1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // These classes wrap the information about a call or function 11 // definition used to handle ABI compliancy. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "TargetInfo.h" 16 #include "ABIInfo.h" 17 #include "CGCXXABI.h" 18 #include "CGValue.h" 19 #include "CodeGenFunction.h" 20 #include "clang/AST/RecordLayout.h" 21 #include "clang/CodeGen/CGFunctionInfo.h" 22 #include "clang/Frontend/CodeGenOptions.h" 23 #include "llvm/ADT/StringExtras.h" 24 #include "llvm/ADT/Triple.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/Type.h" 27 #include "llvm/Support/raw_ostream.h" 28 #include <algorithm> // std::sort 29 30 using namespace clang; 31 using namespace CodeGen; 32 33 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder, 34 llvm::Value *Array, 35 llvm::Value *Value, 36 unsigned FirstIndex, 37 unsigned LastIndex) { 38 // Alternatively, we could emit this as a loop in the source. 39 for (unsigned I = FirstIndex; I <= LastIndex; ++I) { 40 llvm::Value *Cell = 41 Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I); 42 Builder.CreateStore(Value, Cell); 43 } 44 } 45 46 static bool isAggregateTypeForABI(QualType T) { 47 return !CodeGenFunction::hasScalarEvaluationKind(T) || 48 T->isMemberFunctionPointerType(); 49 } 50 51 ABIInfo::~ABIInfo() {} 52 53 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT, 54 CGCXXABI &CXXABI) { 55 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); 56 if (!RD) 57 return CGCXXABI::RAA_Default; 58 return CXXABI.getRecordArgABI(RD); 59 } 60 61 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T, 62 CGCXXABI &CXXABI) { 63 const RecordType *RT = T->getAs<RecordType>(); 64 if (!RT) 65 return CGCXXABI::RAA_Default; 66 return getRecordArgABI(RT, CXXABI); 67 } 68 69 /// Pass transparent unions as if they were the type of the first element. Sema 70 /// should ensure that all elements of the union have the same "machine type". 71 static QualType useFirstFieldIfTransparentUnion(QualType Ty) { 72 if (const RecordType *UT = Ty->getAsUnionType()) { 73 const RecordDecl *UD = UT->getDecl(); 74 if (UD->hasAttr<TransparentUnionAttr>()) { 75 assert(!UD->field_empty() && "sema created an empty transparent union"); 76 return UD->field_begin()->getType(); 77 } 78 } 79 return Ty; 80 } 81 82 CGCXXABI &ABIInfo::getCXXABI() const { 83 return CGT.getCXXABI(); 84 } 85 86 ASTContext &ABIInfo::getContext() const { 87 return CGT.getContext(); 88 } 89 90 llvm::LLVMContext &ABIInfo::getVMContext() const { 91 return CGT.getLLVMContext(); 92 } 93 94 const llvm::DataLayout &ABIInfo::getDataLayout() const { 95 return CGT.getDataLayout(); 96 } 97 98 const TargetInfo &ABIInfo::getTarget() const { 99 return CGT.getTarget(); 100 } 101 102 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 103 return false; 104 } 105 106 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 107 uint64_t Members) const { 108 return false; 109 } 110 111 void ABIArgInfo::dump() const { 112 raw_ostream &OS = llvm::errs(); 113 OS << "(ABIArgInfo Kind="; 114 switch (TheKind) { 115 case Direct: 116 OS << "Direct Type="; 117 if (llvm::Type *Ty = getCoerceToType()) 118 Ty->print(OS); 119 else 120 OS << "null"; 121 break; 122 case Extend: 123 OS << "Extend"; 124 break; 125 case Ignore: 126 OS << "Ignore"; 127 break; 128 case InAlloca: 129 OS << "InAlloca Offset=" << getInAllocaFieldIndex(); 130 break; 131 case Indirect: 132 OS << "Indirect Align=" << getIndirectAlign() 133 << " ByVal=" << getIndirectByVal() 134 << " Realign=" << getIndirectRealign(); 135 break; 136 case Expand: 137 OS << "Expand"; 138 break; 139 } 140 OS << ")\n"; 141 } 142 143 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; } 144 145 // If someone can figure out a general rule for this, that would be great. 146 // It's probably just doomed to be platform-dependent, though. 147 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const { 148 // Verified for: 149 // x86-64 FreeBSD, Linux, Darwin 150 // x86-32 FreeBSD, Linux, Darwin 151 // PowerPC Linux, Darwin 152 // ARM Darwin (*not* EABI) 153 // AArch64 Linux 154 return 32; 155 } 156 157 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args, 158 const FunctionNoProtoType *fnType) const { 159 // The following conventions are known to require this to be false: 160 // x86_stdcall 161 // MIPS 162 // For everything else, we just prefer false unless we opt out. 163 return false; 164 } 165 166 void 167 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib, 168 llvm::SmallString<24> &Opt) const { 169 // This assumes the user is passing a library name like "rt" instead of a 170 // filename like "librt.a/so", and that they don't care whether it's static or 171 // dynamic. 172 Opt = "-l"; 173 Opt += Lib; 174 } 175 176 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays); 177 178 /// isEmptyField - Return true iff a the field is "empty", that is it 179 /// is an unnamed bit-field or an (array of) empty record(s). 180 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD, 181 bool AllowArrays) { 182 if (FD->isUnnamedBitfield()) 183 return true; 184 185 QualType FT = FD->getType(); 186 187 // Constant arrays of empty records count as empty, strip them off. 188 // Constant arrays of zero length always count as empty. 189 if (AllowArrays) 190 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 191 if (AT->getSize() == 0) 192 return true; 193 FT = AT->getElementType(); 194 } 195 196 const RecordType *RT = FT->getAs<RecordType>(); 197 if (!RT) 198 return false; 199 200 // C++ record fields are never empty, at least in the Itanium ABI. 201 // 202 // FIXME: We should use a predicate for whether this behavior is true in the 203 // current ABI. 204 if (isa<CXXRecordDecl>(RT->getDecl())) 205 return false; 206 207 return isEmptyRecord(Context, FT, AllowArrays); 208 } 209 210 /// isEmptyRecord - Return true iff a structure contains only empty 211 /// fields. Note that a structure with a flexible array member is not 212 /// considered empty. 213 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) { 214 const RecordType *RT = T->getAs<RecordType>(); 215 if (!RT) 216 return 0; 217 const RecordDecl *RD = RT->getDecl(); 218 if (RD->hasFlexibleArrayMember()) 219 return false; 220 221 // If this is a C++ record, check the bases first. 222 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 223 for (const auto &I : CXXRD->bases()) 224 if (!isEmptyRecord(Context, I.getType(), true)) 225 return false; 226 227 for (const auto *I : RD->fields()) 228 if (!isEmptyField(Context, I, AllowArrays)) 229 return false; 230 return true; 231 } 232 233 /// isSingleElementStruct - Determine if a structure is a "single 234 /// element struct", i.e. it has exactly one non-empty field or 235 /// exactly one field which is itself a single element 236 /// struct. Structures with flexible array members are never 237 /// considered single element structs. 238 /// 239 /// \return The field declaration for the single non-empty field, if 240 /// it exists. 241 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) { 242 const RecordType *RT = T->getAs<RecordType>(); 243 if (!RT) 244 return nullptr; 245 246 const RecordDecl *RD = RT->getDecl(); 247 if (RD->hasFlexibleArrayMember()) 248 return nullptr; 249 250 const Type *Found = nullptr; 251 252 // If this is a C++ record, check the bases first. 253 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 254 for (const auto &I : CXXRD->bases()) { 255 // Ignore empty records. 256 if (isEmptyRecord(Context, I.getType(), true)) 257 continue; 258 259 // If we already found an element then this isn't a single-element struct. 260 if (Found) 261 return nullptr; 262 263 // If this is non-empty and not a single element struct, the composite 264 // cannot be a single element struct. 265 Found = isSingleElementStruct(I.getType(), Context); 266 if (!Found) 267 return nullptr; 268 } 269 } 270 271 // Check for single element. 272 for (const auto *FD : RD->fields()) { 273 QualType FT = FD->getType(); 274 275 // Ignore empty fields. 276 if (isEmptyField(Context, FD, true)) 277 continue; 278 279 // If we already found an element then this isn't a single-element 280 // struct. 281 if (Found) 282 return nullptr; 283 284 // Treat single element arrays as the element. 285 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 286 if (AT->getSize().getZExtValue() != 1) 287 break; 288 FT = AT->getElementType(); 289 } 290 291 if (!isAggregateTypeForABI(FT)) { 292 Found = FT.getTypePtr(); 293 } else { 294 Found = isSingleElementStruct(FT, Context); 295 if (!Found) 296 return nullptr; 297 } 298 } 299 300 // We don't consider a struct a single-element struct if it has 301 // padding beyond the element type. 302 if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T)) 303 return nullptr; 304 305 return Found; 306 } 307 308 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) { 309 // Treat complex types as the element type. 310 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 311 Ty = CTy->getElementType(); 312 313 // Check for a type which we know has a simple scalar argument-passing 314 // convention without any padding. (We're specifically looking for 32 315 // and 64-bit integer and integer-equivalents, float, and double.) 316 if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() && 317 !Ty->isEnumeralType() && !Ty->isBlockPointerType()) 318 return false; 319 320 uint64_t Size = Context.getTypeSize(Ty); 321 return Size == 32 || Size == 64; 322 } 323 324 /// canExpandIndirectArgument - Test whether an argument type which is to be 325 /// passed indirectly (on the stack) would have the equivalent layout if it was 326 /// expanded into separate arguments. If so, we prefer to do the latter to avoid 327 /// inhibiting optimizations. 328 /// 329 // FIXME: This predicate is missing many cases, currently it just follows 330 // llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We 331 // should probably make this smarter, or better yet make the LLVM backend 332 // capable of handling it. 333 static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) { 334 // We can only expand structure types. 335 const RecordType *RT = Ty->getAs<RecordType>(); 336 if (!RT) 337 return false; 338 339 // We can only expand (C) structures. 340 // 341 // FIXME: This needs to be generalized to handle classes as well. 342 const RecordDecl *RD = RT->getDecl(); 343 if (!RD->isStruct()) 344 return false; 345 346 // We try to expand CLike CXXRecordDecl. 347 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 348 if (!CXXRD->isCLike()) 349 return false; 350 } 351 352 uint64_t Size = 0; 353 354 for (const auto *FD : RD->fields()) { 355 if (!is32Or64BitBasicType(FD->getType(), Context)) 356 return false; 357 358 // FIXME: Reject bit-fields wholesale; there are two problems, we don't know 359 // how to expand them yet, and the predicate for telling if a bitfield still 360 // counts as "basic" is more complicated than what we were doing previously. 361 if (FD->isBitField()) 362 return false; 363 364 Size += Context.getTypeSize(FD->getType()); 365 } 366 367 // Make sure there are not any holes in the struct. 368 if (Size != Context.getTypeSize(Ty)) 369 return false; 370 371 return true; 372 } 373 374 namespace { 375 /// DefaultABIInfo - The default implementation for ABI specific 376 /// details. This implementation provides information which results in 377 /// self-consistent and sensible LLVM IR generation, but does not 378 /// conform to any particular ABI. 379 class DefaultABIInfo : public ABIInfo { 380 public: 381 DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 382 383 ABIArgInfo classifyReturnType(QualType RetTy) const; 384 ABIArgInfo classifyArgumentType(QualType RetTy) const; 385 386 void computeInfo(CGFunctionInfo &FI) const override { 387 if (!getCXXABI().classifyReturnType(FI)) 388 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 389 for (auto &I : FI.arguments()) 390 I.info = classifyArgumentType(I.type); 391 } 392 393 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 394 CodeGenFunction &CGF) const override; 395 }; 396 397 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo { 398 public: 399 DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 400 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 401 }; 402 403 llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 404 CodeGenFunction &CGF) const { 405 return nullptr; 406 } 407 408 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const { 409 if (isAggregateTypeForABI(Ty)) 410 return ABIArgInfo::getIndirect(0); 411 412 // Treat an enum type as its underlying type. 413 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 414 Ty = EnumTy->getDecl()->getIntegerType(); 415 416 return (Ty->isPromotableIntegerType() ? 417 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 418 } 419 420 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const { 421 if (RetTy->isVoidType()) 422 return ABIArgInfo::getIgnore(); 423 424 if (isAggregateTypeForABI(RetTy)) 425 return ABIArgInfo::getIndirect(0); 426 427 // Treat an enum type as its underlying type. 428 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 429 RetTy = EnumTy->getDecl()->getIntegerType(); 430 431 return (RetTy->isPromotableIntegerType() ? 432 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 433 } 434 435 //===----------------------------------------------------------------------===// 436 // le32/PNaCl bitcode ABI Implementation 437 // 438 // This is a simplified version of the x86_32 ABI. Arguments and return values 439 // are always passed on the stack. 440 //===----------------------------------------------------------------------===// 441 442 class PNaClABIInfo : public ABIInfo { 443 public: 444 PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 445 446 ABIArgInfo classifyReturnType(QualType RetTy) const; 447 ABIArgInfo classifyArgumentType(QualType RetTy) const; 448 449 void computeInfo(CGFunctionInfo &FI) const override; 450 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 451 CodeGenFunction &CGF) const override; 452 }; 453 454 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo { 455 public: 456 PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 457 : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {} 458 }; 459 460 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const { 461 if (!getCXXABI().classifyReturnType(FI)) 462 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 463 464 for (auto &I : FI.arguments()) 465 I.info = classifyArgumentType(I.type); 466 } 467 468 llvm::Value *PNaClABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 469 CodeGenFunction &CGF) const { 470 return nullptr; 471 } 472 473 /// \brief Classify argument of given type \p Ty. 474 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const { 475 if (isAggregateTypeForABI(Ty)) { 476 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 477 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 478 return ABIArgInfo::getIndirect(0); 479 } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 480 // Treat an enum type as its underlying type. 481 Ty = EnumTy->getDecl()->getIntegerType(); 482 } else if (Ty->isFloatingType()) { 483 // Floating-point types don't go inreg. 484 return ABIArgInfo::getDirect(); 485 } 486 487 return (Ty->isPromotableIntegerType() ? 488 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 489 } 490 491 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const { 492 if (RetTy->isVoidType()) 493 return ABIArgInfo::getIgnore(); 494 495 // In the PNaCl ABI we always return records/structures on the stack. 496 if (isAggregateTypeForABI(RetTy)) 497 return ABIArgInfo::getIndirect(0); 498 499 // Treat an enum type as its underlying type. 500 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 501 RetTy = EnumTy->getDecl()->getIntegerType(); 502 503 return (RetTy->isPromotableIntegerType() ? 504 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 505 } 506 507 /// IsX86_MMXType - Return true if this is an MMX type. 508 bool IsX86_MMXType(llvm::Type *IRType) { 509 // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>. 510 return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 && 511 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() && 512 IRType->getScalarSizeInBits() != 64; 513 } 514 515 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 516 StringRef Constraint, 517 llvm::Type* Ty) { 518 if ((Constraint == "y" || Constraint == "&y") && Ty->isVectorTy()) { 519 if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) { 520 // Invalid MMX constraint 521 return nullptr; 522 } 523 524 return llvm::Type::getX86_MMXTy(CGF.getLLVMContext()); 525 } 526 527 // No operation needed 528 return Ty; 529 } 530 531 /// Returns true if this type can be passed in SSE registers with the 532 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64. 533 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) { 534 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 535 if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) 536 return true; 537 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 538 // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX 539 // registers specially. 540 unsigned VecSize = Context.getTypeSize(VT); 541 if (VecSize == 128 || VecSize == 256 || VecSize == 512) 542 return true; 543 } 544 return false; 545 } 546 547 /// Returns true if this aggregate is small enough to be passed in SSE registers 548 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64. 549 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) { 550 return NumMembers <= 4; 551 } 552 553 //===----------------------------------------------------------------------===// 554 // X86-32 ABI Implementation 555 //===----------------------------------------------------------------------===// 556 557 /// \brief Similar to llvm::CCState, but for Clang. 558 struct CCState { 559 CCState(unsigned CC) : CC(CC), FreeRegs(0), FreeSSERegs(0) {} 560 561 unsigned CC; 562 unsigned FreeRegs; 563 unsigned FreeSSERegs; 564 }; 565 566 /// X86_32ABIInfo - The X86-32 ABI information. 567 class X86_32ABIInfo : public ABIInfo { 568 enum Class { 569 Integer, 570 Float 571 }; 572 573 static const unsigned MinABIStackAlignInBytes = 4; 574 575 bool IsDarwinVectorABI; 576 bool IsSmallStructInRegABI; 577 bool IsWin32StructABI; 578 unsigned DefaultNumRegisterParameters; 579 580 static bool isRegisterSize(unsigned Size) { 581 return (Size == 8 || Size == 16 || Size == 32 || Size == 64); 582 } 583 584 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 585 // FIXME: Assumes vectorcall is in use. 586 return isX86VectorTypeForVectorCall(getContext(), Ty); 587 } 588 589 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 590 uint64_t NumMembers) const override { 591 // FIXME: Assumes vectorcall is in use. 592 return isX86VectorCallAggregateSmallEnough(NumMembers); 593 } 594 595 bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const; 596 597 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 598 /// such that the argument will be passed in memory. 599 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 600 601 ABIArgInfo getIndirectReturnResult(CCState &State) const; 602 603 /// \brief Return the alignment to use for the given type on the stack. 604 unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const; 605 606 Class classify(QualType Ty) const; 607 ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const; 608 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 609 bool shouldUseInReg(QualType Ty, CCState &State, bool &NeedsPadding) const; 610 611 /// \brief Rewrite the function info so that all memory arguments use 612 /// inalloca. 613 void rewriteWithInAlloca(CGFunctionInfo &FI) const; 614 615 void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 616 unsigned &StackOffset, ABIArgInfo &Info, 617 QualType Type) const; 618 619 public: 620 621 void computeInfo(CGFunctionInfo &FI) const override; 622 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 623 CodeGenFunction &CGF) const override; 624 625 X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p, bool w, 626 unsigned r) 627 : ABIInfo(CGT), IsDarwinVectorABI(d), IsSmallStructInRegABI(p), 628 IsWin32StructABI(w), DefaultNumRegisterParameters(r) {} 629 }; 630 631 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo { 632 public: 633 X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 634 bool d, bool p, bool w, unsigned r) 635 :TargetCodeGenInfo(new X86_32ABIInfo(CGT, d, p, w, r)) {} 636 637 static bool isStructReturnInRegABI( 638 const llvm::Triple &Triple, const CodeGenOptions &Opts); 639 640 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 641 CodeGen::CodeGenModule &CGM) const override; 642 643 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 644 // Darwin uses different dwarf register numbers for EH. 645 if (CGM.getTarget().getTriple().isOSDarwin()) return 5; 646 return 4; 647 } 648 649 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 650 llvm::Value *Address) const override; 651 652 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 653 StringRef Constraint, 654 llvm::Type* Ty) const override { 655 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 656 } 657 658 void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue, 659 std::string &Constraints, 660 std::vector<llvm::Type *> &ResultRegTypes, 661 std::vector<llvm::Type *> &ResultTruncRegTypes, 662 std::vector<LValue> &ResultRegDests, 663 std::string &AsmString, 664 unsigned NumOutputs) const override; 665 666 llvm::Constant * 667 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 668 unsigned Sig = (0xeb << 0) | // jmp rel8 669 (0x06 << 8) | // .+0x08 670 ('F' << 16) | 671 ('T' << 24); 672 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 673 } 674 }; 675 676 } 677 678 /// Rewrite input constraint references after adding some output constraints. 679 /// In the case where there is one output and one input and we add one output, 680 /// we need to replace all operand references greater than or equal to 1: 681 /// mov $0, $1 682 /// mov eax, $1 683 /// The result will be: 684 /// mov $0, $2 685 /// mov eax, $2 686 static void rewriteInputConstraintReferences(unsigned FirstIn, 687 unsigned NumNewOuts, 688 std::string &AsmString) { 689 std::string Buf; 690 llvm::raw_string_ostream OS(Buf); 691 size_t Pos = 0; 692 while (Pos < AsmString.size()) { 693 size_t DollarStart = AsmString.find('$', Pos); 694 if (DollarStart == std::string::npos) 695 DollarStart = AsmString.size(); 696 size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart); 697 if (DollarEnd == std::string::npos) 698 DollarEnd = AsmString.size(); 699 OS << StringRef(&AsmString[Pos], DollarEnd - Pos); 700 Pos = DollarEnd; 701 size_t NumDollars = DollarEnd - DollarStart; 702 if (NumDollars % 2 != 0 && Pos < AsmString.size()) { 703 // We have an operand reference. 704 size_t DigitStart = Pos; 705 size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart); 706 if (DigitEnd == std::string::npos) 707 DigitEnd = AsmString.size(); 708 StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart); 709 unsigned OperandIndex; 710 if (!OperandStr.getAsInteger(10, OperandIndex)) { 711 if (OperandIndex >= FirstIn) 712 OperandIndex += NumNewOuts; 713 OS << OperandIndex; 714 } else { 715 OS << OperandStr; 716 } 717 Pos = DigitEnd; 718 } 719 } 720 AsmString = std::move(OS.str()); 721 } 722 723 /// Add output constraints for EAX:EDX because they are return registers. 724 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs( 725 CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints, 726 std::vector<llvm::Type *> &ResultRegTypes, 727 std::vector<llvm::Type *> &ResultTruncRegTypes, 728 std::vector<LValue> &ResultRegDests, std::string &AsmString, 729 unsigned NumOutputs) const { 730 uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType()); 731 732 // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is 733 // larger. 734 if (!Constraints.empty()) 735 Constraints += ','; 736 if (RetWidth <= 32) { 737 Constraints += "={eax}"; 738 ResultRegTypes.push_back(CGF.Int32Ty); 739 } else { 740 // Use the 'A' constraint for EAX:EDX. 741 Constraints += "=A"; 742 ResultRegTypes.push_back(CGF.Int64Ty); 743 } 744 745 // Truncate EAX or EAX:EDX to an integer of the appropriate size. 746 llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth); 747 ResultTruncRegTypes.push_back(CoerceTy); 748 749 // Coerce the integer by bitcasting the return slot pointer. 750 ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(), 751 CoerceTy->getPointerTo())); 752 ResultRegDests.push_back(ReturnSlot); 753 754 rewriteInputConstraintReferences(NumOutputs, 1, AsmString); 755 } 756 757 /// shouldReturnTypeInRegister - Determine if the given type should be 758 /// passed in a register (for the Darwin ABI). 759 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty, 760 ASTContext &Context) const { 761 uint64_t Size = Context.getTypeSize(Ty); 762 763 // Type must be register sized. 764 if (!isRegisterSize(Size)) 765 return false; 766 767 if (Ty->isVectorType()) { 768 // 64- and 128- bit vectors inside structures are not returned in 769 // registers. 770 if (Size == 64 || Size == 128) 771 return false; 772 773 return true; 774 } 775 776 // If this is a builtin, pointer, enum, complex type, member pointer, or 777 // member function pointer it is ok. 778 if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() || 779 Ty->isAnyComplexType() || Ty->isEnumeralType() || 780 Ty->isBlockPointerType() || Ty->isMemberPointerType()) 781 return true; 782 783 // Arrays are treated like records. 784 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) 785 return shouldReturnTypeInRegister(AT->getElementType(), Context); 786 787 // Otherwise, it must be a record type. 788 const RecordType *RT = Ty->getAs<RecordType>(); 789 if (!RT) return false; 790 791 // FIXME: Traverse bases here too. 792 793 // Structure types are passed in register if all fields would be 794 // passed in a register. 795 for (const auto *FD : RT->getDecl()->fields()) { 796 // Empty fields are ignored. 797 if (isEmptyField(Context, FD, true)) 798 continue; 799 800 // Check fields recursively. 801 if (!shouldReturnTypeInRegister(FD->getType(), Context)) 802 return false; 803 } 804 return true; 805 } 806 807 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(CCState &State) const { 808 // If the return value is indirect, then the hidden argument is consuming one 809 // integer register. 810 if (State.FreeRegs) { 811 --State.FreeRegs; 812 return ABIArgInfo::getIndirectInReg(/*Align=*/0, /*ByVal=*/false); 813 } 814 return ABIArgInfo::getIndirect(/*Align=*/0, /*ByVal=*/false); 815 } 816 817 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, CCState &State) const { 818 if (RetTy->isVoidType()) 819 return ABIArgInfo::getIgnore(); 820 821 const Type *Base = nullptr; 822 uint64_t NumElts = 0; 823 if (State.CC == llvm::CallingConv::X86_VectorCall && 824 isHomogeneousAggregate(RetTy, Base, NumElts)) { 825 // The LLVM struct type for such an aggregate should lower properly. 826 return ABIArgInfo::getDirect(); 827 } 828 829 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 830 // On Darwin, some vectors are returned in registers. 831 if (IsDarwinVectorABI) { 832 uint64_t Size = getContext().getTypeSize(RetTy); 833 834 // 128-bit vectors are a special case; they are returned in 835 // registers and we need to make sure to pick a type the LLVM 836 // backend will like. 837 if (Size == 128) 838 return ABIArgInfo::getDirect(llvm::VectorType::get( 839 llvm::Type::getInt64Ty(getVMContext()), 2)); 840 841 // Always return in register if it fits in a general purpose 842 // register, or if it is 64 bits and has a single element. 843 if ((Size == 8 || Size == 16 || Size == 32) || 844 (Size == 64 && VT->getNumElements() == 1)) 845 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 846 Size)); 847 848 return getIndirectReturnResult(State); 849 } 850 851 return ABIArgInfo::getDirect(); 852 } 853 854 if (isAggregateTypeForABI(RetTy)) { 855 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 856 // Structures with flexible arrays are always indirect. 857 if (RT->getDecl()->hasFlexibleArrayMember()) 858 return getIndirectReturnResult(State); 859 } 860 861 // If specified, structs and unions are always indirect. 862 if (!IsSmallStructInRegABI && !RetTy->isAnyComplexType()) 863 return getIndirectReturnResult(State); 864 865 // Small structures which are register sized are generally returned 866 // in a register. 867 if (shouldReturnTypeInRegister(RetTy, getContext())) { 868 uint64_t Size = getContext().getTypeSize(RetTy); 869 870 // As a special-case, if the struct is a "single-element" struct, and 871 // the field is of type "float" or "double", return it in a 872 // floating-point register. (MSVC does not apply this special case.) 873 // We apply a similar transformation for pointer types to improve the 874 // quality of the generated IR. 875 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 876 if ((!IsWin32StructABI && SeltTy->isRealFloatingType()) 877 || SeltTy->hasPointerRepresentation()) 878 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 879 880 // FIXME: We should be able to narrow this integer in cases with dead 881 // padding. 882 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size)); 883 } 884 885 return getIndirectReturnResult(State); 886 } 887 888 // Treat an enum type as its underlying type. 889 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 890 RetTy = EnumTy->getDecl()->getIntegerType(); 891 892 return (RetTy->isPromotableIntegerType() ? 893 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 894 } 895 896 static bool isSSEVectorType(ASTContext &Context, QualType Ty) { 897 return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128; 898 } 899 900 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) { 901 const RecordType *RT = Ty->getAs<RecordType>(); 902 if (!RT) 903 return 0; 904 const RecordDecl *RD = RT->getDecl(); 905 906 // If this is a C++ record, check the bases first. 907 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 908 for (const auto &I : CXXRD->bases()) 909 if (!isRecordWithSSEVectorType(Context, I.getType())) 910 return false; 911 912 for (const auto *i : RD->fields()) { 913 QualType FT = i->getType(); 914 915 if (isSSEVectorType(Context, FT)) 916 return true; 917 918 if (isRecordWithSSEVectorType(Context, FT)) 919 return true; 920 } 921 922 return false; 923 } 924 925 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty, 926 unsigned Align) const { 927 // Otherwise, if the alignment is less than or equal to the minimum ABI 928 // alignment, just use the default; the backend will handle this. 929 if (Align <= MinABIStackAlignInBytes) 930 return 0; // Use default alignment. 931 932 // On non-Darwin, the stack type alignment is always 4. 933 if (!IsDarwinVectorABI) { 934 // Set explicit alignment, since we may need to realign the top. 935 return MinABIStackAlignInBytes; 936 } 937 938 // Otherwise, if the type contains an SSE vector type, the alignment is 16. 939 if (Align >= 16 && (isSSEVectorType(getContext(), Ty) || 940 isRecordWithSSEVectorType(getContext(), Ty))) 941 return 16; 942 943 return MinABIStackAlignInBytes; 944 } 945 946 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal, 947 CCState &State) const { 948 if (!ByVal) { 949 if (State.FreeRegs) { 950 --State.FreeRegs; // Non-byval indirects just use one pointer. 951 return ABIArgInfo::getIndirectInReg(0, false); 952 } 953 return ABIArgInfo::getIndirect(0, false); 954 } 955 956 // Compute the byval alignment. 957 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 958 unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign); 959 if (StackAlign == 0) 960 return ABIArgInfo::getIndirect(4, /*ByVal=*/true); 961 962 // If the stack alignment is less than the type alignment, realign the 963 // argument. 964 bool Realign = TypeAlign > StackAlign; 965 return ABIArgInfo::getIndirect(StackAlign, /*ByVal=*/true, Realign); 966 } 967 968 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const { 969 const Type *T = isSingleElementStruct(Ty, getContext()); 970 if (!T) 971 T = Ty.getTypePtr(); 972 973 if (const BuiltinType *BT = T->getAs<BuiltinType>()) { 974 BuiltinType::Kind K = BT->getKind(); 975 if (K == BuiltinType::Float || K == BuiltinType::Double) 976 return Float; 977 } 978 return Integer; 979 } 980 981 bool X86_32ABIInfo::shouldUseInReg(QualType Ty, CCState &State, 982 bool &NeedsPadding) const { 983 NeedsPadding = false; 984 Class C = classify(Ty); 985 if (C == Float) 986 return false; 987 988 unsigned Size = getContext().getTypeSize(Ty); 989 unsigned SizeInRegs = (Size + 31) / 32; 990 991 if (SizeInRegs == 0) 992 return false; 993 994 if (SizeInRegs > State.FreeRegs) { 995 State.FreeRegs = 0; 996 return false; 997 } 998 999 State.FreeRegs -= SizeInRegs; 1000 1001 if (State.CC == llvm::CallingConv::X86_FastCall || 1002 State.CC == llvm::CallingConv::X86_VectorCall) { 1003 if (Size > 32) 1004 return false; 1005 1006 if (Ty->isIntegralOrEnumerationType()) 1007 return true; 1008 1009 if (Ty->isPointerType()) 1010 return true; 1011 1012 if (Ty->isReferenceType()) 1013 return true; 1014 1015 if (State.FreeRegs) 1016 NeedsPadding = true; 1017 1018 return false; 1019 } 1020 1021 return true; 1022 } 1023 1024 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, 1025 CCState &State) const { 1026 // FIXME: Set alignment on indirect arguments. 1027 1028 Ty = useFirstFieldIfTransparentUnion(Ty); 1029 1030 // Check with the C++ ABI first. 1031 const RecordType *RT = Ty->getAs<RecordType>(); 1032 if (RT) { 1033 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 1034 if (RAA == CGCXXABI::RAA_Indirect) { 1035 return getIndirectResult(Ty, false, State); 1036 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 1037 // The field index doesn't matter, we'll fix it up later. 1038 return ABIArgInfo::getInAlloca(/*FieldIndex=*/0); 1039 } 1040 } 1041 1042 // vectorcall adds the concept of a homogenous vector aggregate, similar 1043 // to other targets. 1044 const Type *Base = nullptr; 1045 uint64_t NumElts = 0; 1046 if (State.CC == llvm::CallingConv::X86_VectorCall && 1047 isHomogeneousAggregate(Ty, Base, NumElts)) { 1048 if (State.FreeSSERegs >= NumElts) { 1049 State.FreeSSERegs -= NumElts; 1050 if (Ty->isBuiltinType() || Ty->isVectorType()) 1051 return ABIArgInfo::getDirect(); 1052 return ABIArgInfo::getExpand(); 1053 } 1054 return getIndirectResult(Ty, /*ByVal=*/false, State); 1055 } 1056 1057 if (isAggregateTypeForABI(Ty)) { 1058 if (RT) { 1059 // Structs are always byval on win32, regardless of what they contain. 1060 if (IsWin32StructABI) 1061 return getIndirectResult(Ty, true, State); 1062 1063 // Structures with flexible arrays are always indirect. 1064 if (RT->getDecl()->hasFlexibleArrayMember()) 1065 return getIndirectResult(Ty, true, State); 1066 } 1067 1068 // Ignore empty structs/unions. 1069 if (isEmptyRecord(getContext(), Ty, true)) 1070 return ABIArgInfo::getIgnore(); 1071 1072 llvm::LLVMContext &LLVMContext = getVMContext(); 1073 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 1074 bool NeedsPadding; 1075 if (shouldUseInReg(Ty, State, NeedsPadding)) { 1076 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; 1077 SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32); 1078 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 1079 return ABIArgInfo::getDirectInReg(Result); 1080 } 1081 llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr; 1082 1083 // Expand small (<= 128-bit) record types when we know that the stack layout 1084 // of those arguments will match the struct. This is important because the 1085 // LLVM backend isn't smart enough to remove byval, which inhibits many 1086 // optimizations. 1087 if (getContext().getTypeSize(Ty) <= 4*32 && 1088 canExpandIndirectArgument(Ty, getContext())) 1089 return ABIArgInfo::getExpandWithPadding( 1090 State.CC == llvm::CallingConv::X86_FastCall || 1091 State.CC == llvm::CallingConv::X86_VectorCall, 1092 PaddingType); 1093 1094 return getIndirectResult(Ty, true, State); 1095 } 1096 1097 if (const VectorType *VT = Ty->getAs<VectorType>()) { 1098 // On Darwin, some vectors are passed in memory, we handle this by passing 1099 // it as an i8/i16/i32/i64. 1100 if (IsDarwinVectorABI) { 1101 uint64_t Size = getContext().getTypeSize(Ty); 1102 if ((Size == 8 || Size == 16 || Size == 32) || 1103 (Size == 64 && VT->getNumElements() == 1)) 1104 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1105 Size)); 1106 } 1107 1108 if (IsX86_MMXType(CGT.ConvertType(Ty))) 1109 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64)); 1110 1111 return ABIArgInfo::getDirect(); 1112 } 1113 1114 1115 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 1116 Ty = EnumTy->getDecl()->getIntegerType(); 1117 1118 bool NeedsPadding; 1119 bool InReg = shouldUseInReg(Ty, State, NeedsPadding); 1120 1121 if (Ty->isPromotableIntegerType()) { 1122 if (InReg) 1123 return ABIArgInfo::getExtendInReg(); 1124 return ABIArgInfo::getExtend(); 1125 } 1126 if (InReg) 1127 return ABIArgInfo::getDirectInReg(); 1128 return ABIArgInfo::getDirect(); 1129 } 1130 1131 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const { 1132 CCState State(FI.getCallingConvention()); 1133 if (State.CC == llvm::CallingConv::X86_FastCall) 1134 State.FreeRegs = 2; 1135 else if (State.CC == llvm::CallingConv::X86_VectorCall) { 1136 State.FreeRegs = 2; 1137 State.FreeSSERegs = 6; 1138 } else if (FI.getHasRegParm()) 1139 State.FreeRegs = FI.getRegParm(); 1140 else 1141 State.FreeRegs = DefaultNumRegisterParameters; 1142 1143 if (!getCXXABI().classifyReturnType(FI)) { 1144 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State); 1145 } else if (FI.getReturnInfo().isIndirect()) { 1146 // The C++ ABI is not aware of register usage, so we have to check if the 1147 // return value was sret and put it in a register ourselves if appropriate. 1148 if (State.FreeRegs) { 1149 --State.FreeRegs; // The sret parameter consumes a register. 1150 FI.getReturnInfo().setInReg(true); 1151 } 1152 } 1153 1154 // The chain argument effectively gives us another free register. 1155 if (FI.isChainCall()) 1156 ++State.FreeRegs; 1157 1158 bool UsedInAlloca = false; 1159 for (auto &I : FI.arguments()) { 1160 I.info = classifyArgumentType(I.type, State); 1161 UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca); 1162 } 1163 1164 // If we needed to use inalloca for any argument, do a second pass and rewrite 1165 // all the memory arguments to use inalloca. 1166 if (UsedInAlloca) 1167 rewriteWithInAlloca(FI); 1168 } 1169 1170 void 1171 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1172 unsigned &StackOffset, 1173 ABIArgInfo &Info, QualType Type) const { 1174 assert(StackOffset % 4U == 0 && "unaligned inalloca struct"); 1175 Info = ABIArgInfo::getInAlloca(FrameFields.size()); 1176 FrameFields.push_back(CGT.ConvertTypeForMem(Type)); 1177 StackOffset += getContext().getTypeSizeInChars(Type).getQuantity(); 1178 1179 // Insert padding bytes to respect alignment. For x86_32, each argument is 4 1180 // byte aligned. 1181 if (StackOffset % 4U) { 1182 unsigned OldOffset = StackOffset; 1183 StackOffset = llvm::RoundUpToAlignment(StackOffset, 4U); 1184 unsigned NumBytes = StackOffset - OldOffset; 1185 assert(NumBytes); 1186 llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext()); 1187 Ty = llvm::ArrayType::get(Ty, NumBytes); 1188 FrameFields.push_back(Ty); 1189 } 1190 } 1191 1192 static bool isArgInAlloca(const ABIArgInfo &Info) { 1193 // Leave ignored and inreg arguments alone. 1194 switch (Info.getKind()) { 1195 case ABIArgInfo::InAlloca: 1196 return true; 1197 case ABIArgInfo::Indirect: 1198 assert(Info.getIndirectByVal()); 1199 return true; 1200 case ABIArgInfo::Ignore: 1201 return false; 1202 case ABIArgInfo::Direct: 1203 case ABIArgInfo::Extend: 1204 case ABIArgInfo::Expand: 1205 if (Info.getInReg()) 1206 return false; 1207 return true; 1208 } 1209 llvm_unreachable("invalid enum"); 1210 } 1211 1212 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const { 1213 assert(IsWin32StructABI && "inalloca only supported on win32"); 1214 1215 // Build a packed struct type for all of the arguments in memory. 1216 SmallVector<llvm::Type *, 6> FrameFields; 1217 1218 unsigned StackOffset = 0; 1219 CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end(); 1220 1221 // Put 'this' into the struct before 'sret', if necessary. 1222 bool IsThisCall = 1223 FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall; 1224 ABIArgInfo &Ret = FI.getReturnInfo(); 1225 if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall && 1226 isArgInAlloca(I->info)) { 1227 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 1228 ++I; 1229 } 1230 1231 // Put the sret parameter into the inalloca struct if it's in memory. 1232 if (Ret.isIndirect() && !Ret.getInReg()) { 1233 CanQualType PtrTy = getContext().getPointerType(FI.getReturnType()); 1234 addFieldToArgStruct(FrameFields, StackOffset, Ret, PtrTy); 1235 // On Windows, the hidden sret parameter is always returned in eax. 1236 Ret.setInAllocaSRet(IsWin32StructABI); 1237 } 1238 1239 // Skip the 'this' parameter in ecx. 1240 if (IsThisCall) 1241 ++I; 1242 1243 // Put arguments passed in memory into the struct. 1244 for (; I != E; ++I) { 1245 if (isArgInAlloca(I->info)) 1246 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 1247 } 1248 1249 FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields, 1250 /*isPacked=*/true)); 1251 } 1252 1253 llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 1254 CodeGenFunction &CGF) const { 1255 llvm::Type *BPP = CGF.Int8PtrPtrTy; 1256 1257 CGBuilderTy &Builder = CGF.Builder; 1258 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, 1259 "ap"); 1260 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 1261 1262 // Compute if the address needs to be aligned 1263 unsigned Align = CGF.getContext().getTypeAlignInChars(Ty).getQuantity(); 1264 Align = getTypeStackAlignInBytes(Ty, Align); 1265 Align = std::max(Align, 4U); 1266 if (Align > 4) { 1267 // addr = (addr + align - 1) & -align; 1268 llvm::Value *Offset = 1269 llvm::ConstantInt::get(CGF.Int32Ty, Align - 1); 1270 Addr = CGF.Builder.CreateGEP(Addr, Offset); 1271 llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(Addr, 1272 CGF.Int32Ty); 1273 llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -Align); 1274 Addr = CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask), 1275 Addr->getType(), 1276 "ap.cur.aligned"); 1277 } 1278 1279 llvm::Type *PTy = 1280 llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 1281 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); 1282 1283 uint64_t Offset = 1284 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, Align); 1285 llvm::Value *NextAddr = 1286 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), 1287 "ap.next"); 1288 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 1289 1290 return AddrTyped; 1291 } 1292 1293 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI( 1294 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 1295 assert(Triple.getArch() == llvm::Triple::x86); 1296 1297 switch (Opts.getStructReturnConvention()) { 1298 case CodeGenOptions::SRCK_Default: 1299 break; 1300 case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return 1301 return false; 1302 case CodeGenOptions::SRCK_InRegs: // -freg-struct-return 1303 return true; 1304 } 1305 1306 if (Triple.isOSDarwin()) 1307 return true; 1308 1309 switch (Triple.getOS()) { 1310 case llvm::Triple::DragonFly: 1311 case llvm::Triple::FreeBSD: 1312 case llvm::Triple::OpenBSD: 1313 case llvm::Triple::Bitrig: 1314 case llvm::Triple::Win32: 1315 return true; 1316 default: 1317 return false; 1318 } 1319 } 1320 1321 void X86_32TargetCodeGenInfo::SetTargetAttributes(const Decl *D, 1322 llvm::GlobalValue *GV, 1323 CodeGen::CodeGenModule &CGM) const { 1324 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1325 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 1326 // Get the LLVM function. 1327 llvm::Function *Fn = cast<llvm::Function>(GV); 1328 1329 // Now add the 'alignstack' attribute with a value of 16. 1330 llvm::AttrBuilder B; 1331 B.addStackAlignmentAttr(16); 1332 Fn->addAttributes(llvm::AttributeSet::FunctionIndex, 1333 llvm::AttributeSet::get(CGM.getLLVMContext(), 1334 llvm::AttributeSet::FunctionIndex, 1335 B)); 1336 } 1337 } 1338 } 1339 1340 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable( 1341 CodeGen::CodeGenFunction &CGF, 1342 llvm::Value *Address) const { 1343 CodeGen::CGBuilderTy &Builder = CGF.Builder; 1344 1345 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 1346 1347 // 0-7 are the eight integer registers; the order is different 1348 // on Darwin (for EH), but the range is the same. 1349 // 8 is %eip. 1350 AssignToArrayRange(Builder, Address, Four8, 0, 8); 1351 1352 if (CGF.CGM.getTarget().getTriple().isOSDarwin()) { 1353 // 12-16 are st(0..4). Not sure why we stop at 4. 1354 // These have size 16, which is sizeof(long double) on 1355 // platforms with 8-byte alignment for that type. 1356 llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16); 1357 AssignToArrayRange(Builder, Address, Sixteen8, 12, 16); 1358 1359 } else { 1360 // 9 is %eflags, which doesn't get a size on Darwin for some 1361 // reason. 1362 Builder.CreateStore( 1363 Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9)); 1364 1365 // 11-16 are st(0..5). Not sure why we stop at 5. 1366 // These have size 12, which is sizeof(long double) on 1367 // platforms with 4-byte alignment for that type. 1368 llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12); 1369 AssignToArrayRange(Builder, Address, Twelve8, 11, 16); 1370 } 1371 1372 return false; 1373 } 1374 1375 //===----------------------------------------------------------------------===// 1376 // X86-64 ABI Implementation 1377 //===----------------------------------------------------------------------===// 1378 1379 1380 namespace { 1381 /// X86_64ABIInfo - The X86_64 ABI information. 1382 class X86_64ABIInfo : public ABIInfo { 1383 enum Class { 1384 Integer = 0, 1385 SSE, 1386 SSEUp, 1387 X87, 1388 X87Up, 1389 ComplexX87, 1390 NoClass, 1391 Memory 1392 }; 1393 1394 /// merge - Implement the X86_64 ABI merging algorithm. 1395 /// 1396 /// Merge an accumulating classification \arg Accum with a field 1397 /// classification \arg Field. 1398 /// 1399 /// \param Accum - The accumulating classification. This should 1400 /// always be either NoClass or the result of a previous merge 1401 /// call. In addition, this should never be Memory (the caller 1402 /// should just return Memory for the aggregate). 1403 static Class merge(Class Accum, Class Field); 1404 1405 /// postMerge - Implement the X86_64 ABI post merging algorithm. 1406 /// 1407 /// Post merger cleanup, reduces a malformed Hi and Lo pair to 1408 /// final MEMORY or SSE classes when necessary. 1409 /// 1410 /// \param AggregateSize - The size of the current aggregate in 1411 /// the classification process. 1412 /// 1413 /// \param Lo - The classification for the parts of the type 1414 /// residing in the low word of the containing object. 1415 /// 1416 /// \param Hi - The classification for the parts of the type 1417 /// residing in the higher words of the containing object. 1418 /// 1419 void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const; 1420 1421 /// classify - Determine the x86_64 register classes in which the 1422 /// given type T should be passed. 1423 /// 1424 /// \param Lo - The classification for the parts of the type 1425 /// residing in the low word of the containing object. 1426 /// 1427 /// \param Hi - The classification for the parts of the type 1428 /// residing in the high word of the containing object. 1429 /// 1430 /// \param OffsetBase - The bit offset of this type in the 1431 /// containing object. Some parameters are classified different 1432 /// depending on whether they straddle an eightbyte boundary. 1433 /// 1434 /// \param isNamedArg - Whether the argument in question is a "named" 1435 /// argument, as used in AMD64-ABI 3.5.7. 1436 /// 1437 /// If a word is unused its result will be NoClass; if a type should 1438 /// be passed in Memory then at least the classification of \arg Lo 1439 /// will be Memory. 1440 /// 1441 /// The \arg Lo class will be NoClass iff the argument is ignored. 1442 /// 1443 /// If the \arg Lo class is ComplexX87, then the \arg Hi class will 1444 /// also be ComplexX87. 1445 void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi, 1446 bool isNamedArg) const; 1447 1448 llvm::Type *GetByteVectorType(QualType Ty) const; 1449 llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType, 1450 unsigned IROffset, QualType SourceTy, 1451 unsigned SourceOffset) const; 1452 llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType, 1453 unsigned IROffset, QualType SourceTy, 1454 unsigned SourceOffset) const; 1455 1456 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 1457 /// such that the argument will be returned in memory. 1458 ABIArgInfo getIndirectReturnResult(QualType Ty) const; 1459 1460 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 1461 /// such that the argument will be passed in memory. 1462 /// 1463 /// \param freeIntRegs - The number of free integer registers remaining 1464 /// available. 1465 ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const; 1466 1467 ABIArgInfo classifyReturnType(QualType RetTy) const; 1468 1469 ABIArgInfo classifyArgumentType(QualType Ty, 1470 unsigned freeIntRegs, 1471 unsigned &neededInt, 1472 unsigned &neededSSE, 1473 bool isNamedArg) const; 1474 1475 bool IsIllegalVectorType(QualType Ty) const; 1476 1477 /// The 0.98 ABI revision clarified a lot of ambiguities, 1478 /// unfortunately in ways that were not always consistent with 1479 /// certain previous compilers. In particular, platforms which 1480 /// required strict binary compatibility with older versions of GCC 1481 /// may need to exempt themselves. 1482 bool honorsRevision0_98() const { 1483 return !getTarget().getTriple().isOSDarwin(); 1484 } 1485 1486 bool HasAVX; 1487 // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on 1488 // 64-bit hardware. 1489 bool Has64BitPointers; 1490 1491 public: 1492 X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, bool hasavx) : 1493 ABIInfo(CGT), HasAVX(hasavx), 1494 Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) { 1495 } 1496 1497 bool isPassedUsingAVXType(QualType type) const { 1498 unsigned neededInt, neededSSE; 1499 // The freeIntRegs argument doesn't matter here. 1500 ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE, 1501 /*isNamedArg*/true); 1502 if (info.isDirect()) { 1503 llvm::Type *ty = info.getCoerceToType(); 1504 if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty)) 1505 return (vectorTy->getBitWidth() > 128); 1506 } 1507 return false; 1508 } 1509 1510 void computeInfo(CGFunctionInfo &FI) const override; 1511 1512 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 1513 CodeGenFunction &CGF) const override; 1514 1515 bool has64BitPointers() const { 1516 return Has64BitPointers; 1517 } 1518 }; 1519 1520 /// WinX86_64ABIInfo - The Windows X86_64 ABI information. 1521 class WinX86_64ABIInfo : public ABIInfo { 1522 1523 ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, 1524 bool IsReturnType) const; 1525 1526 public: 1527 WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 1528 1529 void computeInfo(CGFunctionInfo &FI) const override; 1530 1531 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 1532 CodeGenFunction &CGF) const override; 1533 1534 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 1535 // FIXME: Assumes vectorcall is in use. 1536 return isX86VectorTypeForVectorCall(getContext(), Ty); 1537 } 1538 1539 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 1540 uint64_t NumMembers) const override { 1541 // FIXME: Assumes vectorcall is in use. 1542 return isX86VectorCallAggregateSmallEnough(NumMembers); 1543 } 1544 }; 1545 1546 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo { 1547 bool HasAVX; 1548 public: 1549 X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX) 1550 : TargetCodeGenInfo(new X86_64ABIInfo(CGT, HasAVX)), HasAVX(HasAVX) {} 1551 1552 const X86_64ABIInfo &getABIInfo() const { 1553 return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo()); 1554 } 1555 1556 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 1557 return 7; 1558 } 1559 1560 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 1561 llvm::Value *Address) const override { 1562 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 1563 1564 // 0-15 are the 16 integer registers. 1565 // 16 is %rip. 1566 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 1567 return false; 1568 } 1569 1570 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 1571 StringRef Constraint, 1572 llvm::Type* Ty) const override { 1573 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 1574 } 1575 1576 bool isNoProtoCallVariadic(const CallArgList &args, 1577 const FunctionNoProtoType *fnType) const override { 1578 // The default CC on x86-64 sets %al to the number of SSA 1579 // registers used, and GCC sets this when calling an unprototyped 1580 // function, so we override the default behavior. However, don't do 1581 // that when AVX types are involved: the ABI explicitly states it is 1582 // undefined, and it doesn't work in practice because of how the ABI 1583 // defines varargs anyway. 1584 if (fnType->getCallConv() == CC_C) { 1585 bool HasAVXType = false; 1586 for (CallArgList::const_iterator 1587 it = args.begin(), ie = args.end(); it != ie; ++it) { 1588 if (getABIInfo().isPassedUsingAVXType(it->Ty)) { 1589 HasAVXType = true; 1590 break; 1591 } 1592 } 1593 1594 if (!HasAVXType) 1595 return true; 1596 } 1597 1598 return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType); 1599 } 1600 1601 llvm::Constant * 1602 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 1603 unsigned Sig; 1604 if (getABIInfo().has64BitPointers()) 1605 Sig = (0xeb << 0) | // jmp rel8 1606 (0x0a << 8) | // .+0x0c 1607 ('F' << 16) | 1608 ('T' << 24); 1609 else 1610 Sig = (0xeb << 0) | // jmp rel8 1611 (0x06 << 8) | // .+0x08 1612 ('F' << 16) | 1613 ('T' << 24); 1614 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 1615 } 1616 1617 unsigned getOpenMPSimdDefaultAlignment(QualType) const override { 1618 return HasAVX ? 32 : 16; 1619 } 1620 }; 1621 1622 class PS4TargetCodeGenInfo : public X86_64TargetCodeGenInfo { 1623 public: 1624 PS4TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX) 1625 : X86_64TargetCodeGenInfo(CGT, HasAVX) {} 1626 1627 void getDependentLibraryOption(llvm::StringRef Lib, 1628 llvm::SmallString<24> &Opt) const override { 1629 Opt = "\01"; 1630 Opt += Lib; 1631 } 1632 }; 1633 1634 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) { 1635 // If the argument does not end in .lib, automatically add the suffix. 1636 // If the argument contains a space, enclose it in quotes. 1637 // This matches the behavior of MSVC. 1638 bool Quote = (Lib.find(" ") != StringRef::npos); 1639 std::string ArgStr = Quote ? "\"" : ""; 1640 ArgStr += Lib; 1641 if (!Lib.endswith_lower(".lib")) 1642 ArgStr += ".lib"; 1643 ArgStr += Quote ? "\"" : ""; 1644 return ArgStr; 1645 } 1646 1647 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo { 1648 public: 1649 WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 1650 bool d, bool p, bool w, unsigned RegParms) 1651 : X86_32TargetCodeGenInfo(CGT, d, p, w, RegParms) {} 1652 1653 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 1654 CodeGen::CodeGenModule &CGM) const override; 1655 1656 void getDependentLibraryOption(llvm::StringRef Lib, 1657 llvm::SmallString<24> &Opt) const override { 1658 Opt = "/DEFAULTLIB:"; 1659 Opt += qualifyWindowsLibrary(Lib); 1660 } 1661 1662 void getDetectMismatchOption(llvm::StringRef Name, 1663 llvm::StringRef Value, 1664 llvm::SmallString<32> &Opt) const override { 1665 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 1666 } 1667 }; 1668 1669 static void addStackProbeSizeTargetAttribute(const Decl *D, 1670 llvm::GlobalValue *GV, 1671 CodeGen::CodeGenModule &CGM) { 1672 if (isa<FunctionDecl>(D)) { 1673 if (CGM.getCodeGenOpts().StackProbeSize != 4096) { 1674 llvm::Function *Fn = cast<llvm::Function>(GV); 1675 1676 Fn->addFnAttr("stack-probe-size", llvm::utostr(CGM.getCodeGenOpts().StackProbeSize)); 1677 } 1678 } 1679 } 1680 1681 void WinX86_32TargetCodeGenInfo::SetTargetAttributes(const Decl *D, 1682 llvm::GlobalValue *GV, 1683 CodeGen::CodeGenModule &CGM) const { 1684 X86_32TargetCodeGenInfo::SetTargetAttributes(D, GV, CGM); 1685 1686 addStackProbeSizeTargetAttribute(D, GV, CGM); 1687 } 1688 1689 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo { 1690 bool HasAVX; 1691 public: 1692 WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX) 1693 : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)), HasAVX(HasAVX) {} 1694 1695 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 1696 CodeGen::CodeGenModule &CGM) const override; 1697 1698 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 1699 return 7; 1700 } 1701 1702 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 1703 llvm::Value *Address) const override { 1704 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 1705 1706 // 0-15 are the 16 integer registers. 1707 // 16 is %rip. 1708 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 1709 return false; 1710 } 1711 1712 void getDependentLibraryOption(llvm::StringRef Lib, 1713 llvm::SmallString<24> &Opt) const override { 1714 Opt = "/DEFAULTLIB:"; 1715 Opt += qualifyWindowsLibrary(Lib); 1716 } 1717 1718 void getDetectMismatchOption(llvm::StringRef Name, 1719 llvm::StringRef Value, 1720 llvm::SmallString<32> &Opt) const override { 1721 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 1722 } 1723 1724 unsigned getOpenMPSimdDefaultAlignment(QualType) const override { 1725 return HasAVX ? 32 : 16; 1726 } 1727 }; 1728 1729 void WinX86_64TargetCodeGenInfo::SetTargetAttributes(const Decl *D, 1730 llvm::GlobalValue *GV, 1731 CodeGen::CodeGenModule &CGM) const { 1732 TargetCodeGenInfo::SetTargetAttributes(D, GV, CGM); 1733 1734 addStackProbeSizeTargetAttribute(D, GV, CGM); 1735 } 1736 } 1737 1738 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo, 1739 Class &Hi) const { 1740 // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done: 1741 // 1742 // (a) If one of the classes is Memory, the whole argument is passed in 1743 // memory. 1744 // 1745 // (b) If X87UP is not preceded by X87, the whole argument is passed in 1746 // memory. 1747 // 1748 // (c) If the size of the aggregate exceeds two eightbytes and the first 1749 // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole 1750 // argument is passed in memory. NOTE: This is necessary to keep the 1751 // ABI working for processors that don't support the __m256 type. 1752 // 1753 // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE. 1754 // 1755 // Some of these are enforced by the merging logic. Others can arise 1756 // only with unions; for example: 1757 // union { _Complex double; unsigned; } 1758 // 1759 // Note that clauses (b) and (c) were added in 0.98. 1760 // 1761 if (Hi == Memory) 1762 Lo = Memory; 1763 if (Hi == X87Up && Lo != X87 && honorsRevision0_98()) 1764 Lo = Memory; 1765 if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp)) 1766 Lo = Memory; 1767 if (Hi == SSEUp && Lo != SSE) 1768 Hi = SSE; 1769 } 1770 1771 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) { 1772 // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is 1773 // classified recursively so that always two fields are 1774 // considered. The resulting class is calculated according to 1775 // the classes of the fields in the eightbyte: 1776 // 1777 // (a) If both classes are equal, this is the resulting class. 1778 // 1779 // (b) If one of the classes is NO_CLASS, the resulting class is 1780 // the other class. 1781 // 1782 // (c) If one of the classes is MEMORY, the result is the MEMORY 1783 // class. 1784 // 1785 // (d) If one of the classes is INTEGER, the result is the 1786 // INTEGER. 1787 // 1788 // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class, 1789 // MEMORY is used as class. 1790 // 1791 // (f) Otherwise class SSE is used. 1792 1793 // Accum should never be memory (we should have returned) or 1794 // ComplexX87 (because this cannot be passed in a structure). 1795 assert((Accum != Memory && Accum != ComplexX87) && 1796 "Invalid accumulated classification during merge."); 1797 if (Accum == Field || Field == NoClass) 1798 return Accum; 1799 if (Field == Memory) 1800 return Memory; 1801 if (Accum == NoClass) 1802 return Field; 1803 if (Accum == Integer || Field == Integer) 1804 return Integer; 1805 if (Field == X87 || Field == X87Up || Field == ComplexX87 || 1806 Accum == X87 || Accum == X87Up) 1807 return Memory; 1808 return SSE; 1809 } 1810 1811 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, 1812 Class &Lo, Class &Hi, bool isNamedArg) const { 1813 // FIXME: This code can be simplified by introducing a simple value class for 1814 // Class pairs with appropriate constructor methods for the various 1815 // situations. 1816 1817 // FIXME: Some of the split computations are wrong; unaligned vectors 1818 // shouldn't be passed in registers for example, so there is no chance they 1819 // can straddle an eightbyte. Verify & simplify. 1820 1821 Lo = Hi = NoClass; 1822 1823 Class &Current = OffsetBase < 64 ? Lo : Hi; 1824 Current = Memory; 1825 1826 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 1827 BuiltinType::Kind k = BT->getKind(); 1828 1829 if (k == BuiltinType::Void) { 1830 Current = NoClass; 1831 } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) { 1832 Lo = Integer; 1833 Hi = Integer; 1834 } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) { 1835 Current = Integer; 1836 } else if ((k == BuiltinType::Float || k == BuiltinType::Double) || 1837 (k == BuiltinType::LongDouble && 1838 getTarget().getTriple().isOSNaCl())) { 1839 Current = SSE; 1840 } else if (k == BuiltinType::LongDouble) { 1841 Lo = X87; 1842 Hi = X87Up; 1843 } 1844 // FIXME: _Decimal32 and _Decimal64 are SSE. 1845 // FIXME: _float128 and _Decimal128 are (SSE, SSEUp). 1846 return; 1847 } 1848 1849 if (const EnumType *ET = Ty->getAs<EnumType>()) { 1850 // Classify the underlying integer type. 1851 classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg); 1852 return; 1853 } 1854 1855 if (Ty->hasPointerRepresentation()) { 1856 Current = Integer; 1857 return; 1858 } 1859 1860 if (Ty->isMemberPointerType()) { 1861 if (Ty->isMemberFunctionPointerType()) { 1862 if (Has64BitPointers) { 1863 // If Has64BitPointers, this is an {i64, i64}, so classify both 1864 // Lo and Hi now. 1865 Lo = Hi = Integer; 1866 } else { 1867 // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that 1868 // straddles an eightbyte boundary, Hi should be classified as well. 1869 uint64_t EB_FuncPtr = (OffsetBase) / 64; 1870 uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64; 1871 if (EB_FuncPtr != EB_ThisAdj) { 1872 Lo = Hi = Integer; 1873 } else { 1874 Current = Integer; 1875 } 1876 } 1877 } else { 1878 Current = Integer; 1879 } 1880 return; 1881 } 1882 1883 if (const VectorType *VT = Ty->getAs<VectorType>()) { 1884 uint64_t Size = getContext().getTypeSize(VT); 1885 if (Size == 32) { 1886 // gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x 1887 // float> as integer. 1888 Current = Integer; 1889 1890 // If this type crosses an eightbyte boundary, it should be 1891 // split. 1892 uint64_t EB_Real = (OffsetBase) / 64; 1893 uint64_t EB_Imag = (OffsetBase + Size - 1) / 64; 1894 if (EB_Real != EB_Imag) 1895 Hi = Lo; 1896 } else if (Size == 64) { 1897 // gcc passes <1 x double> in memory. :( 1898 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) 1899 return; 1900 1901 // gcc passes <1 x long long> as INTEGER. 1902 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong) || 1903 VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULongLong) || 1904 VT->getElementType()->isSpecificBuiltinType(BuiltinType::Long) || 1905 VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULong)) 1906 Current = Integer; 1907 else 1908 Current = SSE; 1909 1910 // If this type crosses an eightbyte boundary, it should be 1911 // split. 1912 if (OffsetBase && OffsetBase != 64) 1913 Hi = Lo; 1914 } else if (Size == 128 || (HasAVX && isNamedArg && Size == 256)) { 1915 // Arguments of 256-bits are split into four eightbyte chunks. The 1916 // least significant one belongs to class SSE and all the others to class 1917 // SSEUP. The original Lo and Hi design considers that types can't be 1918 // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense. 1919 // This design isn't correct for 256-bits, but since there're no cases 1920 // where the upper parts would need to be inspected, avoid adding 1921 // complexity and just consider Hi to match the 64-256 part. 1922 // 1923 // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in 1924 // registers if they are "named", i.e. not part of the "..." of a 1925 // variadic function. 1926 Lo = SSE; 1927 Hi = SSEUp; 1928 } 1929 return; 1930 } 1931 1932 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 1933 QualType ET = getContext().getCanonicalType(CT->getElementType()); 1934 1935 uint64_t Size = getContext().getTypeSize(Ty); 1936 if (ET->isIntegralOrEnumerationType()) { 1937 if (Size <= 64) 1938 Current = Integer; 1939 else if (Size <= 128) 1940 Lo = Hi = Integer; 1941 } else if (ET == getContext().FloatTy) 1942 Current = SSE; 1943 else if (ET == getContext().DoubleTy || 1944 (ET == getContext().LongDoubleTy && 1945 getTarget().getTriple().isOSNaCl())) 1946 Lo = Hi = SSE; 1947 else if (ET == getContext().LongDoubleTy) 1948 Current = ComplexX87; 1949 1950 // If this complex type crosses an eightbyte boundary then it 1951 // should be split. 1952 uint64_t EB_Real = (OffsetBase) / 64; 1953 uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64; 1954 if (Hi == NoClass && EB_Real != EB_Imag) 1955 Hi = Lo; 1956 1957 return; 1958 } 1959 1960 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 1961 // Arrays are treated like structures. 1962 1963 uint64_t Size = getContext().getTypeSize(Ty); 1964 1965 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 1966 // than four eightbytes, ..., it has class MEMORY. 1967 if (Size > 256) 1968 return; 1969 1970 // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned 1971 // fields, it has class MEMORY. 1972 // 1973 // Only need to check alignment of array base. 1974 if (OffsetBase % getContext().getTypeAlign(AT->getElementType())) 1975 return; 1976 1977 // Otherwise implement simplified merge. We could be smarter about 1978 // this, but it isn't worth it and would be harder to verify. 1979 Current = NoClass; 1980 uint64_t EltSize = getContext().getTypeSize(AT->getElementType()); 1981 uint64_t ArraySize = AT->getSize().getZExtValue(); 1982 1983 // The only case a 256-bit wide vector could be used is when the array 1984 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 1985 // to work for sizes wider than 128, early check and fallback to memory. 1986 if (Size > 128 && EltSize != 256) 1987 return; 1988 1989 for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) { 1990 Class FieldLo, FieldHi; 1991 classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg); 1992 Lo = merge(Lo, FieldLo); 1993 Hi = merge(Hi, FieldHi); 1994 if (Lo == Memory || Hi == Memory) 1995 break; 1996 } 1997 1998 postMerge(Size, Lo, Hi); 1999 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification."); 2000 return; 2001 } 2002 2003 if (const RecordType *RT = Ty->getAs<RecordType>()) { 2004 uint64_t Size = getContext().getTypeSize(Ty); 2005 2006 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 2007 // than four eightbytes, ..., it has class MEMORY. 2008 if (Size > 256) 2009 return; 2010 2011 // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial 2012 // copy constructor or a non-trivial destructor, it is passed by invisible 2013 // reference. 2014 if (getRecordArgABI(RT, getCXXABI())) 2015 return; 2016 2017 const RecordDecl *RD = RT->getDecl(); 2018 2019 // Assume variable sized types are passed in memory. 2020 if (RD->hasFlexibleArrayMember()) 2021 return; 2022 2023 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 2024 2025 // Reset Lo class, this will be recomputed. 2026 Current = NoClass; 2027 2028 // If this is a C++ record, classify the bases first. 2029 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 2030 for (const auto &I : CXXRD->bases()) { 2031 assert(!I.isVirtual() && !I.getType()->isDependentType() && 2032 "Unexpected base class!"); 2033 const CXXRecordDecl *Base = 2034 cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); 2035 2036 // Classify this field. 2037 // 2038 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a 2039 // single eightbyte, each is classified separately. Each eightbyte gets 2040 // initialized to class NO_CLASS. 2041 Class FieldLo, FieldHi; 2042 uint64_t Offset = 2043 OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base)); 2044 classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg); 2045 Lo = merge(Lo, FieldLo); 2046 Hi = merge(Hi, FieldHi); 2047 if (Lo == Memory || Hi == Memory) 2048 break; 2049 } 2050 } 2051 2052 // Classify the fields one at a time, merging the results. 2053 unsigned idx = 0; 2054 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 2055 i != e; ++i, ++idx) { 2056 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 2057 bool BitField = i->isBitField(); 2058 2059 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than 2060 // four eightbytes, or it contains unaligned fields, it has class MEMORY. 2061 // 2062 // The only case a 256-bit wide vector could be used is when the struct 2063 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 2064 // to work for sizes wider than 128, early check and fallback to memory. 2065 // 2066 if (Size > 128 && getContext().getTypeSize(i->getType()) != 256) { 2067 Lo = Memory; 2068 return; 2069 } 2070 // Note, skip this test for bit-fields, see below. 2071 if (!BitField && Offset % getContext().getTypeAlign(i->getType())) { 2072 Lo = Memory; 2073 return; 2074 } 2075 2076 // Classify this field. 2077 // 2078 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate 2079 // exceeds a single eightbyte, each is classified 2080 // separately. Each eightbyte gets initialized to class 2081 // NO_CLASS. 2082 Class FieldLo, FieldHi; 2083 2084 // Bit-fields require special handling, they do not force the 2085 // structure to be passed in memory even if unaligned, and 2086 // therefore they can straddle an eightbyte. 2087 if (BitField) { 2088 // Ignore padding bit-fields. 2089 if (i->isUnnamedBitfield()) 2090 continue; 2091 2092 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 2093 uint64_t Size = i->getBitWidthValue(getContext()); 2094 2095 uint64_t EB_Lo = Offset / 64; 2096 uint64_t EB_Hi = (Offset + Size - 1) / 64; 2097 2098 if (EB_Lo) { 2099 assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes."); 2100 FieldLo = NoClass; 2101 FieldHi = Integer; 2102 } else { 2103 FieldLo = Integer; 2104 FieldHi = EB_Hi ? Integer : NoClass; 2105 } 2106 } else 2107 classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg); 2108 Lo = merge(Lo, FieldLo); 2109 Hi = merge(Hi, FieldHi); 2110 if (Lo == Memory || Hi == Memory) 2111 break; 2112 } 2113 2114 postMerge(Size, Lo, Hi); 2115 } 2116 } 2117 2118 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const { 2119 // If this is a scalar LLVM value then assume LLVM will pass it in the right 2120 // place naturally. 2121 if (!isAggregateTypeForABI(Ty)) { 2122 // Treat an enum type as its underlying type. 2123 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2124 Ty = EnumTy->getDecl()->getIntegerType(); 2125 2126 return (Ty->isPromotableIntegerType() ? 2127 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 2128 } 2129 2130 return ABIArgInfo::getIndirect(0); 2131 } 2132 2133 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const { 2134 if (const VectorType *VecTy = Ty->getAs<VectorType>()) { 2135 uint64_t Size = getContext().getTypeSize(VecTy); 2136 unsigned LargestVector = HasAVX ? 256 : 128; 2137 if (Size <= 64 || Size > LargestVector) 2138 return true; 2139 } 2140 2141 return false; 2142 } 2143 2144 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty, 2145 unsigned freeIntRegs) const { 2146 // If this is a scalar LLVM value then assume LLVM will pass it in the right 2147 // place naturally. 2148 // 2149 // This assumption is optimistic, as there could be free registers available 2150 // when we need to pass this argument in memory, and LLVM could try to pass 2151 // the argument in the free register. This does not seem to happen currently, 2152 // but this code would be much safer if we could mark the argument with 2153 // 'onstack'. See PR12193. 2154 if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) { 2155 // Treat an enum type as its underlying type. 2156 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2157 Ty = EnumTy->getDecl()->getIntegerType(); 2158 2159 return (Ty->isPromotableIntegerType() ? 2160 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 2161 } 2162 2163 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 2164 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 2165 2166 // Compute the byval alignment. We specify the alignment of the byval in all 2167 // cases so that the mid-level optimizer knows the alignment of the byval. 2168 unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U); 2169 2170 // Attempt to avoid passing indirect results using byval when possible. This 2171 // is important for good codegen. 2172 // 2173 // We do this by coercing the value into a scalar type which the backend can 2174 // handle naturally (i.e., without using byval). 2175 // 2176 // For simplicity, we currently only do this when we have exhausted all of the 2177 // free integer registers. Doing this when there are free integer registers 2178 // would require more care, as we would have to ensure that the coerced value 2179 // did not claim the unused register. That would require either reording the 2180 // arguments to the function (so that any subsequent inreg values came first), 2181 // or only doing this optimization when there were no following arguments that 2182 // might be inreg. 2183 // 2184 // We currently expect it to be rare (particularly in well written code) for 2185 // arguments to be passed on the stack when there are still free integer 2186 // registers available (this would typically imply large structs being passed 2187 // by value), so this seems like a fair tradeoff for now. 2188 // 2189 // We can revisit this if the backend grows support for 'onstack' parameter 2190 // attributes. See PR12193. 2191 if (freeIntRegs == 0) { 2192 uint64_t Size = getContext().getTypeSize(Ty); 2193 2194 // If this type fits in an eightbyte, coerce it into the matching integral 2195 // type, which will end up on the stack (with alignment 8). 2196 if (Align == 8 && Size <= 64) 2197 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 2198 Size)); 2199 } 2200 2201 return ABIArgInfo::getIndirect(Align); 2202 } 2203 2204 /// The ABI specifies that a value should be passed in a full vector XMM/YMM 2205 /// register. Pick an LLVM IR type that will be passed as a vector register. 2206 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const { 2207 // Wrapper structs/arrays that only contain vectors are passed just like 2208 // vectors; strip them off if present. 2209 if (const Type *InnerTy = isSingleElementStruct(Ty, getContext())) 2210 Ty = QualType(InnerTy, 0); 2211 2212 llvm::Type *IRType = CGT.ConvertType(Ty); 2213 assert(isa<llvm::VectorType>(IRType) && 2214 "Trying to return a non-vector type in a vector register!"); 2215 return IRType; 2216 } 2217 2218 /// BitsContainNoUserData - Return true if the specified [start,end) bit range 2219 /// is known to either be off the end of the specified type or being in 2220 /// alignment padding. The user type specified is known to be at most 128 bits 2221 /// in size, and have passed through X86_64ABIInfo::classify with a successful 2222 /// classification that put one of the two halves in the INTEGER class. 2223 /// 2224 /// It is conservatively correct to return false. 2225 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit, 2226 unsigned EndBit, ASTContext &Context) { 2227 // If the bytes being queried are off the end of the type, there is no user 2228 // data hiding here. This handles analysis of builtins, vectors and other 2229 // types that don't contain interesting padding. 2230 unsigned TySize = (unsigned)Context.getTypeSize(Ty); 2231 if (TySize <= StartBit) 2232 return true; 2233 2234 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 2235 unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType()); 2236 unsigned NumElts = (unsigned)AT->getSize().getZExtValue(); 2237 2238 // Check each element to see if the element overlaps with the queried range. 2239 for (unsigned i = 0; i != NumElts; ++i) { 2240 // If the element is after the span we care about, then we're done.. 2241 unsigned EltOffset = i*EltSize; 2242 if (EltOffset >= EndBit) break; 2243 2244 unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0; 2245 if (!BitsContainNoUserData(AT->getElementType(), EltStart, 2246 EndBit-EltOffset, Context)) 2247 return false; 2248 } 2249 // If it overlaps no elements, then it is safe to process as padding. 2250 return true; 2251 } 2252 2253 if (const RecordType *RT = Ty->getAs<RecordType>()) { 2254 const RecordDecl *RD = RT->getDecl(); 2255 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 2256 2257 // If this is a C++ record, check the bases first. 2258 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 2259 for (const auto &I : CXXRD->bases()) { 2260 assert(!I.isVirtual() && !I.getType()->isDependentType() && 2261 "Unexpected base class!"); 2262 const CXXRecordDecl *Base = 2263 cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); 2264 2265 // If the base is after the span we care about, ignore it. 2266 unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base)); 2267 if (BaseOffset >= EndBit) continue; 2268 2269 unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0; 2270 if (!BitsContainNoUserData(I.getType(), BaseStart, 2271 EndBit-BaseOffset, Context)) 2272 return false; 2273 } 2274 } 2275 2276 // Verify that no field has data that overlaps the region of interest. Yes 2277 // this could be sped up a lot by being smarter about queried fields, 2278 // however we're only looking at structs up to 16 bytes, so we don't care 2279 // much. 2280 unsigned idx = 0; 2281 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 2282 i != e; ++i, ++idx) { 2283 unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx); 2284 2285 // If we found a field after the region we care about, then we're done. 2286 if (FieldOffset >= EndBit) break; 2287 2288 unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0; 2289 if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset, 2290 Context)) 2291 return false; 2292 } 2293 2294 // If nothing in this record overlapped the area of interest, then we're 2295 // clean. 2296 return true; 2297 } 2298 2299 return false; 2300 } 2301 2302 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a 2303 /// float member at the specified offset. For example, {int,{float}} has a 2304 /// float at offset 4. It is conservatively correct for this routine to return 2305 /// false. 2306 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset, 2307 const llvm::DataLayout &TD) { 2308 // Base case if we find a float. 2309 if (IROffset == 0 && IRType->isFloatTy()) 2310 return true; 2311 2312 // If this is a struct, recurse into the field at the specified offset. 2313 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 2314 const llvm::StructLayout *SL = TD.getStructLayout(STy); 2315 unsigned Elt = SL->getElementContainingOffset(IROffset); 2316 IROffset -= SL->getElementOffset(Elt); 2317 return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD); 2318 } 2319 2320 // If this is an array, recurse into the field at the specified offset. 2321 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 2322 llvm::Type *EltTy = ATy->getElementType(); 2323 unsigned EltSize = TD.getTypeAllocSize(EltTy); 2324 IROffset -= IROffset/EltSize*EltSize; 2325 return ContainsFloatAtOffset(EltTy, IROffset, TD); 2326 } 2327 2328 return false; 2329 } 2330 2331 2332 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the 2333 /// low 8 bytes of an XMM register, corresponding to the SSE class. 2334 llvm::Type *X86_64ABIInfo:: 2335 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset, 2336 QualType SourceTy, unsigned SourceOffset) const { 2337 // The only three choices we have are either double, <2 x float>, or float. We 2338 // pass as float if the last 4 bytes is just padding. This happens for 2339 // structs that contain 3 floats. 2340 if (BitsContainNoUserData(SourceTy, SourceOffset*8+32, 2341 SourceOffset*8+64, getContext())) 2342 return llvm::Type::getFloatTy(getVMContext()); 2343 2344 // We want to pass as <2 x float> if the LLVM IR type contains a float at 2345 // offset+0 and offset+4. Walk the LLVM IR type to find out if this is the 2346 // case. 2347 if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) && 2348 ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout())) 2349 return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2); 2350 2351 return llvm::Type::getDoubleTy(getVMContext()); 2352 } 2353 2354 2355 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in 2356 /// an 8-byte GPR. This means that we either have a scalar or we are talking 2357 /// about the high or low part of an up-to-16-byte struct. This routine picks 2358 /// the best LLVM IR type to represent this, which may be i64 or may be anything 2359 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*, 2360 /// etc). 2361 /// 2362 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for 2363 /// the source type. IROffset is an offset in bytes into the LLVM IR type that 2364 /// the 8-byte value references. PrefType may be null. 2365 /// 2366 /// SourceTy is the source-level type for the entire argument. SourceOffset is 2367 /// an offset into this that we're processing (which is always either 0 or 8). 2368 /// 2369 llvm::Type *X86_64ABIInfo:: 2370 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset, 2371 QualType SourceTy, unsigned SourceOffset) const { 2372 // If we're dealing with an un-offset LLVM IR type, then it means that we're 2373 // returning an 8-byte unit starting with it. See if we can safely use it. 2374 if (IROffset == 0) { 2375 // Pointers and int64's always fill the 8-byte unit. 2376 if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) || 2377 IRType->isIntegerTy(64)) 2378 return IRType; 2379 2380 // If we have a 1/2/4-byte integer, we can use it only if the rest of the 2381 // goodness in the source type is just tail padding. This is allowed to 2382 // kick in for struct {double,int} on the int, but not on 2383 // struct{double,int,int} because we wouldn't return the second int. We 2384 // have to do this analysis on the source type because we can't depend on 2385 // unions being lowered a specific way etc. 2386 if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) || 2387 IRType->isIntegerTy(32) || 2388 (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) { 2389 unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 : 2390 cast<llvm::IntegerType>(IRType)->getBitWidth(); 2391 2392 if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth, 2393 SourceOffset*8+64, getContext())) 2394 return IRType; 2395 } 2396 } 2397 2398 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 2399 // If this is a struct, recurse into the field at the specified offset. 2400 const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy); 2401 if (IROffset < SL->getSizeInBytes()) { 2402 unsigned FieldIdx = SL->getElementContainingOffset(IROffset); 2403 IROffset -= SL->getElementOffset(FieldIdx); 2404 2405 return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset, 2406 SourceTy, SourceOffset); 2407 } 2408 } 2409 2410 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 2411 llvm::Type *EltTy = ATy->getElementType(); 2412 unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy); 2413 unsigned EltOffset = IROffset/EltSize*EltSize; 2414 return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy, 2415 SourceOffset); 2416 } 2417 2418 // Okay, we don't have any better idea of what to pass, so we pass this in an 2419 // integer register that isn't too big to fit the rest of the struct. 2420 unsigned TySizeInBytes = 2421 (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity(); 2422 2423 assert(TySizeInBytes != SourceOffset && "Empty field?"); 2424 2425 // It is always safe to classify this as an integer type up to i64 that 2426 // isn't larger than the structure. 2427 return llvm::IntegerType::get(getVMContext(), 2428 std::min(TySizeInBytes-SourceOffset, 8U)*8); 2429 } 2430 2431 2432 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally 2433 /// be used as elements of a two register pair to pass or return, return a 2434 /// first class aggregate to represent them. For example, if the low part of 2435 /// a by-value argument should be passed as i32* and the high part as float, 2436 /// return {i32*, float}. 2437 static llvm::Type * 2438 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi, 2439 const llvm::DataLayout &TD) { 2440 // In order to correctly satisfy the ABI, we need to the high part to start 2441 // at offset 8. If the high and low parts we inferred are both 4-byte types 2442 // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have 2443 // the second element at offset 8. Check for this: 2444 unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo); 2445 unsigned HiAlign = TD.getABITypeAlignment(Hi); 2446 unsigned HiStart = llvm::RoundUpToAlignment(LoSize, HiAlign); 2447 assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!"); 2448 2449 // To handle this, we have to increase the size of the low part so that the 2450 // second element will start at an 8 byte offset. We can't increase the size 2451 // of the second element because it might make us access off the end of the 2452 // struct. 2453 if (HiStart != 8) { 2454 // There are only two sorts of types the ABI generation code can produce for 2455 // the low part of a pair that aren't 8 bytes in size: float or i8/i16/i32. 2456 // Promote these to a larger type. 2457 if (Lo->isFloatTy()) 2458 Lo = llvm::Type::getDoubleTy(Lo->getContext()); 2459 else { 2460 assert(Lo->isIntegerTy() && "Invalid/unknown lo type"); 2461 Lo = llvm::Type::getInt64Ty(Lo->getContext()); 2462 } 2463 } 2464 2465 llvm::StructType *Result = llvm::StructType::get(Lo, Hi, nullptr); 2466 2467 2468 // Verify that the second element is at an 8-byte offset. 2469 assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 && 2470 "Invalid x86-64 argument pair!"); 2471 return Result; 2472 } 2473 2474 ABIArgInfo X86_64ABIInfo:: 2475 classifyReturnType(QualType RetTy) const { 2476 // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the 2477 // classification algorithm. 2478 X86_64ABIInfo::Class Lo, Hi; 2479 classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true); 2480 2481 // Check some invariants. 2482 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 2483 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 2484 2485 llvm::Type *ResType = nullptr; 2486 switch (Lo) { 2487 case NoClass: 2488 if (Hi == NoClass) 2489 return ABIArgInfo::getIgnore(); 2490 // If the low part is just padding, it takes no register, leave ResType 2491 // null. 2492 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 2493 "Unknown missing lo part"); 2494 break; 2495 2496 case SSEUp: 2497 case X87Up: 2498 llvm_unreachable("Invalid classification for lo word."); 2499 2500 // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via 2501 // hidden argument. 2502 case Memory: 2503 return getIndirectReturnResult(RetTy); 2504 2505 // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next 2506 // available register of the sequence %rax, %rdx is used. 2507 case Integer: 2508 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 2509 2510 // If we have a sign or zero extended integer, make sure to return Extend 2511 // so that the parameter gets the right LLVM IR attributes. 2512 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 2513 // Treat an enum type as its underlying type. 2514 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 2515 RetTy = EnumTy->getDecl()->getIntegerType(); 2516 2517 if (RetTy->isIntegralOrEnumerationType() && 2518 RetTy->isPromotableIntegerType()) 2519 return ABIArgInfo::getExtend(); 2520 } 2521 break; 2522 2523 // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next 2524 // available SSE register of the sequence %xmm0, %xmm1 is used. 2525 case SSE: 2526 ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 2527 break; 2528 2529 // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is 2530 // returned on the X87 stack in %st0 as 80-bit x87 number. 2531 case X87: 2532 ResType = llvm::Type::getX86_FP80Ty(getVMContext()); 2533 break; 2534 2535 // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real 2536 // part of the value is returned in %st0 and the imaginary part in 2537 // %st1. 2538 case ComplexX87: 2539 assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification."); 2540 ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()), 2541 llvm::Type::getX86_FP80Ty(getVMContext()), 2542 nullptr); 2543 break; 2544 } 2545 2546 llvm::Type *HighPart = nullptr; 2547 switch (Hi) { 2548 // Memory was handled previously and X87 should 2549 // never occur as a hi class. 2550 case Memory: 2551 case X87: 2552 llvm_unreachable("Invalid classification for hi word."); 2553 2554 case ComplexX87: // Previously handled. 2555 case NoClass: 2556 break; 2557 2558 case Integer: 2559 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 2560 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 2561 return ABIArgInfo::getDirect(HighPart, 8); 2562 break; 2563 case SSE: 2564 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 2565 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 2566 return ABIArgInfo::getDirect(HighPart, 8); 2567 break; 2568 2569 // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte 2570 // is passed in the next available eightbyte chunk if the last used 2571 // vector register. 2572 // 2573 // SSEUP should always be preceded by SSE, just widen. 2574 case SSEUp: 2575 assert(Lo == SSE && "Unexpected SSEUp classification."); 2576 ResType = GetByteVectorType(RetTy); 2577 break; 2578 2579 // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is 2580 // returned together with the previous X87 value in %st0. 2581 case X87Up: 2582 // If X87Up is preceded by X87, we don't need to do 2583 // anything. However, in some cases with unions it may not be 2584 // preceded by X87. In such situations we follow gcc and pass the 2585 // extra bits in an SSE reg. 2586 if (Lo != X87) { 2587 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 2588 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 2589 return ABIArgInfo::getDirect(HighPart, 8); 2590 } 2591 break; 2592 } 2593 2594 // If a high part was specified, merge it together with the low part. It is 2595 // known to pass in the high eightbyte of the result. We do this by forming a 2596 // first class struct aggregate with the high and low part: {low, high} 2597 if (HighPart) 2598 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 2599 2600 return ABIArgInfo::getDirect(ResType); 2601 } 2602 2603 ABIArgInfo X86_64ABIInfo::classifyArgumentType( 2604 QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE, 2605 bool isNamedArg) 2606 const 2607 { 2608 Ty = useFirstFieldIfTransparentUnion(Ty); 2609 2610 X86_64ABIInfo::Class Lo, Hi; 2611 classify(Ty, 0, Lo, Hi, isNamedArg); 2612 2613 // Check some invariants. 2614 // FIXME: Enforce these by construction. 2615 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 2616 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 2617 2618 neededInt = 0; 2619 neededSSE = 0; 2620 llvm::Type *ResType = nullptr; 2621 switch (Lo) { 2622 case NoClass: 2623 if (Hi == NoClass) 2624 return ABIArgInfo::getIgnore(); 2625 // If the low part is just padding, it takes no register, leave ResType 2626 // null. 2627 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 2628 "Unknown missing lo part"); 2629 break; 2630 2631 // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument 2632 // on the stack. 2633 case Memory: 2634 2635 // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or 2636 // COMPLEX_X87, it is passed in memory. 2637 case X87: 2638 case ComplexX87: 2639 if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect) 2640 ++neededInt; 2641 return getIndirectResult(Ty, freeIntRegs); 2642 2643 case SSEUp: 2644 case X87Up: 2645 llvm_unreachable("Invalid classification for lo word."); 2646 2647 // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next 2648 // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8 2649 // and %r9 is used. 2650 case Integer: 2651 ++neededInt; 2652 2653 // Pick an 8-byte type based on the preferred type. 2654 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0); 2655 2656 // If we have a sign or zero extended integer, make sure to return Extend 2657 // so that the parameter gets the right LLVM IR attributes. 2658 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 2659 // Treat an enum type as its underlying type. 2660 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2661 Ty = EnumTy->getDecl()->getIntegerType(); 2662 2663 if (Ty->isIntegralOrEnumerationType() && 2664 Ty->isPromotableIntegerType()) 2665 return ABIArgInfo::getExtend(); 2666 } 2667 2668 break; 2669 2670 // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next 2671 // available SSE register is used, the registers are taken in the 2672 // order from %xmm0 to %xmm7. 2673 case SSE: { 2674 llvm::Type *IRType = CGT.ConvertType(Ty); 2675 ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0); 2676 ++neededSSE; 2677 break; 2678 } 2679 } 2680 2681 llvm::Type *HighPart = nullptr; 2682 switch (Hi) { 2683 // Memory was handled previously, ComplexX87 and X87 should 2684 // never occur as hi classes, and X87Up must be preceded by X87, 2685 // which is passed in memory. 2686 case Memory: 2687 case X87: 2688 case ComplexX87: 2689 llvm_unreachable("Invalid classification for hi word."); 2690 2691 case NoClass: break; 2692 2693 case Integer: 2694 ++neededInt; 2695 // Pick an 8-byte type based on the preferred type. 2696 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 2697 2698 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 2699 return ABIArgInfo::getDirect(HighPart, 8); 2700 break; 2701 2702 // X87Up generally doesn't occur here (long double is passed in 2703 // memory), except in situations involving unions. 2704 case X87Up: 2705 case SSE: 2706 HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 2707 2708 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 2709 return ABIArgInfo::getDirect(HighPart, 8); 2710 2711 ++neededSSE; 2712 break; 2713 2714 // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the 2715 // eightbyte is passed in the upper half of the last used SSE 2716 // register. This only happens when 128-bit vectors are passed. 2717 case SSEUp: 2718 assert(Lo == SSE && "Unexpected SSEUp classification"); 2719 ResType = GetByteVectorType(Ty); 2720 break; 2721 } 2722 2723 // If a high part was specified, merge it together with the low part. It is 2724 // known to pass in the high eightbyte of the result. We do this by forming a 2725 // first class struct aggregate with the high and low part: {low, high} 2726 if (HighPart) 2727 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 2728 2729 return ABIArgInfo::getDirect(ResType); 2730 } 2731 2732 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 2733 2734 if (!getCXXABI().classifyReturnType(FI)) 2735 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 2736 2737 // Keep track of the number of assigned registers. 2738 unsigned freeIntRegs = 6, freeSSERegs = 8; 2739 2740 // If the return value is indirect, then the hidden argument is consuming one 2741 // integer register. 2742 if (FI.getReturnInfo().isIndirect()) 2743 --freeIntRegs; 2744 2745 // The chain argument effectively gives us another free register. 2746 if (FI.isChainCall()) 2747 ++freeIntRegs; 2748 2749 unsigned NumRequiredArgs = FI.getNumRequiredArgs(); 2750 // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers 2751 // get assigned (in left-to-right order) for passing as follows... 2752 unsigned ArgNo = 0; 2753 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 2754 it != ie; ++it, ++ArgNo) { 2755 bool IsNamedArg = ArgNo < NumRequiredArgs; 2756 2757 unsigned neededInt, neededSSE; 2758 it->info = classifyArgumentType(it->type, freeIntRegs, neededInt, 2759 neededSSE, IsNamedArg); 2760 2761 // AMD64-ABI 3.2.3p3: If there are no registers available for any 2762 // eightbyte of an argument, the whole argument is passed on the 2763 // stack. If registers have already been assigned for some 2764 // eightbytes of such an argument, the assignments get reverted. 2765 if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) { 2766 freeIntRegs -= neededInt; 2767 freeSSERegs -= neededSSE; 2768 } else { 2769 it->info = getIndirectResult(it->type, freeIntRegs); 2770 } 2771 } 2772 } 2773 2774 static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr, 2775 QualType Ty, 2776 CodeGenFunction &CGF) { 2777 llvm::Value *overflow_arg_area_p = CGF.Builder.CreateStructGEP( 2778 nullptr, VAListAddr, 2, "overflow_arg_area_p"); 2779 llvm::Value *overflow_arg_area = 2780 CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area"); 2781 2782 // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16 2783 // byte boundary if alignment needed by type exceeds 8 byte boundary. 2784 // It isn't stated explicitly in the standard, but in practice we use 2785 // alignment greater than 16 where necessary. 2786 uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8; 2787 if (Align > 8) { 2788 // overflow_arg_area = (overflow_arg_area + align - 1) & -align; 2789 llvm::Value *Offset = 2790 llvm::ConstantInt::get(CGF.Int64Ty, Align - 1); 2791 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset); 2792 llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area, 2793 CGF.Int64Ty); 2794 llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, -(uint64_t)Align); 2795 overflow_arg_area = 2796 CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask), 2797 overflow_arg_area->getType(), 2798 "overflow_arg_area.align"); 2799 } 2800 2801 // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area. 2802 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 2803 llvm::Value *Res = 2804 CGF.Builder.CreateBitCast(overflow_arg_area, 2805 llvm::PointerType::getUnqual(LTy)); 2806 2807 // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to: 2808 // l->overflow_arg_area + sizeof(type). 2809 // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to 2810 // an 8 byte boundary. 2811 2812 uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8; 2813 llvm::Value *Offset = 2814 llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7); 2815 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset, 2816 "overflow_arg_area.next"); 2817 CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p); 2818 2819 // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type. 2820 return Res; 2821 } 2822 2823 llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 2824 CodeGenFunction &CGF) const { 2825 // Assume that va_list type is correct; should be pointer to LLVM type: 2826 // struct { 2827 // i32 gp_offset; 2828 // i32 fp_offset; 2829 // i8* overflow_arg_area; 2830 // i8* reg_save_area; 2831 // }; 2832 unsigned neededInt, neededSSE; 2833 2834 Ty = CGF.getContext().getCanonicalType(Ty); 2835 ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE, 2836 /*isNamedArg*/false); 2837 2838 // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed 2839 // in the registers. If not go to step 7. 2840 if (!neededInt && !neededSSE) 2841 return EmitVAArgFromMemory(VAListAddr, Ty, CGF); 2842 2843 // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of 2844 // general purpose registers needed to pass type and num_fp to hold 2845 // the number of floating point registers needed. 2846 2847 // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into 2848 // registers. In the case: l->gp_offset > 48 - num_gp * 8 or 2849 // l->fp_offset > 304 - num_fp * 16 go to step 7. 2850 // 2851 // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of 2852 // register save space). 2853 2854 llvm::Value *InRegs = nullptr; 2855 llvm::Value *gp_offset_p = nullptr, *gp_offset = nullptr; 2856 llvm::Value *fp_offset_p = nullptr, *fp_offset = nullptr; 2857 if (neededInt) { 2858 gp_offset_p = 2859 CGF.Builder.CreateStructGEP(nullptr, VAListAddr, 0, "gp_offset_p"); 2860 gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset"); 2861 InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8); 2862 InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp"); 2863 } 2864 2865 if (neededSSE) { 2866 fp_offset_p = 2867 CGF.Builder.CreateStructGEP(nullptr, VAListAddr, 1, "fp_offset_p"); 2868 fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset"); 2869 llvm::Value *FitsInFP = 2870 llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16); 2871 FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp"); 2872 InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP; 2873 } 2874 2875 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 2876 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 2877 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 2878 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 2879 2880 // Emit code to load the value if it was passed in registers. 2881 2882 CGF.EmitBlock(InRegBlock); 2883 2884 // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with 2885 // an offset of l->gp_offset and/or l->fp_offset. This may require 2886 // copying to a temporary location in case the parameter is passed 2887 // in different register classes or requires an alignment greater 2888 // than 8 for general purpose registers and 16 for XMM registers. 2889 // 2890 // FIXME: This really results in shameful code when we end up needing to 2891 // collect arguments from different places; often what should result in a 2892 // simple assembling of a structure from scattered addresses has many more 2893 // loads than necessary. Can we clean this up? 2894 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 2895 llvm::Value *RegAddr = CGF.Builder.CreateLoad( 2896 CGF.Builder.CreateStructGEP(nullptr, VAListAddr, 3), "reg_save_area"); 2897 if (neededInt && neededSSE) { 2898 // FIXME: Cleanup. 2899 assert(AI.isDirect() && "Unexpected ABI info for mixed regs"); 2900 llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType()); 2901 llvm::Value *Tmp = CGF.CreateMemTemp(Ty); 2902 Tmp = CGF.Builder.CreateBitCast(Tmp, ST->getPointerTo()); 2903 assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs"); 2904 llvm::Type *TyLo = ST->getElementType(0); 2905 llvm::Type *TyHi = ST->getElementType(1); 2906 assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) && 2907 "Unexpected ABI info for mixed regs"); 2908 llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo); 2909 llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi); 2910 llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset); 2911 llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset); 2912 llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr; 2913 llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr; 2914 llvm::Value *V = 2915 CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo)); 2916 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(ST, Tmp, 0)); 2917 V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi)); 2918 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(ST, Tmp, 1)); 2919 2920 RegAddr = CGF.Builder.CreateBitCast(Tmp, 2921 llvm::PointerType::getUnqual(LTy)); 2922 } else if (neededInt) { 2923 RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset); 2924 RegAddr = CGF.Builder.CreateBitCast(RegAddr, 2925 llvm::PointerType::getUnqual(LTy)); 2926 2927 // Copy to a temporary if necessary to ensure the appropriate alignment. 2928 std::pair<CharUnits, CharUnits> SizeAlign = 2929 CGF.getContext().getTypeInfoInChars(Ty); 2930 uint64_t TySize = SizeAlign.first.getQuantity(); 2931 unsigned TyAlign = SizeAlign.second.getQuantity(); 2932 if (TyAlign > 8) { 2933 llvm::Value *Tmp = CGF.CreateMemTemp(Ty); 2934 CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, 8, false); 2935 RegAddr = Tmp; 2936 } 2937 } else if (neededSSE == 1) { 2938 RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset); 2939 RegAddr = CGF.Builder.CreateBitCast(RegAddr, 2940 llvm::PointerType::getUnqual(LTy)); 2941 } else { 2942 assert(neededSSE == 2 && "Invalid number of needed registers!"); 2943 // SSE registers are spaced 16 bytes apart in the register save 2944 // area, we need to collect the two eightbytes together. 2945 llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset); 2946 llvm::Value *RegAddrHi = CGF.Builder.CreateConstGEP1_32(RegAddrLo, 16); 2947 llvm::Type *DoubleTy = CGF.DoubleTy; 2948 llvm::Type *DblPtrTy = 2949 llvm::PointerType::getUnqual(DoubleTy); 2950 llvm::StructType *ST = llvm::StructType::get(DoubleTy, DoubleTy, nullptr); 2951 llvm::Value *V, *Tmp = CGF.CreateMemTemp(Ty); 2952 Tmp = CGF.Builder.CreateBitCast(Tmp, ST->getPointerTo()); 2953 V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo, 2954 DblPtrTy)); 2955 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(ST, Tmp, 0)); 2956 V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi, 2957 DblPtrTy)); 2958 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(ST, Tmp, 1)); 2959 RegAddr = CGF.Builder.CreateBitCast(Tmp, 2960 llvm::PointerType::getUnqual(LTy)); 2961 } 2962 2963 // AMD64-ABI 3.5.7p5: Step 5. Set: 2964 // l->gp_offset = l->gp_offset + num_gp * 8 2965 // l->fp_offset = l->fp_offset + num_fp * 16. 2966 if (neededInt) { 2967 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8); 2968 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset), 2969 gp_offset_p); 2970 } 2971 if (neededSSE) { 2972 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16); 2973 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset), 2974 fp_offset_p); 2975 } 2976 CGF.EmitBranch(ContBlock); 2977 2978 // Emit code to load the value if it was passed in memory. 2979 2980 CGF.EmitBlock(InMemBlock); 2981 llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF); 2982 2983 // Return the appropriate result. 2984 2985 CGF.EmitBlock(ContBlock); 2986 llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(), 2, 2987 "vaarg.addr"); 2988 ResAddr->addIncoming(RegAddr, InRegBlock); 2989 ResAddr->addIncoming(MemAddr, InMemBlock); 2990 return ResAddr; 2991 } 2992 2993 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs, 2994 bool IsReturnType) const { 2995 2996 if (Ty->isVoidType()) 2997 return ABIArgInfo::getIgnore(); 2998 2999 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3000 Ty = EnumTy->getDecl()->getIntegerType(); 3001 3002 TypeInfo Info = getContext().getTypeInfo(Ty); 3003 uint64_t Width = Info.Width; 3004 unsigned Align = getContext().toCharUnitsFromBits(Info.Align).getQuantity(); 3005 3006 const RecordType *RT = Ty->getAs<RecordType>(); 3007 if (RT) { 3008 if (!IsReturnType) { 3009 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI())) 3010 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 3011 } 3012 3013 if (RT->getDecl()->hasFlexibleArrayMember()) 3014 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 3015 3016 // FIXME: mingw-w64-gcc emits 128-bit struct as i128 3017 if (Width == 128 && getTarget().getTriple().isWindowsGNUEnvironment()) 3018 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 3019 Width)); 3020 } 3021 3022 // vectorcall adds the concept of a homogenous vector aggregate, similar to 3023 // other targets. 3024 const Type *Base = nullptr; 3025 uint64_t NumElts = 0; 3026 if (FreeSSERegs && isHomogeneousAggregate(Ty, Base, NumElts)) { 3027 if (FreeSSERegs >= NumElts) { 3028 FreeSSERegs -= NumElts; 3029 if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType()) 3030 return ABIArgInfo::getDirect(); 3031 return ABIArgInfo::getExpand(); 3032 } 3033 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3034 } 3035 3036 3037 if (Ty->isMemberPointerType()) { 3038 // If the member pointer is represented by an LLVM int or ptr, pass it 3039 // directly. 3040 llvm::Type *LLTy = CGT.ConvertType(Ty); 3041 if (LLTy->isPointerTy() || LLTy->isIntegerTy()) 3042 return ABIArgInfo::getDirect(); 3043 } 3044 3045 if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) { 3046 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 3047 // not 1, 2, 4, or 8 bytes, must be passed by reference." 3048 if (Width > 64 || !llvm::isPowerOf2_64(Width)) 3049 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 3050 3051 // Otherwise, coerce it to a small integer. 3052 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width)); 3053 } 3054 3055 // Bool type is always extended to the ABI, other builtin types are not 3056 // extended. 3057 const BuiltinType *BT = Ty->getAs<BuiltinType>(); 3058 if (BT && BT->getKind() == BuiltinType::Bool) 3059 return ABIArgInfo::getExtend(); 3060 3061 return ABIArgInfo::getDirect(); 3062 } 3063 3064 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 3065 bool IsVectorCall = 3066 FI.getCallingConvention() == llvm::CallingConv::X86_VectorCall; 3067 3068 // We can use up to 4 SSE return registers with vectorcall. 3069 unsigned FreeSSERegs = IsVectorCall ? 4 : 0; 3070 if (!getCXXABI().classifyReturnType(FI)) 3071 FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true); 3072 3073 // We can use up to 6 SSE register parameters with vectorcall. 3074 FreeSSERegs = IsVectorCall ? 6 : 0; 3075 for (auto &I : FI.arguments()) 3076 I.info = classify(I.type, FreeSSERegs, false); 3077 } 3078 3079 llvm::Value *WinX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 3080 CodeGenFunction &CGF) const { 3081 llvm::Type *BPP = CGF.Int8PtrPtrTy; 3082 3083 CGBuilderTy &Builder = CGF.Builder; 3084 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, 3085 "ap"); 3086 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 3087 llvm::Type *PTy = 3088 llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 3089 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); 3090 3091 uint64_t Offset = 3092 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 8); 3093 llvm::Value *NextAddr = 3094 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), 3095 "ap.next"); 3096 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 3097 3098 return AddrTyped; 3099 } 3100 3101 // PowerPC-32 3102 namespace { 3103 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information. 3104 class PPC32_SVR4_ABIInfo : public DefaultABIInfo { 3105 public: 3106 PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 3107 3108 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 3109 CodeGenFunction &CGF) const override; 3110 }; 3111 3112 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo { 3113 public: 3114 PPC32TargetCodeGenInfo(CodeGenTypes &CGT) : TargetCodeGenInfo(new PPC32_SVR4_ABIInfo(CGT)) {} 3115 3116 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 3117 // This is recovered from gcc output. 3118 return 1; // r1 is the dedicated stack pointer 3119 } 3120 3121 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 3122 llvm::Value *Address) const override; 3123 3124 unsigned getOpenMPSimdDefaultAlignment(QualType) const override { 3125 return 16; // Natural alignment for Altivec vectors. 3126 } 3127 }; 3128 3129 } 3130 3131 llvm::Value *PPC32_SVR4_ABIInfo::EmitVAArg(llvm::Value *VAListAddr, 3132 QualType Ty, 3133 CodeGenFunction &CGF) const { 3134 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 3135 // TODO: Implement this. For now ignore. 3136 (void)CTy; 3137 return nullptr; 3138 } 3139 3140 bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64; 3141 bool isInt = Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType(); 3142 llvm::Type *CharPtr = CGF.Int8PtrTy; 3143 llvm::Type *CharPtrPtr = CGF.Int8PtrPtrTy; 3144 3145 CGBuilderTy &Builder = CGF.Builder; 3146 llvm::Value *GPRPtr = Builder.CreateBitCast(VAListAddr, CharPtr, "gprptr"); 3147 llvm::Value *GPRPtrAsInt = Builder.CreatePtrToInt(GPRPtr, CGF.Int32Ty); 3148 llvm::Value *FPRPtrAsInt = Builder.CreateAdd(GPRPtrAsInt, Builder.getInt32(1)); 3149 llvm::Value *FPRPtr = Builder.CreateIntToPtr(FPRPtrAsInt, CharPtr); 3150 llvm::Value *OverflowAreaPtrAsInt = Builder.CreateAdd(FPRPtrAsInt, Builder.getInt32(3)); 3151 llvm::Value *OverflowAreaPtr = Builder.CreateIntToPtr(OverflowAreaPtrAsInt, CharPtrPtr); 3152 llvm::Value *RegsaveAreaPtrAsInt = Builder.CreateAdd(OverflowAreaPtrAsInt, Builder.getInt32(4)); 3153 llvm::Value *RegsaveAreaPtr = Builder.CreateIntToPtr(RegsaveAreaPtrAsInt, CharPtrPtr); 3154 llvm::Value *GPR = Builder.CreateLoad(GPRPtr, false, "gpr"); 3155 // Align GPR when TY is i64. 3156 if (isI64) { 3157 llvm::Value *GPRAnd = Builder.CreateAnd(GPR, Builder.getInt8(1)); 3158 llvm::Value *CC64 = Builder.CreateICmpEQ(GPRAnd, Builder.getInt8(1)); 3159 llvm::Value *GPRPlusOne = Builder.CreateAdd(GPR, Builder.getInt8(1)); 3160 GPR = Builder.CreateSelect(CC64, GPRPlusOne, GPR); 3161 } 3162 llvm::Value *FPR = Builder.CreateLoad(FPRPtr, false, "fpr"); 3163 llvm::Value *OverflowArea = Builder.CreateLoad(OverflowAreaPtr, false, "overflow_area"); 3164 llvm::Value *OverflowAreaAsInt = Builder.CreatePtrToInt(OverflowArea, CGF.Int32Ty); 3165 llvm::Value *RegsaveArea = Builder.CreateLoad(RegsaveAreaPtr, false, "regsave_area"); 3166 llvm::Value *RegsaveAreaAsInt = Builder.CreatePtrToInt(RegsaveArea, CGF.Int32Ty); 3167 3168 llvm::Value *CC = Builder.CreateICmpULT(isInt ? GPR : FPR, 3169 Builder.getInt8(8), "cond"); 3170 3171 llvm::Value *RegConstant = Builder.CreateMul(isInt ? GPR : FPR, 3172 Builder.getInt8(isInt ? 4 : 8)); 3173 3174 llvm::Value *OurReg = Builder.CreateAdd(RegsaveAreaAsInt, Builder.CreateSExt(RegConstant, CGF.Int32Ty)); 3175 3176 if (Ty->isFloatingType()) 3177 OurReg = Builder.CreateAdd(OurReg, Builder.getInt32(32)); 3178 3179 llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs"); 3180 llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow"); 3181 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 3182 3183 Builder.CreateCondBr(CC, UsingRegs, UsingOverflow); 3184 3185 CGF.EmitBlock(UsingRegs); 3186 3187 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 3188 llvm::Value *Result1 = Builder.CreateIntToPtr(OurReg, PTy); 3189 // Increase the GPR/FPR indexes. 3190 if (isInt) { 3191 GPR = Builder.CreateAdd(GPR, Builder.getInt8(isI64 ? 2 : 1)); 3192 Builder.CreateStore(GPR, GPRPtr); 3193 } else { 3194 FPR = Builder.CreateAdd(FPR, Builder.getInt8(1)); 3195 Builder.CreateStore(FPR, FPRPtr); 3196 } 3197 CGF.EmitBranch(Cont); 3198 3199 CGF.EmitBlock(UsingOverflow); 3200 3201 // Increase the overflow area. 3202 llvm::Value *Result2 = Builder.CreateIntToPtr(OverflowAreaAsInt, PTy); 3203 OverflowAreaAsInt = Builder.CreateAdd(OverflowAreaAsInt, Builder.getInt32(isInt ? 4 : 8)); 3204 Builder.CreateStore(Builder.CreateIntToPtr(OverflowAreaAsInt, CharPtr), OverflowAreaPtr); 3205 CGF.EmitBranch(Cont); 3206 3207 CGF.EmitBlock(Cont); 3208 3209 llvm::PHINode *Result = CGF.Builder.CreatePHI(PTy, 2, "vaarg.addr"); 3210 Result->addIncoming(Result1, UsingRegs); 3211 Result->addIncoming(Result2, UsingOverflow); 3212 3213 if (Ty->isAggregateType()) { 3214 llvm::Value *AGGPtr = Builder.CreateBitCast(Result, CharPtrPtr, "aggrptr") ; 3215 return Builder.CreateLoad(AGGPtr, false, "aggr"); 3216 } 3217 3218 return Result; 3219 } 3220 3221 bool 3222 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 3223 llvm::Value *Address) const { 3224 // This is calculated from the LLVM and GCC tables and verified 3225 // against gcc output. AFAIK all ABIs use the same encoding. 3226 3227 CodeGen::CGBuilderTy &Builder = CGF.Builder; 3228 3229 llvm::IntegerType *i8 = CGF.Int8Ty; 3230 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 3231 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 3232 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 3233 3234 // 0-31: r0-31, the 4-byte general-purpose registers 3235 AssignToArrayRange(Builder, Address, Four8, 0, 31); 3236 3237 // 32-63: fp0-31, the 8-byte floating-point registers 3238 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 3239 3240 // 64-76 are various 4-byte special-purpose registers: 3241 // 64: mq 3242 // 65: lr 3243 // 66: ctr 3244 // 67: ap 3245 // 68-75 cr0-7 3246 // 76: xer 3247 AssignToArrayRange(Builder, Address, Four8, 64, 76); 3248 3249 // 77-108: v0-31, the 16-byte vector registers 3250 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 3251 3252 // 109: vrsave 3253 // 110: vscr 3254 // 111: spe_acc 3255 // 112: spefscr 3256 // 113: sfp 3257 AssignToArrayRange(Builder, Address, Four8, 109, 113); 3258 3259 return false; 3260 } 3261 3262 // PowerPC-64 3263 3264 namespace { 3265 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information. 3266 class PPC64_SVR4_ABIInfo : public DefaultABIInfo { 3267 public: 3268 enum ABIKind { 3269 ELFv1 = 0, 3270 ELFv2 3271 }; 3272 3273 private: 3274 static const unsigned GPRBits = 64; 3275 ABIKind Kind; 3276 bool HasQPX; 3277 3278 // A vector of float or double will be promoted to <4 x f32> or <4 x f64> and 3279 // will be passed in a QPX register. 3280 bool IsQPXVectorTy(const Type *Ty) const { 3281 if (!HasQPX) 3282 return false; 3283 3284 if (const VectorType *VT = Ty->getAs<VectorType>()) { 3285 unsigned NumElements = VT->getNumElements(); 3286 if (NumElements == 1) 3287 return false; 3288 3289 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) { 3290 if (getContext().getTypeSize(Ty) <= 256) 3291 return true; 3292 } else if (VT->getElementType()-> 3293 isSpecificBuiltinType(BuiltinType::Float)) { 3294 if (getContext().getTypeSize(Ty) <= 128) 3295 return true; 3296 } 3297 } 3298 3299 return false; 3300 } 3301 3302 bool IsQPXVectorTy(QualType Ty) const { 3303 return IsQPXVectorTy(Ty.getTypePtr()); 3304 } 3305 3306 public: 3307 PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, bool HasQPX) 3308 : DefaultABIInfo(CGT), Kind(Kind), HasQPX(HasQPX) {} 3309 3310 bool isPromotableTypeForABI(QualType Ty) const; 3311 bool isAlignedParamType(QualType Ty, bool &Align32) const; 3312 3313 ABIArgInfo classifyReturnType(QualType RetTy) const; 3314 ABIArgInfo classifyArgumentType(QualType Ty) const; 3315 3316 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 3317 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 3318 uint64_t Members) const override; 3319 3320 // TODO: We can add more logic to computeInfo to improve performance. 3321 // Example: For aggregate arguments that fit in a register, we could 3322 // use getDirectInReg (as is done below for structs containing a single 3323 // floating-point value) to avoid pushing them to memory on function 3324 // entry. This would require changing the logic in PPCISelLowering 3325 // when lowering the parameters in the caller and args in the callee. 3326 void computeInfo(CGFunctionInfo &FI) const override { 3327 if (!getCXXABI().classifyReturnType(FI)) 3328 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 3329 for (auto &I : FI.arguments()) { 3330 // We rely on the default argument classification for the most part. 3331 // One exception: An aggregate containing a single floating-point 3332 // or vector item must be passed in a register if one is available. 3333 const Type *T = isSingleElementStruct(I.type, getContext()); 3334 if (T) { 3335 const BuiltinType *BT = T->getAs<BuiltinType>(); 3336 if (IsQPXVectorTy(T) || 3337 (T->isVectorType() && getContext().getTypeSize(T) == 128) || 3338 (BT && BT->isFloatingPoint())) { 3339 QualType QT(T, 0); 3340 I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT)); 3341 continue; 3342 } 3343 } 3344 I.info = classifyArgumentType(I.type); 3345 } 3346 } 3347 3348 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 3349 CodeGenFunction &CGF) const override; 3350 }; 3351 3352 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo { 3353 bool HasQPX; 3354 3355 public: 3356 PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT, 3357 PPC64_SVR4_ABIInfo::ABIKind Kind, bool HasQPX) 3358 : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT, Kind, HasQPX)), 3359 HasQPX(HasQPX) {} 3360 3361 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 3362 // This is recovered from gcc output. 3363 return 1; // r1 is the dedicated stack pointer 3364 } 3365 3366 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 3367 llvm::Value *Address) const override; 3368 3369 unsigned getOpenMPSimdDefaultAlignment(QualType QT) const override { 3370 if (HasQPX) 3371 if (const PointerType *PT = QT->getAs<PointerType>()) 3372 if (PT->getPointeeType()->isSpecificBuiltinType(BuiltinType::Double)) 3373 return 32; // Natural alignment for QPX doubles. 3374 3375 return 16; // Natural alignment for Altivec and VSX vectors. 3376 } 3377 }; 3378 3379 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo { 3380 public: 3381 PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {} 3382 3383 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 3384 // This is recovered from gcc output. 3385 return 1; // r1 is the dedicated stack pointer 3386 } 3387 3388 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 3389 llvm::Value *Address) const override; 3390 3391 unsigned getOpenMPSimdDefaultAlignment(QualType) const override { 3392 return 16; // Natural alignment for Altivec vectors. 3393 } 3394 }; 3395 3396 } 3397 3398 // Return true if the ABI requires Ty to be passed sign- or zero- 3399 // extended to 64 bits. 3400 bool 3401 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const { 3402 // Treat an enum type as its underlying type. 3403 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3404 Ty = EnumTy->getDecl()->getIntegerType(); 3405 3406 // Promotable integer types are required to be promoted by the ABI. 3407 if (Ty->isPromotableIntegerType()) 3408 return true; 3409 3410 // In addition to the usual promotable integer types, we also need to 3411 // extend all 32-bit types, since the ABI requires promotion to 64 bits. 3412 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 3413 switch (BT->getKind()) { 3414 case BuiltinType::Int: 3415 case BuiltinType::UInt: 3416 return true; 3417 default: 3418 break; 3419 } 3420 3421 return false; 3422 } 3423 3424 /// isAlignedParamType - Determine whether a type requires 16-byte 3425 /// alignment in the parameter area. 3426 bool 3427 PPC64_SVR4_ABIInfo::isAlignedParamType(QualType Ty, bool &Align32) const { 3428 Align32 = false; 3429 3430 // Complex types are passed just like their elements. 3431 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 3432 Ty = CTy->getElementType(); 3433 3434 // Only vector types of size 16 bytes need alignment (larger types are 3435 // passed via reference, smaller types are not aligned). 3436 if (IsQPXVectorTy(Ty)) { 3437 if (getContext().getTypeSize(Ty) > 128) 3438 Align32 = true; 3439 3440 return true; 3441 } else if (Ty->isVectorType()) { 3442 return getContext().getTypeSize(Ty) == 128; 3443 } 3444 3445 // For single-element float/vector structs, we consider the whole type 3446 // to have the same alignment requirements as its single element. 3447 const Type *AlignAsType = nullptr; 3448 const Type *EltType = isSingleElementStruct(Ty, getContext()); 3449 if (EltType) { 3450 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 3451 if (IsQPXVectorTy(EltType) || (EltType->isVectorType() && 3452 getContext().getTypeSize(EltType) == 128) || 3453 (BT && BT->isFloatingPoint())) 3454 AlignAsType = EltType; 3455 } 3456 3457 // Likewise for ELFv2 homogeneous aggregates. 3458 const Type *Base = nullptr; 3459 uint64_t Members = 0; 3460 if (!AlignAsType && Kind == ELFv2 && 3461 isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members)) 3462 AlignAsType = Base; 3463 3464 // With special case aggregates, only vector base types need alignment. 3465 if (AlignAsType && IsQPXVectorTy(AlignAsType)) { 3466 if (getContext().getTypeSize(AlignAsType) > 128) 3467 Align32 = true; 3468 3469 return true; 3470 } else if (AlignAsType) { 3471 return AlignAsType->isVectorType(); 3472 } 3473 3474 // Otherwise, we only need alignment for any aggregate type that 3475 // has an alignment requirement of >= 16 bytes. 3476 if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) { 3477 if (HasQPX && getContext().getTypeAlign(Ty) >= 256) 3478 Align32 = true; 3479 return true; 3480 } 3481 3482 return false; 3483 } 3484 3485 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous 3486 /// aggregate. Base is set to the base element type, and Members is set 3487 /// to the number of base elements. 3488 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base, 3489 uint64_t &Members) const { 3490 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 3491 uint64_t NElements = AT->getSize().getZExtValue(); 3492 if (NElements == 0) 3493 return false; 3494 if (!isHomogeneousAggregate(AT->getElementType(), Base, Members)) 3495 return false; 3496 Members *= NElements; 3497 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 3498 const RecordDecl *RD = RT->getDecl(); 3499 if (RD->hasFlexibleArrayMember()) 3500 return false; 3501 3502 Members = 0; 3503 3504 // If this is a C++ record, check the bases first. 3505 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 3506 for (const auto &I : CXXRD->bases()) { 3507 // Ignore empty records. 3508 if (isEmptyRecord(getContext(), I.getType(), true)) 3509 continue; 3510 3511 uint64_t FldMembers; 3512 if (!isHomogeneousAggregate(I.getType(), Base, FldMembers)) 3513 return false; 3514 3515 Members += FldMembers; 3516 } 3517 } 3518 3519 for (const auto *FD : RD->fields()) { 3520 // Ignore (non-zero arrays of) empty records. 3521 QualType FT = FD->getType(); 3522 while (const ConstantArrayType *AT = 3523 getContext().getAsConstantArrayType(FT)) { 3524 if (AT->getSize().getZExtValue() == 0) 3525 return false; 3526 FT = AT->getElementType(); 3527 } 3528 if (isEmptyRecord(getContext(), FT, true)) 3529 continue; 3530 3531 // For compatibility with GCC, ignore empty bitfields in C++ mode. 3532 if (getContext().getLangOpts().CPlusPlus && 3533 FD->isBitField() && FD->getBitWidthValue(getContext()) == 0) 3534 continue; 3535 3536 uint64_t FldMembers; 3537 if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers)) 3538 return false; 3539 3540 Members = (RD->isUnion() ? 3541 std::max(Members, FldMembers) : Members + FldMembers); 3542 } 3543 3544 if (!Base) 3545 return false; 3546 3547 // Ensure there is no padding. 3548 if (getContext().getTypeSize(Base) * Members != 3549 getContext().getTypeSize(Ty)) 3550 return false; 3551 } else { 3552 Members = 1; 3553 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 3554 Members = 2; 3555 Ty = CT->getElementType(); 3556 } 3557 3558 // Most ABIs only support float, double, and some vector type widths. 3559 if (!isHomogeneousAggregateBaseType(Ty)) 3560 return false; 3561 3562 // The base type must be the same for all members. Types that 3563 // agree in both total size and mode (float vs. vector) are 3564 // treated as being equivalent here. 3565 const Type *TyPtr = Ty.getTypePtr(); 3566 if (!Base) 3567 Base = TyPtr; 3568 3569 if (Base->isVectorType() != TyPtr->isVectorType() || 3570 getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr)) 3571 return false; 3572 } 3573 return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members); 3574 } 3575 3576 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 3577 // Homogeneous aggregates for ELFv2 must have base types of float, 3578 // double, long double, or 128-bit vectors. 3579 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 3580 if (BT->getKind() == BuiltinType::Float || 3581 BT->getKind() == BuiltinType::Double || 3582 BT->getKind() == BuiltinType::LongDouble) 3583 return true; 3584 } 3585 if (const VectorType *VT = Ty->getAs<VectorType>()) { 3586 if (getContext().getTypeSize(VT) == 128 || IsQPXVectorTy(Ty)) 3587 return true; 3588 } 3589 return false; 3590 } 3591 3592 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough( 3593 const Type *Base, uint64_t Members) const { 3594 // Vector types require one register, floating point types require one 3595 // or two registers depending on their size. 3596 uint32_t NumRegs = 3597 Base->isVectorType() ? 1 : (getContext().getTypeSize(Base) + 63) / 64; 3598 3599 // Homogeneous Aggregates may occupy at most 8 registers. 3600 return Members * NumRegs <= 8; 3601 } 3602 3603 ABIArgInfo 3604 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const { 3605 Ty = useFirstFieldIfTransparentUnion(Ty); 3606 3607 if (Ty->isAnyComplexType()) 3608 return ABIArgInfo::getDirect(); 3609 3610 // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes) 3611 // or via reference (larger than 16 bytes). 3612 if (Ty->isVectorType() && !IsQPXVectorTy(Ty)) { 3613 uint64_t Size = getContext().getTypeSize(Ty); 3614 if (Size > 128) 3615 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 3616 else if (Size < 128) { 3617 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 3618 return ABIArgInfo::getDirect(CoerceTy); 3619 } 3620 } 3621 3622 if (isAggregateTypeForABI(Ty)) { 3623 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 3624 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 3625 3626 bool Align32; 3627 uint64_t ABIAlign = isAlignedParamType(Ty, Align32) ? 3628 (Align32 ? 32 : 16) : 8; 3629 uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8; 3630 3631 // ELFv2 homogeneous aggregates are passed as array types. 3632 const Type *Base = nullptr; 3633 uint64_t Members = 0; 3634 if (Kind == ELFv2 && 3635 isHomogeneousAggregate(Ty, Base, Members)) { 3636 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 3637 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 3638 return ABIArgInfo::getDirect(CoerceTy); 3639 } 3640 3641 // If an aggregate may end up fully in registers, we do not 3642 // use the ByVal method, but pass the aggregate as array. 3643 // This is usually beneficial since we avoid forcing the 3644 // back-end to store the argument to memory. 3645 uint64_t Bits = getContext().getTypeSize(Ty); 3646 if (Bits > 0 && Bits <= 8 * GPRBits) { 3647 llvm::Type *CoerceTy; 3648 3649 // Types up to 8 bytes are passed as integer type (which will be 3650 // properly aligned in the argument save area doubleword). 3651 if (Bits <= GPRBits) 3652 CoerceTy = llvm::IntegerType::get(getVMContext(), 3653 llvm::RoundUpToAlignment(Bits, 8)); 3654 // Larger types are passed as arrays, with the base type selected 3655 // according to the required alignment in the save area. 3656 else { 3657 uint64_t RegBits = ABIAlign * 8; 3658 uint64_t NumRegs = llvm::RoundUpToAlignment(Bits, RegBits) / RegBits; 3659 llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits); 3660 CoerceTy = llvm::ArrayType::get(RegTy, NumRegs); 3661 } 3662 3663 return ABIArgInfo::getDirect(CoerceTy); 3664 } 3665 3666 // All other aggregates are passed ByVal. 3667 return ABIArgInfo::getIndirect(ABIAlign, /*ByVal=*/true, 3668 /*Realign=*/TyAlign > ABIAlign); 3669 } 3670 3671 return (isPromotableTypeForABI(Ty) ? 3672 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 3673 } 3674 3675 ABIArgInfo 3676 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { 3677 if (RetTy->isVoidType()) 3678 return ABIArgInfo::getIgnore(); 3679 3680 if (RetTy->isAnyComplexType()) 3681 return ABIArgInfo::getDirect(); 3682 3683 // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes) 3684 // or via reference (larger than 16 bytes). 3685 if (RetTy->isVectorType() && !IsQPXVectorTy(RetTy)) { 3686 uint64_t Size = getContext().getTypeSize(RetTy); 3687 if (Size > 128) 3688 return ABIArgInfo::getIndirect(0); 3689 else if (Size < 128) { 3690 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 3691 return ABIArgInfo::getDirect(CoerceTy); 3692 } 3693 } 3694 3695 if (isAggregateTypeForABI(RetTy)) { 3696 // ELFv2 homogeneous aggregates are returned as array types. 3697 const Type *Base = nullptr; 3698 uint64_t Members = 0; 3699 if (Kind == ELFv2 && 3700 isHomogeneousAggregate(RetTy, Base, Members)) { 3701 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 3702 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 3703 return ABIArgInfo::getDirect(CoerceTy); 3704 } 3705 3706 // ELFv2 small aggregates are returned in up to two registers. 3707 uint64_t Bits = getContext().getTypeSize(RetTy); 3708 if (Kind == ELFv2 && Bits <= 2 * GPRBits) { 3709 if (Bits == 0) 3710 return ABIArgInfo::getIgnore(); 3711 3712 llvm::Type *CoerceTy; 3713 if (Bits > GPRBits) { 3714 CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits); 3715 CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy, nullptr); 3716 } else 3717 CoerceTy = llvm::IntegerType::get(getVMContext(), 3718 llvm::RoundUpToAlignment(Bits, 8)); 3719 return ABIArgInfo::getDirect(CoerceTy); 3720 } 3721 3722 // All other aggregates are returned indirectly. 3723 return ABIArgInfo::getIndirect(0); 3724 } 3725 3726 return (isPromotableTypeForABI(RetTy) ? 3727 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 3728 } 3729 3730 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine. 3731 llvm::Value *PPC64_SVR4_ABIInfo::EmitVAArg(llvm::Value *VAListAddr, 3732 QualType Ty, 3733 CodeGenFunction &CGF) const { 3734 llvm::Type *BP = CGF.Int8PtrTy; 3735 llvm::Type *BPP = CGF.Int8PtrPtrTy; 3736 3737 CGBuilderTy &Builder = CGF.Builder; 3738 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); 3739 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 3740 3741 // Handle types that require 16-byte alignment in the parameter save area. 3742 bool Align32; 3743 if (isAlignedParamType(Ty, Align32)) { 3744 llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty); 3745 AddrAsInt = Builder.CreateAdd(AddrAsInt, 3746 Builder.getInt64(Align32 ? 31 : 15)); 3747 AddrAsInt = Builder.CreateAnd(AddrAsInt, 3748 Builder.getInt64(Align32 ? -32 : -16)); 3749 Addr = Builder.CreateIntToPtr(AddrAsInt, BP, "ap.align"); 3750 } 3751 3752 // Update the va_list pointer. The pointer should be bumped by the 3753 // size of the object. We can trust getTypeSize() except for a complex 3754 // type whose base type is smaller than a doubleword. For these, the 3755 // size of the object is 16 bytes; see below for further explanation. 3756 unsigned SizeInBytes = CGF.getContext().getTypeSize(Ty) / 8; 3757 QualType BaseTy; 3758 unsigned CplxBaseSize = 0; 3759 3760 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 3761 BaseTy = CTy->getElementType(); 3762 CplxBaseSize = CGF.getContext().getTypeSize(BaseTy) / 8; 3763 if (CplxBaseSize < 8) 3764 SizeInBytes = 16; 3765 } 3766 3767 unsigned Offset = llvm::RoundUpToAlignment(SizeInBytes, 8); 3768 llvm::Value *NextAddr = 3769 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int64Ty, Offset), 3770 "ap.next"); 3771 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 3772 3773 // If we have a complex type and the base type is smaller than 8 bytes, 3774 // the ABI calls for the real and imaginary parts to be right-adjusted 3775 // in separate doublewords. However, Clang expects us to produce a 3776 // pointer to a structure with the two parts packed tightly. So generate 3777 // loads of the real and imaginary parts relative to the va_list pointer, 3778 // and store them to a temporary structure. 3779 if (CplxBaseSize && CplxBaseSize < 8) { 3780 llvm::Value *RealAddr = Builder.CreatePtrToInt(Addr, CGF.Int64Ty); 3781 llvm::Value *ImagAddr = RealAddr; 3782 if (CGF.CGM.getDataLayout().isBigEndian()) { 3783 RealAddr = Builder.CreateAdd(RealAddr, Builder.getInt64(8 - CplxBaseSize)); 3784 ImagAddr = Builder.CreateAdd(ImagAddr, Builder.getInt64(16 - CplxBaseSize)); 3785 } else { 3786 ImagAddr = Builder.CreateAdd(ImagAddr, Builder.getInt64(8)); 3787 } 3788 llvm::Type *PBaseTy = llvm::PointerType::getUnqual(CGF.ConvertType(BaseTy)); 3789 RealAddr = Builder.CreateIntToPtr(RealAddr, PBaseTy); 3790 ImagAddr = Builder.CreateIntToPtr(ImagAddr, PBaseTy); 3791 llvm::Value *Real = Builder.CreateLoad(RealAddr, false, ".vareal"); 3792 llvm::Value *Imag = Builder.CreateLoad(ImagAddr, false, ".vaimag"); 3793 llvm::AllocaInst *Ptr = 3794 CGF.CreateTempAlloca(CGT.ConvertTypeForMem(Ty), "vacplx"); 3795 llvm::Value *RealPtr = 3796 Builder.CreateStructGEP(Ptr->getAllocatedType(), Ptr, 0, ".real"); 3797 llvm::Value *ImagPtr = 3798 Builder.CreateStructGEP(Ptr->getAllocatedType(), Ptr, 1, ".imag"); 3799 Builder.CreateStore(Real, RealPtr, false); 3800 Builder.CreateStore(Imag, ImagPtr, false); 3801 return Ptr; 3802 } 3803 3804 // If the argument is smaller than 8 bytes, it is right-adjusted in 3805 // its doubleword slot. Adjust the pointer to pick it up from the 3806 // correct offset. 3807 if (SizeInBytes < 8 && CGF.CGM.getDataLayout().isBigEndian()) { 3808 llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty); 3809 AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt64(8 - SizeInBytes)); 3810 Addr = Builder.CreateIntToPtr(AddrAsInt, BP); 3811 } 3812 3813 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 3814 return Builder.CreateBitCast(Addr, PTy); 3815 } 3816 3817 static bool 3818 PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 3819 llvm::Value *Address) { 3820 // This is calculated from the LLVM and GCC tables and verified 3821 // against gcc output. AFAIK all ABIs use the same encoding. 3822 3823 CodeGen::CGBuilderTy &Builder = CGF.Builder; 3824 3825 llvm::IntegerType *i8 = CGF.Int8Ty; 3826 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 3827 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 3828 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 3829 3830 // 0-31: r0-31, the 8-byte general-purpose registers 3831 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 3832 3833 // 32-63: fp0-31, the 8-byte floating-point registers 3834 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 3835 3836 // 64-76 are various 4-byte special-purpose registers: 3837 // 64: mq 3838 // 65: lr 3839 // 66: ctr 3840 // 67: ap 3841 // 68-75 cr0-7 3842 // 76: xer 3843 AssignToArrayRange(Builder, Address, Four8, 64, 76); 3844 3845 // 77-108: v0-31, the 16-byte vector registers 3846 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 3847 3848 // 109: vrsave 3849 // 110: vscr 3850 // 111: spe_acc 3851 // 112: spefscr 3852 // 113: sfp 3853 AssignToArrayRange(Builder, Address, Four8, 109, 113); 3854 3855 return false; 3856 } 3857 3858 bool 3859 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable( 3860 CodeGen::CodeGenFunction &CGF, 3861 llvm::Value *Address) const { 3862 3863 return PPC64_initDwarfEHRegSizeTable(CGF, Address); 3864 } 3865 3866 bool 3867 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 3868 llvm::Value *Address) const { 3869 3870 return PPC64_initDwarfEHRegSizeTable(CGF, Address); 3871 } 3872 3873 //===----------------------------------------------------------------------===// 3874 // AArch64 ABI Implementation 3875 //===----------------------------------------------------------------------===// 3876 3877 namespace { 3878 3879 class AArch64ABIInfo : public ABIInfo { 3880 public: 3881 enum ABIKind { 3882 AAPCS = 0, 3883 DarwinPCS 3884 }; 3885 3886 private: 3887 ABIKind Kind; 3888 3889 public: 3890 AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind) : ABIInfo(CGT), Kind(Kind) {} 3891 3892 private: 3893 ABIKind getABIKind() const { return Kind; } 3894 bool isDarwinPCS() const { return Kind == DarwinPCS; } 3895 3896 ABIArgInfo classifyReturnType(QualType RetTy) const; 3897 ABIArgInfo classifyArgumentType(QualType RetTy) const; 3898 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 3899 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 3900 uint64_t Members) const override; 3901 3902 bool isIllegalVectorType(QualType Ty) const; 3903 3904 void computeInfo(CGFunctionInfo &FI) const override { 3905 if (!getCXXABI().classifyReturnType(FI)) 3906 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 3907 3908 for (auto &it : FI.arguments()) 3909 it.info = classifyArgumentType(it.type); 3910 } 3911 3912 llvm::Value *EmitDarwinVAArg(llvm::Value *VAListAddr, QualType Ty, 3913 CodeGenFunction &CGF) const; 3914 3915 llvm::Value *EmitAAPCSVAArg(llvm::Value *VAListAddr, QualType Ty, 3916 CodeGenFunction &CGF) const; 3917 3918 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 3919 CodeGenFunction &CGF) const override { 3920 return isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF) 3921 : EmitAAPCSVAArg(VAListAddr, Ty, CGF); 3922 } 3923 }; 3924 3925 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo { 3926 public: 3927 AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind) 3928 : TargetCodeGenInfo(new AArch64ABIInfo(CGT, Kind)) {} 3929 3930 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 3931 return "mov\tfp, fp\t\t; marker for objc_retainAutoreleaseReturnValue"; 3932 } 3933 3934 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 3935 return 31; 3936 } 3937 3938 bool doesReturnSlotInterfereWithArgs() const override { return false; } 3939 }; 3940 } 3941 3942 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const { 3943 Ty = useFirstFieldIfTransparentUnion(Ty); 3944 3945 // Handle illegal vector types here. 3946 if (isIllegalVectorType(Ty)) { 3947 uint64_t Size = getContext().getTypeSize(Ty); 3948 if (Size <= 32) { 3949 llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext()); 3950 return ABIArgInfo::getDirect(ResType); 3951 } 3952 if (Size == 64) { 3953 llvm::Type *ResType = 3954 llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2); 3955 return ABIArgInfo::getDirect(ResType); 3956 } 3957 if (Size == 128) { 3958 llvm::Type *ResType = 3959 llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4); 3960 return ABIArgInfo::getDirect(ResType); 3961 } 3962 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 3963 } 3964 3965 if (!isAggregateTypeForABI(Ty)) { 3966 // Treat an enum type as its underlying type. 3967 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3968 Ty = EnumTy->getDecl()->getIntegerType(); 3969 3970 return (Ty->isPromotableIntegerType() && isDarwinPCS() 3971 ? ABIArgInfo::getExtend() 3972 : ABIArgInfo::getDirect()); 3973 } 3974 3975 // Structures with either a non-trivial destructor or a non-trivial 3976 // copy constructor are always indirect. 3977 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 3978 return ABIArgInfo::getIndirect(0, /*ByVal=*/RAA == 3979 CGCXXABI::RAA_DirectInMemory); 3980 } 3981 3982 // Empty records are always ignored on Darwin, but actually passed in C++ mode 3983 // elsewhere for GNU compatibility. 3984 if (isEmptyRecord(getContext(), Ty, true)) { 3985 if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS()) 3986 return ABIArgInfo::getIgnore(); 3987 3988 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 3989 } 3990 3991 // Homogeneous Floating-point Aggregates (HFAs) need to be expanded. 3992 const Type *Base = nullptr; 3993 uint64_t Members = 0; 3994 if (isHomogeneousAggregate(Ty, Base, Members)) { 3995 return ABIArgInfo::getDirect( 3996 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members)); 3997 } 3998 3999 // Aggregates <= 16 bytes are passed directly in registers or on the stack. 4000 uint64_t Size = getContext().getTypeSize(Ty); 4001 if (Size <= 128) { 4002 unsigned Alignment = getContext().getTypeAlign(Ty); 4003 Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes 4004 4005 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 4006 // For aggregates with 16-byte alignment, we use i128. 4007 if (Alignment < 128 && Size == 128) { 4008 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); 4009 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 4010 } 4011 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 4012 } 4013 4014 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 4015 } 4016 4017 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy) const { 4018 if (RetTy->isVoidType()) 4019 return ABIArgInfo::getIgnore(); 4020 4021 // Large vector types should be returned via memory. 4022 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) 4023 return ABIArgInfo::getIndirect(0); 4024 4025 if (!isAggregateTypeForABI(RetTy)) { 4026 // Treat an enum type as its underlying type. 4027 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 4028 RetTy = EnumTy->getDecl()->getIntegerType(); 4029 4030 return (RetTy->isPromotableIntegerType() && isDarwinPCS() 4031 ? ABIArgInfo::getExtend() 4032 : ABIArgInfo::getDirect()); 4033 } 4034 4035 if (isEmptyRecord(getContext(), RetTy, true)) 4036 return ABIArgInfo::getIgnore(); 4037 4038 const Type *Base = nullptr; 4039 uint64_t Members = 0; 4040 if (isHomogeneousAggregate(RetTy, Base, Members)) 4041 // Homogeneous Floating-point Aggregates (HFAs) are returned directly. 4042 return ABIArgInfo::getDirect(); 4043 4044 // Aggregates <= 16 bytes are returned directly in registers or on the stack. 4045 uint64_t Size = getContext().getTypeSize(RetTy); 4046 if (Size <= 128) { 4047 unsigned Alignment = getContext().getTypeAlign(RetTy); 4048 Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes 4049 4050 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 4051 // For aggregates with 16-byte alignment, we use i128. 4052 if (Alignment < 128 && Size == 128) { 4053 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); 4054 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 4055 } 4056 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 4057 } 4058 4059 return ABIArgInfo::getIndirect(0); 4060 } 4061 4062 /// isIllegalVectorType - check whether the vector type is legal for AArch64. 4063 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const { 4064 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4065 // Check whether VT is legal. 4066 unsigned NumElements = VT->getNumElements(); 4067 uint64_t Size = getContext().getTypeSize(VT); 4068 // NumElements should be power of 2 between 1 and 16. 4069 if ((NumElements & (NumElements - 1)) != 0 || NumElements > 16) 4070 return true; 4071 return Size != 64 && (Size != 128 || NumElements == 1); 4072 } 4073 return false; 4074 } 4075 4076 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 4077 // Homogeneous aggregates for AAPCS64 must have base types of a floating 4078 // point type or a short-vector type. This is the same as the 32-bit ABI, 4079 // but with the difference that any floating-point type is allowed, 4080 // including __fp16. 4081 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 4082 if (BT->isFloatingPoint()) 4083 return true; 4084 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 4085 unsigned VecSize = getContext().getTypeSize(VT); 4086 if (VecSize == 64 || VecSize == 128) 4087 return true; 4088 } 4089 return false; 4090 } 4091 4092 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 4093 uint64_t Members) const { 4094 return Members <= 4; 4095 } 4096 4097 llvm::Value *AArch64ABIInfo::EmitAAPCSVAArg(llvm::Value *VAListAddr, 4098 QualType Ty, 4099 CodeGenFunction &CGF) const { 4100 ABIArgInfo AI = classifyArgumentType(Ty); 4101 bool IsIndirect = AI.isIndirect(); 4102 4103 llvm::Type *BaseTy = CGF.ConvertType(Ty); 4104 if (IsIndirect) 4105 BaseTy = llvm::PointerType::getUnqual(BaseTy); 4106 else if (AI.getCoerceToType()) 4107 BaseTy = AI.getCoerceToType(); 4108 4109 unsigned NumRegs = 1; 4110 if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) { 4111 BaseTy = ArrTy->getElementType(); 4112 NumRegs = ArrTy->getNumElements(); 4113 } 4114 bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy(); 4115 4116 // The AArch64 va_list type and handling is specified in the Procedure Call 4117 // Standard, section B.4: 4118 // 4119 // struct { 4120 // void *__stack; 4121 // void *__gr_top; 4122 // void *__vr_top; 4123 // int __gr_offs; 4124 // int __vr_offs; 4125 // }; 4126 4127 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); 4128 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 4129 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); 4130 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 4131 auto &Ctx = CGF.getContext(); 4132 4133 llvm::Value *reg_offs_p = nullptr, *reg_offs = nullptr; 4134 int reg_top_index; 4135 int RegSize = IsIndirect ? 8 : getContext().getTypeSize(Ty) / 8; 4136 if (!IsFPR) { 4137 // 3 is the field number of __gr_offs 4138 reg_offs_p = 4139 CGF.Builder.CreateStructGEP(nullptr, VAListAddr, 3, "gr_offs_p"); 4140 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs"); 4141 reg_top_index = 1; // field number for __gr_top 4142 RegSize = llvm::RoundUpToAlignment(RegSize, 8); 4143 } else { 4144 // 4 is the field number of __vr_offs. 4145 reg_offs_p = 4146 CGF.Builder.CreateStructGEP(nullptr, VAListAddr, 4, "vr_offs_p"); 4147 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs"); 4148 reg_top_index = 2; // field number for __vr_top 4149 RegSize = 16 * NumRegs; 4150 } 4151 4152 //======================================= 4153 // Find out where argument was passed 4154 //======================================= 4155 4156 // If reg_offs >= 0 we're already using the stack for this type of 4157 // argument. We don't want to keep updating reg_offs (in case it overflows, 4158 // though anyone passing 2GB of arguments, each at most 16 bytes, deserves 4159 // whatever they get). 4160 llvm::Value *UsingStack = nullptr; 4161 UsingStack = CGF.Builder.CreateICmpSGE( 4162 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0)); 4163 4164 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock); 4165 4166 // Otherwise, at least some kind of argument could go in these registers, the 4167 // question is whether this particular type is too big. 4168 CGF.EmitBlock(MaybeRegBlock); 4169 4170 // Integer arguments may need to correct register alignment (for example a 4171 // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we 4172 // align __gr_offs to calculate the potential address. 4173 if (!IsFPR && !IsIndirect && Ctx.getTypeAlign(Ty) > 64) { 4174 int Align = Ctx.getTypeAlign(Ty) / 8; 4175 4176 reg_offs = CGF.Builder.CreateAdd( 4177 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1), 4178 "align_regoffs"); 4179 reg_offs = CGF.Builder.CreateAnd( 4180 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align), 4181 "aligned_regoffs"); 4182 } 4183 4184 // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list. 4185 llvm::Value *NewOffset = nullptr; 4186 NewOffset = CGF.Builder.CreateAdd( 4187 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs"); 4188 CGF.Builder.CreateStore(NewOffset, reg_offs_p); 4189 4190 // Now we're in a position to decide whether this argument really was in 4191 // registers or not. 4192 llvm::Value *InRegs = nullptr; 4193 InRegs = CGF.Builder.CreateICmpSLE( 4194 NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg"); 4195 4196 CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock); 4197 4198 //======================================= 4199 // Argument was in registers 4200 //======================================= 4201 4202 // Now we emit the code for if the argument was originally passed in 4203 // registers. First start the appropriate block: 4204 CGF.EmitBlock(InRegBlock); 4205 4206 llvm::Value *reg_top_p = nullptr, *reg_top = nullptr; 4207 reg_top_p = CGF.Builder.CreateStructGEP(nullptr, VAListAddr, reg_top_index, 4208 "reg_top_p"); 4209 reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top"); 4210 llvm::Value *BaseAddr = CGF.Builder.CreateGEP(reg_top, reg_offs); 4211 llvm::Value *RegAddr = nullptr; 4212 llvm::Type *MemTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); 4213 4214 if (IsIndirect) { 4215 // If it's been passed indirectly (actually a struct), whatever we find from 4216 // stored registers or on the stack will actually be a struct **. 4217 MemTy = llvm::PointerType::getUnqual(MemTy); 4218 } 4219 4220 const Type *Base = nullptr; 4221 uint64_t NumMembers = 0; 4222 bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers); 4223 if (IsHFA && NumMembers > 1) { 4224 // Homogeneous aggregates passed in registers will have their elements split 4225 // and stored 16-bytes apart regardless of size (they're notionally in qN, 4226 // qN+1, ...). We reload and store into a temporary local variable 4227 // contiguously. 4228 assert(!IsIndirect && "Homogeneous aggregates should be passed directly"); 4229 llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0)); 4230 llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers); 4231 llvm::AllocaInst *Tmp = CGF.CreateTempAlloca(HFATy); 4232 int Offset = 0; 4233 4234 if (CGF.CGM.getDataLayout().isBigEndian() && Ctx.getTypeSize(Base) < 128) 4235 Offset = 16 - Ctx.getTypeSize(Base) / 8; 4236 for (unsigned i = 0; i < NumMembers; ++i) { 4237 llvm::Value *BaseOffset = 4238 llvm::ConstantInt::get(CGF.Int32Ty, 16 * i + Offset); 4239 llvm::Value *LoadAddr = CGF.Builder.CreateGEP(BaseAddr, BaseOffset); 4240 LoadAddr = CGF.Builder.CreateBitCast( 4241 LoadAddr, llvm::PointerType::getUnqual(BaseTy)); 4242 llvm::Value *StoreAddr = 4243 CGF.Builder.CreateStructGEP(Tmp->getAllocatedType(), Tmp, i); 4244 4245 llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr); 4246 CGF.Builder.CreateStore(Elem, StoreAddr); 4247 } 4248 4249 RegAddr = CGF.Builder.CreateBitCast(Tmp, MemTy); 4250 } else { 4251 // Otherwise the object is contiguous in memory 4252 unsigned BeAlign = reg_top_index == 2 ? 16 : 8; 4253 if (CGF.CGM.getDataLayout().isBigEndian() && 4254 (IsHFA || !isAggregateTypeForABI(Ty)) && 4255 Ctx.getTypeSize(Ty) < (BeAlign * 8)) { 4256 int Offset = BeAlign - Ctx.getTypeSize(Ty) / 8; 4257 BaseAddr = CGF.Builder.CreatePtrToInt(BaseAddr, CGF.Int64Ty); 4258 4259 BaseAddr = CGF.Builder.CreateAdd( 4260 BaseAddr, llvm::ConstantInt::get(CGF.Int64Ty, Offset), "align_be"); 4261 4262 BaseAddr = CGF.Builder.CreateIntToPtr(BaseAddr, CGF.Int8PtrTy); 4263 } 4264 4265 RegAddr = CGF.Builder.CreateBitCast(BaseAddr, MemTy); 4266 } 4267 4268 CGF.EmitBranch(ContBlock); 4269 4270 //======================================= 4271 // Argument was on the stack 4272 //======================================= 4273 CGF.EmitBlock(OnStackBlock); 4274 4275 llvm::Value *stack_p = nullptr, *OnStackAddr = nullptr; 4276 stack_p = CGF.Builder.CreateStructGEP(nullptr, VAListAddr, 0, "stack_p"); 4277 OnStackAddr = CGF.Builder.CreateLoad(stack_p, "stack"); 4278 4279 // Again, stack arguments may need realigmnent. In this case both integer and 4280 // floating-point ones might be affected. 4281 if (!IsIndirect && Ctx.getTypeAlign(Ty) > 64) { 4282 int Align = Ctx.getTypeAlign(Ty) / 8; 4283 4284 OnStackAddr = CGF.Builder.CreatePtrToInt(OnStackAddr, CGF.Int64Ty); 4285 4286 OnStackAddr = CGF.Builder.CreateAdd( 4287 OnStackAddr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1), 4288 "align_stack"); 4289 OnStackAddr = CGF.Builder.CreateAnd( 4290 OnStackAddr, llvm::ConstantInt::get(CGF.Int64Ty, -Align), 4291 "align_stack"); 4292 4293 OnStackAddr = CGF.Builder.CreateIntToPtr(OnStackAddr, CGF.Int8PtrTy); 4294 } 4295 4296 uint64_t StackSize; 4297 if (IsIndirect) 4298 StackSize = 8; 4299 else 4300 StackSize = Ctx.getTypeSize(Ty) / 8; 4301 4302 // All stack slots are 8 bytes 4303 StackSize = llvm::RoundUpToAlignment(StackSize, 8); 4304 4305 llvm::Value *StackSizeC = llvm::ConstantInt::get(CGF.Int32Ty, StackSize); 4306 llvm::Value *NewStack = 4307 CGF.Builder.CreateGEP(OnStackAddr, StackSizeC, "new_stack"); 4308 4309 // Write the new value of __stack for the next call to va_arg 4310 CGF.Builder.CreateStore(NewStack, stack_p); 4311 4312 if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) && 4313 Ctx.getTypeSize(Ty) < 64) { 4314 int Offset = 8 - Ctx.getTypeSize(Ty) / 8; 4315 OnStackAddr = CGF.Builder.CreatePtrToInt(OnStackAddr, CGF.Int64Ty); 4316 4317 OnStackAddr = CGF.Builder.CreateAdd( 4318 OnStackAddr, llvm::ConstantInt::get(CGF.Int64Ty, Offset), "align_be"); 4319 4320 OnStackAddr = CGF.Builder.CreateIntToPtr(OnStackAddr, CGF.Int8PtrTy); 4321 } 4322 4323 OnStackAddr = CGF.Builder.CreateBitCast(OnStackAddr, MemTy); 4324 4325 CGF.EmitBranch(ContBlock); 4326 4327 //======================================= 4328 // Tidy up 4329 //======================================= 4330 CGF.EmitBlock(ContBlock); 4331 4332 llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(MemTy, 2, "vaarg.addr"); 4333 ResAddr->addIncoming(RegAddr, InRegBlock); 4334 ResAddr->addIncoming(OnStackAddr, OnStackBlock); 4335 4336 if (IsIndirect) 4337 return CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"); 4338 4339 return ResAddr; 4340 } 4341 4342 llvm::Value *AArch64ABIInfo::EmitDarwinVAArg(llvm::Value *VAListAddr, QualType Ty, 4343 CodeGenFunction &CGF) const { 4344 // We do not support va_arg for aggregates or illegal vector types. 4345 // Lower VAArg here for these cases and use the LLVM va_arg instruction for 4346 // other cases. 4347 if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty)) 4348 return nullptr; 4349 4350 uint64_t Size = CGF.getContext().getTypeSize(Ty) / 8; 4351 uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8; 4352 4353 const Type *Base = nullptr; 4354 uint64_t Members = 0; 4355 bool isHA = isHomogeneousAggregate(Ty, Base, Members); 4356 4357 bool isIndirect = false; 4358 // Arguments bigger than 16 bytes which aren't homogeneous aggregates should 4359 // be passed indirectly. 4360 if (Size > 16 && !isHA) { 4361 isIndirect = true; 4362 Size = 8; 4363 Align = 8; 4364 } 4365 4366 llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext()); 4367 llvm::Type *BPP = llvm::PointerType::getUnqual(BP); 4368 4369 CGBuilderTy &Builder = CGF.Builder; 4370 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); 4371 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 4372 4373 if (isEmptyRecord(getContext(), Ty, true)) { 4374 // These are ignored for parameter passing purposes. 4375 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 4376 return Builder.CreateBitCast(Addr, PTy); 4377 } 4378 4379 const uint64_t MinABIAlign = 8; 4380 if (Align > MinABIAlign) { 4381 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, Align - 1); 4382 Addr = Builder.CreateGEP(Addr, Offset); 4383 llvm::Value *AsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty); 4384 llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, ~(Align - 1)); 4385 llvm::Value *Aligned = Builder.CreateAnd(AsInt, Mask); 4386 Addr = Builder.CreateIntToPtr(Aligned, BP, "ap.align"); 4387 } 4388 4389 uint64_t Offset = llvm::RoundUpToAlignment(Size, MinABIAlign); 4390 llvm::Value *NextAddr = Builder.CreateGEP( 4391 Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), "ap.next"); 4392 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 4393 4394 if (isIndirect) 4395 Addr = Builder.CreateLoad(Builder.CreateBitCast(Addr, BPP)); 4396 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 4397 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); 4398 4399 return AddrTyped; 4400 } 4401 4402 //===----------------------------------------------------------------------===// 4403 // ARM ABI Implementation 4404 //===----------------------------------------------------------------------===// 4405 4406 namespace { 4407 4408 class ARMABIInfo : public ABIInfo { 4409 public: 4410 enum ABIKind { 4411 APCS = 0, 4412 AAPCS = 1, 4413 AAPCS_VFP 4414 }; 4415 4416 private: 4417 ABIKind Kind; 4418 4419 public: 4420 ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) : ABIInfo(CGT), Kind(_Kind) { 4421 setCCs(); 4422 } 4423 4424 bool isEABI() const { 4425 switch (getTarget().getTriple().getEnvironment()) { 4426 case llvm::Triple::Android: 4427 case llvm::Triple::EABI: 4428 case llvm::Triple::EABIHF: 4429 case llvm::Triple::GNUEABI: 4430 case llvm::Triple::GNUEABIHF: 4431 return true; 4432 default: 4433 return false; 4434 } 4435 } 4436 4437 bool isEABIHF() const { 4438 switch (getTarget().getTriple().getEnvironment()) { 4439 case llvm::Triple::EABIHF: 4440 case llvm::Triple::GNUEABIHF: 4441 return true; 4442 default: 4443 return false; 4444 } 4445 } 4446 4447 ABIKind getABIKind() const { return Kind; } 4448 4449 private: 4450 ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic) const; 4451 ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic) const; 4452 bool isIllegalVectorType(QualType Ty) const; 4453 4454 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 4455 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 4456 uint64_t Members) const override; 4457 4458 void computeInfo(CGFunctionInfo &FI) const override; 4459 4460 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 4461 CodeGenFunction &CGF) const override; 4462 4463 llvm::CallingConv::ID getLLVMDefaultCC() const; 4464 llvm::CallingConv::ID getABIDefaultCC() const; 4465 void setCCs(); 4466 }; 4467 4468 class ARMTargetCodeGenInfo : public TargetCodeGenInfo { 4469 public: 4470 ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 4471 :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {} 4472 4473 const ARMABIInfo &getABIInfo() const { 4474 return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo()); 4475 } 4476 4477 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4478 return 13; 4479 } 4480 4481 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 4482 return "mov\tr7, r7\t\t@ marker for objc_retainAutoreleaseReturnValue"; 4483 } 4484 4485 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4486 llvm::Value *Address) const override { 4487 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 4488 4489 // 0-15 are the 16 integer registers. 4490 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15); 4491 return false; 4492 } 4493 4494 unsigned getSizeOfUnwindException() const override { 4495 if (getABIInfo().isEABI()) return 88; 4496 return TargetCodeGenInfo::getSizeOfUnwindException(); 4497 } 4498 4499 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 4500 CodeGen::CodeGenModule &CGM) const override { 4501 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); 4502 if (!FD) 4503 return; 4504 4505 const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>(); 4506 if (!Attr) 4507 return; 4508 4509 const char *Kind; 4510 switch (Attr->getInterrupt()) { 4511 case ARMInterruptAttr::Generic: Kind = ""; break; 4512 case ARMInterruptAttr::IRQ: Kind = "IRQ"; break; 4513 case ARMInterruptAttr::FIQ: Kind = "FIQ"; break; 4514 case ARMInterruptAttr::SWI: Kind = "SWI"; break; 4515 case ARMInterruptAttr::ABORT: Kind = "ABORT"; break; 4516 case ARMInterruptAttr::UNDEF: Kind = "UNDEF"; break; 4517 } 4518 4519 llvm::Function *Fn = cast<llvm::Function>(GV); 4520 4521 Fn->addFnAttr("interrupt", Kind); 4522 4523 if (cast<ARMABIInfo>(getABIInfo()).getABIKind() == ARMABIInfo::APCS) 4524 return; 4525 4526 // AAPCS guarantees that sp will be 8-byte aligned on any public interface, 4527 // however this is not necessarily true on taking any interrupt. Instruct 4528 // the backend to perform a realignment as part of the function prologue. 4529 llvm::AttrBuilder B; 4530 B.addStackAlignmentAttr(8); 4531 Fn->addAttributes(llvm::AttributeSet::FunctionIndex, 4532 llvm::AttributeSet::get(CGM.getLLVMContext(), 4533 llvm::AttributeSet::FunctionIndex, 4534 B)); 4535 } 4536 }; 4537 4538 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo { 4539 void addStackProbeSizeTargetAttribute(const Decl *D, llvm::GlobalValue *GV, 4540 CodeGen::CodeGenModule &CGM) const; 4541 4542 public: 4543 WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 4544 : ARMTargetCodeGenInfo(CGT, K) {} 4545 4546 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 4547 CodeGen::CodeGenModule &CGM) const override; 4548 }; 4549 4550 void WindowsARMTargetCodeGenInfo::addStackProbeSizeTargetAttribute( 4551 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 4552 if (!isa<FunctionDecl>(D)) 4553 return; 4554 if (CGM.getCodeGenOpts().StackProbeSize == 4096) 4555 return; 4556 4557 llvm::Function *F = cast<llvm::Function>(GV); 4558 F->addFnAttr("stack-probe-size", 4559 llvm::utostr(CGM.getCodeGenOpts().StackProbeSize)); 4560 } 4561 4562 void WindowsARMTargetCodeGenInfo::SetTargetAttributes( 4563 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 4564 ARMTargetCodeGenInfo::SetTargetAttributes(D, GV, CGM); 4565 addStackProbeSizeTargetAttribute(D, GV, CGM); 4566 } 4567 } 4568 4569 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const { 4570 if (!getCXXABI().classifyReturnType(FI)) 4571 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), FI.isVariadic()); 4572 4573 for (auto &I : FI.arguments()) 4574 I.info = classifyArgumentType(I.type, FI.isVariadic()); 4575 4576 // Always honor user-specified calling convention. 4577 if (FI.getCallingConvention() != llvm::CallingConv::C) 4578 return; 4579 4580 llvm::CallingConv::ID cc = getRuntimeCC(); 4581 if (cc != llvm::CallingConv::C) 4582 FI.setEffectiveCallingConvention(cc); 4583 } 4584 4585 /// Return the default calling convention that LLVM will use. 4586 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const { 4587 // The default calling convention that LLVM will infer. 4588 if (isEABIHF()) 4589 return llvm::CallingConv::ARM_AAPCS_VFP; 4590 else if (isEABI()) 4591 return llvm::CallingConv::ARM_AAPCS; 4592 else 4593 return llvm::CallingConv::ARM_APCS; 4594 } 4595 4596 /// Return the calling convention that our ABI would like us to use 4597 /// as the C calling convention. 4598 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const { 4599 switch (getABIKind()) { 4600 case APCS: return llvm::CallingConv::ARM_APCS; 4601 case AAPCS: return llvm::CallingConv::ARM_AAPCS; 4602 case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 4603 } 4604 llvm_unreachable("bad ABI kind"); 4605 } 4606 4607 void ARMABIInfo::setCCs() { 4608 assert(getRuntimeCC() == llvm::CallingConv::C); 4609 4610 // Don't muddy up the IR with a ton of explicit annotations if 4611 // they'd just match what LLVM will infer from the triple. 4612 llvm::CallingConv::ID abiCC = getABIDefaultCC(); 4613 if (abiCC != getLLVMDefaultCC()) 4614 RuntimeCC = abiCC; 4615 4616 BuiltinCC = (getABIKind() == APCS ? 4617 llvm::CallingConv::ARM_APCS : llvm::CallingConv::ARM_AAPCS); 4618 } 4619 4620 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, 4621 bool isVariadic) const { 4622 // 6.1.2.1 The following argument types are VFP CPRCs: 4623 // A single-precision floating-point type (including promoted 4624 // half-precision types); A double-precision floating-point type; 4625 // A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate 4626 // with a Base Type of a single- or double-precision floating-point type, 4627 // 64-bit containerized vectors or 128-bit containerized vectors with one 4628 // to four Elements. 4629 bool IsEffectivelyAAPCS_VFP = getABIKind() == AAPCS_VFP && !isVariadic; 4630 4631 Ty = useFirstFieldIfTransparentUnion(Ty); 4632 4633 // Handle illegal vector types here. 4634 if (isIllegalVectorType(Ty)) { 4635 uint64_t Size = getContext().getTypeSize(Ty); 4636 if (Size <= 32) { 4637 llvm::Type *ResType = 4638 llvm::Type::getInt32Ty(getVMContext()); 4639 return ABIArgInfo::getDirect(ResType); 4640 } 4641 if (Size == 64) { 4642 llvm::Type *ResType = llvm::VectorType::get( 4643 llvm::Type::getInt32Ty(getVMContext()), 2); 4644 return ABIArgInfo::getDirect(ResType); 4645 } 4646 if (Size == 128) { 4647 llvm::Type *ResType = llvm::VectorType::get( 4648 llvm::Type::getInt32Ty(getVMContext()), 4); 4649 return ABIArgInfo::getDirect(ResType); 4650 } 4651 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 4652 } 4653 4654 if (!isAggregateTypeForABI(Ty)) { 4655 // Treat an enum type as its underlying type. 4656 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 4657 Ty = EnumTy->getDecl()->getIntegerType(); 4658 } 4659 4660 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend() 4661 : ABIArgInfo::getDirect()); 4662 } 4663 4664 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 4665 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 4666 } 4667 4668 // Ignore empty records. 4669 if (isEmptyRecord(getContext(), Ty, true)) 4670 return ABIArgInfo::getIgnore(); 4671 4672 if (IsEffectivelyAAPCS_VFP) { 4673 // Homogeneous Aggregates need to be expanded when we can fit the aggregate 4674 // into VFP registers. 4675 const Type *Base = nullptr; 4676 uint64_t Members = 0; 4677 if (isHomogeneousAggregate(Ty, Base, Members)) { 4678 assert(Base && "Base class should be set for homogeneous aggregate"); 4679 // Base can be a floating-point or a vector. 4680 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); 4681 } 4682 } 4683 4684 // Support byval for ARM. 4685 // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at 4686 // most 8-byte. We realign the indirect argument if type alignment is bigger 4687 // than ABI alignment. 4688 uint64_t ABIAlign = 4; 4689 uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8; 4690 if (getABIKind() == ARMABIInfo::AAPCS_VFP || 4691 getABIKind() == ARMABIInfo::AAPCS) 4692 ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8); 4693 4694 if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) { 4695 return ABIArgInfo::getIndirect(ABIAlign, /*ByVal=*/true, 4696 /*Realign=*/TyAlign > ABIAlign); 4697 } 4698 4699 // Otherwise, pass by coercing to a structure of the appropriate size. 4700 llvm::Type* ElemTy; 4701 unsigned SizeRegs; 4702 // FIXME: Try to match the types of the arguments more accurately where 4703 // we can. 4704 if (getContext().getTypeAlign(Ty) <= 32) { 4705 ElemTy = llvm::Type::getInt32Ty(getVMContext()); 4706 SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32; 4707 } else { 4708 ElemTy = llvm::Type::getInt64Ty(getVMContext()); 4709 SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64; 4710 } 4711 4712 return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs)); 4713 } 4714 4715 static bool isIntegerLikeType(QualType Ty, ASTContext &Context, 4716 llvm::LLVMContext &VMContext) { 4717 // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure 4718 // is called integer-like if its size is less than or equal to one word, and 4719 // the offset of each of its addressable sub-fields is zero. 4720 4721 uint64_t Size = Context.getTypeSize(Ty); 4722 4723 // Check that the type fits in a word. 4724 if (Size > 32) 4725 return false; 4726 4727 // FIXME: Handle vector types! 4728 if (Ty->isVectorType()) 4729 return false; 4730 4731 // Float types are never treated as "integer like". 4732 if (Ty->isRealFloatingType()) 4733 return false; 4734 4735 // If this is a builtin or pointer type then it is ok. 4736 if (Ty->getAs<BuiltinType>() || Ty->isPointerType()) 4737 return true; 4738 4739 // Small complex integer types are "integer like". 4740 if (const ComplexType *CT = Ty->getAs<ComplexType>()) 4741 return isIntegerLikeType(CT->getElementType(), Context, VMContext); 4742 4743 // Single element and zero sized arrays should be allowed, by the definition 4744 // above, but they are not. 4745 4746 // Otherwise, it must be a record type. 4747 const RecordType *RT = Ty->getAs<RecordType>(); 4748 if (!RT) return false; 4749 4750 // Ignore records with flexible arrays. 4751 const RecordDecl *RD = RT->getDecl(); 4752 if (RD->hasFlexibleArrayMember()) 4753 return false; 4754 4755 // Check that all sub-fields are at offset 0, and are themselves "integer 4756 // like". 4757 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 4758 4759 bool HadField = false; 4760 unsigned idx = 0; 4761 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 4762 i != e; ++i, ++idx) { 4763 const FieldDecl *FD = *i; 4764 4765 // Bit-fields are not addressable, we only need to verify they are "integer 4766 // like". We still have to disallow a subsequent non-bitfield, for example: 4767 // struct { int : 0; int x } 4768 // is non-integer like according to gcc. 4769 if (FD->isBitField()) { 4770 if (!RD->isUnion()) 4771 HadField = true; 4772 4773 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 4774 return false; 4775 4776 continue; 4777 } 4778 4779 // Check if this field is at offset 0. 4780 if (Layout.getFieldOffset(idx) != 0) 4781 return false; 4782 4783 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 4784 return false; 4785 4786 // Only allow at most one field in a structure. This doesn't match the 4787 // wording above, but follows gcc in situations with a field following an 4788 // empty structure. 4789 if (!RD->isUnion()) { 4790 if (HadField) 4791 return false; 4792 4793 HadField = true; 4794 } 4795 } 4796 4797 return true; 4798 } 4799 4800 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, 4801 bool isVariadic) const { 4802 bool IsEffectivelyAAPCS_VFP = getABIKind() == AAPCS_VFP && !isVariadic; 4803 4804 if (RetTy->isVoidType()) 4805 return ABIArgInfo::getIgnore(); 4806 4807 // Large vector types should be returned via memory. 4808 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) { 4809 return ABIArgInfo::getIndirect(0); 4810 } 4811 4812 if (!isAggregateTypeForABI(RetTy)) { 4813 // Treat an enum type as its underlying type. 4814 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 4815 RetTy = EnumTy->getDecl()->getIntegerType(); 4816 4817 return RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend() 4818 : ABIArgInfo::getDirect(); 4819 } 4820 4821 // Are we following APCS? 4822 if (getABIKind() == APCS) { 4823 if (isEmptyRecord(getContext(), RetTy, false)) 4824 return ABIArgInfo::getIgnore(); 4825 4826 // Complex types are all returned as packed integers. 4827 // 4828 // FIXME: Consider using 2 x vector types if the back end handles them 4829 // correctly. 4830 if (RetTy->isAnyComplexType()) 4831 return ABIArgInfo::getDirect(llvm::IntegerType::get( 4832 getVMContext(), getContext().getTypeSize(RetTy))); 4833 4834 // Integer like structures are returned in r0. 4835 if (isIntegerLikeType(RetTy, getContext(), getVMContext())) { 4836 // Return in the smallest viable integer type. 4837 uint64_t Size = getContext().getTypeSize(RetTy); 4838 if (Size <= 8) 4839 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 4840 if (Size <= 16) 4841 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 4842 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 4843 } 4844 4845 // Otherwise return in memory. 4846 return ABIArgInfo::getIndirect(0); 4847 } 4848 4849 // Otherwise this is an AAPCS variant. 4850 4851 if (isEmptyRecord(getContext(), RetTy, true)) 4852 return ABIArgInfo::getIgnore(); 4853 4854 // Check for homogeneous aggregates with AAPCS-VFP. 4855 if (IsEffectivelyAAPCS_VFP) { 4856 const Type *Base = nullptr; 4857 uint64_t Members; 4858 if (isHomogeneousAggregate(RetTy, Base, Members)) { 4859 assert(Base && "Base class should be set for homogeneous aggregate"); 4860 // Homogeneous Aggregates are returned directly. 4861 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); 4862 } 4863 } 4864 4865 // Aggregates <= 4 bytes are returned in r0; other aggregates 4866 // are returned indirectly. 4867 uint64_t Size = getContext().getTypeSize(RetTy); 4868 if (Size <= 32) { 4869 if (getDataLayout().isBigEndian()) 4870 // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4) 4871 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 4872 4873 // Return in the smallest viable integer type. 4874 if (Size <= 8) 4875 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 4876 if (Size <= 16) 4877 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 4878 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 4879 } 4880 4881 return ABIArgInfo::getIndirect(0); 4882 } 4883 4884 /// isIllegalVector - check whether Ty is an illegal vector type. 4885 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const { 4886 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4887 // Check whether VT is legal. 4888 unsigned NumElements = VT->getNumElements(); 4889 uint64_t Size = getContext().getTypeSize(VT); 4890 // NumElements should be power of 2. 4891 if ((NumElements & (NumElements - 1)) != 0) 4892 return true; 4893 // Size should be greater than 32 bits. 4894 return Size <= 32; 4895 } 4896 return false; 4897 } 4898 4899 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 4900 // Homogeneous aggregates for AAPCS-VFP must have base types of float, 4901 // double, or 64-bit or 128-bit vectors. 4902 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 4903 if (BT->getKind() == BuiltinType::Float || 4904 BT->getKind() == BuiltinType::Double || 4905 BT->getKind() == BuiltinType::LongDouble) 4906 return true; 4907 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 4908 unsigned VecSize = getContext().getTypeSize(VT); 4909 if (VecSize == 64 || VecSize == 128) 4910 return true; 4911 } 4912 return false; 4913 } 4914 4915 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 4916 uint64_t Members) const { 4917 return Members <= 4; 4918 } 4919 4920 llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 4921 CodeGenFunction &CGF) const { 4922 llvm::Type *BP = CGF.Int8PtrTy; 4923 llvm::Type *BPP = CGF.Int8PtrPtrTy; 4924 4925 CGBuilderTy &Builder = CGF.Builder; 4926 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); 4927 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 4928 4929 if (isEmptyRecord(getContext(), Ty, true)) { 4930 // These are ignored for parameter passing purposes. 4931 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 4932 return Builder.CreateBitCast(Addr, PTy); 4933 } 4934 4935 uint64_t Size = CGF.getContext().getTypeSize(Ty) / 8; 4936 uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8; 4937 bool IsIndirect = false; 4938 4939 // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for 4940 // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte. 4941 if (getABIKind() == ARMABIInfo::AAPCS_VFP || 4942 getABIKind() == ARMABIInfo::AAPCS) 4943 TyAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8); 4944 else 4945 TyAlign = 4; 4946 // Use indirect if size of the illegal vector is bigger than 16 bytes. 4947 if (isIllegalVectorType(Ty) && Size > 16) { 4948 IsIndirect = true; 4949 Size = 4; 4950 TyAlign = 4; 4951 } 4952 4953 // Handle address alignment for ABI alignment > 4 bytes. 4954 if (TyAlign > 4) { 4955 assert((TyAlign & (TyAlign - 1)) == 0 && 4956 "Alignment is not power of 2!"); 4957 llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty); 4958 AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1)); 4959 AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1))); 4960 Addr = Builder.CreateIntToPtr(AddrAsInt, BP, "ap.align"); 4961 } 4962 4963 uint64_t Offset = 4964 llvm::RoundUpToAlignment(Size, 4); 4965 llvm::Value *NextAddr = 4966 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), 4967 "ap.next"); 4968 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 4969 4970 if (IsIndirect) 4971 Addr = Builder.CreateLoad(Builder.CreateBitCast(Addr, BPP)); 4972 else if (TyAlign < CGF.getContext().getTypeAlign(Ty) / 8) { 4973 // We can't directly cast ap.cur to pointer to a vector type, since ap.cur 4974 // may not be correctly aligned for the vector type. We create an aligned 4975 // temporary space and copy the content over from ap.cur to the temporary 4976 // space. This is necessary if the natural alignment of the type is greater 4977 // than the ABI alignment. 4978 llvm::Type *I8PtrTy = Builder.getInt8PtrTy(); 4979 CharUnits CharSize = getContext().getTypeSizeInChars(Ty); 4980 llvm::Value *AlignedTemp = CGF.CreateTempAlloca(CGF.ConvertType(Ty), 4981 "var.align"); 4982 llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy); 4983 llvm::Value *Src = Builder.CreateBitCast(Addr, I8PtrTy); 4984 Builder.CreateMemCpy(Dst, Src, 4985 llvm::ConstantInt::get(CGF.IntPtrTy, CharSize.getQuantity()), 4986 TyAlign, false); 4987 Addr = AlignedTemp; //The content is in aligned location. 4988 } 4989 llvm::Type *PTy = 4990 llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 4991 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); 4992 4993 return AddrTyped; 4994 } 4995 4996 //===----------------------------------------------------------------------===// 4997 // NVPTX ABI Implementation 4998 //===----------------------------------------------------------------------===// 4999 5000 namespace { 5001 5002 class NVPTXABIInfo : public ABIInfo { 5003 public: 5004 NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 5005 5006 ABIArgInfo classifyReturnType(QualType RetTy) const; 5007 ABIArgInfo classifyArgumentType(QualType Ty) const; 5008 5009 void computeInfo(CGFunctionInfo &FI) const override; 5010 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5011 CodeGenFunction &CFG) const override; 5012 }; 5013 5014 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo { 5015 public: 5016 NVPTXTargetCodeGenInfo(CodeGenTypes &CGT) 5017 : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {} 5018 5019 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5020 CodeGen::CodeGenModule &M) const override; 5021 private: 5022 // Adds a NamedMDNode with F, Name, and Operand as operands, and adds the 5023 // resulting MDNode to the nvvm.annotations MDNode. 5024 static void addNVVMMetadata(llvm::Function *F, StringRef Name, int Operand); 5025 }; 5026 5027 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const { 5028 if (RetTy->isVoidType()) 5029 return ABIArgInfo::getIgnore(); 5030 5031 // note: this is different from default ABI 5032 if (!RetTy->isScalarType()) 5033 return ABIArgInfo::getDirect(); 5034 5035 // Treat an enum type as its underlying type. 5036 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5037 RetTy = EnumTy->getDecl()->getIntegerType(); 5038 5039 return (RetTy->isPromotableIntegerType() ? 5040 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 5041 } 5042 5043 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const { 5044 // Treat an enum type as its underlying type. 5045 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5046 Ty = EnumTy->getDecl()->getIntegerType(); 5047 5048 // Return aggregates type as indirect by value 5049 if (isAggregateTypeForABI(Ty)) 5050 return ABIArgInfo::getIndirect(0, /* byval */ true); 5051 5052 return (Ty->isPromotableIntegerType() ? 5053 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 5054 } 5055 5056 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const { 5057 if (!getCXXABI().classifyReturnType(FI)) 5058 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 5059 for (auto &I : FI.arguments()) 5060 I.info = classifyArgumentType(I.type); 5061 5062 // Always honor user-specified calling convention. 5063 if (FI.getCallingConvention() != llvm::CallingConv::C) 5064 return; 5065 5066 FI.setEffectiveCallingConvention(getRuntimeCC()); 5067 } 5068 5069 llvm::Value *NVPTXABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5070 CodeGenFunction &CFG) const { 5071 llvm_unreachable("NVPTX does not support varargs"); 5072 } 5073 5074 void NVPTXTargetCodeGenInfo:: 5075 SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5076 CodeGen::CodeGenModule &M) const{ 5077 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); 5078 if (!FD) return; 5079 5080 llvm::Function *F = cast<llvm::Function>(GV); 5081 5082 // Perform special handling in OpenCL mode 5083 if (M.getLangOpts().OpenCL) { 5084 // Use OpenCL function attributes to check for kernel functions 5085 // By default, all functions are device functions 5086 if (FD->hasAttr<OpenCLKernelAttr>()) { 5087 // OpenCL __kernel functions get kernel metadata 5088 // Create !{<func-ref>, metadata !"kernel", i32 1} node 5089 addNVVMMetadata(F, "kernel", 1); 5090 // And kernel functions are not subject to inlining 5091 F->addFnAttr(llvm::Attribute::NoInline); 5092 } 5093 } 5094 5095 // Perform special handling in CUDA mode. 5096 if (M.getLangOpts().CUDA) { 5097 // CUDA __global__ functions get a kernel metadata entry. Since 5098 // __global__ functions cannot be called from the device, we do not 5099 // need to set the noinline attribute. 5100 if (FD->hasAttr<CUDAGlobalAttr>()) { 5101 // Create !{<func-ref>, metadata !"kernel", i32 1} node 5102 addNVVMMetadata(F, "kernel", 1); 5103 } 5104 if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) { 5105 // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node 5106 llvm::APSInt MaxThreads(32); 5107 MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext()); 5108 if (MaxThreads > 0) 5109 addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue()); 5110 5111 // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was 5112 // not specified in __launch_bounds__ or if the user specified a 0 value, 5113 // we don't have to add a PTX directive. 5114 if (Attr->getMinBlocks()) { 5115 llvm::APSInt MinBlocks(32); 5116 MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext()); 5117 if (MinBlocks > 0) 5118 // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node 5119 addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue()); 5120 } 5121 } 5122 } 5123 } 5124 5125 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::Function *F, StringRef Name, 5126 int Operand) { 5127 llvm::Module *M = F->getParent(); 5128 llvm::LLVMContext &Ctx = M->getContext(); 5129 5130 // Get "nvvm.annotations" metadata node 5131 llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations"); 5132 5133 llvm::Metadata *MDVals[] = { 5134 llvm::ConstantAsMetadata::get(F), llvm::MDString::get(Ctx, Name), 5135 llvm::ConstantAsMetadata::get( 5136 llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))}; 5137 // Append metadata to nvvm.annotations 5138 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 5139 } 5140 } 5141 5142 //===----------------------------------------------------------------------===// 5143 // SystemZ ABI Implementation 5144 //===----------------------------------------------------------------------===// 5145 5146 namespace { 5147 5148 class SystemZABIInfo : public ABIInfo { 5149 bool HasVector; 5150 5151 public: 5152 SystemZABIInfo(CodeGenTypes &CGT, bool HV) 5153 : ABIInfo(CGT), HasVector(HV) {} 5154 5155 bool isPromotableIntegerType(QualType Ty) const; 5156 bool isCompoundType(QualType Ty) const; 5157 bool isVectorArgumentType(QualType Ty) const; 5158 bool isFPArgumentType(QualType Ty) const; 5159 QualType GetSingleElementType(QualType Ty) const; 5160 5161 ABIArgInfo classifyReturnType(QualType RetTy) const; 5162 ABIArgInfo classifyArgumentType(QualType ArgTy) const; 5163 5164 void computeInfo(CGFunctionInfo &FI) const override { 5165 if (!getCXXABI().classifyReturnType(FI)) 5166 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 5167 for (auto &I : FI.arguments()) 5168 I.info = classifyArgumentType(I.type); 5169 } 5170 5171 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5172 CodeGenFunction &CGF) const override; 5173 }; 5174 5175 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo { 5176 public: 5177 SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector) 5178 : TargetCodeGenInfo(new SystemZABIInfo(CGT, HasVector)) {} 5179 }; 5180 5181 } 5182 5183 bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const { 5184 // Treat an enum type as its underlying type. 5185 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5186 Ty = EnumTy->getDecl()->getIntegerType(); 5187 5188 // Promotable integer types are required to be promoted by the ABI. 5189 if (Ty->isPromotableIntegerType()) 5190 return true; 5191 5192 // 32-bit values must also be promoted. 5193 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 5194 switch (BT->getKind()) { 5195 case BuiltinType::Int: 5196 case BuiltinType::UInt: 5197 return true; 5198 default: 5199 return false; 5200 } 5201 return false; 5202 } 5203 5204 bool SystemZABIInfo::isCompoundType(QualType Ty) const { 5205 return (Ty->isAnyComplexType() || 5206 Ty->isVectorType() || 5207 isAggregateTypeForABI(Ty)); 5208 } 5209 5210 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const { 5211 return (HasVector && 5212 Ty->isVectorType() && 5213 getContext().getTypeSize(Ty) <= 128); 5214 } 5215 5216 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const { 5217 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 5218 switch (BT->getKind()) { 5219 case BuiltinType::Float: 5220 case BuiltinType::Double: 5221 return true; 5222 default: 5223 return false; 5224 } 5225 5226 return false; 5227 } 5228 5229 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const { 5230 if (const RecordType *RT = Ty->getAsStructureType()) { 5231 const RecordDecl *RD = RT->getDecl(); 5232 QualType Found; 5233 5234 // If this is a C++ record, check the bases first. 5235 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 5236 for (const auto &I : CXXRD->bases()) { 5237 QualType Base = I.getType(); 5238 5239 // Empty bases don't affect things either way. 5240 if (isEmptyRecord(getContext(), Base, true)) 5241 continue; 5242 5243 if (!Found.isNull()) 5244 return Ty; 5245 Found = GetSingleElementType(Base); 5246 } 5247 5248 // Check the fields. 5249 for (const auto *FD : RD->fields()) { 5250 // For compatibility with GCC, ignore empty bitfields in C++ mode. 5251 // Unlike isSingleElementStruct(), empty structure and array fields 5252 // do count. So do anonymous bitfields that aren't zero-sized. 5253 if (getContext().getLangOpts().CPlusPlus && 5254 FD->isBitField() && FD->getBitWidthValue(getContext()) == 0) 5255 continue; 5256 5257 // Unlike isSingleElementStruct(), arrays do not count. 5258 // Nested structures still do though. 5259 if (!Found.isNull()) 5260 return Ty; 5261 Found = GetSingleElementType(FD->getType()); 5262 } 5263 5264 // Unlike isSingleElementStruct(), trailing padding is allowed. 5265 // An 8-byte aligned struct s { float f; } is passed as a double. 5266 if (!Found.isNull()) 5267 return Found; 5268 } 5269 5270 return Ty; 5271 } 5272 5273 llvm::Value *SystemZABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5274 CodeGenFunction &CGF) const { 5275 // Assume that va_list type is correct; should be pointer to LLVM type: 5276 // struct { 5277 // i64 __gpr; 5278 // i64 __fpr; 5279 // i8 *__overflow_arg_area; 5280 // i8 *__reg_save_area; 5281 // }; 5282 5283 // Every non-vector argument occupies 8 bytes and is passed by preference 5284 // in either GPRs or FPRs. Vector arguments occupy 8 or 16 bytes and are 5285 // always passed on the stack. 5286 Ty = CGF.getContext().getCanonicalType(Ty); 5287 llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty); 5288 llvm::Type *APTy = llvm::PointerType::getUnqual(ArgTy); 5289 ABIArgInfo AI = classifyArgumentType(Ty); 5290 bool IsIndirect = AI.isIndirect(); 5291 bool InFPRs = false; 5292 bool IsVector = false; 5293 unsigned UnpaddedBitSize; 5294 if (IsIndirect) { 5295 APTy = llvm::PointerType::getUnqual(APTy); 5296 UnpaddedBitSize = 64; 5297 } else { 5298 if (AI.getCoerceToType()) 5299 ArgTy = AI.getCoerceToType(); 5300 InFPRs = ArgTy->isFloatTy() || ArgTy->isDoubleTy(); 5301 IsVector = ArgTy->isVectorTy(); 5302 UnpaddedBitSize = getContext().getTypeSize(Ty); 5303 } 5304 unsigned PaddedBitSize = (IsVector && UnpaddedBitSize > 64) ? 128 : 64; 5305 assert((UnpaddedBitSize <= PaddedBitSize) && "Invalid argument size."); 5306 5307 unsigned PaddedSize = PaddedBitSize / 8; 5308 unsigned Padding = (PaddedBitSize - UnpaddedBitSize) / 8; 5309 5310 llvm::Type *IndexTy = CGF.Int64Ty; 5311 llvm::Value *PaddedSizeV = llvm::ConstantInt::get(IndexTy, PaddedSize); 5312 5313 if (IsVector) { 5314 // Work out the address of a vector argument on the stack. 5315 // Vector arguments are always passed in the high bits of a 5316 // single (8 byte) or double (16 byte) stack slot. 5317 llvm::Value *OverflowArgAreaPtr = 5318 CGF.Builder.CreateStructGEP(nullptr, VAListAddr, 2, 5319 "overflow_arg_area_ptr"); 5320 llvm::Value *OverflowArgArea = 5321 CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"); 5322 llvm::Value *MemAddr = 5323 CGF.Builder.CreateBitCast(OverflowArgArea, APTy, "mem_addr"); 5324 5325 // Update overflow_arg_area_ptr pointer 5326 llvm::Value *NewOverflowArgArea = 5327 CGF.Builder.CreateGEP(OverflowArgArea, PaddedSizeV, "overflow_arg_area"); 5328 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 5329 5330 return MemAddr; 5331 } 5332 5333 unsigned MaxRegs, RegCountField, RegSaveIndex, RegPadding; 5334 if (InFPRs) { 5335 MaxRegs = 4; // Maximum of 4 FPR arguments 5336 RegCountField = 1; // __fpr 5337 RegSaveIndex = 16; // save offset for f0 5338 RegPadding = 0; // floats are passed in the high bits of an FPR 5339 } else { 5340 MaxRegs = 5; // Maximum of 5 GPR arguments 5341 RegCountField = 0; // __gpr 5342 RegSaveIndex = 2; // save offset for r2 5343 RegPadding = Padding; // values are passed in the low bits of a GPR 5344 } 5345 5346 llvm::Value *RegCountPtr = CGF.Builder.CreateStructGEP( 5347 nullptr, VAListAddr, RegCountField, "reg_count_ptr"); 5348 llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count"); 5349 llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs); 5350 llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV, 5351 "fits_in_regs"); 5352 5353 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 5354 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 5355 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 5356 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 5357 5358 // Emit code to load the value if it was passed in registers. 5359 CGF.EmitBlock(InRegBlock); 5360 5361 // Work out the address of an argument register. 5362 llvm::Value *ScaledRegCount = 5363 CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count"); 5364 llvm::Value *RegBase = 5365 llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize + RegPadding); 5366 llvm::Value *RegOffset = 5367 CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset"); 5368 llvm::Value *RegSaveAreaPtr = 5369 CGF.Builder.CreateStructGEP(nullptr, VAListAddr, 3, "reg_save_area_ptr"); 5370 llvm::Value *RegSaveArea = 5371 CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area"); 5372 llvm::Value *RawRegAddr = 5373 CGF.Builder.CreateGEP(RegSaveArea, RegOffset, "raw_reg_addr"); 5374 llvm::Value *RegAddr = 5375 CGF.Builder.CreateBitCast(RawRegAddr, APTy, "reg_addr"); 5376 5377 // Update the register count 5378 llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1); 5379 llvm::Value *NewRegCount = 5380 CGF.Builder.CreateAdd(RegCount, One, "reg_count"); 5381 CGF.Builder.CreateStore(NewRegCount, RegCountPtr); 5382 CGF.EmitBranch(ContBlock); 5383 5384 // Emit code to load the value if it was passed in memory. 5385 CGF.EmitBlock(InMemBlock); 5386 5387 // Work out the address of a stack argument. 5388 llvm::Value *OverflowArgAreaPtr = CGF.Builder.CreateStructGEP( 5389 nullptr, VAListAddr, 2, "overflow_arg_area_ptr"); 5390 llvm::Value *OverflowArgArea = 5391 CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"); 5392 llvm::Value *PaddingV = llvm::ConstantInt::get(IndexTy, Padding); 5393 llvm::Value *RawMemAddr = 5394 CGF.Builder.CreateGEP(OverflowArgArea, PaddingV, "raw_mem_addr"); 5395 llvm::Value *MemAddr = 5396 CGF.Builder.CreateBitCast(RawMemAddr, APTy, "mem_addr"); 5397 5398 // Update overflow_arg_area_ptr pointer 5399 llvm::Value *NewOverflowArgArea = 5400 CGF.Builder.CreateGEP(OverflowArgArea, PaddedSizeV, "overflow_arg_area"); 5401 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 5402 CGF.EmitBranch(ContBlock); 5403 5404 // Return the appropriate result. 5405 CGF.EmitBlock(ContBlock); 5406 llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(APTy, 2, "va_arg.addr"); 5407 ResAddr->addIncoming(RegAddr, InRegBlock); 5408 ResAddr->addIncoming(MemAddr, InMemBlock); 5409 5410 if (IsIndirect) 5411 return CGF.Builder.CreateLoad(ResAddr, "indirect_arg"); 5412 5413 return ResAddr; 5414 } 5415 5416 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const { 5417 if (RetTy->isVoidType()) 5418 return ABIArgInfo::getIgnore(); 5419 if (isVectorArgumentType(RetTy)) 5420 return ABIArgInfo::getDirect(); 5421 if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64) 5422 return ABIArgInfo::getIndirect(0); 5423 return (isPromotableIntegerType(RetTy) ? 5424 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 5425 } 5426 5427 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const { 5428 // Handle the generic C++ ABI. 5429 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 5430 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 5431 5432 // Integers and enums are extended to full register width. 5433 if (isPromotableIntegerType(Ty)) 5434 return ABIArgInfo::getExtend(); 5435 5436 // Handle vector types and vector-like structure types. Note that 5437 // as opposed to float-like structure types, we do not allow any 5438 // padding for vector-like structures, so verify the sizes match. 5439 uint64_t Size = getContext().getTypeSize(Ty); 5440 QualType SingleElementTy = GetSingleElementType(Ty); 5441 if (isVectorArgumentType(SingleElementTy) && 5442 getContext().getTypeSize(SingleElementTy) == Size) 5443 return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy)); 5444 5445 // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly. 5446 if (Size != 8 && Size != 16 && Size != 32 && Size != 64) 5447 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 5448 5449 // Handle small structures. 5450 if (const RecordType *RT = Ty->getAs<RecordType>()) { 5451 // Structures with flexible arrays have variable length, so really 5452 // fail the size test above. 5453 const RecordDecl *RD = RT->getDecl(); 5454 if (RD->hasFlexibleArrayMember()) 5455 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 5456 5457 // The structure is passed as an unextended integer, a float, or a double. 5458 llvm::Type *PassTy; 5459 if (isFPArgumentType(SingleElementTy)) { 5460 assert(Size == 32 || Size == 64); 5461 if (Size == 32) 5462 PassTy = llvm::Type::getFloatTy(getVMContext()); 5463 else 5464 PassTy = llvm::Type::getDoubleTy(getVMContext()); 5465 } else 5466 PassTy = llvm::IntegerType::get(getVMContext(), Size); 5467 return ABIArgInfo::getDirect(PassTy); 5468 } 5469 5470 // Non-structure compounds are passed indirectly. 5471 if (isCompoundType(Ty)) 5472 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 5473 5474 return ABIArgInfo::getDirect(nullptr); 5475 } 5476 5477 //===----------------------------------------------------------------------===// 5478 // MSP430 ABI Implementation 5479 //===----------------------------------------------------------------------===// 5480 5481 namespace { 5482 5483 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo { 5484 public: 5485 MSP430TargetCodeGenInfo(CodeGenTypes &CGT) 5486 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 5487 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5488 CodeGen::CodeGenModule &M) const override; 5489 }; 5490 5491 } 5492 5493 void MSP430TargetCodeGenInfo::SetTargetAttributes(const Decl *D, 5494 llvm::GlobalValue *GV, 5495 CodeGen::CodeGenModule &M) const { 5496 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 5497 if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) { 5498 // Handle 'interrupt' attribute: 5499 llvm::Function *F = cast<llvm::Function>(GV); 5500 5501 // Step 1: Set ISR calling convention. 5502 F->setCallingConv(llvm::CallingConv::MSP430_INTR); 5503 5504 // Step 2: Add attributes goodness. 5505 F->addFnAttr(llvm::Attribute::NoInline); 5506 5507 // Step 3: Emit ISR vector alias. 5508 unsigned Num = attr->getNumber() / 2; 5509 llvm::GlobalAlias::create(llvm::Function::ExternalLinkage, 5510 "__isr_" + Twine(Num), F); 5511 } 5512 } 5513 } 5514 5515 //===----------------------------------------------------------------------===// 5516 // MIPS ABI Implementation. This works for both little-endian and 5517 // big-endian variants. 5518 //===----------------------------------------------------------------------===// 5519 5520 namespace { 5521 class MipsABIInfo : public ABIInfo { 5522 bool IsO32; 5523 unsigned MinABIStackAlignInBytes, StackAlignInBytes; 5524 void CoerceToIntArgs(uint64_t TySize, 5525 SmallVectorImpl<llvm::Type *> &ArgList) const; 5526 llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const; 5527 llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const; 5528 llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const; 5529 public: 5530 MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) : 5531 ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8), 5532 StackAlignInBytes(IsO32 ? 8 : 16) {} 5533 5534 ABIArgInfo classifyReturnType(QualType RetTy) const; 5535 ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const; 5536 void computeInfo(CGFunctionInfo &FI) const override; 5537 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5538 CodeGenFunction &CGF) const override; 5539 }; 5540 5541 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo { 5542 unsigned SizeOfUnwindException; 5543 public: 5544 MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32) 5545 : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)), 5546 SizeOfUnwindException(IsO32 ? 24 : 32) {} 5547 5548 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 5549 return 29; 5550 } 5551 5552 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5553 CodeGen::CodeGenModule &CGM) const override { 5554 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); 5555 if (!FD) return; 5556 llvm::Function *Fn = cast<llvm::Function>(GV); 5557 if (FD->hasAttr<Mips16Attr>()) { 5558 Fn->addFnAttr("mips16"); 5559 } 5560 else if (FD->hasAttr<NoMips16Attr>()) { 5561 Fn->addFnAttr("nomips16"); 5562 } 5563 } 5564 5565 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5566 llvm::Value *Address) const override; 5567 5568 unsigned getSizeOfUnwindException() const override { 5569 return SizeOfUnwindException; 5570 } 5571 }; 5572 } 5573 5574 void MipsABIInfo::CoerceToIntArgs(uint64_t TySize, 5575 SmallVectorImpl<llvm::Type *> &ArgList) const { 5576 llvm::IntegerType *IntTy = 5577 llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8); 5578 5579 // Add (TySize / MinABIStackAlignInBytes) args of IntTy. 5580 for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N) 5581 ArgList.push_back(IntTy); 5582 5583 // If necessary, add one more integer type to ArgList. 5584 unsigned R = TySize % (MinABIStackAlignInBytes * 8); 5585 5586 if (R) 5587 ArgList.push_back(llvm::IntegerType::get(getVMContext(), R)); 5588 } 5589 5590 // In N32/64, an aligned double precision floating point field is passed in 5591 // a register. 5592 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const { 5593 SmallVector<llvm::Type*, 8> ArgList, IntArgList; 5594 5595 if (IsO32) { 5596 CoerceToIntArgs(TySize, ArgList); 5597 return llvm::StructType::get(getVMContext(), ArgList); 5598 } 5599 5600 if (Ty->isComplexType()) 5601 return CGT.ConvertType(Ty); 5602 5603 const RecordType *RT = Ty->getAs<RecordType>(); 5604 5605 // Unions/vectors are passed in integer registers. 5606 if (!RT || !RT->isStructureOrClassType()) { 5607 CoerceToIntArgs(TySize, ArgList); 5608 return llvm::StructType::get(getVMContext(), ArgList); 5609 } 5610 5611 const RecordDecl *RD = RT->getDecl(); 5612 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 5613 assert(!(TySize % 8) && "Size of structure must be multiple of 8."); 5614 5615 uint64_t LastOffset = 0; 5616 unsigned idx = 0; 5617 llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64); 5618 5619 // Iterate over fields in the struct/class and check if there are any aligned 5620 // double fields. 5621 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 5622 i != e; ++i, ++idx) { 5623 const QualType Ty = i->getType(); 5624 const BuiltinType *BT = Ty->getAs<BuiltinType>(); 5625 5626 if (!BT || BT->getKind() != BuiltinType::Double) 5627 continue; 5628 5629 uint64_t Offset = Layout.getFieldOffset(idx); 5630 if (Offset % 64) // Ignore doubles that are not aligned. 5631 continue; 5632 5633 // Add ((Offset - LastOffset) / 64) args of type i64. 5634 for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j) 5635 ArgList.push_back(I64); 5636 5637 // Add double type. 5638 ArgList.push_back(llvm::Type::getDoubleTy(getVMContext())); 5639 LastOffset = Offset + 64; 5640 } 5641 5642 CoerceToIntArgs(TySize - LastOffset, IntArgList); 5643 ArgList.append(IntArgList.begin(), IntArgList.end()); 5644 5645 return llvm::StructType::get(getVMContext(), ArgList); 5646 } 5647 5648 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset, 5649 uint64_t Offset) const { 5650 if (OrigOffset + MinABIStackAlignInBytes > Offset) 5651 return nullptr; 5652 5653 return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8); 5654 } 5655 5656 ABIArgInfo 5657 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const { 5658 Ty = useFirstFieldIfTransparentUnion(Ty); 5659 5660 uint64_t OrigOffset = Offset; 5661 uint64_t TySize = getContext().getTypeSize(Ty); 5662 uint64_t Align = getContext().getTypeAlign(Ty) / 8; 5663 5664 Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes), 5665 (uint64_t)StackAlignInBytes); 5666 unsigned CurrOffset = llvm::RoundUpToAlignment(Offset, Align); 5667 Offset = CurrOffset + llvm::RoundUpToAlignment(TySize, Align * 8) / 8; 5668 5669 if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) { 5670 // Ignore empty aggregates. 5671 if (TySize == 0) 5672 return ABIArgInfo::getIgnore(); 5673 5674 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 5675 Offset = OrigOffset + MinABIStackAlignInBytes; 5676 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 5677 } 5678 5679 // If we have reached here, aggregates are passed directly by coercing to 5680 // another structure type. Padding is inserted if the offset of the 5681 // aggregate is unaligned. 5682 ABIArgInfo ArgInfo = 5683 ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0, 5684 getPaddingType(OrigOffset, CurrOffset)); 5685 ArgInfo.setInReg(true); 5686 return ArgInfo; 5687 } 5688 5689 // Treat an enum type as its underlying type. 5690 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5691 Ty = EnumTy->getDecl()->getIntegerType(); 5692 5693 // All integral types are promoted to the GPR width. 5694 if (Ty->isIntegralOrEnumerationType()) 5695 return ABIArgInfo::getExtend(); 5696 5697 return ABIArgInfo::getDirect( 5698 nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset)); 5699 } 5700 5701 llvm::Type* 5702 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const { 5703 const RecordType *RT = RetTy->getAs<RecordType>(); 5704 SmallVector<llvm::Type*, 8> RTList; 5705 5706 if (RT && RT->isStructureOrClassType()) { 5707 const RecordDecl *RD = RT->getDecl(); 5708 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 5709 unsigned FieldCnt = Layout.getFieldCount(); 5710 5711 // N32/64 returns struct/classes in floating point registers if the 5712 // following conditions are met: 5713 // 1. The size of the struct/class is no larger than 128-bit. 5714 // 2. The struct/class has one or two fields all of which are floating 5715 // point types. 5716 // 3. The offset of the first field is zero (this follows what gcc does). 5717 // 5718 // Any other composite results are returned in integer registers. 5719 // 5720 if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) { 5721 RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end(); 5722 for (; b != e; ++b) { 5723 const BuiltinType *BT = b->getType()->getAs<BuiltinType>(); 5724 5725 if (!BT || !BT->isFloatingPoint()) 5726 break; 5727 5728 RTList.push_back(CGT.ConvertType(b->getType())); 5729 } 5730 5731 if (b == e) 5732 return llvm::StructType::get(getVMContext(), RTList, 5733 RD->hasAttr<PackedAttr>()); 5734 5735 RTList.clear(); 5736 } 5737 } 5738 5739 CoerceToIntArgs(Size, RTList); 5740 return llvm::StructType::get(getVMContext(), RTList); 5741 } 5742 5743 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const { 5744 uint64_t Size = getContext().getTypeSize(RetTy); 5745 5746 if (RetTy->isVoidType()) 5747 return ABIArgInfo::getIgnore(); 5748 5749 // O32 doesn't treat zero-sized structs differently from other structs. 5750 // However, N32/N64 ignores zero sized return values. 5751 if (!IsO32 && Size == 0) 5752 return ABIArgInfo::getIgnore(); 5753 5754 if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) { 5755 if (Size <= 128) { 5756 if (RetTy->isAnyComplexType()) 5757 return ABIArgInfo::getDirect(); 5758 5759 // O32 returns integer vectors in registers and N32/N64 returns all small 5760 // aggregates in registers. 5761 if (!IsO32 || 5762 (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) { 5763 ABIArgInfo ArgInfo = 5764 ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size)); 5765 ArgInfo.setInReg(true); 5766 return ArgInfo; 5767 } 5768 } 5769 5770 return ABIArgInfo::getIndirect(0); 5771 } 5772 5773 // Treat an enum type as its underlying type. 5774 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5775 RetTy = EnumTy->getDecl()->getIntegerType(); 5776 5777 return (RetTy->isPromotableIntegerType() ? 5778 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 5779 } 5780 5781 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const { 5782 ABIArgInfo &RetInfo = FI.getReturnInfo(); 5783 if (!getCXXABI().classifyReturnType(FI)) 5784 RetInfo = classifyReturnType(FI.getReturnType()); 5785 5786 // Check if a pointer to an aggregate is passed as a hidden argument. 5787 uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0; 5788 5789 for (auto &I : FI.arguments()) 5790 I.info = classifyArgumentType(I.type, Offset); 5791 } 5792 5793 llvm::Value* MipsABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5794 CodeGenFunction &CGF) const { 5795 llvm::Type *BP = CGF.Int8PtrTy; 5796 llvm::Type *BPP = CGF.Int8PtrPtrTy; 5797 5798 // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64. 5799 // Pointers are also promoted in the same way but this only matters for N32. 5800 unsigned SlotSizeInBits = IsO32 ? 32 : 64; 5801 unsigned PtrWidth = getTarget().getPointerWidth(0); 5802 if ((Ty->isIntegerType() && 5803 CGF.getContext().getIntWidth(Ty) < SlotSizeInBits) || 5804 (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) { 5805 Ty = CGF.getContext().getIntTypeForBitwidth(SlotSizeInBits, 5806 Ty->isSignedIntegerType()); 5807 } 5808 5809 CGBuilderTy &Builder = CGF.Builder; 5810 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); 5811 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 5812 int64_t TypeAlign = 5813 std::min(getContext().getTypeAlign(Ty) / 8, StackAlignInBytes); 5814 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 5815 llvm::Value *AddrTyped; 5816 llvm::IntegerType *IntTy = (PtrWidth == 32) ? CGF.Int32Ty : CGF.Int64Ty; 5817 5818 if (TypeAlign > MinABIStackAlignInBytes) { 5819 llvm::Value *AddrAsInt = CGF.Builder.CreatePtrToInt(Addr, IntTy); 5820 llvm::Value *Inc = llvm::ConstantInt::get(IntTy, TypeAlign - 1); 5821 llvm::Value *Mask = llvm::ConstantInt::get(IntTy, -TypeAlign); 5822 llvm::Value *Add = CGF.Builder.CreateAdd(AddrAsInt, Inc); 5823 llvm::Value *And = CGF.Builder.CreateAnd(Add, Mask); 5824 AddrTyped = CGF.Builder.CreateIntToPtr(And, PTy); 5825 } 5826 else 5827 AddrTyped = Builder.CreateBitCast(Addr, PTy); 5828 5829 llvm::Value *AlignedAddr = Builder.CreateBitCast(AddrTyped, BP); 5830 TypeAlign = std::max((unsigned)TypeAlign, MinABIStackAlignInBytes); 5831 unsigned ArgSizeInBits = CGF.getContext().getTypeSize(Ty); 5832 uint64_t Offset = llvm::RoundUpToAlignment(ArgSizeInBits / 8, TypeAlign); 5833 llvm::Value *NextAddr = 5834 Builder.CreateGEP(AlignedAddr, llvm::ConstantInt::get(IntTy, Offset), 5835 "ap.next"); 5836 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 5837 5838 return AddrTyped; 5839 } 5840 5841 bool 5842 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5843 llvm::Value *Address) const { 5844 // This information comes from gcc's implementation, which seems to 5845 // as canonical as it gets. 5846 5847 // Everything on MIPS is 4 bytes. Double-precision FP registers 5848 // are aliased to pairs of single-precision FP registers. 5849 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 5850 5851 // 0-31 are the general purpose registers, $0 - $31. 5852 // 32-63 are the floating-point registers, $f0 - $f31. 5853 // 64 and 65 are the multiply/divide registers, $hi and $lo. 5854 // 66 is the (notional, I think) register for signal-handler return. 5855 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65); 5856 5857 // 67-74 are the floating-point status registers, $fcc0 - $fcc7. 5858 // They are one bit wide and ignored here. 5859 5860 // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31. 5861 // (coprocessor 1 is the FP unit) 5862 // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31. 5863 // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31. 5864 // 176-181 are the DSP accumulator registers. 5865 AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181); 5866 return false; 5867 } 5868 5869 //===----------------------------------------------------------------------===// 5870 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults. 5871 // Currently subclassed only to implement custom OpenCL C function attribute 5872 // handling. 5873 //===----------------------------------------------------------------------===// 5874 5875 namespace { 5876 5877 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo { 5878 public: 5879 TCETargetCodeGenInfo(CodeGenTypes &CGT) 5880 : DefaultTargetCodeGenInfo(CGT) {} 5881 5882 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5883 CodeGen::CodeGenModule &M) const override; 5884 }; 5885 5886 void TCETargetCodeGenInfo::SetTargetAttributes(const Decl *D, 5887 llvm::GlobalValue *GV, 5888 CodeGen::CodeGenModule &M) const { 5889 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); 5890 if (!FD) return; 5891 5892 llvm::Function *F = cast<llvm::Function>(GV); 5893 5894 if (M.getLangOpts().OpenCL) { 5895 if (FD->hasAttr<OpenCLKernelAttr>()) { 5896 // OpenCL C Kernel functions are not subject to inlining 5897 F->addFnAttr(llvm::Attribute::NoInline); 5898 const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>(); 5899 if (Attr) { 5900 // Convert the reqd_work_group_size() attributes to metadata. 5901 llvm::LLVMContext &Context = F->getContext(); 5902 llvm::NamedMDNode *OpenCLMetadata = 5903 M.getModule().getOrInsertNamedMetadata("opencl.kernel_wg_size_info"); 5904 5905 SmallVector<llvm::Metadata *, 5> Operands; 5906 Operands.push_back(llvm::ConstantAsMetadata::get(F)); 5907 5908 Operands.push_back( 5909 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 5910 M.Int32Ty, llvm::APInt(32, Attr->getXDim())))); 5911 Operands.push_back( 5912 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 5913 M.Int32Ty, llvm::APInt(32, Attr->getYDim())))); 5914 Operands.push_back( 5915 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 5916 M.Int32Ty, llvm::APInt(32, Attr->getZDim())))); 5917 5918 // Add a boolean constant operand for "required" (true) or "hint" (false) 5919 // for implementing the work_group_size_hint attr later. Currently 5920 // always true as the hint is not yet implemented. 5921 Operands.push_back( 5922 llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context))); 5923 OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands)); 5924 } 5925 } 5926 } 5927 } 5928 5929 } 5930 5931 //===----------------------------------------------------------------------===// 5932 // Hexagon ABI Implementation 5933 //===----------------------------------------------------------------------===// 5934 5935 namespace { 5936 5937 class HexagonABIInfo : public ABIInfo { 5938 5939 5940 public: 5941 HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 5942 5943 private: 5944 5945 ABIArgInfo classifyReturnType(QualType RetTy) const; 5946 ABIArgInfo classifyArgumentType(QualType RetTy) const; 5947 5948 void computeInfo(CGFunctionInfo &FI) const override; 5949 5950 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5951 CodeGenFunction &CGF) const override; 5952 }; 5953 5954 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo { 5955 public: 5956 HexagonTargetCodeGenInfo(CodeGenTypes &CGT) 5957 :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {} 5958 5959 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 5960 return 29; 5961 } 5962 }; 5963 5964 } 5965 5966 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const { 5967 if (!getCXXABI().classifyReturnType(FI)) 5968 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 5969 for (auto &I : FI.arguments()) 5970 I.info = classifyArgumentType(I.type); 5971 } 5972 5973 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const { 5974 if (!isAggregateTypeForABI(Ty)) { 5975 // Treat an enum type as its underlying type. 5976 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5977 Ty = EnumTy->getDecl()->getIntegerType(); 5978 5979 return (Ty->isPromotableIntegerType() ? 5980 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 5981 } 5982 5983 // Ignore empty records. 5984 if (isEmptyRecord(getContext(), Ty, true)) 5985 return ABIArgInfo::getIgnore(); 5986 5987 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 5988 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 5989 5990 uint64_t Size = getContext().getTypeSize(Ty); 5991 if (Size > 64) 5992 return ABIArgInfo::getIndirect(0, /*ByVal=*/true); 5993 // Pass in the smallest viable integer type. 5994 else if (Size > 32) 5995 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); 5996 else if (Size > 16) 5997 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 5998 else if (Size > 8) 5999 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6000 else 6001 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6002 } 6003 6004 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const { 6005 if (RetTy->isVoidType()) 6006 return ABIArgInfo::getIgnore(); 6007 6008 // Large vector types should be returned via memory. 6009 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64) 6010 return ABIArgInfo::getIndirect(0); 6011 6012 if (!isAggregateTypeForABI(RetTy)) { 6013 // Treat an enum type as its underlying type. 6014 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 6015 RetTy = EnumTy->getDecl()->getIntegerType(); 6016 6017 return (RetTy->isPromotableIntegerType() ? 6018 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 6019 } 6020 6021 if (isEmptyRecord(getContext(), RetTy, true)) 6022 return ABIArgInfo::getIgnore(); 6023 6024 // Aggregates <= 8 bytes are returned in r0; other aggregates 6025 // are returned indirectly. 6026 uint64_t Size = getContext().getTypeSize(RetTy); 6027 if (Size <= 64) { 6028 // Return in the smallest viable integer type. 6029 if (Size <= 8) 6030 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6031 if (Size <= 16) 6032 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6033 if (Size <= 32) 6034 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6035 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); 6036 } 6037 6038 return ABIArgInfo::getIndirect(0, /*ByVal=*/true); 6039 } 6040 6041 llvm::Value *HexagonABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 6042 CodeGenFunction &CGF) const { 6043 // FIXME: Need to handle alignment 6044 llvm::Type *BPP = CGF.Int8PtrPtrTy; 6045 6046 CGBuilderTy &Builder = CGF.Builder; 6047 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, 6048 "ap"); 6049 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 6050 llvm::Type *PTy = 6051 llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 6052 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); 6053 6054 uint64_t Offset = 6055 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4); 6056 llvm::Value *NextAddr = 6057 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), 6058 "ap.next"); 6059 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 6060 6061 return AddrTyped; 6062 } 6063 6064 //===----------------------------------------------------------------------===// 6065 // AMDGPU ABI Implementation 6066 //===----------------------------------------------------------------------===// 6067 6068 namespace { 6069 6070 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo { 6071 public: 6072 AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT) 6073 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 6074 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6075 CodeGen::CodeGenModule &M) const override; 6076 }; 6077 6078 } 6079 6080 void AMDGPUTargetCodeGenInfo::SetTargetAttributes( 6081 const Decl *D, 6082 llvm::GlobalValue *GV, 6083 CodeGen::CodeGenModule &M) const { 6084 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); 6085 if (!FD) 6086 return; 6087 6088 if (const auto Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) { 6089 llvm::Function *F = cast<llvm::Function>(GV); 6090 uint32_t NumVGPR = Attr->getNumVGPR(); 6091 if (NumVGPR != 0) 6092 F->addFnAttr("amdgpu_num_vgpr", llvm::utostr(NumVGPR)); 6093 } 6094 6095 if (const auto Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) { 6096 llvm::Function *F = cast<llvm::Function>(GV); 6097 unsigned NumSGPR = Attr->getNumSGPR(); 6098 if (NumSGPR != 0) 6099 F->addFnAttr("amdgpu_num_sgpr", llvm::utostr(NumSGPR)); 6100 } 6101 } 6102 6103 6104 //===----------------------------------------------------------------------===// 6105 // SPARC v9 ABI Implementation. 6106 // Based on the SPARC Compliance Definition version 2.4.1. 6107 // 6108 // Function arguments a mapped to a nominal "parameter array" and promoted to 6109 // registers depending on their type. Each argument occupies 8 or 16 bytes in 6110 // the array, structs larger than 16 bytes are passed indirectly. 6111 // 6112 // One case requires special care: 6113 // 6114 // struct mixed { 6115 // int i; 6116 // float f; 6117 // }; 6118 // 6119 // When a struct mixed is passed by value, it only occupies 8 bytes in the 6120 // parameter array, but the int is passed in an integer register, and the float 6121 // is passed in a floating point register. This is represented as two arguments 6122 // with the LLVM IR inreg attribute: 6123 // 6124 // declare void f(i32 inreg %i, float inreg %f) 6125 // 6126 // The code generator will only allocate 4 bytes from the parameter array for 6127 // the inreg arguments. All other arguments are allocated a multiple of 8 6128 // bytes. 6129 // 6130 namespace { 6131 class SparcV9ABIInfo : public ABIInfo { 6132 public: 6133 SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 6134 6135 private: 6136 ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const; 6137 void computeInfo(CGFunctionInfo &FI) const override; 6138 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 6139 CodeGenFunction &CGF) const override; 6140 6141 // Coercion type builder for structs passed in registers. The coercion type 6142 // serves two purposes: 6143 // 6144 // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned' 6145 // in registers. 6146 // 2. Expose aligned floating point elements as first-level elements, so the 6147 // code generator knows to pass them in floating point registers. 6148 // 6149 // We also compute the InReg flag which indicates that the struct contains 6150 // aligned 32-bit floats. 6151 // 6152 struct CoerceBuilder { 6153 llvm::LLVMContext &Context; 6154 const llvm::DataLayout &DL; 6155 SmallVector<llvm::Type*, 8> Elems; 6156 uint64_t Size; 6157 bool InReg; 6158 6159 CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl) 6160 : Context(c), DL(dl), Size(0), InReg(false) {} 6161 6162 // Pad Elems with integers until Size is ToSize. 6163 void pad(uint64_t ToSize) { 6164 assert(ToSize >= Size && "Cannot remove elements"); 6165 if (ToSize == Size) 6166 return; 6167 6168 // Finish the current 64-bit word. 6169 uint64_t Aligned = llvm::RoundUpToAlignment(Size, 64); 6170 if (Aligned > Size && Aligned <= ToSize) { 6171 Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size)); 6172 Size = Aligned; 6173 } 6174 6175 // Add whole 64-bit words. 6176 while (Size + 64 <= ToSize) { 6177 Elems.push_back(llvm::Type::getInt64Ty(Context)); 6178 Size += 64; 6179 } 6180 6181 // Final in-word padding. 6182 if (Size < ToSize) { 6183 Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size)); 6184 Size = ToSize; 6185 } 6186 } 6187 6188 // Add a floating point element at Offset. 6189 void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) { 6190 // Unaligned floats are treated as integers. 6191 if (Offset % Bits) 6192 return; 6193 // The InReg flag is only required if there are any floats < 64 bits. 6194 if (Bits < 64) 6195 InReg = true; 6196 pad(Offset); 6197 Elems.push_back(Ty); 6198 Size = Offset + Bits; 6199 } 6200 6201 // Add a struct type to the coercion type, starting at Offset (in bits). 6202 void addStruct(uint64_t Offset, llvm::StructType *StrTy) { 6203 const llvm::StructLayout *Layout = DL.getStructLayout(StrTy); 6204 for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) { 6205 llvm::Type *ElemTy = StrTy->getElementType(i); 6206 uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i); 6207 switch (ElemTy->getTypeID()) { 6208 case llvm::Type::StructTyID: 6209 addStruct(ElemOffset, cast<llvm::StructType>(ElemTy)); 6210 break; 6211 case llvm::Type::FloatTyID: 6212 addFloat(ElemOffset, ElemTy, 32); 6213 break; 6214 case llvm::Type::DoubleTyID: 6215 addFloat(ElemOffset, ElemTy, 64); 6216 break; 6217 case llvm::Type::FP128TyID: 6218 addFloat(ElemOffset, ElemTy, 128); 6219 break; 6220 case llvm::Type::PointerTyID: 6221 if (ElemOffset % 64 == 0) { 6222 pad(ElemOffset); 6223 Elems.push_back(ElemTy); 6224 Size += 64; 6225 } 6226 break; 6227 default: 6228 break; 6229 } 6230 } 6231 } 6232 6233 // Check if Ty is a usable substitute for the coercion type. 6234 bool isUsableType(llvm::StructType *Ty) const { 6235 return llvm::makeArrayRef(Elems) == Ty->elements(); 6236 } 6237 6238 // Get the coercion type as a literal struct type. 6239 llvm::Type *getType() const { 6240 if (Elems.size() == 1) 6241 return Elems.front(); 6242 else 6243 return llvm::StructType::get(Context, Elems); 6244 } 6245 }; 6246 }; 6247 } // end anonymous namespace 6248 6249 ABIArgInfo 6250 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const { 6251 if (Ty->isVoidType()) 6252 return ABIArgInfo::getIgnore(); 6253 6254 uint64_t Size = getContext().getTypeSize(Ty); 6255 6256 // Anything too big to fit in registers is passed with an explicit indirect 6257 // pointer / sret pointer. 6258 if (Size > SizeLimit) 6259 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 6260 6261 // Treat an enum type as its underlying type. 6262 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 6263 Ty = EnumTy->getDecl()->getIntegerType(); 6264 6265 // Integer types smaller than a register are extended. 6266 if (Size < 64 && Ty->isIntegerType()) 6267 return ABIArgInfo::getExtend(); 6268 6269 // Other non-aggregates go in registers. 6270 if (!isAggregateTypeForABI(Ty)) 6271 return ABIArgInfo::getDirect(); 6272 6273 // If a C++ object has either a non-trivial copy constructor or a non-trivial 6274 // destructor, it is passed with an explicit indirect pointer / sret pointer. 6275 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 6276 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 6277 6278 // This is a small aggregate type that should be passed in registers. 6279 // Build a coercion type from the LLVM struct type. 6280 llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty)); 6281 if (!StrTy) 6282 return ABIArgInfo::getDirect(); 6283 6284 CoerceBuilder CB(getVMContext(), getDataLayout()); 6285 CB.addStruct(0, StrTy); 6286 CB.pad(llvm::RoundUpToAlignment(CB.DL.getTypeSizeInBits(StrTy), 64)); 6287 6288 // Try to use the original type for coercion. 6289 llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType(); 6290 6291 if (CB.InReg) 6292 return ABIArgInfo::getDirectInReg(CoerceTy); 6293 else 6294 return ABIArgInfo::getDirect(CoerceTy); 6295 } 6296 6297 llvm::Value *SparcV9ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 6298 CodeGenFunction &CGF) const { 6299 ABIArgInfo AI = classifyType(Ty, 16 * 8); 6300 llvm::Type *ArgTy = CGT.ConvertType(Ty); 6301 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 6302 AI.setCoerceToType(ArgTy); 6303 6304 llvm::Type *BPP = CGF.Int8PtrPtrTy; 6305 CGBuilderTy &Builder = CGF.Builder; 6306 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); 6307 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 6308 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 6309 llvm::Value *ArgAddr; 6310 unsigned Stride; 6311 6312 switch (AI.getKind()) { 6313 case ABIArgInfo::Expand: 6314 case ABIArgInfo::InAlloca: 6315 llvm_unreachable("Unsupported ABI kind for va_arg"); 6316 6317 case ABIArgInfo::Extend: 6318 Stride = 8; 6319 ArgAddr = Builder 6320 .CreateConstGEP1_32(Addr, 8 - getDataLayout().getTypeAllocSize(ArgTy), 6321 "extend"); 6322 break; 6323 6324 case ABIArgInfo::Direct: 6325 Stride = getDataLayout().getTypeAllocSize(AI.getCoerceToType()); 6326 ArgAddr = Addr; 6327 break; 6328 6329 case ABIArgInfo::Indirect: 6330 Stride = 8; 6331 ArgAddr = Builder.CreateBitCast(Addr, 6332 llvm::PointerType::getUnqual(ArgPtrTy), 6333 "indirect"); 6334 ArgAddr = Builder.CreateLoad(ArgAddr, "indirect.arg"); 6335 break; 6336 6337 case ABIArgInfo::Ignore: 6338 return llvm::UndefValue::get(ArgPtrTy); 6339 } 6340 6341 // Update VAList. 6342 Addr = Builder.CreateConstGEP1_32(Addr, Stride, "ap.next"); 6343 Builder.CreateStore(Addr, VAListAddrAsBPP); 6344 6345 return Builder.CreatePointerCast(ArgAddr, ArgPtrTy, "arg.addr"); 6346 } 6347 6348 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const { 6349 FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8); 6350 for (auto &I : FI.arguments()) 6351 I.info = classifyType(I.type, 16 * 8); 6352 } 6353 6354 namespace { 6355 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo { 6356 public: 6357 SparcV9TargetCodeGenInfo(CodeGenTypes &CGT) 6358 : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {} 6359 6360 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 6361 return 14; 6362 } 6363 6364 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 6365 llvm::Value *Address) const override; 6366 }; 6367 } // end anonymous namespace 6368 6369 bool 6370 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 6371 llvm::Value *Address) const { 6372 // This is calculated from the LLVM and GCC tables and verified 6373 // against gcc output. AFAIK all ABIs use the same encoding. 6374 6375 CodeGen::CGBuilderTy &Builder = CGF.Builder; 6376 6377 llvm::IntegerType *i8 = CGF.Int8Ty; 6378 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 6379 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 6380 6381 // 0-31: the 8-byte general-purpose registers 6382 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 6383 6384 // 32-63: f0-31, the 4-byte floating-point registers 6385 AssignToArrayRange(Builder, Address, Four8, 32, 63); 6386 6387 // Y = 64 6388 // PSR = 65 6389 // WIM = 66 6390 // TBR = 67 6391 // PC = 68 6392 // NPC = 69 6393 // FSR = 70 6394 // CSR = 71 6395 AssignToArrayRange(Builder, Address, Eight8, 64, 71); 6396 6397 // 72-87: d0-15, the 8-byte floating-point registers 6398 AssignToArrayRange(Builder, Address, Eight8, 72, 87); 6399 6400 return false; 6401 } 6402 6403 6404 //===----------------------------------------------------------------------===// 6405 // XCore ABI Implementation 6406 //===----------------------------------------------------------------------===// 6407 6408 namespace { 6409 6410 /// A SmallStringEnc instance is used to build up the TypeString by passing 6411 /// it by reference between functions that append to it. 6412 typedef llvm::SmallString<128> SmallStringEnc; 6413 6414 /// TypeStringCache caches the meta encodings of Types. 6415 /// 6416 /// The reason for caching TypeStrings is two fold: 6417 /// 1. To cache a type's encoding for later uses; 6418 /// 2. As a means to break recursive member type inclusion. 6419 /// 6420 /// A cache Entry can have a Status of: 6421 /// NonRecursive: The type encoding is not recursive; 6422 /// Recursive: The type encoding is recursive; 6423 /// Incomplete: An incomplete TypeString; 6424 /// IncompleteUsed: An incomplete TypeString that has been used in a 6425 /// Recursive type encoding. 6426 /// 6427 /// A NonRecursive entry will have all of its sub-members expanded as fully 6428 /// as possible. Whilst it may contain types which are recursive, the type 6429 /// itself is not recursive and thus its encoding may be safely used whenever 6430 /// the type is encountered. 6431 /// 6432 /// A Recursive entry will have all of its sub-members expanded as fully as 6433 /// possible. The type itself is recursive and it may contain other types which 6434 /// are recursive. The Recursive encoding must not be used during the expansion 6435 /// of a recursive type's recursive branch. For simplicity the code uses 6436 /// IncompleteCount to reject all usage of Recursive encodings for member types. 6437 /// 6438 /// An Incomplete entry is always a RecordType and only encodes its 6439 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and 6440 /// are placed into the cache during type expansion as a means to identify and 6441 /// handle recursive inclusion of types as sub-members. If there is recursion 6442 /// the entry becomes IncompleteUsed. 6443 /// 6444 /// During the expansion of a RecordType's members: 6445 /// 6446 /// If the cache contains a NonRecursive encoding for the member type, the 6447 /// cached encoding is used; 6448 /// 6449 /// If the cache contains a Recursive encoding for the member type, the 6450 /// cached encoding is 'Swapped' out, as it may be incorrect, and... 6451 /// 6452 /// If the member is a RecordType, an Incomplete encoding is placed into the 6453 /// cache to break potential recursive inclusion of itself as a sub-member; 6454 /// 6455 /// Once a member RecordType has been expanded, its temporary incomplete 6456 /// entry is removed from the cache. If a Recursive encoding was swapped out 6457 /// it is swapped back in; 6458 /// 6459 /// If an incomplete entry is used to expand a sub-member, the incomplete 6460 /// entry is marked as IncompleteUsed. The cache keeps count of how many 6461 /// IncompleteUsed entries it currently contains in IncompleteUsedCount; 6462 /// 6463 /// If a member's encoding is found to be a NonRecursive or Recursive viz: 6464 /// IncompleteUsedCount==0, the member's encoding is added to the cache. 6465 /// Else the member is part of a recursive type and thus the recursion has 6466 /// been exited too soon for the encoding to be correct for the member. 6467 /// 6468 class TypeStringCache { 6469 enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed}; 6470 struct Entry { 6471 std::string Str; // The encoded TypeString for the type. 6472 enum Status State; // Information about the encoding in 'Str'. 6473 std::string Swapped; // A temporary place holder for a Recursive encoding 6474 // during the expansion of RecordType's members. 6475 }; 6476 std::map<const IdentifierInfo *, struct Entry> Map; 6477 unsigned IncompleteCount; // Number of Incomplete entries in the Map. 6478 unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map. 6479 public: 6480 TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {}; 6481 void addIncomplete(const IdentifierInfo *ID, std::string StubEnc); 6482 bool removeIncomplete(const IdentifierInfo *ID); 6483 void addIfComplete(const IdentifierInfo *ID, StringRef Str, 6484 bool IsRecursive); 6485 StringRef lookupStr(const IdentifierInfo *ID); 6486 }; 6487 6488 /// TypeString encodings for enum & union fields must be order. 6489 /// FieldEncoding is a helper for this ordering process. 6490 class FieldEncoding { 6491 bool HasName; 6492 std::string Enc; 6493 public: 6494 FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {}; 6495 StringRef str() {return Enc.c_str();}; 6496 bool operator<(const FieldEncoding &rhs) const { 6497 if (HasName != rhs.HasName) return HasName; 6498 return Enc < rhs.Enc; 6499 } 6500 }; 6501 6502 class XCoreABIInfo : public DefaultABIInfo { 6503 public: 6504 XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 6505 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 6506 CodeGenFunction &CGF) const override; 6507 }; 6508 6509 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo { 6510 mutable TypeStringCache TSC; 6511 public: 6512 XCoreTargetCodeGenInfo(CodeGenTypes &CGT) 6513 :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {} 6514 void emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 6515 CodeGen::CodeGenModule &M) const override; 6516 }; 6517 6518 } // End anonymous namespace. 6519 6520 llvm::Value *XCoreABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 6521 CodeGenFunction &CGF) const { 6522 CGBuilderTy &Builder = CGF.Builder; 6523 6524 // Get the VAList. 6525 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, 6526 CGF.Int8PtrPtrTy); 6527 llvm::Value *AP = Builder.CreateLoad(VAListAddrAsBPP); 6528 6529 // Handle the argument. 6530 ABIArgInfo AI = classifyArgumentType(Ty); 6531 llvm::Type *ArgTy = CGT.ConvertType(Ty); 6532 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 6533 AI.setCoerceToType(ArgTy); 6534 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 6535 llvm::Value *Val; 6536 uint64_t ArgSize = 0; 6537 switch (AI.getKind()) { 6538 case ABIArgInfo::Expand: 6539 case ABIArgInfo::InAlloca: 6540 llvm_unreachable("Unsupported ABI kind for va_arg"); 6541 case ABIArgInfo::Ignore: 6542 Val = llvm::UndefValue::get(ArgPtrTy); 6543 ArgSize = 0; 6544 break; 6545 case ABIArgInfo::Extend: 6546 case ABIArgInfo::Direct: 6547 Val = Builder.CreatePointerCast(AP, ArgPtrTy); 6548 ArgSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType()); 6549 if (ArgSize < 4) 6550 ArgSize = 4; 6551 break; 6552 case ABIArgInfo::Indirect: 6553 llvm::Value *ArgAddr; 6554 ArgAddr = Builder.CreateBitCast(AP, llvm::PointerType::getUnqual(ArgPtrTy)); 6555 ArgAddr = Builder.CreateLoad(ArgAddr); 6556 Val = Builder.CreatePointerCast(ArgAddr, ArgPtrTy); 6557 ArgSize = 4; 6558 break; 6559 } 6560 6561 // Increment the VAList. 6562 if (ArgSize) { 6563 llvm::Value *APN = Builder.CreateConstGEP1_32(AP, ArgSize); 6564 Builder.CreateStore(APN, VAListAddrAsBPP); 6565 } 6566 return Val; 6567 } 6568 6569 /// During the expansion of a RecordType, an incomplete TypeString is placed 6570 /// into the cache as a means to identify and break recursion. 6571 /// If there is a Recursive encoding in the cache, it is swapped out and will 6572 /// be reinserted by removeIncomplete(). 6573 /// All other types of encoding should have been used rather than arriving here. 6574 void TypeStringCache::addIncomplete(const IdentifierInfo *ID, 6575 std::string StubEnc) { 6576 if (!ID) 6577 return; 6578 Entry &E = Map[ID]; 6579 assert( (E.Str.empty() || E.State == Recursive) && 6580 "Incorrectly use of addIncomplete"); 6581 assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()"); 6582 E.Swapped.swap(E.Str); // swap out the Recursive 6583 E.Str.swap(StubEnc); 6584 E.State = Incomplete; 6585 ++IncompleteCount; 6586 } 6587 6588 /// Once the RecordType has been expanded, the temporary incomplete TypeString 6589 /// must be removed from the cache. 6590 /// If a Recursive was swapped out by addIncomplete(), it will be replaced. 6591 /// Returns true if the RecordType was defined recursively. 6592 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) { 6593 if (!ID) 6594 return false; 6595 auto I = Map.find(ID); 6596 assert(I != Map.end() && "Entry not present"); 6597 Entry &E = I->second; 6598 assert( (E.State == Incomplete || 6599 E.State == IncompleteUsed) && 6600 "Entry must be an incomplete type"); 6601 bool IsRecursive = false; 6602 if (E.State == IncompleteUsed) { 6603 // We made use of our Incomplete encoding, thus we are recursive. 6604 IsRecursive = true; 6605 --IncompleteUsedCount; 6606 } 6607 if (E.Swapped.empty()) 6608 Map.erase(I); 6609 else { 6610 // Swap the Recursive back. 6611 E.Swapped.swap(E.Str); 6612 E.Swapped.clear(); 6613 E.State = Recursive; 6614 } 6615 --IncompleteCount; 6616 return IsRecursive; 6617 } 6618 6619 /// Add the encoded TypeString to the cache only if it is NonRecursive or 6620 /// Recursive (viz: all sub-members were expanded as fully as possible). 6621 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str, 6622 bool IsRecursive) { 6623 if (!ID || IncompleteUsedCount) 6624 return; // No key or it is is an incomplete sub-type so don't add. 6625 Entry &E = Map[ID]; 6626 if (IsRecursive && !E.Str.empty()) { 6627 assert(E.State==Recursive && E.Str.size() == Str.size() && 6628 "This is not the same Recursive entry"); 6629 // The parent container was not recursive after all, so we could have used 6630 // this Recursive sub-member entry after all, but we assumed the worse when 6631 // we started viz: IncompleteCount!=0. 6632 return; 6633 } 6634 assert(E.Str.empty() && "Entry already present"); 6635 E.Str = Str.str(); 6636 E.State = IsRecursive? Recursive : NonRecursive; 6637 } 6638 6639 /// Return a cached TypeString encoding for the ID. If there isn't one, or we 6640 /// are recursively expanding a type (IncompleteCount != 0) and the cached 6641 /// encoding is Recursive, return an empty StringRef. 6642 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) { 6643 if (!ID) 6644 return StringRef(); // We have no key. 6645 auto I = Map.find(ID); 6646 if (I == Map.end()) 6647 return StringRef(); // We have no encoding. 6648 Entry &E = I->second; 6649 if (E.State == Recursive && IncompleteCount) 6650 return StringRef(); // We don't use Recursive encodings for member types. 6651 6652 if (E.State == Incomplete) { 6653 // The incomplete type is being used to break out of recursion. 6654 E.State = IncompleteUsed; 6655 ++IncompleteUsedCount; 6656 } 6657 return E.Str.c_str(); 6658 } 6659 6660 /// The XCore ABI includes a type information section that communicates symbol 6661 /// type information to the linker. The linker uses this information to verify 6662 /// safety/correctness of things such as array bound and pointers et al. 6663 /// The ABI only requires C (and XC) language modules to emit TypeStrings. 6664 /// This type information (TypeString) is emitted into meta data for all global 6665 /// symbols: definitions, declarations, functions & variables. 6666 /// 6667 /// The TypeString carries type, qualifier, name, size & value details. 6668 /// Please see 'Tools Development Guide' section 2.16.2 for format details: 6669 /// <https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf> 6670 /// The output is tested by test/CodeGen/xcore-stringtype.c. 6671 /// 6672 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 6673 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC); 6674 6675 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols. 6676 void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 6677 CodeGen::CodeGenModule &CGM) const { 6678 SmallStringEnc Enc; 6679 if (getTypeString(Enc, D, CGM, TSC)) { 6680 llvm::LLVMContext &Ctx = CGM.getModule().getContext(); 6681 llvm::SmallVector<llvm::Metadata *, 2> MDVals; 6682 MDVals.push_back(llvm::ConstantAsMetadata::get(GV)); 6683 MDVals.push_back(llvm::MDString::get(Ctx, Enc.str())); 6684 llvm::NamedMDNode *MD = 6685 CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings"); 6686 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 6687 } 6688 } 6689 6690 static bool appendType(SmallStringEnc &Enc, QualType QType, 6691 const CodeGen::CodeGenModule &CGM, 6692 TypeStringCache &TSC); 6693 6694 /// Helper function for appendRecordType(). 6695 /// Builds a SmallVector containing the encoded field types in declaration order. 6696 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE, 6697 const RecordDecl *RD, 6698 const CodeGen::CodeGenModule &CGM, 6699 TypeStringCache &TSC) { 6700 for (const auto *Field : RD->fields()) { 6701 SmallStringEnc Enc; 6702 Enc += "m("; 6703 Enc += Field->getName(); 6704 Enc += "){"; 6705 if (Field->isBitField()) { 6706 Enc += "b("; 6707 llvm::raw_svector_ostream OS(Enc); 6708 OS.resync(); 6709 OS << Field->getBitWidthValue(CGM.getContext()); 6710 OS.flush(); 6711 Enc += ':'; 6712 } 6713 if (!appendType(Enc, Field->getType(), CGM, TSC)) 6714 return false; 6715 if (Field->isBitField()) 6716 Enc += ')'; 6717 Enc += '}'; 6718 FE.push_back(FieldEncoding(!Field->getName().empty(), Enc)); 6719 } 6720 return true; 6721 } 6722 6723 /// Appends structure and union types to Enc and adds encoding to cache. 6724 /// Recursively calls appendType (via extractFieldType) for each field. 6725 /// Union types have their fields ordered according to the ABI. 6726 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT, 6727 const CodeGen::CodeGenModule &CGM, 6728 TypeStringCache &TSC, const IdentifierInfo *ID) { 6729 // Append the cached TypeString if we have one. 6730 StringRef TypeString = TSC.lookupStr(ID); 6731 if (!TypeString.empty()) { 6732 Enc += TypeString; 6733 return true; 6734 } 6735 6736 // Start to emit an incomplete TypeString. 6737 size_t Start = Enc.size(); 6738 Enc += (RT->isUnionType()? 'u' : 's'); 6739 Enc += '('; 6740 if (ID) 6741 Enc += ID->getName(); 6742 Enc += "){"; 6743 6744 // We collect all encoded fields and order as necessary. 6745 bool IsRecursive = false; 6746 const RecordDecl *RD = RT->getDecl()->getDefinition(); 6747 if (RD && !RD->field_empty()) { 6748 // An incomplete TypeString stub is placed in the cache for this RecordType 6749 // so that recursive calls to this RecordType will use it whilst building a 6750 // complete TypeString for this RecordType. 6751 SmallVector<FieldEncoding, 16> FE; 6752 std::string StubEnc(Enc.substr(Start).str()); 6753 StubEnc += '}'; // StubEnc now holds a valid incomplete TypeString. 6754 TSC.addIncomplete(ID, std::move(StubEnc)); 6755 if (!extractFieldType(FE, RD, CGM, TSC)) { 6756 (void) TSC.removeIncomplete(ID); 6757 return false; 6758 } 6759 IsRecursive = TSC.removeIncomplete(ID); 6760 // The ABI requires unions to be sorted but not structures. 6761 // See FieldEncoding::operator< for sort algorithm. 6762 if (RT->isUnionType()) 6763 std::sort(FE.begin(), FE.end()); 6764 // We can now complete the TypeString. 6765 unsigned E = FE.size(); 6766 for (unsigned I = 0; I != E; ++I) { 6767 if (I) 6768 Enc += ','; 6769 Enc += FE[I].str(); 6770 } 6771 } 6772 Enc += '}'; 6773 TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive); 6774 return true; 6775 } 6776 6777 /// Appends enum types to Enc and adds the encoding to the cache. 6778 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET, 6779 TypeStringCache &TSC, 6780 const IdentifierInfo *ID) { 6781 // Append the cached TypeString if we have one. 6782 StringRef TypeString = TSC.lookupStr(ID); 6783 if (!TypeString.empty()) { 6784 Enc += TypeString; 6785 return true; 6786 } 6787 6788 size_t Start = Enc.size(); 6789 Enc += "e("; 6790 if (ID) 6791 Enc += ID->getName(); 6792 Enc += "){"; 6793 6794 // We collect all encoded enumerations and order them alphanumerically. 6795 if (const EnumDecl *ED = ET->getDecl()->getDefinition()) { 6796 SmallVector<FieldEncoding, 16> FE; 6797 for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E; 6798 ++I) { 6799 SmallStringEnc EnumEnc; 6800 EnumEnc += "m("; 6801 EnumEnc += I->getName(); 6802 EnumEnc += "){"; 6803 I->getInitVal().toString(EnumEnc); 6804 EnumEnc += '}'; 6805 FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc)); 6806 } 6807 std::sort(FE.begin(), FE.end()); 6808 unsigned E = FE.size(); 6809 for (unsigned I = 0; I != E; ++I) { 6810 if (I) 6811 Enc += ','; 6812 Enc += FE[I].str(); 6813 } 6814 } 6815 Enc += '}'; 6816 TSC.addIfComplete(ID, Enc.substr(Start), false); 6817 return true; 6818 } 6819 6820 /// Appends type's qualifier to Enc. 6821 /// This is done prior to appending the type's encoding. 6822 static void appendQualifier(SmallStringEnc &Enc, QualType QT) { 6823 // Qualifiers are emitted in alphabetical order. 6824 static const char *Table[] = {"","c:","r:","cr:","v:","cv:","rv:","crv:"}; 6825 int Lookup = 0; 6826 if (QT.isConstQualified()) 6827 Lookup += 1<<0; 6828 if (QT.isRestrictQualified()) 6829 Lookup += 1<<1; 6830 if (QT.isVolatileQualified()) 6831 Lookup += 1<<2; 6832 Enc += Table[Lookup]; 6833 } 6834 6835 /// Appends built-in types to Enc. 6836 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) { 6837 const char *EncType; 6838 switch (BT->getKind()) { 6839 case BuiltinType::Void: 6840 EncType = "0"; 6841 break; 6842 case BuiltinType::Bool: 6843 EncType = "b"; 6844 break; 6845 case BuiltinType::Char_U: 6846 EncType = "uc"; 6847 break; 6848 case BuiltinType::UChar: 6849 EncType = "uc"; 6850 break; 6851 case BuiltinType::SChar: 6852 EncType = "sc"; 6853 break; 6854 case BuiltinType::UShort: 6855 EncType = "us"; 6856 break; 6857 case BuiltinType::Short: 6858 EncType = "ss"; 6859 break; 6860 case BuiltinType::UInt: 6861 EncType = "ui"; 6862 break; 6863 case BuiltinType::Int: 6864 EncType = "si"; 6865 break; 6866 case BuiltinType::ULong: 6867 EncType = "ul"; 6868 break; 6869 case BuiltinType::Long: 6870 EncType = "sl"; 6871 break; 6872 case BuiltinType::ULongLong: 6873 EncType = "ull"; 6874 break; 6875 case BuiltinType::LongLong: 6876 EncType = "sll"; 6877 break; 6878 case BuiltinType::Float: 6879 EncType = "ft"; 6880 break; 6881 case BuiltinType::Double: 6882 EncType = "d"; 6883 break; 6884 case BuiltinType::LongDouble: 6885 EncType = "ld"; 6886 break; 6887 default: 6888 return false; 6889 } 6890 Enc += EncType; 6891 return true; 6892 } 6893 6894 /// Appends a pointer encoding to Enc before calling appendType for the pointee. 6895 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT, 6896 const CodeGen::CodeGenModule &CGM, 6897 TypeStringCache &TSC) { 6898 Enc += "p("; 6899 if (!appendType(Enc, PT->getPointeeType(), CGM, TSC)) 6900 return false; 6901 Enc += ')'; 6902 return true; 6903 } 6904 6905 /// Appends array encoding to Enc before calling appendType for the element. 6906 static bool appendArrayType(SmallStringEnc &Enc, QualType QT, 6907 const ArrayType *AT, 6908 const CodeGen::CodeGenModule &CGM, 6909 TypeStringCache &TSC, StringRef NoSizeEnc) { 6910 if (AT->getSizeModifier() != ArrayType::Normal) 6911 return false; 6912 Enc += "a("; 6913 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) 6914 CAT->getSize().toStringUnsigned(Enc); 6915 else 6916 Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "". 6917 Enc += ':'; 6918 // The Qualifiers should be attached to the type rather than the array. 6919 appendQualifier(Enc, QT); 6920 if (!appendType(Enc, AT->getElementType(), CGM, TSC)) 6921 return false; 6922 Enc += ')'; 6923 return true; 6924 } 6925 6926 /// Appends a function encoding to Enc, calling appendType for the return type 6927 /// and the arguments. 6928 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT, 6929 const CodeGen::CodeGenModule &CGM, 6930 TypeStringCache &TSC) { 6931 Enc += "f{"; 6932 if (!appendType(Enc, FT->getReturnType(), CGM, TSC)) 6933 return false; 6934 Enc += "}("; 6935 if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) { 6936 // N.B. we are only interested in the adjusted param types. 6937 auto I = FPT->param_type_begin(); 6938 auto E = FPT->param_type_end(); 6939 if (I != E) { 6940 do { 6941 if (!appendType(Enc, *I, CGM, TSC)) 6942 return false; 6943 ++I; 6944 if (I != E) 6945 Enc += ','; 6946 } while (I != E); 6947 if (FPT->isVariadic()) 6948 Enc += ",va"; 6949 } else { 6950 if (FPT->isVariadic()) 6951 Enc += "va"; 6952 else 6953 Enc += '0'; 6954 } 6955 } 6956 Enc += ')'; 6957 return true; 6958 } 6959 6960 /// Handles the type's qualifier before dispatching a call to handle specific 6961 /// type encodings. 6962 static bool appendType(SmallStringEnc &Enc, QualType QType, 6963 const CodeGen::CodeGenModule &CGM, 6964 TypeStringCache &TSC) { 6965 6966 QualType QT = QType.getCanonicalType(); 6967 6968 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) 6969 // The Qualifiers should be attached to the type rather than the array. 6970 // Thus we don't call appendQualifier() here. 6971 return appendArrayType(Enc, QT, AT, CGM, TSC, ""); 6972 6973 appendQualifier(Enc, QT); 6974 6975 if (const BuiltinType *BT = QT->getAs<BuiltinType>()) 6976 return appendBuiltinType(Enc, BT); 6977 6978 if (const PointerType *PT = QT->getAs<PointerType>()) 6979 return appendPointerType(Enc, PT, CGM, TSC); 6980 6981 if (const EnumType *ET = QT->getAs<EnumType>()) 6982 return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier()); 6983 6984 if (const RecordType *RT = QT->getAsStructureType()) 6985 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 6986 6987 if (const RecordType *RT = QT->getAsUnionType()) 6988 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 6989 6990 if (const FunctionType *FT = QT->getAs<FunctionType>()) 6991 return appendFunctionType(Enc, FT, CGM, TSC); 6992 6993 return false; 6994 } 6995 6996 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 6997 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) { 6998 if (!D) 6999 return false; 7000 7001 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 7002 if (FD->getLanguageLinkage() != CLanguageLinkage) 7003 return false; 7004 return appendType(Enc, FD->getType(), CGM, TSC); 7005 } 7006 7007 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 7008 if (VD->getLanguageLinkage() != CLanguageLinkage) 7009 return false; 7010 QualType QT = VD->getType().getCanonicalType(); 7011 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) { 7012 // Global ArrayTypes are given a size of '*' if the size is unknown. 7013 // The Qualifiers should be attached to the type rather than the array. 7014 // Thus we don't call appendQualifier() here. 7015 return appendArrayType(Enc, QT, AT, CGM, TSC, "*"); 7016 } 7017 return appendType(Enc, QT, CGM, TSC); 7018 } 7019 return false; 7020 } 7021 7022 7023 //===----------------------------------------------------------------------===// 7024 // Driver code 7025 //===----------------------------------------------------------------------===// 7026 7027 const llvm::Triple &CodeGenModule::getTriple() const { 7028 return getTarget().getTriple(); 7029 } 7030 7031 bool CodeGenModule::supportsCOMDAT() const { 7032 return !getTriple().isOSBinFormatMachO(); 7033 } 7034 7035 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { 7036 if (TheTargetCodeGenInfo) 7037 return *TheTargetCodeGenInfo; 7038 7039 const llvm::Triple &Triple = getTarget().getTriple(); 7040 switch (Triple.getArch()) { 7041 default: 7042 return *(TheTargetCodeGenInfo = new DefaultTargetCodeGenInfo(Types)); 7043 7044 case llvm::Triple::le32: 7045 return *(TheTargetCodeGenInfo = new PNaClTargetCodeGenInfo(Types)); 7046 case llvm::Triple::mips: 7047 case llvm::Triple::mipsel: 7048 return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, true)); 7049 7050 case llvm::Triple::mips64: 7051 case llvm::Triple::mips64el: 7052 return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, false)); 7053 7054 case llvm::Triple::aarch64: 7055 case llvm::Triple::aarch64_be: { 7056 AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS; 7057 if (getTarget().getABI() == "darwinpcs") 7058 Kind = AArch64ABIInfo::DarwinPCS; 7059 7060 return *(TheTargetCodeGenInfo = new AArch64TargetCodeGenInfo(Types, Kind)); 7061 } 7062 7063 case llvm::Triple::arm: 7064 case llvm::Triple::armeb: 7065 case llvm::Triple::thumb: 7066 case llvm::Triple::thumbeb: 7067 { 7068 if (Triple.getOS() == llvm::Triple::Win32) { 7069 TheTargetCodeGenInfo = 7070 new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP); 7071 return *TheTargetCodeGenInfo; 7072 } 7073 7074 ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS; 7075 if (getTarget().getABI() == "apcs-gnu") 7076 Kind = ARMABIInfo::APCS; 7077 else if (CodeGenOpts.FloatABI == "hard" || 7078 (CodeGenOpts.FloatABI != "soft" && 7079 Triple.getEnvironment() == llvm::Triple::GNUEABIHF)) 7080 Kind = ARMABIInfo::AAPCS_VFP; 7081 7082 return *(TheTargetCodeGenInfo = new ARMTargetCodeGenInfo(Types, Kind)); 7083 } 7084 7085 case llvm::Triple::ppc: 7086 return *(TheTargetCodeGenInfo = new PPC32TargetCodeGenInfo(Types)); 7087 case llvm::Triple::ppc64: 7088 if (Triple.isOSBinFormatELF()) { 7089 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1; 7090 if (getTarget().getABI() == "elfv2") 7091 Kind = PPC64_SVR4_ABIInfo::ELFv2; 7092 bool HasQPX = getTarget().getABI() == "elfv1-qpx"; 7093 7094 return *(TheTargetCodeGenInfo = 7095 new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX)); 7096 } else 7097 return *(TheTargetCodeGenInfo = new PPC64TargetCodeGenInfo(Types)); 7098 case llvm::Triple::ppc64le: { 7099 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); 7100 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2; 7101 if (getTarget().getABI() == "elfv1" || getTarget().getABI() == "elfv1-qpx") 7102 Kind = PPC64_SVR4_ABIInfo::ELFv1; 7103 bool HasQPX = getTarget().getABI() == "elfv1-qpx"; 7104 7105 return *(TheTargetCodeGenInfo = 7106 new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX)); 7107 } 7108 7109 case llvm::Triple::nvptx: 7110 case llvm::Triple::nvptx64: 7111 return *(TheTargetCodeGenInfo = new NVPTXTargetCodeGenInfo(Types)); 7112 7113 case llvm::Triple::msp430: 7114 return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo(Types)); 7115 7116 case llvm::Triple::systemz: { 7117 bool HasVector = getTarget().getABI() == "vector"; 7118 return *(TheTargetCodeGenInfo = new SystemZTargetCodeGenInfo(Types, 7119 HasVector)); 7120 } 7121 7122 case llvm::Triple::tce: 7123 return *(TheTargetCodeGenInfo = new TCETargetCodeGenInfo(Types)); 7124 7125 case llvm::Triple::x86: { 7126 bool IsDarwinVectorABI = Triple.isOSDarwin(); 7127 bool IsSmallStructInRegABI = 7128 X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 7129 bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing(); 7130 7131 if (Triple.getOS() == llvm::Triple::Win32) { 7132 return *(TheTargetCodeGenInfo = 7133 new WinX86_32TargetCodeGenInfo(Types, 7134 IsDarwinVectorABI, IsSmallStructInRegABI, 7135 IsWin32FloatStructABI, 7136 CodeGenOpts.NumRegisterParameters)); 7137 } else { 7138 return *(TheTargetCodeGenInfo = 7139 new X86_32TargetCodeGenInfo(Types, 7140 IsDarwinVectorABI, IsSmallStructInRegABI, 7141 IsWin32FloatStructABI, 7142 CodeGenOpts.NumRegisterParameters)); 7143 } 7144 } 7145 7146 case llvm::Triple::x86_64: { 7147 bool HasAVX = getTarget().getABI() == "avx"; 7148 7149 switch (Triple.getOS()) { 7150 case llvm::Triple::Win32: 7151 return *(TheTargetCodeGenInfo = 7152 new WinX86_64TargetCodeGenInfo(Types, HasAVX)); 7153 case llvm::Triple::PS4: 7154 return *(TheTargetCodeGenInfo = new PS4TargetCodeGenInfo(Types, HasAVX)); 7155 default: 7156 return *(TheTargetCodeGenInfo = 7157 new X86_64TargetCodeGenInfo(Types, HasAVX)); 7158 } 7159 } 7160 case llvm::Triple::hexagon: 7161 return *(TheTargetCodeGenInfo = new HexagonTargetCodeGenInfo(Types)); 7162 case llvm::Triple::r600: 7163 return *(TheTargetCodeGenInfo = new AMDGPUTargetCodeGenInfo(Types)); 7164 case llvm::Triple::amdgcn: 7165 return *(TheTargetCodeGenInfo = new AMDGPUTargetCodeGenInfo(Types)); 7166 case llvm::Triple::sparcv9: 7167 return *(TheTargetCodeGenInfo = new SparcV9TargetCodeGenInfo(Types)); 7168 case llvm::Triple::xcore: 7169 return *(TheTargetCodeGenInfo = new XCoreTargetCodeGenInfo(Types)); 7170 } 7171 } 7172