1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // These classes wrap the information about a call or function
11 // definition used to handle ABI compliancy.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "TargetInfo.h"
16 #include "ABIInfo.h"
17 #include "CGCXXABI.h"
18 #include "CGValue.h"
19 #include "CodeGenFunction.h"
20 #include "clang/AST/RecordLayout.h"
21 #include "clang/CodeGen/CGFunctionInfo.h"
22 #include "clang/Frontend/CodeGenOptions.h"
23 #include "llvm/ADT/StringExtras.h"
24 #include "llvm/ADT/Triple.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/Type.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include <algorithm>    // std::sort
29 
30 using namespace clang;
31 using namespace CodeGen;
32 
33 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
34                                llvm::Value *Array,
35                                llvm::Value *Value,
36                                unsigned FirstIndex,
37                                unsigned LastIndex) {
38   // Alternatively, we could emit this as a loop in the source.
39   for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
40     llvm::Value *Cell =
41         Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I);
42     Builder.CreateStore(Value, Cell);
43   }
44 }
45 
46 static bool isAggregateTypeForABI(QualType T) {
47   return !CodeGenFunction::hasScalarEvaluationKind(T) ||
48          T->isMemberFunctionPointerType();
49 }
50 
51 ABIInfo::~ABIInfo() {}
52 
53 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT,
54                                               CGCXXABI &CXXABI) {
55   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
56   if (!RD)
57     return CGCXXABI::RAA_Default;
58   return CXXABI.getRecordArgABI(RD);
59 }
60 
61 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T,
62                                               CGCXXABI &CXXABI) {
63   const RecordType *RT = T->getAs<RecordType>();
64   if (!RT)
65     return CGCXXABI::RAA_Default;
66   return getRecordArgABI(RT, CXXABI);
67 }
68 
69 /// Pass transparent unions as if they were the type of the first element. Sema
70 /// should ensure that all elements of the union have the same "machine type".
71 static QualType useFirstFieldIfTransparentUnion(QualType Ty) {
72   if (const RecordType *UT = Ty->getAsUnionType()) {
73     const RecordDecl *UD = UT->getDecl();
74     if (UD->hasAttr<TransparentUnionAttr>()) {
75       assert(!UD->field_empty() && "sema created an empty transparent union");
76       return UD->field_begin()->getType();
77     }
78   }
79   return Ty;
80 }
81 
82 CGCXXABI &ABIInfo::getCXXABI() const {
83   return CGT.getCXXABI();
84 }
85 
86 ASTContext &ABIInfo::getContext() const {
87   return CGT.getContext();
88 }
89 
90 llvm::LLVMContext &ABIInfo::getVMContext() const {
91   return CGT.getLLVMContext();
92 }
93 
94 const llvm::DataLayout &ABIInfo::getDataLayout() const {
95   return CGT.getDataLayout();
96 }
97 
98 const TargetInfo &ABIInfo::getTarget() const {
99   return CGT.getTarget();
100 }
101 
102 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
103   return false;
104 }
105 
106 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
107                                                 uint64_t Members) const {
108   return false;
109 }
110 
111 void ABIArgInfo::dump() const {
112   raw_ostream &OS = llvm::errs();
113   OS << "(ABIArgInfo Kind=";
114   switch (TheKind) {
115   case Direct:
116     OS << "Direct Type=";
117     if (llvm::Type *Ty = getCoerceToType())
118       Ty->print(OS);
119     else
120       OS << "null";
121     break;
122   case Extend:
123     OS << "Extend";
124     break;
125   case Ignore:
126     OS << "Ignore";
127     break;
128   case InAlloca:
129     OS << "InAlloca Offset=" << getInAllocaFieldIndex();
130     break;
131   case Indirect:
132     OS << "Indirect Align=" << getIndirectAlign()
133        << " ByVal=" << getIndirectByVal()
134        << " Realign=" << getIndirectRealign();
135     break;
136   case Expand:
137     OS << "Expand";
138     break;
139   }
140   OS << ")\n";
141 }
142 
143 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }
144 
145 // If someone can figure out a general rule for this, that would be great.
146 // It's probably just doomed to be platform-dependent, though.
147 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const {
148   // Verified for:
149   //   x86-64     FreeBSD, Linux, Darwin
150   //   x86-32     FreeBSD, Linux, Darwin
151   //   PowerPC    Linux, Darwin
152   //   ARM        Darwin (*not* EABI)
153   //   AArch64    Linux
154   return 32;
155 }
156 
157 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args,
158                                      const FunctionNoProtoType *fnType) const {
159   // The following conventions are known to require this to be false:
160   //   x86_stdcall
161   //   MIPS
162   // For everything else, we just prefer false unless we opt out.
163   return false;
164 }
165 
166 void
167 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib,
168                                              llvm::SmallString<24> &Opt) const {
169   // This assumes the user is passing a library name like "rt" instead of a
170   // filename like "librt.a/so", and that they don't care whether it's static or
171   // dynamic.
172   Opt = "-l";
173   Opt += Lib;
174 }
175 
176 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
177 
178 /// isEmptyField - Return true iff a the field is "empty", that is it
179 /// is an unnamed bit-field or an (array of) empty record(s).
180 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
181                          bool AllowArrays) {
182   if (FD->isUnnamedBitfield())
183     return true;
184 
185   QualType FT = FD->getType();
186 
187   // Constant arrays of empty records count as empty, strip them off.
188   // Constant arrays of zero length always count as empty.
189   if (AllowArrays)
190     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
191       if (AT->getSize() == 0)
192         return true;
193       FT = AT->getElementType();
194     }
195 
196   const RecordType *RT = FT->getAs<RecordType>();
197   if (!RT)
198     return false;
199 
200   // C++ record fields are never empty, at least in the Itanium ABI.
201   //
202   // FIXME: We should use a predicate for whether this behavior is true in the
203   // current ABI.
204   if (isa<CXXRecordDecl>(RT->getDecl()))
205     return false;
206 
207   return isEmptyRecord(Context, FT, AllowArrays);
208 }
209 
210 /// isEmptyRecord - Return true iff a structure contains only empty
211 /// fields. Note that a structure with a flexible array member is not
212 /// considered empty.
213 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
214   const RecordType *RT = T->getAs<RecordType>();
215   if (!RT)
216     return 0;
217   const RecordDecl *RD = RT->getDecl();
218   if (RD->hasFlexibleArrayMember())
219     return false;
220 
221   // If this is a C++ record, check the bases first.
222   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
223     for (const auto &I : CXXRD->bases())
224       if (!isEmptyRecord(Context, I.getType(), true))
225         return false;
226 
227   for (const auto *I : RD->fields())
228     if (!isEmptyField(Context, I, AllowArrays))
229       return false;
230   return true;
231 }
232 
233 /// isSingleElementStruct - Determine if a structure is a "single
234 /// element struct", i.e. it has exactly one non-empty field or
235 /// exactly one field which is itself a single element
236 /// struct. Structures with flexible array members are never
237 /// considered single element structs.
238 ///
239 /// \return The field declaration for the single non-empty field, if
240 /// it exists.
241 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
242   const RecordType *RT = T->getAs<RecordType>();
243   if (!RT)
244     return nullptr;
245 
246   const RecordDecl *RD = RT->getDecl();
247   if (RD->hasFlexibleArrayMember())
248     return nullptr;
249 
250   const Type *Found = nullptr;
251 
252   // If this is a C++ record, check the bases first.
253   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
254     for (const auto &I : CXXRD->bases()) {
255       // Ignore empty records.
256       if (isEmptyRecord(Context, I.getType(), true))
257         continue;
258 
259       // If we already found an element then this isn't a single-element struct.
260       if (Found)
261         return nullptr;
262 
263       // If this is non-empty and not a single element struct, the composite
264       // cannot be a single element struct.
265       Found = isSingleElementStruct(I.getType(), Context);
266       if (!Found)
267         return nullptr;
268     }
269   }
270 
271   // Check for single element.
272   for (const auto *FD : RD->fields()) {
273     QualType FT = FD->getType();
274 
275     // Ignore empty fields.
276     if (isEmptyField(Context, FD, true))
277       continue;
278 
279     // If we already found an element then this isn't a single-element
280     // struct.
281     if (Found)
282       return nullptr;
283 
284     // Treat single element arrays as the element.
285     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
286       if (AT->getSize().getZExtValue() != 1)
287         break;
288       FT = AT->getElementType();
289     }
290 
291     if (!isAggregateTypeForABI(FT)) {
292       Found = FT.getTypePtr();
293     } else {
294       Found = isSingleElementStruct(FT, Context);
295       if (!Found)
296         return nullptr;
297     }
298   }
299 
300   // We don't consider a struct a single-element struct if it has
301   // padding beyond the element type.
302   if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T))
303     return nullptr;
304 
305   return Found;
306 }
307 
308 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
309   // Treat complex types as the element type.
310   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
311     Ty = CTy->getElementType();
312 
313   // Check for a type which we know has a simple scalar argument-passing
314   // convention without any padding.  (We're specifically looking for 32
315   // and 64-bit integer and integer-equivalents, float, and double.)
316   if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
317       !Ty->isEnumeralType() && !Ty->isBlockPointerType())
318     return false;
319 
320   uint64_t Size = Context.getTypeSize(Ty);
321   return Size == 32 || Size == 64;
322 }
323 
324 /// canExpandIndirectArgument - Test whether an argument type which is to be
325 /// passed indirectly (on the stack) would have the equivalent layout if it was
326 /// expanded into separate arguments. If so, we prefer to do the latter to avoid
327 /// inhibiting optimizations.
328 ///
329 // FIXME: This predicate is missing many cases, currently it just follows
330 // llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We
331 // should probably make this smarter, or better yet make the LLVM backend
332 // capable of handling it.
333 static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) {
334   // We can only expand structure types.
335   const RecordType *RT = Ty->getAs<RecordType>();
336   if (!RT)
337     return false;
338 
339   // We can only expand (C) structures.
340   //
341   // FIXME: This needs to be generalized to handle classes as well.
342   const RecordDecl *RD = RT->getDecl();
343   if (!RD->isStruct())
344     return false;
345 
346   // We try to expand CLike CXXRecordDecl.
347   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
348     if (!CXXRD->isCLike())
349       return false;
350   }
351 
352   uint64_t Size = 0;
353 
354   for (const auto *FD : RD->fields()) {
355     if (!is32Or64BitBasicType(FD->getType(), Context))
356       return false;
357 
358     // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
359     // how to expand them yet, and the predicate for telling if a bitfield still
360     // counts as "basic" is more complicated than what we were doing previously.
361     if (FD->isBitField())
362       return false;
363 
364     Size += Context.getTypeSize(FD->getType());
365   }
366 
367   // Make sure there are not any holes in the struct.
368   if (Size != Context.getTypeSize(Ty))
369     return false;
370 
371   return true;
372 }
373 
374 namespace {
375 /// DefaultABIInfo - The default implementation for ABI specific
376 /// details. This implementation provides information which results in
377 /// self-consistent and sensible LLVM IR generation, but does not
378 /// conform to any particular ABI.
379 class DefaultABIInfo : public ABIInfo {
380 public:
381   DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
382 
383   ABIArgInfo classifyReturnType(QualType RetTy) const;
384   ABIArgInfo classifyArgumentType(QualType RetTy) const;
385 
386   void computeInfo(CGFunctionInfo &FI) const override {
387     if (!getCXXABI().classifyReturnType(FI))
388       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
389     for (auto &I : FI.arguments())
390       I.info = classifyArgumentType(I.type);
391   }
392 
393   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
394                          CodeGenFunction &CGF) const override;
395 };
396 
397 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
398 public:
399   DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
400     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
401 };
402 
403 llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
404                                        CodeGenFunction &CGF) const {
405   return nullptr;
406 }
407 
408 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
409   if (isAggregateTypeForABI(Ty))
410     return ABIArgInfo::getIndirect(0);
411 
412   // Treat an enum type as its underlying type.
413   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
414     Ty = EnumTy->getDecl()->getIntegerType();
415 
416   return (Ty->isPromotableIntegerType() ?
417           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
418 }
419 
420 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
421   if (RetTy->isVoidType())
422     return ABIArgInfo::getIgnore();
423 
424   if (isAggregateTypeForABI(RetTy))
425     return ABIArgInfo::getIndirect(0);
426 
427   // Treat an enum type as its underlying type.
428   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
429     RetTy = EnumTy->getDecl()->getIntegerType();
430 
431   return (RetTy->isPromotableIntegerType() ?
432           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
433 }
434 
435 //===----------------------------------------------------------------------===//
436 // le32/PNaCl bitcode ABI Implementation
437 //
438 // This is a simplified version of the x86_32 ABI.  Arguments and return values
439 // are always passed on the stack.
440 //===----------------------------------------------------------------------===//
441 
442 class PNaClABIInfo : public ABIInfo {
443  public:
444   PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
445 
446   ABIArgInfo classifyReturnType(QualType RetTy) const;
447   ABIArgInfo classifyArgumentType(QualType RetTy) const;
448 
449   void computeInfo(CGFunctionInfo &FI) const override;
450   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
451                          CodeGenFunction &CGF) const override;
452 };
453 
454 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo {
455  public:
456   PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
457     : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {}
458 };
459 
460 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const {
461   if (!getCXXABI().classifyReturnType(FI))
462     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
463 
464   for (auto &I : FI.arguments())
465     I.info = classifyArgumentType(I.type);
466 }
467 
468 llvm::Value *PNaClABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
469                                        CodeGenFunction &CGF) const {
470   return nullptr;
471 }
472 
473 /// \brief Classify argument of given type \p Ty.
474 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const {
475   if (isAggregateTypeForABI(Ty)) {
476     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
477       return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
478     return ABIArgInfo::getIndirect(0);
479   } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
480     // Treat an enum type as its underlying type.
481     Ty = EnumTy->getDecl()->getIntegerType();
482   } else if (Ty->isFloatingType()) {
483     // Floating-point types don't go inreg.
484     return ABIArgInfo::getDirect();
485   }
486 
487   return (Ty->isPromotableIntegerType() ?
488           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
489 }
490 
491 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const {
492   if (RetTy->isVoidType())
493     return ABIArgInfo::getIgnore();
494 
495   // In the PNaCl ABI we always return records/structures on the stack.
496   if (isAggregateTypeForABI(RetTy))
497     return ABIArgInfo::getIndirect(0);
498 
499   // Treat an enum type as its underlying type.
500   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
501     RetTy = EnumTy->getDecl()->getIntegerType();
502 
503   return (RetTy->isPromotableIntegerType() ?
504           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
505 }
506 
507 /// IsX86_MMXType - Return true if this is an MMX type.
508 bool IsX86_MMXType(llvm::Type *IRType) {
509   // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>.
510   return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
511     cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
512     IRType->getScalarSizeInBits() != 64;
513 }
514 
515 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
516                                           StringRef Constraint,
517                                           llvm::Type* Ty) {
518   if ((Constraint == "y" || Constraint == "&y") && Ty->isVectorTy()) {
519     if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) {
520       // Invalid MMX constraint
521       return nullptr;
522     }
523 
524     return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
525   }
526 
527   // No operation needed
528   return Ty;
529 }
530 
531 /// Returns true if this type can be passed in SSE registers with the
532 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64.
533 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) {
534   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
535     if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half)
536       return true;
537   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
538     // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX
539     // registers specially.
540     unsigned VecSize = Context.getTypeSize(VT);
541     if (VecSize == 128 || VecSize == 256 || VecSize == 512)
542       return true;
543   }
544   return false;
545 }
546 
547 /// Returns true if this aggregate is small enough to be passed in SSE registers
548 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64.
549 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) {
550   return NumMembers <= 4;
551 }
552 
553 //===----------------------------------------------------------------------===//
554 // X86-32 ABI Implementation
555 //===----------------------------------------------------------------------===//
556 
557 /// \brief Similar to llvm::CCState, but for Clang.
558 struct CCState {
559   CCState(unsigned CC) : CC(CC), FreeRegs(0), FreeSSERegs(0) {}
560 
561   unsigned CC;
562   unsigned FreeRegs;
563   unsigned FreeSSERegs;
564 };
565 
566 /// X86_32ABIInfo - The X86-32 ABI information.
567 class X86_32ABIInfo : public ABIInfo {
568   enum Class {
569     Integer,
570     Float
571   };
572 
573   static const unsigned MinABIStackAlignInBytes = 4;
574 
575   bool IsDarwinVectorABI;
576   bool IsSmallStructInRegABI;
577   bool IsWin32StructABI;
578   unsigned DefaultNumRegisterParameters;
579 
580   static bool isRegisterSize(unsigned Size) {
581     return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
582   }
583 
584   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
585     // FIXME: Assumes vectorcall is in use.
586     return isX86VectorTypeForVectorCall(getContext(), Ty);
587   }
588 
589   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
590                                          uint64_t NumMembers) const override {
591     // FIXME: Assumes vectorcall is in use.
592     return isX86VectorCallAggregateSmallEnough(NumMembers);
593   }
594 
595   bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const;
596 
597   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
598   /// such that the argument will be passed in memory.
599   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
600 
601   ABIArgInfo getIndirectReturnResult(CCState &State) const;
602 
603   /// \brief Return the alignment to use for the given type on the stack.
604   unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
605 
606   Class classify(QualType Ty) const;
607   ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const;
608   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
609   bool shouldUseInReg(QualType Ty, CCState &State, bool &NeedsPadding) const;
610 
611   /// \brief Rewrite the function info so that all memory arguments use
612   /// inalloca.
613   void rewriteWithInAlloca(CGFunctionInfo &FI) const;
614 
615   void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
616                            unsigned &StackOffset, ABIArgInfo &Info,
617                            QualType Type) const;
618 
619 public:
620 
621   void computeInfo(CGFunctionInfo &FI) const override;
622   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
623                          CodeGenFunction &CGF) const override;
624 
625   X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p, bool w,
626                 unsigned r)
627     : ABIInfo(CGT), IsDarwinVectorABI(d), IsSmallStructInRegABI(p),
628       IsWin32StructABI(w), DefaultNumRegisterParameters(r) {}
629 };
630 
631 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
632 public:
633   X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
634       bool d, bool p, bool w, unsigned r)
635     :TargetCodeGenInfo(new X86_32ABIInfo(CGT, d, p, w, r)) {}
636 
637   static bool isStructReturnInRegABI(
638       const llvm::Triple &Triple, const CodeGenOptions &Opts);
639 
640   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
641                            CodeGen::CodeGenModule &CGM) const override;
642 
643   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
644     // Darwin uses different dwarf register numbers for EH.
645     if (CGM.getTarget().getTriple().isOSDarwin()) return 5;
646     return 4;
647   }
648 
649   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
650                                llvm::Value *Address) const override;
651 
652   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
653                                   StringRef Constraint,
654                                   llvm::Type* Ty) const override {
655     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
656   }
657 
658   void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue,
659                                 std::string &Constraints,
660                                 std::vector<llvm::Type *> &ResultRegTypes,
661                                 std::vector<llvm::Type *> &ResultTruncRegTypes,
662                                 std::vector<LValue> &ResultRegDests,
663                                 std::string &AsmString,
664                                 unsigned NumOutputs) const override;
665 
666   llvm::Constant *
667   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
668     unsigned Sig = (0xeb << 0) |  // jmp rel8
669                    (0x06 << 8) |  //           .+0x08
670                    ('F' << 16) |
671                    ('T' << 24);
672     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
673   }
674 };
675 
676 }
677 
678 /// Rewrite input constraint references after adding some output constraints.
679 /// In the case where there is one output and one input and we add one output,
680 /// we need to replace all operand references greater than or equal to 1:
681 ///     mov $0, $1
682 ///     mov eax, $1
683 /// The result will be:
684 ///     mov $0, $2
685 ///     mov eax, $2
686 static void rewriteInputConstraintReferences(unsigned FirstIn,
687                                              unsigned NumNewOuts,
688                                              std::string &AsmString) {
689   std::string Buf;
690   llvm::raw_string_ostream OS(Buf);
691   size_t Pos = 0;
692   while (Pos < AsmString.size()) {
693     size_t DollarStart = AsmString.find('$', Pos);
694     if (DollarStart == std::string::npos)
695       DollarStart = AsmString.size();
696     size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart);
697     if (DollarEnd == std::string::npos)
698       DollarEnd = AsmString.size();
699     OS << StringRef(&AsmString[Pos], DollarEnd - Pos);
700     Pos = DollarEnd;
701     size_t NumDollars = DollarEnd - DollarStart;
702     if (NumDollars % 2 != 0 && Pos < AsmString.size()) {
703       // We have an operand reference.
704       size_t DigitStart = Pos;
705       size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart);
706       if (DigitEnd == std::string::npos)
707         DigitEnd = AsmString.size();
708       StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart);
709       unsigned OperandIndex;
710       if (!OperandStr.getAsInteger(10, OperandIndex)) {
711         if (OperandIndex >= FirstIn)
712           OperandIndex += NumNewOuts;
713         OS << OperandIndex;
714       } else {
715         OS << OperandStr;
716       }
717       Pos = DigitEnd;
718     }
719   }
720   AsmString = std::move(OS.str());
721 }
722 
723 /// Add output constraints for EAX:EDX because they are return registers.
724 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs(
725     CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints,
726     std::vector<llvm::Type *> &ResultRegTypes,
727     std::vector<llvm::Type *> &ResultTruncRegTypes,
728     std::vector<LValue> &ResultRegDests, std::string &AsmString,
729     unsigned NumOutputs) const {
730   uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType());
731 
732   // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is
733   // larger.
734   if (!Constraints.empty())
735     Constraints += ',';
736   if (RetWidth <= 32) {
737     Constraints += "={eax}";
738     ResultRegTypes.push_back(CGF.Int32Ty);
739   } else {
740     // Use the 'A' constraint for EAX:EDX.
741     Constraints += "=A";
742     ResultRegTypes.push_back(CGF.Int64Ty);
743   }
744 
745   // Truncate EAX or EAX:EDX to an integer of the appropriate size.
746   llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth);
747   ResultTruncRegTypes.push_back(CoerceTy);
748 
749   // Coerce the integer by bitcasting the return slot pointer.
750   ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(),
751                                                   CoerceTy->getPointerTo()));
752   ResultRegDests.push_back(ReturnSlot);
753 
754   rewriteInputConstraintReferences(NumOutputs, 1, AsmString);
755 }
756 
757 /// shouldReturnTypeInRegister - Determine if the given type should be
758 /// passed in a register (for the Darwin ABI).
759 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
760                                                ASTContext &Context) const {
761   uint64_t Size = Context.getTypeSize(Ty);
762 
763   // Type must be register sized.
764   if (!isRegisterSize(Size))
765     return false;
766 
767   if (Ty->isVectorType()) {
768     // 64- and 128- bit vectors inside structures are not returned in
769     // registers.
770     if (Size == 64 || Size == 128)
771       return false;
772 
773     return true;
774   }
775 
776   // If this is a builtin, pointer, enum, complex type, member pointer, or
777   // member function pointer it is ok.
778   if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
779       Ty->isAnyComplexType() || Ty->isEnumeralType() ||
780       Ty->isBlockPointerType() || Ty->isMemberPointerType())
781     return true;
782 
783   // Arrays are treated like records.
784   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
785     return shouldReturnTypeInRegister(AT->getElementType(), Context);
786 
787   // Otherwise, it must be a record type.
788   const RecordType *RT = Ty->getAs<RecordType>();
789   if (!RT) return false;
790 
791   // FIXME: Traverse bases here too.
792 
793   // Structure types are passed in register if all fields would be
794   // passed in a register.
795   for (const auto *FD : RT->getDecl()->fields()) {
796     // Empty fields are ignored.
797     if (isEmptyField(Context, FD, true))
798       continue;
799 
800     // Check fields recursively.
801     if (!shouldReturnTypeInRegister(FD->getType(), Context))
802       return false;
803   }
804   return true;
805 }
806 
807 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(CCState &State) const {
808   // If the return value is indirect, then the hidden argument is consuming one
809   // integer register.
810   if (State.FreeRegs) {
811     --State.FreeRegs;
812     return ABIArgInfo::getIndirectInReg(/*Align=*/0, /*ByVal=*/false);
813   }
814   return ABIArgInfo::getIndirect(/*Align=*/0, /*ByVal=*/false);
815 }
816 
817 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, CCState &State) const {
818   if (RetTy->isVoidType())
819     return ABIArgInfo::getIgnore();
820 
821   const Type *Base = nullptr;
822   uint64_t NumElts = 0;
823   if (State.CC == llvm::CallingConv::X86_VectorCall &&
824       isHomogeneousAggregate(RetTy, Base, NumElts)) {
825     // The LLVM struct type for such an aggregate should lower properly.
826     return ABIArgInfo::getDirect();
827   }
828 
829   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
830     // On Darwin, some vectors are returned in registers.
831     if (IsDarwinVectorABI) {
832       uint64_t Size = getContext().getTypeSize(RetTy);
833 
834       // 128-bit vectors are a special case; they are returned in
835       // registers and we need to make sure to pick a type the LLVM
836       // backend will like.
837       if (Size == 128)
838         return ABIArgInfo::getDirect(llvm::VectorType::get(
839                   llvm::Type::getInt64Ty(getVMContext()), 2));
840 
841       // Always return in register if it fits in a general purpose
842       // register, or if it is 64 bits and has a single element.
843       if ((Size == 8 || Size == 16 || Size == 32) ||
844           (Size == 64 && VT->getNumElements() == 1))
845         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
846                                                             Size));
847 
848       return getIndirectReturnResult(State);
849     }
850 
851     return ABIArgInfo::getDirect();
852   }
853 
854   if (isAggregateTypeForABI(RetTy)) {
855     if (const RecordType *RT = RetTy->getAs<RecordType>()) {
856       // Structures with flexible arrays are always indirect.
857       if (RT->getDecl()->hasFlexibleArrayMember())
858         return getIndirectReturnResult(State);
859     }
860 
861     // If specified, structs and unions are always indirect.
862     if (!IsSmallStructInRegABI && !RetTy->isAnyComplexType())
863       return getIndirectReturnResult(State);
864 
865     // Small structures which are register sized are generally returned
866     // in a register.
867     if (shouldReturnTypeInRegister(RetTy, getContext())) {
868       uint64_t Size = getContext().getTypeSize(RetTy);
869 
870       // As a special-case, if the struct is a "single-element" struct, and
871       // the field is of type "float" or "double", return it in a
872       // floating-point register. (MSVC does not apply this special case.)
873       // We apply a similar transformation for pointer types to improve the
874       // quality of the generated IR.
875       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
876         if ((!IsWin32StructABI && SeltTy->isRealFloatingType())
877             || SeltTy->hasPointerRepresentation())
878           return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
879 
880       // FIXME: We should be able to narrow this integer in cases with dead
881       // padding.
882       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
883     }
884 
885     return getIndirectReturnResult(State);
886   }
887 
888   // Treat an enum type as its underlying type.
889   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
890     RetTy = EnumTy->getDecl()->getIntegerType();
891 
892   return (RetTy->isPromotableIntegerType() ?
893           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
894 }
895 
896 static bool isSSEVectorType(ASTContext &Context, QualType Ty) {
897   return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128;
898 }
899 
900 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) {
901   const RecordType *RT = Ty->getAs<RecordType>();
902   if (!RT)
903     return 0;
904   const RecordDecl *RD = RT->getDecl();
905 
906   // If this is a C++ record, check the bases first.
907   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
908     for (const auto &I : CXXRD->bases())
909       if (!isRecordWithSSEVectorType(Context, I.getType()))
910         return false;
911 
912   for (const auto *i : RD->fields()) {
913     QualType FT = i->getType();
914 
915     if (isSSEVectorType(Context, FT))
916       return true;
917 
918     if (isRecordWithSSEVectorType(Context, FT))
919       return true;
920   }
921 
922   return false;
923 }
924 
925 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
926                                                  unsigned Align) const {
927   // Otherwise, if the alignment is less than or equal to the minimum ABI
928   // alignment, just use the default; the backend will handle this.
929   if (Align <= MinABIStackAlignInBytes)
930     return 0; // Use default alignment.
931 
932   // On non-Darwin, the stack type alignment is always 4.
933   if (!IsDarwinVectorABI) {
934     // Set explicit alignment, since we may need to realign the top.
935     return MinABIStackAlignInBytes;
936   }
937 
938   // Otherwise, if the type contains an SSE vector type, the alignment is 16.
939   if (Align >= 16 && (isSSEVectorType(getContext(), Ty) ||
940                       isRecordWithSSEVectorType(getContext(), Ty)))
941     return 16;
942 
943   return MinABIStackAlignInBytes;
944 }
945 
946 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal,
947                                             CCState &State) const {
948   if (!ByVal) {
949     if (State.FreeRegs) {
950       --State.FreeRegs; // Non-byval indirects just use one pointer.
951       return ABIArgInfo::getIndirectInReg(0, false);
952     }
953     return ABIArgInfo::getIndirect(0, false);
954   }
955 
956   // Compute the byval alignment.
957   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
958   unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
959   if (StackAlign == 0)
960     return ABIArgInfo::getIndirect(4, /*ByVal=*/true);
961 
962   // If the stack alignment is less than the type alignment, realign the
963   // argument.
964   bool Realign = TypeAlign > StackAlign;
965   return ABIArgInfo::getIndirect(StackAlign, /*ByVal=*/true, Realign);
966 }
967 
968 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const {
969   const Type *T = isSingleElementStruct(Ty, getContext());
970   if (!T)
971     T = Ty.getTypePtr();
972 
973   if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
974     BuiltinType::Kind K = BT->getKind();
975     if (K == BuiltinType::Float || K == BuiltinType::Double)
976       return Float;
977   }
978   return Integer;
979 }
980 
981 bool X86_32ABIInfo::shouldUseInReg(QualType Ty, CCState &State,
982                                    bool &NeedsPadding) const {
983   NeedsPadding = false;
984   Class C = classify(Ty);
985   if (C == Float)
986     return false;
987 
988   unsigned Size = getContext().getTypeSize(Ty);
989   unsigned SizeInRegs = (Size + 31) / 32;
990 
991   if (SizeInRegs == 0)
992     return false;
993 
994   if (SizeInRegs > State.FreeRegs) {
995     State.FreeRegs = 0;
996     return false;
997   }
998 
999   State.FreeRegs -= SizeInRegs;
1000 
1001   if (State.CC == llvm::CallingConv::X86_FastCall ||
1002       State.CC == llvm::CallingConv::X86_VectorCall) {
1003     if (Size > 32)
1004       return false;
1005 
1006     if (Ty->isIntegralOrEnumerationType())
1007       return true;
1008 
1009     if (Ty->isPointerType())
1010       return true;
1011 
1012     if (Ty->isReferenceType())
1013       return true;
1014 
1015     if (State.FreeRegs)
1016       NeedsPadding = true;
1017 
1018     return false;
1019   }
1020 
1021   return true;
1022 }
1023 
1024 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
1025                                                CCState &State) const {
1026   // FIXME: Set alignment on indirect arguments.
1027 
1028   Ty = useFirstFieldIfTransparentUnion(Ty);
1029 
1030   // Check with the C++ ABI first.
1031   const RecordType *RT = Ty->getAs<RecordType>();
1032   if (RT) {
1033     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
1034     if (RAA == CGCXXABI::RAA_Indirect) {
1035       return getIndirectResult(Ty, false, State);
1036     } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
1037       // The field index doesn't matter, we'll fix it up later.
1038       return ABIArgInfo::getInAlloca(/*FieldIndex=*/0);
1039     }
1040   }
1041 
1042   // vectorcall adds the concept of a homogenous vector aggregate, similar
1043   // to other targets.
1044   const Type *Base = nullptr;
1045   uint64_t NumElts = 0;
1046   if (State.CC == llvm::CallingConv::X86_VectorCall &&
1047       isHomogeneousAggregate(Ty, Base, NumElts)) {
1048     if (State.FreeSSERegs >= NumElts) {
1049       State.FreeSSERegs -= NumElts;
1050       if (Ty->isBuiltinType() || Ty->isVectorType())
1051         return ABIArgInfo::getDirect();
1052       return ABIArgInfo::getExpand();
1053     }
1054     return getIndirectResult(Ty, /*ByVal=*/false, State);
1055   }
1056 
1057   if (isAggregateTypeForABI(Ty)) {
1058     if (RT) {
1059       // Structs are always byval on win32, regardless of what they contain.
1060       if (IsWin32StructABI)
1061         return getIndirectResult(Ty, true, State);
1062 
1063       // Structures with flexible arrays are always indirect.
1064       if (RT->getDecl()->hasFlexibleArrayMember())
1065         return getIndirectResult(Ty, true, State);
1066     }
1067 
1068     // Ignore empty structs/unions.
1069     if (isEmptyRecord(getContext(), Ty, true))
1070       return ABIArgInfo::getIgnore();
1071 
1072     llvm::LLVMContext &LLVMContext = getVMContext();
1073     llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
1074     bool NeedsPadding;
1075     if (shouldUseInReg(Ty, State, NeedsPadding)) {
1076       unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
1077       SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32);
1078       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
1079       return ABIArgInfo::getDirectInReg(Result);
1080     }
1081     llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr;
1082 
1083     // Expand small (<= 128-bit) record types when we know that the stack layout
1084     // of those arguments will match the struct. This is important because the
1085     // LLVM backend isn't smart enough to remove byval, which inhibits many
1086     // optimizations.
1087     if (getContext().getTypeSize(Ty) <= 4*32 &&
1088         canExpandIndirectArgument(Ty, getContext()))
1089       return ABIArgInfo::getExpandWithPadding(
1090           State.CC == llvm::CallingConv::X86_FastCall ||
1091               State.CC == llvm::CallingConv::X86_VectorCall,
1092           PaddingType);
1093 
1094     return getIndirectResult(Ty, true, State);
1095   }
1096 
1097   if (const VectorType *VT = Ty->getAs<VectorType>()) {
1098     // On Darwin, some vectors are passed in memory, we handle this by passing
1099     // it as an i8/i16/i32/i64.
1100     if (IsDarwinVectorABI) {
1101       uint64_t Size = getContext().getTypeSize(Ty);
1102       if ((Size == 8 || Size == 16 || Size == 32) ||
1103           (Size == 64 && VT->getNumElements() == 1))
1104         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1105                                                             Size));
1106     }
1107 
1108     if (IsX86_MMXType(CGT.ConvertType(Ty)))
1109       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64));
1110 
1111     return ABIArgInfo::getDirect();
1112   }
1113 
1114 
1115   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1116     Ty = EnumTy->getDecl()->getIntegerType();
1117 
1118   bool NeedsPadding;
1119   bool InReg = shouldUseInReg(Ty, State, NeedsPadding);
1120 
1121   if (Ty->isPromotableIntegerType()) {
1122     if (InReg)
1123       return ABIArgInfo::getExtendInReg();
1124     return ABIArgInfo::getExtend();
1125   }
1126   if (InReg)
1127     return ABIArgInfo::getDirectInReg();
1128   return ABIArgInfo::getDirect();
1129 }
1130 
1131 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
1132   CCState State(FI.getCallingConvention());
1133   if (State.CC == llvm::CallingConv::X86_FastCall)
1134     State.FreeRegs = 2;
1135   else if (State.CC == llvm::CallingConv::X86_VectorCall) {
1136     State.FreeRegs = 2;
1137     State.FreeSSERegs = 6;
1138   } else if (FI.getHasRegParm())
1139     State.FreeRegs = FI.getRegParm();
1140   else
1141     State.FreeRegs = DefaultNumRegisterParameters;
1142 
1143   if (!getCXXABI().classifyReturnType(FI)) {
1144     FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State);
1145   } else if (FI.getReturnInfo().isIndirect()) {
1146     // The C++ ABI is not aware of register usage, so we have to check if the
1147     // return value was sret and put it in a register ourselves if appropriate.
1148     if (State.FreeRegs) {
1149       --State.FreeRegs;  // The sret parameter consumes a register.
1150       FI.getReturnInfo().setInReg(true);
1151     }
1152   }
1153 
1154   // The chain argument effectively gives us another free register.
1155   if (FI.isChainCall())
1156     ++State.FreeRegs;
1157 
1158   bool UsedInAlloca = false;
1159   for (auto &I : FI.arguments()) {
1160     I.info = classifyArgumentType(I.type, State);
1161     UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca);
1162   }
1163 
1164   // If we needed to use inalloca for any argument, do a second pass and rewrite
1165   // all the memory arguments to use inalloca.
1166   if (UsedInAlloca)
1167     rewriteWithInAlloca(FI);
1168 }
1169 
1170 void
1171 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
1172                                    unsigned &StackOffset,
1173                                    ABIArgInfo &Info, QualType Type) const {
1174   assert(StackOffset % 4U == 0 && "unaligned inalloca struct");
1175   Info = ABIArgInfo::getInAlloca(FrameFields.size());
1176   FrameFields.push_back(CGT.ConvertTypeForMem(Type));
1177   StackOffset += getContext().getTypeSizeInChars(Type).getQuantity();
1178 
1179   // Insert padding bytes to respect alignment.  For x86_32, each argument is 4
1180   // byte aligned.
1181   if (StackOffset % 4U) {
1182     unsigned OldOffset = StackOffset;
1183     StackOffset = llvm::RoundUpToAlignment(StackOffset, 4U);
1184     unsigned NumBytes = StackOffset - OldOffset;
1185     assert(NumBytes);
1186     llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext());
1187     Ty = llvm::ArrayType::get(Ty, NumBytes);
1188     FrameFields.push_back(Ty);
1189   }
1190 }
1191 
1192 static bool isArgInAlloca(const ABIArgInfo &Info) {
1193   // Leave ignored and inreg arguments alone.
1194   switch (Info.getKind()) {
1195   case ABIArgInfo::InAlloca:
1196     return true;
1197   case ABIArgInfo::Indirect:
1198     assert(Info.getIndirectByVal());
1199     return true;
1200   case ABIArgInfo::Ignore:
1201     return false;
1202   case ABIArgInfo::Direct:
1203   case ABIArgInfo::Extend:
1204   case ABIArgInfo::Expand:
1205     if (Info.getInReg())
1206       return false;
1207     return true;
1208   }
1209   llvm_unreachable("invalid enum");
1210 }
1211 
1212 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const {
1213   assert(IsWin32StructABI && "inalloca only supported on win32");
1214 
1215   // Build a packed struct type for all of the arguments in memory.
1216   SmallVector<llvm::Type *, 6> FrameFields;
1217 
1218   unsigned StackOffset = 0;
1219   CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end();
1220 
1221   // Put 'this' into the struct before 'sret', if necessary.
1222   bool IsThisCall =
1223       FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall;
1224   ABIArgInfo &Ret = FI.getReturnInfo();
1225   if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall &&
1226       isArgInAlloca(I->info)) {
1227     addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
1228     ++I;
1229   }
1230 
1231   // Put the sret parameter into the inalloca struct if it's in memory.
1232   if (Ret.isIndirect() && !Ret.getInReg()) {
1233     CanQualType PtrTy = getContext().getPointerType(FI.getReturnType());
1234     addFieldToArgStruct(FrameFields, StackOffset, Ret, PtrTy);
1235     // On Windows, the hidden sret parameter is always returned in eax.
1236     Ret.setInAllocaSRet(IsWin32StructABI);
1237   }
1238 
1239   // Skip the 'this' parameter in ecx.
1240   if (IsThisCall)
1241     ++I;
1242 
1243   // Put arguments passed in memory into the struct.
1244   for (; I != E; ++I) {
1245     if (isArgInAlloca(I->info))
1246       addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
1247   }
1248 
1249   FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields,
1250                                         /*isPacked=*/true));
1251 }
1252 
1253 llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1254                                       CodeGenFunction &CGF) const {
1255   llvm::Type *BPP = CGF.Int8PtrPtrTy;
1256 
1257   CGBuilderTy &Builder = CGF.Builder;
1258   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
1259                                                        "ap");
1260   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
1261 
1262   // Compute if the address needs to be aligned
1263   unsigned Align = CGF.getContext().getTypeAlignInChars(Ty).getQuantity();
1264   Align = getTypeStackAlignInBytes(Ty, Align);
1265   Align = std::max(Align, 4U);
1266   if (Align > 4) {
1267     // addr = (addr + align - 1) & -align;
1268     llvm::Value *Offset =
1269       llvm::ConstantInt::get(CGF.Int32Ty, Align - 1);
1270     Addr = CGF.Builder.CreateGEP(Addr, Offset);
1271     llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(Addr,
1272                                                     CGF.Int32Ty);
1273     llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -Align);
1274     Addr = CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
1275                                       Addr->getType(),
1276                                       "ap.cur.aligned");
1277   }
1278 
1279   llvm::Type *PTy =
1280     llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
1281   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
1282 
1283   uint64_t Offset =
1284     llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, Align);
1285   llvm::Value *NextAddr =
1286     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
1287                       "ap.next");
1288   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
1289 
1290   return AddrTyped;
1291 }
1292 
1293 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI(
1294     const llvm::Triple &Triple, const CodeGenOptions &Opts) {
1295   assert(Triple.getArch() == llvm::Triple::x86);
1296 
1297   switch (Opts.getStructReturnConvention()) {
1298   case CodeGenOptions::SRCK_Default:
1299     break;
1300   case CodeGenOptions::SRCK_OnStack:  // -fpcc-struct-return
1301     return false;
1302   case CodeGenOptions::SRCK_InRegs:  // -freg-struct-return
1303     return true;
1304   }
1305 
1306   if (Triple.isOSDarwin())
1307     return true;
1308 
1309   switch (Triple.getOS()) {
1310   case llvm::Triple::DragonFly:
1311   case llvm::Triple::FreeBSD:
1312   case llvm::Triple::OpenBSD:
1313   case llvm::Triple::Bitrig:
1314   case llvm::Triple::Win32:
1315     return true;
1316   default:
1317     return false;
1318   }
1319 }
1320 
1321 void X86_32TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
1322                                                   llvm::GlobalValue *GV,
1323                                             CodeGen::CodeGenModule &CGM) const {
1324   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1325     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
1326       // Get the LLVM function.
1327       llvm::Function *Fn = cast<llvm::Function>(GV);
1328 
1329       // Now add the 'alignstack' attribute with a value of 16.
1330       llvm::AttrBuilder B;
1331       B.addStackAlignmentAttr(16);
1332       Fn->addAttributes(llvm::AttributeSet::FunctionIndex,
1333                       llvm::AttributeSet::get(CGM.getLLVMContext(),
1334                                               llvm::AttributeSet::FunctionIndex,
1335                                               B));
1336     }
1337   }
1338 }
1339 
1340 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
1341                                                CodeGen::CodeGenFunction &CGF,
1342                                                llvm::Value *Address) const {
1343   CodeGen::CGBuilderTy &Builder = CGF.Builder;
1344 
1345   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
1346 
1347   // 0-7 are the eight integer registers;  the order is different
1348   //   on Darwin (for EH), but the range is the same.
1349   // 8 is %eip.
1350   AssignToArrayRange(Builder, Address, Four8, 0, 8);
1351 
1352   if (CGF.CGM.getTarget().getTriple().isOSDarwin()) {
1353     // 12-16 are st(0..4).  Not sure why we stop at 4.
1354     // These have size 16, which is sizeof(long double) on
1355     // platforms with 8-byte alignment for that type.
1356     llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
1357     AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
1358 
1359   } else {
1360     // 9 is %eflags, which doesn't get a size on Darwin for some
1361     // reason.
1362     Builder.CreateStore(
1363         Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9));
1364 
1365     // 11-16 are st(0..5).  Not sure why we stop at 5.
1366     // These have size 12, which is sizeof(long double) on
1367     // platforms with 4-byte alignment for that type.
1368     llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
1369     AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
1370   }
1371 
1372   return false;
1373 }
1374 
1375 //===----------------------------------------------------------------------===//
1376 // X86-64 ABI Implementation
1377 //===----------------------------------------------------------------------===//
1378 
1379 
1380 namespace {
1381 /// X86_64ABIInfo - The X86_64 ABI information.
1382 class X86_64ABIInfo : public ABIInfo {
1383   enum Class {
1384     Integer = 0,
1385     SSE,
1386     SSEUp,
1387     X87,
1388     X87Up,
1389     ComplexX87,
1390     NoClass,
1391     Memory
1392   };
1393 
1394   /// merge - Implement the X86_64 ABI merging algorithm.
1395   ///
1396   /// Merge an accumulating classification \arg Accum with a field
1397   /// classification \arg Field.
1398   ///
1399   /// \param Accum - The accumulating classification. This should
1400   /// always be either NoClass or the result of a previous merge
1401   /// call. In addition, this should never be Memory (the caller
1402   /// should just return Memory for the aggregate).
1403   static Class merge(Class Accum, Class Field);
1404 
1405   /// postMerge - Implement the X86_64 ABI post merging algorithm.
1406   ///
1407   /// Post merger cleanup, reduces a malformed Hi and Lo pair to
1408   /// final MEMORY or SSE classes when necessary.
1409   ///
1410   /// \param AggregateSize - The size of the current aggregate in
1411   /// the classification process.
1412   ///
1413   /// \param Lo - The classification for the parts of the type
1414   /// residing in the low word of the containing object.
1415   ///
1416   /// \param Hi - The classification for the parts of the type
1417   /// residing in the higher words of the containing object.
1418   ///
1419   void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
1420 
1421   /// classify - Determine the x86_64 register classes in which the
1422   /// given type T should be passed.
1423   ///
1424   /// \param Lo - The classification for the parts of the type
1425   /// residing in the low word of the containing object.
1426   ///
1427   /// \param Hi - The classification for the parts of the type
1428   /// residing in the high word of the containing object.
1429   ///
1430   /// \param OffsetBase - The bit offset of this type in the
1431   /// containing object.  Some parameters are classified different
1432   /// depending on whether they straddle an eightbyte boundary.
1433   ///
1434   /// \param isNamedArg - Whether the argument in question is a "named"
1435   /// argument, as used in AMD64-ABI 3.5.7.
1436   ///
1437   /// If a word is unused its result will be NoClass; if a type should
1438   /// be passed in Memory then at least the classification of \arg Lo
1439   /// will be Memory.
1440   ///
1441   /// The \arg Lo class will be NoClass iff the argument is ignored.
1442   ///
1443   /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
1444   /// also be ComplexX87.
1445   void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi,
1446                 bool isNamedArg) const;
1447 
1448   llvm::Type *GetByteVectorType(QualType Ty) const;
1449   llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
1450                                  unsigned IROffset, QualType SourceTy,
1451                                  unsigned SourceOffset) const;
1452   llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
1453                                      unsigned IROffset, QualType SourceTy,
1454                                      unsigned SourceOffset) const;
1455 
1456   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1457   /// such that the argument will be returned in memory.
1458   ABIArgInfo getIndirectReturnResult(QualType Ty) const;
1459 
1460   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1461   /// such that the argument will be passed in memory.
1462   ///
1463   /// \param freeIntRegs - The number of free integer registers remaining
1464   /// available.
1465   ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;
1466 
1467   ABIArgInfo classifyReturnType(QualType RetTy) const;
1468 
1469   ABIArgInfo classifyArgumentType(QualType Ty,
1470                                   unsigned freeIntRegs,
1471                                   unsigned &neededInt,
1472                                   unsigned &neededSSE,
1473                                   bool isNamedArg) const;
1474 
1475   bool IsIllegalVectorType(QualType Ty) const;
1476 
1477   /// The 0.98 ABI revision clarified a lot of ambiguities,
1478   /// unfortunately in ways that were not always consistent with
1479   /// certain previous compilers.  In particular, platforms which
1480   /// required strict binary compatibility with older versions of GCC
1481   /// may need to exempt themselves.
1482   bool honorsRevision0_98() const {
1483     return !getTarget().getTriple().isOSDarwin();
1484   }
1485 
1486   bool HasAVX;
1487   // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on
1488   // 64-bit hardware.
1489   bool Has64BitPointers;
1490 
1491 public:
1492   X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, bool hasavx) :
1493       ABIInfo(CGT), HasAVX(hasavx),
1494       Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {
1495   }
1496 
1497   bool isPassedUsingAVXType(QualType type) const {
1498     unsigned neededInt, neededSSE;
1499     // The freeIntRegs argument doesn't matter here.
1500     ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE,
1501                                            /*isNamedArg*/true);
1502     if (info.isDirect()) {
1503       llvm::Type *ty = info.getCoerceToType();
1504       if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
1505         return (vectorTy->getBitWidth() > 128);
1506     }
1507     return false;
1508   }
1509 
1510   void computeInfo(CGFunctionInfo &FI) const override;
1511 
1512   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1513                          CodeGenFunction &CGF) const override;
1514 
1515   bool has64BitPointers() const {
1516     return Has64BitPointers;
1517   }
1518 };
1519 
1520 /// WinX86_64ABIInfo - The Windows X86_64 ABI information.
1521 class WinX86_64ABIInfo : public ABIInfo {
1522 
1523   ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs,
1524                       bool IsReturnType) const;
1525 
1526 public:
1527   WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
1528 
1529   void computeInfo(CGFunctionInfo &FI) const override;
1530 
1531   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1532                          CodeGenFunction &CGF) const override;
1533 
1534   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
1535     // FIXME: Assumes vectorcall is in use.
1536     return isX86VectorTypeForVectorCall(getContext(), Ty);
1537   }
1538 
1539   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
1540                                          uint64_t NumMembers) const override {
1541     // FIXME: Assumes vectorcall is in use.
1542     return isX86VectorCallAggregateSmallEnough(NumMembers);
1543   }
1544 };
1545 
1546 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
1547   bool HasAVX;
1548 public:
1549   X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX)
1550       : TargetCodeGenInfo(new X86_64ABIInfo(CGT, HasAVX)), HasAVX(HasAVX) {}
1551 
1552   const X86_64ABIInfo &getABIInfo() const {
1553     return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
1554   }
1555 
1556   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
1557     return 7;
1558   }
1559 
1560   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1561                                llvm::Value *Address) const override {
1562     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
1563 
1564     // 0-15 are the 16 integer registers.
1565     // 16 is %rip.
1566     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
1567     return false;
1568   }
1569 
1570   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
1571                                   StringRef Constraint,
1572                                   llvm::Type* Ty) const override {
1573     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
1574   }
1575 
1576   bool isNoProtoCallVariadic(const CallArgList &args,
1577                              const FunctionNoProtoType *fnType) const override {
1578     // The default CC on x86-64 sets %al to the number of SSA
1579     // registers used, and GCC sets this when calling an unprototyped
1580     // function, so we override the default behavior.  However, don't do
1581     // that when AVX types are involved: the ABI explicitly states it is
1582     // undefined, and it doesn't work in practice because of how the ABI
1583     // defines varargs anyway.
1584     if (fnType->getCallConv() == CC_C) {
1585       bool HasAVXType = false;
1586       for (CallArgList::const_iterator
1587              it = args.begin(), ie = args.end(); it != ie; ++it) {
1588         if (getABIInfo().isPassedUsingAVXType(it->Ty)) {
1589           HasAVXType = true;
1590           break;
1591         }
1592       }
1593 
1594       if (!HasAVXType)
1595         return true;
1596     }
1597 
1598     return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
1599   }
1600 
1601   llvm::Constant *
1602   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
1603     unsigned Sig;
1604     if (getABIInfo().has64BitPointers())
1605       Sig = (0xeb << 0) |  // jmp rel8
1606             (0x0a << 8) |  //           .+0x0c
1607             ('F' << 16) |
1608             ('T' << 24);
1609     else
1610       Sig = (0xeb << 0) |  // jmp rel8
1611             (0x06 << 8) |  //           .+0x08
1612             ('F' << 16) |
1613             ('T' << 24);
1614     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
1615   }
1616 
1617   unsigned getOpenMPSimdDefaultAlignment(QualType) const override {
1618     return HasAVX ? 32 : 16;
1619   }
1620 };
1621 
1622 class PS4TargetCodeGenInfo : public X86_64TargetCodeGenInfo {
1623 public:
1624   PS4TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX)
1625     : X86_64TargetCodeGenInfo(CGT, HasAVX) {}
1626 
1627   void getDependentLibraryOption(llvm::StringRef Lib,
1628                                  llvm::SmallString<24> &Opt) const override {
1629     Opt = "\01";
1630     Opt += Lib;
1631   }
1632 };
1633 
1634 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) {
1635   // If the argument does not end in .lib, automatically add the suffix.
1636   // If the argument contains a space, enclose it in quotes.
1637   // This matches the behavior of MSVC.
1638   bool Quote = (Lib.find(" ") != StringRef::npos);
1639   std::string ArgStr = Quote ? "\"" : "";
1640   ArgStr += Lib;
1641   if (!Lib.endswith_lower(".lib"))
1642     ArgStr += ".lib";
1643   ArgStr += Quote ? "\"" : "";
1644   return ArgStr;
1645 }
1646 
1647 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo {
1648 public:
1649   WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
1650         bool d, bool p, bool w, unsigned RegParms)
1651     : X86_32TargetCodeGenInfo(CGT, d, p, w, RegParms) {}
1652 
1653   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
1654                            CodeGen::CodeGenModule &CGM) const override;
1655 
1656   void getDependentLibraryOption(llvm::StringRef Lib,
1657                                  llvm::SmallString<24> &Opt) const override {
1658     Opt = "/DEFAULTLIB:";
1659     Opt += qualifyWindowsLibrary(Lib);
1660   }
1661 
1662   void getDetectMismatchOption(llvm::StringRef Name,
1663                                llvm::StringRef Value,
1664                                llvm::SmallString<32> &Opt) const override {
1665     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
1666   }
1667 };
1668 
1669 static void addStackProbeSizeTargetAttribute(const Decl *D,
1670                                              llvm::GlobalValue *GV,
1671                                              CodeGen::CodeGenModule &CGM) {
1672   if (isa<FunctionDecl>(D)) {
1673     if (CGM.getCodeGenOpts().StackProbeSize != 4096) {
1674       llvm::Function *Fn = cast<llvm::Function>(GV);
1675 
1676       Fn->addFnAttr("stack-probe-size", llvm::utostr(CGM.getCodeGenOpts().StackProbeSize));
1677     }
1678   }
1679 }
1680 
1681 void WinX86_32TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
1682                                                      llvm::GlobalValue *GV,
1683                                             CodeGen::CodeGenModule &CGM) const {
1684   X86_32TargetCodeGenInfo::SetTargetAttributes(D, GV, CGM);
1685 
1686   addStackProbeSizeTargetAttribute(D, GV, CGM);
1687 }
1688 
1689 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
1690   bool HasAVX;
1691 public:
1692   WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX)
1693     : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)), HasAVX(HasAVX) {}
1694 
1695   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
1696                            CodeGen::CodeGenModule &CGM) const override;
1697 
1698   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
1699     return 7;
1700   }
1701 
1702   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1703                                llvm::Value *Address) const override {
1704     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
1705 
1706     // 0-15 are the 16 integer registers.
1707     // 16 is %rip.
1708     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
1709     return false;
1710   }
1711 
1712   void getDependentLibraryOption(llvm::StringRef Lib,
1713                                  llvm::SmallString<24> &Opt) const override {
1714     Opt = "/DEFAULTLIB:";
1715     Opt += qualifyWindowsLibrary(Lib);
1716   }
1717 
1718   void getDetectMismatchOption(llvm::StringRef Name,
1719                                llvm::StringRef Value,
1720                                llvm::SmallString<32> &Opt) const override {
1721     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
1722   }
1723 
1724   unsigned getOpenMPSimdDefaultAlignment(QualType) const override {
1725     return HasAVX ? 32 : 16;
1726   }
1727 };
1728 
1729 void WinX86_64TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
1730                                                      llvm::GlobalValue *GV,
1731                                             CodeGen::CodeGenModule &CGM) const {
1732   TargetCodeGenInfo::SetTargetAttributes(D, GV, CGM);
1733 
1734   addStackProbeSizeTargetAttribute(D, GV, CGM);
1735 }
1736 }
1737 
1738 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
1739                               Class &Hi) const {
1740   // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
1741   //
1742   // (a) If one of the classes is Memory, the whole argument is passed in
1743   //     memory.
1744   //
1745   // (b) If X87UP is not preceded by X87, the whole argument is passed in
1746   //     memory.
1747   //
1748   // (c) If the size of the aggregate exceeds two eightbytes and the first
1749   //     eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
1750   //     argument is passed in memory. NOTE: This is necessary to keep the
1751   //     ABI working for processors that don't support the __m256 type.
1752   //
1753   // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
1754   //
1755   // Some of these are enforced by the merging logic.  Others can arise
1756   // only with unions; for example:
1757   //   union { _Complex double; unsigned; }
1758   //
1759   // Note that clauses (b) and (c) were added in 0.98.
1760   //
1761   if (Hi == Memory)
1762     Lo = Memory;
1763   if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
1764     Lo = Memory;
1765   if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
1766     Lo = Memory;
1767   if (Hi == SSEUp && Lo != SSE)
1768     Hi = SSE;
1769 }
1770 
1771 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
1772   // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
1773   // classified recursively so that always two fields are
1774   // considered. The resulting class is calculated according to
1775   // the classes of the fields in the eightbyte:
1776   //
1777   // (a) If both classes are equal, this is the resulting class.
1778   //
1779   // (b) If one of the classes is NO_CLASS, the resulting class is
1780   // the other class.
1781   //
1782   // (c) If one of the classes is MEMORY, the result is the MEMORY
1783   // class.
1784   //
1785   // (d) If one of the classes is INTEGER, the result is the
1786   // INTEGER.
1787   //
1788   // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
1789   // MEMORY is used as class.
1790   //
1791   // (f) Otherwise class SSE is used.
1792 
1793   // Accum should never be memory (we should have returned) or
1794   // ComplexX87 (because this cannot be passed in a structure).
1795   assert((Accum != Memory && Accum != ComplexX87) &&
1796          "Invalid accumulated classification during merge.");
1797   if (Accum == Field || Field == NoClass)
1798     return Accum;
1799   if (Field == Memory)
1800     return Memory;
1801   if (Accum == NoClass)
1802     return Field;
1803   if (Accum == Integer || Field == Integer)
1804     return Integer;
1805   if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
1806       Accum == X87 || Accum == X87Up)
1807     return Memory;
1808   return SSE;
1809 }
1810 
1811 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
1812                              Class &Lo, Class &Hi, bool isNamedArg) const {
1813   // FIXME: This code can be simplified by introducing a simple value class for
1814   // Class pairs with appropriate constructor methods for the various
1815   // situations.
1816 
1817   // FIXME: Some of the split computations are wrong; unaligned vectors
1818   // shouldn't be passed in registers for example, so there is no chance they
1819   // can straddle an eightbyte. Verify & simplify.
1820 
1821   Lo = Hi = NoClass;
1822 
1823   Class &Current = OffsetBase < 64 ? Lo : Hi;
1824   Current = Memory;
1825 
1826   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
1827     BuiltinType::Kind k = BT->getKind();
1828 
1829     if (k == BuiltinType::Void) {
1830       Current = NoClass;
1831     } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
1832       Lo = Integer;
1833       Hi = Integer;
1834     } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
1835       Current = Integer;
1836     } else if ((k == BuiltinType::Float || k == BuiltinType::Double) ||
1837                (k == BuiltinType::LongDouble &&
1838                 getTarget().getTriple().isOSNaCl())) {
1839       Current = SSE;
1840     } else if (k == BuiltinType::LongDouble) {
1841       Lo = X87;
1842       Hi = X87Up;
1843     }
1844     // FIXME: _Decimal32 and _Decimal64 are SSE.
1845     // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
1846     return;
1847   }
1848 
1849   if (const EnumType *ET = Ty->getAs<EnumType>()) {
1850     // Classify the underlying integer type.
1851     classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg);
1852     return;
1853   }
1854 
1855   if (Ty->hasPointerRepresentation()) {
1856     Current = Integer;
1857     return;
1858   }
1859 
1860   if (Ty->isMemberPointerType()) {
1861     if (Ty->isMemberFunctionPointerType()) {
1862       if (Has64BitPointers) {
1863         // If Has64BitPointers, this is an {i64, i64}, so classify both
1864         // Lo and Hi now.
1865         Lo = Hi = Integer;
1866       } else {
1867         // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that
1868         // straddles an eightbyte boundary, Hi should be classified as well.
1869         uint64_t EB_FuncPtr = (OffsetBase) / 64;
1870         uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64;
1871         if (EB_FuncPtr != EB_ThisAdj) {
1872           Lo = Hi = Integer;
1873         } else {
1874           Current = Integer;
1875         }
1876       }
1877     } else {
1878       Current = Integer;
1879     }
1880     return;
1881   }
1882 
1883   if (const VectorType *VT = Ty->getAs<VectorType>()) {
1884     uint64_t Size = getContext().getTypeSize(VT);
1885     if (Size == 32) {
1886       // gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x
1887       // float> as integer.
1888       Current = Integer;
1889 
1890       // If this type crosses an eightbyte boundary, it should be
1891       // split.
1892       uint64_t EB_Real = (OffsetBase) / 64;
1893       uint64_t EB_Imag = (OffsetBase + Size - 1) / 64;
1894       if (EB_Real != EB_Imag)
1895         Hi = Lo;
1896     } else if (Size == 64) {
1897       // gcc passes <1 x double> in memory. :(
1898       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double))
1899         return;
1900 
1901       // gcc passes <1 x long long> as INTEGER.
1902       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong) ||
1903           VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULongLong) ||
1904           VT->getElementType()->isSpecificBuiltinType(BuiltinType::Long) ||
1905           VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULong))
1906         Current = Integer;
1907       else
1908         Current = SSE;
1909 
1910       // If this type crosses an eightbyte boundary, it should be
1911       // split.
1912       if (OffsetBase && OffsetBase != 64)
1913         Hi = Lo;
1914     } else if (Size == 128 || (HasAVX && isNamedArg && Size == 256)) {
1915       // Arguments of 256-bits are split into four eightbyte chunks. The
1916       // least significant one belongs to class SSE and all the others to class
1917       // SSEUP. The original Lo and Hi design considers that types can't be
1918       // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
1919       // This design isn't correct for 256-bits, but since there're no cases
1920       // where the upper parts would need to be inspected, avoid adding
1921       // complexity and just consider Hi to match the 64-256 part.
1922       //
1923       // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in
1924       // registers if they are "named", i.e. not part of the "..." of a
1925       // variadic function.
1926       Lo = SSE;
1927       Hi = SSEUp;
1928     }
1929     return;
1930   }
1931 
1932   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
1933     QualType ET = getContext().getCanonicalType(CT->getElementType());
1934 
1935     uint64_t Size = getContext().getTypeSize(Ty);
1936     if (ET->isIntegralOrEnumerationType()) {
1937       if (Size <= 64)
1938         Current = Integer;
1939       else if (Size <= 128)
1940         Lo = Hi = Integer;
1941     } else if (ET == getContext().FloatTy)
1942       Current = SSE;
1943     else if (ET == getContext().DoubleTy ||
1944              (ET == getContext().LongDoubleTy &&
1945               getTarget().getTriple().isOSNaCl()))
1946       Lo = Hi = SSE;
1947     else if (ET == getContext().LongDoubleTy)
1948       Current = ComplexX87;
1949 
1950     // If this complex type crosses an eightbyte boundary then it
1951     // should be split.
1952     uint64_t EB_Real = (OffsetBase) / 64;
1953     uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
1954     if (Hi == NoClass && EB_Real != EB_Imag)
1955       Hi = Lo;
1956 
1957     return;
1958   }
1959 
1960   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
1961     // Arrays are treated like structures.
1962 
1963     uint64_t Size = getContext().getTypeSize(Ty);
1964 
1965     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
1966     // than four eightbytes, ..., it has class MEMORY.
1967     if (Size > 256)
1968       return;
1969 
1970     // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
1971     // fields, it has class MEMORY.
1972     //
1973     // Only need to check alignment of array base.
1974     if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
1975       return;
1976 
1977     // Otherwise implement simplified merge. We could be smarter about
1978     // this, but it isn't worth it and would be harder to verify.
1979     Current = NoClass;
1980     uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
1981     uint64_t ArraySize = AT->getSize().getZExtValue();
1982 
1983     // The only case a 256-bit wide vector could be used is when the array
1984     // contains a single 256-bit element. Since Lo and Hi logic isn't extended
1985     // to work for sizes wider than 128, early check and fallback to memory.
1986     if (Size > 128 && EltSize != 256)
1987       return;
1988 
1989     for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
1990       Class FieldLo, FieldHi;
1991       classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg);
1992       Lo = merge(Lo, FieldLo);
1993       Hi = merge(Hi, FieldHi);
1994       if (Lo == Memory || Hi == Memory)
1995         break;
1996     }
1997 
1998     postMerge(Size, Lo, Hi);
1999     assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
2000     return;
2001   }
2002 
2003   if (const RecordType *RT = Ty->getAs<RecordType>()) {
2004     uint64_t Size = getContext().getTypeSize(Ty);
2005 
2006     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
2007     // than four eightbytes, ..., it has class MEMORY.
2008     if (Size > 256)
2009       return;
2010 
2011     // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
2012     // copy constructor or a non-trivial destructor, it is passed by invisible
2013     // reference.
2014     if (getRecordArgABI(RT, getCXXABI()))
2015       return;
2016 
2017     const RecordDecl *RD = RT->getDecl();
2018 
2019     // Assume variable sized types are passed in memory.
2020     if (RD->hasFlexibleArrayMember())
2021       return;
2022 
2023     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
2024 
2025     // Reset Lo class, this will be recomputed.
2026     Current = NoClass;
2027 
2028     // If this is a C++ record, classify the bases first.
2029     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
2030       for (const auto &I : CXXRD->bases()) {
2031         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
2032                "Unexpected base class!");
2033         const CXXRecordDecl *Base =
2034           cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
2035 
2036         // Classify this field.
2037         //
2038         // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
2039         // single eightbyte, each is classified separately. Each eightbyte gets
2040         // initialized to class NO_CLASS.
2041         Class FieldLo, FieldHi;
2042         uint64_t Offset =
2043           OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base));
2044         classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg);
2045         Lo = merge(Lo, FieldLo);
2046         Hi = merge(Hi, FieldHi);
2047         if (Lo == Memory || Hi == Memory)
2048           break;
2049       }
2050     }
2051 
2052     // Classify the fields one at a time, merging the results.
2053     unsigned idx = 0;
2054     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2055            i != e; ++i, ++idx) {
2056       uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
2057       bool BitField = i->isBitField();
2058 
2059       // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
2060       // four eightbytes, or it contains unaligned fields, it has class MEMORY.
2061       //
2062       // The only case a 256-bit wide vector could be used is when the struct
2063       // contains a single 256-bit element. Since Lo and Hi logic isn't extended
2064       // to work for sizes wider than 128, early check and fallback to memory.
2065       //
2066       if (Size > 128 && getContext().getTypeSize(i->getType()) != 256) {
2067         Lo = Memory;
2068         return;
2069       }
2070       // Note, skip this test for bit-fields, see below.
2071       if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
2072         Lo = Memory;
2073         return;
2074       }
2075 
2076       // Classify this field.
2077       //
2078       // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
2079       // exceeds a single eightbyte, each is classified
2080       // separately. Each eightbyte gets initialized to class
2081       // NO_CLASS.
2082       Class FieldLo, FieldHi;
2083 
2084       // Bit-fields require special handling, they do not force the
2085       // structure to be passed in memory even if unaligned, and
2086       // therefore they can straddle an eightbyte.
2087       if (BitField) {
2088         // Ignore padding bit-fields.
2089         if (i->isUnnamedBitfield())
2090           continue;
2091 
2092         uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
2093         uint64_t Size = i->getBitWidthValue(getContext());
2094 
2095         uint64_t EB_Lo = Offset / 64;
2096         uint64_t EB_Hi = (Offset + Size - 1) / 64;
2097 
2098         if (EB_Lo) {
2099           assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
2100           FieldLo = NoClass;
2101           FieldHi = Integer;
2102         } else {
2103           FieldLo = Integer;
2104           FieldHi = EB_Hi ? Integer : NoClass;
2105         }
2106       } else
2107         classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg);
2108       Lo = merge(Lo, FieldLo);
2109       Hi = merge(Hi, FieldHi);
2110       if (Lo == Memory || Hi == Memory)
2111         break;
2112     }
2113 
2114     postMerge(Size, Lo, Hi);
2115   }
2116 }
2117 
2118 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
2119   // If this is a scalar LLVM value then assume LLVM will pass it in the right
2120   // place naturally.
2121   if (!isAggregateTypeForABI(Ty)) {
2122     // Treat an enum type as its underlying type.
2123     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2124       Ty = EnumTy->getDecl()->getIntegerType();
2125 
2126     return (Ty->isPromotableIntegerType() ?
2127             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2128   }
2129 
2130   return ABIArgInfo::getIndirect(0);
2131 }
2132 
2133 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
2134   if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
2135     uint64_t Size = getContext().getTypeSize(VecTy);
2136     unsigned LargestVector = HasAVX ? 256 : 128;
2137     if (Size <= 64 || Size > LargestVector)
2138       return true;
2139   }
2140 
2141   return false;
2142 }
2143 
2144 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
2145                                             unsigned freeIntRegs) const {
2146   // If this is a scalar LLVM value then assume LLVM will pass it in the right
2147   // place naturally.
2148   //
2149   // This assumption is optimistic, as there could be free registers available
2150   // when we need to pass this argument in memory, and LLVM could try to pass
2151   // the argument in the free register. This does not seem to happen currently,
2152   // but this code would be much safer if we could mark the argument with
2153   // 'onstack'. See PR12193.
2154   if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) {
2155     // Treat an enum type as its underlying type.
2156     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2157       Ty = EnumTy->getDecl()->getIntegerType();
2158 
2159     return (Ty->isPromotableIntegerType() ?
2160             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2161   }
2162 
2163   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
2164     return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
2165 
2166   // Compute the byval alignment. We specify the alignment of the byval in all
2167   // cases so that the mid-level optimizer knows the alignment of the byval.
2168   unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
2169 
2170   // Attempt to avoid passing indirect results using byval when possible. This
2171   // is important for good codegen.
2172   //
2173   // We do this by coercing the value into a scalar type which the backend can
2174   // handle naturally (i.e., without using byval).
2175   //
2176   // For simplicity, we currently only do this when we have exhausted all of the
2177   // free integer registers. Doing this when there are free integer registers
2178   // would require more care, as we would have to ensure that the coerced value
2179   // did not claim the unused register. That would require either reording the
2180   // arguments to the function (so that any subsequent inreg values came first),
2181   // or only doing this optimization when there were no following arguments that
2182   // might be inreg.
2183   //
2184   // We currently expect it to be rare (particularly in well written code) for
2185   // arguments to be passed on the stack when there are still free integer
2186   // registers available (this would typically imply large structs being passed
2187   // by value), so this seems like a fair tradeoff for now.
2188   //
2189   // We can revisit this if the backend grows support for 'onstack' parameter
2190   // attributes. See PR12193.
2191   if (freeIntRegs == 0) {
2192     uint64_t Size = getContext().getTypeSize(Ty);
2193 
2194     // If this type fits in an eightbyte, coerce it into the matching integral
2195     // type, which will end up on the stack (with alignment 8).
2196     if (Align == 8 && Size <= 64)
2197       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2198                                                           Size));
2199   }
2200 
2201   return ABIArgInfo::getIndirect(Align);
2202 }
2203 
2204 /// The ABI specifies that a value should be passed in a full vector XMM/YMM
2205 /// register. Pick an LLVM IR type that will be passed as a vector register.
2206 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
2207   // Wrapper structs/arrays that only contain vectors are passed just like
2208   // vectors; strip them off if present.
2209   if (const Type *InnerTy = isSingleElementStruct(Ty, getContext()))
2210     Ty = QualType(InnerTy, 0);
2211 
2212   llvm::Type *IRType = CGT.ConvertType(Ty);
2213   assert(isa<llvm::VectorType>(IRType) &&
2214          "Trying to return a non-vector type in a vector register!");
2215   return IRType;
2216 }
2217 
2218 /// BitsContainNoUserData - Return true if the specified [start,end) bit range
2219 /// is known to either be off the end of the specified type or being in
2220 /// alignment padding.  The user type specified is known to be at most 128 bits
2221 /// in size, and have passed through X86_64ABIInfo::classify with a successful
2222 /// classification that put one of the two halves in the INTEGER class.
2223 ///
2224 /// It is conservatively correct to return false.
2225 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
2226                                   unsigned EndBit, ASTContext &Context) {
2227   // If the bytes being queried are off the end of the type, there is no user
2228   // data hiding here.  This handles analysis of builtins, vectors and other
2229   // types that don't contain interesting padding.
2230   unsigned TySize = (unsigned)Context.getTypeSize(Ty);
2231   if (TySize <= StartBit)
2232     return true;
2233 
2234   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
2235     unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
2236     unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
2237 
2238     // Check each element to see if the element overlaps with the queried range.
2239     for (unsigned i = 0; i != NumElts; ++i) {
2240       // If the element is after the span we care about, then we're done..
2241       unsigned EltOffset = i*EltSize;
2242       if (EltOffset >= EndBit) break;
2243 
2244       unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
2245       if (!BitsContainNoUserData(AT->getElementType(), EltStart,
2246                                  EndBit-EltOffset, Context))
2247         return false;
2248     }
2249     // If it overlaps no elements, then it is safe to process as padding.
2250     return true;
2251   }
2252 
2253   if (const RecordType *RT = Ty->getAs<RecordType>()) {
2254     const RecordDecl *RD = RT->getDecl();
2255     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
2256 
2257     // If this is a C++ record, check the bases first.
2258     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
2259       for (const auto &I : CXXRD->bases()) {
2260         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
2261                "Unexpected base class!");
2262         const CXXRecordDecl *Base =
2263           cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
2264 
2265         // If the base is after the span we care about, ignore it.
2266         unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base));
2267         if (BaseOffset >= EndBit) continue;
2268 
2269         unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
2270         if (!BitsContainNoUserData(I.getType(), BaseStart,
2271                                    EndBit-BaseOffset, Context))
2272           return false;
2273       }
2274     }
2275 
2276     // Verify that no field has data that overlaps the region of interest.  Yes
2277     // this could be sped up a lot by being smarter about queried fields,
2278     // however we're only looking at structs up to 16 bytes, so we don't care
2279     // much.
2280     unsigned idx = 0;
2281     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2282          i != e; ++i, ++idx) {
2283       unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
2284 
2285       // If we found a field after the region we care about, then we're done.
2286       if (FieldOffset >= EndBit) break;
2287 
2288       unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
2289       if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
2290                                  Context))
2291         return false;
2292     }
2293 
2294     // If nothing in this record overlapped the area of interest, then we're
2295     // clean.
2296     return true;
2297   }
2298 
2299   return false;
2300 }
2301 
2302 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
2303 /// float member at the specified offset.  For example, {int,{float}} has a
2304 /// float at offset 4.  It is conservatively correct for this routine to return
2305 /// false.
2306 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset,
2307                                   const llvm::DataLayout &TD) {
2308   // Base case if we find a float.
2309   if (IROffset == 0 && IRType->isFloatTy())
2310     return true;
2311 
2312   // If this is a struct, recurse into the field at the specified offset.
2313   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
2314     const llvm::StructLayout *SL = TD.getStructLayout(STy);
2315     unsigned Elt = SL->getElementContainingOffset(IROffset);
2316     IROffset -= SL->getElementOffset(Elt);
2317     return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
2318   }
2319 
2320   // If this is an array, recurse into the field at the specified offset.
2321   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
2322     llvm::Type *EltTy = ATy->getElementType();
2323     unsigned EltSize = TD.getTypeAllocSize(EltTy);
2324     IROffset -= IROffset/EltSize*EltSize;
2325     return ContainsFloatAtOffset(EltTy, IROffset, TD);
2326   }
2327 
2328   return false;
2329 }
2330 
2331 
2332 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
2333 /// low 8 bytes of an XMM register, corresponding to the SSE class.
2334 llvm::Type *X86_64ABIInfo::
2335 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
2336                    QualType SourceTy, unsigned SourceOffset) const {
2337   // The only three choices we have are either double, <2 x float>, or float. We
2338   // pass as float if the last 4 bytes is just padding.  This happens for
2339   // structs that contain 3 floats.
2340   if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
2341                             SourceOffset*8+64, getContext()))
2342     return llvm::Type::getFloatTy(getVMContext());
2343 
2344   // We want to pass as <2 x float> if the LLVM IR type contains a float at
2345   // offset+0 and offset+4.  Walk the LLVM IR type to find out if this is the
2346   // case.
2347   if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) &&
2348       ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout()))
2349     return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2);
2350 
2351   return llvm::Type::getDoubleTy(getVMContext());
2352 }
2353 
2354 
2355 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
2356 /// an 8-byte GPR.  This means that we either have a scalar or we are talking
2357 /// about the high or low part of an up-to-16-byte struct.  This routine picks
2358 /// the best LLVM IR type to represent this, which may be i64 or may be anything
2359 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
2360 /// etc).
2361 ///
2362 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
2363 /// the source type.  IROffset is an offset in bytes into the LLVM IR type that
2364 /// the 8-byte value references.  PrefType may be null.
2365 ///
2366 /// SourceTy is the source-level type for the entire argument.  SourceOffset is
2367 /// an offset into this that we're processing (which is always either 0 or 8).
2368 ///
2369 llvm::Type *X86_64ABIInfo::
2370 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
2371                        QualType SourceTy, unsigned SourceOffset) const {
2372   // If we're dealing with an un-offset LLVM IR type, then it means that we're
2373   // returning an 8-byte unit starting with it.  See if we can safely use it.
2374   if (IROffset == 0) {
2375     // Pointers and int64's always fill the 8-byte unit.
2376     if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) ||
2377         IRType->isIntegerTy(64))
2378       return IRType;
2379 
2380     // If we have a 1/2/4-byte integer, we can use it only if the rest of the
2381     // goodness in the source type is just tail padding.  This is allowed to
2382     // kick in for struct {double,int} on the int, but not on
2383     // struct{double,int,int} because we wouldn't return the second int.  We
2384     // have to do this analysis on the source type because we can't depend on
2385     // unions being lowered a specific way etc.
2386     if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
2387         IRType->isIntegerTy(32) ||
2388         (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) {
2389       unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 :
2390           cast<llvm::IntegerType>(IRType)->getBitWidth();
2391 
2392       if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
2393                                 SourceOffset*8+64, getContext()))
2394         return IRType;
2395     }
2396   }
2397 
2398   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
2399     // If this is a struct, recurse into the field at the specified offset.
2400     const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy);
2401     if (IROffset < SL->getSizeInBytes()) {
2402       unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
2403       IROffset -= SL->getElementOffset(FieldIdx);
2404 
2405       return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
2406                                     SourceTy, SourceOffset);
2407     }
2408   }
2409 
2410   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
2411     llvm::Type *EltTy = ATy->getElementType();
2412     unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy);
2413     unsigned EltOffset = IROffset/EltSize*EltSize;
2414     return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
2415                                   SourceOffset);
2416   }
2417 
2418   // Okay, we don't have any better idea of what to pass, so we pass this in an
2419   // integer register that isn't too big to fit the rest of the struct.
2420   unsigned TySizeInBytes =
2421     (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
2422 
2423   assert(TySizeInBytes != SourceOffset && "Empty field?");
2424 
2425   // It is always safe to classify this as an integer type up to i64 that
2426   // isn't larger than the structure.
2427   return llvm::IntegerType::get(getVMContext(),
2428                                 std::min(TySizeInBytes-SourceOffset, 8U)*8);
2429 }
2430 
2431 
2432 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
2433 /// be used as elements of a two register pair to pass or return, return a
2434 /// first class aggregate to represent them.  For example, if the low part of
2435 /// a by-value argument should be passed as i32* and the high part as float,
2436 /// return {i32*, float}.
2437 static llvm::Type *
2438 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
2439                            const llvm::DataLayout &TD) {
2440   // In order to correctly satisfy the ABI, we need to the high part to start
2441   // at offset 8.  If the high and low parts we inferred are both 4-byte types
2442   // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
2443   // the second element at offset 8.  Check for this:
2444   unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
2445   unsigned HiAlign = TD.getABITypeAlignment(Hi);
2446   unsigned HiStart = llvm::RoundUpToAlignment(LoSize, HiAlign);
2447   assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
2448 
2449   // To handle this, we have to increase the size of the low part so that the
2450   // second element will start at an 8 byte offset.  We can't increase the size
2451   // of the second element because it might make us access off the end of the
2452   // struct.
2453   if (HiStart != 8) {
2454     // There are only two sorts of types the ABI generation code can produce for
2455     // the low part of a pair that aren't 8 bytes in size: float or i8/i16/i32.
2456     // Promote these to a larger type.
2457     if (Lo->isFloatTy())
2458       Lo = llvm::Type::getDoubleTy(Lo->getContext());
2459     else {
2460       assert(Lo->isIntegerTy() && "Invalid/unknown lo type");
2461       Lo = llvm::Type::getInt64Ty(Lo->getContext());
2462     }
2463   }
2464 
2465   llvm::StructType *Result = llvm::StructType::get(Lo, Hi, nullptr);
2466 
2467 
2468   // Verify that the second element is at an 8-byte offset.
2469   assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
2470          "Invalid x86-64 argument pair!");
2471   return Result;
2472 }
2473 
2474 ABIArgInfo X86_64ABIInfo::
2475 classifyReturnType(QualType RetTy) const {
2476   // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
2477   // classification algorithm.
2478   X86_64ABIInfo::Class Lo, Hi;
2479   classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true);
2480 
2481   // Check some invariants.
2482   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
2483   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
2484 
2485   llvm::Type *ResType = nullptr;
2486   switch (Lo) {
2487   case NoClass:
2488     if (Hi == NoClass)
2489       return ABIArgInfo::getIgnore();
2490     // If the low part is just padding, it takes no register, leave ResType
2491     // null.
2492     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
2493            "Unknown missing lo part");
2494     break;
2495 
2496   case SSEUp:
2497   case X87Up:
2498     llvm_unreachable("Invalid classification for lo word.");
2499 
2500     // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
2501     // hidden argument.
2502   case Memory:
2503     return getIndirectReturnResult(RetTy);
2504 
2505     // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
2506     // available register of the sequence %rax, %rdx is used.
2507   case Integer:
2508     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
2509 
2510     // If we have a sign or zero extended integer, make sure to return Extend
2511     // so that the parameter gets the right LLVM IR attributes.
2512     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
2513       // Treat an enum type as its underlying type.
2514       if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
2515         RetTy = EnumTy->getDecl()->getIntegerType();
2516 
2517       if (RetTy->isIntegralOrEnumerationType() &&
2518           RetTy->isPromotableIntegerType())
2519         return ABIArgInfo::getExtend();
2520     }
2521     break;
2522 
2523     // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
2524     // available SSE register of the sequence %xmm0, %xmm1 is used.
2525   case SSE:
2526     ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
2527     break;
2528 
2529     // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
2530     // returned on the X87 stack in %st0 as 80-bit x87 number.
2531   case X87:
2532     ResType = llvm::Type::getX86_FP80Ty(getVMContext());
2533     break;
2534 
2535     // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
2536     // part of the value is returned in %st0 and the imaginary part in
2537     // %st1.
2538   case ComplexX87:
2539     assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
2540     ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
2541                                     llvm::Type::getX86_FP80Ty(getVMContext()),
2542                                     nullptr);
2543     break;
2544   }
2545 
2546   llvm::Type *HighPart = nullptr;
2547   switch (Hi) {
2548     // Memory was handled previously and X87 should
2549     // never occur as a hi class.
2550   case Memory:
2551   case X87:
2552     llvm_unreachable("Invalid classification for hi word.");
2553 
2554   case ComplexX87: // Previously handled.
2555   case NoClass:
2556     break;
2557 
2558   case Integer:
2559     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2560     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
2561       return ABIArgInfo::getDirect(HighPart, 8);
2562     break;
2563   case SSE:
2564     HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2565     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
2566       return ABIArgInfo::getDirect(HighPart, 8);
2567     break;
2568 
2569     // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
2570     // is passed in the next available eightbyte chunk if the last used
2571     // vector register.
2572     //
2573     // SSEUP should always be preceded by SSE, just widen.
2574   case SSEUp:
2575     assert(Lo == SSE && "Unexpected SSEUp classification.");
2576     ResType = GetByteVectorType(RetTy);
2577     break;
2578 
2579     // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
2580     // returned together with the previous X87 value in %st0.
2581   case X87Up:
2582     // If X87Up is preceded by X87, we don't need to do
2583     // anything. However, in some cases with unions it may not be
2584     // preceded by X87. In such situations we follow gcc and pass the
2585     // extra bits in an SSE reg.
2586     if (Lo != X87) {
2587       HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2588       if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
2589         return ABIArgInfo::getDirect(HighPart, 8);
2590     }
2591     break;
2592   }
2593 
2594   // If a high part was specified, merge it together with the low part.  It is
2595   // known to pass in the high eightbyte of the result.  We do this by forming a
2596   // first class struct aggregate with the high and low part: {low, high}
2597   if (HighPart)
2598     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
2599 
2600   return ABIArgInfo::getDirect(ResType);
2601 }
2602 
2603 ABIArgInfo X86_64ABIInfo::classifyArgumentType(
2604   QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE,
2605   bool isNamedArg)
2606   const
2607 {
2608   Ty = useFirstFieldIfTransparentUnion(Ty);
2609 
2610   X86_64ABIInfo::Class Lo, Hi;
2611   classify(Ty, 0, Lo, Hi, isNamedArg);
2612 
2613   // Check some invariants.
2614   // FIXME: Enforce these by construction.
2615   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
2616   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
2617 
2618   neededInt = 0;
2619   neededSSE = 0;
2620   llvm::Type *ResType = nullptr;
2621   switch (Lo) {
2622   case NoClass:
2623     if (Hi == NoClass)
2624       return ABIArgInfo::getIgnore();
2625     // If the low part is just padding, it takes no register, leave ResType
2626     // null.
2627     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
2628            "Unknown missing lo part");
2629     break;
2630 
2631     // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
2632     // on the stack.
2633   case Memory:
2634 
2635     // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
2636     // COMPLEX_X87, it is passed in memory.
2637   case X87:
2638   case ComplexX87:
2639     if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect)
2640       ++neededInt;
2641     return getIndirectResult(Ty, freeIntRegs);
2642 
2643   case SSEUp:
2644   case X87Up:
2645     llvm_unreachable("Invalid classification for lo word.");
2646 
2647     // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
2648     // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
2649     // and %r9 is used.
2650   case Integer:
2651     ++neededInt;
2652 
2653     // Pick an 8-byte type based on the preferred type.
2654     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
2655 
2656     // If we have a sign or zero extended integer, make sure to return Extend
2657     // so that the parameter gets the right LLVM IR attributes.
2658     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
2659       // Treat an enum type as its underlying type.
2660       if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2661         Ty = EnumTy->getDecl()->getIntegerType();
2662 
2663       if (Ty->isIntegralOrEnumerationType() &&
2664           Ty->isPromotableIntegerType())
2665         return ABIArgInfo::getExtend();
2666     }
2667 
2668     break;
2669 
2670     // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
2671     // available SSE register is used, the registers are taken in the
2672     // order from %xmm0 to %xmm7.
2673   case SSE: {
2674     llvm::Type *IRType = CGT.ConvertType(Ty);
2675     ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
2676     ++neededSSE;
2677     break;
2678   }
2679   }
2680 
2681   llvm::Type *HighPart = nullptr;
2682   switch (Hi) {
2683     // Memory was handled previously, ComplexX87 and X87 should
2684     // never occur as hi classes, and X87Up must be preceded by X87,
2685     // which is passed in memory.
2686   case Memory:
2687   case X87:
2688   case ComplexX87:
2689     llvm_unreachable("Invalid classification for hi word.");
2690 
2691   case NoClass: break;
2692 
2693   case Integer:
2694     ++neededInt;
2695     // Pick an 8-byte type based on the preferred type.
2696     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
2697 
2698     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
2699       return ABIArgInfo::getDirect(HighPart, 8);
2700     break;
2701 
2702     // X87Up generally doesn't occur here (long double is passed in
2703     // memory), except in situations involving unions.
2704   case X87Up:
2705   case SSE:
2706     HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
2707 
2708     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
2709       return ABIArgInfo::getDirect(HighPart, 8);
2710 
2711     ++neededSSE;
2712     break;
2713 
2714     // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
2715     // eightbyte is passed in the upper half of the last used SSE
2716     // register.  This only happens when 128-bit vectors are passed.
2717   case SSEUp:
2718     assert(Lo == SSE && "Unexpected SSEUp classification");
2719     ResType = GetByteVectorType(Ty);
2720     break;
2721   }
2722 
2723   // If a high part was specified, merge it together with the low part.  It is
2724   // known to pass in the high eightbyte of the result.  We do this by forming a
2725   // first class struct aggregate with the high and low part: {low, high}
2726   if (HighPart)
2727     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
2728 
2729   return ABIArgInfo::getDirect(ResType);
2730 }
2731 
2732 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
2733 
2734   if (!getCXXABI().classifyReturnType(FI))
2735     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2736 
2737   // Keep track of the number of assigned registers.
2738   unsigned freeIntRegs = 6, freeSSERegs = 8;
2739 
2740   // If the return value is indirect, then the hidden argument is consuming one
2741   // integer register.
2742   if (FI.getReturnInfo().isIndirect())
2743     --freeIntRegs;
2744 
2745   // The chain argument effectively gives us another free register.
2746   if (FI.isChainCall())
2747     ++freeIntRegs;
2748 
2749   unsigned NumRequiredArgs = FI.getNumRequiredArgs();
2750   // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
2751   // get assigned (in left-to-right order) for passing as follows...
2752   unsigned ArgNo = 0;
2753   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2754        it != ie; ++it, ++ArgNo) {
2755     bool IsNamedArg = ArgNo < NumRequiredArgs;
2756 
2757     unsigned neededInt, neededSSE;
2758     it->info = classifyArgumentType(it->type, freeIntRegs, neededInt,
2759                                     neededSSE, IsNamedArg);
2760 
2761     // AMD64-ABI 3.2.3p3: If there are no registers available for any
2762     // eightbyte of an argument, the whole argument is passed on the
2763     // stack. If registers have already been assigned for some
2764     // eightbytes of such an argument, the assignments get reverted.
2765     if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) {
2766       freeIntRegs -= neededInt;
2767       freeSSERegs -= neededSSE;
2768     } else {
2769       it->info = getIndirectResult(it->type, freeIntRegs);
2770     }
2771   }
2772 }
2773 
2774 static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr,
2775                                         QualType Ty,
2776                                         CodeGenFunction &CGF) {
2777   llvm::Value *overflow_arg_area_p = CGF.Builder.CreateStructGEP(
2778       nullptr, VAListAddr, 2, "overflow_arg_area_p");
2779   llvm::Value *overflow_arg_area =
2780     CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
2781 
2782   // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
2783   // byte boundary if alignment needed by type exceeds 8 byte boundary.
2784   // It isn't stated explicitly in the standard, but in practice we use
2785   // alignment greater than 16 where necessary.
2786   uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
2787   if (Align > 8) {
2788     // overflow_arg_area = (overflow_arg_area + align - 1) & -align;
2789     llvm::Value *Offset =
2790       llvm::ConstantInt::get(CGF.Int64Ty, Align - 1);
2791     overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset);
2792     llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area,
2793                                                     CGF.Int64Ty);
2794     llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, -(uint64_t)Align);
2795     overflow_arg_area =
2796       CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
2797                                  overflow_arg_area->getType(),
2798                                  "overflow_arg_area.align");
2799   }
2800 
2801   // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
2802   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
2803   llvm::Value *Res =
2804     CGF.Builder.CreateBitCast(overflow_arg_area,
2805                               llvm::PointerType::getUnqual(LTy));
2806 
2807   // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
2808   // l->overflow_arg_area + sizeof(type).
2809   // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
2810   // an 8 byte boundary.
2811 
2812   uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
2813   llvm::Value *Offset =
2814       llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7);
2815   overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
2816                                             "overflow_arg_area.next");
2817   CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
2818 
2819   // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
2820   return Res;
2821 }
2822 
2823 llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2824                                       CodeGenFunction &CGF) const {
2825   // Assume that va_list type is correct; should be pointer to LLVM type:
2826   // struct {
2827   //   i32 gp_offset;
2828   //   i32 fp_offset;
2829   //   i8* overflow_arg_area;
2830   //   i8* reg_save_area;
2831   // };
2832   unsigned neededInt, neededSSE;
2833 
2834   Ty = CGF.getContext().getCanonicalType(Ty);
2835   ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE,
2836                                        /*isNamedArg*/false);
2837 
2838   // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
2839   // in the registers. If not go to step 7.
2840   if (!neededInt && !neededSSE)
2841     return EmitVAArgFromMemory(VAListAddr, Ty, CGF);
2842 
2843   // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
2844   // general purpose registers needed to pass type and num_fp to hold
2845   // the number of floating point registers needed.
2846 
2847   // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
2848   // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
2849   // l->fp_offset > 304 - num_fp * 16 go to step 7.
2850   //
2851   // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
2852   // register save space).
2853 
2854   llvm::Value *InRegs = nullptr;
2855   llvm::Value *gp_offset_p = nullptr, *gp_offset = nullptr;
2856   llvm::Value *fp_offset_p = nullptr, *fp_offset = nullptr;
2857   if (neededInt) {
2858     gp_offset_p =
2859         CGF.Builder.CreateStructGEP(nullptr, VAListAddr, 0, "gp_offset_p");
2860     gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
2861     InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
2862     InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
2863   }
2864 
2865   if (neededSSE) {
2866     fp_offset_p =
2867         CGF.Builder.CreateStructGEP(nullptr, VAListAddr, 1, "fp_offset_p");
2868     fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
2869     llvm::Value *FitsInFP =
2870       llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
2871     FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
2872     InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
2873   }
2874 
2875   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
2876   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
2877   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
2878   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
2879 
2880   // Emit code to load the value if it was passed in registers.
2881 
2882   CGF.EmitBlock(InRegBlock);
2883 
2884   // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
2885   // an offset of l->gp_offset and/or l->fp_offset. This may require
2886   // copying to a temporary location in case the parameter is passed
2887   // in different register classes or requires an alignment greater
2888   // than 8 for general purpose registers and 16 for XMM registers.
2889   //
2890   // FIXME: This really results in shameful code when we end up needing to
2891   // collect arguments from different places; often what should result in a
2892   // simple assembling of a structure from scattered addresses has many more
2893   // loads than necessary. Can we clean this up?
2894   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
2895   llvm::Value *RegAddr = CGF.Builder.CreateLoad(
2896       CGF.Builder.CreateStructGEP(nullptr, VAListAddr, 3), "reg_save_area");
2897   if (neededInt && neededSSE) {
2898     // FIXME: Cleanup.
2899     assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
2900     llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
2901     llvm::Value *Tmp = CGF.CreateMemTemp(Ty);
2902     Tmp = CGF.Builder.CreateBitCast(Tmp, ST->getPointerTo());
2903     assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
2904     llvm::Type *TyLo = ST->getElementType(0);
2905     llvm::Type *TyHi = ST->getElementType(1);
2906     assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
2907            "Unexpected ABI info for mixed regs");
2908     llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
2909     llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
2910     llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
2911     llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2912     llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr;
2913     llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr;
2914     llvm::Value *V =
2915       CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo));
2916     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(ST, Tmp, 0));
2917     V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi));
2918     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(ST, Tmp, 1));
2919 
2920     RegAddr = CGF.Builder.CreateBitCast(Tmp,
2921                                         llvm::PointerType::getUnqual(LTy));
2922   } else if (neededInt) {
2923     RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
2924     RegAddr = CGF.Builder.CreateBitCast(RegAddr,
2925                                         llvm::PointerType::getUnqual(LTy));
2926 
2927     // Copy to a temporary if necessary to ensure the appropriate alignment.
2928     std::pair<CharUnits, CharUnits> SizeAlign =
2929         CGF.getContext().getTypeInfoInChars(Ty);
2930     uint64_t TySize = SizeAlign.first.getQuantity();
2931     unsigned TyAlign = SizeAlign.second.getQuantity();
2932     if (TyAlign > 8) {
2933       llvm::Value *Tmp = CGF.CreateMemTemp(Ty);
2934       CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, 8, false);
2935       RegAddr = Tmp;
2936     }
2937   } else if (neededSSE == 1) {
2938     RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2939     RegAddr = CGF.Builder.CreateBitCast(RegAddr,
2940                                         llvm::PointerType::getUnqual(LTy));
2941   } else {
2942     assert(neededSSE == 2 && "Invalid number of needed registers!");
2943     // SSE registers are spaced 16 bytes apart in the register save
2944     // area, we need to collect the two eightbytes together.
2945     llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2946     llvm::Value *RegAddrHi = CGF.Builder.CreateConstGEP1_32(RegAddrLo, 16);
2947     llvm::Type *DoubleTy = CGF.DoubleTy;
2948     llvm::Type *DblPtrTy =
2949       llvm::PointerType::getUnqual(DoubleTy);
2950     llvm::StructType *ST = llvm::StructType::get(DoubleTy, DoubleTy, nullptr);
2951     llvm::Value *V, *Tmp = CGF.CreateMemTemp(Ty);
2952     Tmp = CGF.Builder.CreateBitCast(Tmp, ST->getPointerTo());
2953     V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo,
2954                                                          DblPtrTy));
2955     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(ST, Tmp, 0));
2956     V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi,
2957                                                          DblPtrTy));
2958     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(ST, Tmp, 1));
2959     RegAddr = CGF.Builder.CreateBitCast(Tmp,
2960                                         llvm::PointerType::getUnqual(LTy));
2961   }
2962 
2963   // AMD64-ABI 3.5.7p5: Step 5. Set:
2964   // l->gp_offset = l->gp_offset + num_gp * 8
2965   // l->fp_offset = l->fp_offset + num_fp * 16.
2966   if (neededInt) {
2967     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
2968     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
2969                             gp_offset_p);
2970   }
2971   if (neededSSE) {
2972     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
2973     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
2974                             fp_offset_p);
2975   }
2976   CGF.EmitBranch(ContBlock);
2977 
2978   // Emit code to load the value if it was passed in memory.
2979 
2980   CGF.EmitBlock(InMemBlock);
2981   llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF);
2982 
2983   // Return the appropriate result.
2984 
2985   CGF.EmitBlock(ContBlock);
2986   llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(), 2,
2987                                                  "vaarg.addr");
2988   ResAddr->addIncoming(RegAddr, InRegBlock);
2989   ResAddr->addIncoming(MemAddr, InMemBlock);
2990   return ResAddr;
2991 }
2992 
2993 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs,
2994                                       bool IsReturnType) const {
2995 
2996   if (Ty->isVoidType())
2997     return ABIArgInfo::getIgnore();
2998 
2999   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3000     Ty = EnumTy->getDecl()->getIntegerType();
3001 
3002   TypeInfo Info = getContext().getTypeInfo(Ty);
3003   uint64_t Width = Info.Width;
3004   unsigned Align = getContext().toCharUnitsFromBits(Info.Align).getQuantity();
3005 
3006   const RecordType *RT = Ty->getAs<RecordType>();
3007   if (RT) {
3008     if (!IsReturnType) {
3009       if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()))
3010         return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
3011     }
3012 
3013     if (RT->getDecl()->hasFlexibleArrayMember())
3014       return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3015 
3016     // FIXME: mingw-w64-gcc emits 128-bit struct as i128
3017     if (Width == 128 && getTarget().getTriple().isWindowsGNUEnvironment())
3018       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
3019                                                           Width));
3020   }
3021 
3022   // vectorcall adds the concept of a homogenous vector aggregate, similar to
3023   // other targets.
3024   const Type *Base = nullptr;
3025   uint64_t NumElts = 0;
3026   if (FreeSSERegs && isHomogeneousAggregate(Ty, Base, NumElts)) {
3027     if (FreeSSERegs >= NumElts) {
3028       FreeSSERegs -= NumElts;
3029       if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())
3030         return ABIArgInfo::getDirect();
3031       return ABIArgInfo::getExpand();
3032     }
3033     return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3034   }
3035 
3036 
3037   if (Ty->isMemberPointerType()) {
3038     // If the member pointer is represented by an LLVM int or ptr, pass it
3039     // directly.
3040     llvm::Type *LLTy = CGT.ConvertType(Ty);
3041     if (LLTy->isPointerTy() || LLTy->isIntegerTy())
3042       return ABIArgInfo::getDirect();
3043   }
3044 
3045   if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) {
3046     // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
3047     // not 1, 2, 4, or 8 bytes, must be passed by reference."
3048     if (Width > 64 || !llvm::isPowerOf2_64(Width))
3049       return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3050 
3051     // Otherwise, coerce it to a small integer.
3052     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width));
3053   }
3054 
3055   // Bool type is always extended to the ABI, other builtin types are not
3056   // extended.
3057   const BuiltinType *BT = Ty->getAs<BuiltinType>();
3058   if (BT && BT->getKind() == BuiltinType::Bool)
3059     return ABIArgInfo::getExtend();
3060 
3061   return ABIArgInfo::getDirect();
3062 }
3063 
3064 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
3065   bool IsVectorCall =
3066       FI.getCallingConvention() == llvm::CallingConv::X86_VectorCall;
3067 
3068   // We can use up to 4 SSE return registers with vectorcall.
3069   unsigned FreeSSERegs = IsVectorCall ? 4 : 0;
3070   if (!getCXXABI().classifyReturnType(FI))
3071     FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true);
3072 
3073   // We can use up to 6 SSE register parameters with vectorcall.
3074   FreeSSERegs = IsVectorCall ? 6 : 0;
3075   for (auto &I : FI.arguments())
3076     I.info = classify(I.type, FreeSSERegs, false);
3077 }
3078 
3079 llvm::Value *WinX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3080                                       CodeGenFunction &CGF) const {
3081   llvm::Type *BPP = CGF.Int8PtrPtrTy;
3082 
3083   CGBuilderTy &Builder = CGF.Builder;
3084   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
3085                                                        "ap");
3086   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
3087   llvm::Type *PTy =
3088     llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
3089   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
3090 
3091   uint64_t Offset =
3092     llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 8);
3093   llvm::Value *NextAddr =
3094     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
3095                       "ap.next");
3096   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
3097 
3098   return AddrTyped;
3099 }
3100 
3101 // PowerPC-32
3102 namespace {
3103 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information.
3104 class PPC32_SVR4_ABIInfo : public DefaultABIInfo {
3105 public:
3106   PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
3107 
3108   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3109                          CodeGenFunction &CGF) const override;
3110 };
3111 
3112 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo {
3113 public:
3114   PPC32TargetCodeGenInfo(CodeGenTypes &CGT) : TargetCodeGenInfo(new PPC32_SVR4_ABIInfo(CGT)) {}
3115 
3116   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
3117     // This is recovered from gcc output.
3118     return 1; // r1 is the dedicated stack pointer
3119   }
3120 
3121   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3122                                llvm::Value *Address) const override;
3123 
3124   unsigned getOpenMPSimdDefaultAlignment(QualType) const override {
3125     return 16; // Natural alignment for Altivec vectors.
3126   }
3127 };
3128 
3129 }
3130 
3131 llvm::Value *PPC32_SVR4_ABIInfo::EmitVAArg(llvm::Value *VAListAddr,
3132                                            QualType Ty,
3133                                            CodeGenFunction &CGF) const {
3134   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
3135     // TODO: Implement this. For now ignore.
3136     (void)CTy;
3137     return nullptr;
3138   }
3139 
3140   bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64;
3141   bool isInt = Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType();
3142   llvm::Type *CharPtr = CGF.Int8PtrTy;
3143   llvm::Type *CharPtrPtr = CGF.Int8PtrPtrTy;
3144 
3145   CGBuilderTy &Builder = CGF.Builder;
3146   llvm::Value *GPRPtr = Builder.CreateBitCast(VAListAddr, CharPtr, "gprptr");
3147   llvm::Value *GPRPtrAsInt = Builder.CreatePtrToInt(GPRPtr, CGF.Int32Ty);
3148   llvm::Value *FPRPtrAsInt = Builder.CreateAdd(GPRPtrAsInt, Builder.getInt32(1));
3149   llvm::Value *FPRPtr = Builder.CreateIntToPtr(FPRPtrAsInt, CharPtr);
3150   llvm::Value *OverflowAreaPtrAsInt = Builder.CreateAdd(FPRPtrAsInt, Builder.getInt32(3));
3151   llvm::Value *OverflowAreaPtr = Builder.CreateIntToPtr(OverflowAreaPtrAsInt, CharPtrPtr);
3152   llvm::Value *RegsaveAreaPtrAsInt = Builder.CreateAdd(OverflowAreaPtrAsInt, Builder.getInt32(4));
3153   llvm::Value *RegsaveAreaPtr = Builder.CreateIntToPtr(RegsaveAreaPtrAsInt, CharPtrPtr);
3154   llvm::Value *GPR = Builder.CreateLoad(GPRPtr, false, "gpr");
3155   // Align GPR when TY is i64.
3156   if (isI64) {
3157     llvm::Value *GPRAnd = Builder.CreateAnd(GPR, Builder.getInt8(1));
3158     llvm::Value *CC64 = Builder.CreateICmpEQ(GPRAnd, Builder.getInt8(1));
3159     llvm::Value *GPRPlusOne = Builder.CreateAdd(GPR, Builder.getInt8(1));
3160     GPR = Builder.CreateSelect(CC64, GPRPlusOne, GPR);
3161   }
3162   llvm::Value *FPR = Builder.CreateLoad(FPRPtr, false, "fpr");
3163   llvm::Value *OverflowArea = Builder.CreateLoad(OverflowAreaPtr, false, "overflow_area");
3164   llvm::Value *OverflowAreaAsInt = Builder.CreatePtrToInt(OverflowArea, CGF.Int32Ty);
3165   llvm::Value *RegsaveArea = Builder.CreateLoad(RegsaveAreaPtr, false, "regsave_area");
3166   llvm::Value *RegsaveAreaAsInt = Builder.CreatePtrToInt(RegsaveArea, CGF.Int32Ty);
3167 
3168   llvm::Value *CC = Builder.CreateICmpULT(isInt ? GPR : FPR,
3169                                           Builder.getInt8(8), "cond");
3170 
3171   llvm::Value *RegConstant = Builder.CreateMul(isInt ? GPR : FPR,
3172                                                Builder.getInt8(isInt ? 4 : 8));
3173 
3174   llvm::Value *OurReg = Builder.CreateAdd(RegsaveAreaAsInt, Builder.CreateSExt(RegConstant, CGF.Int32Ty));
3175 
3176   if (Ty->isFloatingType())
3177     OurReg = Builder.CreateAdd(OurReg, Builder.getInt32(32));
3178 
3179   llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs");
3180   llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow");
3181   llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
3182 
3183   Builder.CreateCondBr(CC, UsingRegs, UsingOverflow);
3184 
3185   CGF.EmitBlock(UsingRegs);
3186 
3187   llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
3188   llvm::Value *Result1 = Builder.CreateIntToPtr(OurReg, PTy);
3189   // Increase the GPR/FPR indexes.
3190   if (isInt) {
3191     GPR = Builder.CreateAdd(GPR, Builder.getInt8(isI64 ? 2 : 1));
3192     Builder.CreateStore(GPR, GPRPtr);
3193   } else {
3194     FPR = Builder.CreateAdd(FPR, Builder.getInt8(1));
3195     Builder.CreateStore(FPR, FPRPtr);
3196   }
3197   CGF.EmitBranch(Cont);
3198 
3199   CGF.EmitBlock(UsingOverflow);
3200 
3201   // Increase the overflow area.
3202   llvm::Value *Result2 = Builder.CreateIntToPtr(OverflowAreaAsInt, PTy);
3203   OverflowAreaAsInt = Builder.CreateAdd(OverflowAreaAsInt, Builder.getInt32(isInt ? 4 : 8));
3204   Builder.CreateStore(Builder.CreateIntToPtr(OverflowAreaAsInt, CharPtr), OverflowAreaPtr);
3205   CGF.EmitBranch(Cont);
3206 
3207   CGF.EmitBlock(Cont);
3208 
3209   llvm::PHINode *Result = CGF.Builder.CreatePHI(PTy, 2, "vaarg.addr");
3210   Result->addIncoming(Result1, UsingRegs);
3211   Result->addIncoming(Result2, UsingOverflow);
3212 
3213   if (Ty->isAggregateType()) {
3214     llvm::Value *AGGPtr = Builder.CreateBitCast(Result, CharPtrPtr, "aggrptr")  ;
3215     return Builder.CreateLoad(AGGPtr, false, "aggr");
3216   }
3217 
3218   return Result;
3219 }
3220 
3221 bool
3222 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3223                                                 llvm::Value *Address) const {
3224   // This is calculated from the LLVM and GCC tables and verified
3225   // against gcc output.  AFAIK all ABIs use the same encoding.
3226 
3227   CodeGen::CGBuilderTy &Builder = CGF.Builder;
3228 
3229   llvm::IntegerType *i8 = CGF.Int8Ty;
3230   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
3231   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
3232   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
3233 
3234   // 0-31: r0-31, the 4-byte general-purpose registers
3235   AssignToArrayRange(Builder, Address, Four8, 0, 31);
3236 
3237   // 32-63: fp0-31, the 8-byte floating-point registers
3238   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
3239 
3240   // 64-76 are various 4-byte special-purpose registers:
3241   // 64: mq
3242   // 65: lr
3243   // 66: ctr
3244   // 67: ap
3245   // 68-75 cr0-7
3246   // 76: xer
3247   AssignToArrayRange(Builder, Address, Four8, 64, 76);
3248 
3249   // 77-108: v0-31, the 16-byte vector registers
3250   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
3251 
3252   // 109: vrsave
3253   // 110: vscr
3254   // 111: spe_acc
3255   // 112: spefscr
3256   // 113: sfp
3257   AssignToArrayRange(Builder, Address, Four8, 109, 113);
3258 
3259   return false;
3260 }
3261 
3262 // PowerPC-64
3263 
3264 namespace {
3265 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information.
3266 class PPC64_SVR4_ABIInfo : public DefaultABIInfo {
3267 public:
3268   enum ABIKind {
3269     ELFv1 = 0,
3270     ELFv2
3271   };
3272 
3273 private:
3274   static const unsigned GPRBits = 64;
3275   ABIKind Kind;
3276   bool HasQPX;
3277 
3278   // A vector of float or double will be promoted to <4 x f32> or <4 x f64> and
3279   // will be passed in a QPX register.
3280   bool IsQPXVectorTy(const Type *Ty) const {
3281     if (!HasQPX)
3282       return false;
3283 
3284     if (const VectorType *VT = Ty->getAs<VectorType>()) {
3285       unsigned NumElements = VT->getNumElements();
3286       if (NumElements == 1)
3287         return false;
3288 
3289       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) {
3290         if (getContext().getTypeSize(Ty) <= 256)
3291           return true;
3292       } else if (VT->getElementType()->
3293                    isSpecificBuiltinType(BuiltinType::Float)) {
3294         if (getContext().getTypeSize(Ty) <= 128)
3295           return true;
3296       }
3297     }
3298 
3299     return false;
3300   }
3301 
3302   bool IsQPXVectorTy(QualType Ty) const {
3303     return IsQPXVectorTy(Ty.getTypePtr());
3304   }
3305 
3306 public:
3307   PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, bool HasQPX)
3308     : DefaultABIInfo(CGT), Kind(Kind), HasQPX(HasQPX) {}
3309 
3310   bool isPromotableTypeForABI(QualType Ty) const;
3311   bool isAlignedParamType(QualType Ty, bool &Align32) const;
3312 
3313   ABIArgInfo classifyReturnType(QualType RetTy) const;
3314   ABIArgInfo classifyArgumentType(QualType Ty) const;
3315 
3316   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
3317   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
3318                                          uint64_t Members) const override;
3319 
3320   // TODO: We can add more logic to computeInfo to improve performance.
3321   // Example: For aggregate arguments that fit in a register, we could
3322   // use getDirectInReg (as is done below for structs containing a single
3323   // floating-point value) to avoid pushing them to memory on function
3324   // entry.  This would require changing the logic in PPCISelLowering
3325   // when lowering the parameters in the caller and args in the callee.
3326   void computeInfo(CGFunctionInfo &FI) const override {
3327     if (!getCXXABI().classifyReturnType(FI))
3328       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3329     for (auto &I : FI.arguments()) {
3330       // We rely on the default argument classification for the most part.
3331       // One exception:  An aggregate containing a single floating-point
3332       // or vector item must be passed in a register if one is available.
3333       const Type *T = isSingleElementStruct(I.type, getContext());
3334       if (T) {
3335         const BuiltinType *BT = T->getAs<BuiltinType>();
3336         if (IsQPXVectorTy(T) ||
3337             (T->isVectorType() && getContext().getTypeSize(T) == 128) ||
3338             (BT && BT->isFloatingPoint())) {
3339           QualType QT(T, 0);
3340           I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT));
3341           continue;
3342         }
3343       }
3344       I.info = classifyArgumentType(I.type);
3345     }
3346   }
3347 
3348   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3349                          CodeGenFunction &CGF) const override;
3350 };
3351 
3352 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo {
3353   bool HasQPX;
3354 
3355 public:
3356   PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT,
3357                                PPC64_SVR4_ABIInfo::ABIKind Kind, bool HasQPX)
3358     : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT, Kind, HasQPX)),
3359       HasQPX(HasQPX) {}
3360 
3361   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
3362     // This is recovered from gcc output.
3363     return 1; // r1 is the dedicated stack pointer
3364   }
3365 
3366   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3367                                llvm::Value *Address) const override;
3368 
3369   unsigned getOpenMPSimdDefaultAlignment(QualType QT) const override {
3370     if (HasQPX)
3371       if (const PointerType *PT = QT->getAs<PointerType>())
3372         if (PT->getPointeeType()->isSpecificBuiltinType(BuiltinType::Double))
3373           return 32; // Natural alignment for QPX doubles.
3374 
3375     return 16; // Natural alignment for Altivec and VSX vectors.
3376   }
3377 };
3378 
3379 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
3380 public:
3381   PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
3382 
3383   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
3384     // This is recovered from gcc output.
3385     return 1; // r1 is the dedicated stack pointer
3386   }
3387 
3388   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3389                                llvm::Value *Address) const override;
3390 
3391   unsigned getOpenMPSimdDefaultAlignment(QualType) const override {
3392     return 16; // Natural alignment for Altivec vectors.
3393   }
3394 };
3395 
3396 }
3397 
3398 // Return true if the ABI requires Ty to be passed sign- or zero-
3399 // extended to 64 bits.
3400 bool
3401 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const {
3402   // Treat an enum type as its underlying type.
3403   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3404     Ty = EnumTy->getDecl()->getIntegerType();
3405 
3406   // Promotable integer types are required to be promoted by the ABI.
3407   if (Ty->isPromotableIntegerType())
3408     return true;
3409 
3410   // In addition to the usual promotable integer types, we also need to
3411   // extend all 32-bit types, since the ABI requires promotion to 64 bits.
3412   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
3413     switch (BT->getKind()) {
3414     case BuiltinType::Int:
3415     case BuiltinType::UInt:
3416       return true;
3417     default:
3418       break;
3419     }
3420 
3421   return false;
3422 }
3423 
3424 /// isAlignedParamType - Determine whether a type requires 16-byte
3425 /// alignment in the parameter area.
3426 bool
3427 PPC64_SVR4_ABIInfo::isAlignedParamType(QualType Ty, bool &Align32) const {
3428   Align32 = false;
3429 
3430   // Complex types are passed just like their elements.
3431   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
3432     Ty = CTy->getElementType();
3433 
3434   // Only vector types of size 16 bytes need alignment (larger types are
3435   // passed via reference, smaller types are not aligned).
3436   if (IsQPXVectorTy(Ty)) {
3437     if (getContext().getTypeSize(Ty) > 128)
3438       Align32 = true;
3439 
3440     return true;
3441   } else if (Ty->isVectorType()) {
3442     return getContext().getTypeSize(Ty) == 128;
3443   }
3444 
3445   // For single-element float/vector structs, we consider the whole type
3446   // to have the same alignment requirements as its single element.
3447   const Type *AlignAsType = nullptr;
3448   const Type *EltType = isSingleElementStruct(Ty, getContext());
3449   if (EltType) {
3450     const BuiltinType *BT = EltType->getAs<BuiltinType>();
3451     if (IsQPXVectorTy(EltType) || (EltType->isVectorType() &&
3452          getContext().getTypeSize(EltType) == 128) ||
3453         (BT && BT->isFloatingPoint()))
3454       AlignAsType = EltType;
3455   }
3456 
3457   // Likewise for ELFv2 homogeneous aggregates.
3458   const Type *Base = nullptr;
3459   uint64_t Members = 0;
3460   if (!AlignAsType && Kind == ELFv2 &&
3461       isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members))
3462     AlignAsType = Base;
3463 
3464   // With special case aggregates, only vector base types need alignment.
3465   if (AlignAsType && IsQPXVectorTy(AlignAsType)) {
3466     if (getContext().getTypeSize(AlignAsType) > 128)
3467       Align32 = true;
3468 
3469     return true;
3470   } else if (AlignAsType) {
3471     return AlignAsType->isVectorType();
3472   }
3473 
3474   // Otherwise, we only need alignment for any aggregate type that
3475   // has an alignment requirement of >= 16 bytes.
3476   if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) {
3477     if (HasQPX && getContext().getTypeAlign(Ty) >= 256)
3478       Align32 = true;
3479     return true;
3480   }
3481 
3482   return false;
3483 }
3484 
3485 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous
3486 /// aggregate.  Base is set to the base element type, and Members is set
3487 /// to the number of base elements.
3488 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base,
3489                                      uint64_t &Members) const {
3490   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
3491     uint64_t NElements = AT->getSize().getZExtValue();
3492     if (NElements == 0)
3493       return false;
3494     if (!isHomogeneousAggregate(AT->getElementType(), Base, Members))
3495       return false;
3496     Members *= NElements;
3497   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
3498     const RecordDecl *RD = RT->getDecl();
3499     if (RD->hasFlexibleArrayMember())
3500       return false;
3501 
3502     Members = 0;
3503 
3504     // If this is a C++ record, check the bases first.
3505     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
3506       for (const auto &I : CXXRD->bases()) {
3507         // Ignore empty records.
3508         if (isEmptyRecord(getContext(), I.getType(), true))
3509           continue;
3510 
3511         uint64_t FldMembers;
3512         if (!isHomogeneousAggregate(I.getType(), Base, FldMembers))
3513           return false;
3514 
3515         Members += FldMembers;
3516       }
3517     }
3518 
3519     for (const auto *FD : RD->fields()) {
3520       // Ignore (non-zero arrays of) empty records.
3521       QualType FT = FD->getType();
3522       while (const ConstantArrayType *AT =
3523              getContext().getAsConstantArrayType(FT)) {
3524         if (AT->getSize().getZExtValue() == 0)
3525           return false;
3526         FT = AT->getElementType();
3527       }
3528       if (isEmptyRecord(getContext(), FT, true))
3529         continue;
3530 
3531       // For compatibility with GCC, ignore empty bitfields in C++ mode.
3532       if (getContext().getLangOpts().CPlusPlus &&
3533           FD->isBitField() && FD->getBitWidthValue(getContext()) == 0)
3534         continue;
3535 
3536       uint64_t FldMembers;
3537       if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers))
3538         return false;
3539 
3540       Members = (RD->isUnion() ?
3541                  std::max(Members, FldMembers) : Members + FldMembers);
3542     }
3543 
3544     if (!Base)
3545       return false;
3546 
3547     // Ensure there is no padding.
3548     if (getContext().getTypeSize(Base) * Members !=
3549         getContext().getTypeSize(Ty))
3550       return false;
3551   } else {
3552     Members = 1;
3553     if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
3554       Members = 2;
3555       Ty = CT->getElementType();
3556     }
3557 
3558     // Most ABIs only support float, double, and some vector type widths.
3559     if (!isHomogeneousAggregateBaseType(Ty))
3560       return false;
3561 
3562     // The base type must be the same for all members.  Types that
3563     // agree in both total size and mode (float vs. vector) are
3564     // treated as being equivalent here.
3565     const Type *TyPtr = Ty.getTypePtr();
3566     if (!Base)
3567       Base = TyPtr;
3568 
3569     if (Base->isVectorType() != TyPtr->isVectorType() ||
3570         getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr))
3571       return false;
3572   }
3573   return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members);
3574 }
3575 
3576 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
3577   // Homogeneous aggregates for ELFv2 must have base types of float,
3578   // double, long double, or 128-bit vectors.
3579   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
3580     if (BT->getKind() == BuiltinType::Float ||
3581         BT->getKind() == BuiltinType::Double ||
3582         BT->getKind() == BuiltinType::LongDouble)
3583       return true;
3584   }
3585   if (const VectorType *VT = Ty->getAs<VectorType>()) {
3586     if (getContext().getTypeSize(VT) == 128 || IsQPXVectorTy(Ty))
3587       return true;
3588   }
3589   return false;
3590 }
3591 
3592 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough(
3593     const Type *Base, uint64_t Members) const {
3594   // Vector types require one register, floating point types require one
3595   // or two registers depending on their size.
3596   uint32_t NumRegs =
3597       Base->isVectorType() ? 1 : (getContext().getTypeSize(Base) + 63) / 64;
3598 
3599   // Homogeneous Aggregates may occupy at most 8 registers.
3600   return Members * NumRegs <= 8;
3601 }
3602 
3603 ABIArgInfo
3604 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const {
3605   Ty = useFirstFieldIfTransparentUnion(Ty);
3606 
3607   if (Ty->isAnyComplexType())
3608     return ABIArgInfo::getDirect();
3609 
3610   // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes)
3611   // or via reference (larger than 16 bytes).
3612   if (Ty->isVectorType() && !IsQPXVectorTy(Ty)) {
3613     uint64_t Size = getContext().getTypeSize(Ty);
3614     if (Size > 128)
3615       return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3616     else if (Size < 128) {
3617       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
3618       return ABIArgInfo::getDirect(CoerceTy);
3619     }
3620   }
3621 
3622   if (isAggregateTypeForABI(Ty)) {
3623     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
3624       return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
3625 
3626     bool Align32;
3627     uint64_t ABIAlign = isAlignedParamType(Ty, Align32) ?
3628                           (Align32 ? 32 : 16) : 8;
3629     uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8;
3630 
3631     // ELFv2 homogeneous aggregates are passed as array types.
3632     const Type *Base = nullptr;
3633     uint64_t Members = 0;
3634     if (Kind == ELFv2 &&
3635         isHomogeneousAggregate(Ty, Base, Members)) {
3636       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
3637       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
3638       return ABIArgInfo::getDirect(CoerceTy);
3639     }
3640 
3641     // If an aggregate may end up fully in registers, we do not
3642     // use the ByVal method, but pass the aggregate as array.
3643     // This is usually beneficial since we avoid forcing the
3644     // back-end to store the argument to memory.
3645     uint64_t Bits = getContext().getTypeSize(Ty);
3646     if (Bits > 0 && Bits <= 8 * GPRBits) {
3647       llvm::Type *CoerceTy;
3648 
3649       // Types up to 8 bytes are passed as integer type (which will be
3650       // properly aligned in the argument save area doubleword).
3651       if (Bits <= GPRBits)
3652         CoerceTy = llvm::IntegerType::get(getVMContext(),
3653                                           llvm::RoundUpToAlignment(Bits, 8));
3654       // Larger types are passed as arrays, with the base type selected
3655       // according to the required alignment in the save area.
3656       else {
3657         uint64_t RegBits = ABIAlign * 8;
3658         uint64_t NumRegs = llvm::RoundUpToAlignment(Bits, RegBits) / RegBits;
3659         llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits);
3660         CoerceTy = llvm::ArrayType::get(RegTy, NumRegs);
3661       }
3662 
3663       return ABIArgInfo::getDirect(CoerceTy);
3664     }
3665 
3666     // All other aggregates are passed ByVal.
3667     return ABIArgInfo::getIndirect(ABIAlign, /*ByVal=*/true,
3668                                    /*Realign=*/TyAlign > ABIAlign);
3669   }
3670 
3671   return (isPromotableTypeForABI(Ty) ?
3672           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3673 }
3674 
3675 ABIArgInfo
3676 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
3677   if (RetTy->isVoidType())
3678     return ABIArgInfo::getIgnore();
3679 
3680   if (RetTy->isAnyComplexType())
3681     return ABIArgInfo::getDirect();
3682 
3683   // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes)
3684   // or via reference (larger than 16 bytes).
3685   if (RetTy->isVectorType() && !IsQPXVectorTy(RetTy)) {
3686     uint64_t Size = getContext().getTypeSize(RetTy);
3687     if (Size > 128)
3688       return ABIArgInfo::getIndirect(0);
3689     else if (Size < 128) {
3690       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
3691       return ABIArgInfo::getDirect(CoerceTy);
3692     }
3693   }
3694 
3695   if (isAggregateTypeForABI(RetTy)) {
3696     // ELFv2 homogeneous aggregates are returned as array types.
3697     const Type *Base = nullptr;
3698     uint64_t Members = 0;
3699     if (Kind == ELFv2 &&
3700         isHomogeneousAggregate(RetTy, Base, Members)) {
3701       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
3702       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
3703       return ABIArgInfo::getDirect(CoerceTy);
3704     }
3705 
3706     // ELFv2 small aggregates are returned in up to two registers.
3707     uint64_t Bits = getContext().getTypeSize(RetTy);
3708     if (Kind == ELFv2 && Bits <= 2 * GPRBits) {
3709       if (Bits == 0)
3710         return ABIArgInfo::getIgnore();
3711 
3712       llvm::Type *CoerceTy;
3713       if (Bits > GPRBits) {
3714         CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits);
3715         CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy, nullptr);
3716       } else
3717         CoerceTy = llvm::IntegerType::get(getVMContext(),
3718                                           llvm::RoundUpToAlignment(Bits, 8));
3719       return ABIArgInfo::getDirect(CoerceTy);
3720     }
3721 
3722     // All other aggregates are returned indirectly.
3723     return ABIArgInfo::getIndirect(0);
3724   }
3725 
3726   return (isPromotableTypeForABI(RetTy) ?
3727           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3728 }
3729 
3730 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine.
3731 llvm::Value *PPC64_SVR4_ABIInfo::EmitVAArg(llvm::Value *VAListAddr,
3732                                            QualType Ty,
3733                                            CodeGenFunction &CGF) const {
3734   llvm::Type *BP = CGF.Int8PtrTy;
3735   llvm::Type *BPP = CGF.Int8PtrPtrTy;
3736 
3737   CGBuilderTy &Builder = CGF.Builder;
3738   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
3739   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
3740 
3741   // Handle types that require 16-byte alignment in the parameter save area.
3742   bool Align32;
3743   if (isAlignedParamType(Ty, Align32)) {
3744     llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty);
3745     AddrAsInt = Builder.CreateAdd(AddrAsInt,
3746                                   Builder.getInt64(Align32 ? 31 : 15));
3747     AddrAsInt = Builder.CreateAnd(AddrAsInt,
3748                                   Builder.getInt64(Align32 ? -32 : -16));
3749     Addr = Builder.CreateIntToPtr(AddrAsInt, BP, "ap.align");
3750   }
3751 
3752   // Update the va_list pointer.  The pointer should be bumped by the
3753   // size of the object.  We can trust getTypeSize() except for a complex
3754   // type whose base type is smaller than a doubleword.  For these, the
3755   // size of the object is 16 bytes; see below for further explanation.
3756   unsigned SizeInBytes = CGF.getContext().getTypeSize(Ty) / 8;
3757   QualType BaseTy;
3758   unsigned CplxBaseSize = 0;
3759 
3760   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
3761     BaseTy = CTy->getElementType();
3762     CplxBaseSize = CGF.getContext().getTypeSize(BaseTy) / 8;
3763     if (CplxBaseSize < 8)
3764       SizeInBytes = 16;
3765   }
3766 
3767   unsigned Offset = llvm::RoundUpToAlignment(SizeInBytes, 8);
3768   llvm::Value *NextAddr =
3769     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int64Ty, Offset),
3770                       "ap.next");
3771   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
3772 
3773   // If we have a complex type and the base type is smaller than 8 bytes,
3774   // the ABI calls for the real and imaginary parts to be right-adjusted
3775   // in separate doublewords.  However, Clang expects us to produce a
3776   // pointer to a structure with the two parts packed tightly.  So generate
3777   // loads of the real and imaginary parts relative to the va_list pointer,
3778   // and store them to a temporary structure.
3779   if (CplxBaseSize && CplxBaseSize < 8) {
3780     llvm::Value *RealAddr = Builder.CreatePtrToInt(Addr, CGF.Int64Ty);
3781     llvm::Value *ImagAddr = RealAddr;
3782     if (CGF.CGM.getDataLayout().isBigEndian()) {
3783       RealAddr = Builder.CreateAdd(RealAddr, Builder.getInt64(8 - CplxBaseSize));
3784       ImagAddr = Builder.CreateAdd(ImagAddr, Builder.getInt64(16 - CplxBaseSize));
3785     } else {
3786       ImagAddr = Builder.CreateAdd(ImagAddr, Builder.getInt64(8));
3787     }
3788     llvm::Type *PBaseTy = llvm::PointerType::getUnqual(CGF.ConvertType(BaseTy));
3789     RealAddr = Builder.CreateIntToPtr(RealAddr, PBaseTy);
3790     ImagAddr = Builder.CreateIntToPtr(ImagAddr, PBaseTy);
3791     llvm::Value *Real = Builder.CreateLoad(RealAddr, false, ".vareal");
3792     llvm::Value *Imag = Builder.CreateLoad(ImagAddr, false, ".vaimag");
3793     llvm::AllocaInst *Ptr =
3794         CGF.CreateTempAlloca(CGT.ConvertTypeForMem(Ty), "vacplx");
3795     llvm::Value *RealPtr =
3796         Builder.CreateStructGEP(Ptr->getAllocatedType(), Ptr, 0, ".real");
3797     llvm::Value *ImagPtr =
3798         Builder.CreateStructGEP(Ptr->getAllocatedType(), Ptr, 1, ".imag");
3799     Builder.CreateStore(Real, RealPtr, false);
3800     Builder.CreateStore(Imag, ImagPtr, false);
3801     return Ptr;
3802   }
3803 
3804   // If the argument is smaller than 8 bytes, it is right-adjusted in
3805   // its doubleword slot.  Adjust the pointer to pick it up from the
3806   // correct offset.
3807   if (SizeInBytes < 8 && CGF.CGM.getDataLayout().isBigEndian()) {
3808     llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty);
3809     AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt64(8 - SizeInBytes));
3810     Addr = Builder.CreateIntToPtr(AddrAsInt, BP);
3811   }
3812 
3813   llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
3814   return Builder.CreateBitCast(Addr, PTy);
3815 }
3816 
3817 static bool
3818 PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3819                               llvm::Value *Address) {
3820   // This is calculated from the LLVM and GCC tables and verified
3821   // against gcc output.  AFAIK all ABIs use the same encoding.
3822 
3823   CodeGen::CGBuilderTy &Builder = CGF.Builder;
3824 
3825   llvm::IntegerType *i8 = CGF.Int8Ty;
3826   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
3827   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
3828   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
3829 
3830   // 0-31: r0-31, the 8-byte general-purpose registers
3831   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
3832 
3833   // 32-63: fp0-31, the 8-byte floating-point registers
3834   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
3835 
3836   // 64-76 are various 4-byte special-purpose registers:
3837   // 64: mq
3838   // 65: lr
3839   // 66: ctr
3840   // 67: ap
3841   // 68-75 cr0-7
3842   // 76: xer
3843   AssignToArrayRange(Builder, Address, Four8, 64, 76);
3844 
3845   // 77-108: v0-31, the 16-byte vector registers
3846   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
3847 
3848   // 109: vrsave
3849   // 110: vscr
3850   // 111: spe_acc
3851   // 112: spefscr
3852   // 113: sfp
3853   AssignToArrayRange(Builder, Address, Four8, 109, 113);
3854 
3855   return false;
3856 }
3857 
3858 bool
3859 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable(
3860   CodeGen::CodeGenFunction &CGF,
3861   llvm::Value *Address) const {
3862 
3863   return PPC64_initDwarfEHRegSizeTable(CGF, Address);
3864 }
3865 
3866 bool
3867 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3868                                                 llvm::Value *Address) const {
3869 
3870   return PPC64_initDwarfEHRegSizeTable(CGF, Address);
3871 }
3872 
3873 //===----------------------------------------------------------------------===//
3874 // AArch64 ABI Implementation
3875 //===----------------------------------------------------------------------===//
3876 
3877 namespace {
3878 
3879 class AArch64ABIInfo : public ABIInfo {
3880 public:
3881   enum ABIKind {
3882     AAPCS = 0,
3883     DarwinPCS
3884   };
3885 
3886 private:
3887   ABIKind Kind;
3888 
3889 public:
3890   AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind) : ABIInfo(CGT), Kind(Kind) {}
3891 
3892 private:
3893   ABIKind getABIKind() const { return Kind; }
3894   bool isDarwinPCS() const { return Kind == DarwinPCS; }
3895 
3896   ABIArgInfo classifyReturnType(QualType RetTy) const;
3897   ABIArgInfo classifyArgumentType(QualType RetTy) const;
3898   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
3899   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
3900                                          uint64_t Members) const override;
3901 
3902   bool isIllegalVectorType(QualType Ty) const;
3903 
3904   void computeInfo(CGFunctionInfo &FI) const override {
3905     if (!getCXXABI().classifyReturnType(FI))
3906       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3907 
3908     for (auto &it : FI.arguments())
3909       it.info = classifyArgumentType(it.type);
3910   }
3911 
3912   llvm::Value *EmitDarwinVAArg(llvm::Value *VAListAddr, QualType Ty,
3913                                CodeGenFunction &CGF) const;
3914 
3915   llvm::Value *EmitAAPCSVAArg(llvm::Value *VAListAddr, QualType Ty,
3916                               CodeGenFunction &CGF) const;
3917 
3918   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3919                          CodeGenFunction &CGF) const override {
3920     return isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF)
3921                          : EmitAAPCSVAArg(VAListAddr, Ty, CGF);
3922   }
3923 };
3924 
3925 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo {
3926 public:
3927   AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind)
3928       : TargetCodeGenInfo(new AArch64ABIInfo(CGT, Kind)) {}
3929 
3930   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
3931     return "mov\tfp, fp\t\t; marker for objc_retainAutoreleaseReturnValue";
3932   }
3933 
3934   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
3935     return 31;
3936   }
3937 
3938   bool doesReturnSlotInterfereWithArgs() const override { return false; }
3939 };
3940 }
3941 
3942 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const {
3943   Ty = useFirstFieldIfTransparentUnion(Ty);
3944 
3945   // Handle illegal vector types here.
3946   if (isIllegalVectorType(Ty)) {
3947     uint64_t Size = getContext().getTypeSize(Ty);
3948     if (Size <= 32) {
3949       llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext());
3950       return ABIArgInfo::getDirect(ResType);
3951     }
3952     if (Size == 64) {
3953       llvm::Type *ResType =
3954           llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2);
3955       return ABIArgInfo::getDirect(ResType);
3956     }
3957     if (Size == 128) {
3958       llvm::Type *ResType =
3959           llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4);
3960       return ABIArgInfo::getDirect(ResType);
3961     }
3962     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3963   }
3964 
3965   if (!isAggregateTypeForABI(Ty)) {
3966     // Treat an enum type as its underlying type.
3967     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3968       Ty = EnumTy->getDecl()->getIntegerType();
3969 
3970     return (Ty->isPromotableIntegerType() && isDarwinPCS()
3971                 ? ABIArgInfo::getExtend()
3972                 : ABIArgInfo::getDirect());
3973   }
3974 
3975   // Structures with either a non-trivial destructor or a non-trivial
3976   // copy constructor are always indirect.
3977   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
3978     return ABIArgInfo::getIndirect(0, /*ByVal=*/RAA ==
3979                                    CGCXXABI::RAA_DirectInMemory);
3980   }
3981 
3982   // Empty records are always ignored on Darwin, but actually passed in C++ mode
3983   // elsewhere for GNU compatibility.
3984   if (isEmptyRecord(getContext(), Ty, true)) {
3985     if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS())
3986       return ABIArgInfo::getIgnore();
3987 
3988     return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
3989   }
3990 
3991   // Homogeneous Floating-point Aggregates (HFAs) need to be expanded.
3992   const Type *Base = nullptr;
3993   uint64_t Members = 0;
3994   if (isHomogeneousAggregate(Ty, Base, Members)) {
3995     return ABIArgInfo::getDirect(
3996         llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members));
3997   }
3998 
3999   // Aggregates <= 16 bytes are passed directly in registers or on the stack.
4000   uint64_t Size = getContext().getTypeSize(Ty);
4001   if (Size <= 128) {
4002     unsigned Alignment = getContext().getTypeAlign(Ty);
4003     Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes
4004 
4005     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
4006     // For aggregates with 16-byte alignment, we use i128.
4007     if (Alignment < 128 && Size == 128) {
4008       llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
4009       return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
4010     }
4011     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
4012   }
4013 
4014   return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
4015 }
4016 
4017 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy) const {
4018   if (RetTy->isVoidType())
4019     return ABIArgInfo::getIgnore();
4020 
4021   // Large vector types should be returned via memory.
4022   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
4023     return ABIArgInfo::getIndirect(0);
4024 
4025   if (!isAggregateTypeForABI(RetTy)) {
4026     // Treat an enum type as its underlying type.
4027     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
4028       RetTy = EnumTy->getDecl()->getIntegerType();
4029 
4030     return (RetTy->isPromotableIntegerType() && isDarwinPCS()
4031                 ? ABIArgInfo::getExtend()
4032                 : ABIArgInfo::getDirect());
4033   }
4034 
4035   if (isEmptyRecord(getContext(), RetTy, true))
4036     return ABIArgInfo::getIgnore();
4037 
4038   const Type *Base = nullptr;
4039   uint64_t Members = 0;
4040   if (isHomogeneousAggregate(RetTy, Base, Members))
4041     // Homogeneous Floating-point Aggregates (HFAs) are returned directly.
4042     return ABIArgInfo::getDirect();
4043 
4044   // Aggregates <= 16 bytes are returned directly in registers or on the stack.
4045   uint64_t Size = getContext().getTypeSize(RetTy);
4046   if (Size <= 128) {
4047     unsigned Alignment = getContext().getTypeAlign(RetTy);
4048     Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes
4049 
4050     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
4051     // For aggregates with 16-byte alignment, we use i128.
4052     if (Alignment < 128 && Size == 128) {
4053       llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
4054       return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
4055     }
4056     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
4057   }
4058 
4059   return ABIArgInfo::getIndirect(0);
4060 }
4061 
4062 /// isIllegalVectorType - check whether the vector type is legal for AArch64.
4063 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const {
4064   if (const VectorType *VT = Ty->getAs<VectorType>()) {
4065     // Check whether VT is legal.
4066     unsigned NumElements = VT->getNumElements();
4067     uint64_t Size = getContext().getTypeSize(VT);
4068     // NumElements should be power of 2 between 1 and 16.
4069     if ((NumElements & (NumElements - 1)) != 0 || NumElements > 16)
4070       return true;
4071     return Size != 64 && (Size != 128 || NumElements == 1);
4072   }
4073   return false;
4074 }
4075 
4076 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
4077   // Homogeneous aggregates for AAPCS64 must have base types of a floating
4078   // point type or a short-vector type. This is the same as the 32-bit ABI,
4079   // but with the difference that any floating-point type is allowed,
4080   // including __fp16.
4081   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
4082     if (BT->isFloatingPoint())
4083       return true;
4084   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
4085     unsigned VecSize = getContext().getTypeSize(VT);
4086     if (VecSize == 64 || VecSize == 128)
4087       return true;
4088   }
4089   return false;
4090 }
4091 
4092 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
4093                                                        uint64_t Members) const {
4094   return Members <= 4;
4095 }
4096 
4097 llvm::Value *AArch64ABIInfo::EmitAAPCSVAArg(llvm::Value *VAListAddr,
4098                                             QualType Ty,
4099                                             CodeGenFunction &CGF) const {
4100   ABIArgInfo AI = classifyArgumentType(Ty);
4101   bool IsIndirect = AI.isIndirect();
4102 
4103   llvm::Type *BaseTy = CGF.ConvertType(Ty);
4104   if (IsIndirect)
4105     BaseTy = llvm::PointerType::getUnqual(BaseTy);
4106   else if (AI.getCoerceToType())
4107     BaseTy = AI.getCoerceToType();
4108 
4109   unsigned NumRegs = 1;
4110   if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) {
4111     BaseTy = ArrTy->getElementType();
4112     NumRegs = ArrTy->getNumElements();
4113   }
4114   bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy();
4115 
4116   // The AArch64 va_list type and handling is specified in the Procedure Call
4117   // Standard, section B.4:
4118   //
4119   // struct {
4120   //   void *__stack;
4121   //   void *__gr_top;
4122   //   void *__vr_top;
4123   //   int __gr_offs;
4124   //   int __vr_offs;
4125   // };
4126 
4127   llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
4128   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
4129   llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
4130   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
4131   auto &Ctx = CGF.getContext();
4132 
4133   llvm::Value *reg_offs_p = nullptr, *reg_offs = nullptr;
4134   int reg_top_index;
4135   int RegSize = IsIndirect ? 8 : getContext().getTypeSize(Ty) / 8;
4136   if (!IsFPR) {
4137     // 3 is the field number of __gr_offs
4138     reg_offs_p =
4139         CGF.Builder.CreateStructGEP(nullptr, VAListAddr, 3, "gr_offs_p");
4140     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs");
4141     reg_top_index = 1; // field number for __gr_top
4142     RegSize = llvm::RoundUpToAlignment(RegSize, 8);
4143   } else {
4144     // 4 is the field number of __vr_offs.
4145     reg_offs_p =
4146         CGF.Builder.CreateStructGEP(nullptr, VAListAddr, 4, "vr_offs_p");
4147     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs");
4148     reg_top_index = 2; // field number for __vr_top
4149     RegSize = 16 * NumRegs;
4150   }
4151 
4152   //=======================================
4153   // Find out where argument was passed
4154   //=======================================
4155 
4156   // If reg_offs >= 0 we're already using the stack for this type of
4157   // argument. We don't want to keep updating reg_offs (in case it overflows,
4158   // though anyone passing 2GB of arguments, each at most 16 bytes, deserves
4159   // whatever they get).
4160   llvm::Value *UsingStack = nullptr;
4161   UsingStack = CGF.Builder.CreateICmpSGE(
4162       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0));
4163 
4164   CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock);
4165 
4166   // Otherwise, at least some kind of argument could go in these registers, the
4167   // question is whether this particular type is too big.
4168   CGF.EmitBlock(MaybeRegBlock);
4169 
4170   // Integer arguments may need to correct register alignment (for example a
4171   // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we
4172   // align __gr_offs to calculate the potential address.
4173   if (!IsFPR && !IsIndirect && Ctx.getTypeAlign(Ty) > 64) {
4174     int Align = Ctx.getTypeAlign(Ty) / 8;
4175 
4176     reg_offs = CGF.Builder.CreateAdd(
4177         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1),
4178         "align_regoffs");
4179     reg_offs = CGF.Builder.CreateAnd(
4180         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align),
4181         "aligned_regoffs");
4182   }
4183 
4184   // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list.
4185   llvm::Value *NewOffset = nullptr;
4186   NewOffset = CGF.Builder.CreateAdd(
4187       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs");
4188   CGF.Builder.CreateStore(NewOffset, reg_offs_p);
4189 
4190   // Now we're in a position to decide whether this argument really was in
4191   // registers or not.
4192   llvm::Value *InRegs = nullptr;
4193   InRegs = CGF.Builder.CreateICmpSLE(
4194       NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg");
4195 
4196   CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock);
4197 
4198   //=======================================
4199   // Argument was in registers
4200   //=======================================
4201 
4202   // Now we emit the code for if the argument was originally passed in
4203   // registers. First start the appropriate block:
4204   CGF.EmitBlock(InRegBlock);
4205 
4206   llvm::Value *reg_top_p = nullptr, *reg_top = nullptr;
4207   reg_top_p = CGF.Builder.CreateStructGEP(nullptr, VAListAddr, reg_top_index,
4208                                           "reg_top_p");
4209   reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top");
4210   llvm::Value *BaseAddr = CGF.Builder.CreateGEP(reg_top, reg_offs);
4211   llvm::Value *RegAddr = nullptr;
4212   llvm::Type *MemTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
4213 
4214   if (IsIndirect) {
4215     // If it's been passed indirectly (actually a struct), whatever we find from
4216     // stored registers or on the stack will actually be a struct **.
4217     MemTy = llvm::PointerType::getUnqual(MemTy);
4218   }
4219 
4220   const Type *Base = nullptr;
4221   uint64_t NumMembers = 0;
4222   bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers);
4223   if (IsHFA && NumMembers > 1) {
4224     // Homogeneous aggregates passed in registers will have their elements split
4225     // and stored 16-bytes apart regardless of size (they're notionally in qN,
4226     // qN+1, ...). We reload and store into a temporary local variable
4227     // contiguously.
4228     assert(!IsIndirect && "Homogeneous aggregates should be passed directly");
4229     llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0));
4230     llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers);
4231     llvm::AllocaInst *Tmp = CGF.CreateTempAlloca(HFATy);
4232     int Offset = 0;
4233 
4234     if (CGF.CGM.getDataLayout().isBigEndian() && Ctx.getTypeSize(Base) < 128)
4235       Offset = 16 - Ctx.getTypeSize(Base) / 8;
4236     for (unsigned i = 0; i < NumMembers; ++i) {
4237       llvm::Value *BaseOffset =
4238           llvm::ConstantInt::get(CGF.Int32Ty, 16 * i + Offset);
4239       llvm::Value *LoadAddr = CGF.Builder.CreateGEP(BaseAddr, BaseOffset);
4240       LoadAddr = CGF.Builder.CreateBitCast(
4241           LoadAddr, llvm::PointerType::getUnqual(BaseTy));
4242       llvm::Value *StoreAddr =
4243           CGF.Builder.CreateStructGEP(Tmp->getAllocatedType(), Tmp, i);
4244 
4245       llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr);
4246       CGF.Builder.CreateStore(Elem, StoreAddr);
4247     }
4248 
4249     RegAddr = CGF.Builder.CreateBitCast(Tmp, MemTy);
4250   } else {
4251     // Otherwise the object is contiguous in memory
4252     unsigned BeAlign = reg_top_index == 2 ? 16 : 8;
4253     if (CGF.CGM.getDataLayout().isBigEndian() &&
4254         (IsHFA || !isAggregateTypeForABI(Ty)) &&
4255         Ctx.getTypeSize(Ty) < (BeAlign * 8)) {
4256       int Offset = BeAlign - Ctx.getTypeSize(Ty) / 8;
4257       BaseAddr = CGF.Builder.CreatePtrToInt(BaseAddr, CGF.Int64Ty);
4258 
4259       BaseAddr = CGF.Builder.CreateAdd(
4260           BaseAddr, llvm::ConstantInt::get(CGF.Int64Ty, Offset), "align_be");
4261 
4262       BaseAddr = CGF.Builder.CreateIntToPtr(BaseAddr, CGF.Int8PtrTy);
4263     }
4264 
4265     RegAddr = CGF.Builder.CreateBitCast(BaseAddr, MemTy);
4266   }
4267 
4268   CGF.EmitBranch(ContBlock);
4269 
4270   //=======================================
4271   // Argument was on the stack
4272   //=======================================
4273   CGF.EmitBlock(OnStackBlock);
4274 
4275   llvm::Value *stack_p = nullptr, *OnStackAddr = nullptr;
4276   stack_p = CGF.Builder.CreateStructGEP(nullptr, VAListAddr, 0, "stack_p");
4277   OnStackAddr = CGF.Builder.CreateLoad(stack_p, "stack");
4278 
4279   // Again, stack arguments may need realigmnent. In this case both integer and
4280   // floating-point ones might be affected.
4281   if (!IsIndirect && Ctx.getTypeAlign(Ty) > 64) {
4282     int Align = Ctx.getTypeAlign(Ty) / 8;
4283 
4284     OnStackAddr = CGF.Builder.CreatePtrToInt(OnStackAddr, CGF.Int64Ty);
4285 
4286     OnStackAddr = CGF.Builder.CreateAdd(
4287         OnStackAddr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1),
4288         "align_stack");
4289     OnStackAddr = CGF.Builder.CreateAnd(
4290         OnStackAddr, llvm::ConstantInt::get(CGF.Int64Ty, -Align),
4291         "align_stack");
4292 
4293     OnStackAddr = CGF.Builder.CreateIntToPtr(OnStackAddr, CGF.Int8PtrTy);
4294   }
4295 
4296   uint64_t StackSize;
4297   if (IsIndirect)
4298     StackSize = 8;
4299   else
4300     StackSize = Ctx.getTypeSize(Ty) / 8;
4301 
4302   // All stack slots are 8 bytes
4303   StackSize = llvm::RoundUpToAlignment(StackSize, 8);
4304 
4305   llvm::Value *StackSizeC = llvm::ConstantInt::get(CGF.Int32Ty, StackSize);
4306   llvm::Value *NewStack =
4307       CGF.Builder.CreateGEP(OnStackAddr, StackSizeC, "new_stack");
4308 
4309   // Write the new value of __stack for the next call to va_arg
4310   CGF.Builder.CreateStore(NewStack, stack_p);
4311 
4312   if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) &&
4313       Ctx.getTypeSize(Ty) < 64) {
4314     int Offset = 8 - Ctx.getTypeSize(Ty) / 8;
4315     OnStackAddr = CGF.Builder.CreatePtrToInt(OnStackAddr, CGF.Int64Ty);
4316 
4317     OnStackAddr = CGF.Builder.CreateAdd(
4318         OnStackAddr, llvm::ConstantInt::get(CGF.Int64Ty, Offset), "align_be");
4319 
4320     OnStackAddr = CGF.Builder.CreateIntToPtr(OnStackAddr, CGF.Int8PtrTy);
4321   }
4322 
4323   OnStackAddr = CGF.Builder.CreateBitCast(OnStackAddr, MemTy);
4324 
4325   CGF.EmitBranch(ContBlock);
4326 
4327   //=======================================
4328   // Tidy up
4329   //=======================================
4330   CGF.EmitBlock(ContBlock);
4331 
4332   llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(MemTy, 2, "vaarg.addr");
4333   ResAddr->addIncoming(RegAddr, InRegBlock);
4334   ResAddr->addIncoming(OnStackAddr, OnStackBlock);
4335 
4336   if (IsIndirect)
4337     return CGF.Builder.CreateLoad(ResAddr, "vaarg.addr");
4338 
4339   return ResAddr;
4340 }
4341 
4342 llvm::Value *AArch64ABIInfo::EmitDarwinVAArg(llvm::Value *VAListAddr, QualType Ty,
4343                                            CodeGenFunction &CGF) const {
4344   // We do not support va_arg for aggregates or illegal vector types.
4345   // Lower VAArg here for these cases and use the LLVM va_arg instruction for
4346   // other cases.
4347   if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty))
4348     return nullptr;
4349 
4350   uint64_t Size = CGF.getContext().getTypeSize(Ty) / 8;
4351   uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
4352 
4353   const Type *Base = nullptr;
4354   uint64_t Members = 0;
4355   bool isHA = isHomogeneousAggregate(Ty, Base, Members);
4356 
4357   bool isIndirect = false;
4358   // Arguments bigger than 16 bytes which aren't homogeneous aggregates should
4359   // be passed indirectly.
4360   if (Size > 16 && !isHA) {
4361     isIndirect = true;
4362     Size = 8;
4363     Align = 8;
4364   }
4365 
4366   llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
4367   llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
4368 
4369   CGBuilderTy &Builder = CGF.Builder;
4370   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
4371   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
4372 
4373   if (isEmptyRecord(getContext(), Ty, true)) {
4374     // These are ignored for parameter passing purposes.
4375     llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
4376     return Builder.CreateBitCast(Addr, PTy);
4377   }
4378 
4379   const uint64_t MinABIAlign = 8;
4380   if (Align > MinABIAlign) {
4381     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, Align - 1);
4382     Addr = Builder.CreateGEP(Addr, Offset);
4383     llvm::Value *AsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty);
4384     llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, ~(Align - 1));
4385     llvm::Value *Aligned = Builder.CreateAnd(AsInt, Mask);
4386     Addr = Builder.CreateIntToPtr(Aligned, BP, "ap.align");
4387   }
4388 
4389   uint64_t Offset = llvm::RoundUpToAlignment(Size, MinABIAlign);
4390   llvm::Value *NextAddr = Builder.CreateGEP(
4391       Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), "ap.next");
4392   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
4393 
4394   if (isIndirect)
4395     Addr = Builder.CreateLoad(Builder.CreateBitCast(Addr, BPP));
4396   llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
4397   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
4398 
4399   return AddrTyped;
4400 }
4401 
4402 //===----------------------------------------------------------------------===//
4403 // ARM ABI Implementation
4404 //===----------------------------------------------------------------------===//
4405 
4406 namespace {
4407 
4408 class ARMABIInfo : public ABIInfo {
4409 public:
4410   enum ABIKind {
4411     APCS = 0,
4412     AAPCS = 1,
4413     AAPCS_VFP
4414   };
4415 
4416 private:
4417   ABIKind Kind;
4418 
4419 public:
4420   ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) : ABIInfo(CGT), Kind(_Kind) {
4421     setCCs();
4422   }
4423 
4424   bool isEABI() const {
4425     switch (getTarget().getTriple().getEnvironment()) {
4426     case llvm::Triple::Android:
4427     case llvm::Triple::EABI:
4428     case llvm::Triple::EABIHF:
4429     case llvm::Triple::GNUEABI:
4430     case llvm::Triple::GNUEABIHF:
4431       return true;
4432     default:
4433       return false;
4434     }
4435   }
4436 
4437   bool isEABIHF() const {
4438     switch (getTarget().getTriple().getEnvironment()) {
4439     case llvm::Triple::EABIHF:
4440     case llvm::Triple::GNUEABIHF:
4441       return true;
4442     default:
4443       return false;
4444     }
4445   }
4446 
4447   ABIKind getABIKind() const { return Kind; }
4448 
4449 private:
4450   ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic) const;
4451   ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic) const;
4452   bool isIllegalVectorType(QualType Ty) const;
4453 
4454   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
4455   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
4456                                          uint64_t Members) const override;
4457 
4458   void computeInfo(CGFunctionInfo &FI) const override;
4459 
4460   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4461                          CodeGenFunction &CGF) const override;
4462 
4463   llvm::CallingConv::ID getLLVMDefaultCC() const;
4464   llvm::CallingConv::ID getABIDefaultCC() const;
4465   void setCCs();
4466 };
4467 
4468 class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
4469 public:
4470   ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
4471     :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {}
4472 
4473   const ARMABIInfo &getABIInfo() const {
4474     return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo());
4475   }
4476 
4477   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4478     return 13;
4479   }
4480 
4481   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
4482     return "mov\tr7, r7\t\t@ marker for objc_retainAutoreleaseReturnValue";
4483   }
4484 
4485   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4486                                llvm::Value *Address) const override {
4487     llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
4488 
4489     // 0-15 are the 16 integer registers.
4490     AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15);
4491     return false;
4492   }
4493 
4494   unsigned getSizeOfUnwindException() const override {
4495     if (getABIInfo().isEABI()) return 88;
4496     return TargetCodeGenInfo::getSizeOfUnwindException();
4497   }
4498 
4499   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
4500                            CodeGen::CodeGenModule &CGM) const override {
4501     const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
4502     if (!FD)
4503       return;
4504 
4505     const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>();
4506     if (!Attr)
4507       return;
4508 
4509     const char *Kind;
4510     switch (Attr->getInterrupt()) {
4511     case ARMInterruptAttr::Generic: Kind = ""; break;
4512     case ARMInterruptAttr::IRQ:     Kind = "IRQ"; break;
4513     case ARMInterruptAttr::FIQ:     Kind = "FIQ"; break;
4514     case ARMInterruptAttr::SWI:     Kind = "SWI"; break;
4515     case ARMInterruptAttr::ABORT:   Kind = "ABORT"; break;
4516     case ARMInterruptAttr::UNDEF:   Kind = "UNDEF"; break;
4517     }
4518 
4519     llvm::Function *Fn = cast<llvm::Function>(GV);
4520 
4521     Fn->addFnAttr("interrupt", Kind);
4522 
4523     if (cast<ARMABIInfo>(getABIInfo()).getABIKind() == ARMABIInfo::APCS)
4524       return;
4525 
4526     // AAPCS guarantees that sp will be 8-byte aligned on any public interface,
4527     // however this is not necessarily true on taking any interrupt. Instruct
4528     // the backend to perform a realignment as part of the function prologue.
4529     llvm::AttrBuilder B;
4530     B.addStackAlignmentAttr(8);
4531     Fn->addAttributes(llvm::AttributeSet::FunctionIndex,
4532                       llvm::AttributeSet::get(CGM.getLLVMContext(),
4533                                               llvm::AttributeSet::FunctionIndex,
4534                                               B));
4535   }
4536 };
4537 
4538 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo {
4539   void addStackProbeSizeTargetAttribute(const Decl *D, llvm::GlobalValue *GV,
4540                                         CodeGen::CodeGenModule &CGM) const;
4541 
4542 public:
4543   WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
4544       : ARMTargetCodeGenInfo(CGT, K) {}
4545 
4546   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
4547                            CodeGen::CodeGenModule &CGM) const override;
4548 };
4549 
4550 void WindowsARMTargetCodeGenInfo::addStackProbeSizeTargetAttribute(
4551     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
4552   if (!isa<FunctionDecl>(D))
4553     return;
4554   if (CGM.getCodeGenOpts().StackProbeSize == 4096)
4555     return;
4556 
4557   llvm::Function *F = cast<llvm::Function>(GV);
4558   F->addFnAttr("stack-probe-size",
4559                llvm::utostr(CGM.getCodeGenOpts().StackProbeSize));
4560 }
4561 
4562 void WindowsARMTargetCodeGenInfo::SetTargetAttributes(
4563     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
4564   ARMTargetCodeGenInfo::SetTargetAttributes(D, GV, CGM);
4565   addStackProbeSizeTargetAttribute(D, GV, CGM);
4566 }
4567 }
4568 
4569 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
4570   if (!getCXXABI().classifyReturnType(FI))
4571     FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), FI.isVariadic());
4572 
4573   for (auto &I : FI.arguments())
4574     I.info = classifyArgumentType(I.type, FI.isVariadic());
4575 
4576   // Always honor user-specified calling convention.
4577   if (FI.getCallingConvention() != llvm::CallingConv::C)
4578     return;
4579 
4580   llvm::CallingConv::ID cc = getRuntimeCC();
4581   if (cc != llvm::CallingConv::C)
4582     FI.setEffectiveCallingConvention(cc);
4583 }
4584 
4585 /// Return the default calling convention that LLVM will use.
4586 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const {
4587   // The default calling convention that LLVM will infer.
4588   if (isEABIHF())
4589     return llvm::CallingConv::ARM_AAPCS_VFP;
4590   else if (isEABI())
4591     return llvm::CallingConv::ARM_AAPCS;
4592   else
4593     return llvm::CallingConv::ARM_APCS;
4594 }
4595 
4596 /// Return the calling convention that our ABI would like us to use
4597 /// as the C calling convention.
4598 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const {
4599   switch (getABIKind()) {
4600   case APCS: return llvm::CallingConv::ARM_APCS;
4601   case AAPCS: return llvm::CallingConv::ARM_AAPCS;
4602   case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
4603   }
4604   llvm_unreachable("bad ABI kind");
4605 }
4606 
4607 void ARMABIInfo::setCCs() {
4608   assert(getRuntimeCC() == llvm::CallingConv::C);
4609 
4610   // Don't muddy up the IR with a ton of explicit annotations if
4611   // they'd just match what LLVM will infer from the triple.
4612   llvm::CallingConv::ID abiCC = getABIDefaultCC();
4613   if (abiCC != getLLVMDefaultCC())
4614     RuntimeCC = abiCC;
4615 
4616   BuiltinCC = (getABIKind() == APCS ?
4617                llvm::CallingConv::ARM_APCS : llvm::CallingConv::ARM_AAPCS);
4618 }
4619 
4620 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty,
4621                                             bool isVariadic) const {
4622   // 6.1.2.1 The following argument types are VFP CPRCs:
4623   //   A single-precision floating-point type (including promoted
4624   //   half-precision types); A double-precision floating-point type;
4625   //   A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate
4626   //   with a Base Type of a single- or double-precision floating-point type,
4627   //   64-bit containerized vectors or 128-bit containerized vectors with one
4628   //   to four Elements.
4629   bool IsEffectivelyAAPCS_VFP = getABIKind() == AAPCS_VFP && !isVariadic;
4630 
4631   Ty = useFirstFieldIfTransparentUnion(Ty);
4632 
4633   // Handle illegal vector types here.
4634   if (isIllegalVectorType(Ty)) {
4635     uint64_t Size = getContext().getTypeSize(Ty);
4636     if (Size <= 32) {
4637       llvm::Type *ResType =
4638           llvm::Type::getInt32Ty(getVMContext());
4639       return ABIArgInfo::getDirect(ResType);
4640     }
4641     if (Size == 64) {
4642       llvm::Type *ResType = llvm::VectorType::get(
4643           llvm::Type::getInt32Ty(getVMContext()), 2);
4644       return ABIArgInfo::getDirect(ResType);
4645     }
4646     if (Size == 128) {
4647       llvm::Type *ResType = llvm::VectorType::get(
4648           llvm::Type::getInt32Ty(getVMContext()), 4);
4649       return ABIArgInfo::getDirect(ResType);
4650     }
4651     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
4652   }
4653 
4654   if (!isAggregateTypeForABI(Ty)) {
4655     // Treat an enum type as its underlying type.
4656     if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
4657       Ty = EnumTy->getDecl()->getIntegerType();
4658     }
4659 
4660     return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend()
4661                                           : ABIArgInfo::getDirect());
4662   }
4663 
4664   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
4665     return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
4666   }
4667 
4668   // Ignore empty records.
4669   if (isEmptyRecord(getContext(), Ty, true))
4670     return ABIArgInfo::getIgnore();
4671 
4672   if (IsEffectivelyAAPCS_VFP) {
4673     // Homogeneous Aggregates need to be expanded when we can fit the aggregate
4674     // into VFP registers.
4675     const Type *Base = nullptr;
4676     uint64_t Members = 0;
4677     if (isHomogeneousAggregate(Ty, Base, Members)) {
4678       assert(Base && "Base class should be set for homogeneous aggregate");
4679       // Base can be a floating-point or a vector.
4680       return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
4681     }
4682   }
4683 
4684   // Support byval for ARM.
4685   // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at
4686   // most 8-byte. We realign the indirect argument if type alignment is bigger
4687   // than ABI alignment.
4688   uint64_t ABIAlign = 4;
4689   uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8;
4690   if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
4691        getABIKind() == ARMABIInfo::AAPCS)
4692     ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
4693 
4694   if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) {
4695     return ABIArgInfo::getIndirect(ABIAlign, /*ByVal=*/true,
4696            /*Realign=*/TyAlign > ABIAlign);
4697   }
4698 
4699   // Otherwise, pass by coercing to a structure of the appropriate size.
4700   llvm::Type* ElemTy;
4701   unsigned SizeRegs;
4702   // FIXME: Try to match the types of the arguments more accurately where
4703   // we can.
4704   if (getContext().getTypeAlign(Ty) <= 32) {
4705     ElemTy = llvm::Type::getInt32Ty(getVMContext());
4706     SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
4707   } else {
4708     ElemTy = llvm::Type::getInt64Ty(getVMContext());
4709     SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
4710   }
4711 
4712   return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs));
4713 }
4714 
4715 static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
4716                               llvm::LLVMContext &VMContext) {
4717   // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
4718   // is called integer-like if its size is less than or equal to one word, and
4719   // the offset of each of its addressable sub-fields is zero.
4720 
4721   uint64_t Size = Context.getTypeSize(Ty);
4722 
4723   // Check that the type fits in a word.
4724   if (Size > 32)
4725     return false;
4726 
4727   // FIXME: Handle vector types!
4728   if (Ty->isVectorType())
4729     return false;
4730 
4731   // Float types are never treated as "integer like".
4732   if (Ty->isRealFloatingType())
4733     return false;
4734 
4735   // If this is a builtin or pointer type then it is ok.
4736   if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
4737     return true;
4738 
4739   // Small complex integer types are "integer like".
4740   if (const ComplexType *CT = Ty->getAs<ComplexType>())
4741     return isIntegerLikeType(CT->getElementType(), Context, VMContext);
4742 
4743   // Single element and zero sized arrays should be allowed, by the definition
4744   // above, but they are not.
4745 
4746   // Otherwise, it must be a record type.
4747   const RecordType *RT = Ty->getAs<RecordType>();
4748   if (!RT) return false;
4749 
4750   // Ignore records with flexible arrays.
4751   const RecordDecl *RD = RT->getDecl();
4752   if (RD->hasFlexibleArrayMember())
4753     return false;
4754 
4755   // Check that all sub-fields are at offset 0, and are themselves "integer
4756   // like".
4757   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
4758 
4759   bool HadField = false;
4760   unsigned idx = 0;
4761   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
4762        i != e; ++i, ++idx) {
4763     const FieldDecl *FD = *i;
4764 
4765     // Bit-fields are not addressable, we only need to verify they are "integer
4766     // like". We still have to disallow a subsequent non-bitfield, for example:
4767     //   struct { int : 0; int x }
4768     // is non-integer like according to gcc.
4769     if (FD->isBitField()) {
4770       if (!RD->isUnion())
4771         HadField = true;
4772 
4773       if (!isIntegerLikeType(FD->getType(), Context, VMContext))
4774         return false;
4775 
4776       continue;
4777     }
4778 
4779     // Check if this field is at offset 0.
4780     if (Layout.getFieldOffset(idx) != 0)
4781       return false;
4782 
4783     if (!isIntegerLikeType(FD->getType(), Context, VMContext))
4784       return false;
4785 
4786     // Only allow at most one field in a structure. This doesn't match the
4787     // wording above, but follows gcc in situations with a field following an
4788     // empty structure.
4789     if (!RD->isUnion()) {
4790       if (HadField)
4791         return false;
4792 
4793       HadField = true;
4794     }
4795   }
4796 
4797   return true;
4798 }
4799 
4800 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy,
4801                                           bool isVariadic) const {
4802   bool IsEffectivelyAAPCS_VFP = getABIKind() == AAPCS_VFP && !isVariadic;
4803 
4804   if (RetTy->isVoidType())
4805     return ABIArgInfo::getIgnore();
4806 
4807   // Large vector types should be returned via memory.
4808   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) {
4809     return ABIArgInfo::getIndirect(0);
4810   }
4811 
4812   if (!isAggregateTypeForABI(RetTy)) {
4813     // Treat an enum type as its underlying type.
4814     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
4815       RetTy = EnumTy->getDecl()->getIntegerType();
4816 
4817     return RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend()
4818                                             : ABIArgInfo::getDirect();
4819   }
4820 
4821   // Are we following APCS?
4822   if (getABIKind() == APCS) {
4823     if (isEmptyRecord(getContext(), RetTy, false))
4824       return ABIArgInfo::getIgnore();
4825 
4826     // Complex types are all returned as packed integers.
4827     //
4828     // FIXME: Consider using 2 x vector types if the back end handles them
4829     // correctly.
4830     if (RetTy->isAnyComplexType())
4831       return ABIArgInfo::getDirect(llvm::IntegerType::get(
4832           getVMContext(), getContext().getTypeSize(RetTy)));
4833 
4834     // Integer like structures are returned in r0.
4835     if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
4836       // Return in the smallest viable integer type.
4837       uint64_t Size = getContext().getTypeSize(RetTy);
4838       if (Size <= 8)
4839         return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
4840       if (Size <= 16)
4841         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
4842       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
4843     }
4844 
4845     // Otherwise return in memory.
4846     return ABIArgInfo::getIndirect(0);
4847   }
4848 
4849   // Otherwise this is an AAPCS variant.
4850 
4851   if (isEmptyRecord(getContext(), RetTy, true))
4852     return ABIArgInfo::getIgnore();
4853 
4854   // Check for homogeneous aggregates with AAPCS-VFP.
4855   if (IsEffectivelyAAPCS_VFP) {
4856     const Type *Base = nullptr;
4857     uint64_t Members;
4858     if (isHomogeneousAggregate(RetTy, Base, Members)) {
4859       assert(Base && "Base class should be set for homogeneous aggregate");
4860       // Homogeneous Aggregates are returned directly.
4861       return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
4862     }
4863   }
4864 
4865   // Aggregates <= 4 bytes are returned in r0; other aggregates
4866   // are returned indirectly.
4867   uint64_t Size = getContext().getTypeSize(RetTy);
4868   if (Size <= 32) {
4869     if (getDataLayout().isBigEndian())
4870       // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4)
4871       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
4872 
4873     // Return in the smallest viable integer type.
4874     if (Size <= 8)
4875       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
4876     if (Size <= 16)
4877       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
4878     return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
4879   }
4880 
4881   return ABIArgInfo::getIndirect(0);
4882 }
4883 
4884 /// isIllegalVector - check whether Ty is an illegal vector type.
4885 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const {
4886   if (const VectorType *VT = Ty->getAs<VectorType>()) {
4887     // Check whether VT is legal.
4888     unsigned NumElements = VT->getNumElements();
4889     uint64_t Size = getContext().getTypeSize(VT);
4890     // NumElements should be power of 2.
4891     if ((NumElements & (NumElements - 1)) != 0)
4892       return true;
4893     // Size should be greater than 32 bits.
4894     return Size <= 32;
4895   }
4896   return false;
4897 }
4898 
4899 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
4900   // Homogeneous aggregates for AAPCS-VFP must have base types of float,
4901   // double, or 64-bit or 128-bit vectors.
4902   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
4903     if (BT->getKind() == BuiltinType::Float ||
4904         BT->getKind() == BuiltinType::Double ||
4905         BT->getKind() == BuiltinType::LongDouble)
4906       return true;
4907   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
4908     unsigned VecSize = getContext().getTypeSize(VT);
4909     if (VecSize == 64 || VecSize == 128)
4910       return true;
4911   }
4912   return false;
4913 }
4914 
4915 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
4916                                                    uint64_t Members) const {
4917   return Members <= 4;
4918 }
4919 
4920 llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4921                                    CodeGenFunction &CGF) const {
4922   llvm::Type *BP = CGF.Int8PtrTy;
4923   llvm::Type *BPP = CGF.Int8PtrPtrTy;
4924 
4925   CGBuilderTy &Builder = CGF.Builder;
4926   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
4927   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
4928 
4929   if (isEmptyRecord(getContext(), Ty, true)) {
4930     // These are ignored for parameter passing purposes.
4931     llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
4932     return Builder.CreateBitCast(Addr, PTy);
4933   }
4934 
4935   uint64_t Size = CGF.getContext().getTypeSize(Ty) / 8;
4936   uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8;
4937   bool IsIndirect = false;
4938 
4939   // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for
4940   // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte.
4941   if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
4942       getABIKind() == ARMABIInfo::AAPCS)
4943     TyAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
4944   else
4945     TyAlign = 4;
4946   // Use indirect if size of the illegal vector is bigger than 16 bytes.
4947   if (isIllegalVectorType(Ty) && Size > 16) {
4948     IsIndirect = true;
4949     Size = 4;
4950     TyAlign = 4;
4951   }
4952 
4953   // Handle address alignment for ABI alignment > 4 bytes.
4954   if (TyAlign > 4) {
4955     assert((TyAlign & (TyAlign - 1)) == 0 &&
4956            "Alignment is not power of 2!");
4957     llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty);
4958     AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1));
4959     AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1)));
4960     Addr = Builder.CreateIntToPtr(AddrAsInt, BP, "ap.align");
4961   }
4962 
4963   uint64_t Offset =
4964     llvm::RoundUpToAlignment(Size, 4);
4965   llvm::Value *NextAddr =
4966     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
4967                       "ap.next");
4968   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
4969 
4970   if (IsIndirect)
4971     Addr = Builder.CreateLoad(Builder.CreateBitCast(Addr, BPP));
4972   else if (TyAlign < CGF.getContext().getTypeAlign(Ty) / 8) {
4973     // We can't directly cast ap.cur to pointer to a vector type, since ap.cur
4974     // may not be correctly aligned for the vector type. We create an aligned
4975     // temporary space and copy the content over from ap.cur to the temporary
4976     // space. This is necessary if the natural alignment of the type is greater
4977     // than the ABI alignment.
4978     llvm::Type *I8PtrTy = Builder.getInt8PtrTy();
4979     CharUnits CharSize = getContext().getTypeSizeInChars(Ty);
4980     llvm::Value *AlignedTemp = CGF.CreateTempAlloca(CGF.ConvertType(Ty),
4981                                                     "var.align");
4982     llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy);
4983     llvm::Value *Src = Builder.CreateBitCast(Addr, I8PtrTy);
4984     Builder.CreateMemCpy(Dst, Src,
4985         llvm::ConstantInt::get(CGF.IntPtrTy, CharSize.getQuantity()),
4986         TyAlign, false);
4987     Addr = AlignedTemp; //The content is in aligned location.
4988   }
4989   llvm::Type *PTy =
4990     llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
4991   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
4992 
4993   return AddrTyped;
4994 }
4995 
4996 //===----------------------------------------------------------------------===//
4997 // NVPTX ABI Implementation
4998 //===----------------------------------------------------------------------===//
4999 
5000 namespace {
5001 
5002 class NVPTXABIInfo : public ABIInfo {
5003 public:
5004   NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
5005 
5006   ABIArgInfo classifyReturnType(QualType RetTy) const;
5007   ABIArgInfo classifyArgumentType(QualType Ty) const;
5008 
5009   void computeInfo(CGFunctionInfo &FI) const override;
5010   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5011                          CodeGenFunction &CFG) const override;
5012 };
5013 
5014 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo {
5015 public:
5016   NVPTXTargetCodeGenInfo(CodeGenTypes &CGT)
5017     : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {}
5018 
5019   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5020                            CodeGen::CodeGenModule &M) const override;
5021 private:
5022   // Adds a NamedMDNode with F, Name, and Operand as operands, and adds the
5023   // resulting MDNode to the nvvm.annotations MDNode.
5024   static void addNVVMMetadata(llvm::Function *F, StringRef Name, int Operand);
5025 };
5026 
5027 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const {
5028   if (RetTy->isVoidType())
5029     return ABIArgInfo::getIgnore();
5030 
5031   // note: this is different from default ABI
5032   if (!RetTy->isScalarType())
5033     return ABIArgInfo::getDirect();
5034 
5035   // Treat an enum type as its underlying type.
5036   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5037     RetTy = EnumTy->getDecl()->getIntegerType();
5038 
5039   return (RetTy->isPromotableIntegerType() ?
5040           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5041 }
5042 
5043 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const {
5044   // Treat an enum type as its underlying type.
5045   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5046     Ty = EnumTy->getDecl()->getIntegerType();
5047 
5048   // Return aggregates type as indirect by value
5049   if (isAggregateTypeForABI(Ty))
5050     return ABIArgInfo::getIndirect(0, /* byval */ true);
5051 
5052   return (Ty->isPromotableIntegerType() ?
5053           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5054 }
5055 
5056 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
5057   if (!getCXXABI().classifyReturnType(FI))
5058     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
5059   for (auto &I : FI.arguments())
5060     I.info = classifyArgumentType(I.type);
5061 
5062   // Always honor user-specified calling convention.
5063   if (FI.getCallingConvention() != llvm::CallingConv::C)
5064     return;
5065 
5066   FI.setEffectiveCallingConvention(getRuntimeCC());
5067 }
5068 
5069 llvm::Value *NVPTXABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5070                                      CodeGenFunction &CFG) const {
5071   llvm_unreachable("NVPTX does not support varargs");
5072 }
5073 
5074 void NVPTXTargetCodeGenInfo::
5075 SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5076                     CodeGen::CodeGenModule &M) const{
5077   const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
5078   if (!FD) return;
5079 
5080   llvm::Function *F = cast<llvm::Function>(GV);
5081 
5082   // Perform special handling in OpenCL mode
5083   if (M.getLangOpts().OpenCL) {
5084     // Use OpenCL function attributes to check for kernel functions
5085     // By default, all functions are device functions
5086     if (FD->hasAttr<OpenCLKernelAttr>()) {
5087       // OpenCL __kernel functions get kernel metadata
5088       // Create !{<func-ref>, metadata !"kernel", i32 1} node
5089       addNVVMMetadata(F, "kernel", 1);
5090       // And kernel functions are not subject to inlining
5091       F->addFnAttr(llvm::Attribute::NoInline);
5092     }
5093   }
5094 
5095   // Perform special handling in CUDA mode.
5096   if (M.getLangOpts().CUDA) {
5097     // CUDA __global__ functions get a kernel metadata entry.  Since
5098     // __global__ functions cannot be called from the device, we do not
5099     // need to set the noinline attribute.
5100     if (FD->hasAttr<CUDAGlobalAttr>()) {
5101       // Create !{<func-ref>, metadata !"kernel", i32 1} node
5102       addNVVMMetadata(F, "kernel", 1);
5103     }
5104     if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) {
5105       // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node
5106       llvm::APSInt MaxThreads(32);
5107       MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext());
5108       if (MaxThreads > 0)
5109         addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue());
5110 
5111       // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was
5112       // not specified in __launch_bounds__ or if the user specified a 0 value,
5113       // we don't have to add a PTX directive.
5114       if (Attr->getMinBlocks()) {
5115         llvm::APSInt MinBlocks(32);
5116         MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext());
5117         if (MinBlocks > 0)
5118           // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node
5119           addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue());
5120       }
5121     }
5122   }
5123 }
5124 
5125 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::Function *F, StringRef Name,
5126                                              int Operand) {
5127   llvm::Module *M = F->getParent();
5128   llvm::LLVMContext &Ctx = M->getContext();
5129 
5130   // Get "nvvm.annotations" metadata node
5131   llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations");
5132 
5133   llvm::Metadata *MDVals[] = {
5134       llvm::ConstantAsMetadata::get(F), llvm::MDString::get(Ctx, Name),
5135       llvm::ConstantAsMetadata::get(
5136           llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))};
5137   // Append metadata to nvvm.annotations
5138   MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
5139 }
5140 }
5141 
5142 //===----------------------------------------------------------------------===//
5143 // SystemZ ABI Implementation
5144 //===----------------------------------------------------------------------===//
5145 
5146 namespace {
5147 
5148 class SystemZABIInfo : public ABIInfo {
5149   bool HasVector;
5150 
5151 public:
5152   SystemZABIInfo(CodeGenTypes &CGT, bool HV)
5153     : ABIInfo(CGT), HasVector(HV) {}
5154 
5155   bool isPromotableIntegerType(QualType Ty) const;
5156   bool isCompoundType(QualType Ty) const;
5157   bool isVectorArgumentType(QualType Ty) const;
5158   bool isFPArgumentType(QualType Ty) const;
5159   QualType GetSingleElementType(QualType Ty) const;
5160 
5161   ABIArgInfo classifyReturnType(QualType RetTy) const;
5162   ABIArgInfo classifyArgumentType(QualType ArgTy) const;
5163 
5164   void computeInfo(CGFunctionInfo &FI) const override {
5165     if (!getCXXABI().classifyReturnType(FI))
5166       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
5167     for (auto &I : FI.arguments())
5168       I.info = classifyArgumentType(I.type);
5169   }
5170 
5171   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5172                          CodeGenFunction &CGF) const override;
5173 };
5174 
5175 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
5176 public:
5177   SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector)
5178     : TargetCodeGenInfo(new SystemZABIInfo(CGT, HasVector)) {}
5179 };
5180 
5181 }
5182 
5183 bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const {
5184   // Treat an enum type as its underlying type.
5185   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5186     Ty = EnumTy->getDecl()->getIntegerType();
5187 
5188   // Promotable integer types are required to be promoted by the ABI.
5189   if (Ty->isPromotableIntegerType())
5190     return true;
5191 
5192   // 32-bit values must also be promoted.
5193   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
5194     switch (BT->getKind()) {
5195     case BuiltinType::Int:
5196     case BuiltinType::UInt:
5197       return true;
5198     default:
5199       return false;
5200     }
5201   return false;
5202 }
5203 
5204 bool SystemZABIInfo::isCompoundType(QualType Ty) const {
5205   return (Ty->isAnyComplexType() ||
5206           Ty->isVectorType() ||
5207           isAggregateTypeForABI(Ty));
5208 }
5209 
5210 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const {
5211   return (HasVector &&
5212           Ty->isVectorType() &&
5213           getContext().getTypeSize(Ty) <= 128);
5214 }
5215 
5216 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const {
5217   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
5218     switch (BT->getKind()) {
5219     case BuiltinType::Float:
5220     case BuiltinType::Double:
5221       return true;
5222     default:
5223       return false;
5224     }
5225 
5226   return false;
5227 }
5228 
5229 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const {
5230   if (const RecordType *RT = Ty->getAsStructureType()) {
5231     const RecordDecl *RD = RT->getDecl();
5232     QualType Found;
5233 
5234     // If this is a C++ record, check the bases first.
5235     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
5236       for (const auto &I : CXXRD->bases()) {
5237         QualType Base = I.getType();
5238 
5239         // Empty bases don't affect things either way.
5240         if (isEmptyRecord(getContext(), Base, true))
5241           continue;
5242 
5243         if (!Found.isNull())
5244           return Ty;
5245         Found = GetSingleElementType(Base);
5246       }
5247 
5248     // Check the fields.
5249     for (const auto *FD : RD->fields()) {
5250       // For compatibility with GCC, ignore empty bitfields in C++ mode.
5251       // Unlike isSingleElementStruct(), empty structure and array fields
5252       // do count.  So do anonymous bitfields that aren't zero-sized.
5253       if (getContext().getLangOpts().CPlusPlus &&
5254           FD->isBitField() && FD->getBitWidthValue(getContext()) == 0)
5255         continue;
5256 
5257       // Unlike isSingleElementStruct(), arrays do not count.
5258       // Nested structures still do though.
5259       if (!Found.isNull())
5260         return Ty;
5261       Found = GetSingleElementType(FD->getType());
5262     }
5263 
5264     // Unlike isSingleElementStruct(), trailing padding is allowed.
5265     // An 8-byte aligned struct s { float f; } is passed as a double.
5266     if (!Found.isNull())
5267       return Found;
5268   }
5269 
5270   return Ty;
5271 }
5272 
5273 llvm::Value *SystemZABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5274                                        CodeGenFunction &CGF) const {
5275   // Assume that va_list type is correct; should be pointer to LLVM type:
5276   // struct {
5277   //   i64 __gpr;
5278   //   i64 __fpr;
5279   //   i8 *__overflow_arg_area;
5280   //   i8 *__reg_save_area;
5281   // };
5282 
5283   // Every non-vector argument occupies 8 bytes and is passed by preference
5284   // in either GPRs or FPRs.  Vector arguments occupy 8 or 16 bytes and are
5285   // always passed on the stack.
5286   Ty = CGF.getContext().getCanonicalType(Ty);
5287   llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty);
5288   llvm::Type *APTy = llvm::PointerType::getUnqual(ArgTy);
5289   ABIArgInfo AI = classifyArgumentType(Ty);
5290   bool IsIndirect = AI.isIndirect();
5291   bool InFPRs = false;
5292   bool IsVector = false;
5293   unsigned UnpaddedBitSize;
5294   if (IsIndirect) {
5295     APTy = llvm::PointerType::getUnqual(APTy);
5296     UnpaddedBitSize = 64;
5297   } else {
5298     if (AI.getCoerceToType())
5299       ArgTy = AI.getCoerceToType();
5300     InFPRs = ArgTy->isFloatTy() || ArgTy->isDoubleTy();
5301     IsVector = ArgTy->isVectorTy();
5302     UnpaddedBitSize = getContext().getTypeSize(Ty);
5303   }
5304   unsigned PaddedBitSize = (IsVector && UnpaddedBitSize > 64) ? 128 : 64;
5305   assert((UnpaddedBitSize <= PaddedBitSize) && "Invalid argument size.");
5306 
5307   unsigned PaddedSize = PaddedBitSize / 8;
5308   unsigned Padding = (PaddedBitSize - UnpaddedBitSize) / 8;
5309 
5310   llvm::Type *IndexTy = CGF.Int64Ty;
5311   llvm::Value *PaddedSizeV = llvm::ConstantInt::get(IndexTy, PaddedSize);
5312 
5313   if (IsVector) {
5314     // Work out the address of a vector argument on the stack.
5315     // Vector arguments are always passed in the high bits of a
5316     // single (8 byte) or double (16 byte) stack slot.
5317     llvm::Value *OverflowArgAreaPtr =
5318       CGF.Builder.CreateStructGEP(nullptr, VAListAddr, 2,
5319                                   "overflow_arg_area_ptr");
5320     llvm::Value *OverflowArgArea =
5321       CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area");
5322     llvm::Value *MemAddr =
5323       CGF.Builder.CreateBitCast(OverflowArgArea, APTy, "mem_addr");
5324 
5325     // Update overflow_arg_area_ptr pointer
5326     llvm::Value *NewOverflowArgArea =
5327       CGF.Builder.CreateGEP(OverflowArgArea, PaddedSizeV, "overflow_arg_area");
5328     CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
5329 
5330     return MemAddr;
5331   }
5332 
5333   unsigned MaxRegs, RegCountField, RegSaveIndex, RegPadding;
5334   if (InFPRs) {
5335     MaxRegs = 4; // Maximum of 4 FPR arguments
5336     RegCountField = 1; // __fpr
5337     RegSaveIndex = 16; // save offset for f0
5338     RegPadding = 0; // floats are passed in the high bits of an FPR
5339   } else {
5340     MaxRegs = 5; // Maximum of 5 GPR arguments
5341     RegCountField = 0; // __gpr
5342     RegSaveIndex = 2; // save offset for r2
5343     RegPadding = Padding; // values are passed in the low bits of a GPR
5344   }
5345 
5346   llvm::Value *RegCountPtr = CGF.Builder.CreateStructGEP(
5347       nullptr, VAListAddr, RegCountField, "reg_count_ptr");
5348   llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count");
5349   llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs);
5350   llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV,
5351                                                  "fits_in_regs");
5352 
5353   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
5354   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
5355   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
5356   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
5357 
5358   // Emit code to load the value if it was passed in registers.
5359   CGF.EmitBlock(InRegBlock);
5360 
5361   // Work out the address of an argument register.
5362   llvm::Value *ScaledRegCount =
5363     CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count");
5364   llvm::Value *RegBase =
5365     llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize + RegPadding);
5366   llvm::Value *RegOffset =
5367     CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset");
5368   llvm::Value *RegSaveAreaPtr =
5369       CGF.Builder.CreateStructGEP(nullptr, VAListAddr, 3, "reg_save_area_ptr");
5370   llvm::Value *RegSaveArea =
5371     CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area");
5372   llvm::Value *RawRegAddr =
5373     CGF.Builder.CreateGEP(RegSaveArea, RegOffset, "raw_reg_addr");
5374   llvm::Value *RegAddr =
5375     CGF.Builder.CreateBitCast(RawRegAddr, APTy, "reg_addr");
5376 
5377   // Update the register count
5378   llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1);
5379   llvm::Value *NewRegCount =
5380     CGF.Builder.CreateAdd(RegCount, One, "reg_count");
5381   CGF.Builder.CreateStore(NewRegCount, RegCountPtr);
5382   CGF.EmitBranch(ContBlock);
5383 
5384   // Emit code to load the value if it was passed in memory.
5385   CGF.EmitBlock(InMemBlock);
5386 
5387   // Work out the address of a stack argument.
5388   llvm::Value *OverflowArgAreaPtr = CGF.Builder.CreateStructGEP(
5389       nullptr, VAListAddr, 2, "overflow_arg_area_ptr");
5390   llvm::Value *OverflowArgArea =
5391     CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area");
5392   llvm::Value *PaddingV = llvm::ConstantInt::get(IndexTy, Padding);
5393   llvm::Value *RawMemAddr =
5394     CGF.Builder.CreateGEP(OverflowArgArea, PaddingV, "raw_mem_addr");
5395   llvm::Value *MemAddr =
5396     CGF.Builder.CreateBitCast(RawMemAddr, APTy, "mem_addr");
5397 
5398   // Update overflow_arg_area_ptr pointer
5399   llvm::Value *NewOverflowArgArea =
5400     CGF.Builder.CreateGEP(OverflowArgArea, PaddedSizeV, "overflow_arg_area");
5401   CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
5402   CGF.EmitBranch(ContBlock);
5403 
5404   // Return the appropriate result.
5405   CGF.EmitBlock(ContBlock);
5406   llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(APTy, 2, "va_arg.addr");
5407   ResAddr->addIncoming(RegAddr, InRegBlock);
5408   ResAddr->addIncoming(MemAddr, InMemBlock);
5409 
5410   if (IsIndirect)
5411     return CGF.Builder.CreateLoad(ResAddr, "indirect_arg");
5412 
5413   return ResAddr;
5414 }
5415 
5416 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const {
5417   if (RetTy->isVoidType())
5418     return ABIArgInfo::getIgnore();
5419   if (isVectorArgumentType(RetTy))
5420     return ABIArgInfo::getDirect();
5421   if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64)
5422     return ABIArgInfo::getIndirect(0);
5423   return (isPromotableIntegerType(RetTy) ?
5424           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5425 }
5426 
5427 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const {
5428   // Handle the generic C++ ABI.
5429   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
5430     return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
5431 
5432   // Integers and enums are extended to full register width.
5433   if (isPromotableIntegerType(Ty))
5434     return ABIArgInfo::getExtend();
5435 
5436   // Handle vector types and vector-like structure types.  Note that
5437   // as opposed to float-like structure types, we do not allow any
5438   // padding for vector-like structures, so verify the sizes match.
5439   uint64_t Size = getContext().getTypeSize(Ty);
5440   QualType SingleElementTy = GetSingleElementType(Ty);
5441   if (isVectorArgumentType(SingleElementTy) &&
5442       getContext().getTypeSize(SingleElementTy) == Size)
5443     return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy));
5444 
5445   // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly.
5446   if (Size != 8 && Size != 16 && Size != 32 && Size != 64)
5447     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
5448 
5449   // Handle small structures.
5450   if (const RecordType *RT = Ty->getAs<RecordType>()) {
5451     // Structures with flexible arrays have variable length, so really
5452     // fail the size test above.
5453     const RecordDecl *RD = RT->getDecl();
5454     if (RD->hasFlexibleArrayMember())
5455       return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
5456 
5457     // The structure is passed as an unextended integer, a float, or a double.
5458     llvm::Type *PassTy;
5459     if (isFPArgumentType(SingleElementTy)) {
5460       assert(Size == 32 || Size == 64);
5461       if (Size == 32)
5462         PassTy = llvm::Type::getFloatTy(getVMContext());
5463       else
5464         PassTy = llvm::Type::getDoubleTy(getVMContext());
5465     } else
5466       PassTy = llvm::IntegerType::get(getVMContext(), Size);
5467     return ABIArgInfo::getDirect(PassTy);
5468   }
5469 
5470   // Non-structure compounds are passed indirectly.
5471   if (isCompoundType(Ty))
5472     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
5473 
5474   return ABIArgInfo::getDirect(nullptr);
5475 }
5476 
5477 //===----------------------------------------------------------------------===//
5478 // MSP430 ABI Implementation
5479 //===----------------------------------------------------------------------===//
5480 
5481 namespace {
5482 
5483 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
5484 public:
5485   MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
5486     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
5487   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5488                            CodeGen::CodeGenModule &M) const override;
5489 };
5490 
5491 }
5492 
5493 void MSP430TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
5494                                                   llvm::GlobalValue *GV,
5495                                              CodeGen::CodeGenModule &M) const {
5496   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
5497     if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) {
5498       // Handle 'interrupt' attribute:
5499       llvm::Function *F = cast<llvm::Function>(GV);
5500 
5501       // Step 1: Set ISR calling convention.
5502       F->setCallingConv(llvm::CallingConv::MSP430_INTR);
5503 
5504       // Step 2: Add attributes goodness.
5505       F->addFnAttr(llvm::Attribute::NoInline);
5506 
5507       // Step 3: Emit ISR vector alias.
5508       unsigned Num = attr->getNumber() / 2;
5509       llvm::GlobalAlias::create(llvm::Function::ExternalLinkage,
5510                                 "__isr_" + Twine(Num), F);
5511     }
5512   }
5513 }
5514 
5515 //===----------------------------------------------------------------------===//
5516 // MIPS ABI Implementation.  This works for both little-endian and
5517 // big-endian variants.
5518 //===----------------------------------------------------------------------===//
5519 
5520 namespace {
5521 class MipsABIInfo : public ABIInfo {
5522   bool IsO32;
5523   unsigned MinABIStackAlignInBytes, StackAlignInBytes;
5524   void CoerceToIntArgs(uint64_t TySize,
5525                        SmallVectorImpl<llvm::Type *> &ArgList) const;
5526   llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const;
5527   llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const;
5528   llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const;
5529 public:
5530   MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) :
5531     ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8),
5532     StackAlignInBytes(IsO32 ? 8 : 16) {}
5533 
5534   ABIArgInfo classifyReturnType(QualType RetTy) const;
5535   ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const;
5536   void computeInfo(CGFunctionInfo &FI) const override;
5537   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5538                          CodeGenFunction &CGF) const override;
5539 };
5540 
5541 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
5542   unsigned SizeOfUnwindException;
5543 public:
5544   MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32)
5545     : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)),
5546       SizeOfUnwindException(IsO32 ? 24 : 32) {}
5547 
5548   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
5549     return 29;
5550   }
5551 
5552   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5553                            CodeGen::CodeGenModule &CGM) const override {
5554     const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
5555     if (!FD) return;
5556     llvm::Function *Fn = cast<llvm::Function>(GV);
5557     if (FD->hasAttr<Mips16Attr>()) {
5558       Fn->addFnAttr("mips16");
5559     }
5560     else if (FD->hasAttr<NoMips16Attr>()) {
5561       Fn->addFnAttr("nomips16");
5562     }
5563   }
5564 
5565   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5566                                llvm::Value *Address) const override;
5567 
5568   unsigned getSizeOfUnwindException() const override {
5569     return SizeOfUnwindException;
5570   }
5571 };
5572 }
5573 
5574 void MipsABIInfo::CoerceToIntArgs(uint64_t TySize,
5575                                   SmallVectorImpl<llvm::Type *> &ArgList) const {
5576   llvm::IntegerType *IntTy =
5577     llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
5578 
5579   // Add (TySize / MinABIStackAlignInBytes) args of IntTy.
5580   for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N)
5581     ArgList.push_back(IntTy);
5582 
5583   // If necessary, add one more integer type to ArgList.
5584   unsigned R = TySize % (MinABIStackAlignInBytes * 8);
5585 
5586   if (R)
5587     ArgList.push_back(llvm::IntegerType::get(getVMContext(), R));
5588 }
5589 
5590 // In N32/64, an aligned double precision floating point field is passed in
5591 // a register.
5592 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const {
5593   SmallVector<llvm::Type*, 8> ArgList, IntArgList;
5594 
5595   if (IsO32) {
5596     CoerceToIntArgs(TySize, ArgList);
5597     return llvm::StructType::get(getVMContext(), ArgList);
5598   }
5599 
5600   if (Ty->isComplexType())
5601     return CGT.ConvertType(Ty);
5602 
5603   const RecordType *RT = Ty->getAs<RecordType>();
5604 
5605   // Unions/vectors are passed in integer registers.
5606   if (!RT || !RT->isStructureOrClassType()) {
5607     CoerceToIntArgs(TySize, ArgList);
5608     return llvm::StructType::get(getVMContext(), ArgList);
5609   }
5610 
5611   const RecordDecl *RD = RT->getDecl();
5612   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
5613   assert(!(TySize % 8) && "Size of structure must be multiple of 8.");
5614 
5615   uint64_t LastOffset = 0;
5616   unsigned idx = 0;
5617   llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64);
5618 
5619   // Iterate over fields in the struct/class and check if there are any aligned
5620   // double fields.
5621   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
5622        i != e; ++i, ++idx) {
5623     const QualType Ty = i->getType();
5624     const BuiltinType *BT = Ty->getAs<BuiltinType>();
5625 
5626     if (!BT || BT->getKind() != BuiltinType::Double)
5627       continue;
5628 
5629     uint64_t Offset = Layout.getFieldOffset(idx);
5630     if (Offset % 64) // Ignore doubles that are not aligned.
5631       continue;
5632 
5633     // Add ((Offset - LastOffset) / 64) args of type i64.
5634     for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j)
5635       ArgList.push_back(I64);
5636 
5637     // Add double type.
5638     ArgList.push_back(llvm::Type::getDoubleTy(getVMContext()));
5639     LastOffset = Offset + 64;
5640   }
5641 
5642   CoerceToIntArgs(TySize - LastOffset, IntArgList);
5643   ArgList.append(IntArgList.begin(), IntArgList.end());
5644 
5645   return llvm::StructType::get(getVMContext(), ArgList);
5646 }
5647 
5648 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset,
5649                                         uint64_t Offset) const {
5650   if (OrigOffset + MinABIStackAlignInBytes > Offset)
5651     return nullptr;
5652 
5653   return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8);
5654 }
5655 
5656 ABIArgInfo
5657 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const {
5658   Ty = useFirstFieldIfTransparentUnion(Ty);
5659 
5660   uint64_t OrigOffset = Offset;
5661   uint64_t TySize = getContext().getTypeSize(Ty);
5662   uint64_t Align = getContext().getTypeAlign(Ty) / 8;
5663 
5664   Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes),
5665                    (uint64_t)StackAlignInBytes);
5666   unsigned CurrOffset = llvm::RoundUpToAlignment(Offset, Align);
5667   Offset = CurrOffset + llvm::RoundUpToAlignment(TySize, Align * 8) / 8;
5668 
5669   if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) {
5670     // Ignore empty aggregates.
5671     if (TySize == 0)
5672       return ABIArgInfo::getIgnore();
5673 
5674     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
5675       Offset = OrigOffset + MinABIStackAlignInBytes;
5676       return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
5677     }
5678 
5679     // If we have reached here, aggregates are passed directly by coercing to
5680     // another structure type. Padding is inserted if the offset of the
5681     // aggregate is unaligned.
5682     ABIArgInfo ArgInfo =
5683         ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0,
5684                               getPaddingType(OrigOffset, CurrOffset));
5685     ArgInfo.setInReg(true);
5686     return ArgInfo;
5687   }
5688 
5689   // Treat an enum type as its underlying type.
5690   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5691     Ty = EnumTy->getDecl()->getIntegerType();
5692 
5693   // All integral types are promoted to the GPR width.
5694   if (Ty->isIntegralOrEnumerationType())
5695     return ABIArgInfo::getExtend();
5696 
5697   return ABIArgInfo::getDirect(
5698       nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset));
5699 }
5700 
5701 llvm::Type*
5702 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const {
5703   const RecordType *RT = RetTy->getAs<RecordType>();
5704   SmallVector<llvm::Type*, 8> RTList;
5705 
5706   if (RT && RT->isStructureOrClassType()) {
5707     const RecordDecl *RD = RT->getDecl();
5708     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
5709     unsigned FieldCnt = Layout.getFieldCount();
5710 
5711     // N32/64 returns struct/classes in floating point registers if the
5712     // following conditions are met:
5713     // 1. The size of the struct/class is no larger than 128-bit.
5714     // 2. The struct/class has one or two fields all of which are floating
5715     //    point types.
5716     // 3. The offset of the first field is zero (this follows what gcc does).
5717     //
5718     // Any other composite results are returned in integer registers.
5719     //
5720     if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) {
5721       RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end();
5722       for (; b != e; ++b) {
5723         const BuiltinType *BT = b->getType()->getAs<BuiltinType>();
5724 
5725         if (!BT || !BT->isFloatingPoint())
5726           break;
5727 
5728         RTList.push_back(CGT.ConvertType(b->getType()));
5729       }
5730 
5731       if (b == e)
5732         return llvm::StructType::get(getVMContext(), RTList,
5733                                      RD->hasAttr<PackedAttr>());
5734 
5735       RTList.clear();
5736     }
5737   }
5738 
5739   CoerceToIntArgs(Size, RTList);
5740   return llvm::StructType::get(getVMContext(), RTList);
5741 }
5742 
5743 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
5744   uint64_t Size = getContext().getTypeSize(RetTy);
5745 
5746   if (RetTy->isVoidType())
5747     return ABIArgInfo::getIgnore();
5748 
5749   // O32 doesn't treat zero-sized structs differently from other structs.
5750   // However, N32/N64 ignores zero sized return values.
5751   if (!IsO32 && Size == 0)
5752     return ABIArgInfo::getIgnore();
5753 
5754   if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) {
5755     if (Size <= 128) {
5756       if (RetTy->isAnyComplexType())
5757         return ABIArgInfo::getDirect();
5758 
5759       // O32 returns integer vectors in registers and N32/N64 returns all small
5760       // aggregates in registers.
5761       if (!IsO32 ||
5762           (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) {
5763         ABIArgInfo ArgInfo =
5764             ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
5765         ArgInfo.setInReg(true);
5766         return ArgInfo;
5767       }
5768     }
5769 
5770     return ABIArgInfo::getIndirect(0);
5771   }
5772 
5773   // Treat an enum type as its underlying type.
5774   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5775     RetTy = EnumTy->getDecl()->getIntegerType();
5776 
5777   return (RetTy->isPromotableIntegerType() ?
5778           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5779 }
5780 
5781 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
5782   ABIArgInfo &RetInfo = FI.getReturnInfo();
5783   if (!getCXXABI().classifyReturnType(FI))
5784     RetInfo = classifyReturnType(FI.getReturnType());
5785 
5786   // Check if a pointer to an aggregate is passed as a hidden argument.
5787   uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0;
5788 
5789   for (auto &I : FI.arguments())
5790     I.info = classifyArgumentType(I.type, Offset);
5791 }
5792 
5793 llvm::Value* MipsABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5794                                     CodeGenFunction &CGF) const {
5795   llvm::Type *BP = CGF.Int8PtrTy;
5796   llvm::Type *BPP = CGF.Int8PtrPtrTy;
5797 
5798   // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64.
5799   // Pointers are also promoted in the same way but this only matters for N32.
5800   unsigned SlotSizeInBits = IsO32 ? 32 : 64;
5801   unsigned PtrWidth = getTarget().getPointerWidth(0);
5802   if ((Ty->isIntegerType() &&
5803           CGF.getContext().getIntWidth(Ty) < SlotSizeInBits) ||
5804       (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) {
5805     Ty = CGF.getContext().getIntTypeForBitwidth(SlotSizeInBits,
5806                                                 Ty->isSignedIntegerType());
5807   }
5808 
5809   CGBuilderTy &Builder = CGF.Builder;
5810   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
5811   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
5812   int64_t TypeAlign =
5813       std::min(getContext().getTypeAlign(Ty) / 8, StackAlignInBytes);
5814   llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
5815   llvm::Value *AddrTyped;
5816   llvm::IntegerType *IntTy = (PtrWidth == 32) ? CGF.Int32Ty : CGF.Int64Ty;
5817 
5818   if (TypeAlign > MinABIStackAlignInBytes) {
5819     llvm::Value *AddrAsInt = CGF.Builder.CreatePtrToInt(Addr, IntTy);
5820     llvm::Value *Inc = llvm::ConstantInt::get(IntTy, TypeAlign - 1);
5821     llvm::Value *Mask = llvm::ConstantInt::get(IntTy, -TypeAlign);
5822     llvm::Value *Add = CGF.Builder.CreateAdd(AddrAsInt, Inc);
5823     llvm::Value *And = CGF.Builder.CreateAnd(Add, Mask);
5824     AddrTyped = CGF.Builder.CreateIntToPtr(And, PTy);
5825   }
5826   else
5827     AddrTyped = Builder.CreateBitCast(Addr, PTy);
5828 
5829   llvm::Value *AlignedAddr = Builder.CreateBitCast(AddrTyped, BP);
5830   TypeAlign = std::max((unsigned)TypeAlign, MinABIStackAlignInBytes);
5831   unsigned ArgSizeInBits = CGF.getContext().getTypeSize(Ty);
5832   uint64_t Offset = llvm::RoundUpToAlignment(ArgSizeInBits / 8, TypeAlign);
5833   llvm::Value *NextAddr =
5834     Builder.CreateGEP(AlignedAddr, llvm::ConstantInt::get(IntTy, Offset),
5835                       "ap.next");
5836   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
5837 
5838   return AddrTyped;
5839 }
5840 
5841 bool
5842 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5843                                                llvm::Value *Address) const {
5844   // This information comes from gcc's implementation, which seems to
5845   // as canonical as it gets.
5846 
5847   // Everything on MIPS is 4 bytes.  Double-precision FP registers
5848   // are aliased to pairs of single-precision FP registers.
5849   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
5850 
5851   // 0-31 are the general purpose registers, $0 - $31.
5852   // 32-63 are the floating-point registers, $f0 - $f31.
5853   // 64 and 65 are the multiply/divide registers, $hi and $lo.
5854   // 66 is the (notional, I think) register for signal-handler return.
5855   AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65);
5856 
5857   // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
5858   // They are one bit wide and ignored here.
5859 
5860   // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
5861   // (coprocessor 1 is the FP unit)
5862   // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
5863   // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
5864   // 176-181 are the DSP accumulator registers.
5865   AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181);
5866   return false;
5867 }
5868 
5869 //===----------------------------------------------------------------------===//
5870 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults.
5871 // Currently subclassed only to implement custom OpenCL C function attribute
5872 // handling.
5873 //===----------------------------------------------------------------------===//
5874 
5875 namespace {
5876 
5877 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo {
5878 public:
5879   TCETargetCodeGenInfo(CodeGenTypes &CGT)
5880     : DefaultTargetCodeGenInfo(CGT) {}
5881 
5882   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5883                            CodeGen::CodeGenModule &M) const override;
5884 };
5885 
5886 void TCETargetCodeGenInfo::SetTargetAttributes(const Decl *D,
5887                                                llvm::GlobalValue *GV,
5888                                                CodeGen::CodeGenModule &M) const {
5889   const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
5890   if (!FD) return;
5891 
5892   llvm::Function *F = cast<llvm::Function>(GV);
5893 
5894   if (M.getLangOpts().OpenCL) {
5895     if (FD->hasAttr<OpenCLKernelAttr>()) {
5896       // OpenCL C Kernel functions are not subject to inlining
5897       F->addFnAttr(llvm::Attribute::NoInline);
5898       const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>();
5899       if (Attr) {
5900         // Convert the reqd_work_group_size() attributes to metadata.
5901         llvm::LLVMContext &Context = F->getContext();
5902         llvm::NamedMDNode *OpenCLMetadata =
5903             M.getModule().getOrInsertNamedMetadata("opencl.kernel_wg_size_info");
5904 
5905         SmallVector<llvm::Metadata *, 5> Operands;
5906         Operands.push_back(llvm::ConstantAsMetadata::get(F));
5907 
5908         Operands.push_back(
5909             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
5910                 M.Int32Ty, llvm::APInt(32, Attr->getXDim()))));
5911         Operands.push_back(
5912             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
5913                 M.Int32Ty, llvm::APInt(32, Attr->getYDim()))));
5914         Operands.push_back(
5915             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
5916                 M.Int32Ty, llvm::APInt(32, Attr->getZDim()))));
5917 
5918         // Add a boolean constant operand for "required" (true) or "hint" (false)
5919         // for implementing the work_group_size_hint attr later. Currently
5920         // always true as the hint is not yet implemented.
5921         Operands.push_back(
5922             llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context)));
5923         OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands));
5924       }
5925     }
5926   }
5927 }
5928 
5929 }
5930 
5931 //===----------------------------------------------------------------------===//
5932 // Hexagon ABI Implementation
5933 //===----------------------------------------------------------------------===//
5934 
5935 namespace {
5936 
5937 class HexagonABIInfo : public ABIInfo {
5938 
5939 
5940 public:
5941   HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
5942 
5943 private:
5944 
5945   ABIArgInfo classifyReturnType(QualType RetTy) const;
5946   ABIArgInfo classifyArgumentType(QualType RetTy) const;
5947 
5948   void computeInfo(CGFunctionInfo &FI) const override;
5949 
5950   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5951                          CodeGenFunction &CGF) const override;
5952 };
5953 
5954 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo {
5955 public:
5956   HexagonTargetCodeGenInfo(CodeGenTypes &CGT)
5957     :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {}
5958 
5959   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
5960     return 29;
5961   }
5962 };
5963 
5964 }
5965 
5966 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const {
5967   if (!getCXXABI().classifyReturnType(FI))
5968     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
5969   for (auto &I : FI.arguments())
5970     I.info = classifyArgumentType(I.type);
5971 }
5972 
5973 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const {
5974   if (!isAggregateTypeForABI(Ty)) {
5975     // Treat an enum type as its underlying type.
5976     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5977       Ty = EnumTy->getDecl()->getIntegerType();
5978 
5979     return (Ty->isPromotableIntegerType() ?
5980             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5981   }
5982 
5983   // Ignore empty records.
5984   if (isEmptyRecord(getContext(), Ty, true))
5985     return ABIArgInfo::getIgnore();
5986 
5987   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
5988     return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
5989 
5990   uint64_t Size = getContext().getTypeSize(Ty);
5991   if (Size > 64)
5992     return ABIArgInfo::getIndirect(0, /*ByVal=*/true);
5993     // Pass in the smallest viable integer type.
5994   else if (Size > 32)
5995       return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
5996   else if (Size > 16)
5997       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
5998   else if (Size > 8)
5999       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
6000   else
6001       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
6002 }
6003 
6004 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const {
6005   if (RetTy->isVoidType())
6006     return ABIArgInfo::getIgnore();
6007 
6008   // Large vector types should be returned via memory.
6009   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64)
6010     return ABIArgInfo::getIndirect(0);
6011 
6012   if (!isAggregateTypeForABI(RetTy)) {
6013     // Treat an enum type as its underlying type.
6014     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
6015       RetTy = EnumTy->getDecl()->getIntegerType();
6016 
6017     return (RetTy->isPromotableIntegerType() ?
6018             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
6019   }
6020 
6021   if (isEmptyRecord(getContext(), RetTy, true))
6022     return ABIArgInfo::getIgnore();
6023 
6024   // Aggregates <= 8 bytes are returned in r0; other aggregates
6025   // are returned indirectly.
6026   uint64_t Size = getContext().getTypeSize(RetTy);
6027   if (Size <= 64) {
6028     // Return in the smallest viable integer type.
6029     if (Size <= 8)
6030       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
6031     if (Size <= 16)
6032       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
6033     if (Size <= 32)
6034       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6035     return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
6036   }
6037 
6038   return ABIArgInfo::getIndirect(0, /*ByVal=*/true);
6039 }
6040 
6041 llvm::Value *HexagonABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
6042                                        CodeGenFunction &CGF) const {
6043   // FIXME: Need to handle alignment
6044   llvm::Type *BPP = CGF.Int8PtrPtrTy;
6045 
6046   CGBuilderTy &Builder = CGF.Builder;
6047   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
6048                                                        "ap");
6049   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
6050   llvm::Type *PTy =
6051     llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
6052   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
6053 
6054   uint64_t Offset =
6055     llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
6056   llvm::Value *NextAddr =
6057     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
6058                       "ap.next");
6059   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
6060 
6061   return AddrTyped;
6062 }
6063 
6064 //===----------------------------------------------------------------------===//
6065 // AMDGPU ABI Implementation
6066 //===----------------------------------------------------------------------===//
6067 
6068 namespace {
6069 
6070 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo {
6071 public:
6072   AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT)
6073     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
6074   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6075                            CodeGen::CodeGenModule &M) const override;
6076 };
6077 
6078 }
6079 
6080 void AMDGPUTargetCodeGenInfo::SetTargetAttributes(
6081   const Decl *D,
6082   llvm::GlobalValue *GV,
6083   CodeGen::CodeGenModule &M) const {
6084   const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
6085   if (!FD)
6086     return;
6087 
6088   if (const auto Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) {
6089     llvm::Function *F = cast<llvm::Function>(GV);
6090     uint32_t NumVGPR = Attr->getNumVGPR();
6091     if (NumVGPR != 0)
6092       F->addFnAttr("amdgpu_num_vgpr", llvm::utostr(NumVGPR));
6093   }
6094 
6095   if (const auto Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) {
6096     llvm::Function *F = cast<llvm::Function>(GV);
6097     unsigned NumSGPR = Attr->getNumSGPR();
6098     if (NumSGPR != 0)
6099       F->addFnAttr("amdgpu_num_sgpr", llvm::utostr(NumSGPR));
6100   }
6101 }
6102 
6103 
6104 //===----------------------------------------------------------------------===//
6105 // SPARC v9 ABI Implementation.
6106 // Based on the SPARC Compliance Definition version 2.4.1.
6107 //
6108 // Function arguments a mapped to a nominal "parameter array" and promoted to
6109 // registers depending on their type. Each argument occupies 8 or 16 bytes in
6110 // the array, structs larger than 16 bytes are passed indirectly.
6111 //
6112 // One case requires special care:
6113 //
6114 //   struct mixed {
6115 //     int i;
6116 //     float f;
6117 //   };
6118 //
6119 // When a struct mixed is passed by value, it only occupies 8 bytes in the
6120 // parameter array, but the int is passed in an integer register, and the float
6121 // is passed in a floating point register. This is represented as two arguments
6122 // with the LLVM IR inreg attribute:
6123 //
6124 //   declare void f(i32 inreg %i, float inreg %f)
6125 //
6126 // The code generator will only allocate 4 bytes from the parameter array for
6127 // the inreg arguments. All other arguments are allocated a multiple of 8
6128 // bytes.
6129 //
6130 namespace {
6131 class SparcV9ABIInfo : public ABIInfo {
6132 public:
6133   SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
6134 
6135 private:
6136   ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const;
6137   void computeInfo(CGFunctionInfo &FI) const override;
6138   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
6139                          CodeGenFunction &CGF) const override;
6140 
6141   // Coercion type builder for structs passed in registers. The coercion type
6142   // serves two purposes:
6143   //
6144   // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned'
6145   //    in registers.
6146   // 2. Expose aligned floating point elements as first-level elements, so the
6147   //    code generator knows to pass them in floating point registers.
6148   //
6149   // We also compute the InReg flag which indicates that the struct contains
6150   // aligned 32-bit floats.
6151   //
6152   struct CoerceBuilder {
6153     llvm::LLVMContext &Context;
6154     const llvm::DataLayout &DL;
6155     SmallVector<llvm::Type*, 8> Elems;
6156     uint64_t Size;
6157     bool InReg;
6158 
6159     CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl)
6160       : Context(c), DL(dl), Size(0), InReg(false) {}
6161 
6162     // Pad Elems with integers until Size is ToSize.
6163     void pad(uint64_t ToSize) {
6164       assert(ToSize >= Size && "Cannot remove elements");
6165       if (ToSize == Size)
6166         return;
6167 
6168       // Finish the current 64-bit word.
6169       uint64_t Aligned = llvm::RoundUpToAlignment(Size, 64);
6170       if (Aligned > Size && Aligned <= ToSize) {
6171         Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size));
6172         Size = Aligned;
6173       }
6174 
6175       // Add whole 64-bit words.
6176       while (Size + 64 <= ToSize) {
6177         Elems.push_back(llvm::Type::getInt64Ty(Context));
6178         Size += 64;
6179       }
6180 
6181       // Final in-word padding.
6182       if (Size < ToSize) {
6183         Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size));
6184         Size = ToSize;
6185       }
6186     }
6187 
6188     // Add a floating point element at Offset.
6189     void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) {
6190       // Unaligned floats are treated as integers.
6191       if (Offset % Bits)
6192         return;
6193       // The InReg flag is only required if there are any floats < 64 bits.
6194       if (Bits < 64)
6195         InReg = true;
6196       pad(Offset);
6197       Elems.push_back(Ty);
6198       Size = Offset + Bits;
6199     }
6200 
6201     // Add a struct type to the coercion type, starting at Offset (in bits).
6202     void addStruct(uint64_t Offset, llvm::StructType *StrTy) {
6203       const llvm::StructLayout *Layout = DL.getStructLayout(StrTy);
6204       for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) {
6205         llvm::Type *ElemTy = StrTy->getElementType(i);
6206         uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i);
6207         switch (ElemTy->getTypeID()) {
6208         case llvm::Type::StructTyID:
6209           addStruct(ElemOffset, cast<llvm::StructType>(ElemTy));
6210           break;
6211         case llvm::Type::FloatTyID:
6212           addFloat(ElemOffset, ElemTy, 32);
6213           break;
6214         case llvm::Type::DoubleTyID:
6215           addFloat(ElemOffset, ElemTy, 64);
6216           break;
6217         case llvm::Type::FP128TyID:
6218           addFloat(ElemOffset, ElemTy, 128);
6219           break;
6220         case llvm::Type::PointerTyID:
6221           if (ElemOffset % 64 == 0) {
6222             pad(ElemOffset);
6223             Elems.push_back(ElemTy);
6224             Size += 64;
6225           }
6226           break;
6227         default:
6228           break;
6229         }
6230       }
6231     }
6232 
6233     // Check if Ty is a usable substitute for the coercion type.
6234     bool isUsableType(llvm::StructType *Ty) const {
6235       return llvm::makeArrayRef(Elems) == Ty->elements();
6236     }
6237 
6238     // Get the coercion type as a literal struct type.
6239     llvm::Type *getType() const {
6240       if (Elems.size() == 1)
6241         return Elems.front();
6242       else
6243         return llvm::StructType::get(Context, Elems);
6244     }
6245   };
6246 };
6247 } // end anonymous namespace
6248 
6249 ABIArgInfo
6250 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const {
6251   if (Ty->isVoidType())
6252     return ABIArgInfo::getIgnore();
6253 
6254   uint64_t Size = getContext().getTypeSize(Ty);
6255 
6256   // Anything too big to fit in registers is passed with an explicit indirect
6257   // pointer / sret pointer.
6258   if (Size > SizeLimit)
6259     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
6260 
6261   // Treat an enum type as its underlying type.
6262   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
6263     Ty = EnumTy->getDecl()->getIntegerType();
6264 
6265   // Integer types smaller than a register are extended.
6266   if (Size < 64 && Ty->isIntegerType())
6267     return ABIArgInfo::getExtend();
6268 
6269   // Other non-aggregates go in registers.
6270   if (!isAggregateTypeForABI(Ty))
6271     return ABIArgInfo::getDirect();
6272 
6273   // If a C++ object has either a non-trivial copy constructor or a non-trivial
6274   // destructor, it is passed with an explicit indirect pointer / sret pointer.
6275   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
6276     return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
6277 
6278   // This is a small aggregate type that should be passed in registers.
6279   // Build a coercion type from the LLVM struct type.
6280   llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty));
6281   if (!StrTy)
6282     return ABIArgInfo::getDirect();
6283 
6284   CoerceBuilder CB(getVMContext(), getDataLayout());
6285   CB.addStruct(0, StrTy);
6286   CB.pad(llvm::RoundUpToAlignment(CB.DL.getTypeSizeInBits(StrTy), 64));
6287 
6288   // Try to use the original type for coercion.
6289   llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType();
6290 
6291   if (CB.InReg)
6292     return ABIArgInfo::getDirectInReg(CoerceTy);
6293   else
6294     return ABIArgInfo::getDirect(CoerceTy);
6295 }
6296 
6297 llvm::Value *SparcV9ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
6298                                        CodeGenFunction &CGF) const {
6299   ABIArgInfo AI = classifyType(Ty, 16 * 8);
6300   llvm::Type *ArgTy = CGT.ConvertType(Ty);
6301   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
6302     AI.setCoerceToType(ArgTy);
6303 
6304   llvm::Type *BPP = CGF.Int8PtrPtrTy;
6305   CGBuilderTy &Builder = CGF.Builder;
6306   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
6307   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
6308   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
6309   llvm::Value *ArgAddr;
6310   unsigned Stride;
6311 
6312   switch (AI.getKind()) {
6313   case ABIArgInfo::Expand:
6314   case ABIArgInfo::InAlloca:
6315     llvm_unreachable("Unsupported ABI kind for va_arg");
6316 
6317   case ABIArgInfo::Extend:
6318     Stride = 8;
6319     ArgAddr = Builder
6320       .CreateConstGEP1_32(Addr, 8 - getDataLayout().getTypeAllocSize(ArgTy),
6321                           "extend");
6322     break;
6323 
6324   case ABIArgInfo::Direct:
6325     Stride = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
6326     ArgAddr = Addr;
6327     break;
6328 
6329   case ABIArgInfo::Indirect:
6330     Stride = 8;
6331     ArgAddr = Builder.CreateBitCast(Addr,
6332                                     llvm::PointerType::getUnqual(ArgPtrTy),
6333                                     "indirect");
6334     ArgAddr = Builder.CreateLoad(ArgAddr, "indirect.arg");
6335     break;
6336 
6337   case ABIArgInfo::Ignore:
6338     return llvm::UndefValue::get(ArgPtrTy);
6339   }
6340 
6341   // Update VAList.
6342   Addr = Builder.CreateConstGEP1_32(Addr, Stride, "ap.next");
6343   Builder.CreateStore(Addr, VAListAddrAsBPP);
6344 
6345   return Builder.CreatePointerCast(ArgAddr, ArgPtrTy, "arg.addr");
6346 }
6347 
6348 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const {
6349   FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8);
6350   for (auto &I : FI.arguments())
6351     I.info = classifyType(I.type, 16 * 8);
6352 }
6353 
6354 namespace {
6355 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo {
6356 public:
6357   SparcV9TargetCodeGenInfo(CodeGenTypes &CGT)
6358     : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {}
6359 
6360   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
6361     return 14;
6362   }
6363 
6364   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
6365                                llvm::Value *Address) const override;
6366 };
6367 } // end anonymous namespace
6368 
6369 bool
6370 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
6371                                                 llvm::Value *Address) const {
6372   // This is calculated from the LLVM and GCC tables and verified
6373   // against gcc output.  AFAIK all ABIs use the same encoding.
6374 
6375   CodeGen::CGBuilderTy &Builder = CGF.Builder;
6376 
6377   llvm::IntegerType *i8 = CGF.Int8Ty;
6378   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
6379   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
6380 
6381   // 0-31: the 8-byte general-purpose registers
6382   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
6383 
6384   // 32-63: f0-31, the 4-byte floating-point registers
6385   AssignToArrayRange(Builder, Address, Four8, 32, 63);
6386 
6387   //   Y   = 64
6388   //   PSR = 65
6389   //   WIM = 66
6390   //   TBR = 67
6391   //   PC  = 68
6392   //   NPC = 69
6393   //   FSR = 70
6394   //   CSR = 71
6395   AssignToArrayRange(Builder, Address, Eight8, 64, 71);
6396 
6397   // 72-87: d0-15, the 8-byte floating-point registers
6398   AssignToArrayRange(Builder, Address, Eight8, 72, 87);
6399 
6400   return false;
6401 }
6402 
6403 
6404 //===----------------------------------------------------------------------===//
6405 // XCore ABI Implementation
6406 //===----------------------------------------------------------------------===//
6407 
6408 namespace {
6409 
6410 /// A SmallStringEnc instance is used to build up the TypeString by passing
6411 /// it by reference between functions that append to it.
6412 typedef llvm::SmallString<128> SmallStringEnc;
6413 
6414 /// TypeStringCache caches the meta encodings of Types.
6415 ///
6416 /// The reason for caching TypeStrings is two fold:
6417 ///   1. To cache a type's encoding for later uses;
6418 ///   2. As a means to break recursive member type inclusion.
6419 ///
6420 /// A cache Entry can have a Status of:
6421 ///   NonRecursive:   The type encoding is not recursive;
6422 ///   Recursive:      The type encoding is recursive;
6423 ///   Incomplete:     An incomplete TypeString;
6424 ///   IncompleteUsed: An incomplete TypeString that has been used in a
6425 ///                   Recursive type encoding.
6426 ///
6427 /// A NonRecursive entry will have all of its sub-members expanded as fully
6428 /// as possible. Whilst it may contain types which are recursive, the type
6429 /// itself is not recursive and thus its encoding may be safely used whenever
6430 /// the type is encountered.
6431 ///
6432 /// A Recursive entry will have all of its sub-members expanded as fully as
6433 /// possible. The type itself is recursive and it may contain other types which
6434 /// are recursive. The Recursive encoding must not be used during the expansion
6435 /// of a recursive type's recursive branch. For simplicity the code uses
6436 /// IncompleteCount to reject all usage of Recursive encodings for member types.
6437 ///
6438 /// An Incomplete entry is always a RecordType and only encodes its
6439 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and
6440 /// are placed into the cache during type expansion as a means to identify and
6441 /// handle recursive inclusion of types as sub-members. If there is recursion
6442 /// the entry becomes IncompleteUsed.
6443 ///
6444 /// During the expansion of a RecordType's members:
6445 ///
6446 ///   If the cache contains a NonRecursive encoding for the member type, the
6447 ///   cached encoding is used;
6448 ///
6449 ///   If the cache contains a Recursive encoding for the member type, the
6450 ///   cached encoding is 'Swapped' out, as it may be incorrect, and...
6451 ///
6452 ///   If the member is a RecordType, an Incomplete encoding is placed into the
6453 ///   cache to break potential recursive inclusion of itself as a sub-member;
6454 ///
6455 ///   Once a member RecordType has been expanded, its temporary incomplete
6456 ///   entry is removed from the cache. If a Recursive encoding was swapped out
6457 ///   it is swapped back in;
6458 ///
6459 ///   If an incomplete entry is used to expand a sub-member, the incomplete
6460 ///   entry is marked as IncompleteUsed. The cache keeps count of how many
6461 ///   IncompleteUsed entries it currently contains in IncompleteUsedCount;
6462 ///
6463 ///   If a member's encoding is found to be a NonRecursive or Recursive viz:
6464 ///   IncompleteUsedCount==0, the member's encoding is added to the cache.
6465 ///   Else the member is part of a recursive type and thus the recursion has
6466 ///   been exited too soon for the encoding to be correct for the member.
6467 ///
6468 class TypeStringCache {
6469   enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed};
6470   struct Entry {
6471     std::string Str;     // The encoded TypeString for the type.
6472     enum Status State;   // Information about the encoding in 'Str'.
6473     std::string Swapped; // A temporary place holder for a Recursive encoding
6474                          // during the expansion of RecordType's members.
6475   };
6476   std::map<const IdentifierInfo *, struct Entry> Map;
6477   unsigned IncompleteCount;     // Number of Incomplete entries in the Map.
6478   unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map.
6479 public:
6480   TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {};
6481   void addIncomplete(const IdentifierInfo *ID, std::string StubEnc);
6482   bool removeIncomplete(const IdentifierInfo *ID);
6483   void addIfComplete(const IdentifierInfo *ID, StringRef Str,
6484                      bool IsRecursive);
6485   StringRef lookupStr(const IdentifierInfo *ID);
6486 };
6487 
6488 /// TypeString encodings for enum & union fields must be order.
6489 /// FieldEncoding is a helper for this ordering process.
6490 class FieldEncoding {
6491   bool HasName;
6492   std::string Enc;
6493 public:
6494   FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {};
6495   StringRef str() {return Enc.c_str();};
6496   bool operator<(const FieldEncoding &rhs) const {
6497     if (HasName != rhs.HasName) return HasName;
6498     return Enc < rhs.Enc;
6499   }
6500 };
6501 
6502 class XCoreABIInfo : public DefaultABIInfo {
6503 public:
6504   XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
6505   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
6506                          CodeGenFunction &CGF) const override;
6507 };
6508 
6509 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo {
6510   mutable TypeStringCache TSC;
6511 public:
6512   XCoreTargetCodeGenInfo(CodeGenTypes &CGT)
6513     :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {}
6514   void emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
6515                     CodeGen::CodeGenModule &M) const override;
6516 };
6517 
6518 } // End anonymous namespace.
6519 
6520 llvm::Value *XCoreABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
6521                                      CodeGenFunction &CGF) const {
6522   CGBuilderTy &Builder = CGF.Builder;
6523 
6524   // Get the VAList.
6525   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr,
6526                                                        CGF.Int8PtrPtrTy);
6527   llvm::Value *AP = Builder.CreateLoad(VAListAddrAsBPP);
6528 
6529   // Handle the argument.
6530   ABIArgInfo AI = classifyArgumentType(Ty);
6531   llvm::Type *ArgTy = CGT.ConvertType(Ty);
6532   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
6533     AI.setCoerceToType(ArgTy);
6534   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
6535   llvm::Value *Val;
6536   uint64_t ArgSize = 0;
6537   switch (AI.getKind()) {
6538   case ABIArgInfo::Expand:
6539   case ABIArgInfo::InAlloca:
6540     llvm_unreachable("Unsupported ABI kind for va_arg");
6541   case ABIArgInfo::Ignore:
6542     Val = llvm::UndefValue::get(ArgPtrTy);
6543     ArgSize = 0;
6544     break;
6545   case ABIArgInfo::Extend:
6546   case ABIArgInfo::Direct:
6547     Val = Builder.CreatePointerCast(AP, ArgPtrTy);
6548     ArgSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
6549     if (ArgSize < 4)
6550       ArgSize = 4;
6551     break;
6552   case ABIArgInfo::Indirect:
6553     llvm::Value *ArgAddr;
6554     ArgAddr = Builder.CreateBitCast(AP, llvm::PointerType::getUnqual(ArgPtrTy));
6555     ArgAddr = Builder.CreateLoad(ArgAddr);
6556     Val = Builder.CreatePointerCast(ArgAddr, ArgPtrTy);
6557     ArgSize = 4;
6558     break;
6559   }
6560 
6561   // Increment the VAList.
6562   if (ArgSize) {
6563     llvm::Value *APN = Builder.CreateConstGEP1_32(AP, ArgSize);
6564     Builder.CreateStore(APN, VAListAddrAsBPP);
6565   }
6566   return Val;
6567 }
6568 
6569 /// During the expansion of a RecordType, an incomplete TypeString is placed
6570 /// into the cache as a means to identify and break recursion.
6571 /// If there is a Recursive encoding in the cache, it is swapped out and will
6572 /// be reinserted by removeIncomplete().
6573 /// All other types of encoding should have been used rather than arriving here.
6574 void TypeStringCache::addIncomplete(const IdentifierInfo *ID,
6575                                     std::string StubEnc) {
6576   if (!ID)
6577     return;
6578   Entry &E = Map[ID];
6579   assert( (E.Str.empty() || E.State == Recursive) &&
6580          "Incorrectly use of addIncomplete");
6581   assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()");
6582   E.Swapped.swap(E.Str); // swap out the Recursive
6583   E.Str.swap(StubEnc);
6584   E.State = Incomplete;
6585   ++IncompleteCount;
6586 }
6587 
6588 /// Once the RecordType has been expanded, the temporary incomplete TypeString
6589 /// must be removed from the cache.
6590 /// If a Recursive was swapped out by addIncomplete(), it will be replaced.
6591 /// Returns true if the RecordType was defined recursively.
6592 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) {
6593   if (!ID)
6594     return false;
6595   auto I = Map.find(ID);
6596   assert(I != Map.end() && "Entry not present");
6597   Entry &E = I->second;
6598   assert( (E.State == Incomplete ||
6599            E.State == IncompleteUsed) &&
6600          "Entry must be an incomplete type");
6601   bool IsRecursive = false;
6602   if (E.State == IncompleteUsed) {
6603     // We made use of our Incomplete encoding, thus we are recursive.
6604     IsRecursive = true;
6605     --IncompleteUsedCount;
6606   }
6607   if (E.Swapped.empty())
6608     Map.erase(I);
6609   else {
6610     // Swap the Recursive back.
6611     E.Swapped.swap(E.Str);
6612     E.Swapped.clear();
6613     E.State = Recursive;
6614   }
6615   --IncompleteCount;
6616   return IsRecursive;
6617 }
6618 
6619 /// Add the encoded TypeString to the cache only if it is NonRecursive or
6620 /// Recursive (viz: all sub-members were expanded as fully as possible).
6621 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str,
6622                                     bool IsRecursive) {
6623   if (!ID || IncompleteUsedCount)
6624     return; // No key or it is is an incomplete sub-type so don't add.
6625   Entry &E = Map[ID];
6626   if (IsRecursive && !E.Str.empty()) {
6627     assert(E.State==Recursive && E.Str.size() == Str.size() &&
6628            "This is not the same Recursive entry");
6629     // The parent container was not recursive after all, so we could have used
6630     // this Recursive sub-member entry after all, but we assumed the worse when
6631     // we started viz: IncompleteCount!=0.
6632     return;
6633   }
6634   assert(E.Str.empty() && "Entry already present");
6635   E.Str = Str.str();
6636   E.State = IsRecursive? Recursive : NonRecursive;
6637 }
6638 
6639 /// Return a cached TypeString encoding for the ID. If there isn't one, or we
6640 /// are recursively expanding a type (IncompleteCount != 0) and the cached
6641 /// encoding is Recursive, return an empty StringRef.
6642 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) {
6643   if (!ID)
6644     return StringRef();   // We have no key.
6645   auto I = Map.find(ID);
6646   if (I == Map.end())
6647     return StringRef();   // We have no encoding.
6648   Entry &E = I->second;
6649   if (E.State == Recursive && IncompleteCount)
6650     return StringRef();   // We don't use Recursive encodings for member types.
6651 
6652   if (E.State == Incomplete) {
6653     // The incomplete type is being used to break out of recursion.
6654     E.State = IncompleteUsed;
6655     ++IncompleteUsedCount;
6656   }
6657   return E.Str.c_str();
6658 }
6659 
6660 /// The XCore ABI includes a type information section that communicates symbol
6661 /// type information to the linker. The linker uses this information to verify
6662 /// safety/correctness of things such as array bound and pointers et al.
6663 /// The ABI only requires C (and XC) language modules to emit TypeStrings.
6664 /// This type information (TypeString) is emitted into meta data for all global
6665 /// symbols: definitions, declarations, functions & variables.
6666 ///
6667 /// The TypeString carries type, qualifier, name, size & value details.
6668 /// Please see 'Tools Development Guide' section 2.16.2 for format details:
6669 /// <https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf>
6670 /// The output is tested by test/CodeGen/xcore-stringtype.c.
6671 ///
6672 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
6673                           CodeGen::CodeGenModule &CGM, TypeStringCache &TSC);
6674 
6675 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols.
6676 void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
6677                                           CodeGen::CodeGenModule &CGM) const {
6678   SmallStringEnc Enc;
6679   if (getTypeString(Enc, D, CGM, TSC)) {
6680     llvm::LLVMContext &Ctx = CGM.getModule().getContext();
6681     llvm::SmallVector<llvm::Metadata *, 2> MDVals;
6682     MDVals.push_back(llvm::ConstantAsMetadata::get(GV));
6683     MDVals.push_back(llvm::MDString::get(Ctx, Enc.str()));
6684     llvm::NamedMDNode *MD =
6685       CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings");
6686     MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
6687   }
6688 }
6689 
6690 static bool appendType(SmallStringEnc &Enc, QualType QType,
6691                        const CodeGen::CodeGenModule &CGM,
6692                        TypeStringCache &TSC);
6693 
6694 /// Helper function for appendRecordType().
6695 /// Builds a SmallVector containing the encoded field types in declaration order.
6696 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE,
6697                              const RecordDecl *RD,
6698                              const CodeGen::CodeGenModule &CGM,
6699                              TypeStringCache &TSC) {
6700   for (const auto *Field : RD->fields()) {
6701     SmallStringEnc Enc;
6702     Enc += "m(";
6703     Enc += Field->getName();
6704     Enc += "){";
6705     if (Field->isBitField()) {
6706       Enc += "b(";
6707       llvm::raw_svector_ostream OS(Enc);
6708       OS.resync();
6709       OS << Field->getBitWidthValue(CGM.getContext());
6710       OS.flush();
6711       Enc += ':';
6712     }
6713     if (!appendType(Enc, Field->getType(), CGM, TSC))
6714       return false;
6715     if (Field->isBitField())
6716       Enc += ')';
6717     Enc += '}';
6718     FE.push_back(FieldEncoding(!Field->getName().empty(), Enc));
6719   }
6720   return true;
6721 }
6722 
6723 /// Appends structure and union types to Enc and adds encoding to cache.
6724 /// Recursively calls appendType (via extractFieldType) for each field.
6725 /// Union types have their fields ordered according to the ABI.
6726 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT,
6727                              const CodeGen::CodeGenModule &CGM,
6728                              TypeStringCache &TSC, const IdentifierInfo *ID) {
6729   // Append the cached TypeString if we have one.
6730   StringRef TypeString = TSC.lookupStr(ID);
6731   if (!TypeString.empty()) {
6732     Enc += TypeString;
6733     return true;
6734   }
6735 
6736   // Start to emit an incomplete TypeString.
6737   size_t Start = Enc.size();
6738   Enc += (RT->isUnionType()? 'u' : 's');
6739   Enc += '(';
6740   if (ID)
6741     Enc += ID->getName();
6742   Enc += "){";
6743 
6744   // We collect all encoded fields and order as necessary.
6745   bool IsRecursive = false;
6746   const RecordDecl *RD = RT->getDecl()->getDefinition();
6747   if (RD && !RD->field_empty()) {
6748     // An incomplete TypeString stub is placed in the cache for this RecordType
6749     // so that recursive calls to this RecordType will use it whilst building a
6750     // complete TypeString for this RecordType.
6751     SmallVector<FieldEncoding, 16> FE;
6752     std::string StubEnc(Enc.substr(Start).str());
6753     StubEnc += '}';  // StubEnc now holds a valid incomplete TypeString.
6754     TSC.addIncomplete(ID, std::move(StubEnc));
6755     if (!extractFieldType(FE, RD, CGM, TSC)) {
6756       (void) TSC.removeIncomplete(ID);
6757       return false;
6758     }
6759     IsRecursive = TSC.removeIncomplete(ID);
6760     // The ABI requires unions to be sorted but not structures.
6761     // See FieldEncoding::operator< for sort algorithm.
6762     if (RT->isUnionType())
6763       std::sort(FE.begin(), FE.end());
6764     // We can now complete the TypeString.
6765     unsigned E = FE.size();
6766     for (unsigned I = 0; I != E; ++I) {
6767       if (I)
6768         Enc += ',';
6769       Enc += FE[I].str();
6770     }
6771   }
6772   Enc += '}';
6773   TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive);
6774   return true;
6775 }
6776 
6777 /// Appends enum types to Enc and adds the encoding to the cache.
6778 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET,
6779                            TypeStringCache &TSC,
6780                            const IdentifierInfo *ID) {
6781   // Append the cached TypeString if we have one.
6782   StringRef TypeString = TSC.lookupStr(ID);
6783   if (!TypeString.empty()) {
6784     Enc += TypeString;
6785     return true;
6786   }
6787 
6788   size_t Start = Enc.size();
6789   Enc += "e(";
6790   if (ID)
6791     Enc += ID->getName();
6792   Enc += "){";
6793 
6794   // We collect all encoded enumerations and order them alphanumerically.
6795   if (const EnumDecl *ED = ET->getDecl()->getDefinition()) {
6796     SmallVector<FieldEncoding, 16> FE;
6797     for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E;
6798          ++I) {
6799       SmallStringEnc EnumEnc;
6800       EnumEnc += "m(";
6801       EnumEnc += I->getName();
6802       EnumEnc += "){";
6803       I->getInitVal().toString(EnumEnc);
6804       EnumEnc += '}';
6805       FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc));
6806     }
6807     std::sort(FE.begin(), FE.end());
6808     unsigned E = FE.size();
6809     for (unsigned I = 0; I != E; ++I) {
6810       if (I)
6811         Enc += ',';
6812       Enc += FE[I].str();
6813     }
6814   }
6815   Enc += '}';
6816   TSC.addIfComplete(ID, Enc.substr(Start), false);
6817   return true;
6818 }
6819 
6820 /// Appends type's qualifier to Enc.
6821 /// This is done prior to appending the type's encoding.
6822 static void appendQualifier(SmallStringEnc &Enc, QualType QT) {
6823   // Qualifiers are emitted in alphabetical order.
6824   static const char *Table[] = {"","c:","r:","cr:","v:","cv:","rv:","crv:"};
6825   int Lookup = 0;
6826   if (QT.isConstQualified())
6827     Lookup += 1<<0;
6828   if (QT.isRestrictQualified())
6829     Lookup += 1<<1;
6830   if (QT.isVolatileQualified())
6831     Lookup += 1<<2;
6832   Enc += Table[Lookup];
6833 }
6834 
6835 /// Appends built-in types to Enc.
6836 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) {
6837   const char *EncType;
6838   switch (BT->getKind()) {
6839     case BuiltinType::Void:
6840       EncType = "0";
6841       break;
6842     case BuiltinType::Bool:
6843       EncType = "b";
6844       break;
6845     case BuiltinType::Char_U:
6846       EncType = "uc";
6847       break;
6848     case BuiltinType::UChar:
6849       EncType = "uc";
6850       break;
6851     case BuiltinType::SChar:
6852       EncType = "sc";
6853       break;
6854     case BuiltinType::UShort:
6855       EncType = "us";
6856       break;
6857     case BuiltinType::Short:
6858       EncType = "ss";
6859       break;
6860     case BuiltinType::UInt:
6861       EncType = "ui";
6862       break;
6863     case BuiltinType::Int:
6864       EncType = "si";
6865       break;
6866     case BuiltinType::ULong:
6867       EncType = "ul";
6868       break;
6869     case BuiltinType::Long:
6870       EncType = "sl";
6871       break;
6872     case BuiltinType::ULongLong:
6873       EncType = "ull";
6874       break;
6875     case BuiltinType::LongLong:
6876       EncType = "sll";
6877       break;
6878     case BuiltinType::Float:
6879       EncType = "ft";
6880       break;
6881     case BuiltinType::Double:
6882       EncType = "d";
6883       break;
6884     case BuiltinType::LongDouble:
6885       EncType = "ld";
6886       break;
6887     default:
6888       return false;
6889   }
6890   Enc += EncType;
6891   return true;
6892 }
6893 
6894 /// Appends a pointer encoding to Enc before calling appendType for the pointee.
6895 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT,
6896                               const CodeGen::CodeGenModule &CGM,
6897                               TypeStringCache &TSC) {
6898   Enc += "p(";
6899   if (!appendType(Enc, PT->getPointeeType(), CGM, TSC))
6900     return false;
6901   Enc += ')';
6902   return true;
6903 }
6904 
6905 /// Appends array encoding to Enc before calling appendType for the element.
6906 static bool appendArrayType(SmallStringEnc &Enc, QualType QT,
6907                             const ArrayType *AT,
6908                             const CodeGen::CodeGenModule &CGM,
6909                             TypeStringCache &TSC, StringRef NoSizeEnc) {
6910   if (AT->getSizeModifier() != ArrayType::Normal)
6911     return false;
6912   Enc += "a(";
6913   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
6914     CAT->getSize().toStringUnsigned(Enc);
6915   else
6916     Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "".
6917   Enc += ':';
6918   // The Qualifiers should be attached to the type rather than the array.
6919   appendQualifier(Enc, QT);
6920   if (!appendType(Enc, AT->getElementType(), CGM, TSC))
6921     return false;
6922   Enc += ')';
6923   return true;
6924 }
6925 
6926 /// Appends a function encoding to Enc, calling appendType for the return type
6927 /// and the arguments.
6928 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT,
6929                              const CodeGen::CodeGenModule &CGM,
6930                              TypeStringCache &TSC) {
6931   Enc += "f{";
6932   if (!appendType(Enc, FT->getReturnType(), CGM, TSC))
6933     return false;
6934   Enc += "}(";
6935   if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) {
6936     // N.B. we are only interested in the adjusted param types.
6937     auto I = FPT->param_type_begin();
6938     auto E = FPT->param_type_end();
6939     if (I != E) {
6940       do {
6941         if (!appendType(Enc, *I, CGM, TSC))
6942           return false;
6943         ++I;
6944         if (I != E)
6945           Enc += ',';
6946       } while (I != E);
6947       if (FPT->isVariadic())
6948         Enc += ",va";
6949     } else {
6950       if (FPT->isVariadic())
6951         Enc += "va";
6952       else
6953         Enc += '0';
6954     }
6955   }
6956   Enc += ')';
6957   return true;
6958 }
6959 
6960 /// Handles the type's qualifier before dispatching a call to handle specific
6961 /// type encodings.
6962 static bool appendType(SmallStringEnc &Enc, QualType QType,
6963                        const CodeGen::CodeGenModule &CGM,
6964                        TypeStringCache &TSC) {
6965 
6966   QualType QT = QType.getCanonicalType();
6967 
6968   if (const ArrayType *AT = QT->getAsArrayTypeUnsafe())
6969     // The Qualifiers should be attached to the type rather than the array.
6970     // Thus we don't call appendQualifier() here.
6971     return appendArrayType(Enc, QT, AT, CGM, TSC, "");
6972 
6973   appendQualifier(Enc, QT);
6974 
6975   if (const BuiltinType *BT = QT->getAs<BuiltinType>())
6976     return appendBuiltinType(Enc, BT);
6977 
6978   if (const PointerType *PT = QT->getAs<PointerType>())
6979     return appendPointerType(Enc, PT, CGM, TSC);
6980 
6981   if (const EnumType *ET = QT->getAs<EnumType>())
6982     return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier());
6983 
6984   if (const RecordType *RT = QT->getAsStructureType())
6985     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
6986 
6987   if (const RecordType *RT = QT->getAsUnionType())
6988     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
6989 
6990   if (const FunctionType *FT = QT->getAs<FunctionType>())
6991     return appendFunctionType(Enc, FT, CGM, TSC);
6992 
6993   return false;
6994 }
6995 
6996 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
6997                           CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) {
6998   if (!D)
6999     return false;
7000 
7001   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
7002     if (FD->getLanguageLinkage() != CLanguageLinkage)
7003       return false;
7004     return appendType(Enc, FD->getType(), CGM, TSC);
7005   }
7006 
7007   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
7008     if (VD->getLanguageLinkage() != CLanguageLinkage)
7009       return false;
7010     QualType QT = VD->getType().getCanonicalType();
7011     if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) {
7012       // Global ArrayTypes are given a size of '*' if the size is unknown.
7013       // The Qualifiers should be attached to the type rather than the array.
7014       // Thus we don't call appendQualifier() here.
7015       return appendArrayType(Enc, QT, AT, CGM, TSC, "*");
7016     }
7017     return appendType(Enc, QT, CGM, TSC);
7018   }
7019   return false;
7020 }
7021 
7022 
7023 //===----------------------------------------------------------------------===//
7024 // Driver code
7025 //===----------------------------------------------------------------------===//
7026 
7027 const llvm::Triple &CodeGenModule::getTriple() const {
7028   return getTarget().getTriple();
7029 }
7030 
7031 bool CodeGenModule::supportsCOMDAT() const {
7032   return !getTriple().isOSBinFormatMachO();
7033 }
7034 
7035 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
7036   if (TheTargetCodeGenInfo)
7037     return *TheTargetCodeGenInfo;
7038 
7039   const llvm::Triple &Triple = getTarget().getTriple();
7040   switch (Triple.getArch()) {
7041   default:
7042     return *(TheTargetCodeGenInfo = new DefaultTargetCodeGenInfo(Types));
7043 
7044   case llvm::Triple::le32:
7045     return *(TheTargetCodeGenInfo = new PNaClTargetCodeGenInfo(Types));
7046   case llvm::Triple::mips:
7047   case llvm::Triple::mipsel:
7048     return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, true));
7049 
7050   case llvm::Triple::mips64:
7051   case llvm::Triple::mips64el:
7052     return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, false));
7053 
7054   case llvm::Triple::aarch64:
7055   case llvm::Triple::aarch64_be: {
7056     AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS;
7057     if (getTarget().getABI() == "darwinpcs")
7058       Kind = AArch64ABIInfo::DarwinPCS;
7059 
7060     return *(TheTargetCodeGenInfo = new AArch64TargetCodeGenInfo(Types, Kind));
7061   }
7062 
7063   case llvm::Triple::arm:
7064   case llvm::Triple::armeb:
7065   case llvm::Triple::thumb:
7066   case llvm::Triple::thumbeb:
7067     {
7068       if (Triple.getOS() == llvm::Triple::Win32) {
7069         TheTargetCodeGenInfo =
7070             new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP);
7071         return *TheTargetCodeGenInfo;
7072       }
7073 
7074       ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
7075       if (getTarget().getABI() == "apcs-gnu")
7076         Kind = ARMABIInfo::APCS;
7077       else if (CodeGenOpts.FloatABI == "hard" ||
7078                (CodeGenOpts.FloatABI != "soft" &&
7079                 Triple.getEnvironment() == llvm::Triple::GNUEABIHF))
7080         Kind = ARMABIInfo::AAPCS_VFP;
7081 
7082       return *(TheTargetCodeGenInfo = new ARMTargetCodeGenInfo(Types, Kind));
7083     }
7084 
7085   case llvm::Triple::ppc:
7086     return *(TheTargetCodeGenInfo = new PPC32TargetCodeGenInfo(Types));
7087   case llvm::Triple::ppc64:
7088     if (Triple.isOSBinFormatELF()) {
7089       PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1;
7090       if (getTarget().getABI() == "elfv2")
7091         Kind = PPC64_SVR4_ABIInfo::ELFv2;
7092       bool HasQPX = getTarget().getABI() == "elfv1-qpx";
7093 
7094       return *(TheTargetCodeGenInfo =
7095                new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX));
7096     } else
7097       return *(TheTargetCodeGenInfo = new PPC64TargetCodeGenInfo(Types));
7098   case llvm::Triple::ppc64le: {
7099     assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
7100     PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2;
7101     if (getTarget().getABI() == "elfv1" || getTarget().getABI() == "elfv1-qpx")
7102       Kind = PPC64_SVR4_ABIInfo::ELFv1;
7103     bool HasQPX = getTarget().getABI() == "elfv1-qpx";
7104 
7105     return *(TheTargetCodeGenInfo =
7106              new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX));
7107   }
7108 
7109   case llvm::Triple::nvptx:
7110   case llvm::Triple::nvptx64:
7111     return *(TheTargetCodeGenInfo = new NVPTXTargetCodeGenInfo(Types));
7112 
7113   case llvm::Triple::msp430:
7114     return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo(Types));
7115 
7116   case llvm::Triple::systemz: {
7117     bool HasVector = getTarget().getABI() == "vector";
7118     return *(TheTargetCodeGenInfo = new SystemZTargetCodeGenInfo(Types,
7119                                                                  HasVector));
7120   }
7121 
7122   case llvm::Triple::tce:
7123     return *(TheTargetCodeGenInfo = new TCETargetCodeGenInfo(Types));
7124 
7125   case llvm::Triple::x86: {
7126     bool IsDarwinVectorABI = Triple.isOSDarwin();
7127     bool IsSmallStructInRegABI =
7128         X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
7129     bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing();
7130 
7131     if (Triple.getOS() == llvm::Triple::Win32) {
7132       return *(TheTargetCodeGenInfo =
7133                new WinX86_32TargetCodeGenInfo(Types,
7134                                               IsDarwinVectorABI, IsSmallStructInRegABI,
7135                                               IsWin32FloatStructABI,
7136                                               CodeGenOpts.NumRegisterParameters));
7137     } else {
7138       return *(TheTargetCodeGenInfo =
7139                new X86_32TargetCodeGenInfo(Types,
7140                                            IsDarwinVectorABI, IsSmallStructInRegABI,
7141                                            IsWin32FloatStructABI,
7142                                            CodeGenOpts.NumRegisterParameters));
7143     }
7144   }
7145 
7146   case llvm::Triple::x86_64: {
7147     bool HasAVX = getTarget().getABI() == "avx";
7148 
7149     switch (Triple.getOS()) {
7150     case llvm::Triple::Win32:
7151       return *(TheTargetCodeGenInfo =
7152                    new WinX86_64TargetCodeGenInfo(Types, HasAVX));
7153     case llvm::Triple::PS4:
7154       return *(TheTargetCodeGenInfo = new PS4TargetCodeGenInfo(Types, HasAVX));
7155     default:
7156       return *(TheTargetCodeGenInfo =
7157                    new X86_64TargetCodeGenInfo(Types, HasAVX));
7158     }
7159   }
7160   case llvm::Triple::hexagon:
7161     return *(TheTargetCodeGenInfo = new HexagonTargetCodeGenInfo(Types));
7162   case llvm::Triple::r600:
7163     return *(TheTargetCodeGenInfo = new AMDGPUTargetCodeGenInfo(Types));
7164   case llvm::Triple::amdgcn:
7165     return *(TheTargetCodeGenInfo = new AMDGPUTargetCodeGenInfo(Types));
7166   case llvm::Triple::sparcv9:
7167     return *(TheTargetCodeGenInfo = new SparcV9TargetCodeGenInfo(Types));
7168   case llvm::Triple::xcore:
7169     return *(TheTargetCodeGenInfo = new XCoreTargetCodeGenInfo(Types));
7170   }
7171 }
7172