
1524 
1525 
1526 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
1527 /// be used as elements of a two register pair to pass or return, return a
1528 /// first class aggregate to represent them.  For example, if the low part of
1529 /// a by-value argument should be passed as i32* and the high part as float,
1530 /// return {i32*, float}.
1531 static const llvm::Type *
1532 GetX86_64ByValArgumentPair(const llvm::Type *Lo, const llvm::Type *Hi,
1533                            const llvm::TargetData &TD) {
1534   // In order to correctly satisfy the ABI, we need to the high part to start
1535   // at offset 8.  If the high and low parts we inferred are both 4-byte types
1536   // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
1537   // the second element at offset 8.  Check for this:
1538   unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
1539   unsigned HiAlign = TD.getABITypeAlignment(Hi);
1540   unsigned HiStart = llvm::TargetData::RoundUpAlignment(LoSize, HiAlign);
1541   assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
1542 
1543   // To handle this, we have to increase the size of the low part so that the
1544   // second element will start at an 8 byte offset.  We can't increase the size
1545   // of the second element because it might make us access off the end of the
1546   // struct.
1547   if (HiStart != 8) {
1548     // There are only two sorts of types the ABI generation code can produce for
1549     // the low part of a pair that aren't 8 bytes in size: float or i8/i16/i32.
1550     // Promote these to a larger type.
1551     if (Lo->isFloatTy())
1552       Lo = llvm::Type::getDoubleTy(Lo->getContext());
1553     else {
1554       assert(Lo->isIntegerTy() && "Invalid/unknown lo type");
1555       Lo = llvm::Type::getInt64Ty(Lo->getContext());
1556     }
1557   }
1558 
1559   const llvm::StructType *Result =
1560     llvm::StructType::get(Lo->getContext(), Lo, Hi, NULL);
1561 
1562 
1563   // Verify that the second element is at an 8-byte offset.
1564   assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
1565          "Invalid x86-64 argument pair!");
1566   return Result;
1567 }
1568 
1569 ABIArgInfo X86_64ABIInfo::
1570 classifyReturnType(QualType RetTy) const {
1571   // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
1572   // classification algorithm.
1573   X86_64ABIInfo::Class Lo, Hi;
1574   classify(RetTy, 0, Lo, Hi);
1575 
1576   // Check some invariants.
1577   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
1578   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
1579 
1580   const llvm::Type *ResType = 0;
1581   switch (Lo) {
1582   case NoClass:
1583     if (Hi == NoClass)
1584       return ABIArgInfo::getIgnore();
1585     // If the low part is just padding, it takes no register, leave ResType
1586     // null.
1587     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
1588            "Unknown missing lo part");
1589     break;
1590 
1591   case SSEUp:
1592   case X87Up:
1593     assert(0 && "Invalid classification for lo word.");
1594 
1595     // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
1596     // hidden argument.
1597   case Memory:
1598     return getIndirectReturnResult(RetTy);
1599 
1600     // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
1601     // available register of the sequence %rax, %rdx is used.
1602   case Integer:
1603     ResType = GetINTEGERTypeAtOffset(CGT.ConvertTypeRecursive(RetTy), 0,
1604                                      RetTy, 0);
1605 
1606     // If we have a sign or zero extended integer, make sure to return Extend
1607     // so that the parameter gets the right LLVM IR attributes.
1608     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
1609       // Treat an enum type as its underlying type.
1610       if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
1611         RetTy = EnumTy->getDecl()->getIntegerType();
1612 
1613       if (RetTy->isIntegralOrEnumerationType() &&
1614           RetTy->isPromotableIntegerType())
1615         return ABIArgInfo::getExtend();
1616     }
1617     break;
1618 
1619     // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
1620     // available SSE register of the sequence %xmm0, %xmm1 is used.
1621   case SSE:
1622     ResType = GetSSETypeAtOffset(CGT.ConvertTypeRecursive(RetTy), 0, RetTy, 0);
1623     break;
1624 
1625     // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
1626     // returned on the X87 stack in %st0 as 80-bit x87 number.
1627   case X87:
1628     ResType = llvm::Type::getX86_FP80Ty(getVMContext());
1629     break;
1630 
1631     // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
1632     // part of the value is returned in %st0 and the imaginary part in
1633     // %st1.
1634   case ComplexX87:
1635     assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
1636     ResType = llvm::StructType::get(getVMContext(),
1637                                     llvm::Type::getX86_FP80Ty(getVMContext()),
1638                                     llvm::Type::getX86_FP80Ty(getVMContext()),
1639                                     NULL);
1640     break;
1641   }
1642 
1643   const llvm::Type *HighPart = 0;
1644   switch (Hi) {
1645     // Memory was handled previously and X87 should
1646     // never occur as a hi class.
1647   case Memory:
1648   case X87:
1649     assert(0 && "Invalid classification for hi word.");
1650 
1651   case ComplexX87: // Previously handled.
1652   case NoClass:
1653     break;
1654 
1655   case Integer:
1656     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertTypeRecursive(RetTy),
1657                                       8, RetTy, 8);
1658     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
1659       return ABIArgInfo::getDirect(HighPart, 8);
1660     break;
1661   case SSE:
1662     HighPart = GetSSETypeAtOffset(CGT.ConvertTypeRecursive(RetTy), 8, RetTy, 8);
1663     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
1664       return ABIArgInfo::getDirect(HighPart, 8);
1665     break;
1666 
1667     // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
1668     // is passed in the upper half of the last used SSE register.
1669     //
1670     // SSEUP should always be preceeded by SSE, just widen.
1671   case SSEUp:
1672     assert(Lo == SSE && "Unexpected SSEUp classification.");
1673     ResType = Get16ByteVectorType(RetTy);
1674     break;
1675 
1676     // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
1677     // returned together with the previous X87 value in %st0.
1678   case X87Up:
1679     // If X87Up is preceeded by X87, we don't need to do
1680     // anything. However, in some cases with unions it may not be
1681     // preceeded by X87. In such situations we follow gcc and pass the
1682     // extra bits in an SSE reg.
1683     if (Lo != X87) {
1684       HighPart = GetSSETypeAtOffset(CGT.ConvertTypeRecursive(RetTy),
1685                                     8, RetTy, 8);
1686       if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
1687         return ABIArgInfo::getDirect(HighPart, 8);
1688     }
1689     break;
1690   }
1691 
1692   // If a high part was specified, merge it together with the low part.  It is
1693   // known to pass in the high eightbyte of the result.  We do this by forming a
1694   // first class struct aggregate with the high and low part: {low, high}
1695   if (HighPart)
1696     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getTargetData());
1697 
1698   return ABIArgInfo::getDirect(ResType);
1699 }
1700 
1701 ABIArgInfo X86_64ABIInfo::classifyArgumentType(QualType Ty, unsigned &neededInt,
1702                                                unsigned &neededSSE) const {
1703   X86_64ABIInfo::Class Lo, Hi;
1704   classify(Ty, 0, Lo, Hi);
1705 
1706   // Check some invariants.
1707   // FIXME: Enforce these by construction.
1708   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
1709   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
1710 
1711   neededInt = 0;
1712   neededSSE = 0;
1713   const llvm::Type *ResType = 0;
1714   switch (Lo) {
1715   case NoClass:
1716     if (Hi == NoClass)
1717       return ABIArgInfo::getIgnore();
1718     // If the low part is just padding, it takes no register, leave ResType
1719     // null.
1720     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
1721            "Unknown missing lo part");
1722     break;
1723 
1724     // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
1725     // on the stack.
1726   case Memory:
1727 
1728     // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
1729     // COMPLEX_X87, it is passed in memory.
1730   case X87:
1731   case ComplexX87:
1732     return getIndirectResult(Ty);
1733 
1734   case SSEUp:
1735   case X87Up:
1736     assert(0 && "Invalid classification for lo word.");
1737 
1738     // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
1739     // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
1740     // and %r9 is used.
1741   case Integer:
1742     ++neededInt;
1743 
1744     // Pick an 8-byte type based on the preferred type.
1745     ResType = GetINTEGERTypeAtOffset(CGT.ConvertTypeRecursive(Ty), 0, Ty, 0);
1746 
1747     // If we have a sign or zero extended integer, make sure to return Extend
1748     // so that the parameter gets the right LLVM IR attributes.
1749     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
1750       // Treat an enum type as its underlying type.
1751       if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1752         Ty = EnumTy->getDecl()->getIntegerType();
1753 
1754       if (Ty->isIntegralOrEnumerationType() &&
1755           Ty->isPromotableIntegerType())
1756         return ABIArgInfo::getExtend();
1757     }
1758 
1759     break;
1760 
1761     // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
1762     // available SSE register is used, the registers are taken in the
1763     // order from %xmm0 to %xmm7.
1764   case SSE: {
1765     const llvm::Type *IRType = CGT.ConvertTypeRecursive(Ty);
1766     if (Hi != NoClass || !UseX86_MMXType(IRType))
1767       ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
1768     else
1769       // This is an MMX type. Treat it as such.
1770       ResType = llvm::Type::getX86_MMXTy(getVMContext());
1771 
1772     ++neededSSE;
1773     break;
1774   }
1775   }
1776 
1777   const llvm::Type *HighPart = 0;
1778   switch (Hi) {
1779     // Memory was handled previously, ComplexX87 and X87 should
1780     // never occur as hi classes, and X87Up must be preceed by X87,
1781     // which is passed in memory.
1782   case Memory:
1783   case X87:
1784   case ComplexX87:
1785     assert(0 && "Invalid classification for hi word.");
1786     break;
1787 
1788   case NoClass: break;
1789 
1790   case Integer:
1791     ++neededInt;
1792     // Pick an 8-byte type based on the preferred type.
1793     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertTypeRecursive(Ty), 8, Ty, 8);
1794 
1795     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
1796       return ABIArgInfo::getDirect(HighPart, 8);
1797     break;
1798 
1799     // X87Up generally doesn't occur here (long double is passed in
1800     // memory), except in situations involving unions.
1801   case X87Up:
1802   case SSE:
1803     HighPart = GetSSETypeAtOffset(CGT.ConvertTypeRecursive(Ty), 8, Ty, 8);
1804 
1805     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
1806       return ABIArgInfo::getDirect(HighPart, 8);
1807 
1808     ++neededSSE;
1809     break;
1810 
1811     // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
1812     // eightbyte is passed in the upper half of the last used SSE
1813     // register.  This only happens when 128-bit vectors are passed.
1814   case SSEUp:
1815     assert(Lo == SSE && "Unexpected SSEUp classification");
1816     ResType = Get16ByteVectorType(Ty);
1817     break;
1818   }
1819 
1820   // If a high part was specified, merge it together with the low part.  It is
1821   // known to pass in the high eightbyte of the result.  We do this by forming a
1822   // first class struct aggregate with the high and low part: {low, high}
1823   if (HighPart)
1824     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getTargetData());
1825 
1826   return ABIArgInfo::getDirect(ResType);
1827 }
1828 
1829 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
1830 
1831   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
1832 
1833   // Keep track of the number of assigned registers.
1834   unsigned freeIntRegs = 6, freeSSERegs = 8;
1835 
1836   // If the return value is indirect, then the hidden argument is consuming one
1837   // integer register.
1838   if (FI.getReturnInfo().isIndirect())
1839     --freeIntRegs;
1840 
1841   // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
1842   // get assigned (in left-to-right order) for passing as follows...
1843   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
1844        it != ie; ++it) {
1845     unsigned neededInt, neededSSE;
1846     it->info = classifyArgumentType(it->type, neededInt, neededSSE);
1847 
1848     // AMD64-ABI 3.2.3p3: If there are no registers available for any
1849     // eightbyte of an argument, the whole argument is passed on the
1850     // stack. If registers have already been assigned for some
1851     // eightbytes of such an argument, the assignments get reverted.
1852     if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) {
1853       freeIntRegs -= neededInt;
1854       freeSSERegs -= neededSSE;
1855     } else {
1856       it->info = getIndirectResult(it->type);
1857     }
1858   }
1859 }
1860 
1861 static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr,
1862                                         QualType Ty,
1863                                         CodeGenFunction &CGF) {
1864   llvm::Value *overflow_arg_area_p =
1865     CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
1866   llvm::Value *overflow_arg_area =
1867     CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
1868 
1869   // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
1870   // byte boundary if alignment needed by type exceeds 8 byte boundary.
1871   uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
1872   if (Align > 8) {
1873     // Note that we follow the ABI & gcc here, even though the type
1874     // could in theory have an alignment greater than 16. This case
1875     // shouldn't ever matter in practice.
1876 
1877     // overflow_arg_area = (overflow_arg_area + 15) & ~15;
1878     llvm::Value *Offset =
1879       llvm::ConstantInt::get(CGF.Int32Ty, 15);
1880     overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset);
1881     llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area,
1882                                                     CGF.Int64Ty);
1883     llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, ~15LL);
1884     overflow_arg_area =
1885       CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
1886                                  overflow_arg_area->getType(),
1887                                  "overflow_arg_area.align");
1888   }
1889 
1890   // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
1891   const llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
1892   llvm::Value *Res =
1893     CGF.Builder.CreateBitCast(overflow_arg_area,
1894                               llvm::PointerType::getUnqual(LTy));
1895 
1896   // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
1897   // l->overflow_arg_area + sizeof(type).
1898   // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
1899   // an 8 byte boundary.
1900 
1901   uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
1902   llvm::Value *Offset =
1903       llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7);
1904   overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
1905                                             "overflow_arg_area.next");
1906   CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
1907 
1908   // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
1909   return Res;
1910 }
1911 
1912 llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1913                                       CodeGenFunction &CGF) const {
1914   llvm::LLVMContext &VMContext = CGF.getLLVMContext();
1915 
1916   // Assume that va_list type is correct; should be pointer to LLVM type:
1917   // struct {
1918   //   i32 gp_offset;
1919   //   i32 fp_offset;
1920   //   i8* overflow_arg_area;
1921   //   i8* reg_save_area;
1922   // };
1923   unsigned neededInt, neededSSE;
1924 
1925   Ty = CGF.getContext().getCanonicalType(Ty);
1926   ABIArgInfo AI = classifyArgumentType(Ty, neededInt, neededSSE);
1927 
1928   // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
1929   // in the registers. If not go to step 7.
1930   if (!neededInt && !neededSSE)
1931     return EmitVAArgFromMemory(VAListAddr, Ty, CGF);
1932 
1933   // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
1934   // general purpose registers needed to pass type and num_fp to hold
1935   // the number of floating point registers needed.
1936 
1937   // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
1938   // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
1939   // l->fp_offset > 304 - num_fp * 16 go to step 7.
1940   //
1941   // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
1942   // register save space).
1943 
1944   llvm::Value *InRegs = 0;
1945   llvm::Value *gp_offset_p = 0, *gp_offset = 0;
1946   llvm::Value *fp_offset_p = 0, *fp_offset = 0;
1947   if (neededInt) {
1948     gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
1949     gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
1950     InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
1951     InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
1952   }
1953 
1954   if (neededSSE) {
1955     fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
1956     fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
1957     llvm::Value *FitsInFP =
1958       llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
1959     FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
1960     InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
1961   }
1962 
1963   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
1964   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
1965   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
1966   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
1967 
1968   // Emit code to load the value if it was passed in registers.
1969 
1970   CGF.EmitBlock(InRegBlock);
1971 
1972   // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
1973   // an offset of l->gp_offset and/or l->fp_offset. This may require
1974   // copying to a temporary location in case the parameter is passed
1975   // in different register classes or requires an alignment greater
1976   // than 8 for general purpose registers and 16 for XMM registers.
1977   //
1978   // FIXME: This really results in shameful code when we end up needing to
1979   // collect arguments from different places; often what should result in a
1980   // simple assembling of a structure from scattered addresses has many more
1981   // loads than necessary. Can we clean this up?
1982   const llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
1983   llvm::Value *RegAddr =
1984     CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(VAListAddr, 3),
1985                            "reg_save_area");
1986   if (neededInt && neededSSE) {
1987     // FIXME: Cleanup.
1988     assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
1989     const llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
1990     llvm::Value *Tmp = CGF.CreateTempAlloca(ST);
1991     assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
1992     const llvm::Type *TyLo = ST->getElementType(0);
1993     const llvm::Type *TyHi = ST->getElementType(1);
1994     assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
1995            "Unexpected ABI info for mixed regs");
1996     const llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
1997     const llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
1998     llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
1999     llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2000     llvm::Value *RegLoAddr = TyLo->isFloatingPointTy() ? FPAddr : GPAddr;
2001     llvm::Value *RegHiAddr = TyLo->isFloatingPointTy() ? GPAddr : FPAddr;
2002     llvm::Value *V =
2003       CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo));
2004     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
2005     V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi));
2006     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
2007 
2008     RegAddr = CGF.Builder.CreateBitCast(Tmp,
2009                                         llvm::PointerType::getUnqual(LTy));
2010   } else if (neededInt) {
2011     RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
2012     RegAddr = CGF.Builder.CreateBitCast(RegAddr,
2013                                         llvm::PointerType::getUnqual(LTy));
2014   } else if (neededSSE == 1) {
2015     RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2016     RegAddr = CGF.Builder.CreateBitCast(RegAddr,
2017                                         llvm::PointerType::getUnqual(LTy));
2018   } else {
2019     assert(neededSSE == 2 && "Invalid number of needed registers!");
2020     // SSE registers are spaced 16 bytes apart in the register save
2021     // area, we need to collect the two eightbytes together.
2022     llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2023     llvm::Value *RegAddrHi = CGF.Builder.CreateConstGEP1_32(RegAddrLo, 16);
2024     const llvm::Type *DoubleTy = llvm::Type::getDoubleTy(VMContext);
2025     const llvm::Type *DblPtrTy =
2026       llvm::PointerType::getUnqual(DoubleTy);
2027     const llvm::StructType *ST = llvm::StructType::get(VMContext, DoubleTy,
2028                                                        DoubleTy, NULL);
2029     llvm::Value *V, *Tmp = CGF.CreateTempAlloca(ST);
2030     V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo,
2031                                                          DblPtrTy));
2032     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
2033     V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi,
2034                                                          DblPtrTy));
2035     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
2036     RegAddr = CGF.Builder.CreateBitCast(Tmp,
2037                                         llvm::PointerType::getUnqual(LTy));
2038   }
2039 
2040   // AMD64-ABI 3.5.7p5: Step 5. Set:
2041   // l->gp_offset = l->gp_offset + num_gp * 8
2042   // l->fp_offset = l->fp_offset + num_fp * 16.
2043   if (neededInt) {
2044     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
2045     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
2046                             gp_offset_p);
2047   }
2048   if (neededSSE) {
2049     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
2050     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
2051                             fp_offset_p);
2052   }
2053   CGF.EmitBranch(ContBlock);
2054 
2055   // Emit code to load the value if it was passed in memory.
2056 
2057   CGF.EmitBlock(InMemBlock);
2058   llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF);
2059 
2060   // Return the appropriate result.
2061 
2062   CGF.EmitBlock(ContBlock);
2063   llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(),
2064                                                  "vaarg.addr");
2065   ResAddr->reserveOperandSpace(2);
2066   ResAddr->addIncoming(RegAddr, InRegBlock);
2067   ResAddr->addIncoming(MemAddr, InMemBlock);
2068   return ResAddr;
2069 }
2070 
2071 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty) const {
2072 
2073   if (Ty->isVoidType())
2074     return ABIArgInfo::getIgnore();
2075 
2076   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2077     Ty = EnumTy->getDecl()->getIntegerType();
2078 
2079   uint64_t Size = getContext().getTypeSize(Ty);
2080 
2081   if (const RecordType *RT = Ty->getAs<RecordType>()) {
2082     if (hasNonTrivialDestructorOrCopyConstructor(RT) ||
2083         RT->getDecl()->hasFlexibleArrayMember())
2084       return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2085 
2086     // FIXME: mingw64-gcc emits 128-bit struct as i128
2087     if (Size <= 128 &&
2088         (Size & (Size - 1)) == 0)
2089       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2090                                                           Size));
2091 
2092     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2093   }
2094 
2095   if (Ty->isPromotableIntegerType())
2096     return ABIArgInfo::getExtend();
2097 
2098   return ABIArgInfo::getDirect();
2099 }
2100 
2101 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
2102 
2103   QualType RetTy = FI.getReturnType();
2104   FI.getReturnInfo() = classify(RetTy);
2105 
2106   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2107        it != ie; ++it)
2108     it->info = classify(it->type);
2109 }
2110 
2111 llvm::Value *WinX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2112                                       CodeGenFunction &CGF) const {
2113   const llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
2114   const llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
2115 
2116   CGBuilderTy &Builder = CGF.Builder;
2117   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
2118                                                        "ap");
2119   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
2120   llvm::Type *PTy =
2121     llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
2122   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
2123 
2124   uint64_t Offset =
2125     llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 8);
2126   llvm::Value *NextAddr =
2127     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
2128                       "ap.next");
2129   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
2130 
2131   return AddrTyped;
2132 }
2133 
2134 // PowerPC-32
2135 
2136 namespace {
2137 class PPC32TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
2138 public:
2139   PPC32TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
2140 
2141   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
2142     // This is recovered from gcc output.
2143     return 1; // r1 is the dedicated stack pointer
2144   }
2145 
2146   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2147                                llvm::Value *Address) const;
2148 };
2149 
2150 }
2151 
2152 bool
2153 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2154                                                 llvm::Value *Address) const {
2155   // This is calculated from the LLVM and GCC tables and verified
2156   // against gcc output.  AFAIK all ABIs use the same encoding.
2157 
2158   CodeGen::CGBuilderTy &Builder = CGF.Builder;
2159   llvm::LLVMContext &Context = CGF.getLLVMContext();
2160 
2161   const llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
2162   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
2163   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
2164   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
2165 
2166   // 0-31: r0-31, the 4-byte general-purpose registers
2167   AssignToArrayRange(Builder, Address, Four8, 0, 31);
2168 
2169   // 32-63: fp0-31, the 8-byte floating-point registers
2170   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
2171 
2172   // 64-76 are various 4-byte special-purpose registers:
2173   // 64: mq
2174   // 65: lr
2175   // 66: ctr
2176   // 67: ap
2177   // 68-75 cr0-7
2178   // 76: xer
2179   AssignToArrayRange(Builder, Address, Four8, 64, 76);
2180 
2181   // 77-108: v0-31, the 16-byte vector registers
2182   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
2183 
2184   // 109: vrsave
2185   // 110: vscr
2186   // 111: spe_acc
2187   // 112: spefscr
2188   // 113: sfp
2189   AssignToArrayRange(Builder, Address, Four8, 109, 113);
2190 
2191   return false;
2192 }
2193 
2194 
2195 //===----------------------------------------------------------------------===//
2196 // ARM ABI Implementation
2197 //===----------------------------------------------------------------------===//
2198 
2199 namespace {
2200 
2201 class ARMABIInfo : public ABIInfo {
2202 public:
2203   enum ABIKind {
2204     APCS = 0,
2205     AAPCS = 1,
2206     AAPCS_VFP
2207   };
2208 
2209 private:
2210   ABIKind Kind;
2211 
2212 public:
2213   ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) : ABIInfo(CGT), Kind(_Kind) {}
2214 
2215 private:
2216   ABIKind getABIKind() const { return Kind; }
2217 
2218   ABIArgInfo classifyReturnType(QualType RetTy) const;
2219   ABIArgInfo classifyArgumentType(QualType RetTy) const;
2220 
2221   virtual void computeInfo(CGFunctionInfo &FI) const;
2222 
2223   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2224                                  CodeGenFunction &CGF) const;
2225 };
2226 
2227 class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
2228 public:
2229   ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
2230     :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {}
2231 
2232   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
2233     return 13;
2234   }
2235 };
2236 
2237 }
2238 
2239 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
2240   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2241   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2242        it != ie; ++it)
2243     it->info = classifyArgumentType(it->type);
2244 
2245   const llvm::Triple &Triple(getContext().Target.getTriple());
2246   llvm::CallingConv::ID DefaultCC;
2247   if (Triple.getEnvironmentName() == "gnueabi" ||
2248       Triple.getEnvironmentName() == "eabi")
2249     DefaultCC = llvm::CallingConv::ARM_AAPCS;
2250   else
2251     DefaultCC = llvm::CallingConv::ARM_APCS;
2252 
2253   switch (getABIKind()) {
2254   case APCS:
2255     if (DefaultCC != llvm::CallingConv::ARM_APCS)
2256       FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_APCS);
2257     break;
2258 
2259   case AAPCS:
2260     if (DefaultCC != llvm::CallingConv::ARM_AAPCS)
2261       FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_AAPCS);
2262     break;
2263 
2264   case AAPCS_VFP:
2265     FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_AAPCS_VFP);
2266     break;
2267   }
2268 }
2269 
2270 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty) const {
2271   if (!isAggregateTypeForABI(Ty)) {
2272     // Treat an enum type as its underlying type.
2273     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2274       Ty = EnumTy->getDecl()->getIntegerType();
2275 
2276     return (Ty->isPromotableIntegerType() ?
2277             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2278   }
2279 
2280   // Ignore empty records.
2281   if (isEmptyRecord(getContext(), Ty, true))
2282     return ABIArgInfo::getIgnore();
2283 
2284   // Structures with either a non-trivial destructor or a non-trivial
2285   // copy constructor are always indirect.
2286   if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
2287     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2288 
2289   // Otherwise, pass by coercing to a structure of the appropriate size.
2290   //
2291   // FIXME: This is kind of nasty... but there isn't much choice because the ARM
2292   // backend doesn't support byval.
2293   // FIXME: This doesn't handle alignment > 64 bits.
2294   const llvm::Type* ElemTy;
2295   unsigned SizeRegs;
2296   if (getContext().getTypeAlign(Ty) > 32) {
2297     ElemTy = llvm::Type::getInt64Ty(getVMContext());
2298     SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
2299   } else {
2300     ElemTy = llvm::Type::getInt32Ty(getVMContext());
2301     SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
2302   }
2303   std::vector<const llvm::Type*> LLVMFields;
2304   LLVMFields.push_back(llvm::ArrayType::get(ElemTy, SizeRegs));
2305   const llvm::Type* STy = llvm::StructType::get(getVMContext(), LLVMFields,
2306                                                 true);
2307   return ABIArgInfo::getDirect(STy);
2308 }
2309 
2310 static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
2311                               llvm::LLVMContext &VMContext) {
2312   // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
2313   // is called integer-like if its size is less than or equal to one word, and
2314   // the offset of each of its addressable sub-fields is zero.
2315 
2316   uint64_t Size = Context.getTypeSize(Ty);
2317 
2318   // Check that the type fits in a word.
2319   if (Size > 32)
2320     return false;
2321 
2322   // FIXME: Handle vector types!
2323   if (Ty->isVectorType())
2324     return false;
2325 
2326   // Float types are never treated as "integer like".
2327   if (Ty->isRealFloatingType())
2328     return false;
2329 
2330   // If this is a builtin or pointer type then it is ok.
2331   if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
2332     return true;
2333 
2334   // Small complex integer types are "integer like".
2335   if (const ComplexType *CT = Ty->getAs<ComplexType>())
2336     return isIntegerLikeType(CT->getElementType(), Context, VMContext);
2337 
2338   // Single element and zero sized arrays should be allowed, by the definition
2339   // above, but they are not.
2340 
2341   // Otherwise, it must be a record type.
2342   const RecordType *RT = Ty->getAs<RecordType>();
2343   if (!RT) return false;
2344 
2345   // Ignore records with flexible arrays.
2346   const RecordDecl *RD = RT->getDecl();
2347   if (RD->hasFlexibleArrayMember())
2348     return false;
2349 
2350   // Check that all sub-fields are at offset 0, and are themselves "integer
2351   // like".
2352   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
2353 
2354   bool HadField = false;
2355   unsigned idx = 0;
2356   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2357        i != e; ++i, ++idx) {
2358     const FieldDecl *FD = *i;
2359 
2360     // Bit-fields are not addressable, we only need to verify they are "integer
2361     // like". We still have to disallow a subsequent non-bitfield, for example:
2362     //   struct { int : 0; int x }
2363     // is non-integer like according to gcc.
2364     if (FD->isBitField()) {
2365       if (!RD->isUnion())
2366         HadField = true;
2367 
2368       if (!isIntegerLikeType(FD->getType(), Context, VMContext))
2369         return false;
2370 
2371       continue;
2372     }
2373 
2374     // Check if this field is at offset 0.
2375     if (Layout.getFieldOffset(idx) != 0)
2376       return false;
2377 
2378     if (!isIntegerLikeType(FD->getType(), Context, VMContext))
2379       return false;
2380 
2381     // Only allow at most one field in a structure. This doesn't match the
2382     // wording above, but follows gcc in situations with a field following an
2383     // empty structure.
2384     if (!RD->isUnion()) {
2385       if (HadField)
2386         return false;
2387 
2388       HadField = true;
2389     }
2390   }
2391 
2392   return true;
2393 }
2394 
2395 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy) const {
2396   if (RetTy->isVoidType())
2397     return ABIArgInfo::getIgnore();
2398 
2399   // Large vector types should be returned via memory.
2400   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
2401     return ABIArgInfo::getIndirect(0);
2402 
2403   if (!isAggregateTypeForABI(RetTy)) {
2404     // Treat an enum type as its underlying type.
2405     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
2406       RetTy = EnumTy->getDecl()->getIntegerType();
2407 
2408     return (RetTy->isPromotableIntegerType() ?
2409             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2410   }
2411 
2412   // Structures with either a non-trivial destructor or a non-trivial
2413   // copy constructor are always indirect.
2414   if (isRecordWithNonTrivialDestructorOrCopyConstructor(RetTy))
2415     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2416 
2417   // Are we following APCS?
2418   if (getABIKind() == APCS) {
2419     if (isEmptyRecord(getContext(), RetTy, false))
2420       return ABIArgInfo::getIgnore();
2421 
2422     // Complex types are all returned as packed integers.
2423     //
2424     // FIXME: Consider using 2 x vector types if the back end handles them
2425     // correctly.
2426     if (RetTy->isAnyComplexType())
2427       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2428                                               getContext().getTypeSize(RetTy)));
2429 
2430     // Integer like structures are returned in r0.
2431     if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
2432       // Return in the smallest viable integer type.
2433       uint64_t Size = getContext().getTypeSize(RetTy);
2434       if (Size <= 8)
2435         return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
2436       if (Size <= 16)
2437         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
2438       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
2439     }
2440 
2441     // Otherwise return in memory.
2442     return ABIArgInfo::getIndirect(0);
2443   }
2444 
2445   // Otherwise this is an AAPCS variant.
2446 
2447   if (isEmptyRecord(getContext(), RetTy, true))
2448     return ABIArgInfo::getIgnore();
2449 
2450   // Aggregates <= 4 bytes are returned in r0; other aggregates
2451   // are returned indirectly.
2452   uint64_t Size = getContext().getTypeSize(RetTy);
2453   if (Size <= 32) {
2454     // Return in the smallest viable integer type.
2455     if (Size <= 8)
2456       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
2457     if (Size <= 16)
2458       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
2459     return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
2460   }
2461 
2462   return ABIArgInfo::getIndirect(0);
2463 }
2464 
2465 llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2466                                    CodeGenFunction &CGF) const {
2467   // FIXME: Need to handle alignment
2468   const llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
2469   const llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
2470 
2471   CGBuilderTy &Builder = CGF.Builder;
2472   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
2473                                                        "ap");
2474   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
2475   llvm::Type *PTy =
2476     llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
2477   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
2478 
2479   uint64_t Offset =
2480     llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
2481   llvm::Value *NextAddr =
2482     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
2483                       "ap.next");
2484   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
2485 
2486   return AddrTyped;
2487 }
2488 
2489 //===----------------------------------------------------------------------===//
2490 // SystemZ ABI Implementation
2491 //===----------------------------------------------------------------------===//
2492 
2493 namespace {
2494 
2495 class SystemZABIInfo : public ABIInfo {
2496 public:
2497   SystemZABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
2498 
2499   bool isPromotableIntegerType(QualType Ty) const;
2500 
2501   ABIArgInfo classifyReturnType(QualType RetTy) const;
2502   ABIArgInfo classifyArgumentType(QualType RetTy) const;
2503 
2504   virtual void computeInfo(CGFunctionInfo &FI) const {
2505     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2506     for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2507          it != ie; ++it)
2508       it->info = classifyArgumentType(it->type);
2509   }
2510 
2511   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2512                                  CodeGenFunction &CGF) const;
2513 };
2514 
2515 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
2516 public:
2517   SystemZTargetCodeGenInfo(CodeGenTypes &CGT)
2518     : TargetCodeGenInfo(new SystemZABIInfo(CGT)) {}
2519 };
2520 
2521 }
2522 
2523 bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const {
2524   // SystemZ ABI requires all 8, 16 and 32 bit quantities to be extended.
2525   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
2526     switch (BT->getKind()) {
2527     case BuiltinType::Bool:
2528     case BuiltinType::Char_S:
2529     case BuiltinType::Char_U:
2530     case BuiltinType::SChar:
2531     case BuiltinType::UChar:
2532     case BuiltinType::Short:
2533     case BuiltinType::UShort:
2534     case BuiltinType::Int:
2535     case BuiltinType::UInt:
2536       return true;
2537     default:
2538       return false;
2539     }
2540   return false;
2541 }
2542 
2543 llvm::Value *SystemZABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2544                                        CodeGenFunction &CGF) const {
2545   // FIXME: Implement
2546   return 0;
2547 }
2548 
2549 
2550 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const {
2551   if (RetTy->isVoidType())
2552     return ABIArgInfo::getIgnore();
2553   if (isAggregateTypeForABI(RetTy))
2554     return ABIArgInfo::getIndirect(0);
2555 
2556   return (isPromotableIntegerType(RetTy) ?
2557           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2558 }
2559 
2560 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const {
2561   if (isAggregateTypeForABI(Ty))
2562     return ABIArgInfo::getIndirect(0);
2563 
2564   return (isPromotableIntegerType(Ty) ?
2565           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2566 }
2567 
2568 //===----------------------------------------------------------------------===//
2569 // MBlaze ABI Implementation
2570 //===----------------------------------------------------------------------===//
2571 
2572 namespace {
2573 
2574 class MBlazeABIInfo : public ABIInfo {
2575 public:
2576   MBlazeABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
2577 
2578   bool isPromotableIntegerType(QualType Ty) const;
2579 
2580   ABIArgInfo classifyReturnType(QualType RetTy) const;
2581   ABIArgInfo classifyArgumentType(QualType RetTy) const;
2582 
2583   virtual void computeInfo(CGFunctionInfo &FI) const {
2584     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2585     for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2586          it != ie; ++it)
2587       it->info = classifyArgumentType(it->type);
2588   }
2589 
2590   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2591                                  CodeGenFunction &CGF) const;
2592 };
2593 
2594 class MBlazeTargetCodeGenInfo : public TargetCodeGenInfo {
2595 public:
2596   MBlazeTargetCodeGenInfo(CodeGenTypes &CGT)
2597     : TargetCodeGenInfo(new MBlazeABIInfo(CGT)) {}
2598   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2599                            CodeGen::CodeGenModule &M) const;
2600 };
2601 
2602 }
2603 
2604 bool MBlazeABIInfo::isPromotableIntegerType(QualType Ty) const {
2605   // MBlaze ABI requires all 8 and 16 bit quantities to be extended.
2606   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
2607     switch (BT->getKind()) {
2608     case BuiltinType::Bool:
2609     case BuiltinType::Char_S:
2610     case BuiltinType::Char_U:
2611     case BuiltinType::SChar:
2612     case BuiltinType::UChar:
2613     case BuiltinType::Short:
2614     case BuiltinType::UShort:
2615       return true;
2616     default:
2617       return false;
2618     }
2619   return false;
2620 }
2621 
2622 llvm::Value *MBlazeABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2623                                       CodeGenFunction &CGF) const {
2624   // FIXME: Implement
2625   return 0;
2626 }
2627 
2628 
2629 ABIArgInfo MBlazeABIInfo::classifyReturnType(QualType RetTy) const {
2630   if (RetTy->isVoidType())
2631     return ABIArgInfo::getIgnore();
2632   if (isAggregateTypeForABI(RetTy))
2633     return ABIArgInfo::getIndirect(0);
2634 
2635   return (isPromotableIntegerType(RetTy) ?
2636           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2637 }
2638 
2639 ABIArgInfo MBlazeABIInfo::classifyArgumentType(QualType Ty) const {
2640   if (isAggregateTypeForABI(Ty))
2641     return ABIArgInfo::getIndirect(0);
2642 
2643   return (isPromotableIntegerType(Ty) ?
2644           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2645 }
2646 
2647 void MBlazeTargetCodeGenInfo::SetTargetAttributes(const Decl *D,
2648                                                   llvm::GlobalValue *GV,
2649                                                   CodeGen::CodeGenModule &M)
2650                                                   const {
2651   const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
2652   if (!FD) return;
2653 
2654   llvm::CallingConv::ID CC = llvm::CallingConv::C;
2655   if (FD->hasAttr<MBlazeInterruptHandlerAttr>())
2656     CC = llvm::CallingConv::MBLAZE_INTR;
2657   else if (FD->hasAttr<MBlazeSaveVolatilesAttr>())
2658     CC = llvm::CallingConv::MBLAZE_SVOL;
2659 
2660   if (CC != llvm::CallingConv::C) {
2661       // Handle 'interrupt_handler' attribute:
2662       llvm::Function *F = cast<llvm::Function>(GV);
2663 
2664       // Step 1: Set ISR calling convention.
2665       F->setCallingConv(CC);
2666 
2667       // Step 2: Add attributes goodness.
2668       F->addFnAttr(llvm::Attribute::NoInline);
2669   }
2670 
2671   // Step 3: Emit _interrupt_handler alias.
2672   if (CC == llvm::CallingConv::MBLAZE_INTR)
2673     new llvm::GlobalAlias(GV->getType(), llvm::Function::ExternalLinkage,
2674                           "_interrupt_handler", GV, &M.getModule());
2675 }
2676 
2677 
2678 //===----------------------------------------------------------------------===//
2679 // MSP430 ABI Implementation
2680 //===----------------------------------------------------------------------===//
2681 
2682 namespace {
2683 
2684 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
2685 public:
2686   MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
2687     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
2688   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2689                            CodeGen::CodeGenModule &M) const;
2690 };
2691 
2692 }
2693 
2694 void MSP430TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
2695                                                   llvm::GlobalValue *GV,
2696                                              CodeGen::CodeGenModule &M) const {
2697   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2698     if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) {
2699       // Handle 'interrupt' attribute:
2700       llvm::Function *F = cast<llvm::Function>(GV);
2701 
2702       // Step 1: Set ISR calling convention.
2703       F->setCallingConv(llvm::CallingConv::MSP430_INTR);
2704 
2705       // Step 2: Add attributes goodness.
2706       F->addFnAttr(llvm::Attribute::NoInline);
2707 
2708       // Step 3: Emit ISR vector alias.
2709       unsigned Num = attr->getNumber() + 0xffe0;
2710       new llvm::GlobalAlias(GV->getType(), llvm::Function::ExternalLinkage,
2711                             "vector_" + llvm::Twine::utohexstr(Num),
2712                             GV, &M.getModule());
2713     }
2714   }
2715 }
2716 
2717 //===----------------------------------------------------------------------===//
2718 // MIPS ABI Implementation.  This works for both little-endian and
2719 // big-endian variants.
2720 //===----------------------------------------------------------------------===//
2721 
2722 namespace {
2723 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
2724 public:
2725   MIPSTargetCodeGenInfo(CodeGenTypes &CGT)
2726     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
2727 
2728   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
2729     return 29;
2730   }
2731 
2732   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2733                                llvm::Value *Address) const;
2734 };
2735 }
2736 
2737 bool
2738 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2739                                                llvm::Value *Address) const {
2740   // This information comes from gcc's implementation, which seems to
2741   // as canonical as it gets.
2742 
2743   CodeGen::CGBuilderTy &Builder = CGF.Builder;
2744   llvm::LLVMContext &Context = CGF.getLLVMContext();
2745 
2746   // Everything on MIPS is 4 bytes.  Double-precision FP registers
2747   // are aliased to pairs of single-precision FP registers.
2748   const llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
2749   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
2750 
2751   // 0-31 are the general purpose registers, $0 - $31.
2752   // 32-63 are the floating-point registers, $f0 - $f31.
2753   // 64 and 65 are the multiply/divide registers, $hi and $lo.
2754   // 66 is the (notional, I think) register for signal-handler return.
2755   AssignToArrayRange(Builder, Address, Four8, 0, 65);
2756 
2757   // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
2758   // They are one bit wide and ignored here.
2759 
2760   // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
2761   // (coprocessor 1 is the FP unit)
2762   // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
2763   // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
2764   // 176-181 are the DSP accumulator registers.
2765   AssignToArrayRange(Builder, Address, Four8, 80, 181);
2766 
2767   return false;
2768 }
2769 
2770 
2771 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
2772   if (TheTargetCodeGenInfo)
2773     return *TheTargetCodeGenInfo;
2774 
2775   // For now we just cache the TargetCodeGenInfo in CodeGenModule and don't
2776   // free it.
2777 
2778   const llvm::Triple &Triple = getContext().Target.getTriple();
2779   switch (Triple.getArch()) {
2780   default:
2781     return *(TheTargetCodeGenInfo = new DefaultTargetCodeGenInfo(Types));
2782 
2783   case llvm::Triple::mips:
2784   case llvm::Triple::mipsel:
2785     return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types));
2786 
2787   case llvm::Triple::arm:
2788   case llvm::Triple::thumb:
2789     // FIXME: We want to know the float calling convention as well.
2790     if (strcmp(getContext().Target.getABI(), "apcs-gnu") == 0)
2791       return *(TheTargetCodeGenInfo =
2792                new ARMTargetCodeGenInfo(Types, ARMABIInfo::APCS));
2793 
2794     return *(TheTargetCodeGenInfo =
2795              new ARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS));
2796 
2797   case llvm::Triple::ppc:
2798     return *(TheTargetCodeGenInfo = new PPC32TargetCodeGenInfo(Types));
2799 
2800   case llvm::Triple::systemz:
2801     return *(TheTargetCodeGenInfo = new SystemZTargetCodeGenInfo(Types));
2802 
2803   case llvm::Triple::mblaze:
2804     return *(TheTargetCodeGenInfo = new MBlazeTargetCodeGenInfo(Types));
2805 
2806   case llvm::Triple::msp430:
2807     return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo(Types));
2808 
2809   case llvm::Triple::x86:
2810     switch (Triple.getOS()) {
2811     case llvm::Triple::Darwin:
2812       return *(TheTargetCodeGenInfo =
2813                new X86_32TargetCodeGenInfo(Types, true, true));
2814     case llvm::Triple::Cygwin:
2815     case llvm::Triple::MinGW32:
2816     case llvm::Triple::AuroraUX:
2817     case llvm::Triple::DragonFly:
2818     case llvm::Triple::FreeBSD:
2819     case llvm::Triple::OpenBSD:
2820       return *(TheTargetCodeGenInfo =
2821                new X86_32TargetCodeGenInfo(Types, false, true));
2822 
2823     default:
2824       return *(TheTargetCodeGenInfo =
2825                new X86_32TargetCodeGenInfo(Types, false, false));
2826     }
2827 
2828   case llvm::Triple::x86_64:
2829     switch (Triple.getOS()) {
2830     case llvm::Triple::Win32:
2831     case llvm::Triple::MinGW64:
2832     case llvm::Triple::Cygwin:
2833       return *(TheTargetCodeGenInfo = new WinX86_64TargetCodeGenInfo(Types));
2834     default:
2835       return *(TheTargetCodeGenInfo = new X86_64TargetCodeGenInfo(Types));
2836     }
2837   }
2838 }
2839