1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // These classes wrap the information about a call or function
11 // definition used to handle ABI compliancy.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "TargetInfo.h"
16 #include "ABIInfo.h"
17 #include "CGBlocks.h"
18 #include "CGCXXABI.h"
19 #include "CGValue.h"
20 #include "CodeGenFunction.h"
21 #include "clang/AST/RecordLayout.h"
22 #include "clang/CodeGen/CGFunctionInfo.h"
23 #include "clang/CodeGen/SwiftCallingConv.h"
24 #include "clang/Frontend/CodeGenOptions.h"
25 #include "llvm/ADT/StringExtras.h"
26 #include "llvm/ADT/StringSwitch.h"
27 #include "llvm/ADT/Triple.h"
28 #include "llvm/ADT/Twine.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/Type.h"
31 #include "llvm/Support/raw_ostream.h"
32 #include <algorithm>    // std::sort
33 
34 using namespace clang;
35 using namespace CodeGen;
36 
37 // Helper for coercing an aggregate argument or return value into an integer
38 // array of the same size (including padding) and alignment.  This alternate
39 // coercion happens only for the RenderScript ABI and can be removed after
40 // runtimes that rely on it are no longer supported.
41 //
42 // RenderScript assumes that the size of the argument / return value in the IR
43 // is the same as the size of the corresponding qualified type. This helper
44 // coerces the aggregate type into an array of the same size (including
45 // padding).  This coercion is used in lieu of expansion of struct members or
46 // other canonical coercions that return a coerced-type of larger size.
47 //
48 // Ty          - The argument / return value type
49 // Context     - The associated ASTContext
50 // LLVMContext - The associated LLVMContext
51 static ABIArgInfo coerceToIntArray(QualType Ty,
52                                    ASTContext &Context,
53                                    llvm::LLVMContext &LLVMContext) {
54   // Alignment and Size are measured in bits.
55   const uint64_t Size = Context.getTypeSize(Ty);
56   const uint64_t Alignment = Context.getTypeAlign(Ty);
57   llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment);
58   const uint64_t NumElements = (Size + Alignment - 1) / Alignment;
59   return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements));
60 }
61 
62 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
63                                llvm::Value *Array,
64                                llvm::Value *Value,
65                                unsigned FirstIndex,
66                                unsigned LastIndex) {
67   // Alternatively, we could emit this as a loop in the source.
68   for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
69     llvm::Value *Cell =
70         Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I);
71     Builder.CreateAlignedStore(Value, Cell, CharUnits::One());
72   }
73 }
74 
75 static bool isAggregateTypeForABI(QualType T) {
76   return !CodeGenFunction::hasScalarEvaluationKind(T) ||
77          T->isMemberFunctionPointerType();
78 }
79 
80 ABIArgInfo
81 ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByRef, bool Realign,
82                                  llvm::Type *Padding) const {
83   return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty),
84                                  ByRef, Realign, Padding);
85 }
86 
87 ABIArgInfo
88 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const {
89   return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty),
90                                       /*ByRef*/ false, Realign);
91 }
92 
93 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
94                              QualType Ty) const {
95   return Address::invalid();
96 }
97 
98 ABIInfo::~ABIInfo() {}
99 
100 /// Does the given lowering require more than the given number of
101 /// registers when expanded?
102 ///
103 /// This is intended to be the basis of a reasonable basic implementation
104 /// of should{Pass,Return}IndirectlyForSwift.
105 ///
106 /// For most targets, a limit of four total registers is reasonable; this
107 /// limits the amount of code required in order to move around the value
108 /// in case it wasn't produced immediately prior to the call by the caller
109 /// (or wasn't produced in exactly the right registers) or isn't used
110 /// immediately within the callee.  But some targets may need to further
111 /// limit the register count due to an inability to support that many
112 /// return registers.
113 static bool occupiesMoreThan(CodeGenTypes &cgt,
114                              ArrayRef<llvm::Type*> scalarTypes,
115                              unsigned maxAllRegisters) {
116   unsigned intCount = 0, fpCount = 0;
117   for (llvm::Type *type : scalarTypes) {
118     if (type->isPointerTy()) {
119       intCount++;
120     } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) {
121       auto ptrWidth = cgt.getTarget().getPointerWidth(0);
122       intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth;
123     } else {
124       assert(type->isVectorTy() || type->isFloatingPointTy());
125       fpCount++;
126     }
127   }
128 
129   return (intCount + fpCount > maxAllRegisters);
130 }
131 
132 bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize,
133                                              llvm::Type *eltTy,
134                                              unsigned numElts) const {
135   // The default implementation of this assumes that the target guarantees
136   // 128-bit SIMD support but nothing more.
137   return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16);
138 }
139 
140 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT,
141                                               CGCXXABI &CXXABI) {
142   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
143   if (!RD)
144     return CGCXXABI::RAA_Default;
145   return CXXABI.getRecordArgABI(RD);
146 }
147 
148 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T,
149                                               CGCXXABI &CXXABI) {
150   const RecordType *RT = T->getAs<RecordType>();
151   if (!RT)
152     return CGCXXABI::RAA_Default;
153   return getRecordArgABI(RT, CXXABI);
154 }
155 
156 /// Pass transparent unions as if they were the type of the first element. Sema
157 /// should ensure that all elements of the union have the same "machine type".
158 static QualType useFirstFieldIfTransparentUnion(QualType Ty) {
159   if (const RecordType *UT = Ty->getAsUnionType()) {
160     const RecordDecl *UD = UT->getDecl();
161     if (UD->hasAttr<TransparentUnionAttr>()) {
162       assert(!UD->field_empty() && "sema created an empty transparent union");
163       return UD->field_begin()->getType();
164     }
165   }
166   return Ty;
167 }
168 
169 CGCXXABI &ABIInfo::getCXXABI() const {
170   return CGT.getCXXABI();
171 }
172 
173 ASTContext &ABIInfo::getContext() const {
174   return CGT.getContext();
175 }
176 
177 llvm::LLVMContext &ABIInfo::getVMContext() const {
178   return CGT.getLLVMContext();
179 }
180 
181 const llvm::DataLayout &ABIInfo::getDataLayout() const {
182   return CGT.getDataLayout();
183 }
184 
185 const TargetInfo &ABIInfo::getTarget() const {
186   return CGT.getTarget();
187 }
188 
189 const CodeGenOptions &ABIInfo::getCodeGenOpts() const {
190   return CGT.getCodeGenOpts();
191 }
192 
193 bool ABIInfo::isAndroid() const { return getTarget().getTriple().isAndroid(); }
194 
195 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
196   return false;
197 }
198 
199 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
200                                                 uint64_t Members) const {
201   return false;
202 }
203 
204 bool ABIInfo::shouldSignExtUnsignedType(QualType Ty) const {
205   return false;
206 }
207 
208 LLVM_DUMP_METHOD void ABIArgInfo::dump() const {
209   raw_ostream &OS = llvm::errs();
210   OS << "(ABIArgInfo Kind=";
211   switch (TheKind) {
212   case Direct:
213     OS << "Direct Type=";
214     if (llvm::Type *Ty = getCoerceToType())
215       Ty->print(OS);
216     else
217       OS << "null";
218     break;
219   case Extend:
220     OS << "Extend";
221     break;
222   case Ignore:
223     OS << "Ignore";
224     break;
225   case InAlloca:
226     OS << "InAlloca Offset=" << getInAllocaFieldIndex();
227     break;
228   case Indirect:
229     OS << "Indirect Align=" << getIndirectAlign().getQuantity()
230        << " ByVal=" << getIndirectByVal()
231        << " Realign=" << getIndirectRealign();
232     break;
233   case Expand:
234     OS << "Expand";
235     break;
236   case CoerceAndExpand:
237     OS << "CoerceAndExpand Type=";
238     getCoerceAndExpandType()->print(OS);
239     break;
240   }
241   OS << ")\n";
242 }
243 
244 // Dynamically round a pointer up to a multiple of the given alignment.
245 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF,
246                                                   llvm::Value *Ptr,
247                                                   CharUnits Align) {
248   llvm::Value *PtrAsInt = Ptr;
249   // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align;
250   PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy);
251   PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt,
252         llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1));
253   PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt,
254            llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity()));
255   PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt,
256                                         Ptr->getType(),
257                                         Ptr->getName() + ".aligned");
258   return PtrAsInt;
259 }
260 
261 /// Emit va_arg for a platform using the common void* representation,
262 /// where arguments are simply emitted in an array of slots on the stack.
263 ///
264 /// This version implements the core direct-value passing rules.
265 ///
266 /// \param SlotSize - The size and alignment of a stack slot.
267 ///   Each argument will be allocated to a multiple of this number of
268 ///   slots, and all the slots will be aligned to this value.
269 /// \param AllowHigherAlign - The slot alignment is not a cap;
270 ///   an argument type with an alignment greater than the slot size
271 ///   will be emitted on a higher-alignment address, potentially
272 ///   leaving one or more empty slots behind as padding.  If this
273 ///   is false, the returned address might be less-aligned than
274 ///   DirectAlign.
275 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF,
276                                       Address VAListAddr,
277                                       llvm::Type *DirectTy,
278                                       CharUnits DirectSize,
279                                       CharUnits DirectAlign,
280                                       CharUnits SlotSize,
281                                       bool AllowHigherAlign) {
282   // Cast the element type to i8* if necessary.  Some platforms define
283   // va_list as a struct containing an i8* instead of just an i8*.
284   if (VAListAddr.getElementType() != CGF.Int8PtrTy)
285     VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy);
286 
287   llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur");
288 
289   // If the CC aligns values higher than the slot size, do so if needed.
290   Address Addr = Address::invalid();
291   if (AllowHigherAlign && DirectAlign > SlotSize) {
292     Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign),
293                                                  DirectAlign);
294   } else {
295     Addr = Address(Ptr, SlotSize);
296   }
297 
298   // Advance the pointer past the argument, then store that back.
299   CharUnits FullDirectSize = DirectSize.alignTo(SlotSize);
300   llvm::Value *NextPtr =
301     CGF.Builder.CreateConstInBoundsByteGEP(Addr.getPointer(), FullDirectSize,
302                                            "argp.next");
303   CGF.Builder.CreateStore(NextPtr, VAListAddr);
304 
305   // If the argument is smaller than a slot, and this is a big-endian
306   // target, the argument will be right-adjusted in its slot.
307   if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() &&
308       !DirectTy->isStructTy()) {
309     Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize);
310   }
311 
312   Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy);
313   return Addr;
314 }
315 
316 /// Emit va_arg for a platform using the common void* representation,
317 /// where arguments are simply emitted in an array of slots on the stack.
318 ///
319 /// \param IsIndirect - Values of this type are passed indirectly.
320 /// \param ValueInfo - The size and alignment of this type, generally
321 ///   computed with getContext().getTypeInfoInChars(ValueTy).
322 /// \param SlotSizeAndAlign - The size and alignment of a stack slot.
323 ///   Each argument will be allocated to a multiple of this number of
324 ///   slots, and all the slots will be aligned to this value.
325 /// \param AllowHigherAlign - The slot alignment is not a cap;
326 ///   an argument type with an alignment greater than the slot size
327 ///   will be emitted on a higher-alignment address, potentially
328 ///   leaving one or more empty slots behind as padding.
329 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr,
330                                 QualType ValueTy, bool IsIndirect,
331                                 std::pair<CharUnits, CharUnits> ValueInfo,
332                                 CharUnits SlotSizeAndAlign,
333                                 bool AllowHigherAlign) {
334   // The size and alignment of the value that was passed directly.
335   CharUnits DirectSize, DirectAlign;
336   if (IsIndirect) {
337     DirectSize = CGF.getPointerSize();
338     DirectAlign = CGF.getPointerAlign();
339   } else {
340     DirectSize = ValueInfo.first;
341     DirectAlign = ValueInfo.second;
342   }
343 
344   // Cast the address we've calculated to the right type.
345   llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy);
346   if (IsIndirect)
347     DirectTy = DirectTy->getPointerTo(0);
348 
349   Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy,
350                                         DirectSize, DirectAlign,
351                                         SlotSizeAndAlign,
352                                         AllowHigherAlign);
353 
354   if (IsIndirect) {
355     Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.second);
356   }
357 
358   return Addr;
359 
360 }
361 
362 static Address emitMergePHI(CodeGenFunction &CGF,
363                             Address Addr1, llvm::BasicBlock *Block1,
364                             Address Addr2, llvm::BasicBlock *Block2,
365                             const llvm::Twine &Name = "") {
366   assert(Addr1.getType() == Addr2.getType());
367   llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name);
368   PHI->addIncoming(Addr1.getPointer(), Block1);
369   PHI->addIncoming(Addr2.getPointer(), Block2);
370   CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment());
371   return Address(PHI, Align);
372 }
373 
374 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }
375 
376 // If someone can figure out a general rule for this, that would be great.
377 // It's probably just doomed to be platform-dependent, though.
378 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const {
379   // Verified for:
380   //   x86-64     FreeBSD, Linux, Darwin
381   //   x86-32     FreeBSD, Linux, Darwin
382   //   PowerPC    Linux, Darwin
383   //   ARM        Darwin (*not* EABI)
384   //   AArch64    Linux
385   return 32;
386 }
387 
388 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args,
389                                      const FunctionNoProtoType *fnType) const {
390   // The following conventions are known to require this to be false:
391   //   x86_stdcall
392   //   MIPS
393   // For everything else, we just prefer false unless we opt out.
394   return false;
395 }
396 
397 void
398 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib,
399                                              llvm::SmallString<24> &Opt) const {
400   // This assumes the user is passing a library name like "rt" instead of a
401   // filename like "librt.a/so", and that they don't care whether it's static or
402   // dynamic.
403   Opt = "-l";
404   Opt += Lib;
405 }
406 
407 unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const {
408   // OpenCL kernels are called via an explicit runtime API with arguments
409   // set with clSetKernelArg(), not as normal sub-functions.
410   // Return SPIR_KERNEL by default as the kernel calling convention to
411   // ensure the fingerprint is fixed such way that each OpenCL argument
412   // gets one matching argument in the produced kernel function argument
413   // list to enable feasible implementation of clSetKernelArg() with
414   // aggregates etc. In case we would use the default C calling conv here,
415   // clSetKernelArg() might break depending on the target-specific
416   // conventions; different targets might split structs passed as values
417   // to multiple function arguments etc.
418   return llvm::CallingConv::SPIR_KERNEL;
419 }
420 
421 llvm::Constant *TargetCodeGenInfo::getNullPointer(const CodeGen::CodeGenModule &CGM,
422     llvm::PointerType *T, QualType QT) const {
423   return llvm::ConstantPointerNull::get(T);
424 }
425 
426 LangAS TargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM,
427                                                    const VarDecl *D) const {
428   assert(!CGM.getLangOpts().OpenCL &&
429          !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) &&
430          "Address space agnostic languages only");
431   return D ? D->getType().getAddressSpace() : LangAS::Default;
432 }
433 
434 llvm::Value *TargetCodeGenInfo::performAddrSpaceCast(
435     CodeGen::CodeGenFunction &CGF, llvm::Value *Src, LangAS SrcAddr,
436     LangAS DestAddr, llvm::Type *DestTy, bool isNonNull) const {
437   // Since target may map different address spaces in AST to the same address
438   // space, an address space conversion may end up as a bitcast.
439   if (auto *C = dyn_cast<llvm::Constant>(Src))
440     return performAddrSpaceCast(CGF.CGM, C, SrcAddr, DestAddr, DestTy);
441   return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DestTy);
442 }
443 
444 llvm::Constant *
445 TargetCodeGenInfo::performAddrSpaceCast(CodeGenModule &CGM, llvm::Constant *Src,
446                                         LangAS SrcAddr, LangAS DestAddr,
447                                         llvm::Type *DestTy) const {
448   // Since target may map different address spaces in AST to the same address
449   // space, an address space conversion may end up as a bitcast.
450   return llvm::ConstantExpr::getPointerCast(Src, DestTy);
451 }
452 
453 llvm::SyncScope::ID
454 TargetCodeGenInfo::getLLVMSyncScopeID(SyncScope S, llvm::LLVMContext &C) const {
455   return C.getOrInsertSyncScopeID(""); /* default sync scope */
456 }
457 
458 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
459 
460 /// isEmptyField - Return true iff a the field is "empty", that is it
461 /// is an unnamed bit-field or an (array of) empty record(s).
462 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
463                          bool AllowArrays) {
464   if (FD->isUnnamedBitfield())
465     return true;
466 
467   QualType FT = FD->getType();
468 
469   // Constant arrays of empty records count as empty, strip them off.
470   // Constant arrays of zero length always count as empty.
471   if (AllowArrays)
472     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
473       if (AT->getSize() == 0)
474         return true;
475       FT = AT->getElementType();
476     }
477 
478   const RecordType *RT = FT->getAs<RecordType>();
479   if (!RT)
480     return false;
481 
482   // C++ record fields are never empty, at least in the Itanium ABI.
483   //
484   // FIXME: We should use a predicate for whether this behavior is true in the
485   // current ABI.
486   if (isa<CXXRecordDecl>(RT->getDecl()))
487     return false;
488 
489   return isEmptyRecord(Context, FT, AllowArrays);
490 }
491 
492 /// isEmptyRecord - Return true iff a structure contains only empty
493 /// fields. Note that a structure with a flexible array member is not
494 /// considered empty.
495 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
496   const RecordType *RT = T->getAs<RecordType>();
497   if (!RT)
498     return false;
499   const RecordDecl *RD = RT->getDecl();
500   if (RD->hasFlexibleArrayMember())
501     return false;
502 
503   // If this is a C++ record, check the bases first.
504   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
505     for (const auto &I : CXXRD->bases())
506       if (!isEmptyRecord(Context, I.getType(), true))
507         return false;
508 
509   for (const auto *I : RD->fields())
510     if (!isEmptyField(Context, I, AllowArrays))
511       return false;
512   return true;
513 }
514 
515 /// isSingleElementStruct - Determine if a structure is a "single
516 /// element struct", i.e. it has exactly one non-empty field or
517 /// exactly one field which is itself a single element
518 /// struct. Structures with flexible array members are never
519 /// considered single element structs.
520 ///
521 /// \return The field declaration for the single non-empty field, if
522 /// it exists.
523 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
524   const RecordType *RT = T->getAs<RecordType>();
525   if (!RT)
526     return nullptr;
527 
528   const RecordDecl *RD = RT->getDecl();
529   if (RD->hasFlexibleArrayMember())
530     return nullptr;
531 
532   const Type *Found = nullptr;
533 
534   // If this is a C++ record, check the bases first.
535   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
536     for (const auto &I : CXXRD->bases()) {
537       // Ignore empty records.
538       if (isEmptyRecord(Context, I.getType(), true))
539         continue;
540 
541       // If we already found an element then this isn't a single-element struct.
542       if (Found)
543         return nullptr;
544 
545       // If this is non-empty and not a single element struct, the composite
546       // cannot be a single element struct.
547       Found = isSingleElementStruct(I.getType(), Context);
548       if (!Found)
549         return nullptr;
550     }
551   }
552 
553   // Check for single element.
554   for (const auto *FD : RD->fields()) {
555     QualType FT = FD->getType();
556 
557     // Ignore empty fields.
558     if (isEmptyField(Context, FD, true))
559       continue;
560 
561     // If we already found an element then this isn't a single-element
562     // struct.
563     if (Found)
564       return nullptr;
565 
566     // Treat single element arrays as the element.
567     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
568       if (AT->getSize().getZExtValue() != 1)
569         break;
570       FT = AT->getElementType();
571     }
572 
573     if (!isAggregateTypeForABI(FT)) {
574       Found = FT.getTypePtr();
575     } else {
576       Found = isSingleElementStruct(FT, Context);
577       if (!Found)
578         return nullptr;
579     }
580   }
581 
582   // We don't consider a struct a single-element struct if it has
583   // padding beyond the element type.
584   if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T))
585     return nullptr;
586 
587   return Found;
588 }
589 
590 namespace {
591 Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty,
592                        const ABIArgInfo &AI) {
593   // This default implementation defers to the llvm backend's va_arg
594   // instruction. It can handle only passing arguments directly
595   // (typically only handled in the backend for primitive types), or
596   // aggregates passed indirectly by pointer (NOTE: if the "byval"
597   // flag has ABI impact in the callee, this implementation cannot
598   // work.)
599 
600   // Only a few cases are covered here at the moment -- those needed
601   // by the default abi.
602   llvm::Value *Val;
603 
604   if (AI.isIndirect()) {
605     assert(!AI.getPaddingType() &&
606            "Unexpected PaddingType seen in arginfo in generic VAArg emitter!");
607     assert(
608         !AI.getIndirectRealign() &&
609         "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!");
610 
611     auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty);
612     CharUnits TyAlignForABI = TyInfo.second;
613 
614     llvm::Type *BaseTy =
615         llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
616     llvm::Value *Addr =
617         CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy);
618     return Address(Addr, TyAlignForABI);
619   } else {
620     assert((AI.isDirect() || AI.isExtend()) &&
621            "Unexpected ArgInfo Kind in generic VAArg emitter!");
622 
623     assert(!AI.getInReg() &&
624            "Unexpected InReg seen in arginfo in generic VAArg emitter!");
625     assert(!AI.getPaddingType() &&
626            "Unexpected PaddingType seen in arginfo in generic VAArg emitter!");
627     assert(!AI.getDirectOffset() &&
628            "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!");
629     assert(!AI.getCoerceToType() &&
630            "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!");
631 
632     Address Temp = CGF.CreateMemTemp(Ty, "varet");
633     Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), CGF.ConvertType(Ty));
634     CGF.Builder.CreateStore(Val, Temp);
635     return Temp;
636   }
637 }
638 
639 /// DefaultABIInfo - The default implementation for ABI specific
640 /// details. This implementation provides information which results in
641 /// self-consistent and sensible LLVM IR generation, but does not
642 /// conform to any particular ABI.
643 class DefaultABIInfo : public ABIInfo {
644 public:
645   DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
646 
647   ABIArgInfo classifyReturnType(QualType RetTy) const;
648   ABIArgInfo classifyArgumentType(QualType RetTy) const;
649 
650   void computeInfo(CGFunctionInfo &FI) const override {
651     if (!getCXXABI().classifyReturnType(FI))
652       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
653     for (auto &I : FI.arguments())
654       I.info = classifyArgumentType(I.type);
655   }
656 
657   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
658                     QualType Ty) const override {
659     return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty));
660   }
661 };
662 
663 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
664 public:
665   DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
666     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
667 };
668 
669 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
670   Ty = useFirstFieldIfTransparentUnion(Ty);
671 
672   if (isAggregateTypeForABI(Ty)) {
673     // Records with non-trivial destructors/copy-constructors should not be
674     // passed by value.
675     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
676       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
677 
678     return getNaturalAlignIndirect(Ty);
679   }
680 
681   // Treat an enum type as its underlying type.
682   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
683     Ty = EnumTy->getDecl()->getIntegerType();
684 
685   return (Ty->isPromotableIntegerType() ?
686           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
687 }
688 
689 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
690   if (RetTy->isVoidType())
691     return ABIArgInfo::getIgnore();
692 
693   if (isAggregateTypeForABI(RetTy))
694     return getNaturalAlignIndirect(RetTy);
695 
696   // Treat an enum type as its underlying type.
697   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
698     RetTy = EnumTy->getDecl()->getIntegerType();
699 
700   return (RetTy->isPromotableIntegerType() ?
701           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
702 }
703 
704 //===----------------------------------------------------------------------===//
705 // WebAssembly ABI Implementation
706 //
707 // This is a very simple ABI that relies a lot on DefaultABIInfo.
708 //===----------------------------------------------------------------------===//
709 
710 class WebAssemblyABIInfo final : public DefaultABIInfo {
711 public:
712   explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT)
713       : DefaultABIInfo(CGT) {}
714 
715 private:
716   ABIArgInfo classifyReturnType(QualType RetTy) const;
717   ABIArgInfo classifyArgumentType(QualType Ty) const;
718 
719   // DefaultABIInfo's classifyReturnType and classifyArgumentType are
720   // non-virtual, but computeInfo and EmitVAArg are virtual, so we
721   // overload them.
722   void computeInfo(CGFunctionInfo &FI) const override {
723     if (!getCXXABI().classifyReturnType(FI))
724       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
725     for (auto &Arg : FI.arguments())
726       Arg.info = classifyArgumentType(Arg.type);
727   }
728 
729   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
730                     QualType Ty) const override;
731 };
732 
733 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo {
734 public:
735   explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
736       : TargetCodeGenInfo(new WebAssemblyABIInfo(CGT)) {}
737 };
738 
739 /// \brief Classify argument of given type \p Ty.
740 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const {
741   Ty = useFirstFieldIfTransparentUnion(Ty);
742 
743   if (isAggregateTypeForABI(Ty)) {
744     // Records with non-trivial destructors/copy-constructors should not be
745     // passed by value.
746     if (auto RAA = getRecordArgABI(Ty, getCXXABI()))
747       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
748     // Ignore empty structs/unions.
749     if (isEmptyRecord(getContext(), Ty, true))
750       return ABIArgInfo::getIgnore();
751     // Lower single-element structs to just pass a regular value. TODO: We
752     // could do reasonable-size multiple-element structs too, using getExpand(),
753     // though watch out for things like bitfields.
754     if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
755       return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
756   }
757 
758   // Otherwise just do the default thing.
759   return DefaultABIInfo::classifyArgumentType(Ty);
760 }
761 
762 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const {
763   if (isAggregateTypeForABI(RetTy)) {
764     // Records with non-trivial destructors/copy-constructors should not be
765     // returned by value.
766     if (!getRecordArgABI(RetTy, getCXXABI())) {
767       // Ignore empty structs/unions.
768       if (isEmptyRecord(getContext(), RetTy, true))
769         return ABIArgInfo::getIgnore();
770       // Lower single-element structs to just return a regular value. TODO: We
771       // could do reasonable-size multiple-element structs too, using
772       // ABIArgInfo::getDirect().
773       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
774         return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
775     }
776   }
777 
778   // Otherwise just do the default thing.
779   return DefaultABIInfo::classifyReturnType(RetTy);
780 }
781 
782 Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
783                                       QualType Ty) const {
784   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect=*/ false,
785                           getContext().getTypeInfoInChars(Ty),
786                           CharUnits::fromQuantity(4),
787                           /*AllowHigherAlign=*/ true);
788 }
789 
790 //===----------------------------------------------------------------------===//
791 // le32/PNaCl bitcode ABI Implementation
792 //
793 // This is a simplified version of the x86_32 ABI.  Arguments and return values
794 // are always passed on the stack.
795 //===----------------------------------------------------------------------===//
796 
797 class PNaClABIInfo : public ABIInfo {
798  public:
799   PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
800 
801   ABIArgInfo classifyReturnType(QualType RetTy) const;
802   ABIArgInfo classifyArgumentType(QualType RetTy) const;
803 
804   void computeInfo(CGFunctionInfo &FI) const override;
805   Address EmitVAArg(CodeGenFunction &CGF,
806                     Address VAListAddr, QualType Ty) const override;
807 };
808 
809 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo {
810  public:
811   PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
812     : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {}
813 };
814 
815 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const {
816   if (!getCXXABI().classifyReturnType(FI))
817     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
818 
819   for (auto &I : FI.arguments())
820     I.info = classifyArgumentType(I.type);
821 }
822 
823 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
824                                 QualType Ty) const {
825   // The PNaCL ABI is a bit odd, in that varargs don't use normal
826   // function classification. Structs get passed directly for varargs
827   // functions, through a rewriting transform in
828   // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows
829   // this target to actually support a va_arg instructions with an
830   // aggregate type, unlike other targets.
831   return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect());
832 }
833 
834 /// \brief Classify argument of given type \p Ty.
835 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const {
836   if (isAggregateTypeForABI(Ty)) {
837     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
838       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
839     return getNaturalAlignIndirect(Ty);
840   } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
841     // Treat an enum type as its underlying type.
842     Ty = EnumTy->getDecl()->getIntegerType();
843   } else if (Ty->isFloatingType()) {
844     // Floating-point types don't go inreg.
845     return ABIArgInfo::getDirect();
846   }
847 
848   return (Ty->isPromotableIntegerType() ?
849           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
850 }
851 
852 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const {
853   if (RetTy->isVoidType())
854     return ABIArgInfo::getIgnore();
855 
856   // In the PNaCl ABI we always return records/structures on the stack.
857   if (isAggregateTypeForABI(RetTy))
858     return getNaturalAlignIndirect(RetTy);
859 
860   // Treat an enum type as its underlying type.
861   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
862     RetTy = EnumTy->getDecl()->getIntegerType();
863 
864   return (RetTy->isPromotableIntegerType() ?
865           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
866 }
867 
868 /// IsX86_MMXType - Return true if this is an MMX type.
869 bool IsX86_MMXType(llvm::Type *IRType) {
870   // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>.
871   return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
872     cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
873     IRType->getScalarSizeInBits() != 64;
874 }
875 
876 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
877                                           StringRef Constraint,
878                                           llvm::Type* Ty) {
879   bool IsMMXCons = llvm::StringSwitch<bool>(Constraint)
880                      .Cases("y", "&y", "^Ym", true)
881                      .Default(false);
882   if (IsMMXCons && Ty->isVectorTy()) {
883     if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) {
884       // Invalid MMX constraint
885       return nullptr;
886     }
887 
888     return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
889   }
890 
891   // No operation needed
892   return Ty;
893 }
894 
895 /// Returns true if this type can be passed in SSE registers with the
896 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64.
897 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) {
898   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
899     if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) {
900       if (BT->getKind() == BuiltinType::LongDouble) {
901         if (&Context.getTargetInfo().getLongDoubleFormat() ==
902             &llvm::APFloat::x87DoubleExtended())
903           return false;
904       }
905       return true;
906     }
907   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
908     // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX
909     // registers specially.
910     unsigned VecSize = Context.getTypeSize(VT);
911     if (VecSize == 128 || VecSize == 256 || VecSize == 512)
912       return true;
913   }
914   return false;
915 }
916 
917 /// Returns true if this aggregate is small enough to be passed in SSE registers
918 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64.
919 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) {
920   return NumMembers <= 4;
921 }
922 
923 /// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86.
924 static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) {
925   auto AI = ABIArgInfo::getDirect(T);
926   AI.setInReg(true);
927   AI.setCanBeFlattened(false);
928   return AI;
929 }
930 
931 //===----------------------------------------------------------------------===//
932 // X86-32 ABI Implementation
933 //===----------------------------------------------------------------------===//
934 
935 /// \brief Similar to llvm::CCState, but for Clang.
936 struct CCState {
937   CCState(unsigned CC) : CC(CC), FreeRegs(0), FreeSSERegs(0) {}
938 
939   unsigned CC;
940   unsigned FreeRegs;
941   unsigned FreeSSERegs;
942 };
943 
944 enum {
945   // Vectorcall only allows the first 6 parameters to be passed in registers.
946   VectorcallMaxParamNumAsReg = 6
947 };
948 
949 /// X86_32ABIInfo - The X86-32 ABI information.
950 class X86_32ABIInfo : public SwiftABIInfo {
951   enum Class {
952     Integer,
953     Float
954   };
955 
956   static const unsigned MinABIStackAlignInBytes = 4;
957 
958   bool IsDarwinVectorABI;
959   bool IsRetSmallStructInRegABI;
960   bool IsWin32StructABI;
961   bool IsSoftFloatABI;
962   bool IsMCUABI;
963   unsigned DefaultNumRegisterParameters;
964 
965   static bool isRegisterSize(unsigned Size) {
966     return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
967   }
968 
969   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
970     // FIXME: Assumes vectorcall is in use.
971     return isX86VectorTypeForVectorCall(getContext(), Ty);
972   }
973 
974   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
975                                          uint64_t NumMembers) const override {
976     // FIXME: Assumes vectorcall is in use.
977     return isX86VectorCallAggregateSmallEnough(NumMembers);
978   }
979 
980   bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const;
981 
982   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
983   /// such that the argument will be passed in memory.
984   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
985 
986   ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const;
987 
988   /// \brief Return the alignment to use for the given type on the stack.
989   unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
990 
991   Class classify(QualType Ty) const;
992   ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const;
993   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
994 
995   /// \brief Updates the number of available free registers, returns
996   /// true if any registers were allocated.
997   bool updateFreeRegs(QualType Ty, CCState &State) const;
998 
999   bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg,
1000                                 bool &NeedsPadding) const;
1001   bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const;
1002 
1003   bool canExpandIndirectArgument(QualType Ty) const;
1004 
1005   /// \brief Rewrite the function info so that all memory arguments use
1006   /// inalloca.
1007   void rewriteWithInAlloca(CGFunctionInfo &FI) const;
1008 
1009   void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
1010                            CharUnits &StackOffset, ABIArgInfo &Info,
1011                            QualType Type) const;
1012   void computeVectorCallArgs(CGFunctionInfo &FI, CCState &State,
1013                              bool &UsedInAlloca) const;
1014 
1015 public:
1016 
1017   void computeInfo(CGFunctionInfo &FI) const override;
1018   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
1019                     QualType Ty) const override;
1020 
1021   X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
1022                 bool RetSmallStructInRegABI, bool Win32StructABI,
1023                 unsigned NumRegisterParameters, bool SoftFloatABI)
1024     : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI),
1025       IsRetSmallStructInRegABI(RetSmallStructInRegABI),
1026       IsWin32StructABI(Win32StructABI),
1027       IsSoftFloatABI(SoftFloatABI),
1028       IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()),
1029       DefaultNumRegisterParameters(NumRegisterParameters) {}
1030 
1031   bool shouldPassIndirectlyForSwift(CharUnits totalSize,
1032                                     ArrayRef<llvm::Type*> scalars,
1033                                     bool asReturnValue) const override {
1034     // LLVM's x86-32 lowering currently only assigns up to three
1035     // integer registers and three fp registers.  Oddly, it'll use up to
1036     // four vector registers for vectors, but those can overlap with the
1037     // scalar registers.
1038     return occupiesMoreThan(CGT, scalars, /*total*/ 3);
1039   }
1040 
1041   bool isSwiftErrorInRegister() const override {
1042     // x86-32 lowering does not support passing swifterror in a register.
1043     return false;
1044   }
1045 };
1046 
1047 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
1048 public:
1049   X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
1050                           bool RetSmallStructInRegABI, bool Win32StructABI,
1051                           unsigned NumRegisterParameters, bool SoftFloatABI)
1052       : TargetCodeGenInfo(new X86_32ABIInfo(
1053             CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI,
1054             NumRegisterParameters, SoftFloatABI)) {}
1055 
1056   static bool isStructReturnInRegABI(
1057       const llvm::Triple &Triple, const CodeGenOptions &Opts);
1058 
1059   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
1060                            CodeGen::CodeGenModule &CGM,
1061                            ForDefinition_t IsForDefinition) const override;
1062 
1063   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
1064     // Darwin uses different dwarf register numbers for EH.
1065     if (CGM.getTarget().getTriple().isOSDarwin()) return 5;
1066     return 4;
1067   }
1068 
1069   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1070                                llvm::Value *Address) const override;
1071 
1072   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
1073                                   StringRef Constraint,
1074                                   llvm::Type* Ty) const override {
1075     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
1076   }
1077 
1078   void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue,
1079                                 std::string &Constraints,
1080                                 std::vector<llvm::Type *> &ResultRegTypes,
1081                                 std::vector<llvm::Type *> &ResultTruncRegTypes,
1082                                 std::vector<LValue> &ResultRegDests,
1083                                 std::string &AsmString,
1084                                 unsigned NumOutputs) const override;
1085 
1086   llvm::Constant *
1087   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
1088     unsigned Sig = (0xeb << 0) |  // jmp rel8
1089                    (0x06 << 8) |  //           .+0x08
1090                    ('v' << 16) |
1091                    ('2' << 24);
1092     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
1093   }
1094 
1095   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
1096     return "movl\t%ebp, %ebp"
1097            "\t\t// marker for objc_retainAutoreleaseReturnValue";
1098   }
1099 };
1100 
1101 }
1102 
1103 /// Rewrite input constraint references after adding some output constraints.
1104 /// In the case where there is one output and one input and we add one output,
1105 /// we need to replace all operand references greater than or equal to 1:
1106 ///     mov $0, $1
1107 ///     mov eax, $1
1108 /// The result will be:
1109 ///     mov $0, $2
1110 ///     mov eax, $2
1111 static void rewriteInputConstraintReferences(unsigned FirstIn,
1112                                              unsigned NumNewOuts,
1113                                              std::string &AsmString) {
1114   std::string Buf;
1115   llvm::raw_string_ostream OS(Buf);
1116   size_t Pos = 0;
1117   while (Pos < AsmString.size()) {
1118     size_t DollarStart = AsmString.find('$', Pos);
1119     if (DollarStart == std::string::npos)
1120       DollarStart = AsmString.size();
1121     size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart);
1122     if (DollarEnd == std::string::npos)
1123       DollarEnd = AsmString.size();
1124     OS << StringRef(&AsmString[Pos], DollarEnd - Pos);
1125     Pos = DollarEnd;
1126     size_t NumDollars = DollarEnd - DollarStart;
1127     if (NumDollars % 2 != 0 && Pos < AsmString.size()) {
1128       // We have an operand reference.
1129       size_t DigitStart = Pos;
1130       size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart);
1131       if (DigitEnd == std::string::npos)
1132         DigitEnd = AsmString.size();
1133       StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart);
1134       unsigned OperandIndex;
1135       if (!OperandStr.getAsInteger(10, OperandIndex)) {
1136         if (OperandIndex >= FirstIn)
1137           OperandIndex += NumNewOuts;
1138         OS << OperandIndex;
1139       } else {
1140         OS << OperandStr;
1141       }
1142       Pos = DigitEnd;
1143     }
1144   }
1145   AsmString = std::move(OS.str());
1146 }
1147 
1148 /// Add output constraints for EAX:EDX because they are return registers.
1149 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs(
1150     CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints,
1151     std::vector<llvm::Type *> &ResultRegTypes,
1152     std::vector<llvm::Type *> &ResultTruncRegTypes,
1153     std::vector<LValue> &ResultRegDests, std::string &AsmString,
1154     unsigned NumOutputs) const {
1155   uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType());
1156 
1157   // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is
1158   // larger.
1159   if (!Constraints.empty())
1160     Constraints += ',';
1161   if (RetWidth <= 32) {
1162     Constraints += "={eax}";
1163     ResultRegTypes.push_back(CGF.Int32Ty);
1164   } else {
1165     // Use the 'A' constraint for EAX:EDX.
1166     Constraints += "=A";
1167     ResultRegTypes.push_back(CGF.Int64Ty);
1168   }
1169 
1170   // Truncate EAX or EAX:EDX to an integer of the appropriate size.
1171   llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth);
1172   ResultTruncRegTypes.push_back(CoerceTy);
1173 
1174   // Coerce the integer by bitcasting the return slot pointer.
1175   ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(),
1176                                                   CoerceTy->getPointerTo()));
1177   ResultRegDests.push_back(ReturnSlot);
1178 
1179   rewriteInputConstraintReferences(NumOutputs, 1, AsmString);
1180 }
1181 
1182 /// shouldReturnTypeInRegister - Determine if the given type should be
1183 /// returned in a register (for the Darwin and MCU ABI).
1184 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
1185                                                ASTContext &Context) const {
1186   uint64_t Size = Context.getTypeSize(Ty);
1187 
1188   // For i386, type must be register sized.
1189   // For the MCU ABI, it only needs to be <= 8-byte
1190   if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size)))
1191    return false;
1192 
1193   if (Ty->isVectorType()) {
1194     // 64- and 128- bit vectors inside structures are not returned in
1195     // registers.
1196     if (Size == 64 || Size == 128)
1197       return false;
1198 
1199     return true;
1200   }
1201 
1202   // If this is a builtin, pointer, enum, complex type, member pointer, or
1203   // member function pointer it is ok.
1204   if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
1205       Ty->isAnyComplexType() || Ty->isEnumeralType() ||
1206       Ty->isBlockPointerType() || Ty->isMemberPointerType())
1207     return true;
1208 
1209   // Arrays are treated like records.
1210   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
1211     return shouldReturnTypeInRegister(AT->getElementType(), Context);
1212 
1213   // Otherwise, it must be a record type.
1214   const RecordType *RT = Ty->getAs<RecordType>();
1215   if (!RT) return false;
1216 
1217   // FIXME: Traverse bases here too.
1218 
1219   // Structure types are passed in register if all fields would be
1220   // passed in a register.
1221   for (const auto *FD : RT->getDecl()->fields()) {
1222     // Empty fields are ignored.
1223     if (isEmptyField(Context, FD, true))
1224       continue;
1225 
1226     // Check fields recursively.
1227     if (!shouldReturnTypeInRegister(FD->getType(), Context))
1228       return false;
1229   }
1230   return true;
1231 }
1232 
1233 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
1234   // Treat complex types as the element type.
1235   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
1236     Ty = CTy->getElementType();
1237 
1238   // Check for a type which we know has a simple scalar argument-passing
1239   // convention without any padding.  (We're specifically looking for 32
1240   // and 64-bit integer and integer-equivalents, float, and double.)
1241   if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
1242       !Ty->isEnumeralType() && !Ty->isBlockPointerType())
1243     return false;
1244 
1245   uint64_t Size = Context.getTypeSize(Ty);
1246   return Size == 32 || Size == 64;
1247 }
1248 
1249 static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD,
1250                           uint64_t &Size) {
1251   for (const auto *FD : RD->fields()) {
1252     // Scalar arguments on the stack get 4 byte alignment on x86. If the
1253     // argument is smaller than 32-bits, expanding the struct will create
1254     // alignment padding.
1255     if (!is32Or64BitBasicType(FD->getType(), Context))
1256       return false;
1257 
1258     // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
1259     // how to expand them yet, and the predicate for telling if a bitfield still
1260     // counts as "basic" is more complicated than what we were doing previously.
1261     if (FD->isBitField())
1262       return false;
1263 
1264     Size += Context.getTypeSize(FD->getType());
1265   }
1266   return true;
1267 }
1268 
1269 static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD,
1270                                  uint64_t &Size) {
1271   // Don't do this if there are any non-empty bases.
1272   for (const CXXBaseSpecifier &Base : RD->bases()) {
1273     if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(),
1274                               Size))
1275       return false;
1276   }
1277   if (!addFieldSizes(Context, RD, Size))
1278     return false;
1279   return true;
1280 }
1281 
1282 /// Test whether an argument type which is to be passed indirectly (on the
1283 /// stack) would have the equivalent layout if it was expanded into separate
1284 /// arguments. If so, we prefer to do the latter to avoid inhibiting
1285 /// optimizations.
1286 bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const {
1287   // We can only expand structure types.
1288   const RecordType *RT = Ty->getAs<RecordType>();
1289   if (!RT)
1290     return false;
1291   const RecordDecl *RD = RT->getDecl();
1292   uint64_t Size = 0;
1293   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1294     if (!IsWin32StructABI) {
1295       // On non-Windows, we have to conservatively match our old bitcode
1296       // prototypes in order to be ABI-compatible at the bitcode level.
1297       if (!CXXRD->isCLike())
1298         return false;
1299     } else {
1300       // Don't do this for dynamic classes.
1301       if (CXXRD->isDynamicClass())
1302         return false;
1303     }
1304     if (!addBaseAndFieldSizes(getContext(), CXXRD, Size))
1305       return false;
1306   } else {
1307     if (!addFieldSizes(getContext(), RD, Size))
1308       return false;
1309   }
1310 
1311   // We can do this if there was no alignment padding.
1312   return Size == getContext().getTypeSize(Ty);
1313 }
1314 
1315 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const {
1316   // If the return value is indirect, then the hidden argument is consuming one
1317   // integer register.
1318   if (State.FreeRegs) {
1319     --State.FreeRegs;
1320     if (!IsMCUABI)
1321       return getNaturalAlignIndirectInReg(RetTy);
1322   }
1323   return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
1324 }
1325 
1326 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
1327                                              CCState &State) const {
1328   if (RetTy->isVoidType())
1329     return ABIArgInfo::getIgnore();
1330 
1331   const Type *Base = nullptr;
1332   uint64_t NumElts = 0;
1333   if ((State.CC == llvm::CallingConv::X86_VectorCall ||
1334        State.CC == llvm::CallingConv::X86_RegCall) &&
1335       isHomogeneousAggregate(RetTy, Base, NumElts)) {
1336     // The LLVM struct type for such an aggregate should lower properly.
1337     return ABIArgInfo::getDirect();
1338   }
1339 
1340   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
1341     // On Darwin, some vectors are returned in registers.
1342     if (IsDarwinVectorABI) {
1343       uint64_t Size = getContext().getTypeSize(RetTy);
1344 
1345       // 128-bit vectors are a special case; they are returned in
1346       // registers and we need to make sure to pick a type the LLVM
1347       // backend will like.
1348       if (Size == 128)
1349         return ABIArgInfo::getDirect(llvm::VectorType::get(
1350                   llvm::Type::getInt64Ty(getVMContext()), 2));
1351 
1352       // Always return in register if it fits in a general purpose
1353       // register, or if it is 64 bits and has a single element.
1354       if ((Size == 8 || Size == 16 || Size == 32) ||
1355           (Size == 64 && VT->getNumElements() == 1))
1356         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1357                                                             Size));
1358 
1359       return getIndirectReturnResult(RetTy, State);
1360     }
1361 
1362     return ABIArgInfo::getDirect();
1363   }
1364 
1365   if (isAggregateTypeForABI(RetTy)) {
1366     if (const RecordType *RT = RetTy->getAs<RecordType>()) {
1367       // Structures with flexible arrays are always indirect.
1368       if (RT->getDecl()->hasFlexibleArrayMember())
1369         return getIndirectReturnResult(RetTy, State);
1370     }
1371 
1372     // If specified, structs and unions are always indirect.
1373     if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType())
1374       return getIndirectReturnResult(RetTy, State);
1375 
1376     // Ignore empty structs/unions.
1377     if (isEmptyRecord(getContext(), RetTy, true))
1378       return ABIArgInfo::getIgnore();
1379 
1380     // Small structures which are register sized are generally returned
1381     // in a register.
1382     if (shouldReturnTypeInRegister(RetTy, getContext())) {
1383       uint64_t Size = getContext().getTypeSize(RetTy);
1384 
1385       // As a special-case, if the struct is a "single-element" struct, and
1386       // the field is of type "float" or "double", return it in a
1387       // floating-point register. (MSVC does not apply this special case.)
1388       // We apply a similar transformation for pointer types to improve the
1389       // quality of the generated IR.
1390       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
1391         if ((!IsWin32StructABI && SeltTy->isRealFloatingType())
1392             || SeltTy->hasPointerRepresentation())
1393           return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
1394 
1395       // FIXME: We should be able to narrow this integer in cases with dead
1396       // padding.
1397       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
1398     }
1399 
1400     return getIndirectReturnResult(RetTy, State);
1401   }
1402 
1403   // Treat an enum type as its underlying type.
1404   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
1405     RetTy = EnumTy->getDecl()->getIntegerType();
1406 
1407   return (RetTy->isPromotableIntegerType() ?
1408           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1409 }
1410 
1411 static bool isSSEVectorType(ASTContext &Context, QualType Ty) {
1412   return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128;
1413 }
1414 
1415 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) {
1416   const RecordType *RT = Ty->getAs<RecordType>();
1417   if (!RT)
1418     return 0;
1419   const RecordDecl *RD = RT->getDecl();
1420 
1421   // If this is a C++ record, check the bases first.
1422   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
1423     for (const auto &I : CXXRD->bases())
1424       if (!isRecordWithSSEVectorType(Context, I.getType()))
1425         return false;
1426 
1427   for (const auto *i : RD->fields()) {
1428     QualType FT = i->getType();
1429 
1430     if (isSSEVectorType(Context, FT))
1431       return true;
1432 
1433     if (isRecordWithSSEVectorType(Context, FT))
1434       return true;
1435   }
1436 
1437   return false;
1438 }
1439 
1440 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
1441                                                  unsigned Align) const {
1442   // Otherwise, if the alignment is less than or equal to the minimum ABI
1443   // alignment, just use the default; the backend will handle this.
1444   if (Align <= MinABIStackAlignInBytes)
1445     return 0; // Use default alignment.
1446 
1447   // On non-Darwin, the stack type alignment is always 4.
1448   if (!IsDarwinVectorABI) {
1449     // Set explicit alignment, since we may need to realign the top.
1450     return MinABIStackAlignInBytes;
1451   }
1452 
1453   // Otherwise, if the type contains an SSE vector type, the alignment is 16.
1454   if (Align >= 16 && (isSSEVectorType(getContext(), Ty) ||
1455                       isRecordWithSSEVectorType(getContext(), Ty)))
1456     return 16;
1457 
1458   return MinABIStackAlignInBytes;
1459 }
1460 
1461 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal,
1462                                             CCState &State) const {
1463   if (!ByVal) {
1464     if (State.FreeRegs) {
1465       --State.FreeRegs; // Non-byval indirects just use one pointer.
1466       if (!IsMCUABI)
1467         return getNaturalAlignIndirectInReg(Ty);
1468     }
1469     return getNaturalAlignIndirect(Ty, false);
1470   }
1471 
1472   // Compute the byval alignment.
1473   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
1474   unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
1475   if (StackAlign == 0)
1476     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true);
1477 
1478   // If the stack alignment is less than the type alignment, realign the
1479   // argument.
1480   bool Realign = TypeAlign > StackAlign;
1481   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign),
1482                                  /*ByVal=*/true, Realign);
1483 }
1484 
1485 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const {
1486   const Type *T = isSingleElementStruct(Ty, getContext());
1487   if (!T)
1488     T = Ty.getTypePtr();
1489 
1490   if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
1491     BuiltinType::Kind K = BT->getKind();
1492     if (K == BuiltinType::Float || K == BuiltinType::Double)
1493       return Float;
1494   }
1495   return Integer;
1496 }
1497 
1498 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const {
1499   if (!IsSoftFloatABI) {
1500     Class C = classify(Ty);
1501     if (C == Float)
1502       return false;
1503   }
1504 
1505   unsigned Size = getContext().getTypeSize(Ty);
1506   unsigned SizeInRegs = (Size + 31) / 32;
1507 
1508   if (SizeInRegs == 0)
1509     return false;
1510 
1511   if (!IsMCUABI) {
1512     if (SizeInRegs > State.FreeRegs) {
1513       State.FreeRegs = 0;
1514       return false;
1515     }
1516   } else {
1517     // The MCU psABI allows passing parameters in-reg even if there are
1518     // earlier parameters that are passed on the stack. Also,
1519     // it does not allow passing >8-byte structs in-register,
1520     // even if there are 3 free registers available.
1521     if (SizeInRegs > State.FreeRegs || SizeInRegs > 2)
1522       return false;
1523   }
1524 
1525   State.FreeRegs -= SizeInRegs;
1526   return true;
1527 }
1528 
1529 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State,
1530                                              bool &InReg,
1531                                              bool &NeedsPadding) const {
1532   // On Windows, aggregates other than HFAs are never passed in registers, and
1533   // they do not consume register slots. Homogenous floating-point aggregates
1534   // (HFAs) have already been dealt with at this point.
1535   if (IsWin32StructABI && isAggregateTypeForABI(Ty))
1536     return false;
1537 
1538   NeedsPadding = false;
1539   InReg = !IsMCUABI;
1540 
1541   if (!updateFreeRegs(Ty, State))
1542     return false;
1543 
1544   if (IsMCUABI)
1545     return true;
1546 
1547   if (State.CC == llvm::CallingConv::X86_FastCall ||
1548       State.CC == llvm::CallingConv::X86_VectorCall ||
1549       State.CC == llvm::CallingConv::X86_RegCall) {
1550     if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs)
1551       NeedsPadding = true;
1552 
1553     return false;
1554   }
1555 
1556   return true;
1557 }
1558 
1559 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const {
1560   if (!updateFreeRegs(Ty, State))
1561     return false;
1562 
1563   if (IsMCUABI)
1564     return false;
1565 
1566   if (State.CC == llvm::CallingConv::X86_FastCall ||
1567       State.CC == llvm::CallingConv::X86_VectorCall ||
1568       State.CC == llvm::CallingConv::X86_RegCall) {
1569     if (getContext().getTypeSize(Ty) > 32)
1570       return false;
1571 
1572     return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() ||
1573         Ty->isReferenceType());
1574   }
1575 
1576   return true;
1577 }
1578 
1579 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
1580                                                CCState &State) const {
1581   // FIXME: Set alignment on indirect arguments.
1582 
1583   Ty = useFirstFieldIfTransparentUnion(Ty);
1584 
1585   // Check with the C++ ABI first.
1586   const RecordType *RT = Ty->getAs<RecordType>();
1587   if (RT) {
1588     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
1589     if (RAA == CGCXXABI::RAA_Indirect) {
1590       return getIndirectResult(Ty, false, State);
1591     } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
1592       // The field index doesn't matter, we'll fix it up later.
1593       return ABIArgInfo::getInAlloca(/*FieldIndex=*/0);
1594     }
1595   }
1596 
1597   // Regcall uses the concept of a homogenous vector aggregate, similar
1598   // to other targets.
1599   const Type *Base = nullptr;
1600   uint64_t NumElts = 0;
1601   if (State.CC == llvm::CallingConv::X86_RegCall &&
1602       isHomogeneousAggregate(Ty, Base, NumElts)) {
1603 
1604     if (State.FreeSSERegs >= NumElts) {
1605       State.FreeSSERegs -= NumElts;
1606       if (Ty->isBuiltinType() || Ty->isVectorType())
1607         return ABIArgInfo::getDirect();
1608       return ABIArgInfo::getExpand();
1609     }
1610     return getIndirectResult(Ty, /*ByVal=*/false, State);
1611   }
1612 
1613   if (isAggregateTypeForABI(Ty)) {
1614     // Structures with flexible arrays are always indirect.
1615     // FIXME: This should not be byval!
1616     if (RT && RT->getDecl()->hasFlexibleArrayMember())
1617       return getIndirectResult(Ty, true, State);
1618 
1619     // Ignore empty structs/unions on non-Windows.
1620     if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true))
1621       return ABIArgInfo::getIgnore();
1622 
1623     llvm::LLVMContext &LLVMContext = getVMContext();
1624     llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
1625     bool NeedsPadding = false;
1626     bool InReg;
1627     if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) {
1628       unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
1629       SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32);
1630       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
1631       if (InReg)
1632         return ABIArgInfo::getDirectInReg(Result);
1633       else
1634         return ABIArgInfo::getDirect(Result);
1635     }
1636     llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr;
1637 
1638     // Expand small (<= 128-bit) record types when we know that the stack layout
1639     // of those arguments will match the struct. This is important because the
1640     // LLVM backend isn't smart enough to remove byval, which inhibits many
1641     // optimizations.
1642     // Don't do this for the MCU if there are still free integer registers
1643     // (see X86_64 ABI for full explanation).
1644     if (getContext().getTypeSize(Ty) <= 4 * 32 &&
1645         (!IsMCUABI || State.FreeRegs == 0) && canExpandIndirectArgument(Ty))
1646       return ABIArgInfo::getExpandWithPadding(
1647           State.CC == llvm::CallingConv::X86_FastCall ||
1648               State.CC == llvm::CallingConv::X86_VectorCall ||
1649               State.CC == llvm::CallingConv::X86_RegCall,
1650           PaddingType);
1651 
1652     return getIndirectResult(Ty, true, State);
1653   }
1654 
1655   if (const VectorType *VT = Ty->getAs<VectorType>()) {
1656     // On Darwin, some vectors are passed in memory, we handle this by passing
1657     // it as an i8/i16/i32/i64.
1658     if (IsDarwinVectorABI) {
1659       uint64_t Size = getContext().getTypeSize(Ty);
1660       if ((Size == 8 || Size == 16 || Size == 32) ||
1661           (Size == 64 && VT->getNumElements() == 1))
1662         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1663                                                             Size));
1664     }
1665 
1666     if (IsX86_MMXType(CGT.ConvertType(Ty)))
1667       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64));
1668 
1669     return ABIArgInfo::getDirect();
1670   }
1671 
1672 
1673   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1674     Ty = EnumTy->getDecl()->getIntegerType();
1675 
1676   bool InReg = shouldPrimitiveUseInReg(Ty, State);
1677 
1678   if (Ty->isPromotableIntegerType()) {
1679     if (InReg)
1680       return ABIArgInfo::getExtendInReg();
1681     return ABIArgInfo::getExtend();
1682   }
1683 
1684   if (InReg)
1685     return ABIArgInfo::getDirectInReg();
1686   return ABIArgInfo::getDirect();
1687 }
1688 
1689 void X86_32ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI, CCState &State,
1690                                           bool &UsedInAlloca) const {
1691   // Vectorcall x86 works subtly different than in x64, so the format is
1692   // a bit different than the x64 version.  First, all vector types (not HVAs)
1693   // are assigned, with the first 6 ending up in the YMM0-5 or XMM0-5 registers.
1694   // This differs from the x64 implementation, where the first 6 by INDEX get
1695   // registers.
1696   // After that, integers AND HVAs are assigned Left to Right in the same pass.
1697   // Integers are passed as ECX/EDX if one is available (in order).  HVAs will
1698   // first take up the remaining YMM/XMM registers. If insufficient registers
1699   // remain but an integer register (ECX/EDX) is available, it will be passed
1700   // in that, else, on the stack.
1701   for (auto &I : FI.arguments()) {
1702     // First pass do all the vector types.
1703     const Type *Base = nullptr;
1704     uint64_t NumElts = 0;
1705     const QualType& Ty = I.type;
1706     if ((Ty->isVectorType() || Ty->isBuiltinType()) &&
1707         isHomogeneousAggregate(Ty, Base, NumElts)) {
1708       if (State.FreeSSERegs >= NumElts) {
1709         State.FreeSSERegs -= NumElts;
1710         I.info = ABIArgInfo::getDirect();
1711       } else {
1712         I.info = classifyArgumentType(Ty, State);
1713       }
1714       UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca);
1715     }
1716   }
1717 
1718   for (auto &I : FI.arguments()) {
1719     // Second pass, do the rest!
1720     const Type *Base = nullptr;
1721     uint64_t NumElts = 0;
1722     const QualType& Ty = I.type;
1723     bool IsHva = isHomogeneousAggregate(Ty, Base, NumElts);
1724 
1725     if (IsHva && !Ty->isVectorType() && !Ty->isBuiltinType()) {
1726       // Assign true HVAs (non vector/native FP types).
1727       if (State.FreeSSERegs >= NumElts) {
1728         State.FreeSSERegs -= NumElts;
1729         I.info = getDirectX86Hva();
1730       } else {
1731         I.info = getIndirectResult(Ty, /*ByVal=*/false, State);
1732       }
1733     } else if (!IsHva) {
1734       // Assign all Non-HVAs, so this will exclude Vector/FP args.
1735       I.info = classifyArgumentType(Ty, State);
1736       UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca);
1737     }
1738   }
1739 }
1740 
1741 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
1742   CCState State(FI.getCallingConvention());
1743   if (IsMCUABI)
1744     State.FreeRegs = 3;
1745   else if (State.CC == llvm::CallingConv::X86_FastCall)
1746     State.FreeRegs = 2;
1747   else if (State.CC == llvm::CallingConv::X86_VectorCall) {
1748     State.FreeRegs = 2;
1749     State.FreeSSERegs = 6;
1750   } else if (FI.getHasRegParm())
1751     State.FreeRegs = FI.getRegParm();
1752   else if (State.CC == llvm::CallingConv::X86_RegCall) {
1753     State.FreeRegs = 5;
1754     State.FreeSSERegs = 8;
1755   } else
1756     State.FreeRegs = DefaultNumRegisterParameters;
1757 
1758   if (!getCXXABI().classifyReturnType(FI)) {
1759     FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State);
1760   } else if (FI.getReturnInfo().isIndirect()) {
1761     // The C++ ABI is not aware of register usage, so we have to check if the
1762     // return value was sret and put it in a register ourselves if appropriate.
1763     if (State.FreeRegs) {
1764       --State.FreeRegs;  // The sret parameter consumes a register.
1765       if (!IsMCUABI)
1766         FI.getReturnInfo().setInReg(true);
1767     }
1768   }
1769 
1770   // The chain argument effectively gives us another free register.
1771   if (FI.isChainCall())
1772     ++State.FreeRegs;
1773 
1774   bool UsedInAlloca = false;
1775   if (State.CC == llvm::CallingConv::X86_VectorCall) {
1776     computeVectorCallArgs(FI, State, UsedInAlloca);
1777   } else {
1778     // If not vectorcall, revert to normal behavior.
1779     for (auto &I : FI.arguments()) {
1780       I.info = classifyArgumentType(I.type, State);
1781       UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca);
1782     }
1783   }
1784 
1785   // If we needed to use inalloca for any argument, do a second pass and rewrite
1786   // all the memory arguments to use inalloca.
1787   if (UsedInAlloca)
1788     rewriteWithInAlloca(FI);
1789 }
1790 
1791 void
1792 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
1793                                    CharUnits &StackOffset, ABIArgInfo &Info,
1794                                    QualType Type) const {
1795   // Arguments are always 4-byte-aligned.
1796   CharUnits FieldAlign = CharUnits::fromQuantity(4);
1797 
1798   assert(StackOffset.isMultipleOf(FieldAlign) && "unaligned inalloca struct");
1799   Info = ABIArgInfo::getInAlloca(FrameFields.size());
1800   FrameFields.push_back(CGT.ConvertTypeForMem(Type));
1801   StackOffset += getContext().getTypeSizeInChars(Type);
1802 
1803   // Insert padding bytes to respect alignment.
1804   CharUnits FieldEnd = StackOffset;
1805   StackOffset = FieldEnd.alignTo(FieldAlign);
1806   if (StackOffset != FieldEnd) {
1807     CharUnits NumBytes = StackOffset - FieldEnd;
1808     llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext());
1809     Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity());
1810     FrameFields.push_back(Ty);
1811   }
1812 }
1813 
1814 static bool isArgInAlloca(const ABIArgInfo &Info) {
1815   // Leave ignored and inreg arguments alone.
1816   switch (Info.getKind()) {
1817   case ABIArgInfo::InAlloca:
1818     return true;
1819   case ABIArgInfo::Indirect:
1820     assert(Info.getIndirectByVal());
1821     return true;
1822   case ABIArgInfo::Ignore:
1823     return false;
1824   case ABIArgInfo::Direct:
1825   case ABIArgInfo::Extend:
1826     if (Info.getInReg())
1827       return false;
1828     return true;
1829   case ABIArgInfo::Expand:
1830   case ABIArgInfo::CoerceAndExpand:
1831     // These are aggregate types which are never passed in registers when
1832     // inalloca is involved.
1833     return true;
1834   }
1835   llvm_unreachable("invalid enum");
1836 }
1837 
1838 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const {
1839   assert(IsWin32StructABI && "inalloca only supported on win32");
1840 
1841   // Build a packed struct type for all of the arguments in memory.
1842   SmallVector<llvm::Type *, 6> FrameFields;
1843 
1844   // The stack alignment is always 4.
1845   CharUnits StackAlign = CharUnits::fromQuantity(4);
1846 
1847   CharUnits StackOffset;
1848   CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end();
1849 
1850   // Put 'this' into the struct before 'sret', if necessary.
1851   bool IsThisCall =
1852       FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall;
1853   ABIArgInfo &Ret = FI.getReturnInfo();
1854   if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall &&
1855       isArgInAlloca(I->info)) {
1856     addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
1857     ++I;
1858   }
1859 
1860   // Put the sret parameter into the inalloca struct if it's in memory.
1861   if (Ret.isIndirect() && !Ret.getInReg()) {
1862     CanQualType PtrTy = getContext().getPointerType(FI.getReturnType());
1863     addFieldToArgStruct(FrameFields, StackOffset, Ret, PtrTy);
1864     // On Windows, the hidden sret parameter is always returned in eax.
1865     Ret.setInAllocaSRet(IsWin32StructABI);
1866   }
1867 
1868   // Skip the 'this' parameter in ecx.
1869   if (IsThisCall)
1870     ++I;
1871 
1872   // Put arguments passed in memory into the struct.
1873   for (; I != E; ++I) {
1874     if (isArgInAlloca(I->info))
1875       addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
1876   }
1877 
1878   FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields,
1879                                         /*isPacked=*/true),
1880                   StackAlign);
1881 }
1882 
1883 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF,
1884                                  Address VAListAddr, QualType Ty) const {
1885 
1886   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
1887 
1888   // x86-32 changes the alignment of certain arguments on the stack.
1889   //
1890   // Just messing with TypeInfo like this works because we never pass
1891   // anything indirectly.
1892   TypeInfo.second = CharUnits::fromQuantity(
1893                 getTypeStackAlignInBytes(Ty, TypeInfo.second.getQuantity()));
1894 
1895   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
1896                           TypeInfo, CharUnits::fromQuantity(4),
1897                           /*AllowHigherAlign*/ true);
1898 }
1899 
1900 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI(
1901     const llvm::Triple &Triple, const CodeGenOptions &Opts) {
1902   assert(Triple.getArch() == llvm::Triple::x86);
1903 
1904   switch (Opts.getStructReturnConvention()) {
1905   case CodeGenOptions::SRCK_Default:
1906     break;
1907   case CodeGenOptions::SRCK_OnStack:  // -fpcc-struct-return
1908     return false;
1909   case CodeGenOptions::SRCK_InRegs:  // -freg-struct-return
1910     return true;
1911   }
1912 
1913   if (Triple.isOSDarwin() || Triple.isOSIAMCU())
1914     return true;
1915 
1916   switch (Triple.getOS()) {
1917   case llvm::Triple::DragonFly:
1918   case llvm::Triple::FreeBSD:
1919   case llvm::Triple::OpenBSD:
1920   case llvm::Triple::Win32:
1921     return true;
1922   default:
1923     return false;
1924   }
1925 }
1926 
1927 void X86_32TargetCodeGenInfo::setTargetAttributes(
1928     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM,
1929     ForDefinition_t IsForDefinition) const {
1930   if (!IsForDefinition)
1931     return;
1932   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
1933     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
1934       // Get the LLVM function.
1935       llvm::Function *Fn = cast<llvm::Function>(GV);
1936 
1937       // Now add the 'alignstack' attribute with a value of 16.
1938       llvm::AttrBuilder B;
1939       B.addStackAlignmentAttr(16);
1940       Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
1941     }
1942     if (FD->hasAttr<AnyX86InterruptAttr>()) {
1943       llvm::Function *Fn = cast<llvm::Function>(GV);
1944       Fn->setCallingConv(llvm::CallingConv::X86_INTR);
1945     }
1946   }
1947 }
1948 
1949 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
1950                                                CodeGen::CodeGenFunction &CGF,
1951                                                llvm::Value *Address) const {
1952   CodeGen::CGBuilderTy &Builder = CGF.Builder;
1953 
1954   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
1955 
1956   // 0-7 are the eight integer registers;  the order is different
1957   //   on Darwin (for EH), but the range is the same.
1958   // 8 is %eip.
1959   AssignToArrayRange(Builder, Address, Four8, 0, 8);
1960 
1961   if (CGF.CGM.getTarget().getTriple().isOSDarwin()) {
1962     // 12-16 are st(0..4).  Not sure why we stop at 4.
1963     // These have size 16, which is sizeof(long double) on
1964     // platforms with 8-byte alignment for that type.
1965     llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
1966     AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
1967 
1968   } else {
1969     // 9 is %eflags, which doesn't get a size on Darwin for some
1970     // reason.
1971     Builder.CreateAlignedStore(
1972         Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9),
1973                                CharUnits::One());
1974 
1975     // 11-16 are st(0..5).  Not sure why we stop at 5.
1976     // These have size 12, which is sizeof(long double) on
1977     // platforms with 4-byte alignment for that type.
1978     llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
1979     AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
1980   }
1981 
1982   return false;
1983 }
1984 
1985 //===----------------------------------------------------------------------===//
1986 // X86-64 ABI Implementation
1987 //===----------------------------------------------------------------------===//
1988 
1989 
1990 namespace {
1991 /// The AVX ABI level for X86 targets.
1992 enum class X86AVXABILevel {
1993   None,
1994   AVX,
1995   AVX512
1996 };
1997 
1998 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel.
1999 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) {
2000   switch (AVXLevel) {
2001   case X86AVXABILevel::AVX512:
2002     return 512;
2003   case X86AVXABILevel::AVX:
2004     return 256;
2005   case X86AVXABILevel::None:
2006     return 128;
2007   }
2008   llvm_unreachable("Unknown AVXLevel");
2009 }
2010 
2011 /// X86_64ABIInfo - The X86_64 ABI information.
2012 class X86_64ABIInfo : public SwiftABIInfo {
2013   enum Class {
2014     Integer = 0,
2015     SSE,
2016     SSEUp,
2017     X87,
2018     X87Up,
2019     ComplexX87,
2020     NoClass,
2021     Memory
2022   };
2023 
2024   /// merge - Implement the X86_64 ABI merging algorithm.
2025   ///
2026   /// Merge an accumulating classification \arg Accum with a field
2027   /// classification \arg Field.
2028   ///
2029   /// \param Accum - The accumulating classification. This should
2030   /// always be either NoClass or the result of a previous merge
2031   /// call. In addition, this should never be Memory (the caller
2032   /// should just return Memory for the aggregate).
2033   static Class merge(Class Accum, Class Field);
2034 
2035   /// postMerge - Implement the X86_64 ABI post merging algorithm.
2036   ///
2037   /// Post merger cleanup, reduces a malformed Hi and Lo pair to
2038   /// final MEMORY or SSE classes when necessary.
2039   ///
2040   /// \param AggregateSize - The size of the current aggregate in
2041   /// the classification process.
2042   ///
2043   /// \param Lo - The classification for the parts of the type
2044   /// residing in the low word of the containing object.
2045   ///
2046   /// \param Hi - The classification for the parts of the type
2047   /// residing in the higher words of the containing object.
2048   ///
2049   void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
2050 
2051   /// classify - Determine the x86_64 register classes in which the
2052   /// given type T should be passed.
2053   ///
2054   /// \param Lo - The classification for the parts of the type
2055   /// residing in the low word of the containing object.
2056   ///
2057   /// \param Hi - The classification for the parts of the type
2058   /// residing in the high word of the containing object.
2059   ///
2060   /// \param OffsetBase - The bit offset of this type in the
2061   /// containing object.  Some parameters are classified different
2062   /// depending on whether they straddle an eightbyte boundary.
2063   ///
2064   /// \param isNamedArg - Whether the argument in question is a "named"
2065   /// argument, as used in AMD64-ABI 3.5.7.
2066   ///
2067   /// If a word is unused its result will be NoClass; if a type should
2068   /// be passed in Memory then at least the classification of \arg Lo
2069   /// will be Memory.
2070   ///
2071   /// The \arg Lo class will be NoClass iff the argument is ignored.
2072   ///
2073   /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
2074   /// also be ComplexX87.
2075   void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi,
2076                 bool isNamedArg) const;
2077 
2078   llvm::Type *GetByteVectorType(QualType Ty) const;
2079   llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
2080                                  unsigned IROffset, QualType SourceTy,
2081                                  unsigned SourceOffset) const;
2082   llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
2083                                      unsigned IROffset, QualType SourceTy,
2084                                      unsigned SourceOffset) const;
2085 
2086   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
2087   /// such that the argument will be returned in memory.
2088   ABIArgInfo getIndirectReturnResult(QualType Ty) const;
2089 
2090   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
2091   /// such that the argument will be passed in memory.
2092   ///
2093   /// \param freeIntRegs - The number of free integer registers remaining
2094   /// available.
2095   ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;
2096 
2097   ABIArgInfo classifyReturnType(QualType RetTy) const;
2098 
2099   ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs,
2100                                   unsigned &neededInt, unsigned &neededSSE,
2101                                   bool isNamedArg) const;
2102 
2103   ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt,
2104                                        unsigned &NeededSSE) const;
2105 
2106   ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
2107                                            unsigned &NeededSSE) const;
2108 
2109   bool IsIllegalVectorType(QualType Ty) const;
2110 
2111   /// The 0.98 ABI revision clarified a lot of ambiguities,
2112   /// unfortunately in ways that were not always consistent with
2113   /// certain previous compilers.  In particular, platforms which
2114   /// required strict binary compatibility with older versions of GCC
2115   /// may need to exempt themselves.
2116   bool honorsRevision0_98() const {
2117     return !getTarget().getTriple().isOSDarwin();
2118   }
2119 
2120   /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to
2121   /// classify it as INTEGER (for compatibility with older clang compilers).
2122   bool classifyIntegerMMXAsSSE() const {
2123     // Clang <= 3.8 did not do this.
2124     if (getCodeGenOpts().getClangABICompat() <=
2125         CodeGenOptions::ClangABI::Ver3_8)
2126       return false;
2127 
2128     const llvm::Triple &Triple = getTarget().getTriple();
2129     if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::PS4)
2130       return false;
2131     if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10)
2132       return false;
2133     return true;
2134   }
2135 
2136   X86AVXABILevel AVXLevel;
2137   // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on
2138   // 64-bit hardware.
2139   bool Has64BitPointers;
2140 
2141 public:
2142   X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) :
2143       SwiftABIInfo(CGT), AVXLevel(AVXLevel),
2144       Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {
2145   }
2146 
2147   bool isPassedUsingAVXType(QualType type) const {
2148     unsigned neededInt, neededSSE;
2149     // The freeIntRegs argument doesn't matter here.
2150     ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE,
2151                                            /*isNamedArg*/true);
2152     if (info.isDirect()) {
2153       llvm::Type *ty = info.getCoerceToType();
2154       if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
2155         return (vectorTy->getBitWidth() > 128);
2156     }
2157     return false;
2158   }
2159 
2160   void computeInfo(CGFunctionInfo &FI) const override;
2161 
2162   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
2163                     QualType Ty) const override;
2164   Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
2165                       QualType Ty) const override;
2166 
2167   bool has64BitPointers() const {
2168     return Has64BitPointers;
2169   }
2170 
2171   bool shouldPassIndirectlyForSwift(CharUnits totalSize,
2172                                     ArrayRef<llvm::Type*> scalars,
2173                                     bool asReturnValue) const override {
2174     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
2175   }
2176   bool isSwiftErrorInRegister() const override {
2177     return true;
2178   }
2179 };
2180 
2181 /// WinX86_64ABIInfo - The Windows X86_64 ABI information.
2182 class WinX86_64ABIInfo : public SwiftABIInfo {
2183 public:
2184   WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT)
2185       : SwiftABIInfo(CGT),
2186         IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {}
2187 
2188   void computeInfo(CGFunctionInfo &FI) const override;
2189 
2190   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
2191                     QualType Ty) const override;
2192 
2193   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
2194     // FIXME: Assumes vectorcall is in use.
2195     return isX86VectorTypeForVectorCall(getContext(), Ty);
2196   }
2197 
2198   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
2199                                          uint64_t NumMembers) const override {
2200     // FIXME: Assumes vectorcall is in use.
2201     return isX86VectorCallAggregateSmallEnough(NumMembers);
2202   }
2203 
2204   bool shouldPassIndirectlyForSwift(CharUnits totalSize,
2205                                     ArrayRef<llvm::Type *> scalars,
2206                                     bool asReturnValue) const override {
2207     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
2208   }
2209 
2210   bool isSwiftErrorInRegister() const override {
2211     return true;
2212   }
2213 
2214 private:
2215   ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType,
2216                       bool IsVectorCall, bool IsRegCall) const;
2217   ABIArgInfo reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs,
2218                                       const ABIArgInfo &current) const;
2219   void computeVectorCallArgs(CGFunctionInfo &FI, unsigned FreeSSERegs,
2220                              bool IsVectorCall, bool IsRegCall) const;
2221 
2222     bool IsMingw64;
2223 };
2224 
2225 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
2226 public:
2227   X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
2228       : TargetCodeGenInfo(new X86_64ABIInfo(CGT, AVXLevel)) {}
2229 
2230   const X86_64ABIInfo &getABIInfo() const {
2231     return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
2232   }
2233 
2234   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
2235     return 7;
2236   }
2237 
2238   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2239                                llvm::Value *Address) const override {
2240     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
2241 
2242     // 0-15 are the 16 integer registers.
2243     // 16 is %rip.
2244     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
2245     return false;
2246   }
2247 
2248   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
2249                                   StringRef Constraint,
2250                                   llvm::Type* Ty) const override {
2251     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
2252   }
2253 
2254   bool isNoProtoCallVariadic(const CallArgList &args,
2255                              const FunctionNoProtoType *fnType) const override {
2256     // The default CC on x86-64 sets %al to the number of SSA
2257     // registers used, and GCC sets this when calling an unprototyped
2258     // function, so we override the default behavior.  However, don't do
2259     // that when AVX types are involved: the ABI explicitly states it is
2260     // undefined, and it doesn't work in practice because of how the ABI
2261     // defines varargs anyway.
2262     if (fnType->getCallConv() == CC_C) {
2263       bool HasAVXType = false;
2264       for (CallArgList::const_iterator
2265              it = args.begin(), ie = args.end(); it != ie; ++it) {
2266         if (getABIInfo().isPassedUsingAVXType(it->Ty)) {
2267           HasAVXType = true;
2268           break;
2269         }
2270       }
2271 
2272       if (!HasAVXType)
2273         return true;
2274     }
2275 
2276     return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
2277   }
2278 
2279   llvm::Constant *
2280   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
2281     unsigned Sig = (0xeb << 0) | // jmp rel8
2282                    (0x06 << 8) | //           .+0x08
2283                    ('v' << 16) |
2284                    ('2' << 24);
2285     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
2286   }
2287 
2288   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2289                            CodeGen::CodeGenModule &CGM,
2290                            ForDefinition_t IsForDefinition) const override {
2291     if (!IsForDefinition)
2292       return;
2293     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
2294       if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
2295         // Get the LLVM function.
2296         auto *Fn = cast<llvm::Function>(GV);
2297 
2298         // Now add the 'alignstack' attribute with a value of 16.
2299         llvm::AttrBuilder B;
2300         B.addStackAlignmentAttr(16);
2301         Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
2302       }
2303       if (FD->hasAttr<AnyX86InterruptAttr>()) {
2304         llvm::Function *Fn = cast<llvm::Function>(GV);
2305         Fn->setCallingConv(llvm::CallingConv::X86_INTR);
2306       }
2307     }
2308   }
2309 };
2310 
2311 class PS4TargetCodeGenInfo : public X86_64TargetCodeGenInfo {
2312 public:
2313   PS4TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
2314     : X86_64TargetCodeGenInfo(CGT, AVXLevel) {}
2315 
2316   void getDependentLibraryOption(llvm::StringRef Lib,
2317                                  llvm::SmallString<24> &Opt) const override {
2318     Opt = "\01";
2319     // If the argument contains a space, enclose it in quotes.
2320     if (Lib.find(" ") != StringRef::npos)
2321       Opt += "\"" + Lib.str() + "\"";
2322     else
2323       Opt += Lib;
2324   }
2325 };
2326 
2327 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) {
2328   // If the argument does not end in .lib, automatically add the suffix.
2329   // If the argument contains a space, enclose it in quotes.
2330   // This matches the behavior of MSVC.
2331   bool Quote = (Lib.find(" ") != StringRef::npos);
2332   std::string ArgStr = Quote ? "\"" : "";
2333   ArgStr += Lib;
2334   if (!Lib.endswith_lower(".lib"))
2335     ArgStr += ".lib";
2336   ArgStr += Quote ? "\"" : "";
2337   return ArgStr;
2338 }
2339 
2340 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo {
2341 public:
2342   WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
2343         bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI,
2344         unsigned NumRegisterParameters)
2345     : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI,
2346         Win32StructABI, NumRegisterParameters, false) {}
2347 
2348   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2349                            CodeGen::CodeGenModule &CGM,
2350                            ForDefinition_t IsForDefinition) const override;
2351 
2352   void getDependentLibraryOption(llvm::StringRef Lib,
2353                                  llvm::SmallString<24> &Opt) const override {
2354     Opt = "/DEFAULTLIB:";
2355     Opt += qualifyWindowsLibrary(Lib);
2356   }
2357 
2358   void getDetectMismatchOption(llvm::StringRef Name,
2359                                llvm::StringRef Value,
2360                                llvm::SmallString<32> &Opt) const override {
2361     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
2362   }
2363 };
2364 
2365 static void addStackProbeSizeTargetAttribute(const Decl *D,
2366                                              llvm::GlobalValue *GV,
2367                                              CodeGen::CodeGenModule &CGM) {
2368   if (D && isa<FunctionDecl>(D)) {
2369     if (CGM.getCodeGenOpts().StackProbeSize != 4096) {
2370       llvm::Function *Fn = cast<llvm::Function>(GV);
2371 
2372       Fn->addFnAttr("stack-probe-size",
2373                     llvm::utostr(CGM.getCodeGenOpts().StackProbeSize));
2374     }
2375   }
2376 }
2377 
2378 void WinX86_32TargetCodeGenInfo::setTargetAttributes(
2379     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM,
2380     ForDefinition_t IsForDefinition) const {
2381   X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM, IsForDefinition);
2382   if (!IsForDefinition)
2383     return;
2384   addStackProbeSizeTargetAttribute(D, GV, CGM);
2385 }
2386 
2387 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
2388 public:
2389   WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
2390                              X86AVXABILevel AVXLevel)
2391       : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {}
2392 
2393   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2394                            CodeGen::CodeGenModule &CGM,
2395                            ForDefinition_t IsForDefinition) const override;
2396 
2397   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
2398     return 7;
2399   }
2400 
2401   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2402                                llvm::Value *Address) const override {
2403     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
2404 
2405     // 0-15 are the 16 integer registers.
2406     // 16 is %rip.
2407     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
2408     return false;
2409   }
2410 
2411   void getDependentLibraryOption(llvm::StringRef Lib,
2412                                  llvm::SmallString<24> &Opt) const override {
2413     Opt = "/DEFAULTLIB:";
2414     Opt += qualifyWindowsLibrary(Lib);
2415   }
2416 
2417   void getDetectMismatchOption(llvm::StringRef Name,
2418                                llvm::StringRef Value,
2419                                llvm::SmallString<32> &Opt) const override {
2420     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
2421   }
2422 };
2423 
2424 void WinX86_64TargetCodeGenInfo::setTargetAttributes(
2425     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM,
2426     ForDefinition_t IsForDefinition) const {
2427   TargetCodeGenInfo::setTargetAttributes(D, GV, CGM, IsForDefinition);
2428   if (!IsForDefinition)
2429     return;
2430   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
2431     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
2432       // Get the LLVM function.
2433       auto *Fn = cast<llvm::Function>(GV);
2434 
2435       // Now add the 'alignstack' attribute with a value of 16.
2436       llvm::AttrBuilder B;
2437       B.addStackAlignmentAttr(16);
2438       Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
2439     }
2440     if (FD->hasAttr<AnyX86InterruptAttr>()) {
2441       llvm::Function *Fn = cast<llvm::Function>(GV);
2442       Fn->setCallingConv(llvm::CallingConv::X86_INTR);
2443     }
2444   }
2445 
2446   addStackProbeSizeTargetAttribute(D, GV, CGM);
2447 }
2448 }
2449 
2450 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
2451                               Class &Hi) const {
2452   // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
2453   //
2454   // (a) If one of the classes is Memory, the whole argument is passed in
2455   //     memory.
2456   //
2457   // (b) If X87UP is not preceded by X87, the whole argument is passed in
2458   //     memory.
2459   //
2460   // (c) If the size of the aggregate exceeds two eightbytes and the first
2461   //     eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
2462   //     argument is passed in memory. NOTE: This is necessary to keep the
2463   //     ABI working for processors that don't support the __m256 type.
2464   //
2465   // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
2466   //
2467   // Some of these are enforced by the merging logic.  Others can arise
2468   // only with unions; for example:
2469   //   union { _Complex double; unsigned; }
2470   //
2471   // Note that clauses (b) and (c) were added in 0.98.
2472   //
2473   if (Hi == Memory)
2474     Lo = Memory;
2475   if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
2476     Lo = Memory;
2477   if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
2478     Lo = Memory;
2479   if (Hi == SSEUp && Lo != SSE)
2480     Hi = SSE;
2481 }
2482 
2483 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
2484   // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
2485   // classified recursively so that always two fields are
2486   // considered. The resulting class is calculated according to
2487   // the classes of the fields in the eightbyte:
2488   //
2489   // (a) If both classes are equal, this is the resulting class.
2490   //
2491   // (b) If one of the classes is NO_CLASS, the resulting class is
2492   // the other class.
2493   //
2494   // (c) If one of the classes is MEMORY, the result is the MEMORY
2495   // class.
2496   //
2497   // (d) If one of the classes is INTEGER, the result is the
2498   // INTEGER.
2499   //
2500   // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
2501   // MEMORY is used as class.
2502   //
2503   // (f) Otherwise class SSE is used.
2504 
2505   // Accum should never be memory (we should have returned) or
2506   // ComplexX87 (because this cannot be passed in a structure).
2507   assert((Accum != Memory && Accum != ComplexX87) &&
2508          "Invalid accumulated classification during merge.");
2509   if (Accum == Field || Field == NoClass)
2510     return Accum;
2511   if (Field == Memory)
2512     return Memory;
2513   if (Accum == NoClass)
2514     return Field;
2515   if (Accum == Integer || Field == Integer)
2516     return Integer;
2517   if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
2518       Accum == X87 || Accum == X87Up)
2519     return Memory;
2520   return SSE;
2521 }
2522 
2523 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
2524                              Class &Lo, Class &Hi, bool isNamedArg) const {
2525   // FIXME: This code can be simplified by introducing a simple value class for
2526   // Class pairs with appropriate constructor methods for the various
2527   // situations.
2528 
2529   // FIXME: Some of the split computations are wrong; unaligned vectors
2530   // shouldn't be passed in registers for example, so there is no chance they
2531   // can straddle an eightbyte. Verify & simplify.
2532 
2533   Lo = Hi = NoClass;
2534 
2535   Class &Current = OffsetBase < 64 ? Lo : Hi;
2536   Current = Memory;
2537 
2538   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
2539     BuiltinType::Kind k = BT->getKind();
2540 
2541     if (k == BuiltinType::Void) {
2542       Current = NoClass;
2543     } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
2544       Lo = Integer;
2545       Hi = Integer;
2546     } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
2547       Current = Integer;
2548     } else if (k == BuiltinType::Float || k == BuiltinType::Double) {
2549       Current = SSE;
2550     } else if (k == BuiltinType::LongDouble) {
2551       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
2552       if (LDF == &llvm::APFloat::IEEEquad()) {
2553         Lo = SSE;
2554         Hi = SSEUp;
2555       } else if (LDF == &llvm::APFloat::x87DoubleExtended()) {
2556         Lo = X87;
2557         Hi = X87Up;
2558       } else if (LDF == &llvm::APFloat::IEEEdouble()) {
2559         Current = SSE;
2560       } else
2561         llvm_unreachable("unexpected long double representation!");
2562     }
2563     // FIXME: _Decimal32 and _Decimal64 are SSE.
2564     // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
2565     return;
2566   }
2567 
2568   if (const EnumType *ET = Ty->getAs<EnumType>()) {
2569     // Classify the underlying integer type.
2570     classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg);
2571     return;
2572   }
2573 
2574   if (Ty->hasPointerRepresentation()) {
2575     Current = Integer;
2576     return;
2577   }
2578 
2579   if (Ty->isMemberPointerType()) {
2580     if (Ty->isMemberFunctionPointerType()) {
2581       if (Has64BitPointers) {
2582         // If Has64BitPointers, this is an {i64, i64}, so classify both
2583         // Lo and Hi now.
2584         Lo = Hi = Integer;
2585       } else {
2586         // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that
2587         // straddles an eightbyte boundary, Hi should be classified as well.
2588         uint64_t EB_FuncPtr = (OffsetBase) / 64;
2589         uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64;
2590         if (EB_FuncPtr != EB_ThisAdj) {
2591           Lo = Hi = Integer;
2592         } else {
2593           Current = Integer;
2594         }
2595       }
2596     } else {
2597       Current = Integer;
2598     }
2599     return;
2600   }
2601 
2602   if (const VectorType *VT = Ty->getAs<VectorType>()) {
2603     uint64_t Size = getContext().getTypeSize(VT);
2604     if (Size == 1 || Size == 8 || Size == 16 || Size == 32) {
2605       // gcc passes the following as integer:
2606       // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float>
2607       // 2 bytes - <2 x char>, <1 x short>
2608       // 1 byte  - <1 x char>
2609       Current = Integer;
2610 
2611       // If this type crosses an eightbyte boundary, it should be
2612       // split.
2613       uint64_t EB_Lo = (OffsetBase) / 64;
2614       uint64_t EB_Hi = (OffsetBase + Size - 1) / 64;
2615       if (EB_Lo != EB_Hi)
2616         Hi = Lo;
2617     } else if (Size == 64) {
2618       QualType ElementType = VT->getElementType();
2619 
2620       // gcc passes <1 x double> in memory. :(
2621       if (ElementType->isSpecificBuiltinType(BuiltinType::Double))
2622         return;
2623 
2624       // gcc passes <1 x long long> as SSE but clang used to unconditionally
2625       // pass them as integer.  For platforms where clang is the de facto
2626       // platform compiler, we must continue to use integer.
2627       if (!classifyIntegerMMXAsSSE() &&
2628           (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) ||
2629            ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) ||
2630            ElementType->isSpecificBuiltinType(BuiltinType::Long) ||
2631            ElementType->isSpecificBuiltinType(BuiltinType::ULong)))
2632         Current = Integer;
2633       else
2634         Current = SSE;
2635 
2636       // If this type crosses an eightbyte boundary, it should be
2637       // split.
2638       if (OffsetBase && OffsetBase != 64)
2639         Hi = Lo;
2640     } else if (Size == 128 ||
2641                (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) {
2642       // Arguments of 256-bits are split into four eightbyte chunks. The
2643       // least significant one belongs to class SSE and all the others to class
2644       // SSEUP. The original Lo and Hi design considers that types can't be
2645       // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
2646       // This design isn't correct for 256-bits, but since there're no cases
2647       // where the upper parts would need to be inspected, avoid adding
2648       // complexity and just consider Hi to match the 64-256 part.
2649       //
2650       // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in
2651       // registers if they are "named", i.e. not part of the "..." of a
2652       // variadic function.
2653       //
2654       // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are
2655       // split into eight eightbyte chunks, one SSE and seven SSEUP.
2656       Lo = SSE;
2657       Hi = SSEUp;
2658     }
2659     return;
2660   }
2661 
2662   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
2663     QualType ET = getContext().getCanonicalType(CT->getElementType());
2664 
2665     uint64_t Size = getContext().getTypeSize(Ty);
2666     if (ET->isIntegralOrEnumerationType()) {
2667       if (Size <= 64)
2668         Current = Integer;
2669       else if (Size <= 128)
2670         Lo = Hi = Integer;
2671     } else if (ET == getContext().FloatTy) {
2672       Current = SSE;
2673     } else if (ET == getContext().DoubleTy) {
2674       Lo = Hi = SSE;
2675     } else if (ET == getContext().LongDoubleTy) {
2676       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
2677       if (LDF == &llvm::APFloat::IEEEquad())
2678         Current = Memory;
2679       else if (LDF == &llvm::APFloat::x87DoubleExtended())
2680         Current = ComplexX87;
2681       else if (LDF == &llvm::APFloat::IEEEdouble())
2682         Lo = Hi = SSE;
2683       else
2684         llvm_unreachable("unexpected long double representation!");
2685     }
2686 
2687     // If this complex type crosses an eightbyte boundary then it
2688     // should be split.
2689     uint64_t EB_Real = (OffsetBase) / 64;
2690     uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
2691     if (Hi == NoClass && EB_Real != EB_Imag)
2692       Hi = Lo;
2693 
2694     return;
2695   }
2696 
2697   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
2698     // Arrays are treated like structures.
2699 
2700     uint64_t Size = getContext().getTypeSize(Ty);
2701 
2702     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
2703     // than eight eightbytes, ..., it has class MEMORY.
2704     if (Size > 512)
2705       return;
2706 
2707     // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
2708     // fields, it has class MEMORY.
2709     //
2710     // Only need to check alignment of array base.
2711     if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
2712       return;
2713 
2714     // Otherwise implement simplified merge. We could be smarter about
2715     // this, but it isn't worth it and would be harder to verify.
2716     Current = NoClass;
2717     uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
2718     uint64_t ArraySize = AT->getSize().getZExtValue();
2719 
2720     // The only case a 256-bit wide vector could be used is when the array
2721     // contains a single 256-bit element. Since Lo and Hi logic isn't extended
2722     // to work for sizes wider than 128, early check and fallback to memory.
2723     //
2724     if (Size > 128 &&
2725         (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel)))
2726       return;
2727 
2728     for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
2729       Class FieldLo, FieldHi;
2730       classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg);
2731       Lo = merge(Lo, FieldLo);
2732       Hi = merge(Hi, FieldHi);
2733       if (Lo == Memory || Hi == Memory)
2734         break;
2735     }
2736 
2737     postMerge(Size, Lo, Hi);
2738     assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
2739     return;
2740   }
2741 
2742   if (const RecordType *RT = Ty->getAs<RecordType>()) {
2743     uint64_t Size = getContext().getTypeSize(Ty);
2744 
2745     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
2746     // than eight eightbytes, ..., it has class MEMORY.
2747     if (Size > 512)
2748       return;
2749 
2750     // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
2751     // copy constructor or a non-trivial destructor, it is passed by invisible
2752     // reference.
2753     if (getRecordArgABI(RT, getCXXABI()))
2754       return;
2755 
2756     const RecordDecl *RD = RT->getDecl();
2757 
2758     // Assume variable sized types are passed in memory.
2759     if (RD->hasFlexibleArrayMember())
2760       return;
2761 
2762     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
2763 
2764     // Reset Lo class, this will be recomputed.
2765     Current = NoClass;
2766 
2767     // If this is a C++ record, classify the bases first.
2768     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
2769       for (const auto &I : CXXRD->bases()) {
2770         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
2771                "Unexpected base class!");
2772         const CXXRecordDecl *Base =
2773           cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
2774 
2775         // Classify this field.
2776         //
2777         // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
2778         // single eightbyte, each is classified separately. Each eightbyte gets
2779         // initialized to class NO_CLASS.
2780         Class FieldLo, FieldHi;
2781         uint64_t Offset =
2782           OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base));
2783         classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg);
2784         Lo = merge(Lo, FieldLo);
2785         Hi = merge(Hi, FieldHi);
2786         if (Lo == Memory || Hi == Memory) {
2787           postMerge(Size, Lo, Hi);
2788           return;
2789         }
2790       }
2791     }
2792 
2793     // Classify the fields one at a time, merging the results.
2794     unsigned idx = 0;
2795     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2796            i != e; ++i, ++idx) {
2797       uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
2798       bool BitField = i->isBitField();
2799 
2800       // Ignore padding bit-fields.
2801       if (BitField && i->isUnnamedBitfield())
2802         continue;
2803 
2804       // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
2805       // four eightbytes, or it contains unaligned fields, it has class MEMORY.
2806       //
2807       // The only case a 256-bit wide vector could be used is when the struct
2808       // contains a single 256-bit element. Since Lo and Hi logic isn't extended
2809       // to work for sizes wider than 128, early check and fallback to memory.
2810       //
2811       if (Size > 128 && (Size != getContext().getTypeSize(i->getType()) ||
2812                          Size > getNativeVectorSizeForAVXABI(AVXLevel))) {
2813         Lo = Memory;
2814         postMerge(Size, Lo, Hi);
2815         return;
2816       }
2817       // Note, skip this test for bit-fields, see below.
2818       if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
2819         Lo = Memory;
2820         postMerge(Size, Lo, Hi);
2821         return;
2822       }
2823 
2824       // Classify this field.
2825       //
2826       // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
2827       // exceeds a single eightbyte, each is classified
2828       // separately. Each eightbyte gets initialized to class
2829       // NO_CLASS.
2830       Class FieldLo, FieldHi;
2831 
2832       // Bit-fields require special handling, they do not force the
2833       // structure to be passed in memory even if unaligned, and
2834       // therefore they can straddle an eightbyte.
2835       if (BitField) {
2836         assert(!i->isUnnamedBitfield());
2837         uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
2838         uint64_t Size = i->getBitWidthValue(getContext());
2839 
2840         uint64_t EB_Lo = Offset / 64;
2841         uint64_t EB_Hi = (Offset + Size - 1) / 64;
2842 
2843         if (EB_Lo) {
2844           assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
2845           FieldLo = NoClass;
2846           FieldHi = Integer;
2847         } else {
2848           FieldLo = Integer;
2849           FieldHi = EB_Hi ? Integer : NoClass;
2850         }
2851       } else
2852         classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg);
2853       Lo = merge(Lo, FieldLo);
2854       Hi = merge(Hi, FieldHi);
2855       if (Lo == Memory || Hi == Memory)
2856         break;
2857     }
2858 
2859     postMerge(Size, Lo, Hi);
2860   }
2861 }
2862 
2863 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
2864   // If this is a scalar LLVM value then assume LLVM will pass it in the right
2865   // place naturally.
2866   if (!isAggregateTypeForABI(Ty)) {
2867     // Treat an enum type as its underlying type.
2868     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2869       Ty = EnumTy->getDecl()->getIntegerType();
2870 
2871     return (Ty->isPromotableIntegerType() ?
2872             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2873   }
2874 
2875   return getNaturalAlignIndirect(Ty);
2876 }
2877 
2878 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
2879   if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
2880     uint64_t Size = getContext().getTypeSize(VecTy);
2881     unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel);
2882     if (Size <= 64 || Size > LargestVector)
2883       return true;
2884   }
2885 
2886   return false;
2887 }
2888 
2889 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
2890                                             unsigned freeIntRegs) const {
2891   // If this is a scalar LLVM value then assume LLVM will pass it in the right
2892   // place naturally.
2893   //
2894   // This assumption is optimistic, as there could be free registers available
2895   // when we need to pass this argument in memory, and LLVM could try to pass
2896   // the argument in the free register. This does not seem to happen currently,
2897   // but this code would be much safer if we could mark the argument with
2898   // 'onstack'. See PR12193.
2899   if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) {
2900     // Treat an enum type as its underlying type.
2901     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2902       Ty = EnumTy->getDecl()->getIntegerType();
2903 
2904     return (Ty->isPromotableIntegerType() ?
2905             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2906   }
2907 
2908   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
2909     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
2910 
2911   // Compute the byval alignment. We specify the alignment of the byval in all
2912   // cases so that the mid-level optimizer knows the alignment of the byval.
2913   unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
2914 
2915   // Attempt to avoid passing indirect results using byval when possible. This
2916   // is important for good codegen.
2917   //
2918   // We do this by coercing the value into a scalar type which the backend can
2919   // handle naturally (i.e., without using byval).
2920   //
2921   // For simplicity, we currently only do this when we have exhausted all of the
2922   // free integer registers. Doing this when there are free integer registers
2923   // would require more care, as we would have to ensure that the coerced value
2924   // did not claim the unused register. That would require either reording the
2925   // arguments to the function (so that any subsequent inreg values came first),
2926   // or only doing this optimization when there were no following arguments that
2927   // might be inreg.
2928   //
2929   // We currently expect it to be rare (particularly in well written code) for
2930   // arguments to be passed on the stack when there are still free integer
2931   // registers available (this would typically imply large structs being passed
2932   // by value), so this seems like a fair tradeoff for now.
2933   //
2934   // We can revisit this if the backend grows support for 'onstack' parameter
2935   // attributes. See PR12193.
2936   if (freeIntRegs == 0) {
2937     uint64_t Size = getContext().getTypeSize(Ty);
2938 
2939     // If this type fits in an eightbyte, coerce it into the matching integral
2940     // type, which will end up on the stack (with alignment 8).
2941     if (Align == 8 && Size <= 64)
2942       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2943                                                           Size));
2944   }
2945 
2946   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align));
2947 }
2948 
2949 /// The ABI specifies that a value should be passed in a full vector XMM/YMM
2950 /// register. Pick an LLVM IR type that will be passed as a vector register.
2951 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
2952   // Wrapper structs/arrays that only contain vectors are passed just like
2953   // vectors; strip them off if present.
2954   if (const Type *InnerTy = isSingleElementStruct(Ty, getContext()))
2955     Ty = QualType(InnerTy, 0);
2956 
2957   llvm::Type *IRType = CGT.ConvertType(Ty);
2958   if (isa<llvm::VectorType>(IRType) ||
2959       IRType->getTypeID() == llvm::Type::FP128TyID)
2960     return IRType;
2961 
2962   // We couldn't find the preferred IR vector type for 'Ty'.
2963   uint64_t Size = getContext().getTypeSize(Ty);
2964   assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!");
2965 
2966   // Return a LLVM IR vector type based on the size of 'Ty'.
2967   return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()),
2968                                Size / 64);
2969 }
2970 
2971 /// BitsContainNoUserData - Return true if the specified [start,end) bit range
2972 /// is known to either be off the end of the specified type or being in
2973 /// alignment padding.  The user type specified is known to be at most 128 bits
2974 /// in size, and have passed through X86_64ABIInfo::classify with a successful
2975 /// classification that put one of the two halves in the INTEGER class.
2976 ///
2977 /// It is conservatively correct to return false.
2978 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
2979                                   unsigned EndBit, ASTContext &Context) {
2980   // If the bytes being queried are off the end of the type, there is no user
2981   // data hiding here.  This handles analysis of builtins, vectors and other
2982   // types that don't contain interesting padding.
2983   unsigned TySize = (unsigned)Context.getTypeSize(Ty);
2984   if (TySize <= StartBit)
2985     return true;
2986 
2987   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
2988     unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
2989     unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
2990 
2991     // Check each element to see if the element overlaps with the queried range.
2992     for (unsigned i = 0; i != NumElts; ++i) {
2993       // If the element is after the span we care about, then we're done..
2994       unsigned EltOffset = i*EltSize;
2995       if (EltOffset >= EndBit) break;
2996 
2997       unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
2998       if (!BitsContainNoUserData(AT->getElementType(), EltStart,
2999                                  EndBit-EltOffset, Context))
3000         return false;
3001     }
3002     // If it overlaps no elements, then it is safe to process as padding.
3003     return true;
3004   }
3005 
3006   if (const RecordType *RT = Ty->getAs<RecordType>()) {
3007     const RecordDecl *RD = RT->getDecl();
3008     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3009 
3010     // If this is a C++ record, check the bases first.
3011     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
3012       for (const auto &I : CXXRD->bases()) {
3013         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
3014                "Unexpected base class!");
3015         const CXXRecordDecl *Base =
3016           cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
3017 
3018         // If the base is after the span we care about, ignore it.
3019         unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base));
3020         if (BaseOffset >= EndBit) continue;
3021 
3022         unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
3023         if (!BitsContainNoUserData(I.getType(), BaseStart,
3024                                    EndBit-BaseOffset, Context))
3025           return false;
3026       }
3027     }
3028 
3029     // Verify that no field has data that overlaps the region of interest.  Yes
3030     // this could be sped up a lot by being smarter about queried fields,
3031     // however we're only looking at structs up to 16 bytes, so we don't care
3032     // much.
3033     unsigned idx = 0;
3034     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
3035          i != e; ++i, ++idx) {
3036       unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
3037 
3038       // If we found a field after the region we care about, then we're done.
3039       if (FieldOffset >= EndBit) break;
3040 
3041       unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
3042       if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
3043                                  Context))
3044         return false;
3045     }
3046 
3047     // If nothing in this record overlapped the area of interest, then we're
3048     // clean.
3049     return true;
3050   }
3051 
3052   return false;
3053 }
3054 
3055 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
3056 /// float member at the specified offset.  For example, {int,{float}} has a
3057 /// float at offset 4.  It is conservatively correct for this routine to return
3058 /// false.
3059 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset,
3060                                   const llvm::DataLayout &TD) {
3061   // Base case if we find a float.
3062   if (IROffset == 0 && IRType->isFloatTy())
3063     return true;
3064 
3065   // If this is a struct, recurse into the field at the specified offset.
3066   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
3067     const llvm::StructLayout *SL = TD.getStructLayout(STy);
3068     unsigned Elt = SL->getElementContainingOffset(IROffset);
3069     IROffset -= SL->getElementOffset(Elt);
3070     return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
3071   }
3072 
3073   // If this is an array, recurse into the field at the specified offset.
3074   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
3075     llvm::Type *EltTy = ATy->getElementType();
3076     unsigned EltSize = TD.getTypeAllocSize(EltTy);
3077     IROffset -= IROffset/EltSize*EltSize;
3078     return ContainsFloatAtOffset(EltTy, IROffset, TD);
3079   }
3080 
3081   return false;
3082 }
3083 
3084 
3085 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
3086 /// low 8 bytes of an XMM register, corresponding to the SSE class.
3087 llvm::Type *X86_64ABIInfo::
3088 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
3089                    QualType SourceTy, unsigned SourceOffset) const {
3090   // The only three choices we have are either double, <2 x float>, or float. We
3091   // pass as float if the last 4 bytes is just padding.  This happens for
3092   // structs that contain 3 floats.
3093   if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
3094                             SourceOffset*8+64, getContext()))
3095     return llvm::Type::getFloatTy(getVMContext());
3096 
3097   // We want to pass as <2 x float> if the LLVM IR type contains a float at
3098   // offset+0 and offset+4.  Walk the LLVM IR type to find out if this is the
3099   // case.
3100   if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) &&
3101       ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout()))
3102     return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2);
3103 
3104   return llvm::Type::getDoubleTy(getVMContext());
3105 }
3106 
3107 
3108 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
3109 /// an 8-byte GPR.  This means that we either have a scalar or we are talking
3110 /// about the high or low part of an up-to-16-byte struct.  This routine picks
3111 /// the best LLVM IR type to represent this, which may be i64 or may be anything
3112 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
3113 /// etc).
3114 ///
3115 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
3116 /// the source type.  IROffset is an offset in bytes into the LLVM IR type that
3117 /// the 8-byte value references.  PrefType may be null.
3118 ///
3119 /// SourceTy is the source-level type for the entire argument.  SourceOffset is
3120 /// an offset into this that we're processing (which is always either 0 or 8).
3121 ///
3122 llvm::Type *X86_64ABIInfo::
3123 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
3124                        QualType SourceTy, unsigned SourceOffset) const {
3125   // If we're dealing with an un-offset LLVM IR type, then it means that we're
3126   // returning an 8-byte unit starting with it.  See if we can safely use it.
3127   if (IROffset == 0) {
3128     // Pointers and int64's always fill the 8-byte unit.
3129     if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) ||
3130         IRType->isIntegerTy(64))
3131       return IRType;
3132 
3133     // If we have a 1/2/4-byte integer, we can use it only if the rest of the
3134     // goodness in the source type is just tail padding.  This is allowed to
3135     // kick in for struct {double,int} on the int, but not on
3136     // struct{double,int,int} because we wouldn't return the second int.  We
3137     // have to do this analysis on the source type because we can't depend on
3138     // unions being lowered a specific way etc.
3139     if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
3140         IRType->isIntegerTy(32) ||
3141         (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) {
3142       unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 :
3143           cast<llvm::IntegerType>(IRType)->getBitWidth();
3144 
3145       if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
3146                                 SourceOffset*8+64, getContext()))
3147         return IRType;
3148     }
3149   }
3150 
3151   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
3152     // If this is a struct, recurse into the field at the specified offset.
3153     const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy);
3154     if (IROffset < SL->getSizeInBytes()) {
3155       unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
3156       IROffset -= SL->getElementOffset(FieldIdx);
3157 
3158       return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
3159                                     SourceTy, SourceOffset);
3160     }
3161   }
3162 
3163   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
3164     llvm::Type *EltTy = ATy->getElementType();
3165     unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy);
3166     unsigned EltOffset = IROffset/EltSize*EltSize;
3167     return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
3168                                   SourceOffset);
3169   }
3170 
3171   // Okay, we don't have any better idea of what to pass, so we pass this in an
3172   // integer register that isn't too big to fit the rest of the struct.
3173   unsigned TySizeInBytes =
3174     (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
3175 
3176   assert(TySizeInBytes != SourceOffset && "Empty field?");
3177 
3178   // It is always safe to classify this as an integer type up to i64 that
3179   // isn't larger than the structure.
3180   return llvm::IntegerType::get(getVMContext(),
3181                                 std::min(TySizeInBytes-SourceOffset, 8U)*8);
3182 }
3183 
3184 
3185 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
3186 /// be used as elements of a two register pair to pass or return, return a
3187 /// first class aggregate to represent them.  For example, if the low part of
3188 /// a by-value argument should be passed as i32* and the high part as float,
3189 /// return {i32*, float}.
3190 static llvm::Type *
3191 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
3192                            const llvm::DataLayout &TD) {
3193   // In order to correctly satisfy the ABI, we need to the high part to start
3194   // at offset 8.  If the high and low parts we inferred are both 4-byte types
3195   // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
3196   // the second element at offset 8.  Check for this:
3197   unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
3198   unsigned HiAlign = TD.getABITypeAlignment(Hi);
3199   unsigned HiStart = llvm::alignTo(LoSize, HiAlign);
3200   assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
3201 
3202   // To handle this, we have to increase the size of the low part so that the
3203   // second element will start at an 8 byte offset.  We can't increase the size
3204   // of the second element because it might make us access off the end of the
3205   // struct.
3206   if (HiStart != 8) {
3207     // There are usually two sorts of types the ABI generation code can produce
3208     // for the low part of a pair that aren't 8 bytes in size: float or
3209     // i8/i16/i32.  This can also include pointers when they are 32-bit (X32 and
3210     // NaCl).
3211     // Promote these to a larger type.
3212     if (Lo->isFloatTy())
3213       Lo = llvm::Type::getDoubleTy(Lo->getContext());
3214     else {
3215       assert((Lo->isIntegerTy() || Lo->isPointerTy())
3216              && "Invalid/unknown lo type");
3217       Lo = llvm::Type::getInt64Ty(Lo->getContext());
3218     }
3219   }
3220 
3221   llvm::StructType *Result = llvm::StructType::get(Lo, Hi);
3222 
3223   // Verify that the second element is at an 8-byte offset.
3224   assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
3225          "Invalid x86-64 argument pair!");
3226   return Result;
3227 }
3228 
3229 ABIArgInfo X86_64ABIInfo::
3230 classifyReturnType(QualType RetTy) const {
3231   // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
3232   // classification algorithm.
3233   X86_64ABIInfo::Class Lo, Hi;
3234   classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true);
3235 
3236   // Check some invariants.
3237   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
3238   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
3239 
3240   llvm::Type *ResType = nullptr;
3241   switch (Lo) {
3242   case NoClass:
3243     if (Hi == NoClass)
3244       return ABIArgInfo::getIgnore();
3245     // If the low part is just padding, it takes no register, leave ResType
3246     // null.
3247     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
3248            "Unknown missing lo part");
3249     break;
3250 
3251   case SSEUp:
3252   case X87Up:
3253     llvm_unreachable("Invalid classification for lo word.");
3254 
3255     // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
3256     // hidden argument.
3257   case Memory:
3258     return getIndirectReturnResult(RetTy);
3259 
3260     // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
3261     // available register of the sequence %rax, %rdx is used.
3262   case Integer:
3263     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
3264 
3265     // If we have a sign or zero extended integer, make sure to return Extend
3266     // so that the parameter gets the right LLVM IR attributes.
3267     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
3268       // Treat an enum type as its underlying type.
3269       if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
3270         RetTy = EnumTy->getDecl()->getIntegerType();
3271 
3272       if (RetTy->isIntegralOrEnumerationType() &&
3273           RetTy->isPromotableIntegerType())
3274         return ABIArgInfo::getExtend();
3275     }
3276     break;
3277 
3278     // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
3279     // available SSE register of the sequence %xmm0, %xmm1 is used.
3280   case SSE:
3281     ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
3282     break;
3283 
3284     // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
3285     // returned on the X87 stack in %st0 as 80-bit x87 number.
3286   case X87:
3287     ResType = llvm::Type::getX86_FP80Ty(getVMContext());
3288     break;
3289 
3290     // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
3291     // part of the value is returned in %st0 and the imaginary part in
3292     // %st1.
3293   case ComplexX87:
3294     assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
3295     ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
3296                                     llvm::Type::getX86_FP80Ty(getVMContext()));
3297     break;
3298   }
3299 
3300   llvm::Type *HighPart = nullptr;
3301   switch (Hi) {
3302     // Memory was handled previously and X87 should
3303     // never occur as a hi class.
3304   case Memory:
3305   case X87:
3306     llvm_unreachable("Invalid classification for hi word.");
3307 
3308   case ComplexX87: // Previously handled.
3309   case NoClass:
3310     break;
3311 
3312   case Integer:
3313     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3314     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3315       return ABIArgInfo::getDirect(HighPart, 8);
3316     break;
3317   case SSE:
3318     HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3319     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3320       return ABIArgInfo::getDirect(HighPart, 8);
3321     break;
3322 
3323     // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
3324     // is passed in the next available eightbyte chunk if the last used
3325     // vector register.
3326     //
3327     // SSEUP should always be preceded by SSE, just widen.
3328   case SSEUp:
3329     assert(Lo == SSE && "Unexpected SSEUp classification.");
3330     ResType = GetByteVectorType(RetTy);
3331     break;
3332 
3333     // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
3334     // returned together with the previous X87 value in %st0.
3335   case X87Up:
3336     // If X87Up is preceded by X87, we don't need to do
3337     // anything. However, in some cases with unions it may not be
3338     // preceded by X87. In such situations we follow gcc and pass the
3339     // extra bits in an SSE reg.
3340     if (Lo != X87) {
3341       HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3342       if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3343         return ABIArgInfo::getDirect(HighPart, 8);
3344     }
3345     break;
3346   }
3347 
3348   // If a high part was specified, merge it together with the low part.  It is
3349   // known to pass in the high eightbyte of the result.  We do this by forming a
3350   // first class struct aggregate with the high and low part: {low, high}
3351   if (HighPart)
3352     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
3353 
3354   return ABIArgInfo::getDirect(ResType);
3355 }
3356 
3357 ABIArgInfo X86_64ABIInfo::classifyArgumentType(
3358   QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE,
3359   bool isNamedArg)
3360   const
3361 {
3362   Ty = useFirstFieldIfTransparentUnion(Ty);
3363 
3364   X86_64ABIInfo::Class Lo, Hi;
3365   classify(Ty, 0, Lo, Hi, isNamedArg);
3366 
3367   // Check some invariants.
3368   // FIXME: Enforce these by construction.
3369   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
3370   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
3371 
3372   neededInt = 0;
3373   neededSSE = 0;
3374   llvm::Type *ResType = nullptr;
3375   switch (Lo) {
3376   case NoClass:
3377     if (Hi == NoClass)
3378       return ABIArgInfo::getIgnore();
3379     // If the low part is just padding, it takes no register, leave ResType
3380     // null.
3381     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
3382            "Unknown missing lo part");
3383     break;
3384 
3385     // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
3386     // on the stack.
3387   case Memory:
3388 
3389     // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
3390     // COMPLEX_X87, it is passed in memory.
3391   case X87:
3392   case ComplexX87:
3393     if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect)
3394       ++neededInt;
3395     return getIndirectResult(Ty, freeIntRegs);
3396 
3397   case SSEUp:
3398   case X87Up:
3399     llvm_unreachable("Invalid classification for lo word.");
3400 
3401     // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
3402     // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
3403     // and %r9 is used.
3404   case Integer:
3405     ++neededInt;
3406 
3407     // Pick an 8-byte type based on the preferred type.
3408     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
3409 
3410     // If we have a sign or zero extended integer, make sure to return Extend
3411     // so that the parameter gets the right LLVM IR attributes.
3412     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
3413       // Treat an enum type as its underlying type.
3414       if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3415         Ty = EnumTy->getDecl()->getIntegerType();
3416 
3417       if (Ty->isIntegralOrEnumerationType() &&
3418           Ty->isPromotableIntegerType())
3419         return ABIArgInfo::getExtend();
3420     }
3421 
3422     break;
3423 
3424     // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
3425     // available SSE register is used, the registers are taken in the
3426     // order from %xmm0 to %xmm7.
3427   case SSE: {
3428     llvm::Type *IRType = CGT.ConvertType(Ty);
3429     ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
3430     ++neededSSE;
3431     break;
3432   }
3433   }
3434 
3435   llvm::Type *HighPart = nullptr;
3436   switch (Hi) {
3437     // Memory was handled previously, ComplexX87 and X87 should
3438     // never occur as hi classes, and X87Up must be preceded by X87,
3439     // which is passed in memory.
3440   case Memory:
3441   case X87:
3442   case ComplexX87:
3443     llvm_unreachable("Invalid classification for hi word.");
3444 
3445   case NoClass: break;
3446 
3447   case Integer:
3448     ++neededInt;
3449     // Pick an 8-byte type based on the preferred type.
3450     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
3451 
3452     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
3453       return ABIArgInfo::getDirect(HighPart, 8);
3454     break;
3455 
3456     // X87Up generally doesn't occur here (long double is passed in
3457     // memory), except in situations involving unions.
3458   case X87Up:
3459   case SSE:
3460     HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
3461 
3462     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
3463       return ABIArgInfo::getDirect(HighPart, 8);
3464 
3465     ++neededSSE;
3466     break;
3467 
3468     // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
3469     // eightbyte is passed in the upper half of the last used SSE
3470     // register.  This only happens when 128-bit vectors are passed.
3471   case SSEUp:
3472     assert(Lo == SSE && "Unexpected SSEUp classification");
3473     ResType = GetByteVectorType(Ty);
3474     break;
3475   }
3476 
3477   // If a high part was specified, merge it together with the low part.  It is
3478   // known to pass in the high eightbyte of the result.  We do this by forming a
3479   // first class struct aggregate with the high and low part: {low, high}
3480   if (HighPart)
3481     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
3482 
3483   return ABIArgInfo::getDirect(ResType);
3484 }
3485 
3486 ABIArgInfo
3487 X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
3488                                              unsigned &NeededSSE) const {
3489   auto RT = Ty->getAs<RecordType>();
3490   assert(RT && "classifyRegCallStructType only valid with struct types");
3491 
3492   if (RT->getDecl()->hasFlexibleArrayMember())
3493     return getIndirectReturnResult(Ty);
3494 
3495   // Sum up bases
3496   if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
3497     if (CXXRD->isDynamicClass()) {
3498       NeededInt = NeededSSE = 0;
3499       return getIndirectReturnResult(Ty);
3500     }
3501 
3502     for (const auto &I : CXXRD->bases())
3503       if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE)
3504               .isIndirect()) {
3505         NeededInt = NeededSSE = 0;
3506         return getIndirectReturnResult(Ty);
3507       }
3508   }
3509 
3510   // Sum up members
3511   for (const auto *FD : RT->getDecl()->fields()) {
3512     if (FD->getType()->isRecordType() && !FD->getType()->isUnionType()) {
3513       if (classifyRegCallStructTypeImpl(FD->getType(), NeededInt, NeededSSE)
3514               .isIndirect()) {
3515         NeededInt = NeededSSE = 0;
3516         return getIndirectReturnResult(Ty);
3517       }
3518     } else {
3519       unsigned LocalNeededInt, LocalNeededSSE;
3520       if (classifyArgumentType(FD->getType(), UINT_MAX, LocalNeededInt,
3521                                LocalNeededSSE, true)
3522               .isIndirect()) {
3523         NeededInt = NeededSSE = 0;
3524         return getIndirectReturnResult(Ty);
3525       }
3526       NeededInt += LocalNeededInt;
3527       NeededSSE += LocalNeededSSE;
3528     }
3529   }
3530 
3531   return ABIArgInfo::getDirect();
3532 }
3533 
3534 ABIArgInfo X86_64ABIInfo::classifyRegCallStructType(QualType Ty,
3535                                                     unsigned &NeededInt,
3536                                                     unsigned &NeededSSE) const {
3537 
3538   NeededInt = 0;
3539   NeededSSE = 0;
3540 
3541   return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE);
3542 }
3543 
3544 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
3545 
3546   bool IsRegCall = FI.getCallingConvention() == llvm::CallingConv::X86_RegCall;
3547 
3548   // Keep track of the number of assigned registers.
3549   unsigned FreeIntRegs = IsRegCall ? 11 : 6;
3550   unsigned FreeSSERegs = IsRegCall ? 16 : 8;
3551   unsigned NeededInt, NeededSSE;
3552 
3553   if (!getCXXABI().classifyReturnType(FI)) {
3554     if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() &&
3555         !FI.getReturnType()->getTypePtr()->isUnionType()) {
3556       FI.getReturnInfo() =
3557           classifyRegCallStructType(FI.getReturnType(), NeededInt, NeededSSE);
3558       if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
3559         FreeIntRegs -= NeededInt;
3560         FreeSSERegs -= NeededSSE;
3561       } else {
3562         FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType());
3563       }
3564     } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>()) {
3565       // Complex Long Double Type is passed in Memory when Regcall
3566       // calling convention is used.
3567       const ComplexType *CT = FI.getReturnType()->getAs<ComplexType>();
3568       if (getContext().getCanonicalType(CT->getElementType()) ==
3569           getContext().LongDoubleTy)
3570         FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType());
3571     } else
3572       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3573   }
3574 
3575   // If the return value is indirect, then the hidden argument is consuming one
3576   // integer register.
3577   if (FI.getReturnInfo().isIndirect())
3578     --FreeIntRegs;
3579 
3580   // The chain argument effectively gives us another free register.
3581   if (FI.isChainCall())
3582     ++FreeIntRegs;
3583 
3584   unsigned NumRequiredArgs = FI.getNumRequiredArgs();
3585   // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
3586   // get assigned (in left-to-right order) for passing as follows...
3587   unsigned ArgNo = 0;
3588   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3589        it != ie; ++it, ++ArgNo) {
3590     bool IsNamedArg = ArgNo < NumRequiredArgs;
3591 
3592     if (IsRegCall && it->type->isStructureOrClassType())
3593       it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE);
3594     else
3595       it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt,
3596                                       NeededSSE, IsNamedArg);
3597 
3598     // AMD64-ABI 3.2.3p3: If there are no registers available for any
3599     // eightbyte of an argument, the whole argument is passed on the
3600     // stack. If registers have already been assigned for some
3601     // eightbytes of such an argument, the assignments get reverted.
3602     if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
3603       FreeIntRegs -= NeededInt;
3604       FreeSSERegs -= NeededSSE;
3605     } else {
3606       it->info = getIndirectResult(it->type, FreeIntRegs);
3607     }
3608   }
3609 }
3610 
3611 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF,
3612                                          Address VAListAddr, QualType Ty) {
3613   Address overflow_arg_area_p = CGF.Builder.CreateStructGEP(
3614       VAListAddr, 2, CharUnits::fromQuantity(8), "overflow_arg_area_p");
3615   llvm::Value *overflow_arg_area =
3616     CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
3617 
3618   // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
3619   // byte boundary if alignment needed by type exceeds 8 byte boundary.
3620   // It isn't stated explicitly in the standard, but in practice we use
3621   // alignment greater than 16 where necessary.
3622   CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
3623   if (Align > CharUnits::fromQuantity(8)) {
3624     overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area,
3625                                                       Align);
3626   }
3627 
3628   // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
3629   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
3630   llvm::Value *Res =
3631     CGF.Builder.CreateBitCast(overflow_arg_area,
3632                               llvm::PointerType::getUnqual(LTy));
3633 
3634   // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
3635   // l->overflow_arg_area + sizeof(type).
3636   // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
3637   // an 8 byte boundary.
3638 
3639   uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
3640   llvm::Value *Offset =
3641       llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7);
3642   overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
3643                                             "overflow_arg_area.next");
3644   CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
3645 
3646   // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
3647   return Address(Res, Align);
3648 }
3649 
3650 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
3651                                  QualType Ty) const {
3652   // Assume that va_list type is correct; should be pointer to LLVM type:
3653   // struct {
3654   //   i32 gp_offset;
3655   //   i32 fp_offset;
3656   //   i8* overflow_arg_area;
3657   //   i8* reg_save_area;
3658   // };
3659   unsigned neededInt, neededSSE;
3660 
3661   Ty = getContext().getCanonicalType(Ty);
3662   ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE,
3663                                        /*isNamedArg*/false);
3664 
3665   // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
3666   // in the registers. If not go to step 7.
3667   if (!neededInt && !neededSSE)
3668     return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
3669 
3670   // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
3671   // general purpose registers needed to pass type and num_fp to hold
3672   // the number of floating point registers needed.
3673 
3674   // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
3675   // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
3676   // l->fp_offset > 304 - num_fp * 16 go to step 7.
3677   //
3678   // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
3679   // register save space).
3680 
3681   llvm::Value *InRegs = nullptr;
3682   Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid();
3683   llvm::Value *gp_offset = nullptr, *fp_offset = nullptr;
3684   if (neededInt) {
3685     gp_offset_p =
3686         CGF.Builder.CreateStructGEP(VAListAddr, 0, CharUnits::Zero(),
3687                                     "gp_offset_p");
3688     gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
3689     InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
3690     InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
3691   }
3692 
3693   if (neededSSE) {
3694     fp_offset_p =
3695         CGF.Builder.CreateStructGEP(VAListAddr, 1, CharUnits::fromQuantity(4),
3696                                     "fp_offset_p");
3697     fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
3698     llvm::Value *FitsInFP =
3699       llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
3700     FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
3701     InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
3702   }
3703 
3704   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
3705   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
3706   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
3707   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
3708 
3709   // Emit code to load the value if it was passed in registers.
3710 
3711   CGF.EmitBlock(InRegBlock);
3712 
3713   // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
3714   // an offset of l->gp_offset and/or l->fp_offset. This may require
3715   // copying to a temporary location in case the parameter is passed
3716   // in different register classes or requires an alignment greater
3717   // than 8 for general purpose registers and 16 for XMM registers.
3718   //
3719   // FIXME: This really results in shameful code when we end up needing to
3720   // collect arguments from different places; often what should result in a
3721   // simple assembling of a structure from scattered addresses has many more
3722   // loads than necessary. Can we clean this up?
3723   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
3724   llvm::Value *RegSaveArea = CGF.Builder.CreateLoad(
3725       CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(16)),
3726                                   "reg_save_area");
3727 
3728   Address RegAddr = Address::invalid();
3729   if (neededInt && neededSSE) {
3730     // FIXME: Cleanup.
3731     assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
3732     llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
3733     Address Tmp = CGF.CreateMemTemp(Ty);
3734     Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
3735     assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
3736     llvm::Type *TyLo = ST->getElementType(0);
3737     llvm::Type *TyHi = ST->getElementType(1);
3738     assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
3739            "Unexpected ABI info for mixed regs");
3740     llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
3741     llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
3742     llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegSaveArea, gp_offset);
3743     llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegSaveArea, fp_offset);
3744     llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr;
3745     llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr;
3746 
3747     // Copy the first element.
3748     // FIXME: Our choice of alignment here and below is probably pessimistic.
3749     llvm::Value *V = CGF.Builder.CreateAlignedLoad(
3750         TyLo, CGF.Builder.CreateBitCast(RegLoAddr, PTyLo),
3751         CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyLo)));
3752     CGF.Builder.CreateStore(V,
3753                     CGF.Builder.CreateStructGEP(Tmp, 0, CharUnits::Zero()));
3754 
3755     // Copy the second element.
3756     V = CGF.Builder.CreateAlignedLoad(
3757         TyHi, CGF.Builder.CreateBitCast(RegHiAddr, PTyHi),
3758         CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyHi)));
3759     CharUnits Offset = CharUnits::fromQuantity(
3760                    getDataLayout().getStructLayout(ST)->getElementOffset(1));
3761     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1, Offset));
3762 
3763     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
3764   } else if (neededInt) {
3765     RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, gp_offset),
3766                       CharUnits::fromQuantity(8));
3767     RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
3768 
3769     // Copy to a temporary if necessary to ensure the appropriate alignment.
3770     std::pair<CharUnits, CharUnits> SizeAlign =
3771         getContext().getTypeInfoInChars(Ty);
3772     uint64_t TySize = SizeAlign.first.getQuantity();
3773     CharUnits TyAlign = SizeAlign.second;
3774 
3775     // Copy into a temporary if the type is more aligned than the
3776     // register save area.
3777     if (TyAlign.getQuantity() > 8) {
3778       Address Tmp = CGF.CreateMemTemp(Ty);
3779       CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false);
3780       RegAddr = Tmp;
3781     }
3782 
3783   } else if (neededSSE == 1) {
3784     RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset),
3785                       CharUnits::fromQuantity(16));
3786     RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
3787   } else {
3788     assert(neededSSE == 2 && "Invalid number of needed registers!");
3789     // SSE registers are spaced 16 bytes apart in the register save
3790     // area, we need to collect the two eightbytes together.
3791     // The ABI isn't explicit about this, but it seems reasonable
3792     // to assume that the slots are 16-byte aligned, since the stack is
3793     // naturally 16-byte aligned and the prologue is expected to store
3794     // all the SSE registers to the RSA.
3795     Address RegAddrLo = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset),
3796                                 CharUnits::fromQuantity(16));
3797     Address RegAddrHi =
3798       CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo,
3799                                              CharUnits::fromQuantity(16));
3800     llvm::Type *DoubleTy = CGF.DoubleTy;
3801     llvm::StructType *ST = llvm::StructType::get(DoubleTy, DoubleTy);
3802     llvm::Value *V;
3803     Address Tmp = CGF.CreateMemTemp(Ty);
3804     Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
3805     V = CGF.Builder.CreateLoad(
3806                    CGF.Builder.CreateElementBitCast(RegAddrLo, DoubleTy));
3807     CGF.Builder.CreateStore(V,
3808                    CGF.Builder.CreateStructGEP(Tmp, 0, CharUnits::Zero()));
3809     V = CGF.Builder.CreateLoad(
3810                    CGF.Builder.CreateElementBitCast(RegAddrHi, DoubleTy));
3811     CGF.Builder.CreateStore(V,
3812           CGF.Builder.CreateStructGEP(Tmp, 1, CharUnits::fromQuantity(8)));
3813 
3814     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
3815   }
3816 
3817   // AMD64-ABI 3.5.7p5: Step 5. Set:
3818   // l->gp_offset = l->gp_offset + num_gp * 8
3819   // l->fp_offset = l->fp_offset + num_fp * 16.
3820   if (neededInt) {
3821     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
3822     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
3823                             gp_offset_p);
3824   }
3825   if (neededSSE) {
3826     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
3827     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
3828                             fp_offset_p);
3829   }
3830   CGF.EmitBranch(ContBlock);
3831 
3832   // Emit code to load the value if it was passed in memory.
3833 
3834   CGF.EmitBlock(InMemBlock);
3835   Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
3836 
3837   // Return the appropriate result.
3838 
3839   CGF.EmitBlock(ContBlock);
3840   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock,
3841                                  "vaarg.addr");
3842   return ResAddr;
3843 }
3844 
3845 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
3846                                    QualType Ty) const {
3847   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
3848                           CGF.getContext().getTypeInfoInChars(Ty),
3849                           CharUnits::fromQuantity(8),
3850                           /*allowHigherAlign*/ false);
3851 }
3852 
3853 ABIArgInfo
3854 WinX86_64ABIInfo::reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs,
3855                                     const ABIArgInfo &current) const {
3856   // Assumes vectorCall calling convention.
3857   const Type *Base = nullptr;
3858   uint64_t NumElts = 0;
3859 
3860   if (!Ty->isBuiltinType() && !Ty->isVectorType() &&
3861       isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) {
3862     FreeSSERegs -= NumElts;
3863     return getDirectX86Hva();
3864   }
3865   return current;
3866 }
3867 
3868 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs,
3869                                       bool IsReturnType, bool IsVectorCall,
3870                                       bool IsRegCall) const {
3871 
3872   if (Ty->isVoidType())
3873     return ABIArgInfo::getIgnore();
3874 
3875   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3876     Ty = EnumTy->getDecl()->getIntegerType();
3877 
3878   TypeInfo Info = getContext().getTypeInfo(Ty);
3879   uint64_t Width = Info.Width;
3880   CharUnits Align = getContext().toCharUnitsFromBits(Info.Align);
3881 
3882   const RecordType *RT = Ty->getAs<RecordType>();
3883   if (RT) {
3884     if (!IsReturnType) {
3885       if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()))
3886         return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
3887     }
3888 
3889     if (RT->getDecl()->hasFlexibleArrayMember())
3890       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
3891 
3892   }
3893 
3894   const Type *Base = nullptr;
3895   uint64_t NumElts = 0;
3896   // vectorcall adds the concept of a homogenous vector aggregate, similar to
3897   // other targets.
3898   if ((IsVectorCall || IsRegCall) &&
3899       isHomogeneousAggregate(Ty, Base, NumElts)) {
3900     if (IsRegCall) {
3901       if (FreeSSERegs >= NumElts) {
3902         FreeSSERegs -= NumElts;
3903         if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())
3904           return ABIArgInfo::getDirect();
3905         return ABIArgInfo::getExpand();
3906       }
3907       return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3908     } else if (IsVectorCall) {
3909       if (FreeSSERegs >= NumElts &&
3910           (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) {
3911         FreeSSERegs -= NumElts;
3912         return ABIArgInfo::getDirect();
3913       } else if (IsReturnType) {
3914         return ABIArgInfo::getExpand();
3915       } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) {
3916         // HVAs are delayed and reclassified in the 2nd step.
3917         return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3918       }
3919     }
3920   }
3921 
3922   if (Ty->isMemberPointerType()) {
3923     // If the member pointer is represented by an LLVM int or ptr, pass it
3924     // directly.
3925     llvm::Type *LLTy = CGT.ConvertType(Ty);
3926     if (LLTy->isPointerTy() || LLTy->isIntegerTy())
3927       return ABIArgInfo::getDirect();
3928   }
3929 
3930   if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) {
3931     // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
3932     // not 1, 2, 4, or 8 bytes, must be passed by reference."
3933     if (Width > 64 || !llvm::isPowerOf2_64(Width))
3934       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
3935 
3936     // Otherwise, coerce it to a small integer.
3937     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width));
3938   }
3939 
3940   // Bool type is always extended to the ABI, other builtin types are not
3941   // extended.
3942   const BuiltinType *BT = Ty->getAs<BuiltinType>();
3943   if (BT && BT->getKind() == BuiltinType::Bool)
3944     return ABIArgInfo::getExtend();
3945 
3946   // Mingw64 GCC uses the old 80 bit extended precision floating point unit. It
3947   // passes them indirectly through memory.
3948   if (IsMingw64 && BT && BT->getKind() == BuiltinType::LongDouble) {
3949     const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
3950     if (LDF == &llvm::APFloat::x87DoubleExtended())
3951       return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3952   }
3953 
3954   return ABIArgInfo::getDirect();
3955 }
3956 
3957 void WinX86_64ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI,
3958                                              unsigned FreeSSERegs,
3959                                              bool IsVectorCall,
3960                                              bool IsRegCall) const {
3961   unsigned Count = 0;
3962   for (auto &I : FI.arguments()) {
3963     // Vectorcall in x64 only permits the first 6 arguments to be passed
3964     // as XMM/YMM registers.
3965     if (Count < VectorcallMaxParamNumAsReg)
3966       I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall);
3967     else {
3968       // Since these cannot be passed in registers, pretend no registers
3969       // are left.
3970       unsigned ZeroSSERegsAvail = 0;
3971       I.info = classify(I.type, /*FreeSSERegs=*/ZeroSSERegsAvail, false,
3972                         IsVectorCall, IsRegCall);
3973     }
3974     ++Count;
3975   }
3976 
3977   for (auto &I : FI.arguments()) {
3978     I.info = reclassifyHvaArgType(I.type, FreeSSERegs, I.info);
3979   }
3980 }
3981 
3982 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
3983   bool IsVectorCall =
3984       FI.getCallingConvention() == llvm::CallingConv::X86_VectorCall;
3985   bool IsRegCall = FI.getCallingConvention() == llvm::CallingConv::X86_RegCall;
3986 
3987   unsigned FreeSSERegs = 0;
3988   if (IsVectorCall) {
3989     // We can use up to 4 SSE return registers with vectorcall.
3990     FreeSSERegs = 4;
3991   } else if (IsRegCall) {
3992     // RegCall gives us 16 SSE registers.
3993     FreeSSERegs = 16;
3994   }
3995 
3996   if (!getCXXABI().classifyReturnType(FI))
3997     FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true,
3998                                   IsVectorCall, IsRegCall);
3999 
4000   if (IsVectorCall) {
4001     // We can use up to 6 SSE register parameters with vectorcall.
4002     FreeSSERegs = 6;
4003   } else if (IsRegCall) {
4004     // RegCall gives us 16 SSE registers, we can reuse the return registers.
4005     FreeSSERegs = 16;
4006   }
4007 
4008   if (IsVectorCall) {
4009     computeVectorCallArgs(FI, FreeSSERegs, IsVectorCall, IsRegCall);
4010   } else {
4011     for (auto &I : FI.arguments())
4012       I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall);
4013   }
4014 
4015 }
4016 
4017 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4018                                     QualType Ty) const {
4019 
4020   bool IsIndirect = false;
4021 
4022   // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
4023   // not 1, 2, 4, or 8 bytes, must be passed by reference."
4024   if (isAggregateTypeForABI(Ty) || Ty->isMemberPointerType()) {
4025     uint64_t Width = getContext().getTypeSize(Ty);
4026     IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width);
4027   }
4028 
4029   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
4030                           CGF.getContext().getTypeInfoInChars(Ty),
4031                           CharUnits::fromQuantity(8),
4032                           /*allowHigherAlign*/ false);
4033 }
4034 
4035 // PowerPC-32
4036 namespace {
4037 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information.
4038 class PPC32_SVR4_ABIInfo : public DefaultABIInfo {
4039 bool IsSoftFloatABI;
4040 public:
4041   PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI)
4042       : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI) {}
4043 
4044   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4045                     QualType Ty) const override;
4046 };
4047 
4048 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo {
4049 public:
4050   PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI)
4051       : TargetCodeGenInfo(new PPC32_SVR4_ABIInfo(CGT, SoftFloatABI)) {}
4052 
4053   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4054     // This is recovered from gcc output.
4055     return 1; // r1 is the dedicated stack pointer
4056   }
4057 
4058   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4059                                llvm::Value *Address) const override;
4060 };
4061 
4062 }
4063 
4064 // TODO: this implementation is now likely redundant with
4065 // DefaultABIInfo::EmitVAArg.
4066 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList,
4067                                       QualType Ty) const {
4068   const unsigned OverflowLimit = 8;
4069   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
4070     // TODO: Implement this. For now ignore.
4071     (void)CTy;
4072     return Address::invalid(); // FIXME?
4073   }
4074 
4075   // struct __va_list_tag {
4076   //   unsigned char gpr;
4077   //   unsigned char fpr;
4078   //   unsigned short reserved;
4079   //   void *overflow_arg_area;
4080   //   void *reg_save_area;
4081   // };
4082 
4083   bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64;
4084   bool isInt =
4085       Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType();
4086   bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64;
4087 
4088   // All aggregates are passed indirectly?  That doesn't seem consistent
4089   // with the argument-lowering code.
4090   bool isIndirect = Ty->isAggregateType();
4091 
4092   CGBuilderTy &Builder = CGF.Builder;
4093 
4094   // The calling convention either uses 1-2 GPRs or 1 FPR.
4095   Address NumRegsAddr = Address::invalid();
4096   if (isInt || IsSoftFloatABI) {
4097     NumRegsAddr = Builder.CreateStructGEP(VAList, 0, CharUnits::Zero(), "gpr");
4098   } else {
4099     NumRegsAddr = Builder.CreateStructGEP(VAList, 1, CharUnits::One(), "fpr");
4100   }
4101 
4102   llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs");
4103 
4104   // "Align" the register count when TY is i64.
4105   if (isI64 || (isF64 && IsSoftFloatABI)) {
4106     NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1));
4107     NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U));
4108   }
4109 
4110   llvm::Value *CC =
4111       Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond");
4112 
4113   llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs");
4114   llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow");
4115   llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
4116 
4117   Builder.CreateCondBr(CC, UsingRegs, UsingOverflow);
4118 
4119   llvm::Type *DirectTy = CGF.ConvertType(Ty);
4120   if (isIndirect) DirectTy = DirectTy->getPointerTo(0);
4121 
4122   // Case 1: consume registers.
4123   Address RegAddr = Address::invalid();
4124   {
4125     CGF.EmitBlock(UsingRegs);
4126 
4127     Address RegSaveAreaPtr =
4128       Builder.CreateStructGEP(VAList, 4, CharUnits::fromQuantity(8));
4129     RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr),
4130                       CharUnits::fromQuantity(8));
4131     assert(RegAddr.getElementType() == CGF.Int8Ty);
4132 
4133     // Floating-point registers start after the general-purpose registers.
4134     if (!(isInt || IsSoftFloatABI)) {
4135       RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr,
4136                                                    CharUnits::fromQuantity(32));
4137     }
4138 
4139     // Get the address of the saved value by scaling the number of
4140     // registers we've used by the number of
4141     CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8);
4142     llvm::Value *RegOffset =
4143       Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity()));
4144     RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty,
4145                                             RegAddr.getPointer(), RegOffset),
4146                       RegAddr.getAlignment().alignmentOfArrayElement(RegSize));
4147     RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy);
4148 
4149     // Increase the used-register count.
4150     NumRegs =
4151       Builder.CreateAdd(NumRegs,
4152                         Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1));
4153     Builder.CreateStore(NumRegs, NumRegsAddr);
4154 
4155     CGF.EmitBranch(Cont);
4156   }
4157 
4158   // Case 2: consume space in the overflow area.
4159   Address MemAddr = Address::invalid();
4160   {
4161     CGF.EmitBlock(UsingOverflow);
4162 
4163     Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr);
4164 
4165     // Everything in the overflow area is rounded up to a size of at least 4.
4166     CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4);
4167 
4168     CharUnits Size;
4169     if (!isIndirect) {
4170       auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty);
4171       Size = TypeInfo.first.alignTo(OverflowAreaAlign);
4172     } else {
4173       Size = CGF.getPointerSize();
4174     }
4175 
4176     Address OverflowAreaAddr =
4177       Builder.CreateStructGEP(VAList, 3, CharUnits::fromQuantity(4));
4178     Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"),
4179                          OverflowAreaAlign);
4180     // Round up address of argument to alignment
4181     CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
4182     if (Align > OverflowAreaAlign) {
4183       llvm::Value *Ptr = OverflowArea.getPointer();
4184       OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align),
4185                                                            Align);
4186     }
4187 
4188     MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy);
4189 
4190     // Increase the overflow area.
4191     OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size);
4192     Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr);
4193     CGF.EmitBranch(Cont);
4194   }
4195 
4196   CGF.EmitBlock(Cont);
4197 
4198   // Merge the cases with a phi.
4199   Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow,
4200                                 "vaarg.addr");
4201 
4202   // Load the pointer if the argument was passed indirectly.
4203   if (isIndirect) {
4204     Result = Address(Builder.CreateLoad(Result, "aggr"),
4205                      getContext().getTypeAlignInChars(Ty));
4206   }
4207 
4208   return Result;
4209 }
4210 
4211 bool
4212 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4213                                                 llvm::Value *Address) const {
4214   // This is calculated from the LLVM and GCC tables and verified
4215   // against gcc output.  AFAIK all ABIs use the same encoding.
4216 
4217   CodeGen::CGBuilderTy &Builder = CGF.Builder;
4218 
4219   llvm::IntegerType *i8 = CGF.Int8Ty;
4220   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
4221   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
4222   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
4223 
4224   // 0-31: r0-31, the 4-byte general-purpose registers
4225   AssignToArrayRange(Builder, Address, Four8, 0, 31);
4226 
4227   // 32-63: fp0-31, the 8-byte floating-point registers
4228   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
4229 
4230   // 64-76 are various 4-byte special-purpose registers:
4231   // 64: mq
4232   // 65: lr
4233   // 66: ctr
4234   // 67: ap
4235   // 68-75 cr0-7
4236   // 76: xer
4237   AssignToArrayRange(Builder, Address, Four8, 64, 76);
4238 
4239   // 77-108: v0-31, the 16-byte vector registers
4240   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
4241 
4242   // 109: vrsave
4243   // 110: vscr
4244   // 111: spe_acc
4245   // 112: spefscr
4246   // 113: sfp
4247   AssignToArrayRange(Builder, Address, Four8, 109, 113);
4248 
4249   return false;
4250 }
4251 
4252 // PowerPC-64
4253 
4254 namespace {
4255 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information.
4256 class PPC64_SVR4_ABIInfo : public ABIInfo {
4257 public:
4258   enum ABIKind {
4259     ELFv1 = 0,
4260     ELFv2
4261   };
4262 
4263 private:
4264   static const unsigned GPRBits = 64;
4265   ABIKind Kind;
4266   bool HasQPX;
4267   bool IsSoftFloatABI;
4268 
4269   // A vector of float or double will be promoted to <4 x f32> or <4 x f64> and
4270   // will be passed in a QPX register.
4271   bool IsQPXVectorTy(const Type *Ty) const {
4272     if (!HasQPX)
4273       return false;
4274 
4275     if (const VectorType *VT = Ty->getAs<VectorType>()) {
4276       unsigned NumElements = VT->getNumElements();
4277       if (NumElements == 1)
4278         return false;
4279 
4280       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) {
4281         if (getContext().getTypeSize(Ty) <= 256)
4282           return true;
4283       } else if (VT->getElementType()->
4284                    isSpecificBuiltinType(BuiltinType::Float)) {
4285         if (getContext().getTypeSize(Ty) <= 128)
4286           return true;
4287       }
4288     }
4289 
4290     return false;
4291   }
4292 
4293   bool IsQPXVectorTy(QualType Ty) const {
4294     return IsQPXVectorTy(Ty.getTypePtr());
4295   }
4296 
4297 public:
4298   PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, bool HasQPX,
4299                      bool SoftFloatABI)
4300       : ABIInfo(CGT), Kind(Kind), HasQPX(HasQPX),
4301         IsSoftFloatABI(SoftFloatABI) {}
4302 
4303   bool isPromotableTypeForABI(QualType Ty) const;
4304   CharUnits getParamTypeAlignment(QualType Ty) const;
4305 
4306   ABIArgInfo classifyReturnType(QualType RetTy) const;
4307   ABIArgInfo classifyArgumentType(QualType Ty) const;
4308 
4309   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
4310   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
4311                                          uint64_t Members) const override;
4312 
4313   // TODO: We can add more logic to computeInfo to improve performance.
4314   // Example: For aggregate arguments that fit in a register, we could
4315   // use getDirectInReg (as is done below for structs containing a single
4316   // floating-point value) to avoid pushing them to memory on function
4317   // entry.  This would require changing the logic in PPCISelLowering
4318   // when lowering the parameters in the caller and args in the callee.
4319   void computeInfo(CGFunctionInfo &FI) const override {
4320     if (!getCXXABI().classifyReturnType(FI))
4321       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4322     for (auto &I : FI.arguments()) {
4323       // We rely on the default argument classification for the most part.
4324       // One exception:  An aggregate containing a single floating-point
4325       // or vector item must be passed in a register if one is available.
4326       const Type *T = isSingleElementStruct(I.type, getContext());
4327       if (T) {
4328         const BuiltinType *BT = T->getAs<BuiltinType>();
4329         if (IsQPXVectorTy(T) ||
4330             (T->isVectorType() && getContext().getTypeSize(T) == 128) ||
4331             (BT && BT->isFloatingPoint())) {
4332           QualType QT(T, 0);
4333           I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT));
4334           continue;
4335         }
4336       }
4337       I.info = classifyArgumentType(I.type);
4338     }
4339   }
4340 
4341   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4342                     QualType Ty) const override;
4343 };
4344 
4345 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo {
4346 
4347 public:
4348   PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT,
4349                                PPC64_SVR4_ABIInfo::ABIKind Kind, bool HasQPX,
4350                                bool SoftFloatABI)
4351       : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT, Kind, HasQPX,
4352                                                  SoftFloatABI)) {}
4353 
4354   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4355     // This is recovered from gcc output.
4356     return 1; // r1 is the dedicated stack pointer
4357   }
4358 
4359   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4360                                llvm::Value *Address) const override;
4361 };
4362 
4363 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
4364 public:
4365   PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
4366 
4367   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4368     // This is recovered from gcc output.
4369     return 1; // r1 is the dedicated stack pointer
4370   }
4371 
4372   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4373                                llvm::Value *Address) const override;
4374 };
4375 
4376 }
4377 
4378 // Return true if the ABI requires Ty to be passed sign- or zero-
4379 // extended to 64 bits.
4380 bool
4381 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const {
4382   // Treat an enum type as its underlying type.
4383   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4384     Ty = EnumTy->getDecl()->getIntegerType();
4385 
4386   // Promotable integer types are required to be promoted by the ABI.
4387   if (Ty->isPromotableIntegerType())
4388     return true;
4389 
4390   // In addition to the usual promotable integer types, we also need to
4391   // extend all 32-bit types, since the ABI requires promotion to 64 bits.
4392   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
4393     switch (BT->getKind()) {
4394     case BuiltinType::Int:
4395     case BuiltinType::UInt:
4396       return true;
4397     default:
4398       break;
4399     }
4400 
4401   return false;
4402 }
4403 
4404 /// isAlignedParamType - Determine whether a type requires 16-byte or
4405 /// higher alignment in the parameter area.  Always returns at least 8.
4406 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const {
4407   // Complex types are passed just like their elements.
4408   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
4409     Ty = CTy->getElementType();
4410 
4411   // Only vector types of size 16 bytes need alignment (larger types are
4412   // passed via reference, smaller types are not aligned).
4413   if (IsQPXVectorTy(Ty)) {
4414     if (getContext().getTypeSize(Ty) > 128)
4415       return CharUnits::fromQuantity(32);
4416 
4417     return CharUnits::fromQuantity(16);
4418   } else if (Ty->isVectorType()) {
4419     return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8);
4420   }
4421 
4422   // For single-element float/vector structs, we consider the whole type
4423   // to have the same alignment requirements as its single element.
4424   const Type *AlignAsType = nullptr;
4425   const Type *EltType = isSingleElementStruct(Ty, getContext());
4426   if (EltType) {
4427     const BuiltinType *BT = EltType->getAs<BuiltinType>();
4428     if (IsQPXVectorTy(EltType) || (EltType->isVectorType() &&
4429          getContext().getTypeSize(EltType) == 128) ||
4430         (BT && BT->isFloatingPoint()))
4431       AlignAsType = EltType;
4432   }
4433 
4434   // Likewise for ELFv2 homogeneous aggregates.
4435   const Type *Base = nullptr;
4436   uint64_t Members = 0;
4437   if (!AlignAsType && Kind == ELFv2 &&
4438       isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members))
4439     AlignAsType = Base;
4440 
4441   // With special case aggregates, only vector base types need alignment.
4442   if (AlignAsType && IsQPXVectorTy(AlignAsType)) {
4443     if (getContext().getTypeSize(AlignAsType) > 128)
4444       return CharUnits::fromQuantity(32);
4445 
4446     return CharUnits::fromQuantity(16);
4447   } else if (AlignAsType) {
4448     return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8);
4449   }
4450 
4451   // Otherwise, we only need alignment for any aggregate type that
4452   // has an alignment requirement of >= 16 bytes.
4453   if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) {
4454     if (HasQPX && getContext().getTypeAlign(Ty) >= 256)
4455       return CharUnits::fromQuantity(32);
4456     return CharUnits::fromQuantity(16);
4457   }
4458 
4459   return CharUnits::fromQuantity(8);
4460 }
4461 
4462 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous
4463 /// aggregate.  Base is set to the base element type, and Members is set
4464 /// to the number of base elements.
4465 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base,
4466                                      uint64_t &Members) const {
4467   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
4468     uint64_t NElements = AT->getSize().getZExtValue();
4469     if (NElements == 0)
4470       return false;
4471     if (!isHomogeneousAggregate(AT->getElementType(), Base, Members))
4472       return false;
4473     Members *= NElements;
4474   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
4475     const RecordDecl *RD = RT->getDecl();
4476     if (RD->hasFlexibleArrayMember())
4477       return false;
4478 
4479     Members = 0;
4480 
4481     // If this is a C++ record, check the bases first.
4482     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
4483       for (const auto &I : CXXRD->bases()) {
4484         // Ignore empty records.
4485         if (isEmptyRecord(getContext(), I.getType(), true))
4486           continue;
4487 
4488         uint64_t FldMembers;
4489         if (!isHomogeneousAggregate(I.getType(), Base, FldMembers))
4490           return false;
4491 
4492         Members += FldMembers;
4493       }
4494     }
4495 
4496     for (const auto *FD : RD->fields()) {
4497       // Ignore (non-zero arrays of) empty records.
4498       QualType FT = FD->getType();
4499       while (const ConstantArrayType *AT =
4500              getContext().getAsConstantArrayType(FT)) {
4501         if (AT->getSize().getZExtValue() == 0)
4502           return false;
4503         FT = AT->getElementType();
4504       }
4505       if (isEmptyRecord(getContext(), FT, true))
4506         continue;
4507 
4508       // For compatibility with GCC, ignore empty bitfields in C++ mode.
4509       if (getContext().getLangOpts().CPlusPlus &&
4510           FD->isBitField() && FD->getBitWidthValue(getContext()) == 0)
4511         continue;
4512 
4513       uint64_t FldMembers;
4514       if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers))
4515         return false;
4516 
4517       Members = (RD->isUnion() ?
4518                  std::max(Members, FldMembers) : Members + FldMembers);
4519     }
4520 
4521     if (!Base)
4522       return false;
4523 
4524     // Ensure there is no padding.
4525     if (getContext().getTypeSize(Base) * Members !=
4526         getContext().getTypeSize(Ty))
4527       return false;
4528   } else {
4529     Members = 1;
4530     if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
4531       Members = 2;
4532       Ty = CT->getElementType();
4533     }
4534 
4535     // Most ABIs only support float, double, and some vector type widths.
4536     if (!isHomogeneousAggregateBaseType(Ty))
4537       return false;
4538 
4539     // The base type must be the same for all members.  Types that
4540     // agree in both total size and mode (float vs. vector) are
4541     // treated as being equivalent here.
4542     const Type *TyPtr = Ty.getTypePtr();
4543     if (!Base) {
4544       Base = TyPtr;
4545       // If it's a non-power-of-2 vector, its size is already a power-of-2,
4546       // so make sure to widen it explicitly.
4547       if (const VectorType *VT = Base->getAs<VectorType>()) {
4548         QualType EltTy = VT->getElementType();
4549         unsigned NumElements =
4550             getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy);
4551         Base = getContext()
4552                    .getVectorType(EltTy, NumElements, VT->getVectorKind())
4553                    .getTypePtr();
4554       }
4555     }
4556 
4557     if (Base->isVectorType() != TyPtr->isVectorType() ||
4558         getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr))
4559       return false;
4560   }
4561   return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members);
4562 }
4563 
4564 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
4565   // Homogeneous aggregates for ELFv2 must have base types of float,
4566   // double, long double, or 128-bit vectors.
4567   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
4568     if (BT->getKind() == BuiltinType::Float ||
4569         BT->getKind() == BuiltinType::Double ||
4570         BT->getKind() == BuiltinType::LongDouble) {
4571       if (IsSoftFloatABI)
4572         return false;
4573       return true;
4574     }
4575   }
4576   if (const VectorType *VT = Ty->getAs<VectorType>()) {
4577     if (getContext().getTypeSize(VT) == 128 || IsQPXVectorTy(Ty))
4578       return true;
4579   }
4580   return false;
4581 }
4582 
4583 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough(
4584     const Type *Base, uint64_t Members) const {
4585   // Vector types require one register, floating point types require one
4586   // or two registers depending on their size.
4587   uint32_t NumRegs =
4588       Base->isVectorType() ? 1 : (getContext().getTypeSize(Base) + 63) / 64;
4589 
4590   // Homogeneous Aggregates may occupy at most 8 registers.
4591   return Members * NumRegs <= 8;
4592 }
4593 
4594 ABIArgInfo
4595 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const {
4596   Ty = useFirstFieldIfTransparentUnion(Ty);
4597 
4598   if (Ty->isAnyComplexType())
4599     return ABIArgInfo::getDirect();
4600 
4601   // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes)
4602   // or via reference (larger than 16 bytes).
4603   if (Ty->isVectorType() && !IsQPXVectorTy(Ty)) {
4604     uint64_t Size = getContext().getTypeSize(Ty);
4605     if (Size > 128)
4606       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
4607     else if (Size < 128) {
4608       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
4609       return ABIArgInfo::getDirect(CoerceTy);
4610     }
4611   }
4612 
4613   if (isAggregateTypeForABI(Ty)) {
4614     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
4615       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
4616 
4617     uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity();
4618     uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity();
4619 
4620     // ELFv2 homogeneous aggregates are passed as array types.
4621     const Type *Base = nullptr;
4622     uint64_t Members = 0;
4623     if (Kind == ELFv2 &&
4624         isHomogeneousAggregate(Ty, Base, Members)) {
4625       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
4626       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
4627       return ABIArgInfo::getDirect(CoerceTy);
4628     }
4629 
4630     // If an aggregate may end up fully in registers, we do not
4631     // use the ByVal method, but pass the aggregate as array.
4632     // This is usually beneficial since we avoid forcing the
4633     // back-end to store the argument to memory.
4634     uint64_t Bits = getContext().getTypeSize(Ty);
4635     if (Bits > 0 && Bits <= 8 * GPRBits) {
4636       llvm::Type *CoerceTy;
4637 
4638       // Types up to 8 bytes are passed as integer type (which will be
4639       // properly aligned in the argument save area doubleword).
4640       if (Bits <= GPRBits)
4641         CoerceTy =
4642             llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8));
4643       // Larger types are passed as arrays, with the base type selected
4644       // according to the required alignment in the save area.
4645       else {
4646         uint64_t RegBits = ABIAlign * 8;
4647         uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits;
4648         llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits);
4649         CoerceTy = llvm::ArrayType::get(RegTy, NumRegs);
4650       }
4651 
4652       return ABIArgInfo::getDirect(CoerceTy);
4653     }
4654 
4655     // All other aggregates are passed ByVal.
4656     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
4657                                    /*ByVal=*/true,
4658                                    /*Realign=*/TyAlign > ABIAlign);
4659   }
4660 
4661   return (isPromotableTypeForABI(Ty) ?
4662           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
4663 }
4664 
4665 ABIArgInfo
4666 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
4667   if (RetTy->isVoidType())
4668     return ABIArgInfo::getIgnore();
4669 
4670   if (RetTy->isAnyComplexType())
4671     return ABIArgInfo::getDirect();
4672 
4673   // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes)
4674   // or via reference (larger than 16 bytes).
4675   if (RetTy->isVectorType() && !IsQPXVectorTy(RetTy)) {
4676     uint64_t Size = getContext().getTypeSize(RetTy);
4677     if (Size > 128)
4678       return getNaturalAlignIndirect(RetTy);
4679     else if (Size < 128) {
4680       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
4681       return ABIArgInfo::getDirect(CoerceTy);
4682     }
4683   }
4684 
4685   if (isAggregateTypeForABI(RetTy)) {
4686     // ELFv2 homogeneous aggregates are returned as array types.
4687     const Type *Base = nullptr;
4688     uint64_t Members = 0;
4689     if (Kind == ELFv2 &&
4690         isHomogeneousAggregate(RetTy, Base, Members)) {
4691       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
4692       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
4693       return ABIArgInfo::getDirect(CoerceTy);
4694     }
4695 
4696     // ELFv2 small aggregates are returned in up to two registers.
4697     uint64_t Bits = getContext().getTypeSize(RetTy);
4698     if (Kind == ELFv2 && Bits <= 2 * GPRBits) {
4699       if (Bits == 0)
4700         return ABIArgInfo::getIgnore();
4701 
4702       llvm::Type *CoerceTy;
4703       if (Bits > GPRBits) {
4704         CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits);
4705         CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy);
4706       } else
4707         CoerceTy =
4708             llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8));
4709       return ABIArgInfo::getDirect(CoerceTy);
4710     }
4711 
4712     // All other aggregates are returned indirectly.
4713     return getNaturalAlignIndirect(RetTy);
4714   }
4715 
4716   return (isPromotableTypeForABI(RetTy) ?
4717           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
4718 }
4719 
4720 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine.
4721 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4722                                       QualType Ty) const {
4723   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
4724   TypeInfo.second = getParamTypeAlignment(Ty);
4725 
4726   CharUnits SlotSize = CharUnits::fromQuantity(8);
4727 
4728   // If we have a complex type and the base type is smaller than 8 bytes,
4729   // the ABI calls for the real and imaginary parts to be right-adjusted
4730   // in separate doublewords.  However, Clang expects us to produce a
4731   // pointer to a structure with the two parts packed tightly.  So generate
4732   // loads of the real and imaginary parts relative to the va_list pointer,
4733   // and store them to a temporary structure.
4734   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
4735     CharUnits EltSize = TypeInfo.first / 2;
4736     if (EltSize < SlotSize) {
4737       Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty,
4738                                             SlotSize * 2, SlotSize,
4739                                             SlotSize, /*AllowHigher*/ true);
4740 
4741       Address RealAddr = Addr;
4742       Address ImagAddr = RealAddr;
4743       if (CGF.CGM.getDataLayout().isBigEndian()) {
4744         RealAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr,
4745                                                           SlotSize - EltSize);
4746         ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr,
4747                                                       2 * SlotSize - EltSize);
4748       } else {
4749         ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize);
4750       }
4751 
4752       llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType());
4753       RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy);
4754       ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy);
4755       llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal");
4756       llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag");
4757 
4758       Address Temp = CGF.CreateMemTemp(Ty, "vacplx");
4759       CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty),
4760                              /*init*/ true);
4761       return Temp;
4762     }
4763   }
4764 
4765   // Otherwise, just use the general rule.
4766   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
4767                           TypeInfo, SlotSize, /*AllowHigher*/ true);
4768 }
4769 
4770 static bool
4771 PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4772                               llvm::Value *Address) {
4773   // This is calculated from the LLVM and GCC tables and verified
4774   // against gcc output.  AFAIK all ABIs use the same encoding.
4775 
4776   CodeGen::CGBuilderTy &Builder = CGF.Builder;
4777 
4778   llvm::IntegerType *i8 = CGF.Int8Ty;
4779   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
4780   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
4781   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
4782 
4783   // 0-31: r0-31, the 8-byte general-purpose registers
4784   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
4785 
4786   // 32-63: fp0-31, the 8-byte floating-point registers
4787   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
4788 
4789   // 64-67 are various 8-byte special-purpose registers:
4790   // 64: mq
4791   // 65: lr
4792   // 66: ctr
4793   // 67: ap
4794   AssignToArrayRange(Builder, Address, Eight8, 64, 67);
4795 
4796   // 68-76 are various 4-byte special-purpose registers:
4797   // 68-75 cr0-7
4798   // 76: xer
4799   AssignToArrayRange(Builder, Address, Four8, 68, 76);
4800 
4801   // 77-108: v0-31, the 16-byte vector registers
4802   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
4803 
4804   // 109: vrsave
4805   // 110: vscr
4806   // 111: spe_acc
4807   // 112: spefscr
4808   // 113: sfp
4809   // 114: tfhar
4810   // 115: tfiar
4811   // 116: texasr
4812   AssignToArrayRange(Builder, Address, Eight8, 109, 116);
4813 
4814   return false;
4815 }
4816 
4817 bool
4818 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable(
4819   CodeGen::CodeGenFunction &CGF,
4820   llvm::Value *Address) const {
4821 
4822   return PPC64_initDwarfEHRegSizeTable(CGF, Address);
4823 }
4824 
4825 bool
4826 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4827                                                 llvm::Value *Address) const {
4828 
4829   return PPC64_initDwarfEHRegSizeTable(CGF, Address);
4830 }
4831 
4832 //===----------------------------------------------------------------------===//
4833 // AArch64 ABI Implementation
4834 //===----------------------------------------------------------------------===//
4835 
4836 namespace {
4837 
4838 class AArch64ABIInfo : public SwiftABIInfo {
4839 public:
4840   enum ABIKind {
4841     AAPCS = 0,
4842     DarwinPCS,
4843     Win64
4844   };
4845 
4846 private:
4847   ABIKind Kind;
4848 
4849 public:
4850   AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind)
4851     : SwiftABIInfo(CGT), Kind(Kind) {}
4852 
4853 private:
4854   ABIKind getABIKind() const { return Kind; }
4855   bool isDarwinPCS() const { return Kind == DarwinPCS; }
4856 
4857   ABIArgInfo classifyReturnType(QualType RetTy) const;
4858   ABIArgInfo classifyArgumentType(QualType RetTy) const;
4859   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
4860   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
4861                                          uint64_t Members) const override;
4862 
4863   bool isIllegalVectorType(QualType Ty) const;
4864 
4865   void computeInfo(CGFunctionInfo &FI) const override {
4866     if (!getCXXABI().classifyReturnType(FI))
4867       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4868 
4869     for (auto &it : FI.arguments())
4870       it.info = classifyArgumentType(it.type);
4871   }
4872 
4873   Address EmitDarwinVAArg(Address VAListAddr, QualType Ty,
4874                           CodeGenFunction &CGF) const;
4875 
4876   Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty,
4877                          CodeGenFunction &CGF) const;
4878 
4879   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4880                     QualType Ty) const override {
4881     return Kind == Win64 ? EmitMSVAArg(CGF, VAListAddr, Ty)
4882                          : isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF)
4883                                          : EmitAAPCSVAArg(VAListAddr, Ty, CGF);
4884   }
4885 
4886   Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
4887                       QualType Ty) const override;
4888 
4889   bool shouldPassIndirectlyForSwift(CharUnits totalSize,
4890                                     ArrayRef<llvm::Type*> scalars,
4891                                     bool asReturnValue) const override {
4892     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
4893   }
4894   bool isSwiftErrorInRegister() const override {
4895     return true;
4896   }
4897 
4898   bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy,
4899                                  unsigned elts) const override;
4900 };
4901 
4902 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo {
4903 public:
4904   AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind)
4905       : TargetCodeGenInfo(new AArch64ABIInfo(CGT, Kind)) {}
4906 
4907   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
4908     return "mov\tfp, fp\t\t// marker for objc_retainAutoreleaseReturnValue";
4909   }
4910 
4911   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4912     return 31;
4913   }
4914 
4915   bool doesReturnSlotInterfereWithArgs() const override { return false; }
4916 };
4917 
4918 class WindowsAArch64TargetCodeGenInfo : public AArch64TargetCodeGenInfo {
4919 public:
4920   WindowsAArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind K)
4921       : AArch64TargetCodeGenInfo(CGT, K) {}
4922 
4923   void getDependentLibraryOption(llvm::StringRef Lib,
4924                                  llvm::SmallString<24> &Opt) const override {
4925     Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib);
4926   }
4927 
4928   void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value,
4929                                llvm::SmallString<32> &Opt) const override {
4930     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
4931   }
4932 };
4933 }
4934 
4935 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const {
4936   Ty = useFirstFieldIfTransparentUnion(Ty);
4937 
4938   // Handle illegal vector types here.
4939   if (isIllegalVectorType(Ty)) {
4940     uint64_t Size = getContext().getTypeSize(Ty);
4941     // Android promotes <2 x i8> to i16, not i32
4942     if (isAndroid() && (Size <= 16)) {
4943       llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext());
4944       return ABIArgInfo::getDirect(ResType);
4945     }
4946     if (Size <= 32) {
4947       llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext());
4948       return ABIArgInfo::getDirect(ResType);
4949     }
4950     if (Size == 64) {
4951       llvm::Type *ResType =
4952           llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2);
4953       return ABIArgInfo::getDirect(ResType);
4954     }
4955     if (Size == 128) {
4956       llvm::Type *ResType =
4957           llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4);
4958       return ABIArgInfo::getDirect(ResType);
4959     }
4960     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
4961   }
4962 
4963   if (!isAggregateTypeForABI(Ty)) {
4964     // Treat an enum type as its underlying type.
4965     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4966       Ty = EnumTy->getDecl()->getIntegerType();
4967 
4968     return (Ty->isPromotableIntegerType() && isDarwinPCS()
4969                 ? ABIArgInfo::getExtend()
4970                 : ABIArgInfo::getDirect());
4971   }
4972 
4973   // Structures with either a non-trivial destructor or a non-trivial
4974   // copy constructor are always indirect.
4975   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
4976     return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
4977                                      CGCXXABI::RAA_DirectInMemory);
4978   }
4979 
4980   // Empty records are always ignored on Darwin, but actually passed in C++ mode
4981   // elsewhere for GNU compatibility.
4982   uint64_t Size = getContext().getTypeSize(Ty);
4983   bool IsEmpty = isEmptyRecord(getContext(), Ty, true);
4984   if (IsEmpty || Size == 0) {
4985     if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS())
4986       return ABIArgInfo::getIgnore();
4987 
4988     // GNU C mode. The only argument that gets ignored is an empty one with size
4989     // 0.
4990     if (IsEmpty && Size == 0)
4991       return ABIArgInfo::getIgnore();
4992     return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
4993   }
4994 
4995   // Homogeneous Floating-point Aggregates (HFAs) need to be expanded.
4996   const Type *Base = nullptr;
4997   uint64_t Members = 0;
4998   if (isHomogeneousAggregate(Ty, Base, Members)) {
4999     return ABIArgInfo::getDirect(
5000         llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members));
5001   }
5002 
5003   // Aggregates <= 16 bytes are passed directly in registers or on the stack.
5004   if (Size <= 128) {
5005     // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of
5006     // same size and alignment.
5007     if (getTarget().isRenderScriptTarget()) {
5008       return coerceToIntArray(Ty, getContext(), getVMContext());
5009     }
5010     unsigned Alignment = getContext().getTypeAlign(Ty);
5011     Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes
5012 
5013     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
5014     // For aggregates with 16-byte alignment, we use i128.
5015     if (Alignment < 128 && Size == 128) {
5016       llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
5017       return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
5018     }
5019     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
5020   }
5021 
5022   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5023 }
5024 
5025 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy) const {
5026   if (RetTy->isVoidType())
5027     return ABIArgInfo::getIgnore();
5028 
5029   // Large vector types should be returned via memory.
5030   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
5031     return getNaturalAlignIndirect(RetTy);
5032 
5033   if (!isAggregateTypeForABI(RetTy)) {
5034     // Treat an enum type as its underlying type.
5035     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5036       RetTy = EnumTy->getDecl()->getIntegerType();
5037 
5038     return (RetTy->isPromotableIntegerType() && isDarwinPCS()
5039                 ? ABIArgInfo::getExtend()
5040                 : ABIArgInfo::getDirect());
5041   }
5042 
5043   uint64_t Size = getContext().getTypeSize(RetTy);
5044   if (isEmptyRecord(getContext(), RetTy, true) || Size == 0)
5045     return ABIArgInfo::getIgnore();
5046 
5047   const Type *Base = nullptr;
5048   uint64_t Members = 0;
5049   if (isHomogeneousAggregate(RetTy, Base, Members))
5050     // Homogeneous Floating-point Aggregates (HFAs) are returned directly.
5051     return ABIArgInfo::getDirect();
5052 
5053   // Aggregates <= 16 bytes are returned directly in registers or on the stack.
5054   if (Size <= 128) {
5055     // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of
5056     // same size and alignment.
5057     if (getTarget().isRenderScriptTarget()) {
5058       return coerceToIntArray(RetTy, getContext(), getVMContext());
5059     }
5060     unsigned Alignment = getContext().getTypeAlign(RetTy);
5061     Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes
5062 
5063     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
5064     // For aggregates with 16-byte alignment, we use i128.
5065     if (Alignment < 128 && Size == 128) {
5066       llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
5067       return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
5068     }
5069     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
5070   }
5071 
5072   return getNaturalAlignIndirect(RetTy);
5073 }
5074 
5075 /// isIllegalVectorType - check whether the vector type is legal for AArch64.
5076 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const {
5077   if (const VectorType *VT = Ty->getAs<VectorType>()) {
5078     // Check whether VT is legal.
5079     unsigned NumElements = VT->getNumElements();
5080     uint64_t Size = getContext().getTypeSize(VT);
5081     // NumElements should be power of 2.
5082     if (!llvm::isPowerOf2_32(NumElements))
5083       return true;
5084     return Size != 64 && (Size != 128 || NumElements == 1);
5085   }
5086   return false;
5087 }
5088 
5089 bool AArch64ABIInfo::isLegalVectorTypeForSwift(CharUnits totalSize,
5090                                                llvm::Type *eltTy,
5091                                                unsigned elts) const {
5092   if (!llvm::isPowerOf2_32(elts))
5093     return false;
5094   if (totalSize.getQuantity() != 8 &&
5095       (totalSize.getQuantity() != 16 || elts == 1))
5096     return false;
5097   return true;
5098 }
5099 
5100 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
5101   // Homogeneous aggregates for AAPCS64 must have base types of a floating
5102   // point type or a short-vector type. This is the same as the 32-bit ABI,
5103   // but with the difference that any floating-point type is allowed,
5104   // including __fp16.
5105   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
5106     if (BT->isFloatingPoint())
5107       return true;
5108   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
5109     unsigned VecSize = getContext().getTypeSize(VT);
5110     if (VecSize == 64 || VecSize == 128)
5111       return true;
5112   }
5113   return false;
5114 }
5115 
5116 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
5117                                                        uint64_t Members) const {
5118   return Members <= 4;
5119 }
5120 
5121 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr,
5122                                             QualType Ty,
5123                                             CodeGenFunction &CGF) const {
5124   ABIArgInfo AI = classifyArgumentType(Ty);
5125   bool IsIndirect = AI.isIndirect();
5126 
5127   llvm::Type *BaseTy = CGF.ConvertType(Ty);
5128   if (IsIndirect)
5129     BaseTy = llvm::PointerType::getUnqual(BaseTy);
5130   else if (AI.getCoerceToType())
5131     BaseTy = AI.getCoerceToType();
5132 
5133   unsigned NumRegs = 1;
5134   if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) {
5135     BaseTy = ArrTy->getElementType();
5136     NumRegs = ArrTy->getNumElements();
5137   }
5138   bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy();
5139 
5140   // The AArch64 va_list type and handling is specified in the Procedure Call
5141   // Standard, section B.4:
5142   //
5143   // struct {
5144   //   void *__stack;
5145   //   void *__gr_top;
5146   //   void *__vr_top;
5147   //   int __gr_offs;
5148   //   int __vr_offs;
5149   // };
5150 
5151   llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
5152   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
5153   llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
5154   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
5155 
5156   auto TyInfo = getContext().getTypeInfoInChars(Ty);
5157   CharUnits TyAlign = TyInfo.second;
5158 
5159   Address reg_offs_p = Address::invalid();
5160   llvm::Value *reg_offs = nullptr;
5161   int reg_top_index;
5162   CharUnits reg_top_offset;
5163   int RegSize = IsIndirect ? 8 : TyInfo.first.getQuantity();
5164   if (!IsFPR) {
5165     // 3 is the field number of __gr_offs
5166     reg_offs_p =
5167         CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(24),
5168                                     "gr_offs_p");
5169     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs");
5170     reg_top_index = 1; // field number for __gr_top
5171     reg_top_offset = CharUnits::fromQuantity(8);
5172     RegSize = llvm::alignTo(RegSize, 8);
5173   } else {
5174     // 4 is the field number of __vr_offs.
5175     reg_offs_p =
5176         CGF.Builder.CreateStructGEP(VAListAddr, 4, CharUnits::fromQuantity(28),
5177                                     "vr_offs_p");
5178     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs");
5179     reg_top_index = 2; // field number for __vr_top
5180     reg_top_offset = CharUnits::fromQuantity(16);
5181     RegSize = 16 * NumRegs;
5182   }
5183 
5184   //=======================================
5185   // Find out where argument was passed
5186   //=======================================
5187 
5188   // If reg_offs >= 0 we're already using the stack for this type of
5189   // argument. We don't want to keep updating reg_offs (in case it overflows,
5190   // though anyone passing 2GB of arguments, each at most 16 bytes, deserves
5191   // whatever they get).
5192   llvm::Value *UsingStack = nullptr;
5193   UsingStack = CGF.Builder.CreateICmpSGE(
5194       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0));
5195 
5196   CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock);
5197 
5198   // Otherwise, at least some kind of argument could go in these registers, the
5199   // question is whether this particular type is too big.
5200   CGF.EmitBlock(MaybeRegBlock);
5201 
5202   // Integer arguments may need to correct register alignment (for example a
5203   // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we
5204   // align __gr_offs to calculate the potential address.
5205   if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) {
5206     int Align = TyAlign.getQuantity();
5207 
5208     reg_offs = CGF.Builder.CreateAdd(
5209         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1),
5210         "align_regoffs");
5211     reg_offs = CGF.Builder.CreateAnd(
5212         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align),
5213         "aligned_regoffs");
5214   }
5215 
5216   // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list.
5217   // The fact that this is done unconditionally reflects the fact that
5218   // allocating an argument to the stack also uses up all the remaining
5219   // registers of the appropriate kind.
5220   llvm::Value *NewOffset = nullptr;
5221   NewOffset = CGF.Builder.CreateAdd(
5222       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs");
5223   CGF.Builder.CreateStore(NewOffset, reg_offs_p);
5224 
5225   // Now we're in a position to decide whether this argument really was in
5226   // registers or not.
5227   llvm::Value *InRegs = nullptr;
5228   InRegs = CGF.Builder.CreateICmpSLE(
5229       NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg");
5230 
5231   CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock);
5232 
5233   //=======================================
5234   // Argument was in registers
5235   //=======================================
5236 
5237   // Now we emit the code for if the argument was originally passed in
5238   // registers. First start the appropriate block:
5239   CGF.EmitBlock(InRegBlock);
5240 
5241   llvm::Value *reg_top = nullptr;
5242   Address reg_top_p = CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index,
5243                                                   reg_top_offset, "reg_top_p");
5244   reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top");
5245   Address BaseAddr(CGF.Builder.CreateInBoundsGEP(reg_top, reg_offs),
5246                    CharUnits::fromQuantity(IsFPR ? 16 : 8));
5247   Address RegAddr = Address::invalid();
5248   llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty);
5249 
5250   if (IsIndirect) {
5251     // If it's been passed indirectly (actually a struct), whatever we find from
5252     // stored registers or on the stack will actually be a struct **.
5253     MemTy = llvm::PointerType::getUnqual(MemTy);
5254   }
5255 
5256   const Type *Base = nullptr;
5257   uint64_t NumMembers = 0;
5258   bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers);
5259   if (IsHFA && NumMembers > 1) {
5260     // Homogeneous aggregates passed in registers will have their elements split
5261     // and stored 16-bytes apart regardless of size (they're notionally in qN,
5262     // qN+1, ...). We reload and store into a temporary local variable
5263     // contiguously.
5264     assert(!IsIndirect && "Homogeneous aggregates should be passed directly");
5265     auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0));
5266     llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0));
5267     llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers);
5268     Address Tmp = CGF.CreateTempAlloca(HFATy,
5269                                        std::max(TyAlign, BaseTyInfo.second));
5270 
5271     // On big-endian platforms, the value will be right-aligned in its slot.
5272     int Offset = 0;
5273     if (CGF.CGM.getDataLayout().isBigEndian() &&
5274         BaseTyInfo.first.getQuantity() < 16)
5275       Offset = 16 - BaseTyInfo.first.getQuantity();
5276 
5277     for (unsigned i = 0; i < NumMembers; ++i) {
5278       CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset);
5279       Address LoadAddr =
5280         CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset);
5281       LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy);
5282 
5283       Address StoreAddr =
5284         CGF.Builder.CreateConstArrayGEP(Tmp, i, BaseTyInfo.first);
5285 
5286       llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr);
5287       CGF.Builder.CreateStore(Elem, StoreAddr);
5288     }
5289 
5290     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy);
5291   } else {
5292     // Otherwise the object is contiguous in memory.
5293 
5294     // It might be right-aligned in its slot.
5295     CharUnits SlotSize = BaseAddr.getAlignment();
5296     if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect &&
5297         (IsHFA || !isAggregateTypeForABI(Ty)) &&
5298         TyInfo.first < SlotSize) {
5299       CharUnits Offset = SlotSize - TyInfo.first;
5300       BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset);
5301     }
5302 
5303     RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy);
5304   }
5305 
5306   CGF.EmitBranch(ContBlock);
5307 
5308   //=======================================
5309   // Argument was on the stack
5310   //=======================================
5311   CGF.EmitBlock(OnStackBlock);
5312 
5313   Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0,
5314                                                 CharUnits::Zero(), "stack_p");
5315   llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack");
5316 
5317   // Again, stack arguments may need realignment. In this case both integer and
5318   // floating-point ones might be affected.
5319   if (!IsIndirect && TyAlign.getQuantity() > 8) {
5320     int Align = TyAlign.getQuantity();
5321 
5322     OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty);
5323 
5324     OnStackPtr = CGF.Builder.CreateAdd(
5325         OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1),
5326         "align_stack");
5327     OnStackPtr = CGF.Builder.CreateAnd(
5328         OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align),
5329         "align_stack");
5330 
5331     OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy);
5332   }
5333   Address OnStackAddr(OnStackPtr,
5334                       std::max(CharUnits::fromQuantity(8), TyAlign));
5335 
5336   // All stack slots are multiples of 8 bytes.
5337   CharUnits StackSlotSize = CharUnits::fromQuantity(8);
5338   CharUnits StackSize;
5339   if (IsIndirect)
5340     StackSize = StackSlotSize;
5341   else
5342     StackSize = TyInfo.first.alignTo(StackSlotSize);
5343 
5344   llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize);
5345   llvm::Value *NewStack =
5346       CGF.Builder.CreateInBoundsGEP(OnStackPtr, StackSizeC, "new_stack");
5347 
5348   // Write the new value of __stack for the next call to va_arg
5349   CGF.Builder.CreateStore(NewStack, stack_p);
5350 
5351   if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) &&
5352       TyInfo.first < StackSlotSize) {
5353     CharUnits Offset = StackSlotSize - TyInfo.first;
5354     OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset);
5355   }
5356 
5357   OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy);
5358 
5359   CGF.EmitBranch(ContBlock);
5360 
5361   //=======================================
5362   // Tidy up
5363   //=======================================
5364   CGF.EmitBlock(ContBlock);
5365 
5366   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
5367                                  OnStackAddr, OnStackBlock, "vaargs.addr");
5368 
5369   if (IsIndirect)
5370     return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"),
5371                    TyInfo.second);
5372 
5373   return ResAddr;
5374 }
5375 
5376 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty,
5377                                         CodeGenFunction &CGF) const {
5378   // The backend's lowering doesn't support va_arg for aggregates or
5379   // illegal vector types.  Lower VAArg here for these cases and use
5380   // the LLVM va_arg instruction for everything else.
5381   if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty))
5382     return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect());
5383 
5384   CharUnits SlotSize = CharUnits::fromQuantity(8);
5385 
5386   // Empty records are ignored for parameter passing purposes.
5387   if (isEmptyRecord(getContext(), Ty, true)) {
5388     Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
5389     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
5390     return Addr;
5391   }
5392 
5393   // The size of the actual thing passed, which might end up just
5394   // being a pointer for indirect types.
5395   auto TyInfo = getContext().getTypeInfoInChars(Ty);
5396 
5397   // Arguments bigger than 16 bytes which aren't homogeneous
5398   // aggregates should be passed indirectly.
5399   bool IsIndirect = false;
5400   if (TyInfo.first.getQuantity() > 16) {
5401     const Type *Base = nullptr;
5402     uint64_t Members = 0;
5403     IsIndirect = !isHomogeneousAggregate(Ty, Base, Members);
5404   }
5405 
5406   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
5407                           TyInfo, SlotSize, /*AllowHigherAlign*/ true);
5408 }
5409 
5410 Address AArch64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
5411                                     QualType Ty) const {
5412   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
5413                           CGF.getContext().getTypeInfoInChars(Ty),
5414                           CharUnits::fromQuantity(8),
5415                           /*allowHigherAlign*/ false);
5416 }
5417 
5418 //===----------------------------------------------------------------------===//
5419 // ARM ABI Implementation
5420 //===----------------------------------------------------------------------===//
5421 
5422 namespace {
5423 
5424 class ARMABIInfo : public SwiftABIInfo {
5425 public:
5426   enum ABIKind {
5427     APCS = 0,
5428     AAPCS = 1,
5429     AAPCS_VFP = 2,
5430     AAPCS16_VFP = 3,
5431   };
5432 
5433 private:
5434   ABIKind Kind;
5435 
5436 public:
5437   ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind)
5438       : SwiftABIInfo(CGT), Kind(_Kind) {
5439     setCCs();
5440   }
5441 
5442   bool isEABI() const {
5443     switch (getTarget().getTriple().getEnvironment()) {
5444     case llvm::Triple::Android:
5445     case llvm::Triple::EABI:
5446     case llvm::Triple::EABIHF:
5447     case llvm::Triple::GNUEABI:
5448     case llvm::Triple::GNUEABIHF:
5449     case llvm::Triple::MuslEABI:
5450     case llvm::Triple::MuslEABIHF:
5451       return true;
5452     default:
5453       return false;
5454     }
5455   }
5456 
5457   bool isEABIHF() const {
5458     switch (getTarget().getTriple().getEnvironment()) {
5459     case llvm::Triple::EABIHF:
5460     case llvm::Triple::GNUEABIHF:
5461     case llvm::Triple::MuslEABIHF:
5462       return true;
5463     default:
5464       return false;
5465     }
5466   }
5467 
5468   ABIKind getABIKind() const { return Kind; }
5469 
5470 private:
5471   ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic) const;
5472   ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic) const;
5473   bool isIllegalVectorType(QualType Ty) const;
5474 
5475   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
5476   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
5477                                          uint64_t Members) const override;
5478 
5479   void computeInfo(CGFunctionInfo &FI) const override;
5480 
5481   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5482                     QualType Ty) const override;
5483 
5484   llvm::CallingConv::ID getLLVMDefaultCC() const;
5485   llvm::CallingConv::ID getABIDefaultCC() const;
5486   void setCCs();
5487 
5488   bool shouldPassIndirectlyForSwift(CharUnits totalSize,
5489                                     ArrayRef<llvm::Type*> scalars,
5490                                     bool asReturnValue) const override {
5491     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
5492   }
5493   bool isSwiftErrorInRegister() const override {
5494     return true;
5495   }
5496   bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy,
5497                                  unsigned elts) const override;
5498 };
5499 
5500 class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
5501 public:
5502   ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
5503     :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {}
5504 
5505   const ARMABIInfo &getABIInfo() const {
5506     return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo());
5507   }
5508 
5509   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
5510     return 13;
5511   }
5512 
5513   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
5514     return "mov\tr7, r7\t\t// marker for objc_retainAutoreleaseReturnValue";
5515   }
5516 
5517   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5518                                llvm::Value *Address) const override {
5519     llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
5520 
5521     // 0-15 are the 16 integer registers.
5522     AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15);
5523     return false;
5524   }
5525 
5526   unsigned getSizeOfUnwindException() const override {
5527     if (getABIInfo().isEABI()) return 88;
5528     return TargetCodeGenInfo::getSizeOfUnwindException();
5529   }
5530 
5531   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5532                            CodeGen::CodeGenModule &CGM,
5533                            ForDefinition_t IsForDefinition) const override {
5534     if (!IsForDefinition)
5535       return;
5536     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
5537     if (!FD)
5538       return;
5539 
5540     const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>();
5541     if (!Attr)
5542       return;
5543 
5544     const char *Kind;
5545     switch (Attr->getInterrupt()) {
5546     case ARMInterruptAttr::Generic: Kind = ""; break;
5547     case ARMInterruptAttr::IRQ:     Kind = "IRQ"; break;
5548     case ARMInterruptAttr::FIQ:     Kind = "FIQ"; break;
5549     case ARMInterruptAttr::SWI:     Kind = "SWI"; break;
5550     case ARMInterruptAttr::ABORT:   Kind = "ABORT"; break;
5551     case ARMInterruptAttr::UNDEF:   Kind = "UNDEF"; break;
5552     }
5553 
5554     llvm::Function *Fn = cast<llvm::Function>(GV);
5555 
5556     Fn->addFnAttr("interrupt", Kind);
5557 
5558     ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind();
5559     if (ABI == ARMABIInfo::APCS)
5560       return;
5561 
5562     // AAPCS guarantees that sp will be 8-byte aligned on any public interface,
5563     // however this is not necessarily true on taking any interrupt. Instruct
5564     // the backend to perform a realignment as part of the function prologue.
5565     llvm::AttrBuilder B;
5566     B.addStackAlignmentAttr(8);
5567     Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
5568   }
5569 };
5570 
5571 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo {
5572 public:
5573   WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
5574       : ARMTargetCodeGenInfo(CGT, K) {}
5575 
5576   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5577                            CodeGen::CodeGenModule &CGM,
5578                            ForDefinition_t IsForDefinition) const override;
5579 
5580   void getDependentLibraryOption(llvm::StringRef Lib,
5581                                  llvm::SmallString<24> &Opt) const override {
5582     Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib);
5583   }
5584 
5585   void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value,
5586                                llvm::SmallString<32> &Opt) const override {
5587     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
5588   }
5589 };
5590 
5591 void WindowsARMTargetCodeGenInfo::setTargetAttributes(
5592     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM,
5593     ForDefinition_t IsForDefinition) const {
5594   ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM, IsForDefinition);
5595   if (!IsForDefinition)
5596     return;
5597   addStackProbeSizeTargetAttribute(D, GV, CGM);
5598 }
5599 }
5600 
5601 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
5602   if (!getCXXABI().classifyReturnType(FI))
5603     FI.getReturnInfo() =
5604         classifyReturnType(FI.getReturnType(), FI.isVariadic());
5605 
5606   for (auto &I : FI.arguments())
5607     I.info = classifyArgumentType(I.type, FI.isVariadic());
5608 
5609   // Always honor user-specified calling convention.
5610   if (FI.getCallingConvention() != llvm::CallingConv::C)
5611     return;
5612 
5613   llvm::CallingConv::ID cc = getRuntimeCC();
5614   if (cc != llvm::CallingConv::C)
5615     FI.setEffectiveCallingConvention(cc);
5616 }
5617 
5618 /// Return the default calling convention that LLVM will use.
5619 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const {
5620   // The default calling convention that LLVM will infer.
5621   if (isEABIHF() || getTarget().getTriple().isWatchABI())
5622     return llvm::CallingConv::ARM_AAPCS_VFP;
5623   else if (isEABI())
5624     return llvm::CallingConv::ARM_AAPCS;
5625   else
5626     return llvm::CallingConv::ARM_APCS;
5627 }
5628 
5629 /// Return the calling convention that our ABI would like us to use
5630 /// as the C calling convention.
5631 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const {
5632   switch (getABIKind()) {
5633   case APCS: return llvm::CallingConv::ARM_APCS;
5634   case AAPCS: return llvm::CallingConv::ARM_AAPCS;
5635   case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
5636   case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
5637   }
5638   llvm_unreachable("bad ABI kind");
5639 }
5640 
5641 void ARMABIInfo::setCCs() {
5642   assert(getRuntimeCC() == llvm::CallingConv::C);
5643 
5644   // Don't muddy up the IR with a ton of explicit annotations if
5645   // they'd just match what LLVM will infer from the triple.
5646   llvm::CallingConv::ID abiCC = getABIDefaultCC();
5647   if (abiCC != getLLVMDefaultCC())
5648     RuntimeCC = abiCC;
5649 
5650   // AAPCS apparently requires runtime support functions to be soft-float, but
5651   // that's almost certainly for historic reasons (Thumb1 not supporting VFP
5652   // most likely). It's more convenient for AAPCS16_VFP to be hard-float.
5653 
5654   // The Run-time ABI for the ARM Architecture section 4.1.2 requires
5655   // AEABI-complying FP helper functions to use the base AAPCS.
5656   // These AEABI functions are expanded in the ARM llvm backend, all the builtin
5657   // support functions emitted by clang such as the _Complex helpers follow the
5658   // abiCC.
5659   if (abiCC != getLLVMDefaultCC())
5660       BuiltinCC = abiCC;
5661 }
5662 
5663 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty,
5664                                             bool isVariadic) const {
5665   // 6.1.2.1 The following argument types are VFP CPRCs:
5666   //   A single-precision floating-point type (including promoted
5667   //   half-precision types); A double-precision floating-point type;
5668   //   A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate
5669   //   with a Base Type of a single- or double-precision floating-point type,
5670   //   64-bit containerized vectors or 128-bit containerized vectors with one
5671   //   to four Elements.
5672   bool IsEffectivelyAAPCS_VFP = getABIKind() == AAPCS_VFP && !isVariadic;
5673 
5674   Ty = useFirstFieldIfTransparentUnion(Ty);
5675 
5676   // Handle illegal vector types here.
5677   if (isIllegalVectorType(Ty)) {
5678     uint64_t Size = getContext().getTypeSize(Ty);
5679     if (Size <= 32) {
5680       llvm::Type *ResType =
5681           llvm::Type::getInt32Ty(getVMContext());
5682       return ABIArgInfo::getDirect(ResType);
5683     }
5684     if (Size == 64) {
5685       llvm::Type *ResType = llvm::VectorType::get(
5686           llvm::Type::getInt32Ty(getVMContext()), 2);
5687       return ABIArgInfo::getDirect(ResType);
5688     }
5689     if (Size == 128) {
5690       llvm::Type *ResType = llvm::VectorType::get(
5691           llvm::Type::getInt32Ty(getVMContext()), 4);
5692       return ABIArgInfo::getDirect(ResType);
5693     }
5694     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5695   }
5696 
5697   // __fp16 gets passed as if it were an int or float, but with the top 16 bits
5698   // unspecified. This is not done for OpenCL as it handles the half type
5699   // natively, and does not need to interwork with AAPCS code.
5700   if (Ty->isHalfType() && !getContext().getLangOpts().NativeHalfArgsAndReturns) {
5701     llvm::Type *ResType = IsEffectivelyAAPCS_VFP ?
5702       llvm::Type::getFloatTy(getVMContext()) :
5703       llvm::Type::getInt32Ty(getVMContext());
5704     return ABIArgInfo::getDirect(ResType);
5705   }
5706 
5707   if (!isAggregateTypeForABI(Ty)) {
5708     // Treat an enum type as its underlying type.
5709     if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
5710       Ty = EnumTy->getDecl()->getIntegerType();
5711     }
5712 
5713     return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend()
5714                                           : ABIArgInfo::getDirect());
5715   }
5716 
5717   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
5718     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
5719   }
5720 
5721   // Ignore empty records.
5722   if (isEmptyRecord(getContext(), Ty, true))
5723     return ABIArgInfo::getIgnore();
5724 
5725   if (IsEffectivelyAAPCS_VFP) {
5726     // Homogeneous Aggregates need to be expanded when we can fit the aggregate
5727     // into VFP registers.
5728     const Type *Base = nullptr;
5729     uint64_t Members = 0;
5730     if (isHomogeneousAggregate(Ty, Base, Members)) {
5731       assert(Base && "Base class should be set for homogeneous aggregate");
5732       // Base can be a floating-point or a vector.
5733       return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
5734     }
5735   } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) {
5736     // WatchOS does have homogeneous aggregates. Note that we intentionally use
5737     // this convention even for a variadic function: the backend will use GPRs
5738     // if needed.
5739     const Type *Base = nullptr;
5740     uint64_t Members = 0;
5741     if (isHomogeneousAggregate(Ty, Base, Members)) {
5742       assert(Base && Members <= 4 && "unexpected homogeneous aggregate");
5743       llvm::Type *Ty =
5744         llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members);
5745       return ABIArgInfo::getDirect(Ty, 0, nullptr, false);
5746     }
5747   }
5748 
5749   if (getABIKind() == ARMABIInfo::AAPCS16_VFP &&
5750       getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) {
5751     // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're
5752     // bigger than 128-bits, they get placed in space allocated by the caller,
5753     // and a pointer is passed.
5754     return ABIArgInfo::getIndirect(
5755         CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false);
5756   }
5757 
5758   // Support byval for ARM.
5759   // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at
5760   // most 8-byte. We realign the indirect argument if type alignment is bigger
5761   // than ABI alignment.
5762   uint64_t ABIAlign = 4;
5763   uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8;
5764   if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
5765        getABIKind() == ARMABIInfo::AAPCS)
5766     ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
5767 
5768   if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) {
5769     assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval");
5770     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
5771                                    /*ByVal=*/true,
5772                                    /*Realign=*/TyAlign > ABIAlign);
5773   }
5774 
5775   // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of
5776   // same size and alignment.
5777   if (getTarget().isRenderScriptTarget()) {
5778     return coerceToIntArray(Ty, getContext(), getVMContext());
5779   }
5780 
5781   // Otherwise, pass by coercing to a structure of the appropriate size.
5782   llvm::Type* ElemTy;
5783   unsigned SizeRegs;
5784   // FIXME: Try to match the types of the arguments more accurately where
5785   // we can.
5786   if (getContext().getTypeAlign(Ty) <= 32) {
5787     ElemTy = llvm::Type::getInt32Ty(getVMContext());
5788     SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
5789   } else {
5790     ElemTy = llvm::Type::getInt64Ty(getVMContext());
5791     SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
5792   }
5793 
5794   return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs));
5795 }
5796 
5797 static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
5798                               llvm::LLVMContext &VMContext) {
5799   // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
5800   // is called integer-like if its size is less than or equal to one word, and
5801   // the offset of each of its addressable sub-fields is zero.
5802 
5803   uint64_t Size = Context.getTypeSize(Ty);
5804 
5805   // Check that the type fits in a word.
5806   if (Size > 32)
5807     return false;
5808 
5809   // FIXME: Handle vector types!
5810   if (Ty->isVectorType())
5811     return false;
5812 
5813   // Float types are never treated as "integer like".
5814   if (Ty->isRealFloatingType())
5815     return false;
5816 
5817   // If this is a builtin or pointer type then it is ok.
5818   if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
5819     return true;
5820 
5821   // Small complex integer types are "integer like".
5822   if (const ComplexType *CT = Ty->getAs<ComplexType>())
5823     return isIntegerLikeType(CT->getElementType(), Context, VMContext);
5824 
5825   // Single element and zero sized arrays should be allowed, by the definition
5826   // above, but they are not.
5827 
5828   // Otherwise, it must be a record type.
5829   const RecordType *RT = Ty->getAs<RecordType>();
5830   if (!RT) return false;
5831 
5832   // Ignore records with flexible arrays.
5833   const RecordDecl *RD = RT->getDecl();
5834   if (RD->hasFlexibleArrayMember())
5835     return false;
5836 
5837   // Check that all sub-fields are at offset 0, and are themselves "integer
5838   // like".
5839   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
5840 
5841   bool HadField = false;
5842   unsigned idx = 0;
5843   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
5844        i != e; ++i, ++idx) {
5845     const FieldDecl *FD = *i;
5846 
5847     // Bit-fields are not addressable, we only need to verify they are "integer
5848     // like". We still have to disallow a subsequent non-bitfield, for example:
5849     //   struct { int : 0; int x }
5850     // is non-integer like according to gcc.
5851     if (FD->isBitField()) {
5852       if (!RD->isUnion())
5853         HadField = true;
5854 
5855       if (!isIntegerLikeType(FD->getType(), Context, VMContext))
5856         return false;
5857 
5858       continue;
5859     }
5860 
5861     // Check if this field is at offset 0.
5862     if (Layout.getFieldOffset(idx) != 0)
5863       return false;
5864 
5865     if (!isIntegerLikeType(FD->getType(), Context, VMContext))
5866       return false;
5867 
5868     // Only allow at most one field in a structure. This doesn't match the
5869     // wording above, but follows gcc in situations with a field following an
5870     // empty structure.
5871     if (!RD->isUnion()) {
5872       if (HadField)
5873         return false;
5874 
5875       HadField = true;
5876     }
5877   }
5878 
5879   return true;
5880 }
5881 
5882 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy,
5883                                           bool isVariadic) const {
5884   bool IsEffectivelyAAPCS_VFP =
5885       (getABIKind() == AAPCS_VFP || getABIKind() == AAPCS16_VFP) && !isVariadic;
5886 
5887   if (RetTy->isVoidType())
5888     return ABIArgInfo::getIgnore();
5889 
5890   // Large vector types should be returned via memory.
5891   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) {
5892     return getNaturalAlignIndirect(RetTy);
5893   }
5894 
5895   // __fp16 gets returned as if it were an int or float, but with the top 16
5896   // bits unspecified. This is not done for OpenCL as it handles the half type
5897   // natively, and does not need to interwork with AAPCS code.
5898   if (RetTy->isHalfType() && !getContext().getLangOpts().NativeHalfArgsAndReturns) {
5899     llvm::Type *ResType = IsEffectivelyAAPCS_VFP ?
5900       llvm::Type::getFloatTy(getVMContext()) :
5901       llvm::Type::getInt32Ty(getVMContext());
5902     return ABIArgInfo::getDirect(ResType);
5903   }
5904 
5905   if (!isAggregateTypeForABI(RetTy)) {
5906     // Treat an enum type as its underlying type.
5907     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5908       RetTy = EnumTy->getDecl()->getIntegerType();
5909 
5910     return RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend()
5911                                             : ABIArgInfo::getDirect();
5912   }
5913 
5914   // Are we following APCS?
5915   if (getABIKind() == APCS) {
5916     if (isEmptyRecord(getContext(), RetTy, false))
5917       return ABIArgInfo::getIgnore();
5918 
5919     // Complex types are all returned as packed integers.
5920     //
5921     // FIXME: Consider using 2 x vector types if the back end handles them
5922     // correctly.
5923     if (RetTy->isAnyComplexType())
5924       return ABIArgInfo::getDirect(llvm::IntegerType::get(
5925           getVMContext(), getContext().getTypeSize(RetTy)));
5926 
5927     // Integer like structures are returned in r0.
5928     if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
5929       // Return in the smallest viable integer type.
5930       uint64_t Size = getContext().getTypeSize(RetTy);
5931       if (Size <= 8)
5932         return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
5933       if (Size <= 16)
5934         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
5935       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
5936     }
5937 
5938     // Otherwise return in memory.
5939     return getNaturalAlignIndirect(RetTy);
5940   }
5941 
5942   // Otherwise this is an AAPCS variant.
5943 
5944   if (isEmptyRecord(getContext(), RetTy, true))
5945     return ABIArgInfo::getIgnore();
5946 
5947   // Check for homogeneous aggregates with AAPCS-VFP.
5948   if (IsEffectivelyAAPCS_VFP) {
5949     const Type *Base = nullptr;
5950     uint64_t Members = 0;
5951     if (isHomogeneousAggregate(RetTy, Base, Members)) {
5952       assert(Base && "Base class should be set for homogeneous aggregate");
5953       // Homogeneous Aggregates are returned directly.
5954       return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
5955     }
5956   }
5957 
5958   // Aggregates <= 4 bytes are returned in r0; other aggregates
5959   // are returned indirectly.
5960   uint64_t Size = getContext().getTypeSize(RetTy);
5961   if (Size <= 32) {
5962     // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of
5963     // same size and alignment.
5964     if (getTarget().isRenderScriptTarget()) {
5965       return coerceToIntArray(RetTy, getContext(), getVMContext());
5966     }
5967     if (getDataLayout().isBigEndian())
5968       // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4)
5969       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
5970 
5971     // Return in the smallest viable integer type.
5972     if (Size <= 8)
5973       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
5974     if (Size <= 16)
5975       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
5976     return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
5977   } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) {
5978     llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext());
5979     llvm::Type *CoerceTy =
5980         llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32);
5981     return ABIArgInfo::getDirect(CoerceTy);
5982   }
5983 
5984   return getNaturalAlignIndirect(RetTy);
5985 }
5986 
5987 /// isIllegalVector - check whether Ty is an illegal vector type.
5988 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const {
5989   if (const VectorType *VT = Ty->getAs<VectorType> ()) {
5990     if (isAndroid()) {
5991       // Android shipped using Clang 3.1, which supported a slightly different
5992       // vector ABI. The primary differences were that 3-element vector types
5993       // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path
5994       // accepts that legacy behavior for Android only.
5995       // Check whether VT is legal.
5996       unsigned NumElements = VT->getNumElements();
5997       // NumElements should be power of 2 or equal to 3.
5998       if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3)
5999         return true;
6000     } else {
6001       // Check whether VT is legal.
6002       unsigned NumElements = VT->getNumElements();
6003       uint64_t Size = getContext().getTypeSize(VT);
6004       // NumElements should be power of 2.
6005       if (!llvm::isPowerOf2_32(NumElements))
6006         return true;
6007       // Size should be greater than 32 bits.
6008       return Size <= 32;
6009     }
6010   }
6011   return false;
6012 }
6013 
6014 bool ARMABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize,
6015                                            llvm::Type *eltTy,
6016                                            unsigned numElts) const {
6017   if (!llvm::isPowerOf2_32(numElts))
6018     return false;
6019   unsigned size = getDataLayout().getTypeStoreSizeInBits(eltTy);
6020   if (size > 64)
6021     return false;
6022   if (vectorSize.getQuantity() != 8 &&
6023       (vectorSize.getQuantity() != 16 || numElts == 1))
6024     return false;
6025   return true;
6026 }
6027 
6028 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
6029   // Homogeneous aggregates for AAPCS-VFP must have base types of float,
6030   // double, or 64-bit or 128-bit vectors.
6031   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
6032     if (BT->getKind() == BuiltinType::Float ||
6033         BT->getKind() == BuiltinType::Double ||
6034         BT->getKind() == BuiltinType::LongDouble)
6035       return true;
6036   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
6037     unsigned VecSize = getContext().getTypeSize(VT);
6038     if (VecSize == 64 || VecSize == 128)
6039       return true;
6040   }
6041   return false;
6042 }
6043 
6044 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
6045                                                    uint64_t Members) const {
6046   return Members <= 4;
6047 }
6048 
6049 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6050                               QualType Ty) const {
6051   CharUnits SlotSize = CharUnits::fromQuantity(4);
6052 
6053   // Empty records are ignored for parameter passing purposes.
6054   if (isEmptyRecord(getContext(), Ty, true)) {
6055     Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize);
6056     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
6057     return Addr;
6058   }
6059 
6060   auto TyInfo = getContext().getTypeInfoInChars(Ty);
6061   CharUnits TyAlignForABI = TyInfo.second;
6062 
6063   // Use indirect if size of the illegal vector is bigger than 16 bytes.
6064   bool IsIndirect = false;
6065   const Type *Base = nullptr;
6066   uint64_t Members = 0;
6067   if (TyInfo.first > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) {
6068     IsIndirect = true;
6069 
6070   // ARMv7k passes structs bigger than 16 bytes indirectly, in space
6071   // allocated by the caller.
6072   } else if (TyInfo.first > CharUnits::fromQuantity(16) &&
6073              getABIKind() == ARMABIInfo::AAPCS16_VFP &&
6074              !isHomogeneousAggregate(Ty, Base, Members)) {
6075     IsIndirect = true;
6076 
6077   // Otherwise, bound the type's ABI alignment.
6078   // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for
6079   // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte.
6080   // Our callers should be prepared to handle an under-aligned address.
6081   } else if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
6082              getABIKind() == ARMABIInfo::AAPCS) {
6083     TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
6084     TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8));
6085   } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) {
6086     // ARMv7k allows type alignment up to 16 bytes.
6087     TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
6088     TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16));
6089   } else {
6090     TyAlignForABI = CharUnits::fromQuantity(4);
6091   }
6092   TyInfo.second = TyAlignForABI;
6093 
6094   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo,
6095                           SlotSize, /*AllowHigherAlign*/ true);
6096 }
6097 
6098 //===----------------------------------------------------------------------===//
6099 // NVPTX ABI Implementation
6100 //===----------------------------------------------------------------------===//
6101 
6102 namespace {
6103 
6104 class NVPTXABIInfo : public ABIInfo {
6105 public:
6106   NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
6107 
6108   ABIArgInfo classifyReturnType(QualType RetTy) const;
6109   ABIArgInfo classifyArgumentType(QualType Ty) const;
6110 
6111   void computeInfo(CGFunctionInfo &FI) const override;
6112   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6113                     QualType Ty) const override;
6114 };
6115 
6116 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo {
6117 public:
6118   NVPTXTargetCodeGenInfo(CodeGenTypes &CGT)
6119     : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {}
6120 
6121   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6122                            CodeGen::CodeGenModule &M,
6123                            ForDefinition_t IsForDefinition) const override;
6124 
6125 private:
6126   // Adds a NamedMDNode with F, Name, and Operand as operands, and adds the
6127   // resulting MDNode to the nvvm.annotations MDNode.
6128   static void addNVVMMetadata(llvm::Function *F, StringRef Name, int Operand);
6129 };
6130 
6131 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const {
6132   if (RetTy->isVoidType())
6133     return ABIArgInfo::getIgnore();
6134 
6135   // note: this is different from default ABI
6136   if (!RetTy->isScalarType())
6137     return ABIArgInfo::getDirect();
6138 
6139   // Treat an enum type as its underlying type.
6140   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
6141     RetTy = EnumTy->getDecl()->getIntegerType();
6142 
6143   return (RetTy->isPromotableIntegerType() ?
6144           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
6145 }
6146 
6147 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const {
6148   // Treat an enum type as its underlying type.
6149   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
6150     Ty = EnumTy->getDecl()->getIntegerType();
6151 
6152   // Return aggregates type as indirect by value
6153   if (isAggregateTypeForABI(Ty))
6154     return getNaturalAlignIndirect(Ty, /* byval */ true);
6155 
6156   return (Ty->isPromotableIntegerType() ?
6157           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
6158 }
6159 
6160 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
6161   if (!getCXXABI().classifyReturnType(FI))
6162     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
6163   for (auto &I : FI.arguments())
6164     I.info = classifyArgumentType(I.type);
6165 
6166   // Always honor user-specified calling convention.
6167   if (FI.getCallingConvention() != llvm::CallingConv::C)
6168     return;
6169 
6170   FI.setEffectiveCallingConvention(getRuntimeCC());
6171 }
6172 
6173 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6174                                 QualType Ty) const {
6175   llvm_unreachable("NVPTX does not support varargs");
6176 }
6177 
6178 void NVPTXTargetCodeGenInfo::setTargetAttributes(
6179     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M,
6180     ForDefinition_t IsForDefinition) const {
6181   if (!IsForDefinition)
6182     return;
6183   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
6184   if (!FD) return;
6185 
6186   llvm::Function *F = cast<llvm::Function>(GV);
6187 
6188   // Perform special handling in OpenCL mode
6189   if (M.getLangOpts().OpenCL) {
6190     // Use OpenCL function attributes to check for kernel functions
6191     // By default, all functions are device functions
6192     if (FD->hasAttr<OpenCLKernelAttr>()) {
6193       // OpenCL __kernel functions get kernel metadata
6194       // Create !{<func-ref>, metadata !"kernel", i32 1} node
6195       addNVVMMetadata(F, "kernel", 1);
6196       // And kernel functions are not subject to inlining
6197       F->addFnAttr(llvm::Attribute::NoInline);
6198     }
6199   }
6200 
6201   // Perform special handling in CUDA mode.
6202   if (M.getLangOpts().CUDA) {
6203     // CUDA __global__ functions get a kernel metadata entry.  Since
6204     // __global__ functions cannot be called from the device, we do not
6205     // need to set the noinline attribute.
6206     if (FD->hasAttr<CUDAGlobalAttr>()) {
6207       // Create !{<func-ref>, metadata !"kernel", i32 1} node
6208       addNVVMMetadata(F, "kernel", 1);
6209     }
6210     if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) {
6211       // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node
6212       llvm::APSInt MaxThreads(32);
6213       MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext());
6214       if (MaxThreads > 0)
6215         addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue());
6216 
6217       // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was
6218       // not specified in __launch_bounds__ or if the user specified a 0 value,
6219       // we don't have to add a PTX directive.
6220       if (Attr->getMinBlocks()) {
6221         llvm::APSInt MinBlocks(32);
6222         MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext());
6223         if (MinBlocks > 0)
6224           // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node
6225           addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue());
6226       }
6227     }
6228   }
6229 }
6230 
6231 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::Function *F, StringRef Name,
6232                                              int Operand) {
6233   llvm::Module *M = F->getParent();
6234   llvm::LLVMContext &Ctx = M->getContext();
6235 
6236   // Get "nvvm.annotations" metadata node
6237   llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations");
6238 
6239   llvm::Metadata *MDVals[] = {
6240       llvm::ConstantAsMetadata::get(F), llvm::MDString::get(Ctx, Name),
6241       llvm::ConstantAsMetadata::get(
6242           llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))};
6243   // Append metadata to nvvm.annotations
6244   MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
6245 }
6246 }
6247 
6248 //===----------------------------------------------------------------------===//
6249 // SystemZ ABI Implementation
6250 //===----------------------------------------------------------------------===//
6251 
6252 namespace {
6253 
6254 class SystemZABIInfo : public SwiftABIInfo {
6255   bool HasVector;
6256 
6257 public:
6258   SystemZABIInfo(CodeGenTypes &CGT, bool HV)
6259     : SwiftABIInfo(CGT), HasVector(HV) {}
6260 
6261   bool isPromotableIntegerType(QualType Ty) const;
6262   bool isCompoundType(QualType Ty) const;
6263   bool isVectorArgumentType(QualType Ty) const;
6264   bool isFPArgumentType(QualType Ty) const;
6265   QualType GetSingleElementType(QualType Ty) const;
6266 
6267   ABIArgInfo classifyReturnType(QualType RetTy) const;
6268   ABIArgInfo classifyArgumentType(QualType ArgTy) const;
6269 
6270   void computeInfo(CGFunctionInfo &FI) const override {
6271     if (!getCXXABI().classifyReturnType(FI))
6272       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
6273     for (auto &I : FI.arguments())
6274       I.info = classifyArgumentType(I.type);
6275   }
6276 
6277   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6278                     QualType Ty) const override;
6279 
6280   bool shouldPassIndirectlyForSwift(CharUnits totalSize,
6281                                     ArrayRef<llvm::Type*> scalars,
6282                                     bool asReturnValue) const override {
6283     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
6284   }
6285   bool isSwiftErrorInRegister() const override {
6286     return true;
6287   }
6288 };
6289 
6290 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
6291 public:
6292   SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector)
6293     : TargetCodeGenInfo(new SystemZABIInfo(CGT, HasVector)) {}
6294 };
6295 
6296 }
6297 
6298 bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const {
6299   // Treat an enum type as its underlying type.
6300   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
6301     Ty = EnumTy->getDecl()->getIntegerType();
6302 
6303   // Promotable integer types are required to be promoted by the ABI.
6304   if (Ty->isPromotableIntegerType())
6305     return true;
6306 
6307   // 32-bit values must also be promoted.
6308   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
6309     switch (BT->getKind()) {
6310     case BuiltinType::Int:
6311     case BuiltinType::UInt:
6312       return true;
6313     default:
6314       return false;
6315     }
6316   return false;
6317 }
6318 
6319 bool SystemZABIInfo::isCompoundType(QualType Ty) const {
6320   return (Ty->isAnyComplexType() ||
6321           Ty->isVectorType() ||
6322           isAggregateTypeForABI(Ty));
6323 }
6324 
6325 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const {
6326   return (HasVector &&
6327           Ty->isVectorType() &&
6328           getContext().getTypeSize(Ty) <= 128);
6329 }
6330 
6331 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const {
6332   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
6333     switch (BT->getKind()) {
6334     case BuiltinType::Float:
6335     case BuiltinType::Double:
6336       return true;
6337     default:
6338       return false;
6339     }
6340 
6341   return false;
6342 }
6343 
6344 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const {
6345   if (const RecordType *RT = Ty->getAsStructureType()) {
6346     const RecordDecl *RD = RT->getDecl();
6347     QualType Found;
6348 
6349     // If this is a C++ record, check the bases first.
6350     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
6351       for (const auto &I : CXXRD->bases()) {
6352         QualType Base = I.getType();
6353 
6354         // Empty bases don't affect things either way.
6355         if (isEmptyRecord(getContext(), Base, true))
6356           continue;
6357 
6358         if (!Found.isNull())
6359           return Ty;
6360         Found = GetSingleElementType(Base);
6361       }
6362 
6363     // Check the fields.
6364     for (const auto *FD : RD->fields()) {
6365       // For compatibility with GCC, ignore empty bitfields in C++ mode.
6366       // Unlike isSingleElementStruct(), empty structure and array fields
6367       // do count.  So do anonymous bitfields that aren't zero-sized.
6368       if (getContext().getLangOpts().CPlusPlus &&
6369           FD->isBitField() && FD->getBitWidthValue(getContext()) == 0)
6370         continue;
6371 
6372       // Unlike isSingleElementStruct(), arrays do not count.
6373       // Nested structures still do though.
6374       if (!Found.isNull())
6375         return Ty;
6376       Found = GetSingleElementType(FD->getType());
6377     }
6378 
6379     // Unlike isSingleElementStruct(), trailing padding is allowed.
6380     // An 8-byte aligned struct s { float f; } is passed as a double.
6381     if (!Found.isNull())
6382       return Found;
6383   }
6384 
6385   return Ty;
6386 }
6387 
6388 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6389                                   QualType Ty) const {
6390   // Assume that va_list type is correct; should be pointer to LLVM type:
6391   // struct {
6392   //   i64 __gpr;
6393   //   i64 __fpr;
6394   //   i8 *__overflow_arg_area;
6395   //   i8 *__reg_save_area;
6396   // };
6397 
6398   // Every non-vector argument occupies 8 bytes and is passed by preference
6399   // in either GPRs or FPRs.  Vector arguments occupy 8 or 16 bytes and are
6400   // always passed on the stack.
6401   Ty = getContext().getCanonicalType(Ty);
6402   auto TyInfo = getContext().getTypeInfoInChars(Ty);
6403   llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty);
6404   llvm::Type *DirectTy = ArgTy;
6405   ABIArgInfo AI = classifyArgumentType(Ty);
6406   bool IsIndirect = AI.isIndirect();
6407   bool InFPRs = false;
6408   bool IsVector = false;
6409   CharUnits UnpaddedSize;
6410   CharUnits DirectAlign;
6411   if (IsIndirect) {
6412     DirectTy = llvm::PointerType::getUnqual(DirectTy);
6413     UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8);
6414   } else {
6415     if (AI.getCoerceToType())
6416       ArgTy = AI.getCoerceToType();
6417     InFPRs = ArgTy->isFloatTy() || ArgTy->isDoubleTy();
6418     IsVector = ArgTy->isVectorTy();
6419     UnpaddedSize = TyInfo.first;
6420     DirectAlign = TyInfo.second;
6421   }
6422   CharUnits PaddedSize = CharUnits::fromQuantity(8);
6423   if (IsVector && UnpaddedSize > PaddedSize)
6424     PaddedSize = CharUnits::fromQuantity(16);
6425   assert((UnpaddedSize <= PaddedSize) && "Invalid argument size.");
6426 
6427   CharUnits Padding = (PaddedSize - UnpaddedSize);
6428 
6429   llvm::Type *IndexTy = CGF.Int64Ty;
6430   llvm::Value *PaddedSizeV =
6431     llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity());
6432 
6433   if (IsVector) {
6434     // Work out the address of a vector argument on the stack.
6435     // Vector arguments are always passed in the high bits of a
6436     // single (8 byte) or double (16 byte) stack slot.
6437     Address OverflowArgAreaPtr =
6438       CGF.Builder.CreateStructGEP(VAListAddr, 2, CharUnits::fromQuantity(16),
6439                                   "overflow_arg_area_ptr");
6440     Address OverflowArgArea =
6441       Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
6442               TyInfo.second);
6443     Address MemAddr =
6444       CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr");
6445 
6446     // Update overflow_arg_area_ptr pointer
6447     llvm::Value *NewOverflowArgArea =
6448       CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV,
6449                             "overflow_arg_area");
6450     CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
6451 
6452     return MemAddr;
6453   }
6454 
6455   assert(PaddedSize.getQuantity() == 8);
6456 
6457   unsigned MaxRegs, RegCountField, RegSaveIndex;
6458   CharUnits RegPadding;
6459   if (InFPRs) {
6460     MaxRegs = 4; // Maximum of 4 FPR arguments
6461     RegCountField = 1; // __fpr
6462     RegSaveIndex = 16; // save offset for f0
6463     RegPadding = CharUnits(); // floats are passed in the high bits of an FPR
6464   } else {
6465     MaxRegs = 5; // Maximum of 5 GPR arguments
6466     RegCountField = 0; // __gpr
6467     RegSaveIndex = 2; // save offset for r2
6468     RegPadding = Padding; // values are passed in the low bits of a GPR
6469   }
6470 
6471   Address RegCountPtr = CGF.Builder.CreateStructGEP(
6472       VAListAddr, RegCountField, RegCountField * CharUnits::fromQuantity(8),
6473       "reg_count_ptr");
6474   llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count");
6475   llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs);
6476   llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV,
6477                                                  "fits_in_regs");
6478 
6479   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
6480   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
6481   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
6482   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
6483 
6484   // Emit code to load the value if it was passed in registers.
6485   CGF.EmitBlock(InRegBlock);
6486 
6487   // Work out the address of an argument register.
6488   llvm::Value *ScaledRegCount =
6489     CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count");
6490   llvm::Value *RegBase =
6491     llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity()
6492                                       + RegPadding.getQuantity());
6493   llvm::Value *RegOffset =
6494     CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset");
6495   Address RegSaveAreaPtr =
6496       CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(24),
6497                                   "reg_save_area_ptr");
6498   llvm::Value *RegSaveArea =
6499     CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area");
6500   Address RawRegAddr(CGF.Builder.CreateGEP(RegSaveArea, RegOffset,
6501                                            "raw_reg_addr"),
6502                      PaddedSize);
6503   Address RegAddr =
6504     CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr");
6505 
6506   // Update the register count
6507   llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1);
6508   llvm::Value *NewRegCount =
6509     CGF.Builder.CreateAdd(RegCount, One, "reg_count");
6510   CGF.Builder.CreateStore(NewRegCount, RegCountPtr);
6511   CGF.EmitBranch(ContBlock);
6512 
6513   // Emit code to load the value if it was passed in memory.
6514   CGF.EmitBlock(InMemBlock);
6515 
6516   // Work out the address of a stack argument.
6517   Address OverflowArgAreaPtr = CGF.Builder.CreateStructGEP(
6518       VAListAddr, 2, CharUnits::fromQuantity(16), "overflow_arg_area_ptr");
6519   Address OverflowArgArea =
6520     Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
6521             PaddedSize);
6522   Address RawMemAddr =
6523     CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr");
6524   Address MemAddr =
6525     CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr");
6526 
6527   // Update overflow_arg_area_ptr pointer
6528   llvm::Value *NewOverflowArgArea =
6529     CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV,
6530                           "overflow_arg_area");
6531   CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
6532   CGF.EmitBranch(ContBlock);
6533 
6534   // Return the appropriate result.
6535   CGF.EmitBlock(ContBlock);
6536   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
6537                                  MemAddr, InMemBlock, "va_arg.addr");
6538 
6539   if (IsIndirect)
6540     ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"),
6541                       TyInfo.second);
6542 
6543   return ResAddr;
6544 }
6545 
6546 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const {
6547   if (RetTy->isVoidType())
6548     return ABIArgInfo::getIgnore();
6549   if (isVectorArgumentType(RetTy))
6550     return ABIArgInfo::getDirect();
6551   if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64)
6552     return getNaturalAlignIndirect(RetTy);
6553   return (isPromotableIntegerType(RetTy) ?
6554           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
6555 }
6556 
6557 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const {
6558   // Handle the generic C++ ABI.
6559   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
6560     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
6561 
6562   // Integers and enums are extended to full register width.
6563   if (isPromotableIntegerType(Ty))
6564     return ABIArgInfo::getExtend();
6565 
6566   // Handle vector types and vector-like structure types.  Note that
6567   // as opposed to float-like structure types, we do not allow any
6568   // padding for vector-like structures, so verify the sizes match.
6569   uint64_t Size = getContext().getTypeSize(Ty);
6570   QualType SingleElementTy = GetSingleElementType(Ty);
6571   if (isVectorArgumentType(SingleElementTy) &&
6572       getContext().getTypeSize(SingleElementTy) == Size)
6573     return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy));
6574 
6575   // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly.
6576   if (Size != 8 && Size != 16 && Size != 32 && Size != 64)
6577     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
6578 
6579   // Handle small structures.
6580   if (const RecordType *RT = Ty->getAs<RecordType>()) {
6581     // Structures with flexible arrays have variable length, so really
6582     // fail the size test above.
6583     const RecordDecl *RD = RT->getDecl();
6584     if (RD->hasFlexibleArrayMember())
6585       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
6586 
6587     // The structure is passed as an unextended integer, a float, or a double.
6588     llvm::Type *PassTy;
6589     if (isFPArgumentType(SingleElementTy)) {
6590       assert(Size == 32 || Size == 64);
6591       if (Size == 32)
6592         PassTy = llvm::Type::getFloatTy(getVMContext());
6593       else
6594         PassTy = llvm::Type::getDoubleTy(getVMContext());
6595     } else
6596       PassTy = llvm::IntegerType::get(getVMContext(), Size);
6597     return ABIArgInfo::getDirect(PassTy);
6598   }
6599 
6600   // Non-structure compounds are passed indirectly.
6601   if (isCompoundType(Ty))
6602     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
6603 
6604   return ABIArgInfo::getDirect(nullptr);
6605 }
6606 
6607 //===----------------------------------------------------------------------===//
6608 // MSP430 ABI Implementation
6609 //===----------------------------------------------------------------------===//
6610 
6611 namespace {
6612 
6613 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
6614 public:
6615   MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
6616     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
6617   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6618                            CodeGen::CodeGenModule &M,
6619                            ForDefinition_t IsForDefinition) const override;
6620 };
6621 
6622 }
6623 
6624 void MSP430TargetCodeGenInfo::setTargetAttributes(
6625     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M,
6626     ForDefinition_t IsForDefinition) const {
6627   if (!IsForDefinition)
6628     return;
6629   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
6630     if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) {
6631       // Handle 'interrupt' attribute:
6632       llvm::Function *F = cast<llvm::Function>(GV);
6633 
6634       // Step 1: Set ISR calling convention.
6635       F->setCallingConv(llvm::CallingConv::MSP430_INTR);
6636 
6637       // Step 2: Add attributes goodness.
6638       F->addFnAttr(llvm::Attribute::NoInline);
6639 
6640       // Step 3: Emit ISR vector alias.
6641       unsigned Num = attr->getNumber() / 2;
6642       llvm::GlobalAlias::create(llvm::Function::ExternalLinkage,
6643                                 "__isr_" + Twine(Num), F);
6644     }
6645   }
6646 }
6647 
6648 //===----------------------------------------------------------------------===//
6649 // MIPS ABI Implementation.  This works for both little-endian and
6650 // big-endian variants.
6651 //===----------------------------------------------------------------------===//
6652 
6653 namespace {
6654 class MipsABIInfo : public ABIInfo {
6655   bool IsO32;
6656   unsigned MinABIStackAlignInBytes, StackAlignInBytes;
6657   void CoerceToIntArgs(uint64_t TySize,
6658                        SmallVectorImpl<llvm::Type *> &ArgList) const;
6659   llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const;
6660   llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const;
6661   llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const;
6662 public:
6663   MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) :
6664     ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8),
6665     StackAlignInBytes(IsO32 ? 8 : 16) {}
6666 
6667   ABIArgInfo classifyReturnType(QualType RetTy) const;
6668   ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const;
6669   void computeInfo(CGFunctionInfo &FI) const override;
6670   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6671                     QualType Ty) const override;
6672   bool shouldSignExtUnsignedType(QualType Ty) const override;
6673 };
6674 
6675 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
6676   unsigned SizeOfUnwindException;
6677 public:
6678   MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32)
6679     : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)),
6680       SizeOfUnwindException(IsO32 ? 24 : 32) {}
6681 
6682   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
6683     return 29;
6684   }
6685 
6686   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6687                            CodeGen::CodeGenModule &CGM,
6688                            ForDefinition_t IsForDefinition) const override {
6689     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
6690     if (!FD) return;
6691     llvm::Function *Fn = cast<llvm::Function>(GV);
6692 
6693     if (FD->hasAttr<MipsLongCallAttr>())
6694       Fn->addFnAttr("long-call");
6695     else if (FD->hasAttr<MipsShortCallAttr>())
6696       Fn->addFnAttr("short-call");
6697 
6698     // Other attributes do not have a meaning for declarations.
6699     if (!IsForDefinition)
6700       return;
6701 
6702     if (FD->hasAttr<Mips16Attr>()) {
6703       Fn->addFnAttr("mips16");
6704     }
6705     else if (FD->hasAttr<NoMips16Attr>()) {
6706       Fn->addFnAttr("nomips16");
6707     }
6708 
6709     if (FD->hasAttr<MicroMipsAttr>())
6710       Fn->addFnAttr("micromips");
6711     else if (FD->hasAttr<NoMicroMipsAttr>())
6712       Fn->addFnAttr("nomicromips");
6713 
6714     const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>();
6715     if (!Attr)
6716       return;
6717 
6718     const char *Kind;
6719     switch (Attr->getInterrupt()) {
6720     case MipsInterruptAttr::eic:     Kind = "eic"; break;
6721     case MipsInterruptAttr::sw0:     Kind = "sw0"; break;
6722     case MipsInterruptAttr::sw1:     Kind = "sw1"; break;
6723     case MipsInterruptAttr::hw0:     Kind = "hw0"; break;
6724     case MipsInterruptAttr::hw1:     Kind = "hw1"; break;
6725     case MipsInterruptAttr::hw2:     Kind = "hw2"; break;
6726     case MipsInterruptAttr::hw3:     Kind = "hw3"; break;
6727     case MipsInterruptAttr::hw4:     Kind = "hw4"; break;
6728     case MipsInterruptAttr::hw5:     Kind = "hw5"; break;
6729     }
6730 
6731     Fn->addFnAttr("interrupt", Kind);
6732 
6733   }
6734 
6735   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
6736                                llvm::Value *Address) const override;
6737 
6738   unsigned getSizeOfUnwindException() const override {
6739     return SizeOfUnwindException;
6740   }
6741 };
6742 }
6743 
6744 void MipsABIInfo::CoerceToIntArgs(
6745     uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const {
6746   llvm::IntegerType *IntTy =
6747     llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
6748 
6749   // Add (TySize / MinABIStackAlignInBytes) args of IntTy.
6750   for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N)
6751     ArgList.push_back(IntTy);
6752 
6753   // If necessary, add one more integer type to ArgList.
6754   unsigned R = TySize % (MinABIStackAlignInBytes * 8);
6755 
6756   if (R)
6757     ArgList.push_back(llvm::IntegerType::get(getVMContext(), R));
6758 }
6759 
6760 // In N32/64, an aligned double precision floating point field is passed in
6761 // a register.
6762 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const {
6763   SmallVector<llvm::Type*, 8> ArgList, IntArgList;
6764 
6765   if (IsO32) {
6766     CoerceToIntArgs(TySize, ArgList);
6767     return llvm::StructType::get(getVMContext(), ArgList);
6768   }
6769 
6770   if (Ty->isComplexType())
6771     return CGT.ConvertType(Ty);
6772 
6773   const RecordType *RT = Ty->getAs<RecordType>();
6774 
6775   // Unions/vectors are passed in integer registers.
6776   if (!RT || !RT->isStructureOrClassType()) {
6777     CoerceToIntArgs(TySize, ArgList);
6778     return llvm::StructType::get(getVMContext(), ArgList);
6779   }
6780 
6781   const RecordDecl *RD = RT->getDecl();
6782   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
6783   assert(!(TySize % 8) && "Size of structure must be multiple of 8.");
6784 
6785   uint64_t LastOffset = 0;
6786   unsigned idx = 0;
6787   llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64);
6788 
6789   // Iterate over fields in the struct/class and check if there are any aligned
6790   // double fields.
6791   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
6792        i != e; ++i, ++idx) {
6793     const QualType Ty = i->getType();
6794     const BuiltinType *BT = Ty->getAs<BuiltinType>();
6795 
6796     if (!BT || BT->getKind() != BuiltinType::Double)
6797       continue;
6798 
6799     uint64_t Offset = Layout.getFieldOffset(idx);
6800     if (Offset % 64) // Ignore doubles that are not aligned.
6801       continue;
6802 
6803     // Add ((Offset - LastOffset) / 64) args of type i64.
6804     for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j)
6805       ArgList.push_back(I64);
6806 
6807     // Add double type.
6808     ArgList.push_back(llvm::Type::getDoubleTy(getVMContext()));
6809     LastOffset = Offset + 64;
6810   }
6811 
6812   CoerceToIntArgs(TySize - LastOffset, IntArgList);
6813   ArgList.append(IntArgList.begin(), IntArgList.end());
6814 
6815   return llvm::StructType::get(getVMContext(), ArgList);
6816 }
6817 
6818 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset,
6819                                         uint64_t Offset) const {
6820   if (OrigOffset + MinABIStackAlignInBytes > Offset)
6821     return nullptr;
6822 
6823   return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8);
6824 }
6825 
6826 ABIArgInfo
6827 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const {
6828   Ty = useFirstFieldIfTransparentUnion(Ty);
6829 
6830   uint64_t OrigOffset = Offset;
6831   uint64_t TySize = getContext().getTypeSize(Ty);
6832   uint64_t Align = getContext().getTypeAlign(Ty) / 8;
6833 
6834   Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes),
6835                    (uint64_t)StackAlignInBytes);
6836   unsigned CurrOffset = llvm::alignTo(Offset, Align);
6837   Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8;
6838 
6839   if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) {
6840     // Ignore empty aggregates.
6841     if (TySize == 0)
6842       return ABIArgInfo::getIgnore();
6843 
6844     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
6845       Offset = OrigOffset + MinABIStackAlignInBytes;
6846       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
6847     }
6848 
6849     // If we have reached here, aggregates are passed directly by coercing to
6850     // another structure type. Padding is inserted if the offset of the
6851     // aggregate is unaligned.
6852     ABIArgInfo ArgInfo =
6853         ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0,
6854                               getPaddingType(OrigOffset, CurrOffset));
6855     ArgInfo.setInReg(true);
6856     return ArgInfo;
6857   }
6858 
6859   // Treat an enum type as its underlying type.
6860   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
6861     Ty = EnumTy->getDecl()->getIntegerType();
6862 
6863   // All integral types are promoted to the GPR width.
6864   if (Ty->isIntegralOrEnumerationType())
6865     return ABIArgInfo::getExtend();
6866 
6867   return ABIArgInfo::getDirect(
6868       nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset));
6869 }
6870 
6871 llvm::Type*
6872 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const {
6873   const RecordType *RT = RetTy->getAs<RecordType>();
6874   SmallVector<llvm::Type*, 8> RTList;
6875 
6876   if (RT && RT->isStructureOrClassType()) {
6877     const RecordDecl *RD = RT->getDecl();
6878     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
6879     unsigned FieldCnt = Layout.getFieldCount();
6880 
6881     // N32/64 returns struct/classes in floating point registers if the
6882     // following conditions are met:
6883     // 1. The size of the struct/class is no larger than 128-bit.
6884     // 2. The struct/class has one or two fields all of which are floating
6885     //    point types.
6886     // 3. The offset of the first field is zero (this follows what gcc does).
6887     //
6888     // Any other composite results are returned in integer registers.
6889     //
6890     if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) {
6891       RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end();
6892       for (; b != e; ++b) {
6893         const BuiltinType *BT = b->getType()->getAs<BuiltinType>();
6894 
6895         if (!BT || !BT->isFloatingPoint())
6896           break;
6897 
6898         RTList.push_back(CGT.ConvertType(b->getType()));
6899       }
6900 
6901       if (b == e)
6902         return llvm::StructType::get(getVMContext(), RTList,
6903                                      RD->hasAttr<PackedAttr>());
6904 
6905       RTList.clear();
6906     }
6907   }
6908 
6909   CoerceToIntArgs(Size, RTList);
6910   return llvm::StructType::get(getVMContext(), RTList);
6911 }
6912 
6913 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
6914   uint64_t Size = getContext().getTypeSize(RetTy);
6915 
6916   if (RetTy->isVoidType())
6917     return ABIArgInfo::getIgnore();
6918 
6919   // O32 doesn't treat zero-sized structs differently from other structs.
6920   // However, N32/N64 ignores zero sized return values.
6921   if (!IsO32 && Size == 0)
6922     return ABIArgInfo::getIgnore();
6923 
6924   if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) {
6925     if (Size <= 128) {
6926       if (RetTy->isAnyComplexType())
6927         return ABIArgInfo::getDirect();
6928 
6929       // O32 returns integer vectors in registers and N32/N64 returns all small
6930       // aggregates in registers.
6931       if (!IsO32 ||
6932           (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) {
6933         ABIArgInfo ArgInfo =
6934             ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
6935         ArgInfo.setInReg(true);
6936         return ArgInfo;
6937       }
6938     }
6939 
6940     return getNaturalAlignIndirect(RetTy);
6941   }
6942 
6943   // Treat an enum type as its underlying type.
6944   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
6945     RetTy = EnumTy->getDecl()->getIntegerType();
6946 
6947   return (RetTy->isPromotableIntegerType() ?
6948           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
6949 }
6950 
6951 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
6952   ABIArgInfo &RetInfo = FI.getReturnInfo();
6953   if (!getCXXABI().classifyReturnType(FI))
6954     RetInfo = classifyReturnType(FI.getReturnType());
6955 
6956   // Check if a pointer to an aggregate is passed as a hidden argument.
6957   uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0;
6958 
6959   for (auto &I : FI.arguments())
6960     I.info = classifyArgumentType(I.type, Offset);
6961 }
6962 
6963 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6964                                QualType OrigTy) const {
6965   QualType Ty = OrigTy;
6966 
6967   // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64.
6968   // Pointers are also promoted in the same way but this only matters for N32.
6969   unsigned SlotSizeInBits = IsO32 ? 32 : 64;
6970   unsigned PtrWidth = getTarget().getPointerWidth(0);
6971   bool DidPromote = false;
6972   if ((Ty->isIntegerType() &&
6973           getContext().getIntWidth(Ty) < SlotSizeInBits) ||
6974       (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) {
6975     DidPromote = true;
6976     Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits,
6977                                             Ty->isSignedIntegerType());
6978   }
6979 
6980   auto TyInfo = getContext().getTypeInfoInChars(Ty);
6981 
6982   // The alignment of things in the argument area is never larger than
6983   // StackAlignInBytes.
6984   TyInfo.second =
6985     std::min(TyInfo.second, CharUnits::fromQuantity(StackAlignInBytes));
6986 
6987   // MinABIStackAlignInBytes is the size of argument slots on the stack.
6988   CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes);
6989 
6990   Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
6991                           TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true);
6992 
6993 
6994   // If there was a promotion, "unpromote" into a temporary.
6995   // TODO: can we just use a pointer into a subset of the original slot?
6996   if (DidPromote) {
6997     Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp");
6998     llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr);
6999 
7000     // Truncate down to the right width.
7001     llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType()
7002                                                  : CGF.IntPtrTy);
7003     llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy);
7004     if (OrigTy->isPointerType())
7005       V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType());
7006 
7007     CGF.Builder.CreateStore(V, Temp);
7008     Addr = Temp;
7009   }
7010 
7011   return Addr;
7012 }
7013 
7014 bool MipsABIInfo::shouldSignExtUnsignedType(QualType Ty) const {
7015   int TySize = getContext().getTypeSize(Ty);
7016 
7017   // MIPS64 ABI requires unsigned 32 bit integers to be sign extended.
7018   if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
7019     return true;
7020 
7021   return false;
7022 }
7023 
7024 bool
7025 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
7026                                                llvm::Value *Address) const {
7027   // This information comes from gcc's implementation, which seems to
7028   // as canonical as it gets.
7029 
7030   // Everything on MIPS is 4 bytes.  Double-precision FP registers
7031   // are aliased to pairs of single-precision FP registers.
7032   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
7033 
7034   // 0-31 are the general purpose registers, $0 - $31.
7035   // 32-63 are the floating-point registers, $f0 - $f31.
7036   // 64 and 65 are the multiply/divide registers, $hi and $lo.
7037   // 66 is the (notional, I think) register for signal-handler return.
7038   AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65);
7039 
7040   // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
7041   // They are one bit wide and ignored here.
7042 
7043   // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
7044   // (coprocessor 1 is the FP unit)
7045   // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
7046   // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
7047   // 176-181 are the DSP accumulator registers.
7048   AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181);
7049   return false;
7050 }
7051 
7052 //===----------------------------------------------------------------------===//
7053 // AVR ABI Implementation.
7054 //===----------------------------------------------------------------------===//
7055 
7056 namespace {
7057 class AVRTargetCodeGenInfo : public TargetCodeGenInfo {
7058 public:
7059   AVRTargetCodeGenInfo(CodeGenTypes &CGT)
7060     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) { }
7061 
7062   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7063                            CodeGen::CodeGenModule &CGM,
7064                            ForDefinition_t IsForDefinition) const override {
7065     if (!IsForDefinition)
7066       return;
7067     const auto *FD = dyn_cast_or_null<FunctionDecl>(D);
7068     if (!FD) return;
7069     auto *Fn = cast<llvm::Function>(GV);
7070 
7071     if (FD->getAttr<AVRInterruptAttr>())
7072       Fn->addFnAttr("interrupt");
7073 
7074     if (FD->getAttr<AVRSignalAttr>())
7075       Fn->addFnAttr("signal");
7076   }
7077 };
7078 }
7079 
7080 //===----------------------------------------------------------------------===//
7081 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults.
7082 // Currently subclassed only to implement custom OpenCL C function attribute
7083 // handling.
7084 //===----------------------------------------------------------------------===//
7085 
7086 namespace {
7087 
7088 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo {
7089 public:
7090   TCETargetCodeGenInfo(CodeGenTypes &CGT)
7091     : DefaultTargetCodeGenInfo(CGT) {}
7092 
7093   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7094                            CodeGen::CodeGenModule &M,
7095                            ForDefinition_t IsForDefinition) const override;
7096 };
7097 
7098 void TCETargetCodeGenInfo::setTargetAttributes(
7099     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M,
7100     ForDefinition_t IsForDefinition) const {
7101   if (!IsForDefinition)
7102     return;
7103   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
7104   if (!FD) return;
7105 
7106   llvm::Function *F = cast<llvm::Function>(GV);
7107 
7108   if (M.getLangOpts().OpenCL) {
7109     if (FD->hasAttr<OpenCLKernelAttr>()) {
7110       // OpenCL C Kernel functions are not subject to inlining
7111       F->addFnAttr(llvm::Attribute::NoInline);
7112       const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>();
7113       if (Attr) {
7114         // Convert the reqd_work_group_size() attributes to metadata.
7115         llvm::LLVMContext &Context = F->getContext();
7116         llvm::NamedMDNode *OpenCLMetadata =
7117             M.getModule().getOrInsertNamedMetadata(
7118                 "opencl.kernel_wg_size_info");
7119 
7120         SmallVector<llvm::Metadata *, 5> Operands;
7121         Operands.push_back(llvm::ConstantAsMetadata::get(F));
7122 
7123         Operands.push_back(
7124             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
7125                 M.Int32Ty, llvm::APInt(32, Attr->getXDim()))));
7126         Operands.push_back(
7127             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
7128                 M.Int32Ty, llvm::APInt(32, Attr->getYDim()))));
7129         Operands.push_back(
7130             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
7131                 M.Int32Ty, llvm::APInt(32, Attr->getZDim()))));
7132 
7133         // Add a boolean constant operand for "required" (true) or "hint"
7134         // (false) for implementing the work_group_size_hint attr later.
7135         // Currently always true as the hint is not yet implemented.
7136         Operands.push_back(
7137             llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context)));
7138         OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands));
7139       }
7140     }
7141   }
7142 }
7143 
7144 }
7145 
7146 //===----------------------------------------------------------------------===//
7147 // Hexagon ABI Implementation
7148 //===----------------------------------------------------------------------===//
7149 
7150 namespace {
7151 
7152 class HexagonABIInfo : public ABIInfo {
7153 
7154 
7155 public:
7156   HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
7157 
7158 private:
7159 
7160   ABIArgInfo classifyReturnType(QualType RetTy) const;
7161   ABIArgInfo classifyArgumentType(QualType RetTy) const;
7162 
7163   void computeInfo(CGFunctionInfo &FI) const override;
7164 
7165   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7166                     QualType Ty) const override;
7167 };
7168 
7169 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo {
7170 public:
7171   HexagonTargetCodeGenInfo(CodeGenTypes &CGT)
7172     :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {}
7173 
7174   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
7175     return 29;
7176   }
7177 };
7178 
7179 }
7180 
7181 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const {
7182   if (!getCXXABI().classifyReturnType(FI))
7183     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7184   for (auto &I : FI.arguments())
7185     I.info = classifyArgumentType(I.type);
7186 }
7187 
7188 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const {
7189   if (!isAggregateTypeForABI(Ty)) {
7190     // Treat an enum type as its underlying type.
7191     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
7192       Ty = EnumTy->getDecl()->getIntegerType();
7193 
7194     return (Ty->isPromotableIntegerType() ?
7195             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
7196   }
7197 
7198   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
7199     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
7200 
7201   // Ignore empty records.
7202   if (isEmptyRecord(getContext(), Ty, true))
7203     return ABIArgInfo::getIgnore();
7204 
7205   uint64_t Size = getContext().getTypeSize(Ty);
7206   if (Size > 64)
7207     return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
7208     // Pass in the smallest viable integer type.
7209   else if (Size > 32)
7210       return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
7211   else if (Size > 16)
7212       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
7213   else if (Size > 8)
7214       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
7215   else
7216       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
7217 }
7218 
7219 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const {
7220   if (RetTy->isVoidType())
7221     return ABIArgInfo::getIgnore();
7222 
7223   // Large vector types should be returned via memory.
7224   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64)
7225     return getNaturalAlignIndirect(RetTy);
7226 
7227   if (!isAggregateTypeForABI(RetTy)) {
7228     // Treat an enum type as its underlying type.
7229     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
7230       RetTy = EnumTy->getDecl()->getIntegerType();
7231 
7232     return (RetTy->isPromotableIntegerType() ?
7233             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
7234   }
7235 
7236   if (isEmptyRecord(getContext(), RetTy, true))
7237     return ABIArgInfo::getIgnore();
7238 
7239   // Aggregates <= 8 bytes are returned in r0; other aggregates
7240   // are returned indirectly.
7241   uint64_t Size = getContext().getTypeSize(RetTy);
7242   if (Size <= 64) {
7243     // Return in the smallest viable integer type.
7244     if (Size <= 8)
7245       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
7246     if (Size <= 16)
7247       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
7248     if (Size <= 32)
7249       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
7250     return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
7251   }
7252 
7253   return getNaturalAlignIndirect(RetTy, /*ByVal=*/true);
7254 }
7255 
7256 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7257                                   QualType Ty) const {
7258   // FIXME: Someone needs to audit that this handle alignment correctly.
7259   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
7260                           getContext().getTypeInfoInChars(Ty),
7261                           CharUnits::fromQuantity(4),
7262                           /*AllowHigherAlign*/ true);
7263 }
7264 
7265 //===----------------------------------------------------------------------===//
7266 // Lanai ABI Implementation
7267 //===----------------------------------------------------------------------===//
7268 
7269 namespace {
7270 class LanaiABIInfo : public DefaultABIInfo {
7271 public:
7272   LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
7273 
7274   bool shouldUseInReg(QualType Ty, CCState &State) const;
7275 
7276   void computeInfo(CGFunctionInfo &FI) const override {
7277     CCState State(FI.getCallingConvention());
7278     // Lanai uses 4 registers to pass arguments unless the function has the
7279     // regparm attribute set.
7280     if (FI.getHasRegParm()) {
7281       State.FreeRegs = FI.getRegParm();
7282     } else {
7283       State.FreeRegs = 4;
7284     }
7285 
7286     if (!getCXXABI().classifyReturnType(FI))
7287       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7288     for (auto &I : FI.arguments())
7289       I.info = classifyArgumentType(I.type, State);
7290   }
7291 
7292   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
7293   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
7294 };
7295 } // end anonymous namespace
7296 
7297 bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const {
7298   unsigned Size = getContext().getTypeSize(Ty);
7299   unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U;
7300 
7301   if (SizeInRegs == 0)
7302     return false;
7303 
7304   if (SizeInRegs > State.FreeRegs) {
7305     State.FreeRegs = 0;
7306     return false;
7307   }
7308 
7309   State.FreeRegs -= SizeInRegs;
7310 
7311   return true;
7312 }
7313 
7314 ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal,
7315                                            CCState &State) const {
7316   if (!ByVal) {
7317     if (State.FreeRegs) {
7318       --State.FreeRegs; // Non-byval indirects just use one pointer.
7319       return getNaturalAlignIndirectInReg(Ty);
7320     }
7321     return getNaturalAlignIndirect(Ty, false);
7322   }
7323 
7324   // Compute the byval alignment.
7325   const unsigned MinABIStackAlignInBytes = 4;
7326   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
7327   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true,
7328                                  /*Realign=*/TypeAlign >
7329                                      MinABIStackAlignInBytes);
7330 }
7331 
7332 ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty,
7333                                               CCState &State) const {
7334   // Check with the C++ ABI first.
7335   const RecordType *RT = Ty->getAs<RecordType>();
7336   if (RT) {
7337     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
7338     if (RAA == CGCXXABI::RAA_Indirect) {
7339       return getIndirectResult(Ty, /*ByVal=*/false, State);
7340     } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
7341       return getNaturalAlignIndirect(Ty, /*ByRef=*/true);
7342     }
7343   }
7344 
7345   if (isAggregateTypeForABI(Ty)) {
7346     // Structures with flexible arrays are always indirect.
7347     if (RT && RT->getDecl()->hasFlexibleArrayMember())
7348       return getIndirectResult(Ty, /*ByVal=*/true, State);
7349 
7350     // Ignore empty structs/unions.
7351     if (isEmptyRecord(getContext(), Ty, true))
7352       return ABIArgInfo::getIgnore();
7353 
7354     llvm::LLVMContext &LLVMContext = getVMContext();
7355     unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
7356     if (SizeInRegs <= State.FreeRegs) {
7357       llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
7358       SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32);
7359       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
7360       State.FreeRegs -= SizeInRegs;
7361       return ABIArgInfo::getDirectInReg(Result);
7362     } else {
7363       State.FreeRegs = 0;
7364     }
7365     return getIndirectResult(Ty, true, State);
7366   }
7367 
7368   // Treat an enum type as its underlying type.
7369   if (const auto *EnumTy = Ty->getAs<EnumType>())
7370     Ty = EnumTy->getDecl()->getIntegerType();
7371 
7372   bool InReg = shouldUseInReg(Ty, State);
7373   if (Ty->isPromotableIntegerType()) {
7374     if (InReg)
7375       return ABIArgInfo::getDirectInReg();
7376     return ABIArgInfo::getExtend();
7377   }
7378   if (InReg)
7379     return ABIArgInfo::getDirectInReg();
7380   return ABIArgInfo::getDirect();
7381 }
7382 
7383 namespace {
7384 class LanaiTargetCodeGenInfo : public TargetCodeGenInfo {
7385 public:
7386   LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
7387       : TargetCodeGenInfo(new LanaiABIInfo(CGT)) {}
7388 };
7389 }
7390 
7391 //===----------------------------------------------------------------------===//
7392 // AMDGPU ABI Implementation
7393 //===----------------------------------------------------------------------===//
7394 
7395 namespace {
7396 
7397 class AMDGPUABIInfo final : public DefaultABIInfo {
7398 private:
7399   static const unsigned MaxNumRegsForArgsRet = 16;
7400 
7401   unsigned numRegsForType(QualType Ty) const;
7402 
7403   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
7404   bool isHomogeneousAggregateSmallEnough(const Type *Base,
7405                                          uint64_t Members) const override;
7406 
7407 public:
7408   explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) :
7409     DefaultABIInfo(CGT) {}
7410 
7411   ABIArgInfo classifyReturnType(QualType RetTy) const;
7412   ABIArgInfo classifyKernelArgumentType(QualType Ty) const;
7413   ABIArgInfo classifyArgumentType(QualType Ty, unsigned &NumRegsLeft) const;
7414 
7415   void computeInfo(CGFunctionInfo &FI) const override;
7416 };
7417 
7418 bool AMDGPUABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
7419   return true;
7420 }
7421 
7422 bool AMDGPUABIInfo::isHomogeneousAggregateSmallEnough(
7423   const Type *Base, uint64_t Members) const {
7424   uint32_t NumRegs = (getContext().getTypeSize(Base) + 31) / 32;
7425 
7426   // Homogeneous Aggregates may occupy at most 16 registers.
7427   return Members * NumRegs <= MaxNumRegsForArgsRet;
7428 }
7429 
7430 /// Estimate number of registers the type will use when passed in registers.
7431 unsigned AMDGPUABIInfo::numRegsForType(QualType Ty) const {
7432   unsigned NumRegs = 0;
7433 
7434   if (const VectorType *VT = Ty->getAs<VectorType>()) {
7435     // Compute from the number of elements. The reported size is based on the
7436     // in-memory size, which includes the padding 4th element for 3-vectors.
7437     QualType EltTy = VT->getElementType();
7438     unsigned EltSize = getContext().getTypeSize(EltTy);
7439 
7440     // 16-bit element vectors should be passed as packed.
7441     if (EltSize == 16)
7442       return (VT->getNumElements() + 1) / 2;
7443 
7444     unsigned EltNumRegs = (EltSize + 31) / 32;
7445     return EltNumRegs * VT->getNumElements();
7446   }
7447 
7448   if (const RecordType *RT = Ty->getAs<RecordType>()) {
7449     const RecordDecl *RD = RT->getDecl();
7450     assert(!RD->hasFlexibleArrayMember());
7451 
7452     for (const FieldDecl *Field : RD->fields()) {
7453       QualType FieldTy = Field->getType();
7454       NumRegs += numRegsForType(FieldTy);
7455     }
7456 
7457     return NumRegs;
7458   }
7459 
7460   return (getContext().getTypeSize(Ty) + 31) / 32;
7461 }
7462 
7463 void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const {
7464   llvm::CallingConv::ID CC = FI.getCallingConvention();
7465 
7466   if (!getCXXABI().classifyReturnType(FI))
7467     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7468 
7469   unsigned NumRegsLeft = MaxNumRegsForArgsRet;
7470   for (auto &Arg : FI.arguments()) {
7471     if (CC == llvm::CallingConv::AMDGPU_KERNEL) {
7472       Arg.info = classifyKernelArgumentType(Arg.type);
7473     } else {
7474       Arg.info = classifyArgumentType(Arg.type, NumRegsLeft);
7475     }
7476   }
7477 }
7478 
7479 ABIArgInfo AMDGPUABIInfo::classifyReturnType(QualType RetTy) const {
7480   if (isAggregateTypeForABI(RetTy)) {
7481     // Records with non-trivial destructors/copy-constructors should not be
7482     // returned by value.
7483     if (!getRecordArgABI(RetTy, getCXXABI())) {
7484       // Ignore empty structs/unions.
7485       if (isEmptyRecord(getContext(), RetTy, true))
7486         return ABIArgInfo::getIgnore();
7487 
7488       // Lower single-element structs to just return a regular value.
7489       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
7490         return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
7491 
7492       if (const RecordType *RT = RetTy->getAs<RecordType>()) {
7493         const RecordDecl *RD = RT->getDecl();
7494         if (RD->hasFlexibleArrayMember())
7495           return DefaultABIInfo::classifyReturnType(RetTy);
7496       }
7497 
7498       // Pack aggregates <= 4 bytes into single VGPR or pair.
7499       uint64_t Size = getContext().getTypeSize(RetTy);
7500       if (Size <= 16)
7501         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
7502 
7503       if (Size <= 32)
7504         return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
7505 
7506       if (Size <= 64) {
7507         llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext());
7508         return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2));
7509       }
7510 
7511       if (numRegsForType(RetTy) <= MaxNumRegsForArgsRet)
7512         return ABIArgInfo::getDirect();
7513     }
7514   }
7515 
7516   // Otherwise just do the default thing.
7517   return DefaultABIInfo::classifyReturnType(RetTy);
7518 }
7519 
7520 /// For kernels all parameters are really passed in a special buffer. It doesn't
7521 /// make sense to pass anything byval, so everything must be direct.
7522 ABIArgInfo AMDGPUABIInfo::classifyKernelArgumentType(QualType Ty) const {
7523   Ty = useFirstFieldIfTransparentUnion(Ty);
7524 
7525   // TODO: Can we omit empty structs?
7526 
7527   // Coerce single element structs to its element.
7528   if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
7529     return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
7530 
7531   // If we set CanBeFlattened to true, CodeGen will expand the struct to its
7532   // individual elements, which confuses the Clover OpenCL backend; therefore we
7533   // have to set it to false here. Other args of getDirect() are just defaults.
7534   return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
7535 }
7536 
7537 ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty,
7538                                                unsigned &NumRegsLeft) const {
7539   assert(NumRegsLeft <= MaxNumRegsForArgsRet && "register estimate underflow");
7540 
7541   Ty = useFirstFieldIfTransparentUnion(Ty);
7542 
7543   if (isAggregateTypeForABI(Ty)) {
7544     // Records with non-trivial destructors/copy-constructors should not be
7545     // passed by value.
7546     if (auto RAA = getRecordArgABI(Ty, getCXXABI()))
7547       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
7548 
7549     // Ignore empty structs/unions.
7550     if (isEmptyRecord(getContext(), Ty, true))
7551       return ABIArgInfo::getIgnore();
7552 
7553     // Lower single-element structs to just pass a regular value. TODO: We
7554     // could do reasonable-size multiple-element structs too, using getExpand(),
7555     // though watch out for things like bitfields.
7556     if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
7557       return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
7558 
7559     if (const RecordType *RT = Ty->getAs<RecordType>()) {
7560       const RecordDecl *RD = RT->getDecl();
7561       if (RD->hasFlexibleArrayMember())
7562         return DefaultABIInfo::classifyArgumentType(Ty);
7563     }
7564 
7565     // Pack aggregates <= 8 bytes into single VGPR or pair.
7566     uint64_t Size = getContext().getTypeSize(Ty);
7567     if (Size <= 64) {
7568       unsigned NumRegs = (Size + 31) / 32;
7569       NumRegsLeft -= std::min(NumRegsLeft, NumRegs);
7570 
7571       if (Size <= 16)
7572         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
7573 
7574       if (Size <= 32)
7575         return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
7576 
7577       // XXX: Should this be i64 instead, and should the limit increase?
7578       llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext());
7579       return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2));
7580     }
7581 
7582     if (NumRegsLeft > 0) {
7583       unsigned NumRegs = numRegsForType(Ty);
7584       if (NumRegsLeft >= NumRegs) {
7585         NumRegsLeft -= NumRegs;
7586         return ABIArgInfo::getDirect();
7587       }
7588     }
7589   }
7590 
7591   // Otherwise just do the default thing.
7592   ABIArgInfo ArgInfo = DefaultABIInfo::classifyArgumentType(Ty);
7593   if (!ArgInfo.isIndirect()) {
7594     unsigned NumRegs = numRegsForType(Ty);
7595     NumRegsLeft -= std::min(NumRegs, NumRegsLeft);
7596   }
7597 
7598   return ArgInfo;
7599 }
7600 
7601 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo {
7602 public:
7603   AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT)
7604     : TargetCodeGenInfo(new AMDGPUABIInfo(CGT)) {}
7605   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7606                            CodeGen::CodeGenModule &M,
7607                            ForDefinition_t IsForDefinition) const override;
7608   unsigned getOpenCLKernelCallingConv() const override;
7609 
7610   llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM,
7611       llvm::PointerType *T, QualType QT) const override;
7612 
7613   LangAS getASTAllocaAddressSpace() const override {
7614     return getLangASFromTargetAS(
7615         getABIInfo().getDataLayout().getAllocaAddrSpace());
7616   }
7617   LangAS getGlobalVarAddressSpace(CodeGenModule &CGM,
7618                                   const VarDecl *D) const override;
7619   llvm::SyncScope::ID getLLVMSyncScopeID(SyncScope S,
7620                                          llvm::LLVMContext &C) const override;
7621   llvm::Function *
7622   createEnqueuedBlockKernel(CodeGenFunction &CGF,
7623                             llvm::Function *BlockInvokeFunc,
7624                             llvm::Value *BlockLiteral) const override;
7625 };
7626 }
7627 
7628 void AMDGPUTargetCodeGenInfo::setTargetAttributes(
7629     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M,
7630     ForDefinition_t IsForDefinition) const {
7631   if (!IsForDefinition)
7632     return;
7633   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
7634   if (!FD)
7635     return;
7636 
7637   llvm::Function *F = cast<llvm::Function>(GV);
7638 
7639   const auto *ReqdWGS = M.getLangOpts().OpenCL ?
7640     FD->getAttr<ReqdWorkGroupSizeAttr>() : nullptr;
7641   const auto *FlatWGS = FD->getAttr<AMDGPUFlatWorkGroupSizeAttr>();
7642   if (ReqdWGS || FlatWGS) {
7643     unsigned Min = FlatWGS ? FlatWGS->getMin() : 0;
7644     unsigned Max = FlatWGS ? FlatWGS->getMax() : 0;
7645     if (ReqdWGS && Min == 0 && Max == 0)
7646       Min = Max = ReqdWGS->getXDim() * ReqdWGS->getYDim() * ReqdWGS->getZDim();
7647 
7648     if (Min != 0) {
7649       assert(Min <= Max && "Min must be less than or equal Max");
7650 
7651       std::string AttrVal = llvm::utostr(Min) + "," + llvm::utostr(Max);
7652       F->addFnAttr("amdgpu-flat-work-group-size", AttrVal);
7653     } else
7654       assert(Max == 0 && "Max must be zero");
7655   }
7656 
7657   if (const auto *Attr = FD->getAttr<AMDGPUWavesPerEUAttr>()) {
7658     unsigned Min = Attr->getMin();
7659     unsigned Max = Attr->getMax();
7660 
7661     if (Min != 0) {
7662       assert((Max == 0 || Min <= Max) && "Min must be less than or equal Max");
7663 
7664       std::string AttrVal = llvm::utostr(Min);
7665       if (Max != 0)
7666         AttrVal = AttrVal + "," + llvm::utostr(Max);
7667       F->addFnAttr("amdgpu-waves-per-eu", AttrVal);
7668     } else
7669       assert(Max == 0 && "Max must be zero");
7670   }
7671 
7672   if (const auto *Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) {
7673     unsigned NumSGPR = Attr->getNumSGPR();
7674 
7675     if (NumSGPR != 0)
7676       F->addFnAttr("amdgpu-num-sgpr", llvm::utostr(NumSGPR));
7677   }
7678 
7679   if (const auto *Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) {
7680     uint32_t NumVGPR = Attr->getNumVGPR();
7681 
7682     if (NumVGPR != 0)
7683       F->addFnAttr("amdgpu-num-vgpr", llvm::utostr(NumVGPR));
7684   }
7685 }
7686 
7687 unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const {
7688   return llvm::CallingConv::AMDGPU_KERNEL;
7689 }
7690 
7691 // Currently LLVM assumes null pointers always have value 0,
7692 // which results in incorrectly transformed IR. Therefore, instead of
7693 // emitting null pointers in private and local address spaces, a null
7694 // pointer in generic address space is emitted which is casted to a
7695 // pointer in local or private address space.
7696 llvm::Constant *AMDGPUTargetCodeGenInfo::getNullPointer(
7697     const CodeGen::CodeGenModule &CGM, llvm::PointerType *PT,
7698     QualType QT) const {
7699   if (CGM.getContext().getTargetNullPointerValue(QT) == 0)
7700     return llvm::ConstantPointerNull::get(PT);
7701 
7702   auto &Ctx = CGM.getContext();
7703   auto NPT = llvm::PointerType::get(PT->getElementType(),
7704       Ctx.getTargetAddressSpace(LangAS::opencl_generic));
7705   return llvm::ConstantExpr::getAddrSpaceCast(
7706       llvm::ConstantPointerNull::get(NPT), PT);
7707 }
7708 
7709 LangAS
7710 AMDGPUTargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM,
7711                                                   const VarDecl *D) const {
7712   assert(!CGM.getLangOpts().OpenCL &&
7713          !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) &&
7714          "Address space agnostic languages only");
7715   LangAS DefaultGlobalAS = getLangASFromTargetAS(
7716       CGM.getContext().getTargetAddressSpace(LangAS::opencl_global));
7717   if (!D)
7718     return DefaultGlobalAS;
7719 
7720   LangAS AddrSpace = D->getType().getAddressSpace();
7721   assert(AddrSpace == LangAS::Default || isTargetAddressSpace(AddrSpace));
7722   if (AddrSpace != LangAS::Default)
7723     return AddrSpace;
7724 
7725   if (CGM.isTypeConstant(D->getType(), false)) {
7726     if (auto ConstAS = CGM.getTarget().getConstantAddressSpace())
7727       return ConstAS.getValue();
7728   }
7729   return DefaultGlobalAS;
7730 }
7731 
7732 llvm::SyncScope::ID
7733 AMDGPUTargetCodeGenInfo::getLLVMSyncScopeID(SyncScope S,
7734                                             llvm::LLVMContext &C) const {
7735   StringRef Name;
7736   switch (S) {
7737   case SyncScope::OpenCLWorkGroup:
7738     Name = "workgroup";
7739     break;
7740   case SyncScope::OpenCLDevice:
7741     Name = "agent";
7742     break;
7743   case SyncScope::OpenCLAllSVMDevices:
7744     Name = "";
7745     break;
7746   case SyncScope::OpenCLSubGroup:
7747     Name = "subgroup";
7748   }
7749   return C.getOrInsertSyncScopeID(Name);
7750 }
7751 
7752 //===----------------------------------------------------------------------===//
7753 // SPARC v8 ABI Implementation.
7754 // Based on the SPARC Compliance Definition version 2.4.1.
7755 //
7756 // Ensures that complex values are passed in registers.
7757 //
7758 namespace {
7759 class SparcV8ABIInfo : public DefaultABIInfo {
7760 public:
7761   SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
7762 
7763 private:
7764   ABIArgInfo classifyReturnType(QualType RetTy) const;
7765   void computeInfo(CGFunctionInfo &FI) const override;
7766 };
7767 } // end anonymous namespace
7768 
7769 
7770 ABIArgInfo
7771 SparcV8ABIInfo::classifyReturnType(QualType Ty) const {
7772   if (Ty->isAnyComplexType()) {
7773     return ABIArgInfo::getDirect();
7774   }
7775   else {
7776     return DefaultABIInfo::classifyReturnType(Ty);
7777   }
7778 }
7779 
7780 void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const {
7781 
7782   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7783   for (auto &Arg : FI.arguments())
7784     Arg.info = classifyArgumentType(Arg.type);
7785 }
7786 
7787 namespace {
7788 class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo {
7789 public:
7790   SparcV8TargetCodeGenInfo(CodeGenTypes &CGT)
7791     : TargetCodeGenInfo(new SparcV8ABIInfo(CGT)) {}
7792 };
7793 } // end anonymous namespace
7794 
7795 //===----------------------------------------------------------------------===//
7796 // SPARC v9 ABI Implementation.
7797 // Based on the SPARC Compliance Definition version 2.4.1.
7798 //
7799 // Function arguments a mapped to a nominal "parameter array" and promoted to
7800 // registers depending on their type. Each argument occupies 8 or 16 bytes in
7801 // the array, structs larger than 16 bytes are passed indirectly.
7802 //
7803 // One case requires special care:
7804 //
7805 //   struct mixed {
7806 //     int i;
7807 //     float f;
7808 //   };
7809 //
7810 // When a struct mixed is passed by value, it only occupies 8 bytes in the
7811 // parameter array, but the int is passed in an integer register, and the float
7812 // is passed in a floating point register. This is represented as two arguments
7813 // with the LLVM IR inreg attribute:
7814 //
7815 //   declare void f(i32 inreg %i, float inreg %f)
7816 //
7817 // The code generator will only allocate 4 bytes from the parameter array for
7818 // the inreg arguments. All other arguments are allocated a multiple of 8
7819 // bytes.
7820 //
7821 namespace {
7822 class SparcV9ABIInfo : public ABIInfo {
7823 public:
7824   SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
7825 
7826 private:
7827   ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const;
7828   void computeInfo(CGFunctionInfo &FI) const override;
7829   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7830                     QualType Ty) const override;
7831 
7832   // Coercion type builder for structs passed in registers. The coercion type
7833   // serves two purposes:
7834   //
7835   // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned'
7836   //    in registers.
7837   // 2. Expose aligned floating point elements as first-level elements, so the
7838   //    code generator knows to pass them in floating point registers.
7839   //
7840   // We also compute the InReg flag which indicates that the struct contains
7841   // aligned 32-bit floats.
7842   //
7843   struct CoerceBuilder {
7844     llvm::LLVMContext &Context;
7845     const llvm::DataLayout &DL;
7846     SmallVector<llvm::Type*, 8> Elems;
7847     uint64_t Size;
7848     bool InReg;
7849 
7850     CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl)
7851       : Context(c), DL(dl), Size(0), InReg(false) {}
7852 
7853     // Pad Elems with integers until Size is ToSize.
7854     void pad(uint64_t ToSize) {
7855       assert(ToSize >= Size && "Cannot remove elements");
7856       if (ToSize == Size)
7857         return;
7858 
7859       // Finish the current 64-bit word.
7860       uint64_t Aligned = llvm::alignTo(Size, 64);
7861       if (Aligned > Size && Aligned <= ToSize) {
7862         Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size));
7863         Size = Aligned;
7864       }
7865 
7866       // Add whole 64-bit words.
7867       while (Size + 64 <= ToSize) {
7868         Elems.push_back(llvm::Type::getInt64Ty(Context));
7869         Size += 64;
7870       }
7871 
7872       // Final in-word padding.
7873       if (Size < ToSize) {
7874         Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size));
7875         Size = ToSize;
7876       }
7877     }
7878 
7879     // Add a floating point element at Offset.
7880     void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) {
7881       // Unaligned floats are treated as integers.
7882       if (Offset % Bits)
7883         return;
7884       // The InReg flag is only required if there are any floats < 64 bits.
7885       if (Bits < 64)
7886         InReg = true;
7887       pad(Offset);
7888       Elems.push_back(Ty);
7889       Size = Offset + Bits;
7890     }
7891 
7892     // Add a struct type to the coercion type, starting at Offset (in bits).
7893     void addStruct(uint64_t Offset, llvm::StructType *StrTy) {
7894       const llvm::StructLayout *Layout = DL.getStructLayout(StrTy);
7895       for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) {
7896         llvm::Type *ElemTy = StrTy->getElementType(i);
7897         uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i);
7898         switch (ElemTy->getTypeID()) {
7899         case llvm::Type::StructTyID:
7900           addStruct(ElemOffset, cast<llvm::StructType>(ElemTy));
7901           break;
7902         case llvm::Type::FloatTyID:
7903           addFloat(ElemOffset, ElemTy, 32);
7904           break;
7905         case llvm::Type::DoubleTyID:
7906           addFloat(ElemOffset, ElemTy, 64);
7907           break;
7908         case llvm::Type::FP128TyID:
7909           addFloat(ElemOffset, ElemTy, 128);
7910           break;
7911         case llvm::Type::PointerTyID:
7912           if (ElemOffset % 64 == 0) {
7913             pad(ElemOffset);
7914             Elems.push_back(ElemTy);
7915             Size += 64;
7916           }
7917           break;
7918         default:
7919           break;
7920         }
7921       }
7922     }
7923 
7924     // Check if Ty is a usable substitute for the coercion type.
7925     bool isUsableType(llvm::StructType *Ty) const {
7926       return llvm::makeArrayRef(Elems) == Ty->elements();
7927     }
7928 
7929     // Get the coercion type as a literal struct type.
7930     llvm::Type *getType() const {
7931       if (Elems.size() == 1)
7932         return Elems.front();
7933       else
7934         return llvm::StructType::get(Context, Elems);
7935     }
7936   };
7937 };
7938 } // end anonymous namespace
7939 
7940 ABIArgInfo
7941 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const {
7942   if (Ty->isVoidType())
7943     return ABIArgInfo::getIgnore();
7944 
7945   uint64_t Size = getContext().getTypeSize(Ty);
7946 
7947   // Anything too big to fit in registers is passed with an explicit indirect
7948   // pointer / sret pointer.
7949   if (Size > SizeLimit)
7950     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
7951 
7952   // Treat an enum type as its underlying type.
7953   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
7954     Ty = EnumTy->getDecl()->getIntegerType();
7955 
7956   // Integer types smaller than a register are extended.
7957   if (Size < 64 && Ty->isIntegerType())
7958     return ABIArgInfo::getExtend();
7959 
7960   // Other non-aggregates go in registers.
7961   if (!isAggregateTypeForABI(Ty))
7962     return ABIArgInfo::getDirect();
7963 
7964   // If a C++ object has either a non-trivial copy constructor or a non-trivial
7965   // destructor, it is passed with an explicit indirect pointer / sret pointer.
7966   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
7967     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
7968 
7969   // This is a small aggregate type that should be passed in registers.
7970   // Build a coercion type from the LLVM struct type.
7971   llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty));
7972   if (!StrTy)
7973     return ABIArgInfo::getDirect();
7974 
7975   CoerceBuilder CB(getVMContext(), getDataLayout());
7976   CB.addStruct(0, StrTy);
7977   CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64));
7978 
7979   // Try to use the original type for coercion.
7980   llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType();
7981 
7982   if (CB.InReg)
7983     return ABIArgInfo::getDirectInReg(CoerceTy);
7984   else
7985     return ABIArgInfo::getDirect(CoerceTy);
7986 }
7987 
7988 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7989                                   QualType Ty) const {
7990   ABIArgInfo AI = classifyType(Ty, 16 * 8);
7991   llvm::Type *ArgTy = CGT.ConvertType(Ty);
7992   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
7993     AI.setCoerceToType(ArgTy);
7994 
7995   CharUnits SlotSize = CharUnits::fromQuantity(8);
7996 
7997   CGBuilderTy &Builder = CGF.Builder;
7998   Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
7999   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
8000 
8001   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
8002 
8003   Address ArgAddr = Address::invalid();
8004   CharUnits Stride;
8005   switch (AI.getKind()) {
8006   case ABIArgInfo::Expand:
8007   case ABIArgInfo::CoerceAndExpand:
8008   case ABIArgInfo::InAlloca:
8009     llvm_unreachable("Unsupported ABI kind for va_arg");
8010 
8011   case ABIArgInfo::Extend: {
8012     Stride = SlotSize;
8013     CharUnits Offset = SlotSize - TypeInfo.first;
8014     ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend");
8015     break;
8016   }
8017 
8018   case ABIArgInfo::Direct: {
8019     auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
8020     Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize);
8021     ArgAddr = Addr;
8022     break;
8023   }
8024 
8025   case ABIArgInfo::Indirect:
8026     Stride = SlotSize;
8027     ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect");
8028     ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"),
8029                       TypeInfo.second);
8030     break;
8031 
8032   case ABIArgInfo::Ignore:
8033     return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.second);
8034   }
8035 
8036   // Update VAList.
8037   llvm::Value *NextPtr =
8038     Builder.CreateConstInBoundsByteGEP(Addr.getPointer(), Stride, "ap.next");
8039   Builder.CreateStore(NextPtr, VAListAddr);
8040 
8041   return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr");
8042 }
8043 
8044 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const {
8045   FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8);
8046   for (auto &I : FI.arguments())
8047     I.info = classifyType(I.type, 16 * 8);
8048 }
8049 
8050 namespace {
8051 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo {
8052 public:
8053   SparcV9TargetCodeGenInfo(CodeGenTypes &CGT)
8054     : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {}
8055 
8056   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
8057     return 14;
8058   }
8059 
8060   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
8061                                llvm::Value *Address) const override;
8062 };
8063 } // end anonymous namespace
8064 
8065 bool
8066 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
8067                                                 llvm::Value *Address) const {
8068   // This is calculated from the LLVM and GCC tables and verified
8069   // against gcc output.  AFAIK all ABIs use the same encoding.
8070 
8071   CodeGen::CGBuilderTy &Builder = CGF.Builder;
8072 
8073   llvm::IntegerType *i8 = CGF.Int8Ty;
8074   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
8075   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
8076 
8077   // 0-31: the 8-byte general-purpose registers
8078   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
8079 
8080   // 32-63: f0-31, the 4-byte floating-point registers
8081   AssignToArrayRange(Builder, Address, Four8, 32, 63);
8082 
8083   //   Y   = 64
8084   //   PSR = 65
8085   //   WIM = 66
8086   //   TBR = 67
8087   //   PC  = 68
8088   //   NPC = 69
8089   //   FSR = 70
8090   //   CSR = 71
8091   AssignToArrayRange(Builder, Address, Eight8, 64, 71);
8092 
8093   // 72-87: d0-15, the 8-byte floating-point registers
8094   AssignToArrayRange(Builder, Address, Eight8, 72, 87);
8095 
8096   return false;
8097 }
8098 
8099 
8100 //===----------------------------------------------------------------------===//
8101 // XCore ABI Implementation
8102 //===----------------------------------------------------------------------===//
8103 
8104 namespace {
8105 
8106 /// A SmallStringEnc instance is used to build up the TypeString by passing
8107 /// it by reference between functions that append to it.
8108 typedef llvm::SmallString<128> SmallStringEnc;
8109 
8110 /// TypeStringCache caches the meta encodings of Types.
8111 ///
8112 /// The reason for caching TypeStrings is two fold:
8113 ///   1. To cache a type's encoding for later uses;
8114 ///   2. As a means to break recursive member type inclusion.
8115 ///
8116 /// A cache Entry can have a Status of:
8117 ///   NonRecursive:   The type encoding is not recursive;
8118 ///   Recursive:      The type encoding is recursive;
8119 ///   Incomplete:     An incomplete TypeString;
8120 ///   IncompleteUsed: An incomplete TypeString that has been used in a
8121 ///                   Recursive type encoding.
8122 ///
8123 /// A NonRecursive entry will have all of its sub-members expanded as fully
8124 /// as possible. Whilst it may contain types which are recursive, the type
8125 /// itself is not recursive and thus its encoding may be safely used whenever
8126 /// the type is encountered.
8127 ///
8128 /// A Recursive entry will have all of its sub-members expanded as fully as
8129 /// possible. The type itself is recursive and it may contain other types which
8130 /// are recursive. The Recursive encoding must not be used during the expansion
8131 /// of a recursive type's recursive branch. For simplicity the code uses
8132 /// IncompleteCount to reject all usage of Recursive encodings for member types.
8133 ///
8134 /// An Incomplete entry is always a RecordType and only encodes its
8135 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and
8136 /// are placed into the cache during type expansion as a means to identify and
8137 /// handle recursive inclusion of types as sub-members. If there is recursion
8138 /// the entry becomes IncompleteUsed.
8139 ///
8140 /// During the expansion of a RecordType's members:
8141 ///
8142 ///   If the cache contains a NonRecursive encoding for the member type, the
8143 ///   cached encoding is used;
8144 ///
8145 ///   If the cache contains a Recursive encoding for the member type, the
8146 ///   cached encoding is 'Swapped' out, as it may be incorrect, and...
8147 ///
8148 ///   If the member is a RecordType, an Incomplete encoding is placed into the
8149 ///   cache to break potential recursive inclusion of itself as a sub-member;
8150 ///
8151 ///   Once a member RecordType has been expanded, its temporary incomplete
8152 ///   entry is removed from the cache. If a Recursive encoding was swapped out
8153 ///   it is swapped back in;
8154 ///
8155 ///   If an incomplete entry is used to expand a sub-member, the incomplete
8156 ///   entry is marked as IncompleteUsed. The cache keeps count of how many
8157 ///   IncompleteUsed entries it currently contains in IncompleteUsedCount;
8158 ///
8159 ///   If a member's encoding is found to be a NonRecursive or Recursive viz:
8160 ///   IncompleteUsedCount==0, the member's encoding is added to the cache.
8161 ///   Else the member is part of a recursive type and thus the recursion has
8162 ///   been exited too soon for the encoding to be correct for the member.
8163 ///
8164 class TypeStringCache {
8165   enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed};
8166   struct Entry {
8167     std::string Str;     // The encoded TypeString for the type.
8168     enum Status State;   // Information about the encoding in 'Str'.
8169     std::string Swapped; // A temporary place holder for a Recursive encoding
8170                          // during the expansion of RecordType's members.
8171   };
8172   std::map<const IdentifierInfo *, struct Entry> Map;
8173   unsigned IncompleteCount;     // Number of Incomplete entries in the Map.
8174   unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map.
8175 public:
8176   TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {}
8177   void addIncomplete(const IdentifierInfo *ID, std::string StubEnc);
8178   bool removeIncomplete(const IdentifierInfo *ID);
8179   void addIfComplete(const IdentifierInfo *ID, StringRef Str,
8180                      bool IsRecursive);
8181   StringRef lookupStr(const IdentifierInfo *ID);
8182 };
8183 
8184 /// TypeString encodings for enum & union fields must be order.
8185 /// FieldEncoding is a helper for this ordering process.
8186 class FieldEncoding {
8187   bool HasName;
8188   std::string Enc;
8189 public:
8190   FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {}
8191   StringRef str() { return Enc; }
8192   bool operator<(const FieldEncoding &rhs) const {
8193     if (HasName != rhs.HasName) return HasName;
8194     return Enc < rhs.Enc;
8195   }
8196 };
8197 
8198 class XCoreABIInfo : public DefaultABIInfo {
8199 public:
8200   XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
8201   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8202                     QualType Ty) const override;
8203 };
8204 
8205 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo {
8206   mutable TypeStringCache TSC;
8207 public:
8208   XCoreTargetCodeGenInfo(CodeGenTypes &CGT)
8209     :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {}
8210   void emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
8211                     CodeGen::CodeGenModule &M) const override;
8212 };
8213 
8214 } // End anonymous namespace.
8215 
8216 // TODO: this implementation is likely now redundant with the default
8217 // EmitVAArg.
8218 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8219                                 QualType Ty) const {
8220   CGBuilderTy &Builder = CGF.Builder;
8221 
8222   // Get the VAList.
8223   CharUnits SlotSize = CharUnits::fromQuantity(4);
8224   Address AP(Builder.CreateLoad(VAListAddr), SlotSize);
8225 
8226   // Handle the argument.
8227   ABIArgInfo AI = classifyArgumentType(Ty);
8228   CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty);
8229   llvm::Type *ArgTy = CGT.ConvertType(Ty);
8230   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
8231     AI.setCoerceToType(ArgTy);
8232   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
8233 
8234   Address Val = Address::invalid();
8235   CharUnits ArgSize = CharUnits::Zero();
8236   switch (AI.getKind()) {
8237   case ABIArgInfo::Expand:
8238   case ABIArgInfo::CoerceAndExpand:
8239   case ABIArgInfo::InAlloca:
8240     llvm_unreachable("Unsupported ABI kind for va_arg");
8241   case ABIArgInfo::Ignore:
8242     Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign);
8243     ArgSize = CharUnits::Zero();
8244     break;
8245   case ABIArgInfo::Extend:
8246   case ABIArgInfo::Direct:
8247     Val = Builder.CreateBitCast(AP, ArgPtrTy);
8248     ArgSize = CharUnits::fromQuantity(
8249                        getDataLayout().getTypeAllocSize(AI.getCoerceToType()));
8250     ArgSize = ArgSize.alignTo(SlotSize);
8251     break;
8252   case ABIArgInfo::Indirect:
8253     Val = Builder.CreateElementBitCast(AP, ArgPtrTy);
8254     Val = Address(Builder.CreateLoad(Val), TypeAlign);
8255     ArgSize = SlotSize;
8256     break;
8257   }
8258 
8259   // Increment the VAList.
8260   if (!ArgSize.isZero()) {
8261     llvm::Value *APN =
8262       Builder.CreateConstInBoundsByteGEP(AP.getPointer(), ArgSize);
8263     Builder.CreateStore(APN, VAListAddr);
8264   }
8265 
8266   return Val;
8267 }
8268 
8269 /// During the expansion of a RecordType, an incomplete TypeString is placed
8270 /// into the cache as a means to identify and break recursion.
8271 /// If there is a Recursive encoding in the cache, it is swapped out and will
8272 /// be reinserted by removeIncomplete().
8273 /// All other types of encoding should have been used rather than arriving here.
8274 void TypeStringCache::addIncomplete(const IdentifierInfo *ID,
8275                                     std::string StubEnc) {
8276   if (!ID)
8277     return;
8278   Entry &E = Map[ID];
8279   assert( (E.Str.empty() || E.State == Recursive) &&
8280          "Incorrectly use of addIncomplete");
8281   assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()");
8282   E.Swapped.swap(E.Str); // swap out the Recursive
8283   E.Str.swap(StubEnc);
8284   E.State = Incomplete;
8285   ++IncompleteCount;
8286 }
8287 
8288 /// Once the RecordType has been expanded, the temporary incomplete TypeString
8289 /// must be removed from the cache.
8290 /// If a Recursive was swapped out by addIncomplete(), it will be replaced.
8291 /// Returns true if the RecordType was defined recursively.
8292 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) {
8293   if (!ID)
8294     return false;
8295   auto I = Map.find(ID);
8296   assert(I != Map.end() && "Entry not present");
8297   Entry &E = I->second;
8298   assert( (E.State == Incomplete ||
8299            E.State == IncompleteUsed) &&
8300          "Entry must be an incomplete type");
8301   bool IsRecursive = false;
8302   if (E.State == IncompleteUsed) {
8303     // We made use of our Incomplete encoding, thus we are recursive.
8304     IsRecursive = true;
8305     --IncompleteUsedCount;
8306   }
8307   if (E.Swapped.empty())
8308     Map.erase(I);
8309   else {
8310     // Swap the Recursive back.
8311     E.Swapped.swap(E.Str);
8312     E.Swapped.clear();
8313     E.State = Recursive;
8314   }
8315   --IncompleteCount;
8316   return IsRecursive;
8317 }
8318 
8319 /// Add the encoded TypeString to the cache only if it is NonRecursive or
8320 /// Recursive (viz: all sub-members were expanded as fully as possible).
8321 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str,
8322                                     bool IsRecursive) {
8323   if (!ID || IncompleteUsedCount)
8324     return; // No key or it is is an incomplete sub-type so don't add.
8325   Entry &E = Map[ID];
8326   if (IsRecursive && !E.Str.empty()) {
8327     assert(E.State==Recursive && E.Str.size() == Str.size() &&
8328            "This is not the same Recursive entry");
8329     // The parent container was not recursive after all, so we could have used
8330     // this Recursive sub-member entry after all, but we assumed the worse when
8331     // we started viz: IncompleteCount!=0.
8332     return;
8333   }
8334   assert(E.Str.empty() && "Entry already present");
8335   E.Str = Str.str();
8336   E.State = IsRecursive? Recursive : NonRecursive;
8337 }
8338 
8339 /// Return a cached TypeString encoding for the ID. If there isn't one, or we
8340 /// are recursively expanding a type (IncompleteCount != 0) and the cached
8341 /// encoding is Recursive, return an empty StringRef.
8342 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) {
8343   if (!ID)
8344     return StringRef();   // We have no key.
8345   auto I = Map.find(ID);
8346   if (I == Map.end())
8347     return StringRef();   // We have no encoding.
8348   Entry &E = I->second;
8349   if (E.State == Recursive && IncompleteCount)
8350     return StringRef();   // We don't use Recursive encodings for member types.
8351 
8352   if (E.State == Incomplete) {
8353     // The incomplete type is being used to break out of recursion.
8354     E.State = IncompleteUsed;
8355     ++IncompleteUsedCount;
8356   }
8357   return E.Str;
8358 }
8359 
8360 /// The XCore ABI includes a type information section that communicates symbol
8361 /// type information to the linker. The linker uses this information to verify
8362 /// safety/correctness of things such as array bound and pointers et al.
8363 /// The ABI only requires C (and XC) language modules to emit TypeStrings.
8364 /// This type information (TypeString) is emitted into meta data for all global
8365 /// symbols: definitions, declarations, functions & variables.
8366 ///
8367 /// The TypeString carries type, qualifier, name, size & value details.
8368 /// Please see 'Tools Development Guide' section 2.16.2 for format details:
8369 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf
8370 /// The output is tested by test/CodeGen/xcore-stringtype.c.
8371 ///
8372 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
8373                           CodeGen::CodeGenModule &CGM, TypeStringCache &TSC);
8374 
8375 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols.
8376 void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
8377                                           CodeGen::CodeGenModule &CGM) const {
8378   SmallStringEnc Enc;
8379   if (getTypeString(Enc, D, CGM, TSC)) {
8380     llvm::LLVMContext &Ctx = CGM.getModule().getContext();
8381     llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV),
8382                                 llvm::MDString::get(Ctx, Enc.str())};
8383     llvm::NamedMDNode *MD =
8384       CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings");
8385     MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
8386   }
8387 }
8388 
8389 //===----------------------------------------------------------------------===//
8390 // SPIR ABI Implementation
8391 //===----------------------------------------------------------------------===//
8392 
8393 namespace {
8394 class SPIRTargetCodeGenInfo : public TargetCodeGenInfo {
8395 public:
8396   SPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
8397     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
8398   unsigned getOpenCLKernelCallingConv() const override;
8399 };
8400 
8401 } // End anonymous namespace.
8402 
8403 namespace clang {
8404 namespace CodeGen {
8405 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) {
8406   DefaultABIInfo SPIRABI(CGM.getTypes());
8407   SPIRABI.computeInfo(FI);
8408 }
8409 }
8410 }
8411 
8412 unsigned SPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const {
8413   return llvm::CallingConv::SPIR_KERNEL;
8414 }
8415 
8416 static bool appendType(SmallStringEnc &Enc, QualType QType,
8417                        const CodeGen::CodeGenModule &CGM,
8418                        TypeStringCache &TSC);
8419 
8420 /// Helper function for appendRecordType().
8421 /// Builds a SmallVector containing the encoded field types in declaration
8422 /// order.
8423 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE,
8424                              const RecordDecl *RD,
8425                              const CodeGen::CodeGenModule &CGM,
8426                              TypeStringCache &TSC) {
8427   for (const auto *Field : RD->fields()) {
8428     SmallStringEnc Enc;
8429     Enc += "m(";
8430     Enc += Field->getName();
8431     Enc += "){";
8432     if (Field->isBitField()) {
8433       Enc += "b(";
8434       llvm::raw_svector_ostream OS(Enc);
8435       OS << Field->getBitWidthValue(CGM.getContext());
8436       Enc += ':';
8437     }
8438     if (!appendType(Enc, Field->getType(), CGM, TSC))
8439       return false;
8440     if (Field->isBitField())
8441       Enc += ')';
8442     Enc += '}';
8443     FE.emplace_back(!Field->getName().empty(), Enc);
8444   }
8445   return true;
8446 }
8447 
8448 /// Appends structure and union types to Enc and adds encoding to cache.
8449 /// Recursively calls appendType (via extractFieldType) for each field.
8450 /// Union types have their fields ordered according to the ABI.
8451 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT,
8452                              const CodeGen::CodeGenModule &CGM,
8453                              TypeStringCache &TSC, const IdentifierInfo *ID) {
8454   // Append the cached TypeString if we have one.
8455   StringRef TypeString = TSC.lookupStr(ID);
8456   if (!TypeString.empty()) {
8457     Enc += TypeString;
8458     return true;
8459   }
8460 
8461   // Start to emit an incomplete TypeString.
8462   size_t Start = Enc.size();
8463   Enc += (RT->isUnionType()? 'u' : 's');
8464   Enc += '(';
8465   if (ID)
8466     Enc += ID->getName();
8467   Enc += "){";
8468 
8469   // We collect all encoded fields and order as necessary.
8470   bool IsRecursive = false;
8471   const RecordDecl *RD = RT->getDecl()->getDefinition();
8472   if (RD && !RD->field_empty()) {
8473     // An incomplete TypeString stub is placed in the cache for this RecordType
8474     // so that recursive calls to this RecordType will use it whilst building a
8475     // complete TypeString for this RecordType.
8476     SmallVector<FieldEncoding, 16> FE;
8477     std::string StubEnc(Enc.substr(Start).str());
8478     StubEnc += '}';  // StubEnc now holds a valid incomplete TypeString.
8479     TSC.addIncomplete(ID, std::move(StubEnc));
8480     if (!extractFieldType(FE, RD, CGM, TSC)) {
8481       (void) TSC.removeIncomplete(ID);
8482       return false;
8483     }
8484     IsRecursive = TSC.removeIncomplete(ID);
8485     // The ABI requires unions to be sorted but not structures.
8486     // See FieldEncoding::operator< for sort algorithm.
8487     if (RT->isUnionType())
8488       std::sort(FE.begin(), FE.end());
8489     // We can now complete the TypeString.
8490     unsigned E = FE.size();
8491     for (unsigned I = 0; I != E; ++I) {
8492       if (I)
8493         Enc += ',';
8494       Enc += FE[I].str();
8495     }
8496   }
8497   Enc += '}';
8498   TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive);
8499   return true;
8500 }
8501 
8502 /// Appends enum types to Enc and adds the encoding to the cache.
8503 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET,
8504                            TypeStringCache &TSC,
8505                            const IdentifierInfo *ID) {
8506   // Append the cached TypeString if we have one.
8507   StringRef TypeString = TSC.lookupStr(ID);
8508   if (!TypeString.empty()) {
8509     Enc += TypeString;
8510     return true;
8511   }
8512 
8513   size_t Start = Enc.size();
8514   Enc += "e(";
8515   if (ID)
8516     Enc += ID->getName();
8517   Enc += "){";
8518 
8519   // We collect all encoded enumerations and order them alphanumerically.
8520   if (const EnumDecl *ED = ET->getDecl()->getDefinition()) {
8521     SmallVector<FieldEncoding, 16> FE;
8522     for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E;
8523          ++I) {
8524       SmallStringEnc EnumEnc;
8525       EnumEnc += "m(";
8526       EnumEnc += I->getName();
8527       EnumEnc += "){";
8528       I->getInitVal().toString(EnumEnc);
8529       EnumEnc += '}';
8530       FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc));
8531     }
8532     std::sort(FE.begin(), FE.end());
8533     unsigned E = FE.size();
8534     for (unsigned I = 0; I != E; ++I) {
8535       if (I)
8536         Enc += ',';
8537       Enc += FE[I].str();
8538     }
8539   }
8540   Enc += '}';
8541   TSC.addIfComplete(ID, Enc.substr(Start), false);
8542   return true;
8543 }
8544 
8545 /// Appends type's qualifier to Enc.
8546 /// This is done prior to appending the type's encoding.
8547 static void appendQualifier(SmallStringEnc &Enc, QualType QT) {
8548   // Qualifiers are emitted in alphabetical order.
8549   static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"};
8550   int Lookup = 0;
8551   if (QT.isConstQualified())
8552     Lookup += 1<<0;
8553   if (QT.isRestrictQualified())
8554     Lookup += 1<<1;
8555   if (QT.isVolatileQualified())
8556     Lookup += 1<<2;
8557   Enc += Table[Lookup];
8558 }
8559 
8560 /// Appends built-in types to Enc.
8561 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) {
8562   const char *EncType;
8563   switch (BT->getKind()) {
8564     case BuiltinType::Void:
8565       EncType = "0";
8566       break;
8567     case BuiltinType::Bool:
8568       EncType = "b";
8569       break;
8570     case BuiltinType::Char_U:
8571       EncType = "uc";
8572       break;
8573     case BuiltinType::UChar:
8574       EncType = "uc";
8575       break;
8576     case BuiltinType::SChar:
8577       EncType = "sc";
8578       break;
8579     case BuiltinType::UShort:
8580       EncType = "us";
8581       break;
8582     case BuiltinType::Short:
8583       EncType = "ss";
8584       break;
8585     case BuiltinType::UInt:
8586       EncType = "ui";
8587       break;
8588     case BuiltinType::Int:
8589       EncType = "si";
8590       break;
8591     case BuiltinType::ULong:
8592       EncType = "ul";
8593       break;
8594     case BuiltinType::Long:
8595       EncType = "sl";
8596       break;
8597     case BuiltinType::ULongLong:
8598       EncType = "ull";
8599       break;
8600     case BuiltinType::LongLong:
8601       EncType = "sll";
8602       break;
8603     case BuiltinType::Float:
8604       EncType = "ft";
8605       break;
8606     case BuiltinType::Double:
8607       EncType = "d";
8608       break;
8609     case BuiltinType::LongDouble:
8610       EncType = "ld";
8611       break;
8612     default:
8613       return false;
8614   }
8615   Enc += EncType;
8616   return true;
8617 }
8618 
8619 /// Appends a pointer encoding to Enc before calling appendType for the pointee.
8620 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT,
8621                               const CodeGen::CodeGenModule &CGM,
8622                               TypeStringCache &TSC) {
8623   Enc += "p(";
8624   if (!appendType(Enc, PT->getPointeeType(), CGM, TSC))
8625     return false;
8626   Enc += ')';
8627   return true;
8628 }
8629 
8630 /// Appends array encoding to Enc before calling appendType for the element.
8631 static bool appendArrayType(SmallStringEnc &Enc, QualType QT,
8632                             const ArrayType *AT,
8633                             const CodeGen::CodeGenModule &CGM,
8634                             TypeStringCache &TSC, StringRef NoSizeEnc) {
8635   if (AT->getSizeModifier() != ArrayType::Normal)
8636     return false;
8637   Enc += "a(";
8638   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
8639     CAT->getSize().toStringUnsigned(Enc);
8640   else
8641     Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "".
8642   Enc += ':';
8643   // The Qualifiers should be attached to the type rather than the array.
8644   appendQualifier(Enc, QT);
8645   if (!appendType(Enc, AT->getElementType(), CGM, TSC))
8646     return false;
8647   Enc += ')';
8648   return true;
8649 }
8650 
8651 /// Appends a function encoding to Enc, calling appendType for the return type
8652 /// and the arguments.
8653 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT,
8654                              const CodeGen::CodeGenModule &CGM,
8655                              TypeStringCache &TSC) {
8656   Enc += "f{";
8657   if (!appendType(Enc, FT->getReturnType(), CGM, TSC))
8658     return false;
8659   Enc += "}(";
8660   if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) {
8661     // N.B. we are only interested in the adjusted param types.
8662     auto I = FPT->param_type_begin();
8663     auto E = FPT->param_type_end();
8664     if (I != E) {
8665       do {
8666         if (!appendType(Enc, *I, CGM, TSC))
8667           return false;
8668         ++I;
8669         if (I != E)
8670           Enc += ',';
8671       } while (I != E);
8672       if (FPT->isVariadic())
8673         Enc += ",va";
8674     } else {
8675       if (FPT->isVariadic())
8676         Enc += "va";
8677       else
8678         Enc += '0';
8679     }
8680   }
8681   Enc += ')';
8682   return true;
8683 }
8684 
8685 /// Handles the type's qualifier before dispatching a call to handle specific
8686 /// type encodings.
8687 static bool appendType(SmallStringEnc &Enc, QualType QType,
8688                        const CodeGen::CodeGenModule &CGM,
8689                        TypeStringCache &TSC) {
8690 
8691   QualType QT = QType.getCanonicalType();
8692 
8693   if (const ArrayType *AT = QT->getAsArrayTypeUnsafe())
8694     // The Qualifiers should be attached to the type rather than the array.
8695     // Thus we don't call appendQualifier() here.
8696     return appendArrayType(Enc, QT, AT, CGM, TSC, "");
8697 
8698   appendQualifier(Enc, QT);
8699 
8700   if (const BuiltinType *BT = QT->getAs<BuiltinType>())
8701     return appendBuiltinType(Enc, BT);
8702 
8703   if (const PointerType *PT = QT->getAs<PointerType>())
8704     return appendPointerType(Enc, PT, CGM, TSC);
8705 
8706   if (const EnumType *ET = QT->getAs<EnumType>())
8707     return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier());
8708 
8709   if (const RecordType *RT = QT->getAsStructureType())
8710     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
8711 
8712   if (const RecordType *RT = QT->getAsUnionType())
8713     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
8714 
8715   if (const FunctionType *FT = QT->getAs<FunctionType>())
8716     return appendFunctionType(Enc, FT, CGM, TSC);
8717 
8718   return false;
8719 }
8720 
8721 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
8722                           CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) {
8723   if (!D)
8724     return false;
8725 
8726   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
8727     if (FD->getLanguageLinkage() != CLanguageLinkage)
8728       return false;
8729     return appendType(Enc, FD->getType(), CGM, TSC);
8730   }
8731 
8732   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
8733     if (VD->getLanguageLinkage() != CLanguageLinkage)
8734       return false;
8735     QualType QT = VD->getType().getCanonicalType();
8736     if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) {
8737       // Global ArrayTypes are given a size of '*' if the size is unknown.
8738       // The Qualifiers should be attached to the type rather than the array.
8739       // Thus we don't call appendQualifier() here.
8740       return appendArrayType(Enc, QT, AT, CGM, TSC, "*");
8741     }
8742     return appendType(Enc, QT, CGM, TSC);
8743   }
8744   return false;
8745 }
8746 
8747 
8748 //===----------------------------------------------------------------------===//
8749 // Driver code
8750 //===----------------------------------------------------------------------===//
8751 
8752 bool CodeGenModule::supportsCOMDAT() const {
8753   return getTriple().supportsCOMDAT();
8754 }
8755 
8756 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
8757   if (TheTargetCodeGenInfo)
8758     return *TheTargetCodeGenInfo;
8759 
8760   // Helper to set the unique_ptr while still keeping the return value.
8761   auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & {
8762     this->TheTargetCodeGenInfo.reset(P);
8763     return *P;
8764   };
8765 
8766   const llvm::Triple &Triple = getTarget().getTriple();
8767   switch (Triple.getArch()) {
8768   default:
8769     return SetCGInfo(new DefaultTargetCodeGenInfo(Types));
8770 
8771   case llvm::Triple::le32:
8772     return SetCGInfo(new PNaClTargetCodeGenInfo(Types));
8773   case llvm::Triple::mips:
8774   case llvm::Triple::mipsel:
8775     if (Triple.getOS() == llvm::Triple::NaCl)
8776       return SetCGInfo(new PNaClTargetCodeGenInfo(Types));
8777     return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true));
8778 
8779   case llvm::Triple::mips64:
8780   case llvm::Triple::mips64el:
8781     return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false));
8782 
8783   case llvm::Triple::avr:
8784     return SetCGInfo(new AVRTargetCodeGenInfo(Types));
8785 
8786   case llvm::Triple::aarch64:
8787   case llvm::Triple::aarch64_be: {
8788     AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS;
8789     if (getTarget().getABI() == "darwinpcs")
8790       Kind = AArch64ABIInfo::DarwinPCS;
8791     else if (Triple.isOSWindows())
8792       return SetCGInfo(
8793           new WindowsAArch64TargetCodeGenInfo(Types, AArch64ABIInfo::Win64));
8794 
8795     return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind));
8796   }
8797 
8798   case llvm::Triple::wasm32:
8799   case llvm::Triple::wasm64:
8800     return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types));
8801 
8802   case llvm::Triple::arm:
8803   case llvm::Triple::armeb:
8804   case llvm::Triple::thumb:
8805   case llvm::Triple::thumbeb: {
8806     if (Triple.getOS() == llvm::Triple::Win32) {
8807       return SetCGInfo(
8808           new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP));
8809     }
8810 
8811     ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
8812     StringRef ABIStr = getTarget().getABI();
8813     if (ABIStr == "apcs-gnu")
8814       Kind = ARMABIInfo::APCS;
8815     else if (ABIStr == "aapcs16")
8816       Kind = ARMABIInfo::AAPCS16_VFP;
8817     else if (CodeGenOpts.FloatABI == "hard" ||
8818              (CodeGenOpts.FloatABI != "soft" &&
8819               (Triple.getEnvironment() == llvm::Triple::GNUEABIHF ||
8820                Triple.getEnvironment() == llvm::Triple::MuslEABIHF ||
8821                Triple.getEnvironment() == llvm::Triple::EABIHF)))
8822       Kind = ARMABIInfo::AAPCS_VFP;
8823 
8824     return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind));
8825   }
8826 
8827   case llvm::Triple::ppc:
8828     return SetCGInfo(
8829         new PPC32TargetCodeGenInfo(Types, CodeGenOpts.FloatABI == "soft"));
8830   case llvm::Triple::ppc64:
8831     if (Triple.isOSBinFormatELF()) {
8832       PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1;
8833       if (getTarget().getABI() == "elfv2")
8834         Kind = PPC64_SVR4_ABIInfo::ELFv2;
8835       bool HasQPX = getTarget().getABI() == "elfv1-qpx";
8836       bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
8837 
8838       return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX,
8839                                                         IsSoftFloat));
8840     } else
8841       return SetCGInfo(new PPC64TargetCodeGenInfo(Types));
8842   case llvm::Triple::ppc64le: {
8843     assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
8844     PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2;
8845     if (getTarget().getABI() == "elfv1" || getTarget().getABI() == "elfv1-qpx")
8846       Kind = PPC64_SVR4_ABIInfo::ELFv1;
8847     bool HasQPX = getTarget().getABI() == "elfv1-qpx";
8848     bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
8849 
8850     return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX,
8851                                                       IsSoftFloat));
8852   }
8853 
8854   case llvm::Triple::nvptx:
8855   case llvm::Triple::nvptx64:
8856     return SetCGInfo(new NVPTXTargetCodeGenInfo(Types));
8857 
8858   case llvm::Triple::msp430:
8859     return SetCGInfo(new MSP430TargetCodeGenInfo(Types));
8860 
8861   case llvm::Triple::systemz: {
8862     bool HasVector = getTarget().getABI() == "vector";
8863     return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector));
8864   }
8865 
8866   case llvm::Triple::tce:
8867   case llvm::Triple::tcele:
8868     return SetCGInfo(new TCETargetCodeGenInfo(Types));
8869 
8870   case llvm::Triple::x86: {
8871     bool IsDarwinVectorABI = Triple.isOSDarwin();
8872     bool RetSmallStructInRegABI =
8873         X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
8874     bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing();
8875 
8876     if (Triple.getOS() == llvm::Triple::Win32) {
8877       return SetCGInfo(new WinX86_32TargetCodeGenInfo(
8878           Types, IsDarwinVectorABI, RetSmallStructInRegABI,
8879           IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters));
8880     } else {
8881       return SetCGInfo(new X86_32TargetCodeGenInfo(
8882           Types, IsDarwinVectorABI, RetSmallStructInRegABI,
8883           IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters,
8884           CodeGenOpts.FloatABI == "soft"));
8885     }
8886   }
8887 
8888   case llvm::Triple::x86_64: {
8889     StringRef ABI = getTarget().getABI();
8890     X86AVXABILevel AVXLevel =
8891         (ABI == "avx512"
8892              ? X86AVXABILevel::AVX512
8893              : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None);
8894 
8895     switch (Triple.getOS()) {
8896     case llvm::Triple::Win32:
8897       return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel));
8898     case llvm::Triple::PS4:
8899       return SetCGInfo(new PS4TargetCodeGenInfo(Types, AVXLevel));
8900     default:
8901       return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel));
8902     }
8903   }
8904   case llvm::Triple::hexagon:
8905     return SetCGInfo(new HexagonTargetCodeGenInfo(Types));
8906   case llvm::Triple::lanai:
8907     return SetCGInfo(new LanaiTargetCodeGenInfo(Types));
8908   case llvm::Triple::r600:
8909     return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types));
8910   case llvm::Triple::amdgcn:
8911     return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types));
8912   case llvm::Triple::sparc:
8913     return SetCGInfo(new SparcV8TargetCodeGenInfo(Types));
8914   case llvm::Triple::sparcv9:
8915     return SetCGInfo(new SparcV9TargetCodeGenInfo(Types));
8916   case llvm::Triple::xcore:
8917     return SetCGInfo(new XCoreTargetCodeGenInfo(Types));
8918   case llvm::Triple::spir:
8919   case llvm::Triple::spir64:
8920     return SetCGInfo(new SPIRTargetCodeGenInfo(Types));
8921   }
8922 }
8923 
8924 /// Create an OpenCL kernel for an enqueued block.
8925 ///
8926 /// The kernel has the same function type as the block invoke function. Its
8927 /// name is the name of the block invoke function postfixed with "_kernel".
8928 /// It simply calls the block invoke function then returns.
8929 llvm::Function *
8930 TargetCodeGenInfo::createEnqueuedBlockKernel(CodeGenFunction &CGF,
8931                                              llvm::Function *Invoke,
8932                                              llvm::Value *BlockLiteral) const {
8933   auto *InvokeFT = Invoke->getFunctionType();
8934   llvm::SmallVector<llvm::Type *, 2> ArgTys;
8935   for (auto &P : InvokeFT->params())
8936     ArgTys.push_back(P);
8937   auto &C = CGF.getLLVMContext();
8938   std::string Name = Invoke->getName().str() + "_kernel";
8939   auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false);
8940   auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name,
8941                                    &CGF.CGM.getModule());
8942   auto IP = CGF.Builder.saveIP();
8943   auto *BB = llvm::BasicBlock::Create(C, "entry", F);
8944   auto &Builder = CGF.Builder;
8945   Builder.SetInsertPoint(BB);
8946   llvm::SmallVector<llvm::Value *, 2> Args;
8947   for (auto &A : F->args())
8948     Args.push_back(&A);
8949   Builder.CreateCall(Invoke, Args);
8950   Builder.CreateRetVoid();
8951   Builder.restoreIP(IP);
8952   return F;
8953 }
8954 
8955 /// Create an OpenCL kernel for an enqueued block.
8956 ///
8957 /// The type of the first argument (the block literal) is the struct type
8958 /// of the block literal instead of a pointer type. The first argument
8959 /// (block literal) is passed directly by value to the kernel. The kernel
8960 /// allocates the same type of struct on stack and stores the block literal
8961 /// to it and passes its pointer to the block invoke function. The kernel
8962 /// has "enqueued-block" function attribute and kernel argument metadata.
8963 llvm::Function *AMDGPUTargetCodeGenInfo::createEnqueuedBlockKernel(
8964     CodeGenFunction &CGF, llvm::Function *Invoke,
8965     llvm::Value *BlockLiteral) const {
8966   auto &Builder = CGF.Builder;
8967   auto &C = CGF.getLLVMContext();
8968 
8969   auto *BlockTy = BlockLiteral->getType()->getPointerElementType();
8970   auto *InvokeFT = Invoke->getFunctionType();
8971   llvm::SmallVector<llvm::Type *, 2> ArgTys;
8972   llvm::SmallVector<llvm::Metadata *, 8> AddressQuals;
8973   llvm::SmallVector<llvm::Metadata *, 8> AccessQuals;
8974   llvm::SmallVector<llvm::Metadata *, 8> ArgTypeNames;
8975   llvm::SmallVector<llvm::Metadata *, 8> ArgBaseTypeNames;
8976   llvm::SmallVector<llvm::Metadata *, 8> ArgTypeQuals;
8977   llvm::SmallVector<llvm::Metadata *, 8> ArgNames;
8978 
8979   ArgTys.push_back(BlockTy);
8980   ArgTypeNames.push_back(llvm::MDString::get(C, "__block_literal"));
8981   AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(0)));
8982   ArgBaseTypeNames.push_back(llvm::MDString::get(C, "__block_literal"));
8983   ArgTypeQuals.push_back(llvm::MDString::get(C, ""));
8984   AccessQuals.push_back(llvm::MDString::get(C, "none"));
8985   ArgNames.push_back(llvm::MDString::get(C, "block_literal"));
8986   for (unsigned I = 1, E = InvokeFT->getNumParams(); I < E; ++I) {
8987     ArgTys.push_back(InvokeFT->getParamType(I));
8988     ArgTypeNames.push_back(llvm::MDString::get(C, "void*"));
8989     AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(3)));
8990     AccessQuals.push_back(llvm::MDString::get(C, "none"));
8991     ArgBaseTypeNames.push_back(llvm::MDString::get(C, "void*"));
8992     ArgTypeQuals.push_back(llvm::MDString::get(C, ""));
8993     ArgNames.push_back(
8994         llvm::MDString::get(C, (Twine("local_arg") + Twine(I)).str()));
8995   }
8996   std::string Name = Invoke->getName().str() + "_kernel";
8997   auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false);
8998   auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name,
8999                                    &CGF.CGM.getModule());
9000   F->addFnAttr("enqueued-block");
9001   auto IP = CGF.Builder.saveIP();
9002   auto *BB = llvm::BasicBlock::Create(C, "entry", F);
9003   Builder.SetInsertPoint(BB);
9004   unsigned BlockAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(BlockTy);
9005   auto *BlockPtr = Builder.CreateAlloca(BlockTy, nullptr);
9006   BlockPtr->setAlignment(BlockAlign);
9007   Builder.CreateAlignedStore(F->arg_begin(), BlockPtr, BlockAlign);
9008   auto *Cast = Builder.CreatePointerCast(BlockPtr, InvokeFT->getParamType(0));
9009   llvm::SmallVector<llvm::Value *, 2> Args;
9010   Args.push_back(Cast);
9011   for (auto I = F->arg_begin() + 1, E = F->arg_end(); I != E; ++I)
9012     Args.push_back(I);
9013   Builder.CreateCall(Invoke, Args);
9014   Builder.CreateRetVoid();
9015   Builder.restoreIP(IP);
9016 
9017   F->setMetadata("kernel_arg_addr_space", llvm::MDNode::get(C, AddressQuals));
9018   F->setMetadata("kernel_arg_access_qual", llvm::MDNode::get(C, AccessQuals));
9019   F->setMetadata("kernel_arg_type", llvm::MDNode::get(C, ArgTypeNames));
9020   F->setMetadata("kernel_arg_base_type",
9021                  llvm::MDNode::get(C, ArgBaseTypeNames));
9022   F->setMetadata("kernel_arg_type_qual", llvm::MDNode::get(C, ArgTypeQuals));
9023   if (CGF.CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
9024     F->setMetadata("kernel_arg_name", llvm::MDNode::get(C, ArgNames));
9025 
9026   return F;
9027 }
9028