1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // These classes wrap the information about a call or function
11 // definition used to handle ABI compliancy.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "TargetInfo.h"
16 #include "ABIInfo.h"
17 #include "CGCXXABI.h"
18 #include "CodeGenFunction.h"
19 #include "clang/AST/RecordLayout.h"
20 #include "clang/CodeGen/CGFunctionInfo.h"
21 #include "clang/Frontend/CodeGenOptions.h"
22 #include "llvm/ADT/Triple.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/Type.h"
25 #include "llvm/Support/raw_ostream.h"
26 using namespace clang;
27 using namespace CodeGen;
28 
29 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
30                                llvm::Value *Array,
31                                llvm::Value *Value,
32                                unsigned FirstIndex,
33                                unsigned LastIndex) {
34   // Alternatively, we could emit this as a loop in the source.
35   for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
36     llvm::Value *Cell = Builder.CreateConstInBoundsGEP1_32(Array, I);
37     Builder.CreateStore(Value, Cell);
38   }
39 }
40 
41 static bool isAggregateTypeForABI(QualType T) {
42   return !CodeGenFunction::hasScalarEvaluationKind(T) ||
43          T->isMemberFunctionPointerType();
44 }
45 
46 ABIInfo::~ABIInfo() {}
47 
48 static bool isRecordReturnIndirect(const RecordType *RT,
49                                    CGCXXABI &CXXABI) {
50   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
51   if (!RD)
52     return false;
53   return CXXABI.isReturnTypeIndirect(RD);
54 }
55 
56 
57 static bool isRecordReturnIndirect(QualType T, CGCXXABI &CXXABI) {
58   const RecordType *RT = T->getAs<RecordType>();
59   if (!RT)
60     return false;
61   return isRecordReturnIndirect(RT, CXXABI);
62 }
63 
64 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT,
65                                               CGCXXABI &CXXABI) {
66   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
67   if (!RD)
68     return CGCXXABI::RAA_Default;
69   return CXXABI.getRecordArgABI(RD);
70 }
71 
72 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T,
73                                               CGCXXABI &CXXABI) {
74   const RecordType *RT = T->getAs<RecordType>();
75   if (!RT)
76     return CGCXXABI::RAA_Default;
77   return getRecordArgABI(RT, CXXABI);
78 }
79 
80 CGCXXABI &ABIInfo::getCXXABI() const {
81   return CGT.getCXXABI();
82 }
83 
84 ASTContext &ABIInfo::getContext() const {
85   return CGT.getContext();
86 }
87 
88 llvm::LLVMContext &ABIInfo::getVMContext() const {
89   return CGT.getLLVMContext();
90 }
91 
92 const llvm::DataLayout &ABIInfo::getDataLayout() const {
93   return CGT.getDataLayout();
94 }
95 
96 const TargetInfo &ABIInfo::getTarget() const {
97   return CGT.getTarget();
98 }
99 
100 void ABIArgInfo::dump() const {
101   raw_ostream &OS = llvm::errs();
102   OS << "(ABIArgInfo Kind=";
103   switch (TheKind) {
104   case Direct:
105     OS << "Direct Type=";
106     if (llvm::Type *Ty = getCoerceToType())
107       Ty->print(OS);
108     else
109       OS << "null";
110     break;
111   case Extend:
112     OS << "Extend";
113     break;
114   case Ignore:
115     OS << "Ignore";
116     break;
117   case InAlloca:
118     OS << "InAlloca Offset=" << getInAllocaFieldIndex();
119     break;
120   case Indirect:
121     OS << "Indirect Align=" << getIndirectAlign()
122        << " ByVal=" << getIndirectByVal()
123        << " Realign=" << getIndirectRealign();
124     break;
125   case Expand:
126     OS << "Expand";
127     break;
128   }
129   OS << ")\n";
130 }
131 
132 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }
133 
134 // If someone can figure out a general rule for this, that would be great.
135 // It's probably just doomed to be platform-dependent, though.
136 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const {
137   // Verified for:
138   //   x86-64     FreeBSD, Linux, Darwin
139   //   x86-32     FreeBSD, Linux, Darwin
140   //   PowerPC    Linux, Darwin
141   //   ARM        Darwin (*not* EABI)
142   //   AArch64    Linux
143   return 32;
144 }
145 
146 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args,
147                                      const FunctionNoProtoType *fnType) const {
148   // The following conventions are known to require this to be false:
149   //   x86_stdcall
150   //   MIPS
151   // For everything else, we just prefer false unless we opt out.
152   return false;
153 }
154 
155 void
156 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib,
157                                              llvm::SmallString<24> &Opt) const {
158   // This assumes the user is passing a library name like "rt" instead of a
159   // filename like "librt.a/so", and that they don't care whether it's static or
160   // dynamic.
161   Opt = "-l";
162   Opt += Lib;
163 }
164 
165 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
166 
167 /// isEmptyField - Return true iff a the field is "empty", that is it
168 /// is an unnamed bit-field or an (array of) empty record(s).
169 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
170                          bool AllowArrays) {
171   if (FD->isUnnamedBitfield())
172     return true;
173 
174   QualType FT = FD->getType();
175 
176   // Constant arrays of empty records count as empty, strip them off.
177   // Constant arrays of zero length always count as empty.
178   if (AllowArrays)
179     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
180       if (AT->getSize() == 0)
181         return true;
182       FT = AT->getElementType();
183     }
184 
185   const RecordType *RT = FT->getAs<RecordType>();
186   if (!RT)
187     return false;
188 
189   // C++ record fields are never empty, at least in the Itanium ABI.
190   //
191   // FIXME: We should use a predicate for whether this behavior is true in the
192   // current ABI.
193   if (isa<CXXRecordDecl>(RT->getDecl()))
194     return false;
195 
196   return isEmptyRecord(Context, FT, AllowArrays);
197 }
198 
199 /// isEmptyRecord - Return true iff a structure contains only empty
200 /// fields. Note that a structure with a flexible array member is not
201 /// considered empty.
202 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
203   const RecordType *RT = T->getAs<RecordType>();
204   if (!RT)
205     return 0;
206   const RecordDecl *RD = RT->getDecl();
207   if (RD->hasFlexibleArrayMember())
208     return false;
209 
210   // If this is a C++ record, check the bases first.
211   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
212     for (const auto &I : CXXRD->bases())
213       if (!isEmptyRecord(Context, I.getType(), true))
214         return false;
215 
216   for (const auto *I : RD->fields())
217     if (!isEmptyField(Context, I, AllowArrays))
218       return false;
219   return true;
220 }
221 
222 /// isSingleElementStruct - Determine if a structure is a "single
223 /// element struct", i.e. it has exactly one non-empty field or
224 /// exactly one field which is itself a single element
225 /// struct. Structures with flexible array members are never
226 /// considered single element structs.
227 ///
228 /// \return The field declaration for the single non-empty field, if
229 /// it exists.
230 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
231   const RecordType *RT = T->getAsStructureType();
232   if (!RT)
233     return 0;
234 
235   const RecordDecl *RD = RT->getDecl();
236   if (RD->hasFlexibleArrayMember())
237     return 0;
238 
239   const Type *Found = 0;
240 
241   // If this is a C++ record, check the bases first.
242   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
243     for (const auto &I : CXXRD->bases()) {
244       // Ignore empty records.
245       if (isEmptyRecord(Context, I.getType(), true))
246         continue;
247 
248       // If we already found an element then this isn't a single-element struct.
249       if (Found)
250         return 0;
251 
252       // If this is non-empty and not a single element struct, the composite
253       // cannot be a single element struct.
254       Found = isSingleElementStruct(I.getType(), Context);
255       if (!Found)
256         return 0;
257     }
258   }
259 
260   // Check for single element.
261   for (const auto *FD : RD->fields()) {
262     QualType FT = FD->getType();
263 
264     // Ignore empty fields.
265     if (isEmptyField(Context, FD, true))
266       continue;
267 
268     // If we already found an element then this isn't a single-element
269     // struct.
270     if (Found)
271       return 0;
272 
273     // Treat single element arrays as the element.
274     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
275       if (AT->getSize().getZExtValue() != 1)
276         break;
277       FT = AT->getElementType();
278     }
279 
280     if (!isAggregateTypeForABI(FT)) {
281       Found = FT.getTypePtr();
282     } else {
283       Found = isSingleElementStruct(FT, Context);
284       if (!Found)
285         return 0;
286     }
287   }
288 
289   // We don't consider a struct a single-element struct if it has
290   // padding beyond the element type.
291   if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T))
292     return 0;
293 
294   return Found;
295 }
296 
297 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
298   // Treat complex types as the element type.
299   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
300     Ty = CTy->getElementType();
301 
302   // Check for a type which we know has a simple scalar argument-passing
303   // convention without any padding.  (We're specifically looking for 32
304   // and 64-bit integer and integer-equivalents, float, and double.)
305   if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
306       !Ty->isEnumeralType() && !Ty->isBlockPointerType())
307     return false;
308 
309   uint64_t Size = Context.getTypeSize(Ty);
310   return Size == 32 || Size == 64;
311 }
312 
313 /// canExpandIndirectArgument - Test whether an argument type which is to be
314 /// passed indirectly (on the stack) would have the equivalent layout if it was
315 /// expanded into separate arguments. If so, we prefer to do the latter to avoid
316 /// inhibiting optimizations.
317 ///
318 // FIXME: This predicate is missing many cases, currently it just follows
319 // llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We
320 // should probably make this smarter, or better yet make the LLVM backend
321 // capable of handling it.
322 static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) {
323   // We can only expand structure types.
324   const RecordType *RT = Ty->getAs<RecordType>();
325   if (!RT)
326     return false;
327 
328   // We can only expand (C) structures.
329   //
330   // FIXME: This needs to be generalized to handle classes as well.
331   const RecordDecl *RD = RT->getDecl();
332   if (!RD->isStruct() || isa<CXXRecordDecl>(RD))
333     return false;
334 
335   uint64_t Size = 0;
336 
337   for (const auto *FD : RD->fields()) {
338     if (!is32Or64BitBasicType(FD->getType(), Context))
339       return false;
340 
341     // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
342     // how to expand them yet, and the predicate for telling if a bitfield still
343     // counts as "basic" is more complicated than what we were doing previously.
344     if (FD->isBitField())
345       return false;
346 
347     Size += Context.getTypeSize(FD->getType());
348   }
349 
350   // Make sure there are not any holes in the struct.
351   if (Size != Context.getTypeSize(Ty))
352     return false;
353 
354   return true;
355 }
356 
357 namespace {
358 /// DefaultABIInfo - The default implementation for ABI specific
359 /// details. This implementation provides information which results in
360 /// self-consistent and sensible LLVM IR generation, but does not
361 /// conform to any particular ABI.
362 class DefaultABIInfo : public ABIInfo {
363 public:
364   DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
365 
366   ABIArgInfo classifyReturnType(QualType RetTy) const;
367   ABIArgInfo classifyArgumentType(QualType RetTy) const;
368 
369   void computeInfo(CGFunctionInfo &FI) const override {
370     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
371     for (auto &I : FI.arguments())
372       I.info = classifyArgumentType(I.type);
373   }
374 
375   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
376                          CodeGenFunction &CGF) const override;
377 };
378 
379 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
380 public:
381   DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
382     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
383 };
384 
385 llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
386                                        CodeGenFunction &CGF) const {
387   return 0;
388 }
389 
390 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
391   if (isAggregateTypeForABI(Ty)) {
392     // Records with non-trivial destructors/constructors should not be passed
393     // by value.
394     if (isRecordReturnIndirect(Ty, getCXXABI()))
395       return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
396 
397     return ABIArgInfo::getIndirect(0);
398   }
399 
400   // Treat an enum type as its underlying type.
401   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
402     Ty = EnumTy->getDecl()->getIntegerType();
403 
404   return (Ty->isPromotableIntegerType() ?
405           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
406 }
407 
408 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
409   if (RetTy->isVoidType())
410     return ABIArgInfo::getIgnore();
411 
412   if (isAggregateTypeForABI(RetTy))
413     return ABIArgInfo::getIndirect(0);
414 
415   // Treat an enum type as its underlying type.
416   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
417     RetTy = EnumTy->getDecl()->getIntegerType();
418 
419   return (RetTy->isPromotableIntegerType() ?
420           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
421 }
422 
423 //===----------------------------------------------------------------------===//
424 // le32/PNaCl bitcode ABI Implementation
425 //
426 // This is a simplified version of the x86_32 ABI.  Arguments and return values
427 // are always passed on the stack.
428 //===----------------------------------------------------------------------===//
429 
430 class PNaClABIInfo : public ABIInfo {
431  public:
432   PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
433 
434   ABIArgInfo classifyReturnType(QualType RetTy) const;
435   ABIArgInfo classifyArgumentType(QualType RetTy) const;
436 
437   void computeInfo(CGFunctionInfo &FI) const override;
438   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
439                          CodeGenFunction &CGF) const override;
440 };
441 
442 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo {
443  public:
444   PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
445     : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {}
446 };
447 
448 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const {
449     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
450 
451     for (auto &I : FI.arguments())
452       I.info = classifyArgumentType(I.type);
453   }
454 
455 llvm::Value *PNaClABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
456                                        CodeGenFunction &CGF) const {
457   return 0;
458 }
459 
460 /// \brief Classify argument of given type \p Ty.
461 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const {
462   if (isAggregateTypeForABI(Ty)) {
463     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
464       return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
465     return ABIArgInfo::getIndirect(0);
466   } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
467     // Treat an enum type as its underlying type.
468     Ty = EnumTy->getDecl()->getIntegerType();
469   } else if (Ty->isFloatingType()) {
470     // Floating-point types don't go inreg.
471     return ABIArgInfo::getDirect();
472   }
473 
474   return (Ty->isPromotableIntegerType() ?
475           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
476 }
477 
478 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const {
479   if (RetTy->isVoidType())
480     return ABIArgInfo::getIgnore();
481 
482   // In the PNaCl ABI we always return records/structures on the stack.
483   if (isAggregateTypeForABI(RetTy))
484     return ABIArgInfo::getIndirect(0);
485 
486   // Treat an enum type as its underlying type.
487   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
488     RetTy = EnumTy->getDecl()->getIntegerType();
489 
490   return (RetTy->isPromotableIntegerType() ?
491           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
492 }
493 
494 /// IsX86_MMXType - Return true if this is an MMX type.
495 bool IsX86_MMXType(llvm::Type *IRType) {
496   // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>.
497   return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
498     cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
499     IRType->getScalarSizeInBits() != 64;
500 }
501 
502 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
503                                           StringRef Constraint,
504                                           llvm::Type* Ty) {
505   if ((Constraint == "y" || Constraint == "&y") && Ty->isVectorTy()) {
506     if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) {
507       // Invalid MMX constraint
508       return 0;
509     }
510 
511     return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
512   }
513 
514   // No operation needed
515   return Ty;
516 }
517 
518 //===----------------------------------------------------------------------===//
519 // X86-32 ABI Implementation
520 //===----------------------------------------------------------------------===//
521 
522 /// \brief Similar to llvm::CCState, but for Clang.
523 struct CCState {
524   CCState(unsigned CC) : CC(CC), FreeRegs(0) {}
525 
526   unsigned CC;
527   unsigned FreeRegs;
528   unsigned StackOffset;
529   bool UseInAlloca;
530 };
531 
532 /// X86_32ABIInfo - The X86-32 ABI information.
533 class X86_32ABIInfo : public ABIInfo {
534   enum Class {
535     Integer,
536     Float
537   };
538 
539   static const unsigned MinABIStackAlignInBytes = 4;
540 
541   bool IsDarwinVectorABI;
542   bool IsSmallStructInRegABI;
543   bool IsWin32StructABI;
544   unsigned DefaultNumRegisterParameters;
545 
546   static bool isRegisterSize(unsigned Size) {
547     return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
548   }
549 
550   bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context,
551                                   bool IsInstanceMethod) const;
552 
553   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
554   /// such that the argument will be passed in memory.
555   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
556 
557   ABIArgInfo getIndirectReturnResult(CCState &State) const;
558 
559   /// \brief Return the alignment to use for the given type on the stack.
560   unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
561 
562   Class classify(QualType Ty) const;
563   ABIArgInfo classifyReturnType(QualType RetTy, CCState &State,
564                                 bool IsInstanceMethod) const;
565   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
566   bool shouldUseInReg(QualType Ty, CCState &State, bool &NeedsPadding) const;
567 
568   /// \brief Rewrite the function info so that all memory arguments use
569   /// inalloca.
570   void rewriteWithInAlloca(CGFunctionInfo &FI) const;
571 
572   void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
573                            unsigned &StackOffset, ABIArgInfo &Info,
574                            QualType Type) const;
575 
576 public:
577 
578   void computeInfo(CGFunctionInfo &FI) const override;
579   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
580                          CodeGenFunction &CGF) const override;
581 
582   X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p, bool w,
583                 unsigned r)
584     : ABIInfo(CGT), IsDarwinVectorABI(d), IsSmallStructInRegABI(p),
585       IsWin32StructABI(w), DefaultNumRegisterParameters(r) {}
586 };
587 
588 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
589 public:
590   X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
591       bool d, bool p, bool w, unsigned r)
592     :TargetCodeGenInfo(new X86_32ABIInfo(CGT, d, p, w, r)) {}
593 
594   static bool isStructReturnInRegABI(
595       const llvm::Triple &Triple, const CodeGenOptions &Opts);
596 
597   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
598                            CodeGen::CodeGenModule &CGM) const override;
599 
600   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
601     // Darwin uses different dwarf register numbers for EH.
602     if (CGM.getTarget().getTriple().isOSDarwin()) return 5;
603     return 4;
604   }
605 
606   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
607                                llvm::Value *Address) const override;
608 
609   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
610                                   StringRef Constraint,
611                                   llvm::Type* Ty) const override {
612     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
613   }
614 
615   llvm::Constant *
616   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
617     unsigned Sig = (0xeb << 0) |  // jmp rel8
618                    (0x06 << 8) |  //           .+0x08
619                    ('F' << 16) |
620                    ('T' << 24);
621     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
622   }
623 
624 };
625 
626 }
627 
628 /// shouldReturnTypeInRegister - Determine if the given type should be
629 /// passed in a register (for the Darwin ABI).
630 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty, ASTContext &Context,
631                                                bool IsInstanceMethod) const {
632   uint64_t Size = Context.getTypeSize(Ty);
633 
634   // Type must be register sized.
635   if (!isRegisterSize(Size))
636     return false;
637 
638   if (Ty->isVectorType()) {
639     // 64- and 128- bit vectors inside structures are not returned in
640     // registers.
641     if (Size == 64 || Size == 128)
642       return false;
643 
644     return true;
645   }
646 
647   // If this is a builtin, pointer, enum, complex type, member pointer, or
648   // member function pointer it is ok.
649   if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
650       Ty->isAnyComplexType() || Ty->isEnumeralType() ||
651       Ty->isBlockPointerType() || Ty->isMemberPointerType())
652     return true;
653 
654   // Arrays are treated like records.
655   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
656     return shouldReturnTypeInRegister(AT->getElementType(), Context,
657                                       IsInstanceMethod);
658 
659   // Otherwise, it must be a record type.
660   const RecordType *RT = Ty->getAs<RecordType>();
661   if (!RT) return false;
662 
663   // FIXME: Traverse bases here too.
664 
665   // For thiscall conventions, structures will never be returned in
666   // a register.  This is for compatibility with the MSVC ABI
667   if (IsWin32StructABI && IsInstanceMethod && RT->isStructureType())
668     return false;
669 
670   // Structure types are passed in register if all fields would be
671   // passed in a register.
672   for (const auto *FD : RT->getDecl()->fields()) {
673     // Empty fields are ignored.
674     if (isEmptyField(Context, FD, true))
675       continue;
676 
677     // Check fields recursively.
678     if (!shouldReturnTypeInRegister(FD->getType(), Context, IsInstanceMethod))
679       return false;
680   }
681   return true;
682 }
683 
684 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(CCState &State) const {
685   // If the return value is indirect, then the hidden argument is consuming one
686   // integer register.
687   if (State.FreeRegs) {
688     --State.FreeRegs;
689     return ABIArgInfo::getIndirectInReg(/*Align=*/0, /*ByVal=*/false);
690   }
691   return ABIArgInfo::getIndirect(/*Align=*/0, /*ByVal=*/false);
692 }
693 
694 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, CCState &State,
695                                              bool IsInstanceMethod) const {
696   if (RetTy->isVoidType())
697     return ABIArgInfo::getIgnore();
698 
699   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
700     // On Darwin, some vectors are returned in registers.
701     if (IsDarwinVectorABI) {
702       uint64_t Size = getContext().getTypeSize(RetTy);
703 
704       // 128-bit vectors are a special case; they are returned in
705       // registers and we need to make sure to pick a type the LLVM
706       // backend will like.
707       if (Size == 128)
708         return ABIArgInfo::getDirect(llvm::VectorType::get(
709                   llvm::Type::getInt64Ty(getVMContext()), 2));
710 
711       // Always return in register if it fits in a general purpose
712       // register, or if it is 64 bits and has a single element.
713       if ((Size == 8 || Size == 16 || Size == 32) ||
714           (Size == 64 && VT->getNumElements() == 1))
715         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
716                                                             Size));
717 
718       return getIndirectReturnResult(State);
719     }
720 
721     return ABIArgInfo::getDirect();
722   }
723 
724   if (isAggregateTypeForABI(RetTy)) {
725     if (const RecordType *RT = RetTy->getAs<RecordType>()) {
726       if (isRecordReturnIndirect(RT, getCXXABI()))
727         return getIndirectReturnResult(State);
728 
729       // Structures with flexible arrays are always indirect.
730       if (RT->getDecl()->hasFlexibleArrayMember())
731         return getIndirectReturnResult(State);
732     }
733 
734     // If specified, structs and unions are always indirect.
735     if (!IsSmallStructInRegABI && !RetTy->isAnyComplexType())
736       return getIndirectReturnResult(State);
737 
738     // Small structures which are register sized are generally returned
739     // in a register.
740     if (shouldReturnTypeInRegister(RetTy, getContext(), IsInstanceMethod)) {
741       uint64_t Size = getContext().getTypeSize(RetTy);
742 
743       // As a special-case, if the struct is a "single-element" struct, and
744       // the field is of type "float" or "double", return it in a
745       // floating-point register. (MSVC does not apply this special case.)
746       // We apply a similar transformation for pointer types to improve the
747       // quality of the generated IR.
748       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
749         if ((!IsWin32StructABI && SeltTy->isRealFloatingType())
750             || SeltTy->hasPointerRepresentation())
751           return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
752 
753       // FIXME: We should be able to narrow this integer in cases with dead
754       // padding.
755       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
756     }
757 
758     return getIndirectReturnResult(State);
759   }
760 
761   // Treat an enum type as its underlying type.
762   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
763     RetTy = EnumTy->getDecl()->getIntegerType();
764 
765   return (RetTy->isPromotableIntegerType() ?
766           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
767 }
768 
769 static bool isSSEVectorType(ASTContext &Context, QualType Ty) {
770   return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128;
771 }
772 
773 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) {
774   const RecordType *RT = Ty->getAs<RecordType>();
775   if (!RT)
776     return 0;
777   const RecordDecl *RD = RT->getDecl();
778 
779   // If this is a C++ record, check the bases first.
780   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
781     for (const auto &I : CXXRD->bases())
782       if (!isRecordWithSSEVectorType(Context, I.getType()))
783         return false;
784 
785   for (const auto *i : RD->fields()) {
786     QualType FT = i->getType();
787 
788     if (isSSEVectorType(Context, FT))
789       return true;
790 
791     if (isRecordWithSSEVectorType(Context, FT))
792       return true;
793   }
794 
795   return false;
796 }
797 
798 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
799                                                  unsigned Align) const {
800   // Otherwise, if the alignment is less than or equal to the minimum ABI
801   // alignment, just use the default; the backend will handle this.
802   if (Align <= MinABIStackAlignInBytes)
803     return 0; // Use default alignment.
804 
805   // On non-Darwin, the stack type alignment is always 4.
806   if (!IsDarwinVectorABI) {
807     // Set explicit alignment, since we may need to realign the top.
808     return MinABIStackAlignInBytes;
809   }
810 
811   // Otherwise, if the type contains an SSE vector type, the alignment is 16.
812   if (Align >= 16 && (isSSEVectorType(getContext(), Ty) ||
813                       isRecordWithSSEVectorType(getContext(), Ty)))
814     return 16;
815 
816   return MinABIStackAlignInBytes;
817 }
818 
819 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal,
820                                             CCState &State) const {
821   if (!ByVal) {
822     if (State.FreeRegs) {
823       --State.FreeRegs; // Non-byval indirects just use one pointer.
824       return ABIArgInfo::getIndirectInReg(0, false);
825     }
826     return ABIArgInfo::getIndirect(0, false);
827   }
828 
829   // Compute the byval alignment.
830   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
831   unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
832   if (StackAlign == 0)
833     return ABIArgInfo::getIndirect(4, /*ByVal=*/true);
834 
835   // If the stack alignment is less than the type alignment, realign the
836   // argument.
837   bool Realign = TypeAlign > StackAlign;
838   return ABIArgInfo::getIndirect(StackAlign, /*ByVal=*/true, Realign);
839 }
840 
841 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const {
842   const Type *T = isSingleElementStruct(Ty, getContext());
843   if (!T)
844     T = Ty.getTypePtr();
845 
846   if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
847     BuiltinType::Kind K = BT->getKind();
848     if (K == BuiltinType::Float || K == BuiltinType::Double)
849       return Float;
850   }
851   return Integer;
852 }
853 
854 bool X86_32ABIInfo::shouldUseInReg(QualType Ty, CCState &State,
855                                    bool &NeedsPadding) const {
856   NeedsPadding = false;
857   Class C = classify(Ty);
858   if (C == Float)
859     return false;
860 
861   unsigned Size = getContext().getTypeSize(Ty);
862   unsigned SizeInRegs = (Size + 31) / 32;
863 
864   if (SizeInRegs == 0)
865     return false;
866 
867   if (SizeInRegs > State.FreeRegs) {
868     State.FreeRegs = 0;
869     return false;
870   }
871 
872   State.FreeRegs -= SizeInRegs;
873 
874   if (State.CC == llvm::CallingConv::X86_FastCall) {
875     if (Size > 32)
876       return false;
877 
878     if (Ty->isIntegralOrEnumerationType())
879       return true;
880 
881     if (Ty->isPointerType())
882       return true;
883 
884     if (Ty->isReferenceType())
885       return true;
886 
887     if (State.FreeRegs)
888       NeedsPadding = true;
889 
890     return false;
891   }
892 
893   return true;
894 }
895 
896 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
897                                                CCState &State) const {
898   // FIXME: Set alignment on indirect arguments.
899   if (isAggregateTypeForABI(Ty)) {
900     if (const RecordType *RT = Ty->getAs<RecordType>()) {
901       // Check with the C++ ABI first.
902       CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
903       if (RAA == CGCXXABI::RAA_Indirect) {
904         return getIndirectResult(Ty, false, State);
905       } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
906         // The field index doesn't matter, we'll fix it up later.
907         return ABIArgInfo::getInAlloca(/*FieldIndex=*/0);
908       }
909 
910       // Structs are always byval on win32, regardless of what they contain.
911       if (IsWin32StructABI)
912         return getIndirectResult(Ty, true, State);
913 
914       // Structures with flexible arrays are always indirect.
915       if (RT->getDecl()->hasFlexibleArrayMember())
916         return getIndirectResult(Ty, true, State);
917     }
918 
919     // Ignore empty structs/unions.
920     if (isEmptyRecord(getContext(), Ty, true))
921       return ABIArgInfo::getIgnore();
922 
923     llvm::LLVMContext &LLVMContext = getVMContext();
924     llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
925     bool NeedsPadding;
926     if (shouldUseInReg(Ty, State, NeedsPadding)) {
927       unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
928       SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32);
929       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
930       return ABIArgInfo::getDirectInReg(Result);
931     }
932     llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : 0;
933 
934     // Expand small (<= 128-bit) record types when we know that the stack layout
935     // of those arguments will match the struct. This is important because the
936     // LLVM backend isn't smart enough to remove byval, which inhibits many
937     // optimizations.
938     if (getContext().getTypeSize(Ty) <= 4*32 &&
939         canExpandIndirectArgument(Ty, getContext()))
940       return ABIArgInfo::getExpandWithPadding(
941           State.CC == llvm::CallingConv::X86_FastCall, PaddingType);
942 
943     return getIndirectResult(Ty, true, State);
944   }
945 
946   if (const VectorType *VT = Ty->getAs<VectorType>()) {
947     // On Darwin, some vectors are passed in memory, we handle this by passing
948     // it as an i8/i16/i32/i64.
949     if (IsDarwinVectorABI) {
950       uint64_t Size = getContext().getTypeSize(Ty);
951       if ((Size == 8 || Size == 16 || Size == 32) ||
952           (Size == 64 && VT->getNumElements() == 1))
953         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
954                                                             Size));
955     }
956 
957     if (IsX86_MMXType(CGT.ConvertType(Ty)))
958       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64));
959 
960     return ABIArgInfo::getDirect();
961   }
962 
963 
964   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
965     Ty = EnumTy->getDecl()->getIntegerType();
966 
967   bool NeedsPadding;
968   bool InReg = shouldUseInReg(Ty, State, NeedsPadding);
969 
970   if (Ty->isPromotableIntegerType()) {
971     if (InReg)
972       return ABIArgInfo::getExtendInReg();
973     return ABIArgInfo::getExtend();
974   }
975   if (InReg)
976     return ABIArgInfo::getDirectInReg();
977   return ABIArgInfo::getDirect();
978 }
979 
980 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
981   CCState State(FI.getCallingConvention());
982   if (State.CC == llvm::CallingConv::X86_FastCall)
983     State.FreeRegs = 2;
984   else if (FI.getHasRegParm())
985     State.FreeRegs = FI.getRegParm();
986   else
987     State.FreeRegs = DefaultNumRegisterParameters;
988 
989   FI.getReturnInfo() =
990       classifyReturnType(FI.getReturnType(), State, FI.isInstanceMethod());
991 
992   // On win32, use the x86_cdeclmethodcc convention for cdecl methods that use
993   // sret.  This convention swaps the order of the first two parameters behind
994   // the scenes to match MSVC.
995   if (IsWin32StructABI && FI.isInstanceMethod() &&
996       FI.getCallingConvention() == llvm::CallingConv::C &&
997       FI.getReturnInfo().isIndirect())
998     FI.setEffectiveCallingConvention(llvm::CallingConv::X86_CDeclMethod);
999 
1000   bool UsedInAlloca = false;
1001   for (auto &I : FI.arguments()) {
1002     I.info = classifyArgumentType(I.type, State);
1003     UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca);
1004   }
1005 
1006   // If we needed to use inalloca for any argument, do a second pass and rewrite
1007   // all the memory arguments to use inalloca.
1008   if (UsedInAlloca)
1009     rewriteWithInAlloca(FI);
1010 }
1011 
1012 void
1013 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
1014                                    unsigned &StackOffset,
1015                                    ABIArgInfo &Info, QualType Type) const {
1016   // Insert padding bytes to respect alignment.  For x86_32, each argument is 4
1017   // byte aligned.
1018   unsigned Align = 4U;
1019   if (Info.getKind() == ABIArgInfo::Indirect && Info.getIndirectByVal())
1020     Align = std::max(Align, Info.getIndirectAlign());
1021   if (StackOffset & (Align - 1)) {
1022     unsigned OldOffset = StackOffset;
1023     StackOffset = llvm::RoundUpToAlignment(StackOffset, Align);
1024     unsigned NumBytes = StackOffset - OldOffset;
1025     assert(NumBytes);
1026     llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext());
1027     Ty = llvm::ArrayType::get(Ty, NumBytes);
1028     FrameFields.push_back(Ty);
1029   }
1030 
1031   Info = ABIArgInfo::getInAlloca(FrameFields.size());
1032   FrameFields.push_back(CGT.ConvertTypeForMem(Type));
1033   StackOffset += getContext().getTypeSizeInChars(Type).getQuantity();
1034 }
1035 
1036 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const {
1037   assert(IsWin32StructABI && "inalloca only supported on win32");
1038 
1039   // Build a packed struct type for all of the arguments in memory.
1040   SmallVector<llvm::Type *, 6> FrameFields;
1041 
1042   unsigned StackOffset = 0;
1043 
1044   // Put the sret parameter into the inalloca struct if it's in memory.
1045   ABIArgInfo &Ret = FI.getReturnInfo();
1046   if (Ret.isIndirect() && !Ret.getInReg()) {
1047     CanQualType PtrTy = getContext().getPointerType(FI.getReturnType());
1048     addFieldToArgStruct(FrameFields, StackOffset, Ret, PtrTy);
1049     // On Windows, the hidden sret parameter is always returned in eax.
1050     Ret.setInAllocaSRet(IsWin32StructABI);
1051   }
1052 
1053   // Skip the 'this' parameter in ecx.
1054   CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end();
1055   if (FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall)
1056     ++I;
1057 
1058   // Put arguments passed in memory into the struct.
1059   for (; I != E; ++I) {
1060 
1061     // Leave ignored and inreg arguments alone.
1062     switch (I->info.getKind()) {
1063     case ABIArgInfo::Indirect:
1064       assert(I->info.getIndirectByVal());
1065       break;
1066     case ABIArgInfo::Ignore:
1067       continue;
1068     case ABIArgInfo::Direct:
1069     case ABIArgInfo::Extend:
1070       if (I->info.getInReg())
1071         continue;
1072       break;
1073     default:
1074       break;
1075     }
1076 
1077     addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
1078   }
1079 
1080   FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields,
1081                                         /*isPacked=*/true));
1082 }
1083 
1084 llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1085                                       CodeGenFunction &CGF) const {
1086   llvm::Type *BPP = CGF.Int8PtrPtrTy;
1087 
1088   CGBuilderTy &Builder = CGF.Builder;
1089   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
1090                                                        "ap");
1091   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
1092 
1093   // Compute if the address needs to be aligned
1094   unsigned Align = CGF.getContext().getTypeAlignInChars(Ty).getQuantity();
1095   Align = getTypeStackAlignInBytes(Ty, Align);
1096   Align = std::max(Align, 4U);
1097   if (Align > 4) {
1098     // addr = (addr + align - 1) & -align;
1099     llvm::Value *Offset =
1100       llvm::ConstantInt::get(CGF.Int32Ty, Align - 1);
1101     Addr = CGF.Builder.CreateGEP(Addr, Offset);
1102     llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(Addr,
1103                                                     CGF.Int32Ty);
1104     llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -Align);
1105     Addr = CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
1106                                       Addr->getType(),
1107                                       "ap.cur.aligned");
1108   }
1109 
1110   llvm::Type *PTy =
1111     llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
1112   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
1113 
1114   uint64_t Offset =
1115     llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, Align);
1116   llvm::Value *NextAddr =
1117     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
1118                       "ap.next");
1119   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
1120 
1121   return AddrTyped;
1122 }
1123 
1124 void X86_32TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
1125                                                   llvm::GlobalValue *GV,
1126                                             CodeGen::CodeGenModule &CGM) const {
1127   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1128     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
1129       // Get the LLVM function.
1130       llvm::Function *Fn = cast<llvm::Function>(GV);
1131 
1132       // Now add the 'alignstack' attribute with a value of 16.
1133       llvm::AttrBuilder B;
1134       B.addStackAlignmentAttr(16);
1135       Fn->addAttributes(llvm::AttributeSet::FunctionIndex,
1136                       llvm::AttributeSet::get(CGM.getLLVMContext(),
1137                                               llvm::AttributeSet::FunctionIndex,
1138                                               B));
1139     }
1140   }
1141 }
1142 
1143 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
1144                                                CodeGen::CodeGenFunction &CGF,
1145                                                llvm::Value *Address) const {
1146   CodeGen::CGBuilderTy &Builder = CGF.Builder;
1147 
1148   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
1149 
1150   // 0-7 are the eight integer registers;  the order is different
1151   //   on Darwin (for EH), but the range is the same.
1152   // 8 is %eip.
1153   AssignToArrayRange(Builder, Address, Four8, 0, 8);
1154 
1155   if (CGF.CGM.getTarget().getTriple().isOSDarwin()) {
1156     // 12-16 are st(0..4).  Not sure why we stop at 4.
1157     // These have size 16, which is sizeof(long double) on
1158     // platforms with 8-byte alignment for that type.
1159     llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
1160     AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
1161 
1162   } else {
1163     // 9 is %eflags, which doesn't get a size on Darwin for some
1164     // reason.
1165     Builder.CreateStore(Four8, Builder.CreateConstInBoundsGEP1_32(Address, 9));
1166 
1167     // 11-16 are st(0..5).  Not sure why we stop at 5.
1168     // These have size 12, which is sizeof(long double) on
1169     // platforms with 4-byte alignment for that type.
1170     llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
1171     AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
1172   }
1173 
1174   return false;
1175 }
1176 
1177 //===----------------------------------------------------------------------===//
1178 // X86-64 ABI Implementation
1179 //===----------------------------------------------------------------------===//
1180 
1181 
1182 namespace {
1183 /// X86_64ABIInfo - The X86_64 ABI information.
1184 class X86_64ABIInfo : public ABIInfo {
1185   enum Class {
1186     Integer = 0,
1187     SSE,
1188     SSEUp,
1189     X87,
1190     X87Up,
1191     ComplexX87,
1192     NoClass,
1193     Memory
1194   };
1195 
1196   /// merge - Implement the X86_64 ABI merging algorithm.
1197   ///
1198   /// Merge an accumulating classification \arg Accum with a field
1199   /// classification \arg Field.
1200   ///
1201   /// \param Accum - The accumulating classification. This should
1202   /// always be either NoClass or the result of a previous merge
1203   /// call. In addition, this should never be Memory (the caller
1204   /// should just return Memory for the aggregate).
1205   static Class merge(Class Accum, Class Field);
1206 
1207   /// postMerge - Implement the X86_64 ABI post merging algorithm.
1208   ///
1209   /// Post merger cleanup, reduces a malformed Hi and Lo pair to
1210   /// final MEMORY or SSE classes when necessary.
1211   ///
1212   /// \param AggregateSize - The size of the current aggregate in
1213   /// the classification process.
1214   ///
1215   /// \param Lo - The classification for the parts of the type
1216   /// residing in the low word of the containing object.
1217   ///
1218   /// \param Hi - The classification for the parts of the type
1219   /// residing in the higher words of the containing object.
1220   ///
1221   void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
1222 
1223   /// classify - Determine the x86_64 register classes in which the
1224   /// given type T should be passed.
1225   ///
1226   /// \param Lo - The classification for the parts of the type
1227   /// residing in the low word of the containing object.
1228   ///
1229   /// \param Hi - The classification for the parts of the type
1230   /// residing in the high word of the containing object.
1231   ///
1232   /// \param OffsetBase - The bit offset of this type in the
1233   /// containing object.  Some parameters are classified different
1234   /// depending on whether they straddle an eightbyte boundary.
1235   ///
1236   /// \param isNamedArg - Whether the argument in question is a "named"
1237   /// argument, as used in AMD64-ABI 3.5.7.
1238   ///
1239   /// If a word is unused its result will be NoClass; if a type should
1240   /// be passed in Memory then at least the classification of \arg Lo
1241   /// will be Memory.
1242   ///
1243   /// The \arg Lo class will be NoClass iff the argument is ignored.
1244   ///
1245   /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
1246   /// also be ComplexX87.
1247   void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi,
1248                 bool isNamedArg) const;
1249 
1250   llvm::Type *GetByteVectorType(QualType Ty) const;
1251   llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
1252                                  unsigned IROffset, QualType SourceTy,
1253                                  unsigned SourceOffset) const;
1254   llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
1255                                      unsigned IROffset, QualType SourceTy,
1256                                      unsigned SourceOffset) const;
1257 
1258   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1259   /// such that the argument will be returned in memory.
1260   ABIArgInfo getIndirectReturnResult(QualType Ty) const;
1261 
1262   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1263   /// such that the argument will be passed in memory.
1264   ///
1265   /// \param freeIntRegs - The number of free integer registers remaining
1266   /// available.
1267   ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;
1268 
1269   ABIArgInfo classifyReturnType(QualType RetTy) const;
1270 
1271   ABIArgInfo classifyArgumentType(QualType Ty,
1272                                   unsigned freeIntRegs,
1273                                   unsigned &neededInt,
1274                                   unsigned &neededSSE,
1275                                   bool isNamedArg) const;
1276 
1277   bool IsIllegalVectorType(QualType Ty) const;
1278 
1279   /// The 0.98 ABI revision clarified a lot of ambiguities,
1280   /// unfortunately in ways that were not always consistent with
1281   /// certain previous compilers.  In particular, platforms which
1282   /// required strict binary compatibility with older versions of GCC
1283   /// may need to exempt themselves.
1284   bool honorsRevision0_98() const {
1285     return !getTarget().getTriple().isOSDarwin();
1286   }
1287 
1288   bool HasAVX;
1289   // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on
1290   // 64-bit hardware.
1291   bool Has64BitPointers;
1292 
1293 public:
1294   X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, bool hasavx) :
1295       ABIInfo(CGT), HasAVX(hasavx),
1296       Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {
1297   }
1298 
1299   bool isPassedUsingAVXType(QualType type) const {
1300     unsigned neededInt, neededSSE;
1301     // The freeIntRegs argument doesn't matter here.
1302     ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE,
1303                                            /*isNamedArg*/true);
1304     if (info.isDirect()) {
1305       llvm::Type *ty = info.getCoerceToType();
1306       if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
1307         return (vectorTy->getBitWidth() > 128);
1308     }
1309     return false;
1310   }
1311 
1312   void computeInfo(CGFunctionInfo &FI) const override;
1313 
1314   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1315                          CodeGenFunction &CGF) const override;
1316 };
1317 
1318 /// WinX86_64ABIInfo - The Windows X86_64 ABI information.
1319 class WinX86_64ABIInfo : public ABIInfo {
1320 
1321   ABIArgInfo classify(QualType Ty, bool IsReturnType) const;
1322 
1323 public:
1324   WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
1325 
1326   void computeInfo(CGFunctionInfo &FI) const override;
1327 
1328   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1329                          CodeGenFunction &CGF) const override;
1330 };
1331 
1332 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
1333 public:
1334   X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX)
1335       : TargetCodeGenInfo(new X86_64ABIInfo(CGT, HasAVX)) {}
1336 
1337   const X86_64ABIInfo &getABIInfo() const {
1338     return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
1339   }
1340 
1341   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
1342     return 7;
1343   }
1344 
1345   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1346                                llvm::Value *Address) const override {
1347     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
1348 
1349     // 0-15 are the 16 integer registers.
1350     // 16 is %rip.
1351     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
1352     return false;
1353   }
1354 
1355   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
1356                                   StringRef Constraint,
1357                                   llvm::Type* Ty) const override {
1358     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
1359   }
1360 
1361   bool isNoProtoCallVariadic(const CallArgList &args,
1362                              const FunctionNoProtoType *fnType) const override {
1363     // The default CC on x86-64 sets %al to the number of SSA
1364     // registers used, and GCC sets this when calling an unprototyped
1365     // function, so we override the default behavior.  However, don't do
1366     // that when AVX types are involved: the ABI explicitly states it is
1367     // undefined, and it doesn't work in practice because of how the ABI
1368     // defines varargs anyway.
1369     if (fnType->getCallConv() == CC_C) {
1370       bool HasAVXType = false;
1371       for (CallArgList::const_iterator
1372              it = args.begin(), ie = args.end(); it != ie; ++it) {
1373         if (getABIInfo().isPassedUsingAVXType(it->Ty)) {
1374           HasAVXType = true;
1375           break;
1376         }
1377       }
1378 
1379       if (!HasAVXType)
1380         return true;
1381     }
1382 
1383     return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
1384   }
1385 
1386   llvm::Constant *
1387   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
1388     unsigned Sig = (0xeb << 0) |  // jmp rel8
1389                    (0x0a << 8) |  //           .+0x0c
1390                    ('F' << 16) |
1391                    ('T' << 24);
1392     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
1393   }
1394 
1395 };
1396 
1397 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) {
1398   // If the argument does not end in .lib, automatically add the suffix. This
1399   // matches the behavior of MSVC.
1400   std::string ArgStr = Lib;
1401   if (!Lib.endswith_lower(".lib"))
1402     ArgStr += ".lib";
1403   return ArgStr;
1404 }
1405 
1406 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo {
1407 public:
1408   WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
1409         bool d, bool p, bool w, unsigned RegParms)
1410     : X86_32TargetCodeGenInfo(CGT, d, p, w, RegParms) {}
1411 
1412   void getDependentLibraryOption(llvm::StringRef Lib,
1413                                  llvm::SmallString<24> &Opt) const override {
1414     Opt = "/DEFAULTLIB:";
1415     Opt += qualifyWindowsLibrary(Lib);
1416   }
1417 
1418   void getDetectMismatchOption(llvm::StringRef Name,
1419                                llvm::StringRef Value,
1420                                llvm::SmallString<32> &Opt) const override {
1421     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
1422   }
1423 };
1424 
1425 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
1426 public:
1427   WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
1428     : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {}
1429 
1430   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
1431     return 7;
1432   }
1433 
1434   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1435                                llvm::Value *Address) const override {
1436     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
1437 
1438     // 0-15 are the 16 integer registers.
1439     // 16 is %rip.
1440     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
1441     return false;
1442   }
1443 
1444   void getDependentLibraryOption(llvm::StringRef Lib,
1445                                  llvm::SmallString<24> &Opt) const override {
1446     Opt = "/DEFAULTLIB:";
1447     Opt += qualifyWindowsLibrary(Lib);
1448   }
1449 
1450   void getDetectMismatchOption(llvm::StringRef Name,
1451                                llvm::StringRef Value,
1452                                llvm::SmallString<32> &Opt) const override {
1453     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
1454   }
1455 };
1456 
1457 }
1458 
1459 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
1460                               Class &Hi) const {
1461   // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
1462   //
1463   // (a) If one of the classes is Memory, the whole argument is passed in
1464   //     memory.
1465   //
1466   // (b) If X87UP is not preceded by X87, the whole argument is passed in
1467   //     memory.
1468   //
1469   // (c) If the size of the aggregate exceeds two eightbytes and the first
1470   //     eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
1471   //     argument is passed in memory. NOTE: This is necessary to keep the
1472   //     ABI working for processors that don't support the __m256 type.
1473   //
1474   // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
1475   //
1476   // Some of these are enforced by the merging logic.  Others can arise
1477   // only with unions; for example:
1478   //   union { _Complex double; unsigned; }
1479   //
1480   // Note that clauses (b) and (c) were added in 0.98.
1481   //
1482   if (Hi == Memory)
1483     Lo = Memory;
1484   if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
1485     Lo = Memory;
1486   if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
1487     Lo = Memory;
1488   if (Hi == SSEUp && Lo != SSE)
1489     Hi = SSE;
1490 }
1491 
1492 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
1493   // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
1494   // classified recursively so that always two fields are
1495   // considered. The resulting class is calculated according to
1496   // the classes of the fields in the eightbyte:
1497   //
1498   // (a) If both classes are equal, this is the resulting class.
1499   //
1500   // (b) If one of the classes is NO_CLASS, the resulting class is
1501   // the other class.
1502   //
1503   // (c) If one of the classes is MEMORY, the result is the MEMORY
1504   // class.
1505   //
1506   // (d) If one of the classes is INTEGER, the result is the
1507   // INTEGER.
1508   //
1509   // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
1510   // MEMORY is used as class.
1511   //
1512   // (f) Otherwise class SSE is used.
1513 
1514   // Accum should never be memory (we should have returned) or
1515   // ComplexX87 (because this cannot be passed in a structure).
1516   assert((Accum != Memory && Accum != ComplexX87) &&
1517          "Invalid accumulated classification during merge.");
1518   if (Accum == Field || Field == NoClass)
1519     return Accum;
1520   if (Field == Memory)
1521     return Memory;
1522   if (Accum == NoClass)
1523     return Field;
1524   if (Accum == Integer || Field == Integer)
1525     return Integer;
1526   if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
1527       Accum == X87 || Accum == X87Up)
1528     return Memory;
1529   return SSE;
1530 }
1531 
1532 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
1533                              Class &Lo, Class &Hi, bool isNamedArg) const {
1534   // FIXME: This code can be simplified by introducing a simple value class for
1535   // Class pairs with appropriate constructor methods for the various
1536   // situations.
1537 
1538   // FIXME: Some of the split computations are wrong; unaligned vectors
1539   // shouldn't be passed in registers for example, so there is no chance they
1540   // can straddle an eightbyte. Verify & simplify.
1541 
1542   Lo = Hi = NoClass;
1543 
1544   Class &Current = OffsetBase < 64 ? Lo : Hi;
1545   Current = Memory;
1546 
1547   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
1548     BuiltinType::Kind k = BT->getKind();
1549 
1550     if (k == BuiltinType::Void) {
1551       Current = NoClass;
1552     } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
1553       Lo = Integer;
1554       Hi = Integer;
1555     } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
1556       Current = Integer;
1557     } else if ((k == BuiltinType::Float || k == BuiltinType::Double) ||
1558                (k == BuiltinType::LongDouble &&
1559                 getTarget().getTriple().isOSNaCl())) {
1560       Current = SSE;
1561     } else if (k == BuiltinType::LongDouble) {
1562       Lo = X87;
1563       Hi = X87Up;
1564     }
1565     // FIXME: _Decimal32 and _Decimal64 are SSE.
1566     // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
1567     return;
1568   }
1569 
1570   if (const EnumType *ET = Ty->getAs<EnumType>()) {
1571     // Classify the underlying integer type.
1572     classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg);
1573     return;
1574   }
1575 
1576   if (Ty->hasPointerRepresentation()) {
1577     Current = Integer;
1578     return;
1579   }
1580 
1581   if (Ty->isMemberPointerType()) {
1582     if (Ty->isMemberFunctionPointerType() && Has64BitPointers)
1583       Lo = Hi = Integer;
1584     else
1585       Current = Integer;
1586     return;
1587   }
1588 
1589   if (const VectorType *VT = Ty->getAs<VectorType>()) {
1590     uint64_t Size = getContext().getTypeSize(VT);
1591     if (Size == 32) {
1592       // gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x
1593       // float> as integer.
1594       Current = Integer;
1595 
1596       // If this type crosses an eightbyte boundary, it should be
1597       // split.
1598       uint64_t EB_Real = (OffsetBase) / 64;
1599       uint64_t EB_Imag = (OffsetBase + Size - 1) / 64;
1600       if (EB_Real != EB_Imag)
1601         Hi = Lo;
1602     } else if (Size == 64) {
1603       // gcc passes <1 x double> in memory. :(
1604       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double))
1605         return;
1606 
1607       // gcc passes <1 x long long> as INTEGER.
1608       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong) ||
1609           VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULongLong) ||
1610           VT->getElementType()->isSpecificBuiltinType(BuiltinType::Long) ||
1611           VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULong))
1612         Current = Integer;
1613       else
1614         Current = SSE;
1615 
1616       // If this type crosses an eightbyte boundary, it should be
1617       // split.
1618       if (OffsetBase && OffsetBase != 64)
1619         Hi = Lo;
1620     } else if (Size == 128 || (HasAVX && isNamedArg && Size == 256)) {
1621       // Arguments of 256-bits are split into four eightbyte chunks. The
1622       // least significant one belongs to class SSE and all the others to class
1623       // SSEUP. The original Lo and Hi design considers that types can't be
1624       // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
1625       // This design isn't correct for 256-bits, but since there're no cases
1626       // where the upper parts would need to be inspected, avoid adding
1627       // complexity and just consider Hi to match the 64-256 part.
1628       //
1629       // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in
1630       // registers if they are "named", i.e. not part of the "..." of a
1631       // variadic function.
1632       Lo = SSE;
1633       Hi = SSEUp;
1634     }
1635     return;
1636   }
1637 
1638   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
1639     QualType ET = getContext().getCanonicalType(CT->getElementType());
1640 
1641     uint64_t Size = getContext().getTypeSize(Ty);
1642     if (ET->isIntegralOrEnumerationType()) {
1643       if (Size <= 64)
1644         Current = Integer;
1645       else if (Size <= 128)
1646         Lo = Hi = Integer;
1647     } else if (ET == getContext().FloatTy)
1648       Current = SSE;
1649     else if (ET == getContext().DoubleTy ||
1650              (ET == getContext().LongDoubleTy &&
1651               getTarget().getTriple().isOSNaCl()))
1652       Lo = Hi = SSE;
1653     else if (ET == getContext().LongDoubleTy)
1654       Current = ComplexX87;
1655 
1656     // If this complex type crosses an eightbyte boundary then it
1657     // should be split.
1658     uint64_t EB_Real = (OffsetBase) / 64;
1659     uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
1660     if (Hi == NoClass && EB_Real != EB_Imag)
1661       Hi = Lo;
1662 
1663     return;
1664   }
1665 
1666   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
1667     // Arrays are treated like structures.
1668 
1669     uint64_t Size = getContext().getTypeSize(Ty);
1670 
1671     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
1672     // than four eightbytes, ..., it has class MEMORY.
1673     if (Size > 256)
1674       return;
1675 
1676     // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
1677     // fields, it has class MEMORY.
1678     //
1679     // Only need to check alignment of array base.
1680     if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
1681       return;
1682 
1683     // Otherwise implement simplified merge. We could be smarter about
1684     // this, but it isn't worth it and would be harder to verify.
1685     Current = NoClass;
1686     uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
1687     uint64_t ArraySize = AT->getSize().getZExtValue();
1688 
1689     // The only case a 256-bit wide vector could be used is when the array
1690     // contains a single 256-bit element. Since Lo and Hi logic isn't extended
1691     // to work for sizes wider than 128, early check and fallback to memory.
1692     if (Size > 128 && EltSize != 256)
1693       return;
1694 
1695     for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
1696       Class FieldLo, FieldHi;
1697       classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg);
1698       Lo = merge(Lo, FieldLo);
1699       Hi = merge(Hi, FieldHi);
1700       if (Lo == Memory || Hi == Memory)
1701         break;
1702     }
1703 
1704     postMerge(Size, Lo, Hi);
1705     assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
1706     return;
1707   }
1708 
1709   if (const RecordType *RT = Ty->getAs<RecordType>()) {
1710     uint64_t Size = getContext().getTypeSize(Ty);
1711 
1712     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
1713     // than four eightbytes, ..., it has class MEMORY.
1714     if (Size > 256)
1715       return;
1716 
1717     // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
1718     // copy constructor or a non-trivial destructor, it is passed by invisible
1719     // reference.
1720     if (getRecordArgABI(RT, getCXXABI()))
1721       return;
1722 
1723     const RecordDecl *RD = RT->getDecl();
1724 
1725     // Assume variable sized types are passed in memory.
1726     if (RD->hasFlexibleArrayMember())
1727       return;
1728 
1729     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
1730 
1731     // Reset Lo class, this will be recomputed.
1732     Current = NoClass;
1733 
1734     // If this is a C++ record, classify the bases first.
1735     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1736       for (const auto &I : CXXRD->bases()) {
1737         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
1738                "Unexpected base class!");
1739         const CXXRecordDecl *Base =
1740           cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
1741 
1742         // Classify this field.
1743         //
1744         // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
1745         // single eightbyte, each is classified separately. Each eightbyte gets
1746         // initialized to class NO_CLASS.
1747         Class FieldLo, FieldHi;
1748         uint64_t Offset =
1749           OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base));
1750         classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg);
1751         Lo = merge(Lo, FieldLo);
1752         Hi = merge(Hi, FieldHi);
1753         if (Lo == Memory || Hi == Memory)
1754           break;
1755       }
1756     }
1757 
1758     // Classify the fields one at a time, merging the results.
1759     unsigned idx = 0;
1760     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1761            i != e; ++i, ++idx) {
1762       uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
1763       bool BitField = i->isBitField();
1764 
1765       // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
1766       // four eightbytes, or it contains unaligned fields, it has class MEMORY.
1767       //
1768       // The only case a 256-bit wide vector could be used is when the struct
1769       // contains a single 256-bit element. Since Lo and Hi logic isn't extended
1770       // to work for sizes wider than 128, early check and fallback to memory.
1771       //
1772       if (Size > 128 && getContext().getTypeSize(i->getType()) != 256) {
1773         Lo = Memory;
1774         return;
1775       }
1776       // Note, skip this test for bit-fields, see below.
1777       if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
1778         Lo = Memory;
1779         return;
1780       }
1781 
1782       // Classify this field.
1783       //
1784       // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
1785       // exceeds a single eightbyte, each is classified
1786       // separately. Each eightbyte gets initialized to class
1787       // NO_CLASS.
1788       Class FieldLo, FieldHi;
1789 
1790       // Bit-fields require special handling, they do not force the
1791       // structure to be passed in memory even if unaligned, and
1792       // therefore they can straddle an eightbyte.
1793       if (BitField) {
1794         // Ignore padding bit-fields.
1795         if (i->isUnnamedBitfield())
1796           continue;
1797 
1798         uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
1799         uint64_t Size = i->getBitWidthValue(getContext());
1800 
1801         uint64_t EB_Lo = Offset / 64;
1802         uint64_t EB_Hi = (Offset + Size - 1) / 64;
1803 
1804         if (EB_Lo) {
1805           assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
1806           FieldLo = NoClass;
1807           FieldHi = Integer;
1808         } else {
1809           FieldLo = Integer;
1810           FieldHi = EB_Hi ? Integer : NoClass;
1811         }
1812       } else
1813         classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg);
1814       Lo = merge(Lo, FieldLo);
1815       Hi = merge(Hi, FieldHi);
1816       if (Lo == Memory || Hi == Memory)
1817         break;
1818     }
1819 
1820     postMerge(Size, Lo, Hi);
1821   }
1822 }
1823 
1824 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
1825   // If this is a scalar LLVM value then assume LLVM will pass it in the right
1826   // place naturally.
1827   if (!isAggregateTypeForABI(Ty)) {
1828     // Treat an enum type as its underlying type.
1829     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1830       Ty = EnumTy->getDecl()->getIntegerType();
1831 
1832     return (Ty->isPromotableIntegerType() ?
1833             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1834   }
1835 
1836   return ABIArgInfo::getIndirect(0);
1837 }
1838 
1839 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
1840   if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
1841     uint64_t Size = getContext().getTypeSize(VecTy);
1842     unsigned LargestVector = HasAVX ? 256 : 128;
1843     if (Size <= 64 || Size > LargestVector)
1844       return true;
1845   }
1846 
1847   return false;
1848 }
1849 
1850 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
1851                                             unsigned freeIntRegs) const {
1852   // If this is a scalar LLVM value then assume LLVM will pass it in the right
1853   // place naturally.
1854   //
1855   // This assumption is optimistic, as there could be free registers available
1856   // when we need to pass this argument in memory, and LLVM could try to pass
1857   // the argument in the free register. This does not seem to happen currently,
1858   // but this code would be much safer if we could mark the argument with
1859   // 'onstack'. See PR12193.
1860   if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) {
1861     // Treat an enum type as its underlying type.
1862     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1863       Ty = EnumTy->getDecl()->getIntegerType();
1864 
1865     return (Ty->isPromotableIntegerType() ?
1866             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1867   }
1868 
1869   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
1870     return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
1871 
1872   // Compute the byval alignment. We specify the alignment of the byval in all
1873   // cases so that the mid-level optimizer knows the alignment of the byval.
1874   unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
1875 
1876   // Attempt to avoid passing indirect results using byval when possible. This
1877   // is important for good codegen.
1878   //
1879   // We do this by coercing the value into a scalar type which the backend can
1880   // handle naturally (i.e., without using byval).
1881   //
1882   // For simplicity, we currently only do this when we have exhausted all of the
1883   // free integer registers. Doing this when there are free integer registers
1884   // would require more care, as we would have to ensure that the coerced value
1885   // did not claim the unused register. That would require either reording the
1886   // arguments to the function (so that any subsequent inreg values came first),
1887   // or only doing this optimization when there were no following arguments that
1888   // might be inreg.
1889   //
1890   // We currently expect it to be rare (particularly in well written code) for
1891   // arguments to be passed on the stack when there are still free integer
1892   // registers available (this would typically imply large structs being passed
1893   // by value), so this seems like a fair tradeoff for now.
1894   //
1895   // We can revisit this if the backend grows support for 'onstack' parameter
1896   // attributes. See PR12193.
1897   if (freeIntRegs == 0) {
1898     uint64_t Size = getContext().getTypeSize(Ty);
1899 
1900     // If this type fits in an eightbyte, coerce it into the matching integral
1901     // type, which will end up on the stack (with alignment 8).
1902     if (Align == 8 && Size <= 64)
1903       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1904                                                           Size));
1905   }
1906 
1907   return ABIArgInfo::getIndirect(Align);
1908 }
1909 
1910 /// GetByteVectorType - The ABI specifies that a value should be passed in an
1911 /// full vector XMM/YMM register.  Pick an LLVM IR type that will be passed as a
1912 /// vector register.
1913 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
1914   llvm::Type *IRType = CGT.ConvertType(Ty);
1915 
1916   // Wrapper structs that just contain vectors are passed just like vectors,
1917   // strip them off if present.
1918   llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType);
1919   while (STy && STy->getNumElements() == 1) {
1920     IRType = STy->getElementType(0);
1921     STy = dyn_cast<llvm::StructType>(IRType);
1922   }
1923 
1924   // If the preferred type is a 16-byte vector, prefer to pass it.
1925   if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(IRType)){
1926     llvm::Type *EltTy = VT->getElementType();
1927     unsigned BitWidth = VT->getBitWidth();
1928     if ((BitWidth >= 128 && BitWidth <= 256) &&
1929         (EltTy->isFloatTy() || EltTy->isDoubleTy() ||
1930          EltTy->isIntegerTy(8) || EltTy->isIntegerTy(16) ||
1931          EltTy->isIntegerTy(32) || EltTy->isIntegerTy(64) ||
1932          EltTy->isIntegerTy(128)))
1933       return VT;
1934   }
1935 
1936   return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 2);
1937 }
1938 
1939 /// BitsContainNoUserData - Return true if the specified [start,end) bit range
1940 /// is known to either be off the end of the specified type or being in
1941 /// alignment padding.  The user type specified is known to be at most 128 bits
1942 /// in size, and have passed through X86_64ABIInfo::classify with a successful
1943 /// classification that put one of the two halves in the INTEGER class.
1944 ///
1945 /// It is conservatively correct to return false.
1946 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
1947                                   unsigned EndBit, ASTContext &Context) {
1948   // If the bytes being queried are off the end of the type, there is no user
1949   // data hiding here.  This handles analysis of builtins, vectors and other
1950   // types that don't contain interesting padding.
1951   unsigned TySize = (unsigned)Context.getTypeSize(Ty);
1952   if (TySize <= StartBit)
1953     return true;
1954 
1955   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
1956     unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
1957     unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
1958 
1959     // Check each element to see if the element overlaps with the queried range.
1960     for (unsigned i = 0; i != NumElts; ++i) {
1961       // If the element is after the span we care about, then we're done..
1962       unsigned EltOffset = i*EltSize;
1963       if (EltOffset >= EndBit) break;
1964 
1965       unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
1966       if (!BitsContainNoUserData(AT->getElementType(), EltStart,
1967                                  EndBit-EltOffset, Context))
1968         return false;
1969     }
1970     // If it overlaps no elements, then it is safe to process as padding.
1971     return true;
1972   }
1973 
1974   if (const RecordType *RT = Ty->getAs<RecordType>()) {
1975     const RecordDecl *RD = RT->getDecl();
1976     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1977 
1978     // If this is a C++ record, check the bases first.
1979     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1980       for (const auto &I : CXXRD->bases()) {
1981         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
1982                "Unexpected base class!");
1983         const CXXRecordDecl *Base =
1984           cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
1985 
1986         // If the base is after the span we care about, ignore it.
1987         unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base));
1988         if (BaseOffset >= EndBit) continue;
1989 
1990         unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
1991         if (!BitsContainNoUserData(I.getType(), BaseStart,
1992                                    EndBit-BaseOffset, Context))
1993           return false;
1994       }
1995     }
1996 
1997     // Verify that no field has data that overlaps the region of interest.  Yes
1998     // this could be sped up a lot by being smarter about queried fields,
1999     // however we're only looking at structs up to 16 bytes, so we don't care
2000     // much.
2001     unsigned idx = 0;
2002     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2003          i != e; ++i, ++idx) {
2004       unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
2005 
2006       // If we found a field after the region we care about, then we're done.
2007       if (FieldOffset >= EndBit) break;
2008 
2009       unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
2010       if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
2011                                  Context))
2012         return false;
2013     }
2014 
2015     // If nothing in this record overlapped the area of interest, then we're
2016     // clean.
2017     return true;
2018   }
2019 
2020   return false;
2021 }
2022 
2023 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
2024 /// float member at the specified offset.  For example, {int,{float}} has a
2025 /// float at offset 4.  It is conservatively correct for this routine to return
2026 /// false.
2027 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset,
2028                                   const llvm::DataLayout &TD) {
2029   // Base case if we find a float.
2030   if (IROffset == 0 && IRType->isFloatTy())
2031     return true;
2032 
2033   // If this is a struct, recurse into the field at the specified offset.
2034   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
2035     const llvm::StructLayout *SL = TD.getStructLayout(STy);
2036     unsigned Elt = SL->getElementContainingOffset(IROffset);
2037     IROffset -= SL->getElementOffset(Elt);
2038     return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
2039   }
2040 
2041   // If this is an array, recurse into the field at the specified offset.
2042   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
2043     llvm::Type *EltTy = ATy->getElementType();
2044     unsigned EltSize = TD.getTypeAllocSize(EltTy);
2045     IROffset -= IROffset/EltSize*EltSize;
2046     return ContainsFloatAtOffset(EltTy, IROffset, TD);
2047   }
2048 
2049   return false;
2050 }
2051 
2052 
2053 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
2054 /// low 8 bytes of an XMM register, corresponding to the SSE class.
2055 llvm::Type *X86_64ABIInfo::
2056 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
2057                    QualType SourceTy, unsigned SourceOffset) const {
2058   // The only three choices we have are either double, <2 x float>, or float. We
2059   // pass as float if the last 4 bytes is just padding.  This happens for
2060   // structs that contain 3 floats.
2061   if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
2062                             SourceOffset*8+64, getContext()))
2063     return llvm::Type::getFloatTy(getVMContext());
2064 
2065   // We want to pass as <2 x float> if the LLVM IR type contains a float at
2066   // offset+0 and offset+4.  Walk the LLVM IR type to find out if this is the
2067   // case.
2068   if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) &&
2069       ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout()))
2070     return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2);
2071 
2072   return llvm::Type::getDoubleTy(getVMContext());
2073 }
2074 
2075 
2076 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
2077 /// an 8-byte GPR.  This means that we either have a scalar or we are talking
2078 /// about the high or low part of an up-to-16-byte struct.  This routine picks
2079 /// the best LLVM IR type to represent this, which may be i64 or may be anything
2080 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
2081 /// etc).
2082 ///
2083 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
2084 /// the source type.  IROffset is an offset in bytes into the LLVM IR type that
2085 /// the 8-byte value references.  PrefType may be null.
2086 ///
2087 /// SourceTy is the source level type for the entire argument.  SourceOffset is
2088 /// an offset into this that we're processing (which is always either 0 or 8).
2089 ///
2090 llvm::Type *X86_64ABIInfo::
2091 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
2092                        QualType SourceTy, unsigned SourceOffset) const {
2093   // If we're dealing with an un-offset LLVM IR type, then it means that we're
2094   // returning an 8-byte unit starting with it.  See if we can safely use it.
2095   if (IROffset == 0) {
2096     // Pointers and int64's always fill the 8-byte unit.
2097     if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) ||
2098         IRType->isIntegerTy(64))
2099       return IRType;
2100 
2101     // If we have a 1/2/4-byte integer, we can use it only if the rest of the
2102     // goodness in the source type is just tail padding.  This is allowed to
2103     // kick in for struct {double,int} on the int, but not on
2104     // struct{double,int,int} because we wouldn't return the second int.  We
2105     // have to do this analysis on the source type because we can't depend on
2106     // unions being lowered a specific way etc.
2107     if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
2108         IRType->isIntegerTy(32) ||
2109         (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) {
2110       unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 :
2111           cast<llvm::IntegerType>(IRType)->getBitWidth();
2112 
2113       if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
2114                                 SourceOffset*8+64, getContext()))
2115         return IRType;
2116     }
2117   }
2118 
2119   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
2120     // If this is a struct, recurse into the field at the specified offset.
2121     const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy);
2122     if (IROffset < SL->getSizeInBytes()) {
2123       unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
2124       IROffset -= SL->getElementOffset(FieldIdx);
2125 
2126       return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
2127                                     SourceTy, SourceOffset);
2128     }
2129   }
2130 
2131   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
2132     llvm::Type *EltTy = ATy->getElementType();
2133     unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy);
2134     unsigned EltOffset = IROffset/EltSize*EltSize;
2135     return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
2136                                   SourceOffset);
2137   }
2138 
2139   // Okay, we don't have any better idea of what to pass, so we pass this in an
2140   // integer register that isn't too big to fit the rest of the struct.
2141   unsigned TySizeInBytes =
2142     (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
2143 
2144   assert(TySizeInBytes != SourceOffset && "Empty field?");
2145 
2146   // It is always safe to classify this as an integer type up to i64 that
2147   // isn't larger than the structure.
2148   return llvm::IntegerType::get(getVMContext(),
2149                                 std::min(TySizeInBytes-SourceOffset, 8U)*8);
2150 }
2151 
2152 
2153 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
2154 /// be used as elements of a two register pair to pass or return, return a
2155 /// first class aggregate to represent them.  For example, if the low part of
2156 /// a by-value argument should be passed as i32* and the high part as float,
2157 /// return {i32*, float}.
2158 static llvm::Type *
2159 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
2160                            const llvm::DataLayout &TD) {
2161   // In order to correctly satisfy the ABI, we need to the high part to start
2162   // at offset 8.  If the high and low parts we inferred are both 4-byte types
2163   // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
2164   // the second element at offset 8.  Check for this:
2165   unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
2166   unsigned HiAlign = TD.getABITypeAlignment(Hi);
2167   unsigned HiStart = llvm::DataLayout::RoundUpAlignment(LoSize, HiAlign);
2168   assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
2169 
2170   // To handle this, we have to increase the size of the low part so that the
2171   // second element will start at an 8 byte offset.  We can't increase the size
2172   // of the second element because it might make us access off the end of the
2173   // struct.
2174   if (HiStart != 8) {
2175     // There are only two sorts of types the ABI generation code can produce for
2176     // the low part of a pair that aren't 8 bytes in size: float or i8/i16/i32.
2177     // Promote these to a larger type.
2178     if (Lo->isFloatTy())
2179       Lo = llvm::Type::getDoubleTy(Lo->getContext());
2180     else {
2181       assert(Lo->isIntegerTy() && "Invalid/unknown lo type");
2182       Lo = llvm::Type::getInt64Ty(Lo->getContext());
2183     }
2184   }
2185 
2186   llvm::StructType *Result = llvm::StructType::get(Lo, Hi, NULL);
2187 
2188 
2189   // Verify that the second element is at an 8-byte offset.
2190   assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
2191          "Invalid x86-64 argument pair!");
2192   return Result;
2193 }
2194 
2195 ABIArgInfo X86_64ABIInfo::
2196 classifyReturnType(QualType RetTy) const {
2197   // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
2198   // classification algorithm.
2199   X86_64ABIInfo::Class Lo, Hi;
2200   classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true);
2201 
2202   // Check some invariants.
2203   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
2204   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
2205 
2206   llvm::Type *ResType = 0;
2207   switch (Lo) {
2208   case NoClass:
2209     if (Hi == NoClass)
2210       return ABIArgInfo::getIgnore();
2211     // If the low part is just padding, it takes no register, leave ResType
2212     // null.
2213     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
2214            "Unknown missing lo part");
2215     break;
2216 
2217   case SSEUp:
2218   case X87Up:
2219     llvm_unreachable("Invalid classification for lo word.");
2220 
2221     // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
2222     // hidden argument.
2223   case Memory:
2224     return getIndirectReturnResult(RetTy);
2225 
2226     // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
2227     // available register of the sequence %rax, %rdx is used.
2228   case Integer:
2229     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
2230 
2231     // If we have a sign or zero extended integer, make sure to return Extend
2232     // so that the parameter gets the right LLVM IR attributes.
2233     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
2234       // Treat an enum type as its underlying type.
2235       if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
2236         RetTy = EnumTy->getDecl()->getIntegerType();
2237 
2238       if (RetTy->isIntegralOrEnumerationType() &&
2239           RetTy->isPromotableIntegerType())
2240         return ABIArgInfo::getExtend();
2241     }
2242     break;
2243 
2244     // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
2245     // available SSE register of the sequence %xmm0, %xmm1 is used.
2246   case SSE:
2247     ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
2248     break;
2249 
2250     // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
2251     // returned on the X87 stack in %st0 as 80-bit x87 number.
2252   case X87:
2253     ResType = llvm::Type::getX86_FP80Ty(getVMContext());
2254     break;
2255 
2256     // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
2257     // part of the value is returned in %st0 and the imaginary part in
2258     // %st1.
2259   case ComplexX87:
2260     assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
2261     ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
2262                                     llvm::Type::getX86_FP80Ty(getVMContext()),
2263                                     NULL);
2264     break;
2265   }
2266 
2267   llvm::Type *HighPart = 0;
2268   switch (Hi) {
2269     // Memory was handled previously and X87 should
2270     // never occur as a hi class.
2271   case Memory:
2272   case X87:
2273     llvm_unreachable("Invalid classification for hi word.");
2274 
2275   case ComplexX87: // Previously handled.
2276   case NoClass:
2277     break;
2278 
2279   case Integer:
2280     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2281     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
2282       return ABIArgInfo::getDirect(HighPart, 8);
2283     break;
2284   case SSE:
2285     HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2286     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
2287       return ABIArgInfo::getDirect(HighPart, 8);
2288     break;
2289 
2290     // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
2291     // is passed in the next available eightbyte chunk if the last used
2292     // vector register.
2293     //
2294     // SSEUP should always be preceded by SSE, just widen.
2295   case SSEUp:
2296     assert(Lo == SSE && "Unexpected SSEUp classification.");
2297     ResType = GetByteVectorType(RetTy);
2298     break;
2299 
2300     // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
2301     // returned together with the previous X87 value in %st0.
2302   case X87Up:
2303     // If X87Up is preceded by X87, we don't need to do
2304     // anything. However, in some cases with unions it may not be
2305     // preceded by X87. In such situations we follow gcc and pass the
2306     // extra bits in an SSE reg.
2307     if (Lo != X87) {
2308       HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2309       if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
2310         return ABIArgInfo::getDirect(HighPart, 8);
2311     }
2312     break;
2313   }
2314 
2315   // If a high part was specified, merge it together with the low part.  It is
2316   // known to pass in the high eightbyte of the result.  We do this by forming a
2317   // first class struct aggregate with the high and low part: {low, high}
2318   if (HighPart)
2319     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
2320 
2321   return ABIArgInfo::getDirect(ResType);
2322 }
2323 
2324 ABIArgInfo X86_64ABIInfo::classifyArgumentType(
2325   QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE,
2326   bool isNamedArg)
2327   const
2328 {
2329   X86_64ABIInfo::Class Lo, Hi;
2330   classify(Ty, 0, Lo, Hi, isNamedArg);
2331 
2332   // Check some invariants.
2333   // FIXME: Enforce these by construction.
2334   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
2335   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
2336 
2337   neededInt = 0;
2338   neededSSE = 0;
2339   llvm::Type *ResType = 0;
2340   switch (Lo) {
2341   case NoClass:
2342     if (Hi == NoClass)
2343       return ABIArgInfo::getIgnore();
2344     // If the low part is just padding, it takes no register, leave ResType
2345     // null.
2346     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
2347            "Unknown missing lo part");
2348     break;
2349 
2350     // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
2351     // on the stack.
2352   case Memory:
2353 
2354     // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
2355     // COMPLEX_X87, it is passed in memory.
2356   case X87:
2357   case ComplexX87:
2358     if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect)
2359       ++neededInt;
2360     return getIndirectResult(Ty, freeIntRegs);
2361 
2362   case SSEUp:
2363   case X87Up:
2364     llvm_unreachable("Invalid classification for lo word.");
2365 
2366     // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
2367     // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
2368     // and %r9 is used.
2369   case Integer:
2370     ++neededInt;
2371 
2372     // Pick an 8-byte type based on the preferred type.
2373     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
2374 
2375     // If we have a sign or zero extended integer, make sure to return Extend
2376     // so that the parameter gets the right LLVM IR attributes.
2377     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
2378       // Treat an enum type as its underlying type.
2379       if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2380         Ty = EnumTy->getDecl()->getIntegerType();
2381 
2382       if (Ty->isIntegralOrEnumerationType() &&
2383           Ty->isPromotableIntegerType())
2384         return ABIArgInfo::getExtend();
2385     }
2386 
2387     break;
2388 
2389     // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
2390     // available SSE register is used, the registers are taken in the
2391     // order from %xmm0 to %xmm7.
2392   case SSE: {
2393     llvm::Type *IRType = CGT.ConvertType(Ty);
2394     ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
2395     ++neededSSE;
2396     break;
2397   }
2398   }
2399 
2400   llvm::Type *HighPart = 0;
2401   switch (Hi) {
2402     // Memory was handled previously, ComplexX87 and X87 should
2403     // never occur as hi classes, and X87Up must be preceded by X87,
2404     // which is passed in memory.
2405   case Memory:
2406   case X87:
2407   case ComplexX87:
2408     llvm_unreachable("Invalid classification for hi word.");
2409 
2410   case NoClass: break;
2411 
2412   case Integer:
2413     ++neededInt;
2414     // Pick an 8-byte type based on the preferred type.
2415     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
2416 
2417     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
2418       return ABIArgInfo::getDirect(HighPart, 8);
2419     break;
2420 
2421     // X87Up generally doesn't occur here (long double is passed in
2422     // memory), except in situations involving unions.
2423   case X87Up:
2424   case SSE:
2425     HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
2426 
2427     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
2428       return ABIArgInfo::getDirect(HighPart, 8);
2429 
2430     ++neededSSE;
2431     break;
2432 
2433     // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
2434     // eightbyte is passed in the upper half of the last used SSE
2435     // register.  This only happens when 128-bit vectors are passed.
2436   case SSEUp:
2437     assert(Lo == SSE && "Unexpected SSEUp classification");
2438     ResType = GetByteVectorType(Ty);
2439     break;
2440   }
2441 
2442   // If a high part was specified, merge it together with the low part.  It is
2443   // known to pass in the high eightbyte of the result.  We do this by forming a
2444   // first class struct aggregate with the high and low part: {low, high}
2445   if (HighPart)
2446     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
2447 
2448   return ABIArgInfo::getDirect(ResType);
2449 }
2450 
2451 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
2452 
2453   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2454 
2455   // Keep track of the number of assigned registers.
2456   unsigned freeIntRegs = 6, freeSSERegs = 8;
2457 
2458   // If the return value is indirect, then the hidden argument is consuming one
2459   // integer register.
2460   if (FI.getReturnInfo().isIndirect())
2461     --freeIntRegs;
2462 
2463   bool isVariadic = FI.isVariadic();
2464   unsigned numRequiredArgs = 0;
2465   if (isVariadic)
2466     numRequiredArgs = FI.getRequiredArgs().getNumRequiredArgs();
2467 
2468   // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
2469   // get assigned (in left-to-right order) for passing as follows...
2470   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2471        it != ie; ++it) {
2472     bool isNamedArg = true;
2473     if (isVariadic)
2474       isNamedArg = (it - FI.arg_begin()) <
2475                     static_cast<signed>(numRequiredArgs);
2476 
2477     unsigned neededInt, neededSSE;
2478     it->info = classifyArgumentType(it->type, freeIntRegs, neededInt,
2479                                     neededSSE, isNamedArg);
2480 
2481     // AMD64-ABI 3.2.3p3: If there are no registers available for any
2482     // eightbyte of an argument, the whole argument is passed on the
2483     // stack. If registers have already been assigned for some
2484     // eightbytes of such an argument, the assignments get reverted.
2485     if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) {
2486       freeIntRegs -= neededInt;
2487       freeSSERegs -= neededSSE;
2488     } else {
2489       it->info = getIndirectResult(it->type, freeIntRegs);
2490     }
2491   }
2492 }
2493 
2494 static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr,
2495                                         QualType Ty,
2496                                         CodeGenFunction &CGF) {
2497   llvm::Value *overflow_arg_area_p =
2498     CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
2499   llvm::Value *overflow_arg_area =
2500     CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
2501 
2502   // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
2503   // byte boundary if alignment needed by type exceeds 8 byte boundary.
2504   // It isn't stated explicitly in the standard, but in practice we use
2505   // alignment greater than 16 where necessary.
2506   uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
2507   if (Align > 8) {
2508     // overflow_arg_area = (overflow_arg_area + align - 1) & -align;
2509     llvm::Value *Offset =
2510       llvm::ConstantInt::get(CGF.Int64Ty, Align - 1);
2511     overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset);
2512     llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area,
2513                                                     CGF.Int64Ty);
2514     llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, -(uint64_t)Align);
2515     overflow_arg_area =
2516       CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
2517                                  overflow_arg_area->getType(),
2518                                  "overflow_arg_area.align");
2519   }
2520 
2521   // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
2522   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
2523   llvm::Value *Res =
2524     CGF.Builder.CreateBitCast(overflow_arg_area,
2525                               llvm::PointerType::getUnqual(LTy));
2526 
2527   // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
2528   // l->overflow_arg_area + sizeof(type).
2529   // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
2530   // an 8 byte boundary.
2531 
2532   uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
2533   llvm::Value *Offset =
2534       llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7);
2535   overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
2536                                             "overflow_arg_area.next");
2537   CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
2538 
2539   // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
2540   return Res;
2541 }
2542 
2543 llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2544                                       CodeGenFunction &CGF) const {
2545   // Assume that va_list type is correct; should be pointer to LLVM type:
2546   // struct {
2547   //   i32 gp_offset;
2548   //   i32 fp_offset;
2549   //   i8* overflow_arg_area;
2550   //   i8* reg_save_area;
2551   // };
2552   unsigned neededInt, neededSSE;
2553 
2554   Ty = CGF.getContext().getCanonicalType(Ty);
2555   ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE,
2556                                        /*isNamedArg*/false);
2557 
2558   // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
2559   // in the registers. If not go to step 7.
2560   if (!neededInt && !neededSSE)
2561     return EmitVAArgFromMemory(VAListAddr, Ty, CGF);
2562 
2563   // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
2564   // general purpose registers needed to pass type and num_fp to hold
2565   // the number of floating point registers needed.
2566 
2567   // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
2568   // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
2569   // l->fp_offset > 304 - num_fp * 16 go to step 7.
2570   //
2571   // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
2572   // register save space).
2573 
2574   llvm::Value *InRegs = 0;
2575   llvm::Value *gp_offset_p = 0, *gp_offset = 0;
2576   llvm::Value *fp_offset_p = 0, *fp_offset = 0;
2577   if (neededInt) {
2578     gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
2579     gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
2580     InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
2581     InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
2582   }
2583 
2584   if (neededSSE) {
2585     fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
2586     fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
2587     llvm::Value *FitsInFP =
2588       llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
2589     FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
2590     InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
2591   }
2592 
2593   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
2594   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
2595   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
2596   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
2597 
2598   // Emit code to load the value if it was passed in registers.
2599 
2600   CGF.EmitBlock(InRegBlock);
2601 
2602   // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
2603   // an offset of l->gp_offset and/or l->fp_offset. This may require
2604   // copying to a temporary location in case the parameter is passed
2605   // in different register classes or requires an alignment greater
2606   // than 8 for general purpose registers and 16 for XMM registers.
2607   //
2608   // FIXME: This really results in shameful code when we end up needing to
2609   // collect arguments from different places; often what should result in a
2610   // simple assembling of a structure from scattered addresses has many more
2611   // loads than necessary. Can we clean this up?
2612   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
2613   llvm::Value *RegAddr =
2614     CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(VAListAddr, 3),
2615                            "reg_save_area");
2616   if (neededInt && neededSSE) {
2617     // FIXME: Cleanup.
2618     assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
2619     llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
2620     llvm::Value *Tmp = CGF.CreateMemTemp(Ty);
2621     Tmp = CGF.Builder.CreateBitCast(Tmp, ST->getPointerTo());
2622     assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
2623     llvm::Type *TyLo = ST->getElementType(0);
2624     llvm::Type *TyHi = ST->getElementType(1);
2625     assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
2626            "Unexpected ABI info for mixed regs");
2627     llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
2628     llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
2629     llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
2630     llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2631     llvm::Value *RegLoAddr = TyLo->isFloatingPointTy() ? FPAddr : GPAddr;
2632     llvm::Value *RegHiAddr = TyLo->isFloatingPointTy() ? GPAddr : FPAddr;
2633     llvm::Value *V =
2634       CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo));
2635     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
2636     V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi));
2637     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
2638 
2639     RegAddr = CGF.Builder.CreateBitCast(Tmp,
2640                                         llvm::PointerType::getUnqual(LTy));
2641   } else if (neededInt) {
2642     RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
2643     RegAddr = CGF.Builder.CreateBitCast(RegAddr,
2644                                         llvm::PointerType::getUnqual(LTy));
2645 
2646     // Copy to a temporary if necessary to ensure the appropriate alignment.
2647     std::pair<CharUnits, CharUnits> SizeAlign =
2648         CGF.getContext().getTypeInfoInChars(Ty);
2649     uint64_t TySize = SizeAlign.first.getQuantity();
2650     unsigned TyAlign = SizeAlign.second.getQuantity();
2651     if (TyAlign > 8) {
2652       llvm::Value *Tmp = CGF.CreateMemTemp(Ty);
2653       CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, 8, false);
2654       RegAddr = Tmp;
2655     }
2656   } else if (neededSSE == 1) {
2657     RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2658     RegAddr = CGF.Builder.CreateBitCast(RegAddr,
2659                                         llvm::PointerType::getUnqual(LTy));
2660   } else {
2661     assert(neededSSE == 2 && "Invalid number of needed registers!");
2662     // SSE registers are spaced 16 bytes apart in the register save
2663     // area, we need to collect the two eightbytes together.
2664     llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2665     llvm::Value *RegAddrHi = CGF.Builder.CreateConstGEP1_32(RegAddrLo, 16);
2666     llvm::Type *DoubleTy = CGF.DoubleTy;
2667     llvm::Type *DblPtrTy =
2668       llvm::PointerType::getUnqual(DoubleTy);
2669     llvm::StructType *ST = llvm::StructType::get(DoubleTy, DoubleTy, NULL);
2670     llvm::Value *V, *Tmp = CGF.CreateMemTemp(Ty);
2671     Tmp = CGF.Builder.CreateBitCast(Tmp, ST->getPointerTo());
2672     V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo,
2673                                                          DblPtrTy));
2674     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
2675     V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi,
2676                                                          DblPtrTy));
2677     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
2678     RegAddr = CGF.Builder.CreateBitCast(Tmp,
2679                                         llvm::PointerType::getUnqual(LTy));
2680   }
2681 
2682   // AMD64-ABI 3.5.7p5: Step 5. Set:
2683   // l->gp_offset = l->gp_offset + num_gp * 8
2684   // l->fp_offset = l->fp_offset + num_fp * 16.
2685   if (neededInt) {
2686     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
2687     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
2688                             gp_offset_p);
2689   }
2690   if (neededSSE) {
2691     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
2692     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
2693                             fp_offset_p);
2694   }
2695   CGF.EmitBranch(ContBlock);
2696 
2697   // Emit code to load the value if it was passed in memory.
2698 
2699   CGF.EmitBlock(InMemBlock);
2700   llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF);
2701 
2702   // Return the appropriate result.
2703 
2704   CGF.EmitBlock(ContBlock);
2705   llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(), 2,
2706                                                  "vaarg.addr");
2707   ResAddr->addIncoming(RegAddr, InRegBlock);
2708   ResAddr->addIncoming(MemAddr, InMemBlock);
2709   return ResAddr;
2710 }
2711 
2712 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, bool IsReturnType) const {
2713 
2714   if (Ty->isVoidType())
2715     return ABIArgInfo::getIgnore();
2716 
2717   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2718     Ty = EnumTy->getDecl()->getIntegerType();
2719 
2720   uint64_t Size = getContext().getTypeSize(Ty);
2721 
2722   if (const RecordType *RT = Ty->getAs<RecordType>()) {
2723     if (IsReturnType) {
2724       if (isRecordReturnIndirect(RT, getCXXABI()))
2725         return ABIArgInfo::getIndirect(0, false);
2726     } else {
2727       if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()))
2728         return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
2729     }
2730 
2731     if (RT->getDecl()->hasFlexibleArrayMember())
2732       return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2733 
2734     // FIXME: mingw-w64-gcc emits 128-bit struct as i128
2735     if (Size == 128 && getTarget().getTriple().getOS() == llvm::Triple::MinGW32)
2736       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2737                                                           Size));
2738 
2739     // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
2740     // not 1, 2, 4, or 8 bytes, must be passed by reference."
2741     if (Size <= 64 &&
2742         (Size & (Size - 1)) == 0)
2743       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2744                                                           Size));
2745 
2746     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2747   }
2748 
2749   if (Ty->isPromotableIntegerType())
2750     return ABIArgInfo::getExtend();
2751 
2752   return ABIArgInfo::getDirect();
2753 }
2754 
2755 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
2756 
2757   QualType RetTy = FI.getReturnType();
2758   FI.getReturnInfo() = classify(RetTy, true);
2759 
2760   for (auto &I : FI.arguments())
2761     I.info = classify(I.type, false);
2762 }
2763 
2764 llvm::Value *WinX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2765                                       CodeGenFunction &CGF) const {
2766   llvm::Type *BPP = CGF.Int8PtrPtrTy;
2767 
2768   CGBuilderTy &Builder = CGF.Builder;
2769   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
2770                                                        "ap");
2771   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
2772   llvm::Type *PTy =
2773     llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
2774   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
2775 
2776   uint64_t Offset =
2777     llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 8);
2778   llvm::Value *NextAddr =
2779     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
2780                       "ap.next");
2781   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
2782 
2783   return AddrTyped;
2784 }
2785 
2786 namespace {
2787 
2788 class NaClX86_64ABIInfo : public ABIInfo {
2789  public:
2790   NaClX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX)
2791       : ABIInfo(CGT), PInfo(CGT), NInfo(CGT, HasAVX) {}
2792   void computeInfo(CGFunctionInfo &FI) const override;
2793   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2794                          CodeGenFunction &CGF) const override;
2795  private:
2796   PNaClABIInfo PInfo;  // Used for generating calls with pnaclcall callingconv.
2797   X86_64ABIInfo NInfo; // Used for everything else.
2798 };
2799 
2800 class NaClX86_64TargetCodeGenInfo : public TargetCodeGenInfo  {
2801  public:
2802   NaClX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX)
2803       : TargetCodeGenInfo(new NaClX86_64ABIInfo(CGT, HasAVX)) {}
2804 };
2805 
2806 }
2807 
2808 void NaClX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
2809   if (FI.getASTCallingConvention() == CC_PnaclCall)
2810     PInfo.computeInfo(FI);
2811   else
2812     NInfo.computeInfo(FI);
2813 }
2814 
2815 llvm::Value *NaClX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2816                                           CodeGenFunction &CGF) const {
2817   // Always use the native convention; calling pnacl-style varargs functions
2818   // is unuspported.
2819   return NInfo.EmitVAArg(VAListAddr, Ty, CGF);
2820 }
2821 
2822 
2823 // PowerPC-32
2824 
2825 namespace {
2826 class PPC32TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
2827 public:
2828   PPC32TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
2829 
2830   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
2831     // This is recovered from gcc output.
2832     return 1; // r1 is the dedicated stack pointer
2833   }
2834 
2835   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2836                                llvm::Value *Address) const override;
2837 };
2838 
2839 }
2840 
2841 bool
2842 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2843                                                 llvm::Value *Address) const {
2844   // This is calculated from the LLVM and GCC tables and verified
2845   // against gcc output.  AFAIK all ABIs use the same encoding.
2846 
2847   CodeGen::CGBuilderTy &Builder = CGF.Builder;
2848 
2849   llvm::IntegerType *i8 = CGF.Int8Ty;
2850   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
2851   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
2852   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
2853 
2854   // 0-31: r0-31, the 4-byte general-purpose registers
2855   AssignToArrayRange(Builder, Address, Four8, 0, 31);
2856 
2857   // 32-63: fp0-31, the 8-byte floating-point registers
2858   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
2859 
2860   // 64-76 are various 4-byte special-purpose registers:
2861   // 64: mq
2862   // 65: lr
2863   // 66: ctr
2864   // 67: ap
2865   // 68-75 cr0-7
2866   // 76: xer
2867   AssignToArrayRange(Builder, Address, Four8, 64, 76);
2868 
2869   // 77-108: v0-31, the 16-byte vector registers
2870   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
2871 
2872   // 109: vrsave
2873   // 110: vscr
2874   // 111: spe_acc
2875   // 112: spefscr
2876   // 113: sfp
2877   AssignToArrayRange(Builder, Address, Four8, 109, 113);
2878 
2879   return false;
2880 }
2881 
2882 // PowerPC-64
2883 
2884 namespace {
2885 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information.
2886 class PPC64_SVR4_ABIInfo : public DefaultABIInfo {
2887 
2888 public:
2889   PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
2890 
2891   bool isPromotableTypeForABI(QualType Ty) const;
2892 
2893   ABIArgInfo classifyReturnType(QualType RetTy) const;
2894   ABIArgInfo classifyArgumentType(QualType Ty) const;
2895 
2896   // TODO: We can add more logic to computeInfo to improve performance.
2897   // Example: For aggregate arguments that fit in a register, we could
2898   // use getDirectInReg (as is done below for structs containing a single
2899   // floating-point value) to avoid pushing them to memory on function
2900   // entry.  This would require changing the logic in PPCISelLowering
2901   // when lowering the parameters in the caller and args in the callee.
2902   void computeInfo(CGFunctionInfo &FI) const override {
2903     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2904     for (auto &I : FI.arguments()) {
2905       // We rely on the default argument classification for the most part.
2906       // One exception:  An aggregate containing a single floating-point
2907       // or vector item must be passed in a register if one is available.
2908       const Type *T = isSingleElementStruct(I.type, getContext());
2909       if (T) {
2910         const BuiltinType *BT = T->getAs<BuiltinType>();
2911         if (T->isVectorType() || (BT && BT->isFloatingPoint())) {
2912           QualType QT(T, 0);
2913           I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT));
2914           continue;
2915         }
2916       }
2917       I.info = classifyArgumentType(I.type);
2918     }
2919   }
2920 
2921   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2922                          CodeGenFunction &CGF) const override;
2923 };
2924 
2925 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo {
2926 public:
2927   PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT)
2928     : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT)) {}
2929 
2930   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
2931     // This is recovered from gcc output.
2932     return 1; // r1 is the dedicated stack pointer
2933   }
2934 
2935   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2936                                llvm::Value *Address) const override;
2937 };
2938 
2939 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
2940 public:
2941   PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
2942 
2943   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
2944     // This is recovered from gcc output.
2945     return 1; // r1 is the dedicated stack pointer
2946   }
2947 
2948   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2949                                llvm::Value *Address) const override;
2950 };
2951 
2952 }
2953 
2954 // Return true if the ABI requires Ty to be passed sign- or zero-
2955 // extended to 64 bits.
2956 bool
2957 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const {
2958   // Treat an enum type as its underlying type.
2959   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2960     Ty = EnumTy->getDecl()->getIntegerType();
2961 
2962   // Promotable integer types are required to be promoted by the ABI.
2963   if (Ty->isPromotableIntegerType())
2964     return true;
2965 
2966   // In addition to the usual promotable integer types, we also need to
2967   // extend all 32-bit types, since the ABI requires promotion to 64 bits.
2968   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
2969     switch (BT->getKind()) {
2970     case BuiltinType::Int:
2971     case BuiltinType::UInt:
2972       return true;
2973     default:
2974       break;
2975     }
2976 
2977   return false;
2978 }
2979 
2980 ABIArgInfo
2981 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const {
2982   if (Ty->isAnyComplexType())
2983     return ABIArgInfo::getDirect();
2984 
2985   if (isAggregateTypeForABI(Ty)) {
2986     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
2987       return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
2988 
2989     return ABIArgInfo::getIndirect(0);
2990   }
2991 
2992   return (isPromotableTypeForABI(Ty) ?
2993           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2994 }
2995 
2996 ABIArgInfo
2997 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
2998   if (RetTy->isVoidType())
2999     return ABIArgInfo::getIgnore();
3000 
3001   if (RetTy->isAnyComplexType())
3002     return ABIArgInfo::getDirect();
3003 
3004   if (isAggregateTypeForABI(RetTy))
3005     return ABIArgInfo::getIndirect(0);
3006 
3007   return (isPromotableTypeForABI(RetTy) ?
3008           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3009 }
3010 
3011 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine.
3012 llvm::Value *PPC64_SVR4_ABIInfo::EmitVAArg(llvm::Value *VAListAddr,
3013                                            QualType Ty,
3014                                            CodeGenFunction &CGF) const {
3015   llvm::Type *BP = CGF.Int8PtrTy;
3016   llvm::Type *BPP = CGF.Int8PtrPtrTy;
3017 
3018   CGBuilderTy &Builder = CGF.Builder;
3019   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
3020   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
3021 
3022   // Update the va_list pointer.  The pointer should be bumped by the
3023   // size of the object.  We can trust getTypeSize() except for a complex
3024   // type whose base type is smaller than a doubleword.  For these, the
3025   // size of the object is 16 bytes; see below for further explanation.
3026   unsigned SizeInBytes = CGF.getContext().getTypeSize(Ty) / 8;
3027   QualType BaseTy;
3028   unsigned CplxBaseSize = 0;
3029 
3030   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
3031     BaseTy = CTy->getElementType();
3032     CplxBaseSize = CGF.getContext().getTypeSize(BaseTy) / 8;
3033     if (CplxBaseSize < 8)
3034       SizeInBytes = 16;
3035   }
3036 
3037   unsigned Offset = llvm::RoundUpToAlignment(SizeInBytes, 8);
3038   llvm::Value *NextAddr =
3039     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int64Ty, Offset),
3040                       "ap.next");
3041   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
3042 
3043   // If we have a complex type and the base type is smaller than 8 bytes,
3044   // the ABI calls for the real and imaginary parts to be right-adjusted
3045   // in separate doublewords.  However, Clang expects us to produce a
3046   // pointer to a structure with the two parts packed tightly.  So generate
3047   // loads of the real and imaginary parts relative to the va_list pointer,
3048   // and store them to a temporary structure.
3049   if (CplxBaseSize && CplxBaseSize < 8) {
3050     llvm::Value *RealAddr = Builder.CreatePtrToInt(Addr, CGF.Int64Ty);
3051     llvm::Value *ImagAddr = RealAddr;
3052     RealAddr = Builder.CreateAdd(RealAddr, Builder.getInt64(8 - CplxBaseSize));
3053     ImagAddr = Builder.CreateAdd(ImagAddr, Builder.getInt64(16 - CplxBaseSize));
3054     llvm::Type *PBaseTy = llvm::PointerType::getUnqual(CGF.ConvertType(BaseTy));
3055     RealAddr = Builder.CreateIntToPtr(RealAddr, PBaseTy);
3056     ImagAddr = Builder.CreateIntToPtr(ImagAddr, PBaseTy);
3057     llvm::Value *Real = Builder.CreateLoad(RealAddr, false, ".vareal");
3058     llvm::Value *Imag = Builder.CreateLoad(ImagAddr, false, ".vaimag");
3059     llvm::Value *Ptr = CGF.CreateTempAlloca(CGT.ConvertTypeForMem(Ty),
3060                                             "vacplx");
3061     llvm::Value *RealPtr = Builder.CreateStructGEP(Ptr, 0, ".real");
3062     llvm::Value *ImagPtr = Builder.CreateStructGEP(Ptr, 1, ".imag");
3063     Builder.CreateStore(Real, RealPtr, false);
3064     Builder.CreateStore(Imag, ImagPtr, false);
3065     return Ptr;
3066   }
3067 
3068   // If the argument is smaller than 8 bytes, it is right-adjusted in
3069   // its doubleword slot.  Adjust the pointer to pick it up from the
3070   // correct offset.
3071   if (SizeInBytes < 8) {
3072     llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty);
3073     AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt64(8 - SizeInBytes));
3074     Addr = Builder.CreateIntToPtr(AddrAsInt, BP);
3075   }
3076 
3077   llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
3078   return Builder.CreateBitCast(Addr, PTy);
3079 }
3080 
3081 static bool
3082 PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3083                               llvm::Value *Address) {
3084   // This is calculated from the LLVM and GCC tables and verified
3085   // against gcc output.  AFAIK all ABIs use the same encoding.
3086 
3087   CodeGen::CGBuilderTy &Builder = CGF.Builder;
3088 
3089   llvm::IntegerType *i8 = CGF.Int8Ty;
3090   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
3091   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
3092   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
3093 
3094   // 0-31: r0-31, the 8-byte general-purpose registers
3095   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
3096 
3097   // 32-63: fp0-31, the 8-byte floating-point registers
3098   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
3099 
3100   // 64-76 are various 4-byte special-purpose registers:
3101   // 64: mq
3102   // 65: lr
3103   // 66: ctr
3104   // 67: ap
3105   // 68-75 cr0-7
3106   // 76: xer
3107   AssignToArrayRange(Builder, Address, Four8, 64, 76);
3108 
3109   // 77-108: v0-31, the 16-byte vector registers
3110   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
3111 
3112   // 109: vrsave
3113   // 110: vscr
3114   // 111: spe_acc
3115   // 112: spefscr
3116   // 113: sfp
3117   AssignToArrayRange(Builder, Address, Four8, 109, 113);
3118 
3119   return false;
3120 }
3121 
3122 bool
3123 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable(
3124   CodeGen::CodeGenFunction &CGF,
3125   llvm::Value *Address) const {
3126 
3127   return PPC64_initDwarfEHRegSizeTable(CGF, Address);
3128 }
3129 
3130 bool
3131 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3132                                                 llvm::Value *Address) const {
3133 
3134   return PPC64_initDwarfEHRegSizeTable(CGF, Address);
3135 }
3136 
3137 //===----------------------------------------------------------------------===//
3138 // ARM ABI Implementation
3139 //===----------------------------------------------------------------------===//
3140 
3141 namespace {
3142 
3143 class ARMABIInfo : public ABIInfo {
3144 public:
3145   enum ABIKind {
3146     APCS = 0,
3147     AAPCS = 1,
3148     AAPCS_VFP
3149   };
3150 
3151 private:
3152   ABIKind Kind;
3153   mutable int VFPRegs[16];
3154   const unsigned NumVFPs;
3155   const unsigned NumGPRs;
3156   mutable unsigned AllocatedGPRs;
3157   mutable unsigned AllocatedVFPs;
3158 
3159 public:
3160   ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) : ABIInfo(CGT), Kind(_Kind),
3161     NumVFPs(16), NumGPRs(4) {
3162     setRuntimeCC();
3163     resetAllocatedRegs();
3164   }
3165 
3166   bool isEABI() const {
3167     switch (getTarget().getTriple().getEnvironment()) {
3168     case llvm::Triple::Android:
3169     case llvm::Triple::EABI:
3170     case llvm::Triple::EABIHF:
3171     case llvm::Triple::GNUEABI:
3172     case llvm::Triple::GNUEABIHF:
3173       return true;
3174     default:
3175       return false;
3176     }
3177   }
3178 
3179   bool isEABIHF() const {
3180     switch (getTarget().getTriple().getEnvironment()) {
3181     case llvm::Triple::EABIHF:
3182     case llvm::Triple::GNUEABIHF:
3183       return true;
3184     default:
3185       return false;
3186     }
3187   }
3188 
3189   ABIKind getABIKind() const { return Kind; }
3190 
3191 private:
3192   ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic) const;
3193   ABIArgInfo classifyArgumentType(QualType RetTy, bool &IsHA, bool isVariadic,
3194                                   bool &IsCPRC) const;
3195   bool isIllegalVectorType(QualType Ty) const;
3196 
3197   void computeInfo(CGFunctionInfo &FI) const override;
3198 
3199   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3200                          CodeGenFunction &CGF) const override;
3201 
3202   llvm::CallingConv::ID getLLVMDefaultCC() const;
3203   llvm::CallingConv::ID getABIDefaultCC() const;
3204   void setRuntimeCC();
3205 
3206   void markAllocatedGPRs(unsigned Alignment, unsigned NumRequired) const;
3207   void markAllocatedVFPs(unsigned Alignment, unsigned NumRequired) const;
3208   void resetAllocatedRegs(void) const;
3209 };
3210 
3211 class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
3212 public:
3213   ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
3214     :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {}
3215 
3216   const ARMABIInfo &getABIInfo() const {
3217     return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo());
3218   }
3219 
3220   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
3221     return 13;
3222   }
3223 
3224   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
3225     return "mov\tr7, r7\t\t@ marker for objc_retainAutoreleaseReturnValue";
3226   }
3227 
3228   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3229                                llvm::Value *Address) const override {
3230     llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
3231 
3232     // 0-15 are the 16 integer registers.
3233     AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15);
3234     return false;
3235   }
3236 
3237   unsigned getSizeOfUnwindException() const override {
3238     if (getABIInfo().isEABI()) return 88;
3239     return TargetCodeGenInfo::getSizeOfUnwindException();
3240   }
3241 
3242   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
3243                            CodeGen::CodeGenModule &CGM) const override {
3244     const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
3245     if (!FD)
3246       return;
3247 
3248     const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>();
3249     if (!Attr)
3250       return;
3251 
3252     const char *Kind;
3253     switch (Attr->getInterrupt()) {
3254     case ARMInterruptAttr::Generic: Kind = ""; break;
3255     case ARMInterruptAttr::IRQ:     Kind = "IRQ"; break;
3256     case ARMInterruptAttr::FIQ:     Kind = "FIQ"; break;
3257     case ARMInterruptAttr::SWI:     Kind = "SWI"; break;
3258     case ARMInterruptAttr::ABORT:   Kind = "ABORT"; break;
3259     case ARMInterruptAttr::UNDEF:   Kind = "UNDEF"; break;
3260     }
3261 
3262     llvm::Function *Fn = cast<llvm::Function>(GV);
3263 
3264     Fn->addFnAttr("interrupt", Kind);
3265 
3266     if (cast<ARMABIInfo>(getABIInfo()).getABIKind() == ARMABIInfo::APCS)
3267       return;
3268 
3269     // AAPCS guarantees that sp will be 8-byte aligned on any public interface,
3270     // however this is not necessarily true on taking any interrupt. Instruct
3271     // the backend to perform a realignment as part of the function prologue.
3272     llvm::AttrBuilder B;
3273     B.addStackAlignmentAttr(8);
3274     Fn->addAttributes(llvm::AttributeSet::FunctionIndex,
3275                       llvm::AttributeSet::get(CGM.getLLVMContext(),
3276                                               llvm::AttributeSet::FunctionIndex,
3277                                               B));
3278   }
3279 
3280 };
3281 
3282 }
3283 
3284 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
3285   // To correctly handle Homogeneous Aggregate, we need to keep track of the
3286   // VFP registers allocated so far.
3287   // C.1.vfp If the argument is a VFP CPRC and there are sufficient consecutive
3288   // VFP registers of the appropriate type unallocated then the argument is
3289   // allocated to the lowest-numbered sequence of such registers.
3290   // C.2.vfp If the argument is a VFP CPRC then any VFP registers that are
3291   // unallocated are marked as unavailable.
3292   resetAllocatedRegs();
3293 
3294   FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), FI.isVariadic());
3295   for (auto &I : FI.arguments()) {
3296     unsigned PreAllocationVFPs = AllocatedVFPs;
3297     unsigned PreAllocationGPRs = AllocatedGPRs;
3298     bool IsHA = false;
3299     bool IsCPRC = false;
3300     // 6.1.2.3 There is one VFP co-processor register class using registers
3301     // s0-s15 (d0-d7) for passing arguments.
3302     I.info = classifyArgumentType(I.type, IsHA, FI.isVariadic(), IsCPRC);
3303     assert((IsCPRC || !IsHA) && "Homogeneous aggregates must be CPRCs");
3304     // If we do not have enough VFP registers for the HA, any VFP registers
3305     // that are unallocated are marked as unavailable. To achieve this, we add
3306     // padding of (NumVFPs - PreAllocationVFP) floats.
3307     // Note that IsHA will only be set when using the AAPCS-VFP calling convention,
3308     // and the callee is not variadic.
3309     if (IsHA && AllocatedVFPs > NumVFPs && PreAllocationVFPs < NumVFPs) {
3310       llvm::Type *PaddingTy = llvm::ArrayType::get(
3311           llvm::Type::getFloatTy(getVMContext()), NumVFPs - PreAllocationVFPs);
3312       I.info = ABIArgInfo::getExpandWithPadding(false, PaddingTy);
3313     }
3314 
3315     // If we have allocated some arguments onto the stack (due to running
3316     // out of VFP registers), we cannot split an argument between GPRs and
3317     // the stack. If this situation occurs, we add padding to prevent the
3318     // GPRs from being used. In this situiation, the current argument could
3319     // only be allocated by rule C.8, so rule C.6 would mark these GPRs as
3320     // unusable anyway.
3321     const bool StackUsed = PreAllocationGPRs > NumGPRs || PreAllocationVFPs > NumVFPs;
3322     if (!IsCPRC && PreAllocationGPRs < NumGPRs && AllocatedGPRs > NumGPRs && StackUsed) {
3323       llvm::Type *PaddingTy = llvm::ArrayType::get(
3324           llvm::Type::getInt32Ty(getVMContext()), NumGPRs - PreAllocationGPRs);
3325       I.info = ABIArgInfo::getExpandWithPadding(false, PaddingTy);
3326     }
3327   }
3328 
3329   // Always honor user-specified calling convention.
3330   if (FI.getCallingConvention() != llvm::CallingConv::C)
3331     return;
3332 
3333   llvm::CallingConv::ID cc = getRuntimeCC();
3334   if (cc != llvm::CallingConv::C)
3335     FI.setEffectiveCallingConvention(cc);
3336 }
3337 
3338 /// Return the default calling convention that LLVM will use.
3339 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const {
3340   // The default calling convention that LLVM will infer.
3341   if (isEABIHF())
3342     return llvm::CallingConv::ARM_AAPCS_VFP;
3343   else if (isEABI())
3344     return llvm::CallingConv::ARM_AAPCS;
3345   else
3346     return llvm::CallingConv::ARM_APCS;
3347 }
3348 
3349 /// Return the calling convention that our ABI would like us to use
3350 /// as the C calling convention.
3351 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const {
3352   switch (getABIKind()) {
3353   case APCS: return llvm::CallingConv::ARM_APCS;
3354   case AAPCS: return llvm::CallingConv::ARM_AAPCS;
3355   case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
3356   }
3357   llvm_unreachable("bad ABI kind");
3358 }
3359 
3360 void ARMABIInfo::setRuntimeCC() {
3361   assert(getRuntimeCC() == llvm::CallingConv::C);
3362 
3363   // Don't muddy up the IR with a ton of explicit annotations if
3364   // they'd just match what LLVM will infer from the triple.
3365   llvm::CallingConv::ID abiCC = getABIDefaultCC();
3366   if (abiCC != getLLVMDefaultCC())
3367     RuntimeCC = abiCC;
3368 }
3369 
3370 /// isHomogeneousAggregate - Return true if a type is an AAPCS-VFP homogeneous
3371 /// aggregate.  If HAMembers is non-null, the number of base elements
3372 /// contained in the type is returned through it; this is used for the
3373 /// recursive calls that check aggregate component types.
3374 static bool isHomogeneousAggregate(QualType Ty, const Type *&Base,
3375                                    ASTContext &Context,
3376                                    uint64_t *HAMembers = 0) {
3377   uint64_t Members = 0;
3378   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
3379     if (!isHomogeneousAggregate(AT->getElementType(), Base, Context, &Members))
3380       return false;
3381     Members *= AT->getSize().getZExtValue();
3382   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
3383     const RecordDecl *RD = RT->getDecl();
3384     if (RD->hasFlexibleArrayMember())
3385       return false;
3386 
3387     Members = 0;
3388     for (const auto *FD : RD->fields()) {
3389       uint64_t FldMembers;
3390       if (!isHomogeneousAggregate(FD->getType(), Base, Context, &FldMembers))
3391         return false;
3392 
3393       Members = (RD->isUnion() ?
3394                  std::max(Members, FldMembers) : Members + FldMembers);
3395     }
3396   } else {
3397     Members = 1;
3398     if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
3399       Members = 2;
3400       Ty = CT->getElementType();
3401     }
3402 
3403     // Homogeneous aggregates for AAPCS-VFP must have base types of float,
3404     // double, or 64-bit or 128-bit vectors.
3405     if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
3406       if (BT->getKind() != BuiltinType::Float &&
3407           BT->getKind() != BuiltinType::Double &&
3408           BT->getKind() != BuiltinType::LongDouble)
3409         return false;
3410     } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
3411       unsigned VecSize = Context.getTypeSize(VT);
3412       if (VecSize != 64 && VecSize != 128)
3413         return false;
3414     } else {
3415       return false;
3416     }
3417 
3418     // The base type must be the same for all members.  Vector types of the
3419     // same total size are treated as being equivalent here.
3420     const Type *TyPtr = Ty.getTypePtr();
3421     if (!Base)
3422       Base = TyPtr;
3423 
3424     if (Base != TyPtr) {
3425       // Homogeneous aggregates are defined as containing members with the
3426       // same machine type. There are two cases in which two members have
3427       // different TypePtrs but the same machine type:
3428 
3429       // 1) Vectors of the same length, regardless of the type and number
3430       //    of their members.
3431       const bool SameLengthVectors = Base->isVectorType() && TyPtr->isVectorType()
3432         && (Context.getTypeSize(Base) == Context.getTypeSize(TyPtr));
3433 
3434       // 2) In the 32-bit AAPCS, `double' and `long double' have the same
3435       //    machine type. This is not the case for the 64-bit AAPCS.
3436       const bool SameSizeDoubles =
3437            (   (   Base->isSpecificBuiltinType(BuiltinType::Double)
3438                 && TyPtr->isSpecificBuiltinType(BuiltinType::LongDouble))
3439             || (   Base->isSpecificBuiltinType(BuiltinType::LongDouble)
3440                 && TyPtr->isSpecificBuiltinType(BuiltinType::Double)))
3441         && (Context.getTypeSize(Base) == Context.getTypeSize(TyPtr));
3442 
3443       if (!SameLengthVectors && !SameSizeDoubles)
3444         return false;
3445     }
3446   }
3447 
3448   // Homogeneous Aggregates can have at most 4 members of the base type.
3449   if (HAMembers)
3450     *HAMembers = Members;
3451 
3452   return (Members > 0 && Members <= 4);
3453 }
3454 
3455 /// markAllocatedVFPs - update VFPRegs according to the alignment and
3456 /// number of VFP registers (unit is S register) requested.
3457 void ARMABIInfo::markAllocatedVFPs(unsigned Alignment,
3458                                    unsigned NumRequired) const {
3459   // Early Exit.
3460   if (AllocatedVFPs >= 16) {
3461     // We use AllocatedVFP > 16 to signal that some CPRCs were allocated on
3462     // the stack.
3463     AllocatedVFPs = 17;
3464     return;
3465   }
3466   // C.1.vfp If the argument is a VFP CPRC and there are sufficient consecutive
3467   // VFP registers of the appropriate type unallocated then the argument is
3468   // allocated to the lowest-numbered sequence of such registers.
3469   for (unsigned I = 0; I < 16; I += Alignment) {
3470     bool FoundSlot = true;
3471     for (unsigned J = I, JEnd = I + NumRequired; J < JEnd; J++)
3472       if (J >= 16 || VFPRegs[J]) {
3473          FoundSlot = false;
3474          break;
3475       }
3476     if (FoundSlot) {
3477       for (unsigned J = I, JEnd = I + NumRequired; J < JEnd; J++)
3478         VFPRegs[J] = 1;
3479       AllocatedVFPs += NumRequired;
3480       return;
3481     }
3482   }
3483   // C.2.vfp If the argument is a VFP CPRC then any VFP registers that are
3484   // unallocated are marked as unavailable.
3485   for (unsigned I = 0; I < 16; I++)
3486     VFPRegs[I] = 1;
3487   AllocatedVFPs = 17; // We do not have enough VFP registers.
3488 }
3489 
3490 /// Update AllocatedGPRs to record the number of general purpose registers
3491 /// which have been allocated. It is valid for AllocatedGPRs to go above 4,
3492 /// this represents arguments being stored on the stack.
3493 void ARMABIInfo::markAllocatedGPRs(unsigned Alignment,
3494                                           unsigned NumRequired) const {
3495   assert((Alignment == 1 || Alignment == 2) && "Alignment must be 4 or 8 bytes");
3496 
3497   if (Alignment == 2 && AllocatedGPRs & 0x1)
3498     AllocatedGPRs += 1;
3499 
3500   AllocatedGPRs += NumRequired;
3501 }
3502 
3503 void ARMABIInfo::resetAllocatedRegs(void) const {
3504   AllocatedGPRs = 0;
3505   AllocatedVFPs = 0;
3506   for (unsigned i = 0; i < NumVFPs; ++i)
3507     VFPRegs[i] = 0;
3508 }
3509 
3510 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, bool &IsHA,
3511                                             bool isVariadic,
3512                                             bool &IsCPRC) const {
3513   // We update number of allocated VFPs according to
3514   // 6.1.2.1 The following argument types are VFP CPRCs:
3515   //   A single-precision floating-point type (including promoted
3516   //   half-precision types); A double-precision floating-point type;
3517   //   A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate
3518   //   with a Base Type of a single- or double-precision floating-point type,
3519   //   64-bit containerized vectors or 128-bit containerized vectors with one
3520   //   to four Elements.
3521 
3522   // Handle illegal vector types here.
3523   if (isIllegalVectorType(Ty)) {
3524     uint64_t Size = getContext().getTypeSize(Ty);
3525     if (Size <= 32) {
3526       llvm::Type *ResType =
3527           llvm::Type::getInt32Ty(getVMContext());
3528       markAllocatedGPRs(1, 1);
3529       return ABIArgInfo::getDirect(ResType);
3530     }
3531     if (Size == 64) {
3532       llvm::Type *ResType = llvm::VectorType::get(
3533           llvm::Type::getInt32Ty(getVMContext()), 2);
3534       if (getABIKind() == ARMABIInfo::AAPCS || isVariadic){
3535         markAllocatedGPRs(2, 2);
3536       } else {
3537         markAllocatedVFPs(2, 2);
3538         IsCPRC = true;
3539       }
3540       return ABIArgInfo::getDirect(ResType);
3541     }
3542     if (Size == 128) {
3543       llvm::Type *ResType = llvm::VectorType::get(
3544           llvm::Type::getInt32Ty(getVMContext()), 4);
3545       if (getABIKind() == ARMABIInfo::AAPCS || isVariadic) {
3546         markAllocatedGPRs(2, 4);
3547       } else {
3548         markAllocatedVFPs(4, 4);
3549         IsCPRC = true;
3550       }
3551       return ABIArgInfo::getDirect(ResType);
3552     }
3553     markAllocatedGPRs(1, 1);
3554     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3555   }
3556   // Update VFPRegs for legal vector types.
3557   if (getABIKind() == ARMABIInfo::AAPCS_VFP && !isVariadic) {
3558     if (const VectorType *VT = Ty->getAs<VectorType>()) {
3559       uint64_t Size = getContext().getTypeSize(VT);
3560       // Size of a legal vector should be power of 2 and above 64.
3561       markAllocatedVFPs(Size >= 128 ? 4 : 2, Size / 32);
3562       IsCPRC = true;
3563     }
3564   }
3565   // Update VFPRegs for floating point types.
3566   if (getABIKind() == ARMABIInfo::AAPCS_VFP && !isVariadic) {
3567     if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
3568       if (BT->getKind() == BuiltinType::Half ||
3569           BT->getKind() == BuiltinType::Float) {
3570         markAllocatedVFPs(1, 1);
3571         IsCPRC = true;
3572       }
3573       if (BT->getKind() == BuiltinType::Double ||
3574           BT->getKind() == BuiltinType::LongDouble) {
3575         markAllocatedVFPs(2, 2);
3576         IsCPRC = true;
3577       }
3578     }
3579   }
3580 
3581   if (!isAggregateTypeForABI(Ty)) {
3582     // Treat an enum type as its underlying type.
3583     if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
3584       Ty = EnumTy->getDecl()->getIntegerType();
3585     }
3586 
3587     unsigned Size = getContext().getTypeSize(Ty);
3588     if (!IsCPRC)
3589       markAllocatedGPRs(Size > 32 ? 2 : 1, (Size + 31) / 32);
3590     return (Ty->isPromotableIntegerType() ?
3591             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3592   }
3593 
3594   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
3595     markAllocatedGPRs(1, 1);
3596     return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
3597   }
3598 
3599   // Ignore empty records.
3600   if (isEmptyRecord(getContext(), Ty, true))
3601     return ABIArgInfo::getIgnore();
3602 
3603   if (getABIKind() == ARMABIInfo::AAPCS_VFP && !isVariadic) {
3604     // Homogeneous Aggregates need to be expanded when we can fit the aggregate
3605     // into VFP registers.
3606     const Type *Base = 0;
3607     uint64_t Members = 0;
3608     if (isHomogeneousAggregate(Ty, Base, getContext(), &Members)) {
3609       assert(Base && "Base class should be set for homogeneous aggregate");
3610       // Base can be a floating-point or a vector.
3611       if (Base->isVectorType()) {
3612         // ElementSize is in number of floats.
3613         unsigned ElementSize = getContext().getTypeSize(Base) == 64 ? 2 : 4;
3614         markAllocatedVFPs(ElementSize,
3615                           Members * ElementSize);
3616       } else if (Base->isSpecificBuiltinType(BuiltinType::Float))
3617         markAllocatedVFPs(1, Members);
3618       else {
3619         assert(Base->isSpecificBuiltinType(BuiltinType::Double) ||
3620                Base->isSpecificBuiltinType(BuiltinType::LongDouble));
3621         markAllocatedVFPs(2, Members * 2);
3622       }
3623       IsHA = true;
3624       IsCPRC = true;
3625       return ABIArgInfo::getExpand();
3626     }
3627   }
3628 
3629   // Support byval for ARM.
3630   // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at
3631   // most 8-byte. We realign the indirect argument if type alignment is bigger
3632   // than ABI alignment.
3633   uint64_t ABIAlign = 4;
3634   uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8;
3635   if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
3636       getABIKind() == ARMABIInfo::AAPCS)
3637     ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
3638   if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) {
3639       // Update Allocated GPRs
3640     markAllocatedGPRs(1, 1);
3641     return ABIArgInfo::getIndirect(TyAlign, /*ByVal=*/true,
3642            /*Realign=*/TyAlign > ABIAlign);
3643   }
3644 
3645   // Otherwise, pass by coercing to a structure of the appropriate size.
3646   llvm::Type* ElemTy;
3647   unsigned SizeRegs;
3648   // FIXME: Try to match the types of the arguments more accurately where
3649   // we can.
3650   if (getContext().getTypeAlign(Ty) <= 32) {
3651     ElemTy = llvm::Type::getInt32Ty(getVMContext());
3652     SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
3653     markAllocatedGPRs(1, SizeRegs);
3654   } else {
3655     ElemTy = llvm::Type::getInt64Ty(getVMContext());
3656     SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
3657     markAllocatedGPRs(2, SizeRegs * 2);
3658   }
3659 
3660   llvm::Type *STy =
3661     llvm::StructType::get(llvm::ArrayType::get(ElemTy, SizeRegs), NULL);
3662   return ABIArgInfo::getDirect(STy);
3663 }
3664 
3665 static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
3666                               llvm::LLVMContext &VMContext) {
3667   // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
3668   // is called integer-like if its size is less than or equal to one word, and
3669   // the offset of each of its addressable sub-fields is zero.
3670 
3671   uint64_t Size = Context.getTypeSize(Ty);
3672 
3673   // Check that the type fits in a word.
3674   if (Size > 32)
3675     return false;
3676 
3677   // FIXME: Handle vector types!
3678   if (Ty->isVectorType())
3679     return false;
3680 
3681   // Float types are never treated as "integer like".
3682   if (Ty->isRealFloatingType())
3683     return false;
3684 
3685   // If this is a builtin or pointer type then it is ok.
3686   if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
3687     return true;
3688 
3689   // Small complex integer types are "integer like".
3690   if (const ComplexType *CT = Ty->getAs<ComplexType>())
3691     return isIntegerLikeType(CT->getElementType(), Context, VMContext);
3692 
3693   // Single element and zero sized arrays should be allowed, by the definition
3694   // above, but they are not.
3695 
3696   // Otherwise, it must be a record type.
3697   const RecordType *RT = Ty->getAs<RecordType>();
3698   if (!RT) return false;
3699 
3700   // Ignore records with flexible arrays.
3701   const RecordDecl *RD = RT->getDecl();
3702   if (RD->hasFlexibleArrayMember())
3703     return false;
3704 
3705   // Check that all sub-fields are at offset 0, and are themselves "integer
3706   // like".
3707   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3708 
3709   bool HadField = false;
3710   unsigned idx = 0;
3711   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
3712        i != e; ++i, ++idx) {
3713     const FieldDecl *FD = *i;
3714 
3715     // Bit-fields are not addressable, we only need to verify they are "integer
3716     // like". We still have to disallow a subsequent non-bitfield, for example:
3717     //   struct { int : 0; int x }
3718     // is non-integer like according to gcc.
3719     if (FD->isBitField()) {
3720       if (!RD->isUnion())
3721         HadField = true;
3722 
3723       if (!isIntegerLikeType(FD->getType(), Context, VMContext))
3724         return false;
3725 
3726       continue;
3727     }
3728 
3729     // Check if this field is at offset 0.
3730     if (Layout.getFieldOffset(idx) != 0)
3731       return false;
3732 
3733     if (!isIntegerLikeType(FD->getType(), Context, VMContext))
3734       return false;
3735 
3736     // Only allow at most one field in a structure. This doesn't match the
3737     // wording above, but follows gcc in situations with a field following an
3738     // empty structure.
3739     if (!RD->isUnion()) {
3740       if (HadField)
3741         return false;
3742 
3743       HadField = true;
3744     }
3745   }
3746 
3747   return true;
3748 }
3749 
3750 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy,
3751                                           bool isVariadic) const {
3752   if (RetTy->isVoidType())
3753     return ABIArgInfo::getIgnore();
3754 
3755   // Large vector types should be returned via memory.
3756   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) {
3757     markAllocatedGPRs(1, 1);
3758     return ABIArgInfo::getIndirect(0);
3759   }
3760 
3761   if (!isAggregateTypeForABI(RetTy)) {
3762     // Treat an enum type as its underlying type.
3763     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
3764       RetTy = EnumTy->getDecl()->getIntegerType();
3765 
3766     return (RetTy->isPromotableIntegerType() ?
3767             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3768   }
3769 
3770   // Structures with either a non-trivial destructor or a non-trivial
3771   // copy constructor are always indirect.
3772   if (isRecordReturnIndirect(RetTy, getCXXABI())) {
3773     markAllocatedGPRs(1, 1);
3774     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3775   }
3776 
3777   // Are we following APCS?
3778   if (getABIKind() == APCS) {
3779     if (isEmptyRecord(getContext(), RetTy, false))
3780       return ABIArgInfo::getIgnore();
3781 
3782     // Complex types are all returned as packed integers.
3783     //
3784     // FIXME: Consider using 2 x vector types if the back end handles them
3785     // correctly.
3786     if (RetTy->isAnyComplexType())
3787       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
3788                                               getContext().getTypeSize(RetTy)));
3789 
3790     // Integer like structures are returned in r0.
3791     if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
3792       // Return in the smallest viable integer type.
3793       uint64_t Size = getContext().getTypeSize(RetTy);
3794       if (Size <= 8)
3795         return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
3796       if (Size <= 16)
3797         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
3798       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
3799     }
3800 
3801     // Otherwise return in memory.
3802     markAllocatedGPRs(1, 1);
3803     return ABIArgInfo::getIndirect(0);
3804   }
3805 
3806   // Otherwise this is an AAPCS variant.
3807 
3808   if (isEmptyRecord(getContext(), RetTy, true))
3809     return ABIArgInfo::getIgnore();
3810 
3811   // Check for homogeneous aggregates with AAPCS-VFP.
3812   if (getABIKind() == AAPCS_VFP && !isVariadic) {
3813     const Type *Base = 0;
3814     if (isHomogeneousAggregate(RetTy, Base, getContext())) {
3815       assert(Base && "Base class should be set for homogeneous aggregate");
3816       // Homogeneous Aggregates are returned directly.
3817       return ABIArgInfo::getDirect();
3818     }
3819   }
3820 
3821   // Aggregates <= 4 bytes are returned in r0; other aggregates
3822   // are returned indirectly.
3823   uint64_t Size = getContext().getTypeSize(RetTy);
3824   if (Size <= 32) {
3825     // Return in the smallest viable integer type.
3826     if (Size <= 8)
3827       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
3828     if (Size <= 16)
3829       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
3830     return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
3831   }
3832 
3833   markAllocatedGPRs(1, 1);
3834   return ABIArgInfo::getIndirect(0);
3835 }
3836 
3837 /// isIllegalVector - check whether Ty is an illegal vector type.
3838 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const {
3839   if (const VectorType *VT = Ty->getAs<VectorType>()) {
3840     // Check whether VT is legal.
3841     unsigned NumElements = VT->getNumElements();
3842     uint64_t Size = getContext().getTypeSize(VT);
3843     // NumElements should be power of 2.
3844     if ((NumElements & (NumElements - 1)) != 0)
3845       return true;
3846     // Size should be greater than 32 bits.
3847     return Size <= 32;
3848   }
3849   return false;
3850 }
3851 
3852 llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3853                                    CodeGenFunction &CGF) const {
3854   llvm::Type *BP = CGF.Int8PtrTy;
3855   llvm::Type *BPP = CGF.Int8PtrPtrTy;
3856 
3857   CGBuilderTy &Builder = CGF.Builder;
3858   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
3859   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
3860 
3861   if (isEmptyRecord(getContext(), Ty, true)) {
3862     // These are ignored for parameter passing purposes.
3863     llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
3864     return Builder.CreateBitCast(Addr, PTy);
3865   }
3866 
3867   uint64_t Size = CGF.getContext().getTypeSize(Ty) / 8;
3868   uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8;
3869   bool IsIndirect = false;
3870 
3871   // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for
3872   // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte.
3873   if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
3874       getABIKind() == ARMABIInfo::AAPCS)
3875     TyAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
3876   else
3877     TyAlign = 4;
3878   // Use indirect if size of the illegal vector is bigger than 16 bytes.
3879   if (isIllegalVectorType(Ty) && Size > 16) {
3880     IsIndirect = true;
3881     Size = 4;
3882     TyAlign = 4;
3883   }
3884 
3885   // Handle address alignment for ABI alignment > 4 bytes.
3886   if (TyAlign > 4) {
3887     assert((TyAlign & (TyAlign - 1)) == 0 &&
3888            "Alignment is not power of 2!");
3889     llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty);
3890     AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1));
3891     AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1)));
3892     Addr = Builder.CreateIntToPtr(AddrAsInt, BP, "ap.align");
3893   }
3894 
3895   uint64_t Offset =
3896     llvm::RoundUpToAlignment(Size, 4);
3897   llvm::Value *NextAddr =
3898     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
3899                       "ap.next");
3900   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
3901 
3902   if (IsIndirect)
3903     Addr = Builder.CreateLoad(Builder.CreateBitCast(Addr, BPP));
3904   else if (TyAlign < CGF.getContext().getTypeAlign(Ty) / 8) {
3905     // We can't directly cast ap.cur to pointer to a vector type, since ap.cur
3906     // may not be correctly aligned for the vector type. We create an aligned
3907     // temporary space and copy the content over from ap.cur to the temporary
3908     // space. This is necessary if the natural alignment of the type is greater
3909     // than the ABI alignment.
3910     llvm::Type *I8PtrTy = Builder.getInt8PtrTy();
3911     CharUnits CharSize = getContext().getTypeSizeInChars(Ty);
3912     llvm::Value *AlignedTemp = CGF.CreateTempAlloca(CGF.ConvertType(Ty),
3913                                                     "var.align");
3914     llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy);
3915     llvm::Value *Src = Builder.CreateBitCast(Addr, I8PtrTy);
3916     Builder.CreateMemCpy(Dst, Src,
3917         llvm::ConstantInt::get(CGF.IntPtrTy, CharSize.getQuantity()),
3918         TyAlign, false);
3919     Addr = AlignedTemp; //The content is in aligned location.
3920   }
3921   llvm::Type *PTy =
3922     llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
3923   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
3924 
3925   return AddrTyped;
3926 }
3927 
3928 namespace {
3929 
3930 class NaClARMABIInfo : public ABIInfo {
3931  public:
3932   NaClARMABIInfo(CodeGen::CodeGenTypes &CGT, ARMABIInfo::ABIKind Kind)
3933       : ABIInfo(CGT), PInfo(CGT), NInfo(CGT, Kind) {}
3934   void computeInfo(CGFunctionInfo &FI) const override;
3935   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3936                          CodeGenFunction &CGF) const override;
3937  private:
3938   PNaClABIInfo PInfo; // Used for generating calls with pnaclcall callingconv.
3939   ARMABIInfo NInfo; // Used for everything else.
3940 };
3941 
3942 class NaClARMTargetCodeGenInfo : public TargetCodeGenInfo  {
3943  public:
3944   NaClARMTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, ARMABIInfo::ABIKind Kind)
3945       : TargetCodeGenInfo(new NaClARMABIInfo(CGT, Kind)) {}
3946 };
3947 
3948 }
3949 
3950 void NaClARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
3951   if (FI.getASTCallingConvention() == CC_PnaclCall)
3952     PInfo.computeInfo(FI);
3953   else
3954     static_cast<const ABIInfo&>(NInfo).computeInfo(FI);
3955 }
3956 
3957 llvm::Value *NaClARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3958                                        CodeGenFunction &CGF) const {
3959   // Always use the native convention; calling pnacl-style varargs functions
3960   // is unsupported.
3961   return static_cast<const ABIInfo&>(NInfo).EmitVAArg(VAListAddr, Ty, CGF);
3962 }
3963 
3964 //===----------------------------------------------------------------------===//
3965 // AArch64 ABI Implementation
3966 //===----------------------------------------------------------------------===//
3967 
3968 namespace {
3969 
3970 class AArch64ABIInfo : public ABIInfo {
3971 public:
3972   AArch64ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
3973 
3974 private:
3975   // The AArch64 PCS is explicit about return types and argument types being
3976   // handled identically, so we don't need to draw a distinction between
3977   // Argument and Return classification.
3978   ABIArgInfo classifyGenericType(QualType Ty, int &FreeIntRegs,
3979                                  int &FreeVFPRegs) const;
3980 
3981   ABIArgInfo tryUseRegs(QualType Ty, int &FreeRegs, int RegsNeeded, bool IsInt,
3982                         llvm::Type *DirectTy = 0) const;
3983 
3984   void computeInfo(CGFunctionInfo &FI) const override;
3985 
3986   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3987                          CodeGenFunction &CGF) const override;
3988 };
3989 
3990 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo {
3991 public:
3992   AArch64TargetCodeGenInfo(CodeGenTypes &CGT)
3993     :TargetCodeGenInfo(new AArch64ABIInfo(CGT)) {}
3994 
3995   const AArch64ABIInfo &getABIInfo() const {
3996     return static_cast<const AArch64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
3997   }
3998 
3999   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4000     return 31;
4001   }
4002 
4003   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4004                                llvm::Value *Address) const override {
4005     // 0-31 are x0-x30 and sp: 8 bytes each
4006     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
4007     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 31);
4008 
4009     // 64-95 are v0-v31: 16 bytes each
4010     llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
4011     AssignToArrayRange(CGF.Builder, Address, Sixteen8, 64, 95);
4012 
4013     return false;
4014   }
4015 
4016 };
4017 
4018 }
4019 
4020 void AArch64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
4021   int FreeIntRegs = 8, FreeVFPRegs = 8;
4022 
4023   FI.getReturnInfo() = classifyGenericType(FI.getReturnType(),
4024                                            FreeIntRegs, FreeVFPRegs);
4025 
4026   FreeIntRegs = FreeVFPRegs = 8;
4027   for (auto &I : FI.arguments()) {
4028     I.info = classifyGenericType(I.type, FreeIntRegs, FreeVFPRegs);
4029 
4030   }
4031 }
4032 
4033 ABIArgInfo
4034 AArch64ABIInfo::tryUseRegs(QualType Ty, int &FreeRegs, int RegsNeeded,
4035                            bool IsInt, llvm::Type *DirectTy) const {
4036   if (FreeRegs >= RegsNeeded) {
4037     FreeRegs -= RegsNeeded;
4038     return ABIArgInfo::getDirect(DirectTy);
4039   }
4040 
4041   llvm::Type *Padding = 0;
4042 
4043   // We need padding so that later arguments don't get filled in anyway. That
4044   // wouldn't happen if only ByVal arguments followed in the same category, but
4045   // a large structure will simply seem to be a pointer as far as LLVM is
4046   // concerned.
4047   if (FreeRegs > 0) {
4048     if (IsInt)
4049       Padding = llvm::Type::getInt64Ty(getVMContext());
4050     else
4051       Padding = llvm::Type::getFloatTy(getVMContext());
4052 
4053     // Either [N x i64] or [N x float].
4054     Padding = llvm::ArrayType::get(Padding, FreeRegs);
4055     FreeRegs = 0;
4056   }
4057 
4058   return ABIArgInfo::getIndirect(getContext().getTypeAlign(Ty) / 8,
4059                                  /*IsByVal=*/ true, /*Realign=*/ false,
4060                                  Padding);
4061 }
4062 
4063 
4064 ABIArgInfo AArch64ABIInfo::classifyGenericType(QualType Ty,
4065                                                int &FreeIntRegs,
4066                                                int &FreeVFPRegs) const {
4067   // Can only occurs for return, but harmless otherwise.
4068   if (Ty->isVoidType())
4069     return ABIArgInfo::getIgnore();
4070 
4071   // Large vector types should be returned via memory. There's no such concept
4072   // in the ABI, but they'd be over 16 bytes anyway so no matter how they're
4073   // classified they'd go into memory (see B.3).
4074   if (Ty->isVectorType() && getContext().getTypeSize(Ty) > 128) {
4075     if (FreeIntRegs > 0)
4076       --FreeIntRegs;
4077     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
4078   }
4079 
4080   // All non-aggregate LLVM types have a concrete ABI representation so they can
4081   // be passed directly. After this block we're guaranteed to be in a
4082   // complicated case.
4083   if (!isAggregateTypeForABI(Ty)) {
4084     // Treat an enum type as its underlying type.
4085     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4086       Ty = EnumTy->getDecl()->getIntegerType();
4087 
4088     if (Ty->isFloatingType() || Ty->isVectorType())
4089       return tryUseRegs(Ty, FreeVFPRegs, /*RegsNeeded=*/ 1, /*IsInt=*/ false);
4090 
4091     assert(getContext().getTypeSize(Ty) <= 128 &&
4092            "unexpectedly large scalar type");
4093 
4094     int RegsNeeded = getContext().getTypeSize(Ty) > 64 ? 2 : 1;
4095 
4096     // If the type may need padding registers to ensure "alignment", we must be
4097     // careful when this is accounted for. Increasing the effective size covers
4098     // all cases.
4099     if (getContext().getTypeAlign(Ty) == 128)
4100       RegsNeeded += FreeIntRegs % 2 != 0;
4101 
4102     return tryUseRegs(Ty, FreeIntRegs, RegsNeeded, /*IsInt=*/ true);
4103   }
4104 
4105   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
4106     if (FreeIntRegs > 0 && RAA == CGCXXABI::RAA_Indirect)
4107       --FreeIntRegs;
4108     return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
4109   }
4110 
4111   if (isEmptyRecord(getContext(), Ty, true)) {
4112     if (!getContext().getLangOpts().CPlusPlus) {
4113       // Empty structs outside C++ mode are a GNU extension, so no ABI can
4114       // possibly tell us what to do. It turns out (I believe) that GCC ignores
4115       // the object for parameter-passsing purposes.
4116       return ABIArgInfo::getIgnore();
4117     }
4118 
4119     // The combination of C++98 9p5 (sizeof(struct) != 0) and the pseudocode
4120     // description of va_arg in the PCS require that an empty struct does
4121     // actually occupy space for parameter-passing. I'm hoping for a
4122     // clarification giving an explicit paragraph to point to in future.
4123     return tryUseRegs(Ty, FreeIntRegs, /*RegsNeeded=*/ 1, /*IsInt=*/ true,
4124                       llvm::Type::getInt8Ty(getVMContext()));
4125   }
4126 
4127   // Homogeneous vector aggregates get passed in registers or on the stack.
4128   const Type *Base = 0;
4129   uint64_t NumMembers = 0;
4130   if (isHomogeneousAggregate(Ty, Base, getContext(), &NumMembers)) {
4131     assert(Base && "Base class should be set for homogeneous aggregate");
4132     // Homogeneous aggregates are passed and returned directly.
4133     return tryUseRegs(Ty, FreeVFPRegs, /*RegsNeeded=*/ NumMembers,
4134                       /*IsInt=*/ false);
4135   }
4136 
4137   uint64_t Size = getContext().getTypeSize(Ty);
4138   if (Size <= 128) {
4139     // Small structs can use the same direct type whether they're in registers
4140     // or on the stack.
4141     llvm::Type *BaseTy;
4142     unsigned NumBases;
4143     int SizeInRegs = (Size + 63) / 64;
4144 
4145     if (getContext().getTypeAlign(Ty) == 128) {
4146       BaseTy = llvm::Type::getIntNTy(getVMContext(), 128);
4147       NumBases = 1;
4148 
4149       // If the type may need padding registers to ensure "alignment", we must
4150       // be careful when this is accounted for. Increasing the effective size
4151       // covers all cases.
4152       SizeInRegs += FreeIntRegs % 2 != 0;
4153     } else {
4154       BaseTy = llvm::Type::getInt64Ty(getVMContext());
4155       NumBases = SizeInRegs;
4156     }
4157     llvm::Type *DirectTy = llvm::ArrayType::get(BaseTy, NumBases);
4158 
4159     return tryUseRegs(Ty, FreeIntRegs, /*RegsNeeded=*/ SizeInRegs,
4160                       /*IsInt=*/ true, DirectTy);
4161   }
4162 
4163   // If the aggregate is > 16 bytes, it's passed and returned indirectly. In
4164   // LLVM terms the return uses an "sret" pointer, but that's handled elsewhere.
4165   --FreeIntRegs;
4166   return ABIArgInfo::getIndirect(0, /* byVal = */ false);
4167 }
4168 
4169 llvm::Value *AArch64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4170                                        CodeGenFunction &CGF) const {
4171   // The AArch64 va_list type and handling is specified in the Procedure Call
4172   // Standard, section B.4:
4173   //
4174   // struct {
4175   //   void *__stack;
4176   //   void *__gr_top;
4177   //   void *__vr_top;
4178   //   int __gr_offs;
4179   //   int __vr_offs;
4180   // };
4181 
4182   int FreeIntRegs = 8, FreeVFPRegs = 8;
4183   Ty = CGF.getContext().getCanonicalType(Ty);
4184   ABIArgInfo AI = classifyGenericType(Ty, FreeIntRegs, FreeVFPRegs);
4185 
4186   llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
4187   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
4188   llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
4189   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
4190 
4191   llvm::Value *reg_offs_p = 0, *reg_offs = 0;
4192   int reg_top_index;
4193   int RegSize;
4194   if (FreeIntRegs < 8) {
4195     assert(FreeVFPRegs == 8 && "Arguments never split between int & VFP regs");
4196     // 3 is the field number of __gr_offs
4197     reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p");
4198     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs");
4199     reg_top_index = 1; // field number for __gr_top
4200     RegSize = 8 * (8 - FreeIntRegs);
4201   } else {
4202     assert(FreeVFPRegs < 8 && "Argument must go in VFP or int regs");
4203     // 4 is the field number of __vr_offs.
4204     reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p");
4205     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs");
4206     reg_top_index = 2; // field number for __vr_top
4207     RegSize = 16 * (8 - FreeVFPRegs);
4208   }
4209 
4210   //=======================================
4211   // Find out where argument was passed
4212   //=======================================
4213 
4214   // If reg_offs >= 0 we're already using the stack for this type of
4215   // argument. We don't want to keep updating reg_offs (in case it overflows,
4216   // though anyone passing 2GB of arguments, each at most 16 bytes, deserves
4217   // whatever they get).
4218   llvm::Value *UsingStack = 0;
4219   UsingStack = CGF.Builder.CreateICmpSGE(reg_offs,
4220                                          llvm::ConstantInt::get(CGF.Int32Ty, 0));
4221 
4222   CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock);
4223 
4224   // Otherwise, at least some kind of argument could go in these registers, the
4225   // quesiton is whether this particular type is too big.
4226   CGF.EmitBlock(MaybeRegBlock);
4227 
4228   // Integer arguments may need to correct register alignment (for example a
4229   // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we
4230   // align __gr_offs to calculate the potential address.
4231   if (FreeIntRegs < 8 && AI.isDirect() && getContext().getTypeAlign(Ty) > 64) {
4232     int Align = getContext().getTypeAlign(Ty) / 8;
4233 
4234     reg_offs = CGF.Builder.CreateAdd(reg_offs,
4235                                  llvm::ConstantInt::get(CGF.Int32Ty, Align - 1),
4236                                  "align_regoffs");
4237     reg_offs = CGF.Builder.CreateAnd(reg_offs,
4238                                     llvm::ConstantInt::get(CGF.Int32Ty, -Align),
4239                                     "aligned_regoffs");
4240   }
4241 
4242   // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list.
4243   llvm::Value *NewOffset = 0;
4244   NewOffset = CGF.Builder.CreateAdd(reg_offs,
4245                                     llvm::ConstantInt::get(CGF.Int32Ty, RegSize),
4246                                     "new_reg_offs");
4247   CGF.Builder.CreateStore(NewOffset, reg_offs_p);
4248 
4249   // Now we're in a position to decide whether this argument really was in
4250   // registers or not.
4251   llvm::Value *InRegs = 0;
4252   InRegs = CGF.Builder.CreateICmpSLE(NewOffset,
4253                                      llvm::ConstantInt::get(CGF.Int32Ty, 0),
4254                                      "inreg");
4255 
4256   CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock);
4257 
4258   //=======================================
4259   // Argument was in registers
4260   //=======================================
4261 
4262   // Now we emit the code for if the argument was originally passed in
4263   // registers. First start the appropriate block:
4264   CGF.EmitBlock(InRegBlock);
4265 
4266   llvm::Value *reg_top_p = 0, *reg_top = 0;
4267   reg_top_p = CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p");
4268   reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top");
4269   llvm::Value *BaseAddr = CGF.Builder.CreateGEP(reg_top, reg_offs);
4270   llvm::Value *RegAddr = 0;
4271   llvm::Type *MemTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
4272 
4273   if (!AI.isDirect()) {
4274     // If it's been passed indirectly (actually a struct), whatever we find from
4275     // stored registers or on the stack will actually be a struct **.
4276     MemTy = llvm::PointerType::getUnqual(MemTy);
4277   }
4278 
4279   const Type *Base = 0;
4280   uint64_t NumMembers;
4281   if (isHomogeneousAggregate(Ty, Base, getContext(), &NumMembers)
4282       && NumMembers > 1) {
4283     // Homogeneous aggregates passed in registers will have their elements split
4284     // and stored 16-bytes apart regardless of size (they're notionally in qN,
4285     // qN+1, ...). We reload and store into a temporary local variable
4286     // contiguously.
4287     assert(AI.isDirect() && "Homogeneous aggregates should be passed directly");
4288     llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0));
4289     llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers);
4290     llvm::Value *Tmp = CGF.CreateTempAlloca(HFATy);
4291     int Offset = 0;
4292 
4293     if (CGF.CGM.getDataLayout().isBigEndian() &&
4294         getContext().getTypeSize(Base) < 128)
4295       Offset = 16 - getContext().getTypeSize(Base)/8;
4296     for (unsigned i = 0; i < NumMembers; ++i) {
4297       llvm::Value *BaseOffset = llvm::ConstantInt::get(CGF.Int32Ty,
4298                                                        16 * i + Offset);
4299       llvm::Value *LoadAddr = CGF.Builder.CreateGEP(BaseAddr, BaseOffset);
4300       LoadAddr = CGF.Builder.CreateBitCast(LoadAddr,
4301                                            llvm::PointerType::getUnqual(BaseTy));
4302       llvm::Value *StoreAddr = CGF.Builder.CreateStructGEP(Tmp, i);
4303 
4304       llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr);
4305       CGF.Builder.CreateStore(Elem, StoreAddr);
4306     }
4307 
4308     RegAddr = CGF.Builder.CreateBitCast(Tmp, MemTy);
4309   } else {
4310     // Otherwise the object is contiguous in memory
4311     unsigned BeAlign = reg_top_index == 2 ? 16 : 8;
4312     if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) &&
4313         getContext().getTypeSize(Ty) < (BeAlign * 8)) {
4314       int Offset = BeAlign - getContext().getTypeSize(Ty)/8;
4315       BaseAddr = CGF.Builder.CreatePtrToInt(BaseAddr, CGF.Int64Ty);
4316 
4317       BaseAddr = CGF.Builder.CreateAdd(BaseAddr,
4318                                        llvm::ConstantInt::get(CGF.Int64Ty,
4319                                                               Offset),
4320                                        "align_be");
4321 
4322       BaseAddr = CGF.Builder.CreateIntToPtr(BaseAddr, CGF.Int8PtrTy);
4323     }
4324 
4325     RegAddr = CGF.Builder.CreateBitCast(BaseAddr, MemTy);
4326   }
4327 
4328   CGF.EmitBranch(ContBlock);
4329 
4330   //=======================================
4331   // Argument was on the stack
4332   //=======================================
4333   CGF.EmitBlock(OnStackBlock);
4334 
4335   llvm::Value *stack_p = 0, *OnStackAddr = 0;
4336   stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p");
4337   OnStackAddr = CGF.Builder.CreateLoad(stack_p, "stack");
4338 
4339   // Again, stack arguments may need realigmnent. In this case both integer and
4340   // floating-point ones might be affected.
4341   if (AI.isDirect() && getContext().getTypeAlign(Ty) > 64) {
4342     int Align = getContext().getTypeAlign(Ty) / 8;
4343 
4344     OnStackAddr = CGF.Builder.CreatePtrToInt(OnStackAddr, CGF.Int64Ty);
4345 
4346     OnStackAddr = CGF.Builder.CreateAdd(OnStackAddr,
4347                                  llvm::ConstantInt::get(CGF.Int64Ty, Align - 1),
4348                                  "align_stack");
4349     OnStackAddr = CGF.Builder.CreateAnd(OnStackAddr,
4350                                     llvm::ConstantInt::get(CGF.Int64Ty, -Align),
4351                                     "align_stack");
4352 
4353     OnStackAddr = CGF.Builder.CreateIntToPtr(OnStackAddr, CGF.Int8PtrTy);
4354   }
4355 
4356   uint64_t StackSize;
4357   if (AI.isDirect())
4358     StackSize = getContext().getTypeSize(Ty) / 8;
4359   else
4360     StackSize = 8;
4361 
4362   // All stack slots are 8 bytes
4363   StackSize = llvm::RoundUpToAlignment(StackSize, 8);
4364 
4365   llvm::Value *StackSizeC = llvm::ConstantInt::get(CGF.Int32Ty, StackSize);
4366   llvm::Value *NewStack = CGF.Builder.CreateGEP(OnStackAddr, StackSizeC,
4367                                                 "new_stack");
4368 
4369   // Write the new value of __stack for the next call to va_arg
4370   CGF.Builder.CreateStore(NewStack, stack_p);
4371 
4372   if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) &&
4373       getContext().getTypeSize(Ty) < 64 ) {
4374     int Offset = 8 - getContext().getTypeSize(Ty)/8;
4375     OnStackAddr = CGF.Builder.CreatePtrToInt(OnStackAddr, CGF.Int64Ty);
4376 
4377     OnStackAddr = CGF.Builder.CreateAdd(OnStackAddr,
4378                                         llvm::ConstantInt::get(CGF.Int64Ty,
4379                                                                Offset),
4380                                         "align_be");
4381 
4382     OnStackAddr = CGF.Builder.CreateIntToPtr(OnStackAddr, CGF.Int8PtrTy);
4383   }
4384 
4385   OnStackAddr = CGF.Builder.CreateBitCast(OnStackAddr, MemTy);
4386 
4387   CGF.EmitBranch(ContBlock);
4388 
4389   //=======================================
4390   // Tidy up
4391   //=======================================
4392   CGF.EmitBlock(ContBlock);
4393 
4394   llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(MemTy, 2, "vaarg.addr");
4395   ResAddr->addIncoming(RegAddr, InRegBlock);
4396   ResAddr->addIncoming(OnStackAddr, OnStackBlock);
4397 
4398   if (AI.isDirect())
4399     return ResAddr;
4400 
4401   return CGF.Builder.CreateLoad(ResAddr, "vaarg.addr");
4402 }
4403 
4404 //===----------------------------------------------------------------------===//
4405 // NVPTX ABI Implementation
4406 //===----------------------------------------------------------------------===//
4407 
4408 namespace {
4409 
4410 class NVPTXABIInfo : public ABIInfo {
4411 public:
4412   NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
4413 
4414   ABIArgInfo classifyReturnType(QualType RetTy) const;
4415   ABIArgInfo classifyArgumentType(QualType Ty) const;
4416 
4417   void computeInfo(CGFunctionInfo &FI) const override;
4418   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4419                          CodeGenFunction &CFG) const override;
4420 };
4421 
4422 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo {
4423 public:
4424   NVPTXTargetCodeGenInfo(CodeGenTypes &CGT)
4425     : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {}
4426 
4427   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
4428                            CodeGen::CodeGenModule &M) const override;
4429 private:
4430   static void addKernelMetadata(llvm::Function *F);
4431 };
4432 
4433 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const {
4434   if (RetTy->isVoidType())
4435     return ABIArgInfo::getIgnore();
4436 
4437   // note: this is different from default ABI
4438   if (!RetTy->isScalarType())
4439     return ABIArgInfo::getDirect();
4440 
4441   // Treat an enum type as its underlying type.
4442   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
4443     RetTy = EnumTy->getDecl()->getIntegerType();
4444 
4445   return (RetTy->isPromotableIntegerType() ?
4446           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
4447 }
4448 
4449 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const {
4450   // Treat an enum type as its underlying type.
4451   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4452     Ty = EnumTy->getDecl()->getIntegerType();
4453 
4454   return (Ty->isPromotableIntegerType() ?
4455           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
4456 }
4457 
4458 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
4459   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4460   for (auto &I : FI.arguments())
4461     I.info = classifyArgumentType(I.type);
4462 
4463   // Always honor user-specified calling convention.
4464   if (FI.getCallingConvention() != llvm::CallingConv::C)
4465     return;
4466 
4467   FI.setEffectiveCallingConvention(getRuntimeCC());
4468 }
4469 
4470 llvm::Value *NVPTXABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4471                                      CodeGenFunction &CFG) const {
4472   llvm_unreachable("NVPTX does not support varargs");
4473 }
4474 
4475 void NVPTXTargetCodeGenInfo::
4476 SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
4477                     CodeGen::CodeGenModule &M) const{
4478   const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
4479   if (!FD) return;
4480 
4481   llvm::Function *F = cast<llvm::Function>(GV);
4482 
4483   // Perform special handling in OpenCL mode
4484   if (M.getLangOpts().OpenCL) {
4485     // Use OpenCL function attributes to check for kernel functions
4486     // By default, all functions are device functions
4487     if (FD->hasAttr<OpenCLKernelAttr>()) {
4488       // OpenCL __kernel functions get kernel metadata
4489       addKernelMetadata(F);
4490       // And kernel functions are not subject to inlining
4491       F->addFnAttr(llvm::Attribute::NoInline);
4492     }
4493   }
4494 
4495   // Perform special handling in CUDA mode.
4496   if (M.getLangOpts().CUDA) {
4497     // CUDA __global__ functions get a kernel metadata entry.  Since
4498     // __global__ functions cannot be called from the device, we do not
4499     // need to set the noinline attribute.
4500     if (FD->hasAttr<CUDAGlobalAttr>())
4501       addKernelMetadata(F);
4502   }
4503 }
4504 
4505 void NVPTXTargetCodeGenInfo::addKernelMetadata(llvm::Function *F) {
4506   llvm::Module *M = F->getParent();
4507   llvm::LLVMContext &Ctx = M->getContext();
4508 
4509   // Get "nvvm.annotations" metadata node
4510   llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations");
4511 
4512   // Create !{<func-ref>, metadata !"kernel", i32 1} node
4513   llvm::SmallVector<llvm::Value *, 3> MDVals;
4514   MDVals.push_back(F);
4515   MDVals.push_back(llvm::MDString::get(Ctx, "kernel"));
4516   MDVals.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), 1));
4517 
4518   // Append metadata to nvvm.annotations
4519   MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
4520 }
4521 
4522 }
4523 
4524 //===----------------------------------------------------------------------===//
4525 // SystemZ ABI Implementation
4526 //===----------------------------------------------------------------------===//
4527 
4528 namespace {
4529 
4530 class SystemZABIInfo : public ABIInfo {
4531 public:
4532   SystemZABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
4533 
4534   bool isPromotableIntegerType(QualType Ty) const;
4535   bool isCompoundType(QualType Ty) const;
4536   bool isFPArgumentType(QualType Ty) const;
4537 
4538   ABIArgInfo classifyReturnType(QualType RetTy) const;
4539   ABIArgInfo classifyArgumentType(QualType ArgTy) const;
4540 
4541   void computeInfo(CGFunctionInfo &FI) const override {
4542     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4543     for (auto &I : FI.arguments())
4544       I.info = classifyArgumentType(I.type);
4545   }
4546 
4547   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4548                          CodeGenFunction &CGF) const override;
4549 };
4550 
4551 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
4552 public:
4553   SystemZTargetCodeGenInfo(CodeGenTypes &CGT)
4554     : TargetCodeGenInfo(new SystemZABIInfo(CGT)) {}
4555 };
4556 
4557 }
4558 
4559 bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const {
4560   // Treat an enum type as its underlying type.
4561   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4562     Ty = EnumTy->getDecl()->getIntegerType();
4563 
4564   // Promotable integer types are required to be promoted by the ABI.
4565   if (Ty->isPromotableIntegerType())
4566     return true;
4567 
4568   // 32-bit values must also be promoted.
4569   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
4570     switch (BT->getKind()) {
4571     case BuiltinType::Int:
4572     case BuiltinType::UInt:
4573       return true;
4574     default:
4575       return false;
4576     }
4577   return false;
4578 }
4579 
4580 bool SystemZABIInfo::isCompoundType(QualType Ty) const {
4581   return Ty->isAnyComplexType() || isAggregateTypeForABI(Ty);
4582 }
4583 
4584 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const {
4585   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
4586     switch (BT->getKind()) {
4587     case BuiltinType::Float:
4588     case BuiltinType::Double:
4589       return true;
4590     default:
4591       return false;
4592     }
4593 
4594   if (const RecordType *RT = Ty->getAsStructureType()) {
4595     const RecordDecl *RD = RT->getDecl();
4596     bool Found = false;
4597 
4598     // If this is a C++ record, check the bases first.
4599     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
4600       for (const auto &I : CXXRD->bases()) {
4601         QualType Base = I.getType();
4602 
4603         // Empty bases don't affect things either way.
4604         if (isEmptyRecord(getContext(), Base, true))
4605           continue;
4606 
4607         if (Found)
4608           return false;
4609         Found = isFPArgumentType(Base);
4610         if (!Found)
4611           return false;
4612       }
4613 
4614     // Check the fields.
4615     for (const auto *FD : RD->fields()) {
4616       // Empty bitfields don't affect things either way.
4617       // Unlike isSingleElementStruct(), empty structure and array fields
4618       // do count.  So do anonymous bitfields that aren't zero-sized.
4619       if (FD->isBitField() && FD->getBitWidthValue(getContext()) == 0)
4620         return true;
4621 
4622       // Unlike isSingleElementStruct(), arrays do not count.
4623       // Nested isFPArgumentType structures still do though.
4624       if (Found)
4625         return false;
4626       Found = isFPArgumentType(FD->getType());
4627       if (!Found)
4628         return false;
4629     }
4630 
4631     // Unlike isSingleElementStruct(), trailing padding is allowed.
4632     // An 8-byte aligned struct s { float f; } is passed as a double.
4633     return Found;
4634   }
4635 
4636   return false;
4637 }
4638 
4639 llvm::Value *SystemZABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4640                                        CodeGenFunction &CGF) const {
4641   // Assume that va_list type is correct; should be pointer to LLVM type:
4642   // struct {
4643   //   i64 __gpr;
4644   //   i64 __fpr;
4645   //   i8 *__overflow_arg_area;
4646   //   i8 *__reg_save_area;
4647   // };
4648 
4649   // Every argument occupies 8 bytes and is passed by preference in either
4650   // GPRs or FPRs.
4651   Ty = CGF.getContext().getCanonicalType(Ty);
4652   ABIArgInfo AI = classifyArgumentType(Ty);
4653   bool InFPRs = isFPArgumentType(Ty);
4654 
4655   llvm::Type *APTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
4656   bool IsIndirect = AI.isIndirect();
4657   unsigned UnpaddedBitSize;
4658   if (IsIndirect) {
4659     APTy = llvm::PointerType::getUnqual(APTy);
4660     UnpaddedBitSize = 64;
4661   } else
4662     UnpaddedBitSize = getContext().getTypeSize(Ty);
4663   unsigned PaddedBitSize = 64;
4664   assert((UnpaddedBitSize <= PaddedBitSize) && "Invalid argument size.");
4665 
4666   unsigned PaddedSize = PaddedBitSize / 8;
4667   unsigned Padding = (PaddedBitSize - UnpaddedBitSize) / 8;
4668 
4669   unsigned MaxRegs, RegCountField, RegSaveIndex, RegPadding;
4670   if (InFPRs) {
4671     MaxRegs = 4; // Maximum of 4 FPR arguments
4672     RegCountField = 1; // __fpr
4673     RegSaveIndex = 16; // save offset for f0
4674     RegPadding = 0; // floats are passed in the high bits of an FPR
4675   } else {
4676     MaxRegs = 5; // Maximum of 5 GPR arguments
4677     RegCountField = 0; // __gpr
4678     RegSaveIndex = 2; // save offset for r2
4679     RegPadding = Padding; // values are passed in the low bits of a GPR
4680   }
4681 
4682   llvm::Value *RegCountPtr =
4683     CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr");
4684   llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count");
4685   llvm::Type *IndexTy = RegCount->getType();
4686   llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs);
4687   llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV,
4688                                                  "fits_in_regs");
4689 
4690   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
4691   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
4692   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
4693   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
4694 
4695   // Emit code to load the value if it was passed in registers.
4696   CGF.EmitBlock(InRegBlock);
4697 
4698   // Work out the address of an argument register.
4699   llvm::Value *PaddedSizeV = llvm::ConstantInt::get(IndexTy, PaddedSize);
4700   llvm::Value *ScaledRegCount =
4701     CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count");
4702   llvm::Value *RegBase =
4703     llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize + RegPadding);
4704   llvm::Value *RegOffset =
4705     CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset");
4706   llvm::Value *RegSaveAreaPtr =
4707     CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr");
4708   llvm::Value *RegSaveArea =
4709     CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area");
4710   llvm::Value *RawRegAddr =
4711     CGF.Builder.CreateGEP(RegSaveArea, RegOffset, "raw_reg_addr");
4712   llvm::Value *RegAddr =
4713     CGF.Builder.CreateBitCast(RawRegAddr, APTy, "reg_addr");
4714 
4715   // Update the register count
4716   llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1);
4717   llvm::Value *NewRegCount =
4718     CGF.Builder.CreateAdd(RegCount, One, "reg_count");
4719   CGF.Builder.CreateStore(NewRegCount, RegCountPtr);
4720   CGF.EmitBranch(ContBlock);
4721 
4722   // Emit code to load the value if it was passed in memory.
4723   CGF.EmitBlock(InMemBlock);
4724 
4725   // Work out the address of a stack argument.
4726   llvm::Value *OverflowArgAreaPtr =
4727     CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr");
4728   llvm::Value *OverflowArgArea =
4729     CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area");
4730   llvm::Value *PaddingV = llvm::ConstantInt::get(IndexTy, Padding);
4731   llvm::Value *RawMemAddr =
4732     CGF.Builder.CreateGEP(OverflowArgArea, PaddingV, "raw_mem_addr");
4733   llvm::Value *MemAddr =
4734     CGF.Builder.CreateBitCast(RawMemAddr, APTy, "mem_addr");
4735 
4736   // Update overflow_arg_area_ptr pointer
4737   llvm::Value *NewOverflowArgArea =
4738     CGF.Builder.CreateGEP(OverflowArgArea, PaddedSizeV, "overflow_arg_area");
4739   CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
4740   CGF.EmitBranch(ContBlock);
4741 
4742   // Return the appropriate result.
4743   CGF.EmitBlock(ContBlock);
4744   llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(APTy, 2, "va_arg.addr");
4745   ResAddr->addIncoming(RegAddr, InRegBlock);
4746   ResAddr->addIncoming(MemAddr, InMemBlock);
4747 
4748   if (IsIndirect)
4749     return CGF.Builder.CreateLoad(ResAddr, "indirect_arg");
4750 
4751   return ResAddr;
4752 }
4753 
4754 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI(
4755     const llvm::Triple &Triple, const CodeGenOptions &Opts) {
4756   assert(Triple.getArch() == llvm::Triple::x86);
4757 
4758   switch (Opts.getStructReturnConvention()) {
4759   case CodeGenOptions::SRCK_Default:
4760     break;
4761   case CodeGenOptions::SRCK_OnStack:  // -fpcc-struct-return
4762     return false;
4763   case CodeGenOptions::SRCK_InRegs:  // -freg-struct-return
4764     return true;
4765   }
4766 
4767   if (Triple.isOSDarwin())
4768     return true;
4769 
4770   switch (Triple.getOS()) {
4771   case llvm::Triple::Cygwin:
4772   case llvm::Triple::MinGW32:
4773   case llvm::Triple::AuroraUX:
4774   case llvm::Triple::DragonFly:
4775   case llvm::Triple::FreeBSD:
4776   case llvm::Triple::OpenBSD:
4777   case llvm::Triple::Bitrig:
4778   case llvm::Triple::Win32:
4779     return true;
4780   default:
4781     return false;
4782   }
4783 }
4784 
4785 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const {
4786   if (RetTy->isVoidType())
4787     return ABIArgInfo::getIgnore();
4788   if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64)
4789     return ABIArgInfo::getIndirect(0);
4790   return (isPromotableIntegerType(RetTy) ?
4791           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
4792 }
4793 
4794 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const {
4795   // Handle the generic C++ ABI.
4796   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
4797     return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
4798 
4799   // Integers and enums are extended to full register width.
4800   if (isPromotableIntegerType(Ty))
4801     return ABIArgInfo::getExtend();
4802 
4803   // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly.
4804   uint64_t Size = getContext().getTypeSize(Ty);
4805   if (Size != 8 && Size != 16 && Size != 32 && Size != 64)
4806     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
4807 
4808   // Handle small structures.
4809   if (const RecordType *RT = Ty->getAs<RecordType>()) {
4810     // Structures with flexible arrays have variable length, so really
4811     // fail the size test above.
4812     const RecordDecl *RD = RT->getDecl();
4813     if (RD->hasFlexibleArrayMember())
4814       return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
4815 
4816     // The structure is passed as an unextended integer, a float, or a double.
4817     llvm::Type *PassTy;
4818     if (isFPArgumentType(Ty)) {
4819       assert(Size == 32 || Size == 64);
4820       if (Size == 32)
4821         PassTy = llvm::Type::getFloatTy(getVMContext());
4822       else
4823         PassTy = llvm::Type::getDoubleTy(getVMContext());
4824     } else
4825       PassTy = llvm::IntegerType::get(getVMContext(), Size);
4826     return ABIArgInfo::getDirect(PassTy);
4827   }
4828 
4829   // Non-structure compounds are passed indirectly.
4830   if (isCompoundType(Ty))
4831     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
4832 
4833   return ABIArgInfo::getDirect(0);
4834 }
4835 
4836 //===----------------------------------------------------------------------===//
4837 // MSP430 ABI Implementation
4838 //===----------------------------------------------------------------------===//
4839 
4840 namespace {
4841 
4842 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
4843 public:
4844   MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
4845     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
4846   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
4847                            CodeGen::CodeGenModule &M) const override;
4848 };
4849 
4850 }
4851 
4852 void MSP430TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
4853                                                   llvm::GlobalValue *GV,
4854                                              CodeGen::CodeGenModule &M) const {
4855   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
4856     if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) {
4857       // Handle 'interrupt' attribute:
4858       llvm::Function *F = cast<llvm::Function>(GV);
4859 
4860       // Step 1: Set ISR calling convention.
4861       F->setCallingConv(llvm::CallingConv::MSP430_INTR);
4862 
4863       // Step 2: Add attributes goodness.
4864       F->addFnAttr(llvm::Attribute::NoInline);
4865 
4866       // Step 3: Emit ISR vector alias.
4867       unsigned Num = attr->getNumber() / 2;
4868       new llvm::GlobalAlias(GV->getType(), llvm::Function::ExternalLinkage,
4869                             "__isr_" + Twine(Num),
4870                             GV, &M.getModule());
4871     }
4872   }
4873 }
4874 
4875 //===----------------------------------------------------------------------===//
4876 // MIPS ABI Implementation.  This works for both little-endian and
4877 // big-endian variants.
4878 //===----------------------------------------------------------------------===//
4879 
4880 namespace {
4881 class MipsABIInfo : public ABIInfo {
4882   bool IsO32;
4883   unsigned MinABIStackAlignInBytes, StackAlignInBytes;
4884   void CoerceToIntArgs(uint64_t TySize,
4885                        SmallVectorImpl<llvm::Type *> &ArgList) const;
4886   llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const;
4887   llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const;
4888   llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const;
4889 public:
4890   MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) :
4891     ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8),
4892     StackAlignInBytes(IsO32 ? 8 : 16) {}
4893 
4894   ABIArgInfo classifyReturnType(QualType RetTy) const;
4895   ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const;
4896   void computeInfo(CGFunctionInfo &FI) const override;
4897   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4898                          CodeGenFunction &CGF) const override;
4899 };
4900 
4901 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
4902   unsigned SizeOfUnwindException;
4903 public:
4904   MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32)
4905     : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)),
4906       SizeOfUnwindException(IsO32 ? 24 : 32) {}
4907 
4908   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
4909     return 29;
4910   }
4911 
4912   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
4913                            CodeGen::CodeGenModule &CGM) const override {
4914     const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
4915     if (!FD) return;
4916     llvm::Function *Fn = cast<llvm::Function>(GV);
4917     if (FD->hasAttr<Mips16Attr>()) {
4918       Fn->addFnAttr("mips16");
4919     }
4920     else if (FD->hasAttr<NoMips16Attr>()) {
4921       Fn->addFnAttr("nomips16");
4922     }
4923   }
4924 
4925   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4926                                llvm::Value *Address) const override;
4927 
4928   unsigned getSizeOfUnwindException() const override {
4929     return SizeOfUnwindException;
4930   }
4931 };
4932 }
4933 
4934 void MipsABIInfo::CoerceToIntArgs(uint64_t TySize,
4935                                   SmallVectorImpl<llvm::Type *> &ArgList) const {
4936   llvm::IntegerType *IntTy =
4937     llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
4938 
4939   // Add (TySize / MinABIStackAlignInBytes) args of IntTy.
4940   for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N)
4941     ArgList.push_back(IntTy);
4942 
4943   // If necessary, add one more integer type to ArgList.
4944   unsigned R = TySize % (MinABIStackAlignInBytes * 8);
4945 
4946   if (R)
4947     ArgList.push_back(llvm::IntegerType::get(getVMContext(), R));
4948 }
4949 
4950 // In N32/64, an aligned double precision floating point field is passed in
4951 // a register.
4952 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const {
4953   SmallVector<llvm::Type*, 8> ArgList, IntArgList;
4954 
4955   if (IsO32) {
4956     CoerceToIntArgs(TySize, ArgList);
4957     return llvm::StructType::get(getVMContext(), ArgList);
4958   }
4959 
4960   if (Ty->isComplexType())
4961     return CGT.ConvertType(Ty);
4962 
4963   const RecordType *RT = Ty->getAs<RecordType>();
4964 
4965   // Unions/vectors are passed in integer registers.
4966   if (!RT || !RT->isStructureOrClassType()) {
4967     CoerceToIntArgs(TySize, ArgList);
4968     return llvm::StructType::get(getVMContext(), ArgList);
4969   }
4970 
4971   const RecordDecl *RD = RT->getDecl();
4972   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
4973   assert(!(TySize % 8) && "Size of structure must be multiple of 8.");
4974 
4975   uint64_t LastOffset = 0;
4976   unsigned idx = 0;
4977   llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64);
4978 
4979   // Iterate over fields in the struct/class and check if there are any aligned
4980   // double fields.
4981   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
4982        i != e; ++i, ++idx) {
4983     const QualType Ty = i->getType();
4984     const BuiltinType *BT = Ty->getAs<BuiltinType>();
4985 
4986     if (!BT || BT->getKind() != BuiltinType::Double)
4987       continue;
4988 
4989     uint64_t Offset = Layout.getFieldOffset(idx);
4990     if (Offset % 64) // Ignore doubles that are not aligned.
4991       continue;
4992 
4993     // Add ((Offset - LastOffset) / 64) args of type i64.
4994     for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j)
4995       ArgList.push_back(I64);
4996 
4997     // Add double type.
4998     ArgList.push_back(llvm::Type::getDoubleTy(getVMContext()));
4999     LastOffset = Offset + 64;
5000   }
5001 
5002   CoerceToIntArgs(TySize - LastOffset, IntArgList);
5003   ArgList.append(IntArgList.begin(), IntArgList.end());
5004 
5005   return llvm::StructType::get(getVMContext(), ArgList);
5006 }
5007 
5008 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset,
5009                                         uint64_t Offset) const {
5010   if (OrigOffset + MinABIStackAlignInBytes > Offset)
5011     return 0;
5012 
5013   return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8);
5014 }
5015 
5016 ABIArgInfo
5017 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const {
5018   uint64_t OrigOffset = Offset;
5019   uint64_t TySize = getContext().getTypeSize(Ty);
5020   uint64_t Align = getContext().getTypeAlign(Ty) / 8;
5021 
5022   Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes),
5023                    (uint64_t)StackAlignInBytes);
5024   unsigned CurrOffset = llvm::RoundUpToAlignment(Offset, Align);
5025   Offset = CurrOffset + llvm::RoundUpToAlignment(TySize, Align * 8) / 8;
5026 
5027   if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) {
5028     // Ignore empty aggregates.
5029     if (TySize == 0)
5030       return ABIArgInfo::getIgnore();
5031 
5032     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
5033       Offset = OrigOffset + MinABIStackAlignInBytes;
5034       return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
5035     }
5036 
5037     // If we have reached here, aggregates are passed directly by coercing to
5038     // another structure type. Padding is inserted if the offset of the
5039     // aggregate is unaligned.
5040     return ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0,
5041                                  getPaddingType(OrigOffset, CurrOffset));
5042   }
5043 
5044   // Treat an enum type as its underlying type.
5045   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5046     Ty = EnumTy->getDecl()->getIntegerType();
5047 
5048   if (Ty->isPromotableIntegerType())
5049     return ABIArgInfo::getExtend();
5050 
5051   return ABIArgInfo::getDirect(
5052       0, 0, IsO32 ? 0 : getPaddingType(OrigOffset, CurrOffset));
5053 }
5054 
5055 llvm::Type*
5056 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const {
5057   const RecordType *RT = RetTy->getAs<RecordType>();
5058   SmallVector<llvm::Type*, 8> RTList;
5059 
5060   if (RT && RT->isStructureOrClassType()) {
5061     const RecordDecl *RD = RT->getDecl();
5062     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
5063     unsigned FieldCnt = Layout.getFieldCount();
5064 
5065     // N32/64 returns struct/classes in floating point registers if the
5066     // following conditions are met:
5067     // 1. The size of the struct/class is no larger than 128-bit.
5068     // 2. The struct/class has one or two fields all of which are floating
5069     //    point types.
5070     // 3. The offset of the first field is zero (this follows what gcc does).
5071     //
5072     // Any other composite results are returned in integer registers.
5073     //
5074     if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) {
5075       RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end();
5076       for (; b != e; ++b) {
5077         const BuiltinType *BT = b->getType()->getAs<BuiltinType>();
5078 
5079         if (!BT || !BT->isFloatingPoint())
5080           break;
5081 
5082         RTList.push_back(CGT.ConvertType(b->getType()));
5083       }
5084 
5085       if (b == e)
5086         return llvm::StructType::get(getVMContext(), RTList,
5087                                      RD->hasAttr<PackedAttr>());
5088 
5089       RTList.clear();
5090     }
5091   }
5092 
5093   CoerceToIntArgs(Size, RTList);
5094   return llvm::StructType::get(getVMContext(), RTList);
5095 }
5096 
5097 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
5098   uint64_t Size = getContext().getTypeSize(RetTy);
5099 
5100   if (RetTy->isVoidType() || Size == 0)
5101     return ABIArgInfo::getIgnore();
5102 
5103   if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) {
5104     if (isRecordReturnIndirect(RetTy, getCXXABI()))
5105       return ABIArgInfo::getIndirect(0);
5106 
5107     if (Size <= 128) {
5108       if (RetTy->isAnyComplexType())
5109         return ABIArgInfo::getDirect();
5110 
5111       // O32 returns integer vectors in registers.
5112       if (IsO32 && RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())
5113         return ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
5114 
5115       if (!IsO32)
5116         return ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
5117     }
5118 
5119     return ABIArgInfo::getIndirect(0);
5120   }
5121 
5122   // Treat an enum type as its underlying type.
5123   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5124     RetTy = EnumTy->getDecl()->getIntegerType();
5125 
5126   return (RetTy->isPromotableIntegerType() ?
5127           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5128 }
5129 
5130 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
5131   ABIArgInfo &RetInfo = FI.getReturnInfo();
5132   RetInfo = classifyReturnType(FI.getReturnType());
5133 
5134   // Check if a pointer to an aggregate is passed as a hidden argument.
5135   uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0;
5136 
5137   for (auto &I : FI.arguments())
5138     I.info = classifyArgumentType(I.type, Offset);
5139 }
5140 
5141 llvm::Value* MipsABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5142                                     CodeGenFunction &CGF) const {
5143   llvm::Type *BP = CGF.Int8PtrTy;
5144   llvm::Type *BPP = CGF.Int8PtrPtrTy;
5145 
5146   CGBuilderTy &Builder = CGF.Builder;
5147   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
5148   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
5149   int64_t TypeAlign = getContext().getTypeAlign(Ty) / 8;
5150   llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
5151   llvm::Value *AddrTyped;
5152   unsigned PtrWidth = getTarget().getPointerWidth(0);
5153   llvm::IntegerType *IntTy = (PtrWidth == 32) ? CGF.Int32Ty : CGF.Int64Ty;
5154 
5155   if (TypeAlign > MinABIStackAlignInBytes) {
5156     llvm::Value *AddrAsInt = CGF.Builder.CreatePtrToInt(Addr, IntTy);
5157     llvm::Value *Inc = llvm::ConstantInt::get(IntTy, TypeAlign - 1);
5158     llvm::Value *Mask = llvm::ConstantInt::get(IntTy, -TypeAlign);
5159     llvm::Value *Add = CGF.Builder.CreateAdd(AddrAsInt, Inc);
5160     llvm::Value *And = CGF.Builder.CreateAnd(Add, Mask);
5161     AddrTyped = CGF.Builder.CreateIntToPtr(And, PTy);
5162   }
5163   else
5164     AddrTyped = Builder.CreateBitCast(Addr, PTy);
5165 
5166   llvm::Value *AlignedAddr = Builder.CreateBitCast(AddrTyped, BP);
5167   TypeAlign = std::max((unsigned)TypeAlign, MinABIStackAlignInBytes);
5168   uint64_t Offset =
5169     llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, TypeAlign);
5170   llvm::Value *NextAddr =
5171     Builder.CreateGEP(AlignedAddr, llvm::ConstantInt::get(IntTy, Offset),
5172                       "ap.next");
5173   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
5174 
5175   return AddrTyped;
5176 }
5177 
5178 bool
5179 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5180                                                llvm::Value *Address) const {
5181   // This information comes from gcc's implementation, which seems to
5182   // as canonical as it gets.
5183 
5184   // Everything on MIPS is 4 bytes.  Double-precision FP registers
5185   // are aliased to pairs of single-precision FP registers.
5186   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
5187 
5188   // 0-31 are the general purpose registers, $0 - $31.
5189   // 32-63 are the floating-point registers, $f0 - $f31.
5190   // 64 and 65 are the multiply/divide registers, $hi and $lo.
5191   // 66 is the (notional, I think) register for signal-handler return.
5192   AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65);
5193 
5194   // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
5195   // They are one bit wide and ignored here.
5196 
5197   // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
5198   // (coprocessor 1 is the FP unit)
5199   // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
5200   // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
5201   // 176-181 are the DSP accumulator registers.
5202   AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181);
5203   return false;
5204 }
5205 
5206 //===----------------------------------------------------------------------===//
5207 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults.
5208 // Currently subclassed only to implement custom OpenCL C function attribute
5209 // handling.
5210 //===----------------------------------------------------------------------===//
5211 
5212 namespace {
5213 
5214 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo {
5215 public:
5216   TCETargetCodeGenInfo(CodeGenTypes &CGT)
5217     : DefaultTargetCodeGenInfo(CGT) {}
5218 
5219   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5220                            CodeGen::CodeGenModule &M) const override;
5221 };
5222 
5223 void TCETargetCodeGenInfo::SetTargetAttributes(const Decl *D,
5224                                                llvm::GlobalValue *GV,
5225                                                CodeGen::CodeGenModule &M) const {
5226   const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
5227   if (!FD) return;
5228 
5229   llvm::Function *F = cast<llvm::Function>(GV);
5230 
5231   if (M.getLangOpts().OpenCL) {
5232     if (FD->hasAttr<OpenCLKernelAttr>()) {
5233       // OpenCL C Kernel functions are not subject to inlining
5234       F->addFnAttr(llvm::Attribute::NoInline);
5235       const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>();
5236       if (Attr) {
5237         // Convert the reqd_work_group_size() attributes to metadata.
5238         llvm::LLVMContext &Context = F->getContext();
5239         llvm::NamedMDNode *OpenCLMetadata =
5240             M.getModule().getOrInsertNamedMetadata("opencl.kernel_wg_size_info");
5241 
5242         SmallVector<llvm::Value*, 5> Operands;
5243         Operands.push_back(F);
5244 
5245         Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty,
5246                              llvm::APInt(32, Attr->getXDim())));
5247         Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty,
5248                              llvm::APInt(32, Attr->getYDim())));
5249         Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty,
5250                              llvm::APInt(32, Attr->getZDim())));
5251 
5252         // Add a boolean constant operand for "required" (true) or "hint" (false)
5253         // for implementing the work_group_size_hint attr later. Currently
5254         // always true as the hint is not yet implemented.
5255         Operands.push_back(llvm::ConstantInt::getTrue(Context));
5256         OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands));
5257       }
5258     }
5259   }
5260 }
5261 
5262 }
5263 
5264 //===----------------------------------------------------------------------===//
5265 // Hexagon ABI Implementation
5266 //===----------------------------------------------------------------------===//
5267 
5268 namespace {
5269 
5270 class HexagonABIInfo : public ABIInfo {
5271 
5272 
5273 public:
5274   HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
5275 
5276 private:
5277 
5278   ABIArgInfo classifyReturnType(QualType RetTy) const;
5279   ABIArgInfo classifyArgumentType(QualType RetTy) const;
5280 
5281   void computeInfo(CGFunctionInfo &FI) const override;
5282 
5283   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5284                          CodeGenFunction &CGF) const override;
5285 };
5286 
5287 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo {
5288 public:
5289   HexagonTargetCodeGenInfo(CodeGenTypes &CGT)
5290     :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {}
5291 
5292   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
5293     return 29;
5294   }
5295 };
5296 
5297 }
5298 
5299 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const {
5300   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
5301   for (auto &I : FI.arguments())
5302     I.info = classifyArgumentType(I.type);
5303 }
5304 
5305 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const {
5306   if (!isAggregateTypeForABI(Ty)) {
5307     // Treat an enum type as its underlying type.
5308     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5309       Ty = EnumTy->getDecl()->getIntegerType();
5310 
5311     return (Ty->isPromotableIntegerType() ?
5312             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5313   }
5314 
5315   // Ignore empty records.
5316   if (isEmptyRecord(getContext(), Ty, true))
5317     return ABIArgInfo::getIgnore();
5318 
5319   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
5320     return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
5321 
5322   uint64_t Size = getContext().getTypeSize(Ty);
5323   if (Size > 64)
5324     return ABIArgInfo::getIndirect(0, /*ByVal=*/true);
5325     // Pass in the smallest viable integer type.
5326   else if (Size > 32)
5327       return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
5328   else if (Size > 16)
5329       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
5330   else if (Size > 8)
5331       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
5332   else
5333       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
5334 }
5335 
5336 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const {
5337   if (RetTy->isVoidType())
5338     return ABIArgInfo::getIgnore();
5339 
5340   // Large vector types should be returned via memory.
5341   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64)
5342     return ABIArgInfo::getIndirect(0);
5343 
5344   if (!isAggregateTypeForABI(RetTy)) {
5345     // Treat an enum type as its underlying type.
5346     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5347       RetTy = EnumTy->getDecl()->getIntegerType();
5348 
5349     return (RetTy->isPromotableIntegerType() ?
5350             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5351   }
5352 
5353   // Structures with either a non-trivial destructor or a non-trivial
5354   // copy constructor are always indirect.
5355   if (isRecordReturnIndirect(RetTy, getCXXABI()))
5356     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
5357 
5358   if (isEmptyRecord(getContext(), RetTy, true))
5359     return ABIArgInfo::getIgnore();
5360 
5361   // Aggregates <= 8 bytes are returned in r0; other aggregates
5362   // are returned indirectly.
5363   uint64_t Size = getContext().getTypeSize(RetTy);
5364   if (Size <= 64) {
5365     // Return in the smallest viable integer type.
5366     if (Size <= 8)
5367       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
5368     if (Size <= 16)
5369       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
5370     if (Size <= 32)
5371       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
5372     return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
5373   }
5374 
5375   return ABIArgInfo::getIndirect(0, /*ByVal=*/true);
5376 }
5377 
5378 llvm::Value *HexagonABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5379                                        CodeGenFunction &CGF) const {
5380   // FIXME: Need to handle alignment
5381   llvm::Type *BPP = CGF.Int8PtrPtrTy;
5382 
5383   CGBuilderTy &Builder = CGF.Builder;
5384   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
5385                                                        "ap");
5386   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
5387   llvm::Type *PTy =
5388     llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
5389   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
5390 
5391   uint64_t Offset =
5392     llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
5393   llvm::Value *NextAddr =
5394     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
5395                       "ap.next");
5396   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
5397 
5398   return AddrTyped;
5399 }
5400 
5401 
5402 //===----------------------------------------------------------------------===//
5403 // SPARC v9 ABI Implementation.
5404 // Based on the SPARC Compliance Definition version 2.4.1.
5405 //
5406 // Function arguments a mapped to a nominal "parameter array" and promoted to
5407 // registers depending on their type. Each argument occupies 8 or 16 bytes in
5408 // the array, structs larger than 16 bytes are passed indirectly.
5409 //
5410 // One case requires special care:
5411 //
5412 //   struct mixed {
5413 //     int i;
5414 //     float f;
5415 //   };
5416 //
5417 // When a struct mixed is passed by value, it only occupies 8 bytes in the
5418 // parameter array, but the int is passed in an integer register, and the float
5419 // is passed in a floating point register. This is represented as two arguments
5420 // with the LLVM IR inreg attribute:
5421 //
5422 //   declare void f(i32 inreg %i, float inreg %f)
5423 //
5424 // The code generator will only allocate 4 bytes from the parameter array for
5425 // the inreg arguments. All other arguments are allocated a multiple of 8
5426 // bytes.
5427 //
5428 namespace {
5429 class SparcV9ABIInfo : public ABIInfo {
5430 public:
5431   SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
5432 
5433 private:
5434   ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const;
5435   void computeInfo(CGFunctionInfo &FI) const override;
5436   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5437                          CodeGenFunction &CGF) const override;
5438 
5439   // Coercion type builder for structs passed in registers. The coercion type
5440   // serves two purposes:
5441   //
5442   // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned'
5443   //    in registers.
5444   // 2. Expose aligned floating point elements as first-level elements, so the
5445   //    code generator knows to pass them in floating point registers.
5446   //
5447   // We also compute the InReg flag which indicates that the struct contains
5448   // aligned 32-bit floats.
5449   //
5450   struct CoerceBuilder {
5451     llvm::LLVMContext &Context;
5452     const llvm::DataLayout &DL;
5453     SmallVector<llvm::Type*, 8> Elems;
5454     uint64_t Size;
5455     bool InReg;
5456 
5457     CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl)
5458       : Context(c), DL(dl), Size(0), InReg(false) {}
5459 
5460     // Pad Elems with integers until Size is ToSize.
5461     void pad(uint64_t ToSize) {
5462       assert(ToSize >= Size && "Cannot remove elements");
5463       if (ToSize == Size)
5464         return;
5465 
5466       // Finish the current 64-bit word.
5467       uint64_t Aligned = llvm::RoundUpToAlignment(Size, 64);
5468       if (Aligned > Size && Aligned <= ToSize) {
5469         Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size));
5470         Size = Aligned;
5471       }
5472 
5473       // Add whole 64-bit words.
5474       while (Size + 64 <= ToSize) {
5475         Elems.push_back(llvm::Type::getInt64Ty(Context));
5476         Size += 64;
5477       }
5478 
5479       // Final in-word padding.
5480       if (Size < ToSize) {
5481         Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size));
5482         Size = ToSize;
5483       }
5484     }
5485 
5486     // Add a floating point element at Offset.
5487     void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) {
5488       // Unaligned floats are treated as integers.
5489       if (Offset % Bits)
5490         return;
5491       // The InReg flag is only required if there are any floats < 64 bits.
5492       if (Bits < 64)
5493         InReg = true;
5494       pad(Offset);
5495       Elems.push_back(Ty);
5496       Size = Offset + Bits;
5497     }
5498 
5499     // Add a struct type to the coercion type, starting at Offset (in bits).
5500     void addStruct(uint64_t Offset, llvm::StructType *StrTy) {
5501       const llvm::StructLayout *Layout = DL.getStructLayout(StrTy);
5502       for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) {
5503         llvm::Type *ElemTy = StrTy->getElementType(i);
5504         uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i);
5505         switch (ElemTy->getTypeID()) {
5506         case llvm::Type::StructTyID:
5507           addStruct(ElemOffset, cast<llvm::StructType>(ElemTy));
5508           break;
5509         case llvm::Type::FloatTyID:
5510           addFloat(ElemOffset, ElemTy, 32);
5511           break;
5512         case llvm::Type::DoubleTyID:
5513           addFloat(ElemOffset, ElemTy, 64);
5514           break;
5515         case llvm::Type::FP128TyID:
5516           addFloat(ElemOffset, ElemTy, 128);
5517           break;
5518         case llvm::Type::PointerTyID:
5519           if (ElemOffset % 64 == 0) {
5520             pad(ElemOffset);
5521             Elems.push_back(ElemTy);
5522             Size += 64;
5523           }
5524           break;
5525         default:
5526           break;
5527         }
5528       }
5529     }
5530 
5531     // Check if Ty is a usable substitute for the coercion type.
5532     bool isUsableType(llvm::StructType *Ty) const {
5533       if (Ty->getNumElements() != Elems.size())
5534         return false;
5535       for (unsigned i = 0, e = Elems.size(); i != e; ++i)
5536         if (Elems[i] != Ty->getElementType(i))
5537           return false;
5538       return true;
5539     }
5540 
5541     // Get the coercion type as a literal struct type.
5542     llvm::Type *getType() const {
5543       if (Elems.size() == 1)
5544         return Elems.front();
5545       else
5546         return llvm::StructType::get(Context, Elems);
5547     }
5548   };
5549 };
5550 } // end anonymous namespace
5551 
5552 ABIArgInfo
5553 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const {
5554   if (Ty->isVoidType())
5555     return ABIArgInfo::getIgnore();
5556 
5557   uint64_t Size = getContext().getTypeSize(Ty);
5558 
5559   // Anything too big to fit in registers is passed with an explicit indirect
5560   // pointer / sret pointer.
5561   if (Size > SizeLimit)
5562     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
5563 
5564   // Treat an enum type as its underlying type.
5565   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5566     Ty = EnumTy->getDecl()->getIntegerType();
5567 
5568   // Integer types smaller than a register are extended.
5569   if (Size < 64 && Ty->isIntegerType())
5570     return ABIArgInfo::getExtend();
5571 
5572   // Other non-aggregates go in registers.
5573   if (!isAggregateTypeForABI(Ty))
5574     return ABIArgInfo::getDirect();
5575 
5576   // If a C++ object has either a non-trivial copy constructor or a non-trivial
5577   // destructor, it is passed with an explicit indirect pointer / sret pointer.
5578   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
5579     return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
5580 
5581   // This is a small aggregate type that should be passed in registers.
5582   // Build a coercion type from the LLVM struct type.
5583   llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty));
5584   if (!StrTy)
5585     return ABIArgInfo::getDirect();
5586 
5587   CoerceBuilder CB(getVMContext(), getDataLayout());
5588   CB.addStruct(0, StrTy);
5589   CB.pad(llvm::RoundUpToAlignment(CB.DL.getTypeSizeInBits(StrTy), 64));
5590 
5591   // Try to use the original type for coercion.
5592   llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType();
5593 
5594   if (CB.InReg)
5595     return ABIArgInfo::getDirectInReg(CoerceTy);
5596   else
5597     return ABIArgInfo::getDirect(CoerceTy);
5598 }
5599 
5600 llvm::Value *SparcV9ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5601                                        CodeGenFunction &CGF) const {
5602   ABIArgInfo AI = classifyType(Ty, 16 * 8);
5603   llvm::Type *ArgTy = CGT.ConvertType(Ty);
5604   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
5605     AI.setCoerceToType(ArgTy);
5606 
5607   llvm::Type *BPP = CGF.Int8PtrPtrTy;
5608   CGBuilderTy &Builder = CGF.Builder;
5609   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
5610   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
5611   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
5612   llvm::Value *ArgAddr;
5613   unsigned Stride;
5614 
5615   switch (AI.getKind()) {
5616   case ABIArgInfo::Expand:
5617   case ABIArgInfo::InAlloca:
5618     llvm_unreachable("Unsupported ABI kind for va_arg");
5619 
5620   case ABIArgInfo::Extend:
5621     Stride = 8;
5622     ArgAddr = Builder
5623       .CreateConstGEP1_32(Addr, 8 - getDataLayout().getTypeAllocSize(ArgTy),
5624                           "extend");
5625     break;
5626 
5627   case ABIArgInfo::Direct:
5628     Stride = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
5629     ArgAddr = Addr;
5630     break;
5631 
5632   case ABIArgInfo::Indirect:
5633     Stride = 8;
5634     ArgAddr = Builder.CreateBitCast(Addr,
5635                                     llvm::PointerType::getUnqual(ArgPtrTy),
5636                                     "indirect");
5637     ArgAddr = Builder.CreateLoad(ArgAddr, "indirect.arg");
5638     break;
5639 
5640   case ABIArgInfo::Ignore:
5641     return llvm::UndefValue::get(ArgPtrTy);
5642   }
5643 
5644   // Update VAList.
5645   Addr = Builder.CreateConstGEP1_32(Addr, Stride, "ap.next");
5646   Builder.CreateStore(Addr, VAListAddrAsBPP);
5647 
5648   return Builder.CreatePointerCast(ArgAddr, ArgPtrTy, "arg.addr");
5649 }
5650 
5651 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const {
5652   FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8);
5653   for (auto &I : FI.arguments())
5654     I.info = classifyType(I.type, 16 * 8);
5655 }
5656 
5657 namespace {
5658 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo {
5659 public:
5660   SparcV9TargetCodeGenInfo(CodeGenTypes &CGT)
5661     : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {}
5662 
5663   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
5664     return 14;
5665   }
5666 
5667   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5668                                llvm::Value *Address) const override;
5669 };
5670 } // end anonymous namespace
5671 
5672 bool
5673 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5674                                                 llvm::Value *Address) const {
5675   // This is calculated from the LLVM and GCC tables and verified
5676   // against gcc output.  AFAIK all ABIs use the same encoding.
5677 
5678   CodeGen::CGBuilderTy &Builder = CGF.Builder;
5679 
5680   llvm::IntegerType *i8 = CGF.Int8Ty;
5681   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
5682   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
5683 
5684   // 0-31: the 8-byte general-purpose registers
5685   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
5686 
5687   // 32-63: f0-31, the 4-byte floating-point registers
5688   AssignToArrayRange(Builder, Address, Four8, 32, 63);
5689 
5690   //   Y   = 64
5691   //   PSR = 65
5692   //   WIM = 66
5693   //   TBR = 67
5694   //   PC  = 68
5695   //   NPC = 69
5696   //   FSR = 70
5697   //   CSR = 71
5698   AssignToArrayRange(Builder, Address, Eight8, 64, 71);
5699 
5700   // 72-87: d0-15, the 8-byte floating-point registers
5701   AssignToArrayRange(Builder, Address, Eight8, 72, 87);
5702 
5703   return false;
5704 }
5705 
5706 
5707 //===----------------------------------------------------------------------===//
5708 // XCore ABI Implementation
5709 //===----------------------------------------------------------------------===//
5710 namespace {
5711 class XCoreABIInfo : public DefaultABIInfo {
5712 public:
5713   XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
5714   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5715                          CodeGenFunction &CGF) const override;
5716 };
5717 
5718 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo {
5719 public:
5720   XCoreTargetCodeGenInfo(CodeGenTypes &CGT)
5721     :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {}
5722 };
5723 } // End anonymous namespace.
5724 
5725 llvm::Value *XCoreABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5726                                      CodeGenFunction &CGF) const {
5727   CGBuilderTy &Builder = CGF.Builder;
5728 
5729   // Get the VAList.
5730   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr,
5731                                                        CGF.Int8PtrPtrTy);
5732   llvm::Value *AP = Builder.CreateLoad(VAListAddrAsBPP);
5733 
5734   // Handle the argument.
5735   ABIArgInfo AI = classifyArgumentType(Ty);
5736   llvm::Type *ArgTy = CGT.ConvertType(Ty);
5737   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
5738     AI.setCoerceToType(ArgTy);
5739   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
5740   llvm::Value *Val;
5741   uint64_t ArgSize = 0;
5742   switch (AI.getKind()) {
5743   case ABIArgInfo::Expand:
5744   case ABIArgInfo::InAlloca:
5745     llvm_unreachable("Unsupported ABI kind for va_arg");
5746   case ABIArgInfo::Ignore:
5747     Val = llvm::UndefValue::get(ArgPtrTy);
5748     ArgSize = 0;
5749     break;
5750   case ABIArgInfo::Extend:
5751   case ABIArgInfo::Direct:
5752     Val = Builder.CreatePointerCast(AP, ArgPtrTy);
5753     ArgSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
5754     if (ArgSize < 4)
5755       ArgSize = 4;
5756     break;
5757   case ABIArgInfo::Indirect:
5758     llvm::Value *ArgAddr;
5759     ArgAddr = Builder.CreateBitCast(AP, llvm::PointerType::getUnqual(ArgPtrTy));
5760     ArgAddr = Builder.CreateLoad(ArgAddr);
5761     Val = Builder.CreatePointerCast(ArgAddr, ArgPtrTy);
5762     ArgSize = 4;
5763     break;
5764   }
5765 
5766   // Increment the VAList.
5767   if (ArgSize) {
5768     llvm::Value *APN = Builder.CreateConstGEP1_32(AP, ArgSize);
5769     Builder.CreateStore(APN, VAListAddrAsBPP);
5770   }
5771   return Val;
5772 }
5773 
5774 //===----------------------------------------------------------------------===//
5775 // Driver code
5776 //===----------------------------------------------------------------------===//
5777 
5778 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
5779   if (TheTargetCodeGenInfo)
5780     return *TheTargetCodeGenInfo;
5781 
5782   const llvm::Triple &Triple = getTarget().getTriple();
5783   switch (Triple.getArch()) {
5784   default:
5785     return *(TheTargetCodeGenInfo = new DefaultTargetCodeGenInfo(Types));
5786 
5787   case llvm::Triple::le32:
5788     return *(TheTargetCodeGenInfo = new PNaClTargetCodeGenInfo(Types));
5789   case llvm::Triple::mips:
5790   case llvm::Triple::mipsel:
5791     return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, true));
5792 
5793   case llvm::Triple::mips64:
5794   case llvm::Triple::mips64el:
5795     return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, false));
5796 
5797   case llvm::Triple::aarch64:
5798   case llvm::Triple::aarch64_be:
5799     return *(TheTargetCodeGenInfo = new AArch64TargetCodeGenInfo(Types));
5800 
5801   case llvm::Triple::arm:
5802   case llvm::Triple::thumb:
5803     {
5804       ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
5805       if (strcmp(getTarget().getABI(), "apcs-gnu") == 0)
5806         Kind = ARMABIInfo::APCS;
5807       else if (CodeGenOpts.FloatABI == "hard" ||
5808                (CodeGenOpts.FloatABI != "soft" &&
5809                 Triple.getEnvironment() == llvm::Triple::GNUEABIHF))
5810         Kind = ARMABIInfo::AAPCS_VFP;
5811 
5812       switch (Triple.getOS()) {
5813         case llvm::Triple::NaCl:
5814           return *(TheTargetCodeGenInfo =
5815                    new NaClARMTargetCodeGenInfo(Types, Kind));
5816         default:
5817           return *(TheTargetCodeGenInfo =
5818                    new ARMTargetCodeGenInfo(Types, Kind));
5819       }
5820     }
5821 
5822   case llvm::Triple::ppc:
5823     return *(TheTargetCodeGenInfo = new PPC32TargetCodeGenInfo(Types));
5824   case llvm::Triple::ppc64:
5825     if (Triple.isOSBinFormatELF())
5826       return *(TheTargetCodeGenInfo = new PPC64_SVR4_TargetCodeGenInfo(Types));
5827     else
5828       return *(TheTargetCodeGenInfo = new PPC64TargetCodeGenInfo(Types));
5829   case llvm::Triple::ppc64le:
5830     assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
5831     return *(TheTargetCodeGenInfo = new PPC64_SVR4_TargetCodeGenInfo(Types));
5832 
5833   case llvm::Triple::nvptx:
5834   case llvm::Triple::nvptx64:
5835     return *(TheTargetCodeGenInfo = new NVPTXTargetCodeGenInfo(Types));
5836 
5837   case llvm::Triple::msp430:
5838     return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo(Types));
5839 
5840   case llvm::Triple::systemz:
5841     return *(TheTargetCodeGenInfo = new SystemZTargetCodeGenInfo(Types));
5842 
5843   case llvm::Triple::tce:
5844     return *(TheTargetCodeGenInfo = new TCETargetCodeGenInfo(Types));
5845 
5846   case llvm::Triple::x86: {
5847     bool IsDarwinVectorABI = Triple.isOSDarwin();
5848     bool IsSmallStructInRegABI =
5849         X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
5850     bool IsWin32FloatStructABI = (Triple.getOS() == llvm::Triple::Win32);
5851 
5852     if (Triple.getOS() == llvm::Triple::Win32) {
5853       return *(TheTargetCodeGenInfo =
5854                new WinX86_32TargetCodeGenInfo(Types,
5855                                               IsDarwinVectorABI, IsSmallStructInRegABI,
5856                                               IsWin32FloatStructABI,
5857                                               CodeGenOpts.NumRegisterParameters));
5858     } else {
5859       return *(TheTargetCodeGenInfo =
5860                new X86_32TargetCodeGenInfo(Types,
5861                                            IsDarwinVectorABI, IsSmallStructInRegABI,
5862                                            IsWin32FloatStructABI,
5863                                            CodeGenOpts.NumRegisterParameters));
5864     }
5865   }
5866 
5867   case llvm::Triple::x86_64: {
5868     bool HasAVX = strcmp(getTarget().getABI(), "avx") == 0;
5869 
5870     switch (Triple.getOS()) {
5871     case llvm::Triple::Win32:
5872     case llvm::Triple::MinGW32:
5873     case llvm::Triple::Cygwin:
5874       return *(TheTargetCodeGenInfo = new WinX86_64TargetCodeGenInfo(Types));
5875     case llvm::Triple::NaCl:
5876       return *(TheTargetCodeGenInfo = new NaClX86_64TargetCodeGenInfo(Types,
5877                                                                       HasAVX));
5878     default:
5879       return *(TheTargetCodeGenInfo = new X86_64TargetCodeGenInfo(Types,
5880                                                                   HasAVX));
5881     }
5882   }
5883   case llvm::Triple::hexagon:
5884     return *(TheTargetCodeGenInfo = new HexagonTargetCodeGenInfo(Types));
5885   case llvm::Triple::sparcv9:
5886     return *(TheTargetCodeGenInfo = new SparcV9TargetCodeGenInfo(Types));
5887   case llvm::Triple::xcore:
5888     return *(TheTargetCodeGenInfo = new XCoreTargetCodeGenInfo(Types));
5889 
5890   }
5891 }
5892