1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // These classes wrap the information about a call or function
11 // definition used to handle ABI compliancy.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "TargetInfo.h"
16 #include "ABIInfo.h"
17 #include "CGCXXABI.h"
18 #include "CGValue.h"
19 #include "CodeGenFunction.h"
20 #include "clang/AST/RecordLayout.h"
21 #include "clang/CodeGen/CGFunctionInfo.h"
22 #include "clang/Frontend/CodeGenOptions.h"
23 #include "llvm/ADT/StringExtras.h"
24 #include "llvm/ADT/Triple.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/Type.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include <algorithm>    // std::sort
29 
30 using namespace clang;
31 using namespace CodeGen;
32 
33 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
34                                llvm::Value *Array,
35                                llvm::Value *Value,
36                                unsigned FirstIndex,
37                                unsigned LastIndex) {
38   // Alternatively, we could emit this as a loop in the source.
39   for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
40     llvm::Value *Cell = Builder.CreateConstInBoundsGEP1_32(Array, I);
41     Builder.CreateStore(Value, Cell);
42   }
43 }
44 
45 static bool isAggregateTypeForABI(QualType T) {
46   return !CodeGenFunction::hasScalarEvaluationKind(T) ||
47          T->isMemberFunctionPointerType();
48 }
49 
50 ABIInfo::~ABIInfo() {}
51 
52 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT,
53                                               CGCXXABI &CXXABI) {
54   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
55   if (!RD)
56     return CGCXXABI::RAA_Default;
57   return CXXABI.getRecordArgABI(RD);
58 }
59 
60 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T,
61                                               CGCXXABI &CXXABI) {
62   const RecordType *RT = T->getAs<RecordType>();
63   if (!RT)
64     return CGCXXABI::RAA_Default;
65   return getRecordArgABI(RT, CXXABI);
66 }
67 
68 /// Pass transparent unions as if they were the type of the first element. Sema
69 /// should ensure that all elements of the union have the same "machine type".
70 static QualType useFirstFieldIfTransparentUnion(QualType Ty) {
71   if (const RecordType *UT = Ty->getAsUnionType()) {
72     const RecordDecl *UD = UT->getDecl();
73     if (UD->hasAttr<TransparentUnionAttr>()) {
74       assert(!UD->field_empty() && "sema created an empty transparent union");
75       return UD->field_begin()->getType();
76     }
77   }
78   return Ty;
79 }
80 
81 CGCXXABI &ABIInfo::getCXXABI() const {
82   return CGT.getCXXABI();
83 }
84 
85 ASTContext &ABIInfo::getContext() const {
86   return CGT.getContext();
87 }
88 
89 llvm::LLVMContext &ABIInfo::getVMContext() const {
90   return CGT.getLLVMContext();
91 }
92 
93 const llvm::DataLayout &ABIInfo::getDataLayout() const {
94   return CGT.getDataLayout();
95 }
96 
97 const TargetInfo &ABIInfo::getTarget() const {
98   return CGT.getTarget();
99 }
100 
101 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
102   return false;
103 }
104 
105 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
106                                                 uint64_t Members) const {
107   return false;
108 }
109 
110 void ABIArgInfo::dump() const {
111   raw_ostream &OS = llvm::errs();
112   OS << "(ABIArgInfo Kind=";
113   switch (TheKind) {
114   case Direct:
115     OS << "Direct Type=";
116     if (llvm::Type *Ty = getCoerceToType())
117       Ty->print(OS);
118     else
119       OS << "null";
120     break;
121   case Extend:
122     OS << "Extend";
123     break;
124   case Ignore:
125     OS << "Ignore";
126     break;
127   case InAlloca:
128     OS << "InAlloca Offset=" << getInAllocaFieldIndex();
129     break;
130   case Indirect:
131     OS << "Indirect Align=" << getIndirectAlign()
132        << " ByVal=" << getIndirectByVal()
133        << " Realign=" << getIndirectRealign();
134     break;
135   case Expand:
136     OS << "Expand";
137     break;
138   }
139   OS << ")\n";
140 }
141 
142 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }
143 
144 // If someone can figure out a general rule for this, that would be great.
145 // It's probably just doomed to be platform-dependent, though.
146 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const {
147   // Verified for:
148   //   x86-64     FreeBSD, Linux, Darwin
149   //   x86-32     FreeBSD, Linux, Darwin
150   //   PowerPC    Linux, Darwin
151   //   ARM        Darwin (*not* EABI)
152   //   AArch64    Linux
153   return 32;
154 }
155 
156 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args,
157                                      const FunctionNoProtoType *fnType) const {
158   // The following conventions are known to require this to be false:
159   //   x86_stdcall
160   //   MIPS
161   // For everything else, we just prefer false unless we opt out.
162   return false;
163 }
164 
165 void
166 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib,
167                                              llvm::SmallString<24> &Opt) const {
168   // This assumes the user is passing a library name like "rt" instead of a
169   // filename like "librt.a/so", and that they don't care whether it's static or
170   // dynamic.
171   Opt = "-l";
172   Opt += Lib;
173 }
174 
175 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
176 
177 /// isEmptyField - Return true iff a the field is "empty", that is it
178 /// is an unnamed bit-field or an (array of) empty record(s).
179 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
180                          bool AllowArrays) {
181   if (FD->isUnnamedBitfield())
182     return true;
183 
184   QualType FT = FD->getType();
185 
186   // Constant arrays of empty records count as empty, strip them off.
187   // Constant arrays of zero length always count as empty.
188   if (AllowArrays)
189     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
190       if (AT->getSize() == 0)
191         return true;
192       FT = AT->getElementType();
193     }
194 
195   const RecordType *RT = FT->getAs<RecordType>();
196   if (!RT)
197     return false;
198 
199   // C++ record fields are never empty, at least in the Itanium ABI.
200   //
201   // FIXME: We should use a predicate for whether this behavior is true in the
202   // current ABI.
203   if (isa<CXXRecordDecl>(RT->getDecl()))
204     return false;
205 
206   return isEmptyRecord(Context, FT, AllowArrays);
207 }
208 
209 /// isEmptyRecord - Return true iff a structure contains only empty
210 /// fields. Note that a structure with a flexible array member is not
211 /// considered empty.
212 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
213   const RecordType *RT = T->getAs<RecordType>();
214   if (!RT)
215     return 0;
216   const RecordDecl *RD = RT->getDecl();
217   if (RD->hasFlexibleArrayMember())
218     return false;
219 
220   // If this is a C++ record, check the bases first.
221   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
222     for (const auto &I : CXXRD->bases())
223       if (!isEmptyRecord(Context, I.getType(), true))
224         return false;
225 
226   for (const auto *I : RD->fields())
227     if (!isEmptyField(Context, I, AllowArrays))
228       return false;
229   return true;
230 }
231 
232 /// isSingleElementStruct - Determine if a structure is a "single
233 /// element struct", i.e. it has exactly one non-empty field or
234 /// exactly one field which is itself a single element
235 /// struct. Structures with flexible array members are never
236 /// considered single element structs.
237 ///
238 /// \return The field declaration for the single non-empty field, if
239 /// it exists.
240 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
241   const RecordType *RT = T->getAsStructureType();
242   if (!RT)
243     return nullptr;
244 
245   const RecordDecl *RD = RT->getDecl();
246   if (RD->hasFlexibleArrayMember())
247     return nullptr;
248 
249   const Type *Found = nullptr;
250 
251   // If this is a C++ record, check the bases first.
252   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
253     for (const auto &I : CXXRD->bases()) {
254       // Ignore empty records.
255       if (isEmptyRecord(Context, I.getType(), true))
256         continue;
257 
258       // If we already found an element then this isn't a single-element struct.
259       if (Found)
260         return nullptr;
261 
262       // If this is non-empty and not a single element struct, the composite
263       // cannot be a single element struct.
264       Found = isSingleElementStruct(I.getType(), Context);
265       if (!Found)
266         return nullptr;
267     }
268   }
269 
270   // Check for single element.
271   for (const auto *FD : RD->fields()) {
272     QualType FT = FD->getType();
273 
274     // Ignore empty fields.
275     if (isEmptyField(Context, FD, true))
276       continue;
277 
278     // If we already found an element then this isn't a single-element
279     // struct.
280     if (Found)
281       return nullptr;
282 
283     // Treat single element arrays as the element.
284     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
285       if (AT->getSize().getZExtValue() != 1)
286         break;
287       FT = AT->getElementType();
288     }
289 
290     if (!isAggregateTypeForABI(FT)) {
291       Found = FT.getTypePtr();
292     } else {
293       Found = isSingleElementStruct(FT, Context);
294       if (!Found)
295         return nullptr;
296     }
297   }
298 
299   // We don't consider a struct a single-element struct if it has
300   // padding beyond the element type.
301   if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T))
302     return nullptr;
303 
304   return Found;
305 }
306 
307 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
308   // Treat complex types as the element type.
309   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
310     Ty = CTy->getElementType();
311 
312   // Check for a type which we know has a simple scalar argument-passing
313   // convention without any padding.  (We're specifically looking for 32
314   // and 64-bit integer and integer-equivalents, float, and double.)
315   if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
316       !Ty->isEnumeralType() && !Ty->isBlockPointerType())
317     return false;
318 
319   uint64_t Size = Context.getTypeSize(Ty);
320   return Size == 32 || Size == 64;
321 }
322 
323 /// canExpandIndirectArgument - Test whether an argument type which is to be
324 /// passed indirectly (on the stack) would have the equivalent layout if it was
325 /// expanded into separate arguments. If so, we prefer to do the latter to avoid
326 /// inhibiting optimizations.
327 ///
328 // FIXME: This predicate is missing many cases, currently it just follows
329 // llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We
330 // should probably make this smarter, or better yet make the LLVM backend
331 // capable of handling it.
332 static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) {
333   // We can only expand structure types.
334   const RecordType *RT = Ty->getAs<RecordType>();
335   if (!RT)
336     return false;
337 
338   // We can only expand (C) structures.
339   //
340   // FIXME: This needs to be generalized to handle classes as well.
341   const RecordDecl *RD = RT->getDecl();
342   if (!RD->isStruct() || isa<CXXRecordDecl>(RD))
343     return false;
344 
345   uint64_t Size = 0;
346 
347   for (const auto *FD : RD->fields()) {
348     if (!is32Or64BitBasicType(FD->getType(), Context))
349       return false;
350 
351     // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
352     // how to expand them yet, and the predicate for telling if a bitfield still
353     // counts as "basic" is more complicated than what we were doing previously.
354     if (FD->isBitField())
355       return false;
356 
357     Size += Context.getTypeSize(FD->getType());
358   }
359 
360   // Make sure there are not any holes in the struct.
361   if (Size != Context.getTypeSize(Ty))
362     return false;
363 
364   return true;
365 }
366 
367 namespace {
368 /// DefaultABIInfo - The default implementation for ABI specific
369 /// details. This implementation provides information which results in
370 /// self-consistent and sensible LLVM IR generation, but does not
371 /// conform to any particular ABI.
372 class DefaultABIInfo : public ABIInfo {
373 public:
374   DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
375 
376   ABIArgInfo classifyReturnType(QualType RetTy) const;
377   ABIArgInfo classifyArgumentType(QualType RetTy) const;
378 
379   void computeInfo(CGFunctionInfo &FI) const override {
380     if (!getCXXABI().classifyReturnType(FI))
381       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
382     for (auto &I : FI.arguments())
383       I.info = classifyArgumentType(I.type);
384   }
385 
386   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
387                          CodeGenFunction &CGF) const override;
388 };
389 
390 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
391 public:
392   DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
393     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
394 };
395 
396 llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
397                                        CodeGenFunction &CGF) const {
398   return nullptr;
399 }
400 
401 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
402   if (isAggregateTypeForABI(Ty))
403     return ABIArgInfo::getIndirect(0);
404 
405   // Treat an enum type as its underlying type.
406   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
407     Ty = EnumTy->getDecl()->getIntegerType();
408 
409   return (Ty->isPromotableIntegerType() ?
410           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
411 }
412 
413 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
414   if (RetTy->isVoidType())
415     return ABIArgInfo::getIgnore();
416 
417   if (isAggregateTypeForABI(RetTy))
418     return ABIArgInfo::getIndirect(0);
419 
420   // Treat an enum type as its underlying type.
421   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
422     RetTy = EnumTy->getDecl()->getIntegerType();
423 
424   return (RetTy->isPromotableIntegerType() ?
425           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
426 }
427 
428 //===----------------------------------------------------------------------===//
429 // le32/PNaCl bitcode ABI Implementation
430 //
431 // This is a simplified version of the x86_32 ABI.  Arguments and return values
432 // are always passed on the stack.
433 //===----------------------------------------------------------------------===//
434 
435 class PNaClABIInfo : public ABIInfo {
436  public:
437   PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
438 
439   ABIArgInfo classifyReturnType(QualType RetTy) const;
440   ABIArgInfo classifyArgumentType(QualType RetTy) const;
441 
442   void computeInfo(CGFunctionInfo &FI) const override;
443   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
444                          CodeGenFunction &CGF) const override;
445 };
446 
447 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo {
448  public:
449   PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
450     : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {}
451 };
452 
453 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const {
454   if (!getCXXABI().classifyReturnType(FI))
455     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
456 
457   for (auto &I : FI.arguments())
458     I.info = classifyArgumentType(I.type);
459 }
460 
461 llvm::Value *PNaClABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
462                                        CodeGenFunction &CGF) const {
463   return nullptr;
464 }
465 
466 /// \brief Classify argument of given type \p Ty.
467 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const {
468   if (isAggregateTypeForABI(Ty)) {
469     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
470       return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
471     return ABIArgInfo::getIndirect(0);
472   } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
473     // Treat an enum type as its underlying type.
474     Ty = EnumTy->getDecl()->getIntegerType();
475   } else if (Ty->isFloatingType()) {
476     // Floating-point types don't go inreg.
477     return ABIArgInfo::getDirect();
478   }
479 
480   return (Ty->isPromotableIntegerType() ?
481           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
482 }
483 
484 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const {
485   if (RetTy->isVoidType())
486     return ABIArgInfo::getIgnore();
487 
488   // In the PNaCl ABI we always return records/structures on the stack.
489   if (isAggregateTypeForABI(RetTy))
490     return ABIArgInfo::getIndirect(0);
491 
492   // Treat an enum type as its underlying type.
493   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
494     RetTy = EnumTy->getDecl()->getIntegerType();
495 
496   return (RetTy->isPromotableIntegerType() ?
497           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
498 }
499 
500 /// IsX86_MMXType - Return true if this is an MMX type.
501 bool IsX86_MMXType(llvm::Type *IRType) {
502   // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>.
503   return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
504     cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
505     IRType->getScalarSizeInBits() != 64;
506 }
507 
508 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
509                                           StringRef Constraint,
510                                           llvm::Type* Ty) {
511   if ((Constraint == "y" || Constraint == "&y") && Ty->isVectorTy()) {
512     if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) {
513       // Invalid MMX constraint
514       return nullptr;
515     }
516 
517     return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
518   }
519 
520   // No operation needed
521   return Ty;
522 }
523 
524 /// Returns true if this type can be passed in SSE registers with the
525 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64.
526 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) {
527   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
528     if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half)
529       return true;
530   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
531     // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX
532     // registers specially.
533     unsigned VecSize = Context.getTypeSize(VT);
534     if (VecSize == 128 || VecSize == 256 || VecSize == 512)
535       return true;
536   }
537   return false;
538 }
539 
540 /// Returns true if this aggregate is small enough to be passed in SSE registers
541 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64.
542 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) {
543   return NumMembers <= 4;
544 }
545 
546 //===----------------------------------------------------------------------===//
547 // X86-32 ABI Implementation
548 //===----------------------------------------------------------------------===//
549 
550 /// \brief Similar to llvm::CCState, but for Clang.
551 struct CCState {
552   CCState(unsigned CC) : CC(CC), FreeRegs(0), FreeSSERegs(0) {}
553 
554   unsigned CC;
555   unsigned FreeRegs;
556   unsigned FreeSSERegs;
557 };
558 
559 /// X86_32ABIInfo - The X86-32 ABI information.
560 class X86_32ABIInfo : public ABIInfo {
561   enum Class {
562     Integer,
563     Float
564   };
565 
566   static const unsigned MinABIStackAlignInBytes = 4;
567 
568   bool IsDarwinVectorABI;
569   bool IsSmallStructInRegABI;
570   bool IsWin32StructABI;
571   unsigned DefaultNumRegisterParameters;
572 
573   static bool isRegisterSize(unsigned Size) {
574     return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
575   }
576 
577   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
578     // FIXME: Assumes vectorcall is in use.
579     return isX86VectorTypeForVectorCall(getContext(), Ty);
580   }
581 
582   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
583                                          uint64_t NumMembers) const override {
584     // FIXME: Assumes vectorcall is in use.
585     return isX86VectorCallAggregateSmallEnough(NumMembers);
586   }
587 
588   bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const;
589 
590   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
591   /// such that the argument will be passed in memory.
592   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
593 
594   ABIArgInfo getIndirectReturnResult(CCState &State) const;
595 
596   /// \brief Return the alignment to use for the given type on the stack.
597   unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
598 
599   Class classify(QualType Ty) const;
600   ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const;
601   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
602   bool shouldUseInReg(QualType Ty, CCState &State, bool &NeedsPadding) const;
603 
604   /// \brief Rewrite the function info so that all memory arguments use
605   /// inalloca.
606   void rewriteWithInAlloca(CGFunctionInfo &FI) const;
607 
608   void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
609                            unsigned &StackOffset, ABIArgInfo &Info,
610                            QualType Type) const;
611 
612 public:
613 
614   void computeInfo(CGFunctionInfo &FI) const override;
615   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
616                          CodeGenFunction &CGF) const override;
617 
618   X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p, bool w,
619                 unsigned r)
620     : ABIInfo(CGT), IsDarwinVectorABI(d), IsSmallStructInRegABI(p),
621       IsWin32StructABI(w), DefaultNumRegisterParameters(r) {}
622 };
623 
624 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
625 public:
626   X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
627       bool d, bool p, bool w, unsigned r)
628     :TargetCodeGenInfo(new X86_32ABIInfo(CGT, d, p, w, r)) {}
629 
630   static bool isStructReturnInRegABI(
631       const llvm::Triple &Triple, const CodeGenOptions &Opts);
632 
633   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
634                            CodeGen::CodeGenModule &CGM) const override;
635 
636   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
637     // Darwin uses different dwarf register numbers for EH.
638     if (CGM.getTarget().getTriple().isOSDarwin()) return 5;
639     return 4;
640   }
641 
642   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
643                                llvm::Value *Address) const override;
644 
645   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
646                                   StringRef Constraint,
647                                   llvm::Type* Ty) const override {
648     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
649   }
650 
651   void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue,
652                                 std::string &Constraints,
653                                 std::vector<llvm::Type *> &ResultRegTypes,
654                                 std::vector<llvm::Type *> &ResultTruncRegTypes,
655                                 std::vector<LValue> &ResultRegDests,
656                                 std::string &AsmString,
657                                 unsigned NumOutputs) const override;
658 
659   llvm::Constant *
660   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
661     unsigned Sig = (0xeb << 0) |  // jmp rel8
662                    (0x06 << 8) |  //           .+0x08
663                    ('F' << 16) |
664                    ('T' << 24);
665     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
666   }
667 
668 };
669 
670 }
671 
672 /// Rewrite input constraint references after adding some output constraints.
673 /// In the case where there is one output and one input and we add one output,
674 /// we need to replace all operand references greater than or equal to 1:
675 ///     mov $0, $1
676 ///     mov eax, $1
677 /// The result will be:
678 ///     mov $0, $2
679 ///     mov eax, $2
680 static void rewriteInputConstraintReferences(unsigned FirstIn,
681                                              unsigned NumNewOuts,
682                                              std::string &AsmString) {
683   std::string Buf;
684   llvm::raw_string_ostream OS(Buf);
685   size_t Pos = 0;
686   while (Pos < AsmString.size()) {
687     size_t DollarStart = AsmString.find('$', Pos);
688     if (DollarStart == std::string::npos)
689       DollarStart = AsmString.size();
690     size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart);
691     if (DollarEnd == std::string::npos)
692       DollarEnd = AsmString.size();
693     OS << StringRef(&AsmString[Pos], DollarEnd - Pos);
694     Pos = DollarEnd;
695     size_t NumDollars = DollarEnd - DollarStart;
696     if (NumDollars % 2 != 0 && Pos < AsmString.size()) {
697       // We have an operand reference.
698       size_t DigitStart = Pos;
699       size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart);
700       if (DigitEnd == std::string::npos)
701         DigitEnd = AsmString.size();
702       StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart);
703       unsigned OperandIndex;
704       if (!OperandStr.getAsInteger(10, OperandIndex)) {
705         if (OperandIndex >= FirstIn)
706           OperandIndex += NumNewOuts;
707         OS << OperandIndex;
708       } else {
709         OS << OperandStr;
710       }
711       Pos = DigitEnd;
712     }
713   }
714   AsmString = std::move(OS.str());
715 }
716 
717 /// Add output constraints for EAX:EDX because they are return registers.
718 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs(
719     CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints,
720     std::vector<llvm::Type *> &ResultRegTypes,
721     std::vector<llvm::Type *> &ResultTruncRegTypes,
722     std::vector<LValue> &ResultRegDests, std::string &AsmString,
723     unsigned NumOutputs) const {
724   uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType());
725 
726   // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is
727   // larger.
728   if (!Constraints.empty())
729     Constraints += ',';
730   if (RetWidth <= 32) {
731     Constraints += "={eax}";
732     ResultRegTypes.push_back(CGF.Int32Ty);
733   } else {
734     // Use the 'A' constraint for EAX:EDX.
735     Constraints += "=A";
736     ResultRegTypes.push_back(CGF.Int64Ty);
737   }
738 
739   // Truncate EAX or EAX:EDX to an integer of the appropriate size.
740   llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth);
741   ResultTruncRegTypes.push_back(CoerceTy);
742 
743   // Coerce the integer by bitcasting the return slot pointer.
744   ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(),
745                                                   CoerceTy->getPointerTo()));
746   ResultRegDests.push_back(ReturnSlot);
747 
748   rewriteInputConstraintReferences(NumOutputs, 1, AsmString);
749 }
750 
751 /// shouldReturnTypeInRegister - Determine if the given type should be
752 /// passed in a register (for the Darwin ABI).
753 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
754                                                ASTContext &Context) const {
755   uint64_t Size = Context.getTypeSize(Ty);
756 
757   // Type must be register sized.
758   if (!isRegisterSize(Size))
759     return false;
760 
761   if (Ty->isVectorType()) {
762     // 64- and 128- bit vectors inside structures are not returned in
763     // registers.
764     if (Size == 64 || Size == 128)
765       return false;
766 
767     return true;
768   }
769 
770   // If this is a builtin, pointer, enum, complex type, member pointer, or
771   // member function pointer it is ok.
772   if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
773       Ty->isAnyComplexType() || Ty->isEnumeralType() ||
774       Ty->isBlockPointerType() || Ty->isMemberPointerType())
775     return true;
776 
777   // Arrays are treated like records.
778   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
779     return shouldReturnTypeInRegister(AT->getElementType(), Context);
780 
781   // Otherwise, it must be a record type.
782   const RecordType *RT = Ty->getAs<RecordType>();
783   if (!RT) return false;
784 
785   // FIXME: Traverse bases here too.
786 
787   // Structure types are passed in register if all fields would be
788   // passed in a register.
789   for (const auto *FD : RT->getDecl()->fields()) {
790     // Empty fields are ignored.
791     if (isEmptyField(Context, FD, true))
792       continue;
793 
794     // Check fields recursively.
795     if (!shouldReturnTypeInRegister(FD->getType(), Context))
796       return false;
797   }
798   return true;
799 }
800 
801 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(CCState &State) const {
802   // If the return value is indirect, then the hidden argument is consuming one
803   // integer register.
804   if (State.FreeRegs) {
805     --State.FreeRegs;
806     return ABIArgInfo::getIndirectInReg(/*Align=*/0, /*ByVal=*/false);
807   }
808   return ABIArgInfo::getIndirect(/*Align=*/0, /*ByVal=*/false);
809 }
810 
811 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, CCState &State) const {
812   if (RetTy->isVoidType())
813     return ABIArgInfo::getIgnore();
814 
815   const Type *Base = nullptr;
816   uint64_t NumElts = 0;
817   if (State.CC == llvm::CallingConv::X86_VectorCall &&
818       isHomogeneousAggregate(RetTy, Base, NumElts)) {
819     // The LLVM struct type for such an aggregate should lower properly.
820     return ABIArgInfo::getDirect();
821   }
822 
823   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
824     // On Darwin, some vectors are returned in registers.
825     if (IsDarwinVectorABI) {
826       uint64_t Size = getContext().getTypeSize(RetTy);
827 
828       // 128-bit vectors are a special case; they are returned in
829       // registers and we need to make sure to pick a type the LLVM
830       // backend will like.
831       if (Size == 128)
832         return ABIArgInfo::getDirect(llvm::VectorType::get(
833                   llvm::Type::getInt64Ty(getVMContext()), 2));
834 
835       // Always return in register if it fits in a general purpose
836       // register, or if it is 64 bits and has a single element.
837       if ((Size == 8 || Size == 16 || Size == 32) ||
838           (Size == 64 && VT->getNumElements() == 1))
839         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
840                                                             Size));
841 
842       return getIndirectReturnResult(State);
843     }
844 
845     return ABIArgInfo::getDirect();
846   }
847 
848   if (isAggregateTypeForABI(RetTy)) {
849     if (const RecordType *RT = RetTy->getAs<RecordType>()) {
850       // Structures with flexible arrays are always indirect.
851       if (RT->getDecl()->hasFlexibleArrayMember())
852         return getIndirectReturnResult(State);
853     }
854 
855     // If specified, structs and unions are always indirect.
856     if (!IsSmallStructInRegABI && !RetTy->isAnyComplexType())
857       return getIndirectReturnResult(State);
858 
859     // Small structures which are register sized are generally returned
860     // in a register.
861     if (shouldReturnTypeInRegister(RetTy, getContext())) {
862       uint64_t Size = getContext().getTypeSize(RetTy);
863 
864       // As a special-case, if the struct is a "single-element" struct, and
865       // the field is of type "float" or "double", return it in a
866       // floating-point register. (MSVC does not apply this special case.)
867       // We apply a similar transformation for pointer types to improve the
868       // quality of the generated IR.
869       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
870         if ((!IsWin32StructABI && SeltTy->isRealFloatingType())
871             || SeltTy->hasPointerRepresentation())
872           return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
873 
874       // FIXME: We should be able to narrow this integer in cases with dead
875       // padding.
876       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
877     }
878 
879     return getIndirectReturnResult(State);
880   }
881 
882   // Treat an enum type as its underlying type.
883   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
884     RetTy = EnumTy->getDecl()->getIntegerType();
885 
886   return (RetTy->isPromotableIntegerType() ?
887           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
888 }
889 
890 static bool isSSEVectorType(ASTContext &Context, QualType Ty) {
891   return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128;
892 }
893 
894 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) {
895   const RecordType *RT = Ty->getAs<RecordType>();
896   if (!RT)
897     return 0;
898   const RecordDecl *RD = RT->getDecl();
899 
900   // If this is a C++ record, check the bases first.
901   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
902     for (const auto &I : CXXRD->bases())
903       if (!isRecordWithSSEVectorType(Context, I.getType()))
904         return false;
905 
906   for (const auto *i : RD->fields()) {
907     QualType FT = i->getType();
908 
909     if (isSSEVectorType(Context, FT))
910       return true;
911 
912     if (isRecordWithSSEVectorType(Context, FT))
913       return true;
914   }
915 
916   return false;
917 }
918 
919 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
920                                                  unsigned Align) const {
921   // Otherwise, if the alignment is less than or equal to the minimum ABI
922   // alignment, just use the default; the backend will handle this.
923   if (Align <= MinABIStackAlignInBytes)
924     return 0; // Use default alignment.
925 
926   // On non-Darwin, the stack type alignment is always 4.
927   if (!IsDarwinVectorABI) {
928     // Set explicit alignment, since we may need to realign the top.
929     return MinABIStackAlignInBytes;
930   }
931 
932   // Otherwise, if the type contains an SSE vector type, the alignment is 16.
933   if (Align >= 16 && (isSSEVectorType(getContext(), Ty) ||
934                       isRecordWithSSEVectorType(getContext(), Ty)))
935     return 16;
936 
937   return MinABIStackAlignInBytes;
938 }
939 
940 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal,
941                                             CCState &State) const {
942   if (!ByVal) {
943     if (State.FreeRegs) {
944       --State.FreeRegs; // Non-byval indirects just use one pointer.
945       return ABIArgInfo::getIndirectInReg(0, false);
946     }
947     return ABIArgInfo::getIndirect(0, false);
948   }
949 
950   // Compute the byval alignment.
951   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
952   unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
953   if (StackAlign == 0)
954     return ABIArgInfo::getIndirect(4, /*ByVal=*/true);
955 
956   // If the stack alignment is less than the type alignment, realign the
957   // argument.
958   bool Realign = TypeAlign > StackAlign;
959   return ABIArgInfo::getIndirect(StackAlign, /*ByVal=*/true, Realign);
960 }
961 
962 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const {
963   const Type *T = isSingleElementStruct(Ty, getContext());
964   if (!T)
965     T = Ty.getTypePtr();
966 
967   if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
968     BuiltinType::Kind K = BT->getKind();
969     if (K == BuiltinType::Float || K == BuiltinType::Double)
970       return Float;
971   }
972   return Integer;
973 }
974 
975 bool X86_32ABIInfo::shouldUseInReg(QualType Ty, CCState &State,
976                                    bool &NeedsPadding) const {
977   NeedsPadding = false;
978   Class C = classify(Ty);
979   if (C == Float)
980     return false;
981 
982   unsigned Size = getContext().getTypeSize(Ty);
983   unsigned SizeInRegs = (Size + 31) / 32;
984 
985   if (SizeInRegs == 0)
986     return false;
987 
988   if (SizeInRegs > State.FreeRegs) {
989     State.FreeRegs = 0;
990     return false;
991   }
992 
993   State.FreeRegs -= SizeInRegs;
994 
995   if (State.CC == llvm::CallingConv::X86_FastCall ||
996       State.CC == llvm::CallingConv::X86_VectorCall) {
997     if (Size > 32)
998       return false;
999 
1000     if (Ty->isIntegralOrEnumerationType())
1001       return true;
1002 
1003     if (Ty->isPointerType())
1004       return true;
1005 
1006     if (Ty->isReferenceType())
1007       return true;
1008 
1009     if (State.FreeRegs)
1010       NeedsPadding = true;
1011 
1012     return false;
1013   }
1014 
1015   return true;
1016 }
1017 
1018 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
1019                                                CCState &State) const {
1020   // FIXME: Set alignment on indirect arguments.
1021 
1022   Ty = useFirstFieldIfTransparentUnion(Ty);
1023 
1024   // Check with the C++ ABI first.
1025   const RecordType *RT = Ty->getAs<RecordType>();
1026   if (RT) {
1027     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
1028     if (RAA == CGCXXABI::RAA_Indirect) {
1029       return getIndirectResult(Ty, false, State);
1030     } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
1031       // The field index doesn't matter, we'll fix it up later.
1032       return ABIArgInfo::getInAlloca(/*FieldIndex=*/0);
1033     }
1034   }
1035 
1036   // vectorcall adds the concept of a homogenous vector aggregate, similar
1037   // to other targets.
1038   const Type *Base = nullptr;
1039   uint64_t NumElts = 0;
1040   if (State.CC == llvm::CallingConv::X86_VectorCall &&
1041       isHomogeneousAggregate(Ty, Base, NumElts)) {
1042     if (State.FreeSSERegs >= NumElts) {
1043       State.FreeSSERegs -= NumElts;
1044       if (Ty->isBuiltinType() || Ty->isVectorType())
1045         return ABIArgInfo::getDirect();
1046       return ABIArgInfo::getExpand();
1047     }
1048     return getIndirectResult(Ty, /*ByVal=*/false, State);
1049   }
1050 
1051   if (isAggregateTypeForABI(Ty)) {
1052     if (RT) {
1053       // Structs are always byval on win32, regardless of what they contain.
1054       if (IsWin32StructABI)
1055         return getIndirectResult(Ty, true, State);
1056 
1057       // Structures with flexible arrays are always indirect.
1058       if (RT->getDecl()->hasFlexibleArrayMember())
1059         return getIndirectResult(Ty, true, State);
1060     }
1061 
1062     // Ignore empty structs/unions.
1063     if (isEmptyRecord(getContext(), Ty, true))
1064       return ABIArgInfo::getIgnore();
1065 
1066     llvm::LLVMContext &LLVMContext = getVMContext();
1067     llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
1068     bool NeedsPadding;
1069     if (shouldUseInReg(Ty, State, NeedsPadding)) {
1070       unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
1071       SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32);
1072       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
1073       return ABIArgInfo::getDirectInReg(Result);
1074     }
1075     llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr;
1076 
1077     // Expand small (<= 128-bit) record types when we know that the stack layout
1078     // of those arguments will match the struct. This is important because the
1079     // LLVM backend isn't smart enough to remove byval, which inhibits many
1080     // optimizations.
1081     if (getContext().getTypeSize(Ty) <= 4*32 &&
1082         canExpandIndirectArgument(Ty, getContext()))
1083       return ABIArgInfo::getExpandWithPadding(
1084           State.CC == llvm::CallingConv::X86_FastCall ||
1085               State.CC == llvm::CallingConv::X86_VectorCall,
1086           PaddingType);
1087 
1088     return getIndirectResult(Ty, true, State);
1089   }
1090 
1091   if (const VectorType *VT = Ty->getAs<VectorType>()) {
1092     // On Darwin, some vectors are passed in memory, we handle this by passing
1093     // it as an i8/i16/i32/i64.
1094     if (IsDarwinVectorABI) {
1095       uint64_t Size = getContext().getTypeSize(Ty);
1096       if ((Size == 8 || Size == 16 || Size == 32) ||
1097           (Size == 64 && VT->getNumElements() == 1))
1098         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1099                                                             Size));
1100     }
1101 
1102     if (IsX86_MMXType(CGT.ConvertType(Ty)))
1103       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64));
1104 
1105     return ABIArgInfo::getDirect();
1106   }
1107 
1108 
1109   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1110     Ty = EnumTy->getDecl()->getIntegerType();
1111 
1112   bool NeedsPadding;
1113   bool InReg = shouldUseInReg(Ty, State, NeedsPadding);
1114 
1115   if (Ty->isPromotableIntegerType()) {
1116     if (InReg)
1117       return ABIArgInfo::getExtendInReg();
1118     return ABIArgInfo::getExtend();
1119   }
1120   if (InReg)
1121     return ABIArgInfo::getDirectInReg();
1122   return ABIArgInfo::getDirect();
1123 }
1124 
1125 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
1126   CCState State(FI.getCallingConvention());
1127   if (State.CC == llvm::CallingConv::X86_FastCall)
1128     State.FreeRegs = 2;
1129   else if (State.CC == llvm::CallingConv::X86_VectorCall) {
1130     State.FreeRegs = 2;
1131     State.FreeSSERegs = 6;
1132   } else if (FI.getHasRegParm())
1133     State.FreeRegs = FI.getRegParm();
1134   else
1135     State.FreeRegs = DefaultNumRegisterParameters;
1136 
1137   if (!getCXXABI().classifyReturnType(FI)) {
1138     FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State);
1139   } else if (FI.getReturnInfo().isIndirect()) {
1140     // The C++ ABI is not aware of register usage, so we have to check if the
1141     // return value was sret and put it in a register ourselves if appropriate.
1142     if (State.FreeRegs) {
1143       --State.FreeRegs;  // The sret parameter consumes a register.
1144       FI.getReturnInfo().setInReg(true);
1145     }
1146   }
1147 
1148   // The chain argument effectively gives us another free register.
1149   if (FI.isChainCall())
1150     ++State.FreeRegs;
1151 
1152   bool UsedInAlloca = false;
1153   for (auto &I : FI.arguments()) {
1154     I.info = classifyArgumentType(I.type, State);
1155     UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca);
1156   }
1157 
1158   // If we needed to use inalloca for any argument, do a second pass and rewrite
1159   // all the memory arguments to use inalloca.
1160   if (UsedInAlloca)
1161     rewriteWithInAlloca(FI);
1162 }
1163 
1164 void
1165 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
1166                                    unsigned &StackOffset,
1167                                    ABIArgInfo &Info, QualType Type) const {
1168   assert(StackOffset % 4U == 0 && "unaligned inalloca struct");
1169   Info = ABIArgInfo::getInAlloca(FrameFields.size());
1170   FrameFields.push_back(CGT.ConvertTypeForMem(Type));
1171   StackOffset += getContext().getTypeSizeInChars(Type).getQuantity();
1172 
1173   // Insert padding bytes to respect alignment.  For x86_32, each argument is 4
1174   // byte aligned.
1175   if (StackOffset % 4U) {
1176     unsigned OldOffset = StackOffset;
1177     StackOffset = llvm::RoundUpToAlignment(StackOffset, 4U);
1178     unsigned NumBytes = StackOffset - OldOffset;
1179     assert(NumBytes);
1180     llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext());
1181     Ty = llvm::ArrayType::get(Ty, NumBytes);
1182     FrameFields.push_back(Ty);
1183   }
1184 }
1185 
1186 static bool isArgInAlloca(const ABIArgInfo &Info) {
1187   // Leave ignored and inreg arguments alone.
1188   switch (Info.getKind()) {
1189   case ABIArgInfo::InAlloca:
1190     return true;
1191   case ABIArgInfo::Indirect:
1192     assert(Info.getIndirectByVal());
1193     return true;
1194   case ABIArgInfo::Ignore:
1195     return false;
1196   case ABIArgInfo::Direct:
1197   case ABIArgInfo::Extend:
1198   case ABIArgInfo::Expand:
1199     if (Info.getInReg())
1200       return false;
1201     return true;
1202   }
1203   llvm_unreachable("invalid enum");
1204 }
1205 
1206 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const {
1207   assert(IsWin32StructABI && "inalloca only supported on win32");
1208 
1209   // Build a packed struct type for all of the arguments in memory.
1210   SmallVector<llvm::Type *, 6> FrameFields;
1211 
1212   unsigned StackOffset = 0;
1213   CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end();
1214 
1215   // Put 'this' into the struct before 'sret', if necessary.
1216   bool IsThisCall =
1217       FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall;
1218   ABIArgInfo &Ret = FI.getReturnInfo();
1219   if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall &&
1220       isArgInAlloca(I->info)) {
1221     addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
1222     ++I;
1223   }
1224 
1225   // Put the sret parameter into the inalloca struct if it's in memory.
1226   if (Ret.isIndirect() && !Ret.getInReg()) {
1227     CanQualType PtrTy = getContext().getPointerType(FI.getReturnType());
1228     addFieldToArgStruct(FrameFields, StackOffset, Ret, PtrTy);
1229     // On Windows, the hidden sret parameter is always returned in eax.
1230     Ret.setInAllocaSRet(IsWin32StructABI);
1231   }
1232 
1233   // Skip the 'this' parameter in ecx.
1234   if (IsThisCall)
1235     ++I;
1236 
1237   // Put arguments passed in memory into the struct.
1238   for (; I != E; ++I) {
1239     if (isArgInAlloca(I->info))
1240       addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
1241   }
1242 
1243   FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields,
1244                                         /*isPacked=*/true));
1245 }
1246 
1247 llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1248                                       CodeGenFunction &CGF) const {
1249   llvm::Type *BPP = CGF.Int8PtrPtrTy;
1250 
1251   CGBuilderTy &Builder = CGF.Builder;
1252   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
1253                                                        "ap");
1254   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
1255 
1256   // Compute if the address needs to be aligned
1257   unsigned Align = CGF.getContext().getTypeAlignInChars(Ty).getQuantity();
1258   Align = getTypeStackAlignInBytes(Ty, Align);
1259   Align = std::max(Align, 4U);
1260   if (Align > 4) {
1261     // addr = (addr + align - 1) & -align;
1262     llvm::Value *Offset =
1263       llvm::ConstantInt::get(CGF.Int32Ty, Align - 1);
1264     Addr = CGF.Builder.CreateGEP(Addr, Offset);
1265     llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(Addr,
1266                                                     CGF.Int32Ty);
1267     llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -Align);
1268     Addr = CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
1269                                       Addr->getType(),
1270                                       "ap.cur.aligned");
1271   }
1272 
1273   llvm::Type *PTy =
1274     llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
1275   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
1276 
1277   uint64_t Offset =
1278     llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, Align);
1279   llvm::Value *NextAddr =
1280     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
1281                       "ap.next");
1282   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
1283 
1284   return AddrTyped;
1285 }
1286 
1287 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI(
1288     const llvm::Triple &Triple, const CodeGenOptions &Opts) {
1289   assert(Triple.getArch() == llvm::Triple::x86);
1290 
1291   switch (Opts.getStructReturnConvention()) {
1292   case CodeGenOptions::SRCK_Default:
1293     break;
1294   case CodeGenOptions::SRCK_OnStack:  // -fpcc-struct-return
1295     return false;
1296   case CodeGenOptions::SRCK_InRegs:  // -freg-struct-return
1297     return true;
1298   }
1299 
1300   if (Triple.isOSDarwin())
1301     return true;
1302 
1303   switch (Triple.getOS()) {
1304   case llvm::Triple::DragonFly:
1305   case llvm::Triple::FreeBSD:
1306   case llvm::Triple::OpenBSD:
1307   case llvm::Triple::Bitrig:
1308   case llvm::Triple::Win32:
1309     return true;
1310   default:
1311     return false;
1312   }
1313 }
1314 
1315 void X86_32TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
1316                                                   llvm::GlobalValue *GV,
1317                                             CodeGen::CodeGenModule &CGM) const {
1318   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1319     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
1320       // Get the LLVM function.
1321       llvm::Function *Fn = cast<llvm::Function>(GV);
1322 
1323       // Now add the 'alignstack' attribute with a value of 16.
1324       llvm::AttrBuilder B;
1325       B.addStackAlignmentAttr(16);
1326       Fn->addAttributes(llvm::AttributeSet::FunctionIndex,
1327                       llvm::AttributeSet::get(CGM.getLLVMContext(),
1328                                               llvm::AttributeSet::FunctionIndex,
1329                                               B));
1330     }
1331   }
1332 }
1333 
1334 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
1335                                                CodeGen::CodeGenFunction &CGF,
1336                                                llvm::Value *Address) const {
1337   CodeGen::CGBuilderTy &Builder = CGF.Builder;
1338 
1339   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
1340 
1341   // 0-7 are the eight integer registers;  the order is different
1342   //   on Darwin (for EH), but the range is the same.
1343   // 8 is %eip.
1344   AssignToArrayRange(Builder, Address, Four8, 0, 8);
1345 
1346   if (CGF.CGM.getTarget().getTriple().isOSDarwin()) {
1347     // 12-16 are st(0..4).  Not sure why we stop at 4.
1348     // These have size 16, which is sizeof(long double) on
1349     // platforms with 8-byte alignment for that type.
1350     llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
1351     AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
1352 
1353   } else {
1354     // 9 is %eflags, which doesn't get a size on Darwin for some
1355     // reason.
1356     Builder.CreateStore(Four8, Builder.CreateConstInBoundsGEP1_32(Address, 9));
1357 
1358     // 11-16 are st(0..5).  Not sure why we stop at 5.
1359     // These have size 12, which is sizeof(long double) on
1360     // platforms with 4-byte alignment for that type.
1361     llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
1362     AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
1363   }
1364 
1365   return false;
1366 }
1367 
1368 //===----------------------------------------------------------------------===//
1369 // X86-64 ABI Implementation
1370 //===----------------------------------------------------------------------===//
1371 
1372 
1373 namespace {
1374 /// X86_64ABIInfo - The X86_64 ABI information.
1375 class X86_64ABIInfo : public ABIInfo {
1376   enum Class {
1377     Integer = 0,
1378     SSE,
1379     SSEUp,
1380     X87,
1381     X87Up,
1382     ComplexX87,
1383     NoClass,
1384     Memory
1385   };
1386 
1387   /// merge - Implement the X86_64 ABI merging algorithm.
1388   ///
1389   /// Merge an accumulating classification \arg Accum with a field
1390   /// classification \arg Field.
1391   ///
1392   /// \param Accum - The accumulating classification. This should
1393   /// always be either NoClass or the result of a previous merge
1394   /// call. In addition, this should never be Memory (the caller
1395   /// should just return Memory for the aggregate).
1396   static Class merge(Class Accum, Class Field);
1397 
1398   /// postMerge - Implement the X86_64 ABI post merging algorithm.
1399   ///
1400   /// Post merger cleanup, reduces a malformed Hi and Lo pair to
1401   /// final MEMORY or SSE classes when necessary.
1402   ///
1403   /// \param AggregateSize - The size of the current aggregate in
1404   /// the classification process.
1405   ///
1406   /// \param Lo - The classification for the parts of the type
1407   /// residing in the low word of the containing object.
1408   ///
1409   /// \param Hi - The classification for the parts of the type
1410   /// residing in the higher words of the containing object.
1411   ///
1412   void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
1413 
1414   /// classify - Determine the x86_64 register classes in which the
1415   /// given type T should be passed.
1416   ///
1417   /// \param Lo - The classification for the parts of the type
1418   /// residing in the low word of the containing object.
1419   ///
1420   /// \param Hi - The classification for the parts of the type
1421   /// residing in the high word of the containing object.
1422   ///
1423   /// \param OffsetBase - The bit offset of this type in the
1424   /// containing object.  Some parameters are classified different
1425   /// depending on whether they straddle an eightbyte boundary.
1426   ///
1427   /// \param isNamedArg - Whether the argument in question is a "named"
1428   /// argument, as used in AMD64-ABI 3.5.7.
1429   ///
1430   /// If a word is unused its result will be NoClass; if a type should
1431   /// be passed in Memory then at least the classification of \arg Lo
1432   /// will be Memory.
1433   ///
1434   /// The \arg Lo class will be NoClass iff the argument is ignored.
1435   ///
1436   /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
1437   /// also be ComplexX87.
1438   void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi,
1439                 bool isNamedArg) const;
1440 
1441   llvm::Type *GetByteVectorType(QualType Ty) const;
1442   llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
1443                                  unsigned IROffset, QualType SourceTy,
1444                                  unsigned SourceOffset) const;
1445   llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
1446                                      unsigned IROffset, QualType SourceTy,
1447                                      unsigned SourceOffset) const;
1448 
1449   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1450   /// such that the argument will be returned in memory.
1451   ABIArgInfo getIndirectReturnResult(QualType Ty) const;
1452 
1453   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1454   /// such that the argument will be passed in memory.
1455   ///
1456   /// \param freeIntRegs - The number of free integer registers remaining
1457   /// available.
1458   ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;
1459 
1460   ABIArgInfo classifyReturnType(QualType RetTy) const;
1461 
1462   ABIArgInfo classifyArgumentType(QualType Ty,
1463                                   unsigned freeIntRegs,
1464                                   unsigned &neededInt,
1465                                   unsigned &neededSSE,
1466                                   bool isNamedArg) const;
1467 
1468   bool IsIllegalVectorType(QualType Ty) const;
1469 
1470   /// The 0.98 ABI revision clarified a lot of ambiguities,
1471   /// unfortunately in ways that were not always consistent with
1472   /// certain previous compilers.  In particular, platforms which
1473   /// required strict binary compatibility with older versions of GCC
1474   /// may need to exempt themselves.
1475   bool honorsRevision0_98() const {
1476     return !getTarget().getTriple().isOSDarwin();
1477   }
1478 
1479   bool HasAVX;
1480   // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on
1481   // 64-bit hardware.
1482   bool Has64BitPointers;
1483 
1484 public:
1485   X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, bool hasavx) :
1486       ABIInfo(CGT), HasAVX(hasavx),
1487       Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {
1488   }
1489 
1490   bool isPassedUsingAVXType(QualType type) const {
1491     unsigned neededInt, neededSSE;
1492     // The freeIntRegs argument doesn't matter here.
1493     ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE,
1494                                            /*isNamedArg*/true);
1495     if (info.isDirect()) {
1496       llvm::Type *ty = info.getCoerceToType();
1497       if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
1498         return (vectorTy->getBitWidth() > 128);
1499     }
1500     return false;
1501   }
1502 
1503   void computeInfo(CGFunctionInfo &FI) const override;
1504 
1505   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1506                          CodeGenFunction &CGF) const override;
1507 };
1508 
1509 /// WinX86_64ABIInfo - The Windows X86_64 ABI information.
1510 class WinX86_64ABIInfo : public ABIInfo {
1511 
1512   ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs,
1513                       bool IsReturnType) const;
1514 
1515 public:
1516   WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
1517 
1518   void computeInfo(CGFunctionInfo &FI) const override;
1519 
1520   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1521                          CodeGenFunction &CGF) const override;
1522 
1523   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
1524     // FIXME: Assumes vectorcall is in use.
1525     return isX86VectorTypeForVectorCall(getContext(), Ty);
1526   }
1527 
1528   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
1529                                          uint64_t NumMembers) const override {
1530     // FIXME: Assumes vectorcall is in use.
1531     return isX86VectorCallAggregateSmallEnough(NumMembers);
1532   }
1533 };
1534 
1535 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
1536   bool HasAVX;
1537 public:
1538   X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX)
1539       : TargetCodeGenInfo(new X86_64ABIInfo(CGT, HasAVX)), HasAVX(HasAVX) {}
1540 
1541   const X86_64ABIInfo &getABIInfo() const {
1542     return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
1543   }
1544 
1545   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
1546     return 7;
1547   }
1548 
1549   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1550                                llvm::Value *Address) const override {
1551     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
1552 
1553     // 0-15 are the 16 integer registers.
1554     // 16 is %rip.
1555     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
1556     return false;
1557   }
1558 
1559   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
1560                                   StringRef Constraint,
1561                                   llvm::Type* Ty) const override {
1562     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
1563   }
1564 
1565   bool isNoProtoCallVariadic(const CallArgList &args,
1566                              const FunctionNoProtoType *fnType) const override {
1567     // The default CC on x86-64 sets %al to the number of SSA
1568     // registers used, and GCC sets this when calling an unprototyped
1569     // function, so we override the default behavior.  However, don't do
1570     // that when AVX types are involved: the ABI explicitly states it is
1571     // undefined, and it doesn't work in practice because of how the ABI
1572     // defines varargs anyway.
1573     if (fnType->getCallConv() == CC_C) {
1574       bool HasAVXType = false;
1575       for (CallArgList::const_iterator
1576              it = args.begin(), ie = args.end(); it != ie; ++it) {
1577         if (getABIInfo().isPassedUsingAVXType(it->Ty)) {
1578           HasAVXType = true;
1579           break;
1580         }
1581       }
1582 
1583       if (!HasAVXType)
1584         return true;
1585     }
1586 
1587     return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
1588   }
1589 
1590   llvm::Constant *
1591   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
1592     unsigned Sig = (0xeb << 0) |  // jmp rel8
1593                    (0x0a << 8) |  //           .+0x0c
1594                    ('F' << 16) |
1595                    ('T' << 24);
1596     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
1597   }
1598 
1599   unsigned getOpenMPSimdDefaultAlignment(QualType) const override {
1600     return HasAVX ? 32 : 16;
1601   }
1602 };
1603 
1604 class PS4TargetCodeGenInfo : public X86_64TargetCodeGenInfo {
1605 public:
1606   PS4TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX)
1607     : X86_64TargetCodeGenInfo(CGT, HasAVX) {}
1608 
1609   void getDependentLibraryOption(llvm::StringRef Lib,
1610                                  llvm::SmallString<24> &Opt) const {
1611     Opt = "\01";
1612     Opt += Lib;
1613   }
1614 };
1615 
1616 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) {
1617   // If the argument does not end in .lib, automatically add the suffix. This
1618   // matches the behavior of MSVC.
1619   std::string ArgStr = Lib;
1620   if (!Lib.endswith_lower(".lib"))
1621     ArgStr += ".lib";
1622   return ArgStr;
1623 }
1624 
1625 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo {
1626 public:
1627   WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
1628         bool d, bool p, bool w, unsigned RegParms)
1629     : X86_32TargetCodeGenInfo(CGT, d, p, w, RegParms) {}
1630 
1631   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
1632                            CodeGen::CodeGenModule &CGM) const override;
1633 
1634   void getDependentLibraryOption(llvm::StringRef Lib,
1635                                  llvm::SmallString<24> &Opt) const override {
1636     Opt = "/DEFAULTLIB:";
1637     Opt += qualifyWindowsLibrary(Lib);
1638   }
1639 
1640   void getDetectMismatchOption(llvm::StringRef Name,
1641                                llvm::StringRef Value,
1642                                llvm::SmallString<32> &Opt) const override {
1643     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
1644   }
1645 };
1646 
1647 static void addStackProbeSizeTargetAttribute(const Decl *D,
1648                                              llvm::GlobalValue *GV,
1649                                              CodeGen::CodeGenModule &CGM) {
1650   if (isa<FunctionDecl>(D)) {
1651     if (CGM.getCodeGenOpts().StackProbeSize != 4096) {
1652       llvm::Function *Fn = cast<llvm::Function>(GV);
1653 
1654       Fn->addFnAttr("stack-probe-size", llvm::utostr(CGM.getCodeGenOpts().StackProbeSize));
1655     }
1656   }
1657 }
1658 
1659 void WinX86_32TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
1660                                                      llvm::GlobalValue *GV,
1661                                             CodeGen::CodeGenModule &CGM) const {
1662   X86_32TargetCodeGenInfo::SetTargetAttributes(D, GV, CGM);
1663 
1664   addStackProbeSizeTargetAttribute(D, GV, CGM);
1665 }
1666 
1667 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
1668   bool HasAVX;
1669 public:
1670   WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX)
1671     : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)), HasAVX(HasAVX) {}
1672 
1673   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
1674                            CodeGen::CodeGenModule &CGM) const override;
1675 
1676   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
1677     return 7;
1678   }
1679 
1680   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1681                                llvm::Value *Address) const override {
1682     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
1683 
1684     // 0-15 are the 16 integer registers.
1685     // 16 is %rip.
1686     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
1687     return false;
1688   }
1689 
1690   void getDependentLibraryOption(llvm::StringRef Lib,
1691                                  llvm::SmallString<24> &Opt) const override {
1692     Opt = "/DEFAULTLIB:";
1693     Opt += qualifyWindowsLibrary(Lib);
1694   }
1695 
1696   void getDetectMismatchOption(llvm::StringRef Name,
1697                                llvm::StringRef Value,
1698                                llvm::SmallString<32> &Opt) const override {
1699     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
1700   }
1701 
1702   unsigned getOpenMPSimdDefaultAlignment(QualType) const override {
1703     return HasAVX ? 32 : 16;
1704   }
1705 };
1706 
1707 void WinX86_64TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
1708                                                      llvm::GlobalValue *GV,
1709                                             CodeGen::CodeGenModule &CGM) const {
1710   TargetCodeGenInfo::SetTargetAttributes(D, GV, CGM);
1711 
1712   addStackProbeSizeTargetAttribute(D, GV, CGM);
1713 }
1714 }
1715 
1716 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
1717                               Class &Hi) const {
1718   // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
1719   //
1720   // (a) If one of the classes is Memory, the whole argument is passed in
1721   //     memory.
1722   //
1723   // (b) If X87UP is not preceded by X87, the whole argument is passed in
1724   //     memory.
1725   //
1726   // (c) If the size of the aggregate exceeds two eightbytes and the first
1727   //     eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
1728   //     argument is passed in memory. NOTE: This is necessary to keep the
1729   //     ABI working for processors that don't support the __m256 type.
1730   //
1731   // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
1732   //
1733   // Some of these are enforced by the merging logic.  Others can arise
1734   // only with unions; for example:
1735   //   union { _Complex double; unsigned; }
1736   //
1737   // Note that clauses (b) and (c) were added in 0.98.
1738   //
1739   if (Hi == Memory)
1740     Lo = Memory;
1741   if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
1742     Lo = Memory;
1743   if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
1744     Lo = Memory;
1745   if (Hi == SSEUp && Lo != SSE)
1746     Hi = SSE;
1747 }
1748 
1749 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
1750   // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
1751   // classified recursively so that always two fields are
1752   // considered. The resulting class is calculated according to
1753   // the classes of the fields in the eightbyte:
1754   //
1755   // (a) If both classes are equal, this is the resulting class.
1756   //
1757   // (b) If one of the classes is NO_CLASS, the resulting class is
1758   // the other class.
1759   //
1760   // (c) If one of the classes is MEMORY, the result is the MEMORY
1761   // class.
1762   //
1763   // (d) If one of the classes is INTEGER, the result is the
1764   // INTEGER.
1765   //
1766   // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
1767   // MEMORY is used as class.
1768   //
1769   // (f) Otherwise class SSE is used.
1770 
1771   // Accum should never be memory (we should have returned) or
1772   // ComplexX87 (because this cannot be passed in a structure).
1773   assert((Accum != Memory && Accum != ComplexX87) &&
1774          "Invalid accumulated classification during merge.");
1775   if (Accum == Field || Field == NoClass)
1776     return Accum;
1777   if (Field == Memory)
1778     return Memory;
1779   if (Accum == NoClass)
1780     return Field;
1781   if (Accum == Integer || Field == Integer)
1782     return Integer;
1783   if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
1784       Accum == X87 || Accum == X87Up)
1785     return Memory;
1786   return SSE;
1787 }
1788 
1789 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
1790                              Class &Lo, Class &Hi, bool isNamedArg) const {
1791   // FIXME: This code can be simplified by introducing a simple value class for
1792   // Class pairs with appropriate constructor methods for the various
1793   // situations.
1794 
1795   // FIXME: Some of the split computations are wrong; unaligned vectors
1796   // shouldn't be passed in registers for example, so there is no chance they
1797   // can straddle an eightbyte. Verify & simplify.
1798 
1799   Lo = Hi = NoClass;
1800 
1801   Class &Current = OffsetBase < 64 ? Lo : Hi;
1802   Current = Memory;
1803 
1804   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
1805     BuiltinType::Kind k = BT->getKind();
1806 
1807     if (k == BuiltinType::Void) {
1808       Current = NoClass;
1809     } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
1810       Lo = Integer;
1811       Hi = Integer;
1812     } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
1813       Current = Integer;
1814     } else if ((k == BuiltinType::Float || k == BuiltinType::Double) ||
1815                (k == BuiltinType::LongDouble &&
1816                 getTarget().getTriple().isOSNaCl())) {
1817       Current = SSE;
1818     } else if (k == BuiltinType::LongDouble) {
1819       Lo = X87;
1820       Hi = X87Up;
1821     }
1822     // FIXME: _Decimal32 and _Decimal64 are SSE.
1823     // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
1824     return;
1825   }
1826 
1827   if (const EnumType *ET = Ty->getAs<EnumType>()) {
1828     // Classify the underlying integer type.
1829     classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg);
1830     return;
1831   }
1832 
1833   if (Ty->hasPointerRepresentation()) {
1834     Current = Integer;
1835     return;
1836   }
1837 
1838   if (Ty->isMemberPointerType()) {
1839     if (Ty->isMemberFunctionPointerType()) {
1840       if (Has64BitPointers) {
1841         // If Has64BitPointers, this is an {i64, i64}, so classify both
1842         // Lo and Hi now.
1843         Lo = Hi = Integer;
1844       } else {
1845         // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that
1846         // straddles an eightbyte boundary, Hi should be classified as well.
1847         uint64_t EB_FuncPtr = (OffsetBase) / 64;
1848         uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64;
1849         if (EB_FuncPtr != EB_ThisAdj) {
1850           Lo = Hi = Integer;
1851         } else {
1852           Current = Integer;
1853         }
1854       }
1855     } else {
1856       Current = Integer;
1857     }
1858     return;
1859   }
1860 
1861   if (const VectorType *VT = Ty->getAs<VectorType>()) {
1862     uint64_t Size = getContext().getTypeSize(VT);
1863     if (Size == 32) {
1864       // gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x
1865       // float> as integer.
1866       Current = Integer;
1867 
1868       // If this type crosses an eightbyte boundary, it should be
1869       // split.
1870       uint64_t EB_Real = (OffsetBase) / 64;
1871       uint64_t EB_Imag = (OffsetBase + Size - 1) / 64;
1872       if (EB_Real != EB_Imag)
1873         Hi = Lo;
1874     } else if (Size == 64) {
1875       // gcc passes <1 x double> in memory. :(
1876       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double))
1877         return;
1878 
1879       // gcc passes <1 x long long> as INTEGER.
1880       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong) ||
1881           VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULongLong) ||
1882           VT->getElementType()->isSpecificBuiltinType(BuiltinType::Long) ||
1883           VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULong))
1884         Current = Integer;
1885       else
1886         Current = SSE;
1887 
1888       // If this type crosses an eightbyte boundary, it should be
1889       // split.
1890       if (OffsetBase && OffsetBase != 64)
1891         Hi = Lo;
1892     } else if (Size == 128 || (HasAVX && isNamedArg && Size == 256)) {
1893       // Arguments of 256-bits are split into four eightbyte chunks. The
1894       // least significant one belongs to class SSE and all the others to class
1895       // SSEUP. The original Lo and Hi design considers that types can't be
1896       // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
1897       // This design isn't correct for 256-bits, but since there're no cases
1898       // where the upper parts would need to be inspected, avoid adding
1899       // complexity and just consider Hi to match the 64-256 part.
1900       //
1901       // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in
1902       // registers if they are "named", i.e. not part of the "..." of a
1903       // variadic function.
1904       Lo = SSE;
1905       Hi = SSEUp;
1906     }
1907     return;
1908   }
1909 
1910   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
1911     QualType ET = getContext().getCanonicalType(CT->getElementType());
1912 
1913     uint64_t Size = getContext().getTypeSize(Ty);
1914     if (ET->isIntegralOrEnumerationType()) {
1915       if (Size <= 64)
1916         Current = Integer;
1917       else if (Size <= 128)
1918         Lo = Hi = Integer;
1919     } else if (ET == getContext().FloatTy)
1920       Current = SSE;
1921     else if (ET == getContext().DoubleTy ||
1922              (ET == getContext().LongDoubleTy &&
1923               getTarget().getTriple().isOSNaCl()))
1924       Lo = Hi = SSE;
1925     else if (ET == getContext().LongDoubleTy)
1926       Current = ComplexX87;
1927 
1928     // If this complex type crosses an eightbyte boundary then it
1929     // should be split.
1930     uint64_t EB_Real = (OffsetBase) / 64;
1931     uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
1932     if (Hi == NoClass && EB_Real != EB_Imag)
1933       Hi = Lo;
1934 
1935     return;
1936   }
1937 
1938   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
1939     // Arrays are treated like structures.
1940 
1941     uint64_t Size = getContext().getTypeSize(Ty);
1942 
1943     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
1944     // than four eightbytes, ..., it has class MEMORY.
1945     if (Size > 256)
1946       return;
1947 
1948     // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
1949     // fields, it has class MEMORY.
1950     //
1951     // Only need to check alignment of array base.
1952     if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
1953       return;
1954 
1955     // Otherwise implement simplified merge. We could be smarter about
1956     // this, but it isn't worth it and would be harder to verify.
1957     Current = NoClass;
1958     uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
1959     uint64_t ArraySize = AT->getSize().getZExtValue();
1960 
1961     // The only case a 256-bit wide vector could be used is when the array
1962     // contains a single 256-bit element. Since Lo and Hi logic isn't extended
1963     // to work for sizes wider than 128, early check and fallback to memory.
1964     if (Size > 128 && EltSize != 256)
1965       return;
1966 
1967     for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
1968       Class FieldLo, FieldHi;
1969       classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg);
1970       Lo = merge(Lo, FieldLo);
1971       Hi = merge(Hi, FieldHi);
1972       if (Lo == Memory || Hi == Memory)
1973         break;
1974     }
1975 
1976     postMerge(Size, Lo, Hi);
1977     assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
1978     return;
1979   }
1980 
1981   if (const RecordType *RT = Ty->getAs<RecordType>()) {
1982     uint64_t Size = getContext().getTypeSize(Ty);
1983 
1984     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
1985     // than four eightbytes, ..., it has class MEMORY.
1986     if (Size > 256)
1987       return;
1988 
1989     // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
1990     // copy constructor or a non-trivial destructor, it is passed by invisible
1991     // reference.
1992     if (getRecordArgABI(RT, getCXXABI()))
1993       return;
1994 
1995     const RecordDecl *RD = RT->getDecl();
1996 
1997     // Assume variable sized types are passed in memory.
1998     if (RD->hasFlexibleArrayMember())
1999       return;
2000 
2001     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
2002 
2003     // Reset Lo class, this will be recomputed.
2004     Current = NoClass;
2005 
2006     // If this is a C++ record, classify the bases first.
2007     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
2008       for (const auto &I : CXXRD->bases()) {
2009         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
2010                "Unexpected base class!");
2011         const CXXRecordDecl *Base =
2012           cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
2013 
2014         // Classify this field.
2015         //
2016         // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
2017         // single eightbyte, each is classified separately. Each eightbyte gets
2018         // initialized to class NO_CLASS.
2019         Class FieldLo, FieldHi;
2020         uint64_t Offset =
2021           OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base));
2022         classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg);
2023         Lo = merge(Lo, FieldLo);
2024         Hi = merge(Hi, FieldHi);
2025         if (Lo == Memory || Hi == Memory)
2026           break;
2027       }
2028     }
2029 
2030     // Classify the fields one at a time, merging the results.
2031     unsigned idx = 0;
2032     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2033            i != e; ++i, ++idx) {
2034       uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
2035       bool BitField = i->isBitField();
2036 
2037       // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
2038       // four eightbytes, or it contains unaligned fields, it has class MEMORY.
2039       //
2040       // The only case a 256-bit wide vector could be used is when the struct
2041       // contains a single 256-bit element. Since Lo and Hi logic isn't extended
2042       // to work for sizes wider than 128, early check and fallback to memory.
2043       //
2044       if (Size > 128 && getContext().getTypeSize(i->getType()) != 256) {
2045         Lo = Memory;
2046         return;
2047       }
2048       // Note, skip this test for bit-fields, see below.
2049       if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
2050         Lo = Memory;
2051         return;
2052       }
2053 
2054       // Classify this field.
2055       //
2056       // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
2057       // exceeds a single eightbyte, each is classified
2058       // separately. Each eightbyte gets initialized to class
2059       // NO_CLASS.
2060       Class FieldLo, FieldHi;
2061 
2062       // Bit-fields require special handling, they do not force the
2063       // structure to be passed in memory even if unaligned, and
2064       // therefore they can straddle an eightbyte.
2065       if (BitField) {
2066         // Ignore padding bit-fields.
2067         if (i->isUnnamedBitfield())
2068           continue;
2069 
2070         uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
2071         uint64_t Size = i->getBitWidthValue(getContext());
2072 
2073         uint64_t EB_Lo = Offset / 64;
2074         uint64_t EB_Hi = (Offset + Size - 1) / 64;
2075 
2076         if (EB_Lo) {
2077           assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
2078           FieldLo = NoClass;
2079           FieldHi = Integer;
2080         } else {
2081           FieldLo = Integer;
2082           FieldHi = EB_Hi ? Integer : NoClass;
2083         }
2084       } else
2085         classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg);
2086       Lo = merge(Lo, FieldLo);
2087       Hi = merge(Hi, FieldHi);
2088       if (Lo == Memory || Hi == Memory)
2089         break;
2090     }
2091 
2092     postMerge(Size, Lo, Hi);
2093   }
2094 }
2095 
2096 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
2097   // If this is a scalar LLVM value then assume LLVM will pass it in the right
2098   // place naturally.
2099   if (!isAggregateTypeForABI(Ty)) {
2100     // Treat an enum type as its underlying type.
2101     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2102       Ty = EnumTy->getDecl()->getIntegerType();
2103 
2104     return (Ty->isPromotableIntegerType() ?
2105             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2106   }
2107 
2108   return ABIArgInfo::getIndirect(0);
2109 }
2110 
2111 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
2112   if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
2113     uint64_t Size = getContext().getTypeSize(VecTy);
2114     unsigned LargestVector = HasAVX ? 256 : 128;
2115     if (Size <= 64 || Size > LargestVector)
2116       return true;
2117   }
2118 
2119   return false;
2120 }
2121 
2122 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
2123                                             unsigned freeIntRegs) const {
2124   // If this is a scalar LLVM value then assume LLVM will pass it in the right
2125   // place naturally.
2126   //
2127   // This assumption is optimistic, as there could be free registers available
2128   // when we need to pass this argument in memory, and LLVM could try to pass
2129   // the argument in the free register. This does not seem to happen currently,
2130   // but this code would be much safer if we could mark the argument with
2131   // 'onstack'. See PR12193.
2132   if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) {
2133     // Treat an enum type as its underlying type.
2134     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2135       Ty = EnumTy->getDecl()->getIntegerType();
2136 
2137     return (Ty->isPromotableIntegerType() ?
2138             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2139   }
2140 
2141   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
2142     return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
2143 
2144   // Compute the byval alignment. We specify the alignment of the byval in all
2145   // cases so that the mid-level optimizer knows the alignment of the byval.
2146   unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
2147 
2148   // Attempt to avoid passing indirect results using byval when possible. This
2149   // is important for good codegen.
2150   //
2151   // We do this by coercing the value into a scalar type which the backend can
2152   // handle naturally (i.e., without using byval).
2153   //
2154   // For simplicity, we currently only do this when we have exhausted all of the
2155   // free integer registers. Doing this when there are free integer registers
2156   // would require more care, as we would have to ensure that the coerced value
2157   // did not claim the unused register. That would require either reording the
2158   // arguments to the function (so that any subsequent inreg values came first),
2159   // or only doing this optimization when there were no following arguments that
2160   // might be inreg.
2161   //
2162   // We currently expect it to be rare (particularly in well written code) for
2163   // arguments to be passed on the stack when there are still free integer
2164   // registers available (this would typically imply large structs being passed
2165   // by value), so this seems like a fair tradeoff for now.
2166   //
2167   // We can revisit this if the backend grows support for 'onstack' parameter
2168   // attributes. See PR12193.
2169   if (freeIntRegs == 0) {
2170     uint64_t Size = getContext().getTypeSize(Ty);
2171 
2172     // If this type fits in an eightbyte, coerce it into the matching integral
2173     // type, which will end up on the stack (with alignment 8).
2174     if (Align == 8 && Size <= 64)
2175       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2176                                                           Size));
2177   }
2178 
2179   return ABIArgInfo::getIndirect(Align);
2180 }
2181 
2182 /// GetByteVectorType - The ABI specifies that a value should be passed in an
2183 /// full vector XMM/YMM register.  Pick an LLVM IR type that will be passed as a
2184 /// vector register.
2185 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
2186   llvm::Type *IRType = CGT.ConvertType(Ty);
2187 
2188   // Wrapper structs that just contain vectors are passed just like vectors,
2189   // strip them off if present.
2190   llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType);
2191   while (STy && STy->getNumElements() == 1) {
2192     IRType = STy->getElementType(0);
2193     STy = dyn_cast<llvm::StructType>(IRType);
2194   }
2195 
2196   // If the preferred type is a 16-byte vector, prefer to pass it.
2197   if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(IRType)){
2198     llvm::Type *EltTy = VT->getElementType();
2199     unsigned BitWidth = VT->getBitWidth();
2200     if ((BitWidth >= 128 && BitWidth <= 256) &&
2201         (EltTy->isFloatTy() || EltTy->isDoubleTy() ||
2202          EltTy->isIntegerTy(8) || EltTy->isIntegerTy(16) ||
2203          EltTy->isIntegerTy(32) || EltTy->isIntegerTy(64) ||
2204          EltTy->isIntegerTy(128)))
2205       return VT;
2206   }
2207 
2208   return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 2);
2209 }
2210 
2211 /// BitsContainNoUserData - Return true if the specified [start,end) bit range
2212 /// is known to either be off the end of the specified type or being in
2213 /// alignment padding.  The user type specified is known to be at most 128 bits
2214 /// in size, and have passed through X86_64ABIInfo::classify with a successful
2215 /// classification that put one of the two halves in the INTEGER class.
2216 ///
2217 /// It is conservatively correct to return false.
2218 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
2219                                   unsigned EndBit, ASTContext &Context) {
2220   // If the bytes being queried are off the end of the type, there is no user
2221   // data hiding here.  This handles analysis of builtins, vectors and other
2222   // types that don't contain interesting padding.
2223   unsigned TySize = (unsigned)Context.getTypeSize(Ty);
2224   if (TySize <= StartBit)
2225     return true;
2226 
2227   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
2228     unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
2229     unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
2230 
2231     // Check each element to see if the element overlaps with the queried range.
2232     for (unsigned i = 0; i != NumElts; ++i) {
2233       // If the element is after the span we care about, then we're done..
2234       unsigned EltOffset = i*EltSize;
2235       if (EltOffset >= EndBit) break;
2236 
2237       unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
2238       if (!BitsContainNoUserData(AT->getElementType(), EltStart,
2239                                  EndBit-EltOffset, Context))
2240         return false;
2241     }
2242     // If it overlaps no elements, then it is safe to process as padding.
2243     return true;
2244   }
2245 
2246   if (const RecordType *RT = Ty->getAs<RecordType>()) {
2247     const RecordDecl *RD = RT->getDecl();
2248     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
2249 
2250     // If this is a C++ record, check the bases first.
2251     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
2252       for (const auto &I : CXXRD->bases()) {
2253         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
2254                "Unexpected base class!");
2255         const CXXRecordDecl *Base =
2256           cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
2257 
2258         // If the base is after the span we care about, ignore it.
2259         unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base));
2260         if (BaseOffset >= EndBit) continue;
2261 
2262         unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
2263         if (!BitsContainNoUserData(I.getType(), BaseStart,
2264                                    EndBit-BaseOffset, Context))
2265           return false;
2266       }
2267     }
2268 
2269     // Verify that no field has data that overlaps the region of interest.  Yes
2270     // this could be sped up a lot by being smarter about queried fields,
2271     // however we're only looking at structs up to 16 bytes, so we don't care
2272     // much.
2273     unsigned idx = 0;
2274     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2275          i != e; ++i, ++idx) {
2276       unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
2277 
2278       // If we found a field after the region we care about, then we're done.
2279       if (FieldOffset >= EndBit) break;
2280 
2281       unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
2282       if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
2283                                  Context))
2284         return false;
2285     }
2286 
2287     // If nothing in this record overlapped the area of interest, then we're
2288     // clean.
2289     return true;
2290   }
2291 
2292   return false;
2293 }
2294 
2295 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
2296 /// float member at the specified offset.  For example, {int,{float}} has a
2297 /// float at offset 4.  It is conservatively correct for this routine to return
2298 /// false.
2299 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset,
2300                                   const llvm::DataLayout &TD) {
2301   // Base case if we find a float.
2302   if (IROffset == 0 && IRType->isFloatTy())
2303     return true;
2304 
2305   // If this is a struct, recurse into the field at the specified offset.
2306   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
2307     const llvm::StructLayout *SL = TD.getStructLayout(STy);
2308     unsigned Elt = SL->getElementContainingOffset(IROffset);
2309     IROffset -= SL->getElementOffset(Elt);
2310     return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
2311   }
2312 
2313   // If this is an array, recurse into the field at the specified offset.
2314   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
2315     llvm::Type *EltTy = ATy->getElementType();
2316     unsigned EltSize = TD.getTypeAllocSize(EltTy);
2317     IROffset -= IROffset/EltSize*EltSize;
2318     return ContainsFloatAtOffset(EltTy, IROffset, TD);
2319   }
2320 
2321   return false;
2322 }
2323 
2324 
2325 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
2326 /// low 8 bytes of an XMM register, corresponding to the SSE class.
2327 llvm::Type *X86_64ABIInfo::
2328 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
2329                    QualType SourceTy, unsigned SourceOffset) const {
2330   // The only three choices we have are either double, <2 x float>, or float. We
2331   // pass as float if the last 4 bytes is just padding.  This happens for
2332   // structs that contain 3 floats.
2333   if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
2334                             SourceOffset*8+64, getContext()))
2335     return llvm::Type::getFloatTy(getVMContext());
2336 
2337   // We want to pass as <2 x float> if the LLVM IR type contains a float at
2338   // offset+0 and offset+4.  Walk the LLVM IR type to find out if this is the
2339   // case.
2340   if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) &&
2341       ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout()))
2342     return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2);
2343 
2344   return llvm::Type::getDoubleTy(getVMContext());
2345 }
2346 
2347 
2348 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
2349 /// an 8-byte GPR.  This means that we either have a scalar or we are talking
2350 /// about the high or low part of an up-to-16-byte struct.  This routine picks
2351 /// the best LLVM IR type to represent this, which may be i64 or may be anything
2352 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
2353 /// etc).
2354 ///
2355 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
2356 /// the source type.  IROffset is an offset in bytes into the LLVM IR type that
2357 /// the 8-byte value references.  PrefType may be null.
2358 ///
2359 /// SourceTy is the source-level type for the entire argument.  SourceOffset is
2360 /// an offset into this that we're processing (which is always either 0 or 8).
2361 ///
2362 llvm::Type *X86_64ABIInfo::
2363 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
2364                        QualType SourceTy, unsigned SourceOffset) const {
2365   // If we're dealing with an un-offset LLVM IR type, then it means that we're
2366   // returning an 8-byte unit starting with it.  See if we can safely use it.
2367   if (IROffset == 0) {
2368     // Pointers and int64's always fill the 8-byte unit.
2369     if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) ||
2370         IRType->isIntegerTy(64))
2371       return IRType;
2372 
2373     // If we have a 1/2/4-byte integer, we can use it only if the rest of the
2374     // goodness in the source type is just tail padding.  This is allowed to
2375     // kick in for struct {double,int} on the int, but not on
2376     // struct{double,int,int} because we wouldn't return the second int.  We
2377     // have to do this analysis on the source type because we can't depend on
2378     // unions being lowered a specific way etc.
2379     if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
2380         IRType->isIntegerTy(32) ||
2381         (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) {
2382       unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 :
2383           cast<llvm::IntegerType>(IRType)->getBitWidth();
2384 
2385       if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
2386                                 SourceOffset*8+64, getContext()))
2387         return IRType;
2388     }
2389   }
2390 
2391   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
2392     // If this is a struct, recurse into the field at the specified offset.
2393     const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy);
2394     if (IROffset < SL->getSizeInBytes()) {
2395       unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
2396       IROffset -= SL->getElementOffset(FieldIdx);
2397 
2398       return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
2399                                     SourceTy, SourceOffset);
2400     }
2401   }
2402 
2403   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
2404     llvm::Type *EltTy = ATy->getElementType();
2405     unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy);
2406     unsigned EltOffset = IROffset/EltSize*EltSize;
2407     return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
2408                                   SourceOffset);
2409   }
2410 
2411   // Okay, we don't have any better idea of what to pass, so we pass this in an
2412   // integer register that isn't too big to fit the rest of the struct.
2413   unsigned TySizeInBytes =
2414     (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
2415 
2416   assert(TySizeInBytes != SourceOffset && "Empty field?");
2417 
2418   // It is always safe to classify this as an integer type up to i64 that
2419   // isn't larger than the structure.
2420   return llvm::IntegerType::get(getVMContext(),
2421                                 std::min(TySizeInBytes-SourceOffset, 8U)*8);
2422 }
2423 
2424 
2425 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
2426 /// be used as elements of a two register pair to pass or return, return a
2427 /// first class aggregate to represent them.  For example, if the low part of
2428 /// a by-value argument should be passed as i32* and the high part as float,
2429 /// return {i32*, float}.
2430 static llvm::Type *
2431 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
2432                            const llvm::DataLayout &TD) {
2433   // In order to correctly satisfy the ABI, we need to the high part to start
2434   // at offset 8.  If the high and low parts we inferred are both 4-byte types
2435   // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
2436   // the second element at offset 8.  Check for this:
2437   unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
2438   unsigned HiAlign = TD.getABITypeAlignment(Hi);
2439   unsigned HiStart = llvm::RoundUpToAlignment(LoSize, HiAlign);
2440   assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
2441 
2442   // To handle this, we have to increase the size of the low part so that the
2443   // second element will start at an 8 byte offset.  We can't increase the size
2444   // of the second element because it might make us access off the end of the
2445   // struct.
2446   if (HiStart != 8) {
2447     // There are only two sorts of types the ABI generation code can produce for
2448     // the low part of a pair that aren't 8 bytes in size: float or i8/i16/i32.
2449     // Promote these to a larger type.
2450     if (Lo->isFloatTy())
2451       Lo = llvm::Type::getDoubleTy(Lo->getContext());
2452     else {
2453       assert(Lo->isIntegerTy() && "Invalid/unknown lo type");
2454       Lo = llvm::Type::getInt64Ty(Lo->getContext());
2455     }
2456   }
2457 
2458   llvm::StructType *Result = llvm::StructType::get(Lo, Hi, nullptr);
2459 
2460 
2461   // Verify that the second element is at an 8-byte offset.
2462   assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
2463          "Invalid x86-64 argument pair!");
2464   return Result;
2465 }
2466 
2467 ABIArgInfo X86_64ABIInfo::
2468 classifyReturnType(QualType RetTy) const {
2469   // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
2470   // classification algorithm.
2471   X86_64ABIInfo::Class Lo, Hi;
2472   classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true);
2473 
2474   // Check some invariants.
2475   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
2476   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
2477 
2478   llvm::Type *ResType = nullptr;
2479   switch (Lo) {
2480   case NoClass:
2481     if (Hi == NoClass)
2482       return ABIArgInfo::getIgnore();
2483     // If the low part is just padding, it takes no register, leave ResType
2484     // null.
2485     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
2486            "Unknown missing lo part");
2487     break;
2488 
2489   case SSEUp:
2490   case X87Up:
2491     llvm_unreachable("Invalid classification for lo word.");
2492 
2493     // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
2494     // hidden argument.
2495   case Memory:
2496     return getIndirectReturnResult(RetTy);
2497 
2498     // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
2499     // available register of the sequence %rax, %rdx is used.
2500   case Integer:
2501     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
2502 
2503     // If we have a sign or zero extended integer, make sure to return Extend
2504     // so that the parameter gets the right LLVM IR attributes.
2505     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
2506       // Treat an enum type as its underlying type.
2507       if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
2508         RetTy = EnumTy->getDecl()->getIntegerType();
2509 
2510       if (RetTy->isIntegralOrEnumerationType() &&
2511           RetTy->isPromotableIntegerType())
2512         return ABIArgInfo::getExtend();
2513     }
2514     break;
2515 
2516     // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
2517     // available SSE register of the sequence %xmm0, %xmm1 is used.
2518   case SSE:
2519     ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
2520     break;
2521 
2522     // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
2523     // returned on the X87 stack in %st0 as 80-bit x87 number.
2524   case X87:
2525     ResType = llvm::Type::getX86_FP80Ty(getVMContext());
2526     break;
2527 
2528     // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
2529     // part of the value is returned in %st0 and the imaginary part in
2530     // %st1.
2531   case ComplexX87:
2532     assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
2533     ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
2534                                     llvm::Type::getX86_FP80Ty(getVMContext()),
2535                                     nullptr);
2536     break;
2537   }
2538 
2539   llvm::Type *HighPart = nullptr;
2540   switch (Hi) {
2541     // Memory was handled previously and X87 should
2542     // never occur as a hi class.
2543   case Memory:
2544   case X87:
2545     llvm_unreachable("Invalid classification for hi word.");
2546 
2547   case ComplexX87: // Previously handled.
2548   case NoClass:
2549     break;
2550 
2551   case Integer:
2552     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2553     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
2554       return ABIArgInfo::getDirect(HighPart, 8);
2555     break;
2556   case SSE:
2557     HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2558     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
2559       return ABIArgInfo::getDirect(HighPart, 8);
2560     break;
2561 
2562     // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
2563     // is passed in the next available eightbyte chunk if the last used
2564     // vector register.
2565     //
2566     // SSEUP should always be preceded by SSE, just widen.
2567   case SSEUp:
2568     assert(Lo == SSE && "Unexpected SSEUp classification.");
2569     ResType = GetByteVectorType(RetTy);
2570     break;
2571 
2572     // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
2573     // returned together with the previous X87 value in %st0.
2574   case X87Up:
2575     // If X87Up is preceded by X87, we don't need to do
2576     // anything. However, in some cases with unions it may not be
2577     // preceded by X87. In such situations we follow gcc and pass the
2578     // extra bits in an SSE reg.
2579     if (Lo != X87) {
2580       HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2581       if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
2582         return ABIArgInfo::getDirect(HighPart, 8);
2583     }
2584     break;
2585   }
2586 
2587   // If a high part was specified, merge it together with the low part.  It is
2588   // known to pass in the high eightbyte of the result.  We do this by forming a
2589   // first class struct aggregate with the high and low part: {low, high}
2590   if (HighPart)
2591     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
2592 
2593   return ABIArgInfo::getDirect(ResType);
2594 }
2595 
2596 ABIArgInfo X86_64ABIInfo::classifyArgumentType(
2597   QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE,
2598   bool isNamedArg)
2599   const
2600 {
2601   Ty = useFirstFieldIfTransparentUnion(Ty);
2602 
2603   X86_64ABIInfo::Class Lo, Hi;
2604   classify(Ty, 0, Lo, Hi, isNamedArg);
2605 
2606   // Check some invariants.
2607   // FIXME: Enforce these by construction.
2608   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
2609   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
2610 
2611   neededInt = 0;
2612   neededSSE = 0;
2613   llvm::Type *ResType = nullptr;
2614   switch (Lo) {
2615   case NoClass:
2616     if (Hi == NoClass)
2617       return ABIArgInfo::getIgnore();
2618     // If the low part is just padding, it takes no register, leave ResType
2619     // null.
2620     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
2621            "Unknown missing lo part");
2622     break;
2623 
2624     // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
2625     // on the stack.
2626   case Memory:
2627 
2628     // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
2629     // COMPLEX_X87, it is passed in memory.
2630   case X87:
2631   case ComplexX87:
2632     if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect)
2633       ++neededInt;
2634     return getIndirectResult(Ty, freeIntRegs);
2635 
2636   case SSEUp:
2637   case X87Up:
2638     llvm_unreachable("Invalid classification for lo word.");
2639 
2640     // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
2641     // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
2642     // and %r9 is used.
2643   case Integer:
2644     ++neededInt;
2645 
2646     // Pick an 8-byte type based on the preferred type.
2647     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
2648 
2649     // If we have a sign or zero extended integer, make sure to return Extend
2650     // so that the parameter gets the right LLVM IR attributes.
2651     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
2652       // Treat an enum type as its underlying type.
2653       if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2654         Ty = EnumTy->getDecl()->getIntegerType();
2655 
2656       if (Ty->isIntegralOrEnumerationType() &&
2657           Ty->isPromotableIntegerType())
2658         return ABIArgInfo::getExtend();
2659     }
2660 
2661     break;
2662 
2663     // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
2664     // available SSE register is used, the registers are taken in the
2665     // order from %xmm0 to %xmm7.
2666   case SSE: {
2667     llvm::Type *IRType = CGT.ConvertType(Ty);
2668     ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
2669     ++neededSSE;
2670     break;
2671   }
2672   }
2673 
2674   llvm::Type *HighPart = nullptr;
2675   switch (Hi) {
2676     // Memory was handled previously, ComplexX87 and X87 should
2677     // never occur as hi classes, and X87Up must be preceded by X87,
2678     // which is passed in memory.
2679   case Memory:
2680   case X87:
2681   case ComplexX87:
2682     llvm_unreachable("Invalid classification for hi word.");
2683 
2684   case NoClass: break;
2685 
2686   case Integer:
2687     ++neededInt;
2688     // Pick an 8-byte type based on the preferred type.
2689     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
2690 
2691     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
2692       return ABIArgInfo::getDirect(HighPart, 8);
2693     break;
2694 
2695     // X87Up generally doesn't occur here (long double is passed in
2696     // memory), except in situations involving unions.
2697   case X87Up:
2698   case SSE:
2699     HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
2700 
2701     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
2702       return ABIArgInfo::getDirect(HighPart, 8);
2703 
2704     ++neededSSE;
2705     break;
2706 
2707     // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
2708     // eightbyte is passed in the upper half of the last used SSE
2709     // register.  This only happens when 128-bit vectors are passed.
2710   case SSEUp:
2711     assert(Lo == SSE && "Unexpected SSEUp classification");
2712     ResType = GetByteVectorType(Ty);
2713     break;
2714   }
2715 
2716   // If a high part was specified, merge it together with the low part.  It is
2717   // known to pass in the high eightbyte of the result.  We do this by forming a
2718   // first class struct aggregate with the high and low part: {low, high}
2719   if (HighPart)
2720     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
2721 
2722   return ABIArgInfo::getDirect(ResType);
2723 }
2724 
2725 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
2726 
2727   if (!getCXXABI().classifyReturnType(FI))
2728     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2729 
2730   // Keep track of the number of assigned registers.
2731   unsigned freeIntRegs = 6, freeSSERegs = 8;
2732 
2733   // If the return value is indirect, then the hidden argument is consuming one
2734   // integer register.
2735   if (FI.getReturnInfo().isIndirect())
2736     --freeIntRegs;
2737 
2738   // The chain argument effectively gives us another free register.
2739   if (FI.isChainCall())
2740     ++freeIntRegs;
2741 
2742   unsigned NumRequiredArgs = FI.getNumRequiredArgs();
2743   // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
2744   // get assigned (in left-to-right order) for passing as follows...
2745   unsigned ArgNo = 0;
2746   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2747        it != ie; ++it, ++ArgNo) {
2748     bool IsNamedArg = ArgNo < NumRequiredArgs;
2749 
2750     unsigned neededInt, neededSSE;
2751     it->info = classifyArgumentType(it->type, freeIntRegs, neededInt,
2752                                     neededSSE, IsNamedArg);
2753 
2754     // AMD64-ABI 3.2.3p3: If there are no registers available for any
2755     // eightbyte of an argument, the whole argument is passed on the
2756     // stack. If registers have already been assigned for some
2757     // eightbytes of such an argument, the assignments get reverted.
2758     if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) {
2759       freeIntRegs -= neededInt;
2760       freeSSERegs -= neededSSE;
2761     } else {
2762       it->info = getIndirectResult(it->type, freeIntRegs);
2763     }
2764   }
2765 }
2766 
2767 static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr,
2768                                         QualType Ty,
2769                                         CodeGenFunction &CGF) {
2770   llvm::Value *overflow_arg_area_p =
2771     CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
2772   llvm::Value *overflow_arg_area =
2773     CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
2774 
2775   // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
2776   // byte boundary if alignment needed by type exceeds 8 byte boundary.
2777   // It isn't stated explicitly in the standard, but in practice we use
2778   // alignment greater than 16 where necessary.
2779   uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
2780   if (Align > 8) {
2781     // overflow_arg_area = (overflow_arg_area + align - 1) & -align;
2782     llvm::Value *Offset =
2783       llvm::ConstantInt::get(CGF.Int64Ty, Align - 1);
2784     overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset);
2785     llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area,
2786                                                     CGF.Int64Ty);
2787     llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, -(uint64_t)Align);
2788     overflow_arg_area =
2789       CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
2790                                  overflow_arg_area->getType(),
2791                                  "overflow_arg_area.align");
2792   }
2793 
2794   // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
2795   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
2796   llvm::Value *Res =
2797     CGF.Builder.CreateBitCast(overflow_arg_area,
2798                               llvm::PointerType::getUnqual(LTy));
2799 
2800   // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
2801   // l->overflow_arg_area + sizeof(type).
2802   // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
2803   // an 8 byte boundary.
2804 
2805   uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
2806   llvm::Value *Offset =
2807       llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7);
2808   overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
2809                                             "overflow_arg_area.next");
2810   CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
2811 
2812   // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
2813   return Res;
2814 }
2815 
2816 llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2817                                       CodeGenFunction &CGF) const {
2818   // Assume that va_list type is correct; should be pointer to LLVM type:
2819   // struct {
2820   //   i32 gp_offset;
2821   //   i32 fp_offset;
2822   //   i8* overflow_arg_area;
2823   //   i8* reg_save_area;
2824   // };
2825   unsigned neededInt, neededSSE;
2826 
2827   Ty = CGF.getContext().getCanonicalType(Ty);
2828   ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE,
2829                                        /*isNamedArg*/false);
2830 
2831   // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
2832   // in the registers. If not go to step 7.
2833   if (!neededInt && !neededSSE)
2834     return EmitVAArgFromMemory(VAListAddr, Ty, CGF);
2835 
2836   // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
2837   // general purpose registers needed to pass type and num_fp to hold
2838   // the number of floating point registers needed.
2839 
2840   // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
2841   // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
2842   // l->fp_offset > 304 - num_fp * 16 go to step 7.
2843   //
2844   // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
2845   // register save space).
2846 
2847   llvm::Value *InRegs = nullptr;
2848   llvm::Value *gp_offset_p = nullptr, *gp_offset = nullptr;
2849   llvm::Value *fp_offset_p = nullptr, *fp_offset = nullptr;
2850   if (neededInt) {
2851     gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
2852     gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
2853     InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
2854     InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
2855   }
2856 
2857   if (neededSSE) {
2858     fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
2859     fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
2860     llvm::Value *FitsInFP =
2861       llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
2862     FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
2863     InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
2864   }
2865 
2866   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
2867   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
2868   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
2869   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
2870 
2871   // Emit code to load the value if it was passed in registers.
2872 
2873   CGF.EmitBlock(InRegBlock);
2874 
2875   // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
2876   // an offset of l->gp_offset and/or l->fp_offset. This may require
2877   // copying to a temporary location in case the parameter is passed
2878   // in different register classes or requires an alignment greater
2879   // than 8 for general purpose registers and 16 for XMM registers.
2880   //
2881   // FIXME: This really results in shameful code when we end up needing to
2882   // collect arguments from different places; often what should result in a
2883   // simple assembling of a structure from scattered addresses has many more
2884   // loads than necessary. Can we clean this up?
2885   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
2886   llvm::Value *RegAddr =
2887     CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(VAListAddr, 3),
2888                            "reg_save_area");
2889   if (neededInt && neededSSE) {
2890     // FIXME: Cleanup.
2891     assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
2892     llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
2893     llvm::Value *Tmp = CGF.CreateMemTemp(Ty);
2894     Tmp = CGF.Builder.CreateBitCast(Tmp, ST->getPointerTo());
2895     assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
2896     llvm::Type *TyLo = ST->getElementType(0);
2897     llvm::Type *TyHi = ST->getElementType(1);
2898     assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
2899            "Unexpected ABI info for mixed regs");
2900     llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
2901     llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
2902     llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
2903     llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2904     llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr;
2905     llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr;
2906     llvm::Value *V =
2907       CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo));
2908     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
2909     V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi));
2910     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
2911 
2912     RegAddr = CGF.Builder.CreateBitCast(Tmp,
2913                                         llvm::PointerType::getUnqual(LTy));
2914   } else if (neededInt) {
2915     RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
2916     RegAddr = CGF.Builder.CreateBitCast(RegAddr,
2917                                         llvm::PointerType::getUnqual(LTy));
2918 
2919     // Copy to a temporary if necessary to ensure the appropriate alignment.
2920     std::pair<CharUnits, CharUnits> SizeAlign =
2921         CGF.getContext().getTypeInfoInChars(Ty);
2922     uint64_t TySize = SizeAlign.first.getQuantity();
2923     unsigned TyAlign = SizeAlign.second.getQuantity();
2924     if (TyAlign > 8) {
2925       llvm::Value *Tmp = CGF.CreateMemTemp(Ty);
2926       CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, 8, false);
2927       RegAddr = Tmp;
2928     }
2929   } else if (neededSSE == 1) {
2930     RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2931     RegAddr = CGF.Builder.CreateBitCast(RegAddr,
2932                                         llvm::PointerType::getUnqual(LTy));
2933   } else {
2934     assert(neededSSE == 2 && "Invalid number of needed registers!");
2935     // SSE registers are spaced 16 bytes apart in the register save
2936     // area, we need to collect the two eightbytes together.
2937     llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2938     llvm::Value *RegAddrHi = CGF.Builder.CreateConstGEP1_32(RegAddrLo, 16);
2939     llvm::Type *DoubleTy = CGF.DoubleTy;
2940     llvm::Type *DblPtrTy =
2941       llvm::PointerType::getUnqual(DoubleTy);
2942     llvm::StructType *ST = llvm::StructType::get(DoubleTy, DoubleTy, nullptr);
2943     llvm::Value *V, *Tmp = CGF.CreateMemTemp(Ty);
2944     Tmp = CGF.Builder.CreateBitCast(Tmp, ST->getPointerTo());
2945     V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo,
2946                                                          DblPtrTy));
2947     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
2948     V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi,
2949                                                          DblPtrTy));
2950     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
2951     RegAddr = CGF.Builder.CreateBitCast(Tmp,
2952                                         llvm::PointerType::getUnqual(LTy));
2953   }
2954 
2955   // AMD64-ABI 3.5.7p5: Step 5. Set:
2956   // l->gp_offset = l->gp_offset + num_gp * 8
2957   // l->fp_offset = l->fp_offset + num_fp * 16.
2958   if (neededInt) {
2959     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
2960     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
2961                             gp_offset_p);
2962   }
2963   if (neededSSE) {
2964     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
2965     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
2966                             fp_offset_p);
2967   }
2968   CGF.EmitBranch(ContBlock);
2969 
2970   // Emit code to load the value if it was passed in memory.
2971 
2972   CGF.EmitBlock(InMemBlock);
2973   llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF);
2974 
2975   // Return the appropriate result.
2976 
2977   CGF.EmitBlock(ContBlock);
2978   llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(), 2,
2979                                                  "vaarg.addr");
2980   ResAddr->addIncoming(RegAddr, InRegBlock);
2981   ResAddr->addIncoming(MemAddr, InMemBlock);
2982   return ResAddr;
2983 }
2984 
2985 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs,
2986                                       bool IsReturnType) const {
2987 
2988   if (Ty->isVoidType())
2989     return ABIArgInfo::getIgnore();
2990 
2991   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2992     Ty = EnumTy->getDecl()->getIntegerType();
2993 
2994   TypeInfo Info = getContext().getTypeInfo(Ty);
2995   uint64_t Width = Info.Width;
2996   unsigned Align = getContext().toCharUnitsFromBits(Info.Align).getQuantity();
2997 
2998   const RecordType *RT = Ty->getAs<RecordType>();
2999   if (RT) {
3000     if (!IsReturnType) {
3001       if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()))
3002         return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
3003     }
3004 
3005     if (RT->getDecl()->hasFlexibleArrayMember())
3006       return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3007 
3008     // FIXME: mingw-w64-gcc emits 128-bit struct as i128
3009     if (Width == 128 && getTarget().getTriple().isWindowsGNUEnvironment())
3010       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
3011                                                           Width));
3012   }
3013 
3014   // vectorcall adds the concept of a homogenous vector aggregate, similar to
3015   // other targets.
3016   const Type *Base = nullptr;
3017   uint64_t NumElts = 0;
3018   if (FreeSSERegs && isHomogeneousAggregate(Ty, Base, NumElts)) {
3019     if (FreeSSERegs >= NumElts) {
3020       FreeSSERegs -= NumElts;
3021       if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())
3022         return ABIArgInfo::getDirect();
3023       return ABIArgInfo::getExpand();
3024     }
3025     return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3026   }
3027 
3028 
3029   if (Ty->isMemberPointerType()) {
3030     // If the member pointer is represented by an LLVM int or ptr, pass it
3031     // directly.
3032     llvm::Type *LLTy = CGT.ConvertType(Ty);
3033     if (LLTy->isPointerTy() || LLTy->isIntegerTy())
3034       return ABIArgInfo::getDirect();
3035   }
3036 
3037   if (RT || Ty->isMemberPointerType()) {
3038     // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
3039     // not 1, 2, 4, or 8 bytes, must be passed by reference."
3040     if (Width > 64 || !llvm::isPowerOf2_64(Width))
3041       return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3042 
3043     // Otherwise, coerce it to a small integer.
3044     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width));
3045   }
3046 
3047   // Bool type is always extended to the ABI, other builtin types are not
3048   // extended.
3049   const BuiltinType *BT = Ty->getAs<BuiltinType>();
3050   if (BT && BT->getKind() == BuiltinType::Bool)
3051     return ABIArgInfo::getExtend();
3052 
3053   return ABIArgInfo::getDirect();
3054 }
3055 
3056 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
3057   bool IsVectorCall =
3058       FI.getCallingConvention() == llvm::CallingConv::X86_VectorCall;
3059 
3060   // We can use up to 4 SSE return registers with vectorcall.
3061   unsigned FreeSSERegs = IsVectorCall ? 4 : 0;
3062   if (!getCXXABI().classifyReturnType(FI))
3063     FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true);
3064 
3065   // We can use up to 6 SSE register parameters with vectorcall.
3066   FreeSSERegs = IsVectorCall ? 6 : 0;
3067   for (auto &I : FI.arguments())
3068     I.info = classify(I.type, FreeSSERegs, false);
3069 }
3070 
3071 llvm::Value *WinX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3072                                       CodeGenFunction &CGF) const {
3073   llvm::Type *BPP = CGF.Int8PtrPtrTy;
3074 
3075   CGBuilderTy &Builder = CGF.Builder;
3076   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
3077                                                        "ap");
3078   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
3079   llvm::Type *PTy =
3080     llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
3081   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
3082 
3083   uint64_t Offset =
3084     llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 8);
3085   llvm::Value *NextAddr =
3086     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
3087                       "ap.next");
3088   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
3089 
3090   return AddrTyped;
3091 }
3092 
3093 namespace {
3094 
3095 class NaClX86_64TargetCodeGenInfo : public TargetCodeGenInfo  {
3096   bool HasAVX;
3097  public:
3098    NaClX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX)
3099        : TargetCodeGenInfo(new X86_64ABIInfo(CGT, HasAVX)), HasAVX(HasAVX) {
3100    }
3101    unsigned getOpenMPSimdDefaultAlignment(QualType) const override {
3102      return HasAVX ? 32 : 16;
3103    }
3104 };
3105 
3106 }
3107 
3108 // PowerPC-32
3109 namespace {
3110 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information.
3111 class PPC32_SVR4_ABIInfo : public DefaultABIInfo {
3112 public:
3113   PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
3114 
3115   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3116                          CodeGenFunction &CGF) const override;
3117 };
3118 
3119 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo {
3120 public:
3121   PPC32TargetCodeGenInfo(CodeGenTypes &CGT) : TargetCodeGenInfo(new PPC32_SVR4_ABIInfo(CGT)) {}
3122 
3123   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
3124     // This is recovered from gcc output.
3125     return 1; // r1 is the dedicated stack pointer
3126   }
3127 
3128   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3129                                llvm::Value *Address) const override;
3130 
3131   unsigned getOpenMPSimdDefaultAlignment(QualType) const override {
3132     return 16; // Natural alignment for Altivec vectors.
3133   }
3134 };
3135 
3136 }
3137 
3138 llvm::Value *PPC32_SVR4_ABIInfo::EmitVAArg(llvm::Value *VAListAddr,
3139                                            QualType Ty,
3140                                            CodeGenFunction &CGF) const {
3141   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
3142     // TODO: Implement this. For now ignore.
3143     (void)CTy;
3144     return nullptr;
3145   }
3146 
3147   bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64;
3148   bool isInt = Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType();
3149   llvm::Type *CharPtr = CGF.Int8PtrTy;
3150   llvm::Type *CharPtrPtr = CGF.Int8PtrPtrTy;
3151 
3152   CGBuilderTy &Builder = CGF.Builder;
3153   llvm::Value *GPRPtr = Builder.CreateBitCast(VAListAddr, CharPtr, "gprptr");
3154   llvm::Value *GPRPtrAsInt = Builder.CreatePtrToInt(GPRPtr, CGF.Int32Ty);
3155   llvm::Value *FPRPtrAsInt = Builder.CreateAdd(GPRPtrAsInt, Builder.getInt32(1));
3156   llvm::Value *FPRPtr = Builder.CreateIntToPtr(FPRPtrAsInt, CharPtr);
3157   llvm::Value *OverflowAreaPtrAsInt = Builder.CreateAdd(FPRPtrAsInt, Builder.getInt32(3));
3158   llvm::Value *OverflowAreaPtr = Builder.CreateIntToPtr(OverflowAreaPtrAsInt, CharPtrPtr);
3159   llvm::Value *RegsaveAreaPtrAsInt = Builder.CreateAdd(OverflowAreaPtrAsInt, Builder.getInt32(4));
3160   llvm::Value *RegsaveAreaPtr = Builder.CreateIntToPtr(RegsaveAreaPtrAsInt, CharPtrPtr);
3161   llvm::Value *GPR = Builder.CreateLoad(GPRPtr, false, "gpr");
3162   // Align GPR when TY is i64.
3163   if (isI64) {
3164     llvm::Value *GPRAnd = Builder.CreateAnd(GPR, Builder.getInt8(1));
3165     llvm::Value *CC64 = Builder.CreateICmpEQ(GPRAnd, Builder.getInt8(1));
3166     llvm::Value *GPRPlusOne = Builder.CreateAdd(GPR, Builder.getInt8(1));
3167     GPR = Builder.CreateSelect(CC64, GPRPlusOne, GPR);
3168   }
3169   llvm::Value *FPR = Builder.CreateLoad(FPRPtr, false, "fpr");
3170   llvm::Value *OverflowArea = Builder.CreateLoad(OverflowAreaPtr, false, "overflow_area");
3171   llvm::Value *OverflowAreaAsInt = Builder.CreatePtrToInt(OverflowArea, CGF.Int32Ty);
3172   llvm::Value *RegsaveArea = Builder.CreateLoad(RegsaveAreaPtr, false, "regsave_area");
3173   llvm::Value *RegsaveAreaAsInt = Builder.CreatePtrToInt(RegsaveArea, CGF.Int32Ty);
3174 
3175   llvm::Value *CC = Builder.CreateICmpULT(isInt ? GPR : FPR,
3176                                           Builder.getInt8(8), "cond");
3177 
3178   llvm::Value *RegConstant = Builder.CreateMul(isInt ? GPR : FPR,
3179                                                Builder.getInt8(isInt ? 4 : 8));
3180 
3181   llvm::Value *OurReg = Builder.CreateAdd(RegsaveAreaAsInt, Builder.CreateSExt(RegConstant, CGF.Int32Ty));
3182 
3183   if (Ty->isFloatingType())
3184     OurReg = Builder.CreateAdd(OurReg, Builder.getInt32(32));
3185 
3186   llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs");
3187   llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow");
3188   llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
3189 
3190   Builder.CreateCondBr(CC, UsingRegs, UsingOverflow);
3191 
3192   CGF.EmitBlock(UsingRegs);
3193 
3194   llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
3195   llvm::Value *Result1 = Builder.CreateIntToPtr(OurReg, PTy);
3196   // Increase the GPR/FPR indexes.
3197   if (isInt) {
3198     GPR = Builder.CreateAdd(GPR, Builder.getInt8(isI64 ? 2 : 1));
3199     Builder.CreateStore(GPR, GPRPtr);
3200   } else {
3201     FPR = Builder.CreateAdd(FPR, Builder.getInt8(1));
3202     Builder.CreateStore(FPR, FPRPtr);
3203   }
3204   CGF.EmitBranch(Cont);
3205 
3206   CGF.EmitBlock(UsingOverflow);
3207 
3208   // Increase the overflow area.
3209   llvm::Value *Result2 = Builder.CreateIntToPtr(OverflowAreaAsInt, PTy);
3210   OverflowAreaAsInt = Builder.CreateAdd(OverflowAreaAsInt, Builder.getInt32(isInt ? 4 : 8));
3211   Builder.CreateStore(Builder.CreateIntToPtr(OverflowAreaAsInt, CharPtr), OverflowAreaPtr);
3212   CGF.EmitBranch(Cont);
3213 
3214   CGF.EmitBlock(Cont);
3215 
3216   llvm::PHINode *Result = CGF.Builder.CreatePHI(PTy, 2, "vaarg.addr");
3217   Result->addIncoming(Result1, UsingRegs);
3218   Result->addIncoming(Result2, UsingOverflow);
3219 
3220   if (Ty->isAggregateType()) {
3221     llvm::Value *AGGPtr = Builder.CreateBitCast(Result, CharPtrPtr, "aggrptr")  ;
3222     return Builder.CreateLoad(AGGPtr, false, "aggr");
3223   }
3224 
3225   return Result;
3226 }
3227 
3228 bool
3229 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3230                                                 llvm::Value *Address) const {
3231   // This is calculated from the LLVM and GCC tables and verified
3232   // against gcc output.  AFAIK all ABIs use the same encoding.
3233 
3234   CodeGen::CGBuilderTy &Builder = CGF.Builder;
3235 
3236   llvm::IntegerType *i8 = CGF.Int8Ty;
3237   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
3238   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
3239   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
3240 
3241   // 0-31: r0-31, the 4-byte general-purpose registers
3242   AssignToArrayRange(Builder, Address, Four8, 0, 31);
3243 
3244   // 32-63: fp0-31, the 8-byte floating-point registers
3245   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
3246 
3247   // 64-76 are various 4-byte special-purpose registers:
3248   // 64: mq
3249   // 65: lr
3250   // 66: ctr
3251   // 67: ap
3252   // 68-75 cr0-7
3253   // 76: xer
3254   AssignToArrayRange(Builder, Address, Four8, 64, 76);
3255 
3256   // 77-108: v0-31, the 16-byte vector registers
3257   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
3258 
3259   // 109: vrsave
3260   // 110: vscr
3261   // 111: spe_acc
3262   // 112: spefscr
3263   // 113: sfp
3264   AssignToArrayRange(Builder, Address, Four8, 109, 113);
3265 
3266   return false;
3267 }
3268 
3269 // PowerPC-64
3270 
3271 namespace {
3272 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information.
3273 class PPC64_SVR4_ABIInfo : public DefaultABIInfo {
3274 public:
3275   enum ABIKind {
3276     ELFv1 = 0,
3277     ELFv2
3278   };
3279 
3280 private:
3281   static const unsigned GPRBits = 64;
3282   ABIKind Kind;
3283 
3284 public:
3285   PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind)
3286     : DefaultABIInfo(CGT), Kind(Kind) {}
3287 
3288   bool isPromotableTypeForABI(QualType Ty) const;
3289   bool isAlignedParamType(QualType Ty) const;
3290 
3291   ABIArgInfo classifyReturnType(QualType RetTy) const;
3292   ABIArgInfo classifyArgumentType(QualType Ty) const;
3293 
3294   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
3295   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
3296                                          uint64_t Members) const override;
3297 
3298   // TODO: We can add more logic to computeInfo to improve performance.
3299   // Example: For aggregate arguments that fit in a register, we could
3300   // use getDirectInReg (as is done below for structs containing a single
3301   // floating-point value) to avoid pushing them to memory on function
3302   // entry.  This would require changing the logic in PPCISelLowering
3303   // when lowering the parameters in the caller and args in the callee.
3304   void computeInfo(CGFunctionInfo &FI) const override {
3305     if (!getCXXABI().classifyReturnType(FI))
3306       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3307     for (auto &I : FI.arguments()) {
3308       // We rely on the default argument classification for the most part.
3309       // One exception:  An aggregate containing a single floating-point
3310       // or vector item must be passed in a register if one is available.
3311       const Type *T = isSingleElementStruct(I.type, getContext());
3312       if (T) {
3313         const BuiltinType *BT = T->getAs<BuiltinType>();
3314         if ((T->isVectorType() && getContext().getTypeSize(T) == 128) ||
3315             (BT && BT->isFloatingPoint())) {
3316           QualType QT(T, 0);
3317           I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT));
3318           continue;
3319         }
3320       }
3321       I.info = classifyArgumentType(I.type);
3322     }
3323   }
3324 
3325   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3326                          CodeGenFunction &CGF) const override;
3327 };
3328 
3329 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo {
3330 public:
3331   PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT,
3332                                PPC64_SVR4_ABIInfo::ABIKind Kind)
3333     : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT, Kind)) {}
3334 
3335   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
3336     // This is recovered from gcc output.
3337     return 1; // r1 is the dedicated stack pointer
3338   }
3339 
3340   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3341                                llvm::Value *Address) const override;
3342 
3343   unsigned getOpenMPSimdDefaultAlignment(QualType) const override {
3344     return 16; // Natural alignment for Altivec and VSX vectors.
3345   }
3346 };
3347 
3348 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
3349 public:
3350   PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
3351 
3352   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
3353     // This is recovered from gcc output.
3354     return 1; // r1 is the dedicated stack pointer
3355   }
3356 
3357   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3358                                llvm::Value *Address) const override;
3359 
3360   unsigned getOpenMPSimdDefaultAlignment(QualType) const override {
3361     return 16; // Natural alignment for Altivec vectors.
3362   }
3363 };
3364 
3365 }
3366 
3367 // Return true if the ABI requires Ty to be passed sign- or zero-
3368 // extended to 64 bits.
3369 bool
3370 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const {
3371   // Treat an enum type as its underlying type.
3372   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3373     Ty = EnumTy->getDecl()->getIntegerType();
3374 
3375   // Promotable integer types are required to be promoted by the ABI.
3376   if (Ty->isPromotableIntegerType())
3377     return true;
3378 
3379   // In addition to the usual promotable integer types, we also need to
3380   // extend all 32-bit types, since the ABI requires promotion to 64 bits.
3381   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
3382     switch (BT->getKind()) {
3383     case BuiltinType::Int:
3384     case BuiltinType::UInt:
3385       return true;
3386     default:
3387       break;
3388     }
3389 
3390   return false;
3391 }
3392 
3393 /// isAlignedParamType - Determine whether a type requires 16-byte
3394 /// alignment in the parameter area.
3395 bool
3396 PPC64_SVR4_ABIInfo::isAlignedParamType(QualType Ty) const {
3397   // Complex types are passed just like their elements.
3398   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
3399     Ty = CTy->getElementType();
3400 
3401   // Only vector types of size 16 bytes need alignment (larger types are
3402   // passed via reference, smaller types are not aligned).
3403   if (Ty->isVectorType())
3404     return getContext().getTypeSize(Ty) == 128;
3405 
3406   // For single-element float/vector structs, we consider the whole type
3407   // to have the same alignment requirements as its single element.
3408   const Type *AlignAsType = nullptr;
3409   const Type *EltType = isSingleElementStruct(Ty, getContext());
3410   if (EltType) {
3411     const BuiltinType *BT = EltType->getAs<BuiltinType>();
3412     if ((EltType->isVectorType() &&
3413          getContext().getTypeSize(EltType) == 128) ||
3414         (BT && BT->isFloatingPoint()))
3415       AlignAsType = EltType;
3416   }
3417 
3418   // Likewise for ELFv2 homogeneous aggregates.
3419   const Type *Base = nullptr;
3420   uint64_t Members = 0;
3421   if (!AlignAsType && Kind == ELFv2 &&
3422       isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members))
3423     AlignAsType = Base;
3424 
3425   // With special case aggregates, only vector base types need alignment.
3426   if (AlignAsType)
3427     return AlignAsType->isVectorType();
3428 
3429   // Otherwise, we only need alignment for any aggregate type that
3430   // has an alignment requirement of >= 16 bytes.
3431   if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128)
3432     return true;
3433 
3434   return false;
3435 }
3436 
3437 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous
3438 /// aggregate.  Base is set to the base element type, and Members is set
3439 /// to the number of base elements.
3440 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base,
3441                                      uint64_t &Members) const {
3442   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
3443     uint64_t NElements = AT->getSize().getZExtValue();
3444     if (NElements == 0)
3445       return false;
3446     if (!isHomogeneousAggregate(AT->getElementType(), Base, Members))
3447       return false;
3448     Members *= NElements;
3449   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
3450     const RecordDecl *RD = RT->getDecl();
3451     if (RD->hasFlexibleArrayMember())
3452       return false;
3453 
3454     Members = 0;
3455 
3456     // If this is a C++ record, check the bases first.
3457     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
3458       for (const auto &I : CXXRD->bases()) {
3459         // Ignore empty records.
3460         if (isEmptyRecord(getContext(), I.getType(), true))
3461           continue;
3462 
3463         uint64_t FldMembers;
3464         if (!isHomogeneousAggregate(I.getType(), Base, FldMembers))
3465           return false;
3466 
3467         Members += FldMembers;
3468       }
3469     }
3470 
3471     for (const auto *FD : RD->fields()) {
3472       // Ignore (non-zero arrays of) empty records.
3473       QualType FT = FD->getType();
3474       while (const ConstantArrayType *AT =
3475              getContext().getAsConstantArrayType(FT)) {
3476         if (AT->getSize().getZExtValue() == 0)
3477           return false;
3478         FT = AT->getElementType();
3479       }
3480       if (isEmptyRecord(getContext(), FT, true))
3481         continue;
3482 
3483       // For compatibility with GCC, ignore empty bitfields in C++ mode.
3484       if (getContext().getLangOpts().CPlusPlus &&
3485           FD->isBitField() && FD->getBitWidthValue(getContext()) == 0)
3486         continue;
3487 
3488       uint64_t FldMembers;
3489       if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers))
3490         return false;
3491 
3492       Members = (RD->isUnion() ?
3493                  std::max(Members, FldMembers) : Members + FldMembers);
3494     }
3495 
3496     if (!Base)
3497       return false;
3498 
3499     // Ensure there is no padding.
3500     if (getContext().getTypeSize(Base) * Members !=
3501         getContext().getTypeSize(Ty))
3502       return false;
3503   } else {
3504     Members = 1;
3505     if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
3506       Members = 2;
3507       Ty = CT->getElementType();
3508     }
3509 
3510     // Most ABIs only support float, double, and some vector type widths.
3511     if (!isHomogeneousAggregateBaseType(Ty))
3512       return false;
3513 
3514     // The base type must be the same for all members.  Types that
3515     // agree in both total size and mode (float vs. vector) are
3516     // treated as being equivalent here.
3517     const Type *TyPtr = Ty.getTypePtr();
3518     if (!Base)
3519       Base = TyPtr;
3520 
3521     if (Base->isVectorType() != TyPtr->isVectorType() ||
3522         getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr))
3523       return false;
3524   }
3525   return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members);
3526 }
3527 
3528 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
3529   // Homogeneous aggregates for ELFv2 must have base types of float,
3530   // double, long double, or 128-bit vectors.
3531   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
3532     if (BT->getKind() == BuiltinType::Float ||
3533         BT->getKind() == BuiltinType::Double ||
3534         BT->getKind() == BuiltinType::LongDouble)
3535       return true;
3536   }
3537   if (const VectorType *VT = Ty->getAs<VectorType>()) {
3538     if (getContext().getTypeSize(VT) == 128)
3539       return true;
3540   }
3541   return false;
3542 }
3543 
3544 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough(
3545     const Type *Base, uint64_t Members) const {
3546   // Vector types require one register, floating point types require one
3547   // or two registers depending on their size.
3548   uint32_t NumRegs =
3549       Base->isVectorType() ? 1 : (getContext().getTypeSize(Base) + 63) / 64;
3550 
3551   // Homogeneous Aggregates may occupy at most 8 registers.
3552   return Members * NumRegs <= 8;
3553 }
3554 
3555 ABIArgInfo
3556 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const {
3557   Ty = useFirstFieldIfTransparentUnion(Ty);
3558 
3559   if (Ty->isAnyComplexType())
3560     return ABIArgInfo::getDirect();
3561 
3562   // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes)
3563   // or via reference (larger than 16 bytes).
3564   if (Ty->isVectorType()) {
3565     uint64_t Size = getContext().getTypeSize(Ty);
3566     if (Size > 128)
3567       return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3568     else if (Size < 128) {
3569       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
3570       return ABIArgInfo::getDirect(CoerceTy);
3571     }
3572   }
3573 
3574   if (isAggregateTypeForABI(Ty)) {
3575     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
3576       return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
3577 
3578     uint64_t ABIAlign = isAlignedParamType(Ty)? 16 : 8;
3579     uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8;
3580 
3581     // ELFv2 homogeneous aggregates are passed as array types.
3582     const Type *Base = nullptr;
3583     uint64_t Members = 0;
3584     if (Kind == ELFv2 &&
3585         isHomogeneousAggregate(Ty, Base, Members)) {
3586       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
3587       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
3588       return ABIArgInfo::getDirect(CoerceTy);
3589     }
3590 
3591     // If an aggregate may end up fully in registers, we do not
3592     // use the ByVal method, but pass the aggregate as array.
3593     // This is usually beneficial since we avoid forcing the
3594     // back-end to store the argument to memory.
3595     uint64_t Bits = getContext().getTypeSize(Ty);
3596     if (Bits > 0 && Bits <= 8 * GPRBits) {
3597       llvm::Type *CoerceTy;
3598 
3599       // Types up to 8 bytes are passed as integer type (which will be
3600       // properly aligned in the argument save area doubleword).
3601       if (Bits <= GPRBits)
3602         CoerceTy = llvm::IntegerType::get(getVMContext(),
3603                                           llvm::RoundUpToAlignment(Bits, 8));
3604       // Larger types are passed as arrays, with the base type selected
3605       // according to the required alignment in the save area.
3606       else {
3607         uint64_t RegBits = ABIAlign * 8;
3608         uint64_t NumRegs = llvm::RoundUpToAlignment(Bits, RegBits) / RegBits;
3609         llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits);
3610         CoerceTy = llvm::ArrayType::get(RegTy, NumRegs);
3611       }
3612 
3613       return ABIArgInfo::getDirect(CoerceTy);
3614     }
3615 
3616     // All other aggregates are passed ByVal.
3617     return ABIArgInfo::getIndirect(ABIAlign, /*ByVal=*/true,
3618                                    /*Realign=*/TyAlign > ABIAlign);
3619   }
3620 
3621   return (isPromotableTypeForABI(Ty) ?
3622           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3623 }
3624 
3625 ABIArgInfo
3626 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
3627   if (RetTy->isVoidType())
3628     return ABIArgInfo::getIgnore();
3629 
3630   if (RetTy->isAnyComplexType())
3631     return ABIArgInfo::getDirect();
3632 
3633   // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes)
3634   // or via reference (larger than 16 bytes).
3635   if (RetTy->isVectorType()) {
3636     uint64_t Size = getContext().getTypeSize(RetTy);
3637     if (Size > 128)
3638       return ABIArgInfo::getIndirect(0);
3639     else if (Size < 128) {
3640       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
3641       return ABIArgInfo::getDirect(CoerceTy);
3642     }
3643   }
3644 
3645   if (isAggregateTypeForABI(RetTy)) {
3646     // ELFv2 homogeneous aggregates are returned as array types.
3647     const Type *Base = nullptr;
3648     uint64_t Members = 0;
3649     if (Kind == ELFv2 &&
3650         isHomogeneousAggregate(RetTy, Base, Members)) {
3651       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
3652       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
3653       return ABIArgInfo::getDirect(CoerceTy);
3654     }
3655 
3656     // ELFv2 small aggregates are returned in up to two registers.
3657     uint64_t Bits = getContext().getTypeSize(RetTy);
3658     if (Kind == ELFv2 && Bits <= 2 * GPRBits) {
3659       if (Bits == 0)
3660         return ABIArgInfo::getIgnore();
3661 
3662       llvm::Type *CoerceTy;
3663       if (Bits > GPRBits) {
3664         CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits);
3665         CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy, nullptr);
3666       } else
3667         CoerceTy = llvm::IntegerType::get(getVMContext(),
3668                                           llvm::RoundUpToAlignment(Bits, 8));
3669       return ABIArgInfo::getDirect(CoerceTy);
3670     }
3671 
3672     // All other aggregates are returned indirectly.
3673     return ABIArgInfo::getIndirect(0);
3674   }
3675 
3676   return (isPromotableTypeForABI(RetTy) ?
3677           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3678 }
3679 
3680 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine.
3681 llvm::Value *PPC64_SVR4_ABIInfo::EmitVAArg(llvm::Value *VAListAddr,
3682                                            QualType Ty,
3683                                            CodeGenFunction &CGF) const {
3684   llvm::Type *BP = CGF.Int8PtrTy;
3685   llvm::Type *BPP = CGF.Int8PtrPtrTy;
3686 
3687   CGBuilderTy &Builder = CGF.Builder;
3688   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
3689   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
3690 
3691   // Handle types that require 16-byte alignment in the parameter save area.
3692   if (isAlignedParamType(Ty)) {
3693     llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty);
3694     AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt64(15));
3695     AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt64(-16));
3696     Addr = Builder.CreateIntToPtr(AddrAsInt, BP, "ap.align");
3697   }
3698 
3699   // Update the va_list pointer.  The pointer should be bumped by the
3700   // size of the object.  We can trust getTypeSize() except for a complex
3701   // type whose base type is smaller than a doubleword.  For these, the
3702   // size of the object is 16 bytes; see below for further explanation.
3703   unsigned SizeInBytes = CGF.getContext().getTypeSize(Ty) / 8;
3704   QualType BaseTy;
3705   unsigned CplxBaseSize = 0;
3706 
3707   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
3708     BaseTy = CTy->getElementType();
3709     CplxBaseSize = CGF.getContext().getTypeSize(BaseTy) / 8;
3710     if (CplxBaseSize < 8)
3711       SizeInBytes = 16;
3712   }
3713 
3714   unsigned Offset = llvm::RoundUpToAlignment(SizeInBytes, 8);
3715   llvm::Value *NextAddr =
3716     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int64Ty, Offset),
3717                       "ap.next");
3718   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
3719 
3720   // If we have a complex type and the base type is smaller than 8 bytes,
3721   // the ABI calls for the real and imaginary parts to be right-adjusted
3722   // in separate doublewords.  However, Clang expects us to produce a
3723   // pointer to a structure with the two parts packed tightly.  So generate
3724   // loads of the real and imaginary parts relative to the va_list pointer,
3725   // and store them to a temporary structure.
3726   if (CplxBaseSize && CplxBaseSize < 8) {
3727     llvm::Value *RealAddr = Builder.CreatePtrToInt(Addr, CGF.Int64Ty);
3728     llvm::Value *ImagAddr = RealAddr;
3729     if (CGF.CGM.getDataLayout().isBigEndian()) {
3730       RealAddr = Builder.CreateAdd(RealAddr, Builder.getInt64(8 - CplxBaseSize));
3731       ImagAddr = Builder.CreateAdd(ImagAddr, Builder.getInt64(16 - CplxBaseSize));
3732     } else {
3733       ImagAddr = Builder.CreateAdd(ImagAddr, Builder.getInt64(8));
3734     }
3735     llvm::Type *PBaseTy = llvm::PointerType::getUnqual(CGF.ConvertType(BaseTy));
3736     RealAddr = Builder.CreateIntToPtr(RealAddr, PBaseTy);
3737     ImagAddr = Builder.CreateIntToPtr(ImagAddr, PBaseTy);
3738     llvm::Value *Real = Builder.CreateLoad(RealAddr, false, ".vareal");
3739     llvm::Value *Imag = Builder.CreateLoad(ImagAddr, false, ".vaimag");
3740     llvm::Value *Ptr = CGF.CreateTempAlloca(CGT.ConvertTypeForMem(Ty),
3741                                             "vacplx");
3742     llvm::Value *RealPtr = Builder.CreateStructGEP(Ptr, 0, ".real");
3743     llvm::Value *ImagPtr = Builder.CreateStructGEP(Ptr, 1, ".imag");
3744     Builder.CreateStore(Real, RealPtr, false);
3745     Builder.CreateStore(Imag, ImagPtr, false);
3746     return Ptr;
3747   }
3748 
3749   // If the argument is smaller than 8 bytes, it is right-adjusted in
3750   // its doubleword slot.  Adjust the pointer to pick it up from the
3751   // correct offset.
3752   if (SizeInBytes < 8 && CGF.CGM.getDataLayout().isBigEndian()) {
3753     llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty);
3754     AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt64(8 - SizeInBytes));
3755     Addr = Builder.CreateIntToPtr(AddrAsInt, BP);
3756   }
3757 
3758   llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
3759   return Builder.CreateBitCast(Addr, PTy);
3760 }
3761 
3762 static bool
3763 PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3764                               llvm::Value *Address) {
3765   // This is calculated from the LLVM and GCC tables and verified
3766   // against gcc output.  AFAIK all ABIs use the same encoding.
3767 
3768   CodeGen::CGBuilderTy &Builder = CGF.Builder;
3769 
3770   llvm::IntegerType *i8 = CGF.Int8Ty;
3771   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
3772   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
3773   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
3774 
3775   // 0-31: r0-31, the 8-byte general-purpose registers
3776   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
3777 
3778   // 32-63: fp0-31, the 8-byte floating-point registers
3779   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
3780 
3781   // 64-76 are various 4-byte special-purpose registers:
3782   // 64: mq
3783   // 65: lr
3784   // 66: ctr
3785   // 67: ap
3786   // 68-75 cr0-7
3787   // 76: xer
3788   AssignToArrayRange(Builder, Address, Four8, 64, 76);
3789 
3790   // 77-108: v0-31, the 16-byte vector registers
3791   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
3792 
3793   // 109: vrsave
3794   // 110: vscr
3795   // 111: spe_acc
3796   // 112: spefscr
3797   // 113: sfp
3798   AssignToArrayRange(Builder, Address, Four8, 109, 113);
3799 
3800   return false;
3801 }
3802 
3803 bool
3804 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable(
3805   CodeGen::CodeGenFunction &CGF,
3806   llvm::Value *Address) const {
3807 
3808   return PPC64_initDwarfEHRegSizeTable(CGF, Address);
3809 }
3810 
3811 bool
3812 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3813                                                 llvm::Value *Address) const {
3814 
3815   return PPC64_initDwarfEHRegSizeTable(CGF, Address);
3816 }
3817 
3818 //===----------------------------------------------------------------------===//
3819 // AArch64 ABI Implementation
3820 //===----------------------------------------------------------------------===//
3821 
3822 namespace {
3823 
3824 class AArch64ABIInfo : public ABIInfo {
3825 public:
3826   enum ABIKind {
3827     AAPCS = 0,
3828     DarwinPCS
3829   };
3830 
3831 private:
3832   ABIKind Kind;
3833 
3834 public:
3835   AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind) : ABIInfo(CGT), Kind(Kind) {}
3836 
3837 private:
3838   ABIKind getABIKind() const { return Kind; }
3839   bool isDarwinPCS() const { return Kind == DarwinPCS; }
3840 
3841   ABIArgInfo classifyReturnType(QualType RetTy) const;
3842   ABIArgInfo classifyArgumentType(QualType RetTy) const;
3843   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
3844   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
3845                                          uint64_t Members) const override;
3846 
3847   bool isIllegalVectorType(QualType Ty) const;
3848 
3849   void computeInfo(CGFunctionInfo &FI) const override {
3850     if (!getCXXABI().classifyReturnType(FI))
3851       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3852 
3853     for (auto &it : FI.arguments())
3854       it.info = classifyArgumentType(it.type);
3855   }
3856 
3857   llvm::Value *EmitDarwinVAArg(llvm::Value *VAListAddr, QualType Ty,
3858                                CodeGenFunction &CGF) const;
3859 
3860   llvm::Value *EmitAAPCSVAArg(llvm::Value *VAListAddr, QualType Ty,
3861                               CodeGenFunction &CGF) const;
3862 
3863   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3864                                  CodeGenFunction &CGF) const override {
3865     return isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF)
3866                          : EmitAAPCSVAArg(VAListAddr, Ty, CGF);
3867   }
3868 };
3869 
3870 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo {
3871 public:
3872   AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind)
3873       : TargetCodeGenInfo(new AArch64ABIInfo(CGT, Kind)) {}
3874 
3875   StringRef getARCRetainAutoreleasedReturnValueMarker() const {
3876     return "mov\tfp, fp\t\t; marker for objc_retainAutoreleaseReturnValue";
3877   }
3878 
3879   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const { return 31; }
3880 
3881   virtual bool doesReturnSlotInterfereWithArgs() const { return false; }
3882 };
3883 }
3884 
3885 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const {
3886   Ty = useFirstFieldIfTransparentUnion(Ty);
3887 
3888   // Handle illegal vector types here.
3889   if (isIllegalVectorType(Ty)) {
3890     uint64_t Size = getContext().getTypeSize(Ty);
3891     if (Size <= 32) {
3892       llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext());
3893       return ABIArgInfo::getDirect(ResType);
3894     }
3895     if (Size == 64) {
3896       llvm::Type *ResType =
3897           llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2);
3898       return ABIArgInfo::getDirect(ResType);
3899     }
3900     if (Size == 128) {
3901       llvm::Type *ResType =
3902           llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4);
3903       return ABIArgInfo::getDirect(ResType);
3904     }
3905     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3906   }
3907 
3908   if (!isAggregateTypeForABI(Ty)) {
3909     // Treat an enum type as its underlying type.
3910     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3911       Ty = EnumTy->getDecl()->getIntegerType();
3912 
3913     return (Ty->isPromotableIntegerType() && isDarwinPCS()
3914                 ? ABIArgInfo::getExtend()
3915                 : ABIArgInfo::getDirect());
3916   }
3917 
3918   // Structures with either a non-trivial destructor or a non-trivial
3919   // copy constructor are always indirect.
3920   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
3921     return ABIArgInfo::getIndirect(0, /*ByVal=*/RAA ==
3922                                    CGCXXABI::RAA_DirectInMemory);
3923   }
3924 
3925   // Empty records are always ignored on Darwin, but actually passed in C++ mode
3926   // elsewhere for GNU compatibility.
3927   if (isEmptyRecord(getContext(), Ty, true)) {
3928     if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS())
3929       return ABIArgInfo::getIgnore();
3930 
3931     return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
3932   }
3933 
3934   // Homogeneous Floating-point Aggregates (HFAs) need to be expanded.
3935   const Type *Base = nullptr;
3936   uint64_t Members = 0;
3937   if (isHomogeneousAggregate(Ty, Base, Members)) {
3938     return ABIArgInfo::getDirect(
3939         llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members));
3940   }
3941 
3942   // Aggregates <= 16 bytes are passed directly in registers or on the stack.
3943   uint64_t Size = getContext().getTypeSize(Ty);
3944   if (Size <= 128) {
3945     unsigned Alignment = getContext().getTypeAlign(Ty);
3946     Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes
3947 
3948     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
3949     // For aggregates with 16-byte alignment, we use i128.
3950     if (Alignment < 128 && Size == 128) {
3951       llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
3952       return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
3953     }
3954     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
3955   }
3956 
3957   return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3958 }
3959 
3960 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy) const {
3961   if (RetTy->isVoidType())
3962     return ABIArgInfo::getIgnore();
3963 
3964   // Large vector types should be returned via memory.
3965   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
3966     return ABIArgInfo::getIndirect(0);
3967 
3968   if (!isAggregateTypeForABI(RetTy)) {
3969     // Treat an enum type as its underlying type.
3970     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
3971       RetTy = EnumTy->getDecl()->getIntegerType();
3972 
3973     return (RetTy->isPromotableIntegerType() && isDarwinPCS()
3974                 ? ABIArgInfo::getExtend()
3975                 : ABIArgInfo::getDirect());
3976   }
3977 
3978   if (isEmptyRecord(getContext(), RetTy, true))
3979     return ABIArgInfo::getIgnore();
3980 
3981   const Type *Base = nullptr;
3982   uint64_t Members = 0;
3983   if (isHomogeneousAggregate(RetTy, Base, Members))
3984     // Homogeneous Floating-point Aggregates (HFAs) are returned directly.
3985     return ABIArgInfo::getDirect();
3986 
3987   // Aggregates <= 16 bytes are returned directly in registers or on the stack.
3988   uint64_t Size = getContext().getTypeSize(RetTy);
3989   if (Size <= 128) {
3990     Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes
3991     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
3992   }
3993 
3994   return ABIArgInfo::getIndirect(0);
3995 }
3996 
3997 /// isIllegalVectorType - check whether the vector type is legal for AArch64.
3998 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const {
3999   if (const VectorType *VT = Ty->getAs<VectorType>()) {
4000     // Check whether VT is legal.
4001     unsigned NumElements = VT->getNumElements();
4002     uint64_t Size = getContext().getTypeSize(VT);
4003     // NumElements should be power of 2 between 1 and 16.
4004     if ((NumElements & (NumElements - 1)) != 0 || NumElements > 16)
4005       return true;
4006     return Size != 64 && (Size != 128 || NumElements == 1);
4007   }
4008   return false;
4009 }
4010 
4011 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
4012   // Homogeneous aggregates for AAPCS64 must have base types of a floating
4013   // point type or a short-vector type. This is the same as the 32-bit ABI,
4014   // but with the difference that any floating-point type is allowed,
4015   // including __fp16.
4016   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
4017     if (BT->isFloatingPoint())
4018       return true;
4019   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
4020     unsigned VecSize = getContext().getTypeSize(VT);
4021     if (VecSize == 64 || VecSize == 128)
4022       return true;
4023   }
4024   return false;
4025 }
4026 
4027 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
4028                                                        uint64_t Members) const {
4029   return Members <= 4;
4030 }
4031 
4032 llvm::Value *AArch64ABIInfo::EmitAAPCSVAArg(llvm::Value *VAListAddr,
4033                                             QualType Ty,
4034                                             CodeGenFunction &CGF) const {
4035   ABIArgInfo AI = classifyArgumentType(Ty);
4036   bool IsIndirect = AI.isIndirect();
4037 
4038   llvm::Type *BaseTy = CGF.ConvertType(Ty);
4039   if (IsIndirect)
4040     BaseTy = llvm::PointerType::getUnqual(BaseTy);
4041   else if (AI.getCoerceToType())
4042     BaseTy = AI.getCoerceToType();
4043 
4044   unsigned NumRegs = 1;
4045   if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) {
4046     BaseTy = ArrTy->getElementType();
4047     NumRegs = ArrTy->getNumElements();
4048   }
4049   bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy();
4050 
4051   // The AArch64 va_list type and handling is specified in the Procedure Call
4052   // Standard, section B.4:
4053   //
4054   // struct {
4055   //   void *__stack;
4056   //   void *__gr_top;
4057   //   void *__vr_top;
4058   //   int __gr_offs;
4059   //   int __vr_offs;
4060   // };
4061 
4062   llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
4063   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
4064   llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
4065   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
4066   auto &Ctx = CGF.getContext();
4067 
4068   llvm::Value *reg_offs_p = nullptr, *reg_offs = nullptr;
4069   int reg_top_index;
4070   int RegSize = IsIndirect ? 8 : getContext().getTypeSize(Ty) / 8;
4071   if (!IsFPR) {
4072     // 3 is the field number of __gr_offs
4073     reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p");
4074     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs");
4075     reg_top_index = 1; // field number for __gr_top
4076     RegSize = llvm::RoundUpToAlignment(RegSize, 8);
4077   } else {
4078     // 4 is the field number of __vr_offs.
4079     reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p");
4080     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs");
4081     reg_top_index = 2; // field number for __vr_top
4082     RegSize = 16 * NumRegs;
4083   }
4084 
4085   //=======================================
4086   // Find out where argument was passed
4087   //=======================================
4088 
4089   // If reg_offs >= 0 we're already using the stack for this type of
4090   // argument. We don't want to keep updating reg_offs (in case it overflows,
4091   // though anyone passing 2GB of arguments, each at most 16 bytes, deserves
4092   // whatever they get).
4093   llvm::Value *UsingStack = nullptr;
4094   UsingStack = CGF.Builder.CreateICmpSGE(
4095       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0));
4096 
4097   CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock);
4098 
4099   // Otherwise, at least some kind of argument could go in these registers, the
4100   // question is whether this particular type is too big.
4101   CGF.EmitBlock(MaybeRegBlock);
4102 
4103   // Integer arguments may need to correct register alignment (for example a
4104   // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we
4105   // align __gr_offs to calculate the potential address.
4106   if (!IsFPR && !IsIndirect && Ctx.getTypeAlign(Ty) > 64) {
4107     int Align = Ctx.getTypeAlign(Ty) / 8;
4108 
4109     reg_offs = CGF.Builder.CreateAdd(
4110         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1),
4111         "align_regoffs");
4112     reg_offs = CGF.Builder.CreateAnd(
4113         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align),
4114         "aligned_regoffs");
4115   }
4116 
4117   // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list.
4118   llvm::Value *NewOffset = nullptr;
4119   NewOffset = CGF.Builder.CreateAdd(
4120       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs");
4121   CGF.Builder.CreateStore(NewOffset, reg_offs_p);
4122 
4123   // Now we're in a position to decide whether this argument really was in
4124   // registers or not.
4125   llvm::Value *InRegs = nullptr;
4126   InRegs = CGF.Builder.CreateICmpSLE(
4127       NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg");
4128 
4129   CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock);
4130 
4131   //=======================================
4132   // Argument was in registers
4133   //=======================================
4134 
4135   // Now we emit the code for if the argument was originally passed in
4136   // registers. First start the appropriate block:
4137   CGF.EmitBlock(InRegBlock);
4138 
4139   llvm::Value *reg_top_p = nullptr, *reg_top = nullptr;
4140   reg_top_p =
4141       CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p");
4142   reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top");
4143   llvm::Value *BaseAddr = CGF.Builder.CreateGEP(reg_top, reg_offs);
4144   llvm::Value *RegAddr = nullptr;
4145   llvm::Type *MemTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
4146 
4147   if (IsIndirect) {
4148     // If it's been passed indirectly (actually a struct), whatever we find from
4149     // stored registers or on the stack will actually be a struct **.
4150     MemTy = llvm::PointerType::getUnqual(MemTy);
4151   }
4152 
4153   const Type *Base = nullptr;
4154   uint64_t NumMembers = 0;
4155   bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers);
4156   if (IsHFA && NumMembers > 1) {
4157     // Homogeneous aggregates passed in registers will have their elements split
4158     // and stored 16-bytes apart regardless of size (they're notionally in qN,
4159     // qN+1, ...). We reload and store into a temporary local variable
4160     // contiguously.
4161     assert(!IsIndirect && "Homogeneous aggregates should be passed directly");
4162     llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0));
4163     llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers);
4164     llvm::Value *Tmp = CGF.CreateTempAlloca(HFATy);
4165     int Offset = 0;
4166 
4167     if (CGF.CGM.getDataLayout().isBigEndian() && Ctx.getTypeSize(Base) < 128)
4168       Offset = 16 - Ctx.getTypeSize(Base) / 8;
4169     for (unsigned i = 0; i < NumMembers; ++i) {
4170       llvm::Value *BaseOffset =
4171           llvm::ConstantInt::get(CGF.Int32Ty, 16 * i + Offset);
4172       llvm::Value *LoadAddr = CGF.Builder.CreateGEP(BaseAddr, BaseOffset);
4173       LoadAddr = CGF.Builder.CreateBitCast(
4174           LoadAddr, llvm::PointerType::getUnqual(BaseTy));
4175       llvm::Value *StoreAddr = CGF.Builder.CreateStructGEP(Tmp, i);
4176 
4177       llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr);
4178       CGF.Builder.CreateStore(Elem, StoreAddr);
4179     }
4180 
4181     RegAddr = CGF.Builder.CreateBitCast(Tmp, MemTy);
4182   } else {
4183     // Otherwise the object is contiguous in memory
4184     unsigned BeAlign = reg_top_index == 2 ? 16 : 8;
4185     if (CGF.CGM.getDataLayout().isBigEndian() &&
4186         (IsHFA || !isAggregateTypeForABI(Ty)) &&
4187         Ctx.getTypeSize(Ty) < (BeAlign * 8)) {
4188       int Offset = BeAlign - Ctx.getTypeSize(Ty) / 8;
4189       BaseAddr = CGF.Builder.CreatePtrToInt(BaseAddr, CGF.Int64Ty);
4190 
4191       BaseAddr = CGF.Builder.CreateAdd(
4192           BaseAddr, llvm::ConstantInt::get(CGF.Int64Ty, Offset), "align_be");
4193 
4194       BaseAddr = CGF.Builder.CreateIntToPtr(BaseAddr, CGF.Int8PtrTy);
4195     }
4196 
4197     RegAddr = CGF.Builder.CreateBitCast(BaseAddr, MemTy);
4198   }
4199 
4200   CGF.EmitBranch(ContBlock);
4201 
4202   //=======================================
4203   // Argument was on the stack
4204   //=======================================
4205   CGF.EmitBlock(OnStackBlock);
4206 
4207   llvm::Value *stack_p = nullptr, *OnStackAddr = nullptr;
4208   stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p");
4209   OnStackAddr = CGF.Builder.CreateLoad(stack_p, "stack");
4210 
4211   // Again, stack arguments may need realigmnent. In this case both integer and
4212   // floating-point ones might be affected.
4213   if (!IsIndirect && Ctx.getTypeAlign(Ty) > 64) {
4214     int Align = Ctx.getTypeAlign(Ty) / 8;
4215 
4216     OnStackAddr = CGF.Builder.CreatePtrToInt(OnStackAddr, CGF.Int64Ty);
4217 
4218     OnStackAddr = CGF.Builder.CreateAdd(
4219         OnStackAddr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1),
4220         "align_stack");
4221     OnStackAddr = CGF.Builder.CreateAnd(
4222         OnStackAddr, llvm::ConstantInt::get(CGF.Int64Ty, -Align),
4223         "align_stack");
4224 
4225     OnStackAddr = CGF.Builder.CreateIntToPtr(OnStackAddr, CGF.Int8PtrTy);
4226   }
4227 
4228   uint64_t StackSize;
4229   if (IsIndirect)
4230     StackSize = 8;
4231   else
4232     StackSize = Ctx.getTypeSize(Ty) / 8;
4233 
4234   // All stack slots are 8 bytes
4235   StackSize = llvm::RoundUpToAlignment(StackSize, 8);
4236 
4237   llvm::Value *StackSizeC = llvm::ConstantInt::get(CGF.Int32Ty, StackSize);
4238   llvm::Value *NewStack =
4239       CGF.Builder.CreateGEP(OnStackAddr, StackSizeC, "new_stack");
4240 
4241   // Write the new value of __stack for the next call to va_arg
4242   CGF.Builder.CreateStore(NewStack, stack_p);
4243 
4244   if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) &&
4245       Ctx.getTypeSize(Ty) < 64) {
4246     int Offset = 8 - Ctx.getTypeSize(Ty) / 8;
4247     OnStackAddr = CGF.Builder.CreatePtrToInt(OnStackAddr, CGF.Int64Ty);
4248 
4249     OnStackAddr = CGF.Builder.CreateAdd(
4250         OnStackAddr, llvm::ConstantInt::get(CGF.Int64Ty, Offset), "align_be");
4251 
4252     OnStackAddr = CGF.Builder.CreateIntToPtr(OnStackAddr, CGF.Int8PtrTy);
4253   }
4254 
4255   OnStackAddr = CGF.Builder.CreateBitCast(OnStackAddr, MemTy);
4256 
4257   CGF.EmitBranch(ContBlock);
4258 
4259   //=======================================
4260   // Tidy up
4261   //=======================================
4262   CGF.EmitBlock(ContBlock);
4263 
4264   llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(MemTy, 2, "vaarg.addr");
4265   ResAddr->addIncoming(RegAddr, InRegBlock);
4266   ResAddr->addIncoming(OnStackAddr, OnStackBlock);
4267 
4268   if (IsIndirect)
4269     return CGF.Builder.CreateLoad(ResAddr, "vaarg.addr");
4270 
4271   return ResAddr;
4272 }
4273 
4274 llvm::Value *AArch64ABIInfo::EmitDarwinVAArg(llvm::Value *VAListAddr, QualType Ty,
4275                                            CodeGenFunction &CGF) const {
4276   // We do not support va_arg for aggregates or illegal vector types.
4277   // Lower VAArg here for these cases and use the LLVM va_arg instruction for
4278   // other cases.
4279   if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty))
4280     return nullptr;
4281 
4282   uint64_t Size = CGF.getContext().getTypeSize(Ty) / 8;
4283   uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
4284 
4285   const Type *Base = nullptr;
4286   uint64_t Members = 0;
4287   bool isHA = isHomogeneousAggregate(Ty, Base, Members);
4288 
4289   bool isIndirect = false;
4290   // Arguments bigger than 16 bytes which aren't homogeneous aggregates should
4291   // be passed indirectly.
4292   if (Size > 16 && !isHA) {
4293     isIndirect = true;
4294     Size = 8;
4295     Align = 8;
4296   }
4297 
4298   llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
4299   llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
4300 
4301   CGBuilderTy &Builder = CGF.Builder;
4302   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
4303   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
4304 
4305   if (isEmptyRecord(getContext(), Ty, true)) {
4306     // These are ignored for parameter passing purposes.
4307     llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
4308     return Builder.CreateBitCast(Addr, PTy);
4309   }
4310 
4311   const uint64_t MinABIAlign = 8;
4312   if (Align > MinABIAlign) {
4313     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, Align - 1);
4314     Addr = Builder.CreateGEP(Addr, Offset);
4315     llvm::Value *AsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty);
4316     llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, ~(Align - 1));
4317     llvm::Value *Aligned = Builder.CreateAnd(AsInt, Mask);
4318     Addr = Builder.CreateIntToPtr(Aligned, BP, "ap.align");
4319   }
4320 
4321   uint64_t Offset = llvm::RoundUpToAlignment(Size, MinABIAlign);
4322   llvm::Value *NextAddr = Builder.CreateGEP(
4323       Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), "ap.next");
4324   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
4325 
4326   if (isIndirect)
4327     Addr = Builder.CreateLoad(Builder.CreateBitCast(Addr, BPP));
4328   llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
4329   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
4330 
4331   return AddrTyped;
4332 }
4333 
4334 //===----------------------------------------------------------------------===//
4335 // ARM ABI Implementation
4336 //===----------------------------------------------------------------------===//
4337 
4338 namespace {
4339 
4340 class ARMABIInfo : public ABIInfo {
4341 public:
4342   enum ABIKind {
4343     APCS = 0,
4344     AAPCS = 1,
4345     AAPCS_VFP
4346   };
4347 
4348 private:
4349   ABIKind Kind;
4350   mutable int VFPRegs[16];
4351   const unsigned NumVFPs;
4352   const unsigned NumGPRs;
4353   mutable unsigned AllocatedGPRs;
4354   mutable unsigned AllocatedVFPs;
4355 
4356 public:
4357   ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) : ABIInfo(CGT), Kind(_Kind),
4358     NumVFPs(16), NumGPRs(4) {
4359     setCCs();
4360     resetAllocatedRegs();
4361   }
4362 
4363   bool isEABI() const {
4364     switch (getTarget().getTriple().getEnvironment()) {
4365     case llvm::Triple::Android:
4366     case llvm::Triple::EABI:
4367     case llvm::Triple::EABIHF:
4368     case llvm::Triple::GNUEABI:
4369     case llvm::Triple::GNUEABIHF:
4370       return true;
4371     default:
4372       return false;
4373     }
4374   }
4375 
4376   bool isEABIHF() const {
4377     switch (getTarget().getTriple().getEnvironment()) {
4378     case llvm::Triple::EABIHF:
4379     case llvm::Triple::GNUEABIHF:
4380       return true;
4381     default:
4382       return false;
4383     }
4384   }
4385 
4386   ABIKind getABIKind() const { return Kind; }
4387 
4388 private:
4389   ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic) const;
4390   ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic,
4391                                   bool &IsCPRC) const;
4392   bool isIllegalVectorType(QualType Ty) const;
4393 
4394   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
4395   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
4396                                          uint64_t Members) const override;
4397 
4398   void computeInfo(CGFunctionInfo &FI) const override;
4399 
4400   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4401                          CodeGenFunction &CGF) const override;
4402 
4403   llvm::CallingConv::ID getLLVMDefaultCC() const;
4404   llvm::CallingConv::ID getABIDefaultCC() const;
4405   void setCCs();
4406 
4407   void markAllocatedGPRs(unsigned Alignment, unsigned NumRequired) const;
4408   void markAllocatedVFPs(unsigned Alignment, unsigned NumRequired) const;
4409   void resetAllocatedRegs(void) const;
4410 };
4411 
4412 class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
4413 public:
4414   ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
4415     :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {}
4416 
4417   const ARMABIInfo &getABIInfo() const {
4418     return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo());
4419   }
4420 
4421   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4422     return 13;
4423   }
4424 
4425   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
4426     return "mov\tr7, r7\t\t@ marker for objc_retainAutoreleaseReturnValue";
4427   }
4428 
4429   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4430                                llvm::Value *Address) const override {
4431     llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
4432 
4433     // 0-15 are the 16 integer registers.
4434     AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15);
4435     return false;
4436   }
4437 
4438   unsigned getSizeOfUnwindException() const override {
4439     if (getABIInfo().isEABI()) return 88;
4440     return TargetCodeGenInfo::getSizeOfUnwindException();
4441   }
4442 
4443   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
4444                            CodeGen::CodeGenModule &CGM) const override {
4445     const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
4446     if (!FD)
4447       return;
4448 
4449     const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>();
4450     if (!Attr)
4451       return;
4452 
4453     const char *Kind;
4454     switch (Attr->getInterrupt()) {
4455     case ARMInterruptAttr::Generic: Kind = ""; break;
4456     case ARMInterruptAttr::IRQ:     Kind = "IRQ"; break;
4457     case ARMInterruptAttr::FIQ:     Kind = "FIQ"; break;
4458     case ARMInterruptAttr::SWI:     Kind = "SWI"; break;
4459     case ARMInterruptAttr::ABORT:   Kind = "ABORT"; break;
4460     case ARMInterruptAttr::UNDEF:   Kind = "UNDEF"; break;
4461     }
4462 
4463     llvm::Function *Fn = cast<llvm::Function>(GV);
4464 
4465     Fn->addFnAttr("interrupt", Kind);
4466 
4467     if (cast<ARMABIInfo>(getABIInfo()).getABIKind() == ARMABIInfo::APCS)
4468       return;
4469 
4470     // AAPCS guarantees that sp will be 8-byte aligned on any public interface,
4471     // however this is not necessarily true on taking any interrupt. Instruct
4472     // the backend to perform a realignment as part of the function prologue.
4473     llvm::AttrBuilder B;
4474     B.addStackAlignmentAttr(8);
4475     Fn->addAttributes(llvm::AttributeSet::FunctionIndex,
4476                       llvm::AttributeSet::get(CGM.getLLVMContext(),
4477                                               llvm::AttributeSet::FunctionIndex,
4478                                               B));
4479   }
4480 
4481 };
4482 
4483 }
4484 
4485 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
4486   // To correctly handle Homogeneous Aggregate, we need to keep track of the
4487   // VFP registers allocated so far.
4488   // C.1.vfp If the argument is a VFP CPRC and there are sufficient consecutive
4489   // VFP registers of the appropriate type unallocated then the argument is
4490   // allocated to the lowest-numbered sequence of such registers.
4491   // C.2.vfp If the argument is a VFP CPRC then any VFP registers that are
4492   // unallocated are marked as unavailable.
4493   resetAllocatedRegs();
4494 
4495   if (getCXXABI().classifyReturnType(FI)) {
4496     if (FI.getReturnInfo().isIndirect())
4497       markAllocatedGPRs(1, 1);
4498   } else {
4499     FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), FI.isVariadic());
4500   }
4501   for (auto &I : FI.arguments()) {
4502     unsigned PreAllocationVFPs = AllocatedVFPs;
4503     unsigned PreAllocationGPRs = AllocatedGPRs;
4504     bool IsCPRC = false;
4505     // 6.1.2.3 There is one VFP co-processor register class using registers
4506     // s0-s15 (d0-d7) for passing arguments.
4507     I.info = classifyArgumentType(I.type, FI.isVariadic(), IsCPRC);
4508 
4509     // If we have allocated some arguments onto the stack (due to running
4510     // out of VFP registers), we cannot split an argument between GPRs and
4511     // the stack. If this situation occurs, we add padding to prevent the
4512     // GPRs from being used. In this situation, the current argument could
4513     // only be allocated by rule C.8, so rule C.6 would mark these GPRs as
4514     // unusable anyway.
4515     // We do not have to do this if the argument is being passed ByVal, as the
4516     // backend can handle that situation correctly.
4517     const bool StackUsed = PreAllocationGPRs > NumGPRs || PreAllocationVFPs > NumVFPs;
4518     const bool IsByVal = I.info.isIndirect() && I.info.getIndirectByVal();
4519     if (!IsCPRC && PreAllocationGPRs < NumGPRs && AllocatedGPRs > NumGPRs &&
4520         StackUsed && !IsByVal) {
4521       llvm::Type *PaddingTy = llvm::ArrayType::get(
4522           llvm::Type::getInt32Ty(getVMContext()), NumGPRs - PreAllocationGPRs);
4523       if (I.info.canHaveCoerceToType()) {
4524         I.info = ABIArgInfo::getDirect(I.info.getCoerceToType() /* type */,
4525                                        0 /* offset */, PaddingTy, true);
4526       } else {
4527         I.info = ABIArgInfo::getDirect(nullptr /* type */, 0 /* offset */,
4528                                        PaddingTy, true);
4529       }
4530     }
4531   }
4532 
4533   // Always honor user-specified calling convention.
4534   if (FI.getCallingConvention() != llvm::CallingConv::C)
4535     return;
4536 
4537   llvm::CallingConv::ID cc = getRuntimeCC();
4538   if (cc != llvm::CallingConv::C)
4539     FI.setEffectiveCallingConvention(cc);
4540 }
4541 
4542 /// Return the default calling convention that LLVM will use.
4543 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const {
4544   // The default calling convention that LLVM will infer.
4545   if (isEABIHF())
4546     return llvm::CallingConv::ARM_AAPCS_VFP;
4547   else if (isEABI())
4548     return llvm::CallingConv::ARM_AAPCS;
4549   else
4550     return llvm::CallingConv::ARM_APCS;
4551 }
4552 
4553 /// Return the calling convention that our ABI would like us to use
4554 /// as the C calling convention.
4555 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const {
4556   switch (getABIKind()) {
4557   case APCS: return llvm::CallingConv::ARM_APCS;
4558   case AAPCS: return llvm::CallingConv::ARM_AAPCS;
4559   case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
4560   }
4561   llvm_unreachable("bad ABI kind");
4562 }
4563 
4564 void ARMABIInfo::setCCs() {
4565   assert(getRuntimeCC() == llvm::CallingConv::C);
4566 
4567   // Don't muddy up the IR with a ton of explicit annotations if
4568   // they'd just match what LLVM will infer from the triple.
4569   llvm::CallingConv::ID abiCC = getABIDefaultCC();
4570   if (abiCC != getLLVMDefaultCC())
4571     RuntimeCC = abiCC;
4572 
4573   BuiltinCC = (getABIKind() == APCS ?
4574                llvm::CallingConv::ARM_APCS : llvm::CallingConv::ARM_AAPCS);
4575 }
4576 
4577 /// markAllocatedVFPs - update VFPRegs according to the alignment and
4578 /// number of VFP registers (unit is S register) requested.
4579 void ARMABIInfo::markAllocatedVFPs(unsigned Alignment,
4580                                    unsigned NumRequired) const {
4581   // Early Exit.
4582   if (AllocatedVFPs >= 16) {
4583     // We use AllocatedVFP > 16 to signal that some CPRCs were allocated on
4584     // the stack.
4585     AllocatedVFPs = 17;
4586     return;
4587   }
4588   // C.1.vfp If the argument is a VFP CPRC and there are sufficient consecutive
4589   // VFP registers of the appropriate type unallocated then the argument is
4590   // allocated to the lowest-numbered sequence of such registers.
4591   for (unsigned I = 0; I < 16; I += Alignment) {
4592     bool FoundSlot = true;
4593     for (unsigned J = I, JEnd = I + NumRequired; J < JEnd; J++)
4594       if (J >= 16 || VFPRegs[J]) {
4595          FoundSlot = false;
4596          break;
4597       }
4598     if (FoundSlot) {
4599       for (unsigned J = I, JEnd = I + NumRequired; J < JEnd; J++)
4600         VFPRegs[J] = 1;
4601       AllocatedVFPs += NumRequired;
4602       return;
4603     }
4604   }
4605   // C.2.vfp If the argument is a VFP CPRC then any VFP registers that are
4606   // unallocated are marked as unavailable.
4607   for (unsigned I = 0; I < 16; I++)
4608     VFPRegs[I] = 1;
4609   AllocatedVFPs = 17; // We do not have enough VFP registers.
4610 }
4611 
4612 /// Update AllocatedGPRs to record the number of general purpose registers
4613 /// which have been allocated. It is valid for AllocatedGPRs to go above 4,
4614 /// this represents arguments being stored on the stack.
4615 void ARMABIInfo::markAllocatedGPRs(unsigned Alignment,
4616                                    unsigned NumRequired) const {
4617   assert((Alignment == 1 || Alignment == 2) && "Alignment must be 4 or 8 bytes");
4618 
4619   if (Alignment == 2 && AllocatedGPRs & 0x1)
4620     AllocatedGPRs += 1;
4621 
4622   AllocatedGPRs += NumRequired;
4623 }
4624 
4625 void ARMABIInfo::resetAllocatedRegs(void) const {
4626   AllocatedGPRs = 0;
4627   AllocatedVFPs = 0;
4628   for (unsigned i = 0; i < NumVFPs; ++i)
4629     VFPRegs[i] = 0;
4630 }
4631 
4632 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, bool isVariadic,
4633                                             bool &IsCPRC) const {
4634   // We update number of allocated VFPs according to
4635   // 6.1.2.1 The following argument types are VFP CPRCs:
4636   //   A single-precision floating-point type (including promoted
4637   //   half-precision types); A double-precision floating-point type;
4638   //   A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate
4639   //   with a Base Type of a single- or double-precision floating-point type,
4640   //   64-bit containerized vectors or 128-bit containerized vectors with one
4641   //   to four Elements.
4642   bool IsEffectivelyAAPCS_VFP = getABIKind() == AAPCS_VFP && !isVariadic;
4643 
4644   Ty = useFirstFieldIfTransparentUnion(Ty);
4645 
4646   // Handle illegal vector types here.
4647   if (isIllegalVectorType(Ty)) {
4648     uint64_t Size = getContext().getTypeSize(Ty);
4649     if (Size <= 32) {
4650       llvm::Type *ResType =
4651           llvm::Type::getInt32Ty(getVMContext());
4652       markAllocatedGPRs(1, 1);
4653       return ABIArgInfo::getDirect(ResType);
4654     }
4655     if (Size == 64) {
4656       llvm::Type *ResType = llvm::VectorType::get(
4657           llvm::Type::getInt32Ty(getVMContext()), 2);
4658       if (getABIKind() == ARMABIInfo::AAPCS || isVariadic){
4659         markAllocatedGPRs(2, 2);
4660       } else {
4661         markAllocatedVFPs(2, 2);
4662         IsCPRC = true;
4663       }
4664       return ABIArgInfo::getDirect(ResType);
4665     }
4666     if (Size == 128) {
4667       llvm::Type *ResType = llvm::VectorType::get(
4668           llvm::Type::getInt32Ty(getVMContext()), 4);
4669       if (getABIKind() == ARMABIInfo::AAPCS || isVariadic) {
4670         markAllocatedGPRs(2, 4);
4671       } else {
4672         markAllocatedVFPs(4, 4);
4673         IsCPRC = true;
4674       }
4675       return ABIArgInfo::getDirect(ResType);
4676     }
4677     markAllocatedGPRs(1, 1);
4678     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
4679   }
4680   // Update VFPRegs for legal vector types.
4681   if (getABIKind() == ARMABIInfo::AAPCS_VFP && !isVariadic) {
4682     if (const VectorType *VT = Ty->getAs<VectorType>()) {
4683       uint64_t Size = getContext().getTypeSize(VT);
4684       // Size of a legal vector should be power of 2 and above 64.
4685       markAllocatedVFPs(Size >= 128 ? 4 : 2, Size / 32);
4686       IsCPRC = true;
4687     }
4688   }
4689   // Update VFPRegs for floating point types.
4690   if (getABIKind() == ARMABIInfo::AAPCS_VFP && !isVariadic) {
4691     if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
4692       if (BT->getKind() == BuiltinType::Half ||
4693           BT->getKind() == BuiltinType::Float) {
4694         markAllocatedVFPs(1, 1);
4695         IsCPRC = true;
4696       }
4697       if (BT->getKind() == BuiltinType::Double ||
4698           BT->getKind() == BuiltinType::LongDouble) {
4699         markAllocatedVFPs(2, 2);
4700         IsCPRC = true;
4701       }
4702     }
4703   }
4704 
4705   if (!isAggregateTypeForABI(Ty)) {
4706     // Treat an enum type as its underlying type.
4707     if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
4708       Ty = EnumTy->getDecl()->getIntegerType();
4709     }
4710 
4711     unsigned Size = getContext().getTypeSize(Ty);
4712     if (!IsCPRC)
4713       markAllocatedGPRs(Size > 32 ? 2 : 1, (Size + 31) / 32);
4714     return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend()
4715                                           : ABIArgInfo::getDirect());
4716   }
4717 
4718   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
4719     markAllocatedGPRs(1, 1);
4720     return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
4721   }
4722 
4723   // Ignore empty records.
4724   if (isEmptyRecord(getContext(), Ty, true))
4725     return ABIArgInfo::getIgnore();
4726 
4727   if (IsEffectivelyAAPCS_VFP) {
4728     // Homogeneous Aggregates need to be expanded when we can fit the aggregate
4729     // into VFP registers.
4730     const Type *Base = nullptr;
4731     uint64_t Members = 0;
4732     if (isHomogeneousAggregate(Ty, Base, Members)) {
4733       assert(Base && "Base class should be set for homogeneous aggregate");
4734       // Base can be a floating-point or a vector.
4735       if (Base->isVectorType()) {
4736         // ElementSize is in number of floats.
4737         unsigned ElementSize = getContext().getTypeSize(Base) == 64 ? 2 : 4;
4738         markAllocatedVFPs(ElementSize,
4739                           Members * ElementSize);
4740       } else if (Base->isSpecificBuiltinType(BuiltinType::Float))
4741         markAllocatedVFPs(1, Members);
4742       else {
4743         assert(Base->isSpecificBuiltinType(BuiltinType::Double) ||
4744                Base->isSpecificBuiltinType(BuiltinType::LongDouble));
4745         markAllocatedVFPs(2, Members * 2);
4746       }
4747       IsCPRC = true;
4748       return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
4749     }
4750   }
4751 
4752   // Support byval for ARM.
4753   // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at
4754   // most 8-byte. We realign the indirect argument if type alignment is bigger
4755   // than ABI alignment.
4756   uint64_t ABIAlign = 4;
4757   uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8;
4758   if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
4759       getABIKind() == ARMABIInfo::AAPCS)
4760     ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
4761   if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) {
4762     // Update Allocated GPRs. Since this is only used when the size of the
4763     // argument is greater than 64 bytes, this will always use up any available
4764     // registers (of which there are 4). We also don't care about getting the
4765     // alignment right, because general-purpose registers cannot be back-filled.
4766     markAllocatedGPRs(1, 4);
4767     return ABIArgInfo::getIndirect(TyAlign, /*ByVal=*/true,
4768            /*Realign=*/TyAlign > ABIAlign);
4769   }
4770 
4771   // Otherwise, pass by coercing to a structure of the appropriate size.
4772   llvm::Type* ElemTy;
4773   unsigned SizeRegs;
4774   // FIXME: Try to match the types of the arguments more accurately where
4775   // we can.
4776   if (getContext().getTypeAlign(Ty) <= 32) {
4777     ElemTy = llvm::Type::getInt32Ty(getVMContext());
4778     SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
4779     markAllocatedGPRs(1, SizeRegs);
4780   } else {
4781     ElemTy = llvm::Type::getInt64Ty(getVMContext());
4782     SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
4783     markAllocatedGPRs(2, SizeRegs * 2);
4784   }
4785 
4786   return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs));
4787 }
4788 
4789 static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
4790                               llvm::LLVMContext &VMContext) {
4791   // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
4792   // is called integer-like if its size is less than or equal to one word, and
4793   // the offset of each of its addressable sub-fields is zero.
4794 
4795   uint64_t Size = Context.getTypeSize(Ty);
4796 
4797   // Check that the type fits in a word.
4798   if (Size > 32)
4799     return false;
4800 
4801   // FIXME: Handle vector types!
4802   if (Ty->isVectorType())
4803     return false;
4804 
4805   // Float types are never treated as "integer like".
4806   if (Ty->isRealFloatingType())
4807     return false;
4808 
4809   // If this is a builtin or pointer type then it is ok.
4810   if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
4811     return true;
4812 
4813   // Small complex integer types are "integer like".
4814   if (const ComplexType *CT = Ty->getAs<ComplexType>())
4815     return isIntegerLikeType(CT->getElementType(), Context, VMContext);
4816 
4817   // Single element and zero sized arrays should be allowed, by the definition
4818   // above, but they are not.
4819 
4820   // Otherwise, it must be a record type.
4821   const RecordType *RT = Ty->getAs<RecordType>();
4822   if (!RT) return false;
4823 
4824   // Ignore records with flexible arrays.
4825   const RecordDecl *RD = RT->getDecl();
4826   if (RD->hasFlexibleArrayMember())
4827     return false;
4828 
4829   // Check that all sub-fields are at offset 0, and are themselves "integer
4830   // like".
4831   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
4832 
4833   bool HadField = false;
4834   unsigned idx = 0;
4835   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
4836        i != e; ++i, ++idx) {
4837     const FieldDecl *FD = *i;
4838 
4839     // Bit-fields are not addressable, we only need to verify they are "integer
4840     // like". We still have to disallow a subsequent non-bitfield, for example:
4841     //   struct { int : 0; int x }
4842     // is non-integer like according to gcc.
4843     if (FD->isBitField()) {
4844       if (!RD->isUnion())
4845         HadField = true;
4846 
4847       if (!isIntegerLikeType(FD->getType(), Context, VMContext))
4848         return false;
4849 
4850       continue;
4851     }
4852 
4853     // Check if this field is at offset 0.
4854     if (Layout.getFieldOffset(idx) != 0)
4855       return false;
4856 
4857     if (!isIntegerLikeType(FD->getType(), Context, VMContext))
4858       return false;
4859 
4860     // Only allow at most one field in a structure. This doesn't match the
4861     // wording above, but follows gcc in situations with a field following an
4862     // empty structure.
4863     if (!RD->isUnion()) {
4864       if (HadField)
4865         return false;
4866 
4867       HadField = true;
4868     }
4869   }
4870 
4871   return true;
4872 }
4873 
4874 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy,
4875                                           bool isVariadic) const {
4876   bool IsEffectivelyAAPCS_VFP = getABIKind() == AAPCS_VFP && !isVariadic;
4877 
4878   if (RetTy->isVoidType())
4879     return ABIArgInfo::getIgnore();
4880 
4881   // Large vector types should be returned via memory.
4882   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) {
4883     markAllocatedGPRs(1, 1);
4884     return ABIArgInfo::getIndirect(0);
4885   }
4886 
4887   if (!isAggregateTypeForABI(RetTy)) {
4888     // Treat an enum type as its underlying type.
4889     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
4890       RetTy = EnumTy->getDecl()->getIntegerType();
4891 
4892     return RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend()
4893                                             : ABIArgInfo::getDirect();
4894   }
4895 
4896   // Are we following APCS?
4897   if (getABIKind() == APCS) {
4898     if (isEmptyRecord(getContext(), RetTy, false))
4899       return ABIArgInfo::getIgnore();
4900 
4901     // Complex types are all returned as packed integers.
4902     //
4903     // FIXME: Consider using 2 x vector types if the back end handles them
4904     // correctly.
4905     if (RetTy->isAnyComplexType())
4906       return ABIArgInfo::getDirect(llvm::IntegerType::get(
4907           getVMContext(), getContext().getTypeSize(RetTy)));
4908 
4909     // Integer like structures are returned in r0.
4910     if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
4911       // Return in the smallest viable integer type.
4912       uint64_t Size = getContext().getTypeSize(RetTy);
4913       if (Size <= 8)
4914         return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
4915       if (Size <= 16)
4916         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
4917       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
4918     }
4919 
4920     // Otherwise return in memory.
4921     markAllocatedGPRs(1, 1);
4922     return ABIArgInfo::getIndirect(0);
4923   }
4924 
4925   // Otherwise this is an AAPCS variant.
4926 
4927   if (isEmptyRecord(getContext(), RetTy, true))
4928     return ABIArgInfo::getIgnore();
4929 
4930   // Check for homogeneous aggregates with AAPCS-VFP.
4931   if (IsEffectivelyAAPCS_VFP) {
4932     const Type *Base = nullptr;
4933     uint64_t Members;
4934     if (isHomogeneousAggregate(RetTy, Base, Members)) {
4935       assert(Base && "Base class should be set for homogeneous aggregate");
4936       // Homogeneous Aggregates are returned directly.
4937       return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
4938     }
4939   }
4940 
4941   // Aggregates <= 4 bytes are returned in r0; other aggregates
4942   // are returned indirectly.
4943   uint64_t Size = getContext().getTypeSize(RetTy);
4944   if (Size <= 32) {
4945     if (getDataLayout().isBigEndian())
4946       // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4)
4947       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
4948 
4949     // Return in the smallest viable integer type.
4950     if (Size <= 8)
4951       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
4952     if (Size <= 16)
4953       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
4954     return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
4955   }
4956 
4957   markAllocatedGPRs(1, 1);
4958   return ABIArgInfo::getIndirect(0);
4959 }
4960 
4961 /// isIllegalVector - check whether Ty is an illegal vector type.
4962 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const {
4963   if (const VectorType *VT = Ty->getAs<VectorType>()) {
4964     // Check whether VT is legal.
4965     unsigned NumElements = VT->getNumElements();
4966     uint64_t Size = getContext().getTypeSize(VT);
4967     // NumElements should be power of 2.
4968     if ((NumElements & (NumElements - 1)) != 0)
4969       return true;
4970     // Size should be greater than 32 bits.
4971     return Size <= 32;
4972   }
4973   return false;
4974 }
4975 
4976 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
4977   // Homogeneous aggregates for AAPCS-VFP must have base types of float,
4978   // double, or 64-bit or 128-bit vectors.
4979   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
4980     if (BT->getKind() == BuiltinType::Float ||
4981         BT->getKind() == BuiltinType::Double ||
4982         BT->getKind() == BuiltinType::LongDouble)
4983       return true;
4984   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
4985     unsigned VecSize = getContext().getTypeSize(VT);
4986     if (VecSize == 64 || VecSize == 128)
4987       return true;
4988   }
4989   return false;
4990 }
4991 
4992 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
4993                                                    uint64_t Members) const {
4994   return Members <= 4;
4995 }
4996 
4997 llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4998                                    CodeGenFunction &CGF) const {
4999   llvm::Type *BP = CGF.Int8PtrTy;
5000   llvm::Type *BPP = CGF.Int8PtrPtrTy;
5001 
5002   CGBuilderTy &Builder = CGF.Builder;
5003   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
5004   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
5005 
5006   if (isEmptyRecord(getContext(), Ty, true)) {
5007     // These are ignored for parameter passing purposes.
5008     llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
5009     return Builder.CreateBitCast(Addr, PTy);
5010   }
5011 
5012   uint64_t Size = CGF.getContext().getTypeSize(Ty) / 8;
5013   uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8;
5014   bool IsIndirect = false;
5015 
5016   // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for
5017   // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte.
5018   if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
5019       getABIKind() == ARMABIInfo::AAPCS)
5020     TyAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
5021   else
5022     TyAlign = 4;
5023   // Use indirect if size of the illegal vector is bigger than 16 bytes.
5024   if (isIllegalVectorType(Ty) && Size > 16) {
5025     IsIndirect = true;
5026     Size = 4;
5027     TyAlign = 4;
5028   }
5029 
5030   // Handle address alignment for ABI alignment > 4 bytes.
5031   if (TyAlign > 4) {
5032     assert((TyAlign & (TyAlign - 1)) == 0 &&
5033            "Alignment is not power of 2!");
5034     llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty);
5035     AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1));
5036     AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1)));
5037     Addr = Builder.CreateIntToPtr(AddrAsInt, BP, "ap.align");
5038   }
5039 
5040   uint64_t Offset =
5041     llvm::RoundUpToAlignment(Size, 4);
5042   llvm::Value *NextAddr =
5043     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
5044                       "ap.next");
5045   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
5046 
5047   if (IsIndirect)
5048     Addr = Builder.CreateLoad(Builder.CreateBitCast(Addr, BPP));
5049   else if (TyAlign < CGF.getContext().getTypeAlign(Ty) / 8) {
5050     // We can't directly cast ap.cur to pointer to a vector type, since ap.cur
5051     // may not be correctly aligned for the vector type. We create an aligned
5052     // temporary space and copy the content over from ap.cur to the temporary
5053     // space. This is necessary if the natural alignment of the type is greater
5054     // than the ABI alignment.
5055     llvm::Type *I8PtrTy = Builder.getInt8PtrTy();
5056     CharUnits CharSize = getContext().getTypeSizeInChars(Ty);
5057     llvm::Value *AlignedTemp = CGF.CreateTempAlloca(CGF.ConvertType(Ty),
5058                                                     "var.align");
5059     llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy);
5060     llvm::Value *Src = Builder.CreateBitCast(Addr, I8PtrTy);
5061     Builder.CreateMemCpy(Dst, Src,
5062         llvm::ConstantInt::get(CGF.IntPtrTy, CharSize.getQuantity()),
5063         TyAlign, false);
5064     Addr = AlignedTemp; //The content is in aligned location.
5065   }
5066   llvm::Type *PTy =
5067     llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
5068   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
5069 
5070   return AddrTyped;
5071 }
5072 
5073 namespace {
5074 class NaClARMTargetCodeGenInfo : public TargetCodeGenInfo  {
5075  public:
5076   NaClARMTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, ARMABIInfo::ABIKind Kind)
5077       : TargetCodeGenInfo(new ARMABIInfo(CGT, Kind)) {}
5078 };
5079 }
5080 
5081 //===----------------------------------------------------------------------===//
5082 // NVPTX ABI Implementation
5083 //===----------------------------------------------------------------------===//
5084 
5085 namespace {
5086 
5087 class NVPTXABIInfo : public ABIInfo {
5088 public:
5089   NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
5090 
5091   ABIArgInfo classifyReturnType(QualType RetTy) const;
5092   ABIArgInfo classifyArgumentType(QualType Ty) const;
5093 
5094   void computeInfo(CGFunctionInfo &FI) const override;
5095   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5096                          CodeGenFunction &CFG) const override;
5097 };
5098 
5099 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo {
5100 public:
5101   NVPTXTargetCodeGenInfo(CodeGenTypes &CGT)
5102     : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {}
5103 
5104   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5105                            CodeGen::CodeGenModule &M) const override;
5106 private:
5107   // Adds a NamedMDNode with F, Name, and Operand as operands, and adds the
5108   // resulting MDNode to the nvvm.annotations MDNode.
5109   static void addNVVMMetadata(llvm::Function *F, StringRef Name, int Operand);
5110 };
5111 
5112 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const {
5113   if (RetTy->isVoidType())
5114     return ABIArgInfo::getIgnore();
5115 
5116   // note: this is different from default ABI
5117   if (!RetTy->isScalarType())
5118     return ABIArgInfo::getDirect();
5119 
5120   // Treat an enum type as its underlying type.
5121   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5122     RetTy = EnumTy->getDecl()->getIntegerType();
5123 
5124   return (RetTy->isPromotableIntegerType() ?
5125           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5126 }
5127 
5128 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const {
5129   // Treat an enum type as its underlying type.
5130   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5131     Ty = EnumTy->getDecl()->getIntegerType();
5132 
5133   // Return aggregates type as indirect by value
5134   if (isAggregateTypeForABI(Ty))
5135     return ABIArgInfo::getIndirect(0, /* byval */ true);
5136 
5137   return (Ty->isPromotableIntegerType() ?
5138           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5139 }
5140 
5141 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
5142   if (!getCXXABI().classifyReturnType(FI))
5143     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
5144   for (auto &I : FI.arguments())
5145     I.info = classifyArgumentType(I.type);
5146 
5147   // Always honor user-specified calling convention.
5148   if (FI.getCallingConvention() != llvm::CallingConv::C)
5149     return;
5150 
5151   FI.setEffectiveCallingConvention(getRuntimeCC());
5152 }
5153 
5154 llvm::Value *NVPTXABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5155                                      CodeGenFunction &CFG) const {
5156   llvm_unreachable("NVPTX does not support varargs");
5157 }
5158 
5159 void NVPTXTargetCodeGenInfo::
5160 SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5161                     CodeGen::CodeGenModule &M) const{
5162   const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
5163   if (!FD) return;
5164 
5165   llvm::Function *F = cast<llvm::Function>(GV);
5166 
5167   // Perform special handling in OpenCL mode
5168   if (M.getLangOpts().OpenCL) {
5169     // Use OpenCL function attributes to check for kernel functions
5170     // By default, all functions are device functions
5171     if (FD->hasAttr<OpenCLKernelAttr>()) {
5172       // OpenCL __kernel functions get kernel metadata
5173       // Create !{<func-ref>, metadata !"kernel", i32 1} node
5174       addNVVMMetadata(F, "kernel", 1);
5175       // And kernel functions are not subject to inlining
5176       F->addFnAttr(llvm::Attribute::NoInline);
5177     }
5178   }
5179 
5180   // Perform special handling in CUDA mode.
5181   if (M.getLangOpts().CUDA) {
5182     // CUDA __global__ functions get a kernel metadata entry.  Since
5183     // __global__ functions cannot be called from the device, we do not
5184     // need to set the noinline attribute.
5185     if (FD->hasAttr<CUDAGlobalAttr>()) {
5186       // Create !{<func-ref>, metadata !"kernel", i32 1} node
5187       addNVVMMetadata(F, "kernel", 1);
5188     }
5189     if (FD->hasAttr<CUDALaunchBoundsAttr>()) {
5190       // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node
5191       addNVVMMetadata(F, "maxntidx",
5192                       FD->getAttr<CUDALaunchBoundsAttr>()->getMaxThreads());
5193       // min blocks is a default argument for CUDALaunchBoundsAttr, so getting a
5194       // zero value from getMinBlocks either means it was not specified in
5195       // __launch_bounds__ or the user specified a 0 value. In both cases, we
5196       // don't have to add a PTX directive.
5197       int MinCTASM = FD->getAttr<CUDALaunchBoundsAttr>()->getMinBlocks();
5198       if (MinCTASM > 0) {
5199         // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node
5200         addNVVMMetadata(F, "minctasm", MinCTASM);
5201       }
5202     }
5203   }
5204 }
5205 
5206 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::Function *F, StringRef Name,
5207                                              int Operand) {
5208   llvm::Module *M = F->getParent();
5209   llvm::LLVMContext &Ctx = M->getContext();
5210 
5211   // Get "nvvm.annotations" metadata node
5212   llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations");
5213 
5214   llvm::Metadata *MDVals[] = {
5215       llvm::ConstantAsMetadata::get(F), llvm::MDString::get(Ctx, Name),
5216       llvm::ConstantAsMetadata::get(
5217           llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))};
5218   // Append metadata to nvvm.annotations
5219   MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
5220 }
5221 }
5222 
5223 //===----------------------------------------------------------------------===//
5224 // SystemZ ABI Implementation
5225 //===----------------------------------------------------------------------===//
5226 
5227 namespace {
5228 
5229 class SystemZABIInfo : public ABIInfo {
5230 public:
5231   SystemZABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
5232 
5233   bool isPromotableIntegerType(QualType Ty) const;
5234   bool isCompoundType(QualType Ty) const;
5235   bool isFPArgumentType(QualType Ty) const;
5236 
5237   ABIArgInfo classifyReturnType(QualType RetTy) const;
5238   ABIArgInfo classifyArgumentType(QualType ArgTy) const;
5239 
5240   void computeInfo(CGFunctionInfo &FI) const override {
5241     if (!getCXXABI().classifyReturnType(FI))
5242       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
5243     for (auto &I : FI.arguments())
5244       I.info = classifyArgumentType(I.type);
5245   }
5246 
5247   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5248                          CodeGenFunction &CGF) const override;
5249 };
5250 
5251 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
5252 public:
5253   SystemZTargetCodeGenInfo(CodeGenTypes &CGT)
5254     : TargetCodeGenInfo(new SystemZABIInfo(CGT)) {}
5255 };
5256 
5257 }
5258 
5259 bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const {
5260   // Treat an enum type as its underlying type.
5261   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5262     Ty = EnumTy->getDecl()->getIntegerType();
5263 
5264   // Promotable integer types are required to be promoted by the ABI.
5265   if (Ty->isPromotableIntegerType())
5266     return true;
5267 
5268   // 32-bit values must also be promoted.
5269   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
5270     switch (BT->getKind()) {
5271     case BuiltinType::Int:
5272     case BuiltinType::UInt:
5273       return true;
5274     default:
5275       return false;
5276     }
5277   return false;
5278 }
5279 
5280 bool SystemZABIInfo::isCompoundType(QualType Ty) const {
5281   return Ty->isAnyComplexType() || isAggregateTypeForABI(Ty);
5282 }
5283 
5284 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const {
5285   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
5286     switch (BT->getKind()) {
5287     case BuiltinType::Float:
5288     case BuiltinType::Double:
5289       return true;
5290     default:
5291       return false;
5292     }
5293 
5294   if (const RecordType *RT = Ty->getAsStructureType()) {
5295     const RecordDecl *RD = RT->getDecl();
5296     bool Found = false;
5297 
5298     // If this is a C++ record, check the bases first.
5299     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
5300       for (const auto &I : CXXRD->bases()) {
5301         QualType Base = I.getType();
5302 
5303         // Empty bases don't affect things either way.
5304         if (isEmptyRecord(getContext(), Base, true))
5305           continue;
5306 
5307         if (Found)
5308           return false;
5309         Found = isFPArgumentType(Base);
5310         if (!Found)
5311           return false;
5312       }
5313 
5314     // Check the fields.
5315     for (const auto *FD : RD->fields()) {
5316       // Empty bitfields don't affect things either way.
5317       // Unlike isSingleElementStruct(), empty structure and array fields
5318       // do count.  So do anonymous bitfields that aren't zero-sized.
5319       if (FD->isBitField() && FD->getBitWidthValue(getContext()) == 0)
5320         return true;
5321 
5322       // Unlike isSingleElementStruct(), arrays do not count.
5323       // Nested isFPArgumentType structures still do though.
5324       if (Found)
5325         return false;
5326       Found = isFPArgumentType(FD->getType());
5327       if (!Found)
5328         return false;
5329     }
5330 
5331     // Unlike isSingleElementStruct(), trailing padding is allowed.
5332     // An 8-byte aligned struct s { float f; } is passed as a double.
5333     return Found;
5334   }
5335 
5336   return false;
5337 }
5338 
5339 llvm::Value *SystemZABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5340                                        CodeGenFunction &CGF) const {
5341   // Assume that va_list type is correct; should be pointer to LLVM type:
5342   // struct {
5343   //   i64 __gpr;
5344   //   i64 __fpr;
5345   //   i8 *__overflow_arg_area;
5346   //   i8 *__reg_save_area;
5347   // };
5348 
5349   // Every argument occupies 8 bytes and is passed by preference in either
5350   // GPRs or FPRs.
5351   Ty = CGF.getContext().getCanonicalType(Ty);
5352   ABIArgInfo AI = classifyArgumentType(Ty);
5353   bool InFPRs = isFPArgumentType(Ty);
5354 
5355   llvm::Type *APTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
5356   bool IsIndirect = AI.isIndirect();
5357   unsigned UnpaddedBitSize;
5358   if (IsIndirect) {
5359     APTy = llvm::PointerType::getUnqual(APTy);
5360     UnpaddedBitSize = 64;
5361   } else
5362     UnpaddedBitSize = getContext().getTypeSize(Ty);
5363   unsigned PaddedBitSize = 64;
5364   assert((UnpaddedBitSize <= PaddedBitSize) && "Invalid argument size.");
5365 
5366   unsigned PaddedSize = PaddedBitSize / 8;
5367   unsigned Padding = (PaddedBitSize - UnpaddedBitSize) / 8;
5368 
5369   unsigned MaxRegs, RegCountField, RegSaveIndex, RegPadding;
5370   if (InFPRs) {
5371     MaxRegs = 4; // Maximum of 4 FPR arguments
5372     RegCountField = 1; // __fpr
5373     RegSaveIndex = 16; // save offset for f0
5374     RegPadding = 0; // floats are passed in the high bits of an FPR
5375   } else {
5376     MaxRegs = 5; // Maximum of 5 GPR arguments
5377     RegCountField = 0; // __gpr
5378     RegSaveIndex = 2; // save offset for r2
5379     RegPadding = Padding; // values are passed in the low bits of a GPR
5380   }
5381 
5382   llvm::Value *RegCountPtr =
5383     CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr");
5384   llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count");
5385   llvm::Type *IndexTy = RegCount->getType();
5386   llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs);
5387   llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV,
5388                                                  "fits_in_regs");
5389 
5390   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
5391   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
5392   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
5393   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
5394 
5395   // Emit code to load the value if it was passed in registers.
5396   CGF.EmitBlock(InRegBlock);
5397 
5398   // Work out the address of an argument register.
5399   llvm::Value *PaddedSizeV = llvm::ConstantInt::get(IndexTy, PaddedSize);
5400   llvm::Value *ScaledRegCount =
5401     CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count");
5402   llvm::Value *RegBase =
5403     llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize + RegPadding);
5404   llvm::Value *RegOffset =
5405     CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset");
5406   llvm::Value *RegSaveAreaPtr =
5407     CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr");
5408   llvm::Value *RegSaveArea =
5409     CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area");
5410   llvm::Value *RawRegAddr =
5411     CGF.Builder.CreateGEP(RegSaveArea, RegOffset, "raw_reg_addr");
5412   llvm::Value *RegAddr =
5413     CGF.Builder.CreateBitCast(RawRegAddr, APTy, "reg_addr");
5414 
5415   // Update the register count
5416   llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1);
5417   llvm::Value *NewRegCount =
5418     CGF.Builder.CreateAdd(RegCount, One, "reg_count");
5419   CGF.Builder.CreateStore(NewRegCount, RegCountPtr);
5420   CGF.EmitBranch(ContBlock);
5421 
5422   // Emit code to load the value if it was passed in memory.
5423   CGF.EmitBlock(InMemBlock);
5424 
5425   // Work out the address of a stack argument.
5426   llvm::Value *OverflowArgAreaPtr =
5427     CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr");
5428   llvm::Value *OverflowArgArea =
5429     CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area");
5430   llvm::Value *PaddingV = llvm::ConstantInt::get(IndexTy, Padding);
5431   llvm::Value *RawMemAddr =
5432     CGF.Builder.CreateGEP(OverflowArgArea, PaddingV, "raw_mem_addr");
5433   llvm::Value *MemAddr =
5434     CGF.Builder.CreateBitCast(RawMemAddr, APTy, "mem_addr");
5435 
5436   // Update overflow_arg_area_ptr pointer
5437   llvm::Value *NewOverflowArgArea =
5438     CGF.Builder.CreateGEP(OverflowArgArea, PaddedSizeV, "overflow_arg_area");
5439   CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
5440   CGF.EmitBranch(ContBlock);
5441 
5442   // Return the appropriate result.
5443   CGF.EmitBlock(ContBlock);
5444   llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(APTy, 2, "va_arg.addr");
5445   ResAddr->addIncoming(RegAddr, InRegBlock);
5446   ResAddr->addIncoming(MemAddr, InMemBlock);
5447 
5448   if (IsIndirect)
5449     return CGF.Builder.CreateLoad(ResAddr, "indirect_arg");
5450 
5451   return ResAddr;
5452 }
5453 
5454 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const {
5455   if (RetTy->isVoidType())
5456     return ABIArgInfo::getIgnore();
5457   if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64)
5458     return ABIArgInfo::getIndirect(0);
5459   return (isPromotableIntegerType(RetTy) ?
5460           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5461 }
5462 
5463 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const {
5464   // Handle the generic C++ ABI.
5465   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
5466     return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
5467 
5468   // Integers and enums are extended to full register width.
5469   if (isPromotableIntegerType(Ty))
5470     return ABIArgInfo::getExtend();
5471 
5472   // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly.
5473   uint64_t Size = getContext().getTypeSize(Ty);
5474   if (Size != 8 && Size != 16 && Size != 32 && Size != 64)
5475     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
5476 
5477   // Handle small structures.
5478   if (const RecordType *RT = Ty->getAs<RecordType>()) {
5479     // Structures with flexible arrays have variable length, so really
5480     // fail the size test above.
5481     const RecordDecl *RD = RT->getDecl();
5482     if (RD->hasFlexibleArrayMember())
5483       return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
5484 
5485     // The structure is passed as an unextended integer, a float, or a double.
5486     llvm::Type *PassTy;
5487     if (isFPArgumentType(Ty)) {
5488       assert(Size == 32 || Size == 64);
5489       if (Size == 32)
5490         PassTy = llvm::Type::getFloatTy(getVMContext());
5491       else
5492         PassTy = llvm::Type::getDoubleTy(getVMContext());
5493     } else
5494       PassTy = llvm::IntegerType::get(getVMContext(), Size);
5495     return ABIArgInfo::getDirect(PassTy);
5496   }
5497 
5498   // Non-structure compounds are passed indirectly.
5499   if (isCompoundType(Ty))
5500     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
5501 
5502   return ABIArgInfo::getDirect(nullptr);
5503 }
5504 
5505 //===----------------------------------------------------------------------===//
5506 // MSP430 ABI Implementation
5507 //===----------------------------------------------------------------------===//
5508 
5509 namespace {
5510 
5511 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
5512 public:
5513   MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
5514     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
5515   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5516                            CodeGen::CodeGenModule &M) const override;
5517 };
5518 
5519 }
5520 
5521 void MSP430TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
5522                                                   llvm::GlobalValue *GV,
5523                                              CodeGen::CodeGenModule &M) const {
5524   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
5525     if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) {
5526       // Handle 'interrupt' attribute:
5527       llvm::Function *F = cast<llvm::Function>(GV);
5528 
5529       // Step 1: Set ISR calling convention.
5530       F->setCallingConv(llvm::CallingConv::MSP430_INTR);
5531 
5532       // Step 2: Add attributes goodness.
5533       F->addFnAttr(llvm::Attribute::NoInline);
5534 
5535       // Step 3: Emit ISR vector alias.
5536       unsigned Num = attr->getNumber() / 2;
5537       llvm::GlobalAlias::create(llvm::Function::ExternalLinkage,
5538                                 "__isr_" + Twine(Num), F);
5539     }
5540   }
5541 }
5542 
5543 //===----------------------------------------------------------------------===//
5544 // MIPS ABI Implementation.  This works for both little-endian and
5545 // big-endian variants.
5546 //===----------------------------------------------------------------------===//
5547 
5548 namespace {
5549 class MipsABIInfo : public ABIInfo {
5550   bool IsO32;
5551   unsigned MinABIStackAlignInBytes, StackAlignInBytes;
5552   void CoerceToIntArgs(uint64_t TySize,
5553                        SmallVectorImpl<llvm::Type *> &ArgList) const;
5554   llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const;
5555   llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const;
5556   llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const;
5557 public:
5558   MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) :
5559     ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8),
5560     StackAlignInBytes(IsO32 ? 8 : 16) {}
5561 
5562   ABIArgInfo classifyReturnType(QualType RetTy) const;
5563   ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const;
5564   void computeInfo(CGFunctionInfo &FI) const override;
5565   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5566                          CodeGenFunction &CGF) const override;
5567 };
5568 
5569 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
5570   unsigned SizeOfUnwindException;
5571 public:
5572   MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32)
5573     : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)),
5574       SizeOfUnwindException(IsO32 ? 24 : 32) {}
5575 
5576   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
5577     return 29;
5578   }
5579 
5580   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5581                            CodeGen::CodeGenModule &CGM) const override {
5582     const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
5583     if (!FD) return;
5584     llvm::Function *Fn = cast<llvm::Function>(GV);
5585     if (FD->hasAttr<Mips16Attr>()) {
5586       Fn->addFnAttr("mips16");
5587     }
5588     else if (FD->hasAttr<NoMips16Attr>()) {
5589       Fn->addFnAttr("nomips16");
5590     }
5591   }
5592 
5593   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5594                                llvm::Value *Address) const override;
5595 
5596   unsigned getSizeOfUnwindException() const override {
5597     return SizeOfUnwindException;
5598   }
5599 };
5600 }
5601 
5602 void MipsABIInfo::CoerceToIntArgs(uint64_t TySize,
5603                                   SmallVectorImpl<llvm::Type *> &ArgList) const {
5604   llvm::IntegerType *IntTy =
5605     llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
5606 
5607   // Add (TySize / MinABIStackAlignInBytes) args of IntTy.
5608   for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N)
5609     ArgList.push_back(IntTy);
5610 
5611   // If necessary, add one more integer type to ArgList.
5612   unsigned R = TySize % (MinABIStackAlignInBytes * 8);
5613 
5614   if (R)
5615     ArgList.push_back(llvm::IntegerType::get(getVMContext(), R));
5616 }
5617 
5618 // In N32/64, an aligned double precision floating point field is passed in
5619 // a register.
5620 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const {
5621   SmallVector<llvm::Type*, 8> ArgList, IntArgList;
5622 
5623   if (IsO32) {
5624     CoerceToIntArgs(TySize, ArgList);
5625     return llvm::StructType::get(getVMContext(), ArgList);
5626   }
5627 
5628   if (Ty->isComplexType())
5629     return CGT.ConvertType(Ty);
5630 
5631   const RecordType *RT = Ty->getAs<RecordType>();
5632 
5633   // Unions/vectors are passed in integer registers.
5634   if (!RT || !RT->isStructureOrClassType()) {
5635     CoerceToIntArgs(TySize, ArgList);
5636     return llvm::StructType::get(getVMContext(), ArgList);
5637   }
5638 
5639   const RecordDecl *RD = RT->getDecl();
5640   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
5641   assert(!(TySize % 8) && "Size of structure must be multiple of 8.");
5642 
5643   uint64_t LastOffset = 0;
5644   unsigned idx = 0;
5645   llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64);
5646 
5647   // Iterate over fields in the struct/class and check if there are any aligned
5648   // double fields.
5649   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
5650        i != e; ++i, ++idx) {
5651     const QualType Ty = i->getType();
5652     const BuiltinType *BT = Ty->getAs<BuiltinType>();
5653 
5654     if (!BT || BT->getKind() != BuiltinType::Double)
5655       continue;
5656 
5657     uint64_t Offset = Layout.getFieldOffset(idx);
5658     if (Offset % 64) // Ignore doubles that are not aligned.
5659       continue;
5660 
5661     // Add ((Offset - LastOffset) / 64) args of type i64.
5662     for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j)
5663       ArgList.push_back(I64);
5664 
5665     // Add double type.
5666     ArgList.push_back(llvm::Type::getDoubleTy(getVMContext()));
5667     LastOffset = Offset + 64;
5668   }
5669 
5670   CoerceToIntArgs(TySize - LastOffset, IntArgList);
5671   ArgList.append(IntArgList.begin(), IntArgList.end());
5672 
5673   return llvm::StructType::get(getVMContext(), ArgList);
5674 }
5675 
5676 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset,
5677                                         uint64_t Offset) const {
5678   if (OrigOffset + MinABIStackAlignInBytes > Offset)
5679     return nullptr;
5680 
5681   return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8);
5682 }
5683 
5684 ABIArgInfo
5685 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const {
5686   Ty = useFirstFieldIfTransparentUnion(Ty);
5687 
5688   uint64_t OrigOffset = Offset;
5689   uint64_t TySize = getContext().getTypeSize(Ty);
5690   uint64_t Align = getContext().getTypeAlign(Ty) / 8;
5691 
5692   Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes),
5693                    (uint64_t)StackAlignInBytes);
5694   unsigned CurrOffset = llvm::RoundUpToAlignment(Offset, Align);
5695   Offset = CurrOffset + llvm::RoundUpToAlignment(TySize, Align * 8) / 8;
5696 
5697   if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) {
5698     // Ignore empty aggregates.
5699     if (TySize == 0)
5700       return ABIArgInfo::getIgnore();
5701 
5702     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
5703       Offset = OrigOffset + MinABIStackAlignInBytes;
5704       return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
5705     }
5706 
5707     // If we have reached here, aggregates are passed directly by coercing to
5708     // another structure type. Padding is inserted if the offset of the
5709     // aggregate is unaligned.
5710     ABIArgInfo ArgInfo =
5711         ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0,
5712                               getPaddingType(OrigOffset, CurrOffset));
5713     ArgInfo.setInReg(true);
5714     return ArgInfo;
5715   }
5716 
5717   // Treat an enum type as its underlying type.
5718   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5719     Ty = EnumTy->getDecl()->getIntegerType();
5720 
5721   // All integral types are promoted to the GPR width.
5722   if (Ty->isIntegralOrEnumerationType())
5723     return ABIArgInfo::getExtend();
5724 
5725   return ABIArgInfo::getDirect(
5726       nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset));
5727 }
5728 
5729 llvm::Type*
5730 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const {
5731   const RecordType *RT = RetTy->getAs<RecordType>();
5732   SmallVector<llvm::Type*, 8> RTList;
5733 
5734   if (RT && RT->isStructureOrClassType()) {
5735     const RecordDecl *RD = RT->getDecl();
5736     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
5737     unsigned FieldCnt = Layout.getFieldCount();
5738 
5739     // N32/64 returns struct/classes in floating point registers if the
5740     // following conditions are met:
5741     // 1. The size of the struct/class is no larger than 128-bit.
5742     // 2. The struct/class has one or two fields all of which are floating
5743     //    point types.
5744     // 3. The offset of the first field is zero (this follows what gcc does).
5745     //
5746     // Any other composite results are returned in integer registers.
5747     //
5748     if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) {
5749       RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end();
5750       for (; b != e; ++b) {
5751         const BuiltinType *BT = b->getType()->getAs<BuiltinType>();
5752 
5753         if (!BT || !BT->isFloatingPoint())
5754           break;
5755 
5756         RTList.push_back(CGT.ConvertType(b->getType()));
5757       }
5758 
5759       if (b == e)
5760         return llvm::StructType::get(getVMContext(), RTList,
5761                                      RD->hasAttr<PackedAttr>());
5762 
5763       RTList.clear();
5764     }
5765   }
5766 
5767   CoerceToIntArgs(Size, RTList);
5768   return llvm::StructType::get(getVMContext(), RTList);
5769 }
5770 
5771 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
5772   uint64_t Size = getContext().getTypeSize(RetTy);
5773 
5774   if (RetTy->isVoidType())
5775     return ABIArgInfo::getIgnore();
5776 
5777   // O32 doesn't treat zero-sized structs differently from other structs.
5778   // However, N32/N64 ignores zero sized return values.
5779   if (!IsO32 && Size == 0)
5780     return ABIArgInfo::getIgnore();
5781 
5782   if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) {
5783     if (Size <= 128) {
5784       if (RetTy->isAnyComplexType())
5785         return ABIArgInfo::getDirect();
5786 
5787       // O32 returns integer vectors in registers and N32/N64 returns all small
5788       // aggregates in registers.
5789       if (!IsO32 ||
5790           (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) {
5791         ABIArgInfo ArgInfo =
5792             ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
5793         ArgInfo.setInReg(true);
5794         return ArgInfo;
5795       }
5796     }
5797 
5798     return ABIArgInfo::getIndirect(0);
5799   }
5800 
5801   // Treat an enum type as its underlying type.
5802   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5803     RetTy = EnumTy->getDecl()->getIntegerType();
5804 
5805   return (RetTy->isPromotableIntegerType() ?
5806           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5807 }
5808 
5809 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
5810   ABIArgInfo &RetInfo = FI.getReturnInfo();
5811   if (!getCXXABI().classifyReturnType(FI))
5812     RetInfo = classifyReturnType(FI.getReturnType());
5813 
5814   // Check if a pointer to an aggregate is passed as a hidden argument.
5815   uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0;
5816 
5817   for (auto &I : FI.arguments())
5818     I.info = classifyArgumentType(I.type, Offset);
5819 }
5820 
5821 llvm::Value* MipsABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5822                                     CodeGenFunction &CGF) const {
5823   llvm::Type *BP = CGF.Int8PtrTy;
5824   llvm::Type *BPP = CGF.Int8PtrPtrTy;
5825 
5826   // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64.
5827   // Pointers are also promoted in the same way but this only matters for N32.
5828   unsigned SlotSizeInBits = IsO32 ? 32 : 64;
5829   unsigned PtrWidth = getTarget().getPointerWidth(0);
5830   if ((Ty->isIntegerType() &&
5831           CGF.getContext().getIntWidth(Ty) < SlotSizeInBits) ||
5832       (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) {
5833     Ty = CGF.getContext().getIntTypeForBitwidth(SlotSizeInBits,
5834                                                 Ty->isSignedIntegerType());
5835   }
5836 
5837   CGBuilderTy &Builder = CGF.Builder;
5838   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
5839   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
5840   int64_t TypeAlign =
5841       std::min(getContext().getTypeAlign(Ty) / 8, StackAlignInBytes);
5842   llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
5843   llvm::Value *AddrTyped;
5844   llvm::IntegerType *IntTy = (PtrWidth == 32) ? CGF.Int32Ty : CGF.Int64Ty;
5845 
5846   if (TypeAlign > MinABIStackAlignInBytes) {
5847     llvm::Value *AddrAsInt = CGF.Builder.CreatePtrToInt(Addr, IntTy);
5848     llvm::Value *Inc = llvm::ConstantInt::get(IntTy, TypeAlign - 1);
5849     llvm::Value *Mask = llvm::ConstantInt::get(IntTy, -TypeAlign);
5850     llvm::Value *Add = CGF.Builder.CreateAdd(AddrAsInt, Inc);
5851     llvm::Value *And = CGF.Builder.CreateAnd(Add, Mask);
5852     AddrTyped = CGF.Builder.CreateIntToPtr(And, PTy);
5853   }
5854   else
5855     AddrTyped = Builder.CreateBitCast(Addr, PTy);
5856 
5857   llvm::Value *AlignedAddr = Builder.CreateBitCast(AddrTyped, BP);
5858   TypeAlign = std::max((unsigned)TypeAlign, MinABIStackAlignInBytes);
5859   unsigned ArgSizeInBits = CGF.getContext().getTypeSize(Ty);
5860   uint64_t Offset = llvm::RoundUpToAlignment(ArgSizeInBits / 8, TypeAlign);
5861   llvm::Value *NextAddr =
5862     Builder.CreateGEP(AlignedAddr, llvm::ConstantInt::get(IntTy, Offset),
5863                       "ap.next");
5864   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
5865 
5866   return AddrTyped;
5867 }
5868 
5869 bool
5870 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5871                                                llvm::Value *Address) const {
5872   // This information comes from gcc's implementation, which seems to
5873   // as canonical as it gets.
5874 
5875   // Everything on MIPS is 4 bytes.  Double-precision FP registers
5876   // are aliased to pairs of single-precision FP registers.
5877   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
5878 
5879   // 0-31 are the general purpose registers, $0 - $31.
5880   // 32-63 are the floating-point registers, $f0 - $f31.
5881   // 64 and 65 are the multiply/divide registers, $hi and $lo.
5882   // 66 is the (notional, I think) register for signal-handler return.
5883   AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65);
5884 
5885   // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
5886   // They are one bit wide and ignored here.
5887 
5888   // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
5889   // (coprocessor 1 is the FP unit)
5890   // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
5891   // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
5892   // 176-181 are the DSP accumulator registers.
5893   AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181);
5894   return false;
5895 }
5896 
5897 //===----------------------------------------------------------------------===//
5898 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults.
5899 // Currently subclassed only to implement custom OpenCL C function attribute
5900 // handling.
5901 //===----------------------------------------------------------------------===//
5902 
5903 namespace {
5904 
5905 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo {
5906 public:
5907   TCETargetCodeGenInfo(CodeGenTypes &CGT)
5908     : DefaultTargetCodeGenInfo(CGT) {}
5909 
5910   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5911                            CodeGen::CodeGenModule &M) const override;
5912 };
5913 
5914 void TCETargetCodeGenInfo::SetTargetAttributes(const Decl *D,
5915                                                llvm::GlobalValue *GV,
5916                                                CodeGen::CodeGenModule &M) const {
5917   const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
5918   if (!FD) return;
5919 
5920   llvm::Function *F = cast<llvm::Function>(GV);
5921 
5922   if (M.getLangOpts().OpenCL) {
5923     if (FD->hasAttr<OpenCLKernelAttr>()) {
5924       // OpenCL C Kernel functions are not subject to inlining
5925       F->addFnAttr(llvm::Attribute::NoInline);
5926       const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>();
5927       if (Attr) {
5928         // Convert the reqd_work_group_size() attributes to metadata.
5929         llvm::LLVMContext &Context = F->getContext();
5930         llvm::NamedMDNode *OpenCLMetadata =
5931             M.getModule().getOrInsertNamedMetadata("opencl.kernel_wg_size_info");
5932 
5933         SmallVector<llvm::Metadata *, 5> Operands;
5934         Operands.push_back(llvm::ConstantAsMetadata::get(F));
5935 
5936         Operands.push_back(
5937             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
5938                 M.Int32Ty, llvm::APInt(32, Attr->getXDim()))));
5939         Operands.push_back(
5940             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
5941                 M.Int32Ty, llvm::APInt(32, Attr->getYDim()))));
5942         Operands.push_back(
5943             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
5944                 M.Int32Ty, llvm::APInt(32, Attr->getZDim()))));
5945 
5946         // Add a boolean constant operand for "required" (true) or "hint" (false)
5947         // for implementing the work_group_size_hint attr later. Currently
5948         // always true as the hint is not yet implemented.
5949         Operands.push_back(
5950             llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context)));
5951         OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands));
5952       }
5953     }
5954   }
5955 }
5956 
5957 }
5958 
5959 //===----------------------------------------------------------------------===//
5960 // Hexagon ABI Implementation
5961 //===----------------------------------------------------------------------===//
5962 
5963 namespace {
5964 
5965 class HexagonABIInfo : public ABIInfo {
5966 
5967 
5968 public:
5969   HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
5970 
5971 private:
5972 
5973   ABIArgInfo classifyReturnType(QualType RetTy) const;
5974   ABIArgInfo classifyArgumentType(QualType RetTy) const;
5975 
5976   void computeInfo(CGFunctionInfo &FI) const override;
5977 
5978   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5979                          CodeGenFunction &CGF) const override;
5980 };
5981 
5982 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo {
5983 public:
5984   HexagonTargetCodeGenInfo(CodeGenTypes &CGT)
5985     :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {}
5986 
5987   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
5988     return 29;
5989   }
5990 };
5991 
5992 }
5993 
5994 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const {
5995   if (!getCXXABI().classifyReturnType(FI))
5996     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
5997   for (auto &I : FI.arguments())
5998     I.info = classifyArgumentType(I.type);
5999 }
6000 
6001 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const {
6002   if (!isAggregateTypeForABI(Ty)) {
6003     // Treat an enum type as its underlying type.
6004     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
6005       Ty = EnumTy->getDecl()->getIntegerType();
6006 
6007     return (Ty->isPromotableIntegerType() ?
6008             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
6009   }
6010 
6011   // Ignore empty records.
6012   if (isEmptyRecord(getContext(), Ty, true))
6013     return ABIArgInfo::getIgnore();
6014 
6015   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
6016     return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
6017 
6018   uint64_t Size = getContext().getTypeSize(Ty);
6019   if (Size > 64)
6020     return ABIArgInfo::getIndirect(0, /*ByVal=*/true);
6021     // Pass in the smallest viable integer type.
6022   else if (Size > 32)
6023       return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
6024   else if (Size > 16)
6025       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6026   else if (Size > 8)
6027       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
6028   else
6029       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
6030 }
6031 
6032 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const {
6033   if (RetTy->isVoidType())
6034     return ABIArgInfo::getIgnore();
6035 
6036   // Large vector types should be returned via memory.
6037   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64)
6038     return ABIArgInfo::getIndirect(0);
6039 
6040   if (!isAggregateTypeForABI(RetTy)) {
6041     // Treat an enum type as its underlying type.
6042     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
6043       RetTy = EnumTy->getDecl()->getIntegerType();
6044 
6045     return (RetTy->isPromotableIntegerType() ?
6046             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
6047   }
6048 
6049   if (isEmptyRecord(getContext(), RetTy, true))
6050     return ABIArgInfo::getIgnore();
6051 
6052   // Aggregates <= 8 bytes are returned in r0; other aggregates
6053   // are returned indirectly.
6054   uint64_t Size = getContext().getTypeSize(RetTy);
6055   if (Size <= 64) {
6056     // Return in the smallest viable integer type.
6057     if (Size <= 8)
6058       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
6059     if (Size <= 16)
6060       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
6061     if (Size <= 32)
6062       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6063     return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
6064   }
6065 
6066   return ABIArgInfo::getIndirect(0, /*ByVal=*/true);
6067 }
6068 
6069 llvm::Value *HexagonABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
6070                                        CodeGenFunction &CGF) const {
6071   // FIXME: Need to handle alignment
6072   llvm::Type *BPP = CGF.Int8PtrPtrTy;
6073 
6074   CGBuilderTy &Builder = CGF.Builder;
6075   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
6076                                                        "ap");
6077   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
6078   llvm::Type *PTy =
6079     llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
6080   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
6081 
6082   uint64_t Offset =
6083     llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
6084   llvm::Value *NextAddr =
6085     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
6086                       "ap.next");
6087   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
6088 
6089   return AddrTyped;
6090 }
6091 
6092 //===----------------------------------------------------------------------===//
6093 // AMDGPU ABI Implementation
6094 //===----------------------------------------------------------------------===//
6095 
6096 namespace {
6097 
6098 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo {
6099 public:
6100   AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT)
6101     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
6102   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6103                            CodeGen::CodeGenModule &M) const override;
6104 };
6105 
6106 }
6107 
6108 void AMDGPUTargetCodeGenInfo::SetTargetAttributes(
6109   const Decl *D,
6110   llvm::GlobalValue *GV,
6111   CodeGen::CodeGenModule &M) const {
6112   const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
6113   if (!FD)
6114     return;
6115 
6116   if (const auto Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) {
6117     llvm::Function *F = cast<llvm::Function>(GV);
6118     uint32_t NumVGPR = Attr->getNumVGPR();
6119     if (NumVGPR != 0)
6120       F->addFnAttr("amdgpu_num_vgpr", llvm::utostr(NumVGPR));
6121   }
6122 
6123   if (const auto Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) {
6124     llvm::Function *F = cast<llvm::Function>(GV);
6125     unsigned NumSGPR = Attr->getNumSGPR();
6126     if (NumSGPR != 0)
6127       F->addFnAttr("amdgpu_num_sgpr", llvm::utostr(NumSGPR));
6128   }
6129 }
6130 
6131 
6132 //===----------------------------------------------------------------------===//
6133 // SPARC v9 ABI Implementation.
6134 // Based on the SPARC Compliance Definition version 2.4.1.
6135 //
6136 // Function arguments a mapped to a nominal "parameter array" and promoted to
6137 // registers depending on their type. Each argument occupies 8 or 16 bytes in
6138 // the array, structs larger than 16 bytes are passed indirectly.
6139 //
6140 // One case requires special care:
6141 //
6142 //   struct mixed {
6143 //     int i;
6144 //     float f;
6145 //   };
6146 //
6147 // When a struct mixed is passed by value, it only occupies 8 bytes in the
6148 // parameter array, but the int is passed in an integer register, and the float
6149 // is passed in a floating point register. This is represented as two arguments
6150 // with the LLVM IR inreg attribute:
6151 //
6152 //   declare void f(i32 inreg %i, float inreg %f)
6153 //
6154 // The code generator will only allocate 4 bytes from the parameter array for
6155 // the inreg arguments. All other arguments are allocated a multiple of 8
6156 // bytes.
6157 //
6158 namespace {
6159 class SparcV9ABIInfo : public ABIInfo {
6160 public:
6161   SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
6162 
6163 private:
6164   ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const;
6165   void computeInfo(CGFunctionInfo &FI) const override;
6166   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
6167                          CodeGenFunction &CGF) const override;
6168 
6169   // Coercion type builder for structs passed in registers. The coercion type
6170   // serves two purposes:
6171   //
6172   // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned'
6173   //    in registers.
6174   // 2. Expose aligned floating point elements as first-level elements, so the
6175   //    code generator knows to pass them in floating point registers.
6176   //
6177   // We also compute the InReg flag which indicates that the struct contains
6178   // aligned 32-bit floats.
6179   //
6180   struct CoerceBuilder {
6181     llvm::LLVMContext &Context;
6182     const llvm::DataLayout &DL;
6183     SmallVector<llvm::Type*, 8> Elems;
6184     uint64_t Size;
6185     bool InReg;
6186 
6187     CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl)
6188       : Context(c), DL(dl), Size(0), InReg(false) {}
6189 
6190     // Pad Elems with integers until Size is ToSize.
6191     void pad(uint64_t ToSize) {
6192       assert(ToSize >= Size && "Cannot remove elements");
6193       if (ToSize == Size)
6194         return;
6195 
6196       // Finish the current 64-bit word.
6197       uint64_t Aligned = llvm::RoundUpToAlignment(Size, 64);
6198       if (Aligned > Size && Aligned <= ToSize) {
6199         Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size));
6200         Size = Aligned;
6201       }
6202 
6203       // Add whole 64-bit words.
6204       while (Size + 64 <= ToSize) {
6205         Elems.push_back(llvm::Type::getInt64Ty(Context));
6206         Size += 64;
6207       }
6208 
6209       // Final in-word padding.
6210       if (Size < ToSize) {
6211         Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size));
6212         Size = ToSize;
6213       }
6214     }
6215 
6216     // Add a floating point element at Offset.
6217     void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) {
6218       // Unaligned floats are treated as integers.
6219       if (Offset % Bits)
6220         return;
6221       // The InReg flag is only required if there are any floats < 64 bits.
6222       if (Bits < 64)
6223         InReg = true;
6224       pad(Offset);
6225       Elems.push_back(Ty);
6226       Size = Offset + Bits;
6227     }
6228 
6229     // Add a struct type to the coercion type, starting at Offset (in bits).
6230     void addStruct(uint64_t Offset, llvm::StructType *StrTy) {
6231       const llvm::StructLayout *Layout = DL.getStructLayout(StrTy);
6232       for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) {
6233         llvm::Type *ElemTy = StrTy->getElementType(i);
6234         uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i);
6235         switch (ElemTy->getTypeID()) {
6236         case llvm::Type::StructTyID:
6237           addStruct(ElemOffset, cast<llvm::StructType>(ElemTy));
6238           break;
6239         case llvm::Type::FloatTyID:
6240           addFloat(ElemOffset, ElemTy, 32);
6241           break;
6242         case llvm::Type::DoubleTyID:
6243           addFloat(ElemOffset, ElemTy, 64);
6244           break;
6245         case llvm::Type::FP128TyID:
6246           addFloat(ElemOffset, ElemTy, 128);
6247           break;
6248         case llvm::Type::PointerTyID:
6249           if (ElemOffset % 64 == 0) {
6250             pad(ElemOffset);
6251             Elems.push_back(ElemTy);
6252             Size += 64;
6253           }
6254           break;
6255         default:
6256           break;
6257         }
6258       }
6259     }
6260 
6261     // Check if Ty is a usable substitute for the coercion type.
6262     bool isUsableType(llvm::StructType *Ty) const {
6263       if (Ty->getNumElements() != Elems.size())
6264         return false;
6265       for (unsigned i = 0, e = Elems.size(); i != e; ++i)
6266         if (Elems[i] != Ty->getElementType(i))
6267           return false;
6268       return true;
6269     }
6270 
6271     // Get the coercion type as a literal struct type.
6272     llvm::Type *getType() const {
6273       if (Elems.size() == 1)
6274         return Elems.front();
6275       else
6276         return llvm::StructType::get(Context, Elems);
6277     }
6278   };
6279 };
6280 } // end anonymous namespace
6281 
6282 ABIArgInfo
6283 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const {
6284   if (Ty->isVoidType())
6285     return ABIArgInfo::getIgnore();
6286 
6287   uint64_t Size = getContext().getTypeSize(Ty);
6288 
6289   // Anything too big to fit in registers is passed with an explicit indirect
6290   // pointer / sret pointer.
6291   if (Size > SizeLimit)
6292     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
6293 
6294   // Treat an enum type as its underlying type.
6295   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
6296     Ty = EnumTy->getDecl()->getIntegerType();
6297 
6298   // Integer types smaller than a register are extended.
6299   if (Size < 64 && Ty->isIntegerType())
6300     return ABIArgInfo::getExtend();
6301 
6302   // Other non-aggregates go in registers.
6303   if (!isAggregateTypeForABI(Ty))
6304     return ABIArgInfo::getDirect();
6305 
6306   // If a C++ object has either a non-trivial copy constructor or a non-trivial
6307   // destructor, it is passed with an explicit indirect pointer / sret pointer.
6308   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
6309     return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
6310 
6311   // This is a small aggregate type that should be passed in registers.
6312   // Build a coercion type from the LLVM struct type.
6313   llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty));
6314   if (!StrTy)
6315     return ABIArgInfo::getDirect();
6316 
6317   CoerceBuilder CB(getVMContext(), getDataLayout());
6318   CB.addStruct(0, StrTy);
6319   CB.pad(llvm::RoundUpToAlignment(CB.DL.getTypeSizeInBits(StrTy), 64));
6320 
6321   // Try to use the original type for coercion.
6322   llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType();
6323 
6324   if (CB.InReg)
6325     return ABIArgInfo::getDirectInReg(CoerceTy);
6326   else
6327     return ABIArgInfo::getDirect(CoerceTy);
6328 }
6329 
6330 llvm::Value *SparcV9ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
6331                                        CodeGenFunction &CGF) const {
6332   ABIArgInfo AI = classifyType(Ty, 16 * 8);
6333   llvm::Type *ArgTy = CGT.ConvertType(Ty);
6334   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
6335     AI.setCoerceToType(ArgTy);
6336 
6337   llvm::Type *BPP = CGF.Int8PtrPtrTy;
6338   CGBuilderTy &Builder = CGF.Builder;
6339   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
6340   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
6341   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
6342   llvm::Value *ArgAddr;
6343   unsigned Stride;
6344 
6345   switch (AI.getKind()) {
6346   case ABIArgInfo::Expand:
6347   case ABIArgInfo::InAlloca:
6348     llvm_unreachable("Unsupported ABI kind for va_arg");
6349 
6350   case ABIArgInfo::Extend:
6351     Stride = 8;
6352     ArgAddr = Builder
6353       .CreateConstGEP1_32(Addr, 8 - getDataLayout().getTypeAllocSize(ArgTy),
6354                           "extend");
6355     break;
6356 
6357   case ABIArgInfo::Direct:
6358     Stride = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
6359     ArgAddr = Addr;
6360     break;
6361 
6362   case ABIArgInfo::Indirect:
6363     Stride = 8;
6364     ArgAddr = Builder.CreateBitCast(Addr,
6365                                     llvm::PointerType::getUnqual(ArgPtrTy),
6366                                     "indirect");
6367     ArgAddr = Builder.CreateLoad(ArgAddr, "indirect.arg");
6368     break;
6369 
6370   case ABIArgInfo::Ignore:
6371     return llvm::UndefValue::get(ArgPtrTy);
6372   }
6373 
6374   // Update VAList.
6375   Addr = Builder.CreateConstGEP1_32(Addr, Stride, "ap.next");
6376   Builder.CreateStore(Addr, VAListAddrAsBPP);
6377 
6378   return Builder.CreatePointerCast(ArgAddr, ArgPtrTy, "arg.addr");
6379 }
6380 
6381 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const {
6382   FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8);
6383   for (auto &I : FI.arguments())
6384     I.info = classifyType(I.type, 16 * 8);
6385 }
6386 
6387 namespace {
6388 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo {
6389 public:
6390   SparcV9TargetCodeGenInfo(CodeGenTypes &CGT)
6391     : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {}
6392 
6393   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
6394     return 14;
6395   }
6396 
6397   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
6398                                llvm::Value *Address) const override;
6399 };
6400 } // end anonymous namespace
6401 
6402 bool
6403 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
6404                                                 llvm::Value *Address) const {
6405   // This is calculated from the LLVM and GCC tables and verified
6406   // against gcc output.  AFAIK all ABIs use the same encoding.
6407 
6408   CodeGen::CGBuilderTy &Builder = CGF.Builder;
6409 
6410   llvm::IntegerType *i8 = CGF.Int8Ty;
6411   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
6412   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
6413 
6414   // 0-31: the 8-byte general-purpose registers
6415   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
6416 
6417   // 32-63: f0-31, the 4-byte floating-point registers
6418   AssignToArrayRange(Builder, Address, Four8, 32, 63);
6419 
6420   //   Y   = 64
6421   //   PSR = 65
6422   //   WIM = 66
6423   //   TBR = 67
6424   //   PC  = 68
6425   //   NPC = 69
6426   //   FSR = 70
6427   //   CSR = 71
6428   AssignToArrayRange(Builder, Address, Eight8, 64, 71);
6429 
6430   // 72-87: d0-15, the 8-byte floating-point registers
6431   AssignToArrayRange(Builder, Address, Eight8, 72, 87);
6432 
6433   return false;
6434 }
6435 
6436 
6437 //===----------------------------------------------------------------------===//
6438 // XCore ABI Implementation
6439 //===----------------------------------------------------------------------===//
6440 
6441 namespace {
6442 
6443 /// A SmallStringEnc instance is used to build up the TypeString by passing
6444 /// it by reference between functions that append to it.
6445 typedef llvm::SmallString<128> SmallStringEnc;
6446 
6447 /// TypeStringCache caches the meta encodings of Types.
6448 ///
6449 /// The reason for caching TypeStrings is two fold:
6450 ///   1. To cache a type's encoding for later uses;
6451 ///   2. As a means to break recursive member type inclusion.
6452 ///
6453 /// A cache Entry can have a Status of:
6454 ///   NonRecursive:   The type encoding is not recursive;
6455 ///   Recursive:      The type encoding is recursive;
6456 ///   Incomplete:     An incomplete TypeString;
6457 ///   IncompleteUsed: An incomplete TypeString that has been used in a
6458 ///                   Recursive type encoding.
6459 ///
6460 /// A NonRecursive entry will have all of its sub-members expanded as fully
6461 /// as possible. Whilst it may contain types which are recursive, the type
6462 /// itself is not recursive and thus its encoding may be safely used whenever
6463 /// the type is encountered.
6464 ///
6465 /// A Recursive entry will have all of its sub-members expanded as fully as
6466 /// possible. The type itself is recursive and it may contain other types which
6467 /// are recursive. The Recursive encoding must not be used during the expansion
6468 /// of a recursive type's recursive branch. For simplicity the code uses
6469 /// IncompleteCount to reject all usage of Recursive encodings for member types.
6470 ///
6471 /// An Incomplete entry is always a RecordType and only encodes its
6472 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and
6473 /// are placed into the cache during type expansion as a means to identify and
6474 /// handle recursive inclusion of types as sub-members. If there is recursion
6475 /// the entry becomes IncompleteUsed.
6476 ///
6477 /// During the expansion of a RecordType's members:
6478 ///
6479 ///   If the cache contains a NonRecursive encoding for the member type, the
6480 ///   cached encoding is used;
6481 ///
6482 ///   If the cache contains a Recursive encoding for the member type, the
6483 ///   cached encoding is 'Swapped' out, as it may be incorrect, and...
6484 ///
6485 ///   If the member is a RecordType, an Incomplete encoding is placed into the
6486 ///   cache to break potential recursive inclusion of itself as a sub-member;
6487 ///
6488 ///   Once a member RecordType has been expanded, its temporary incomplete
6489 ///   entry is removed from the cache. If a Recursive encoding was swapped out
6490 ///   it is swapped back in;
6491 ///
6492 ///   If an incomplete entry is used to expand a sub-member, the incomplete
6493 ///   entry is marked as IncompleteUsed. The cache keeps count of how many
6494 ///   IncompleteUsed entries it currently contains in IncompleteUsedCount;
6495 ///
6496 ///   If a member's encoding is found to be a NonRecursive or Recursive viz:
6497 ///   IncompleteUsedCount==0, the member's encoding is added to the cache.
6498 ///   Else the member is part of a recursive type and thus the recursion has
6499 ///   been exited too soon for the encoding to be correct for the member.
6500 ///
6501 class TypeStringCache {
6502   enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed};
6503   struct Entry {
6504     std::string Str;     // The encoded TypeString for the type.
6505     enum Status State;   // Information about the encoding in 'Str'.
6506     std::string Swapped; // A temporary place holder for a Recursive encoding
6507                          // during the expansion of RecordType's members.
6508   };
6509   std::map<const IdentifierInfo *, struct Entry> Map;
6510   unsigned IncompleteCount;     // Number of Incomplete entries in the Map.
6511   unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map.
6512 public:
6513   TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {};
6514   void addIncomplete(const IdentifierInfo *ID, std::string StubEnc);
6515   bool removeIncomplete(const IdentifierInfo *ID);
6516   void addIfComplete(const IdentifierInfo *ID, StringRef Str,
6517                      bool IsRecursive);
6518   StringRef lookupStr(const IdentifierInfo *ID);
6519 };
6520 
6521 /// TypeString encodings for enum & union fields must be order.
6522 /// FieldEncoding is a helper for this ordering process.
6523 class FieldEncoding {
6524   bool HasName;
6525   std::string Enc;
6526 public:
6527   FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {};
6528   StringRef str() {return Enc.c_str();};
6529   bool operator<(const FieldEncoding &rhs) const {
6530     if (HasName != rhs.HasName) return HasName;
6531     return Enc < rhs.Enc;
6532   }
6533 };
6534 
6535 class XCoreABIInfo : public DefaultABIInfo {
6536 public:
6537   XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
6538   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
6539                          CodeGenFunction &CGF) const override;
6540 };
6541 
6542 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo {
6543   mutable TypeStringCache TSC;
6544 public:
6545   XCoreTargetCodeGenInfo(CodeGenTypes &CGT)
6546     :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {}
6547   void emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
6548                     CodeGen::CodeGenModule &M) const override;
6549 };
6550 
6551 } // End anonymous namespace.
6552 
6553 llvm::Value *XCoreABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
6554                                      CodeGenFunction &CGF) const {
6555   CGBuilderTy &Builder = CGF.Builder;
6556 
6557   // Get the VAList.
6558   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr,
6559                                                        CGF.Int8PtrPtrTy);
6560   llvm::Value *AP = Builder.CreateLoad(VAListAddrAsBPP);
6561 
6562   // Handle the argument.
6563   ABIArgInfo AI = classifyArgumentType(Ty);
6564   llvm::Type *ArgTy = CGT.ConvertType(Ty);
6565   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
6566     AI.setCoerceToType(ArgTy);
6567   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
6568   llvm::Value *Val;
6569   uint64_t ArgSize = 0;
6570   switch (AI.getKind()) {
6571   case ABIArgInfo::Expand:
6572   case ABIArgInfo::InAlloca:
6573     llvm_unreachable("Unsupported ABI kind for va_arg");
6574   case ABIArgInfo::Ignore:
6575     Val = llvm::UndefValue::get(ArgPtrTy);
6576     ArgSize = 0;
6577     break;
6578   case ABIArgInfo::Extend:
6579   case ABIArgInfo::Direct:
6580     Val = Builder.CreatePointerCast(AP, ArgPtrTy);
6581     ArgSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
6582     if (ArgSize < 4)
6583       ArgSize = 4;
6584     break;
6585   case ABIArgInfo::Indirect:
6586     llvm::Value *ArgAddr;
6587     ArgAddr = Builder.CreateBitCast(AP, llvm::PointerType::getUnqual(ArgPtrTy));
6588     ArgAddr = Builder.CreateLoad(ArgAddr);
6589     Val = Builder.CreatePointerCast(ArgAddr, ArgPtrTy);
6590     ArgSize = 4;
6591     break;
6592   }
6593 
6594   // Increment the VAList.
6595   if (ArgSize) {
6596     llvm::Value *APN = Builder.CreateConstGEP1_32(AP, ArgSize);
6597     Builder.CreateStore(APN, VAListAddrAsBPP);
6598   }
6599   return Val;
6600 }
6601 
6602 /// During the expansion of a RecordType, an incomplete TypeString is placed
6603 /// into the cache as a means to identify and break recursion.
6604 /// If there is a Recursive encoding in the cache, it is swapped out and will
6605 /// be reinserted by removeIncomplete().
6606 /// All other types of encoding should have been used rather than arriving here.
6607 void TypeStringCache::addIncomplete(const IdentifierInfo *ID,
6608                                     std::string StubEnc) {
6609   if (!ID)
6610     return;
6611   Entry &E = Map[ID];
6612   assert( (E.Str.empty() || E.State == Recursive) &&
6613          "Incorrectly use of addIncomplete");
6614   assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()");
6615   E.Swapped.swap(E.Str); // swap out the Recursive
6616   E.Str.swap(StubEnc);
6617   E.State = Incomplete;
6618   ++IncompleteCount;
6619 }
6620 
6621 /// Once the RecordType has been expanded, the temporary incomplete TypeString
6622 /// must be removed from the cache.
6623 /// If a Recursive was swapped out by addIncomplete(), it will be replaced.
6624 /// Returns true if the RecordType was defined recursively.
6625 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) {
6626   if (!ID)
6627     return false;
6628   auto I = Map.find(ID);
6629   assert(I != Map.end() && "Entry not present");
6630   Entry &E = I->second;
6631   assert( (E.State == Incomplete ||
6632            E.State == IncompleteUsed) &&
6633          "Entry must be an incomplete type");
6634   bool IsRecursive = false;
6635   if (E.State == IncompleteUsed) {
6636     // We made use of our Incomplete encoding, thus we are recursive.
6637     IsRecursive = true;
6638     --IncompleteUsedCount;
6639   }
6640   if (E.Swapped.empty())
6641     Map.erase(I);
6642   else {
6643     // Swap the Recursive back.
6644     E.Swapped.swap(E.Str);
6645     E.Swapped.clear();
6646     E.State = Recursive;
6647   }
6648   --IncompleteCount;
6649   return IsRecursive;
6650 }
6651 
6652 /// Add the encoded TypeString to the cache only if it is NonRecursive or
6653 /// Recursive (viz: all sub-members were expanded as fully as possible).
6654 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str,
6655                                     bool IsRecursive) {
6656   if (!ID || IncompleteUsedCount)
6657     return; // No key or it is is an incomplete sub-type so don't add.
6658   Entry &E = Map[ID];
6659   if (IsRecursive && !E.Str.empty()) {
6660     assert(E.State==Recursive && E.Str.size() == Str.size() &&
6661            "This is not the same Recursive entry");
6662     // The parent container was not recursive after all, so we could have used
6663     // this Recursive sub-member entry after all, but we assumed the worse when
6664     // we started viz: IncompleteCount!=0.
6665     return;
6666   }
6667   assert(E.Str.empty() && "Entry already present");
6668   E.Str = Str.str();
6669   E.State = IsRecursive? Recursive : NonRecursive;
6670 }
6671 
6672 /// Return a cached TypeString encoding for the ID. If there isn't one, or we
6673 /// are recursively expanding a type (IncompleteCount != 0) and the cached
6674 /// encoding is Recursive, return an empty StringRef.
6675 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) {
6676   if (!ID)
6677     return StringRef();   // We have no key.
6678   auto I = Map.find(ID);
6679   if (I == Map.end())
6680     return StringRef();   // We have no encoding.
6681   Entry &E = I->second;
6682   if (E.State == Recursive && IncompleteCount)
6683     return StringRef();   // We don't use Recursive encodings for member types.
6684 
6685   if (E.State == Incomplete) {
6686     // The incomplete type is being used to break out of recursion.
6687     E.State = IncompleteUsed;
6688     ++IncompleteUsedCount;
6689   }
6690   return E.Str.c_str();
6691 }
6692 
6693 /// The XCore ABI includes a type information section that communicates symbol
6694 /// type information to the linker. The linker uses this information to verify
6695 /// safety/correctness of things such as array bound and pointers et al.
6696 /// The ABI only requires C (and XC) language modules to emit TypeStrings.
6697 /// This type information (TypeString) is emitted into meta data for all global
6698 /// symbols: definitions, declarations, functions & variables.
6699 ///
6700 /// The TypeString carries type, qualifier, name, size & value details.
6701 /// Please see 'Tools Development Guide' section 2.16.2 for format details:
6702 /// <https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf>
6703 /// The output is tested by test/CodeGen/xcore-stringtype.c.
6704 ///
6705 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
6706                           CodeGen::CodeGenModule &CGM, TypeStringCache &TSC);
6707 
6708 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols.
6709 void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
6710                                           CodeGen::CodeGenModule &CGM) const {
6711   SmallStringEnc Enc;
6712   if (getTypeString(Enc, D, CGM, TSC)) {
6713     llvm::LLVMContext &Ctx = CGM.getModule().getContext();
6714     llvm::SmallVector<llvm::Metadata *, 2> MDVals;
6715     MDVals.push_back(llvm::ConstantAsMetadata::get(GV));
6716     MDVals.push_back(llvm::MDString::get(Ctx, Enc.str()));
6717     llvm::NamedMDNode *MD =
6718       CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings");
6719     MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
6720   }
6721 }
6722 
6723 static bool appendType(SmallStringEnc &Enc, QualType QType,
6724                        const CodeGen::CodeGenModule &CGM,
6725                        TypeStringCache &TSC);
6726 
6727 /// Helper function for appendRecordType().
6728 /// Builds a SmallVector containing the encoded field types in declaration order.
6729 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE,
6730                              const RecordDecl *RD,
6731                              const CodeGen::CodeGenModule &CGM,
6732                              TypeStringCache &TSC) {
6733   for (const auto *Field : RD->fields()) {
6734     SmallStringEnc Enc;
6735     Enc += "m(";
6736     Enc += Field->getName();
6737     Enc += "){";
6738     if (Field->isBitField()) {
6739       Enc += "b(";
6740       llvm::raw_svector_ostream OS(Enc);
6741       OS.resync();
6742       OS << Field->getBitWidthValue(CGM.getContext());
6743       OS.flush();
6744       Enc += ':';
6745     }
6746     if (!appendType(Enc, Field->getType(), CGM, TSC))
6747       return false;
6748     if (Field->isBitField())
6749       Enc += ')';
6750     Enc += '}';
6751     FE.push_back(FieldEncoding(!Field->getName().empty(), Enc));
6752   }
6753   return true;
6754 }
6755 
6756 /// Appends structure and union types to Enc and adds encoding to cache.
6757 /// Recursively calls appendType (via extractFieldType) for each field.
6758 /// Union types have their fields ordered according to the ABI.
6759 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT,
6760                              const CodeGen::CodeGenModule &CGM,
6761                              TypeStringCache &TSC, const IdentifierInfo *ID) {
6762   // Append the cached TypeString if we have one.
6763   StringRef TypeString = TSC.lookupStr(ID);
6764   if (!TypeString.empty()) {
6765     Enc += TypeString;
6766     return true;
6767   }
6768 
6769   // Start to emit an incomplete TypeString.
6770   size_t Start = Enc.size();
6771   Enc += (RT->isUnionType()? 'u' : 's');
6772   Enc += '(';
6773   if (ID)
6774     Enc += ID->getName();
6775   Enc += "){";
6776 
6777   // We collect all encoded fields and order as necessary.
6778   bool IsRecursive = false;
6779   const RecordDecl *RD = RT->getDecl()->getDefinition();
6780   if (RD && !RD->field_empty()) {
6781     // An incomplete TypeString stub is placed in the cache for this RecordType
6782     // so that recursive calls to this RecordType will use it whilst building a
6783     // complete TypeString for this RecordType.
6784     SmallVector<FieldEncoding, 16> FE;
6785     std::string StubEnc(Enc.substr(Start).str());
6786     StubEnc += '}';  // StubEnc now holds a valid incomplete TypeString.
6787     TSC.addIncomplete(ID, std::move(StubEnc));
6788     if (!extractFieldType(FE, RD, CGM, TSC)) {
6789       (void) TSC.removeIncomplete(ID);
6790       return false;
6791     }
6792     IsRecursive = TSC.removeIncomplete(ID);
6793     // The ABI requires unions to be sorted but not structures.
6794     // See FieldEncoding::operator< for sort algorithm.
6795     if (RT->isUnionType())
6796       std::sort(FE.begin(), FE.end());
6797     // We can now complete the TypeString.
6798     unsigned E = FE.size();
6799     for (unsigned I = 0; I != E; ++I) {
6800       if (I)
6801         Enc += ',';
6802       Enc += FE[I].str();
6803     }
6804   }
6805   Enc += '}';
6806   TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive);
6807   return true;
6808 }
6809 
6810 /// Appends enum types to Enc and adds the encoding to the cache.
6811 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET,
6812                            TypeStringCache &TSC,
6813                            const IdentifierInfo *ID) {
6814   // Append the cached TypeString if we have one.
6815   StringRef TypeString = TSC.lookupStr(ID);
6816   if (!TypeString.empty()) {
6817     Enc += TypeString;
6818     return true;
6819   }
6820 
6821   size_t Start = Enc.size();
6822   Enc += "e(";
6823   if (ID)
6824     Enc += ID->getName();
6825   Enc += "){";
6826 
6827   // We collect all encoded enumerations and order them alphanumerically.
6828   if (const EnumDecl *ED = ET->getDecl()->getDefinition()) {
6829     SmallVector<FieldEncoding, 16> FE;
6830     for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E;
6831          ++I) {
6832       SmallStringEnc EnumEnc;
6833       EnumEnc += "m(";
6834       EnumEnc += I->getName();
6835       EnumEnc += "){";
6836       I->getInitVal().toString(EnumEnc);
6837       EnumEnc += '}';
6838       FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc));
6839     }
6840     std::sort(FE.begin(), FE.end());
6841     unsigned E = FE.size();
6842     for (unsigned I = 0; I != E; ++I) {
6843       if (I)
6844         Enc += ',';
6845       Enc += FE[I].str();
6846     }
6847   }
6848   Enc += '}';
6849   TSC.addIfComplete(ID, Enc.substr(Start), false);
6850   return true;
6851 }
6852 
6853 /// Appends type's qualifier to Enc.
6854 /// This is done prior to appending the type's encoding.
6855 static void appendQualifier(SmallStringEnc &Enc, QualType QT) {
6856   // Qualifiers are emitted in alphabetical order.
6857   static const char *Table[] = {"","c:","r:","cr:","v:","cv:","rv:","crv:"};
6858   int Lookup = 0;
6859   if (QT.isConstQualified())
6860     Lookup += 1<<0;
6861   if (QT.isRestrictQualified())
6862     Lookup += 1<<1;
6863   if (QT.isVolatileQualified())
6864     Lookup += 1<<2;
6865   Enc += Table[Lookup];
6866 }
6867 
6868 /// Appends built-in types to Enc.
6869 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) {
6870   const char *EncType;
6871   switch (BT->getKind()) {
6872     case BuiltinType::Void:
6873       EncType = "0";
6874       break;
6875     case BuiltinType::Bool:
6876       EncType = "b";
6877       break;
6878     case BuiltinType::Char_U:
6879       EncType = "uc";
6880       break;
6881     case BuiltinType::UChar:
6882       EncType = "uc";
6883       break;
6884     case BuiltinType::SChar:
6885       EncType = "sc";
6886       break;
6887     case BuiltinType::UShort:
6888       EncType = "us";
6889       break;
6890     case BuiltinType::Short:
6891       EncType = "ss";
6892       break;
6893     case BuiltinType::UInt:
6894       EncType = "ui";
6895       break;
6896     case BuiltinType::Int:
6897       EncType = "si";
6898       break;
6899     case BuiltinType::ULong:
6900       EncType = "ul";
6901       break;
6902     case BuiltinType::Long:
6903       EncType = "sl";
6904       break;
6905     case BuiltinType::ULongLong:
6906       EncType = "ull";
6907       break;
6908     case BuiltinType::LongLong:
6909       EncType = "sll";
6910       break;
6911     case BuiltinType::Float:
6912       EncType = "ft";
6913       break;
6914     case BuiltinType::Double:
6915       EncType = "d";
6916       break;
6917     case BuiltinType::LongDouble:
6918       EncType = "ld";
6919       break;
6920     default:
6921       return false;
6922   }
6923   Enc += EncType;
6924   return true;
6925 }
6926 
6927 /// Appends a pointer encoding to Enc before calling appendType for the pointee.
6928 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT,
6929                               const CodeGen::CodeGenModule &CGM,
6930                               TypeStringCache &TSC) {
6931   Enc += "p(";
6932   if (!appendType(Enc, PT->getPointeeType(), CGM, TSC))
6933     return false;
6934   Enc += ')';
6935   return true;
6936 }
6937 
6938 /// Appends array encoding to Enc before calling appendType for the element.
6939 static bool appendArrayType(SmallStringEnc &Enc, QualType QT,
6940                             const ArrayType *AT,
6941                             const CodeGen::CodeGenModule &CGM,
6942                             TypeStringCache &TSC, StringRef NoSizeEnc) {
6943   if (AT->getSizeModifier() != ArrayType::Normal)
6944     return false;
6945   Enc += "a(";
6946   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
6947     CAT->getSize().toStringUnsigned(Enc);
6948   else
6949     Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "".
6950   Enc += ':';
6951   // The Qualifiers should be attached to the type rather than the array.
6952   appendQualifier(Enc, QT);
6953   if (!appendType(Enc, AT->getElementType(), CGM, TSC))
6954     return false;
6955   Enc += ')';
6956   return true;
6957 }
6958 
6959 /// Appends a function encoding to Enc, calling appendType for the return type
6960 /// and the arguments.
6961 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT,
6962                              const CodeGen::CodeGenModule &CGM,
6963                              TypeStringCache &TSC) {
6964   Enc += "f{";
6965   if (!appendType(Enc, FT->getReturnType(), CGM, TSC))
6966     return false;
6967   Enc += "}(";
6968   if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) {
6969     // N.B. we are only interested in the adjusted param types.
6970     auto I = FPT->param_type_begin();
6971     auto E = FPT->param_type_end();
6972     if (I != E) {
6973       do {
6974         if (!appendType(Enc, *I, CGM, TSC))
6975           return false;
6976         ++I;
6977         if (I != E)
6978           Enc += ',';
6979       } while (I != E);
6980       if (FPT->isVariadic())
6981         Enc += ",va";
6982     } else {
6983       if (FPT->isVariadic())
6984         Enc += "va";
6985       else
6986         Enc += '0';
6987     }
6988   }
6989   Enc += ')';
6990   return true;
6991 }
6992 
6993 /// Handles the type's qualifier before dispatching a call to handle specific
6994 /// type encodings.
6995 static bool appendType(SmallStringEnc &Enc, QualType QType,
6996                        const CodeGen::CodeGenModule &CGM,
6997                        TypeStringCache &TSC) {
6998 
6999   QualType QT = QType.getCanonicalType();
7000 
7001   if (const ArrayType *AT = QT->getAsArrayTypeUnsafe())
7002     // The Qualifiers should be attached to the type rather than the array.
7003     // Thus we don't call appendQualifier() here.
7004     return appendArrayType(Enc, QT, AT, CGM, TSC, "");
7005 
7006   appendQualifier(Enc, QT);
7007 
7008   if (const BuiltinType *BT = QT->getAs<BuiltinType>())
7009     return appendBuiltinType(Enc, BT);
7010 
7011   if (const PointerType *PT = QT->getAs<PointerType>())
7012     return appendPointerType(Enc, PT, CGM, TSC);
7013 
7014   if (const EnumType *ET = QT->getAs<EnumType>())
7015     return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier());
7016 
7017   if (const RecordType *RT = QT->getAsStructureType())
7018     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
7019 
7020   if (const RecordType *RT = QT->getAsUnionType())
7021     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
7022 
7023   if (const FunctionType *FT = QT->getAs<FunctionType>())
7024     return appendFunctionType(Enc, FT, CGM, TSC);
7025 
7026   return false;
7027 }
7028 
7029 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
7030                           CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) {
7031   if (!D)
7032     return false;
7033 
7034   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
7035     if (FD->getLanguageLinkage() != CLanguageLinkage)
7036       return false;
7037     return appendType(Enc, FD->getType(), CGM, TSC);
7038   }
7039 
7040   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
7041     if (VD->getLanguageLinkage() != CLanguageLinkage)
7042       return false;
7043     QualType QT = VD->getType().getCanonicalType();
7044     if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) {
7045       // Global ArrayTypes are given a size of '*' if the size is unknown.
7046       // The Qualifiers should be attached to the type rather than the array.
7047       // Thus we don't call appendQualifier() here.
7048       return appendArrayType(Enc, QT, AT, CGM, TSC, "*");
7049     }
7050     return appendType(Enc, QT, CGM, TSC);
7051   }
7052   return false;
7053 }
7054 
7055 
7056 //===----------------------------------------------------------------------===//
7057 // Driver code
7058 //===----------------------------------------------------------------------===//
7059 
7060 const llvm::Triple &CodeGenModule::getTriple() const {
7061   return getTarget().getTriple();
7062 }
7063 
7064 bool CodeGenModule::supportsCOMDAT() const {
7065   return !getTriple().isOSBinFormatMachO();
7066 }
7067 
7068 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
7069   if (TheTargetCodeGenInfo)
7070     return *TheTargetCodeGenInfo;
7071 
7072   const llvm::Triple &Triple = getTarget().getTriple();
7073   switch (Triple.getArch()) {
7074   default:
7075     return *(TheTargetCodeGenInfo = new DefaultTargetCodeGenInfo(Types));
7076 
7077   case llvm::Triple::le32:
7078     return *(TheTargetCodeGenInfo = new PNaClTargetCodeGenInfo(Types));
7079   case llvm::Triple::mips:
7080   case llvm::Triple::mipsel:
7081     return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, true));
7082 
7083   case llvm::Triple::mips64:
7084   case llvm::Triple::mips64el:
7085     return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, false));
7086 
7087   case llvm::Triple::aarch64:
7088   case llvm::Triple::aarch64_be: {
7089     AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS;
7090     if (getTarget().getABI() == "darwinpcs")
7091       Kind = AArch64ABIInfo::DarwinPCS;
7092 
7093     return *(TheTargetCodeGenInfo = new AArch64TargetCodeGenInfo(Types, Kind));
7094   }
7095 
7096   case llvm::Triple::arm:
7097   case llvm::Triple::armeb:
7098   case llvm::Triple::thumb:
7099   case llvm::Triple::thumbeb:
7100     {
7101       ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
7102       if (getTarget().getABI() == "apcs-gnu")
7103         Kind = ARMABIInfo::APCS;
7104       else if (CodeGenOpts.FloatABI == "hard" ||
7105                (CodeGenOpts.FloatABI != "soft" &&
7106                 Triple.getEnvironment() == llvm::Triple::GNUEABIHF))
7107         Kind = ARMABIInfo::AAPCS_VFP;
7108 
7109       switch (Triple.getOS()) {
7110         case llvm::Triple::NaCl:
7111           return *(TheTargetCodeGenInfo =
7112                    new NaClARMTargetCodeGenInfo(Types, Kind));
7113         default:
7114           return *(TheTargetCodeGenInfo =
7115                    new ARMTargetCodeGenInfo(Types, Kind));
7116       }
7117     }
7118 
7119   case llvm::Triple::ppc:
7120     return *(TheTargetCodeGenInfo = new PPC32TargetCodeGenInfo(Types));
7121   case llvm::Triple::ppc64:
7122     if (Triple.isOSBinFormatELF()) {
7123       PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1;
7124       if (getTarget().getABI() == "elfv2")
7125         Kind = PPC64_SVR4_ABIInfo::ELFv2;
7126 
7127       return *(TheTargetCodeGenInfo =
7128                new PPC64_SVR4_TargetCodeGenInfo(Types, Kind));
7129     } else
7130       return *(TheTargetCodeGenInfo = new PPC64TargetCodeGenInfo(Types));
7131   case llvm::Triple::ppc64le: {
7132     assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
7133     PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2;
7134     if (getTarget().getABI() == "elfv1")
7135       Kind = PPC64_SVR4_ABIInfo::ELFv1;
7136 
7137     return *(TheTargetCodeGenInfo =
7138              new PPC64_SVR4_TargetCodeGenInfo(Types, Kind));
7139   }
7140 
7141   case llvm::Triple::nvptx:
7142   case llvm::Triple::nvptx64:
7143     return *(TheTargetCodeGenInfo = new NVPTXTargetCodeGenInfo(Types));
7144 
7145   case llvm::Triple::msp430:
7146     return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo(Types));
7147 
7148   case llvm::Triple::systemz:
7149     return *(TheTargetCodeGenInfo = new SystemZTargetCodeGenInfo(Types));
7150 
7151   case llvm::Triple::tce:
7152     return *(TheTargetCodeGenInfo = new TCETargetCodeGenInfo(Types));
7153 
7154   case llvm::Triple::x86: {
7155     bool IsDarwinVectorABI = Triple.isOSDarwin();
7156     bool IsSmallStructInRegABI =
7157         X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
7158     bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing();
7159 
7160     if (Triple.getOS() == llvm::Triple::Win32) {
7161       return *(TheTargetCodeGenInfo =
7162                new WinX86_32TargetCodeGenInfo(Types,
7163                                               IsDarwinVectorABI, IsSmallStructInRegABI,
7164                                               IsWin32FloatStructABI,
7165                                               CodeGenOpts.NumRegisterParameters));
7166     } else {
7167       return *(TheTargetCodeGenInfo =
7168                new X86_32TargetCodeGenInfo(Types,
7169                                            IsDarwinVectorABI, IsSmallStructInRegABI,
7170                                            IsWin32FloatStructABI,
7171                                            CodeGenOpts.NumRegisterParameters));
7172     }
7173   }
7174 
7175   case llvm::Triple::x86_64: {
7176     bool HasAVX = getTarget().getABI() == "avx";
7177 
7178     switch (Triple.getOS()) {
7179     case llvm::Triple::Win32:
7180       return *(TheTargetCodeGenInfo =
7181                    new WinX86_64TargetCodeGenInfo(Types, HasAVX));
7182     case llvm::Triple::NaCl:
7183       return *(TheTargetCodeGenInfo =
7184                    new NaClX86_64TargetCodeGenInfo(Types, HasAVX));
7185     case llvm::Triple::PS4:
7186       return *(TheTargetCodeGenInfo = new PS4TargetCodeGenInfo(Types, HasAVX));
7187     default:
7188       return *(TheTargetCodeGenInfo =
7189                    new X86_64TargetCodeGenInfo(Types, HasAVX));
7190     }
7191   }
7192   case llvm::Triple::hexagon:
7193     return *(TheTargetCodeGenInfo = new HexagonTargetCodeGenInfo(Types));
7194   case llvm::Triple::r600:
7195     return *(TheTargetCodeGenInfo = new AMDGPUTargetCodeGenInfo(Types));
7196   case llvm::Triple::amdgcn:
7197     return *(TheTargetCodeGenInfo = new AMDGPUTargetCodeGenInfo(Types));
7198   case llvm::Triple::sparcv9:
7199     return *(TheTargetCodeGenInfo = new SparcV9TargetCodeGenInfo(Types));
7200   case llvm::Triple::xcore:
7201     return *(TheTargetCodeGenInfo = new XCoreTargetCodeGenInfo(Types));
7202   }
7203 }
7204