1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // These classes wrap the information about a call or function 11 // definition used to handle ABI compliancy. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "TargetInfo.h" 16 #include "ABIInfo.h" 17 #include "CGCXXABI.h" 18 #include "CodeGenFunction.h" 19 #include "clang/AST/RecordLayout.h" 20 #include "clang/CodeGen/CGFunctionInfo.h" 21 #include "clang/Frontend/CodeGenOptions.h" 22 #include "llvm/ADT/Triple.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/Type.h" 25 #include "llvm/Support/raw_ostream.h" 26 27 #include <algorithm> // std::sort 28 29 using namespace clang; 30 using namespace CodeGen; 31 32 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder, 33 llvm::Value *Array, 34 llvm::Value *Value, 35 unsigned FirstIndex, 36 unsigned LastIndex) { 37 // Alternatively, we could emit this as a loop in the source. 38 for (unsigned I = FirstIndex; I <= LastIndex; ++I) { 39 llvm::Value *Cell = Builder.CreateConstInBoundsGEP1_32(Array, I); 40 Builder.CreateStore(Value, Cell); 41 } 42 } 43 44 static bool isAggregateTypeForABI(QualType T) { 45 return !CodeGenFunction::hasScalarEvaluationKind(T) || 46 T->isMemberFunctionPointerType(); 47 } 48 49 ABIInfo::~ABIInfo() {} 50 51 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT, 52 CGCXXABI &CXXABI) { 53 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); 54 if (!RD) 55 return CGCXXABI::RAA_Default; 56 return CXXABI.getRecordArgABI(RD); 57 } 58 59 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T, 60 CGCXXABI &CXXABI) { 61 const RecordType *RT = T->getAs<RecordType>(); 62 if (!RT) 63 return CGCXXABI::RAA_Default; 64 return getRecordArgABI(RT, CXXABI); 65 } 66 67 CGCXXABI &ABIInfo::getCXXABI() const { 68 return CGT.getCXXABI(); 69 } 70 71 ASTContext &ABIInfo::getContext() const { 72 return CGT.getContext(); 73 } 74 75 llvm::LLVMContext &ABIInfo::getVMContext() const { 76 return CGT.getLLVMContext(); 77 } 78 79 const llvm::DataLayout &ABIInfo::getDataLayout() const { 80 return CGT.getDataLayout(); 81 } 82 83 const TargetInfo &ABIInfo::getTarget() const { 84 return CGT.getTarget(); 85 } 86 87 void ABIArgInfo::dump() const { 88 raw_ostream &OS = llvm::errs(); 89 OS << "(ABIArgInfo Kind="; 90 switch (TheKind) { 91 case Direct: 92 OS << "Direct Type="; 93 if (llvm::Type *Ty = getCoerceToType()) 94 Ty->print(OS); 95 else 96 OS << "null"; 97 break; 98 case Extend: 99 OS << "Extend"; 100 break; 101 case Ignore: 102 OS << "Ignore"; 103 break; 104 case InAlloca: 105 OS << "InAlloca Offset=" << getInAllocaFieldIndex(); 106 break; 107 case Indirect: 108 OS << "Indirect Align=" << getIndirectAlign() 109 << " ByVal=" << getIndirectByVal() 110 << " Realign=" << getIndirectRealign(); 111 break; 112 case Expand: 113 OS << "Expand"; 114 break; 115 } 116 OS << ")\n"; 117 } 118 119 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; } 120 121 // If someone can figure out a general rule for this, that would be great. 122 // It's probably just doomed to be platform-dependent, though. 123 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const { 124 // Verified for: 125 // x86-64 FreeBSD, Linux, Darwin 126 // x86-32 FreeBSD, Linux, Darwin 127 // PowerPC Linux, Darwin 128 // ARM Darwin (*not* EABI) 129 // AArch64 Linux 130 return 32; 131 } 132 133 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args, 134 const FunctionNoProtoType *fnType) const { 135 // The following conventions are known to require this to be false: 136 // x86_stdcall 137 // MIPS 138 // For everything else, we just prefer false unless we opt out. 139 return false; 140 } 141 142 void 143 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib, 144 llvm::SmallString<24> &Opt) const { 145 // This assumes the user is passing a library name like "rt" instead of a 146 // filename like "librt.a/so", and that they don't care whether it's static or 147 // dynamic. 148 Opt = "-l"; 149 Opt += Lib; 150 } 151 152 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays); 153 154 /// isEmptyField - Return true iff a the field is "empty", that is it 155 /// is an unnamed bit-field or an (array of) empty record(s). 156 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD, 157 bool AllowArrays) { 158 if (FD->isUnnamedBitfield()) 159 return true; 160 161 QualType FT = FD->getType(); 162 163 // Constant arrays of empty records count as empty, strip them off. 164 // Constant arrays of zero length always count as empty. 165 if (AllowArrays) 166 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 167 if (AT->getSize() == 0) 168 return true; 169 FT = AT->getElementType(); 170 } 171 172 const RecordType *RT = FT->getAs<RecordType>(); 173 if (!RT) 174 return false; 175 176 // C++ record fields are never empty, at least in the Itanium ABI. 177 // 178 // FIXME: We should use a predicate for whether this behavior is true in the 179 // current ABI. 180 if (isa<CXXRecordDecl>(RT->getDecl())) 181 return false; 182 183 return isEmptyRecord(Context, FT, AllowArrays); 184 } 185 186 /// isEmptyRecord - Return true iff a structure contains only empty 187 /// fields. Note that a structure with a flexible array member is not 188 /// considered empty. 189 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) { 190 const RecordType *RT = T->getAs<RecordType>(); 191 if (!RT) 192 return 0; 193 const RecordDecl *RD = RT->getDecl(); 194 if (RD->hasFlexibleArrayMember()) 195 return false; 196 197 // If this is a C++ record, check the bases first. 198 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 199 for (const auto &I : CXXRD->bases()) 200 if (!isEmptyRecord(Context, I.getType(), true)) 201 return false; 202 203 for (const auto *I : RD->fields()) 204 if (!isEmptyField(Context, I, AllowArrays)) 205 return false; 206 return true; 207 } 208 209 /// isSingleElementStruct - Determine if a structure is a "single 210 /// element struct", i.e. it has exactly one non-empty field or 211 /// exactly one field which is itself a single element 212 /// struct. Structures with flexible array members are never 213 /// considered single element structs. 214 /// 215 /// \return The field declaration for the single non-empty field, if 216 /// it exists. 217 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) { 218 const RecordType *RT = T->getAsStructureType(); 219 if (!RT) 220 return nullptr; 221 222 const RecordDecl *RD = RT->getDecl(); 223 if (RD->hasFlexibleArrayMember()) 224 return nullptr; 225 226 const Type *Found = nullptr; 227 228 // If this is a C++ record, check the bases first. 229 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 230 for (const auto &I : CXXRD->bases()) { 231 // Ignore empty records. 232 if (isEmptyRecord(Context, I.getType(), true)) 233 continue; 234 235 // If we already found an element then this isn't a single-element struct. 236 if (Found) 237 return nullptr; 238 239 // If this is non-empty and not a single element struct, the composite 240 // cannot be a single element struct. 241 Found = isSingleElementStruct(I.getType(), Context); 242 if (!Found) 243 return nullptr; 244 } 245 } 246 247 // Check for single element. 248 for (const auto *FD : RD->fields()) { 249 QualType FT = FD->getType(); 250 251 // Ignore empty fields. 252 if (isEmptyField(Context, FD, true)) 253 continue; 254 255 // If we already found an element then this isn't a single-element 256 // struct. 257 if (Found) 258 return nullptr; 259 260 // Treat single element arrays as the element. 261 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 262 if (AT->getSize().getZExtValue() != 1) 263 break; 264 FT = AT->getElementType(); 265 } 266 267 if (!isAggregateTypeForABI(FT)) { 268 Found = FT.getTypePtr(); 269 } else { 270 Found = isSingleElementStruct(FT, Context); 271 if (!Found) 272 return nullptr; 273 } 274 } 275 276 // We don't consider a struct a single-element struct if it has 277 // padding beyond the element type. 278 if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T)) 279 return nullptr; 280 281 return Found; 282 } 283 284 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) { 285 // Treat complex types as the element type. 286 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 287 Ty = CTy->getElementType(); 288 289 // Check for a type which we know has a simple scalar argument-passing 290 // convention without any padding. (We're specifically looking for 32 291 // and 64-bit integer and integer-equivalents, float, and double.) 292 if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() && 293 !Ty->isEnumeralType() && !Ty->isBlockPointerType()) 294 return false; 295 296 uint64_t Size = Context.getTypeSize(Ty); 297 return Size == 32 || Size == 64; 298 } 299 300 /// canExpandIndirectArgument - Test whether an argument type which is to be 301 /// passed indirectly (on the stack) would have the equivalent layout if it was 302 /// expanded into separate arguments. If so, we prefer to do the latter to avoid 303 /// inhibiting optimizations. 304 /// 305 // FIXME: This predicate is missing many cases, currently it just follows 306 // llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We 307 // should probably make this smarter, or better yet make the LLVM backend 308 // capable of handling it. 309 static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) { 310 // We can only expand structure types. 311 const RecordType *RT = Ty->getAs<RecordType>(); 312 if (!RT) 313 return false; 314 315 // We can only expand (C) structures. 316 // 317 // FIXME: This needs to be generalized to handle classes as well. 318 const RecordDecl *RD = RT->getDecl(); 319 if (!RD->isStruct() || isa<CXXRecordDecl>(RD)) 320 return false; 321 322 uint64_t Size = 0; 323 324 for (const auto *FD : RD->fields()) { 325 if (!is32Or64BitBasicType(FD->getType(), Context)) 326 return false; 327 328 // FIXME: Reject bit-fields wholesale; there are two problems, we don't know 329 // how to expand them yet, and the predicate for telling if a bitfield still 330 // counts as "basic" is more complicated than what we were doing previously. 331 if (FD->isBitField()) 332 return false; 333 334 Size += Context.getTypeSize(FD->getType()); 335 } 336 337 // Make sure there are not any holes in the struct. 338 if (Size != Context.getTypeSize(Ty)) 339 return false; 340 341 return true; 342 } 343 344 namespace { 345 /// DefaultABIInfo - The default implementation for ABI specific 346 /// details. This implementation provides information which results in 347 /// self-consistent and sensible LLVM IR generation, but does not 348 /// conform to any particular ABI. 349 class DefaultABIInfo : public ABIInfo { 350 public: 351 DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 352 353 ABIArgInfo classifyReturnType(QualType RetTy) const; 354 ABIArgInfo classifyArgumentType(QualType RetTy) const; 355 356 void computeInfo(CGFunctionInfo &FI) const override { 357 if (!getCXXABI().classifyReturnType(FI)) 358 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 359 for (auto &I : FI.arguments()) 360 I.info = classifyArgumentType(I.type); 361 } 362 363 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 364 CodeGenFunction &CGF) const override; 365 }; 366 367 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo { 368 public: 369 DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 370 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 371 }; 372 373 llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 374 CodeGenFunction &CGF) const { 375 return nullptr; 376 } 377 378 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const { 379 if (isAggregateTypeForABI(Ty)) 380 return ABIArgInfo::getIndirect(0); 381 382 // Treat an enum type as its underlying type. 383 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 384 Ty = EnumTy->getDecl()->getIntegerType(); 385 386 return (Ty->isPromotableIntegerType() ? 387 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 388 } 389 390 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const { 391 if (RetTy->isVoidType()) 392 return ABIArgInfo::getIgnore(); 393 394 if (isAggregateTypeForABI(RetTy)) 395 return ABIArgInfo::getIndirect(0); 396 397 // Treat an enum type as its underlying type. 398 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 399 RetTy = EnumTy->getDecl()->getIntegerType(); 400 401 return (RetTy->isPromotableIntegerType() ? 402 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 403 } 404 405 //===----------------------------------------------------------------------===// 406 // le32/PNaCl bitcode ABI Implementation 407 // 408 // This is a simplified version of the x86_32 ABI. Arguments and return values 409 // are always passed on the stack. 410 //===----------------------------------------------------------------------===// 411 412 class PNaClABIInfo : public ABIInfo { 413 public: 414 PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 415 416 ABIArgInfo classifyReturnType(QualType RetTy) const; 417 ABIArgInfo classifyArgumentType(QualType RetTy) const; 418 419 void computeInfo(CGFunctionInfo &FI) const override; 420 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 421 CodeGenFunction &CGF) const override; 422 }; 423 424 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo { 425 public: 426 PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 427 : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {} 428 }; 429 430 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const { 431 if (!getCXXABI().classifyReturnType(FI)) 432 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 433 434 for (auto &I : FI.arguments()) 435 I.info = classifyArgumentType(I.type); 436 } 437 438 llvm::Value *PNaClABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 439 CodeGenFunction &CGF) const { 440 return nullptr; 441 } 442 443 /// \brief Classify argument of given type \p Ty. 444 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const { 445 if (isAggregateTypeForABI(Ty)) { 446 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 447 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 448 return ABIArgInfo::getIndirect(0); 449 } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 450 // Treat an enum type as its underlying type. 451 Ty = EnumTy->getDecl()->getIntegerType(); 452 } else if (Ty->isFloatingType()) { 453 // Floating-point types don't go inreg. 454 return ABIArgInfo::getDirect(); 455 } 456 457 return (Ty->isPromotableIntegerType() ? 458 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 459 } 460 461 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const { 462 if (RetTy->isVoidType()) 463 return ABIArgInfo::getIgnore(); 464 465 // In the PNaCl ABI we always return records/structures on the stack. 466 if (isAggregateTypeForABI(RetTy)) 467 return ABIArgInfo::getIndirect(0); 468 469 // Treat an enum type as its underlying type. 470 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 471 RetTy = EnumTy->getDecl()->getIntegerType(); 472 473 return (RetTy->isPromotableIntegerType() ? 474 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 475 } 476 477 /// IsX86_MMXType - Return true if this is an MMX type. 478 bool IsX86_MMXType(llvm::Type *IRType) { 479 // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>. 480 return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 && 481 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() && 482 IRType->getScalarSizeInBits() != 64; 483 } 484 485 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 486 StringRef Constraint, 487 llvm::Type* Ty) { 488 if ((Constraint == "y" || Constraint == "&y") && Ty->isVectorTy()) { 489 if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) { 490 // Invalid MMX constraint 491 return nullptr; 492 } 493 494 return llvm::Type::getX86_MMXTy(CGF.getLLVMContext()); 495 } 496 497 // No operation needed 498 return Ty; 499 } 500 501 //===----------------------------------------------------------------------===// 502 // X86-32 ABI Implementation 503 //===----------------------------------------------------------------------===// 504 505 /// \brief Similar to llvm::CCState, but for Clang. 506 struct CCState { 507 CCState(unsigned CC) : CC(CC), FreeRegs(0) {} 508 509 unsigned CC; 510 unsigned FreeRegs; 511 unsigned StackOffset; 512 bool UseInAlloca; 513 }; 514 515 /// X86_32ABIInfo - The X86-32 ABI information. 516 class X86_32ABIInfo : public ABIInfo { 517 enum Class { 518 Integer, 519 Float 520 }; 521 522 static const unsigned MinABIStackAlignInBytes = 4; 523 524 bool IsDarwinVectorABI; 525 bool IsSmallStructInRegABI; 526 bool IsWin32StructABI; 527 unsigned DefaultNumRegisterParameters; 528 529 static bool isRegisterSize(unsigned Size) { 530 return (Size == 8 || Size == 16 || Size == 32 || Size == 64); 531 } 532 533 bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const; 534 535 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 536 /// such that the argument will be passed in memory. 537 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 538 539 ABIArgInfo getIndirectReturnResult(CCState &State) const; 540 541 /// \brief Return the alignment to use for the given type on the stack. 542 unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const; 543 544 Class classify(QualType Ty) const; 545 ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const; 546 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 547 bool shouldUseInReg(QualType Ty, CCState &State, bool &NeedsPadding) const; 548 549 /// \brief Rewrite the function info so that all memory arguments use 550 /// inalloca. 551 void rewriteWithInAlloca(CGFunctionInfo &FI) const; 552 553 void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 554 unsigned &StackOffset, ABIArgInfo &Info, 555 QualType Type) const; 556 557 public: 558 559 void computeInfo(CGFunctionInfo &FI) const override; 560 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 561 CodeGenFunction &CGF) const override; 562 563 X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p, bool w, 564 unsigned r) 565 : ABIInfo(CGT), IsDarwinVectorABI(d), IsSmallStructInRegABI(p), 566 IsWin32StructABI(w), DefaultNumRegisterParameters(r) {} 567 }; 568 569 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo { 570 public: 571 X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 572 bool d, bool p, bool w, unsigned r) 573 :TargetCodeGenInfo(new X86_32ABIInfo(CGT, d, p, w, r)) {} 574 575 static bool isStructReturnInRegABI( 576 const llvm::Triple &Triple, const CodeGenOptions &Opts); 577 578 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 579 CodeGen::CodeGenModule &CGM) const override; 580 581 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 582 // Darwin uses different dwarf register numbers for EH. 583 if (CGM.getTarget().getTriple().isOSDarwin()) return 5; 584 return 4; 585 } 586 587 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 588 llvm::Value *Address) const override; 589 590 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 591 StringRef Constraint, 592 llvm::Type* Ty) const override { 593 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 594 } 595 596 llvm::Constant * 597 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 598 unsigned Sig = (0xeb << 0) | // jmp rel8 599 (0x06 << 8) | // .+0x08 600 ('F' << 16) | 601 ('T' << 24); 602 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 603 } 604 605 }; 606 607 } 608 609 /// shouldReturnTypeInRegister - Determine if the given type should be 610 /// passed in a register (for the Darwin ABI). 611 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty, 612 ASTContext &Context) const { 613 uint64_t Size = Context.getTypeSize(Ty); 614 615 // Type must be register sized. 616 if (!isRegisterSize(Size)) 617 return false; 618 619 if (Ty->isVectorType()) { 620 // 64- and 128- bit vectors inside structures are not returned in 621 // registers. 622 if (Size == 64 || Size == 128) 623 return false; 624 625 return true; 626 } 627 628 // If this is a builtin, pointer, enum, complex type, member pointer, or 629 // member function pointer it is ok. 630 if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() || 631 Ty->isAnyComplexType() || Ty->isEnumeralType() || 632 Ty->isBlockPointerType() || Ty->isMemberPointerType()) 633 return true; 634 635 // Arrays are treated like records. 636 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) 637 return shouldReturnTypeInRegister(AT->getElementType(), Context); 638 639 // Otherwise, it must be a record type. 640 const RecordType *RT = Ty->getAs<RecordType>(); 641 if (!RT) return false; 642 643 // FIXME: Traverse bases here too. 644 645 // Structure types are passed in register if all fields would be 646 // passed in a register. 647 for (const auto *FD : RT->getDecl()->fields()) { 648 // Empty fields are ignored. 649 if (isEmptyField(Context, FD, true)) 650 continue; 651 652 // Check fields recursively. 653 if (!shouldReturnTypeInRegister(FD->getType(), Context)) 654 return false; 655 } 656 return true; 657 } 658 659 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(CCState &State) const { 660 // If the return value is indirect, then the hidden argument is consuming one 661 // integer register. 662 if (State.FreeRegs) { 663 --State.FreeRegs; 664 return ABIArgInfo::getIndirectInReg(/*Align=*/0, /*ByVal=*/false); 665 } 666 return ABIArgInfo::getIndirect(/*Align=*/0, /*ByVal=*/false); 667 } 668 669 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, CCState &State) const { 670 if (RetTy->isVoidType()) 671 return ABIArgInfo::getIgnore(); 672 673 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 674 // On Darwin, some vectors are returned in registers. 675 if (IsDarwinVectorABI) { 676 uint64_t Size = getContext().getTypeSize(RetTy); 677 678 // 128-bit vectors are a special case; they are returned in 679 // registers and we need to make sure to pick a type the LLVM 680 // backend will like. 681 if (Size == 128) 682 return ABIArgInfo::getDirect(llvm::VectorType::get( 683 llvm::Type::getInt64Ty(getVMContext()), 2)); 684 685 // Always return in register if it fits in a general purpose 686 // register, or if it is 64 bits and has a single element. 687 if ((Size == 8 || Size == 16 || Size == 32) || 688 (Size == 64 && VT->getNumElements() == 1)) 689 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 690 Size)); 691 692 return getIndirectReturnResult(State); 693 } 694 695 return ABIArgInfo::getDirect(); 696 } 697 698 if (isAggregateTypeForABI(RetTy)) { 699 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 700 // Structures with flexible arrays are always indirect. 701 if (RT->getDecl()->hasFlexibleArrayMember()) 702 return getIndirectReturnResult(State); 703 } 704 705 // If specified, structs and unions are always indirect. 706 if (!IsSmallStructInRegABI && !RetTy->isAnyComplexType()) 707 return getIndirectReturnResult(State); 708 709 // Small structures which are register sized are generally returned 710 // in a register. 711 if (shouldReturnTypeInRegister(RetTy, getContext())) { 712 uint64_t Size = getContext().getTypeSize(RetTy); 713 714 // As a special-case, if the struct is a "single-element" struct, and 715 // the field is of type "float" or "double", return it in a 716 // floating-point register. (MSVC does not apply this special case.) 717 // We apply a similar transformation for pointer types to improve the 718 // quality of the generated IR. 719 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 720 if ((!IsWin32StructABI && SeltTy->isRealFloatingType()) 721 || SeltTy->hasPointerRepresentation()) 722 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 723 724 // FIXME: We should be able to narrow this integer in cases with dead 725 // padding. 726 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size)); 727 } 728 729 return getIndirectReturnResult(State); 730 } 731 732 // Treat an enum type as its underlying type. 733 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 734 RetTy = EnumTy->getDecl()->getIntegerType(); 735 736 return (RetTy->isPromotableIntegerType() ? 737 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 738 } 739 740 static bool isSSEVectorType(ASTContext &Context, QualType Ty) { 741 return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128; 742 } 743 744 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) { 745 const RecordType *RT = Ty->getAs<RecordType>(); 746 if (!RT) 747 return 0; 748 const RecordDecl *RD = RT->getDecl(); 749 750 // If this is a C++ record, check the bases first. 751 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 752 for (const auto &I : CXXRD->bases()) 753 if (!isRecordWithSSEVectorType(Context, I.getType())) 754 return false; 755 756 for (const auto *i : RD->fields()) { 757 QualType FT = i->getType(); 758 759 if (isSSEVectorType(Context, FT)) 760 return true; 761 762 if (isRecordWithSSEVectorType(Context, FT)) 763 return true; 764 } 765 766 return false; 767 } 768 769 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty, 770 unsigned Align) const { 771 // Otherwise, if the alignment is less than or equal to the minimum ABI 772 // alignment, just use the default; the backend will handle this. 773 if (Align <= MinABIStackAlignInBytes) 774 return 0; // Use default alignment. 775 776 // On non-Darwin, the stack type alignment is always 4. 777 if (!IsDarwinVectorABI) { 778 // Set explicit alignment, since we may need to realign the top. 779 return MinABIStackAlignInBytes; 780 } 781 782 // Otherwise, if the type contains an SSE vector type, the alignment is 16. 783 if (Align >= 16 && (isSSEVectorType(getContext(), Ty) || 784 isRecordWithSSEVectorType(getContext(), Ty))) 785 return 16; 786 787 return MinABIStackAlignInBytes; 788 } 789 790 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal, 791 CCState &State) const { 792 if (!ByVal) { 793 if (State.FreeRegs) { 794 --State.FreeRegs; // Non-byval indirects just use one pointer. 795 return ABIArgInfo::getIndirectInReg(0, false); 796 } 797 return ABIArgInfo::getIndirect(0, false); 798 } 799 800 // Compute the byval alignment. 801 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 802 unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign); 803 if (StackAlign == 0) 804 return ABIArgInfo::getIndirect(4, /*ByVal=*/true); 805 806 // If the stack alignment is less than the type alignment, realign the 807 // argument. 808 bool Realign = TypeAlign > StackAlign; 809 return ABIArgInfo::getIndirect(StackAlign, /*ByVal=*/true, Realign); 810 } 811 812 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const { 813 const Type *T = isSingleElementStruct(Ty, getContext()); 814 if (!T) 815 T = Ty.getTypePtr(); 816 817 if (const BuiltinType *BT = T->getAs<BuiltinType>()) { 818 BuiltinType::Kind K = BT->getKind(); 819 if (K == BuiltinType::Float || K == BuiltinType::Double) 820 return Float; 821 } 822 return Integer; 823 } 824 825 bool X86_32ABIInfo::shouldUseInReg(QualType Ty, CCState &State, 826 bool &NeedsPadding) const { 827 NeedsPadding = false; 828 Class C = classify(Ty); 829 if (C == Float) 830 return false; 831 832 unsigned Size = getContext().getTypeSize(Ty); 833 unsigned SizeInRegs = (Size + 31) / 32; 834 835 if (SizeInRegs == 0) 836 return false; 837 838 if (SizeInRegs > State.FreeRegs) { 839 State.FreeRegs = 0; 840 return false; 841 } 842 843 State.FreeRegs -= SizeInRegs; 844 845 if (State.CC == llvm::CallingConv::X86_FastCall) { 846 if (Size > 32) 847 return false; 848 849 if (Ty->isIntegralOrEnumerationType()) 850 return true; 851 852 if (Ty->isPointerType()) 853 return true; 854 855 if (Ty->isReferenceType()) 856 return true; 857 858 if (State.FreeRegs) 859 NeedsPadding = true; 860 861 return false; 862 } 863 864 return true; 865 } 866 867 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, 868 CCState &State) const { 869 // FIXME: Set alignment on indirect arguments. 870 if (isAggregateTypeForABI(Ty)) { 871 if (const RecordType *RT = Ty->getAs<RecordType>()) { 872 // Check with the C++ ABI first. 873 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 874 if (RAA == CGCXXABI::RAA_Indirect) { 875 return getIndirectResult(Ty, false, State); 876 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 877 // The field index doesn't matter, we'll fix it up later. 878 return ABIArgInfo::getInAlloca(/*FieldIndex=*/0); 879 } 880 881 // Structs are always byval on win32, regardless of what they contain. 882 if (IsWin32StructABI) 883 return getIndirectResult(Ty, true, State); 884 885 // Structures with flexible arrays are always indirect. 886 if (RT->getDecl()->hasFlexibleArrayMember()) 887 return getIndirectResult(Ty, true, State); 888 } 889 890 // Ignore empty structs/unions. 891 if (isEmptyRecord(getContext(), Ty, true)) 892 return ABIArgInfo::getIgnore(); 893 894 llvm::LLVMContext &LLVMContext = getVMContext(); 895 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 896 bool NeedsPadding; 897 if (shouldUseInReg(Ty, State, NeedsPadding)) { 898 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; 899 SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32); 900 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 901 return ABIArgInfo::getDirectInReg(Result); 902 } 903 llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr; 904 905 // Expand small (<= 128-bit) record types when we know that the stack layout 906 // of those arguments will match the struct. This is important because the 907 // LLVM backend isn't smart enough to remove byval, which inhibits many 908 // optimizations. 909 if (getContext().getTypeSize(Ty) <= 4*32 && 910 canExpandIndirectArgument(Ty, getContext())) 911 return ABIArgInfo::getExpandWithPadding( 912 State.CC == llvm::CallingConv::X86_FastCall, PaddingType); 913 914 return getIndirectResult(Ty, true, State); 915 } 916 917 if (const VectorType *VT = Ty->getAs<VectorType>()) { 918 // On Darwin, some vectors are passed in memory, we handle this by passing 919 // it as an i8/i16/i32/i64. 920 if (IsDarwinVectorABI) { 921 uint64_t Size = getContext().getTypeSize(Ty); 922 if ((Size == 8 || Size == 16 || Size == 32) || 923 (Size == 64 && VT->getNumElements() == 1)) 924 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 925 Size)); 926 } 927 928 if (IsX86_MMXType(CGT.ConvertType(Ty))) 929 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64)); 930 931 return ABIArgInfo::getDirect(); 932 } 933 934 935 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 936 Ty = EnumTy->getDecl()->getIntegerType(); 937 938 bool NeedsPadding; 939 bool InReg = shouldUseInReg(Ty, State, NeedsPadding); 940 941 if (Ty->isPromotableIntegerType()) { 942 if (InReg) 943 return ABIArgInfo::getExtendInReg(); 944 return ABIArgInfo::getExtend(); 945 } 946 if (InReg) 947 return ABIArgInfo::getDirectInReg(); 948 return ABIArgInfo::getDirect(); 949 } 950 951 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const { 952 CCState State(FI.getCallingConvention()); 953 if (State.CC == llvm::CallingConv::X86_FastCall) 954 State.FreeRegs = 2; 955 else if (FI.getHasRegParm()) 956 State.FreeRegs = FI.getRegParm(); 957 else 958 State.FreeRegs = DefaultNumRegisterParameters; 959 960 if (!getCXXABI().classifyReturnType(FI)) { 961 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State); 962 } else if (FI.getReturnInfo().isIndirect()) { 963 // The C++ ABI is not aware of register usage, so we have to check if the 964 // return value was sret and put it in a register ourselves if appropriate. 965 if (State.FreeRegs) { 966 --State.FreeRegs; // The sret parameter consumes a register. 967 FI.getReturnInfo().setInReg(true); 968 } 969 } 970 971 bool UsedInAlloca = false; 972 for (auto &I : FI.arguments()) { 973 I.info = classifyArgumentType(I.type, State); 974 UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca); 975 } 976 977 // If we needed to use inalloca for any argument, do a second pass and rewrite 978 // all the memory arguments to use inalloca. 979 if (UsedInAlloca) 980 rewriteWithInAlloca(FI); 981 } 982 983 void 984 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 985 unsigned &StackOffset, 986 ABIArgInfo &Info, QualType Type) const { 987 assert(StackOffset % 4U == 0 && "unaligned inalloca struct"); 988 Info = ABIArgInfo::getInAlloca(FrameFields.size()); 989 FrameFields.push_back(CGT.ConvertTypeForMem(Type)); 990 StackOffset += getContext().getTypeSizeInChars(Type).getQuantity(); 991 992 // Insert padding bytes to respect alignment. For x86_32, each argument is 4 993 // byte aligned. 994 if (StackOffset % 4U) { 995 unsigned OldOffset = StackOffset; 996 StackOffset = llvm::RoundUpToAlignment(StackOffset, 4U); 997 unsigned NumBytes = StackOffset - OldOffset; 998 assert(NumBytes); 999 llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext()); 1000 Ty = llvm::ArrayType::get(Ty, NumBytes); 1001 FrameFields.push_back(Ty); 1002 } 1003 } 1004 1005 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const { 1006 assert(IsWin32StructABI && "inalloca only supported on win32"); 1007 1008 // Build a packed struct type for all of the arguments in memory. 1009 SmallVector<llvm::Type *, 6> FrameFields; 1010 1011 unsigned StackOffset = 0; 1012 1013 // Put the sret parameter into the inalloca struct if it's in memory. 1014 ABIArgInfo &Ret = FI.getReturnInfo(); 1015 if (Ret.isIndirect() && !Ret.getInReg()) { 1016 CanQualType PtrTy = getContext().getPointerType(FI.getReturnType()); 1017 addFieldToArgStruct(FrameFields, StackOffset, Ret, PtrTy); 1018 // On Windows, the hidden sret parameter is always returned in eax. 1019 Ret.setInAllocaSRet(IsWin32StructABI); 1020 } 1021 1022 // Skip the 'this' parameter in ecx. 1023 CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end(); 1024 if (FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall) 1025 ++I; 1026 1027 // Put arguments passed in memory into the struct. 1028 for (; I != E; ++I) { 1029 1030 // Leave ignored and inreg arguments alone. 1031 switch (I->info.getKind()) { 1032 case ABIArgInfo::Indirect: 1033 assert(I->info.getIndirectByVal()); 1034 break; 1035 case ABIArgInfo::Ignore: 1036 continue; 1037 case ABIArgInfo::Direct: 1038 case ABIArgInfo::Extend: 1039 if (I->info.getInReg()) 1040 continue; 1041 break; 1042 default: 1043 break; 1044 } 1045 1046 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 1047 } 1048 1049 FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields, 1050 /*isPacked=*/true)); 1051 } 1052 1053 llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 1054 CodeGenFunction &CGF) const { 1055 llvm::Type *BPP = CGF.Int8PtrPtrTy; 1056 1057 CGBuilderTy &Builder = CGF.Builder; 1058 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, 1059 "ap"); 1060 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 1061 1062 // Compute if the address needs to be aligned 1063 unsigned Align = CGF.getContext().getTypeAlignInChars(Ty).getQuantity(); 1064 Align = getTypeStackAlignInBytes(Ty, Align); 1065 Align = std::max(Align, 4U); 1066 if (Align > 4) { 1067 // addr = (addr + align - 1) & -align; 1068 llvm::Value *Offset = 1069 llvm::ConstantInt::get(CGF.Int32Ty, Align - 1); 1070 Addr = CGF.Builder.CreateGEP(Addr, Offset); 1071 llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(Addr, 1072 CGF.Int32Ty); 1073 llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -Align); 1074 Addr = CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask), 1075 Addr->getType(), 1076 "ap.cur.aligned"); 1077 } 1078 1079 llvm::Type *PTy = 1080 llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 1081 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); 1082 1083 uint64_t Offset = 1084 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, Align); 1085 llvm::Value *NextAddr = 1086 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), 1087 "ap.next"); 1088 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 1089 1090 return AddrTyped; 1091 } 1092 1093 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI( 1094 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 1095 assert(Triple.getArch() == llvm::Triple::x86); 1096 1097 switch (Opts.getStructReturnConvention()) { 1098 case CodeGenOptions::SRCK_Default: 1099 break; 1100 case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return 1101 return false; 1102 case CodeGenOptions::SRCK_InRegs: // -freg-struct-return 1103 return true; 1104 } 1105 1106 if (Triple.isOSDarwin()) 1107 return true; 1108 1109 switch (Triple.getOS()) { 1110 case llvm::Triple::AuroraUX: 1111 case llvm::Triple::DragonFly: 1112 case llvm::Triple::FreeBSD: 1113 case llvm::Triple::OpenBSD: 1114 case llvm::Triple::Bitrig: 1115 return true; 1116 case llvm::Triple::Win32: 1117 switch (Triple.getEnvironment()) { 1118 case llvm::Triple::UnknownEnvironment: 1119 case llvm::Triple::Cygnus: 1120 case llvm::Triple::GNU: 1121 case llvm::Triple::MSVC: 1122 return true; 1123 default: 1124 return false; 1125 } 1126 default: 1127 return false; 1128 } 1129 } 1130 1131 void X86_32TargetCodeGenInfo::SetTargetAttributes(const Decl *D, 1132 llvm::GlobalValue *GV, 1133 CodeGen::CodeGenModule &CGM) const { 1134 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1135 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 1136 // Get the LLVM function. 1137 llvm::Function *Fn = cast<llvm::Function>(GV); 1138 1139 // Now add the 'alignstack' attribute with a value of 16. 1140 llvm::AttrBuilder B; 1141 B.addStackAlignmentAttr(16); 1142 Fn->addAttributes(llvm::AttributeSet::FunctionIndex, 1143 llvm::AttributeSet::get(CGM.getLLVMContext(), 1144 llvm::AttributeSet::FunctionIndex, 1145 B)); 1146 } 1147 } 1148 } 1149 1150 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable( 1151 CodeGen::CodeGenFunction &CGF, 1152 llvm::Value *Address) const { 1153 CodeGen::CGBuilderTy &Builder = CGF.Builder; 1154 1155 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 1156 1157 // 0-7 are the eight integer registers; the order is different 1158 // on Darwin (for EH), but the range is the same. 1159 // 8 is %eip. 1160 AssignToArrayRange(Builder, Address, Four8, 0, 8); 1161 1162 if (CGF.CGM.getTarget().getTriple().isOSDarwin()) { 1163 // 12-16 are st(0..4). Not sure why we stop at 4. 1164 // These have size 16, which is sizeof(long double) on 1165 // platforms with 8-byte alignment for that type. 1166 llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16); 1167 AssignToArrayRange(Builder, Address, Sixteen8, 12, 16); 1168 1169 } else { 1170 // 9 is %eflags, which doesn't get a size on Darwin for some 1171 // reason. 1172 Builder.CreateStore(Four8, Builder.CreateConstInBoundsGEP1_32(Address, 9)); 1173 1174 // 11-16 are st(0..5). Not sure why we stop at 5. 1175 // These have size 12, which is sizeof(long double) on 1176 // platforms with 4-byte alignment for that type. 1177 llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12); 1178 AssignToArrayRange(Builder, Address, Twelve8, 11, 16); 1179 } 1180 1181 return false; 1182 } 1183 1184 //===----------------------------------------------------------------------===// 1185 // X86-64 ABI Implementation 1186 //===----------------------------------------------------------------------===// 1187 1188 1189 namespace { 1190 /// X86_64ABIInfo - The X86_64 ABI information. 1191 class X86_64ABIInfo : public ABIInfo { 1192 enum Class { 1193 Integer = 0, 1194 SSE, 1195 SSEUp, 1196 X87, 1197 X87Up, 1198 ComplexX87, 1199 NoClass, 1200 Memory 1201 }; 1202 1203 /// merge - Implement the X86_64 ABI merging algorithm. 1204 /// 1205 /// Merge an accumulating classification \arg Accum with a field 1206 /// classification \arg Field. 1207 /// 1208 /// \param Accum - The accumulating classification. This should 1209 /// always be either NoClass or the result of a previous merge 1210 /// call. In addition, this should never be Memory (the caller 1211 /// should just return Memory for the aggregate). 1212 static Class merge(Class Accum, Class Field); 1213 1214 /// postMerge - Implement the X86_64 ABI post merging algorithm. 1215 /// 1216 /// Post merger cleanup, reduces a malformed Hi and Lo pair to 1217 /// final MEMORY or SSE classes when necessary. 1218 /// 1219 /// \param AggregateSize - The size of the current aggregate in 1220 /// the classification process. 1221 /// 1222 /// \param Lo - The classification for the parts of the type 1223 /// residing in the low word of the containing object. 1224 /// 1225 /// \param Hi - The classification for the parts of the type 1226 /// residing in the higher words of the containing object. 1227 /// 1228 void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const; 1229 1230 /// classify - Determine the x86_64 register classes in which the 1231 /// given type T should be passed. 1232 /// 1233 /// \param Lo - The classification for the parts of the type 1234 /// residing in the low word of the containing object. 1235 /// 1236 /// \param Hi - The classification for the parts of the type 1237 /// residing in the high word of the containing object. 1238 /// 1239 /// \param OffsetBase - The bit offset of this type in the 1240 /// containing object. Some parameters are classified different 1241 /// depending on whether they straddle an eightbyte boundary. 1242 /// 1243 /// \param isNamedArg - Whether the argument in question is a "named" 1244 /// argument, as used in AMD64-ABI 3.5.7. 1245 /// 1246 /// If a word is unused its result will be NoClass; if a type should 1247 /// be passed in Memory then at least the classification of \arg Lo 1248 /// will be Memory. 1249 /// 1250 /// The \arg Lo class will be NoClass iff the argument is ignored. 1251 /// 1252 /// If the \arg Lo class is ComplexX87, then the \arg Hi class will 1253 /// also be ComplexX87. 1254 void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi, 1255 bool isNamedArg) const; 1256 1257 llvm::Type *GetByteVectorType(QualType Ty) const; 1258 llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType, 1259 unsigned IROffset, QualType SourceTy, 1260 unsigned SourceOffset) const; 1261 llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType, 1262 unsigned IROffset, QualType SourceTy, 1263 unsigned SourceOffset) const; 1264 1265 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 1266 /// such that the argument will be returned in memory. 1267 ABIArgInfo getIndirectReturnResult(QualType Ty) const; 1268 1269 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 1270 /// such that the argument will be passed in memory. 1271 /// 1272 /// \param freeIntRegs - The number of free integer registers remaining 1273 /// available. 1274 ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const; 1275 1276 ABIArgInfo classifyReturnType(QualType RetTy) const; 1277 1278 ABIArgInfo classifyArgumentType(QualType Ty, 1279 unsigned freeIntRegs, 1280 unsigned &neededInt, 1281 unsigned &neededSSE, 1282 bool isNamedArg) const; 1283 1284 bool IsIllegalVectorType(QualType Ty) const; 1285 1286 /// The 0.98 ABI revision clarified a lot of ambiguities, 1287 /// unfortunately in ways that were not always consistent with 1288 /// certain previous compilers. In particular, platforms which 1289 /// required strict binary compatibility with older versions of GCC 1290 /// may need to exempt themselves. 1291 bool honorsRevision0_98() const { 1292 return !getTarget().getTriple().isOSDarwin(); 1293 } 1294 1295 bool HasAVX; 1296 // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on 1297 // 64-bit hardware. 1298 bool Has64BitPointers; 1299 1300 public: 1301 X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, bool hasavx) : 1302 ABIInfo(CGT), HasAVX(hasavx), 1303 Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) { 1304 } 1305 1306 bool isPassedUsingAVXType(QualType type) const { 1307 unsigned neededInt, neededSSE; 1308 // The freeIntRegs argument doesn't matter here. 1309 ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE, 1310 /*isNamedArg*/true); 1311 if (info.isDirect()) { 1312 llvm::Type *ty = info.getCoerceToType(); 1313 if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty)) 1314 return (vectorTy->getBitWidth() > 128); 1315 } 1316 return false; 1317 } 1318 1319 void computeInfo(CGFunctionInfo &FI) const override; 1320 1321 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 1322 CodeGenFunction &CGF) const override; 1323 }; 1324 1325 /// WinX86_64ABIInfo - The Windows X86_64 ABI information. 1326 class WinX86_64ABIInfo : public ABIInfo { 1327 1328 ABIArgInfo classify(QualType Ty, bool IsReturnType) const; 1329 1330 public: 1331 WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 1332 1333 void computeInfo(CGFunctionInfo &FI) const override; 1334 1335 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 1336 CodeGenFunction &CGF) const override; 1337 }; 1338 1339 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo { 1340 public: 1341 X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX) 1342 : TargetCodeGenInfo(new X86_64ABIInfo(CGT, HasAVX)) {} 1343 1344 const X86_64ABIInfo &getABIInfo() const { 1345 return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo()); 1346 } 1347 1348 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 1349 return 7; 1350 } 1351 1352 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 1353 llvm::Value *Address) const override { 1354 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 1355 1356 // 0-15 are the 16 integer registers. 1357 // 16 is %rip. 1358 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 1359 return false; 1360 } 1361 1362 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 1363 StringRef Constraint, 1364 llvm::Type* Ty) const override { 1365 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 1366 } 1367 1368 bool isNoProtoCallVariadic(const CallArgList &args, 1369 const FunctionNoProtoType *fnType) const override { 1370 // The default CC on x86-64 sets %al to the number of SSA 1371 // registers used, and GCC sets this when calling an unprototyped 1372 // function, so we override the default behavior. However, don't do 1373 // that when AVX types are involved: the ABI explicitly states it is 1374 // undefined, and it doesn't work in practice because of how the ABI 1375 // defines varargs anyway. 1376 if (fnType->getCallConv() == CC_C) { 1377 bool HasAVXType = false; 1378 for (CallArgList::const_iterator 1379 it = args.begin(), ie = args.end(); it != ie; ++it) { 1380 if (getABIInfo().isPassedUsingAVXType(it->Ty)) { 1381 HasAVXType = true; 1382 break; 1383 } 1384 } 1385 1386 if (!HasAVXType) 1387 return true; 1388 } 1389 1390 return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType); 1391 } 1392 1393 llvm::Constant * 1394 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 1395 unsigned Sig = (0xeb << 0) | // jmp rel8 1396 (0x0a << 8) | // .+0x0c 1397 ('F' << 16) | 1398 ('T' << 24); 1399 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 1400 } 1401 1402 }; 1403 1404 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) { 1405 // If the argument does not end in .lib, automatically add the suffix. This 1406 // matches the behavior of MSVC. 1407 std::string ArgStr = Lib; 1408 if (!Lib.endswith_lower(".lib")) 1409 ArgStr += ".lib"; 1410 return ArgStr; 1411 } 1412 1413 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo { 1414 public: 1415 WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 1416 bool d, bool p, bool w, unsigned RegParms) 1417 : X86_32TargetCodeGenInfo(CGT, d, p, w, RegParms) {} 1418 1419 void getDependentLibraryOption(llvm::StringRef Lib, 1420 llvm::SmallString<24> &Opt) const override { 1421 Opt = "/DEFAULTLIB:"; 1422 Opt += qualifyWindowsLibrary(Lib); 1423 } 1424 1425 void getDetectMismatchOption(llvm::StringRef Name, 1426 llvm::StringRef Value, 1427 llvm::SmallString<32> &Opt) const override { 1428 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 1429 } 1430 }; 1431 1432 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo { 1433 public: 1434 WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 1435 : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {} 1436 1437 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 1438 return 7; 1439 } 1440 1441 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 1442 llvm::Value *Address) const override { 1443 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 1444 1445 // 0-15 are the 16 integer registers. 1446 // 16 is %rip. 1447 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 1448 return false; 1449 } 1450 1451 void getDependentLibraryOption(llvm::StringRef Lib, 1452 llvm::SmallString<24> &Opt) const override { 1453 Opt = "/DEFAULTLIB:"; 1454 Opt += qualifyWindowsLibrary(Lib); 1455 } 1456 1457 void getDetectMismatchOption(llvm::StringRef Name, 1458 llvm::StringRef Value, 1459 llvm::SmallString<32> &Opt) const override { 1460 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 1461 } 1462 }; 1463 1464 } 1465 1466 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo, 1467 Class &Hi) const { 1468 // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done: 1469 // 1470 // (a) If one of the classes is Memory, the whole argument is passed in 1471 // memory. 1472 // 1473 // (b) If X87UP is not preceded by X87, the whole argument is passed in 1474 // memory. 1475 // 1476 // (c) If the size of the aggregate exceeds two eightbytes and the first 1477 // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole 1478 // argument is passed in memory. NOTE: This is necessary to keep the 1479 // ABI working for processors that don't support the __m256 type. 1480 // 1481 // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE. 1482 // 1483 // Some of these are enforced by the merging logic. Others can arise 1484 // only with unions; for example: 1485 // union { _Complex double; unsigned; } 1486 // 1487 // Note that clauses (b) and (c) were added in 0.98. 1488 // 1489 if (Hi == Memory) 1490 Lo = Memory; 1491 if (Hi == X87Up && Lo != X87 && honorsRevision0_98()) 1492 Lo = Memory; 1493 if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp)) 1494 Lo = Memory; 1495 if (Hi == SSEUp && Lo != SSE) 1496 Hi = SSE; 1497 } 1498 1499 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) { 1500 // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is 1501 // classified recursively so that always two fields are 1502 // considered. The resulting class is calculated according to 1503 // the classes of the fields in the eightbyte: 1504 // 1505 // (a) If both classes are equal, this is the resulting class. 1506 // 1507 // (b) If one of the classes is NO_CLASS, the resulting class is 1508 // the other class. 1509 // 1510 // (c) If one of the classes is MEMORY, the result is the MEMORY 1511 // class. 1512 // 1513 // (d) If one of the classes is INTEGER, the result is the 1514 // INTEGER. 1515 // 1516 // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class, 1517 // MEMORY is used as class. 1518 // 1519 // (f) Otherwise class SSE is used. 1520 1521 // Accum should never be memory (we should have returned) or 1522 // ComplexX87 (because this cannot be passed in a structure). 1523 assert((Accum != Memory && Accum != ComplexX87) && 1524 "Invalid accumulated classification during merge."); 1525 if (Accum == Field || Field == NoClass) 1526 return Accum; 1527 if (Field == Memory) 1528 return Memory; 1529 if (Accum == NoClass) 1530 return Field; 1531 if (Accum == Integer || Field == Integer) 1532 return Integer; 1533 if (Field == X87 || Field == X87Up || Field == ComplexX87 || 1534 Accum == X87 || Accum == X87Up) 1535 return Memory; 1536 return SSE; 1537 } 1538 1539 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, 1540 Class &Lo, Class &Hi, bool isNamedArg) const { 1541 // FIXME: This code can be simplified by introducing a simple value class for 1542 // Class pairs with appropriate constructor methods for the various 1543 // situations. 1544 1545 // FIXME: Some of the split computations are wrong; unaligned vectors 1546 // shouldn't be passed in registers for example, so there is no chance they 1547 // can straddle an eightbyte. Verify & simplify. 1548 1549 Lo = Hi = NoClass; 1550 1551 Class &Current = OffsetBase < 64 ? Lo : Hi; 1552 Current = Memory; 1553 1554 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 1555 BuiltinType::Kind k = BT->getKind(); 1556 1557 if (k == BuiltinType::Void) { 1558 Current = NoClass; 1559 } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) { 1560 Lo = Integer; 1561 Hi = Integer; 1562 } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) { 1563 Current = Integer; 1564 } else if ((k == BuiltinType::Float || k == BuiltinType::Double) || 1565 (k == BuiltinType::LongDouble && 1566 getTarget().getTriple().isOSNaCl())) { 1567 Current = SSE; 1568 } else if (k == BuiltinType::LongDouble) { 1569 Lo = X87; 1570 Hi = X87Up; 1571 } 1572 // FIXME: _Decimal32 and _Decimal64 are SSE. 1573 // FIXME: _float128 and _Decimal128 are (SSE, SSEUp). 1574 return; 1575 } 1576 1577 if (const EnumType *ET = Ty->getAs<EnumType>()) { 1578 // Classify the underlying integer type. 1579 classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg); 1580 return; 1581 } 1582 1583 if (Ty->hasPointerRepresentation()) { 1584 Current = Integer; 1585 return; 1586 } 1587 1588 if (Ty->isMemberPointerType()) { 1589 if (Ty->isMemberFunctionPointerType() && Has64BitPointers) 1590 Lo = Hi = Integer; 1591 else 1592 Current = Integer; 1593 return; 1594 } 1595 1596 if (const VectorType *VT = Ty->getAs<VectorType>()) { 1597 uint64_t Size = getContext().getTypeSize(VT); 1598 if (Size == 32) { 1599 // gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x 1600 // float> as integer. 1601 Current = Integer; 1602 1603 // If this type crosses an eightbyte boundary, it should be 1604 // split. 1605 uint64_t EB_Real = (OffsetBase) / 64; 1606 uint64_t EB_Imag = (OffsetBase + Size - 1) / 64; 1607 if (EB_Real != EB_Imag) 1608 Hi = Lo; 1609 } else if (Size == 64) { 1610 // gcc passes <1 x double> in memory. :( 1611 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) 1612 return; 1613 1614 // gcc passes <1 x long long> as INTEGER. 1615 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong) || 1616 VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULongLong) || 1617 VT->getElementType()->isSpecificBuiltinType(BuiltinType::Long) || 1618 VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULong)) 1619 Current = Integer; 1620 else 1621 Current = SSE; 1622 1623 // If this type crosses an eightbyte boundary, it should be 1624 // split. 1625 if (OffsetBase && OffsetBase != 64) 1626 Hi = Lo; 1627 } else if (Size == 128 || (HasAVX && isNamedArg && Size == 256)) { 1628 // Arguments of 256-bits are split into four eightbyte chunks. The 1629 // least significant one belongs to class SSE and all the others to class 1630 // SSEUP. The original Lo and Hi design considers that types can't be 1631 // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense. 1632 // This design isn't correct for 256-bits, but since there're no cases 1633 // where the upper parts would need to be inspected, avoid adding 1634 // complexity and just consider Hi to match the 64-256 part. 1635 // 1636 // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in 1637 // registers if they are "named", i.e. not part of the "..." of a 1638 // variadic function. 1639 Lo = SSE; 1640 Hi = SSEUp; 1641 } 1642 return; 1643 } 1644 1645 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 1646 QualType ET = getContext().getCanonicalType(CT->getElementType()); 1647 1648 uint64_t Size = getContext().getTypeSize(Ty); 1649 if (ET->isIntegralOrEnumerationType()) { 1650 if (Size <= 64) 1651 Current = Integer; 1652 else if (Size <= 128) 1653 Lo = Hi = Integer; 1654 } else if (ET == getContext().FloatTy) 1655 Current = SSE; 1656 else if (ET == getContext().DoubleTy || 1657 (ET == getContext().LongDoubleTy && 1658 getTarget().getTriple().isOSNaCl())) 1659 Lo = Hi = SSE; 1660 else if (ET == getContext().LongDoubleTy) 1661 Current = ComplexX87; 1662 1663 // If this complex type crosses an eightbyte boundary then it 1664 // should be split. 1665 uint64_t EB_Real = (OffsetBase) / 64; 1666 uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64; 1667 if (Hi == NoClass && EB_Real != EB_Imag) 1668 Hi = Lo; 1669 1670 return; 1671 } 1672 1673 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 1674 // Arrays are treated like structures. 1675 1676 uint64_t Size = getContext().getTypeSize(Ty); 1677 1678 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 1679 // than four eightbytes, ..., it has class MEMORY. 1680 if (Size > 256) 1681 return; 1682 1683 // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned 1684 // fields, it has class MEMORY. 1685 // 1686 // Only need to check alignment of array base. 1687 if (OffsetBase % getContext().getTypeAlign(AT->getElementType())) 1688 return; 1689 1690 // Otherwise implement simplified merge. We could be smarter about 1691 // this, but it isn't worth it and would be harder to verify. 1692 Current = NoClass; 1693 uint64_t EltSize = getContext().getTypeSize(AT->getElementType()); 1694 uint64_t ArraySize = AT->getSize().getZExtValue(); 1695 1696 // The only case a 256-bit wide vector could be used is when the array 1697 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 1698 // to work for sizes wider than 128, early check and fallback to memory. 1699 if (Size > 128 && EltSize != 256) 1700 return; 1701 1702 for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) { 1703 Class FieldLo, FieldHi; 1704 classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg); 1705 Lo = merge(Lo, FieldLo); 1706 Hi = merge(Hi, FieldHi); 1707 if (Lo == Memory || Hi == Memory) 1708 break; 1709 } 1710 1711 postMerge(Size, Lo, Hi); 1712 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification."); 1713 return; 1714 } 1715 1716 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1717 uint64_t Size = getContext().getTypeSize(Ty); 1718 1719 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 1720 // than four eightbytes, ..., it has class MEMORY. 1721 if (Size > 256) 1722 return; 1723 1724 // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial 1725 // copy constructor or a non-trivial destructor, it is passed by invisible 1726 // reference. 1727 if (getRecordArgABI(RT, getCXXABI())) 1728 return; 1729 1730 const RecordDecl *RD = RT->getDecl(); 1731 1732 // Assume variable sized types are passed in memory. 1733 if (RD->hasFlexibleArrayMember()) 1734 return; 1735 1736 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 1737 1738 // Reset Lo class, this will be recomputed. 1739 Current = NoClass; 1740 1741 // If this is a C++ record, classify the bases first. 1742 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 1743 for (const auto &I : CXXRD->bases()) { 1744 assert(!I.isVirtual() && !I.getType()->isDependentType() && 1745 "Unexpected base class!"); 1746 const CXXRecordDecl *Base = 1747 cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); 1748 1749 // Classify this field. 1750 // 1751 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a 1752 // single eightbyte, each is classified separately. Each eightbyte gets 1753 // initialized to class NO_CLASS. 1754 Class FieldLo, FieldHi; 1755 uint64_t Offset = 1756 OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base)); 1757 classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg); 1758 Lo = merge(Lo, FieldLo); 1759 Hi = merge(Hi, FieldHi); 1760 if (Lo == Memory || Hi == Memory) 1761 break; 1762 } 1763 } 1764 1765 // Classify the fields one at a time, merging the results. 1766 unsigned idx = 0; 1767 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 1768 i != e; ++i, ++idx) { 1769 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 1770 bool BitField = i->isBitField(); 1771 1772 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than 1773 // four eightbytes, or it contains unaligned fields, it has class MEMORY. 1774 // 1775 // The only case a 256-bit wide vector could be used is when the struct 1776 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 1777 // to work for sizes wider than 128, early check and fallback to memory. 1778 // 1779 if (Size > 128 && getContext().getTypeSize(i->getType()) != 256) { 1780 Lo = Memory; 1781 return; 1782 } 1783 // Note, skip this test for bit-fields, see below. 1784 if (!BitField && Offset % getContext().getTypeAlign(i->getType())) { 1785 Lo = Memory; 1786 return; 1787 } 1788 1789 // Classify this field. 1790 // 1791 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate 1792 // exceeds a single eightbyte, each is classified 1793 // separately. Each eightbyte gets initialized to class 1794 // NO_CLASS. 1795 Class FieldLo, FieldHi; 1796 1797 // Bit-fields require special handling, they do not force the 1798 // structure to be passed in memory even if unaligned, and 1799 // therefore they can straddle an eightbyte. 1800 if (BitField) { 1801 // Ignore padding bit-fields. 1802 if (i->isUnnamedBitfield()) 1803 continue; 1804 1805 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 1806 uint64_t Size = i->getBitWidthValue(getContext()); 1807 1808 uint64_t EB_Lo = Offset / 64; 1809 uint64_t EB_Hi = (Offset + Size - 1) / 64; 1810 1811 if (EB_Lo) { 1812 assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes."); 1813 FieldLo = NoClass; 1814 FieldHi = Integer; 1815 } else { 1816 FieldLo = Integer; 1817 FieldHi = EB_Hi ? Integer : NoClass; 1818 } 1819 } else 1820 classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg); 1821 Lo = merge(Lo, FieldLo); 1822 Hi = merge(Hi, FieldHi); 1823 if (Lo == Memory || Hi == Memory) 1824 break; 1825 } 1826 1827 postMerge(Size, Lo, Hi); 1828 } 1829 } 1830 1831 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const { 1832 // If this is a scalar LLVM value then assume LLVM will pass it in the right 1833 // place naturally. 1834 if (!isAggregateTypeForABI(Ty)) { 1835 // Treat an enum type as its underlying type. 1836 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 1837 Ty = EnumTy->getDecl()->getIntegerType(); 1838 1839 return (Ty->isPromotableIntegerType() ? 1840 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 1841 } 1842 1843 return ABIArgInfo::getIndirect(0); 1844 } 1845 1846 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const { 1847 if (const VectorType *VecTy = Ty->getAs<VectorType>()) { 1848 uint64_t Size = getContext().getTypeSize(VecTy); 1849 unsigned LargestVector = HasAVX ? 256 : 128; 1850 if (Size <= 64 || Size > LargestVector) 1851 return true; 1852 } 1853 1854 return false; 1855 } 1856 1857 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty, 1858 unsigned freeIntRegs) const { 1859 // If this is a scalar LLVM value then assume LLVM will pass it in the right 1860 // place naturally. 1861 // 1862 // This assumption is optimistic, as there could be free registers available 1863 // when we need to pass this argument in memory, and LLVM could try to pass 1864 // the argument in the free register. This does not seem to happen currently, 1865 // but this code would be much safer if we could mark the argument with 1866 // 'onstack'. See PR12193. 1867 if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) { 1868 // Treat an enum type as its underlying type. 1869 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 1870 Ty = EnumTy->getDecl()->getIntegerType(); 1871 1872 return (Ty->isPromotableIntegerType() ? 1873 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 1874 } 1875 1876 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 1877 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 1878 1879 // Compute the byval alignment. We specify the alignment of the byval in all 1880 // cases so that the mid-level optimizer knows the alignment of the byval. 1881 unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U); 1882 1883 // Attempt to avoid passing indirect results using byval when possible. This 1884 // is important for good codegen. 1885 // 1886 // We do this by coercing the value into a scalar type which the backend can 1887 // handle naturally (i.e., without using byval). 1888 // 1889 // For simplicity, we currently only do this when we have exhausted all of the 1890 // free integer registers. Doing this when there are free integer registers 1891 // would require more care, as we would have to ensure that the coerced value 1892 // did not claim the unused register. That would require either reording the 1893 // arguments to the function (so that any subsequent inreg values came first), 1894 // or only doing this optimization when there were no following arguments that 1895 // might be inreg. 1896 // 1897 // We currently expect it to be rare (particularly in well written code) for 1898 // arguments to be passed on the stack when there are still free integer 1899 // registers available (this would typically imply large structs being passed 1900 // by value), so this seems like a fair tradeoff for now. 1901 // 1902 // We can revisit this if the backend grows support for 'onstack' parameter 1903 // attributes. See PR12193. 1904 if (freeIntRegs == 0) { 1905 uint64_t Size = getContext().getTypeSize(Ty); 1906 1907 // If this type fits in an eightbyte, coerce it into the matching integral 1908 // type, which will end up on the stack (with alignment 8). 1909 if (Align == 8 && Size <= 64) 1910 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1911 Size)); 1912 } 1913 1914 return ABIArgInfo::getIndirect(Align); 1915 } 1916 1917 /// GetByteVectorType - The ABI specifies that a value should be passed in an 1918 /// full vector XMM/YMM register. Pick an LLVM IR type that will be passed as a 1919 /// vector register. 1920 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const { 1921 llvm::Type *IRType = CGT.ConvertType(Ty); 1922 1923 // Wrapper structs that just contain vectors are passed just like vectors, 1924 // strip them off if present. 1925 llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType); 1926 while (STy && STy->getNumElements() == 1) { 1927 IRType = STy->getElementType(0); 1928 STy = dyn_cast<llvm::StructType>(IRType); 1929 } 1930 1931 // If the preferred type is a 16-byte vector, prefer to pass it. 1932 if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(IRType)){ 1933 llvm::Type *EltTy = VT->getElementType(); 1934 unsigned BitWidth = VT->getBitWidth(); 1935 if ((BitWidth >= 128 && BitWidth <= 256) && 1936 (EltTy->isFloatTy() || EltTy->isDoubleTy() || 1937 EltTy->isIntegerTy(8) || EltTy->isIntegerTy(16) || 1938 EltTy->isIntegerTy(32) || EltTy->isIntegerTy(64) || 1939 EltTy->isIntegerTy(128))) 1940 return VT; 1941 } 1942 1943 return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 2); 1944 } 1945 1946 /// BitsContainNoUserData - Return true if the specified [start,end) bit range 1947 /// is known to either be off the end of the specified type or being in 1948 /// alignment padding. The user type specified is known to be at most 128 bits 1949 /// in size, and have passed through X86_64ABIInfo::classify with a successful 1950 /// classification that put one of the two halves in the INTEGER class. 1951 /// 1952 /// It is conservatively correct to return false. 1953 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit, 1954 unsigned EndBit, ASTContext &Context) { 1955 // If the bytes being queried are off the end of the type, there is no user 1956 // data hiding here. This handles analysis of builtins, vectors and other 1957 // types that don't contain interesting padding. 1958 unsigned TySize = (unsigned)Context.getTypeSize(Ty); 1959 if (TySize <= StartBit) 1960 return true; 1961 1962 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 1963 unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType()); 1964 unsigned NumElts = (unsigned)AT->getSize().getZExtValue(); 1965 1966 // Check each element to see if the element overlaps with the queried range. 1967 for (unsigned i = 0; i != NumElts; ++i) { 1968 // If the element is after the span we care about, then we're done.. 1969 unsigned EltOffset = i*EltSize; 1970 if (EltOffset >= EndBit) break; 1971 1972 unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0; 1973 if (!BitsContainNoUserData(AT->getElementType(), EltStart, 1974 EndBit-EltOffset, Context)) 1975 return false; 1976 } 1977 // If it overlaps no elements, then it is safe to process as padding. 1978 return true; 1979 } 1980 1981 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1982 const RecordDecl *RD = RT->getDecl(); 1983 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 1984 1985 // If this is a C++ record, check the bases first. 1986 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 1987 for (const auto &I : CXXRD->bases()) { 1988 assert(!I.isVirtual() && !I.getType()->isDependentType() && 1989 "Unexpected base class!"); 1990 const CXXRecordDecl *Base = 1991 cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); 1992 1993 // If the base is after the span we care about, ignore it. 1994 unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base)); 1995 if (BaseOffset >= EndBit) continue; 1996 1997 unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0; 1998 if (!BitsContainNoUserData(I.getType(), BaseStart, 1999 EndBit-BaseOffset, Context)) 2000 return false; 2001 } 2002 } 2003 2004 // Verify that no field has data that overlaps the region of interest. Yes 2005 // this could be sped up a lot by being smarter about queried fields, 2006 // however we're only looking at structs up to 16 bytes, so we don't care 2007 // much. 2008 unsigned idx = 0; 2009 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 2010 i != e; ++i, ++idx) { 2011 unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx); 2012 2013 // If we found a field after the region we care about, then we're done. 2014 if (FieldOffset >= EndBit) break; 2015 2016 unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0; 2017 if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset, 2018 Context)) 2019 return false; 2020 } 2021 2022 // If nothing in this record overlapped the area of interest, then we're 2023 // clean. 2024 return true; 2025 } 2026 2027 return false; 2028 } 2029 2030 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a 2031 /// float member at the specified offset. For example, {int,{float}} has a 2032 /// float at offset 4. It is conservatively correct for this routine to return 2033 /// false. 2034 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset, 2035 const llvm::DataLayout &TD) { 2036 // Base case if we find a float. 2037 if (IROffset == 0 && IRType->isFloatTy()) 2038 return true; 2039 2040 // If this is a struct, recurse into the field at the specified offset. 2041 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 2042 const llvm::StructLayout *SL = TD.getStructLayout(STy); 2043 unsigned Elt = SL->getElementContainingOffset(IROffset); 2044 IROffset -= SL->getElementOffset(Elt); 2045 return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD); 2046 } 2047 2048 // If this is an array, recurse into the field at the specified offset. 2049 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 2050 llvm::Type *EltTy = ATy->getElementType(); 2051 unsigned EltSize = TD.getTypeAllocSize(EltTy); 2052 IROffset -= IROffset/EltSize*EltSize; 2053 return ContainsFloatAtOffset(EltTy, IROffset, TD); 2054 } 2055 2056 return false; 2057 } 2058 2059 2060 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the 2061 /// low 8 bytes of an XMM register, corresponding to the SSE class. 2062 llvm::Type *X86_64ABIInfo:: 2063 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset, 2064 QualType SourceTy, unsigned SourceOffset) const { 2065 // The only three choices we have are either double, <2 x float>, or float. We 2066 // pass as float if the last 4 bytes is just padding. This happens for 2067 // structs that contain 3 floats. 2068 if (BitsContainNoUserData(SourceTy, SourceOffset*8+32, 2069 SourceOffset*8+64, getContext())) 2070 return llvm::Type::getFloatTy(getVMContext()); 2071 2072 // We want to pass as <2 x float> if the LLVM IR type contains a float at 2073 // offset+0 and offset+4. Walk the LLVM IR type to find out if this is the 2074 // case. 2075 if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) && 2076 ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout())) 2077 return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2); 2078 2079 return llvm::Type::getDoubleTy(getVMContext()); 2080 } 2081 2082 2083 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in 2084 /// an 8-byte GPR. This means that we either have a scalar or we are talking 2085 /// about the high or low part of an up-to-16-byte struct. This routine picks 2086 /// the best LLVM IR type to represent this, which may be i64 or may be anything 2087 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*, 2088 /// etc). 2089 /// 2090 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for 2091 /// the source type. IROffset is an offset in bytes into the LLVM IR type that 2092 /// the 8-byte value references. PrefType may be null. 2093 /// 2094 /// SourceTy is the source-level type for the entire argument. SourceOffset is 2095 /// an offset into this that we're processing (which is always either 0 or 8). 2096 /// 2097 llvm::Type *X86_64ABIInfo:: 2098 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset, 2099 QualType SourceTy, unsigned SourceOffset) const { 2100 // If we're dealing with an un-offset LLVM IR type, then it means that we're 2101 // returning an 8-byte unit starting with it. See if we can safely use it. 2102 if (IROffset == 0) { 2103 // Pointers and int64's always fill the 8-byte unit. 2104 if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) || 2105 IRType->isIntegerTy(64)) 2106 return IRType; 2107 2108 // If we have a 1/2/4-byte integer, we can use it only if the rest of the 2109 // goodness in the source type is just tail padding. This is allowed to 2110 // kick in for struct {double,int} on the int, but not on 2111 // struct{double,int,int} because we wouldn't return the second int. We 2112 // have to do this analysis on the source type because we can't depend on 2113 // unions being lowered a specific way etc. 2114 if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) || 2115 IRType->isIntegerTy(32) || 2116 (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) { 2117 unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 : 2118 cast<llvm::IntegerType>(IRType)->getBitWidth(); 2119 2120 if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth, 2121 SourceOffset*8+64, getContext())) 2122 return IRType; 2123 } 2124 } 2125 2126 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 2127 // If this is a struct, recurse into the field at the specified offset. 2128 const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy); 2129 if (IROffset < SL->getSizeInBytes()) { 2130 unsigned FieldIdx = SL->getElementContainingOffset(IROffset); 2131 IROffset -= SL->getElementOffset(FieldIdx); 2132 2133 return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset, 2134 SourceTy, SourceOffset); 2135 } 2136 } 2137 2138 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 2139 llvm::Type *EltTy = ATy->getElementType(); 2140 unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy); 2141 unsigned EltOffset = IROffset/EltSize*EltSize; 2142 return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy, 2143 SourceOffset); 2144 } 2145 2146 // Okay, we don't have any better idea of what to pass, so we pass this in an 2147 // integer register that isn't too big to fit the rest of the struct. 2148 unsigned TySizeInBytes = 2149 (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity(); 2150 2151 assert(TySizeInBytes != SourceOffset && "Empty field?"); 2152 2153 // It is always safe to classify this as an integer type up to i64 that 2154 // isn't larger than the structure. 2155 return llvm::IntegerType::get(getVMContext(), 2156 std::min(TySizeInBytes-SourceOffset, 8U)*8); 2157 } 2158 2159 2160 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally 2161 /// be used as elements of a two register pair to pass or return, return a 2162 /// first class aggregate to represent them. For example, if the low part of 2163 /// a by-value argument should be passed as i32* and the high part as float, 2164 /// return {i32*, float}. 2165 static llvm::Type * 2166 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi, 2167 const llvm::DataLayout &TD) { 2168 // In order to correctly satisfy the ABI, we need to the high part to start 2169 // at offset 8. If the high and low parts we inferred are both 4-byte types 2170 // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have 2171 // the second element at offset 8. Check for this: 2172 unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo); 2173 unsigned HiAlign = TD.getABITypeAlignment(Hi); 2174 unsigned HiStart = llvm::DataLayout::RoundUpAlignment(LoSize, HiAlign); 2175 assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!"); 2176 2177 // To handle this, we have to increase the size of the low part so that the 2178 // second element will start at an 8 byte offset. We can't increase the size 2179 // of the second element because it might make us access off the end of the 2180 // struct. 2181 if (HiStart != 8) { 2182 // There are only two sorts of types the ABI generation code can produce for 2183 // the low part of a pair that aren't 8 bytes in size: float or i8/i16/i32. 2184 // Promote these to a larger type. 2185 if (Lo->isFloatTy()) 2186 Lo = llvm::Type::getDoubleTy(Lo->getContext()); 2187 else { 2188 assert(Lo->isIntegerTy() && "Invalid/unknown lo type"); 2189 Lo = llvm::Type::getInt64Ty(Lo->getContext()); 2190 } 2191 } 2192 2193 llvm::StructType *Result = llvm::StructType::get(Lo, Hi, NULL); 2194 2195 2196 // Verify that the second element is at an 8-byte offset. 2197 assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 && 2198 "Invalid x86-64 argument pair!"); 2199 return Result; 2200 } 2201 2202 ABIArgInfo X86_64ABIInfo:: 2203 classifyReturnType(QualType RetTy) const { 2204 // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the 2205 // classification algorithm. 2206 X86_64ABIInfo::Class Lo, Hi; 2207 classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true); 2208 2209 // Check some invariants. 2210 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 2211 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 2212 2213 llvm::Type *ResType = nullptr; 2214 switch (Lo) { 2215 case NoClass: 2216 if (Hi == NoClass) 2217 return ABIArgInfo::getIgnore(); 2218 // If the low part is just padding, it takes no register, leave ResType 2219 // null. 2220 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 2221 "Unknown missing lo part"); 2222 break; 2223 2224 case SSEUp: 2225 case X87Up: 2226 llvm_unreachable("Invalid classification for lo word."); 2227 2228 // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via 2229 // hidden argument. 2230 case Memory: 2231 return getIndirectReturnResult(RetTy); 2232 2233 // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next 2234 // available register of the sequence %rax, %rdx is used. 2235 case Integer: 2236 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 2237 2238 // If we have a sign or zero extended integer, make sure to return Extend 2239 // so that the parameter gets the right LLVM IR attributes. 2240 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 2241 // Treat an enum type as its underlying type. 2242 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 2243 RetTy = EnumTy->getDecl()->getIntegerType(); 2244 2245 if (RetTy->isIntegralOrEnumerationType() && 2246 RetTy->isPromotableIntegerType()) 2247 return ABIArgInfo::getExtend(); 2248 } 2249 break; 2250 2251 // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next 2252 // available SSE register of the sequence %xmm0, %xmm1 is used. 2253 case SSE: 2254 ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 2255 break; 2256 2257 // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is 2258 // returned on the X87 stack in %st0 as 80-bit x87 number. 2259 case X87: 2260 ResType = llvm::Type::getX86_FP80Ty(getVMContext()); 2261 break; 2262 2263 // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real 2264 // part of the value is returned in %st0 and the imaginary part in 2265 // %st1. 2266 case ComplexX87: 2267 assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification."); 2268 ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()), 2269 llvm::Type::getX86_FP80Ty(getVMContext()), 2270 NULL); 2271 break; 2272 } 2273 2274 llvm::Type *HighPart = nullptr; 2275 switch (Hi) { 2276 // Memory was handled previously and X87 should 2277 // never occur as a hi class. 2278 case Memory: 2279 case X87: 2280 llvm_unreachable("Invalid classification for hi word."); 2281 2282 case ComplexX87: // Previously handled. 2283 case NoClass: 2284 break; 2285 2286 case Integer: 2287 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 2288 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 2289 return ABIArgInfo::getDirect(HighPart, 8); 2290 break; 2291 case SSE: 2292 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 2293 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 2294 return ABIArgInfo::getDirect(HighPart, 8); 2295 break; 2296 2297 // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte 2298 // is passed in the next available eightbyte chunk if the last used 2299 // vector register. 2300 // 2301 // SSEUP should always be preceded by SSE, just widen. 2302 case SSEUp: 2303 assert(Lo == SSE && "Unexpected SSEUp classification."); 2304 ResType = GetByteVectorType(RetTy); 2305 break; 2306 2307 // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is 2308 // returned together with the previous X87 value in %st0. 2309 case X87Up: 2310 // If X87Up is preceded by X87, we don't need to do 2311 // anything. However, in some cases with unions it may not be 2312 // preceded by X87. In such situations we follow gcc and pass the 2313 // extra bits in an SSE reg. 2314 if (Lo != X87) { 2315 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 2316 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 2317 return ABIArgInfo::getDirect(HighPart, 8); 2318 } 2319 break; 2320 } 2321 2322 // If a high part was specified, merge it together with the low part. It is 2323 // known to pass in the high eightbyte of the result. We do this by forming a 2324 // first class struct aggregate with the high and low part: {low, high} 2325 if (HighPart) 2326 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 2327 2328 return ABIArgInfo::getDirect(ResType); 2329 } 2330 2331 ABIArgInfo X86_64ABIInfo::classifyArgumentType( 2332 QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE, 2333 bool isNamedArg) 2334 const 2335 { 2336 X86_64ABIInfo::Class Lo, Hi; 2337 classify(Ty, 0, Lo, Hi, isNamedArg); 2338 2339 // Check some invariants. 2340 // FIXME: Enforce these by construction. 2341 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 2342 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 2343 2344 neededInt = 0; 2345 neededSSE = 0; 2346 llvm::Type *ResType = nullptr; 2347 switch (Lo) { 2348 case NoClass: 2349 if (Hi == NoClass) 2350 return ABIArgInfo::getIgnore(); 2351 // If the low part is just padding, it takes no register, leave ResType 2352 // null. 2353 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 2354 "Unknown missing lo part"); 2355 break; 2356 2357 // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument 2358 // on the stack. 2359 case Memory: 2360 2361 // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or 2362 // COMPLEX_X87, it is passed in memory. 2363 case X87: 2364 case ComplexX87: 2365 if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect) 2366 ++neededInt; 2367 return getIndirectResult(Ty, freeIntRegs); 2368 2369 case SSEUp: 2370 case X87Up: 2371 llvm_unreachable("Invalid classification for lo word."); 2372 2373 // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next 2374 // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8 2375 // and %r9 is used. 2376 case Integer: 2377 ++neededInt; 2378 2379 // Pick an 8-byte type based on the preferred type. 2380 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0); 2381 2382 // If we have a sign or zero extended integer, make sure to return Extend 2383 // so that the parameter gets the right LLVM IR attributes. 2384 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 2385 // Treat an enum type as its underlying type. 2386 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2387 Ty = EnumTy->getDecl()->getIntegerType(); 2388 2389 if (Ty->isIntegralOrEnumerationType() && 2390 Ty->isPromotableIntegerType()) 2391 return ABIArgInfo::getExtend(); 2392 } 2393 2394 break; 2395 2396 // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next 2397 // available SSE register is used, the registers are taken in the 2398 // order from %xmm0 to %xmm7. 2399 case SSE: { 2400 llvm::Type *IRType = CGT.ConvertType(Ty); 2401 ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0); 2402 ++neededSSE; 2403 break; 2404 } 2405 } 2406 2407 llvm::Type *HighPart = nullptr; 2408 switch (Hi) { 2409 // Memory was handled previously, ComplexX87 and X87 should 2410 // never occur as hi classes, and X87Up must be preceded by X87, 2411 // which is passed in memory. 2412 case Memory: 2413 case X87: 2414 case ComplexX87: 2415 llvm_unreachable("Invalid classification for hi word."); 2416 2417 case NoClass: break; 2418 2419 case Integer: 2420 ++neededInt; 2421 // Pick an 8-byte type based on the preferred type. 2422 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 2423 2424 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 2425 return ABIArgInfo::getDirect(HighPart, 8); 2426 break; 2427 2428 // X87Up generally doesn't occur here (long double is passed in 2429 // memory), except in situations involving unions. 2430 case X87Up: 2431 case SSE: 2432 HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 2433 2434 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 2435 return ABIArgInfo::getDirect(HighPart, 8); 2436 2437 ++neededSSE; 2438 break; 2439 2440 // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the 2441 // eightbyte is passed in the upper half of the last used SSE 2442 // register. This only happens when 128-bit vectors are passed. 2443 case SSEUp: 2444 assert(Lo == SSE && "Unexpected SSEUp classification"); 2445 ResType = GetByteVectorType(Ty); 2446 break; 2447 } 2448 2449 // If a high part was specified, merge it together with the low part. It is 2450 // known to pass in the high eightbyte of the result. We do this by forming a 2451 // first class struct aggregate with the high and low part: {low, high} 2452 if (HighPart) 2453 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 2454 2455 return ABIArgInfo::getDirect(ResType); 2456 } 2457 2458 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 2459 2460 if (!getCXXABI().classifyReturnType(FI)) 2461 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 2462 2463 // Keep track of the number of assigned registers. 2464 unsigned freeIntRegs = 6, freeSSERegs = 8; 2465 2466 // If the return value is indirect, then the hidden argument is consuming one 2467 // integer register. 2468 if (FI.getReturnInfo().isIndirect()) 2469 --freeIntRegs; 2470 2471 bool isVariadic = FI.isVariadic(); 2472 unsigned numRequiredArgs = 0; 2473 if (isVariadic) 2474 numRequiredArgs = FI.getRequiredArgs().getNumRequiredArgs(); 2475 2476 // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers 2477 // get assigned (in left-to-right order) for passing as follows... 2478 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 2479 it != ie; ++it) { 2480 bool isNamedArg = true; 2481 if (isVariadic) 2482 isNamedArg = (it - FI.arg_begin()) < 2483 static_cast<signed>(numRequiredArgs); 2484 2485 unsigned neededInt, neededSSE; 2486 it->info = classifyArgumentType(it->type, freeIntRegs, neededInt, 2487 neededSSE, isNamedArg); 2488 2489 // AMD64-ABI 3.2.3p3: If there are no registers available for any 2490 // eightbyte of an argument, the whole argument is passed on the 2491 // stack. If registers have already been assigned for some 2492 // eightbytes of such an argument, the assignments get reverted. 2493 if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) { 2494 freeIntRegs -= neededInt; 2495 freeSSERegs -= neededSSE; 2496 } else { 2497 it->info = getIndirectResult(it->type, freeIntRegs); 2498 } 2499 } 2500 } 2501 2502 static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr, 2503 QualType Ty, 2504 CodeGenFunction &CGF) { 2505 llvm::Value *overflow_arg_area_p = 2506 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p"); 2507 llvm::Value *overflow_arg_area = 2508 CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area"); 2509 2510 // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16 2511 // byte boundary if alignment needed by type exceeds 8 byte boundary. 2512 // It isn't stated explicitly in the standard, but in practice we use 2513 // alignment greater than 16 where necessary. 2514 uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8; 2515 if (Align > 8) { 2516 // overflow_arg_area = (overflow_arg_area + align - 1) & -align; 2517 llvm::Value *Offset = 2518 llvm::ConstantInt::get(CGF.Int64Ty, Align - 1); 2519 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset); 2520 llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area, 2521 CGF.Int64Ty); 2522 llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, -(uint64_t)Align); 2523 overflow_arg_area = 2524 CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask), 2525 overflow_arg_area->getType(), 2526 "overflow_arg_area.align"); 2527 } 2528 2529 // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area. 2530 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 2531 llvm::Value *Res = 2532 CGF.Builder.CreateBitCast(overflow_arg_area, 2533 llvm::PointerType::getUnqual(LTy)); 2534 2535 // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to: 2536 // l->overflow_arg_area + sizeof(type). 2537 // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to 2538 // an 8 byte boundary. 2539 2540 uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8; 2541 llvm::Value *Offset = 2542 llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7); 2543 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset, 2544 "overflow_arg_area.next"); 2545 CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p); 2546 2547 // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type. 2548 return Res; 2549 } 2550 2551 llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 2552 CodeGenFunction &CGF) const { 2553 // Assume that va_list type is correct; should be pointer to LLVM type: 2554 // struct { 2555 // i32 gp_offset; 2556 // i32 fp_offset; 2557 // i8* overflow_arg_area; 2558 // i8* reg_save_area; 2559 // }; 2560 unsigned neededInt, neededSSE; 2561 2562 Ty = CGF.getContext().getCanonicalType(Ty); 2563 ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE, 2564 /*isNamedArg*/false); 2565 2566 // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed 2567 // in the registers. If not go to step 7. 2568 if (!neededInt && !neededSSE) 2569 return EmitVAArgFromMemory(VAListAddr, Ty, CGF); 2570 2571 // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of 2572 // general purpose registers needed to pass type and num_fp to hold 2573 // the number of floating point registers needed. 2574 2575 // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into 2576 // registers. In the case: l->gp_offset > 48 - num_gp * 8 or 2577 // l->fp_offset > 304 - num_fp * 16 go to step 7. 2578 // 2579 // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of 2580 // register save space). 2581 2582 llvm::Value *InRegs = nullptr; 2583 llvm::Value *gp_offset_p = nullptr, *gp_offset = nullptr; 2584 llvm::Value *fp_offset_p = nullptr, *fp_offset = nullptr; 2585 if (neededInt) { 2586 gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p"); 2587 gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset"); 2588 InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8); 2589 InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp"); 2590 } 2591 2592 if (neededSSE) { 2593 fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p"); 2594 fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset"); 2595 llvm::Value *FitsInFP = 2596 llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16); 2597 FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp"); 2598 InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP; 2599 } 2600 2601 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 2602 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 2603 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 2604 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 2605 2606 // Emit code to load the value if it was passed in registers. 2607 2608 CGF.EmitBlock(InRegBlock); 2609 2610 // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with 2611 // an offset of l->gp_offset and/or l->fp_offset. This may require 2612 // copying to a temporary location in case the parameter is passed 2613 // in different register classes or requires an alignment greater 2614 // than 8 for general purpose registers and 16 for XMM registers. 2615 // 2616 // FIXME: This really results in shameful code when we end up needing to 2617 // collect arguments from different places; often what should result in a 2618 // simple assembling of a structure from scattered addresses has many more 2619 // loads than necessary. Can we clean this up? 2620 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 2621 llvm::Value *RegAddr = 2622 CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(VAListAddr, 3), 2623 "reg_save_area"); 2624 if (neededInt && neededSSE) { 2625 // FIXME: Cleanup. 2626 assert(AI.isDirect() && "Unexpected ABI info for mixed regs"); 2627 llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType()); 2628 llvm::Value *Tmp = CGF.CreateMemTemp(Ty); 2629 Tmp = CGF.Builder.CreateBitCast(Tmp, ST->getPointerTo()); 2630 assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs"); 2631 llvm::Type *TyLo = ST->getElementType(0); 2632 llvm::Type *TyHi = ST->getElementType(1); 2633 assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) && 2634 "Unexpected ABI info for mixed regs"); 2635 llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo); 2636 llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi); 2637 llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset); 2638 llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset); 2639 llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr; 2640 llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr; 2641 llvm::Value *V = 2642 CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo)); 2643 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 2644 V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi)); 2645 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 2646 2647 RegAddr = CGF.Builder.CreateBitCast(Tmp, 2648 llvm::PointerType::getUnqual(LTy)); 2649 } else if (neededInt) { 2650 RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset); 2651 RegAddr = CGF.Builder.CreateBitCast(RegAddr, 2652 llvm::PointerType::getUnqual(LTy)); 2653 2654 // Copy to a temporary if necessary to ensure the appropriate alignment. 2655 std::pair<CharUnits, CharUnits> SizeAlign = 2656 CGF.getContext().getTypeInfoInChars(Ty); 2657 uint64_t TySize = SizeAlign.first.getQuantity(); 2658 unsigned TyAlign = SizeAlign.second.getQuantity(); 2659 if (TyAlign > 8) { 2660 llvm::Value *Tmp = CGF.CreateMemTemp(Ty); 2661 CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, 8, false); 2662 RegAddr = Tmp; 2663 } 2664 } else if (neededSSE == 1) { 2665 RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset); 2666 RegAddr = CGF.Builder.CreateBitCast(RegAddr, 2667 llvm::PointerType::getUnqual(LTy)); 2668 } else { 2669 assert(neededSSE == 2 && "Invalid number of needed registers!"); 2670 // SSE registers are spaced 16 bytes apart in the register save 2671 // area, we need to collect the two eightbytes together. 2672 llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset); 2673 llvm::Value *RegAddrHi = CGF.Builder.CreateConstGEP1_32(RegAddrLo, 16); 2674 llvm::Type *DoubleTy = CGF.DoubleTy; 2675 llvm::Type *DblPtrTy = 2676 llvm::PointerType::getUnqual(DoubleTy); 2677 llvm::StructType *ST = llvm::StructType::get(DoubleTy, DoubleTy, NULL); 2678 llvm::Value *V, *Tmp = CGF.CreateMemTemp(Ty); 2679 Tmp = CGF.Builder.CreateBitCast(Tmp, ST->getPointerTo()); 2680 V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo, 2681 DblPtrTy)); 2682 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 2683 V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi, 2684 DblPtrTy)); 2685 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 2686 RegAddr = CGF.Builder.CreateBitCast(Tmp, 2687 llvm::PointerType::getUnqual(LTy)); 2688 } 2689 2690 // AMD64-ABI 3.5.7p5: Step 5. Set: 2691 // l->gp_offset = l->gp_offset + num_gp * 8 2692 // l->fp_offset = l->fp_offset + num_fp * 16. 2693 if (neededInt) { 2694 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8); 2695 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset), 2696 gp_offset_p); 2697 } 2698 if (neededSSE) { 2699 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16); 2700 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset), 2701 fp_offset_p); 2702 } 2703 CGF.EmitBranch(ContBlock); 2704 2705 // Emit code to load the value if it was passed in memory. 2706 2707 CGF.EmitBlock(InMemBlock); 2708 llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF); 2709 2710 // Return the appropriate result. 2711 2712 CGF.EmitBlock(ContBlock); 2713 llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(), 2, 2714 "vaarg.addr"); 2715 ResAddr->addIncoming(RegAddr, InRegBlock); 2716 ResAddr->addIncoming(MemAddr, InMemBlock); 2717 return ResAddr; 2718 } 2719 2720 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, bool IsReturnType) const { 2721 2722 if (Ty->isVoidType()) 2723 return ABIArgInfo::getIgnore(); 2724 2725 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2726 Ty = EnumTy->getDecl()->getIntegerType(); 2727 2728 uint64_t Size = getContext().getTypeSize(Ty); 2729 2730 const RecordType *RT = Ty->getAs<RecordType>(); 2731 if (RT) { 2732 if (!IsReturnType) { 2733 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI())) 2734 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 2735 } 2736 2737 if (RT->getDecl()->hasFlexibleArrayMember()) 2738 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 2739 2740 // FIXME: mingw-w64-gcc emits 128-bit struct as i128 2741 if (Size == 128 && getTarget().getTriple().isWindowsGNUEnvironment()) 2742 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 2743 Size)); 2744 } 2745 2746 if (Ty->isMemberPointerType()) { 2747 // If the member pointer is represented by an LLVM int or ptr, pass it 2748 // directly. 2749 llvm::Type *LLTy = CGT.ConvertType(Ty); 2750 if (LLTy->isPointerTy() || LLTy->isIntegerTy()) 2751 return ABIArgInfo::getDirect(); 2752 } 2753 2754 if (RT || Ty->isMemberPointerType()) { 2755 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 2756 // not 1, 2, 4, or 8 bytes, must be passed by reference." 2757 if (Size > 64 || !llvm::isPowerOf2_64(Size)) 2758 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 2759 2760 // Otherwise, coerce it to a small integer. 2761 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 2762 } 2763 2764 if (Ty->isPromotableIntegerType()) 2765 return ABIArgInfo::getExtend(); 2766 2767 return ABIArgInfo::getDirect(); 2768 } 2769 2770 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 2771 if (!getCXXABI().classifyReturnType(FI)) 2772 FI.getReturnInfo() = classify(FI.getReturnType(), true); 2773 2774 for (auto &I : FI.arguments()) 2775 I.info = classify(I.type, false); 2776 } 2777 2778 llvm::Value *WinX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 2779 CodeGenFunction &CGF) const { 2780 llvm::Type *BPP = CGF.Int8PtrPtrTy; 2781 2782 CGBuilderTy &Builder = CGF.Builder; 2783 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, 2784 "ap"); 2785 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 2786 llvm::Type *PTy = 2787 llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 2788 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); 2789 2790 uint64_t Offset = 2791 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 8); 2792 llvm::Value *NextAddr = 2793 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), 2794 "ap.next"); 2795 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 2796 2797 return AddrTyped; 2798 } 2799 2800 namespace { 2801 2802 class NaClX86_64ABIInfo : public ABIInfo { 2803 public: 2804 NaClX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX) 2805 : ABIInfo(CGT), PInfo(CGT), NInfo(CGT, HasAVX) {} 2806 void computeInfo(CGFunctionInfo &FI) const override; 2807 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 2808 CodeGenFunction &CGF) const override; 2809 private: 2810 PNaClABIInfo PInfo; // Used for generating calls with pnaclcall callingconv. 2811 X86_64ABIInfo NInfo; // Used for everything else. 2812 }; 2813 2814 class NaClX86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2815 public: 2816 NaClX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX) 2817 : TargetCodeGenInfo(new NaClX86_64ABIInfo(CGT, HasAVX)) {} 2818 }; 2819 2820 } 2821 2822 void NaClX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 2823 if (FI.getASTCallingConvention() == CC_PnaclCall) 2824 PInfo.computeInfo(FI); 2825 else 2826 NInfo.computeInfo(FI); 2827 } 2828 2829 llvm::Value *NaClX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 2830 CodeGenFunction &CGF) const { 2831 // Always use the native convention; calling pnacl-style varargs functions 2832 // is unuspported. 2833 return NInfo.EmitVAArg(VAListAddr, Ty, CGF); 2834 } 2835 2836 2837 // PowerPC-32 2838 2839 namespace { 2840 class PPC32TargetCodeGenInfo : public DefaultTargetCodeGenInfo { 2841 public: 2842 PPC32TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {} 2843 2844 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 2845 // This is recovered from gcc output. 2846 return 1; // r1 is the dedicated stack pointer 2847 } 2848 2849 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2850 llvm::Value *Address) const override; 2851 }; 2852 2853 } 2854 2855 bool 2856 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2857 llvm::Value *Address) const { 2858 // This is calculated from the LLVM and GCC tables and verified 2859 // against gcc output. AFAIK all ABIs use the same encoding. 2860 2861 CodeGen::CGBuilderTy &Builder = CGF.Builder; 2862 2863 llvm::IntegerType *i8 = CGF.Int8Ty; 2864 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 2865 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 2866 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 2867 2868 // 0-31: r0-31, the 4-byte general-purpose registers 2869 AssignToArrayRange(Builder, Address, Four8, 0, 31); 2870 2871 // 32-63: fp0-31, the 8-byte floating-point registers 2872 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 2873 2874 // 64-76 are various 4-byte special-purpose registers: 2875 // 64: mq 2876 // 65: lr 2877 // 66: ctr 2878 // 67: ap 2879 // 68-75 cr0-7 2880 // 76: xer 2881 AssignToArrayRange(Builder, Address, Four8, 64, 76); 2882 2883 // 77-108: v0-31, the 16-byte vector registers 2884 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 2885 2886 // 109: vrsave 2887 // 110: vscr 2888 // 111: spe_acc 2889 // 112: spefscr 2890 // 113: sfp 2891 AssignToArrayRange(Builder, Address, Four8, 109, 113); 2892 2893 return false; 2894 } 2895 2896 // PowerPC-64 2897 2898 namespace { 2899 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information. 2900 class PPC64_SVR4_ABIInfo : public DefaultABIInfo { 2901 2902 public: 2903 PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 2904 2905 bool isPromotableTypeForABI(QualType Ty) const; 2906 bool isAlignedParamType(QualType Ty) const; 2907 2908 ABIArgInfo classifyReturnType(QualType RetTy) const; 2909 ABIArgInfo classifyArgumentType(QualType Ty) const; 2910 2911 // TODO: We can add more logic to computeInfo to improve performance. 2912 // Example: For aggregate arguments that fit in a register, we could 2913 // use getDirectInReg (as is done below for structs containing a single 2914 // floating-point value) to avoid pushing them to memory on function 2915 // entry. This would require changing the logic in PPCISelLowering 2916 // when lowering the parameters in the caller and args in the callee. 2917 void computeInfo(CGFunctionInfo &FI) const override { 2918 if (!getCXXABI().classifyReturnType(FI)) 2919 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 2920 for (auto &I : FI.arguments()) { 2921 // We rely on the default argument classification for the most part. 2922 // One exception: An aggregate containing a single floating-point 2923 // or vector item must be passed in a register if one is available. 2924 const Type *T = isSingleElementStruct(I.type, getContext()); 2925 if (T) { 2926 const BuiltinType *BT = T->getAs<BuiltinType>(); 2927 if ((T->isVectorType() && getContext().getTypeSize(T) == 128) || 2928 (BT && BT->isFloatingPoint())) { 2929 QualType QT(T, 0); 2930 I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT)); 2931 continue; 2932 } 2933 } 2934 I.info = classifyArgumentType(I.type); 2935 } 2936 } 2937 2938 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 2939 CodeGenFunction &CGF) const override; 2940 }; 2941 2942 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo { 2943 public: 2944 PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT) 2945 : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT)) {} 2946 2947 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 2948 // This is recovered from gcc output. 2949 return 1; // r1 is the dedicated stack pointer 2950 } 2951 2952 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2953 llvm::Value *Address) const override; 2954 }; 2955 2956 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo { 2957 public: 2958 PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {} 2959 2960 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 2961 // This is recovered from gcc output. 2962 return 1; // r1 is the dedicated stack pointer 2963 } 2964 2965 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2966 llvm::Value *Address) const override; 2967 }; 2968 2969 } 2970 2971 // Return true if the ABI requires Ty to be passed sign- or zero- 2972 // extended to 64 bits. 2973 bool 2974 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const { 2975 // Treat an enum type as its underlying type. 2976 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2977 Ty = EnumTy->getDecl()->getIntegerType(); 2978 2979 // Promotable integer types are required to be promoted by the ABI. 2980 if (Ty->isPromotableIntegerType()) 2981 return true; 2982 2983 // In addition to the usual promotable integer types, we also need to 2984 // extend all 32-bit types, since the ABI requires promotion to 64 bits. 2985 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 2986 switch (BT->getKind()) { 2987 case BuiltinType::Int: 2988 case BuiltinType::UInt: 2989 return true; 2990 default: 2991 break; 2992 } 2993 2994 return false; 2995 } 2996 2997 /// isAlignedParamType - Determine whether a type requires 16-byte 2998 /// alignment in the parameter area. 2999 bool 3000 PPC64_SVR4_ABIInfo::isAlignedParamType(QualType Ty) const { 3001 // Complex types are passed just like their elements. 3002 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 3003 Ty = CTy->getElementType(); 3004 3005 // Only vector types of size 16 bytes need alignment (larger types are 3006 // passed via reference, smaller types are not aligned). 3007 if (Ty->isVectorType()) 3008 return getContext().getTypeSize(Ty) == 128; 3009 3010 // For single-element float/vector structs, we consider the whole type 3011 // to have the same alignment requirements as its single element. 3012 const Type *AlignAsType = nullptr; 3013 const Type *EltType = isSingleElementStruct(Ty, getContext()); 3014 if (EltType) { 3015 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 3016 if ((EltType->isVectorType() && 3017 getContext().getTypeSize(EltType) == 128) || 3018 (BT && BT->isFloatingPoint())) 3019 AlignAsType = EltType; 3020 } 3021 3022 // With special case aggregates, only vector base types need alignment. 3023 if (AlignAsType) 3024 return AlignAsType->isVectorType(); 3025 3026 // Otherwise, we only need alignment for any aggregate type that 3027 // has an alignment requirement of >= 16 bytes. 3028 if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) 3029 return true; 3030 3031 return false; 3032 } 3033 3034 ABIArgInfo 3035 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const { 3036 if (Ty->isAnyComplexType()) 3037 return ABIArgInfo::getDirect(); 3038 3039 // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes) 3040 // or via reference (larger than 16 bytes). 3041 if (Ty->isVectorType()) { 3042 uint64_t Size = getContext().getTypeSize(Ty); 3043 if (Size > 128) 3044 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 3045 else if (Size < 128) { 3046 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 3047 return ABIArgInfo::getDirect(CoerceTy); 3048 } 3049 } 3050 3051 if (isAggregateTypeForABI(Ty)) { 3052 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 3053 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 3054 3055 uint64_t ABIAlign = isAlignedParamType(Ty)? 16 : 8; 3056 uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8; 3057 return ABIArgInfo::getIndirect(ABIAlign, /*ByVal=*/true, 3058 /*Realign=*/TyAlign > ABIAlign); 3059 } 3060 3061 return (isPromotableTypeForABI(Ty) ? 3062 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 3063 } 3064 3065 ABIArgInfo 3066 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { 3067 if (RetTy->isVoidType()) 3068 return ABIArgInfo::getIgnore(); 3069 3070 if (RetTy->isAnyComplexType()) 3071 return ABIArgInfo::getDirect(); 3072 3073 // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes) 3074 // or via reference (larger than 16 bytes). 3075 if (RetTy->isVectorType()) { 3076 uint64_t Size = getContext().getTypeSize(RetTy); 3077 if (Size > 128) 3078 return ABIArgInfo::getIndirect(0); 3079 else if (Size < 128) { 3080 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 3081 return ABIArgInfo::getDirect(CoerceTy); 3082 } 3083 } 3084 3085 if (isAggregateTypeForABI(RetTy)) 3086 return ABIArgInfo::getIndirect(0); 3087 3088 return (isPromotableTypeForABI(RetTy) ? 3089 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 3090 } 3091 3092 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine. 3093 llvm::Value *PPC64_SVR4_ABIInfo::EmitVAArg(llvm::Value *VAListAddr, 3094 QualType Ty, 3095 CodeGenFunction &CGF) const { 3096 llvm::Type *BP = CGF.Int8PtrTy; 3097 llvm::Type *BPP = CGF.Int8PtrPtrTy; 3098 3099 CGBuilderTy &Builder = CGF.Builder; 3100 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); 3101 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 3102 3103 // Handle types that require 16-byte alignment in the parameter save area. 3104 if (isAlignedParamType(Ty)) { 3105 llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty); 3106 AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt64(15)); 3107 AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt64(-16)); 3108 Addr = Builder.CreateIntToPtr(AddrAsInt, BP, "ap.align"); 3109 } 3110 3111 // Update the va_list pointer. The pointer should be bumped by the 3112 // size of the object. We can trust getTypeSize() except for a complex 3113 // type whose base type is smaller than a doubleword. For these, the 3114 // size of the object is 16 bytes; see below for further explanation. 3115 unsigned SizeInBytes = CGF.getContext().getTypeSize(Ty) / 8; 3116 QualType BaseTy; 3117 unsigned CplxBaseSize = 0; 3118 3119 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 3120 BaseTy = CTy->getElementType(); 3121 CplxBaseSize = CGF.getContext().getTypeSize(BaseTy) / 8; 3122 if (CplxBaseSize < 8) 3123 SizeInBytes = 16; 3124 } 3125 3126 unsigned Offset = llvm::RoundUpToAlignment(SizeInBytes, 8); 3127 llvm::Value *NextAddr = 3128 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int64Ty, Offset), 3129 "ap.next"); 3130 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 3131 3132 // If we have a complex type and the base type is smaller than 8 bytes, 3133 // the ABI calls for the real and imaginary parts to be right-adjusted 3134 // in separate doublewords. However, Clang expects us to produce a 3135 // pointer to a structure with the two parts packed tightly. So generate 3136 // loads of the real and imaginary parts relative to the va_list pointer, 3137 // and store them to a temporary structure. 3138 if (CplxBaseSize && CplxBaseSize < 8) { 3139 llvm::Value *RealAddr = Builder.CreatePtrToInt(Addr, CGF.Int64Ty); 3140 llvm::Value *ImagAddr = RealAddr; 3141 if (CGF.CGM.getDataLayout().isBigEndian()) { 3142 RealAddr = Builder.CreateAdd(RealAddr, Builder.getInt64(8 - CplxBaseSize)); 3143 ImagAddr = Builder.CreateAdd(ImagAddr, Builder.getInt64(16 - CplxBaseSize)); 3144 } else { 3145 ImagAddr = Builder.CreateAdd(ImagAddr, Builder.getInt64(8)); 3146 } 3147 llvm::Type *PBaseTy = llvm::PointerType::getUnqual(CGF.ConvertType(BaseTy)); 3148 RealAddr = Builder.CreateIntToPtr(RealAddr, PBaseTy); 3149 ImagAddr = Builder.CreateIntToPtr(ImagAddr, PBaseTy); 3150 llvm::Value *Real = Builder.CreateLoad(RealAddr, false, ".vareal"); 3151 llvm::Value *Imag = Builder.CreateLoad(ImagAddr, false, ".vaimag"); 3152 llvm::Value *Ptr = CGF.CreateTempAlloca(CGT.ConvertTypeForMem(Ty), 3153 "vacplx"); 3154 llvm::Value *RealPtr = Builder.CreateStructGEP(Ptr, 0, ".real"); 3155 llvm::Value *ImagPtr = Builder.CreateStructGEP(Ptr, 1, ".imag"); 3156 Builder.CreateStore(Real, RealPtr, false); 3157 Builder.CreateStore(Imag, ImagPtr, false); 3158 return Ptr; 3159 } 3160 3161 // If the argument is smaller than 8 bytes, it is right-adjusted in 3162 // its doubleword slot. Adjust the pointer to pick it up from the 3163 // correct offset. 3164 if (SizeInBytes < 8 && CGF.CGM.getDataLayout().isBigEndian()) { 3165 llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty); 3166 AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt64(8 - SizeInBytes)); 3167 Addr = Builder.CreateIntToPtr(AddrAsInt, BP); 3168 } 3169 3170 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 3171 return Builder.CreateBitCast(Addr, PTy); 3172 } 3173 3174 static bool 3175 PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 3176 llvm::Value *Address) { 3177 // This is calculated from the LLVM and GCC tables and verified 3178 // against gcc output. AFAIK all ABIs use the same encoding. 3179 3180 CodeGen::CGBuilderTy &Builder = CGF.Builder; 3181 3182 llvm::IntegerType *i8 = CGF.Int8Ty; 3183 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 3184 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 3185 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 3186 3187 // 0-31: r0-31, the 8-byte general-purpose registers 3188 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 3189 3190 // 32-63: fp0-31, the 8-byte floating-point registers 3191 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 3192 3193 // 64-76 are various 4-byte special-purpose registers: 3194 // 64: mq 3195 // 65: lr 3196 // 66: ctr 3197 // 67: ap 3198 // 68-75 cr0-7 3199 // 76: xer 3200 AssignToArrayRange(Builder, Address, Four8, 64, 76); 3201 3202 // 77-108: v0-31, the 16-byte vector registers 3203 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 3204 3205 // 109: vrsave 3206 // 110: vscr 3207 // 111: spe_acc 3208 // 112: spefscr 3209 // 113: sfp 3210 AssignToArrayRange(Builder, Address, Four8, 109, 113); 3211 3212 return false; 3213 } 3214 3215 bool 3216 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable( 3217 CodeGen::CodeGenFunction &CGF, 3218 llvm::Value *Address) const { 3219 3220 return PPC64_initDwarfEHRegSizeTable(CGF, Address); 3221 } 3222 3223 bool 3224 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 3225 llvm::Value *Address) const { 3226 3227 return PPC64_initDwarfEHRegSizeTable(CGF, Address); 3228 } 3229 3230 //===----------------------------------------------------------------------===// 3231 // AArch64 ABI Implementation 3232 //===----------------------------------------------------------------------===// 3233 3234 namespace { 3235 3236 class AArch64ABIInfo : public ABIInfo { 3237 public: 3238 enum ABIKind { 3239 AAPCS = 0, 3240 DarwinPCS 3241 }; 3242 3243 private: 3244 ABIKind Kind; 3245 3246 public: 3247 AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind) : ABIInfo(CGT), Kind(Kind) {} 3248 3249 private: 3250 ABIKind getABIKind() const { return Kind; } 3251 bool isDarwinPCS() const { return Kind == DarwinPCS; } 3252 3253 ABIArgInfo classifyReturnType(QualType RetTy) const; 3254 ABIArgInfo classifyArgumentType(QualType RetTy, unsigned &AllocatedVFP, 3255 bool &IsHA, unsigned &AllocatedGPR, 3256 bool &IsSmallAggr, bool IsNamedArg) const; 3257 bool isIllegalVectorType(QualType Ty) const; 3258 3259 virtual void computeInfo(CGFunctionInfo &FI) const { 3260 // To correctly handle Homogeneous Aggregate, we need to keep track of the 3261 // number of SIMD and Floating-point registers allocated so far. 3262 // If the argument is an HFA or an HVA and there are sufficient unallocated 3263 // SIMD and Floating-point registers, then the argument is allocated to SIMD 3264 // and Floating-point Registers (with one register per member of the HFA or 3265 // HVA). Otherwise, the NSRN is set to 8. 3266 unsigned AllocatedVFP = 0; 3267 3268 // To correctly handle small aggregates, we need to keep track of the number 3269 // of GPRs allocated so far. If the small aggregate can't all fit into 3270 // registers, it will be on stack. We don't allow the aggregate to be 3271 // partially in registers. 3272 unsigned AllocatedGPR = 0; 3273 3274 // Find the number of named arguments. Variadic arguments get special 3275 // treatment with the Darwin ABI. 3276 unsigned NumRequiredArgs = (FI.isVariadic() ? 3277 FI.getRequiredArgs().getNumRequiredArgs() : 3278 FI.arg_size()); 3279 3280 if (!getCXXABI().classifyReturnType(FI)) 3281 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 3282 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 3283 it != ie; ++it) { 3284 unsigned PreAllocation = AllocatedVFP, PreGPR = AllocatedGPR; 3285 bool IsHA = false, IsSmallAggr = false; 3286 const unsigned NumVFPs = 8; 3287 const unsigned NumGPRs = 8; 3288 bool IsNamedArg = ((it - FI.arg_begin()) < 3289 static_cast<signed>(NumRequiredArgs)); 3290 it->info = classifyArgumentType(it->type, AllocatedVFP, IsHA, 3291 AllocatedGPR, IsSmallAggr, IsNamedArg); 3292 3293 // Under AAPCS the 64-bit stack slot alignment means we can't pass HAs 3294 // as sequences of floats since they'll get "holes" inserted as 3295 // padding by the back end. 3296 if (IsHA && AllocatedVFP > NumVFPs && !isDarwinPCS() && 3297 getContext().getTypeAlign(it->type) < 64) { 3298 uint32_t NumStackSlots = getContext().getTypeSize(it->type); 3299 NumStackSlots = llvm::RoundUpToAlignment(NumStackSlots, 64) / 64; 3300 3301 llvm::Type *CoerceTy = llvm::ArrayType::get( 3302 llvm::Type::getDoubleTy(getVMContext()), NumStackSlots); 3303 it->info = ABIArgInfo::getDirect(CoerceTy); 3304 } 3305 3306 // If we do not have enough VFP registers for the HA, any VFP registers 3307 // that are unallocated are marked as unavailable. To achieve this, we add 3308 // padding of (NumVFPs - PreAllocation) floats. 3309 if (IsHA && AllocatedVFP > NumVFPs && PreAllocation < NumVFPs) { 3310 llvm::Type *PaddingTy = llvm::ArrayType::get( 3311 llvm::Type::getFloatTy(getVMContext()), NumVFPs - PreAllocation); 3312 it->info.setPaddingType(PaddingTy); 3313 } 3314 3315 // If we do not have enough GPRs for the small aggregate, any GPR regs 3316 // that are unallocated are marked as unavailable. 3317 if (IsSmallAggr && AllocatedGPR > NumGPRs && PreGPR < NumGPRs) { 3318 llvm::Type *PaddingTy = llvm::ArrayType::get( 3319 llvm::Type::getInt32Ty(getVMContext()), NumGPRs - PreGPR); 3320 it->info = 3321 ABIArgInfo::getDirect(it->info.getCoerceToType(), 0, PaddingTy); 3322 } 3323 } 3324 } 3325 3326 llvm::Value *EmitDarwinVAArg(llvm::Value *VAListAddr, QualType Ty, 3327 CodeGenFunction &CGF) const; 3328 3329 llvm::Value *EmitAAPCSVAArg(llvm::Value *VAListAddr, QualType Ty, 3330 CodeGenFunction &CGF) const; 3331 3332 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 3333 CodeGenFunction &CGF) const { 3334 return isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF) 3335 : EmitAAPCSVAArg(VAListAddr, Ty, CGF); 3336 } 3337 }; 3338 3339 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo { 3340 public: 3341 AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind) 3342 : TargetCodeGenInfo(new AArch64ABIInfo(CGT, Kind)) {} 3343 3344 StringRef getARCRetainAutoreleasedReturnValueMarker() const { 3345 return "mov\tfp, fp\t\t; marker for objc_retainAutoreleaseReturnValue"; 3346 } 3347 3348 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const { return 31; } 3349 3350 virtual bool doesReturnSlotInterfereWithArgs() const { return false; } 3351 }; 3352 } 3353 3354 static bool isHomogeneousAggregate(QualType Ty, const Type *&Base, 3355 ASTContext &Context, 3356 uint64_t *HAMembers = nullptr); 3357 3358 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty, 3359 unsigned &AllocatedVFP, 3360 bool &IsHA, 3361 unsigned &AllocatedGPR, 3362 bool &IsSmallAggr, 3363 bool IsNamedArg) const { 3364 // Handle illegal vector types here. 3365 if (isIllegalVectorType(Ty)) { 3366 uint64_t Size = getContext().getTypeSize(Ty); 3367 if (Size <= 32) { 3368 llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext()); 3369 AllocatedGPR++; 3370 return ABIArgInfo::getDirect(ResType); 3371 } 3372 if (Size == 64) { 3373 llvm::Type *ResType = 3374 llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2); 3375 AllocatedVFP++; 3376 return ABIArgInfo::getDirect(ResType); 3377 } 3378 if (Size == 128) { 3379 llvm::Type *ResType = 3380 llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4); 3381 AllocatedVFP++; 3382 return ABIArgInfo::getDirect(ResType); 3383 } 3384 AllocatedGPR++; 3385 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 3386 } 3387 if (Ty->isVectorType()) 3388 // Size of a legal vector should be either 64 or 128. 3389 AllocatedVFP++; 3390 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 3391 if (BT->getKind() == BuiltinType::Half || 3392 BT->getKind() == BuiltinType::Float || 3393 BT->getKind() == BuiltinType::Double || 3394 BT->getKind() == BuiltinType::LongDouble) 3395 AllocatedVFP++; 3396 } 3397 3398 if (!isAggregateTypeForABI(Ty)) { 3399 // Treat an enum type as its underlying type. 3400 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3401 Ty = EnumTy->getDecl()->getIntegerType(); 3402 3403 if (!Ty->isFloatingType() && !Ty->isVectorType()) { 3404 unsigned Alignment = getContext().getTypeAlign(Ty); 3405 if (!isDarwinPCS() && Alignment > 64) 3406 AllocatedGPR = llvm::RoundUpToAlignment(AllocatedGPR, Alignment / 64); 3407 3408 int RegsNeeded = getContext().getTypeSize(Ty) > 64 ? 2 : 1; 3409 AllocatedGPR += RegsNeeded; 3410 } 3411 return (Ty->isPromotableIntegerType() && isDarwinPCS() 3412 ? ABIArgInfo::getExtend() 3413 : ABIArgInfo::getDirect()); 3414 } 3415 3416 // Structures with either a non-trivial destructor or a non-trivial 3417 // copy constructor are always indirect. 3418 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 3419 AllocatedGPR++; 3420 return ABIArgInfo::getIndirect(0, /*ByVal=*/RAA == 3421 CGCXXABI::RAA_DirectInMemory); 3422 } 3423 3424 // Empty records are always ignored on Darwin, but actually passed in C++ mode 3425 // elsewhere for GNU compatibility. 3426 if (isEmptyRecord(getContext(), Ty, true)) { 3427 if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS()) 3428 return ABIArgInfo::getIgnore(); 3429 3430 ++AllocatedGPR; 3431 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 3432 } 3433 3434 // Homogeneous Floating-point Aggregates (HFAs) need to be expanded. 3435 const Type *Base = nullptr; 3436 uint64_t Members = 0; 3437 if (isHomogeneousAggregate(Ty, Base, getContext(), &Members)) { 3438 IsHA = true; 3439 if (!IsNamedArg && isDarwinPCS()) { 3440 // With the Darwin ABI, variadic arguments are always passed on the stack 3441 // and should not be expanded. Treat variadic HFAs as arrays of doubles. 3442 uint64_t Size = getContext().getTypeSize(Ty); 3443 llvm::Type *BaseTy = llvm::Type::getDoubleTy(getVMContext()); 3444 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 3445 } 3446 AllocatedVFP += Members; 3447 return ABIArgInfo::getExpand(); 3448 } 3449 3450 // Aggregates <= 16 bytes are passed directly in registers or on the stack. 3451 uint64_t Size = getContext().getTypeSize(Ty); 3452 if (Size <= 128) { 3453 unsigned Alignment = getContext().getTypeAlign(Ty); 3454 if (!isDarwinPCS() && Alignment > 64) 3455 AllocatedGPR = llvm::RoundUpToAlignment(AllocatedGPR, Alignment / 64); 3456 3457 Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes 3458 AllocatedGPR += Size / 64; 3459 IsSmallAggr = true; 3460 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 3461 // For aggregates with 16-byte alignment, we use i128. 3462 if (Alignment < 128 && Size == 128) { 3463 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); 3464 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 3465 } 3466 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 3467 } 3468 3469 AllocatedGPR++; 3470 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 3471 } 3472 3473 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy) const { 3474 if (RetTy->isVoidType()) 3475 return ABIArgInfo::getIgnore(); 3476 3477 // Large vector types should be returned via memory. 3478 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) 3479 return ABIArgInfo::getIndirect(0); 3480 3481 if (!isAggregateTypeForABI(RetTy)) { 3482 // Treat an enum type as its underlying type. 3483 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 3484 RetTy = EnumTy->getDecl()->getIntegerType(); 3485 3486 return (RetTy->isPromotableIntegerType() && isDarwinPCS() 3487 ? ABIArgInfo::getExtend() 3488 : ABIArgInfo::getDirect()); 3489 } 3490 3491 if (isEmptyRecord(getContext(), RetTy, true)) 3492 return ABIArgInfo::getIgnore(); 3493 3494 const Type *Base = nullptr; 3495 if (isHomogeneousAggregate(RetTy, Base, getContext())) 3496 // Homogeneous Floating-point Aggregates (HFAs) are returned directly. 3497 return ABIArgInfo::getDirect(); 3498 3499 // Aggregates <= 16 bytes are returned directly in registers or on the stack. 3500 uint64_t Size = getContext().getTypeSize(RetTy); 3501 if (Size <= 128) { 3502 Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes 3503 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 3504 } 3505 3506 return ABIArgInfo::getIndirect(0); 3507 } 3508 3509 /// isIllegalVectorType - check whether the vector type is legal for AArch64. 3510 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const { 3511 if (const VectorType *VT = Ty->getAs<VectorType>()) { 3512 // Check whether VT is legal. 3513 unsigned NumElements = VT->getNumElements(); 3514 uint64_t Size = getContext().getTypeSize(VT); 3515 // NumElements should be power of 2 between 1 and 16. 3516 if ((NumElements & (NumElements - 1)) != 0 || NumElements > 16) 3517 return true; 3518 return Size != 64 && (Size != 128 || NumElements == 1); 3519 } 3520 return false; 3521 } 3522 3523 static llvm::Value *EmitAArch64VAArg(llvm::Value *VAListAddr, QualType Ty, 3524 int AllocatedGPR, int AllocatedVFP, 3525 bool IsIndirect, CodeGenFunction &CGF) { 3526 // The AArch64 va_list type and handling is specified in the Procedure Call 3527 // Standard, section B.4: 3528 // 3529 // struct { 3530 // void *__stack; 3531 // void *__gr_top; 3532 // void *__vr_top; 3533 // int __gr_offs; 3534 // int __vr_offs; 3535 // }; 3536 3537 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); 3538 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 3539 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); 3540 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 3541 auto &Ctx = CGF.getContext(); 3542 3543 llvm::Value *reg_offs_p = nullptr, *reg_offs = nullptr; 3544 int reg_top_index; 3545 int RegSize; 3546 if (AllocatedGPR) { 3547 assert(!AllocatedVFP && "Arguments never split between int & VFP regs"); 3548 // 3 is the field number of __gr_offs 3549 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p"); 3550 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs"); 3551 reg_top_index = 1; // field number for __gr_top 3552 RegSize = 8 * AllocatedGPR; 3553 } else { 3554 assert(!AllocatedGPR && "Argument must go in VFP or int regs"); 3555 // 4 is the field number of __vr_offs. 3556 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p"); 3557 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs"); 3558 reg_top_index = 2; // field number for __vr_top 3559 RegSize = 16 * AllocatedVFP; 3560 } 3561 3562 //======================================= 3563 // Find out where argument was passed 3564 //======================================= 3565 3566 // If reg_offs >= 0 we're already using the stack for this type of 3567 // argument. We don't want to keep updating reg_offs (in case it overflows, 3568 // though anyone passing 2GB of arguments, each at most 16 bytes, deserves 3569 // whatever they get). 3570 llvm::Value *UsingStack = nullptr; 3571 UsingStack = CGF.Builder.CreateICmpSGE( 3572 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0)); 3573 3574 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock); 3575 3576 // Otherwise, at least some kind of argument could go in these registers, the 3577 // question is whether this particular type is too big. 3578 CGF.EmitBlock(MaybeRegBlock); 3579 3580 // Integer arguments may need to correct register alignment (for example a 3581 // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we 3582 // align __gr_offs to calculate the potential address. 3583 if (AllocatedGPR && !IsIndirect && Ctx.getTypeAlign(Ty) > 64) { 3584 int Align = Ctx.getTypeAlign(Ty) / 8; 3585 3586 reg_offs = CGF.Builder.CreateAdd( 3587 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1), 3588 "align_regoffs"); 3589 reg_offs = CGF.Builder.CreateAnd( 3590 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align), 3591 "aligned_regoffs"); 3592 } 3593 3594 // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list. 3595 llvm::Value *NewOffset = nullptr; 3596 NewOffset = CGF.Builder.CreateAdd( 3597 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs"); 3598 CGF.Builder.CreateStore(NewOffset, reg_offs_p); 3599 3600 // Now we're in a position to decide whether this argument really was in 3601 // registers or not. 3602 llvm::Value *InRegs = nullptr; 3603 InRegs = CGF.Builder.CreateICmpSLE( 3604 NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg"); 3605 3606 CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock); 3607 3608 //======================================= 3609 // Argument was in registers 3610 //======================================= 3611 3612 // Now we emit the code for if the argument was originally passed in 3613 // registers. First start the appropriate block: 3614 CGF.EmitBlock(InRegBlock); 3615 3616 llvm::Value *reg_top_p = nullptr, *reg_top = nullptr; 3617 reg_top_p = 3618 CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p"); 3619 reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top"); 3620 llvm::Value *BaseAddr = CGF.Builder.CreateGEP(reg_top, reg_offs); 3621 llvm::Value *RegAddr = nullptr; 3622 llvm::Type *MemTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); 3623 3624 if (IsIndirect) { 3625 // If it's been passed indirectly (actually a struct), whatever we find from 3626 // stored registers or on the stack will actually be a struct **. 3627 MemTy = llvm::PointerType::getUnqual(MemTy); 3628 } 3629 3630 const Type *Base = nullptr; 3631 uint64_t NumMembers; 3632 bool IsHFA = isHomogeneousAggregate(Ty, Base, Ctx, &NumMembers); 3633 if (IsHFA && NumMembers > 1) { 3634 // Homogeneous aggregates passed in registers will have their elements split 3635 // and stored 16-bytes apart regardless of size (they're notionally in qN, 3636 // qN+1, ...). We reload and store into a temporary local variable 3637 // contiguously. 3638 assert(!IsIndirect && "Homogeneous aggregates should be passed directly"); 3639 llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0)); 3640 llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers); 3641 llvm::Value *Tmp = CGF.CreateTempAlloca(HFATy); 3642 int Offset = 0; 3643 3644 if (CGF.CGM.getDataLayout().isBigEndian() && Ctx.getTypeSize(Base) < 128) 3645 Offset = 16 - Ctx.getTypeSize(Base) / 8; 3646 for (unsigned i = 0; i < NumMembers; ++i) { 3647 llvm::Value *BaseOffset = 3648 llvm::ConstantInt::get(CGF.Int32Ty, 16 * i + Offset); 3649 llvm::Value *LoadAddr = CGF.Builder.CreateGEP(BaseAddr, BaseOffset); 3650 LoadAddr = CGF.Builder.CreateBitCast( 3651 LoadAddr, llvm::PointerType::getUnqual(BaseTy)); 3652 llvm::Value *StoreAddr = CGF.Builder.CreateStructGEP(Tmp, i); 3653 3654 llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr); 3655 CGF.Builder.CreateStore(Elem, StoreAddr); 3656 } 3657 3658 RegAddr = CGF.Builder.CreateBitCast(Tmp, MemTy); 3659 } else { 3660 // Otherwise the object is contiguous in memory 3661 unsigned BeAlign = reg_top_index == 2 ? 16 : 8; 3662 if (CGF.CGM.getDataLayout().isBigEndian() && 3663 (IsHFA || !isAggregateTypeForABI(Ty)) && 3664 Ctx.getTypeSize(Ty) < (BeAlign * 8)) { 3665 int Offset = BeAlign - Ctx.getTypeSize(Ty) / 8; 3666 BaseAddr = CGF.Builder.CreatePtrToInt(BaseAddr, CGF.Int64Ty); 3667 3668 BaseAddr = CGF.Builder.CreateAdd( 3669 BaseAddr, llvm::ConstantInt::get(CGF.Int64Ty, Offset), "align_be"); 3670 3671 BaseAddr = CGF.Builder.CreateIntToPtr(BaseAddr, CGF.Int8PtrTy); 3672 } 3673 3674 RegAddr = CGF.Builder.CreateBitCast(BaseAddr, MemTy); 3675 } 3676 3677 CGF.EmitBranch(ContBlock); 3678 3679 //======================================= 3680 // Argument was on the stack 3681 //======================================= 3682 CGF.EmitBlock(OnStackBlock); 3683 3684 llvm::Value *stack_p = nullptr, *OnStackAddr = nullptr; 3685 stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p"); 3686 OnStackAddr = CGF.Builder.CreateLoad(stack_p, "stack"); 3687 3688 // Again, stack arguments may need realigmnent. In this case both integer and 3689 // floating-point ones might be affected. 3690 if (!IsIndirect && Ctx.getTypeAlign(Ty) > 64) { 3691 int Align = Ctx.getTypeAlign(Ty) / 8; 3692 3693 OnStackAddr = CGF.Builder.CreatePtrToInt(OnStackAddr, CGF.Int64Ty); 3694 3695 OnStackAddr = CGF.Builder.CreateAdd( 3696 OnStackAddr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1), 3697 "align_stack"); 3698 OnStackAddr = CGF.Builder.CreateAnd( 3699 OnStackAddr, llvm::ConstantInt::get(CGF.Int64Ty, -Align), 3700 "align_stack"); 3701 3702 OnStackAddr = CGF.Builder.CreateIntToPtr(OnStackAddr, CGF.Int8PtrTy); 3703 } 3704 3705 uint64_t StackSize; 3706 if (IsIndirect) 3707 StackSize = 8; 3708 else 3709 StackSize = Ctx.getTypeSize(Ty) / 8; 3710 3711 // All stack slots are 8 bytes 3712 StackSize = llvm::RoundUpToAlignment(StackSize, 8); 3713 3714 llvm::Value *StackSizeC = llvm::ConstantInt::get(CGF.Int32Ty, StackSize); 3715 llvm::Value *NewStack = 3716 CGF.Builder.CreateGEP(OnStackAddr, StackSizeC, "new_stack"); 3717 3718 // Write the new value of __stack for the next call to va_arg 3719 CGF.Builder.CreateStore(NewStack, stack_p); 3720 3721 if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) && 3722 Ctx.getTypeSize(Ty) < 64) { 3723 int Offset = 8 - Ctx.getTypeSize(Ty) / 8; 3724 OnStackAddr = CGF.Builder.CreatePtrToInt(OnStackAddr, CGF.Int64Ty); 3725 3726 OnStackAddr = CGF.Builder.CreateAdd( 3727 OnStackAddr, llvm::ConstantInt::get(CGF.Int64Ty, Offset), "align_be"); 3728 3729 OnStackAddr = CGF.Builder.CreateIntToPtr(OnStackAddr, CGF.Int8PtrTy); 3730 } 3731 3732 OnStackAddr = CGF.Builder.CreateBitCast(OnStackAddr, MemTy); 3733 3734 CGF.EmitBranch(ContBlock); 3735 3736 //======================================= 3737 // Tidy up 3738 //======================================= 3739 CGF.EmitBlock(ContBlock); 3740 3741 llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(MemTy, 2, "vaarg.addr"); 3742 ResAddr->addIncoming(RegAddr, InRegBlock); 3743 ResAddr->addIncoming(OnStackAddr, OnStackBlock); 3744 3745 if (IsIndirect) 3746 return CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"); 3747 3748 return ResAddr; 3749 } 3750 3751 llvm::Value *AArch64ABIInfo::EmitAAPCSVAArg(llvm::Value *VAListAddr, QualType Ty, 3752 CodeGenFunction &CGF) const { 3753 3754 unsigned AllocatedGPR = 0, AllocatedVFP = 0; 3755 bool IsHA = false, IsSmallAggr = false; 3756 ABIArgInfo AI = classifyArgumentType(Ty, AllocatedVFP, IsHA, AllocatedGPR, 3757 IsSmallAggr, false /*IsNamedArg*/); 3758 3759 return EmitAArch64VAArg(VAListAddr, Ty, AllocatedGPR, AllocatedVFP, 3760 AI.isIndirect(), CGF); 3761 } 3762 3763 llvm::Value *AArch64ABIInfo::EmitDarwinVAArg(llvm::Value *VAListAddr, QualType Ty, 3764 CodeGenFunction &CGF) const { 3765 // We do not support va_arg for aggregates or illegal vector types. 3766 // Lower VAArg here for these cases and use the LLVM va_arg instruction for 3767 // other cases. 3768 if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty)) 3769 return nullptr; 3770 3771 uint64_t Size = CGF.getContext().getTypeSize(Ty) / 8; 3772 uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8; 3773 3774 const Type *Base = nullptr; 3775 bool isHA = isHomogeneousAggregate(Ty, Base, getContext()); 3776 3777 bool isIndirect = false; 3778 // Arguments bigger than 16 bytes which aren't homogeneous aggregates should 3779 // be passed indirectly. 3780 if (Size > 16 && !isHA) { 3781 isIndirect = true; 3782 Size = 8; 3783 Align = 8; 3784 } 3785 3786 llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext()); 3787 llvm::Type *BPP = llvm::PointerType::getUnqual(BP); 3788 3789 CGBuilderTy &Builder = CGF.Builder; 3790 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); 3791 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 3792 3793 if (isEmptyRecord(getContext(), Ty, true)) { 3794 // These are ignored for parameter passing purposes. 3795 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 3796 return Builder.CreateBitCast(Addr, PTy); 3797 } 3798 3799 const uint64_t MinABIAlign = 8; 3800 if (Align > MinABIAlign) { 3801 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, Align - 1); 3802 Addr = Builder.CreateGEP(Addr, Offset); 3803 llvm::Value *AsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty); 3804 llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, ~(Align - 1)); 3805 llvm::Value *Aligned = Builder.CreateAnd(AsInt, Mask); 3806 Addr = Builder.CreateIntToPtr(Aligned, BP, "ap.align"); 3807 } 3808 3809 uint64_t Offset = llvm::RoundUpToAlignment(Size, MinABIAlign); 3810 llvm::Value *NextAddr = Builder.CreateGEP( 3811 Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), "ap.next"); 3812 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 3813 3814 if (isIndirect) 3815 Addr = Builder.CreateLoad(Builder.CreateBitCast(Addr, BPP)); 3816 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 3817 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); 3818 3819 return AddrTyped; 3820 } 3821 3822 //===----------------------------------------------------------------------===// 3823 // ARM ABI Implementation 3824 //===----------------------------------------------------------------------===// 3825 3826 namespace { 3827 3828 class ARMABIInfo : public ABIInfo { 3829 public: 3830 enum ABIKind { 3831 APCS = 0, 3832 AAPCS = 1, 3833 AAPCS_VFP 3834 }; 3835 3836 private: 3837 ABIKind Kind; 3838 mutable int VFPRegs[16]; 3839 const unsigned NumVFPs; 3840 const unsigned NumGPRs; 3841 mutable unsigned AllocatedGPRs; 3842 mutable unsigned AllocatedVFPs; 3843 3844 public: 3845 ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) : ABIInfo(CGT), Kind(_Kind), 3846 NumVFPs(16), NumGPRs(4) { 3847 setRuntimeCC(); 3848 resetAllocatedRegs(); 3849 } 3850 3851 bool isEABI() const { 3852 switch (getTarget().getTriple().getEnvironment()) { 3853 case llvm::Triple::Android: 3854 case llvm::Triple::EABI: 3855 case llvm::Triple::EABIHF: 3856 case llvm::Triple::GNUEABI: 3857 case llvm::Triple::GNUEABIHF: 3858 return true; 3859 default: 3860 return false; 3861 } 3862 } 3863 3864 bool isEABIHF() const { 3865 switch (getTarget().getTriple().getEnvironment()) { 3866 case llvm::Triple::EABIHF: 3867 case llvm::Triple::GNUEABIHF: 3868 return true; 3869 default: 3870 return false; 3871 } 3872 } 3873 3874 ABIKind getABIKind() const { return Kind; } 3875 3876 private: 3877 ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic) const; 3878 ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic, 3879 bool &IsCPRC) const; 3880 bool isIllegalVectorType(QualType Ty) const; 3881 3882 void computeInfo(CGFunctionInfo &FI) const override; 3883 3884 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 3885 CodeGenFunction &CGF) const override; 3886 3887 llvm::CallingConv::ID getLLVMDefaultCC() const; 3888 llvm::CallingConv::ID getABIDefaultCC() const; 3889 void setRuntimeCC(); 3890 3891 void markAllocatedGPRs(unsigned Alignment, unsigned NumRequired) const; 3892 void markAllocatedVFPs(unsigned Alignment, unsigned NumRequired) const; 3893 void resetAllocatedRegs(void) const; 3894 }; 3895 3896 class ARMTargetCodeGenInfo : public TargetCodeGenInfo { 3897 public: 3898 ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 3899 :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {} 3900 3901 const ARMABIInfo &getABIInfo() const { 3902 return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo()); 3903 } 3904 3905 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 3906 return 13; 3907 } 3908 3909 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 3910 return "mov\tr7, r7\t\t@ marker for objc_retainAutoreleaseReturnValue"; 3911 } 3912 3913 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 3914 llvm::Value *Address) const override { 3915 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 3916 3917 // 0-15 are the 16 integer registers. 3918 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15); 3919 return false; 3920 } 3921 3922 unsigned getSizeOfUnwindException() const override { 3923 if (getABIInfo().isEABI()) return 88; 3924 return TargetCodeGenInfo::getSizeOfUnwindException(); 3925 } 3926 3927 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 3928 CodeGen::CodeGenModule &CGM) const override { 3929 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); 3930 if (!FD) 3931 return; 3932 3933 const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>(); 3934 if (!Attr) 3935 return; 3936 3937 const char *Kind; 3938 switch (Attr->getInterrupt()) { 3939 case ARMInterruptAttr::Generic: Kind = ""; break; 3940 case ARMInterruptAttr::IRQ: Kind = "IRQ"; break; 3941 case ARMInterruptAttr::FIQ: Kind = "FIQ"; break; 3942 case ARMInterruptAttr::SWI: Kind = "SWI"; break; 3943 case ARMInterruptAttr::ABORT: Kind = "ABORT"; break; 3944 case ARMInterruptAttr::UNDEF: Kind = "UNDEF"; break; 3945 } 3946 3947 llvm::Function *Fn = cast<llvm::Function>(GV); 3948 3949 Fn->addFnAttr("interrupt", Kind); 3950 3951 if (cast<ARMABIInfo>(getABIInfo()).getABIKind() == ARMABIInfo::APCS) 3952 return; 3953 3954 // AAPCS guarantees that sp will be 8-byte aligned on any public interface, 3955 // however this is not necessarily true on taking any interrupt. Instruct 3956 // the backend to perform a realignment as part of the function prologue. 3957 llvm::AttrBuilder B; 3958 B.addStackAlignmentAttr(8); 3959 Fn->addAttributes(llvm::AttributeSet::FunctionIndex, 3960 llvm::AttributeSet::get(CGM.getLLVMContext(), 3961 llvm::AttributeSet::FunctionIndex, 3962 B)); 3963 } 3964 3965 }; 3966 3967 } 3968 3969 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const { 3970 // To correctly handle Homogeneous Aggregate, we need to keep track of the 3971 // VFP registers allocated so far. 3972 // C.1.vfp If the argument is a VFP CPRC and there are sufficient consecutive 3973 // VFP registers of the appropriate type unallocated then the argument is 3974 // allocated to the lowest-numbered sequence of such registers. 3975 // C.2.vfp If the argument is a VFP CPRC then any VFP registers that are 3976 // unallocated are marked as unavailable. 3977 resetAllocatedRegs(); 3978 3979 if (getCXXABI().classifyReturnType(FI)) { 3980 if (FI.getReturnInfo().isIndirect()) 3981 markAllocatedGPRs(1, 1); 3982 } else { 3983 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), FI.isVariadic()); 3984 } 3985 for (auto &I : FI.arguments()) { 3986 unsigned PreAllocationVFPs = AllocatedVFPs; 3987 unsigned PreAllocationGPRs = AllocatedGPRs; 3988 bool IsCPRC = false; 3989 // 6.1.2.3 There is one VFP co-processor register class using registers 3990 // s0-s15 (d0-d7) for passing arguments. 3991 I.info = classifyArgumentType(I.type, FI.isVariadic(), IsCPRC); 3992 3993 // If we have allocated some arguments onto the stack (due to running 3994 // out of VFP registers), we cannot split an argument between GPRs and 3995 // the stack. If this situation occurs, we add padding to prevent the 3996 // GPRs from being used. In this situation, the current argument could 3997 // only be allocated by rule C.8, so rule C.6 would mark these GPRs as 3998 // unusable anyway. 3999 const bool StackUsed = PreAllocationGPRs > NumGPRs || PreAllocationVFPs > NumVFPs; 4000 if (!IsCPRC && PreAllocationGPRs < NumGPRs && AllocatedGPRs > NumGPRs && StackUsed) { 4001 llvm::Type *PaddingTy = llvm::ArrayType::get( 4002 llvm::Type::getInt32Ty(getVMContext()), NumGPRs - PreAllocationGPRs); 4003 if (I.info.canHaveCoerceToType()) { 4004 I.info = ABIArgInfo::getDirect(I.info.getCoerceToType() /* type */, 0 /* offset */, 4005 PaddingTy); 4006 } else { 4007 I.info = ABIArgInfo::getDirect(nullptr /* type */, 0 /* offset */, 4008 PaddingTy); 4009 } 4010 } 4011 } 4012 4013 // Always honor user-specified calling convention. 4014 if (FI.getCallingConvention() != llvm::CallingConv::C) 4015 return; 4016 4017 llvm::CallingConv::ID cc = getRuntimeCC(); 4018 if (cc != llvm::CallingConv::C) 4019 FI.setEffectiveCallingConvention(cc); 4020 } 4021 4022 /// Return the default calling convention that LLVM will use. 4023 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const { 4024 // The default calling convention that LLVM will infer. 4025 if (isEABIHF()) 4026 return llvm::CallingConv::ARM_AAPCS_VFP; 4027 else if (isEABI()) 4028 return llvm::CallingConv::ARM_AAPCS; 4029 else 4030 return llvm::CallingConv::ARM_APCS; 4031 } 4032 4033 /// Return the calling convention that our ABI would like us to use 4034 /// as the C calling convention. 4035 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const { 4036 switch (getABIKind()) { 4037 case APCS: return llvm::CallingConv::ARM_APCS; 4038 case AAPCS: return llvm::CallingConv::ARM_AAPCS; 4039 case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 4040 } 4041 llvm_unreachable("bad ABI kind"); 4042 } 4043 4044 void ARMABIInfo::setRuntimeCC() { 4045 assert(getRuntimeCC() == llvm::CallingConv::C); 4046 4047 // Don't muddy up the IR with a ton of explicit annotations if 4048 // they'd just match what LLVM will infer from the triple. 4049 llvm::CallingConv::ID abiCC = getABIDefaultCC(); 4050 if (abiCC != getLLVMDefaultCC()) 4051 RuntimeCC = abiCC; 4052 } 4053 4054 /// isHomogeneousAggregate - Return true if a type is an AAPCS-VFP homogeneous 4055 /// aggregate. If HAMembers is non-null, the number of base elements 4056 /// contained in the type is returned through it; this is used for the 4057 /// recursive calls that check aggregate component types. 4058 static bool isHomogeneousAggregate(QualType Ty, const Type *&Base, 4059 ASTContext &Context, uint64_t *HAMembers) { 4060 uint64_t Members = 0; 4061 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 4062 if (!isHomogeneousAggregate(AT->getElementType(), Base, Context, &Members)) 4063 return false; 4064 Members *= AT->getSize().getZExtValue(); 4065 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 4066 const RecordDecl *RD = RT->getDecl(); 4067 if (RD->hasFlexibleArrayMember()) 4068 return false; 4069 4070 Members = 0; 4071 for (const auto *FD : RD->fields()) { 4072 uint64_t FldMembers; 4073 if (!isHomogeneousAggregate(FD->getType(), Base, Context, &FldMembers)) 4074 return false; 4075 4076 Members = (RD->isUnion() ? 4077 std::max(Members, FldMembers) : Members + FldMembers); 4078 } 4079 } else { 4080 Members = 1; 4081 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 4082 Members = 2; 4083 Ty = CT->getElementType(); 4084 } 4085 4086 // Homogeneous aggregates for AAPCS-VFP must have base types of float, 4087 // double, or 64-bit or 128-bit vectors. 4088 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 4089 if (BT->getKind() != BuiltinType::Float && 4090 BT->getKind() != BuiltinType::Double && 4091 BT->getKind() != BuiltinType::LongDouble) 4092 return false; 4093 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 4094 unsigned VecSize = Context.getTypeSize(VT); 4095 if (VecSize != 64 && VecSize != 128) 4096 return false; 4097 } else { 4098 return false; 4099 } 4100 4101 // The base type must be the same for all members. Vector types of the 4102 // same total size are treated as being equivalent here. 4103 const Type *TyPtr = Ty.getTypePtr(); 4104 if (!Base) 4105 Base = TyPtr; 4106 4107 if (Base != TyPtr) { 4108 // Homogeneous aggregates are defined as containing members with the 4109 // same machine type. There are two cases in which two members have 4110 // different TypePtrs but the same machine type: 4111 4112 // 1) Vectors of the same length, regardless of the type and number 4113 // of their members. 4114 const bool SameLengthVectors = Base->isVectorType() && TyPtr->isVectorType() 4115 && (Context.getTypeSize(Base) == Context.getTypeSize(TyPtr)); 4116 4117 // 2) In the 32-bit AAPCS, `double' and `long double' have the same 4118 // machine type. This is not the case for the 64-bit AAPCS. 4119 const bool SameSizeDoubles = 4120 ( ( Base->isSpecificBuiltinType(BuiltinType::Double) 4121 && TyPtr->isSpecificBuiltinType(BuiltinType::LongDouble)) 4122 || ( Base->isSpecificBuiltinType(BuiltinType::LongDouble) 4123 && TyPtr->isSpecificBuiltinType(BuiltinType::Double))) 4124 && (Context.getTypeSize(Base) == Context.getTypeSize(TyPtr)); 4125 4126 if (!SameLengthVectors && !SameSizeDoubles) 4127 return false; 4128 } 4129 } 4130 4131 // Homogeneous Aggregates can have at most 4 members of the base type. 4132 if (HAMembers) 4133 *HAMembers = Members; 4134 4135 return (Members > 0 && Members <= 4); 4136 } 4137 4138 /// markAllocatedVFPs - update VFPRegs according to the alignment and 4139 /// number of VFP registers (unit is S register) requested. 4140 void ARMABIInfo::markAllocatedVFPs(unsigned Alignment, 4141 unsigned NumRequired) const { 4142 // Early Exit. 4143 if (AllocatedVFPs >= 16) { 4144 // We use AllocatedVFP > 16 to signal that some CPRCs were allocated on 4145 // the stack. 4146 AllocatedVFPs = 17; 4147 return; 4148 } 4149 // C.1.vfp If the argument is a VFP CPRC and there are sufficient consecutive 4150 // VFP registers of the appropriate type unallocated then the argument is 4151 // allocated to the lowest-numbered sequence of such registers. 4152 for (unsigned I = 0; I < 16; I += Alignment) { 4153 bool FoundSlot = true; 4154 for (unsigned J = I, JEnd = I + NumRequired; J < JEnd; J++) 4155 if (J >= 16 || VFPRegs[J]) { 4156 FoundSlot = false; 4157 break; 4158 } 4159 if (FoundSlot) { 4160 for (unsigned J = I, JEnd = I + NumRequired; J < JEnd; J++) 4161 VFPRegs[J] = 1; 4162 AllocatedVFPs += NumRequired; 4163 return; 4164 } 4165 } 4166 // C.2.vfp If the argument is a VFP CPRC then any VFP registers that are 4167 // unallocated are marked as unavailable. 4168 for (unsigned I = 0; I < 16; I++) 4169 VFPRegs[I] = 1; 4170 AllocatedVFPs = 17; // We do not have enough VFP registers. 4171 } 4172 4173 /// Update AllocatedGPRs to record the number of general purpose registers 4174 /// which have been allocated. It is valid for AllocatedGPRs to go above 4, 4175 /// this represents arguments being stored on the stack. 4176 void ARMABIInfo::markAllocatedGPRs(unsigned Alignment, 4177 unsigned NumRequired) const { 4178 assert((Alignment == 1 || Alignment == 2) && "Alignment must be 4 or 8 bytes"); 4179 4180 if (Alignment == 2 && AllocatedGPRs & 0x1) 4181 AllocatedGPRs += 1; 4182 4183 AllocatedGPRs += NumRequired; 4184 } 4185 4186 void ARMABIInfo::resetAllocatedRegs(void) const { 4187 AllocatedGPRs = 0; 4188 AllocatedVFPs = 0; 4189 for (unsigned i = 0; i < NumVFPs; ++i) 4190 VFPRegs[i] = 0; 4191 } 4192 4193 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, bool isVariadic, 4194 bool &IsCPRC) const { 4195 // We update number of allocated VFPs according to 4196 // 6.1.2.1 The following argument types are VFP CPRCs: 4197 // A single-precision floating-point type (including promoted 4198 // half-precision types); A double-precision floating-point type; 4199 // A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate 4200 // with a Base Type of a single- or double-precision floating-point type, 4201 // 64-bit containerized vectors or 128-bit containerized vectors with one 4202 // to four Elements. 4203 4204 // Handle illegal vector types here. 4205 if (isIllegalVectorType(Ty)) { 4206 uint64_t Size = getContext().getTypeSize(Ty); 4207 if (Size <= 32) { 4208 llvm::Type *ResType = 4209 llvm::Type::getInt32Ty(getVMContext()); 4210 markAllocatedGPRs(1, 1); 4211 return ABIArgInfo::getDirect(ResType); 4212 } 4213 if (Size == 64) { 4214 llvm::Type *ResType = llvm::VectorType::get( 4215 llvm::Type::getInt32Ty(getVMContext()), 2); 4216 if (getABIKind() == ARMABIInfo::AAPCS || isVariadic){ 4217 markAllocatedGPRs(2, 2); 4218 } else { 4219 markAllocatedVFPs(2, 2); 4220 IsCPRC = true; 4221 } 4222 return ABIArgInfo::getDirect(ResType); 4223 } 4224 if (Size == 128) { 4225 llvm::Type *ResType = llvm::VectorType::get( 4226 llvm::Type::getInt32Ty(getVMContext()), 4); 4227 if (getABIKind() == ARMABIInfo::AAPCS || isVariadic) { 4228 markAllocatedGPRs(2, 4); 4229 } else { 4230 markAllocatedVFPs(4, 4); 4231 IsCPRC = true; 4232 } 4233 return ABIArgInfo::getDirect(ResType); 4234 } 4235 markAllocatedGPRs(1, 1); 4236 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 4237 } 4238 // Update VFPRegs for legal vector types. 4239 if (getABIKind() == ARMABIInfo::AAPCS_VFP && !isVariadic) { 4240 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4241 uint64_t Size = getContext().getTypeSize(VT); 4242 // Size of a legal vector should be power of 2 and above 64. 4243 markAllocatedVFPs(Size >= 128 ? 4 : 2, Size / 32); 4244 IsCPRC = true; 4245 } 4246 } 4247 // Update VFPRegs for floating point types. 4248 if (getABIKind() == ARMABIInfo::AAPCS_VFP && !isVariadic) { 4249 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 4250 if (BT->getKind() == BuiltinType::Half || 4251 BT->getKind() == BuiltinType::Float) { 4252 markAllocatedVFPs(1, 1); 4253 IsCPRC = true; 4254 } 4255 if (BT->getKind() == BuiltinType::Double || 4256 BT->getKind() == BuiltinType::LongDouble) { 4257 markAllocatedVFPs(2, 2); 4258 IsCPRC = true; 4259 } 4260 } 4261 } 4262 4263 if (!isAggregateTypeForABI(Ty)) { 4264 // Treat an enum type as its underlying type. 4265 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 4266 Ty = EnumTy->getDecl()->getIntegerType(); 4267 } 4268 4269 unsigned Size = getContext().getTypeSize(Ty); 4270 if (!IsCPRC) 4271 markAllocatedGPRs(Size > 32 ? 2 : 1, (Size + 31) / 32); 4272 return (Ty->isPromotableIntegerType() ? 4273 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 4274 } 4275 4276 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 4277 markAllocatedGPRs(1, 1); 4278 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 4279 } 4280 4281 // Ignore empty records. 4282 if (isEmptyRecord(getContext(), Ty, true)) 4283 return ABIArgInfo::getIgnore(); 4284 4285 if (getABIKind() == ARMABIInfo::AAPCS_VFP && !isVariadic) { 4286 // Homogeneous Aggregates need to be expanded when we can fit the aggregate 4287 // into VFP registers. 4288 const Type *Base = nullptr; 4289 uint64_t Members = 0; 4290 if (isHomogeneousAggregate(Ty, Base, getContext(), &Members)) { 4291 assert(Base && "Base class should be set for homogeneous aggregate"); 4292 // Base can be a floating-point or a vector. 4293 if (Base->isVectorType()) { 4294 // ElementSize is in number of floats. 4295 unsigned ElementSize = getContext().getTypeSize(Base) == 64 ? 2 : 4; 4296 markAllocatedVFPs(ElementSize, 4297 Members * ElementSize); 4298 } else if (Base->isSpecificBuiltinType(BuiltinType::Float)) 4299 markAllocatedVFPs(1, Members); 4300 else { 4301 assert(Base->isSpecificBuiltinType(BuiltinType::Double) || 4302 Base->isSpecificBuiltinType(BuiltinType::LongDouble)); 4303 markAllocatedVFPs(2, Members * 2); 4304 } 4305 IsCPRC = true; 4306 return ABIArgInfo::getDirect(); 4307 } 4308 } 4309 4310 // Support byval for ARM. 4311 // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at 4312 // most 8-byte. We realign the indirect argument if type alignment is bigger 4313 // than ABI alignment. 4314 uint64_t ABIAlign = 4; 4315 uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8; 4316 if (getABIKind() == ARMABIInfo::AAPCS_VFP || 4317 getABIKind() == ARMABIInfo::AAPCS) 4318 ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8); 4319 if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) { 4320 // Update Allocated GPRs. Since this is only used when the size of the 4321 // argument is greater than 64 bytes, this will always use up any available 4322 // registers (of which there are 4). We also don't care about getting the 4323 // alignment right, because general-purpose registers cannot be back-filled. 4324 markAllocatedGPRs(1, 4); 4325 return ABIArgInfo::getIndirect(TyAlign, /*ByVal=*/true, 4326 /*Realign=*/TyAlign > ABIAlign); 4327 } 4328 4329 // Otherwise, pass by coercing to a structure of the appropriate size. 4330 llvm::Type* ElemTy; 4331 unsigned SizeRegs; 4332 // FIXME: Try to match the types of the arguments more accurately where 4333 // we can. 4334 if (getContext().getTypeAlign(Ty) <= 32) { 4335 ElemTy = llvm::Type::getInt32Ty(getVMContext()); 4336 SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32; 4337 markAllocatedGPRs(1, SizeRegs); 4338 } else { 4339 ElemTy = llvm::Type::getInt64Ty(getVMContext()); 4340 SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64; 4341 markAllocatedGPRs(2, SizeRegs * 2); 4342 } 4343 4344 llvm::Type *STy = 4345 llvm::StructType::get(llvm::ArrayType::get(ElemTy, SizeRegs), NULL); 4346 return ABIArgInfo::getDirect(STy); 4347 } 4348 4349 static bool isIntegerLikeType(QualType Ty, ASTContext &Context, 4350 llvm::LLVMContext &VMContext) { 4351 // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure 4352 // is called integer-like if its size is less than or equal to one word, and 4353 // the offset of each of its addressable sub-fields is zero. 4354 4355 uint64_t Size = Context.getTypeSize(Ty); 4356 4357 // Check that the type fits in a word. 4358 if (Size > 32) 4359 return false; 4360 4361 // FIXME: Handle vector types! 4362 if (Ty->isVectorType()) 4363 return false; 4364 4365 // Float types are never treated as "integer like". 4366 if (Ty->isRealFloatingType()) 4367 return false; 4368 4369 // If this is a builtin or pointer type then it is ok. 4370 if (Ty->getAs<BuiltinType>() || Ty->isPointerType()) 4371 return true; 4372 4373 // Small complex integer types are "integer like". 4374 if (const ComplexType *CT = Ty->getAs<ComplexType>()) 4375 return isIntegerLikeType(CT->getElementType(), Context, VMContext); 4376 4377 // Single element and zero sized arrays should be allowed, by the definition 4378 // above, but they are not. 4379 4380 // Otherwise, it must be a record type. 4381 const RecordType *RT = Ty->getAs<RecordType>(); 4382 if (!RT) return false; 4383 4384 // Ignore records with flexible arrays. 4385 const RecordDecl *RD = RT->getDecl(); 4386 if (RD->hasFlexibleArrayMember()) 4387 return false; 4388 4389 // Check that all sub-fields are at offset 0, and are themselves "integer 4390 // like". 4391 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 4392 4393 bool HadField = false; 4394 unsigned idx = 0; 4395 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 4396 i != e; ++i, ++idx) { 4397 const FieldDecl *FD = *i; 4398 4399 // Bit-fields are not addressable, we only need to verify they are "integer 4400 // like". We still have to disallow a subsequent non-bitfield, for example: 4401 // struct { int : 0; int x } 4402 // is non-integer like according to gcc. 4403 if (FD->isBitField()) { 4404 if (!RD->isUnion()) 4405 HadField = true; 4406 4407 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 4408 return false; 4409 4410 continue; 4411 } 4412 4413 // Check if this field is at offset 0. 4414 if (Layout.getFieldOffset(idx) != 0) 4415 return false; 4416 4417 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 4418 return false; 4419 4420 // Only allow at most one field in a structure. This doesn't match the 4421 // wording above, but follows gcc in situations with a field following an 4422 // empty structure. 4423 if (!RD->isUnion()) { 4424 if (HadField) 4425 return false; 4426 4427 HadField = true; 4428 } 4429 } 4430 4431 return true; 4432 } 4433 4434 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, 4435 bool isVariadic) const { 4436 if (RetTy->isVoidType()) 4437 return ABIArgInfo::getIgnore(); 4438 4439 // Large vector types should be returned via memory. 4440 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) { 4441 markAllocatedGPRs(1, 1); 4442 return ABIArgInfo::getIndirect(0); 4443 } 4444 4445 if (!isAggregateTypeForABI(RetTy)) { 4446 // Treat an enum type as its underlying type. 4447 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 4448 RetTy = EnumTy->getDecl()->getIntegerType(); 4449 4450 return (RetTy->isPromotableIntegerType() ? 4451 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 4452 } 4453 4454 // Are we following APCS? 4455 if (getABIKind() == APCS) { 4456 if (isEmptyRecord(getContext(), RetTy, false)) 4457 return ABIArgInfo::getIgnore(); 4458 4459 // Complex types are all returned as packed integers. 4460 // 4461 // FIXME: Consider using 2 x vector types if the back end handles them 4462 // correctly. 4463 if (RetTy->isAnyComplexType()) 4464 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 4465 getContext().getTypeSize(RetTy))); 4466 4467 // Integer like structures are returned in r0. 4468 if (isIntegerLikeType(RetTy, getContext(), getVMContext())) { 4469 // Return in the smallest viable integer type. 4470 uint64_t Size = getContext().getTypeSize(RetTy); 4471 if (Size <= 8) 4472 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 4473 if (Size <= 16) 4474 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 4475 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 4476 } 4477 4478 // Otherwise return in memory. 4479 markAllocatedGPRs(1, 1); 4480 return ABIArgInfo::getIndirect(0); 4481 } 4482 4483 // Otherwise this is an AAPCS variant. 4484 4485 if (isEmptyRecord(getContext(), RetTy, true)) 4486 return ABIArgInfo::getIgnore(); 4487 4488 // Check for homogeneous aggregates with AAPCS-VFP. 4489 if (getABIKind() == AAPCS_VFP && !isVariadic) { 4490 const Type *Base = nullptr; 4491 if (isHomogeneousAggregate(RetTy, Base, getContext())) { 4492 assert(Base && "Base class should be set for homogeneous aggregate"); 4493 // Homogeneous Aggregates are returned directly. 4494 return ABIArgInfo::getDirect(); 4495 } 4496 } 4497 4498 // Aggregates <= 4 bytes are returned in r0; other aggregates 4499 // are returned indirectly. 4500 uint64_t Size = getContext().getTypeSize(RetTy); 4501 if (Size <= 32) { 4502 if (getDataLayout().isBigEndian()) 4503 // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4) 4504 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 4505 4506 // Return in the smallest viable integer type. 4507 if (Size <= 8) 4508 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 4509 if (Size <= 16) 4510 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 4511 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 4512 } 4513 4514 markAllocatedGPRs(1, 1); 4515 return ABIArgInfo::getIndirect(0); 4516 } 4517 4518 /// isIllegalVector - check whether Ty is an illegal vector type. 4519 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const { 4520 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4521 // Check whether VT is legal. 4522 unsigned NumElements = VT->getNumElements(); 4523 uint64_t Size = getContext().getTypeSize(VT); 4524 // NumElements should be power of 2. 4525 if ((NumElements & (NumElements - 1)) != 0) 4526 return true; 4527 // Size should be greater than 32 bits. 4528 return Size <= 32; 4529 } 4530 return false; 4531 } 4532 4533 llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 4534 CodeGenFunction &CGF) const { 4535 llvm::Type *BP = CGF.Int8PtrTy; 4536 llvm::Type *BPP = CGF.Int8PtrPtrTy; 4537 4538 CGBuilderTy &Builder = CGF.Builder; 4539 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); 4540 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 4541 4542 if (isEmptyRecord(getContext(), Ty, true)) { 4543 // These are ignored for parameter passing purposes. 4544 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 4545 return Builder.CreateBitCast(Addr, PTy); 4546 } 4547 4548 uint64_t Size = CGF.getContext().getTypeSize(Ty) / 8; 4549 uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8; 4550 bool IsIndirect = false; 4551 4552 // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for 4553 // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte. 4554 if (getABIKind() == ARMABIInfo::AAPCS_VFP || 4555 getABIKind() == ARMABIInfo::AAPCS) 4556 TyAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8); 4557 else 4558 TyAlign = 4; 4559 // Use indirect if size of the illegal vector is bigger than 16 bytes. 4560 if (isIllegalVectorType(Ty) && Size > 16) { 4561 IsIndirect = true; 4562 Size = 4; 4563 TyAlign = 4; 4564 } 4565 4566 // Handle address alignment for ABI alignment > 4 bytes. 4567 if (TyAlign > 4) { 4568 assert((TyAlign & (TyAlign - 1)) == 0 && 4569 "Alignment is not power of 2!"); 4570 llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty); 4571 AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1)); 4572 AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1))); 4573 Addr = Builder.CreateIntToPtr(AddrAsInt, BP, "ap.align"); 4574 } 4575 4576 uint64_t Offset = 4577 llvm::RoundUpToAlignment(Size, 4); 4578 llvm::Value *NextAddr = 4579 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), 4580 "ap.next"); 4581 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 4582 4583 if (IsIndirect) 4584 Addr = Builder.CreateLoad(Builder.CreateBitCast(Addr, BPP)); 4585 else if (TyAlign < CGF.getContext().getTypeAlign(Ty) / 8) { 4586 // We can't directly cast ap.cur to pointer to a vector type, since ap.cur 4587 // may not be correctly aligned for the vector type. We create an aligned 4588 // temporary space and copy the content over from ap.cur to the temporary 4589 // space. This is necessary if the natural alignment of the type is greater 4590 // than the ABI alignment. 4591 llvm::Type *I8PtrTy = Builder.getInt8PtrTy(); 4592 CharUnits CharSize = getContext().getTypeSizeInChars(Ty); 4593 llvm::Value *AlignedTemp = CGF.CreateTempAlloca(CGF.ConvertType(Ty), 4594 "var.align"); 4595 llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy); 4596 llvm::Value *Src = Builder.CreateBitCast(Addr, I8PtrTy); 4597 Builder.CreateMemCpy(Dst, Src, 4598 llvm::ConstantInt::get(CGF.IntPtrTy, CharSize.getQuantity()), 4599 TyAlign, false); 4600 Addr = AlignedTemp; //The content is in aligned location. 4601 } 4602 llvm::Type *PTy = 4603 llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 4604 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); 4605 4606 return AddrTyped; 4607 } 4608 4609 namespace { 4610 4611 class NaClARMABIInfo : public ABIInfo { 4612 public: 4613 NaClARMABIInfo(CodeGen::CodeGenTypes &CGT, ARMABIInfo::ABIKind Kind) 4614 : ABIInfo(CGT), PInfo(CGT), NInfo(CGT, Kind) {} 4615 void computeInfo(CGFunctionInfo &FI) const override; 4616 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 4617 CodeGenFunction &CGF) const override; 4618 private: 4619 PNaClABIInfo PInfo; // Used for generating calls with pnaclcall callingconv. 4620 ARMABIInfo NInfo; // Used for everything else. 4621 }; 4622 4623 class NaClARMTargetCodeGenInfo : public TargetCodeGenInfo { 4624 public: 4625 NaClARMTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, ARMABIInfo::ABIKind Kind) 4626 : TargetCodeGenInfo(new NaClARMABIInfo(CGT, Kind)) {} 4627 }; 4628 4629 } 4630 4631 void NaClARMABIInfo::computeInfo(CGFunctionInfo &FI) const { 4632 if (FI.getASTCallingConvention() == CC_PnaclCall) 4633 PInfo.computeInfo(FI); 4634 else 4635 static_cast<const ABIInfo&>(NInfo).computeInfo(FI); 4636 } 4637 4638 llvm::Value *NaClARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 4639 CodeGenFunction &CGF) const { 4640 // Always use the native convention; calling pnacl-style varargs functions 4641 // is unsupported. 4642 return static_cast<const ABIInfo&>(NInfo).EmitVAArg(VAListAddr, Ty, CGF); 4643 } 4644 4645 //===----------------------------------------------------------------------===// 4646 // NVPTX ABI Implementation 4647 //===----------------------------------------------------------------------===// 4648 4649 namespace { 4650 4651 class NVPTXABIInfo : public ABIInfo { 4652 public: 4653 NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 4654 4655 ABIArgInfo classifyReturnType(QualType RetTy) const; 4656 ABIArgInfo classifyArgumentType(QualType Ty) const; 4657 4658 void computeInfo(CGFunctionInfo &FI) const override; 4659 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 4660 CodeGenFunction &CFG) const override; 4661 }; 4662 4663 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo { 4664 public: 4665 NVPTXTargetCodeGenInfo(CodeGenTypes &CGT) 4666 : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {} 4667 4668 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 4669 CodeGen::CodeGenModule &M) const override; 4670 private: 4671 // Adds a NamedMDNode with F, Name, and Operand as operands, and adds the 4672 // resulting MDNode to the nvvm.annotations MDNode. 4673 static void addNVVMMetadata(llvm::Function *F, StringRef Name, int Operand); 4674 }; 4675 4676 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const { 4677 if (RetTy->isVoidType()) 4678 return ABIArgInfo::getIgnore(); 4679 4680 // note: this is different from default ABI 4681 if (!RetTy->isScalarType()) 4682 return ABIArgInfo::getDirect(); 4683 4684 // Treat an enum type as its underlying type. 4685 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 4686 RetTy = EnumTy->getDecl()->getIntegerType(); 4687 4688 return (RetTy->isPromotableIntegerType() ? 4689 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 4690 } 4691 4692 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const { 4693 // Treat an enum type as its underlying type. 4694 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4695 Ty = EnumTy->getDecl()->getIntegerType(); 4696 4697 return (Ty->isPromotableIntegerType() ? 4698 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 4699 } 4700 4701 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const { 4702 if (!getCXXABI().classifyReturnType(FI)) 4703 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4704 for (auto &I : FI.arguments()) 4705 I.info = classifyArgumentType(I.type); 4706 4707 // Always honor user-specified calling convention. 4708 if (FI.getCallingConvention() != llvm::CallingConv::C) 4709 return; 4710 4711 FI.setEffectiveCallingConvention(getRuntimeCC()); 4712 } 4713 4714 llvm::Value *NVPTXABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 4715 CodeGenFunction &CFG) const { 4716 llvm_unreachable("NVPTX does not support varargs"); 4717 } 4718 4719 void NVPTXTargetCodeGenInfo:: 4720 SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 4721 CodeGen::CodeGenModule &M) const{ 4722 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); 4723 if (!FD) return; 4724 4725 llvm::Function *F = cast<llvm::Function>(GV); 4726 4727 // Perform special handling in OpenCL mode 4728 if (M.getLangOpts().OpenCL) { 4729 // Use OpenCL function attributes to check for kernel functions 4730 // By default, all functions are device functions 4731 if (FD->hasAttr<OpenCLKernelAttr>()) { 4732 // OpenCL __kernel functions get kernel metadata 4733 // Create !{<func-ref>, metadata !"kernel", i32 1} node 4734 addNVVMMetadata(F, "kernel", 1); 4735 // And kernel functions are not subject to inlining 4736 F->addFnAttr(llvm::Attribute::NoInline); 4737 } 4738 } 4739 4740 // Perform special handling in CUDA mode. 4741 if (M.getLangOpts().CUDA) { 4742 // CUDA __global__ functions get a kernel metadata entry. Since 4743 // __global__ functions cannot be called from the device, we do not 4744 // need to set the noinline attribute. 4745 if (FD->hasAttr<CUDAGlobalAttr>()) { 4746 // Create !{<func-ref>, metadata !"kernel", i32 1} node 4747 addNVVMMetadata(F, "kernel", 1); 4748 } 4749 if (FD->hasAttr<CUDALaunchBoundsAttr>()) { 4750 // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node 4751 addNVVMMetadata(F, "maxntidx", 4752 FD->getAttr<CUDALaunchBoundsAttr>()->getMaxThreads()); 4753 // min blocks is a default argument for CUDALaunchBoundsAttr, so getting a 4754 // zero value from getMinBlocks either means it was not specified in 4755 // __launch_bounds__ or the user specified a 0 value. In both cases, we 4756 // don't have to add a PTX directive. 4757 int MinCTASM = FD->getAttr<CUDALaunchBoundsAttr>()->getMinBlocks(); 4758 if (MinCTASM > 0) { 4759 // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node 4760 addNVVMMetadata(F, "minctasm", MinCTASM); 4761 } 4762 } 4763 } 4764 } 4765 4766 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::Function *F, StringRef Name, 4767 int Operand) { 4768 llvm::Module *M = F->getParent(); 4769 llvm::LLVMContext &Ctx = M->getContext(); 4770 4771 // Get "nvvm.annotations" metadata node 4772 llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations"); 4773 4774 llvm::Value *MDVals[] = { 4775 F, llvm::MDString::get(Ctx, Name), 4776 llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand)}; 4777 // Append metadata to nvvm.annotations 4778 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 4779 } 4780 } 4781 4782 //===----------------------------------------------------------------------===// 4783 // SystemZ ABI Implementation 4784 //===----------------------------------------------------------------------===// 4785 4786 namespace { 4787 4788 class SystemZABIInfo : public ABIInfo { 4789 public: 4790 SystemZABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 4791 4792 bool isPromotableIntegerType(QualType Ty) const; 4793 bool isCompoundType(QualType Ty) const; 4794 bool isFPArgumentType(QualType Ty) const; 4795 4796 ABIArgInfo classifyReturnType(QualType RetTy) const; 4797 ABIArgInfo classifyArgumentType(QualType ArgTy) const; 4798 4799 void computeInfo(CGFunctionInfo &FI) const override { 4800 if (!getCXXABI().classifyReturnType(FI)) 4801 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4802 for (auto &I : FI.arguments()) 4803 I.info = classifyArgumentType(I.type); 4804 } 4805 4806 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 4807 CodeGenFunction &CGF) const override; 4808 }; 4809 4810 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo { 4811 public: 4812 SystemZTargetCodeGenInfo(CodeGenTypes &CGT) 4813 : TargetCodeGenInfo(new SystemZABIInfo(CGT)) {} 4814 }; 4815 4816 } 4817 4818 bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const { 4819 // Treat an enum type as its underlying type. 4820 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4821 Ty = EnumTy->getDecl()->getIntegerType(); 4822 4823 // Promotable integer types are required to be promoted by the ABI. 4824 if (Ty->isPromotableIntegerType()) 4825 return true; 4826 4827 // 32-bit values must also be promoted. 4828 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 4829 switch (BT->getKind()) { 4830 case BuiltinType::Int: 4831 case BuiltinType::UInt: 4832 return true; 4833 default: 4834 return false; 4835 } 4836 return false; 4837 } 4838 4839 bool SystemZABIInfo::isCompoundType(QualType Ty) const { 4840 return Ty->isAnyComplexType() || isAggregateTypeForABI(Ty); 4841 } 4842 4843 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const { 4844 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 4845 switch (BT->getKind()) { 4846 case BuiltinType::Float: 4847 case BuiltinType::Double: 4848 return true; 4849 default: 4850 return false; 4851 } 4852 4853 if (const RecordType *RT = Ty->getAsStructureType()) { 4854 const RecordDecl *RD = RT->getDecl(); 4855 bool Found = false; 4856 4857 // If this is a C++ record, check the bases first. 4858 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 4859 for (const auto &I : CXXRD->bases()) { 4860 QualType Base = I.getType(); 4861 4862 // Empty bases don't affect things either way. 4863 if (isEmptyRecord(getContext(), Base, true)) 4864 continue; 4865 4866 if (Found) 4867 return false; 4868 Found = isFPArgumentType(Base); 4869 if (!Found) 4870 return false; 4871 } 4872 4873 // Check the fields. 4874 for (const auto *FD : RD->fields()) { 4875 // Empty bitfields don't affect things either way. 4876 // Unlike isSingleElementStruct(), empty structure and array fields 4877 // do count. So do anonymous bitfields that aren't zero-sized. 4878 if (FD->isBitField() && FD->getBitWidthValue(getContext()) == 0) 4879 return true; 4880 4881 // Unlike isSingleElementStruct(), arrays do not count. 4882 // Nested isFPArgumentType structures still do though. 4883 if (Found) 4884 return false; 4885 Found = isFPArgumentType(FD->getType()); 4886 if (!Found) 4887 return false; 4888 } 4889 4890 // Unlike isSingleElementStruct(), trailing padding is allowed. 4891 // An 8-byte aligned struct s { float f; } is passed as a double. 4892 return Found; 4893 } 4894 4895 return false; 4896 } 4897 4898 llvm::Value *SystemZABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 4899 CodeGenFunction &CGF) const { 4900 // Assume that va_list type is correct; should be pointer to LLVM type: 4901 // struct { 4902 // i64 __gpr; 4903 // i64 __fpr; 4904 // i8 *__overflow_arg_area; 4905 // i8 *__reg_save_area; 4906 // }; 4907 4908 // Every argument occupies 8 bytes and is passed by preference in either 4909 // GPRs or FPRs. 4910 Ty = CGF.getContext().getCanonicalType(Ty); 4911 ABIArgInfo AI = classifyArgumentType(Ty); 4912 bool InFPRs = isFPArgumentType(Ty); 4913 4914 llvm::Type *APTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); 4915 bool IsIndirect = AI.isIndirect(); 4916 unsigned UnpaddedBitSize; 4917 if (IsIndirect) { 4918 APTy = llvm::PointerType::getUnqual(APTy); 4919 UnpaddedBitSize = 64; 4920 } else 4921 UnpaddedBitSize = getContext().getTypeSize(Ty); 4922 unsigned PaddedBitSize = 64; 4923 assert((UnpaddedBitSize <= PaddedBitSize) && "Invalid argument size."); 4924 4925 unsigned PaddedSize = PaddedBitSize / 8; 4926 unsigned Padding = (PaddedBitSize - UnpaddedBitSize) / 8; 4927 4928 unsigned MaxRegs, RegCountField, RegSaveIndex, RegPadding; 4929 if (InFPRs) { 4930 MaxRegs = 4; // Maximum of 4 FPR arguments 4931 RegCountField = 1; // __fpr 4932 RegSaveIndex = 16; // save offset for f0 4933 RegPadding = 0; // floats are passed in the high bits of an FPR 4934 } else { 4935 MaxRegs = 5; // Maximum of 5 GPR arguments 4936 RegCountField = 0; // __gpr 4937 RegSaveIndex = 2; // save offset for r2 4938 RegPadding = Padding; // values are passed in the low bits of a GPR 4939 } 4940 4941 llvm::Value *RegCountPtr = 4942 CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr"); 4943 llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count"); 4944 llvm::Type *IndexTy = RegCount->getType(); 4945 llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs); 4946 llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV, 4947 "fits_in_regs"); 4948 4949 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 4950 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 4951 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 4952 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 4953 4954 // Emit code to load the value if it was passed in registers. 4955 CGF.EmitBlock(InRegBlock); 4956 4957 // Work out the address of an argument register. 4958 llvm::Value *PaddedSizeV = llvm::ConstantInt::get(IndexTy, PaddedSize); 4959 llvm::Value *ScaledRegCount = 4960 CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count"); 4961 llvm::Value *RegBase = 4962 llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize + RegPadding); 4963 llvm::Value *RegOffset = 4964 CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset"); 4965 llvm::Value *RegSaveAreaPtr = 4966 CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr"); 4967 llvm::Value *RegSaveArea = 4968 CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area"); 4969 llvm::Value *RawRegAddr = 4970 CGF.Builder.CreateGEP(RegSaveArea, RegOffset, "raw_reg_addr"); 4971 llvm::Value *RegAddr = 4972 CGF.Builder.CreateBitCast(RawRegAddr, APTy, "reg_addr"); 4973 4974 // Update the register count 4975 llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1); 4976 llvm::Value *NewRegCount = 4977 CGF.Builder.CreateAdd(RegCount, One, "reg_count"); 4978 CGF.Builder.CreateStore(NewRegCount, RegCountPtr); 4979 CGF.EmitBranch(ContBlock); 4980 4981 // Emit code to load the value if it was passed in memory. 4982 CGF.EmitBlock(InMemBlock); 4983 4984 // Work out the address of a stack argument. 4985 llvm::Value *OverflowArgAreaPtr = 4986 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr"); 4987 llvm::Value *OverflowArgArea = 4988 CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"); 4989 llvm::Value *PaddingV = llvm::ConstantInt::get(IndexTy, Padding); 4990 llvm::Value *RawMemAddr = 4991 CGF.Builder.CreateGEP(OverflowArgArea, PaddingV, "raw_mem_addr"); 4992 llvm::Value *MemAddr = 4993 CGF.Builder.CreateBitCast(RawMemAddr, APTy, "mem_addr"); 4994 4995 // Update overflow_arg_area_ptr pointer 4996 llvm::Value *NewOverflowArgArea = 4997 CGF.Builder.CreateGEP(OverflowArgArea, PaddedSizeV, "overflow_arg_area"); 4998 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 4999 CGF.EmitBranch(ContBlock); 5000 5001 // Return the appropriate result. 5002 CGF.EmitBlock(ContBlock); 5003 llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(APTy, 2, "va_arg.addr"); 5004 ResAddr->addIncoming(RegAddr, InRegBlock); 5005 ResAddr->addIncoming(MemAddr, InMemBlock); 5006 5007 if (IsIndirect) 5008 return CGF.Builder.CreateLoad(ResAddr, "indirect_arg"); 5009 5010 return ResAddr; 5011 } 5012 5013 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const { 5014 if (RetTy->isVoidType()) 5015 return ABIArgInfo::getIgnore(); 5016 if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64) 5017 return ABIArgInfo::getIndirect(0); 5018 return (isPromotableIntegerType(RetTy) ? 5019 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 5020 } 5021 5022 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const { 5023 // Handle the generic C++ ABI. 5024 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 5025 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 5026 5027 // Integers and enums are extended to full register width. 5028 if (isPromotableIntegerType(Ty)) 5029 return ABIArgInfo::getExtend(); 5030 5031 // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly. 5032 uint64_t Size = getContext().getTypeSize(Ty); 5033 if (Size != 8 && Size != 16 && Size != 32 && Size != 64) 5034 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 5035 5036 // Handle small structures. 5037 if (const RecordType *RT = Ty->getAs<RecordType>()) { 5038 // Structures with flexible arrays have variable length, so really 5039 // fail the size test above. 5040 const RecordDecl *RD = RT->getDecl(); 5041 if (RD->hasFlexibleArrayMember()) 5042 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 5043 5044 // The structure is passed as an unextended integer, a float, or a double. 5045 llvm::Type *PassTy; 5046 if (isFPArgumentType(Ty)) { 5047 assert(Size == 32 || Size == 64); 5048 if (Size == 32) 5049 PassTy = llvm::Type::getFloatTy(getVMContext()); 5050 else 5051 PassTy = llvm::Type::getDoubleTy(getVMContext()); 5052 } else 5053 PassTy = llvm::IntegerType::get(getVMContext(), Size); 5054 return ABIArgInfo::getDirect(PassTy); 5055 } 5056 5057 // Non-structure compounds are passed indirectly. 5058 if (isCompoundType(Ty)) 5059 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 5060 5061 return ABIArgInfo::getDirect(nullptr); 5062 } 5063 5064 //===----------------------------------------------------------------------===// 5065 // MSP430 ABI Implementation 5066 //===----------------------------------------------------------------------===// 5067 5068 namespace { 5069 5070 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo { 5071 public: 5072 MSP430TargetCodeGenInfo(CodeGenTypes &CGT) 5073 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 5074 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5075 CodeGen::CodeGenModule &M) const override; 5076 }; 5077 5078 } 5079 5080 void MSP430TargetCodeGenInfo::SetTargetAttributes(const Decl *D, 5081 llvm::GlobalValue *GV, 5082 CodeGen::CodeGenModule &M) const { 5083 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 5084 if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) { 5085 // Handle 'interrupt' attribute: 5086 llvm::Function *F = cast<llvm::Function>(GV); 5087 5088 // Step 1: Set ISR calling convention. 5089 F->setCallingConv(llvm::CallingConv::MSP430_INTR); 5090 5091 // Step 2: Add attributes goodness. 5092 F->addFnAttr(llvm::Attribute::NoInline); 5093 5094 // Step 3: Emit ISR vector alias. 5095 unsigned Num = attr->getNumber() / 2; 5096 llvm::GlobalAlias::create(llvm::Function::ExternalLinkage, 5097 "__isr_" + Twine(Num), F); 5098 } 5099 } 5100 } 5101 5102 //===----------------------------------------------------------------------===// 5103 // MIPS ABI Implementation. This works for both little-endian and 5104 // big-endian variants. 5105 //===----------------------------------------------------------------------===// 5106 5107 namespace { 5108 class MipsABIInfo : public ABIInfo { 5109 bool IsO32; 5110 unsigned MinABIStackAlignInBytes, StackAlignInBytes; 5111 void CoerceToIntArgs(uint64_t TySize, 5112 SmallVectorImpl<llvm::Type *> &ArgList) const; 5113 llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const; 5114 llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const; 5115 llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const; 5116 public: 5117 MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) : 5118 ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8), 5119 StackAlignInBytes(IsO32 ? 8 : 16) {} 5120 5121 ABIArgInfo classifyReturnType(QualType RetTy) const; 5122 ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const; 5123 void computeInfo(CGFunctionInfo &FI) const override; 5124 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5125 CodeGenFunction &CGF) const override; 5126 }; 5127 5128 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo { 5129 unsigned SizeOfUnwindException; 5130 public: 5131 MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32) 5132 : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)), 5133 SizeOfUnwindException(IsO32 ? 24 : 32) {} 5134 5135 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 5136 return 29; 5137 } 5138 5139 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5140 CodeGen::CodeGenModule &CGM) const override { 5141 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); 5142 if (!FD) return; 5143 llvm::Function *Fn = cast<llvm::Function>(GV); 5144 if (FD->hasAttr<Mips16Attr>()) { 5145 Fn->addFnAttr("mips16"); 5146 } 5147 else if (FD->hasAttr<NoMips16Attr>()) { 5148 Fn->addFnAttr("nomips16"); 5149 } 5150 } 5151 5152 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5153 llvm::Value *Address) const override; 5154 5155 unsigned getSizeOfUnwindException() const override { 5156 return SizeOfUnwindException; 5157 } 5158 }; 5159 } 5160 5161 void MipsABIInfo::CoerceToIntArgs(uint64_t TySize, 5162 SmallVectorImpl<llvm::Type *> &ArgList) const { 5163 llvm::IntegerType *IntTy = 5164 llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8); 5165 5166 // Add (TySize / MinABIStackAlignInBytes) args of IntTy. 5167 for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N) 5168 ArgList.push_back(IntTy); 5169 5170 // If necessary, add one more integer type to ArgList. 5171 unsigned R = TySize % (MinABIStackAlignInBytes * 8); 5172 5173 if (R) 5174 ArgList.push_back(llvm::IntegerType::get(getVMContext(), R)); 5175 } 5176 5177 // In N32/64, an aligned double precision floating point field is passed in 5178 // a register. 5179 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const { 5180 SmallVector<llvm::Type*, 8> ArgList, IntArgList; 5181 5182 if (IsO32) { 5183 CoerceToIntArgs(TySize, ArgList); 5184 return llvm::StructType::get(getVMContext(), ArgList); 5185 } 5186 5187 if (Ty->isComplexType()) 5188 return CGT.ConvertType(Ty); 5189 5190 const RecordType *RT = Ty->getAs<RecordType>(); 5191 5192 // Unions/vectors are passed in integer registers. 5193 if (!RT || !RT->isStructureOrClassType()) { 5194 CoerceToIntArgs(TySize, ArgList); 5195 return llvm::StructType::get(getVMContext(), ArgList); 5196 } 5197 5198 const RecordDecl *RD = RT->getDecl(); 5199 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 5200 assert(!(TySize % 8) && "Size of structure must be multiple of 8."); 5201 5202 uint64_t LastOffset = 0; 5203 unsigned idx = 0; 5204 llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64); 5205 5206 // Iterate over fields in the struct/class and check if there are any aligned 5207 // double fields. 5208 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 5209 i != e; ++i, ++idx) { 5210 const QualType Ty = i->getType(); 5211 const BuiltinType *BT = Ty->getAs<BuiltinType>(); 5212 5213 if (!BT || BT->getKind() != BuiltinType::Double) 5214 continue; 5215 5216 uint64_t Offset = Layout.getFieldOffset(idx); 5217 if (Offset % 64) // Ignore doubles that are not aligned. 5218 continue; 5219 5220 // Add ((Offset - LastOffset) / 64) args of type i64. 5221 for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j) 5222 ArgList.push_back(I64); 5223 5224 // Add double type. 5225 ArgList.push_back(llvm::Type::getDoubleTy(getVMContext())); 5226 LastOffset = Offset + 64; 5227 } 5228 5229 CoerceToIntArgs(TySize - LastOffset, IntArgList); 5230 ArgList.append(IntArgList.begin(), IntArgList.end()); 5231 5232 return llvm::StructType::get(getVMContext(), ArgList); 5233 } 5234 5235 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset, 5236 uint64_t Offset) const { 5237 if (OrigOffset + MinABIStackAlignInBytes > Offset) 5238 return nullptr; 5239 5240 return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8); 5241 } 5242 5243 ABIArgInfo 5244 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const { 5245 uint64_t OrigOffset = Offset; 5246 uint64_t TySize = getContext().getTypeSize(Ty); 5247 uint64_t Align = getContext().getTypeAlign(Ty) / 8; 5248 5249 Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes), 5250 (uint64_t)StackAlignInBytes); 5251 unsigned CurrOffset = llvm::RoundUpToAlignment(Offset, Align); 5252 Offset = CurrOffset + llvm::RoundUpToAlignment(TySize, Align * 8) / 8; 5253 5254 if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) { 5255 // Ignore empty aggregates. 5256 if (TySize == 0) 5257 return ABIArgInfo::getIgnore(); 5258 5259 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 5260 Offset = OrigOffset + MinABIStackAlignInBytes; 5261 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 5262 } 5263 5264 // If we have reached here, aggregates are passed directly by coercing to 5265 // another structure type. Padding is inserted if the offset of the 5266 // aggregate is unaligned. 5267 return ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0, 5268 getPaddingType(OrigOffset, CurrOffset)); 5269 } 5270 5271 // Treat an enum type as its underlying type. 5272 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5273 Ty = EnumTy->getDecl()->getIntegerType(); 5274 5275 if (Ty->isPromotableIntegerType()) 5276 return ABIArgInfo::getExtend(); 5277 5278 return ABIArgInfo::getDirect( 5279 nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset)); 5280 } 5281 5282 llvm::Type* 5283 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const { 5284 const RecordType *RT = RetTy->getAs<RecordType>(); 5285 SmallVector<llvm::Type*, 8> RTList; 5286 5287 if (RT && RT->isStructureOrClassType()) { 5288 const RecordDecl *RD = RT->getDecl(); 5289 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 5290 unsigned FieldCnt = Layout.getFieldCount(); 5291 5292 // N32/64 returns struct/classes in floating point registers if the 5293 // following conditions are met: 5294 // 1. The size of the struct/class is no larger than 128-bit. 5295 // 2. The struct/class has one or two fields all of which are floating 5296 // point types. 5297 // 3. The offset of the first field is zero (this follows what gcc does). 5298 // 5299 // Any other composite results are returned in integer registers. 5300 // 5301 if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) { 5302 RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end(); 5303 for (; b != e; ++b) { 5304 const BuiltinType *BT = b->getType()->getAs<BuiltinType>(); 5305 5306 if (!BT || !BT->isFloatingPoint()) 5307 break; 5308 5309 RTList.push_back(CGT.ConvertType(b->getType())); 5310 } 5311 5312 if (b == e) 5313 return llvm::StructType::get(getVMContext(), RTList, 5314 RD->hasAttr<PackedAttr>()); 5315 5316 RTList.clear(); 5317 } 5318 } 5319 5320 CoerceToIntArgs(Size, RTList); 5321 return llvm::StructType::get(getVMContext(), RTList); 5322 } 5323 5324 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const { 5325 uint64_t Size = getContext().getTypeSize(RetTy); 5326 5327 if (RetTy->isVoidType() || Size == 0) 5328 return ABIArgInfo::getIgnore(); 5329 5330 if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) { 5331 if (Size <= 128) { 5332 if (RetTy->isAnyComplexType()) 5333 return ABIArgInfo::getDirect(); 5334 5335 // O32 returns integer vectors in registers. 5336 if (IsO32 && RetTy->isVectorType() && !RetTy->hasFloatingRepresentation()) 5337 return ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size)); 5338 5339 if (!IsO32) 5340 return ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size)); 5341 } 5342 5343 return ABIArgInfo::getIndirect(0); 5344 } 5345 5346 // Treat an enum type as its underlying type. 5347 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5348 RetTy = EnumTy->getDecl()->getIntegerType(); 5349 5350 return (RetTy->isPromotableIntegerType() ? 5351 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 5352 } 5353 5354 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const { 5355 ABIArgInfo &RetInfo = FI.getReturnInfo(); 5356 if (!getCXXABI().classifyReturnType(FI)) 5357 RetInfo = classifyReturnType(FI.getReturnType()); 5358 5359 // Check if a pointer to an aggregate is passed as a hidden argument. 5360 uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0; 5361 5362 for (auto &I : FI.arguments()) 5363 I.info = classifyArgumentType(I.type, Offset); 5364 } 5365 5366 llvm::Value* MipsABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5367 CodeGenFunction &CGF) const { 5368 llvm::Type *BP = CGF.Int8PtrTy; 5369 llvm::Type *BPP = CGF.Int8PtrPtrTy; 5370 5371 CGBuilderTy &Builder = CGF.Builder; 5372 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); 5373 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 5374 int64_t TypeAlign = getContext().getTypeAlign(Ty) / 8; 5375 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 5376 llvm::Value *AddrTyped; 5377 unsigned PtrWidth = getTarget().getPointerWidth(0); 5378 llvm::IntegerType *IntTy = (PtrWidth == 32) ? CGF.Int32Ty : CGF.Int64Ty; 5379 5380 if (TypeAlign > MinABIStackAlignInBytes) { 5381 llvm::Value *AddrAsInt = CGF.Builder.CreatePtrToInt(Addr, IntTy); 5382 llvm::Value *Inc = llvm::ConstantInt::get(IntTy, TypeAlign - 1); 5383 llvm::Value *Mask = llvm::ConstantInt::get(IntTy, -TypeAlign); 5384 llvm::Value *Add = CGF.Builder.CreateAdd(AddrAsInt, Inc); 5385 llvm::Value *And = CGF.Builder.CreateAnd(Add, Mask); 5386 AddrTyped = CGF.Builder.CreateIntToPtr(And, PTy); 5387 } 5388 else 5389 AddrTyped = Builder.CreateBitCast(Addr, PTy); 5390 5391 llvm::Value *AlignedAddr = Builder.CreateBitCast(AddrTyped, BP); 5392 TypeAlign = std::max((unsigned)TypeAlign, MinABIStackAlignInBytes); 5393 uint64_t Offset = 5394 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, TypeAlign); 5395 llvm::Value *NextAddr = 5396 Builder.CreateGEP(AlignedAddr, llvm::ConstantInt::get(IntTy, Offset), 5397 "ap.next"); 5398 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 5399 5400 return AddrTyped; 5401 } 5402 5403 bool 5404 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5405 llvm::Value *Address) const { 5406 // This information comes from gcc's implementation, which seems to 5407 // as canonical as it gets. 5408 5409 // Everything on MIPS is 4 bytes. Double-precision FP registers 5410 // are aliased to pairs of single-precision FP registers. 5411 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 5412 5413 // 0-31 are the general purpose registers, $0 - $31. 5414 // 32-63 are the floating-point registers, $f0 - $f31. 5415 // 64 and 65 are the multiply/divide registers, $hi and $lo. 5416 // 66 is the (notional, I think) register for signal-handler return. 5417 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65); 5418 5419 // 67-74 are the floating-point status registers, $fcc0 - $fcc7. 5420 // They are one bit wide and ignored here. 5421 5422 // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31. 5423 // (coprocessor 1 is the FP unit) 5424 // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31. 5425 // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31. 5426 // 176-181 are the DSP accumulator registers. 5427 AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181); 5428 return false; 5429 } 5430 5431 //===----------------------------------------------------------------------===// 5432 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults. 5433 // Currently subclassed only to implement custom OpenCL C function attribute 5434 // handling. 5435 //===----------------------------------------------------------------------===// 5436 5437 namespace { 5438 5439 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo { 5440 public: 5441 TCETargetCodeGenInfo(CodeGenTypes &CGT) 5442 : DefaultTargetCodeGenInfo(CGT) {} 5443 5444 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5445 CodeGen::CodeGenModule &M) const override; 5446 }; 5447 5448 void TCETargetCodeGenInfo::SetTargetAttributes(const Decl *D, 5449 llvm::GlobalValue *GV, 5450 CodeGen::CodeGenModule &M) const { 5451 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); 5452 if (!FD) return; 5453 5454 llvm::Function *F = cast<llvm::Function>(GV); 5455 5456 if (M.getLangOpts().OpenCL) { 5457 if (FD->hasAttr<OpenCLKernelAttr>()) { 5458 // OpenCL C Kernel functions are not subject to inlining 5459 F->addFnAttr(llvm::Attribute::NoInline); 5460 const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>(); 5461 if (Attr) { 5462 // Convert the reqd_work_group_size() attributes to metadata. 5463 llvm::LLVMContext &Context = F->getContext(); 5464 llvm::NamedMDNode *OpenCLMetadata = 5465 M.getModule().getOrInsertNamedMetadata("opencl.kernel_wg_size_info"); 5466 5467 SmallVector<llvm::Value*, 5> Operands; 5468 Operands.push_back(F); 5469 5470 Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty, 5471 llvm::APInt(32, Attr->getXDim()))); 5472 Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty, 5473 llvm::APInt(32, Attr->getYDim()))); 5474 Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty, 5475 llvm::APInt(32, Attr->getZDim()))); 5476 5477 // Add a boolean constant operand for "required" (true) or "hint" (false) 5478 // for implementing the work_group_size_hint attr later. Currently 5479 // always true as the hint is not yet implemented. 5480 Operands.push_back(llvm::ConstantInt::getTrue(Context)); 5481 OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands)); 5482 } 5483 } 5484 } 5485 } 5486 5487 } 5488 5489 //===----------------------------------------------------------------------===// 5490 // Hexagon ABI Implementation 5491 //===----------------------------------------------------------------------===// 5492 5493 namespace { 5494 5495 class HexagonABIInfo : public ABIInfo { 5496 5497 5498 public: 5499 HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 5500 5501 private: 5502 5503 ABIArgInfo classifyReturnType(QualType RetTy) const; 5504 ABIArgInfo classifyArgumentType(QualType RetTy) const; 5505 5506 void computeInfo(CGFunctionInfo &FI) const override; 5507 5508 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5509 CodeGenFunction &CGF) const override; 5510 }; 5511 5512 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo { 5513 public: 5514 HexagonTargetCodeGenInfo(CodeGenTypes &CGT) 5515 :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {} 5516 5517 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 5518 return 29; 5519 } 5520 }; 5521 5522 } 5523 5524 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const { 5525 if (!getCXXABI().classifyReturnType(FI)) 5526 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 5527 for (auto &I : FI.arguments()) 5528 I.info = classifyArgumentType(I.type); 5529 } 5530 5531 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const { 5532 if (!isAggregateTypeForABI(Ty)) { 5533 // Treat an enum type as its underlying type. 5534 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5535 Ty = EnumTy->getDecl()->getIntegerType(); 5536 5537 return (Ty->isPromotableIntegerType() ? 5538 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 5539 } 5540 5541 // Ignore empty records. 5542 if (isEmptyRecord(getContext(), Ty, true)) 5543 return ABIArgInfo::getIgnore(); 5544 5545 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 5546 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 5547 5548 uint64_t Size = getContext().getTypeSize(Ty); 5549 if (Size > 64) 5550 return ABIArgInfo::getIndirect(0, /*ByVal=*/true); 5551 // Pass in the smallest viable integer type. 5552 else if (Size > 32) 5553 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); 5554 else if (Size > 16) 5555 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 5556 else if (Size > 8) 5557 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 5558 else 5559 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 5560 } 5561 5562 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const { 5563 if (RetTy->isVoidType()) 5564 return ABIArgInfo::getIgnore(); 5565 5566 // Large vector types should be returned via memory. 5567 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64) 5568 return ABIArgInfo::getIndirect(0); 5569 5570 if (!isAggregateTypeForABI(RetTy)) { 5571 // Treat an enum type as its underlying type. 5572 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5573 RetTy = EnumTy->getDecl()->getIntegerType(); 5574 5575 return (RetTy->isPromotableIntegerType() ? 5576 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 5577 } 5578 5579 if (isEmptyRecord(getContext(), RetTy, true)) 5580 return ABIArgInfo::getIgnore(); 5581 5582 // Aggregates <= 8 bytes are returned in r0; other aggregates 5583 // are returned indirectly. 5584 uint64_t Size = getContext().getTypeSize(RetTy); 5585 if (Size <= 64) { 5586 // Return in the smallest viable integer type. 5587 if (Size <= 8) 5588 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 5589 if (Size <= 16) 5590 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 5591 if (Size <= 32) 5592 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 5593 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); 5594 } 5595 5596 return ABIArgInfo::getIndirect(0, /*ByVal=*/true); 5597 } 5598 5599 llvm::Value *HexagonABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5600 CodeGenFunction &CGF) const { 5601 // FIXME: Need to handle alignment 5602 llvm::Type *BPP = CGF.Int8PtrPtrTy; 5603 5604 CGBuilderTy &Builder = CGF.Builder; 5605 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, 5606 "ap"); 5607 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 5608 llvm::Type *PTy = 5609 llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 5610 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); 5611 5612 uint64_t Offset = 5613 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4); 5614 llvm::Value *NextAddr = 5615 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), 5616 "ap.next"); 5617 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 5618 5619 return AddrTyped; 5620 } 5621 5622 5623 //===----------------------------------------------------------------------===// 5624 // SPARC v9 ABI Implementation. 5625 // Based on the SPARC Compliance Definition version 2.4.1. 5626 // 5627 // Function arguments a mapped to a nominal "parameter array" and promoted to 5628 // registers depending on their type. Each argument occupies 8 or 16 bytes in 5629 // the array, structs larger than 16 bytes are passed indirectly. 5630 // 5631 // One case requires special care: 5632 // 5633 // struct mixed { 5634 // int i; 5635 // float f; 5636 // }; 5637 // 5638 // When a struct mixed is passed by value, it only occupies 8 bytes in the 5639 // parameter array, but the int is passed in an integer register, and the float 5640 // is passed in a floating point register. This is represented as two arguments 5641 // with the LLVM IR inreg attribute: 5642 // 5643 // declare void f(i32 inreg %i, float inreg %f) 5644 // 5645 // The code generator will only allocate 4 bytes from the parameter array for 5646 // the inreg arguments. All other arguments are allocated a multiple of 8 5647 // bytes. 5648 // 5649 namespace { 5650 class SparcV9ABIInfo : public ABIInfo { 5651 public: 5652 SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 5653 5654 private: 5655 ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const; 5656 void computeInfo(CGFunctionInfo &FI) const override; 5657 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5658 CodeGenFunction &CGF) const override; 5659 5660 // Coercion type builder for structs passed in registers. The coercion type 5661 // serves two purposes: 5662 // 5663 // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned' 5664 // in registers. 5665 // 2. Expose aligned floating point elements as first-level elements, so the 5666 // code generator knows to pass them in floating point registers. 5667 // 5668 // We also compute the InReg flag which indicates that the struct contains 5669 // aligned 32-bit floats. 5670 // 5671 struct CoerceBuilder { 5672 llvm::LLVMContext &Context; 5673 const llvm::DataLayout &DL; 5674 SmallVector<llvm::Type*, 8> Elems; 5675 uint64_t Size; 5676 bool InReg; 5677 5678 CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl) 5679 : Context(c), DL(dl), Size(0), InReg(false) {} 5680 5681 // Pad Elems with integers until Size is ToSize. 5682 void pad(uint64_t ToSize) { 5683 assert(ToSize >= Size && "Cannot remove elements"); 5684 if (ToSize == Size) 5685 return; 5686 5687 // Finish the current 64-bit word. 5688 uint64_t Aligned = llvm::RoundUpToAlignment(Size, 64); 5689 if (Aligned > Size && Aligned <= ToSize) { 5690 Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size)); 5691 Size = Aligned; 5692 } 5693 5694 // Add whole 64-bit words. 5695 while (Size + 64 <= ToSize) { 5696 Elems.push_back(llvm::Type::getInt64Ty(Context)); 5697 Size += 64; 5698 } 5699 5700 // Final in-word padding. 5701 if (Size < ToSize) { 5702 Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size)); 5703 Size = ToSize; 5704 } 5705 } 5706 5707 // Add a floating point element at Offset. 5708 void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) { 5709 // Unaligned floats are treated as integers. 5710 if (Offset % Bits) 5711 return; 5712 // The InReg flag is only required if there are any floats < 64 bits. 5713 if (Bits < 64) 5714 InReg = true; 5715 pad(Offset); 5716 Elems.push_back(Ty); 5717 Size = Offset + Bits; 5718 } 5719 5720 // Add a struct type to the coercion type, starting at Offset (in bits). 5721 void addStruct(uint64_t Offset, llvm::StructType *StrTy) { 5722 const llvm::StructLayout *Layout = DL.getStructLayout(StrTy); 5723 for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) { 5724 llvm::Type *ElemTy = StrTy->getElementType(i); 5725 uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i); 5726 switch (ElemTy->getTypeID()) { 5727 case llvm::Type::StructTyID: 5728 addStruct(ElemOffset, cast<llvm::StructType>(ElemTy)); 5729 break; 5730 case llvm::Type::FloatTyID: 5731 addFloat(ElemOffset, ElemTy, 32); 5732 break; 5733 case llvm::Type::DoubleTyID: 5734 addFloat(ElemOffset, ElemTy, 64); 5735 break; 5736 case llvm::Type::FP128TyID: 5737 addFloat(ElemOffset, ElemTy, 128); 5738 break; 5739 case llvm::Type::PointerTyID: 5740 if (ElemOffset % 64 == 0) { 5741 pad(ElemOffset); 5742 Elems.push_back(ElemTy); 5743 Size += 64; 5744 } 5745 break; 5746 default: 5747 break; 5748 } 5749 } 5750 } 5751 5752 // Check if Ty is a usable substitute for the coercion type. 5753 bool isUsableType(llvm::StructType *Ty) const { 5754 if (Ty->getNumElements() != Elems.size()) 5755 return false; 5756 for (unsigned i = 0, e = Elems.size(); i != e; ++i) 5757 if (Elems[i] != Ty->getElementType(i)) 5758 return false; 5759 return true; 5760 } 5761 5762 // Get the coercion type as a literal struct type. 5763 llvm::Type *getType() const { 5764 if (Elems.size() == 1) 5765 return Elems.front(); 5766 else 5767 return llvm::StructType::get(Context, Elems); 5768 } 5769 }; 5770 }; 5771 } // end anonymous namespace 5772 5773 ABIArgInfo 5774 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const { 5775 if (Ty->isVoidType()) 5776 return ABIArgInfo::getIgnore(); 5777 5778 uint64_t Size = getContext().getTypeSize(Ty); 5779 5780 // Anything too big to fit in registers is passed with an explicit indirect 5781 // pointer / sret pointer. 5782 if (Size > SizeLimit) 5783 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 5784 5785 // Treat an enum type as its underlying type. 5786 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5787 Ty = EnumTy->getDecl()->getIntegerType(); 5788 5789 // Integer types smaller than a register are extended. 5790 if (Size < 64 && Ty->isIntegerType()) 5791 return ABIArgInfo::getExtend(); 5792 5793 // Other non-aggregates go in registers. 5794 if (!isAggregateTypeForABI(Ty)) 5795 return ABIArgInfo::getDirect(); 5796 5797 // If a C++ object has either a non-trivial copy constructor or a non-trivial 5798 // destructor, it is passed with an explicit indirect pointer / sret pointer. 5799 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 5800 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 5801 5802 // This is a small aggregate type that should be passed in registers. 5803 // Build a coercion type from the LLVM struct type. 5804 llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty)); 5805 if (!StrTy) 5806 return ABIArgInfo::getDirect(); 5807 5808 CoerceBuilder CB(getVMContext(), getDataLayout()); 5809 CB.addStruct(0, StrTy); 5810 CB.pad(llvm::RoundUpToAlignment(CB.DL.getTypeSizeInBits(StrTy), 64)); 5811 5812 // Try to use the original type for coercion. 5813 llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType(); 5814 5815 if (CB.InReg) 5816 return ABIArgInfo::getDirectInReg(CoerceTy); 5817 else 5818 return ABIArgInfo::getDirect(CoerceTy); 5819 } 5820 5821 llvm::Value *SparcV9ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5822 CodeGenFunction &CGF) const { 5823 ABIArgInfo AI = classifyType(Ty, 16 * 8); 5824 llvm::Type *ArgTy = CGT.ConvertType(Ty); 5825 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 5826 AI.setCoerceToType(ArgTy); 5827 5828 llvm::Type *BPP = CGF.Int8PtrPtrTy; 5829 CGBuilderTy &Builder = CGF.Builder; 5830 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); 5831 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 5832 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 5833 llvm::Value *ArgAddr; 5834 unsigned Stride; 5835 5836 switch (AI.getKind()) { 5837 case ABIArgInfo::Expand: 5838 case ABIArgInfo::InAlloca: 5839 llvm_unreachable("Unsupported ABI kind for va_arg"); 5840 5841 case ABIArgInfo::Extend: 5842 Stride = 8; 5843 ArgAddr = Builder 5844 .CreateConstGEP1_32(Addr, 8 - getDataLayout().getTypeAllocSize(ArgTy), 5845 "extend"); 5846 break; 5847 5848 case ABIArgInfo::Direct: 5849 Stride = getDataLayout().getTypeAllocSize(AI.getCoerceToType()); 5850 ArgAddr = Addr; 5851 break; 5852 5853 case ABIArgInfo::Indirect: 5854 Stride = 8; 5855 ArgAddr = Builder.CreateBitCast(Addr, 5856 llvm::PointerType::getUnqual(ArgPtrTy), 5857 "indirect"); 5858 ArgAddr = Builder.CreateLoad(ArgAddr, "indirect.arg"); 5859 break; 5860 5861 case ABIArgInfo::Ignore: 5862 return llvm::UndefValue::get(ArgPtrTy); 5863 } 5864 5865 // Update VAList. 5866 Addr = Builder.CreateConstGEP1_32(Addr, Stride, "ap.next"); 5867 Builder.CreateStore(Addr, VAListAddrAsBPP); 5868 5869 return Builder.CreatePointerCast(ArgAddr, ArgPtrTy, "arg.addr"); 5870 } 5871 5872 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const { 5873 FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8); 5874 for (auto &I : FI.arguments()) 5875 I.info = classifyType(I.type, 16 * 8); 5876 } 5877 5878 namespace { 5879 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo { 5880 public: 5881 SparcV9TargetCodeGenInfo(CodeGenTypes &CGT) 5882 : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {} 5883 5884 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 5885 return 14; 5886 } 5887 5888 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5889 llvm::Value *Address) const override; 5890 }; 5891 } // end anonymous namespace 5892 5893 bool 5894 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5895 llvm::Value *Address) const { 5896 // This is calculated from the LLVM and GCC tables and verified 5897 // against gcc output. AFAIK all ABIs use the same encoding. 5898 5899 CodeGen::CGBuilderTy &Builder = CGF.Builder; 5900 5901 llvm::IntegerType *i8 = CGF.Int8Ty; 5902 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 5903 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 5904 5905 // 0-31: the 8-byte general-purpose registers 5906 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 5907 5908 // 32-63: f0-31, the 4-byte floating-point registers 5909 AssignToArrayRange(Builder, Address, Four8, 32, 63); 5910 5911 // Y = 64 5912 // PSR = 65 5913 // WIM = 66 5914 // TBR = 67 5915 // PC = 68 5916 // NPC = 69 5917 // FSR = 70 5918 // CSR = 71 5919 AssignToArrayRange(Builder, Address, Eight8, 64, 71); 5920 5921 // 72-87: d0-15, the 8-byte floating-point registers 5922 AssignToArrayRange(Builder, Address, Eight8, 72, 87); 5923 5924 return false; 5925 } 5926 5927 5928 //===----------------------------------------------------------------------===// 5929 // XCore ABI Implementation 5930 //===----------------------------------------------------------------------===// 5931 5932 namespace { 5933 5934 /// A SmallStringEnc instance is used to build up the TypeString by passing 5935 /// it by reference between functions that append to it. 5936 typedef llvm::SmallString<128> SmallStringEnc; 5937 5938 /// TypeStringCache caches the meta encodings of Types. 5939 /// 5940 /// The reason for caching TypeStrings is two fold: 5941 /// 1. To cache a type's encoding for later uses; 5942 /// 2. As a means to break recursive member type inclusion. 5943 /// 5944 /// A cache Entry can have a Status of: 5945 /// NonRecursive: The type encoding is not recursive; 5946 /// Recursive: The type encoding is recursive; 5947 /// Incomplete: An incomplete TypeString; 5948 /// IncompleteUsed: An incomplete TypeString that has been used in a 5949 /// Recursive type encoding. 5950 /// 5951 /// A NonRecursive entry will have all of its sub-members expanded as fully 5952 /// as possible. Whilst it may contain types which are recursive, the type 5953 /// itself is not recursive and thus its encoding may be safely used whenever 5954 /// the type is encountered. 5955 /// 5956 /// A Recursive entry will have all of its sub-members expanded as fully as 5957 /// possible. The type itself is recursive and it may contain other types which 5958 /// are recursive. The Recursive encoding must not be used during the expansion 5959 /// of a recursive type's recursive branch. For simplicity the code uses 5960 /// IncompleteCount to reject all usage of Recursive encodings for member types. 5961 /// 5962 /// An Incomplete entry is always a RecordType and only encodes its 5963 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and 5964 /// are placed into the cache during type expansion as a means to identify and 5965 /// handle recursive inclusion of types as sub-members. If there is recursion 5966 /// the entry becomes IncompleteUsed. 5967 /// 5968 /// During the expansion of a RecordType's members: 5969 /// 5970 /// If the cache contains a NonRecursive encoding for the member type, the 5971 /// cached encoding is used; 5972 /// 5973 /// If the cache contains a Recursive encoding for the member type, the 5974 /// cached encoding is 'Swapped' out, as it may be incorrect, and... 5975 /// 5976 /// If the member is a RecordType, an Incomplete encoding is placed into the 5977 /// cache to break potential recursive inclusion of itself as a sub-member; 5978 /// 5979 /// Once a member RecordType has been expanded, its temporary incomplete 5980 /// entry is removed from the cache. If a Recursive encoding was swapped out 5981 /// it is swapped back in; 5982 /// 5983 /// If an incomplete entry is used to expand a sub-member, the incomplete 5984 /// entry is marked as IncompleteUsed. The cache keeps count of how many 5985 /// IncompleteUsed entries it currently contains in IncompleteUsedCount; 5986 /// 5987 /// If a member's encoding is found to be a NonRecursive or Recursive viz: 5988 /// IncompleteUsedCount==0, the member's encoding is added to the cache. 5989 /// Else the member is part of a recursive type and thus the recursion has 5990 /// been exited too soon for the encoding to be correct for the member. 5991 /// 5992 class TypeStringCache { 5993 enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed}; 5994 struct Entry { 5995 std::string Str; // The encoded TypeString for the type. 5996 enum Status State; // Information about the encoding in 'Str'. 5997 std::string Swapped; // A temporary place holder for a Recursive encoding 5998 // during the expansion of RecordType's members. 5999 }; 6000 std::map<const IdentifierInfo *, struct Entry> Map; 6001 unsigned IncompleteCount; // Number of Incomplete entries in the Map. 6002 unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map. 6003 public: 6004 TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {}; 6005 void addIncomplete(const IdentifierInfo *ID, std::string StubEnc); 6006 bool removeIncomplete(const IdentifierInfo *ID); 6007 void addIfComplete(const IdentifierInfo *ID, StringRef Str, 6008 bool IsRecursive); 6009 StringRef lookupStr(const IdentifierInfo *ID); 6010 }; 6011 6012 /// TypeString encodings for enum & union fields must be order. 6013 /// FieldEncoding is a helper for this ordering process. 6014 class FieldEncoding { 6015 bool HasName; 6016 std::string Enc; 6017 public: 6018 FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {}; 6019 StringRef str() {return Enc.c_str();}; 6020 bool operator<(const FieldEncoding &rhs) const { 6021 if (HasName != rhs.HasName) return HasName; 6022 return Enc < rhs.Enc; 6023 } 6024 }; 6025 6026 class XCoreABIInfo : public DefaultABIInfo { 6027 public: 6028 XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 6029 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 6030 CodeGenFunction &CGF) const override; 6031 }; 6032 6033 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo { 6034 mutable TypeStringCache TSC; 6035 public: 6036 XCoreTargetCodeGenInfo(CodeGenTypes &CGT) 6037 :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {} 6038 void emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 6039 CodeGen::CodeGenModule &M) const override; 6040 }; 6041 6042 } // End anonymous namespace. 6043 6044 llvm::Value *XCoreABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 6045 CodeGenFunction &CGF) const { 6046 CGBuilderTy &Builder = CGF.Builder; 6047 6048 // Get the VAList. 6049 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, 6050 CGF.Int8PtrPtrTy); 6051 llvm::Value *AP = Builder.CreateLoad(VAListAddrAsBPP); 6052 6053 // Handle the argument. 6054 ABIArgInfo AI = classifyArgumentType(Ty); 6055 llvm::Type *ArgTy = CGT.ConvertType(Ty); 6056 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 6057 AI.setCoerceToType(ArgTy); 6058 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 6059 llvm::Value *Val; 6060 uint64_t ArgSize = 0; 6061 switch (AI.getKind()) { 6062 case ABIArgInfo::Expand: 6063 case ABIArgInfo::InAlloca: 6064 llvm_unreachable("Unsupported ABI kind for va_arg"); 6065 case ABIArgInfo::Ignore: 6066 Val = llvm::UndefValue::get(ArgPtrTy); 6067 ArgSize = 0; 6068 break; 6069 case ABIArgInfo::Extend: 6070 case ABIArgInfo::Direct: 6071 Val = Builder.CreatePointerCast(AP, ArgPtrTy); 6072 ArgSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType()); 6073 if (ArgSize < 4) 6074 ArgSize = 4; 6075 break; 6076 case ABIArgInfo::Indirect: 6077 llvm::Value *ArgAddr; 6078 ArgAddr = Builder.CreateBitCast(AP, llvm::PointerType::getUnqual(ArgPtrTy)); 6079 ArgAddr = Builder.CreateLoad(ArgAddr); 6080 Val = Builder.CreatePointerCast(ArgAddr, ArgPtrTy); 6081 ArgSize = 4; 6082 break; 6083 } 6084 6085 // Increment the VAList. 6086 if (ArgSize) { 6087 llvm::Value *APN = Builder.CreateConstGEP1_32(AP, ArgSize); 6088 Builder.CreateStore(APN, VAListAddrAsBPP); 6089 } 6090 return Val; 6091 } 6092 6093 /// During the expansion of a RecordType, an incomplete TypeString is placed 6094 /// into the cache as a means to identify and break recursion. 6095 /// If there is a Recursive encoding in the cache, it is swapped out and will 6096 /// be reinserted by removeIncomplete(). 6097 /// All other types of encoding should have been used rather than arriving here. 6098 void TypeStringCache::addIncomplete(const IdentifierInfo *ID, 6099 std::string StubEnc) { 6100 if (!ID) 6101 return; 6102 Entry &E = Map[ID]; 6103 assert( (E.Str.empty() || E.State == Recursive) && 6104 "Incorrectly use of addIncomplete"); 6105 assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()"); 6106 E.Swapped.swap(E.Str); // swap out the Recursive 6107 E.Str.swap(StubEnc); 6108 E.State = Incomplete; 6109 ++IncompleteCount; 6110 } 6111 6112 /// Once the RecordType has been expanded, the temporary incomplete TypeString 6113 /// must be removed from the cache. 6114 /// If a Recursive was swapped out by addIncomplete(), it will be replaced. 6115 /// Returns true if the RecordType was defined recursively. 6116 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) { 6117 if (!ID) 6118 return false; 6119 auto I = Map.find(ID); 6120 assert(I != Map.end() && "Entry not present"); 6121 Entry &E = I->second; 6122 assert( (E.State == Incomplete || 6123 E.State == IncompleteUsed) && 6124 "Entry must be an incomplete type"); 6125 bool IsRecursive = false; 6126 if (E.State == IncompleteUsed) { 6127 // We made use of our Incomplete encoding, thus we are recursive. 6128 IsRecursive = true; 6129 --IncompleteUsedCount; 6130 } 6131 if (E.Swapped.empty()) 6132 Map.erase(I); 6133 else { 6134 // Swap the Recursive back. 6135 E.Swapped.swap(E.Str); 6136 E.Swapped.clear(); 6137 E.State = Recursive; 6138 } 6139 --IncompleteCount; 6140 return IsRecursive; 6141 } 6142 6143 /// Add the encoded TypeString to the cache only if it is NonRecursive or 6144 /// Recursive (viz: all sub-members were expanded as fully as possible). 6145 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str, 6146 bool IsRecursive) { 6147 if (!ID || IncompleteUsedCount) 6148 return; // No key or it is is an incomplete sub-type so don't add. 6149 Entry &E = Map[ID]; 6150 if (IsRecursive && !E.Str.empty()) { 6151 assert(E.State==Recursive && E.Str.size() == Str.size() && 6152 "This is not the same Recursive entry"); 6153 // The parent container was not recursive after all, so we could have used 6154 // this Recursive sub-member entry after all, but we assumed the worse when 6155 // we started viz: IncompleteCount!=0. 6156 return; 6157 } 6158 assert(E.Str.empty() && "Entry already present"); 6159 E.Str = Str.str(); 6160 E.State = IsRecursive? Recursive : NonRecursive; 6161 } 6162 6163 /// Return a cached TypeString encoding for the ID. If there isn't one, or we 6164 /// are recursively expanding a type (IncompleteCount != 0) and the cached 6165 /// encoding is Recursive, return an empty StringRef. 6166 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) { 6167 if (!ID) 6168 return StringRef(); // We have no key. 6169 auto I = Map.find(ID); 6170 if (I == Map.end()) 6171 return StringRef(); // We have no encoding. 6172 Entry &E = I->second; 6173 if (E.State == Recursive && IncompleteCount) 6174 return StringRef(); // We don't use Recursive encodings for member types. 6175 6176 if (E.State == Incomplete) { 6177 // The incomplete type is being used to break out of recursion. 6178 E.State = IncompleteUsed; 6179 ++IncompleteUsedCount; 6180 } 6181 return E.Str.c_str(); 6182 } 6183 6184 /// The XCore ABI includes a type information section that communicates symbol 6185 /// type information to the linker. The linker uses this information to verify 6186 /// safety/correctness of things such as array bound and pointers et al. 6187 /// The ABI only requires C (and XC) language modules to emit TypeStrings. 6188 /// This type information (TypeString) is emitted into meta data for all global 6189 /// symbols: definitions, declarations, functions & variables. 6190 /// 6191 /// The TypeString carries type, qualifier, name, size & value details. 6192 /// Please see 'Tools Development Guide' section 2.16.2 for format details: 6193 /// <https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf> 6194 /// The output is tested by test/CodeGen/xcore-stringtype.c. 6195 /// 6196 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 6197 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC); 6198 6199 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols. 6200 void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 6201 CodeGen::CodeGenModule &CGM) const { 6202 SmallStringEnc Enc; 6203 if (getTypeString(Enc, D, CGM, TSC)) { 6204 llvm::LLVMContext &Ctx = CGM.getModule().getContext(); 6205 llvm::SmallVector<llvm::Value *, 2> MDVals; 6206 MDVals.push_back(GV); 6207 MDVals.push_back(llvm::MDString::get(Ctx, Enc.str())); 6208 llvm::NamedMDNode *MD = 6209 CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings"); 6210 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 6211 } 6212 } 6213 6214 static bool appendType(SmallStringEnc &Enc, QualType QType, 6215 const CodeGen::CodeGenModule &CGM, 6216 TypeStringCache &TSC); 6217 6218 /// Helper function for appendRecordType(). 6219 /// Builds a SmallVector containing the encoded field types in declaration order. 6220 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE, 6221 const RecordDecl *RD, 6222 const CodeGen::CodeGenModule &CGM, 6223 TypeStringCache &TSC) { 6224 for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end(); 6225 I != E; ++I) { 6226 SmallStringEnc Enc; 6227 Enc += "m("; 6228 Enc += I->getName(); 6229 Enc += "){"; 6230 if (I->isBitField()) { 6231 Enc += "b("; 6232 llvm::raw_svector_ostream OS(Enc); 6233 OS.resync(); 6234 OS << I->getBitWidthValue(CGM.getContext()); 6235 OS.flush(); 6236 Enc += ':'; 6237 } 6238 if (!appendType(Enc, I->getType(), CGM, TSC)) 6239 return false; 6240 if (I->isBitField()) 6241 Enc += ')'; 6242 Enc += '}'; 6243 FE.push_back(FieldEncoding(!I->getName().empty(), Enc)); 6244 } 6245 return true; 6246 } 6247 6248 /// Appends structure and union types to Enc and adds encoding to cache. 6249 /// Recursively calls appendType (via extractFieldType) for each field. 6250 /// Union types have their fields ordered according to the ABI. 6251 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT, 6252 const CodeGen::CodeGenModule &CGM, 6253 TypeStringCache &TSC, const IdentifierInfo *ID) { 6254 // Append the cached TypeString if we have one. 6255 StringRef TypeString = TSC.lookupStr(ID); 6256 if (!TypeString.empty()) { 6257 Enc += TypeString; 6258 return true; 6259 } 6260 6261 // Start to emit an incomplete TypeString. 6262 size_t Start = Enc.size(); 6263 Enc += (RT->isUnionType()? 'u' : 's'); 6264 Enc += '('; 6265 if (ID) 6266 Enc += ID->getName(); 6267 Enc += "){"; 6268 6269 // We collect all encoded fields and order as necessary. 6270 bool IsRecursive = false; 6271 const RecordDecl *RD = RT->getDecl()->getDefinition(); 6272 if (RD && !RD->field_empty()) { 6273 // An incomplete TypeString stub is placed in the cache for this RecordType 6274 // so that recursive calls to this RecordType will use it whilst building a 6275 // complete TypeString for this RecordType. 6276 SmallVector<FieldEncoding, 16> FE; 6277 std::string StubEnc(Enc.substr(Start).str()); 6278 StubEnc += '}'; // StubEnc now holds a valid incomplete TypeString. 6279 TSC.addIncomplete(ID, std::move(StubEnc)); 6280 if (!extractFieldType(FE, RD, CGM, TSC)) { 6281 (void) TSC.removeIncomplete(ID); 6282 return false; 6283 } 6284 IsRecursive = TSC.removeIncomplete(ID); 6285 // The ABI requires unions to be sorted but not structures. 6286 // See FieldEncoding::operator< for sort algorithm. 6287 if (RT->isUnionType()) 6288 std::sort(FE.begin(), FE.end()); 6289 // We can now complete the TypeString. 6290 unsigned E = FE.size(); 6291 for (unsigned I = 0; I != E; ++I) { 6292 if (I) 6293 Enc += ','; 6294 Enc += FE[I].str(); 6295 } 6296 } 6297 Enc += '}'; 6298 TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive); 6299 return true; 6300 } 6301 6302 /// Appends enum types to Enc and adds the encoding to the cache. 6303 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET, 6304 TypeStringCache &TSC, 6305 const IdentifierInfo *ID) { 6306 // Append the cached TypeString if we have one. 6307 StringRef TypeString = TSC.lookupStr(ID); 6308 if (!TypeString.empty()) { 6309 Enc += TypeString; 6310 return true; 6311 } 6312 6313 size_t Start = Enc.size(); 6314 Enc += "e("; 6315 if (ID) 6316 Enc += ID->getName(); 6317 Enc += "){"; 6318 6319 // We collect all encoded enumerations and order them alphanumerically. 6320 if (const EnumDecl *ED = ET->getDecl()->getDefinition()) { 6321 SmallVector<FieldEncoding, 16> FE; 6322 for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E; 6323 ++I) { 6324 SmallStringEnc EnumEnc; 6325 EnumEnc += "m("; 6326 EnumEnc += I->getName(); 6327 EnumEnc += "){"; 6328 I->getInitVal().toString(EnumEnc); 6329 EnumEnc += '}'; 6330 FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc)); 6331 } 6332 std::sort(FE.begin(), FE.end()); 6333 unsigned E = FE.size(); 6334 for (unsigned I = 0; I != E; ++I) { 6335 if (I) 6336 Enc += ','; 6337 Enc += FE[I].str(); 6338 } 6339 } 6340 Enc += '}'; 6341 TSC.addIfComplete(ID, Enc.substr(Start), false); 6342 return true; 6343 } 6344 6345 /// Appends type's qualifier to Enc. 6346 /// This is done prior to appending the type's encoding. 6347 static void appendQualifier(SmallStringEnc &Enc, QualType QT) { 6348 // Qualifiers are emitted in alphabetical order. 6349 static const char *Table[] = {"","c:","r:","cr:","v:","cv:","rv:","crv:"}; 6350 int Lookup = 0; 6351 if (QT.isConstQualified()) 6352 Lookup += 1<<0; 6353 if (QT.isRestrictQualified()) 6354 Lookup += 1<<1; 6355 if (QT.isVolatileQualified()) 6356 Lookup += 1<<2; 6357 Enc += Table[Lookup]; 6358 } 6359 6360 /// Appends built-in types to Enc. 6361 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) { 6362 const char *EncType; 6363 switch (BT->getKind()) { 6364 case BuiltinType::Void: 6365 EncType = "0"; 6366 break; 6367 case BuiltinType::Bool: 6368 EncType = "b"; 6369 break; 6370 case BuiltinType::Char_U: 6371 EncType = "uc"; 6372 break; 6373 case BuiltinType::UChar: 6374 EncType = "uc"; 6375 break; 6376 case BuiltinType::SChar: 6377 EncType = "sc"; 6378 break; 6379 case BuiltinType::UShort: 6380 EncType = "us"; 6381 break; 6382 case BuiltinType::Short: 6383 EncType = "ss"; 6384 break; 6385 case BuiltinType::UInt: 6386 EncType = "ui"; 6387 break; 6388 case BuiltinType::Int: 6389 EncType = "si"; 6390 break; 6391 case BuiltinType::ULong: 6392 EncType = "ul"; 6393 break; 6394 case BuiltinType::Long: 6395 EncType = "sl"; 6396 break; 6397 case BuiltinType::ULongLong: 6398 EncType = "ull"; 6399 break; 6400 case BuiltinType::LongLong: 6401 EncType = "sll"; 6402 break; 6403 case BuiltinType::Float: 6404 EncType = "ft"; 6405 break; 6406 case BuiltinType::Double: 6407 EncType = "d"; 6408 break; 6409 case BuiltinType::LongDouble: 6410 EncType = "ld"; 6411 break; 6412 default: 6413 return false; 6414 } 6415 Enc += EncType; 6416 return true; 6417 } 6418 6419 /// Appends a pointer encoding to Enc before calling appendType for the pointee. 6420 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT, 6421 const CodeGen::CodeGenModule &CGM, 6422 TypeStringCache &TSC) { 6423 Enc += "p("; 6424 if (!appendType(Enc, PT->getPointeeType(), CGM, TSC)) 6425 return false; 6426 Enc += ')'; 6427 return true; 6428 } 6429 6430 /// Appends array encoding to Enc before calling appendType for the element. 6431 static bool appendArrayType(SmallStringEnc &Enc, QualType QT, 6432 const ArrayType *AT, 6433 const CodeGen::CodeGenModule &CGM, 6434 TypeStringCache &TSC, StringRef NoSizeEnc) { 6435 if (AT->getSizeModifier() != ArrayType::Normal) 6436 return false; 6437 Enc += "a("; 6438 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) 6439 CAT->getSize().toStringUnsigned(Enc); 6440 else 6441 Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "". 6442 Enc += ':'; 6443 // The Qualifiers should be attached to the type rather than the array. 6444 appendQualifier(Enc, QT); 6445 if (!appendType(Enc, AT->getElementType(), CGM, TSC)) 6446 return false; 6447 Enc += ')'; 6448 return true; 6449 } 6450 6451 /// Appends a function encoding to Enc, calling appendType for the return type 6452 /// and the arguments. 6453 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT, 6454 const CodeGen::CodeGenModule &CGM, 6455 TypeStringCache &TSC) { 6456 Enc += "f{"; 6457 if (!appendType(Enc, FT->getReturnType(), CGM, TSC)) 6458 return false; 6459 Enc += "}("; 6460 if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) { 6461 // N.B. we are only interested in the adjusted param types. 6462 auto I = FPT->param_type_begin(); 6463 auto E = FPT->param_type_end(); 6464 if (I != E) { 6465 do { 6466 if (!appendType(Enc, *I, CGM, TSC)) 6467 return false; 6468 ++I; 6469 if (I != E) 6470 Enc += ','; 6471 } while (I != E); 6472 if (FPT->isVariadic()) 6473 Enc += ",va"; 6474 } else { 6475 if (FPT->isVariadic()) 6476 Enc += "va"; 6477 else 6478 Enc += '0'; 6479 } 6480 } 6481 Enc += ')'; 6482 return true; 6483 } 6484 6485 /// Handles the type's qualifier before dispatching a call to handle specific 6486 /// type encodings. 6487 static bool appendType(SmallStringEnc &Enc, QualType QType, 6488 const CodeGen::CodeGenModule &CGM, 6489 TypeStringCache &TSC) { 6490 6491 QualType QT = QType.getCanonicalType(); 6492 6493 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) 6494 // The Qualifiers should be attached to the type rather than the array. 6495 // Thus we don't call appendQualifier() here. 6496 return appendArrayType(Enc, QT, AT, CGM, TSC, ""); 6497 6498 appendQualifier(Enc, QT); 6499 6500 if (const BuiltinType *BT = QT->getAs<BuiltinType>()) 6501 return appendBuiltinType(Enc, BT); 6502 6503 if (const PointerType *PT = QT->getAs<PointerType>()) 6504 return appendPointerType(Enc, PT, CGM, TSC); 6505 6506 if (const EnumType *ET = QT->getAs<EnumType>()) 6507 return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier()); 6508 6509 if (const RecordType *RT = QT->getAsStructureType()) 6510 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 6511 6512 if (const RecordType *RT = QT->getAsUnionType()) 6513 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 6514 6515 if (const FunctionType *FT = QT->getAs<FunctionType>()) 6516 return appendFunctionType(Enc, FT, CGM, TSC); 6517 6518 return false; 6519 } 6520 6521 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 6522 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) { 6523 if (!D) 6524 return false; 6525 6526 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 6527 if (FD->getLanguageLinkage() != CLanguageLinkage) 6528 return false; 6529 return appendType(Enc, FD->getType(), CGM, TSC); 6530 } 6531 6532 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 6533 if (VD->getLanguageLinkage() != CLanguageLinkage) 6534 return false; 6535 QualType QT = VD->getType().getCanonicalType(); 6536 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) { 6537 // Global ArrayTypes are given a size of '*' if the size is unknown. 6538 // The Qualifiers should be attached to the type rather than the array. 6539 // Thus we don't call appendQualifier() here. 6540 return appendArrayType(Enc, QT, AT, CGM, TSC, "*"); 6541 } 6542 return appendType(Enc, QT, CGM, TSC); 6543 } 6544 return false; 6545 } 6546 6547 6548 //===----------------------------------------------------------------------===// 6549 // Driver code 6550 //===----------------------------------------------------------------------===// 6551 6552 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { 6553 if (TheTargetCodeGenInfo) 6554 return *TheTargetCodeGenInfo; 6555 6556 const llvm::Triple &Triple = getTarget().getTriple(); 6557 switch (Triple.getArch()) { 6558 default: 6559 return *(TheTargetCodeGenInfo = new DefaultTargetCodeGenInfo(Types)); 6560 6561 case llvm::Triple::le32: 6562 return *(TheTargetCodeGenInfo = new PNaClTargetCodeGenInfo(Types)); 6563 case llvm::Triple::mips: 6564 case llvm::Triple::mipsel: 6565 return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, true)); 6566 6567 case llvm::Triple::mips64: 6568 case llvm::Triple::mips64el: 6569 return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, false)); 6570 6571 case llvm::Triple::aarch64: 6572 case llvm::Triple::aarch64_be: 6573 case llvm::Triple::arm64: 6574 case llvm::Triple::arm64_be: { 6575 AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS; 6576 if (getTarget().getABI() == "darwinpcs") 6577 Kind = AArch64ABIInfo::DarwinPCS; 6578 6579 return *(TheTargetCodeGenInfo = new AArch64TargetCodeGenInfo(Types, Kind)); 6580 } 6581 6582 case llvm::Triple::arm: 6583 case llvm::Triple::armeb: 6584 case llvm::Triple::thumb: 6585 case llvm::Triple::thumbeb: 6586 { 6587 ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS; 6588 if (getTarget().getABI() == "apcs-gnu") 6589 Kind = ARMABIInfo::APCS; 6590 else if (CodeGenOpts.FloatABI == "hard" || 6591 (CodeGenOpts.FloatABI != "soft" && 6592 Triple.getEnvironment() == llvm::Triple::GNUEABIHF)) 6593 Kind = ARMABIInfo::AAPCS_VFP; 6594 6595 switch (Triple.getOS()) { 6596 case llvm::Triple::NaCl: 6597 return *(TheTargetCodeGenInfo = 6598 new NaClARMTargetCodeGenInfo(Types, Kind)); 6599 default: 6600 return *(TheTargetCodeGenInfo = 6601 new ARMTargetCodeGenInfo(Types, Kind)); 6602 } 6603 } 6604 6605 case llvm::Triple::ppc: 6606 return *(TheTargetCodeGenInfo = new PPC32TargetCodeGenInfo(Types)); 6607 case llvm::Triple::ppc64: 6608 if (Triple.isOSBinFormatELF()) 6609 return *(TheTargetCodeGenInfo = new PPC64_SVR4_TargetCodeGenInfo(Types)); 6610 else 6611 return *(TheTargetCodeGenInfo = new PPC64TargetCodeGenInfo(Types)); 6612 case llvm::Triple::ppc64le: 6613 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); 6614 return *(TheTargetCodeGenInfo = new PPC64_SVR4_TargetCodeGenInfo(Types)); 6615 6616 case llvm::Triple::nvptx: 6617 case llvm::Triple::nvptx64: 6618 return *(TheTargetCodeGenInfo = new NVPTXTargetCodeGenInfo(Types)); 6619 6620 case llvm::Triple::msp430: 6621 return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo(Types)); 6622 6623 case llvm::Triple::systemz: 6624 return *(TheTargetCodeGenInfo = new SystemZTargetCodeGenInfo(Types)); 6625 6626 case llvm::Triple::tce: 6627 return *(TheTargetCodeGenInfo = new TCETargetCodeGenInfo(Types)); 6628 6629 case llvm::Triple::x86: { 6630 bool IsDarwinVectorABI = Triple.isOSDarwin(); 6631 bool IsSmallStructInRegABI = 6632 X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 6633 bool IsWin32FloatStructABI = Triple.isWindowsMSVCEnvironment(); 6634 6635 if (Triple.getOS() == llvm::Triple::Win32) { 6636 return *(TheTargetCodeGenInfo = 6637 new WinX86_32TargetCodeGenInfo(Types, 6638 IsDarwinVectorABI, IsSmallStructInRegABI, 6639 IsWin32FloatStructABI, 6640 CodeGenOpts.NumRegisterParameters)); 6641 } else { 6642 return *(TheTargetCodeGenInfo = 6643 new X86_32TargetCodeGenInfo(Types, 6644 IsDarwinVectorABI, IsSmallStructInRegABI, 6645 IsWin32FloatStructABI, 6646 CodeGenOpts.NumRegisterParameters)); 6647 } 6648 } 6649 6650 case llvm::Triple::x86_64: { 6651 bool HasAVX = getTarget().getABI() == "avx"; 6652 6653 switch (Triple.getOS()) { 6654 case llvm::Triple::Win32: 6655 return *(TheTargetCodeGenInfo = new WinX86_64TargetCodeGenInfo(Types)); 6656 case llvm::Triple::NaCl: 6657 return *(TheTargetCodeGenInfo = new NaClX86_64TargetCodeGenInfo(Types, 6658 HasAVX)); 6659 default: 6660 return *(TheTargetCodeGenInfo = new X86_64TargetCodeGenInfo(Types, 6661 HasAVX)); 6662 } 6663 } 6664 case llvm::Triple::hexagon: 6665 return *(TheTargetCodeGenInfo = new HexagonTargetCodeGenInfo(Types)); 6666 case llvm::Triple::sparcv9: 6667 return *(TheTargetCodeGenInfo = new SparcV9TargetCodeGenInfo(Types)); 6668 case llvm::Triple::xcore: 6669 return *(TheTargetCodeGenInfo = new XCoreTargetCodeGenInfo(Types)); 6670 } 6671 } 6672