1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // These classes wrap the information about a call or function
11 // definition used to handle ABI compliancy.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "TargetInfo.h"
16 #include "ABIInfo.h"
17 #include "CGCXXABI.h"
18 #include "CGValue.h"
19 #include "CodeGenFunction.h"
20 #include "clang/AST/RecordLayout.h"
21 #include "clang/CodeGen/CGFunctionInfo.h"
22 #include "clang/Frontend/CodeGenOptions.h"
23 #include "llvm/ADT/StringExtras.h"
24 #include "llvm/ADT/Triple.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/Type.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include <algorithm>    // std::sort
29 
30 using namespace clang;
31 using namespace CodeGen;
32 
33 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
34                                llvm::Value *Array,
35                                llvm::Value *Value,
36                                unsigned FirstIndex,
37                                unsigned LastIndex) {
38   // Alternatively, we could emit this as a loop in the source.
39   for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
40     llvm::Value *Cell =
41         Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I);
42     Builder.CreateAlignedStore(Value, Cell, CharUnits::One());
43   }
44 }
45 
46 static bool isAggregateTypeForABI(QualType T) {
47   return !CodeGenFunction::hasScalarEvaluationKind(T) ||
48          T->isMemberFunctionPointerType();
49 }
50 
51 ABIArgInfo
52 ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByRef, bool Realign,
53                                  llvm::Type *Padding) const {
54   return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty),
55                                  ByRef, Realign, Padding);
56 }
57 
58 ABIArgInfo
59 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const {
60   return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty),
61                                       /*ByRef*/ false, Realign);
62 }
63 
64 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
65                              QualType Ty) const {
66   return Address::invalid();
67 }
68 
69 ABIInfo::~ABIInfo() {}
70 
71 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT,
72                                               CGCXXABI &CXXABI) {
73   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
74   if (!RD)
75     return CGCXXABI::RAA_Default;
76   return CXXABI.getRecordArgABI(RD);
77 }
78 
79 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T,
80                                               CGCXXABI &CXXABI) {
81   const RecordType *RT = T->getAs<RecordType>();
82   if (!RT)
83     return CGCXXABI::RAA_Default;
84   return getRecordArgABI(RT, CXXABI);
85 }
86 
87 /// Pass transparent unions as if they were the type of the first element. Sema
88 /// should ensure that all elements of the union have the same "machine type".
89 static QualType useFirstFieldIfTransparentUnion(QualType Ty) {
90   if (const RecordType *UT = Ty->getAsUnionType()) {
91     const RecordDecl *UD = UT->getDecl();
92     if (UD->hasAttr<TransparentUnionAttr>()) {
93       assert(!UD->field_empty() && "sema created an empty transparent union");
94       return UD->field_begin()->getType();
95     }
96   }
97   return Ty;
98 }
99 
100 CGCXXABI &ABIInfo::getCXXABI() const {
101   return CGT.getCXXABI();
102 }
103 
104 ASTContext &ABIInfo::getContext() const {
105   return CGT.getContext();
106 }
107 
108 llvm::LLVMContext &ABIInfo::getVMContext() const {
109   return CGT.getLLVMContext();
110 }
111 
112 const llvm::DataLayout &ABIInfo::getDataLayout() const {
113   return CGT.getDataLayout();
114 }
115 
116 const TargetInfo &ABIInfo::getTarget() const {
117   return CGT.getTarget();
118 }
119 
120 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
121   return false;
122 }
123 
124 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
125                                                 uint64_t Members) const {
126   return false;
127 }
128 
129 bool ABIInfo::shouldSignExtUnsignedType(QualType Ty) const {
130   return false;
131 }
132 
133 void ABIArgInfo::dump() const {
134   raw_ostream &OS = llvm::errs();
135   OS << "(ABIArgInfo Kind=";
136   switch (TheKind) {
137   case Direct:
138     OS << "Direct Type=";
139     if (llvm::Type *Ty = getCoerceToType())
140       Ty->print(OS);
141     else
142       OS << "null";
143     break;
144   case Extend:
145     OS << "Extend";
146     break;
147   case Ignore:
148     OS << "Ignore";
149     break;
150   case InAlloca:
151     OS << "InAlloca Offset=" << getInAllocaFieldIndex();
152     break;
153   case Indirect:
154     OS << "Indirect Align=" << getIndirectAlign().getQuantity()
155        << " ByVal=" << getIndirectByVal()
156        << " Realign=" << getIndirectRealign();
157     break;
158   case Expand:
159     OS << "Expand";
160     break;
161   }
162   OS << ")\n";
163 }
164 
165 /// Emit va_arg for a platform using the common void* representation,
166 /// where arguments are simply emitted in an array of slots on the stack.
167 ///
168 /// This version implements the core direct-value passing rules.
169 ///
170 /// \param SlotSize - The size and alignment of a stack slot.
171 ///   Each argument will be allocated to a multiple of this number of
172 ///   slots, and all the slots will be aligned to this value.
173 /// \param AllowHigherAlign - The slot alignment is not a cap;
174 ///   an argument type with an alignment greater than the slot size
175 ///   will be emitted on a higher-alignment address, potentially
176 ///   leaving one or more empty slots behind as padding.  If this
177 ///   is false, the returned address might be less-aligned than
178 ///   DirectAlign.
179 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF,
180                                       Address VAListAddr,
181                                       llvm::Type *DirectTy,
182                                       CharUnits DirectSize,
183                                       CharUnits DirectAlign,
184                                       CharUnits SlotSize,
185                                       bool AllowHigherAlign) {
186   // Cast the element type to i8* if necessary.  Some platforms define
187   // va_list as a struct containing an i8* instead of just an i8*.
188   if (VAListAddr.getElementType() != CGF.Int8PtrTy)
189     VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy);
190 
191   llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur");
192 
193   // If the CC aligns values higher than the slot size, do so if needed.
194   Address Addr = Address::invalid();
195   if (AllowHigherAlign && DirectAlign > SlotSize) {
196     llvm::Value *PtrAsInt = Ptr;
197     PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy);
198     PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt,
199           llvm::ConstantInt::get(CGF.IntPtrTy, DirectAlign.getQuantity() - 1));
200     PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt,
201              llvm::ConstantInt::get(CGF.IntPtrTy, -DirectAlign.getQuantity()));
202     Addr = Address(CGF.Builder.CreateIntToPtr(PtrAsInt, Ptr->getType(),
203                                               "argp.cur.aligned"),
204                    DirectAlign);
205   } else {
206     Addr = Address(Ptr, SlotSize);
207   }
208 
209   // Advance the pointer past the argument, then store that back.
210   CharUnits FullDirectSize = DirectSize.RoundUpToAlignment(SlotSize);
211   llvm::Value *NextPtr =
212     CGF.Builder.CreateConstInBoundsByteGEP(Addr.getPointer(), FullDirectSize,
213                                            "argp.next");
214   CGF.Builder.CreateStore(NextPtr, VAListAddr);
215 
216   // If the argument is smaller than a slot, and this is a big-endian
217   // target, the argument will be right-adjusted in its slot.
218   if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian()) {
219     Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize);
220   }
221 
222   Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy);
223   return Addr;
224 }
225 
226 /// Emit va_arg for a platform using the common void* representation,
227 /// where arguments are simply emitted in an array of slots on the stack.
228 ///
229 /// \param IsIndirect - Values of this type are passed indirectly.
230 /// \param ValueInfo - The size and alignment of this type, generally
231 ///   computed with getContext().getTypeInfoInChars(ValueTy).
232 /// \param SlotSizeAndAlign - The size and alignment of a stack slot.
233 ///   Each argument will be allocated to a multiple of this number of
234 ///   slots, and all the slots will be aligned to this value.
235 /// \param AllowHigherAlign - The slot alignment is not a cap;
236 ///   an argument type with an alignment greater than the slot size
237 ///   will be emitted on a higher-alignment address, potentially
238 ///   leaving one or more empty slots behind as padding.
239 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr,
240                                 QualType ValueTy, bool IsIndirect,
241                                 std::pair<CharUnits, CharUnits> ValueInfo,
242                                 CharUnits SlotSizeAndAlign,
243                                 bool AllowHigherAlign) {
244   // The size and alignment of the value that was passed directly.
245   CharUnits DirectSize, DirectAlign;
246   if (IsIndirect) {
247     DirectSize = CGF.getPointerSize();
248     DirectAlign = CGF.getPointerAlign();
249   } else {
250     DirectSize = ValueInfo.first;
251     DirectAlign = ValueInfo.second;
252   }
253 
254   // Cast the address we've calculated to the right type.
255   llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy);
256   if (IsIndirect)
257     DirectTy = DirectTy->getPointerTo(0);
258 
259   Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy,
260                                         DirectSize, DirectAlign,
261                                         SlotSizeAndAlign,
262                                         AllowHigherAlign);
263 
264   if (IsIndirect) {
265     Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.second);
266   }
267 
268   return Addr;
269 
270 }
271 
272 static Address emitMergePHI(CodeGenFunction &CGF,
273                             Address Addr1, llvm::BasicBlock *Block1,
274                             Address Addr2, llvm::BasicBlock *Block2,
275                             const llvm::Twine &Name = "") {
276   assert(Addr1.getType() == Addr2.getType());
277   llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name);
278   PHI->addIncoming(Addr1.getPointer(), Block1);
279   PHI->addIncoming(Addr2.getPointer(), Block2);
280   CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment());
281   return Address(PHI, Align);
282 }
283 
284 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }
285 
286 // If someone can figure out a general rule for this, that would be great.
287 // It's probably just doomed to be platform-dependent, though.
288 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const {
289   // Verified for:
290   //   x86-64     FreeBSD, Linux, Darwin
291   //   x86-32     FreeBSD, Linux, Darwin
292   //   PowerPC    Linux, Darwin
293   //   ARM        Darwin (*not* EABI)
294   //   AArch64    Linux
295   return 32;
296 }
297 
298 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args,
299                                      const FunctionNoProtoType *fnType) const {
300   // The following conventions are known to require this to be false:
301   //   x86_stdcall
302   //   MIPS
303   // For everything else, we just prefer false unless we opt out.
304   return false;
305 }
306 
307 void
308 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib,
309                                              llvm::SmallString<24> &Opt) const {
310   // This assumes the user is passing a library name like "rt" instead of a
311   // filename like "librt.a/so", and that they don't care whether it's static or
312   // dynamic.
313   Opt = "-l";
314   Opt += Lib;
315 }
316 
317 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
318 
319 /// isEmptyField - Return true iff a the field is "empty", that is it
320 /// is an unnamed bit-field or an (array of) empty record(s).
321 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
322                          bool AllowArrays) {
323   if (FD->isUnnamedBitfield())
324     return true;
325 
326   QualType FT = FD->getType();
327 
328   // Constant arrays of empty records count as empty, strip them off.
329   // Constant arrays of zero length always count as empty.
330   if (AllowArrays)
331     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
332       if (AT->getSize() == 0)
333         return true;
334       FT = AT->getElementType();
335     }
336 
337   const RecordType *RT = FT->getAs<RecordType>();
338   if (!RT)
339     return false;
340 
341   // C++ record fields are never empty, at least in the Itanium ABI.
342   //
343   // FIXME: We should use a predicate for whether this behavior is true in the
344   // current ABI.
345   if (isa<CXXRecordDecl>(RT->getDecl()))
346     return false;
347 
348   return isEmptyRecord(Context, FT, AllowArrays);
349 }
350 
351 /// isEmptyRecord - Return true iff a structure contains only empty
352 /// fields. Note that a structure with a flexible array member is not
353 /// considered empty.
354 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
355   const RecordType *RT = T->getAs<RecordType>();
356   if (!RT)
357     return 0;
358   const RecordDecl *RD = RT->getDecl();
359   if (RD->hasFlexibleArrayMember())
360     return false;
361 
362   // If this is a C++ record, check the bases first.
363   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
364     for (const auto &I : CXXRD->bases())
365       if (!isEmptyRecord(Context, I.getType(), true))
366         return false;
367 
368   for (const auto *I : RD->fields())
369     if (!isEmptyField(Context, I, AllowArrays))
370       return false;
371   return true;
372 }
373 
374 /// isSingleElementStruct - Determine if a structure is a "single
375 /// element struct", i.e. it has exactly one non-empty field or
376 /// exactly one field which is itself a single element
377 /// struct. Structures with flexible array members are never
378 /// considered single element structs.
379 ///
380 /// \return The field declaration for the single non-empty field, if
381 /// it exists.
382 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
383   const RecordType *RT = T->getAs<RecordType>();
384   if (!RT)
385     return nullptr;
386 
387   const RecordDecl *RD = RT->getDecl();
388   if (RD->hasFlexibleArrayMember())
389     return nullptr;
390 
391   const Type *Found = nullptr;
392 
393   // If this is a C++ record, check the bases first.
394   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
395     for (const auto &I : CXXRD->bases()) {
396       // Ignore empty records.
397       if (isEmptyRecord(Context, I.getType(), true))
398         continue;
399 
400       // If we already found an element then this isn't a single-element struct.
401       if (Found)
402         return nullptr;
403 
404       // If this is non-empty and not a single element struct, the composite
405       // cannot be a single element struct.
406       Found = isSingleElementStruct(I.getType(), Context);
407       if (!Found)
408         return nullptr;
409     }
410   }
411 
412   // Check for single element.
413   for (const auto *FD : RD->fields()) {
414     QualType FT = FD->getType();
415 
416     // Ignore empty fields.
417     if (isEmptyField(Context, FD, true))
418       continue;
419 
420     // If we already found an element then this isn't a single-element
421     // struct.
422     if (Found)
423       return nullptr;
424 
425     // Treat single element arrays as the element.
426     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
427       if (AT->getSize().getZExtValue() != 1)
428         break;
429       FT = AT->getElementType();
430     }
431 
432     if (!isAggregateTypeForABI(FT)) {
433       Found = FT.getTypePtr();
434     } else {
435       Found = isSingleElementStruct(FT, Context);
436       if (!Found)
437         return nullptr;
438     }
439   }
440 
441   // We don't consider a struct a single-element struct if it has
442   // padding beyond the element type.
443   if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T))
444     return nullptr;
445 
446   return Found;
447 }
448 
449 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
450   // Treat complex types as the element type.
451   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
452     Ty = CTy->getElementType();
453 
454   // Check for a type which we know has a simple scalar argument-passing
455   // convention without any padding.  (We're specifically looking for 32
456   // and 64-bit integer and integer-equivalents, float, and double.)
457   if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
458       !Ty->isEnumeralType() && !Ty->isBlockPointerType())
459     return false;
460 
461   uint64_t Size = Context.getTypeSize(Ty);
462   return Size == 32 || Size == 64;
463 }
464 
465 /// canExpandIndirectArgument - Test whether an argument type which is to be
466 /// passed indirectly (on the stack) would have the equivalent layout if it was
467 /// expanded into separate arguments. If so, we prefer to do the latter to avoid
468 /// inhibiting optimizations.
469 ///
470 // FIXME: This predicate is missing many cases, currently it just follows
471 // llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We
472 // should probably make this smarter, or better yet make the LLVM backend
473 // capable of handling it.
474 static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) {
475   // We can only expand structure types.
476   const RecordType *RT = Ty->getAs<RecordType>();
477   if (!RT)
478     return false;
479 
480   // We can only expand (C) structures.
481   //
482   // FIXME: This needs to be generalized to handle classes as well.
483   const RecordDecl *RD = RT->getDecl();
484   if (!RD->isStruct())
485     return false;
486 
487   // We try to expand CLike CXXRecordDecl.
488   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
489     if (!CXXRD->isCLike())
490       return false;
491   }
492 
493   uint64_t Size = 0;
494 
495   for (const auto *FD : RD->fields()) {
496     if (!is32Or64BitBasicType(FD->getType(), Context))
497       return false;
498 
499     // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
500     // how to expand them yet, and the predicate for telling if a bitfield still
501     // counts as "basic" is more complicated than what we were doing previously.
502     if (FD->isBitField())
503       return false;
504 
505     Size += Context.getTypeSize(FD->getType());
506   }
507 
508   // Make sure there are not any holes in the struct.
509   if (Size != Context.getTypeSize(Ty))
510     return false;
511 
512   return true;
513 }
514 
515 namespace {
516 /// DefaultABIInfo - The default implementation for ABI specific
517 /// details. This implementation provides information which results in
518 /// self-consistent and sensible LLVM IR generation, but does not
519 /// conform to any particular ABI.
520 class DefaultABIInfo : public ABIInfo {
521 public:
522   DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
523 
524   ABIArgInfo classifyReturnType(QualType RetTy) const;
525   ABIArgInfo classifyArgumentType(QualType RetTy) const;
526 
527   void computeInfo(CGFunctionInfo &FI) const override {
528     if (!getCXXABI().classifyReturnType(FI))
529       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
530     for (auto &I : FI.arguments())
531       I.info = classifyArgumentType(I.type);
532   }
533 
534   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
535                     QualType Ty) const override;
536 };
537 
538 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
539 public:
540   DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
541     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
542 };
543 
544 Address DefaultABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
545                                   QualType Ty) const {
546   return Address::invalid();
547 }
548 
549 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
550   Ty = useFirstFieldIfTransparentUnion(Ty);
551 
552   if (isAggregateTypeForABI(Ty)) {
553     // Records with non-trivial destructors/copy-constructors should not be
554     // passed by value.
555     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
556       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
557 
558     return getNaturalAlignIndirect(Ty);
559   }
560 
561   // Treat an enum type as its underlying type.
562   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
563     Ty = EnumTy->getDecl()->getIntegerType();
564 
565   return (Ty->isPromotableIntegerType() ?
566           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
567 }
568 
569 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
570   if (RetTy->isVoidType())
571     return ABIArgInfo::getIgnore();
572 
573   if (isAggregateTypeForABI(RetTy))
574     return getNaturalAlignIndirect(RetTy);
575 
576   // Treat an enum type as its underlying type.
577   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
578     RetTy = EnumTy->getDecl()->getIntegerType();
579 
580   return (RetTy->isPromotableIntegerType() ?
581           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
582 }
583 
584 //===----------------------------------------------------------------------===//
585 // WebAssembly ABI Implementation
586 //
587 // This is a very simple ABI that relies a lot on DefaultABIInfo.
588 //===----------------------------------------------------------------------===//
589 
590 class WebAssemblyABIInfo final : public DefaultABIInfo {
591 public:
592   explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT)
593       : DefaultABIInfo(CGT) {}
594 
595 private:
596   ABIArgInfo classifyReturnType(QualType RetTy) const;
597   ABIArgInfo classifyArgumentType(QualType Ty) const;
598 
599   // DefaultABIInfo's classifyReturnType and classifyArgumentType are
600   // non-virtual, but computeInfo is virtual, so we overload that.
601   void computeInfo(CGFunctionInfo &FI) const override {
602     if (!getCXXABI().classifyReturnType(FI))
603       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
604     for (auto &Arg : FI.arguments())
605       Arg.info = classifyArgumentType(Arg.type);
606   }
607 };
608 
609 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo {
610 public:
611   explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
612       : TargetCodeGenInfo(new WebAssemblyABIInfo(CGT)) {}
613 };
614 
615 /// \brief Classify argument of given type \p Ty.
616 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const {
617   Ty = useFirstFieldIfTransparentUnion(Ty);
618 
619   if (isAggregateTypeForABI(Ty)) {
620     // Records with non-trivial destructors/copy-constructors should not be
621     // passed by value.
622     if (auto RAA = getRecordArgABI(Ty, getCXXABI()))
623       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
624     // Ignore empty structs/unions.
625     if (isEmptyRecord(getContext(), Ty, true))
626       return ABIArgInfo::getIgnore();
627     // Lower single-element structs to just pass a regular value. TODO: We
628     // could do reasonable-size multiple-element structs too, using getExpand(),
629     // though watch out for things like bitfields.
630     if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
631       return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
632   }
633 
634   // Otherwise just do the default thing.
635   return DefaultABIInfo::classifyArgumentType(Ty);
636 }
637 
638 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const {
639   if (isAggregateTypeForABI(RetTy)) {
640     // Records with non-trivial destructors/copy-constructors should not be
641     // returned by value.
642     if (!getRecordArgABI(RetTy, getCXXABI())) {
643       // Ignore empty structs/unions.
644       if (isEmptyRecord(getContext(), RetTy, true))
645         return ABIArgInfo::getIgnore();
646       // Lower single-element structs to just return a regular value. TODO: We
647       // could do reasonable-size multiple-element structs too, using
648       // ABIArgInfo::getDirect().
649       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
650         return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
651     }
652   }
653 
654   // Otherwise just do the default thing.
655   return DefaultABIInfo::classifyReturnType(RetTy);
656 }
657 
658 //===----------------------------------------------------------------------===//
659 // le32/PNaCl bitcode ABI Implementation
660 //
661 // This is a simplified version of the x86_32 ABI.  Arguments and return values
662 // are always passed on the stack.
663 //===----------------------------------------------------------------------===//
664 
665 class PNaClABIInfo : public ABIInfo {
666  public:
667   PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
668 
669   ABIArgInfo classifyReturnType(QualType RetTy) const;
670   ABIArgInfo classifyArgumentType(QualType RetTy) const;
671 
672   void computeInfo(CGFunctionInfo &FI) const override;
673   Address EmitVAArg(CodeGenFunction &CGF,
674                     Address VAListAddr, QualType Ty) const override;
675 };
676 
677 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo {
678  public:
679   PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
680     : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {}
681 };
682 
683 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const {
684   if (!getCXXABI().classifyReturnType(FI))
685     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
686 
687   for (auto &I : FI.arguments())
688     I.info = classifyArgumentType(I.type);
689 }
690 
691 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
692                                 QualType Ty) const {
693   return Address::invalid();
694 }
695 
696 /// \brief Classify argument of given type \p Ty.
697 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const {
698   if (isAggregateTypeForABI(Ty)) {
699     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
700       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
701     return getNaturalAlignIndirect(Ty);
702   } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
703     // Treat an enum type as its underlying type.
704     Ty = EnumTy->getDecl()->getIntegerType();
705   } else if (Ty->isFloatingType()) {
706     // Floating-point types don't go inreg.
707     return ABIArgInfo::getDirect();
708   }
709 
710   return (Ty->isPromotableIntegerType() ?
711           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
712 }
713 
714 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const {
715   if (RetTy->isVoidType())
716     return ABIArgInfo::getIgnore();
717 
718   // In the PNaCl ABI we always return records/structures on the stack.
719   if (isAggregateTypeForABI(RetTy))
720     return getNaturalAlignIndirect(RetTy);
721 
722   // Treat an enum type as its underlying type.
723   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
724     RetTy = EnumTy->getDecl()->getIntegerType();
725 
726   return (RetTy->isPromotableIntegerType() ?
727           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
728 }
729 
730 /// IsX86_MMXType - Return true if this is an MMX type.
731 bool IsX86_MMXType(llvm::Type *IRType) {
732   // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>.
733   return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
734     cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
735     IRType->getScalarSizeInBits() != 64;
736 }
737 
738 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
739                                           StringRef Constraint,
740                                           llvm::Type* Ty) {
741   if ((Constraint == "y" || Constraint == "&y") && Ty->isVectorTy()) {
742     if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) {
743       // Invalid MMX constraint
744       return nullptr;
745     }
746 
747     return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
748   }
749 
750   // No operation needed
751   return Ty;
752 }
753 
754 /// Returns true if this type can be passed in SSE registers with the
755 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64.
756 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) {
757   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
758     if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half)
759       return true;
760   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
761     // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX
762     // registers specially.
763     unsigned VecSize = Context.getTypeSize(VT);
764     if (VecSize == 128 || VecSize == 256 || VecSize == 512)
765       return true;
766   }
767   return false;
768 }
769 
770 /// Returns true if this aggregate is small enough to be passed in SSE registers
771 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64.
772 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) {
773   return NumMembers <= 4;
774 }
775 
776 //===----------------------------------------------------------------------===//
777 // X86-32 ABI Implementation
778 //===----------------------------------------------------------------------===//
779 
780 /// \brief Similar to llvm::CCState, but for Clang.
781 struct CCState {
782   CCState(unsigned CC) : CC(CC), FreeRegs(0), FreeSSERegs(0) {}
783 
784   unsigned CC;
785   unsigned FreeRegs;
786   unsigned FreeSSERegs;
787 };
788 
789 /// X86_32ABIInfo - The X86-32 ABI information.
790 class X86_32ABIInfo : public ABIInfo {
791   enum Class {
792     Integer,
793     Float
794   };
795 
796   static const unsigned MinABIStackAlignInBytes = 4;
797 
798   bool IsDarwinVectorABI;
799   bool IsRetSmallStructInRegABI;
800   bool IsWin32StructABI;
801   bool IsSoftFloatABI;
802   bool IsMCUABI;
803   unsigned DefaultNumRegisterParameters;
804 
805   static bool isRegisterSize(unsigned Size) {
806     return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
807   }
808 
809   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
810     // FIXME: Assumes vectorcall is in use.
811     return isX86VectorTypeForVectorCall(getContext(), Ty);
812   }
813 
814   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
815                                          uint64_t NumMembers) const override {
816     // FIXME: Assumes vectorcall is in use.
817     return isX86VectorCallAggregateSmallEnough(NumMembers);
818   }
819 
820   bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const;
821 
822   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
823   /// such that the argument will be passed in memory.
824   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
825 
826   ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const;
827 
828   /// \brief Return the alignment to use for the given type on the stack.
829   unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
830 
831   Class classify(QualType Ty) const;
832   ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const;
833   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
834   bool shouldUseInReg(QualType Ty, CCState &State, bool &NeedsPadding) const;
835 
836   /// \brief Rewrite the function info so that all memory arguments use
837   /// inalloca.
838   void rewriteWithInAlloca(CGFunctionInfo &FI) const;
839 
840   void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
841                            CharUnits &StackOffset, ABIArgInfo &Info,
842                            QualType Type) const;
843 
844 public:
845 
846   void computeInfo(CGFunctionInfo &FI) const override;
847   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
848                     QualType Ty) const override;
849 
850   X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
851                 bool RetSmallStructInRegABI, bool Win32StructABI,
852                 unsigned NumRegisterParameters, bool SoftFloatABI)
853     : ABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI),
854       IsRetSmallStructInRegABI(RetSmallStructInRegABI),
855       IsWin32StructABI(Win32StructABI),
856       IsSoftFloatABI(SoftFloatABI),
857       IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()),
858       DefaultNumRegisterParameters(NumRegisterParameters) {}
859 };
860 
861 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
862 public:
863   X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
864                           bool RetSmallStructInRegABI, bool Win32StructABI,
865                           unsigned NumRegisterParameters, bool SoftFloatABI)
866       : TargetCodeGenInfo(new X86_32ABIInfo(
867             CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI,
868             NumRegisterParameters, SoftFloatABI)) {}
869 
870   static bool isStructReturnInRegABI(
871       const llvm::Triple &Triple, const CodeGenOptions &Opts);
872 
873   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
874                            CodeGen::CodeGenModule &CGM) const override;
875 
876   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
877     // Darwin uses different dwarf register numbers for EH.
878     if (CGM.getTarget().getTriple().isOSDarwin()) return 5;
879     return 4;
880   }
881 
882   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
883                                llvm::Value *Address) const override;
884 
885   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
886                                   StringRef Constraint,
887                                   llvm::Type* Ty) const override {
888     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
889   }
890 
891   void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue,
892                                 std::string &Constraints,
893                                 std::vector<llvm::Type *> &ResultRegTypes,
894                                 std::vector<llvm::Type *> &ResultTruncRegTypes,
895                                 std::vector<LValue> &ResultRegDests,
896                                 std::string &AsmString,
897                                 unsigned NumOutputs) const override;
898 
899   llvm::Constant *
900   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
901     unsigned Sig = (0xeb << 0) |  // jmp rel8
902                    (0x06 << 8) |  //           .+0x08
903                    ('F' << 16) |
904                    ('T' << 24);
905     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
906   }
907 };
908 
909 }
910 
911 /// Rewrite input constraint references after adding some output constraints.
912 /// In the case where there is one output and one input and we add one output,
913 /// we need to replace all operand references greater than or equal to 1:
914 ///     mov $0, $1
915 ///     mov eax, $1
916 /// The result will be:
917 ///     mov $0, $2
918 ///     mov eax, $2
919 static void rewriteInputConstraintReferences(unsigned FirstIn,
920                                              unsigned NumNewOuts,
921                                              std::string &AsmString) {
922   std::string Buf;
923   llvm::raw_string_ostream OS(Buf);
924   size_t Pos = 0;
925   while (Pos < AsmString.size()) {
926     size_t DollarStart = AsmString.find('$', Pos);
927     if (DollarStart == std::string::npos)
928       DollarStart = AsmString.size();
929     size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart);
930     if (DollarEnd == std::string::npos)
931       DollarEnd = AsmString.size();
932     OS << StringRef(&AsmString[Pos], DollarEnd - Pos);
933     Pos = DollarEnd;
934     size_t NumDollars = DollarEnd - DollarStart;
935     if (NumDollars % 2 != 0 && Pos < AsmString.size()) {
936       // We have an operand reference.
937       size_t DigitStart = Pos;
938       size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart);
939       if (DigitEnd == std::string::npos)
940         DigitEnd = AsmString.size();
941       StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart);
942       unsigned OperandIndex;
943       if (!OperandStr.getAsInteger(10, OperandIndex)) {
944         if (OperandIndex >= FirstIn)
945           OperandIndex += NumNewOuts;
946         OS << OperandIndex;
947       } else {
948         OS << OperandStr;
949       }
950       Pos = DigitEnd;
951     }
952   }
953   AsmString = std::move(OS.str());
954 }
955 
956 /// Add output constraints for EAX:EDX because they are return registers.
957 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs(
958     CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints,
959     std::vector<llvm::Type *> &ResultRegTypes,
960     std::vector<llvm::Type *> &ResultTruncRegTypes,
961     std::vector<LValue> &ResultRegDests, std::string &AsmString,
962     unsigned NumOutputs) const {
963   uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType());
964 
965   // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is
966   // larger.
967   if (!Constraints.empty())
968     Constraints += ',';
969   if (RetWidth <= 32) {
970     Constraints += "={eax}";
971     ResultRegTypes.push_back(CGF.Int32Ty);
972   } else {
973     // Use the 'A' constraint for EAX:EDX.
974     Constraints += "=A";
975     ResultRegTypes.push_back(CGF.Int64Ty);
976   }
977 
978   // Truncate EAX or EAX:EDX to an integer of the appropriate size.
979   llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth);
980   ResultTruncRegTypes.push_back(CoerceTy);
981 
982   // Coerce the integer by bitcasting the return slot pointer.
983   ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(),
984                                                   CoerceTy->getPointerTo()));
985   ResultRegDests.push_back(ReturnSlot);
986 
987   rewriteInputConstraintReferences(NumOutputs, 1, AsmString);
988 }
989 
990 /// shouldReturnTypeInRegister - Determine if the given type should be
991 /// returned in a register (for the Darwin and MCU ABI).
992 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
993                                                ASTContext &Context) const {
994   uint64_t Size = Context.getTypeSize(Ty);
995 
996   // Type must be register sized.
997   if (!isRegisterSize(Size))
998     return false;
999 
1000   if (Ty->isVectorType()) {
1001     // 64- and 128- bit vectors inside structures are not returned in
1002     // registers.
1003     if (Size == 64 || Size == 128)
1004       return false;
1005 
1006     return true;
1007   }
1008 
1009   // If this is a builtin, pointer, enum, complex type, member pointer, or
1010   // member function pointer it is ok.
1011   if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
1012       Ty->isAnyComplexType() || Ty->isEnumeralType() ||
1013       Ty->isBlockPointerType() || Ty->isMemberPointerType())
1014     return true;
1015 
1016   // Arrays are treated like records.
1017   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
1018     return shouldReturnTypeInRegister(AT->getElementType(), Context);
1019 
1020   // Otherwise, it must be a record type.
1021   const RecordType *RT = Ty->getAs<RecordType>();
1022   if (!RT) return false;
1023 
1024   // FIXME: Traverse bases here too.
1025 
1026   // Structure types are passed in register if all fields would be
1027   // passed in a register.
1028   for (const auto *FD : RT->getDecl()->fields()) {
1029     // Empty fields are ignored.
1030     if (isEmptyField(Context, FD, true))
1031       continue;
1032 
1033     // Check fields recursively.
1034     if (!shouldReturnTypeInRegister(FD->getType(), Context))
1035       return false;
1036   }
1037   return true;
1038 }
1039 
1040 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const {
1041   // If the return value is indirect, then the hidden argument is consuming one
1042   // integer register.
1043   if (State.FreeRegs) {
1044     --State.FreeRegs;
1045     return getNaturalAlignIndirectInReg(RetTy);
1046   }
1047   return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
1048 }
1049 
1050 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
1051                                              CCState &State) const {
1052   if (RetTy->isVoidType())
1053     return ABIArgInfo::getIgnore();
1054 
1055   const Type *Base = nullptr;
1056   uint64_t NumElts = 0;
1057   if (State.CC == llvm::CallingConv::X86_VectorCall &&
1058       isHomogeneousAggregate(RetTy, Base, NumElts)) {
1059     // The LLVM struct type for such an aggregate should lower properly.
1060     return ABIArgInfo::getDirect();
1061   }
1062 
1063   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
1064     // On Darwin, some vectors are returned in registers.
1065     if (IsDarwinVectorABI) {
1066       uint64_t Size = getContext().getTypeSize(RetTy);
1067 
1068       // 128-bit vectors are a special case; they are returned in
1069       // registers and we need to make sure to pick a type the LLVM
1070       // backend will like.
1071       if (Size == 128)
1072         return ABIArgInfo::getDirect(llvm::VectorType::get(
1073                   llvm::Type::getInt64Ty(getVMContext()), 2));
1074 
1075       // Always return in register if it fits in a general purpose
1076       // register, or if it is 64 bits and has a single element.
1077       if ((Size == 8 || Size == 16 || Size == 32) ||
1078           (Size == 64 && VT->getNumElements() == 1))
1079         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1080                                                             Size));
1081 
1082       return getIndirectReturnResult(RetTy, State);
1083     }
1084 
1085     return ABIArgInfo::getDirect();
1086   }
1087 
1088   if (isAggregateTypeForABI(RetTy)) {
1089     if (const RecordType *RT = RetTy->getAs<RecordType>()) {
1090       // Structures with flexible arrays are always indirect.
1091       if (RT->getDecl()->hasFlexibleArrayMember())
1092         return getIndirectReturnResult(RetTy, State);
1093     }
1094 
1095     // If specified, structs and unions are always indirect.
1096     if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType())
1097       return getIndirectReturnResult(RetTy, State);
1098 
1099     // Small structures which are register sized are generally returned
1100     // in a register.
1101     if (shouldReturnTypeInRegister(RetTy, getContext())) {
1102       uint64_t Size = getContext().getTypeSize(RetTy);
1103 
1104       // As a special-case, if the struct is a "single-element" struct, and
1105       // the field is of type "float" or "double", return it in a
1106       // floating-point register. (MSVC does not apply this special case.)
1107       // We apply a similar transformation for pointer types to improve the
1108       // quality of the generated IR.
1109       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
1110         if ((!IsWin32StructABI && SeltTy->isRealFloatingType())
1111             || SeltTy->hasPointerRepresentation())
1112           return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
1113 
1114       // FIXME: We should be able to narrow this integer in cases with dead
1115       // padding.
1116       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
1117     }
1118 
1119     return getIndirectReturnResult(RetTy, State);
1120   }
1121 
1122   // Treat an enum type as its underlying type.
1123   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
1124     RetTy = EnumTy->getDecl()->getIntegerType();
1125 
1126   return (RetTy->isPromotableIntegerType() ?
1127           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1128 }
1129 
1130 static bool isSSEVectorType(ASTContext &Context, QualType Ty) {
1131   return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128;
1132 }
1133 
1134 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) {
1135   const RecordType *RT = Ty->getAs<RecordType>();
1136   if (!RT)
1137     return 0;
1138   const RecordDecl *RD = RT->getDecl();
1139 
1140   // If this is a C++ record, check the bases first.
1141   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
1142     for (const auto &I : CXXRD->bases())
1143       if (!isRecordWithSSEVectorType(Context, I.getType()))
1144         return false;
1145 
1146   for (const auto *i : RD->fields()) {
1147     QualType FT = i->getType();
1148 
1149     if (isSSEVectorType(Context, FT))
1150       return true;
1151 
1152     if (isRecordWithSSEVectorType(Context, FT))
1153       return true;
1154   }
1155 
1156   return false;
1157 }
1158 
1159 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
1160                                                  unsigned Align) const {
1161   // Otherwise, if the alignment is less than or equal to the minimum ABI
1162   // alignment, just use the default; the backend will handle this.
1163   if (Align <= MinABIStackAlignInBytes)
1164     return 0; // Use default alignment.
1165 
1166   // On non-Darwin, the stack type alignment is always 4.
1167   if (!IsDarwinVectorABI) {
1168     // Set explicit alignment, since we may need to realign the top.
1169     return MinABIStackAlignInBytes;
1170   }
1171 
1172   // Otherwise, if the type contains an SSE vector type, the alignment is 16.
1173   if (Align >= 16 && (isSSEVectorType(getContext(), Ty) ||
1174                       isRecordWithSSEVectorType(getContext(), Ty)))
1175     return 16;
1176 
1177   return MinABIStackAlignInBytes;
1178 }
1179 
1180 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal,
1181                                             CCState &State) const {
1182   if (!ByVal) {
1183     if (State.FreeRegs) {
1184       --State.FreeRegs; // Non-byval indirects just use one pointer.
1185       return getNaturalAlignIndirectInReg(Ty);
1186     }
1187     return getNaturalAlignIndirect(Ty, false);
1188   }
1189 
1190   // Compute the byval alignment.
1191   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
1192   unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
1193   if (StackAlign == 0)
1194     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true);
1195 
1196   // If the stack alignment is less than the type alignment, realign the
1197   // argument.
1198   bool Realign = TypeAlign > StackAlign;
1199   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign),
1200                                  /*ByVal=*/true, Realign);
1201 }
1202 
1203 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const {
1204   const Type *T = isSingleElementStruct(Ty, getContext());
1205   if (!T)
1206     T = Ty.getTypePtr();
1207 
1208   if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
1209     BuiltinType::Kind K = BT->getKind();
1210     if (K == BuiltinType::Float || K == BuiltinType::Double)
1211       return Float;
1212   }
1213   return Integer;
1214 }
1215 
1216 bool X86_32ABIInfo::shouldUseInReg(QualType Ty, CCState &State,
1217                                    bool &NeedsPadding) const {
1218   NeedsPadding = false;
1219   if (!IsSoftFloatABI) {
1220     Class C = classify(Ty);
1221     if (C == Float)
1222       return false;
1223   }
1224 
1225   unsigned Size = getContext().getTypeSize(Ty);
1226   unsigned SizeInRegs = (Size + 31) / 32;
1227 
1228   if (SizeInRegs == 0)
1229     return false;
1230 
1231   if (!IsMCUABI) {
1232     if (SizeInRegs > State.FreeRegs) {
1233       State.FreeRegs = 0;
1234       return false;
1235     }
1236   } else {
1237     // The MCU psABI allows passing parameters in-reg even if there are
1238     // earlier parameters that are passed on the stack. Also,
1239     // it does not allow passing >8-byte structs in-register,
1240     // even if there are 3 free registers available.
1241     if (SizeInRegs > State.FreeRegs || SizeInRegs > 2)
1242       return false;
1243   }
1244 
1245   State.FreeRegs -= SizeInRegs;
1246 
1247   if (State.CC == llvm::CallingConv::X86_FastCall ||
1248       State.CC == llvm::CallingConv::X86_VectorCall) {
1249     if (Size > 32)
1250       return false;
1251 
1252     if (Ty->isIntegralOrEnumerationType())
1253       return true;
1254 
1255     if (Ty->isPointerType())
1256       return true;
1257 
1258     if (Ty->isReferenceType())
1259       return true;
1260 
1261     if (State.FreeRegs)
1262       NeedsPadding = true;
1263 
1264     return false;
1265   }
1266 
1267   return true;
1268 }
1269 
1270 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
1271                                                CCState &State) const {
1272   // FIXME: Set alignment on indirect arguments.
1273 
1274   Ty = useFirstFieldIfTransparentUnion(Ty);
1275 
1276   // Check with the C++ ABI first.
1277   const RecordType *RT = Ty->getAs<RecordType>();
1278   if (RT) {
1279     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
1280     if (RAA == CGCXXABI::RAA_Indirect) {
1281       return getIndirectResult(Ty, false, State);
1282     } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
1283       // The field index doesn't matter, we'll fix it up later.
1284       return ABIArgInfo::getInAlloca(/*FieldIndex=*/0);
1285     }
1286   }
1287 
1288   // vectorcall adds the concept of a homogenous vector aggregate, similar
1289   // to other targets.
1290   const Type *Base = nullptr;
1291   uint64_t NumElts = 0;
1292   if (State.CC == llvm::CallingConv::X86_VectorCall &&
1293       isHomogeneousAggregate(Ty, Base, NumElts)) {
1294     if (State.FreeSSERegs >= NumElts) {
1295       State.FreeSSERegs -= NumElts;
1296       if (Ty->isBuiltinType() || Ty->isVectorType())
1297         return ABIArgInfo::getDirect();
1298       return ABIArgInfo::getExpand();
1299     }
1300     return getIndirectResult(Ty, /*ByVal=*/false, State);
1301   }
1302 
1303   if (isAggregateTypeForABI(Ty)) {
1304     if (RT) {
1305       // Structs are always byval on win32, regardless of what they contain.
1306       if (IsWin32StructABI)
1307         return getIndirectResult(Ty, true, State);
1308 
1309       // Structures with flexible arrays are always indirect.
1310       if (RT->getDecl()->hasFlexibleArrayMember())
1311         return getIndirectResult(Ty, true, State);
1312     }
1313 
1314     // Ignore empty structs/unions.
1315     if (isEmptyRecord(getContext(), Ty, true))
1316       return ABIArgInfo::getIgnore();
1317 
1318     llvm::LLVMContext &LLVMContext = getVMContext();
1319     llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
1320     bool NeedsPadding;
1321     if (shouldUseInReg(Ty, State, NeedsPadding)) {
1322       unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
1323       SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32);
1324       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
1325       return ABIArgInfo::getDirectInReg(Result);
1326     }
1327     llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr;
1328 
1329     // Expand small (<= 128-bit) record types when we know that the stack layout
1330     // of those arguments will match the struct. This is important because the
1331     // LLVM backend isn't smart enough to remove byval, which inhibits many
1332     // optimizations.
1333     if (getContext().getTypeSize(Ty) <= 4*32 &&
1334         canExpandIndirectArgument(Ty, getContext()))
1335       return ABIArgInfo::getExpandWithPadding(
1336           State.CC == llvm::CallingConv::X86_FastCall ||
1337               State.CC == llvm::CallingConv::X86_VectorCall,
1338           PaddingType);
1339 
1340     return getIndirectResult(Ty, true, State);
1341   }
1342 
1343   if (const VectorType *VT = Ty->getAs<VectorType>()) {
1344     // On Darwin, some vectors are passed in memory, we handle this by passing
1345     // it as an i8/i16/i32/i64.
1346     if (IsDarwinVectorABI) {
1347       uint64_t Size = getContext().getTypeSize(Ty);
1348       if ((Size == 8 || Size == 16 || Size == 32) ||
1349           (Size == 64 && VT->getNumElements() == 1))
1350         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1351                                                             Size));
1352     }
1353 
1354     if (IsX86_MMXType(CGT.ConvertType(Ty)))
1355       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64));
1356 
1357     return ABIArgInfo::getDirect();
1358   }
1359 
1360 
1361   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1362     Ty = EnumTy->getDecl()->getIntegerType();
1363 
1364   bool NeedsPadding;
1365   bool InReg = shouldUseInReg(Ty, State, NeedsPadding);
1366 
1367   if (Ty->isPromotableIntegerType()) {
1368     if (InReg)
1369       return ABIArgInfo::getExtendInReg();
1370     return ABIArgInfo::getExtend();
1371   }
1372   if (InReg)
1373     return ABIArgInfo::getDirectInReg();
1374   return ABIArgInfo::getDirect();
1375 }
1376 
1377 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
1378   CCState State(FI.getCallingConvention());
1379   if (State.CC == llvm::CallingConv::X86_FastCall)
1380     State.FreeRegs = 2;
1381   else if (State.CC == llvm::CallingConv::X86_VectorCall) {
1382     State.FreeRegs = 2;
1383     State.FreeSSERegs = 6;
1384   } else if (FI.getHasRegParm())
1385     State.FreeRegs = FI.getRegParm();
1386   else if (IsMCUABI)
1387     State.FreeRegs = 3;
1388   else
1389     State.FreeRegs = DefaultNumRegisterParameters;
1390 
1391   if (!getCXXABI().classifyReturnType(FI)) {
1392     FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State);
1393   } else if (FI.getReturnInfo().isIndirect()) {
1394     // The C++ ABI is not aware of register usage, so we have to check if the
1395     // return value was sret and put it in a register ourselves if appropriate.
1396     if (State.FreeRegs) {
1397       --State.FreeRegs;  // The sret parameter consumes a register.
1398       FI.getReturnInfo().setInReg(true);
1399     }
1400   }
1401 
1402   // The chain argument effectively gives us another free register.
1403   if (FI.isChainCall())
1404     ++State.FreeRegs;
1405 
1406   bool UsedInAlloca = false;
1407   for (auto &I : FI.arguments()) {
1408     I.info = classifyArgumentType(I.type, State);
1409     UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca);
1410   }
1411 
1412   // If we needed to use inalloca for any argument, do a second pass and rewrite
1413   // all the memory arguments to use inalloca.
1414   if (UsedInAlloca)
1415     rewriteWithInAlloca(FI);
1416 }
1417 
1418 void
1419 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
1420                                    CharUnits &StackOffset, ABIArgInfo &Info,
1421                                    QualType Type) const {
1422   // Arguments are always 4-byte-aligned.
1423   CharUnits FieldAlign = CharUnits::fromQuantity(4);
1424 
1425   assert(StackOffset.isMultipleOf(FieldAlign) && "unaligned inalloca struct");
1426   Info = ABIArgInfo::getInAlloca(FrameFields.size());
1427   FrameFields.push_back(CGT.ConvertTypeForMem(Type));
1428   StackOffset += getContext().getTypeSizeInChars(Type);
1429 
1430   // Insert padding bytes to respect alignment.
1431   CharUnits FieldEnd = StackOffset;
1432   StackOffset = FieldEnd.RoundUpToAlignment(FieldAlign);
1433   if (StackOffset != FieldEnd) {
1434     CharUnits NumBytes = StackOffset - FieldEnd;
1435     llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext());
1436     Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity());
1437     FrameFields.push_back(Ty);
1438   }
1439 }
1440 
1441 static bool isArgInAlloca(const ABIArgInfo &Info) {
1442   // Leave ignored and inreg arguments alone.
1443   switch (Info.getKind()) {
1444   case ABIArgInfo::InAlloca:
1445     return true;
1446   case ABIArgInfo::Indirect:
1447     assert(Info.getIndirectByVal());
1448     return true;
1449   case ABIArgInfo::Ignore:
1450     return false;
1451   case ABIArgInfo::Direct:
1452   case ABIArgInfo::Extend:
1453   case ABIArgInfo::Expand:
1454     if (Info.getInReg())
1455       return false;
1456     return true;
1457   }
1458   llvm_unreachable("invalid enum");
1459 }
1460 
1461 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const {
1462   assert(IsWin32StructABI && "inalloca only supported on win32");
1463 
1464   // Build a packed struct type for all of the arguments in memory.
1465   SmallVector<llvm::Type *, 6> FrameFields;
1466 
1467   // The stack alignment is always 4.
1468   CharUnits StackAlign = CharUnits::fromQuantity(4);
1469 
1470   CharUnits StackOffset;
1471   CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end();
1472 
1473   // Put 'this' into the struct before 'sret', if necessary.
1474   bool IsThisCall =
1475       FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall;
1476   ABIArgInfo &Ret = FI.getReturnInfo();
1477   if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall &&
1478       isArgInAlloca(I->info)) {
1479     addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
1480     ++I;
1481   }
1482 
1483   // Put the sret parameter into the inalloca struct if it's in memory.
1484   if (Ret.isIndirect() && !Ret.getInReg()) {
1485     CanQualType PtrTy = getContext().getPointerType(FI.getReturnType());
1486     addFieldToArgStruct(FrameFields, StackOffset, Ret, PtrTy);
1487     // On Windows, the hidden sret parameter is always returned in eax.
1488     Ret.setInAllocaSRet(IsWin32StructABI);
1489   }
1490 
1491   // Skip the 'this' parameter in ecx.
1492   if (IsThisCall)
1493     ++I;
1494 
1495   // Put arguments passed in memory into the struct.
1496   for (; I != E; ++I) {
1497     if (isArgInAlloca(I->info))
1498       addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
1499   }
1500 
1501   FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields,
1502                                         /*isPacked=*/true),
1503                   StackAlign);
1504 }
1505 
1506 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF,
1507                                  Address VAListAddr, QualType Ty) const {
1508 
1509   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
1510 
1511   // x86-32 changes the alignment of certain arguments on the stack.
1512   //
1513   // Just messing with TypeInfo like this works because we never pass
1514   // anything indirectly.
1515   TypeInfo.second = CharUnits::fromQuantity(
1516                 getTypeStackAlignInBytes(Ty, TypeInfo.second.getQuantity()));
1517 
1518   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
1519                           TypeInfo, CharUnits::fromQuantity(4),
1520                           /*AllowHigherAlign*/ true);
1521 }
1522 
1523 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI(
1524     const llvm::Triple &Triple, const CodeGenOptions &Opts) {
1525   assert(Triple.getArch() == llvm::Triple::x86);
1526 
1527   switch (Opts.getStructReturnConvention()) {
1528   case CodeGenOptions::SRCK_Default:
1529     break;
1530   case CodeGenOptions::SRCK_OnStack:  // -fpcc-struct-return
1531     return false;
1532   case CodeGenOptions::SRCK_InRegs:  // -freg-struct-return
1533     return true;
1534   }
1535 
1536   if (Triple.isOSDarwin() || Triple.isOSIAMCU())
1537     return true;
1538 
1539   switch (Triple.getOS()) {
1540   case llvm::Triple::DragonFly:
1541   case llvm::Triple::FreeBSD:
1542   case llvm::Triple::OpenBSD:
1543   case llvm::Triple::Bitrig:
1544   case llvm::Triple::Win32:
1545     return true;
1546   default:
1547     return false;
1548   }
1549 }
1550 
1551 void X86_32TargetCodeGenInfo::setTargetAttributes(const Decl *D,
1552                                                   llvm::GlobalValue *GV,
1553                                             CodeGen::CodeGenModule &CGM) const {
1554   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
1555     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
1556       // Get the LLVM function.
1557       llvm::Function *Fn = cast<llvm::Function>(GV);
1558 
1559       // Now add the 'alignstack' attribute with a value of 16.
1560       llvm::AttrBuilder B;
1561       B.addStackAlignmentAttr(16);
1562       Fn->addAttributes(llvm::AttributeSet::FunctionIndex,
1563                       llvm::AttributeSet::get(CGM.getLLVMContext(),
1564                                               llvm::AttributeSet::FunctionIndex,
1565                                               B));
1566     }
1567   }
1568 }
1569 
1570 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
1571                                                CodeGen::CodeGenFunction &CGF,
1572                                                llvm::Value *Address) const {
1573   CodeGen::CGBuilderTy &Builder = CGF.Builder;
1574 
1575   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
1576 
1577   // 0-7 are the eight integer registers;  the order is different
1578   //   on Darwin (for EH), but the range is the same.
1579   // 8 is %eip.
1580   AssignToArrayRange(Builder, Address, Four8, 0, 8);
1581 
1582   if (CGF.CGM.getTarget().getTriple().isOSDarwin()) {
1583     // 12-16 are st(0..4).  Not sure why we stop at 4.
1584     // These have size 16, which is sizeof(long double) on
1585     // platforms with 8-byte alignment for that type.
1586     llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
1587     AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
1588 
1589   } else {
1590     // 9 is %eflags, which doesn't get a size on Darwin for some
1591     // reason.
1592     Builder.CreateAlignedStore(
1593         Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9),
1594                                CharUnits::One());
1595 
1596     // 11-16 are st(0..5).  Not sure why we stop at 5.
1597     // These have size 12, which is sizeof(long double) on
1598     // platforms with 4-byte alignment for that type.
1599     llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
1600     AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
1601   }
1602 
1603   return false;
1604 }
1605 
1606 //===----------------------------------------------------------------------===//
1607 // X86-64 ABI Implementation
1608 //===----------------------------------------------------------------------===//
1609 
1610 
1611 namespace {
1612 /// The AVX ABI level for X86 targets.
1613 enum class X86AVXABILevel {
1614   None,
1615   AVX,
1616   AVX512
1617 };
1618 
1619 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel.
1620 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) {
1621   switch (AVXLevel) {
1622   case X86AVXABILevel::AVX512:
1623     return 512;
1624   case X86AVXABILevel::AVX:
1625     return 256;
1626   case X86AVXABILevel::None:
1627     return 128;
1628   }
1629   llvm_unreachable("Unknown AVXLevel");
1630 }
1631 
1632 /// X86_64ABIInfo - The X86_64 ABI information.
1633 class X86_64ABIInfo : public ABIInfo {
1634   enum Class {
1635     Integer = 0,
1636     SSE,
1637     SSEUp,
1638     X87,
1639     X87Up,
1640     ComplexX87,
1641     NoClass,
1642     Memory
1643   };
1644 
1645   /// merge - Implement the X86_64 ABI merging algorithm.
1646   ///
1647   /// Merge an accumulating classification \arg Accum with a field
1648   /// classification \arg Field.
1649   ///
1650   /// \param Accum - The accumulating classification. This should
1651   /// always be either NoClass or the result of a previous merge
1652   /// call. In addition, this should never be Memory (the caller
1653   /// should just return Memory for the aggregate).
1654   static Class merge(Class Accum, Class Field);
1655 
1656   /// postMerge - Implement the X86_64 ABI post merging algorithm.
1657   ///
1658   /// Post merger cleanup, reduces a malformed Hi and Lo pair to
1659   /// final MEMORY or SSE classes when necessary.
1660   ///
1661   /// \param AggregateSize - The size of the current aggregate in
1662   /// the classification process.
1663   ///
1664   /// \param Lo - The classification for the parts of the type
1665   /// residing in the low word of the containing object.
1666   ///
1667   /// \param Hi - The classification for the parts of the type
1668   /// residing in the higher words of the containing object.
1669   ///
1670   void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
1671 
1672   /// classify - Determine the x86_64 register classes in which the
1673   /// given type T should be passed.
1674   ///
1675   /// \param Lo - The classification for the parts of the type
1676   /// residing in the low word of the containing object.
1677   ///
1678   /// \param Hi - The classification for the parts of the type
1679   /// residing in the high word of the containing object.
1680   ///
1681   /// \param OffsetBase - The bit offset of this type in the
1682   /// containing object.  Some parameters are classified different
1683   /// depending on whether they straddle an eightbyte boundary.
1684   ///
1685   /// \param isNamedArg - Whether the argument in question is a "named"
1686   /// argument, as used in AMD64-ABI 3.5.7.
1687   ///
1688   /// If a word is unused its result will be NoClass; if a type should
1689   /// be passed in Memory then at least the classification of \arg Lo
1690   /// will be Memory.
1691   ///
1692   /// The \arg Lo class will be NoClass iff the argument is ignored.
1693   ///
1694   /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
1695   /// also be ComplexX87.
1696   void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi,
1697                 bool isNamedArg) const;
1698 
1699   llvm::Type *GetByteVectorType(QualType Ty) const;
1700   llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
1701                                  unsigned IROffset, QualType SourceTy,
1702                                  unsigned SourceOffset) const;
1703   llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
1704                                      unsigned IROffset, QualType SourceTy,
1705                                      unsigned SourceOffset) const;
1706 
1707   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1708   /// such that the argument will be returned in memory.
1709   ABIArgInfo getIndirectReturnResult(QualType Ty) const;
1710 
1711   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1712   /// such that the argument will be passed in memory.
1713   ///
1714   /// \param freeIntRegs - The number of free integer registers remaining
1715   /// available.
1716   ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;
1717 
1718   ABIArgInfo classifyReturnType(QualType RetTy) const;
1719 
1720   ABIArgInfo classifyArgumentType(QualType Ty,
1721                                   unsigned freeIntRegs,
1722                                   unsigned &neededInt,
1723                                   unsigned &neededSSE,
1724                                   bool isNamedArg) const;
1725 
1726   bool IsIllegalVectorType(QualType Ty) const;
1727 
1728   /// The 0.98 ABI revision clarified a lot of ambiguities,
1729   /// unfortunately in ways that were not always consistent with
1730   /// certain previous compilers.  In particular, platforms which
1731   /// required strict binary compatibility with older versions of GCC
1732   /// may need to exempt themselves.
1733   bool honorsRevision0_98() const {
1734     return !getTarget().getTriple().isOSDarwin();
1735   }
1736 
1737   X86AVXABILevel AVXLevel;
1738   // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on
1739   // 64-bit hardware.
1740   bool Has64BitPointers;
1741 
1742 public:
1743   X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) :
1744       ABIInfo(CGT), AVXLevel(AVXLevel),
1745       Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {
1746   }
1747 
1748   bool isPassedUsingAVXType(QualType type) const {
1749     unsigned neededInt, neededSSE;
1750     // The freeIntRegs argument doesn't matter here.
1751     ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE,
1752                                            /*isNamedArg*/true);
1753     if (info.isDirect()) {
1754       llvm::Type *ty = info.getCoerceToType();
1755       if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
1756         return (vectorTy->getBitWidth() > 128);
1757     }
1758     return false;
1759   }
1760 
1761   void computeInfo(CGFunctionInfo &FI) const override;
1762 
1763   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
1764                     QualType Ty) const override;
1765   Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
1766                       QualType Ty) const override;
1767 
1768   bool has64BitPointers() const {
1769     return Has64BitPointers;
1770   }
1771 };
1772 
1773 /// WinX86_64ABIInfo - The Windows X86_64 ABI information.
1774 class WinX86_64ABIInfo : public ABIInfo {
1775 public:
1776   WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT)
1777       : ABIInfo(CGT),
1778         IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {}
1779 
1780   void computeInfo(CGFunctionInfo &FI) const override;
1781 
1782   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
1783                     QualType Ty) const override;
1784 
1785   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
1786     // FIXME: Assumes vectorcall is in use.
1787     return isX86VectorTypeForVectorCall(getContext(), Ty);
1788   }
1789 
1790   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
1791                                          uint64_t NumMembers) const override {
1792     // FIXME: Assumes vectorcall is in use.
1793     return isX86VectorCallAggregateSmallEnough(NumMembers);
1794   }
1795 
1796 private:
1797   ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs,
1798                       bool IsReturnType) const;
1799 
1800   bool IsMingw64;
1801 };
1802 
1803 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
1804 public:
1805   X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
1806       : TargetCodeGenInfo(new X86_64ABIInfo(CGT, AVXLevel)) {}
1807 
1808   const X86_64ABIInfo &getABIInfo() const {
1809     return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
1810   }
1811 
1812   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
1813     return 7;
1814   }
1815 
1816   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1817                                llvm::Value *Address) const override {
1818     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
1819 
1820     // 0-15 are the 16 integer registers.
1821     // 16 is %rip.
1822     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
1823     return false;
1824   }
1825 
1826   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
1827                                   StringRef Constraint,
1828                                   llvm::Type* Ty) const override {
1829     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
1830   }
1831 
1832   bool isNoProtoCallVariadic(const CallArgList &args,
1833                              const FunctionNoProtoType *fnType) const override {
1834     // The default CC on x86-64 sets %al to the number of SSA
1835     // registers used, and GCC sets this when calling an unprototyped
1836     // function, so we override the default behavior.  However, don't do
1837     // that when AVX types are involved: the ABI explicitly states it is
1838     // undefined, and it doesn't work in practice because of how the ABI
1839     // defines varargs anyway.
1840     if (fnType->getCallConv() == CC_C) {
1841       bool HasAVXType = false;
1842       for (CallArgList::const_iterator
1843              it = args.begin(), ie = args.end(); it != ie; ++it) {
1844         if (getABIInfo().isPassedUsingAVXType(it->Ty)) {
1845           HasAVXType = true;
1846           break;
1847         }
1848       }
1849 
1850       if (!HasAVXType)
1851         return true;
1852     }
1853 
1854     return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
1855   }
1856 
1857   llvm::Constant *
1858   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
1859     unsigned Sig;
1860     if (getABIInfo().has64BitPointers())
1861       Sig = (0xeb << 0) |  // jmp rel8
1862             (0x0a << 8) |  //           .+0x0c
1863             ('F' << 16) |
1864             ('T' << 24);
1865     else
1866       Sig = (0xeb << 0) |  // jmp rel8
1867             (0x06 << 8) |  //           .+0x08
1868             ('F' << 16) |
1869             ('T' << 24);
1870     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
1871   }
1872 };
1873 
1874 class PS4TargetCodeGenInfo : public X86_64TargetCodeGenInfo {
1875 public:
1876   PS4TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
1877     : X86_64TargetCodeGenInfo(CGT, AVXLevel) {}
1878 
1879   void getDependentLibraryOption(llvm::StringRef Lib,
1880                                  llvm::SmallString<24> &Opt) const override {
1881     Opt = "\01";
1882     // If the argument contains a space, enclose it in quotes.
1883     if (Lib.find(" ") != StringRef::npos)
1884       Opt += "\"" + Lib.str() + "\"";
1885     else
1886       Opt += Lib;
1887   }
1888 };
1889 
1890 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) {
1891   // If the argument does not end in .lib, automatically add the suffix.
1892   // If the argument contains a space, enclose it in quotes.
1893   // This matches the behavior of MSVC.
1894   bool Quote = (Lib.find(" ") != StringRef::npos);
1895   std::string ArgStr = Quote ? "\"" : "";
1896   ArgStr += Lib;
1897   if (!Lib.endswith_lower(".lib"))
1898     ArgStr += ".lib";
1899   ArgStr += Quote ? "\"" : "";
1900   return ArgStr;
1901 }
1902 
1903 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo {
1904 public:
1905   WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
1906         bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI,
1907         unsigned NumRegisterParameters)
1908     : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI,
1909         Win32StructABI, NumRegisterParameters, false) {}
1910 
1911   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
1912                            CodeGen::CodeGenModule &CGM) const override;
1913 
1914   void getDependentLibraryOption(llvm::StringRef Lib,
1915                                  llvm::SmallString<24> &Opt) const override {
1916     Opt = "/DEFAULTLIB:";
1917     Opt += qualifyWindowsLibrary(Lib);
1918   }
1919 
1920   void getDetectMismatchOption(llvm::StringRef Name,
1921                                llvm::StringRef Value,
1922                                llvm::SmallString<32> &Opt) const override {
1923     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
1924   }
1925 };
1926 
1927 static void addStackProbeSizeTargetAttribute(const Decl *D,
1928                                              llvm::GlobalValue *GV,
1929                                              CodeGen::CodeGenModule &CGM) {
1930   if (D && isa<FunctionDecl>(D)) {
1931     if (CGM.getCodeGenOpts().StackProbeSize != 4096) {
1932       llvm::Function *Fn = cast<llvm::Function>(GV);
1933 
1934       Fn->addFnAttr("stack-probe-size",
1935                     llvm::utostr(CGM.getCodeGenOpts().StackProbeSize));
1936     }
1937   }
1938 }
1939 
1940 void WinX86_32TargetCodeGenInfo::setTargetAttributes(const Decl *D,
1941                                                      llvm::GlobalValue *GV,
1942                                             CodeGen::CodeGenModule &CGM) const {
1943   X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
1944 
1945   addStackProbeSizeTargetAttribute(D, GV, CGM);
1946 }
1947 
1948 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
1949 public:
1950   WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
1951                              X86AVXABILevel AVXLevel)
1952       : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {}
1953 
1954   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
1955                            CodeGen::CodeGenModule &CGM) const override;
1956 
1957   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
1958     return 7;
1959   }
1960 
1961   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1962                                llvm::Value *Address) const override {
1963     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
1964 
1965     // 0-15 are the 16 integer registers.
1966     // 16 is %rip.
1967     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
1968     return false;
1969   }
1970 
1971   void getDependentLibraryOption(llvm::StringRef Lib,
1972                                  llvm::SmallString<24> &Opt) const override {
1973     Opt = "/DEFAULTLIB:";
1974     Opt += qualifyWindowsLibrary(Lib);
1975   }
1976 
1977   void getDetectMismatchOption(llvm::StringRef Name,
1978                                llvm::StringRef Value,
1979                                llvm::SmallString<32> &Opt) const override {
1980     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
1981   }
1982 };
1983 
1984 void WinX86_64TargetCodeGenInfo::setTargetAttributes(const Decl *D,
1985                                                      llvm::GlobalValue *GV,
1986                                             CodeGen::CodeGenModule &CGM) const {
1987   TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
1988 
1989   addStackProbeSizeTargetAttribute(D, GV, CGM);
1990 }
1991 }
1992 
1993 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
1994                               Class &Hi) const {
1995   // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
1996   //
1997   // (a) If one of the classes is Memory, the whole argument is passed in
1998   //     memory.
1999   //
2000   // (b) If X87UP is not preceded by X87, the whole argument is passed in
2001   //     memory.
2002   //
2003   // (c) If the size of the aggregate exceeds two eightbytes and the first
2004   //     eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
2005   //     argument is passed in memory. NOTE: This is necessary to keep the
2006   //     ABI working for processors that don't support the __m256 type.
2007   //
2008   // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
2009   //
2010   // Some of these are enforced by the merging logic.  Others can arise
2011   // only with unions; for example:
2012   //   union { _Complex double; unsigned; }
2013   //
2014   // Note that clauses (b) and (c) were added in 0.98.
2015   //
2016   if (Hi == Memory)
2017     Lo = Memory;
2018   if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
2019     Lo = Memory;
2020   if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
2021     Lo = Memory;
2022   if (Hi == SSEUp && Lo != SSE)
2023     Hi = SSE;
2024 }
2025 
2026 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
2027   // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
2028   // classified recursively so that always two fields are
2029   // considered. The resulting class is calculated according to
2030   // the classes of the fields in the eightbyte:
2031   //
2032   // (a) If both classes are equal, this is the resulting class.
2033   //
2034   // (b) If one of the classes is NO_CLASS, the resulting class is
2035   // the other class.
2036   //
2037   // (c) If one of the classes is MEMORY, the result is the MEMORY
2038   // class.
2039   //
2040   // (d) If one of the classes is INTEGER, the result is the
2041   // INTEGER.
2042   //
2043   // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
2044   // MEMORY is used as class.
2045   //
2046   // (f) Otherwise class SSE is used.
2047 
2048   // Accum should never be memory (we should have returned) or
2049   // ComplexX87 (because this cannot be passed in a structure).
2050   assert((Accum != Memory && Accum != ComplexX87) &&
2051          "Invalid accumulated classification during merge.");
2052   if (Accum == Field || Field == NoClass)
2053     return Accum;
2054   if (Field == Memory)
2055     return Memory;
2056   if (Accum == NoClass)
2057     return Field;
2058   if (Accum == Integer || Field == Integer)
2059     return Integer;
2060   if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
2061       Accum == X87 || Accum == X87Up)
2062     return Memory;
2063   return SSE;
2064 }
2065 
2066 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
2067                              Class &Lo, Class &Hi, bool isNamedArg) const {
2068   // FIXME: This code can be simplified by introducing a simple value class for
2069   // Class pairs with appropriate constructor methods for the various
2070   // situations.
2071 
2072   // FIXME: Some of the split computations are wrong; unaligned vectors
2073   // shouldn't be passed in registers for example, so there is no chance they
2074   // can straddle an eightbyte. Verify & simplify.
2075 
2076   Lo = Hi = NoClass;
2077 
2078   Class &Current = OffsetBase < 64 ? Lo : Hi;
2079   Current = Memory;
2080 
2081   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
2082     BuiltinType::Kind k = BT->getKind();
2083 
2084     if (k == BuiltinType::Void) {
2085       Current = NoClass;
2086     } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
2087       Lo = Integer;
2088       Hi = Integer;
2089     } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
2090       Current = Integer;
2091     } else if (k == BuiltinType::Float || k == BuiltinType::Double) {
2092       Current = SSE;
2093     } else if (k == BuiltinType::LongDouble) {
2094       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
2095       if (LDF == &llvm::APFloat::IEEEquad) {
2096         Lo = SSE;
2097         Hi = SSEUp;
2098       } else if (LDF == &llvm::APFloat::x87DoubleExtended) {
2099         Lo = X87;
2100         Hi = X87Up;
2101       } else if (LDF == &llvm::APFloat::IEEEdouble) {
2102         Current = SSE;
2103       } else
2104         llvm_unreachable("unexpected long double representation!");
2105     }
2106     // FIXME: _Decimal32 and _Decimal64 are SSE.
2107     // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
2108     return;
2109   }
2110 
2111   if (const EnumType *ET = Ty->getAs<EnumType>()) {
2112     // Classify the underlying integer type.
2113     classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg);
2114     return;
2115   }
2116 
2117   if (Ty->hasPointerRepresentation()) {
2118     Current = Integer;
2119     return;
2120   }
2121 
2122   if (Ty->isMemberPointerType()) {
2123     if (Ty->isMemberFunctionPointerType()) {
2124       if (Has64BitPointers) {
2125         // If Has64BitPointers, this is an {i64, i64}, so classify both
2126         // Lo and Hi now.
2127         Lo = Hi = Integer;
2128       } else {
2129         // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that
2130         // straddles an eightbyte boundary, Hi should be classified as well.
2131         uint64_t EB_FuncPtr = (OffsetBase) / 64;
2132         uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64;
2133         if (EB_FuncPtr != EB_ThisAdj) {
2134           Lo = Hi = Integer;
2135         } else {
2136           Current = Integer;
2137         }
2138       }
2139     } else {
2140       Current = Integer;
2141     }
2142     return;
2143   }
2144 
2145   if (const VectorType *VT = Ty->getAs<VectorType>()) {
2146     uint64_t Size = getContext().getTypeSize(VT);
2147     if (Size == 1 || Size == 8 || Size == 16 || Size == 32) {
2148       // gcc passes the following as integer:
2149       // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float>
2150       // 2 bytes - <2 x char>, <1 x short>
2151       // 1 byte  - <1 x char>
2152       Current = Integer;
2153 
2154       // If this type crosses an eightbyte boundary, it should be
2155       // split.
2156       uint64_t EB_Lo = (OffsetBase) / 64;
2157       uint64_t EB_Hi = (OffsetBase + Size - 1) / 64;
2158       if (EB_Lo != EB_Hi)
2159         Hi = Lo;
2160     } else if (Size == 64) {
2161       // gcc passes <1 x double> in memory. :(
2162       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double))
2163         return;
2164 
2165       // gcc passes <1 x long long> as INTEGER.
2166       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong) ||
2167           VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULongLong) ||
2168           VT->getElementType()->isSpecificBuiltinType(BuiltinType::Long) ||
2169           VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULong))
2170         Current = Integer;
2171       else
2172         Current = SSE;
2173 
2174       // If this type crosses an eightbyte boundary, it should be
2175       // split.
2176       if (OffsetBase && OffsetBase != 64)
2177         Hi = Lo;
2178     } else if (Size == 128 ||
2179                (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) {
2180       // Arguments of 256-bits are split into four eightbyte chunks. The
2181       // least significant one belongs to class SSE and all the others to class
2182       // SSEUP. The original Lo and Hi design considers that types can't be
2183       // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
2184       // This design isn't correct for 256-bits, but since there're no cases
2185       // where the upper parts would need to be inspected, avoid adding
2186       // complexity and just consider Hi to match the 64-256 part.
2187       //
2188       // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in
2189       // registers if they are "named", i.e. not part of the "..." of a
2190       // variadic function.
2191       //
2192       // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are
2193       // split into eight eightbyte chunks, one SSE and seven SSEUP.
2194       Lo = SSE;
2195       Hi = SSEUp;
2196     }
2197     return;
2198   }
2199 
2200   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
2201     QualType ET = getContext().getCanonicalType(CT->getElementType());
2202 
2203     uint64_t Size = getContext().getTypeSize(Ty);
2204     if (ET->isIntegralOrEnumerationType()) {
2205       if (Size <= 64)
2206         Current = Integer;
2207       else if (Size <= 128)
2208         Lo = Hi = Integer;
2209     } else if (ET == getContext().FloatTy) {
2210       Current = SSE;
2211     } else if (ET == getContext().DoubleTy) {
2212       Lo = Hi = SSE;
2213     } else if (ET == getContext().LongDoubleTy) {
2214       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
2215       if (LDF == &llvm::APFloat::IEEEquad)
2216         Current = Memory;
2217       else if (LDF == &llvm::APFloat::x87DoubleExtended)
2218         Current = ComplexX87;
2219       else if (LDF == &llvm::APFloat::IEEEdouble)
2220         Lo = Hi = SSE;
2221       else
2222         llvm_unreachable("unexpected long double representation!");
2223     }
2224 
2225     // If this complex type crosses an eightbyte boundary then it
2226     // should be split.
2227     uint64_t EB_Real = (OffsetBase) / 64;
2228     uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
2229     if (Hi == NoClass && EB_Real != EB_Imag)
2230       Hi = Lo;
2231 
2232     return;
2233   }
2234 
2235   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
2236     // Arrays are treated like structures.
2237 
2238     uint64_t Size = getContext().getTypeSize(Ty);
2239 
2240     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
2241     // than four eightbytes, ..., it has class MEMORY.
2242     if (Size > 256)
2243       return;
2244 
2245     // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
2246     // fields, it has class MEMORY.
2247     //
2248     // Only need to check alignment of array base.
2249     if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
2250       return;
2251 
2252     // Otherwise implement simplified merge. We could be smarter about
2253     // this, but it isn't worth it and would be harder to verify.
2254     Current = NoClass;
2255     uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
2256     uint64_t ArraySize = AT->getSize().getZExtValue();
2257 
2258     // The only case a 256-bit wide vector could be used is when the array
2259     // contains a single 256-bit element. Since Lo and Hi logic isn't extended
2260     // to work for sizes wider than 128, early check and fallback to memory.
2261     if (Size > 128 && EltSize != 256)
2262       return;
2263 
2264     for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
2265       Class FieldLo, FieldHi;
2266       classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg);
2267       Lo = merge(Lo, FieldLo);
2268       Hi = merge(Hi, FieldHi);
2269       if (Lo == Memory || Hi == Memory)
2270         break;
2271     }
2272 
2273     postMerge(Size, Lo, Hi);
2274     assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
2275     return;
2276   }
2277 
2278   if (const RecordType *RT = Ty->getAs<RecordType>()) {
2279     uint64_t Size = getContext().getTypeSize(Ty);
2280 
2281     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
2282     // than four eightbytes, ..., it has class MEMORY.
2283     if (Size > 256)
2284       return;
2285 
2286     // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
2287     // copy constructor or a non-trivial destructor, it is passed by invisible
2288     // reference.
2289     if (getRecordArgABI(RT, getCXXABI()))
2290       return;
2291 
2292     const RecordDecl *RD = RT->getDecl();
2293 
2294     // Assume variable sized types are passed in memory.
2295     if (RD->hasFlexibleArrayMember())
2296       return;
2297 
2298     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
2299 
2300     // Reset Lo class, this will be recomputed.
2301     Current = NoClass;
2302 
2303     // If this is a C++ record, classify the bases first.
2304     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
2305       for (const auto &I : CXXRD->bases()) {
2306         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
2307                "Unexpected base class!");
2308         const CXXRecordDecl *Base =
2309           cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
2310 
2311         // Classify this field.
2312         //
2313         // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
2314         // single eightbyte, each is classified separately. Each eightbyte gets
2315         // initialized to class NO_CLASS.
2316         Class FieldLo, FieldHi;
2317         uint64_t Offset =
2318           OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base));
2319         classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg);
2320         Lo = merge(Lo, FieldLo);
2321         Hi = merge(Hi, FieldHi);
2322         if (Lo == Memory || Hi == Memory) {
2323           postMerge(Size, Lo, Hi);
2324           return;
2325         }
2326       }
2327     }
2328 
2329     // Classify the fields one at a time, merging the results.
2330     unsigned idx = 0;
2331     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2332            i != e; ++i, ++idx) {
2333       uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
2334       bool BitField = i->isBitField();
2335 
2336       // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
2337       // four eightbytes, or it contains unaligned fields, it has class MEMORY.
2338       //
2339       // The only case a 256-bit wide vector could be used is when the struct
2340       // contains a single 256-bit element. Since Lo and Hi logic isn't extended
2341       // to work for sizes wider than 128, early check and fallback to memory.
2342       //
2343       if (Size > 128 && getContext().getTypeSize(i->getType()) != 256) {
2344         Lo = Memory;
2345         postMerge(Size, Lo, Hi);
2346         return;
2347       }
2348       // Note, skip this test for bit-fields, see below.
2349       if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
2350         Lo = Memory;
2351         postMerge(Size, Lo, Hi);
2352         return;
2353       }
2354 
2355       // Classify this field.
2356       //
2357       // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
2358       // exceeds a single eightbyte, each is classified
2359       // separately. Each eightbyte gets initialized to class
2360       // NO_CLASS.
2361       Class FieldLo, FieldHi;
2362 
2363       // Bit-fields require special handling, they do not force the
2364       // structure to be passed in memory even if unaligned, and
2365       // therefore they can straddle an eightbyte.
2366       if (BitField) {
2367         // Ignore padding bit-fields.
2368         if (i->isUnnamedBitfield())
2369           continue;
2370 
2371         uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
2372         uint64_t Size = i->getBitWidthValue(getContext());
2373 
2374         uint64_t EB_Lo = Offset / 64;
2375         uint64_t EB_Hi = (Offset + Size - 1) / 64;
2376 
2377         if (EB_Lo) {
2378           assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
2379           FieldLo = NoClass;
2380           FieldHi = Integer;
2381         } else {
2382           FieldLo = Integer;
2383           FieldHi = EB_Hi ? Integer : NoClass;
2384         }
2385       } else
2386         classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg);
2387       Lo = merge(Lo, FieldLo);
2388       Hi = merge(Hi, FieldHi);
2389       if (Lo == Memory || Hi == Memory)
2390         break;
2391     }
2392 
2393     postMerge(Size, Lo, Hi);
2394   }
2395 }
2396 
2397 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
2398   // If this is a scalar LLVM value then assume LLVM will pass it in the right
2399   // place naturally.
2400   if (!isAggregateTypeForABI(Ty)) {
2401     // Treat an enum type as its underlying type.
2402     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2403       Ty = EnumTy->getDecl()->getIntegerType();
2404 
2405     return (Ty->isPromotableIntegerType() ?
2406             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2407   }
2408 
2409   return getNaturalAlignIndirect(Ty);
2410 }
2411 
2412 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
2413   if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
2414     uint64_t Size = getContext().getTypeSize(VecTy);
2415     unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel);
2416     if (Size <= 64 || Size > LargestVector)
2417       return true;
2418   }
2419 
2420   return false;
2421 }
2422 
2423 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
2424                                             unsigned freeIntRegs) const {
2425   // If this is a scalar LLVM value then assume LLVM will pass it in the right
2426   // place naturally.
2427   //
2428   // This assumption is optimistic, as there could be free registers available
2429   // when we need to pass this argument in memory, and LLVM could try to pass
2430   // the argument in the free register. This does not seem to happen currently,
2431   // but this code would be much safer if we could mark the argument with
2432   // 'onstack'. See PR12193.
2433   if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) {
2434     // Treat an enum type as its underlying type.
2435     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2436       Ty = EnumTy->getDecl()->getIntegerType();
2437 
2438     return (Ty->isPromotableIntegerType() ?
2439             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2440   }
2441 
2442   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
2443     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
2444 
2445   // Compute the byval alignment. We specify the alignment of the byval in all
2446   // cases so that the mid-level optimizer knows the alignment of the byval.
2447   unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
2448 
2449   // Attempt to avoid passing indirect results using byval when possible. This
2450   // is important for good codegen.
2451   //
2452   // We do this by coercing the value into a scalar type which the backend can
2453   // handle naturally (i.e., without using byval).
2454   //
2455   // For simplicity, we currently only do this when we have exhausted all of the
2456   // free integer registers. Doing this when there are free integer registers
2457   // would require more care, as we would have to ensure that the coerced value
2458   // did not claim the unused register. That would require either reording the
2459   // arguments to the function (so that any subsequent inreg values came first),
2460   // or only doing this optimization when there were no following arguments that
2461   // might be inreg.
2462   //
2463   // We currently expect it to be rare (particularly in well written code) for
2464   // arguments to be passed on the stack when there are still free integer
2465   // registers available (this would typically imply large structs being passed
2466   // by value), so this seems like a fair tradeoff for now.
2467   //
2468   // We can revisit this if the backend grows support for 'onstack' parameter
2469   // attributes. See PR12193.
2470   if (freeIntRegs == 0) {
2471     uint64_t Size = getContext().getTypeSize(Ty);
2472 
2473     // If this type fits in an eightbyte, coerce it into the matching integral
2474     // type, which will end up on the stack (with alignment 8).
2475     if (Align == 8 && Size <= 64)
2476       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2477                                                           Size));
2478   }
2479 
2480   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align));
2481 }
2482 
2483 /// The ABI specifies that a value should be passed in a full vector XMM/YMM
2484 /// register. Pick an LLVM IR type that will be passed as a vector register.
2485 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
2486   // Wrapper structs/arrays that only contain vectors are passed just like
2487   // vectors; strip them off if present.
2488   if (const Type *InnerTy = isSingleElementStruct(Ty, getContext()))
2489     Ty = QualType(InnerTy, 0);
2490 
2491   llvm::Type *IRType = CGT.ConvertType(Ty);
2492   if (isa<llvm::VectorType>(IRType) ||
2493       IRType->getTypeID() == llvm::Type::FP128TyID)
2494     return IRType;
2495 
2496   // We couldn't find the preferred IR vector type for 'Ty'.
2497   uint64_t Size = getContext().getTypeSize(Ty);
2498   assert((Size == 128 || Size == 256) && "Invalid type found!");
2499 
2500   // Return a LLVM IR vector type based on the size of 'Ty'.
2501   return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()),
2502                                Size / 64);
2503 }
2504 
2505 /// BitsContainNoUserData - Return true if the specified [start,end) bit range
2506 /// is known to either be off the end of the specified type or being in
2507 /// alignment padding.  The user type specified is known to be at most 128 bits
2508 /// in size, and have passed through X86_64ABIInfo::classify with a successful
2509 /// classification that put one of the two halves in the INTEGER class.
2510 ///
2511 /// It is conservatively correct to return false.
2512 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
2513                                   unsigned EndBit, ASTContext &Context) {
2514   // If the bytes being queried are off the end of the type, there is no user
2515   // data hiding here.  This handles analysis of builtins, vectors and other
2516   // types that don't contain interesting padding.
2517   unsigned TySize = (unsigned)Context.getTypeSize(Ty);
2518   if (TySize <= StartBit)
2519     return true;
2520 
2521   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
2522     unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
2523     unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
2524 
2525     // Check each element to see if the element overlaps with the queried range.
2526     for (unsigned i = 0; i != NumElts; ++i) {
2527       // If the element is after the span we care about, then we're done..
2528       unsigned EltOffset = i*EltSize;
2529       if (EltOffset >= EndBit) break;
2530 
2531       unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
2532       if (!BitsContainNoUserData(AT->getElementType(), EltStart,
2533                                  EndBit-EltOffset, Context))
2534         return false;
2535     }
2536     // If it overlaps no elements, then it is safe to process as padding.
2537     return true;
2538   }
2539 
2540   if (const RecordType *RT = Ty->getAs<RecordType>()) {
2541     const RecordDecl *RD = RT->getDecl();
2542     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
2543 
2544     // If this is a C++ record, check the bases first.
2545     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
2546       for (const auto &I : CXXRD->bases()) {
2547         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
2548                "Unexpected base class!");
2549         const CXXRecordDecl *Base =
2550           cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
2551 
2552         // If the base is after the span we care about, ignore it.
2553         unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base));
2554         if (BaseOffset >= EndBit) continue;
2555 
2556         unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
2557         if (!BitsContainNoUserData(I.getType(), BaseStart,
2558                                    EndBit-BaseOffset, Context))
2559           return false;
2560       }
2561     }
2562 
2563     // Verify that no field has data that overlaps the region of interest.  Yes
2564     // this could be sped up a lot by being smarter about queried fields,
2565     // however we're only looking at structs up to 16 bytes, so we don't care
2566     // much.
2567     unsigned idx = 0;
2568     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2569          i != e; ++i, ++idx) {
2570       unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
2571 
2572       // If we found a field after the region we care about, then we're done.
2573       if (FieldOffset >= EndBit) break;
2574 
2575       unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
2576       if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
2577                                  Context))
2578         return false;
2579     }
2580 
2581     // If nothing in this record overlapped the area of interest, then we're
2582     // clean.
2583     return true;
2584   }
2585 
2586   return false;
2587 }
2588 
2589 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
2590 /// float member at the specified offset.  For example, {int,{float}} has a
2591 /// float at offset 4.  It is conservatively correct for this routine to return
2592 /// false.
2593 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset,
2594                                   const llvm::DataLayout &TD) {
2595   // Base case if we find a float.
2596   if (IROffset == 0 && IRType->isFloatTy())
2597     return true;
2598 
2599   // If this is a struct, recurse into the field at the specified offset.
2600   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
2601     const llvm::StructLayout *SL = TD.getStructLayout(STy);
2602     unsigned Elt = SL->getElementContainingOffset(IROffset);
2603     IROffset -= SL->getElementOffset(Elt);
2604     return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
2605   }
2606 
2607   // If this is an array, recurse into the field at the specified offset.
2608   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
2609     llvm::Type *EltTy = ATy->getElementType();
2610     unsigned EltSize = TD.getTypeAllocSize(EltTy);
2611     IROffset -= IROffset/EltSize*EltSize;
2612     return ContainsFloatAtOffset(EltTy, IROffset, TD);
2613   }
2614 
2615   return false;
2616 }
2617 
2618 
2619 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
2620 /// low 8 bytes of an XMM register, corresponding to the SSE class.
2621 llvm::Type *X86_64ABIInfo::
2622 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
2623                    QualType SourceTy, unsigned SourceOffset) const {
2624   // The only three choices we have are either double, <2 x float>, or float. We
2625   // pass as float if the last 4 bytes is just padding.  This happens for
2626   // structs that contain 3 floats.
2627   if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
2628                             SourceOffset*8+64, getContext()))
2629     return llvm::Type::getFloatTy(getVMContext());
2630 
2631   // We want to pass as <2 x float> if the LLVM IR type contains a float at
2632   // offset+0 and offset+4.  Walk the LLVM IR type to find out if this is the
2633   // case.
2634   if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) &&
2635       ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout()))
2636     return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2);
2637 
2638   return llvm::Type::getDoubleTy(getVMContext());
2639 }
2640 
2641 
2642 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
2643 /// an 8-byte GPR.  This means that we either have a scalar or we are talking
2644 /// about the high or low part of an up-to-16-byte struct.  This routine picks
2645 /// the best LLVM IR type to represent this, which may be i64 or may be anything
2646 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
2647 /// etc).
2648 ///
2649 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
2650 /// the source type.  IROffset is an offset in bytes into the LLVM IR type that
2651 /// the 8-byte value references.  PrefType may be null.
2652 ///
2653 /// SourceTy is the source-level type for the entire argument.  SourceOffset is
2654 /// an offset into this that we're processing (which is always either 0 or 8).
2655 ///
2656 llvm::Type *X86_64ABIInfo::
2657 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
2658                        QualType SourceTy, unsigned SourceOffset) const {
2659   // If we're dealing with an un-offset LLVM IR type, then it means that we're
2660   // returning an 8-byte unit starting with it.  See if we can safely use it.
2661   if (IROffset == 0) {
2662     // Pointers and int64's always fill the 8-byte unit.
2663     if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) ||
2664         IRType->isIntegerTy(64))
2665       return IRType;
2666 
2667     // If we have a 1/2/4-byte integer, we can use it only if the rest of the
2668     // goodness in the source type is just tail padding.  This is allowed to
2669     // kick in for struct {double,int} on the int, but not on
2670     // struct{double,int,int} because we wouldn't return the second int.  We
2671     // have to do this analysis on the source type because we can't depend on
2672     // unions being lowered a specific way etc.
2673     if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
2674         IRType->isIntegerTy(32) ||
2675         (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) {
2676       unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 :
2677           cast<llvm::IntegerType>(IRType)->getBitWidth();
2678 
2679       if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
2680                                 SourceOffset*8+64, getContext()))
2681         return IRType;
2682     }
2683   }
2684 
2685   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
2686     // If this is a struct, recurse into the field at the specified offset.
2687     const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy);
2688     if (IROffset < SL->getSizeInBytes()) {
2689       unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
2690       IROffset -= SL->getElementOffset(FieldIdx);
2691 
2692       return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
2693                                     SourceTy, SourceOffset);
2694     }
2695   }
2696 
2697   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
2698     llvm::Type *EltTy = ATy->getElementType();
2699     unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy);
2700     unsigned EltOffset = IROffset/EltSize*EltSize;
2701     return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
2702                                   SourceOffset);
2703   }
2704 
2705   // Okay, we don't have any better idea of what to pass, so we pass this in an
2706   // integer register that isn't too big to fit the rest of the struct.
2707   unsigned TySizeInBytes =
2708     (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
2709 
2710   assert(TySizeInBytes != SourceOffset && "Empty field?");
2711 
2712   // It is always safe to classify this as an integer type up to i64 that
2713   // isn't larger than the structure.
2714   return llvm::IntegerType::get(getVMContext(),
2715                                 std::min(TySizeInBytes-SourceOffset, 8U)*8);
2716 }
2717 
2718 
2719 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
2720 /// be used as elements of a two register pair to pass or return, return a
2721 /// first class aggregate to represent them.  For example, if the low part of
2722 /// a by-value argument should be passed as i32* and the high part as float,
2723 /// return {i32*, float}.
2724 static llvm::Type *
2725 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
2726                            const llvm::DataLayout &TD) {
2727   // In order to correctly satisfy the ABI, we need to the high part to start
2728   // at offset 8.  If the high and low parts we inferred are both 4-byte types
2729   // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
2730   // the second element at offset 8.  Check for this:
2731   unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
2732   unsigned HiAlign = TD.getABITypeAlignment(Hi);
2733   unsigned HiStart = llvm::RoundUpToAlignment(LoSize, HiAlign);
2734   assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
2735 
2736   // To handle this, we have to increase the size of the low part so that the
2737   // second element will start at an 8 byte offset.  We can't increase the size
2738   // of the second element because it might make us access off the end of the
2739   // struct.
2740   if (HiStart != 8) {
2741     // There are usually two sorts of types the ABI generation code can produce
2742     // for the low part of a pair that aren't 8 bytes in size: float or
2743     // i8/i16/i32.  This can also include pointers when they are 32-bit (X32 and
2744     // NaCl).
2745     // Promote these to a larger type.
2746     if (Lo->isFloatTy())
2747       Lo = llvm::Type::getDoubleTy(Lo->getContext());
2748     else {
2749       assert((Lo->isIntegerTy() || Lo->isPointerTy())
2750              && "Invalid/unknown lo type");
2751       Lo = llvm::Type::getInt64Ty(Lo->getContext());
2752     }
2753   }
2754 
2755   llvm::StructType *Result = llvm::StructType::get(Lo, Hi, nullptr);
2756 
2757 
2758   // Verify that the second element is at an 8-byte offset.
2759   assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
2760          "Invalid x86-64 argument pair!");
2761   return Result;
2762 }
2763 
2764 ABIArgInfo X86_64ABIInfo::
2765 classifyReturnType(QualType RetTy) const {
2766   // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
2767   // classification algorithm.
2768   X86_64ABIInfo::Class Lo, Hi;
2769   classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true);
2770 
2771   // Check some invariants.
2772   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
2773   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
2774 
2775   llvm::Type *ResType = nullptr;
2776   switch (Lo) {
2777   case NoClass:
2778     if (Hi == NoClass)
2779       return ABIArgInfo::getIgnore();
2780     // If the low part is just padding, it takes no register, leave ResType
2781     // null.
2782     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
2783            "Unknown missing lo part");
2784     break;
2785 
2786   case SSEUp:
2787   case X87Up:
2788     llvm_unreachable("Invalid classification for lo word.");
2789 
2790     // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
2791     // hidden argument.
2792   case Memory:
2793     return getIndirectReturnResult(RetTy);
2794 
2795     // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
2796     // available register of the sequence %rax, %rdx is used.
2797   case Integer:
2798     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
2799 
2800     // If we have a sign or zero extended integer, make sure to return Extend
2801     // so that the parameter gets the right LLVM IR attributes.
2802     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
2803       // Treat an enum type as its underlying type.
2804       if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
2805         RetTy = EnumTy->getDecl()->getIntegerType();
2806 
2807       if (RetTy->isIntegralOrEnumerationType() &&
2808           RetTy->isPromotableIntegerType())
2809         return ABIArgInfo::getExtend();
2810     }
2811     break;
2812 
2813     // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
2814     // available SSE register of the sequence %xmm0, %xmm1 is used.
2815   case SSE:
2816     ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
2817     break;
2818 
2819     // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
2820     // returned on the X87 stack in %st0 as 80-bit x87 number.
2821   case X87:
2822     ResType = llvm::Type::getX86_FP80Ty(getVMContext());
2823     break;
2824 
2825     // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
2826     // part of the value is returned in %st0 and the imaginary part in
2827     // %st1.
2828   case ComplexX87:
2829     assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
2830     ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
2831                                     llvm::Type::getX86_FP80Ty(getVMContext()),
2832                                     nullptr);
2833     break;
2834   }
2835 
2836   llvm::Type *HighPart = nullptr;
2837   switch (Hi) {
2838     // Memory was handled previously and X87 should
2839     // never occur as a hi class.
2840   case Memory:
2841   case X87:
2842     llvm_unreachable("Invalid classification for hi word.");
2843 
2844   case ComplexX87: // Previously handled.
2845   case NoClass:
2846     break;
2847 
2848   case Integer:
2849     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2850     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
2851       return ABIArgInfo::getDirect(HighPart, 8);
2852     break;
2853   case SSE:
2854     HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2855     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
2856       return ABIArgInfo::getDirect(HighPart, 8);
2857     break;
2858 
2859     // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
2860     // is passed in the next available eightbyte chunk if the last used
2861     // vector register.
2862     //
2863     // SSEUP should always be preceded by SSE, just widen.
2864   case SSEUp:
2865     assert(Lo == SSE && "Unexpected SSEUp classification.");
2866     ResType = GetByteVectorType(RetTy);
2867     break;
2868 
2869     // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
2870     // returned together with the previous X87 value in %st0.
2871   case X87Up:
2872     // If X87Up is preceded by X87, we don't need to do
2873     // anything. However, in some cases with unions it may not be
2874     // preceded by X87. In such situations we follow gcc and pass the
2875     // extra bits in an SSE reg.
2876     if (Lo != X87) {
2877       HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2878       if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
2879         return ABIArgInfo::getDirect(HighPart, 8);
2880     }
2881     break;
2882   }
2883 
2884   // If a high part was specified, merge it together with the low part.  It is
2885   // known to pass in the high eightbyte of the result.  We do this by forming a
2886   // first class struct aggregate with the high and low part: {low, high}
2887   if (HighPart)
2888     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
2889 
2890   return ABIArgInfo::getDirect(ResType);
2891 }
2892 
2893 ABIArgInfo X86_64ABIInfo::classifyArgumentType(
2894   QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE,
2895   bool isNamedArg)
2896   const
2897 {
2898   Ty = useFirstFieldIfTransparentUnion(Ty);
2899 
2900   X86_64ABIInfo::Class Lo, Hi;
2901   classify(Ty, 0, Lo, Hi, isNamedArg);
2902 
2903   // Check some invariants.
2904   // FIXME: Enforce these by construction.
2905   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
2906   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
2907 
2908   neededInt = 0;
2909   neededSSE = 0;
2910   llvm::Type *ResType = nullptr;
2911   switch (Lo) {
2912   case NoClass:
2913     if (Hi == NoClass)
2914       return ABIArgInfo::getIgnore();
2915     // If the low part is just padding, it takes no register, leave ResType
2916     // null.
2917     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
2918            "Unknown missing lo part");
2919     break;
2920 
2921     // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
2922     // on the stack.
2923   case Memory:
2924 
2925     // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
2926     // COMPLEX_X87, it is passed in memory.
2927   case X87:
2928   case ComplexX87:
2929     if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect)
2930       ++neededInt;
2931     return getIndirectResult(Ty, freeIntRegs);
2932 
2933   case SSEUp:
2934   case X87Up:
2935     llvm_unreachable("Invalid classification for lo word.");
2936 
2937     // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
2938     // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
2939     // and %r9 is used.
2940   case Integer:
2941     ++neededInt;
2942 
2943     // Pick an 8-byte type based on the preferred type.
2944     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
2945 
2946     // If we have a sign or zero extended integer, make sure to return Extend
2947     // so that the parameter gets the right LLVM IR attributes.
2948     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
2949       // Treat an enum type as its underlying type.
2950       if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2951         Ty = EnumTy->getDecl()->getIntegerType();
2952 
2953       if (Ty->isIntegralOrEnumerationType() &&
2954           Ty->isPromotableIntegerType())
2955         return ABIArgInfo::getExtend();
2956     }
2957 
2958     break;
2959 
2960     // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
2961     // available SSE register is used, the registers are taken in the
2962     // order from %xmm0 to %xmm7.
2963   case SSE: {
2964     llvm::Type *IRType = CGT.ConvertType(Ty);
2965     ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
2966     ++neededSSE;
2967     break;
2968   }
2969   }
2970 
2971   llvm::Type *HighPart = nullptr;
2972   switch (Hi) {
2973     // Memory was handled previously, ComplexX87 and X87 should
2974     // never occur as hi classes, and X87Up must be preceded by X87,
2975     // which is passed in memory.
2976   case Memory:
2977   case X87:
2978   case ComplexX87:
2979     llvm_unreachable("Invalid classification for hi word.");
2980 
2981   case NoClass: break;
2982 
2983   case Integer:
2984     ++neededInt;
2985     // Pick an 8-byte type based on the preferred type.
2986     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
2987 
2988     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
2989       return ABIArgInfo::getDirect(HighPart, 8);
2990     break;
2991 
2992     // X87Up generally doesn't occur here (long double is passed in
2993     // memory), except in situations involving unions.
2994   case X87Up:
2995   case SSE:
2996     HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
2997 
2998     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
2999       return ABIArgInfo::getDirect(HighPart, 8);
3000 
3001     ++neededSSE;
3002     break;
3003 
3004     // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
3005     // eightbyte is passed in the upper half of the last used SSE
3006     // register.  This only happens when 128-bit vectors are passed.
3007   case SSEUp:
3008     assert(Lo == SSE && "Unexpected SSEUp classification");
3009     ResType = GetByteVectorType(Ty);
3010     break;
3011   }
3012 
3013   // If a high part was specified, merge it together with the low part.  It is
3014   // known to pass in the high eightbyte of the result.  We do this by forming a
3015   // first class struct aggregate with the high and low part: {low, high}
3016   if (HighPart)
3017     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
3018 
3019   return ABIArgInfo::getDirect(ResType);
3020 }
3021 
3022 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
3023 
3024   if (!getCXXABI().classifyReturnType(FI))
3025     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3026 
3027   // Keep track of the number of assigned registers.
3028   unsigned freeIntRegs = 6, freeSSERegs = 8;
3029 
3030   // If the return value is indirect, then the hidden argument is consuming one
3031   // integer register.
3032   if (FI.getReturnInfo().isIndirect())
3033     --freeIntRegs;
3034 
3035   // The chain argument effectively gives us another free register.
3036   if (FI.isChainCall())
3037     ++freeIntRegs;
3038 
3039   unsigned NumRequiredArgs = FI.getNumRequiredArgs();
3040   // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
3041   // get assigned (in left-to-right order) for passing as follows...
3042   unsigned ArgNo = 0;
3043   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3044        it != ie; ++it, ++ArgNo) {
3045     bool IsNamedArg = ArgNo < NumRequiredArgs;
3046 
3047     unsigned neededInt, neededSSE;
3048     it->info = classifyArgumentType(it->type, freeIntRegs, neededInt,
3049                                     neededSSE, IsNamedArg);
3050 
3051     // AMD64-ABI 3.2.3p3: If there are no registers available for any
3052     // eightbyte of an argument, the whole argument is passed on the
3053     // stack. If registers have already been assigned for some
3054     // eightbytes of such an argument, the assignments get reverted.
3055     if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) {
3056       freeIntRegs -= neededInt;
3057       freeSSERegs -= neededSSE;
3058     } else {
3059       it->info = getIndirectResult(it->type, freeIntRegs);
3060     }
3061   }
3062 }
3063 
3064 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF,
3065                                          Address VAListAddr, QualType Ty) {
3066   Address overflow_arg_area_p = CGF.Builder.CreateStructGEP(
3067       VAListAddr, 2, CharUnits::fromQuantity(8), "overflow_arg_area_p");
3068   llvm::Value *overflow_arg_area =
3069     CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
3070 
3071   // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
3072   // byte boundary if alignment needed by type exceeds 8 byte boundary.
3073   // It isn't stated explicitly in the standard, but in practice we use
3074   // alignment greater than 16 where necessary.
3075   uint64_t Align = CGF.getContext().getTypeAlignInChars(Ty).getQuantity();
3076   if (Align > 8) {
3077     // overflow_arg_area = (overflow_arg_area + align - 1) & -align;
3078     llvm::Value *Offset =
3079       llvm::ConstantInt::get(CGF.Int64Ty, Align - 1);
3080     overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset);
3081     llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area,
3082                                                     CGF.Int64Ty);
3083     llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, -(uint64_t)Align);
3084     overflow_arg_area =
3085       CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
3086                                  overflow_arg_area->getType(),
3087                                  "overflow_arg_area.align");
3088   }
3089 
3090   // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
3091   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
3092   llvm::Value *Res =
3093     CGF.Builder.CreateBitCast(overflow_arg_area,
3094                               llvm::PointerType::getUnqual(LTy));
3095 
3096   // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
3097   // l->overflow_arg_area + sizeof(type).
3098   // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
3099   // an 8 byte boundary.
3100 
3101   uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
3102   llvm::Value *Offset =
3103       llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7);
3104   overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
3105                                             "overflow_arg_area.next");
3106   CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
3107 
3108   // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
3109   return Address(Res, CharUnits::fromQuantity(Align));
3110 }
3111 
3112 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
3113                                  QualType Ty) const {
3114   // Assume that va_list type is correct; should be pointer to LLVM type:
3115   // struct {
3116   //   i32 gp_offset;
3117   //   i32 fp_offset;
3118   //   i8* overflow_arg_area;
3119   //   i8* reg_save_area;
3120   // };
3121   unsigned neededInt, neededSSE;
3122 
3123   Ty = getContext().getCanonicalType(Ty);
3124   ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE,
3125                                        /*isNamedArg*/false);
3126 
3127   // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
3128   // in the registers. If not go to step 7.
3129   if (!neededInt && !neededSSE)
3130     return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
3131 
3132   // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
3133   // general purpose registers needed to pass type and num_fp to hold
3134   // the number of floating point registers needed.
3135 
3136   // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
3137   // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
3138   // l->fp_offset > 304 - num_fp * 16 go to step 7.
3139   //
3140   // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
3141   // register save space).
3142 
3143   llvm::Value *InRegs = nullptr;
3144   Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid();
3145   llvm::Value *gp_offset = nullptr, *fp_offset = nullptr;
3146   if (neededInt) {
3147     gp_offset_p =
3148         CGF.Builder.CreateStructGEP(VAListAddr, 0, CharUnits::Zero(),
3149                                     "gp_offset_p");
3150     gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
3151     InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
3152     InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
3153   }
3154 
3155   if (neededSSE) {
3156     fp_offset_p =
3157         CGF.Builder.CreateStructGEP(VAListAddr, 1, CharUnits::fromQuantity(4),
3158                                     "fp_offset_p");
3159     fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
3160     llvm::Value *FitsInFP =
3161       llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
3162     FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
3163     InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
3164   }
3165 
3166   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
3167   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
3168   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
3169   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
3170 
3171   // Emit code to load the value if it was passed in registers.
3172 
3173   CGF.EmitBlock(InRegBlock);
3174 
3175   // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
3176   // an offset of l->gp_offset and/or l->fp_offset. This may require
3177   // copying to a temporary location in case the parameter is passed
3178   // in different register classes or requires an alignment greater
3179   // than 8 for general purpose registers and 16 for XMM registers.
3180   //
3181   // FIXME: This really results in shameful code when we end up needing to
3182   // collect arguments from different places; often what should result in a
3183   // simple assembling of a structure from scattered addresses has many more
3184   // loads than necessary. Can we clean this up?
3185   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
3186   llvm::Value *RegSaveArea = CGF.Builder.CreateLoad(
3187       CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(16)),
3188                                   "reg_save_area");
3189 
3190   Address RegAddr = Address::invalid();
3191   if (neededInt && neededSSE) {
3192     // FIXME: Cleanup.
3193     assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
3194     llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
3195     Address Tmp = CGF.CreateMemTemp(Ty);
3196     Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
3197     assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
3198     llvm::Type *TyLo = ST->getElementType(0);
3199     llvm::Type *TyHi = ST->getElementType(1);
3200     assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
3201            "Unexpected ABI info for mixed regs");
3202     llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
3203     llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
3204     llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegSaveArea, gp_offset);
3205     llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegSaveArea, fp_offset);
3206     llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr;
3207     llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr;
3208 
3209     // Copy the first element.
3210     llvm::Value *V =
3211       CGF.Builder.CreateDefaultAlignedLoad(
3212                                CGF.Builder.CreateBitCast(RegLoAddr, PTyLo));
3213     CGF.Builder.CreateStore(V,
3214                     CGF.Builder.CreateStructGEP(Tmp, 0, CharUnits::Zero()));
3215 
3216     // Copy the second element.
3217     V = CGF.Builder.CreateDefaultAlignedLoad(
3218                                CGF.Builder.CreateBitCast(RegHiAddr, PTyHi));
3219     CharUnits Offset = CharUnits::fromQuantity(
3220                    getDataLayout().getStructLayout(ST)->getElementOffset(1));
3221     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1, Offset));
3222 
3223     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
3224   } else if (neededInt) {
3225     RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, gp_offset),
3226                       CharUnits::fromQuantity(8));
3227     RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
3228 
3229     // Copy to a temporary if necessary to ensure the appropriate alignment.
3230     std::pair<CharUnits, CharUnits> SizeAlign =
3231         getContext().getTypeInfoInChars(Ty);
3232     uint64_t TySize = SizeAlign.first.getQuantity();
3233     CharUnits TyAlign = SizeAlign.second;
3234 
3235     // Copy into a temporary if the type is more aligned than the
3236     // register save area.
3237     if (TyAlign.getQuantity() > 8) {
3238       Address Tmp = CGF.CreateMemTemp(Ty);
3239       CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false);
3240       RegAddr = Tmp;
3241     }
3242 
3243   } else if (neededSSE == 1) {
3244     RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset),
3245                       CharUnits::fromQuantity(16));
3246     RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
3247   } else {
3248     assert(neededSSE == 2 && "Invalid number of needed registers!");
3249     // SSE registers are spaced 16 bytes apart in the register save
3250     // area, we need to collect the two eightbytes together.
3251     // The ABI isn't explicit about this, but it seems reasonable
3252     // to assume that the slots are 16-byte aligned, since the stack is
3253     // naturally 16-byte aligned and the prologue is expected to store
3254     // all the SSE registers to the RSA.
3255     Address RegAddrLo = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset),
3256                                 CharUnits::fromQuantity(16));
3257     Address RegAddrHi =
3258       CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo,
3259                                              CharUnits::fromQuantity(16));
3260     llvm::Type *DoubleTy = CGF.DoubleTy;
3261     llvm::StructType *ST = llvm::StructType::get(DoubleTy, DoubleTy, nullptr);
3262     llvm::Value *V;
3263     Address Tmp = CGF.CreateMemTemp(Ty);
3264     Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
3265     V = CGF.Builder.CreateLoad(
3266                    CGF.Builder.CreateElementBitCast(RegAddrLo, DoubleTy));
3267     CGF.Builder.CreateStore(V,
3268                    CGF.Builder.CreateStructGEP(Tmp, 0, CharUnits::Zero()));
3269     V = CGF.Builder.CreateLoad(
3270                    CGF.Builder.CreateElementBitCast(RegAddrHi, DoubleTy));
3271     CGF.Builder.CreateStore(V,
3272           CGF.Builder.CreateStructGEP(Tmp, 1, CharUnits::fromQuantity(8)));
3273 
3274     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
3275   }
3276 
3277   // AMD64-ABI 3.5.7p5: Step 5. Set:
3278   // l->gp_offset = l->gp_offset + num_gp * 8
3279   // l->fp_offset = l->fp_offset + num_fp * 16.
3280   if (neededInt) {
3281     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
3282     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
3283                             gp_offset_p);
3284   }
3285   if (neededSSE) {
3286     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
3287     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
3288                             fp_offset_p);
3289   }
3290   CGF.EmitBranch(ContBlock);
3291 
3292   // Emit code to load the value if it was passed in memory.
3293 
3294   CGF.EmitBlock(InMemBlock);
3295   Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
3296 
3297   // Return the appropriate result.
3298 
3299   CGF.EmitBlock(ContBlock);
3300   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock,
3301                                  "vaarg.addr");
3302   return ResAddr;
3303 }
3304 
3305 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
3306                                    QualType Ty) const {
3307   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
3308                           CGF.getContext().getTypeInfoInChars(Ty),
3309                           CharUnits::fromQuantity(8),
3310                           /*allowHigherAlign*/ false);
3311 }
3312 
3313 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs,
3314                                       bool IsReturnType) const {
3315 
3316   if (Ty->isVoidType())
3317     return ABIArgInfo::getIgnore();
3318 
3319   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3320     Ty = EnumTy->getDecl()->getIntegerType();
3321 
3322   TypeInfo Info = getContext().getTypeInfo(Ty);
3323   uint64_t Width = Info.Width;
3324   CharUnits Align = getContext().toCharUnitsFromBits(Info.Align);
3325 
3326   const RecordType *RT = Ty->getAs<RecordType>();
3327   if (RT) {
3328     if (!IsReturnType) {
3329       if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()))
3330         return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
3331     }
3332 
3333     if (RT->getDecl()->hasFlexibleArrayMember())
3334       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
3335 
3336     // FIXME: mingw-w64-gcc emits 128-bit struct as i128
3337     if (Width == 128 && IsMingw64)
3338       return ABIArgInfo::getDirect(
3339           llvm::IntegerType::get(getVMContext(), Width));
3340   }
3341 
3342   // vectorcall adds the concept of a homogenous vector aggregate, similar to
3343   // other targets.
3344   const Type *Base = nullptr;
3345   uint64_t NumElts = 0;
3346   if (FreeSSERegs && isHomogeneousAggregate(Ty, Base, NumElts)) {
3347     if (FreeSSERegs >= NumElts) {
3348       FreeSSERegs -= NumElts;
3349       if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())
3350         return ABIArgInfo::getDirect();
3351       return ABIArgInfo::getExpand();
3352     }
3353     return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3354   }
3355 
3356 
3357   if (Ty->isMemberPointerType()) {
3358     // If the member pointer is represented by an LLVM int or ptr, pass it
3359     // directly.
3360     llvm::Type *LLTy = CGT.ConvertType(Ty);
3361     if (LLTy->isPointerTy() || LLTy->isIntegerTy())
3362       return ABIArgInfo::getDirect();
3363   }
3364 
3365   if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) {
3366     // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
3367     // not 1, 2, 4, or 8 bytes, must be passed by reference."
3368     if (Width > 64 || !llvm::isPowerOf2_64(Width))
3369       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
3370 
3371     // Otherwise, coerce it to a small integer.
3372     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width));
3373   }
3374 
3375   // Bool type is always extended to the ABI, other builtin types are not
3376   // extended.
3377   const BuiltinType *BT = Ty->getAs<BuiltinType>();
3378   if (BT && BT->getKind() == BuiltinType::Bool)
3379     return ABIArgInfo::getExtend();
3380 
3381   // Mingw64 GCC uses the old 80 bit extended precision floating point unit. It
3382   // passes them indirectly through memory.
3383   if (IsMingw64 && BT && BT->getKind() == BuiltinType::LongDouble) {
3384     const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
3385     if (LDF == &llvm::APFloat::x87DoubleExtended)
3386       return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3387   }
3388 
3389   return ABIArgInfo::getDirect();
3390 }
3391 
3392 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
3393   bool IsVectorCall =
3394       FI.getCallingConvention() == llvm::CallingConv::X86_VectorCall;
3395 
3396   // We can use up to 4 SSE return registers with vectorcall.
3397   unsigned FreeSSERegs = IsVectorCall ? 4 : 0;
3398   if (!getCXXABI().classifyReturnType(FI))
3399     FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true);
3400 
3401   // We can use up to 6 SSE register parameters with vectorcall.
3402   FreeSSERegs = IsVectorCall ? 6 : 0;
3403   for (auto &I : FI.arguments())
3404     I.info = classify(I.type, FreeSSERegs, false);
3405 }
3406 
3407 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
3408                                     QualType Ty) const {
3409   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
3410                           CGF.getContext().getTypeInfoInChars(Ty),
3411                           CharUnits::fromQuantity(8),
3412                           /*allowHigherAlign*/ false);
3413 }
3414 
3415 // PowerPC-32
3416 namespace {
3417 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information.
3418 class PPC32_SVR4_ABIInfo : public DefaultABIInfo {
3419 public:
3420   PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
3421 
3422   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
3423                     QualType Ty) const override;
3424 };
3425 
3426 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo {
3427 public:
3428   PPC32TargetCodeGenInfo(CodeGenTypes &CGT)
3429       : TargetCodeGenInfo(new PPC32_SVR4_ABIInfo(CGT)) {}
3430 
3431   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
3432     // This is recovered from gcc output.
3433     return 1; // r1 is the dedicated stack pointer
3434   }
3435 
3436   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3437                                llvm::Value *Address) const override;
3438 };
3439 
3440 }
3441 
3442 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList,
3443                                       QualType Ty) const {
3444   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
3445     // TODO: Implement this. For now ignore.
3446     (void)CTy;
3447     return Address::invalid();
3448   }
3449 
3450   // struct __va_list_tag {
3451   //   unsigned char gpr;
3452   //   unsigned char fpr;
3453   //   unsigned short reserved;
3454   //   void *overflow_arg_area;
3455   //   void *reg_save_area;
3456   // };
3457 
3458   bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64;
3459   bool isInt =
3460       Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType();
3461 
3462   // All aggregates are passed indirectly?  That doesn't seem consistent
3463   // with the argument-lowering code.
3464   bool isIndirect = Ty->isAggregateType();
3465 
3466   CGBuilderTy &Builder = CGF.Builder;
3467 
3468   // The calling convention either uses 1-2 GPRs or 1 FPR.
3469   Address NumRegsAddr = Address::invalid();
3470   if (isInt) {
3471     NumRegsAddr = Builder.CreateStructGEP(VAList, 0, CharUnits::Zero(), "gpr");
3472   } else {
3473     NumRegsAddr = Builder.CreateStructGEP(VAList, 1, CharUnits::One(), "fpr");
3474   }
3475 
3476   llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs");
3477 
3478   // "Align" the register count when TY is i64.
3479   if (isI64) {
3480     NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1));
3481     NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U));
3482   }
3483 
3484   llvm::Value *CC =
3485       Builder.CreateICmpULT(NumRegs, Builder.getInt8(8), "cond");
3486 
3487   llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs");
3488   llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow");
3489   llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
3490 
3491   Builder.CreateCondBr(CC, UsingRegs, UsingOverflow);
3492 
3493   llvm::Type *DirectTy = CGF.ConvertType(Ty);
3494   if (isIndirect) DirectTy = DirectTy->getPointerTo(0);
3495 
3496   // Case 1: consume registers.
3497   Address RegAddr = Address::invalid();
3498   {
3499     CGF.EmitBlock(UsingRegs);
3500 
3501     Address RegSaveAreaPtr =
3502       Builder.CreateStructGEP(VAList, 4, CharUnits::fromQuantity(8));
3503     RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr),
3504                       CharUnits::fromQuantity(8));
3505     assert(RegAddr.getElementType() == CGF.Int8Ty);
3506 
3507     // Floating-point registers start after the general-purpose registers.
3508     if (!isInt) {
3509       RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr,
3510                                                    CharUnits::fromQuantity(32));
3511     }
3512 
3513     // Get the address of the saved value by scaling the number of
3514     // registers we've used by the number of
3515     CharUnits RegSize = CharUnits::fromQuantity(isInt ? 4 : 8);
3516     llvm::Value *RegOffset =
3517       Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity()));
3518     RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty,
3519                                             RegAddr.getPointer(), RegOffset),
3520                       RegAddr.getAlignment().alignmentOfArrayElement(RegSize));
3521     RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy);
3522 
3523     // Increase the used-register count.
3524     NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(isI64 ? 2 : 1));
3525     Builder.CreateStore(NumRegs, NumRegsAddr);
3526 
3527     CGF.EmitBranch(Cont);
3528   }
3529 
3530   // Case 2: consume space in the overflow area.
3531   Address MemAddr = Address::invalid();
3532   {
3533     CGF.EmitBlock(UsingOverflow);
3534 
3535     // Everything in the overflow area is rounded up to a size of at least 4.
3536     CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4);
3537 
3538     CharUnits Size;
3539     if (!isIndirect) {
3540       auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty);
3541       Size = TypeInfo.first.RoundUpToAlignment(OverflowAreaAlign);
3542     } else {
3543       Size = CGF.getPointerSize();
3544     }
3545 
3546     Address OverflowAreaAddr =
3547       Builder.CreateStructGEP(VAList, 3, CharUnits::fromQuantity(4));
3548     Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr),
3549                          OverflowAreaAlign);
3550 
3551     // The current address is the address of the varargs element.
3552     // FIXME: do we not need to round up to alignment?
3553     MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy);
3554 
3555     // Increase the overflow area.
3556     OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size);
3557     Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr);
3558     CGF.EmitBranch(Cont);
3559   }
3560 
3561   CGF.EmitBlock(Cont);
3562 
3563   // Merge the cases with a phi.
3564   Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow,
3565                                 "vaarg.addr");
3566 
3567   // Load the pointer if the argument was passed indirectly.
3568   if (isIndirect) {
3569     Result = Address(Builder.CreateLoad(Result, "aggr"),
3570                      getContext().getTypeAlignInChars(Ty));
3571   }
3572 
3573   return Result;
3574 }
3575 
3576 bool
3577 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3578                                                 llvm::Value *Address) const {
3579   // This is calculated from the LLVM and GCC tables and verified
3580   // against gcc output.  AFAIK all ABIs use the same encoding.
3581 
3582   CodeGen::CGBuilderTy &Builder = CGF.Builder;
3583 
3584   llvm::IntegerType *i8 = CGF.Int8Ty;
3585   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
3586   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
3587   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
3588 
3589   // 0-31: r0-31, the 4-byte general-purpose registers
3590   AssignToArrayRange(Builder, Address, Four8, 0, 31);
3591 
3592   // 32-63: fp0-31, the 8-byte floating-point registers
3593   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
3594 
3595   // 64-76 are various 4-byte special-purpose registers:
3596   // 64: mq
3597   // 65: lr
3598   // 66: ctr
3599   // 67: ap
3600   // 68-75 cr0-7
3601   // 76: xer
3602   AssignToArrayRange(Builder, Address, Four8, 64, 76);
3603 
3604   // 77-108: v0-31, the 16-byte vector registers
3605   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
3606 
3607   // 109: vrsave
3608   // 110: vscr
3609   // 111: spe_acc
3610   // 112: spefscr
3611   // 113: sfp
3612   AssignToArrayRange(Builder, Address, Four8, 109, 113);
3613 
3614   return false;
3615 }
3616 
3617 // PowerPC-64
3618 
3619 namespace {
3620 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information.
3621 class PPC64_SVR4_ABIInfo : public DefaultABIInfo {
3622 public:
3623   enum ABIKind {
3624     ELFv1 = 0,
3625     ELFv2
3626   };
3627 
3628 private:
3629   static const unsigned GPRBits = 64;
3630   ABIKind Kind;
3631   bool HasQPX;
3632 
3633   // A vector of float or double will be promoted to <4 x f32> or <4 x f64> and
3634   // will be passed in a QPX register.
3635   bool IsQPXVectorTy(const Type *Ty) const {
3636     if (!HasQPX)
3637       return false;
3638 
3639     if (const VectorType *VT = Ty->getAs<VectorType>()) {
3640       unsigned NumElements = VT->getNumElements();
3641       if (NumElements == 1)
3642         return false;
3643 
3644       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) {
3645         if (getContext().getTypeSize(Ty) <= 256)
3646           return true;
3647       } else if (VT->getElementType()->
3648                    isSpecificBuiltinType(BuiltinType::Float)) {
3649         if (getContext().getTypeSize(Ty) <= 128)
3650           return true;
3651       }
3652     }
3653 
3654     return false;
3655   }
3656 
3657   bool IsQPXVectorTy(QualType Ty) const {
3658     return IsQPXVectorTy(Ty.getTypePtr());
3659   }
3660 
3661 public:
3662   PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, bool HasQPX)
3663     : DefaultABIInfo(CGT), Kind(Kind), HasQPX(HasQPX) {}
3664 
3665   bool isPromotableTypeForABI(QualType Ty) const;
3666   CharUnits getParamTypeAlignment(QualType Ty) const;
3667 
3668   ABIArgInfo classifyReturnType(QualType RetTy) const;
3669   ABIArgInfo classifyArgumentType(QualType Ty) const;
3670 
3671   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
3672   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
3673                                          uint64_t Members) const override;
3674 
3675   // TODO: We can add more logic to computeInfo to improve performance.
3676   // Example: For aggregate arguments that fit in a register, we could
3677   // use getDirectInReg (as is done below for structs containing a single
3678   // floating-point value) to avoid pushing them to memory on function
3679   // entry.  This would require changing the logic in PPCISelLowering
3680   // when lowering the parameters in the caller and args in the callee.
3681   void computeInfo(CGFunctionInfo &FI) const override {
3682     if (!getCXXABI().classifyReturnType(FI))
3683       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3684     for (auto &I : FI.arguments()) {
3685       // We rely on the default argument classification for the most part.
3686       // One exception:  An aggregate containing a single floating-point
3687       // or vector item must be passed in a register if one is available.
3688       const Type *T = isSingleElementStruct(I.type, getContext());
3689       if (T) {
3690         const BuiltinType *BT = T->getAs<BuiltinType>();
3691         if (IsQPXVectorTy(T) ||
3692             (T->isVectorType() && getContext().getTypeSize(T) == 128) ||
3693             (BT && BT->isFloatingPoint())) {
3694           QualType QT(T, 0);
3695           I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT));
3696           continue;
3697         }
3698       }
3699       I.info = classifyArgumentType(I.type);
3700     }
3701   }
3702 
3703   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
3704                     QualType Ty) const override;
3705 };
3706 
3707 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo {
3708 
3709 public:
3710   PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT,
3711                                PPC64_SVR4_ABIInfo::ABIKind Kind, bool HasQPX)
3712       : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT, Kind, HasQPX)) {}
3713 
3714   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
3715     // This is recovered from gcc output.
3716     return 1; // r1 is the dedicated stack pointer
3717   }
3718 
3719   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3720                                llvm::Value *Address) const override;
3721 };
3722 
3723 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
3724 public:
3725   PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
3726 
3727   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
3728     // This is recovered from gcc output.
3729     return 1; // r1 is the dedicated stack pointer
3730   }
3731 
3732   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3733                                llvm::Value *Address) const override;
3734 };
3735 
3736 }
3737 
3738 // Return true if the ABI requires Ty to be passed sign- or zero-
3739 // extended to 64 bits.
3740 bool
3741 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const {
3742   // Treat an enum type as its underlying type.
3743   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3744     Ty = EnumTy->getDecl()->getIntegerType();
3745 
3746   // Promotable integer types are required to be promoted by the ABI.
3747   if (Ty->isPromotableIntegerType())
3748     return true;
3749 
3750   // In addition to the usual promotable integer types, we also need to
3751   // extend all 32-bit types, since the ABI requires promotion to 64 bits.
3752   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
3753     switch (BT->getKind()) {
3754     case BuiltinType::Int:
3755     case BuiltinType::UInt:
3756       return true;
3757     default:
3758       break;
3759     }
3760 
3761   return false;
3762 }
3763 
3764 /// isAlignedParamType - Determine whether a type requires 16-byte or
3765 /// higher alignment in the parameter area.  Always returns at least 8.
3766 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const {
3767   // Complex types are passed just like their elements.
3768   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
3769     Ty = CTy->getElementType();
3770 
3771   // Only vector types of size 16 bytes need alignment (larger types are
3772   // passed via reference, smaller types are not aligned).
3773   if (IsQPXVectorTy(Ty)) {
3774     if (getContext().getTypeSize(Ty) > 128)
3775       return CharUnits::fromQuantity(32);
3776 
3777     return CharUnits::fromQuantity(16);
3778   } else if (Ty->isVectorType()) {
3779     return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8);
3780   }
3781 
3782   // For single-element float/vector structs, we consider the whole type
3783   // to have the same alignment requirements as its single element.
3784   const Type *AlignAsType = nullptr;
3785   const Type *EltType = isSingleElementStruct(Ty, getContext());
3786   if (EltType) {
3787     const BuiltinType *BT = EltType->getAs<BuiltinType>();
3788     if (IsQPXVectorTy(EltType) || (EltType->isVectorType() &&
3789          getContext().getTypeSize(EltType) == 128) ||
3790         (BT && BT->isFloatingPoint()))
3791       AlignAsType = EltType;
3792   }
3793 
3794   // Likewise for ELFv2 homogeneous aggregates.
3795   const Type *Base = nullptr;
3796   uint64_t Members = 0;
3797   if (!AlignAsType && Kind == ELFv2 &&
3798       isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members))
3799     AlignAsType = Base;
3800 
3801   // With special case aggregates, only vector base types need alignment.
3802   if (AlignAsType && IsQPXVectorTy(AlignAsType)) {
3803     if (getContext().getTypeSize(AlignAsType) > 128)
3804       return CharUnits::fromQuantity(32);
3805 
3806     return CharUnits::fromQuantity(16);
3807   } else if (AlignAsType) {
3808     return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8);
3809   }
3810 
3811   // Otherwise, we only need alignment for any aggregate type that
3812   // has an alignment requirement of >= 16 bytes.
3813   if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) {
3814     if (HasQPX && getContext().getTypeAlign(Ty) >= 256)
3815       return CharUnits::fromQuantity(32);
3816     return CharUnits::fromQuantity(16);
3817   }
3818 
3819   return CharUnits::fromQuantity(8);
3820 }
3821 
3822 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous
3823 /// aggregate.  Base is set to the base element type, and Members is set
3824 /// to the number of base elements.
3825 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base,
3826                                      uint64_t &Members) const {
3827   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
3828     uint64_t NElements = AT->getSize().getZExtValue();
3829     if (NElements == 0)
3830       return false;
3831     if (!isHomogeneousAggregate(AT->getElementType(), Base, Members))
3832       return false;
3833     Members *= NElements;
3834   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
3835     const RecordDecl *RD = RT->getDecl();
3836     if (RD->hasFlexibleArrayMember())
3837       return false;
3838 
3839     Members = 0;
3840 
3841     // If this is a C++ record, check the bases first.
3842     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
3843       for (const auto &I : CXXRD->bases()) {
3844         // Ignore empty records.
3845         if (isEmptyRecord(getContext(), I.getType(), true))
3846           continue;
3847 
3848         uint64_t FldMembers;
3849         if (!isHomogeneousAggregate(I.getType(), Base, FldMembers))
3850           return false;
3851 
3852         Members += FldMembers;
3853       }
3854     }
3855 
3856     for (const auto *FD : RD->fields()) {
3857       // Ignore (non-zero arrays of) empty records.
3858       QualType FT = FD->getType();
3859       while (const ConstantArrayType *AT =
3860              getContext().getAsConstantArrayType(FT)) {
3861         if (AT->getSize().getZExtValue() == 0)
3862           return false;
3863         FT = AT->getElementType();
3864       }
3865       if (isEmptyRecord(getContext(), FT, true))
3866         continue;
3867 
3868       // For compatibility with GCC, ignore empty bitfields in C++ mode.
3869       if (getContext().getLangOpts().CPlusPlus &&
3870           FD->isBitField() && FD->getBitWidthValue(getContext()) == 0)
3871         continue;
3872 
3873       uint64_t FldMembers;
3874       if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers))
3875         return false;
3876 
3877       Members = (RD->isUnion() ?
3878                  std::max(Members, FldMembers) : Members + FldMembers);
3879     }
3880 
3881     if (!Base)
3882       return false;
3883 
3884     // Ensure there is no padding.
3885     if (getContext().getTypeSize(Base) * Members !=
3886         getContext().getTypeSize(Ty))
3887       return false;
3888   } else {
3889     Members = 1;
3890     if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
3891       Members = 2;
3892       Ty = CT->getElementType();
3893     }
3894 
3895     // Most ABIs only support float, double, and some vector type widths.
3896     if (!isHomogeneousAggregateBaseType(Ty))
3897       return false;
3898 
3899     // The base type must be the same for all members.  Types that
3900     // agree in both total size and mode (float vs. vector) are
3901     // treated as being equivalent here.
3902     const Type *TyPtr = Ty.getTypePtr();
3903     if (!Base)
3904       Base = TyPtr;
3905 
3906     if (Base->isVectorType() != TyPtr->isVectorType() ||
3907         getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr))
3908       return false;
3909   }
3910   return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members);
3911 }
3912 
3913 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
3914   // Homogeneous aggregates for ELFv2 must have base types of float,
3915   // double, long double, or 128-bit vectors.
3916   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
3917     if (BT->getKind() == BuiltinType::Float ||
3918         BT->getKind() == BuiltinType::Double ||
3919         BT->getKind() == BuiltinType::LongDouble)
3920       return true;
3921   }
3922   if (const VectorType *VT = Ty->getAs<VectorType>()) {
3923     if (getContext().getTypeSize(VT) == 128 || IsQPXVectorTy(Ty))
3924       return true;
3925   }
3926   return false;
3927 }
3928 
3929 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough(
3930     const Type *Base, uint64_t Members) const {
3931   // Vector types require one register, floating point types require one
3932   // or two registers depending on their size.
3933   uint32_t NumRegs =
3934       Base->isVectorType() ? 1 : (getContext().getTypeSize(Base) + 63) / 64;
3935 
3936   // Homogeneous Aggregates may occupy at most 8 registers.
3937   return Members * NumRegs <= 8;
3938 }
3939 
3940 ABIArgInfo
3941 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const {
3942   Ty = useFirstFieldIfTransparentUnion(Ty);
3943 
3944   if (Ty->isAnyComplexType())
3945     return ABIArgInfo::getDirect();
3946 
3947   // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes)
3948   // or via reference (larger than 16 bytes).
3949   if (Ty->isVectorType() && !IsQPXVectorTy(Ty)) {
3950     uint64_t Size = getContext().getTypeSize(Ty);
3951     if (Size > 128)
3952       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
3953     else if (Size < 128) {
3954       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
3955       return ABIArgInfo::getDirect(CoerceTy);
3956     }
3957   }
3958 
3959   if (isAggregateTypeForABI(Ty)) {
3960     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
3961       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
3962 
3963     uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity();
3964     uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity();
3965 
3966     // ELFv2 homogeneous aggregates are passed as array types.
3967     const Type *Base = nullptr;
3968     uint64_t Members = 0;
3969     if (Kind == ELFv2 &&
3970         isHomogeneousAggregate(Ty, Base, Members)) {
3971       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
3972       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
3973       return ABIArgInfo::getDirect(CoerceTy);
3974     }
3975 
3976     // If an aggregate may end up fully in registers, we do not
3977     // use the ByVal method, but pass the aggregate as array.
3978     // This is usually beneficial since we avoid forcing the
3979     // back-end to store the argument to memory.
3980     uint64_t Bits = getContext().getTypeSize(Ty);
3981     if (Bits > 0 && Bits <= 8 * GPRBits) {
3982       llvm::Type *CoerceTy;
3983 
3984       // Types up to 8 bytes are passed as integer type (which will be
3985       // properly aligned in the argument save area doubleword).
3986       if (Bits <= GPRBits)
3987         CoerceTy = llvm::IntegerType::get(getVMContext(),
3988                                           llvm::RoundUpToAlignment(Bits, 8));
3989       // Larger types are passed as arrays, with the base type selected
3990       // according to the required alignment in the save area.
3991       else {
3992         uint64_t RegBits = ABIAlign * 8;
3993         uint64_t NumRegs = llvm::RoundUpToAlignment(Bits, RegBits) / RegBits;
3994         llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits);
3995         CoerceTy = llvm::ArrayType::get(RegTy, NumRegs);
3996       }
3997 
3998       return ABIArgInfo::getDirect(CoerceTy);
3999     }
4000 
4001     // All other aggregates are passed ByVal.
4002     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
4003                                    /*ByVal=*/true,
4004                                    /*Realign=*/TyAlign > ABIAlign);
4005   }
4006 
4007   return (isPromotableTypeForABI(Ty) ?
4008           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
4009 }
4010 
4011 ABIArgInfo
4012 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
4013   if (RetTy->isVoidType())
4014     return ABIArgInfo::getIgnore();
4015 
4016   if (RetTy->isAnyComplexType())
4017     return ABIArgInfo::getDirect();
4018 
4019   // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes)
4020   // or via reference (larger than 16 bytes).
4021   if (RetTy->isVectorType() && !IsQPXVectorTy(RetTy)) {
4022     uint64_t Size = getContext().getTypeSize(RetTy);
4023     if (Size > 128)
4024       return getNaturalAlignIndirect(RetTy);
4025     else if (Size < 128) {
4026       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
4027       return ABIArgInfo::getDirect(CoerceTy);
4028     }
4029   }
4030 
4031   if (isAggregateTypeForABI(RetTy)) {
4032     // ELFv2 homogeneous aggregates are returned as array types.
4033     const Type *Base = nullptr;
4034     uint64_t Members = 0;
4035     if (Kind == ELFv2 &&
4036         isHomogeneousAggregate(RetTy, Base, Members)) {
4037       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
4038       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
4039       return ABIArgInfo::getDirect(CoerceTy);
4040     }
4041 
4042     // ELFv2 small aggregates are returned in up to two registers.
4043     uint64_t Bits = getContext().getTypeSize(RetTy);
4044     if (Kind == ELFv2 && Bits <= 2 * GPRBits) {
4045       if (Bits == 0)
4046         return ABIArgInfo::getIgnore();
4047 
4048       llvm::Type *CoerceTy;
4049       if (Bits > GPRBits) {
4050         CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits);
4051         CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy, nullptr);
4052       } else
4053         CoerceTy = llvm::IntegerType::get(getVMContext(),
4054                                           llvm::RoundUpToAlignment(Bits, 8));
4055       return ABIArgInfo::getDirect(CoerceTy);
4056     }
4057 
4058     // All other aggregates are returned indirectly.
4059     return getNaturalAlignIndirect(RetTy);
4060   }
4061 
4062   return (isPromotableTypeForABI(RetTy) ?
4063           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
4064 }
4065 
4066 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine.
4067 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4068                                       QualType Ty) const {
4069   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
4070   TypeInfo.second = getParamTypeAlignment(Ty);
4071 
4072   CharUnits SlotSize = CharUnits::fromQuantity(8);
4073 
4074   // If we have a complex type and the base type is smaller than 8 bytes,
4075   // the ABI calls for the real and imaginary parts to be right-adjusted
4076   // in separate doublewords.  However, Clang expects us to produce a
4077   // pointer to a structure with the two parts packed tightly.  So generate
4078   // loads of the real and imaginary parts relative to the va_list pointer,
4079   // and store them to a temporary structure.
4080   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
4081     CharUnits EltSize = TypeInfo.first / 2;
4082     if (EltSize < SlotSize) {
4083       Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty,
4084                                             SlotSize * 2, SlotSize,
4085                                             SlotSize, /*AllowHigher*/ true);
4086 
4087       Address RealAddr = Addr;
4088       Address ImagAddr = RealAddr;
4089       if (CGF.CGM.getDataLayout().isBigEndian()) {
4090         RealAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr,
4091                                                           SlotSize - EltSize);
4092         ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr,
4093                                                       2 * SlotSize - EltSize);
4094       } else {
4095         ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize);
4096       }
4097 
4098       llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType());
4099       RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy);
4100       ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy);
4101       llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal");
4102       llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag");
4103 
4104       Address Temp = CGF.CreateMemTemp(Ty, "vacplx");
4105       CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty),
4106                              /*init*/ true);
4107       return Temp;
4108     }
4109   }
4110 
4111   // Otherwise, just use the general rule.
4112   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
4113                           TypeInfo, SlotSize, /*AllowHigher*/ true);
4114 }
4115 
4116 static bool
4117 PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4118                               llvm::Value *Address) {
4119   // This is calculated from the LLVM and GCC tables and verified
4120   // against gcc output.  AFAIK all ABIs use the same encoding.
4121 
4122   CodeGen::CGBuilderTy &Builder = CGF.Builder;
4123 
4124   llvm::IntegerType *i8 = CGF.Int8Ty;
4125   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
4126   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
4127   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
4128 
4129   // 0-31: r0-31, the 8-byte general-purpose registers
4130   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
4131 
4132   // 32-63: fp0-31, the 8-byte floating-point registers
4133   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
4134 
4135   // 64-76 are various 4-byte special-purpose registers:
4136   // 64: mq
4137   // 65: lr
4138   // 66: ctr
4139   // 67: ap
4140   // 68-75 cr0-7
4141   // 76: xer
4142   AssignToArrayRange(Builder, Address, Four8, 64, 76);
4143 
4144   // 77-108: v0-31, the 16-byte vector registers
4145   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
4146 
4147   // 109: vrsave
4148   // 110: vscr
4149   // 111: spe_acc
4150   // 112: spefscr
4151   // 113: sfp
4152   AssignToArrayRange(Builder, Address, Four8, 109, 113);
4153 
4154   return false;
4155 }
4156 
4157 bool
4158 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable(
4159   CodeGen::CodeGenFunction &CGF,
4160   llvm::Value *Address) const {
4161 
4162   return PPC64_initDwarfEHRegSizeTable(CGF, Address);
4163 }
4164 
4165 bool
4166 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4167                                                 llvm::Value *Address) const {
4168 
4169   return PPC64_initDwarfEHRegSizeTable(CGF, Address);
4170 }
4171 
4172 //===----------------------------------------------------------------------===//
4173 // AArch64 ABI Implementation
4174 //===----------------------------------------------------------------------===//
4175 
4176 namespace {
4177 
4178 class AArch64ABIInfo : public ABIInfo {
4179 public:
4180   enum ABIKind {
4181     AAPCS = 0,
4182     DarwinPCS
4183   };
4184 
4185 private:
4186   ABIKind Kind;
4187 
4188 public:
4189   AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind) : ABIInfo(CGT), Kind(Kind) {}
4190 
4191 private:
4192   ABIKind getABIKind() const { return Kind; }
4193   bool isDarwinPCS() const { return Kind == DarwinPCS; }
4194 
4195   ABIArgInfo classifyReturnType(QualType RetTy) const;
4196   ABIArgInfo classifyArgumentType(QualType RetTy) const;
4197   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
4198   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
4199                                          uint64_t Members) const override;
4200 
4201   bool isIllegalVectorType(QualType Ty) const;
4202 
4203   void computeInfo(CGFunctionInfo &FI) const override {
4204     if (!getCXXABI().classifyReturnType(FI))
4205       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4206 
4207     for (auto &it : FI.arguments())
4208       it.info = classifyArgumentType(it.type);
4209   }
4210 
4211   Address EmitDarwinVAArg(Address VAListAddr, QualType Ty,
4212                           CodeGenFunction &CGF) const;
4213 
4214   Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty,
4215                          CodeGenFunction &CGF) const;
4216 
4217   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4218                     QualType Ty) const override {
4219     return isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF)
4220                          : EmitAAPCSVAArg(VAListAddr, Ty, CGF);
4221   }
4222 };
4223 
4224 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo {
4225 public:
4226   AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind)
4227       : TargetCodeGenInfo(new AArch64ABIInfo(CGT, Kind)) {}
4228 
4229   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
4230     return "mov\tfp, fp\t\t; marker for objc_retainAutoreleaseReturnValue";
4231   }
4232 
4233   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4234     return 31;
4235   }
4236 
4237   bool doesReturnSlotInterfereWithArgs() const override { return false; }
4238 };
4239 }
4240 
4241 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const {
4242   Ty = useFirstFieldIfTransparentUnion(Ty);
4243 
4244   // Handle illegal vector types here.
4245   if (isIllegalVectorType(Ty)) {
4246     uint64_t Size = getContext().getTypeSize(Ty);
4247     if (Size <= 32) {
4248       llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext());
4249       return ABIArgInfo::getDirect(ResType);
4250     }
4251     if (Size == 64) {
4252       llvm::Type *ResType =
4253           llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2);
4254       return ABIArgInfo::getDirect(ResType);
4255     }
4256     if (Size == 128) {
4257       llvm::Type *ResType =
4258           llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4);
4259       return ABIArgInfo::getDirect(ResType);
4260     }
4261     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
4262   }
4263 
4264   if (!isAggregateTypeForABI(Ty)) {
4265     // Treat an enum type as its underlying type.
4266     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4267       Ty = EnumTy->getDecl()->getIntegerType();
4268 
4269     return (Ty->isPromotableIntegerType() && isDarwinPCS()
4270                 ? ABIArgInfo::getExtend()
4271                 : ABIArgInfo::getDirect());
4272   }
4273 
4274   // Structures with either a non-trivial destructor or a non-trivial
4275   // copy constructor are always indirect.
4276   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
4277     return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
4278                                      CGCXXABI::RAA_DirectInMemory);
4279   }
4280 
4281   // Empty records are always ignored on Darwin, but actually passed in C++ mode
4282   // elsewhere for GNU compatibility.
4283   if (isEmptyRecord(getContext(), Ty, true)) {
4284     if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS())
4285       return ABIArgInfo::getIgnore();
4286 
4287     return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
4288   }
4289 
4290   // Homogeneous Floating-point Aggregates (HFAs) need to be expanded.
4291   const Type *Base = nullptr;
4292   uint64_t Members = 0;
4293   if (isHomogeneousAggregate(Ty, Base, Members)) {
4294     return ABIArgInfo::getDirect(
4295         llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members));
4296   }
4297 
4298   // Aggregates <= 16 bytes are passed directly in registers or on the stack.
4299   uint64_t Size = getContext().getTypeSize(Ty);
4300   if (Size <= 128) {
4301     unsigned Alignment = getContext().getTypeAlign(Ty);
4302     Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes
4303 
4304     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
4305     // For aggregates with 16-byte alignment, we use i128.
4306     if (Alignment < 128 && Size == 128) {
4307       llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
4308       return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
4309     }
4310     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
4311   }
4312 
4313   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
4314 }
4315 
4316 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy) const {
4317   if (RetTy->isVoidType())
4318     return ABIArgInfo::getIgnore();
4319 
4320   // Large vector types should be returned via memory.
4321   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
4322     return getNaturalAlignIndirect(RetTy);
4323 
4324   if (!isAggregateTypeForABI(RetTy)) {
4325     // Treat an enum type as its underlying type.
4326     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
4327       RetTy = EnumTy->getDecl()->getIntegerType();
4328 
4329     return (RetTy->isPromotableIntegerType() && isDarwinPCS()
4330                 ? ABIArgInfo::getExtend()
4331                 : ABIArgInfo::getDirect());
4332   }
4333 
4334   if (isEmptyRecord(getContext(), RetTy, true))
4335     return ABIArgInfo::getIgnore();
4336 
4337   const Type *Base = nullptr;
4338   uint64_t Members = 0;
4339   if (isHomogeneousAggregate(RetTy, Base, Members))
4340     // Homogeneous Floating-point Aggregates (HFAs) are returned directly.
4341     return ABIArgInfo::getDirect();
4342 
4343   // Aggregates <= 16 bytes are returned directly in registers or on the stack.
4344   uint64_t Size = getContext().getTypeSize(RetTy);
4345   if (Size <= 128) {
4346     unsigned Alignment = getContext().getTypeAlign(RetTy);
4347     Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes
4348 
4349     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
4350     // For aggregates with 16-byte alignment, we use i128.
4351     if (Alignment < 128 && Size == 128) {
4352       llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
4353       return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
4354     }
4355     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
4356   }
4357 
4358   return getNaturalAlignIndirect(RetTy);
4359 }
4360 
4361 /// isIllegalVectorType - check whether the vector type is legal for AArch64.
4362 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const {
4363   if (const VectorType *VT = Ty->getAs<VectorType>()) {
4364     // Check whether VT is legal.
4365     unsigned NumElements = VT->getNumElements();
4366     uint64_t Size = getContext().getTypeSize(VT);
4367     // NumElements should be power of 2 between 1 and 16.
4368     if ((NumElements & (NumElements - 1)) != 0 || NumElements > 16)
4369       return true;
4370     return Size != 64 && (Size != 128 || NumElements == 1);
4371   }
4372   return false;
4373 }
4374 
4375 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
4376   // Homogeneous aggregates for AAPCS64 must have base types of a floating
4377   // point type or a short-vector type. This is the same as the 32-bit ABI,
4378   // but with the difference that any floating-point type is allowed,
4379   // including __fp16.
4380   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
4381     if (BT->isFloatingPoint())
4382       return true;
4383   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
4384     unsigned VecSize = getContext().getTypeSize(VT);
4385     if (VecSize == 64 || VecSize == 128)
4386       return true;
4387   }
4388   return false;
4389 }
4390 
4391 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
4392                                                        uint64_t Members) const {
4393   return Members <= 4;
4394 }
4395 
4396 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr,
4397                                             QualType Ty,
4398                                             CodeGenFunction &CGF) const {
4399   ABIArgInfo AI = classifyArgumentType(Ty);
4400   bool IsIndirect = AI.isIndirect();
4401 
4402   llvm::Type *BaseTy = CGF.ConvertType(Ty);
4403   if (IsIndirect)
4404     BaseTy = llvm::PointerType::getUnqual(BaseTy);
4405   else if (AI.getCoerceToType())
4406     BaseTy = AI.getCoerceToType();
4407 
4408   unsigned NumRegs = 1;
4409   if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) {
4410     BaseTy = ArrTy->getElementType();
4411     NumRegs = ArrTy->getNumElements();
4412   }
4413   bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy();
4414 
4415   // The AArch64 va_list type and handling is specified in the Procedure Call
4416   // Standard, section B.4:
4417   //
4418   // struct {
4419   //   void *__stack;
4420   //   void *__gr_top;
4421   //   void *__vr_top;
4422   //   int __gr_offs;
4423   //   int __vr_offs;
4424   // };
4425 
4426   llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
4427   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
4428   llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
4429   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
4430 
4431   auto TyInfo = getContext().getTypeInfoInChars(Ty);
4432   CharUnits TyAlign = TyInfo.second;
4433 
4434   Address reg_offs_p = Address::invalid();
4435   llvm::Value *reg_offs = nullptr;
4436   int reg_top_index;
4437   CharUnits reg_top_offset;
4438   int RegSize = IsIndirect ? 8 : TyInfo.first.getQuantity();
4439   if (!IsFPR) {
4440     // 3 is the field number of __gr_offs
4441     reg_offs_p =
4442         CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(24),
4443                                     "gr_offs_p");
4444     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs");
4445     reg_top_index = 1; // field number for __gr_top
4446     reg_top_offset = CharUnits::fromQuantity(8);
4447     RegSize = llvm::RoundUpToAlignment(RegSize, 8);
4448   } else {
4449     // 4 is the field number of __vr_offs.
4450     reg_offs_p =
4451         CGF.Builder.CreateStructGEP(VAListAddr, 4, CharUnits::fromQuantity(28),
4452                                     "vr_offs_p");
4453     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs");
4454     reg_top_index = 2; // field number for __vr_top
4455     reg_top_offset = CharUnits::fromQuantity(16);
4456     RegSize = 16 * NumRegs;
4457   }
4458 
4459   //=======================================
4460   // Find out where argument was passed
4461   //=======================================
4462 
4463   // If reg_offs >= 0 we're already using the stack for this type of
4464   // argument. We don't want to keep updating reg_offs (in case it overflows,
4465   // though anyone passing 2GB of arguments, each at most 16 bytes, deserves
4466   // whatever they get).
4467   llvm::Value *UsingStack = nullptr;
4468   UsingStack = CGF.Builder.CreateICmpSGE(
4469       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0));
4470 
4471   CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock);
4472 
4473   // Otherwise, at least some kind of argument could go in these registers, the
4474   // question is whether this particular type is too big.
4475   CGF.EmitBlock(MaybeRegBlock);
4476 
4477   // Integer arguments may need to correct register alignment (for example a
4478   // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we
4479   // align __gr_offs to calculate the potential address.
4480   if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) {
4481     int Align = TyAlign.getQuantity();
4482 
4483     reg_offs = CGF.Builder.CreateAdd(
4484         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1),
4485         "align_regoffs");
4486     reg_offs = CGF.Builder.CreateAnd(
4487         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align),
4488         "aligned_regoffs");
4489   }
4490 
4491   // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list.
4492   // The fact that this is done unconditionally reflects the fact that
4493   // allocating an argument to the stack also uses up all the remaining
4494   // registers of the appropriate kind.
4495   llvm::Value *NewOffset = nullptr;
4496   NewOffset = CGF.Builder.CreateAdd(
4497       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs");
4498   CGF.Builder.CreateStore(NewOffset, reg_offs_p);
4499 
4500   // Now we're in a position to decide whether this argument really was in
4501   // registers or not.
4502   llvm::Value *InRegs = nullptr;
4503   InRegs = CGF.Builder.CreateICmpSLE(
4504       NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg");
4505 
4506   CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock);
4507 
4508   //=======================================
4509   // Argument was in registers
4510   //=======================================
4511 
4512   // Now we emit the code for if the argument was originally passed in
4513   // registers. First start the appropriate block:
4514   CGF.EmitBlock(InRegBlock);
4515 
4516   llvm::Value *reg_top = nullptr;
4517   Address reg_top_p = CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index,
4518                                                   reg_top_offset, "reg_top_p");
4519   reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top");
4520   Address BaseAddr(CGF.Builder.CreateInBoundsGEP(reg_top, reg_offs),
4521                    CharUnits::fromQuantity(IsFPR ? 16 : 8));
4522   Address RegAddr = Address::invalid();
4523   llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty);
4524 
4525   if (IsIndirect) {
4526     // If it's been passed indirectly (actually a struct), whatever we find from
4527     // stored registers or on the stack will actually be a struct **.
4528     MemTy = llvm::PointerType::getUnqual(MemTy);
4529   }
4530 
4531   const Type *Base = nullptr;
4532   uint64_t NumMembers = 0;
4533   bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers);
4534   if (IsHFA && NumMembers > 1) {
4535     // Homogeneous aggregates passed in registers will have their elements split
4536     // and stored 16-bytes apart regardless of size (they're notionally in qN,
4537     // qN+1, ...). We reload and store into a temporary local variable
4538     // contiguously.
4539     assert(!IsIndirect && "Homogeneous aggregates should be passed directly");
4540     auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0));
4541     llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0));
4542     llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers);
4543     Address Tmp = CGF.CreateTempAlloca(HFATy,
4544                                        std::max(TyAlign, BaseTyInfo.second));
4545 
4546     // On big-endian platforms, the value will be right-aligned in its slot.
4547     int Offset = 0;
4548     if (CGF.CGM.getDataLayout().isBigEndian() &&
4549         BaseTyInfo.first.getQuantity() < 16)
4550       Offset = 16 - BaseTyInfo.first.getQuantity();
4551 
4552     for (unsigned i = 0; i < NumMembers; ++i) {
4553       CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset);
4554       Address LoadAddr =
4555         CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset);
4556       LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy);
4557 
4558       Address StoreAddr =
4559         CGF.Builder.CreateConstArrayGEP(Tmp, i, BaseTyInfo.first);
4560 
4561       llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr);
4562       CGF.Builder.CreateStore(Elem, StoreAddr);
4563     }
4564 
4565     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy);
4566   } else {
4567     // Otherwise the object is contiguous in memory.
4568 
4569     // It might be right-aligned in its slot.
4570     CharUnits SlotSize = BaseAddr.getAlignment();
4571     if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect &&
4572         (IsHFA || !isAggregateTypeForABI(Ty)) &&
4573         TyInfo.first < SlotSize) {
4574       CharUnits Offset = SlotSize - TyInfo.first;
4575       BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset);
4576     }
4577 
4578     RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy);
4579   }
4580 
4581   CGF.EmitBranch(ContBlock);
4582 
4583   //=======================================
4584   // Argument was on the stack
4585   //=======================================
4586   CGF.EmitBlock(OnStackBlock);
4587 
4588   Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0,
4589                                                 CharUnits::Zero(), "stack_p");
4590   llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack");
4591 
4592   // Again, stack arguments may need realignment. In this case both integer and
4593   // floating-point ones might be affected.
4594   if (!IsIndirect && TyAlign.getQuantity() > 8) {
4595     int Align = TyAlign.getQuantity();
4596 
4597     OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty);
4598 
4599     OnStackPtr = CGF.Builder.CreateAdd(
4600         OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1),
4601         "align_stack");
4602     OnStackPtr = CGF.Builder.CreateAnd(
4603         OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align),
4604         "align_stack");
4605 
4606     OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy);
4607   }
4608   Address OnStackAddr(OnStackPtr,
4609                       std::max(CharUnits::fromQuantity(8), TyAlign));
4610 
4611   // All stack slots are multiples of 8 bytes.
4612   CharUnits StackSlotSize = CharUnits::fromQuantity(8);
4613   CharUnits StackSize;
4614   if (IsIndirect)
4615     StackSize = StackSlotSize;
4616   else
4617     StackSize = TyInfo.first.RoundUpToAlignment(StackSlotSize);
4618 
4619   llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize);
4620   llvm::Value *NewStack =
4621       CGF.Builder.CreateInBoundsGEP(OnStackPtr, StackSizeC, "new_stack");
4622 
4623   // Write the new value of __stack for the next call to va_arg
4624   CGF.Builder.CreateStore(NewStack, stack_p);
4625 
4626   if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) &&
4627       TyInfo.first < StackSlotSize) {
4628     CharUnits Offset = StackSlotSize - TyInfo.first;
4629     OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset);
4630   }
4631 
4632   OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy);
4633 
4634   CGF.EmitBranch(ContBlock);
4635 
4636   //=======================================
4637   // Tidy up
4638   //=======================================
4639   CGF.EmitBlock(ContBlock);
4640 
4641   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
4642                                  OnStackAddr, OnStackBlock, "vaargs.addr");
4643 
4644   if (IsIndirect)
4645     return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"),
4646                    TyInfo.second);
4647 
4648   return ResAddr;
4649 }
4650 
4651 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty,
4652                                         CodeGenFunction &CGF) const {
4653   // The backend's lowering doesn't support va_arg for aggregates or
4654   // illegal vector types.  Lower VAArg here for these cases and use
4655   // the LLVM va_arg instruction for everything else.
4656   if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty))
4657     return Address::invalid();
4658 
4659   CharUnits SlotSize = CharUnits::fromQuantity(8);
4660 
4661   // Empty records are ignored for parameter passing purposes.
4662   if (isEmptyRecord(getContext(), Ty, true)) {
4663     Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
4664     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
4665     return Addr;
4666   }
4667 
4668   // The size of the actual thing passed, which might end up just
4669   // being a pointer for indirect types.
4670   auto TyInfo = getContext().getTypeInfoInChars(Ty);
4671 
4672   // Arguments bigger than 16 bytes which aren't homogeneous
4673   // aggregates should be passed indirectly.
4674   bool IsIndirect = false;
4675   if (TyInfo.first.getQuantity() > 16) {
4676     const Type *Base = nullptr;
4677     uint64_t Members = 0;
4678     IsIndirect = !isHomogeneousAggregate(Ty, Base, Members);
4679   }
4680 
4681   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
4682                           TyInfo, SlotSize, /*AllowHigherAlign*/ true);
4683 }
4684 
4685 //===----------------------------------------------------------------------===//
4686 // ARM ABI Implementation
4687 //===----------------------------------------------------------------------===//
4688 
4689 namespace {
4690 
4691 class ARMABIInfo : public ABIInfo {
4692 public:
4693   enum ABIKind {
4694     APCS = 0,
4695     AAPCS = 1,
4696     AAPCS_VFP
4697   };
4698 
4699 private:
4700   ABIKind Kind;
4701 
4702 public:
4703   ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) : ABIInfo(CGT), Kind(_Kind) {
4704     setCCs();
4705   }
4706 
4707   bool isEABI() const {
4708     switch (getTarget().getTriple().getEnvironment()) {
4709     case llvm::Triple::Android:
4710     case llvm::Triple::EABI:
4711     case llvm::Triple::EABIHF:
4712     case llvm::Triple::GNUEABI:
4713     case llvm::Triple::GNUEABIHF:
4714       return true;
4715     default:
4716       return false;
4717     }
4718   }
4719 
4720   bool isEABIHF() const {
4721     switch (getTarget().getTriple().getEnvironment()) {
4722     case llvm::Triple::EABIHF:
4723     case llvm::Triple::GNUEABIHF:
4724       return true;
4725     default:
4726       return false;
4727     }
4728   }
4729 
4730   ABIKind getABIKind() const { return Kind; }
4731 
4732 private:
4733   ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic) const;
4734   ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic) const;
4735   bool isIllegalVectorType(QualType Ty) const;
4736 
4737   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
4738   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
4739                                          uint64_t Members) const override;
4740 
4741   void computeInfo(CGFunctionInfo &FI) const override;
4742 
4743   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4744                     QualType Ty) const override;
4745 
4746   llvm::CallingConv::ID getLLVMDefaultCC() const;
4747   llvm::CallingConv::ID getABIDefaultCC() const;
4748   void setCCs();
4749 };
4750 
4751 class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
4752 public:
4753   ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
4754     :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {}
4755 
4756   const ARMABIInfo &getABIInfo() const {
4757     return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo());
4758   }
4759 
4760   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4761     return 13;
4762   }
4763 
4764   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
4765     return "mov\tr7, r7\t\t@ marker for objc_retainAutoreleaseReturnValue";
4766   }
4767 
4768   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4769                                llvm::Value *Address) const override {
4770     llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
4771 
4772     // 0-15 are the 16 integer registers.
4773     AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15);
4774     return false;
4775   }
4776 
4777   unsigned getSizeOfUnwindException() const override {
4778     if (getABIInfo().isEABI()) return 88;
4779     return TargetCodeGenInfo::getSizeOfUnwindException();
4780   }
4781 
4782   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
4783                            CodeGen::CodeGenModule &CGM) const override {
4784     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
4785     if (!FD)
4786       return;
4787 
4788     const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>();
4789     if (!Attr)
4790       return;
4791 
4792     const char *Kind;
4793     switch (Attr->getInterrupt()) {
4794     case ARMInterruptAttr::Generic: Kind = ""; break;
4795     case ARMInterruptAttr::IRQ:     Kind = "IRQ"; break;
4796     case ARMInterruptAttr::FIQ:     Kind = "FIQ"; break;
4797     case ARMInterruptAttr::SWI:     Kind = "SWI"; break;
4798     case ARMInterruptAttr::ABORT:   Kind = "ABORT"; break;
4799     case ARMInterruptAttr::UNDEF:   Kind = "UNDEF"; break;
4800     }
4801 
4802     llvm::Function *Fn = cast<llvm::Function>(GV);
4803 
4804     Fn->addFnAttr("interrupt", Kind);
4805 
4806     if (cast<ARMABIInfo>(getABIInfo()).getABIKind() == ARMABIInfo::APCS)
4807       return;
4808 
4809     // AAPCS guarantees that sp will be 8-byte aligned on any public interface,
4810     // however this is not necessarily true on taking any interrupt. Instruct
4811     // the backend to perform a realignment as part of the function prologue.
4812     llvm::AttrBuilder B;
4813     B.addStackAlignmentAttr(8);
4814     Fn->addAttributes(llvm::AttributeSet::FunctionIndex,
4815                       llvm::AttributeSet::get(CGM.getLLVMContext(),
4816                                               llvm::AttributeSet::FunctionIndex,
4817                                               B));
4818   }
4819 };
4820 
4821 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo {
4822   void addStackProbeSizeTargetAttribute(const Decl *D, llvm::GlobalValue *GV,
4823                                         CodeGen::CodeGenModule &CGM) const;
4824 
4825 public:
4826   WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
4827       : ARMTargetCodeGenInfo(CGT, K) {}
4828 
4829   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
4830                            CodeGen::CodeGenModule &CGM) const override;
4831 };
4832 
4833 void WindowsARMTargetCodeGenInfo::addStackProbeSizeTargetAttribute(
4834     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
4835   if (!isa<FunctionDecl>(D))
4836     return;
4837   if (CGM.getCodeGenOpts().StackProbeSize == 4096)
4838     return;
4839 
4840   llvm::Function *F = cast<llvm::Function>(GV);
4841   F->addFnAttr("stack-probe-size",
4842                llvm::utostr(CGM.getCodeGenOpts().StackProbeSize));
4843 }
4844 
4845 void WindowsARMTargetCodeGenInfo::setTargetAttributes(
4846     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
4847   ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
4848   addStackProbeSizeTargetAttribute(D, GV, CGM);
4849 }
4850 }
4851 
4852 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
4853   if (!getCXXABI().classifyReturnType(FI))
4854     FI.getReturnInfo() =
4855         classifyReturnType(FI.getReturnType(), FI.isVariadic());
4856 
4857   for (auto &I : FI.arguments())
4858     I.info = classifyArgumentType(I.type, FI.isVariadic());
4859 
4860   // Always honor user-specified calling convention.
4861   if (FI.getCallingConvention() != llvm::CallingConv::C)
4862     return;
4863 
4864   llvm::CallingConv::ID cc = getRuntimeCC();
4865   if (cc != llvm::CallingConv::C)
4866     FI.setEffectiveCallingConvention(cc);
4867 }
4868 
4869 /// Return the default calling convention that LLVM will use.
4870 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const {
4871   // The default calling convention that LLVM will infer.
4872   if (isEABIHF())
4873     return llvm::CallingConv::ARM_AAPCS_VFP;
4874   else if (isEABI())
4875     return llvm::CallingConv::ARM_AAPCS;
4876   else
4877     return llvm::CallingConv::ARM_APCS;
4878 }
4879 
4880 /// Return the calling convention that our ABI would like us to use
4881 /// as the C calling convention.
4882 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const {
4883   switch (getABIKind()) {
4884   case APCS: return llvm::CallingConv::ARM_APCS;
4885   case AAPCS: return llvm::CallingConv::ARM_AAPCS;
4886   case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
4887   }
4888   llvm_unreachable("bad ABI kind");
4889 }
4890 
4891 void ARMABIInfo::setCCs() {
4892   assert(getRuntimeCC() == llvm::CallingConv::C);
4893 
4894   // Don't muddy up the IR with a ton of explicit annotations if
4895   // they'd just match what LLVM will infer from the triple.
4896   llvm::CallingConv::ID abiCC = getABIDefaultCC();
4897   if (abiCC != getLLVMDefaultCC())
4898     RuntimeCC = abiCC;
4899 
4900   BuiltinCC = (getABIKind() == APCS ?
4901                llvm::CallingConv::ARM_APCS : llvm::CallingConv::ARM_AAPCS);
4902 }
4903 
4904 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty,
4905                                             bool isVariadic) const {
4906   // 6.1.2.1 The following argument types are VFP CPRCs:
4907   //   A single-precision floating-point type (including promoted
4908   //   half-precision types); A double-precision floating-point type;
4909   //   A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate
4910   //   with a Base Type of a single- or double-precision floating-point type,
4911   //   64-bit containerized vectors or 128-bit containerized vectors with one
4912   //   to four Elements.
4913   bool IsEffectivelyAAPCS_VFP = getABIKind() == AAPCS_VFP && !isVariadic;
4914 
4915   Ty = useFirstFieldIfTransparentUnion(Ty);
4916 
4917   // Handle illegal vector types here.
4918   if (isIllegalVectorType(Ty)) {
4919     uint64_t Size = getContext().getTypeSize(Ty);
4920     if (Size <= 32) {
4921       llvm::Type *ResType =
4922           llvm::Type::getInt32Ty(getVMContext());
4923       return ABIArgInfo::getDirect(ResType);
4924     }
4925     if (Size == 64) {
4926       llvm::Type *ResType = llvm::VectorType::get(
4927           llvm::Type::getInt32Ty(getVMContext()), 2);
4928       return ABIArgInfo::getDirect(ResType);
4929     }
4930     if (Size == 128) {
4931       llvm::Type *ResType = llvm::VectorType::get(
4932           llvm::Type::getInt32Ty(getVMContext()), 4);
4933       return ABIArgInfo::getDirect(ResType);
4934     }
4935     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
4936   }
4937 
4938   // __fp16 gets passed as if it were an int or float, but with the top 16 bits
4939   // unspecified. This is not done for OpenCL as it handles the half type
4940   // natively, and does not need to interwork with AAPCS code.
4941   if (Ty->isHalfType() && !getContext().getLangOpts().OpenCL) {
4942     llvm::Type *ResType = IsEffectivelyAAPCS_VFP ?
4943       llvm::Type::getFloatTy(getVMContext()) :
4944       llvm::Type::getInt32Ty(getVMContext());
4945     return ABIArgInfo::getDirect(ResType);
4946   }
4947 
4948   if (!isAggregateTypeForABI(Ty)) {
4949     // Treat an enum type as its underlying type.
4950     if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
4951       Ty = EnumTy->getDecl()->getIntegerType();
4952     }
4953 
4954     return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend()
4955                                           : ABIArgInfo::getDirect());
4956   }
4957 
4958   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
4959     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
4960   }
4961 
4962   // Ignore empty records.
4963   if (isEmptyRecord(getContext(), Ty, true))
4964     return ABIArgInfo::getIgnore();
4965 
4966   if (IsEffectivelyAAPCS_VFP) {
4967     // Homogeneous Aggregates need to be expanded when we can fit the aggregate
4968     // into VFP registers.
4969     const Type *Base = nullptr;
4970     uint64_t Members = 0;
4971     if (isHomogeneousAggregate(Ty, Base, Members)) {
4972       assert(Base && "Base class should be set for homogeneous aggregate");
4973       // Base can be a floating-point or a vector.
4974       return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
4975     }
4976   }
4977 
4978   // Support byval for ARM.
4979   // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at
4980   // most 8-byte. We realign the indirect argument if type alignment is bigger
4981   // than ABI alignment.
4982   uint64_t ABIAlign = 4;
4983   uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8;
4984   if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
4985        getABIKind() == ARMABIInfo::AAPCS)
4986     ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
4987 
4988   if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) {
4989     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
4990                                    /*ByVal=*/true,
4991                                    /*Realign=*/TyAlign > ABIAlign);
4992   }
4993 
4994   // Otherwise, pass by coercing to a structure of the appropriate size.
4995   llvm::Type* ElemTy;
4996   unsigned SizeRegs;
4997   // FIXME: Try to match the types of the arguments more accurately where
4998   // we can.
4999   if (getContext().getTypeAlign(Ty) <= 32) {
5000     ElemTy = llvm::Type::getInt32Ty(getVMContext());
5001     SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
5002   } else {
5003     ElemTy = llvm::Type::getInt64Ty(getVMContext());
5004     SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
5005   }
5006 
5007   return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs));
5008 }
5009 
5010 static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
5011                               llvm::LLVMContext &VMContext) {
5012   // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
5013   // is called integer-like if its size is less than or equal to one word, and
5014   // the offset of each of its addressable sub-fields is zero.
5015 
5016   uint64_t Size = Context.getTypeSize(Ty);
5017 
5018   // Check that the type fits in a word.
5019   if (Size > 32)
5020     return false;
5021 
5022   // FIXME: Handle vector types!
5023   if (Ty->isVectorType())
5024     return false;
5025 
5026   // Float types are never treated as "integer like".
5027   if (Ty->isRealFloatingType())
5028     return false;
5029 
5030   // If this is a builtin or pointer type then it is ok.
5031   if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
5032     return true;
5033 
5034   // Small complex integer types are "integer like".
5035   if (const ComplexType *CT = Ty->getAs<ComplexType>())
5036     return isIntegerLikeType(CT->getElementType(), Context, VMContext);
5037 
5038   // Single element and zero sized arrays should be allowed, by the definition
5039   // above, but they are not.
5040 
5041   // Otherwise, it must be a record type.
5042   const RecordType *RT = Ty->getAs<RecordType>();
5043   if (!RT) return false;
5044 
5045   // Ignore records with flexible arrays.
5046   const RecordDecl *RD = RT->getDecl();
5047   if (RD->hasFlexibleArrayMember())
5048     return false;
5049 
5050   // Check that all sub-fields are at offset 0, and are themselves "integer
5051   // like".
5052   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
5053 
5054   bool HadField = false;
5055   unsigned idx = 0;
5056   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
5057        i != e; ++i, ++idx) {
5058     const FieldDecl *FD = *i;
5059 
5060     // Bit-fields are not addressable, we only need to verify they are "integer
5061     // like". We still have to disallow a subsequent non-bitfield, for example:
5062     //   struct { int : 0; int x }
5063     // is non-integer like according to gcc.
5064     if (FD->isBitField()) {
5065       if (!RD->isUnion())
5066         HadField = true;
5067 
5068       if (!isIntegerLikeType(FD->getType(), Context, VMContext))
5069         return false;
5070 
5071       continue;
5072     }
5073 
5074     // Check if this field is at offset 0.
5075     if (Layout.getFieldOffset(idx) != 0)
5076       return false;
5077 
5078     if (!isIntegerLikeType(FD->getType(), Context, VMContext))
5079       return false;
5080 
5081     // Only allow at most one field in a structure. This doesn't match the
5082     // wording above, but follows gcc in situations with a field following an
5083     // empty structure.
5084     if (!RD->isUnion()) {
5085       if (HadField)
5086         return false;
5087 
5088       HadField = true;
5089     }
5090   }
5091 
5092   return true;
5093 }
5094 
5095 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy,
5096                                           bool isVariadic) const {
5097   bool IsEffectivelyAAPCS_VFP = getABIKind() == AAPCS_VFP && !isVariadic;
5098 
5099   if (RetTy->isVoidType())
5100     return ABIArgInfo::getIgnore();
5101 
5102   // Large vector types should be returned via memory.
5103   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) {
5104     return getNaturalAlignIndirect(RetTy);
5105   }
5106 
5107   // __fp16 gets returned as if it were an int or float, but with the top 16
5108   // bits unspecified. This is not done for OpenCL as it handles the half type
5109   // natively, and does not need to interwork with AAPCS code.
5110   if (RetTy->isHalfType() && !getContext().getLangOpts().OpenCL) {
5111     llvm::Type *ResType = IsEffectivelyAAPCS_VFP ?
5112       llvm::Type::getFloatTy(getVMContext()) :
5113       llvm::Type::getInt32Ty(getVMContext());
5114     return ABIArgInfo::getDirect(ResType);
5115   }
5116 
5117   if (!isAggregateTypeForABI(RetTy)) {
5118     // Treat an enum type as its underlying type.
5119     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5120       RetTy = EnumTy->getDecl()->getIntegerType();
5121 
5122     return RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend()
5123                                             : ABIArgInfo::getDirect();
5124   }
5125 
5126   // Are we following APCS?
5127   if (getABIKind() == APCS) {
5128     if (isEmptyRecord(getContext(), RetTy, false))
5129       return ABIArgInfo::getIgnore();
5130 
5131     // Complex types are all returned as packed integers.
5132     //
5133     // FIXME: Consider using 2 x vector types if the back end handles them
5134     // correctly.
5135     if (RetTy->isAnyComplexType())
5136       return ABIArgInfo::getDirect(llvm::IntegerType::get(
5137           getVMContext(), getContext().getTypeSize(RetTy)));
5138 
5139     // Integer like structures are returned in r0.
5140     if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
5141       // Return in the smallest viable integer type.
5142       uint64_t Size = getContext().getTypeSize(RetTy);
5143       if (Size <= 8)
5144         return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
5145       if (Size <= 16)
5146         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
5147       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
5148     }
5149 
5150     // Otherwise return in memory.
5151     return getNaturalAlignIndirect(RetTy);
5152   }
5153 
5154   // Otherwise this is an AAPCS variant.
5155 
5156   if (isEmptyRecord(getContext(), RetTy, true))
5157     return ABIArgInfo::getIgnore();
5158 
5159   // Check for homogeneous aggregates with AAPCS-VFP.
5160   if (IsEffectivelyAAPCS_VFP) {
5161     const Type *Base = nullptr;
5162     uint64_t Members;
5163     if (isHomogeneousAggregate(RetTy, Base, Members)) {
5164       assert(Base && "Base class should be set for homogeneous aggregate");
5165       // Homogeneous Aggregates are returned directly.
5166       return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
5167     }
5168   }
5169 
5170   // Aggregates <= 4 bytes are returned in r0; other aggregates
5171   // are returned indirectly.
5172   uint64_t Size = getContext().getTypeSize(RetTy);
5173   if (Size <= 32) {
5174     if (getDataLayout().isBigEndian())
5175       // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4)
5176       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
5177 
5178     // Return in the smallest viable integer type.
5179     if (Size <= 8)
5180       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
5181     if (Size <= 16)
5182       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
5183     return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
5184   }
5185 
5186   return getNaturalAlignIndirect(RetTy);
5187 }
5188 
5189 /// isIllegalVector - check whether Ty is an illegal vector type.
5190 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const {
5191   if (const VectorType *VT = Ty->getAs<VectorType>()) {
5192     // Check whether VT is legal.
5193     unsigned NumElements = VT->getNumElements();
5194     uint64_t Size = getContext().getTypeSize(VT);
5195     // NumElements should be power of 2.
5196     if ((NumElements & (NumElements - 1)) != 0)
5197       return true;
5198     // Size should be greater than 32 bits.
5199     return Size <= 32;
5200   }
5201   return false;
5202 }
5203 
5204 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
5205   // Homogeneous aggregates for AAPCS-VFP must have base types of float,
5206   // double, or 64-bit or 128-bit vectors.
5207   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
5208     if (BT->getKind() == BuiltinType::Float ||
5209         BT->getKind() == BuiltinType::Double ||
5210         BT->getKind() == BuiltinType::LongDouble)
5211       return true;
5212   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
5213     unsigned VecSize = getContext().getTypeSize(VT);
5214     if (VecSize == 64 || VecSize == 128)
5215       return true;
5216   }
5217   return false;
5218 }
5219 
5220 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
5221                                                    uint64_t Members) const {
5222   return Members <= 4;
5223 }
5224 
5225 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5226                               QualType Ty) const {
5227   CharUnits SlotSize = CharUnits::fromQuantity(4);
5228 
5229   // Empty records are ignored for parameter passing purposes.
5230   if (isEmptyRecord(getContext(), Ty, true)) {
5231     Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize);
5232     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
5233     return Addr;
5234   }
5235 
5236   auto TyInfo = getContext().getTypeInfoInChars(Ty);
5237   CharUnits TyAlignForABI = TyInfo.second;
5238 
5239   // Use indirect if size of the illegal vector is bigger than 16 bytes.
5240   bool IsIndirect = false;
5241   if (TyInfo.first > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) {
5242     IsIndirect = true;
5243 
5244   // Otherwise, bound the type's ABI alignment.
5245   // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for
5246   // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte.
5247   // Our callers should be prepared to handle an under-aligned address.
5248   } else if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
5249              getABIKind() == ARMABIInfo::AAPCS) {
5250     TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
5251     TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8));
5252   } else {
5253     TyAlignForABI = CharUnits::fromQuantity(4);
5254   }
5255   TyInfo.second = TyAlignForABI;
5256 
5257   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo,
5258                           SlotSize, /*AllowHigherAlign*/ true);
5259 }
5260 
5261 //===----------------------------------------------------------------------===//
5262 // NVPTX ABI Implementation
5263 //===----------------------------------------------------------------------===//
5264 
5265 namespace {
5266 
5267 class NVPTXABIInfo : public ABIInfo {
5268 public:
5269   NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
5270 
5271   ABIArgInfo classifyReturnType(QualType RetTy) const;
5272   ABIArgInfo classifyArgumentType(QualType Ty) const;
5273 
5274   void computeInfo(CGFunctionInfo &FI) const override;
5275   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5276                     QualType Ty) const override;
5277 };
5278 
5279 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo {
5280 public:
5281   NVPTXTargetCodeGenInfo(CodeGenTypes &CGT)
5282     : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {}
5283 
5284   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5285                            CodeGen::CodeGenModule &M) const override;
5286 private:
5287   // Adds a NamedMDNode with F, Name, and Operand as operands, and adds the
5288   // resulting MDNode to the nvvm.annotations MDNode.
5289   static void addNVVMMetadata(llvm::Function *F, StringRef Name, int Operand);
5290 };
5291 
5292 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const {
5293   if (RetTy->isVoidType())
5294     return ABIArgInfo::getIgnore();
5295 
5296   // note: this is different from default ABI
5297   if (!RetTy->isScalarType())
5298     return ABIArgInfo::getDirect();
5299 
5300   // Treat an enum type as its underlying type.
5301   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5302     RetTy = EnumTy->getDecl()->getIntegerType();
5303 
5304   return (RetTy->isPromotableIntegerType() ?
5305           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5306 }
5307 
5308 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const {
5309   // Treat an enum type as its underlying type.
5310   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5311     Ty = EnumTy->getDecl()->getIntegerType();
5312 
5313   // Return aggregates type as indirect by value
5314   if (isAggregateTypeForABI(Ty))
5315     return getNaturalAlignIndirect(Ty, /* byval */ true);
5316 
5317   return (Ty->isPromotableIntegerType() ?
5318           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5319 }
5320 
5321 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
5322   if (!getCXXABI().classifyReturnType(FI))
5323     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
5324   for (auto &I : FI.arguments())
5325     I.info = classifyArgumentType(I.type);
5326 
5327   // Always honor user-specified calling convention.
5328   if (FI.getCallingConvention() != llvm::CallingConv::C)
5329     return;
5330 
5331   FI.setEffectiveCallingConvention(getRuntimeCC());
5332 }
5333 
5334 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5335                                 QualType Ty) const {
5336   llvm_unreachable("NVPTX does not support varargs");
5337 }
5338 
5339 void NVPTXTargetCodeGenInfo::
5340 setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5341                     CodeGen::CodeGenModule &M) const{
5342   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
5343   if (!FD) return;
5344 
5345   llvm::Function *F = cast<llvm::Function>(GV);
5346 
5347   // Perform special handling in OpenCL mode
5348   if (M.getLangOpts().OpenCL) {
5349     // Use OpenCL function attributes to check for kernel functions
5350     // By default, all functions are device functions
5351     if (FD->hasAttr<OpenCLKernelAttr>()) {
5352       // OpenCL __kernel functions get kernel metadata
5353       // Create !{<func-ref>, metadata !"kernel", i32 1} node
5354       addNVVMMetadata(F, "kernel", 1);
5355       // And kernel functions are not subject to inlining
5356       F->addFnAttr(llvm::Attribute::NoInline);
5357     }
5358   }
5359 
5360   // Perform special handling in CUDA mode.
5361   if (M.getLangOpts().CUDA) {
5362     // CUDA __global__ functions get a kernel metadata entry.  Since
5363     // __global__ functions cannot be called from the device, we do not
5364     // need to set the noinline attribute.
5365     if (FD->hasAttr<CUDAGlobalAttr>()) {
5366       // Create !{<func-ref>, metadata !"kernel", i32 1} node
5367       addNVVMMetadata(F, "kernel", 1);
5368     }
5369     if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) {
5370       // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node
5371       llvm::APSInt MaxThreads(32);
5372       MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext());
5373       if (MaxThreads > 0)
5374         addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue());
5375 
5376       // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was
5377       // not specified in __launch_bounds__ or if the user specified a 0 value,
5378       // we don't have to add a PTX directive.
5379       if (Attr->getMinBlocks()) {
5380         llvm::APSInt MinBlocks(32);
5381         MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext());
5382         if (MinBlocks > 0)
5383           // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node
5384           addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue());
5385       }
5386     }
5387   }
5388 }
5389 
5390 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::Function *F, StringRef Name,
5391                                              int Operand) {
5392   llvm::Module *M = F->getParent();
5393   llvm::LLVMContext &Ctx = M->getContext();
5394 
5395   // Get "nvvm.annotations" metadata node
5396   llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations");
5397 
5398   llvm::Metadata *MDVals[] = {
5399       llvm::ConstantAsMetadata::get(F), llvm::MDString::get(Ctx, Name),
5400       llvm::ConstantAsMetadata::get(
5401           llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))};
5402   // Append metadata to nvvm.annotations
5403   MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
5404 }
5405 }
5406 
5407 //===----------------------------------------------------------------------===//
5408 // SystemZ ABI Implementation
5409 //===----------------------------------------------------------------------===//
5410 
5411 namespace {
5412 
5413 class SystemZABIInfo : public ABIInfo {
5414   bool HasVector;
5415 
5416 public:
5417   SystemZABIInfo(CodeGenTypes &CGT, bool HV)
5418     : ABIInfo(CGT), HasVector(HV) {}
5419 
5420   bool isPromotableIntegerType(QualType Ty) const;
5421   bool isCompoundType(QualType Ty) const;
5422   bool isVectorArgumentType(QualType Ty) const;
5423   bool isFPArgumentType(QualType Ty) const;
5424   QualType GetSingleElementType(QualType Ty) const;
5425 
5426   ABIArgInfo classifyReturnType(QualType RetTy) const;
5427   ABIArgInfo classifyArgumentType(QualType ArgTy) const;
5428 
5429   void computeInfo(CGFunctionInfo &FI) const override {
5430     if (!getCXXABI().classifyReturnType(FI))
5431       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
5432     for (auto &I : FI.arguments())
5433       I.info = classifyArgumentType(I.type);
5434   }
5435 
5436   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5437                     QualType Ty) const override;
5438 };
5439 
5440 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
5441 public:
5442   SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector)
5443     : TargetCodeGenInfo(new SystemZABIInfo(CGT, HasVector)) {}
5444 };
5445 
5446 }
5447 
5448 bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const {
5449   // Treat an enum type as its underlying type.
5450   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5451     Ty = EnumTy->getDecl()->getIntegerType();
5452 
5453   // Promotable integer types are required to be promoted by the ABI.
5454   if (Ty->isPromotableIntegerType())
5455     return true;
5456 
5457   // 32-bit values must also be promoted.
5458   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
5459     switch (BT->getKind()) {
5460     case BuiltinType::Int:
5461     case BuiltinType::UInt:
5462       return true;
5463     default:
5464       return false;
5465     }
5466   return false;
5467 }
5468 
5469 bool SystemZABIInfo::isCompoundType(QualType Ty) const {
5470   return (Ty->isAnyComplexType() ||
5471           Ty->isVectorType() ||
5472           isAggregateTypeForABI(Ty));
5473 }
5474 
5475 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const {
5476   return (HasVector &&
5477           Ty->isVectorType() &&
5478           getContext().getTypeSize(Ty) <= 128);
5479 }
5480 
5481 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const {
5482   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
5483     switch (BT->getKind()) {
5484     case BuiltinType::Float:
5485     case BuiltinType::Double:
5486       return true;
5487     default:
5488       return false;
5489     }
5490 
5491   return false;
5492 }
5493 
5494 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const {
5495   if (const RecordType *RT = Ty->getAsStructureType()) {
5496     const RecordDecl *RD = RT->getDecl();
5497     QualType Found;
5498 
5499     // If this is a C++ record, check the bases first.
5500     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
5501       for (const auto &I : CXXRD->bases()) {
5502         QualType Base = I.getType();
5503 
5504         // Empty bases don't affect things either way.
5505         if (isEmptyRecord(getContext(), Base, true))
5506           continue;
5507 
5508         if (!Found.isNull())
5509           return Ty;
5510         Found = GetSingleElementType(Base);
5511       }
5512 
5513     // Check the fields.
5514     for (const auto *FD : RD->fields()) {
5515       // For compatibility with GCC, ignore empty bitfields in C++ mode.
5516       // Unlike isSingleElementStruct(), empty structure and array fields
5517       // do count.  So do anonymous bitfields that aren't zero-sized.
5518       if (getContext().getLangOpts().CPlusPlus &&
5519           FD->isBitField() && FD->getBitWidthValue(getContext()) == 0)
5520         continue;
5521 
5522       // Unlike isSingleElementStruct(), arrays do not count.
5523       // Nested structures still do though.
5524       if (!Found.isNull())
5525         return Ty;
5526       Found = GetSingleElementType(FD->getType());
5527     }
5528 
5529     // Unlike isSingleElementStruct(), trailing padding is allowed.
5530     // An 8-byte aligned struct s { float f; } is passed as a double.
5531     if (!Found.isNull())
5532       return Found;
5533   }
5534 
5535   return Ty;
5536 }
5537 
5538 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5539                                   QualType Ty) const {
5540   // Assume that va_list type is correct; should be pointer to LLVM type:
5541   // struct {
5542   //   i64 __gpr;
5543   //   i64 __fpr;
5544   //   i8 *__overflow_arg_area;
5545   //   i8 *__reg_save_area;
5546   // };
5547 
5548   // Every non-vector argument occupies 8 bytes and is passed by preference
5549   // in either GPRs or FPRs.  Vector arguments occupy 8 or 16 bytes and are
5550   // always passed on the stack.
5551   Ty = getContext().getCanonicalType(Ty);
5552   auto TyInfo = getContext().getTypeInfoInChars(Ty);
5553   llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty);
5554   llvm::Type *DirectTy = ArgTy;
5555   ABIArgInfo AI = classifyArgumentType(Ty);
5556   bool IsIndirect = AI.isIndirect();
5557   bool InFPRs = false;
5558   bool IsVector = false;
5559   CharUnits UnpaddedSize;
5560   CharUnits DirectAlign;
5561   if (IsIndirect) {
5562     DirectTy = llvm::PointerType::getUnqual(DirectTy);
5563     UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8);
5564   } else {
5565     if (AI.getCoerceToType())
5566       ArgTy = AI.getCoerceToType();
5567     InFPRs = ArgTy->isFloatTy() || ArgTy->isDoubleTy();
5568     IsVector = ArgTy->isVectorTy();
5569     UnpaddedSize = TyInfo.first;
5570     DirectAlign = TyInfo.second;
5571   }
5572   CharUnits PaddedSize = CharUnits::fromQuantity(8);
5573   if (IsVector && UnpaddedSize > PaddedSize)
5574     PaddedSize = CharUnits::fromQuantity(16);
5575   assert((UnpaddedSize <= PaddedSize) && "Invalid argument size.");
5576 
5577   CharUnits Padding = (PaddedSize - UnpaddedSize);
5578 
5579   llvm::Type *IndexTy = CGF.Int64Ty;
5580   llvm::Value *PaddedSizeV =
5581     llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity());
5582 
5583   if (IsVector) {
5584     // Work out the address of a vector argument on the stack.
5585     // Vector arguments are always passed in the high bits of a
5586     // single (8 byte) or double (16 byte) stack slot.
5587     Address OverflowArgAreaPtr =
5588       CGF.Builder.CreateStructGEP(VAListAddr, 2, CharUnits::fromQuantity(16),
5589                                   "overflow_arg_area_ptr");
5590     Address OverflowArgArea =
5591       Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
5592               TyInfo.second);
5593     Address MemAddr =
5594       CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr");
5595 
5596     // Update overflow_arg_area_ptr pointer
5597     llvm::Value *NewOverflowArgArea =
5598       CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV,
5599                             "overflow_arg_area");
5600     CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
5601 
5602     return MemAddr;
5603   }
5604 
5605   assert(PaddedSize.getQuantity() == 8);
5606 
5607   unsigned MaxRegs, RegCountField, RegSaveIndex;
5608   CharUnits RegPadding;
5609   if (InFPRs) {
5610     MaxRegs = 4; // Maximum of 4 FPR arguments
5611     RegCountField = 1; // __fpr
5612     RegSaveIndex = 16; // save offset for f0
5613     RegPadding = CharUnits(); // floats are passed in the high bits of an FPR
5614   } else {
5615     MaxRegs = 5; // Maximum of 5 GPR arguments
5616     RegCountField = 0; // __gpr
5617     RegSaveIndex = 2; // save offset for r2
5618     RegPadding = Padding; // values are passed in the low bits of a GPR
5619   }
5620 
5621   Address RegCountPtr = CGF.Builder.CreateStructGEP(
5622       VAListAddr, RegCountField, RegCountField * CharUnits::fromQuantity(8),
5623       "reg_count_ptr");
5624   llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count");
5625   llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs);
5626   llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV,
5627                                                  "fits_in_regs");
5628 
5629   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
5630   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
5631   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
5632   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
5633 
5634   // Emit code to load the value if it was passed in registers.
5635   CGF.EmitBlock(InRegBlock);
5636 
5637   // Work out the address of an argument register.
5638   llvm::Value *ScaledRegCount =
5639     CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count");
5640   llvm::Value *RegBase =
5641     llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity()
5642                                       + RegPadding.getQuantity());
5643   llvm::Value *RegOffset =
5644     CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset");
5645   Address RegSaveAreaPtr =
5646       CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(24),
5647                                   "reg_save_area_ptr");
5648   llvm::Value *RegSaveArea =
5649     CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area");
5650   Address RawRegAddr(CGF.Builder.CreateGEP(RegSaveArea, RegOffset,
5651                                            "raw_reg_addr"),
5652                      PaddedSize);
5653   Address RegAddr =
5654     CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr");
5655 
5656   // Update the register count
5657   llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1);
5658   llvm::Value *NewRegCount =
5659     CGF.Builder.CreateAdd(RegCount, One, "reg_count");
5660   CGF.Builder.CreateStore(NewRegCount, RegCountPtr);
5661   CGF.EmitBranch(ContBlock);
5662 
5663   // Emit code to load the value if it was passed in memory.
5664   CGF.EmitBlock(InMemBlock);
5665 
5666   // Work out the address of a stack argument.
5667   Address OverflowArgAreaPtr = CGF.Builder.CreateStructGEP(
5668       VAListAddr, 2, CharUnits::fromQuantity(16), "overflow_arg_area_ptr");
5669   Address OverflowArgArea =
5670     Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
5671             PaddedSize);
5672   Address RawMemAddr =
5673     CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr");
5674   Address MemAddr =
5675     CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr");
5676 
5677   // Update overflow_arg_area_ptr pointer
5678   llvm::Value *NewOverflowArgArea =
5679     CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV,
5680                           "overflow_arg_area");
5681   CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
5682   CGF.EmitBranch(ContBlock);
5683 
5684   // Return the appropriate result.
5685   CGF.EmitBlock(ContBlock);
5686   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
5687                                  MemAddr, InMemBlock, "va_arg.addr");
5688 
5689   if (IsIndirect)
5690     ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"),
5691                       TyInfo.second);
5692 
5693   return ResAddr;
5694 }
5695 
5696 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const {
5697   if (RetTy->isVoidType())
5698     return ABIArgInfo::getIgnore();
5699   if (isVectorArgumentType(RetTy))
5700     return ABIArgInfo::getDirect();
5701   if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64)
5702     return getNaturalAlignIndirect(RetTy);
5703   return (isPromotableIntegerType(RetTy) ?
5704           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5705 }
5706 
5707 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const {
5708   // Handle the generic C++ ABI.
5709   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
5710     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
5711 
5712   // Integers and enums are extended to full register width.
5713   if (isPromotableIntegerType(Ty))
5714     return ABIArgInfo::getExtend();
5715 
5716   // Handle vector types and vector-like structure types.  Note that
5717   // as opposed to float-like structure types, we do not allow any
5718   // padding for vector-like structures, so verify the sizes match.
5719   uint64_t Size = getContext().getTypeSize(Ty);
5720   QualType SingleElementTy = GetSingleElementType(Ty);
5721   if (isVectorArgumentType(SingleElementTy) &&
5722       getContext().getTypeSize(SingleElementTy) == Size)
5723     return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy));
5724 
5725   // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly.
5726   if (Size != 8 && Size != 16 && Size != 32 && Size != 64)
5727     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5728 
5729   // Handle small structures.
5730   if (const RecordType *RT = Ty->getAs<RecordType>()) {
5731     // Structures with flexible arrays have variable length, so really
5732     // fail the size test above.
5733     const RecordDecl *RD = RT->getDecl();
5734     if (RD->hasFlexibleArrayMember())
5735       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5736 
5737     // The structure is passed as an unextended integer, a float, or a double.
5738     llvm::Type *PassTy;
5739     if (isFPArgumentType(SingleElementTy)) {
5740       assert(Size == 32 || Size == 64);
5741       if (Size == 32)
5742         PassTy = llvm::Type::getFloatTy(getVMContext());
5743       else
5744         PassTy = llvm::Type::getDoubleTy(getVMContext());
5745     } else
5746       PassTy = llvm::IntegerType::get(getVMContext(), Size);
5747     return ABIArgInfo::getDirect(PassTy);
5748   }
5749 
5750   // Non-structure compounds are passed indirectly.
5751   if (isCompoundType(Ty))
5752     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5753 
5754   return ABIArgInfo::getDirect(nullptr);
5755 }
5756 
5757 //===----------------------------------------------------------------------===//
5758 // MSP430 ABI Implementation
5759 //===----------------------------------------------------------------------===//
5760 
5761 namespace {
5762 
5763 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
5764 public:
5765   MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
5766     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
5767   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5768                            CodeGen::CodeGenModule &M) const override;
5769 };
5770 
5771 }
5772 
5773 void MSP430TargetCodeGenInfo::setTargetAttributes(const Decl *D,
5774                                                   llvm::GlobalValue *GV,
5775                                              CodeGen::CodeGenModule &M) const {
5776   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
5777     if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) {
5778       // Handle 'interrupt' attribute:
5779       llvm::Function *F = cast<llvm::Function>(GV);
5780 
5781       // Step 1: Set ISR calling convention.
5782       F->setCallingConv(llvm::CallingConv::MSP430_INTR);
5783 
5784       // Step 2: Add attributes goodness.
5785       F->addFnAttr(llvm::Attribute::NoInline);
5786 
5787       // Step 3: Emit ISR vector alias.
5788       unsigned Num = attr->getNumber() / 2;
5789       llvm::GlobalAlias::create(llvm::Function::ExternalLinkage,
5790                                 "__isr_" + Twine(Num), F);
5791     }
5792   }
5793 }
5794 
5795 //===----------------------------------------------------------------------===//
5796 // MIPS ABI Implementation.  This works for both little-endian and
5797 // big-endian variants.
5798 //===----------------------------------------------------------------------===//
5799 
5800 namespace {
5801 class MipsABIInfo : public ABIInfo {
5802   bool IsO32;
5803   unsigned MinABIStackAlignInBytes, StackAlignInBytes;
5804   void CoerceToIntArgs(uint64_t TySize,
5805                        SmallVectorImpl<llvm::Type *> &ArgList) const;
5806   llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const;
5807   llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const;
5808   llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const;
5809 public:
5810   MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) :
5811     ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8),
5812     StackAlignInBytes(IsO32 ? 8 : 16) {}
5813 
5814   ABIArgInfo classifyReturnType(QualType RetTy) const;
5815   ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const;
5816   void computeInfo(CGFunctionInfo &FI) const override;
5817   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5818                     QualType Ty) const override;
5819   bool shouldSignExtUnsignedType(QualType Ty) const override;
5820 };
5821 
5822 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
5823   unsigned SizeOfUnwindException;
5824 public:
5825   MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32)
5826     : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)),
5827       SizeOfUnwindException(IsO32 ? 24 : 32) {}
5828 
5829   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
5830     return 29;
5831   }
5832 
5833   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5834                            CodeGen::CodeGenModule &CGM) const override {
5835     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
5836     if (!FD) return;
5837     llvm::Function *Fn = cast<llvm::Function>(GV);
5838     if (FD->hasAttr<Mips16Attr>()) {
5839       Fn->addFnAttr("mips16");
5840     }
5841     else if (FD->hasAttr<NoMips16Attr>()) {
5842       Fn->addFnAttr("nomips16");
5843     }
5844   }
5845 
5846   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5847                                llvm::Value *Address) const override;
5848 
5849   unsigned getSizeOfUnwindException() const override {
5850     return SizeOfUnwindException;
5851   }
5852 };
5853 }
5854 
5855 void MipsABIInfo::CoerceToIntArgs(
5856     uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const {
5857   llvm::IntegerType *IntTy =
5858     llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
5859 
5860   // Add (TySize / MinABIStackAlignInBytes) args of IntTy.
5861   for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N)
5862     ArgList.push_back(IntTy);
5863 
5864   // If necessary, add one more integer type to ArgList.
5865   unsigned R = TySize % (MinABIStackAlignInBytes * 8);
5866 
5867   if (R)
5868     ArgList.push_back(llvm::IntegerType::get(getVMContext(), R));
5869 }
5870 
5871 // In N32/64, an aligned double precision floating point field is passed in
5872 // a register.
5873 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const {
5874   SmallVector<llvm::Type*, 8> ArgList, IntArgList;
5875 
5876   if (IsO32) {
5877     CoerceToIntArgs(TySize, ArgList);
5878     return llvm::StructType::get(getVMContext(), ArgList);
5879   }
5880 
5881   if (Ty->isComplexType())
5882     return CGT.ConvertType(Ty);
5883 
5884   const RecordType *RT = Ty->getAs<RecordType>();
5885 
5886   // Unions/vectors are passed in integer registers.
5887   if (!RT || !RT->isStructureOrClassType()) {
5888     CoerceToIntArgs(TySize, ArgList);
5889     return llvm::StructType::get(getVMContext(), ArgList);
5890   }
5891 
5892   const RecordDecl *RD = RT->getDecl();
5893   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
5894   assert(!(TySize % 8) && "Size of structure must be multiple of 8.");
5895 
5896   uint64_t LastOffset = 0;
5897   unsigned idx = 0;
5898   llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64);
5899 
5900   // Iterate over fields in the struct/class and check if there are any aligned
5901   // double fields.
5902   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
5903        i != e; ++i, ++idx) {
5904     const QualType Ty = i->getType();
5905     const BuiltinType *BT = Ty->getAs<BuiltinType>();
5906 
5907     if (!BT || BT->getKind() != BuiltinType::Double)
5908       continue;
5909 
5910     uint64_t Offset = Layout.getFieldOffset(idx);
5911     if (Offset % 64) // Ignore doubles that are not aligned.
5912       continue;
5913 
5914     // Add ((Offset - LastOffset) / 64) args of type i64.
5915     for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j)
5916       ArgList.push_back(I64);
5917 
5918     // Add double type.
5919     ArgList.push_back(llvm::Type::getDoubleTy(getVMContext()));
5920     LastOffset = Offset + 64;
5921   }
5922 
5923   CoerceToIntArgs(TySize - LastOffset, IntArgList);
5924   ArgList.append(IntArgList.begin(), IntArgList.end());
5925 
5926   return llvm::StructType::get(getVMContext(), ArgList);
5927 }
5928 
5929 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset,
5930                                         uint64_t Offset) const {
5931   if (OrigOffset + MinABIStackAlignInBytes > Offset)
5932     return nullptr;
5933 
5934   return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8);
5935 }
5936 
5937 ABIArgInfo
5938 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const {
5939   Ty = useFirstFieldIfTransparentUnion(Ty);
5940 
5941   uint64_t OrigOffset = Offset;
5942   uint64_t TySize = getContext().getTypeSize(Ty);
5943   uint64_t Align = getContext().getTypeAlign(Ty) / 8;
5944 
5945   Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes),
5946                    (uint64_t)StackAlignInBytes);
5947   unsigned CurrOffset = llvm::RoundUpToAlignment(Offset, Align);
5948   Offset = CurrOffset + llvm::RoundUpToAlignment(TySize, Align * 8) / 8;
5949 
5950   if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) {
5951     // Ignore empty aggregates.
5952     if (TySize == 0)
5953       return ABIArgInfo::getIgnore();
5954 
5955     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
5956       Offset = OrigOffset + MinABIStackAlignInBytes;
5957       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
5958     }
5959 
5960     // If we have reached here, aggregates are passed directly by coercing to
5961     // another structure type. Padding is inserted if the offset of the
5962     // aggregate is unaligned.
5963     ABIArgInfo ArgInfo =
5964         ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0,
5965                               getPaddingType(OrigOffset, CurrOffset));
5966     ArgInfo.setInReg(true);
5967     return ArgInfo;
5968   }
5969 
5970   // Treat an enum type as its underlying type.
5971   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5972     Ty = EnumTy->getDecl()->getIntegerType();
5973 
5974   // All integral types are promoted to the GPR width.
5975   if (Ty->isIntegralOrEnumerationType())
5976     return ABIArgInfo::getExtend();
5977 
5978   return ABIArgInfo::getDirect(
5979       nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset));
5980 }
5981 
5982 llvm::Type*
5983 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const {
5984   const RecordType *RT = RetTy->getAs<RecordType>();
5985   SmallVector<llvm::Type*, 8> RTList;
5986 
5987   if (RT && RT->isStructureOrClassType()) {
5988     const RecordDecl *RD = RT->getDecl();
5989     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
5990     unsigned FieldCnt = Layout.getFieldCount();
5991 
5992     // N32/64 returns struct/classes in floating point registers if the
5993     // following conditions are met:
5994     // 1. The size of the struct/class is no larger than 128-bit.
5995     // 2. The struct/class has one or two fields all of which are floating
5996     //    point types.
5997     // 3. The offset of the first field is zero (this follows what gcc does).
5998     //
5999     // Any other composite results are returned in integer registers.
6000     //
6001     if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) {
6002       RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end();
6003       for (; b != e; ++b) {
6004         const BuiltinType *BT = b->getType()->getAs<BuiltinType>();
6005 
6006         if (!BT || !BT->isFloatingPoint())
6007           break;
6008 
6009         RTList.push_back(CGT.ConvertType(b->getType()));
6010       }
6011 
6012       if (b == e)
6013         return llvm::StructType::get(getVMContext(), RTList,
6014                                      RD->hasAttr<PackedAttr>());
6015 
6016       RTList.clear();
6017     }
6018   }
6019 
6020   CoerceToIntArgs(Size, RTList);
6021   return llvm::StructType::get(getVMContext(), RTList);
6022 }
6023 
6024 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
6025   uint64_t Size = getContext().getTypeSize(RetTy);
6026 
6027   if (RetTy->isVoidType())
6028     return ABIArgInfo::getIgnore();
6029 
6030   // O32 doesn't treat zero-sized structs differently from other structs.
6031   // However, N32/N64 ignores zero sized return values.
6032   if (!IsO32 && Size == 0)
6033     return ABIArgInfo::getIgnore();
6034 
6035   if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) {
6036     if (Size <= 128) {
6037       if (RetTy->isAnyComplexType())
6038         return ABIArgInfo::getDirect();
6039 
6040       // O32 returns integer vectors in registers and N32/N64 returns all small
6041       // aggregates in registers.
6042       if (!IsO32 ||
6043           (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) {
6044         ABIArgInfo ArgInfo =
6045             ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
6046         ArgInfo.setInReg(true);
6047         return ArgInfo;
6048       }
6049     }
6050 
6051     return getNaturalAlignIndirect(RetTy);
6052   }
6053 
6054   // Treat an enum type as its underlying type.
6055   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
6056     RetTy = EnumTy->getDecl()->getIntegerType();
6057 
6058   return (RetTy->isPromotableIntegerType() ?
6059           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
6060 }
6061 
6062 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
6063   ABIArgInfo &RetInfo = FI.getReturnInfo();
6064   if (!getCXXABI().classifyReturnType(FI))
6065     RetInfo = classifyReturnType(FI.getReturnType());
6066 
6067   // Check if a pointer to an aggregate is passed as a hidden argument.
6068   uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0;
6069 
6070   for (auto &I : FI.arguments())
6071     I.info = classifyArgumentType(I.type, Offset);
6072 }
6073 
6074 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6075                                QualType OrigTy) const {
6076   QualType Ty = OrigTy;
6077 
6078   // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64.
6079   // Pointers are also promoted in the same way but this only matters for N32.
6080   unsigned SlotSizeInBits = IsO32 ? 32 : 64;
6081   unsigned PtrWidth = getTarget().getPointerWidth(0);
6082   bool DidPromote = false;
6083   if ((Ty->isIntegerType() &&
6084           getContext().getIntWidth(Ty) < SlotSizeInBits) ||
6085       (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) {
6086     DidPromote = true;
6087     Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits,
6088                                             Ty->isSignedIntegerType());
6089   }
6090 
6091   auto TyInfo = getContext().getTypeInfoInChars(Ty);
6092 
6093   // The alignment of things in the argument area is never larger than
6094   // StackAlignInBytes.
6095   TyInfo.second =
6096     std::min(TyInfo.second, CharUnits::fromQuantity(StackAlignInBytes));
6097 
6098   // MinABIStackAlignInBytes is the size of argument slots on the stack.
6099   CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes);
6100 
6101   Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
6102                           TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true);
6103 
6104 
6105   // If there was a promotion, "unpromote" into a temporary.
6106   // TODO: can we just use a pointer into a subset of the original slot?
6107   if (DidPromote) {
6108     Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp");
6109     llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr);
6110 
6111     // Truncate down to the right width.
6112     llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType()
6113                                                  : CGF.IntPtrTy);
6114     llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy);
6115     if (OrigTy->isPointerType())
6116       V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType());
6117 
6118     CGF.Builder.CreateStore(V, Temp);
6119     Addr = Temp;
6120   }
6121 
6122   return Addr;
6123 }
6124 
6125 bool MipsABIInfo::shouldSignExtUnsignedType(QualType Ty) const {
6126   int TySize = getContext().getTypeSize(Ty);
6127 
6128   // MIPS64 ABI requires unsigned 32 bit integers to be sign extended.
6129   if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
6130     return true;
6131 
6132   return false;
6133 }
6134 
6135 bool
6136 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
6137                                                llvm::Value *Address) const {
6138   // This information comes from gcc's implementation, which seems to
6139   // as canonical as it gets.
6140 
6141   // Everything on MIPS is 4 bytes.  Double-precision FP registers
6142   // are aliased to pairs of single-precision FP registers.
6143   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
6144 
6145   // 0-31 are the general purpose registers, $0 - $31.
6146   // 32-63 are the floating-point registers, $f0 - $f31.
6147   // 64 and 65 are the multiply/divide registers, $hi and $lo.
6148   // 66 is the (notional, I think) register for signal-handler return.
6149   AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65);
6150 
6151   // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
6152   // They are one bit wide and ignored here.
6153 
6154   // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
6155   // (coprocessor 1 is the FP unit)
6156   // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
6157   // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
6158   // 176-181 are the DSP accumulator registers.
6159   AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181);
6160   return false;
6161 }
6162 
6163 //===----------------------------------------------------------------------===//
6164 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults.
6165 // Currently subclassed only to implement custom OpenCL C function attribute
6166 // handling.
6167 //===----------------------------------------------------------------------===//
6168 
6169 namespace {
6170 
6171 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo {
6172 public:
6173   TCETargetCodeGenInfo(CodeGenTypes &CGT)
6174     : DefaultTargetCodeGenInfo(CGT) {}
6175 
6176   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6177                            CodeGen::CodeGenModule &M) const override;
6178 };
6179 
6180 void TCETargetCodeGenInfo::setTargetAttributes(
6181     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
6182   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
6183   if (!FD) return;
6184 
6185   llvm::Function *F = cast<llvm::Function>(GV);
6186 
6187   if (M.getLangOpts().OpenCL) {
6188     if (FD->hasAttr<OpenCLKernelAttr>()) {
6189       // OpenCL C Kernel functions are not subject to inlining
6190       F->addFnAttr(llvm::Attribute::NoInline);
6191       const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>();
6192       if (Attr) {
6193         // Convert the reqd_work_group_size() attributes to metadata.
6194         llvm::LLVMContext &Context = F->getContext();
6195         llvm::NamedMDNode *OpenCLMetadata =
6196             M.getModule().getOrInsertNamedMetadata(
6197                 "opencl.kernel_wg_size_info");
6198 
6199         SmallVector<llvm::Metadata *, 5> Operands;
6200         Operands.push_back(llvm::ConstantAsMetadata::get(F));
6201 
6202         Operands.push_back(
6203             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
6204                 M.Int32Ty, llvm::APInt(32, Attr->getXDim()))));
6205         Operands.push_back(
6206             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
6207                 M.Int32Ty, llvm::APInt(32, Attr->getYDim()))));
6208         Operands.push_back(
6209             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
6210                 M.Int32Ty, llvm::APInt(32, Attr->getZDim()))));
6211 
6212         // Add a boolean constant operand for "required" (true) or "hint"
6213         // (false) for implementing the work_group_size_hint attr later.
6214         // Currently always true as the hint is not yet implemented.
6215         Operands.push_back(
6216             llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context)));
6217         OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands));
6218       }
6219     }
6220   }
6221 }
6222 
6223 }
6224 
6225 //===----------------------------------------------------------------------===//
6226 // Hexagon ABI Implementation
6227 //===----------------------------------------------------------------------===//
6228 
6229 namespace {
6230 
6231 class HexagonABIInfo : public ABIInfo {
6232 
6233 
6234 public:
6235   HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
6236 
6237 private:
6238 
6239   ABIArgInfo classifyReturnType(QualType RetTy) const;
6240   ABIArgInfo classifyArgumentType(QualType RetTy) const;
6241 
6242   void computeInfo(CGFunctionInfo &FI) const override;
6243 
6244   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6245                     QualType Ty) const override;
6246 };
6247 
6248 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo {
6249 public:
6250   HexagonTargetCodeGenInfo(CodeGenTypes &CGT)
6251     :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {}
6252 
6253   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
6254     return 29;
6255   }
6256 };
6257 
6258 }
6259 
6260 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const {
6261   if (!getCXXABI().classifyReturnType(FI))
6262     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
6263   for (auto &I : FI.arguments())
6264     I.info = classifyArgumentType(I.type);
6265 }
6266 
6267 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const {
6268   if (!isAggregateTypeForABI(Ty)) {
6269     // Treat an enum type as its underlying type.
6270     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
6271       Ty = EnumTy->getDecl()->getIntegerType();
6272 
6273     return (Ty->isPromotableIntegerType() ?
6274             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
6275   }
6276 
6277   // Ignore empty records.
6278   if (isEmptyRecord(getContext(), Ty, true))
6279     return ABIArgInfo::getIgnore();
6280 
6281   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
6282     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
6283 
6284   uint64_t Size = getContext().getTypeSize(Ty);
6285   if (Size > 64)
6286     return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
6287     // Pass in the smallest viable integer type.
6288   else if (Size > 32)
6289       return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
6290   else if (Size > 16)
6291       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6292   else if (Size > 8)
6293       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
6294   else
6295       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
6296 }
6297 
6298 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const {
6299   if (RetTy->isVoidType())
6300     return ABIArgInfo::getIgnore();
6301 
6302   // Large vector types should be returned via memory.
6303   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64)
6304     return getNaturalAlignIndirect(RetTy);
6305 
6306   if (!isAggregateTypeForABI(RetTy)) {
6307     // Treat an enum type as its underlying type.
6308     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
6309       RetTy = EnumTy->getDecl()->getIntegerType();
6310 
6311     return (RetTy->isPromotableIntegerType() ?
6312             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
6313   }
6314 
6315   if (isEmptyRecord(getContext(), RetTy, true))
6316     return ABIArgInfo::getIgnore();
6317 
6318   // Aggregates <= 8 bytes are returned in r0; other aggregates
6319   // are returned indirectly.
6320   uint64_t Size = getContext().getTypeSize(RetTy);
6321   if (Size <= 64) {
6322     // Return in the smallest viable integer type.
6323     if (Size <= 8)
6324       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
6325     if (Size <= 16)
6326       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
6327     if (Size <= 32)
6328       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6329     return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
6330   }
6331 
6332   return getNaturalAlignIndirect(RetTy, /*ByVal=*/true);
6333 }
6334 
6335 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6336                                   QualType Ty) const {
6337   // FIXME: Someone needs to audit that this handle alignment correctly.
6338   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
6339                           getContext().getTypeInfoInChars(Ty),
6340                           CharUnits::fromQuantity(4),
6341                           /*AllowHigherAlign*/ true);
6342 }
6343 
6344 //===----------------------------------------------------------------------===//
6345 // AMDGPU ABI Implementation
6346 //===----------------------------------------------------------------------===//
6347 
6348 namespace {
6349 
6350 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo {
6351 public:
6352   AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT)
6353     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
6354   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6355                            CodeGen::CodeGenModule &M) const override;
6356 };
6357 
6358 }
6359 
6360 void AMDGPUTargetCodeGenInfo::setTargetAttributes(
6361   const Decl *D,
6362   llvm::GlobalValue *GV,
6363   CodeGen::CodeGenModule &M) const {
6364   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
6365   if (!FD)
6366     return;
6367 
6368   if (const auto Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) {
6369     llvm::Function *F = cast<llvm::Function>(GV);
6370     uint32_t NumVGPR = Attr->getNumVGPR();
6371     if (NumVGPR != 0)
6372       F->addFnAttr("amdgpu_num_vgpr", llvm::utostr(NumVGPR));
6373   }
6374 
6375   if (const auto Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) {
6376     llvm::Function *F = cast<llvm::Function>(GV);
6377     unsigned NumSGPR = Attr->getNumSGPR();
6378     if (NumSGPR != 0)
6379       F->addFnAttr("amdgpu_num_sgpr", llvm::utostr(NumSGPR));
6380   }
6381 }
6382 
6383 
6384 //===----------------------------------------------------------------------===//
6385 // SPARC v9 ABI Implementation.
6386 // Based on the SPARC Compliance Definition version 2.4.1.
6387 //
6388 // Function arguments a mapped to a nominal "parameter array" and promoted to
6389 // registers depending on their type. Each argument occupies 8 or 16 bytes in
6390 // the array, structs larger than 16 bytes are passed indirectly.
6391 //
6392 // One case requires special care:
6393 //
6394 //   struct mixed {
6395 //     int i;
6396 //     float f;
6397 //   };
6398 //
6399 // When a struct mixed is passed by value, it only occupies 8 bytes in the
6400 // parameter array, but the int is passed in an integer register, and the float
6401 // is passed in a floating point register. This is represented as two arguments
6402 // with the LLVM IR inreg attribute:
6403 //
6404 //   declare void f(i32 inreg %i, float inreg %f)
6405 //
6406 // The code generator will only allocate 4 bytes from the parameter array for
6407 // the inreg arguments. All other arguments are allocated a multiple of 8
6408 // bytes.
6409 //
6410 namespace {
6411 class SparcV9ABIInfo : public ABIInfo {
6412 public:
6413   SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
6414 
6415 private:
6416   ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const;
6417   void computeInfo(CGFunctionInfo &FI) const override;
6418   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6419                     QualType Ty) const override;
6420 
6421   // Coercion type builder for structs passed in registers. The coercion type
6422   // serves two purposes:
6423   //
6424   // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned'
6425   //    in registers.
6426   // 2. Expose aligned floating point elements as first-level elements, so the
6427   //    code generator knows to pass them in floating point registers.
6428   //
6429   // We also compute the InReg flag which indicates that the struct contains
6430   // aligned 32-bit floats.
6431   //
6432   struct CoerceBuilder {
6433     llvm::LLVMContext &Context;
6434     const llvm::DataLayout &DL;
6435     SmallVector<llvm::Type*, 8> Elems;
6436     uint64_t Size;
6437     bool InReg;
6438 
6439     CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl)
6440       : Context(c), DL(dl), Size(0), InReg(false) {}
6441 
6442     // Pad Elems with integers until Size is ToSize.
6443     void pad(uint64_t ToSize) {
6444       assert(ToSize >= Size && "Cannot remove elements");
6445       if (ToSize == Size)
6446         return;
6447 
6448       // Finish the current 64-bit word.
6449       uint64_t Aligned = llvm::RoundUpToAlignment(Size, 64);
6450       if (Aligned > Size && Aligned <= ToSize) {
6451         Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size));
6452         Size = Aligned;
6453       }
6454 
6455       // Add whole 64-bit words.
6456       while (Size + 64 <= ToSize) {
6457         Elems.push_back(llvm::Type::getInt64Ty(Context));
6458         Size += 64;
6459       }
6460 
6461       // Final in-word padding.
6462       if (Size < ToSize) {
6463         Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size));
6464         Size = ToSize;
6465       }
6466     }
6467 
6468     // Add a floating point element at Offset.
6469     void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) {
6470       // Unaligned floats are treated as integers.
6471       if (Offset % Bits)
6472         return;
6473       // The InReg flag is only required if there are any floats < 64 bits.
6474       if (Bits < 64)
6475         InReg = true;
6476       pad(Offset);
6477       Elems.push_back(Ty);
6478       Size = Offset + Bits;
6479     }
6480 
6481     // Add a struct type to the coercion type, starting at Offset (in bits).
6482     void addStruct(uint64_t Offset, llvm::StructType *StrTy) {
6483       const llvm::StructLayout *Layout = DL.getStructLayout(StrTy);
6484       for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) {
6485         llvm::Type *ElemTy = StrTy->getElementType(i);
6486         uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i);
6487         switch (ElemTy->getTypeID()) {
6488         case llvm::Type::StructTyID:
6489           addStruct(ElemOffset, cast<llvm::StructType>(ElemTy));
6490           break;
6491         case llvm::Type::FloatTyID:
6492           addFloat(ElemOffset, ElemTy, 32);
6493           break;
6494         case llvm::Type::DoubleTyID:
6495           addFloat(ElemOffset, ElemTy, 64);
6496           break;
6497         case llvm::Type::FP128TyID:
6498           addFloat(ElemOffset, ElemTy, 128);
6499           break;
6500         case llvm::Type::PointerTyID:
6501           if (ElemOffset % 64 == 0) {
6502             pad(ElemOffset);
6503             Elems.push_back(ElemTy);
6504             Size += 64;
6505           }
6506           break;
6507         default:
6508           break;
6509         }
6510       }
6511     }
6512 
6513     // Check if Ty is a usable substitute for the coercion type.
6514     bool isUsableType(llvm::StructType *Ty) const {
6515       return llvm::makeArrayRef(Elems) == Ty->elements();
6516     }
6517 
6518     // Get the coercion type as a literal struct type.
6519     llvm::Type *getType() const {
6520       if (Elems.size() == 1)
6521         return Elems.front();
6522       else
6523         return llvm::StructType::get(Context, Elems);
6524     }
6525   };
6526 };
6527 } // end anonymous namespace
6528 
6529 ABIArgInfo
6530 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const {
6531   if (Ty->isVoidType())
6532     return ABIArgInfo::getIgnore();
6533 
6534   uint64_t Size = getContext().getTypeSize(Ty);
6535 
6536   // Anything too big to fit in registers is passed with an explicit indirect
6537   // pointer / sret pointer.
6538   if (Size > SizeLimit)
6539     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
6540 
6541   // Treat an enum type as its underlying type.
6542   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
6543     Ty = EnumTy->getDecl()->getIntegerType();
6544 
6545   // Integer types smaller than a register are extended.
6546   if (Size < 64 && Ty->isIntegerType())
6547     return ABIArgInfo::getExtend();
6548 
6549   // Other non-aggregates go in registers.
6550   if (!isAggregateTypeForABI(Ty))
6551     return ABIArgInfo::getDirect();
6552 
6553   // If a C++ object has either a non-trivial copy constructor or a non-trivial
6554   // destructor, it is passed with an explicit indirect pointer / sret pointer.
6555   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
6556     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
6557 
6558   // This is a small aggregate type that should be passed in registers.
6559   // Build a coercion type from the LLVM struct type.
6560   llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty));
6561   if (!StrTy)
6562     return ABIArgInfo::getDirect();
6563 
6564   CoerceBuilder CB(getVMContext(), getDataLayout());
6565   CB.addStruct(0, StrTy);
6566   CB.pad(llvm::RoundUpToAlignment(CB.DL.getTypeSizeInBits(StrTy), 64));
6567 
6568   // Try to use the original type for coercion.
6569   llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType();
6570 
6571   if (CB.InReg)
6572     return ABIArgInfo::getDirectInReg(CoerceTy);
6573   else
6574     return ABIArgInfo::getDirect(CoerceTy);
6575 }
6576 
6577 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6578                                   QualType Ty) const {
6579   ABIArgInfo AI = classifyType(Ty, 16 * 8);
6580   llvm::Type *ArgTy = CGT.ConvertType(Ty);
6581   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
6582     AI.setCoerceToType(ArgTy);
6583 
6584   CharUnits SlotSize = CharUnits::fromQuantity(8);
6585 
6586   CGBuilderTy &Builder = CGF.Builder;
6587   Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
6588   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
6589 
6590   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
6591 
6592   Address ArgAddr = Address::invalid();
6593   CharUnits Stride;
6594   switch (AI.getKind()) {
6595   case ABIArgInfo::Expand:
6596   case ABIArgInfo::InAlloca:
6597     llvm_unreachable("Unsupported ABI kind for va_arg");
6598 
6599   case ABIArgInfo::Extend: {
6600     Stride = SlotSize;
6601     CharUnits Offset = SlotSize - TypeInfo.first;
6602     ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend");
6603     break;
6604   }
6605 
6606   case ABIArgInfo::Direct: {
6607     auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
6608     Stride = CharUnits::fromQuantity(AllocSize).RoundUpToAlignment(SlotSize);
6609     ArgAddr = Addr;
6610     break;
6611   }
6612 
6613   case ABIArgInfo::Indirect:
6614     Stride = SlotSize;
6615     ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect");
6616     ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"),
6617                       TypeInfo.second);
6618     break;
6619 
6620   case ABIArgInfo::Ignore:
6621     return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.second);
6622   }
6623 
6624   // Update VAList.
6625   llvm::Value *NextPtr =
6626     Builder.CreateConstInBoundsByteGEP(Addr.getPointer(), Stride, "ap.next");
6627   Builder.CreateStore(NextPtr, VAListAddr);
6628 
6629   return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr");
6630 }
6631 
6632 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const {
6633   FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8);
6634   for (auto &I : FI.arguments())
6635     I.info = classifyType(I.type, 16 * 8);
6636 }
6637 
6638 namespace {
6639 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo {
6640 public:
6641   SparcV9TargetCodeGenInfo(CodeGenTypes &CGT)
6642     : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {}
6643 
6644   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
6645     return 14;
6646   }
6647 
6648   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
6649                                llvm::Value *Address) const override;
6650 };
6651 } // end anonymous namespace
6652 
6653 bool
6654 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
6655                                                 llvm::Value *Address) const {
6656   // This is calculated from the LLVM and GCC tables and verified
6657   // against gcc output.  AFAIK all ABIs use the same encoding.
6658 
6659   CodeGen::CGBuilderTy &Builder = CGF.Builder;
6660 
6661   llvm::IntegerType *i8 = CGF.Int8Ty;
6662   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
6663   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
6664 
6665   // 0-31: the 8-byte general-purpose registers
6666   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
6667 
6668   // 32-63: f0-31, the 4-byte floating-point registers
6669   AssignToArrayRange(Builder, Address, Four8, 32, 63);
6670 
6671   //   Y   = 64
6672   //   PSR = 65
6673   //   WIM = 66
6674   //   TBR = 67
6675   //   PC  = 68
6676   //   NPC = 69
6677   //   FSR = 70
6678   //   CSR = 71
6679   AssignToArrayRange(Builder, Address, Eight8, 64, 71);
6680 
6681   // 72-87: d0-15, the 8-byte floating-point registers
6682   AssignToArrayRange(Builder, Address, Eight8, 72, 87);
6683 
6684   return false;
6685 }
6686 
6687 
6688 //===----------------------------------------------------------------------===//
6689 // XCore ABI Implementation
6690 //===----------------------------------------------------------------------===//
6691 
6692 namespace {
6693 
6694 /// A SmallStringEnc instance is used to build up the TypeString by passing
6695 /// it by reference between functions that append to it.
6696 typedef llvm::SmallString<128> SmallStringEnc;
6697 
6698 /// TypeStringCache caches the meta encodings of Types.
6699 ///
6700 /// The reason for caching TypeStrings is two fold:
6701 ///   1. To cache a type's encoding for later uses;
6702 ///   2. As a means to break recursive member type inclusion.
6703 ///
6704 /// A cache Entry can have a Status of:
6705 ///   NonRecursive:   The type encoding is not recursive;
6706 ///   Recursive:      The type encoding is recursive;
6707 ///   Incomplete:     An incomplete TypeString;
6708 ///   IncompleteUsed: An incomplete TypeString that has been used in a
6709 ///                   Recursive type encoding.
6710 ///
6711 /// A NonRecursive entry will have all of its sub-members expanded as fully
6712 /// as possible. Whilst it may contain types which are recursive, the type
6713 /// itself is not recursive and thus its encoding may be safely used whenever
6714 /// the type is encountered.
6715 ///
6716 /// A Recursive entry will have all of its sub-members expanded as fully as
6717 /// possible. The type itself is recursive and it may contain other types which
6718 /// are recursive. The Recursive encoding must not be used during the expansion
6719 /// of a recursive type's recursive branch. For simplicity the code uses
6720 /// IncompleteCount to reject all usage of Recursive encodings for member types.
6721 ///
6722 /// An Incomplete entry is always a RecordType and only encodes its
6723 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and
6724 /// are placed into the cache during type expansion as a means to identify and
6725 /// handle recursive inclusion of types as sub-members. If there is recursion
6726 /// the entry becomes IncompleteUsed.
6727 ///
6728 /// During the expansion of a RecordType's members:
6729 ///
6730 ///   If the cache contains a NonRecursive encoding for the member type, the
6731 ///   cached encoding is used;
6732 ///
6733 ///   If the cache contains a Recursive encoding for the member type, the
6734 ///   cached encoding is 'Swapped' out, as it may be incorrect, and...
6735 ///
6736 ///   If the member is a RecordType, an Incomplete encoding is placed into the
6737 ///   cache to break potential recursive inclusion of itself as a sub-member;
6738 ///
6739 ///   Once a member RecordType has been expanded, its temporary incomplete
6740 ///   entry is removed from the cache. If a Recursive encoding was swapped out
6741 ///   it is swapped back in;
6742 ///
6743 ///   If an incomplete entry is used to expand a sub-member, the incomplete
6744 ///   entry is marked as IncompleteUsed. The cache keeps count of how many
6745 ///   IncompleteUsed entries it currently contains in IncompleteUsedCount;
6746 ///
6747 ///   If a member's encoding is found to be a NonRecursive or Recursive viz:
6748 ///   IncompleteUsedCount==0, the member's encoding is added to the cache.
6749 ///   Else the member is part of a recursive type and thus the recursion has
6750 ///   been exited too soon for the encoding to be correct for the member.
6751 ///
6752 class TypeStringCache {
6753   enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed};
6754   struct Entry {
6755     std::string Str;     // The encoded TypeString for the type.
6756     enum Status State;   // Information about the encoding in 'Str'.
6757     std::string Swapped; // A temporary place holder for a Recursive encoding
6758                          // during the expansion of RecordType's members.
6759   };
6760   std::map<const IdentifierInfo *, struct Entry> Map;
6761   unsigned IncompleteCount;     // Number of Incomplete entries in the Map.
6762   unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map.
6763 public:
6764   TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {}
6765   void addIncomplete(const IdentifierInfo *ID, std::string StubEnc);
6766   bool removeIncomplete(const IdentifierInfo *ID);
6767   void addIfComplete(const IdentifierInfo *ID, StringRef Str,
6768                      bool IsRecursive);
6769   StringRef lookupStr(const IdentifierInfo *ID);
6770 };
6771 
6772 /// TypeString encodings for enum & union fields must be order.
6773 /// FieldEncoding is a helper for this ordering process.
6774 class FieldEncoding {
6775   bool HasName;
6776   std::string Enc;
6777 public:
6778   FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {}
6779   StringRef str() {return Enc.c_str();}
6780   bool operator<(const FieldEncoding &rhs) const {
6781     if (HasName != rhs.HasName) return HasName;
6782     return Enc < rhs.Enc;
6783   }
6784 };
6785 
6786 class XCoreABIInfo : public DefaultABIInfo {
6787 public:
6788   XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
6789   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6790                     QualType Ty) const override;
6791 };
6792 
6793 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo {
6794   mutable TypeStringCache TSC;
6795 public:
6796   XCoreTargetCodeGenInfo(CodeGenTypes &CGT)
6797     :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {}
6798   void emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
6799                     CodeGen::CodeGenModule &M) const override;
6800 };
6801 
6802 } // End anonymous namespace.
6803 
6804 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6805                                 QualType Ty) const {
6806   CGBuilderTy &Builder = CGF.Builder;
6807 
6808   // Get the VAList.
6809   CharUnits SlotSize = CharUnits::fromQuantity(4);
6810   Address AP(Builder.CreateLoad(VAListAddr), SlotSize);
6811 
6812   // Handle the argument.
6813   ABIArgInfo AI = classifyArgumentType(Ty);
6814   CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty);
6815   llvm::Type *ArgTy = CGT.ConvertType(Ty);
6816   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
6817     AI.setCoerceToType(ArgTy);
6818   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
6819 
6820   Address Val = Address::invalid();
6821   CharUnits ArgSize = CharUnits::Zero();
6822   switch (AI.getKind()) {
6823   case ABIArgInfo::Expand:
6824   case ABIArgInfo::InAlloca:
6825     llvm_unreachable("Unsupported ABI kind for va_arg");
6826   case ABIArgInfo::Ignore:
6827     Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign);
6828     ArgSize = CharUnits::Zero();
6829     break;
6830   case ABIArgInfo::Extend:
6831   case ABIArgInfo::Direct:
6832     Val = Builder.CreateBitCast(AP, ArgPtrTy);
6833     ArgSize = CharUnits::fromQuantity(
6834                        getDataLayout().getTypeAllocSize(AI.getCoerceToType()));
6835     ArgSize = ArgSize.RoundUpToAlignment(SlotSize);
6836     break;
6837   case ABIArgInfo::Indirect:
6838     Val = Builder.CreateElementBitCast(AP, ArgPtrTy);
6839     Val = Address(Builder.CreateLoad(Val), TypeAlign);
6840     ArgSize = SlotSize;
6841     break;
6842   }
6843 
6844   // Increment the VAList.
6845   if (!ArgSize.isZero()) {
6846     llvm::Value *APN =
6847       Builder.CreateConstInBoundsByteGEP(AP.getPointer(), ArgSize);
6848     Builder.CreateStore(APN, VAListAddr);
6849   }
6850 
6851   return Val;
6852 }
6853 
6854 /// During the expansion of a RecordType, an incomplete TypeString is placed
6855 /// into the cache as a means to identify and break recursion.
6856 /// If there is a Recursive encoding in the cache, it is swapped out and will
6857 /// be reinserted by removeIncomplete().
6858 /// All other types of encoding should have been used rather than arriving here.
6859 void TypeStringCache::addIncomplete(const IdentifierInfo *ID,
6860                                     std::string StubEnc) {
6861   if (!ID)
6862     return;
6863   Entry &E = Map[ID];
6864   assert( (E.Str.empty() || E.State == Recursive) &&
6865          "Incorrectly use of addIncomplete");
6866   assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()");
6867   E.Swapped.swap(E.Str); // swap out the Recursive
6868   E.Str.swap(StubEnc);
6869   E.State = Incomplete;
6870   ++IncompleteCount;
6871 }
6872 
6873 /// Once the RecordType has been expanded, the temporary incomplete TypeString
6874 /// must be removed from the cache.
6875 /// If a Recursive was swapped out by addIncomplete(), it will be replaced.
6876 /// Returns true if the RecordType was defined recursively.
6877 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) {
6878   if (!ID)
6879     return false;
6880   auto I = Map.find(ID);
6881   assert(I != Map.end() && "Entry not present");
6882   Entry &E = I->second;
6883   assert( (E.State == Incomplete ||
6884            E.State == IncompleteUsed) &&
6885          "Entry must be an incomplete type");
6886   bool IsRecursive = false;
6887   if (E.State == IncompleteUsed) {
6888     // We made use of our Incomplete encoding, thus we are recursive.
6889     IsRecursive = true;
6890     --IncompleteUsedCount;
6891   }
6892   if (E.Swapped.empty())
6893     Map.erase(I);
6894   else {
6895     // Swap the Recursive back.
6896     E.Swapped.swap(E.Str);
6897     E.Swapped.clear();
6898     E.State = Recursive;
6899   }
6900   --IncompleteCount;
6901   return IsRecursive;
6902 }
6903 
6904 /// Add the encoded TypeString to the cache only if it is NonRecursive or
6905 /// Recursive (viz: all sub-members were expanded as fully as possible).
6906 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str,
6907                                     bool IsRecursive) {
6908   if (!ID || IncompleteUsedCount)
6909     return; // No key or it is is an incomplete sub-type so don't add.
6910   Entry &E = Map[ID];
6911   if (IsRecursive && !E.Str.empty()) {
6912     assert(E.State==Recursive && E.Str.size() == Str.size() &&
6913            "This is not the same Recursive entry");
6914     // The parent container was not recursive after all, so we could have used
6915     // this Recursive sub-member entry after all, but we assumed the worse when
6916     // we started viz: IncompleteCount!=0.
6917     return;
6918   }
6919   assert(E.Str.empty() && "Entry already present");
6920   E.Str = Str.str();
6921   E.State = IsRecursive? Recursive : NonRecursive;
6922 }
6923 
6924 /// Return a cached TypeString encoding for the ID. If there isn't one, or we
6925 /// are recursively expanding a type (IncompleteCount != 0) and the cached
6926 /// encoding is Recursive, return an empty StringRef.
6927 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) {
6928   if (!ID)
6929     return StringRef();   // We have no key.
6930   auto I = Map.find(ID);
6931   if (I == Map.end())
6932     return StringRef();   // We have no encoding.
6933   Entry &E = I->second;
6934   if (E.State == Recursive && IncompleteCount)
6935     return StringRef();   // We don't use Recursive encodings for member types.
6936 
6937   if (E.State == Incomplete) {
6938     // The incomplete type is being used to break out of recursion.
6939     E.State = IncompleteUsed;
6940     ++IncompleteUsedCount;
6941   }
6942   return E.Str.c_str();
6943 }
6944 
6945 /// The XCore ABI includes a type information section that communicates symbol
6946 /// type information to the linker. The linker uses this information to verify
6947 /// safety/correctness of things such as array bound and pointers et al.
6948 /// The ABI only requires C (and XC) language modules to emit TypeStrings.
6949 /// This type information (TypeString) is emitted into meta data for all global
6950 /// symbols: definitions, declarations, functions & variables.
6951 ///
6952 /// The TypeString carries type, qualifier, name, size & value details.
6953 /// Please see 'Tools Development Guide' section 2.16.2 for format details:
6954 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf
6955 /// The output is tested by test/CodeGen/xcore-stringtype.c.
6956 ///
6957 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
6958                           CodeGen::CodeGenModule &CGM, TypeStringCache &TSC);
6959 
6960 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols.
6961 void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
6962                                           CodeGen::CodeGenModule &CGM) const {
6963   SmallStringEnc Enc;
6964   if (getTypeString(Enc, D, CGM, TSC)) {
6965     llvm::LLVMContext &Ctx = CGM.getModule().getContext();
6966     llvm::SmallVector<llvm::Metadata *, 2> MDVals;
6967     MDVals.push_back(llvm::ConstantAsMetadata::get(GV));
6968     MDVals.push_back(llvm::MDString::get(Ctx, Enc.str()));
6969     llvm::NamedMDNode *MD =
6970       CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings");
6971     MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
6972   }
6973 }
6974 
6975 static bool appendType(SmallStringEnc &Enc, QualType QType,
6976                        const CodeGen::CodeGenModule &CGM,
6977                        TypeStringCache &TSC);
6978 
6979 /// Helper function for appendRecordType().
6980 /// Builds a SmallVector containing the encoded field types in declaration
6981 /// order.
6982 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE,
6983                              const RecordDecl *RD,
6984                              const CodeGen::CodeGenModule &CGM,
6985                              TypeStringCache &TSC) {
6986   for (const auto *Field : RD->fields()) {
6987     SmallStringEnc Enc;
6988     Enc += "m(";
6989     Enc += Field->getName();
6990     Enc += "){";
6991     if (Field->isBitField()) {
6992       Enc += "b(";
6993       llvm::raw_svector_ostream OS(Enc);
6994       OS << Field->getBitWidthValue(CGM.getContext());
6995       Enc += ':';
6996     }
6997     if (!appendType(Enc, Field->getType(), CGM, TSC))
6998       return false;
6999     if (Field->isBitField())
7000       Enc += ')';
7001     Enc += '}';
7002     FE.emplace_back(!Field->getName().empty(), Enc);
7003   }
7004   return true;
7005 }
7006 
7007 /// Appends structure and union types to Enc and adds encoding to cache.
7008 /// Recursively calls appendType (via extractFieldType) for each field.
7009 /// Union types have their fields ordered according to the ABI.
7010 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT,
7011                              const CodeGen::CodeGenModule &CGM,
7012                              TypeStringCache &TSC, const IdentifierInfo *ID) {
7013   // Append the cached TypeString if we have one.
7014   StringRef TypeString = TSC.lookupStr(ID);
7015   if (!TypeString.empty()) {
7016     Enc += TypeString;
7017     return true;
7018   }
7019 
7020   // Start to emit an incomplete TypeString.
7021   size_t Start = Enc.size();
7022   Enc += (RT->isUnionType()? 'u' : 's');
7023   Enc += '(';
7024   if (ID)
7025     Enc += ID->getName();
7026   Enc += "){";
7027 
7028   // We collect all encoded fields and order as necessary.
7029   bool IsRecursive = false;
7030   const RecordDecl *RD = RT->getDecl()->getDefinition();
7031   if (RD && !RD->field_empty()) {
7032     // An incomplete TypeString stub is placed in the cache for this RecordType
7033     // so that recursive calls to this RecordType will use it whilst building a
7034     // complete TypeString for this RecordType.
7035     SmallVector<FieldEncoding, 16> FE;
7036     std::string StubEnc(Enc.substr(Start).str());
7037     StubEnc += '}';  // StubEnc now holds a valid incomplete TypeString.
7038     TSC.addIncomplete(ID, std::move(StubEnc));
7039     if (!extractFieldType(FE, RD, CGM, TSC)) {
7040       (void) TSC.removeIncomplete(ID);
7041       return false;
7042     }
7043     IsRecursive = TSC.removeIncomplete(ID);
7044     // The ABI requires unions to be sorted but not structures.
7045     // See FieldEncoding::operator< for sort algorithm.
7046     if (RT->isUnionType())
7047       std::sort(FE.begin(), FE.end());
7048     // We can now complete the TypeString.
7049     unsigned E = FE.size();
7050     for (unsigned I = 0; I != E; ++I) {
7051       if (I)
7052         Enc += ',';
7053       Enc += FE[I].str();
7054     }
7055   }
7056   Enc += '}';
7057   TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive);
7058   return true;
7059 }
7060 
7061 /// Appends enum types to Enc and adds the encoding to the cache.
7062 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET,
7063                            TypeStringCache &TSC,
7064                            const IdentifierInfo *ID) {
7065   // Append the cached TypeString if we have one.
7066   StringRef TypeString = TSC.lookupStr(ID);
7067   if (!TypeString.empty()) {
7068     Enc += TypeString;
7069     return true;
7070   }
7071 
7072   size_t Start = Enc.size();
7073   Enc += "e(";
7074   if (ID)
7075     Enc += ID->getName();
7076   Enc += "){";
7077 
7078   // We collect all encoded enumerations and order them alphanumerically.
7079   if (const EnumDecl *ED = ET->getDecl()->getDefinition()) {
7080     SmallVector<FieldEncoding, 16> FE;
7081     for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E;
7082          ++I) {
7083       SmallStringEnc EnumEnc;
7084       EnumEnc += "m(";
7085       EnumEnc += I->getName();
7086       EnumEnc += "){";
7087       I->getInitVal().toString(EnumEnc);
7088       EnumEnc += '}';
7089       FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc));
7090     }
7091     std::sort(FE.begin(), FE.end());
7092     unsigned E = FE.size();
7093     for (unsigned I = 0; I != E; ++I) {
7094       if (I)
7095         Enc += ',';
7096       Enc += FE[I].str();
7097     }
7098   }
7099   Enc += '}';
7100   TSC.addIfComplete(ID, Enc.substr(Start), false);
7101   return true;
7102 }
7103 
7104 /// Appends type's qualifier to Enc.
7105 /// This is done prior to appending the type's encoding.
7106 static void appendQualifier(SmallStringEnc &Enc, QualType QT) {
7107   // Qualifiers are emitted in alphabetical order.
7108   static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"};
7109   int Lookup = 0;
7110   if (QT.isConstQualified())
7111     Lookup += 1<<0;
7112   if (QT.isRestrictQualified())
7113     Lookup += 1<<1;
7114   if (QT.isVolatileQualified())
7115     Lookup += 1<<2;
7116   Enc += Table[Lookup];
7117 }
7118 
7119 /// Appends built-in types to Enc.
7120 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) {
7121   const char *EncType;
7122   switch (BT->getKind()) {
7123     case BuiltinType::Void:
7124       EncType = "0";
7125       break;
7126     case BuiltinType::Bool:
7127       EncType = "b";
7128       break;
7129     case BuiltinType::Char_U:
7130       EncType = "uc";
7131       break;
7132     case BuiltinType::UChar:
7133       EncType = "uc";
7134       break;
7135     case BuiltinType::SChar:
7136       EncType = "sc";
7137       break;
7138     case BuiltinType::UShort:
7139       EncType = "us";
7140       break;
7141     case BuiltinType::Short:
7142       EncType = "ss";
7143       break;
7144     case BuiltinType::UInt:
7145       EncType = "ui";
7146       break;
7147     case BuiltinType::Int:
7148       EncType = "si";
7149       break;
7150     case BuiltinType::ULong:
7151       EncType = "ul";
7152       break;
7153     case BuiltinType::Long:
7154       EncType = "sl";
7155       break;
7156     case BuiltinType::ULongLong:
7157       EncType = "ull";
7158       break;
7159     case BuiltinType::LongLong:
7160       EncType = "sll";
7161       break;
7162     case BuiltinType::Float:
7163       EncType = "ft";
7164       break;
7165     case BuiltinType::Double:
7166       EncType = "d";
7167       break;
7168     case BuiltinType::LongDouble:
7169       EncType = "ld";
7170       break;
7171     default:
7172       return false;
7173   }
7174   Enc += EncType;
7175   return true;
7176 }
7177 
7178 /// Appends a pointer encoding to Enc before calling appendType for the pointee.
7179 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT,
7180                               const CodeGen::CodeGenModule &CGM,
7181                               TypeStringCache &TSC) {
7182   Enc += "p(";
7183   if (!appendType(Enc, PT->getPointeeType(), CGM, TSC))
7184     return false;
7185   Enc += ')';
7186   return true;
7187 }
7188 
7189 /// Appends array encoding to Enc before calling appendType for the element.
7190 static bool appendArrayType(SmallStringEnc &Enc, QualType QT,
7191                             const ArrayType *AT,
7192                             const CodeGen::CodeGenModule &CGM,
7193                             TypeStringCache &TSC, StringRef NoSizeEnc) {
7194   if (AT->getSizeModifier() != ArrayType::Normal)
7195     return false;
7196   Enc += "a(";
7197   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
7198     CAT->getSize().toStringUnsigned(Enc);
7199   else
7200     Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "".
7201   Enc += ':';
7202   // The Qualifiers should be attached to the type rather than the array.
7203   appendQualifier(Enc, QT);
7204   if (!appendType(Enc, AT->getElementType(), CGM, TSC))
7205     return false;
7206   Enc += ')';
7207   return true;
7208 }
7209 
7210 /// Appends a function encoding to Enc, calling appendType for the return type
7211 /// and the arguments.
7212 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT,
7213                              const CodeGen::CodeGenModule &CGM,
7214                              TypeStringCache &TSC) {
7215   Enc += "f{";
7216   if (!appendType(Enc, FT->getReturnType(), CGM, TSC))
7217     return false;
7218   Enc += "}(";
7219   if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) {
7220     // N.B. we are only interested in the adjusted param types.
7221     auto I = FPT->param_type_begin();
7222     auto E = FPT->param_type_end();
7223     if (I != E) {
7224       do {
7225         if (!appendType(Enc, *I, CGM, TSC))
7226           return false;
7227         ++I;
7228         if (I != E)
7229           Enc += ',';
7230       } while (I != E);
7231       if (FPT->isVariadic())
7232         Enc += ",va";
7233     } else {
7234       if (FPT->isVariadic())
7235         Enc += "va";
7236       else
7237         Enc += '0';
7238     }
7239   }
7240   Enc += ')';
7241   return true;
7242 }
7243 
7244 /// Handles the type's qualifier before dispatching a call to handle specific
7245 /// type encodings.
7246 static bool appendType(SmallStringEnc &Enc, QualType QType,
7247                        const CodeGen::CodeGenModule &CGM,
7248                        TypeStringCache &TSC) {
7249 
7250   QualType QT = QType.getCanonicalType();
7251 
7252   if (const ArrayType *AT = QT->getAsArrayTypeUnsafe())
7253     // The Qualifiers should be attached to the type rather than the array.
7254     // Thus we don't call appendQualifier() here.
7255     return appendArrayType(Enc, QT, AT, CGM, TSC, "");
7256 
7257   appendQualifier(Enc, QT);
7258 
7259   if (const BuiltinType *BT = QT->getAs<BuiltinType>())
7260     return appendBuiltinType(Enc, BT);
7261 
7262   if (const PointerType *PT = QT->getAs<PointerType>())
7263     return appendPointerType(Enc, PT, CGM, TSC);
7264 
7265   if (const EnumType *ET = QT->getAs<EnumType>())
7266     return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier());
7267 
7268   if (const RecordType *RT = QT->getAsStructureType())
7269     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
7270 
7271   if (const RecordType *RT = QT->getAsUnionType())
7272     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
7273 
7274   if (const FunctionType *FT = QT->getAs<FunctionType>())
7275     return appendFunctionType(Enc, FT, CGM, TSC);
7276 
7277   return false;
7278 }
7279 
7280 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
7281                           CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) {
7282   if (!D)
7283     return false;
7284 
7285   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
7286     if (FD->getLanguageLinkage() != CLanguageLinkage)
7287       return false;
7288     return appendType(Enc, FD->getType(), CGM, TSC);
7289   }
7290 
7291   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
7292     if (VD->getLanguageLinkage() != CLanguageLinkage)
7293       return false;
7294     QualType QT = VD->getType().getCanonicalType();
7295     if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) {
7296       // Global ArrayTypes are given a size of '*' if the size is unknown.
7297       // The Qualifiers should be attached to the type rather than the array.
7298       // Thus we don't call appendQualifier() here.
7299       return appendArrayType(Enc, QT, AT, CGM, TSC, "*");
7300     }
7301     return appendType(Enc, QT, CGM, TSC);
7302   }
7303   return false;
7304 }
7305 
7306 
7307 //===----------------------------------------------------------------------===//
7308 // Driver code
7309 //===----------------------------------------------------------------------===//
7310 
7311 const llvm::Triple &CodeGenModule::getTriple() const {
7312   return getTarget().getTriple();
7313 }
7314 
7315 bool CodeGenModule::supportsCOMDAT() const {
7316   return !getTriple().isOSBinFormatMachO();
7317 }
7318 
7319 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
7320   if (TheTargetCodeGenInfo)
7321     return *TheTargetCodeGenInfo;
7322 
7323   const llvm::Triple &Triple = getTarget().getTriple();
7324   switch (Triple.getArch()) {
7325   default:
7326     return *(TheTargetCodeGenInfo = new DefaultTargetCodeGenInfo(Types));
7327 
7328   case llvm::Triple::le32:
7329     return *(TheTargetCodeGenInfo = new PNaClTargetCodeGenInfo(Types));
7330   case llvm::Triple::mips:
7331   case llvm::Triple::mipsel:
7332     if (Triple.getOS() == llvm::Triple::NaCl)
7333       return *(TheTargetCodeGenInfo = new PNaClTargetCodeGenInfo(Types));
7334     return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, true));
7335 
7336   case llvm::Triple::mips64:
7337   case llvm::Triple::mips64el:
7338     return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, false));
7339 
7340   case llvm::Triple::aarch64:
7341   case llvm::Triple::aarch64_be: {
7342     AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS;
7343     if (getTarget().getABI() == "darwinpcs")
7344       Kind = AArch64ABIInfo::DarwinPCS;
7345 
7346     return *(TheTargetCodeGenInfo = new AArch64TargetCodeGenInfo(Types, Kind));
7347   }
7348 
7349   case llvm::Triple::wasm32:
7350   case llvm::Triple::wasm64:
7351     return *(TheTargetCodeGenInfo = new WebAssemblyTargetCodeGenInfo(Types));
7352 
7353   case llvm::Triple::arm:
7354   case llvm::Triple::armeb:
7355   case llvm::Triple::thumb:
7356   case llvm::Triple::thumbeb:
7357     {
7358       if (Triple.getOS() == llvm::Triple::Win32) {
7359         TheTargetCodeGenInfo =
7360             new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP);
7361         return *TheTargetCodeGenInfo;
7362       }
7363 
7364       ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
7365       if (getTarget().getABI() == "apcs-gnu")
7366         Kind = ARMABIInfo::APCS;
7367       else if (CodeGenOpts.FloatABI == "hard" ||
7368                (CodeGenOpts.FloatABI != "soft" &&
7369                 Triple.getEnvironment() == llvm::Triple::GNUEABIHF))
7370         Kind = ARMABIInfo::AAPCS_VFP;
7371 
7372       return *(TheTargetCodeGenInfo = new ARMTargetCodeGenInfo(Types, Kind));
7373     }
7374 
7375   case llvm::Triple::ppc:
7376     return *(TheTargetCodeGenInfo = new PPC32TargetCodeGenInfo(Types));
7377   case llvm::Triple::ppc64:
7378     if (Triple.isOSBinFormatELF()) {
7379       PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1;
7380       if (getTarget().getABI() == "elfv2")
7381         Kind = PPC64_SVR4_ABIInfo::ELFv2;
7382       bool HasQPX = getTarget().getABI() == "elfv1-qpx";
7383 
7384       return *(TheTargetCodeGenInfo =
7385                new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX));
7386     } else
7387       return *(TheTargetCodeGenInfo = new PPC64TargetCodeGenInfo(Types));
7388   case llvm::Triple::ppc64le: {
7389     assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
7390     PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2;
7391     if (getTarget().getABI() == "elfv1" || getTarget().getABI() == "elfv1-qpx")
7392       Kind = PPC64_SVR4_ABIInfo::ELFv1;
7393     bool HasQPX = getTarget().getABI() == "elfv1-qpx";
7394 
7395     return *(TheTargetCodeGenInfo =
7396              new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX));
7397   }
7398 
7399   case llvm::Triple::nvptx:
7400   case llvm::Triple::nvptx64:
7401     return *(TheTargetCodeGenInfo = new NVPTXTargetCodeGenInfo(Types));
7402 
7403   case llvm::Triple::msp430:
7404     return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo(Types));
7405 
7406   case llvm::Triple::systemz: {
7407     bool HasVector = getTarget().getABI() == "vector";
7408     return *(TheTargetCodeGenInfo = new SystemZTargetCodeGenInfo(Types,
7409                                                                  HasVector));
7410   }
7411 
7412   case llvm::Triple::tce:
7413     return *(TheTargetCodeGenInfo = new TCETargetCodeGenInfo(Types));
7414 
7415   case llvm::Triple::x86: {
7416     bool IsDarwinVectorABI = Triple.isOSDarwin();
7417     bool RetSmallStructInRegABI =
7418         X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
7419     bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing();
7420 
7421     if (Triple.getOS() == llvm::Triple::Win32) {
7422       return *(TheTargetCodeGenInfo = new WinX86_32TargetCodeGenInfo(
7423                    Types, IsDarwinVectorABI, RetSmallStructInRegABI,
7424                    IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters));
7425     } else {
7426       return *(TheTargetCodeGenInfo = new X86_32TargetCodeGenInfo(
7427                    Types, IsDarwinVectorABI, RetSmallStructInRegABI,
7428                    IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters,
7429                    CodeGenOpts.FloatABI == "soft"));
7430     }
7431   }
7432 
7433   case llvm::Triple::x86_64: {
7434     StringRef ABI = getTarget().getABI();
7435     X86AVXABILevel AVXLevel = (ABI == "avx512" ? X86AVXABILevel::AVX512 :
7436                                ABI == "avx" ? X86AVXABILevel::AVX :
7437                                X86AVXABILevel::None);
7438 
7439     switch (Triple.getOS()) {
7440     case llvm::Triple::Win32:
7441       return *(TheTargetCodeGenInfo =
7442                    new WinX86_64TargetCodeGenInfo(Types, AVXLevel));
7443     case llvm::Triple::PS4:
7444       return *(TheTargetCodeGenInfo =
7445                    new PS4TargetCodeGenInfo(Types, AVXLevel));
7446     default:
7447       return *(TheTargetCodeGenInfo =
7448                    new X86_64TargetCodeGenInfo(Types, AVXLevel));
7449     }
7450   }
7451   case llvm::Triple::hexagon:
7452     return *(TheTargetCodeGenInfo = new HexagonTargetCodeGenInfo(Types));
7453   case llvm::Triple::r600:
7454     return *(TheTargetCodeGenInfo = new AMDGPUTargetCodeGenInfo(Types));
7455   case llvm::Triple::amdgcn:
7456     return *(TheTargetCodeGenInfo = new AMDGPUTargetCodeGenInfo(Types));
7457   case llvm::Triple::sparcv9:
7458     return *(TheTargetCodeGenInfo = new SparcV9TargetCodeGenInfo(Types));
7459   case llvm::Triple::xcore:
7460     return *(TheTargetCodeGenInfo = new XCoreTargetCodeGenInfo(Types));
7461   }
7462 }
7463