1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // These classes wrap the information about a call or function 11 // definition used to handle ABI compliancy. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "TargetInfo.h" 16 #include "ABIInfo.h" 17 #include "CGBlocks.h" 18 #include "CGCXXABI.h" 19 #include "CGValue.h" 20 #include "CodeGenFunction.h" 21 #include "clang/AST/RecordLayout.h" 22 #include "clang/CodeGen/CGFunctionInfo.h" 23 #include "clang/CodeGen/SwiftCallingConv.h" 24 #include "clang/Frontend/CodeGenOptions.h" 25 #include "llvm/ADT/StringExtras.h" 26 #include "llvm/ADT/StringSwitch.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/ADT/Twine.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/Type.h" 31 #include "llvm/Support/raw_ostream.h" 32 #include <algorithm> // std::sort 33 34 using namespace clang; 35 using namespace CodeGen; 36 37 // Helper for coercing an aggregate argument or return value into an integer 38 // array of the same size (including padding) and alignment. This alternate 39 // coercion happens only for the RenderScript ABI and can be removed after 40 // runtimes that rely on it are no longer supported. 41 // 42 // RenderScript assumes that the size of the argument / return value in the IR 43 // is the same as the size of the corresponding qualified type. This helper 44 // coerces the aggregate type into an array of the same size (including 45 // padding). This coercion is used in lieu of expansion of struct members or 46 // other canonical coercions that return a coerced-type of larger size. 47 // 48 // Ty - The argument / return value type 49 // Context - The associated ASTContext 50 // LLVMContext - The associated LLVMContext 51 static ABIArgInfo coerceToIntArray(QualType Ty, 52 ASTContext &Context, 53 llvm::LLVMContext &LLVMContext) { 54 // Alignment and Size are measured in bits. 55 const uint64_t Size = Context.getTypeSize(Ty); 56 const uint64_t Alignment = Context.getTypeAlign(Ty); 57 llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment); 58 const uint64_t NumElements = (Size + Alignment - 1) / Alignment; 59 return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements)); 60 } 61 62 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder, 63 llvm::Value *Array, 64 llvm::Value *Value, 65 unsigned FirstIndex, 66 unsigned LastIndex) { 67 // Alternatively, we could emit this as a loop in the source. 68 for (unsigned I = FirstIndex; I <= LastIndex; ++I) { 69 llvm::Value *Cell = 70 Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I); 71 Builder.CreateAlignedStore(Value, Cell, CharUnits::One()); 72 } 73 } 74 75 static bool isAggregateTypeForABI(QualType T) { 76 return !CodeGenFunction::hasScalarEvaluationKind(T) || 77 T->isMemberFunctionPointerType(); 78 } 79 80 ABIArgInfo 81 ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByRef, bool Realign, 82 llvm::Type *Padding) const { 83 return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty), 84 ByRef, Realign, Padding); 85 } 86 87 ABIArgInfo 88 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const { 89 return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty), 90 /*ByRef*/ false, Realign); 91 } 92 93 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 94 QualType Ty) const { 95 return Address::invalid(); 96 } 97 98 ABIInfo::~ABIInfo() {} 99 100 /// Does the given lowering require more than the given number of 101 /// registers when expanded? 102 /// 103 /// This is intended to be the basis of a reasonable basic implementation 104 /// of should{Pass,Return}IndirectlyForSwift. 105 /// 106 /// For most targets, a limit of four total registers is reasonable; this 107 /// limits the amount of code required in order to move around the value 108 /// in case it wasn't produced immediately prior to the call by the caller 109 /// (or wasn't produced in exactly the right registers) or isn't used 110 /// immediately within the callee. But some targets may need to further 111 /// limit the register count due to an inability to support that many 112 /// return registers. 113 static bool occupiesMoreThan(CodeGenTypes &cgt, 114 ArrayRef<llvm::Type*> scalarTypes, 115 unsigned maxAllRegisters) { 116 unsigned intCount = 0, fpCount = 0; 117 for (llvm::Type *type : scalarTypes) { 118 if (type->isPointerTy()) { 119 intCount++; 120 } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) { 121 auto ptrWidth = cgt.getTarget().getPointerWidth(0); 122 intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth; 123 } else { 124 assert(type->isVectorTy() || type->isFloatingPointTy()); 125 fpCount++; 126 } 127 } 128 129 return (intCount + fpCount > maxAllRegisters); 130 } 131 132 bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, 133 llvm::Type *eltTy, 134 unsigned numElts) const { 135 // The default implementation of this assumes that the target guarantees 136 // 128-bit SIMD support but nothing more. 137 return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16); 138 } 139 140 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT, 141 CGCXXABI &CXXABI) { 142 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); 143 if (!RD) 144 return CGCXXABI::RAA_Default; 145 return CXXABI.getRecordArgABI(RD); 146 } 147 148 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T, 149 CGCXXABI &CXXABI) { 150 const RecordType *RT = T->getAs<RecordType>(); 151 if (!RT) 152 return CGCXXABI::RAA_Default; 153 return getRecordArgABI(RT, CXXABI); 154 } 155 156 /// Pass transparent unions as if they were the type of the first element. Sema 157 /// should ensure that all elements of the union have the same "machine type". 158 static QualType useFirstFieldIfTransparentUnion(QualType Ty) { 159 if (const RecordType *UT = Ty->getAsUnionType()) { 160 const RecordDecl *UD = UT->getDecl(); 161 if (UD->hasAttr<TransparentUnionAttr>()) { 162 assert(!UD->field_empty() && "sema created an empty transparent union"); 163 return UD->field_begin()->getType(); 164 } 165 } 166 return Ty; 167 } 168 169 CGCXXABI &ABIInfo::getCXXABI() const { 170 return CGT.getCXXABI(); 171 } 172 173 ASTContext &ABIInfo::getContext() const { 174 return CGT.getContext(); 175 } 176 177 llvm::LLVMContext &ABIInfo::getVMContext() const { 178 return CGT.getLLVMContext(); 179 } 180 181 const llvm::DataLayout &ABIInfo::getDataLayout() const { 182 return CGT.getDataLayout(); 183 } 184 185 const TargetInfo &ABIInfo::getTarget() const { 186 return CGT.getTarget(); 187 } 188 189 const CodeGenOptions &ABIInfo::getCodeGenOpts() const { 190 return CGT.getCodeGenOpts(); 191 } 192 193 bool ABIInfo::isAndroid() const { return getTarget().getTriple().isAndroid(); } 194 195 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 196 return false; 197 } 198 199 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 200 uint64_t Members) const { 201 return false; 202 } 203 204 bool ABIInfo::shouldSignExtUnsignedType(QualType Ty) const { 205 return false; 206 } 207 208 LLVM_DUMP_METHOD void ABIArgInfo::dump() const { 209 raw_ostream &OS = llvm::errs(); 210 OS << "(ABIArgInfo Kind="; 211 switch (TheKind) { 212 case Direct: 213 OS << "Direct Type="; 214 if (llvm::Type *Ty = getCoerceToType()) 215 Ty->print(OS); 216 else 217 OS << "null"; 218 break; 219 case Extend: 220 OS << "Extend"; 221 break; 222 case Ignore: 223 OS << "Ignore"; 224 break; 225 case InAlloca: 226 OS << "InAlloca Offset=" << getInAllocaFieldIndex(); 227 break; 228 case Indirect: 229 OS << "Indirect Align=" << getIndirectAlign().getQuantity() 230 << " ByVal=" << getIndirectByVal() 231 << " Realign=" << getIndirectRealign(); 232 break; 233 case Expand: 234 OS << "Expand"; 235 break; 236 case CoerceAndExpand: 237 OS << "CoerceAndExpand Type="; 238 getCoerceAndExpandType()->print(OS); 239 break; 240 } 241 OS << ")\n"; 242 } 243 244 // Dynamically round a pointer up to a multiple of the given alignment. 245 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF, 246 llvm::Value *Ptr, 247 CharUnits Align) { 248 llvm::Value *PtrAsInt = Ptr; 249 // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align; 250 PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy); 251 PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt, 252 llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1)); 253 PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt, 254 llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity())); 255 PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt, 256 Ptr->getType(), 257 Ptr->getName() + ".aligned"); 258 return PtrAsInt; 259 } 260 261 /// Emit va_arg for a platform using the common void* representation, 262 /// where arguments are simply emitted in an array of slots on the stack. 263 /// 264 /// This version implements the core direct-value passing rules. 265 /// 266 /// \param SlotSize - The size and alignment of a stack slot. 267 /// Each argument will be allocated to a multiple of this number of 268 /// slots, and all the slots will be aligned to this value. 269 /// \param AllowHigherAlign - The slot alignment is not a cap; 270 /// an argument type with an alignment greater than the slot size 271 /// will be emitted on a higher-alignment address, potentially 272 /// leaving one or more empty slots behind as padding. If this 273 /// is false, the returned address might be less-aligned than 274 /// DirectAlign. 275 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF, 276 Address VAListAddr, 277 llvm::Type *DirectTy, 278 CharUnits DirectSize, 279 CharUnits DirectAlign, 280 CharUnits SlotSize, 281 bool AllowHigherAlign) { 282 // Cast the element type to i8* if necessary. Some platforms define 283 // va_list as a struct containing an i8* instead of just an i8*. 284 if (VAListAddr.getElementType() != CGF.Int8PtrTy) 285 VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy); 286 287 llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur"); 288 289 // If the CC aligns values higher than the slot size, do so if needed. 290 Address Addr = Address::invalid(); 291 if (AllowHigherAlign && DirectAlign > SlotSize) { 292 Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign), 293 DirectAlign); 294 } else { 295 Addr = Address(Ptr, SlotSize); 296 } 297 298 // Advance the pointer past the argument, then store that back. 299 CharUnits FullDirectSize = DirectSize.alignTo(SlotSize); 300 llvm::Value *NextPtr = 301 CGF.Builder.CreateConstInBoundsByteGEP(Addr.getPointer(), FullDirectSize, 302 "argp.next"); 303 CGF.Builder.CreateStore(NextPtr, VAListAddr); 304 305 // If the argument is smaller than a slot, and this is a big-endian 306 // target, the argument will be right-adjusted in its slot. 307 if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() && 308 !DirectTy->isStructTy()) { 309 Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize); 310 } 311 312 Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy); 313 return Addr; 314 } 315 316 /// Emit va_arg for a platform using the common void* representation, 317 /// where arguments are simply emitted in an array of slots on the stack. 318 /// 319 /// \param IsIndirect - Values of this type are passed indirectly. 320 /// \param ValueInfo - The size and alignment of this type, generally 321 /// computed with getContext().getTypeInfoInChars(ValueTy). 322 /// \param SlotSizeAndAlign - The size and alignment of a stack slot. 323 /// Each argument will be allocated to a multiple of this number of 324 /// slots, and all the slots will be aligned to this value. 325 /// \param AllowHigherAlign - The slot alignment is not a cap; 326 /// an argument type with an alignment greater than the slot size 327 /// will be emitted on a higher-alignment address, potentially 328 /// leaving one or more empty slots behind as padding. 329 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr, 330 QualType ValueTy, bool IsIndirect, 331 std::pair<CharUnits, CharUnits> ValueInfo, 332 CharUnits SlotSizeAndAlign, 333 bool AllowHigherAlign) { 334 // The size and alignment of the value that was passed directly. 335 CharUnits DirectSize, DirectAlign; 336 if (IsIndirect) { 337 DirectSize = CGF.getPointerSize(); 338 DirectAlign = CGF.getPointerAlign(); 339 } else { 340 DirectSize = ValueInfo.first; 341 DirectAlign = ValueInfo.second; 342 } 343 344 // Cast the address we've calculated to the right type. 345 llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy); 346 if (IsIndirect) 347 DirectTy = DirectTy->getPointerTo(0); 348 349 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy, 350 DirectSize, DirectAlign, 351 SlotSizeAndAlign, 352 AllowHigherAlign); 353 354 if (IsIndirect) { 355 Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.second); 356 } 357 358 return Addr; 359 360 } 361 362 static Address emitMergePHI(CodeGenFunction &CGF, 363 Address Addr1, llvm::BasicBlock *Block1, 364 Address Addr2, llvm::BasicBlock *Block2, 365 const llvm::Twine &Name = "") { 366 assert(Addr1.getType() == Addr2.getType()); 367 llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name); 368 PHI->addIncoming(Addr1.getPointer(), Block1); 369 PHI->addIncoming(Addr2.getPointer(), Block2); 370 CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment()); 371 return Address(PHI, Align); 372 } 373 374 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; } 375 376 // If someone can figure out a general rule for this, that would be great. 377 // It's probably just doomed to be platform-dependent, though. 378 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const { 379 // Verified for: 380 // x86-64 FreeBSD, Linux, Darwin 381 // x86-32 FreeBSD, Linux, Darwin 382 // PowerPC Linux, Darwin 383 // ARM Darwin (*not* EABI) 384 // AArch64 Linux 385 return 32; 386 } 387 388 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args, 389 const FunctionNoProtoType *fnType) const { 390 // The following conventions are known to require this to be false: 391 // x86_stdcall 392 // MIPS 393 // For everything else, we just prefer false unless we opt out. 394 return false; 395 } 396 397 void 398 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib, 399 llvm::SmallString<24> &Opt) const { 400 // This assumes the user is passing a library name like "rt" instead of a 401 // filename like "librt.a/so", and that they don't care whether it's static or 402 // dynamic. 403 Opt = "-l"; 404 Opt += Lib; 405 } 406 407 unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const { 408 // OpenCL kernels are called via an explicit runtime API with arguments 409 // set with clSetKernelArg(), not as normal sub-functions. 410 // Return SPIR_KERNEL by default as the kernel calling convention to 411 // ensure the fingerprint is fixed such way that each OpenCL argument 412 // gets one matching argument in the produced kernel function argument 413 // list to enable feasible implementation of clSetKernelArg() with 414 // aggregates etc. In case we would use the default C calling conv here, 415 // clSetKernelArg() might break depending on the target-specific 416 // conventions; different targets might split structs passed as values 417 // to multiple function arguments etc. 418 return llvm::CallingConv::SPIR_KERNEL; 419 } 420 421 llvm::Constant *TargetCodeGenInfo::getNullPointer(const CodeGen::CodeGenModule &CGM, 422 llvm::PointerType *T, QualType QT) const { 423 return llvm::ConstantPointerNull::get(T); 424 } 425 426 LangAS TargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM, 427 const VarDecl *D) const { 428 assert(!CGM.getLangOpts().OpenCL && 429 !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && 430 "Address space agnostic languages only"); 431 return D ? D->getType().getAddressSpace() : LangAS::Default; 432 } 433 434 llvm::Value *TargetCodeGenInfo::performAddrSpaceCast( 435 CodeGen::CodeGenFunction &CGF, llvm::Value *Src, LangAS SrcAddr, 436 LangAS DestAddr, llvm::Type *DestTy, bool isNonNull) const { 437 // Since target may map different address spaces in AST to the same address 438 // space, an address space conversion may end up as a bitcast. 439 if (auto *C = dyn_cast<llvm::Constant>(Src)) 440 return performAddrSpaceCast(CGF.CGM, C, SrcAddr, DestAddr, DestTy); 441 return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DestTy); 442 } 443 444 llvm::Constant * 445 TargetCodeGenInfo::performAddrSpaceCast(CodeGenModule &CGM, llvm::Constant *Src, 446 LangAS SrcAddr, LangAS DestAddr, 447 llvm::Type *DestTy) const { 448 // Since target may map different address spaces in AST to the same address 449 // space, an address space conversion may end up as a bitcast. 450 return llvm::ConstantExpr::getPointerCast(Src, DestTy); 451 } 452 453 llvm::SyncScope::ID 454 TargetCodeGenInfo::getLLVMSyncScopeID(SyncScope S, llvm::LLVMContext &C) const { 455 return C.getOrInsertSyncScopeID(""); /* default sync scope */ 456 } 457 458 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays); 459 460 /// isEmptyField - Return true iff a the field is "empty", that is it 461 /// is an unnamed bit-field or an (array of) empty record(s). 462 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD, 463 bool AllowArrays) { 464 if (FD->isUnnamedBitfield()) 465 return true; 466 467 QualType FT = FD->getType(); 468 469 // Constant arrays of empty records count as empty, strip them off. 470 // Constant arrays of zero length always count as empty. 471 if (AllowArrays) 472 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 473 if (AT->getSize() == 0) 474 return true; 475 FT = AT->getElementType(); 476 } 477 478 const RecordType *RT = FT->getAs<RecordType>(); 479 if (!RT) 480 return false; 481 482 // C++ record fields are never empty, at least in the Itanium ABI. 483 // 484 // FIXME: We should use a predicate for whether this behavior is true in the 485 // current ABI. 486 if (isa<CXXRecordDecl>(RT->getDecl())) 487 return false; 488 489 return isEmptyRecord(Context, FT, AllowArrays); 490 } 491 492 /// isEmptyRecord - Return true iff a structure contains only empty 493 /// fields. Note that a structure with a flexible array member is not 494 /// considered empty. 495 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) { 496 const RecordType *RT = T->getAs<RecordType>(); 497 if (!RT) 498 return false; 499 const RecordDecl *RD = RT->getDecl(); 500 if (RD->hasFlexibleArrayMember()) 501 return false; 502 503 // If this is a C++ record, check the bases first. 504 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 505 for (const auto &I : CXXRD->bases()) 506 if (!isEmptyRecord(Context, I.getType(), true)) 507 return false; 508 509 for (const auto *I : RD->fields()) 510 if (!isEmptyField(Context, I, AllowArrays)) 511 return false; 512 return true; 513 } 514 515 /// isSingleElementStruct - Determine if a structure is a "single 516 /// element struct", i.e. it has exactly one non-empty field or 517 /// exactly one field which is itself a single element 518 /// struct. Structures with flexible array members are never 519 /// considered single element structs. 520 /// 521 /// \return The field declaration for the single non-empty field, if 522 /// it exists. 523 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) { 524 const RecordType *RT = T->getAs<RecordType>(); 525 if (!RT) 526 return nullptr; 527 528 const RecordDecl *RD = RT->getDecl(); 529 if (RD->hasFlexibleArrayMember()) 530 return nullptr; 531 532 const Type *Found = nullptr; 533 534 // If this is a C++ record, check the bases first. 535 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 536 for (const auto &I : CXXRD->bases()) { 537 // Ignore empty records. 538 if (isEmptyRecord(Context, I.getType(), true)) 539 continue; 540 541 // If we already found an element then this isn't a single-element struct. 542 if (Found) 543 return nullptr; 544 545 // If this is non-empty and not a single element struct, the composite 546 // cannot be a single element struct. 547 Found = isSingleElementStruct(I.getType(), Context); 548 if (!Found) 549 return nullptr; 550 } 551 } 552 553 // Check for single element. 554 for (const auto *FD : RD->fields()) { 555 QualType FT = FD->getType(); 556 557 // Ignore empty fields. 558 if (isEmptyField(Context, FD, true)) 559 continue; 560 561 // If we already found an element then this isn't a single-element 562 // struct. 563 if (Found) 564 return nullptr; 565 566 // Treat single element arrays as the element. 567 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 568 if (AT->getSize().getZExtValue() != 1) 569 break; 570 FT = AT->getElementType(); 571 } 572 573 if (!isAggregateTypeForABI(FT)) { 574 Found = FT.getTypePtr(); 575 } else { 576 Found = isSingleElementStruct(FT, Context); 577 if (!Found) 578 return nullptr; 579 } 580 } 581 582 // We don't consider a struct a single-element struct if it has 583 // padding beyond the element type. 584 if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T)) 585 return nullptr; 586 587 return Found; 588 } 589 590 namespace { 591 Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty, 592 const ABIArgInfo &AI) { 593 // This default implementation defers to the llvm backend's va_arg 594 // instruction. It can handle only passing arguments directly 595 // (typically only handled in the backend for primitive types), or 596 // aggregates passed indirectly by pointer (NOTE: if the "byval" 597 // flag has ABI impact in the callee, this implementation cannot 598 // work.) 599 600 // Only a few cases are covered here at the moment -- those needed 601 // by the default abi. 602 llvm::Value *Val; 603 604 if (AI.isIndirect()) { 605 assert(!AI.getPaddingType() && 606 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 607 assert( 608 !AI.getIndirectRealign() && 609 "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!"); 610 611 auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty); 612 CharUnits TyAlignForABI = TyInfo.second; 613 614 llvm::Type *BaseTy = 615 llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); 616 llvm::Value *Addr = 617 CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy); 618 return Address(Addr, TyAlignForABI); 619 } else { 620 assert((AI.isDirect() || AI.isExtend()) && 621 "Unexpected ArgInfo Kind in generic VAArg emitter!"); 622 623 assert(!AI.getInReg() && 624 "Unexpected InReg seen in arginfo in generic VAArg emitter!"); 625 assert(!AI.getPaddingType() && 626 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 627 assert(!AI.getDirectOffset() && 628 "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!"); 629 assert(!AI.getCoerceToType() && 630 "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!"); 631 632 Address Temp = CGF.CreateMemTemp(Ty, "varet"); 633 Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), CGF.ConvertType(Ty)); 634 CGF.Builder.CreateStore(Val, Temp); 635 return Temp; 636 } 637 } 638 639 /// DefaultABIInfo - The default implementation for ABI specific 640 /// details. This implementation provides information which results in 641 /// self-consistent and sensible LLVM IR generation, but does not 642 /// conform to any particular ABI. 643 class DefaultABIInfo : public ABIInfo { 644 public: 645 DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 646 647 ABIArgInfo classifyReturnType(QualType RetTy) const; 648 ABIArgInfo classifyArgumentType(QualType RetTy) const; 649 650 void computeInfo(CGFunctionInfo &FI) const override { 651 if (!getCXXABI().classifyReturnType(FI)) 652 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 653 for (auto &I : FI.arguments()) 654 I.info = classifyArgumentType(I.type); 655 } 656 657 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 658 QualType Ty) const override { 659 return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty)); 660 } 661 }; 662 663 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo { 664 public: 665 DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 666 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 667 }; 668 669 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const { 670 Ty = useFirstFieldIfTransparentUnion(Ty); 671 672 if (isAggregateTypeForABI(Ty)) { 673 // Records with non-trivial destructors/copy-constructors should not be 674 // passed by value. 675 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 676 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 677 678 return getNaturalAlignIndirect(Ty); 679 } 680 681 // Treat an enum type as its underlying type. 682 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 683 Ty = EnumTy->getDecl()->getIntegerType(); 684 685 return (Ty->isPromotableIntegerType() ? 686 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 687 } 688 689 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const { 690 if (RetTy->isVoidType()) 691 return ABIArgInfo::getIgnore(); 692 693 if (isAggregateTypeForABI(RetTy)) 694 return getNaturalAlignIndirect(RetTy); 695 696 // Treat an enum type as its underlying type. 697 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 698 RetTy = EnumTy->getDecl()->getIntegerType(); 699 700 return (RetTy->isPromotableIntegerType() ? 701 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 702 } 703 704 //===----------------------------------------------------------------------===// 705 // WebAssembly ABI Implementation 706 // 707 // This is a very simple ABI that relies a lot on DefaultABIInfo. 708 //===----------------------------------------------------------------------===// 709 710 class WebAssemblyABIInfo final : public DefaultABIInfo { 711 public: 712 explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT) 713 : DefaultABIInfo(CGT) {} 714 715 private: 716 ABIArgInfo classifyReturnType(QualType RetTy) const; 717 ABIArgInfo classifyArgumentType(QualType Ty) const; 718 719 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 720 // non-virtual, but computeInfo and EmitVAArg are virtual, so we 721 // overload them. 722 void computeInfo(CGFunctionInfo &FI) const override { 723 if (!getCXXABI().classifyReturnType(FI)) 724 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 725 for (auto &Arg : FI.arguments()) 726 Arg.info = classifyArgumentType(Arg.type); 727 } 728 729 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 730 QualType Ty) const override; 731 }; 732 733 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo { 734 public: 735 explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 736 : TargetCodeGenInfo(new WebAssemblyABIInfo(CGT)) {} 737 }; 738 739 /// \brief Classify argument of given type \p Ty. 740 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const { 741 Ty = useFirstFieldIfTransparentUnion(Ty); 742 743 if (isAggregateTypeForABI(Ty)) { 744 // Records with non-trivial destructors/copy-constructors should not be 745 // passed by value. 746 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 747 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 748 // Ignore empty structs/unions. 749 if (isEmptyRecord(getContext(), Ty, true)) 750 return ABIArgInfo::getIgnore(); 751 // Lower single-element structs to just pass a regular value. TODO: We 752 // could do reasonable-size multiple-element structs too, using getExpand(), 753 // though watch out for things like bitfields. 754 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 755 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 756 } 757 758 // Otherwise just do the default thing. 759 return DefaultABIInfo::classifyArgumentType(Ty); 760 } 761 762 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const { 763 if (isAggregateTypeForABI(RetTy)) { 764 // Records with non-trivial destructors/copy-constructors should not be 765 // returned by value. 766 if (!getRecordArgABI(RetTy, getCXXABI())) { 767 // Ignore empty structs/unions. 768 if (isEmptyRecord(getContext(), RetTy, true)) 769 return ABIArgInfo::getIgnore(); 770 // Lower single-element structs to just return a regular value. TODO: We 771 // could do reasonable-size multiple-element structs too, using 772 // ABIArgInfo::getDirect(). 773 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 774 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 775 } 776 } 777 778 // Otherwise just do the default thing. 779 return DefaultABIInfo::classifyReturnType(RetTy); 780 } 781 782 Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 783 QualType Ty) const { 784 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect=*/ false, 785 getContext().getTypeInfoInChars(Ty), 786 CharUnits::fromQuantity(4), 787 /*AllowHigherAlign=*/ true); 788 } 789 790 //===----------------------------------------------------------------------===// 791 // le32/PNaCl bitcode ABI Implementation 792 // 793 // This is a simplified version of the x86_32 ABI. Arguments and return values 794 // are always passed on the stack. 795 //===----------------------------------------------------------------------===// 796 797 class PNaClABIInfo : public ABIInfo { 798 public: 799 PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 800 801 ABIArgInfo classifyReturnType(QualType RetTy) const; 802 ABIArgInfo classifyArgumentType(QualType RetTy) const; 803 804 void computeInfo(CGFunctionInfo &FI) const override; 805 Address EmitVAArg(CodeGenFunction &CGF, 806 Address VAListAddr, QualType Ty) const override; 807 }; 808 809 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo { 810 public: 811 PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 812 : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {} 813 }; 814 815 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const { 816 if (!getCXXABI().classifyReturnType(FI)) 817 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 818 819 for (auto &I : FI.arguments()) 820 I.info = classifyArgumentType(I.type); 821 } 822 823 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 824 QualType Ty) const { 825 // The PNaCL ABI is a bit odd, in that varargs don't use normal 826 // function classification. Structs get passed directly for varargs 827 // functions, through a rewriting transform in 828 // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows 829 // this target to actually support a va_arg instructions with an 830 // aggregate type, unlike other targets. 831 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 832 } 833 834 /// \brief Classify argument of given type \p Ty. 835 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const { 836 if (isAggregateTypeForABI(Ty)) { 837 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 838 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 839 return getNaturalAlignIndirect(Ty); 840 } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 841 // Treat an enum type as its underlying type. 842 Ty = EnumTy->getDecl()->getIntegerType(); 843 } else if (Ty->isFloatingType()) { 844 // Floating-point types don't go inreg. 845 return ABIArgInfo::getDirect(); 846 } 847 848 return (Ty->isPromotableIntegerType() ? 849 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 850 } 851 852 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const { 853 if (RetTy->isVoidType()) 854 return ABIArgInfo::getIgnore(); 855 856 // In the PNaCl ABI we always return records/structures on the stack. 857 if (isAggregateTypeForABI(RetTy)) 858 return getNaturalAlignIndirect(RetTy); 859 860 // Treat an enum type as its underlying type. 861 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 862 RetTy = EnumTy->getDecl()->getIntegerType(); 863 864 return (RetTy->isPromotableIntegerType() ? 865 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 866 } 867 868 /// IsX86_MMXType - Return true if this is an MMX type. 869 bool IsX86_MMXType(llvm::Type *IRType) { 870 // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>. 871 return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 && 872 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() && 873 IRType->getScalarSizeInBits() != 64; 874 } 875 876 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 877 StringRef Constraint, 878 llvm::Type* Ty) { 879 bool IsMMXCons = llvm::StringSwitch<bool>(Constraint) 880 .Cases("y", "&y", "^Ym", true) 881 .Default(false); 882 if (IsMMXCons && Ty->isVectorTy()) { 883 if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) { 884 // Invalid MMX constraint 885 return nullptr; 886 } 887 888 return llvm::Type::getX86_MMXTy(CGF.getLLVMContext()); 889 } 890 891 // No operation needed 892 return Ty; 893 } 894 895 /// Returns true if this type can be passed in SSE registers with the 896 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64. 897 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) { 898 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 899 if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) { 900 if (BT->getKind() == BuiltinType::LongDouble) { 901 if (&Context.getTargetInfo().getLongDoubleFormat() == 902 &llvm::APFloat::x87DoubleExtended()) 903 return false; 904 } 905 return true; 906 } 907 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 908 // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX 909 // registers specially. 910 unsigned VecSize = Context.getTypeSize(VT); 911 if (VecSize == 128 || VecSize == 256 || VecSize == 512) 912 return true; 913 } 914 return false; 915 } 916 917 /// Returns true if this aggregate is small enough to be passed in SSE registers 918 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64. 919 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) { 920 return NumMembers <= 4; 921 } 922 923 /// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86. 924 static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) { 925 auto AI = ABIArgInfo::getDirect(T); 926 AI.setInReg(true); 927 AI.setCanBeFlattened(false); 928 return AI; 929 } 930 931 //===----------------------------------------------------------------------===// 932 // X86-32 ABI Implementation 933 //===----------------------------------------------------------------------===// 934 935 /// \brief Similar to llvm::CCState, but for Clang. 936 struct CCState { 937 CCState(unsigned CC) : CC(CC), FreeRegs(0), FreeSSERegs(0) {} 938 939 unsigned CC; 940 unsigned FreeRegs; 941 unsigned FreeSSERegs; 942 }; 943 944 enum { 945 // Vectorcall only allows the first 6 parameters to be passed in registers. 946 VectorcallMaxParamNumAsReg = 6 947 }; 948 949 /// X86_32ABIInfo - The X86-32 ABI information. 950 class X86_32ABIInfo : public SwiftABIInfo { 951 enum Class { 952 Integer, 953 Float 954 }; 955 956 static const unsigned MinABIStackAlignInBytes = 4; 957 958 bool IsDarwinVectorABI; 959 bool IsRetSmallStructInRegABI; 960 bool IsWin32StructABI; 961 bool IsSoftFloatABI; 962 bool IsMCUABI; 963 unsigned DefaultNumRegisterParameters; 964 965 static bool isRegisterSize(unsigned Size) { 966 return (Size == 8 || Size == 16 || Size == 32 || Size == 64); 967 } 968 969 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 970 // FIXME: Assumes vectorcall is in use. 971 return isX86VectorTypeForVectorCall(getContext(), Ty); 972 } 973 974 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 975 uint64_t NumMembers) const override { 976 // FIXME: Assumes vectorcall is in use. 977 return isX86VectorCallAggregateSmallEnough(NumMembers); 978 } 979 980 bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const; 981 982 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 983 /// such that the argument will be passed in memory. 984 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 985 986 ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const; 987 988 /// \brief Return the alignment to use for the given type on the stack. 989 unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const; 990 991 Class classify(QualType Ty) const; 992 ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const; 993 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 994 995 /// \brief Updates the number of available free registers, returns 996 /// true if any registers were allocated. 997 bool updateFreeRegs(QualType Ty, CCState &State) const; 998 999 bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg, 1000 bool &NeedsPadding) const; 1001 bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const; 1002 1003 bool canExpandIndirectArgument(QualType Ty) const; 1004 1005 /// \brief Rewrite the function info so that all memory arguments use 1006 /// inalloca. 1007 void rewriteWithInAlloca(CGFunctionInfo &FI) const; 1008 1009 void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1010 CharUnits &StackOffset, ABIArgInfo &Info, 1011 QualType Type) const; 1012 void computeVectorCallArgs(CGFunctionInfo &FI, CCState &State, 1013 bool &UsedInAlloca) const; 1014 1015 public: 1016 1017 void computeInfo(CGFunctionInfo &FI) const override; 1018 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 1019 QualType Ty) const override; 1020 1021 X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 1022 bool RetSmallStructInRegABI, bool Win32StructABI, 1023 unsigned NumRegisterParameters, bool SoftFloatABI) 1024 : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI), 1025 IsRetSmallStructInRegABI(RetSmallStructInRegABI), 1026 IsWin32StructABI(Win32StructABI), 1027 IsSoftFloatABI(SoftFloatABI), 1028 IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()), 1029 DefaultNumRegisterParameters(NumRegisterParameters) {} 1030 1031 bool shouldPassIndirectlyForSwift(CharUnits totalSize, 1032 ArrayRef<llvm::Type*> scalars, 1033 bool asReturnValue) const override { 1034 // LLVM's x86-32 lowering currently only assigns up to three 1035 // integer registers and three fp registers. Oddly, it'll use up to 1036 // four vector registers for vectors, but those can overlap with the 1037 // scalar registers. 1038 return occupiesMoreThan(CGT, scalars, /*total*/ 3); 1039 } 1040 1041 bool isSwiftErrorInRegister() const override { 1042 // x86-32 lowering does not support passing swifterror in a register. 1043 return false; 1044 } 1045 }; 1046 1047 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo { 1048 public: 1049 X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 1050 bool RetSmallStructInRegABI, bool Win32StructABI, 1051 unsigned NumRegisterParameters, bool SoftFloatABI) 1052 : TargetCodeGenInfo(new X86_32ABIInfo( 1053 CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI, 1054 NumRegisterParameters, SoftFloatABI)) {} 1055 1056 static bool isStructReturnInRegABI( 1057 const llvm::Triple &Triple, const CodeGenOptions &Opts); 1058 1059 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 1060 CodeGen::CodeGenModule &CGM, 1061 ForDefinition_t IsForDefinition) const override; 1062 1063 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 1064 // Darwin uses different dwarf register numbers for EH. 1065 if (CGM.getTarget().getTriple().isOSDarwin()) return 5; 1066 return 4; 1067 } 1068 1069 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 1070 llvm::Value *Address) const override; 1071 1072 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 1073 StringRef Constraint, 1074 llvm::Type* Ty) const override { 1075 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 1076 } 1077 1078 void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue, 1079 std::string &Constraints, 1080 std::vector<llvm::Type *> &ResultRegTypes, 1081 std::vector<llvm::Type *> &ResultTruncRegTypes, 1082 std::vector<LValue> &ResultRegDests, 1083 std::string &AsmString, 1084 unsigned NumOutputs) const override; 1085 1086 llvm::Constant * 1087 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 1088 unsigned Sig = (0xeb << 0) | // jmp rel8 1089 (0x06 << 8) | // .+0x08 1090 ('v' << 16) | 1091 ('2' << 24); 1092 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 1093 } 1094 1095 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 1096 return "movl\t%ebp, %ebp" 1097 "\t\t// marker for objc_retainAutoreleaseReturnValue"; 1098 } 1099 }; 1100 1101 } 1102 1103 /// Rewrite input constraint references after adding some output constraints. 1104 /// In the case where there is one output and one input and we add one output, 1105 /// we need to replace all operand references greater than or equal to 1: 1106 /// mov $0, $1 1107 /// mov eax, $1 1108 /// The result will be: 1109 /// mov $0, $2 1110 /// mov eax, $2 1111 static void rewriteInputConstraintReferences(unsigned FirstIn, 1112 unsigned NumNewOuts, 1113 std::string &AsmString) { 1114 std::string Buf; 1115 llvm::raw_string_ostream OS(Buf); 1116 size_t Pos = 0; 1117 while (Pos < AsmString.size()) { 1118 size_t DollarStart = AsmString.find('$', Pos); 1119 if (DollarStart == std::string::npos) 1120 DollarStart = AsmString.size(); 1121 size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart); 1122 if (DollarEnd == std::string::npos) 1123 DollarEnd = AsmString.size(); 1124 OS << StringRef(&AsmString[Pos], DollarEnd - Pos); 1125 Pos = DollarEnd; 1126 size_t NumDollars = DollarEnd - DollarStart; 1127 if (NumDollars % 2 != 0 && Pos < AsmString.size()) { 1128 // We have an operand reference. 1129 size_t DigitStart = Pos; 1130 size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart); 1131 if (DigitEnd == std::string::npos) 1132 DigitEnd = AsmString.size(); 1133 StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart); 1134 unsigned OperandIndex; 1135 if (!OperandStr.getAsInteger(10, OperandIndex)) { 1136 if (OperandIndex >= FirstIn) 1137 OperandIndex += NumNewOuts; 1138 OS << OperandIndex; 1139 } else { 1140 OS << OperandStr; 1141 } 1142 Pos = DigitEnd; 1143 } 1144 } 1145 AsmString = std::move(OS.str()); 1146 } 1147 1148 /// Add output constraints for EAX:EDX because they are return registers. 1149 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs( 1150 CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints, 1151 std::vector<llvm::Type *> &ResultRegTypes, 1152 std::vector<llvm::Type *> &ResultTruncRegTypes, 1153 std::vector<LValue> &ResultRegDests, std::string &AsmString, 1154 unsigned NumOutputs) const { 1155 uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType()); 1156 1157 // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is 1158 // larger. 1159 if (!Constraints.empty()) 1160 Constraints += ','; 1161 if (RetWidth <= 32) { 1162 Constraints += "={eax}"; 1163 ResultRegTypes.push_back(CGF.Int32Ty); 1164 } else { 1165 // Use the 'A' constraint for EAX:EDX. 1166 Constraints += "=A"; 1167 ResultRegTypes.push_back(CGF.Int64Ty); 1168 } 1169 1170 // Truncate EAX or EAX:EDX to an integer of the appropriate size. 1171 llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth); 1172 ResultTruncRegTypes.push_back(CoerceTy); 1173 1174 // Coerce the integer by bitcasting the return slot pointer. 1175 ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(), 1176 CoerceTy->getPointerTo())); 1177 ResultRegDests.push_back(ReturnSlot); 1178 1179 rewriteInputConstraintReferences(NumOutputs, 1, AsmString); 1180 } 1181 1182 /// shouldReturnTypeInRegister - Determine if the given type should be 1183 /// returned in a register (for the Darwin and MCU ABI). 1184 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty, 1185 ASTContext &Context) const { 1186 uint64_t Size = Context.getTypeSize(Ty); 1187 1188 // For i386, type must be register sized. 1189 // For the MCU ABI, it only needs to be <= 8-byte 1190 if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size))) 1191 return false; 1192 1193 if (Ty->isVectorType()) { 1194 // 64- and 128- bit vectors inside structures are not returned in 1195 // registers. 1196 if (Size == 64 || Size == 128) 1197 return false; 1198 1199 return true; 1200 } 1201 1202 // If this is a builtin, pointer, enum, complex type, member pointer, or 1203 // member function pointer it is ok. 1204 if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() || 1205 Ty->isAnyComplexType() || Ty->isEnumeralType() || 1206 Ty->isBlockPointerType() || Ty->isMemberPointerType()) 1207 return true; 1208 1209 // Arrays are treated like records. 1210 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) 1211 return shouldReturnTypeInRegister(AT->getElementType(), Context); 1212 1213 // Otherwise, it must be a record type. 1214 const RecordType *RT = Ty->getAs<RecordType>(); 1215 if (!RT) return false; 1216 1217 // FIXME: Traverse bases here too. 1218 1219 // Structure types are passed in register if all fields would be 1220 // passed in a register. 1221 for (const auto *FD : RT->getDecl()->fields()) { 1222 // Empty fields are ignored. 1223 if (isEmptyField(Context, FD, true)) 1224 continue; 1225 1226 // Check fields recursively. 1227 if (!shouldReturnTypeInRegister(FD->getType(), Context)) 1228 return false; 1229 } 1230 return true; 1231 } 1232 1233 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) { 1234 // Treat complex types as the element type. 1235 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 1236 Ty = CTy->getElementType(); 1237 1238 // Check for a type which we know has a simple scalar argument-passing 1239 // convention without any padding. (We're specifically looking for 32 1240 // and 64-bit integer and integer-equivalents, float, and double.) 1241 if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() && 1242 !Ty->isEnumeralType() && !Ty->isBlockPointerType()) 1243 return false; 1244 1245 uint64_t Size = Context.getTypeSize(Ty); 1246 return Size == 32 || Size == 64; 1247 } 1248 1249 static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD, 1250 uint64_t &Size) { 1251 for (const auto *FD : RD->fields()) { 1252 // Scalar arguments on the stack get 4 byte alignment on x86. If the 1253 // argument is smaller than 32-bits, expanding the struct will create 1254 // alignment padding. 1255 if (!is32Or64BitBasicType(FD->getType(), Context)) 1256 return false; 1257 1258 // FIXME: Reject bit-fields wholesale; there are two problems, we don't know 1259 // how to expand them yet, and the predicate for telling if a bitfield still 1260 // counts as "basic" is more complicated than what we were doing previously. 1261 if (FD->isBitField()) 1262 return false; 1263 1264 Size += Context.getTypeSize(FD->getType()); 1265 } 1266 return true; 1267 } 1268 1269 static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD, 1270 uint64_t &Size) { 1271 // Don't do this if there are any non-empty bases. 1272 for (const CXXBaseSpecifier &Base : RD->bases()) { 1273 if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(), 1274 Size)) 1275 return false; 1276 } 1277 if (!addFieldSizes(Context, RD, Size)) 1278 return false; 1279 return true; 1280 } 1281 1282 /// Test whether an argument type which is to be passed indirectly (on the 1283 /// stack) would have the equivalent layout if it was expanded into separate 1284 /// arguments. If so, we prefer to do the latter to avoid inhibiting 1285 /// optimizations. 1286 bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const { 1287 // We can only expand structure types. 1288 const RecordType *RT = Ty->getAs<RecordType>(); 1289 if (!RT) 1290 return false; 1291 const RecordDecl *RD = RT->getDecl(); 1292 uint64_t Size = 0; 1293 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 1294 if (!IsWin32StructABI) { 1295 // On non-Windows, we have to conservatively match our old bitcode 1296 // prototypes in order to be ABI-compatible at the bitcode level. 1297 if (!CXXRD->isCLike()) 1298 return false; 1299 } else { 1300 // Don't do this for dynamic classes. 1301 if (CXXRD->isDynamicClass()) 1302 return false; 1303 } 1304 if (!addBaseAndFieldSizes(getContext(), CXXRD, Size)) 1305 return false; 1306 } else { 1307 if (!addFieldSizes(getContext(), RD, Size)) 1308 return false; 1309 } 1310 1311 // We can do this if there was no alignment padding. 1312 return Size == getContext().getTypeSize(Ty); 1313 } 1314 1315 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const { 1316 // If the return value is indirect, then the hidden argument is consuming one 1317 // integer register. 1318 if (State.FreeRegs) { 1319 --State.FreeRegs; 1320 if (!IsMCUABI) 1321 return getNaturalAlignIndirectInReg(RetTy); 1322 } 1323 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 1324 } 1325 1326 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, 1327 CCState &State) const { 1328 if (RetTy->isVoidType()) 1329 return ABIArgInfo::getIgnore(); 1330 1331 const Type *Base = nullptr; 1332 uint64_t NumElts = 0; 1333 if ((State.CC == llvm::CallingConv::X86_VectorCall || 1334 State.CC == llvm::CallingConv::X86_RegCall) && 1335 isHomogeneousAggregate(RetTy, Base, NumElts)) { 1336 // The LLVM struct type for such an aggregate should lower properly. 1337 return ABIArgInfo::getDirect(); 1338 } 1339 1340 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 1341 // On Darwin, some vectors are returned in registers. 1342 if (IsDarwinVectorABI) { 1343 uint64_t Size = getContext().getTypeSize(RetTy); 1344 1345 // 128-bit vectors are a special case; they are returned in 1346 // registers and we need to make sure to pick a type the LLVM 1347 // backend will like. 1348 if (Size == 128) 1349 return ABIArgInfo::getDirect(llvm::VectorType::get( 1350 llvm::Type::getInt64Ty(getVMContext()), 2)); 1351 1352 // Always return in register if it fits in a general purpose 1353 // register, or if it is 64 bits and has a single element. 1354 if ((Size == 8 || Size == 16 || Size == 32) || 1355 (Size == 64 && VT->getNumElements() == 1)) 1356 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1357 Size)); 1358 1359 return getIndirectReturnResult(RetTy, State); 1360 } 1361 1362 return ABIArgInfo::getDirect(); 1363 } 1364 1365 if (isAggregateTypeForABI(RetTy)) { 1366 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 1367 // Structures with flexible arrays are always indirect. 1368 if (RT->getDecl()->hasFlexibleArrayMember()) 1369 return getIndirectReturnResult(RetTy, State); 1370 } 1371 1372 // If specified, structs and unions are always indirect. 1373 if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType()) 1374 return getIndirectReturnResult(RetTy, State); 1375 1376 // Ignore empty structs/unions. 1377 if (isEmptyRecord(getContext(), RetTy, true)) 1378 return ABIArgInfo::getIgnore(); 1379 1380 // Small structures which are register sized are generally returned 1381 // in a register. 1382 if (shouldReturnTypeInRegister(RetTy, getContext())) { 1383 uint64_t Size = getContext().getTypeSize(RetTy); 1384 1385 // As a special-case, if the struct is a "single-element" struct, and 1386 // the field is of type "float" or "double", return it in a 1387 // floating-point register. (MSVC does not apply this special case.) 1388 // We apply a similar transformation for pointer types to improve the 1389 // quality of the generated IR. 1390 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 1391 if ((!IsWin32StructABI && SeltTy->isRealFloatingType()) 1392 || SeltTy->hasPointerRepresentation()) 1393 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 1394 1395 // FIXME: We should be able to narrow this integer in cases with dead 1396 // padding. 1397 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size)); 1398 } 1399 1400 return getIndirectReturnResult(RetTy, State); 1401 } 1402 1403 // Treat an enum type as its underlying type. 1404 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 1405 RetTy = EnumTy->getDecl()->getIntegerType(); 1406 1407 return (RetTy->isPromotableIntegerType() ? 1408 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 1409 } 1410 1411 static bool isSSEVectorType(ASTContext &Context, QualType Ty) { 1412 return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128; 1413 } 1414 1415 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) { 1416 const RecordType *RT = Ty->getAs<RecordType>(); 1417 if (!RT) 1418 return 0; 1419 const RecordDecl *RD = RT->getDecl(); 1420 1421 // If this is a C++ record, check the bases first. 1422 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 1423 for (const auto &I : CXXRD->bases()) 1424 if (!isRecordWithSSEVectorType(Context, I.getType())) 1425 return false; 1426 1427 for (const auto *i : RD->fields()) { 1428 QualType FT = i->getType(); 1429 1430 if (isSSEVectorType(Context, FT)) 1431 return true; 1432 1433 if (isRecordWithSSEVectorType(Context, FT)) 1434 return true; 1435 } 1436 1437 return false; 1438 } 1439 1440 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty, 1441 unsigned Align) const { 1442 // Otherwise, if the alignment is less than or equal to the minimum ABI 1443 // alignment, just use the default; the backend will handle this. 1444 if (Align <= MinABIStackAlignInBytes) 1445 return 0; // Use default alignment. 1446 1447 // On non-Darwin, the stack type alignment is always 4. 1448 if (!IsDarwinVectorABI) { 1449 // Set explicit alignment, since we may need to realign the top. 1450 return MinABIStackAlignInBytes; 1451 } 1452 1453 // Otherwise, if the type contains an SSE vector type, the alignment is 16. 1454 if (Align >= 16 && (isSSEVectorType(getContext(), Ty) || 1455 isRecordWithSSEVectorType(getContext(), Ty))) 1456 return 16; 1457 1458 return MinABIStackAlignInBytes; 1459 } 1460 1461 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal, 1462 CCState &State) const { 1463 if (!ByVal) { 1464 if (State.FreeRegs) { 1465 --State.FreeRegs; // Non-byval indirects just use one pointer. 1466 if (!IsMCUABI) 1467 return getNaturalAlignIndirectInReg(Ty); 1468 } 1469 return getNaturalAlignIndirect(Ty, false); 1470 } 1471 1472 // Compute the byval alignment. 1473 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 1474 unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign); 1475 if (StackAlign == 0) 1476 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true); 1477 1478 // If the stack alignment is less than the type alignment, realign the 1479 // argument. 1480 bool Realign = TypeAlign > StackAlign; 1481 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign), 1482 /*ByVal=*/true, Realign); 1483 } 1484 1485 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const { 1486 const Type *T = isSingleElementStruct(Ty, getContext()); 1487 if (!T) 1488 T = Ty.getTypePtr(); 1489 1490 if (const BuiltinType *BT = T->getAs<BuiltinType>()) { 1491 BuiltinType::Kind K = BT->getKind(); 1492 if (K == BuiltinType::Float || K == BuiltinType::Double) 1493 return Float; 1494 } 1495 return Integer; 1496 } 1497 1498 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const { 1499 if (!IsSoftFloatABI) { 1500 Class C = classify(Ty); 1501 if (C == Float) 1502 return false; 1503 } 1504 1505 unsigned Size = getContext().getTypeSize(Ty); 1506 unsigned SizeInRegs = (Size + 31) / 32; 1507 1508 if (SizeInRegs == 0) 1509 return false; 1510 1511 if (!IsMCUABI) { 1512 if (SizeInRegs > State.FreeRegs) { 1513 State.FreeRegs = 0; 1514 return false; 1515 } 1516 } else { 1517 // The MCU psABI allows passing parameters in-reg even if there are 1518 // earlier parameters that are passed on the stack. Also, 1519 // it does not allow passing >8-byte structs in-register, 1520 // even if there are 3 free registers available. 1521 if (SizeInRegs > State.FreeRegs || SizeInRegs > 2) 1522 return false; 1523 } 1524 1525 State.FreeRegs -= SizeInRegs; 1526 return true; 1527 } 1528 1529 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State, 1530 bool &InReg, 1531 bool &NeedsPadding) const { 1532 // On Windows, aggregates other than HFAs are never passed in registers, and 1533 // they do not consume register slots. Homogenous floating-point aggregates 1534 // (HFAs) have already been dealt with at this point. 1535 if (IsWin32StructABI && isAggregateTypeForABI(Ty)) 1536 return false; 1537 1538 NeedsPadding = false; 1539 InReg = !IsMCUABI; 1540 1541 if (!updateFreeRegs(Ty, State)) 1542 return false; 1543 1544 if (IsMCUABI) 1545 return true; 1546 1547 if (State.CC == llvm::CallingConv::X86_FastCall || 1548 State.CC == llvm::CallingConv::X86_VectorCall || 1549 State.CC == llvm::CallingConv::X86_RegCall) { 1550 if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs) 1551 NeedsPadding = true; 1552 1553 return false; 1554 } 1555 1556 return true; 1557 } 1558 1559 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const { 1560 if (!updateFreeRegs(Ty, State)) 1561 return false; 1562 1563 if (IsMCUABI) 1564 return false; 1565 1566 if (State.CC == llvm::CallingConv::X86_FastCall || 1567 State.CC == llvm::CallingConv::X86_VectorCall || 1568 State.CC == llvm::CallingConv::X86_RegCall) { 1569 if (getContext().getTypeSize(Ty) > 32) 1570 return false; 1571 1572 return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() || 1573 Ty->isReferenceType()); 1574 } 1575 1576 return true; 1577 } 1578 1579 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, 1580 CCState &State) const { 1581 // FIXME: Set alignment on indirect arguments. 1582 1583 Ty = useFirstFieldIfTransparentUnion(Ty); 1584 1585 // Check with the C++ ABI first. 1586 const RecordType *RT = Ty->getAs<RecordType>(); 1587 if (RT) { 1588 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 1589 if (RAA == CGCXXABI::RAA_Indirect) { 1590 return getIndirectResult(Ty, false, State); 1591 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 1592 // The field index doesn't matter, we'll fix it up later. 1593 return ABIArgInfo::getInAlloca(/*FieldIndex=*/0); 1594 } 1595 } 1596 1597 // Regcall uses the concept of a homogenous vector aggregate, similar 1598 // to other targets. 1599 const Type *Base = nullptr; 1600 uint64_t NumElts = 0; 1601 if (State.CC == llvm::CallingConv::X86_RegCall && 1602 isHomogeneousAggregate(Ty, Base, NumElts)) { 1603 1604 if (State.FreeSSERegs >= NumElts) { 1605 State.FreeSSERegs -= NumElts; 1606 if (Ty->isBuiltinType() || Ty->isVectorType()) 1607 return ABIArgInfo::getDirect(); 1608 return ABIArgInfo::getExpand(); 1609 } 1610 return getIndirectResult(Ty, /*ByVal=*/false, State); 1611 } 1612 1613 if (isAggregateTypeForABI(Ty)) { 1614 // Structures with flexible arrays are always indirect. 1615 // FIXME: This should not be byval! 1616 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 1617 return getIndirectResult(Ty, true, State); 1618 1619 // Ignore empty structs/unions on non-Windows. 1620 if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true)) 1621 return ABIArgInfo::getIgnore(); 1622 1623 llvm::LLVMContext &LLVMContext = getVMContext(); 1624 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 1625 bool NeedsPadding = false; 1626 bool InReg; 1627 if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) { 1628 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; 1629 SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32); 1630 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 1631 if (InReg) 1632 return ABIArgInfo::getDirectInReg(Result); 1633 else 1634 return ABIArgInfo::getDirect(Result); 1635 } 1636 llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr; 1637 1638 // Expand small (<= 128-bit) record types when we know that the stack layout 1639 // of those arguments will match the struct. This is important because the 1640 // LLVM backend isn't smart enough to remove byval, which inhibits many 1641 // optimizations. 1642 // Don't do this for the MCU if there are still free integer registers 1643 // (see X86_64 ABI for full explanation). 1644 if (getContext().getTypeSize(Ty) <= 4 * 32 && 1645 (!IsMCUABI || State.FreeRegs == 0) && canExpandIndirectArgument(Ty)) 1646 return ABIArgInfo::getExpandWithPadding( 1647 State.CC == llvm::CallingConv::X86_FastCall || 1648 State.CC == llvm::CallingConv::X86_VectorCall || 1649 State.CC == llvm::CallingConv::X86_RegCall, 1650 PaddingType); 1651 1652 return getIndirectResult(Ty, true, State); 1653 } 1654 1655 if (const VectorType *VT = Ty->getAs<VectorType>()) { 1656 // On Darwin, some vectors are passed in memory, we handle this by passing 1657 // it as an i8/i16/i32/i64. 1658 if (IsDarwinVectorABI) { 1659 uint64_t Size = getContext().getTypeSize(Ty); 1660 if ((Size == 8 || Size == 16 || Size == 32) || 1661 (Size == 64 && VT->getNumElements() == 1)) 1662 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1663 Size)); 1664 } 1665 1666 if (IsX86_MMXType(CGT.ConvertType(Ty))) 1667 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64)); 1668 1669 return ABIArgInfo::getDirect(); 1670 } 1671 1672 1673 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 1674 Ty = EnumTy->getDecl()->getIntegerType(); 1675 1676 bool InReg = shouldPrimitiveUseInReg(Ty, State); 1677 1678 if (Ty->isPromotableIntegerType()) { 1679 if (InReg) 1680 return ABIArgInfo::getExtendInReg(); 1681 return ABIArgInfo::getExtend(); 1682 } 1683 1684 if (InReg) 1685 return ABIArgInfo::getDirectInReg(); 1686 return ABIArgInfo::getDirect(); 1687 } 1688 1689 void X86_32ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI, CCState &State, 1690 bool &UsedInAlloca) const { 1691 // Vectorcall x86 works subtly different than in x64, so the format is 1692 // a bit different than the x64 version. First, all vector types (not HVAs) 1693 // are assigned, with the first 6 ending up in the YMM0-5 or XMM0-5 registers. 1694 // This differs from the x64 implementation, where the first 6 by INDEX get 1695 // registers. 1696 // After that, integers AND HVAs are assigned Left to Right in the same pass. 1697 // Integers are passed as ECX/EDX if one is available (in order). HVAs will 1698 // first take up the remaining YMM/XMM registers. If insufficient registers 1699 // remain but an integer register (ECX/EDX) is available, it will be passed 1700 // in that, else, on the stack. 1701 for (auto &I : FI.arguments()) { 1702 // First pass do all the vector types. 1703 const Type *Base = nullptr; 1704 uint64_t NumElts = 0; 1705 const QualType& Ty = I.type; 1706 if ((Ty->isVectorType() || Ty->isBuiltinType()) && 1707 isHomogeneousAggregate(Ty, Base, NumElts)) { 1708 if (State.FreeSSERegs >= NumElts) { 1709 State.FreeSSERegs -= NumElts; 1710 I.info = ABIArgInfo::getDirect(); 1711 } else { 1712 I.info = classifyArgumentType(Ty, State); 1713 } 1714 UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca); 1715 } 1716 } 1717 1718 for (auto &I : FI.arguments()) { 1719 // Second pass, do the rest! 1720 const Type *Base = nullptr; 1721 uint64_t NumElts = 0; 1722 const QualType& Ty = I.type; 1723 bool IsHva = isHomogeneousAggregate(Ty, Base, NumElts); 1724 1725 if (IsHva && !Ty->isVectorType() && !Ty->isBuiltinType()) { 1726 // Assign true HVAs (non vector/native FP types). 1727 if (State.FreeSSERegs >= NumElts) { 1728 State.FreeSSERegs -= NumElts; 1729 I.info = getDirectX86Hva(); 1730 } else { 1731 I.info = getIndirectResult(Ty, /*ByVal=*/false, State); 1732 } 1733 } else if (!IsHva) { 1734 // Assign all Non-HVAs, so this will exclude Vector/FP args. 1735 I.info = classifyArgumentType(Ty, State); 1736 UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca); 1737 } 1738 } 1739 } 1740 1741 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const { 1742 CCState State(FI.getCallingConvention()); 1743 if (IsMCUABI) 1744 State.FreeRegs = 3; 1745 else if (State.CC == llvm::CallingConv::X86_FastCall) 1746 State.FreeRegs = 2; 1747 else if (State.CC == llvm::CallingConv::X86_VectorCall) { 1748 State.FreeRegs = 2; 1749 State.FreeSSERegs = 6; 1750 } else if (FI.getHasRegParm()) 1751 State.FreeRegs = FI.getRegParm(); 1752 else if (State.CC == llvm::CallingConv::X86_RegCall) { 1753 State.FreeRegs = 5; 1754 State.FreeSSERegs = 8; 1755 } else 1756 State.FreeRegs = DefaultNumRegisterParameters; 1757 1758 if (!getCXXABI().classifyReturnType(FI)) { 1759 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State); 1760 } else if (FI.getReturnInfo().isIndirect()) { 1761 // The C++ ABI is not aware of register usage, so we have to check if the 1762 // return value was sret and put it in a register ourselves if appropriate. 1763 if (State.FreeRegs) { 1764 --State.FreeRegs; // The sret parameter consumes a register. 1765 if (!IsMCUABI) 1766 FI.getReturnInfo().setInReg(true); 1767 } 1768 } 1769 1770 // The chain argument effectively gives us another free register. 1771 if (FI.isChainCall()) 1772 ++State.FreeRegs; 1773 1774 bool UsedInAlloca = false; 1775 if (State.CC == llvm::CallingConv::X86_VectorCall) { 1776 computeVectorCallArgs(FI, State, UsedInAlloca); 1777 } else { 1778 // If not vectorcall, revert to normal behavior. 1779 for (auto &I : FI.arguments()) { 1780 I.info = classifyArgumentType(I.type, State); 1781 UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca); 1782 } 1783 } 1784 1785 // If we needed to use inalloca for any argument, do a second pass and rewrite 1786 // all the memory arguments to use inalloca. 1787 if (UsedInAlloca) 1788 rewriteWithInAlloca(FI); 1789 } 1790 1791 void 1792 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1793 CharUnits &StackOffset, ABIArgInfo &Info, 1794 QualType Type) const { 1795 // Arguments are always 4-byte-aligned. 1796 CharUnits FieldAlign = CharUnits::fromQuantity(4); 1797 1798 assert(StackOffset.isMultipleOf(FieldAlign) && "unaligned inalloca struct"); 1799 Info = ABIArgInfo::getInAlloca(FrameFields.size()); 1800 FrameFields.push_back(CGT.ConvertTypeForMem(Type)); 1801 StackOffset += getContext().getTypeSizeInChars(Type); 1802 1803 // Insert padding bytes to respect alignment. 1804 CharUnits FieldEnd = StackOffset; 1805 StackOffset = FieldEnd.alignTo(FieldAlign); 1806 if (StackOffset != FieldEnd) { 1807 CharUnits NumBytes = StackOffset - FieldEnd; 1808 llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext()); 1809 Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity()); 1810 FrameFields.push_back(Ty); 1811 } 1812 } 1813 1814 static bool isArgInAlloca(const ABIArgInfo &Info) { 1815 // Leave ignored and inreg arguments alone. 1816 switch (Info.getKind()) { 1817 case ABIArgInfo::InAlloca: 1818 return true; 1819 case ABIArgInfo::Indirect: 1820 assert(Info.getIndirectByVal()); 1821 return true; 1822 case ABIArgInfo::Ignore: 1823 return false; 1824 case ABIArgInfo::Direct: 1825 case ABIArgInfo::Extend: 1826 if (Info.getInReg()) 1827 return false; 1828 return true; 1829 case ABIArgInfo::Expand: 1830 case ABIArgInfo::CoerceAndExpand: 1831 // These are aggregate types which are never passed in registers when 1832 // inalloca is involved. 1833 return true; 1834 } 1835 llvm_unreachable("invalid enum"); 1836 } 1837 1838 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const { 1839 assert(IsWin32StructABI && "inalloca only supported on win32"); 1840 1841 // Build a packed struct type for all of the arguments in memory. 1842 SmallVector<llvm::Type *, 6> FrameFields; 1843 1844 // The stack alignment is always 4. 1845 CharUnits StackAlign = CharUnits::fromQuantity(4); 1846 1847 CharUnits StackOffset; 1848 CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end(); 1849 1850 // Put 'this' into the struct before 'sret', if necessary. 1851 bool IsThisCall = 1852 FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall; 1853 ABIArgInfo &Ret = FI.getReturnInfo(); 1854 if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall && 1855 isArgInAlloca(I->info)) { 1856 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 1857 ++I; 1858 } 1859 1860 // Put the sret parameter into the inalloca struct if it's in memory. 1861 if (Ret.isIndirect() && !Ret.getInReg()) { 1862 CanQualType PtrTy = getContext().getPointerType(FI.getReturnType()); 1863 addFieldToArgStruct(FrameFields, StackOffset, Ret, PtrTy); 1864 // On Windows, the hidden sret parameter is always returned in eax. 1865 Ret.setInAllocaSRet(IsWin32StructABI); 1866 } 1867 1868 // Skip the 'this' parameter in ecx. 1869 if (IsThisCall) 1870 ++I; 1871 1872 // Put arguments passed in memory into the struct. 1873 for (; I != E; ++I) { 1874 if (isArgInAlloca(I->info)) 1875 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 1876 } 1877 1878 FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields, 1879 /*isPacked=*/true), 1880 StackAlign); 1881 } 1882 1883 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF, 1884 Address VAListAddr, QualType Ty) const { 1885 1886 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 1887 1888 // x86-32 changes the alignment of certain arguments on the stack. 1889 // 1890 // Just messing with TypeInfo like this works because we never pass 1891 // anything indirectly. 1892 TypeInfo.second = CharUnits::fromQuantity( 1893 getTypeStackAlignInBytes(Ty, TypeInfo.second.getQuantity())); 1894 1895 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 1896 TypeInfo, CharUnits::fromQuantity(4), 1897 /*AllowHigherAlign*/ true); 1898 } 1899 1900 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI( 1901 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 1902 assert(Triple.getArch() == llvm::Triple::x86); 1903 1904 switch (Opts.getStructReturnConvention()) { 1905 case CodeGenOptions::SRCK_Default: 1906 break; 1907 case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return 1908 return false; 1909 case CodeGenOptions::SRCK_InRegs: // -freg-struct-return 1910 return true; 1911 } 1912 1913 if (Triple.isOSDarwin() || Triple.isOSIAMCU()) 1914 return true; 1915 1916 switch (Triple.getOS()) { 1917 case llvm::Triple::DragonFly: 1918 case llvm::Triple::FreeBSD: 1919 case llvm::Triple::OpenBSD: 1920 case llvm::Triple::Win32: 1921 return true; 1922 default: 1923 return false; 1924 } 1925 } 1926 1927 void X86_32TargetCodeGenInfo::setTargetAttributes( 1928 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM, 1929 ForDefinition_t IsForDefinition) const { 1930 if (!IsForDefinition) 1931 return; 1932 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 1933 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 1934 // Get the LLVM function. 1935 llvm::Function *Fn = cast<llvm::Function>(GV); 1936 1937 // Now add the 'alignstack' attribute with a value of 16. 1938 llvm::AttrBuilder B; 1939 B.addStackAlignmentAttr(16); 1940 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 1941 } 1942 if (FD->hasAttr<AnyX86InterruptAttr>()) { 1943 llvm::Function *Fn = cast<llvm::Function>(GV); 1944 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 1945 } 1946 } 1947 } 1948 1949 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable( 1950 CodeGen::CodeGenFunction &CGF, 1951 llvm::Value *Address) const { 1952 CodeGen::CGBuilderTy &Builder = CGF.Builder; 1953 1954 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 1955 1956 // 0-7 are the eight integer registers; the order is different 1957 // on Darwin (for EH), but the range is the same. 1958 // 8 is %eip. 1959 AssignToArrayRange(Builder, Address, Four8, 0, 8); 1960 1961 if (CGF.CGM.getTarget().getTriple().isOSDarwin()) { 1962 // 12-16 are st(0..4). Not sure why we stop at 4. 1963 // These have size 16, which is sizeof(long double) on 1964 // platforms with 8-byte alignment for that type. 1965 llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16); 1966 AssignToArrayRange(Builder, Address, Sixteen8, 12, 16); 1967 1968 } else { 1969 // 9 is %eflags, which doesn't get a size on Darwin for some 1970 // reason. 1971 Builder.CreateAlignedStore( 1972 Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9), 1973 CharUnits::One()); 1974 1975 // 11-16 are st(0..5). Not sure why we stop at 5. 1976 // These have size 12, which is sizeof(long double) on 1977 // platforms with 4-byte alignment for that type. 1978 llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12); 1979 AssignToArrayRange(Builder, Address, Twelve8, 11, 16); 1980 } 1981 1982 return false; 1983 } 1984 1985 //===----------------------------------------------------------------------===// 1986 // X86-64 ABI Implementation 1987 //===----------------------------------------------------------------------===// 1988 1989 1990 namespace { 1991 /// The AVX ABI level for X86 targets. 1992 enum class X86AVXABILevel { 1993 None, 1994 AVX, 1995 AVX512 1996 }; 1997 1998 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel. 1999 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) { 2000 switch (AVXLevel) { 2001 case X86AVXABILevel::AVX512: 2002 return 512; 2003 case X86AVXABILevel::AVX: 2004 return 256; 2005 case X86AVXABILevel::None: 2006 return 128; 2007 } 2008 llvm_unreachable("Unknown AVXLevel"); 2009 } 2010 2011 /// X86_64ABIInfo - The X86_64 ABI information. 2012 class X86_64ABIInfo : public SwiftABIInfo { 2013 enum Class { 2014 Integer = 0, 2015 SSE, 2016 SSEUp, 2017 X87, 2018 X87Up, 2019 ComplexX87, 2020 NoClass, 2021 Memory 2022 }; 2023 2024 /// merge - Implement the X86_64 ABI merging algorithm. 2025 /// 2026 /// Merge an accumulating classification \arg Accum with a field 2027 /// classification \arg Field. 2028 /// 2029 /// \param Accum - The accumulating classification. This should 2030 /// always be either NoClass or the result of a previous merge 2031 /// call. In addition, this should never be Memory (the caller 2032 /// should just return Memory for the aggregate). 2033 static Class merge(Class Accum, Class Field); 2034 2035 /// postMerge - Implement the X86_64 ABI post merging algorithm. 2036 /// 2037 /// Post merger cleanup, reduces a malformed Hi and Lo pair to 2038 /// final MEMORY or SSE classes when necessary. 2039 /// 2040 /// \param AggregateSize - The size of the current aggregate in 2041 /// the classification process. 2042 /// 2043 /// \param Lo - The classification for the parts of the type 2044 /// residing in the low word of the containing object. 2045 /// 2046 /// \param Hi - The classification for the parts of the type 2047 /// residing in the higher words of the containing object. 2048 /// 2049 void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const; 2050 2051 /// classify - Determine the x86_64 register classes in which the 2052 /// given type T should be passed. 2053 /// 2054 /// \param Lo - The classification for the parts of the type 2055 /// residing in the low word of the containing object. 2056 /// 2057 /// \param Hi - The classification for the parts of the type 2058 /// residing in the high word of the containing object. 2059 /// 2060 /// \param OffsetBase - The bit offset of this type in the 2061 /// containing object. Some parameters are classified different 2062 /// depending on whether they straddle an eightbyte boundary. 2063 /// 2064 /// \param isNamedArg - Whether the argument in question is a "named" 2065 /// argument, as used in AMD64-ABI 3.5.7. 2066 /// 2067 /// If a word is unused its result will be NoClass; if a type should 2068 /// be passed in Memory then at least the classification of \arg Lo 2069 /// will be Memory. 2070 /// 2071 /// The \arg Lo class will be NoClass iff the argument is ignored. 2072 /// 2073 /// If the \arg Lo class is ComplexX87, then the \arg Hi class will 2074 /// also be ComplexX87. 2075 void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi, 2076 bool isNamedArg) const; 2077 2078 llvm::Type *GetByteVectorType(QualType Ty) const; 2079 llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType, 2080 unsigned IROffset, QualType SourceTy, 2081 unsigned SourceOffset) const; 2082 llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType, 2083 unsigned IROffset, QualType SourceTy, 2084 unsigned SourceOffset) const; 2085 2086 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 2087 /// such that the argument will be returned in memory. 2088 ABIArgInfo getIndirectReturnResult(QualType Ty) const; 2089 2090 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 2091 /// such that the argument will be passed in memory. 2092 /// 2093 /// \param freeIntRegs - The number of free integer registers remaining 2094 /// available. 2095 ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const; 2096 2097 ABIArgInfo classifyReturnType(QualType RetTy) const; 2098 2099 ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs, 2100 unsigned &neededInt, unsigned &neededSSE, 2101 bool isNamedArg) const; 2102 2103 ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt, 2104 unsigned &NeededSSE) const; 2105 2106 ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 2107 unsigned &NeededSSE) const; 2108 2109 bool IsIllegalVectorType(QualType Ty) const; 2110 2111 /// The 0.98 ABI revision clarified a lot of ambiguities, 2112 /// unfortunately in ways that were not always consistent with 2113 /// certain previous compilers. In particular, platforms which 2114 /// required strict binary compatibility with older versions of GCC 2115 /// may need to exempt themselves. 2116 bool honorsRevision0_98() const { 2117 return !getTarget().getTriple().isOSDarwin(); 2118 } 2119 2120 /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to 2121 /// classify it as INTEGER (for compatibility with older clang compilers). 2122 bool classifyIntegerMMXAsSSE() const { 2123 // Clang <= 3.8 did not do this. 2124 if (getCodeGenOpts().getClangABICompat() <= 2125 CodeGenOptions::ClangABI::Ver3_8) 2126 return false; 2127 2128 const llvm::Triple &Triple = getTarget().getTriple(); 2129 if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::PS4) 2130 return false; 2131 if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10) 2132 return false; 2133 return true; 2134 } 2135 2136 X86AVXABILevel AVXLevel; 2137 // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on 2138 // 64-bit hardware. 2139 bool Has64BitPointers; 2140 2141 public: 2142 X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) : 2143 SwiftABIInfo(CGT), AVXLevel(AVXLevel), 2144 Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) { 2145 } 2146 2147 bool isPassedUsingAVXType(QualType type) const { 2148 unsigned neededInt, neededSSE; 2149 // The freeIntRegs argument doesn't matter here. 2150 ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE, 2151 /*isNamedArg*/true); 2152 if (info.isDirect()) { 2153 llvm::Type *ty = info.getCoerceToType(); 2154 if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty)) 2155 return (vectorTy->getBitWidth() > 128); 2156 } 2157 return false; 2158 } 2159 2160 void computeInfo(CGFunctionInfo &FI) const override; 2161 2162 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2163 QualType Ty) const override; 2164 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 2165 QualType Ty) const override; 2166 2167 bool has64BitPointers() const { 2168 return Has64BitPointers; 2169 } 2170 2171 bool shouldPassIndirectlyForSwift(CharUnits totalSize, 2172 ArrayRef<llvm::Type*> scalars, 2173 bool asReturnValue) const override { 2174 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2175 } 2176 bool isSwiftErrorInRegister() const override { 2177 return true; 2178 } 2179 }; 2180 2181 /// WinX86_64ABIInfo - The Windows X86_64 ABI information. 2182 class WinX86_64ABIInfo : public SwiftABIInfo { 2183 public: 2184 WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) 2185 : SwiftABIInfo(CGT), 2186 IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {} 2187 2188 void computeInfo(CGFunctionInfo &FI) const override; 2189 2190 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2191 QualType Ty) const override; 2192 2193 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 2194 // FIXME: Assumes vectorcall is in use. 2195 return isX86VectorTypeForVectorCall(getContext(), Ty); 2196 } 2197 2198 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 2199 uint64_t NumMembers) const override { 2200 // FIXME: Assumes vectorcall is in use. 2201 return isX86VectorCallAggregateSmallEnough(NumMembers); 2202 } 2203 2204 bool shouldPassIndirectlyForSwift(CharUnits totalSize, 2205 ArrayRef<llvm::Type *> scalars, 2206 bool asReturnValue) const override { 2207 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2208 } 2209 2210 bool isSwiftErrorInRegister() const override { 2211 return true; 2212 } 2213 2214 private: 2215 ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType, 2216 bool IsVectorCall, bool IsRegCall) const; 2217 ABIArgInfo reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs, 2218 const ABIArgInfo ¤t) const; 2219 void computeVectorCallArgs(CGFunctionInfo &FI, unsigned FreeSSERegs, 2220 bool IsVectorCall, bool IsRegCall) const; 2221 2222 bool IsMingw64; 2223 }; 2224 2225 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2226 public: 2227 X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2228 : TargetCodeGenInfo(new X86_64ABIInfo(CGT, AVXLevel)) {} 2229 2230 const X86_64ABIInfo &getABIInfo() const { 2231 return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo()); 2232 } 2233 2234 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2235 return 7; 2236 } 2237 2238 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2239 llvm::Value *Address) const override { 2240 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2241 2242 // 0-15 are the 16 integer registers. 2243 // 16 is %rip. 2244 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2245 return false; 2246 } 2247 2248 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 2249 StringRef Constraint, 2250 llvm::Type* Ty) const override { 2251 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 2252 } 2253 2254 bool isNoProtoCallVariadic(const CallArgList &args, 2255 const FunctionNoProtoType *fnType) const override { 2256 // The default CC on x86-64 sets %al to the number of SSA 2257 // registers used, and GCC sets this when calling an unprototyped 2258 // function, so we override the default behavior. However, don't do 2259 // that when AVX types are involved: the ABI explicitly states it is 2260 // undefined, and it doesn't work in practice because of how the ABI 2261 // defines varargs anyway. 2262 if (fnType->getCallConv() == CC_C) { 2263 bool HasAVXType = false; 2264 for (CallArgList::const_iterator 2265 it = args.begin(), ie = args.end(); it != ie; ++it) { 2266 if (getABIInfo().isPassedUsingAVXType(it->Ty)) { 2267 HasAVXType = true; 2268 break; 2269 } 2270 } 2271 2272 if (!HasAVXType) 2273 return true; 2274 } 2275 2276 return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType); 2277 } 2278 2279 llvm::Constant * 2280 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 2281 unsigned Sig = (0xeb << 0) | // jmp rel8 2282 (0x06 << 8) | // .+0x08 2283 ('v' << 16) | 2284 ('2' << 24); 2285 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 2286 } 2287 2288 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2289 CodeGen::CodeGenModule &CGM, 2290 ForDefinition_t IsForDefinition) const override { 2291 if (!IsForDefinition) 2292 return; 2293 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2294 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2295 // Get the LLVM function. 2296 auto *Fn = cast<llvm::Function>(GV); 2297 2298 // Now add the 'alignstack' attribute with a value of 16. 2299 llvm::AttrBuilder B; 2300 B.addStackAlignmentAttr(16); 2301 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 2302 } 2303 if (FD->hasAttr<AnyX86InterruptAttr>()) { 2304 llvm::Function *Fn = cast<llvm::Function>(GV); 2305 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2306 } 2307 } 2308 } 2309 }; 2310 2311 class PS4TargetCodeGenInfo : public X86_64TargetCodeGenInfo { 2312 public: 2313 PS4TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2314 : X86_64TargetCodeGenInfo(CGT, AVXLevel) {} 2315 2316 void getDependentLibraryOption(llvm::StringRef Lib, 2317 llvm::SmallString<24> &Opt) const override { 2318 Opt = "\01"; 2319 // If the argument contains a space, enclose it in quotes. 2320 if (Lib.find(" ") != StringRef::npos) 2321 Opt += "\"" + Lib.str() + "\""; 2322 else 2323 Opt += Lib; 2324 } 2325 }; 2326 2327 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) { 2328 // If the argument does not end in .lib, automatically add the suffix. 2329 // If the argument contains a space, enclose it in quotes. 2330 // This matches the behavior of MSVC. 2331 bool Quote = (Lib.find(" ") != StringRef::npos); 2332 std::string ArgStr = Quote ? "\"" : ""; 2333 ArgStr += Lib; 2334 if (!Lib.endswith_lower(".lib")) 2335 ArgStr += ".lib"; 2336 ArgStr += Quote ? "\"" : ""; 2337 return ArgStr; 2338 } 2339 2340 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo { 2341 public: 2342 WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2343 bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI, 2344 unsigned NumRegisterParameters) 2345 : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI, 2346 Win32StructABI, NumRegisterParameters, false) {} 2347 2348 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2349 CodeGen::CodeGenModule &CGM, 2350 ForDefinition_t IsForDefinition) const override; 2351 2352 void getDependentLibraryOption(llvm::StringRef Lib, 2353 llvm::SmallString<24> &Opt) const override { 2354 Opt = "/DEFAULTLIB:"; 2355 Opt += qualifyWindowsLibrary(Lib); 2356 } 2357 2358 void getDetectMismatchOption(llvm::StringRef Name, 2359 llvm::StringRef Value, 2360 llvm::SmallString<32> &Opt) const override { 2361 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2362 } 2363 }; 2364 2365 static void addStackProbeSizeTargetAttribute(const Decl *D, 2366 llvm::GlobalValue *GV, 2367 CodeGen::CodeGenModule &CGM) { 2368 if (D && isa<FunctionDecl>(D)) { 2369 if (CGM.getCodeGenOpts().StackProbeSize != 4096) { 2370 llvm::Function *Fn = cast<llvm::Function>(GV); 2371 2372 Fn->addFnAttr("stack-probe-size", 2373 llvm::utostr(CGM.getCodeGenOpts().StackProbeSize)); 2374 } 2375 } 2376 } 2377 2378 void WinX86_32TargetCodeGenInfo::setTargetAttributes( 2379 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM, 2380 ForDefinition_t IsForDefinition) const { 2381 X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM, IsForDefinition); 2382 if (!IsForDefinition) 2383 return; 2384 addStackProbeSizeTargetAttribute(D, GV, CGM); 2385 } 2386 2387 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2388 public: 2389 WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2390 X86AVXABILevel AVXLevel) 2391 : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {} 2392 2393 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2394 CodeGen::CodeGenModule &CGM, 2395 ForDefinition_t IsForDefinition) const override; 2396 2397 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2398 return 7; 2399 } 2400 2401 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2402 llvm::Value *Address) const override { 2403 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2404 2405 // 0-15 are the 16 integer registers. 2406 // 16 is %rip. 2407 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2408 return false; 2409 } 2410 2411 void getDependentLibraryOption(llvm::StringRef Lib, 2412 llvm::SmallString<24> &Opt) const override { 2413 Opt = "/DEFAULTLIB:"; 2414 Opt += qualifyWindowsLibrary(Lib); 2415 } 2416 2417 void getDetectMismatchOption(llvm::StringRef Name, 2418 llvm::StringRef Value, 2419 llvm::SmallString<32> &Opt) const override { 2420 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2421 } 2422 }; 2423 2424 void WinX86_64TargetCodeGenInfo::setTargetAttributes( 2425 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM, 2426 ForDefinition_t IsForDefinition) const { 2427 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM, IsForDefinition); 2428 if (!IsForDefinition) 2429 return; 2430 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2431 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2432 // Get the LLVM function. 2433 auto *Fn = cast<llvm::Function>(GV); 2434 2435 // Now add the 'alignstack' attribute with a value of 16. 2436 llvm::AttrBuilder B; 2437 B.addStackAlignmentAttr(16); 2438 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 2439 } 2440 if (FD->hasAttr<AnyX86InterruptAttr>()) { 2441 llvm::Function *Fn = cast<llvm::Function>(GV); 2442 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2443 } 2444 } 2445 2446 addStackProbeSizeTargetAttribute(D, GV, CGM); 2447 } 2448 } 2449 2450 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo, 2451 Class &Hi) const { 2452 // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done: 2453 // 2454 // (a) If one of the classes is Memory, the whole argument is passed in 2455 // memory. 2456 // 2457 // (b) If X87UP is not preceded by X87, the whole argument is passed in 2458 // memory. 2459 // 2460 // (c) If the size of the aggregate exceeds two eightbytes and the first 2461 // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole 2462 // argument is passed in memory. NOTE: This is necessary to keep the 2463 // ABI working for processors that don't support the __m256 type. 2464 // 2465 // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE. 2466 // 2467 // Some of these are enforced by the merging logic. Others can arise 2468 // only with unions; for example: 2469 // union { _Complex double; unsigned; } 2470 // 2471 // Note that clauses (b) and (c) were added in 0.98. 2472 // 2473 if (Hi == Memory) 2474 Lo = Memory; 2475 if (Hi == X87Up && Lo != X87 && honorsRevision0_98()) 2476 Lo = Memory; 2477 if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp)) 2478 Lo = Memory; 2479 if (Hi == SSEUp && Lo != SSE) 2480 Hi = SSE; 2481 } 2482 2483 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) { 2484 // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is 2485 // classified recursively so that always two fields are 2486 // considered. The resulting class is calculated according to 2487 // the classes of the fields in the eightbyte: 2488 // 2489 // (a) If both classes are equal, this is the resulting class. 2490 // 2491 // (b) If one of the classes is NO_CLASS, the resulting class is 2492 // the other class. 2493 // 2494 // (c) If one of the classes is MEMORY, the result is the MEMORY 2495 // class. 2496 // 2497 // (d) If one of the classes is INTEGER, the result is the 2498 // INTEGER. 2499 // 2500 // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class, 2501 // MEMORY is used as class. 2502 // 2503 // (f) Otherwise class SSE is used. 2504 2505 // Accum should never be memory (we should have returned) or 2506 // ComplexX87 (because this cannot be passed in a structure). 2507 assert((Accum != Memory && Accum != ComplexX87) && 2508 "Invalid accumulated classification during merge."); 2509 if (Accum == Field || Field == NoClass) 2510 return Accum; 2511 if (Field == Memory) 2512 return Memory; 2513 if (Accum == NoClass) 2514 return Field; 2515 if (Accum == Integer || Field == Integer) 2516 return Integer; 2517 if (Field == X87 || Field == X87Up || Field == ComplexX87 || 2518 Accum == X87 || Accum == X87Up) 2519 return Memory; 2520 return SSE; 2521 } 2522 2523 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, 2524 Class &Lo, Class &Hi, bool isNamedArg) const { 2525 // FIXME: This code can be simplified by introducing a simple value class for 2526 // Class pairs with appropriate constructor methods for the various 2527 // situations. 2528 2529 // FIXME: Some of the split computations are wrong; unaligned vectors 2530 // shouldn't be passed in registers for example, so there is no chance they 2531 // can straddle an eightbyte. Verify & simplify. 2532 2533 Lo = Hi = NoClass; 2534 2535 Class &Current = OffsetBase < 64 ? Lo : Hi; 2536 Current = Memory; 2537 2538 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 2539 BuiltinType::Kind k = BT->getKind(); 2540 2541 if (k == BuiltinType::Void) { 2542 Current = NoClass; 2543 } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) { 2544 Lo = Integer; 2545 Hi = Integer; 2546 } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) { 2547 Current = Integer; 2548 } else if (k == BuiltinType::Float || k == BuiltinType::Double) { 2549 Current = SSE; 2550 } else if (k == BuiltinType::LongDouble) { 2551 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2552 if (LDF == &llvm::APFloat::IEEEquad()) { 2553 Lo = SSE; 2554 Hi = SSEUp; 2555 } else if (LDF == &llvm::APFloat::x87DoubleExtended()) { 2556 Lo = X87; 2557 Hi = X87Up; 2558 } else if (LDF == &llvm::APFloat::IEEEdouble()) { 2559 Current = SSE; 2560 } else 2561 llvm_unreachable("unexpected long double representation!"); 2562 } 2563 // FIXME: _Decimal32 and _Decimal64 are SSE. 2564 // FIXME: _float128 and _Decimal128 are (SSE, SSEUp). 2565 return; 2566 } 2567 2568 if (const EnumType *ET = Ty->getAs<EnumType>()) { 2569 // Classify the underlying integer type. 2570 classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg); 2571 return; 2572 } 2573 2574 if (Ty->hasPointerRepresentation()) { 2575 Current = Integer; 2576 return; 2577 } 2578 2579 if (Ty->isMemberPointerType()) { 2580 if (Ty->isMemberFunctionPointerType()) { 2581 if (Has64BitPointers) { 2582 // If Has64BitPointers, this is an {i64, i64}, so classify both 2583 // Lo and Hi now. 2584 Lo = Hi = Integer; 2585 } else { 2586 // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that 2587 // straddles an eightbyte boundary, Hi should be classified as well. 2588 uint64_t EB_FuncPtr = (OffsetBase) / 64; 2589 uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64; 2590 if (EB_FuncPtr != EB_ThisAdj) { 2591 Lo = Hi = Integer; 2592 } else { 2593 Current = Integer; 2594 } 2595 } 2596 } else { 2597 Current = Integer; 2598 } 2599 return; 2600 } 2601 2602 if (const VectorType *VT = Ty->getAs<VectorType>()) { 2603 uint64_t Size = getContext().getTypeSize(VT); 2604 if (Size == 1 || Size == 8 || Size == 16 || Size == 32) { 2605 // gcc passes the following as integer: 2606 // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float> 2607 // 2 bytes - <2 x char>, <1 x short> 2608 // 1 byte - <1 x char> 2609 Current = Integer; 2610 2611 // If this type crosses an eightbyte boundary, it should be 2612 // split. 2613 uint64_t EB_Lo = (OffsetBase) / 64; 2614 uint64_t EB_Hi = (OffsetBase + Size - 1) / 64; 2615 if (EB_Lo != EB_Hi) 2616 Hi = Lo; 2617 } else if (Size == 64) { 2618 QualType ElementType = VT->getElementType(); 2619 2620 // gcc passes <1 x double> in memory. :( 2621 if (ElementType->isSpecificBuiltinType(BuiltinType::Double)) 2622 return; 2623 2624 // gcc passes <1 x long long> as SSE but clang used to unconditionally 2625 // pass them as integer. For platforms where clang is the de facto 2626 // platform compiler, we must continue to use integer. 2627 if (!classifyIntegerMMXAsSSE() && 2628 (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) || 2629 ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) || 2630 ElementType->isSpecificBuiltinType(BuiltinType::Long) || 2631 ElementType->isSpecificBuiltinType(BuiltinType::ULong))) 2632 Current = Integer; 2633 else 2634 Current = SSE; 2635 2636 // If this type crosses an eightbyte boundary, it should be 2637 // split. 2638 if (OffsetBase && OffsetBase != 64) 2639 Hi = Lo; 2640 } else if (Size == 128 || 2641 (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) { 2642 // Arguments of 256-bits are split into four eightbyte chunks. The 2643 // least significant one belongs to class SSE and all the others to class 2644 // SSEUP. The original Lo and Hi design considers that types can't be 2645 // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense. 2646 // This design isn't correct for 256-bits, but since there're no cases 2647 // where the upper parts would need to be inspected, avoid adding 2648 // complexity and just consider Hi to match the 64-256 part. 2649 // 2650 // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in 2651 // registers if they are "named", i.e. not part of the "..." of a 2652 // variadic function. 2653 // 2654 // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are 2655 // split into eight eightbyte chunks, one SSE and seven SSEUP. 2656 Lo = SSE; 2657 Hi = SSEUp; 2658 } 2659 return; 2660 } 2661 2662 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 2663 QualType ET = getContext().getCanonicalType(CT->getElementType()); 2664 2665 uint64_t Size = getContext().getTypeSize(Ty); 2666 if (ET->isIntegralOrEnumerationType()) { 2667 if (Size <= 64) 2668 Current = Integer; 2669 else if (Size <= 128) 2670 Lo = Hi = Integer; 2671 } else if (ET == getContext().FloatTy) { 2672 Current = SSE; 2673 } else if (ET == getContext().DoubleTy) { 2674 Lo = Hi = SSE; 2675 } else if (ET == getContext().LongDoubleTy) { 2676 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2677 if (LDF == &llvm::APFloat::IEEEquad()) 2678 Current = Memory; 2679 else if (LDF == &llvm::APFloat::x87DoubleExtended()) 2680 Current = ComplexX87; 2681 else if (LDF == &llvm::APFloat::IEEEdouble()) 2682 Lo = Hi = SSE; 2683 else 2684 llvm_unreachable("unexpected long double representation!"); 2685 } 2686 2687 // If this complex type crosses an eightbyte boundary then it 2688 // should be split. 2689 uint64_t EB_Real = (OffsetBase) / 64; 2690 uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64; 2691 if (Hi == NoClass && EB_Real != EB_Imag) 2692 Hi = Lo; 2693 2694 return; 2695 } 2696 2697 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 2698 // Arrays are treated like structures. 2699 2700 uint64_t Size = getContext().getTypeSize(Ty); 2701 2702 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 2703 // than eight eightbytes, ..., it has class MEMORY. 2704 if (Size > 512) 2705 return; 2706 2707 // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned 2708 // fields, it has class MEMORY. 2709 // 2710 // Only need to check alignment of array base. 2711 if (OffsetBase % getContext().getTypeAlign(AT->getElementType())) 2712 return; 2713 2714 // Otherwise implement simplified merge. We could be smarter about 2715 // this, but it isn't worth it and would be harder to verify. 2716 Current = NoClass; 2717 uint64_t EltSize = getContext().getTypeSize(AT->getElementType()); 2718 uint64_t ArraySize = AT->getSize().getZExtValue(); 2719 2720 // The only case a 256-bit wide vector could be used is when the array 2721 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 2722 // to work for sizes wider than 128, early check and fallback to memory. 2723 // 2724 if (Size > 128 && 2725 (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel))) 2726 return; 2727 2728 for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) { 2729 Class FieldLo, FieldHi; 2730 classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg); 2731 Lo = merge(Lo, FieldLo); 2732 Hi = merge(Hi, FieldHi); 2733 if (Lo == Memory || Hi == Memory) 2734 break; 2735 } 2736 2737 postMerge(Size, Lo, Hi); 2738 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification."); 2739 return; 2740 } 2741 2742 if (const RecordType *RT = Ty->getAs<RecordType>()) { 2743 uint64_t Size = getContext().getTypeSize(Ty); 2744 2745 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 2746 // than eight eightbytes, ..., it has class MEMORY. 2747 if (Size > 512) 2748 return; 2749 2750 // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial 2751 // copy constructor or a non-trivial destructor, it is passed by invisible 2752 // reference. 2753 if (getRecordArgABI(RT, getCXXABI())) 2754 return; 2755 2756 const RecordDecl *RD = RT->getDecl(); 2757 2758 // Assume variable sized types are passed in memory. 2759 if (RD->hasFlexibleArrayMember()) 2760 return; 2761 2762 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 2763 2764 // Reset Lo class, this will be recomputed. 2765 Current = NoClass; 2766 2767 // If this is a C++ record, classify the bases first. 2768 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 2769 for (const auto &I : CXXRD->bases()) { 2770 assert(!I.isVirtual() && !I.getType()->isDependentType() && 2771 "Unexpected base class!"); 2772 const CXXRecordDecl *Base = 2773 cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); 2774 2775 // Classify this field. 2776 // 2777 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a 2778 // single eightbyte, each is classified separately. Each eightbyte gets 2779 // initialized to class NO_CLASS. 2780 Class FieldLo, FieldHi; 2781 uint64_t Offset = 2782 OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base)); 2783 classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg); 2784 Lo = merge(Lo, FieldLo); 2785 Hi = merge(Hi, FieldHi); 2786 if (Lo == Memory || Hi == Memory) { 2787 postMerge(Size, Lo, Hi); 2788 return; 2789 } 2790 } 2791 } 2792 2793 // Classify the fields one at a time, merging the results. 2794 unsigned idx = 0; 2795 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 2796 i != e; ++i, ++idx) { 2797 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 2798 bool BitField = i->isBitField(); 2799 2800 // Ignore padding bit-fields. 2801 if (BitField && i->isUnnamedBitfield()) 2802 continue; 2803 2804 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than 2805 // four eightbytes, or it contains unaligned fields, it has class MEMORY. 2806 // 2807 // The only case a 256-bit wide vector could be used is when the struct 2808 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 2809 // to work for sizes wider than 128, early check and fallback to memory. 2810 // 2811 if (Size > 128 && (Size != getContext().getTypeSize(i->getType()) || 2812 Size > getNativeVectorSizeForAVXABI(AVXLevel))) { 2813 Lo = Memory; 2814 postMerge(Size, Lo, Hi); 2815 return; 2816 } 2817 // Note, skip this test for bit-fields, see below. 2818 if (!BitField && Offset % getContext().getTypeAlign(i->getType())) { 2819 Lo = Memory; 2820 postMerge(Size, Lo, Hi); 2821 return; 2822 } 2823 2824 // Classify this field. 2825 // 2826 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate 2827 // exceeds a single eightbyte, each is classified 2828 // separately. Each eightbyte gets initialized to class 2829 // NO_CLASS. 2830 Class FieldLo, FieldHi; 2831 2832 // Bit-fields require special handling, they do not force the 2833 // structure to be passed in memory even if unaligned, and 2834 // therefore they can straddle an eightbyte. 2835 if (BitField) { 2836 assert(!i->isUnnamedBitfield()); 2837 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 2838 uint64_t Size = i->getBitWidthValue(getContext()); 2839 2840 uint64_t EB_Lo = Offset / 64; 2841 uint64_t EB_Hi = (Offset + Size - 1) / 64; 2842 2843 if (EB_Lo) { 2844 assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes."); 2845 FieldLo = NoClass; 2846 FieldHi = Integer; 2847 } else { 2848 FieldLo = Integer; 2849 FieldHi = EB_Hi ? Integer : NoClass; 2850 } 2851 } else 2852 classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg); 2853 Lo = merge(Lo, FieldLo); 2854 Hi = merge(Hi, FieldHi); 2855 if (Lo == Memory || Hi == Memory) 2856 break; 2857 } 2858 2859 postMerge(Size, Lo, Hi); 2860 } 2861 } 2862 2863 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const { 2864 // If this is a scalar LLVM value then assume LLVM will pass it in the right 2865 // place naturally. 2866 if (!isAggregateTypeForABI(Ty)) { 2867 // Treat an enum type as its underlying type. 2868 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2869 Ty = EnumTy->getDecl()->getIntegerType(); 2870 2871 return (Ty->isPromotableIntegerType() ? 2872 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 2873 } 2874 2875 return getNaturalAlignIndirect(Ty); 2876 } 2877 2878 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const { 2879 if (const VectorType *VecTy = Ty->getAs<VectorType>()) { 2880 uint64_t Size = getContext().getTypeSize(VecTy); 2881 unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel); 2882 if (Size <= 64 || Size > LargestVector) 2883 return true; 2884 } 2885 2886 return false; 2887 } 2888 2889 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty, 2890 unsigned freeIntRegs) const { 2891 // If this is a scalar LLVM value then assume LLVM will pass it in the right 2892 // place naturally. 2893 // 2894 // This assumption is optimistic, as there could be free registers available 2895 // when we need to pass this argument in memory, and LLVM could try to pass 2896 // the argument in the free register. This does not seem to happen currently, 2897 // but this code would be much safer if we could mark the argument with 2898 // 'onstack'. See PR12193. 2899 if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) { 2900 // Treat an enum type as its underlying type. 2901 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2902 Ty = EnumTy->getDecl()->getIntegerType(); 2903 2904 return (Ty->isPromotableIntegerType() ? 2905 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 2906 } 2907 2908 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 2909 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 2910 2911 // Compute the byval alignment. We specify the alignment of the byval in all 2912 // cases so that the mid-level optimizer knows the alignment of the byval. 2913 unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U); 2914 2915 // Attempt to avoid passing indirect results using byval when possible. This 2916 // is important for good codegen. 2917 // 2918 // We do this by coercing the value into a scalar type which the backend can 2919 // handle naturally (i.e., without using byval). 2920 // 2921 // For simplicity, we currently only do this when we have exhausted all of the 2922 // free integer registers. Doing this when there are free integer registers 2923 // would require more care, as we would have to ensure that the coerced value 2924 // did not claim the unused register. That would require either reording the 2925 // arguments to the function (so that any subsequent inreg values came first), 2926 // or only doing this optimization when there were no following arguments that 2927 // might be inreg. 2928 // 2929 // We currently expect it to be rare (particularly in well written code) for 2930 // arguments to be passed on the stack when there are still free integer 2931 // registers available (this would typically imply large structs being passed 2932 // by value), so this seems like a fair tradeoff for now. 2933 // 2934 // We can revisit this if the backend grows support for 'onstack' parameter 2935 // attributes. See PR12193. 2936 if (freeIntRegs == 0) { 2937 uint64_t Size = getContext().getTypeSize(Ty); 2938 2939 // If this type fits in an eightbyte, coerce it into the matching integral 2940 // type, which will end up on the stack (with alignment 8). 2941 if (Align == 8 && Size <= 64) 2942 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 2943 Size)); 2944 } 2945 2946 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align)); 2947 } 2948 2949 /// The ABI specifies that a value should be passed in a full vector XMM/YMM 2950 /// register. Pick an LLVM IR type that will be passed as a vector register. 2951 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const { 2952 // Wrapper structs/arrays that only contain vectors are passed just like 2953 // vectors; strip them off if present. 2954 if (const Type *InnerTy = isSingleElementStruct(Ty, getContext())) 2955 Ty = QualType(InnerTy, 0); 2956 2957 llvm::Type *IRType = CGT.ConvertType(Ty); 2958 if (isa<llvm::VectorType>(IRType) || 2959 IRType->getTypeID() == llvm::Type::FP128TyID) 2960 return IRType; 2961 2962 // We couldn't find the preferred IR vector type for 'Ty'. 2963 uint64_t Size = getContext().getTypeSize(Ty); 2964 assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!"); 2965 2966 // Return a LLVM IR vector type based on the size of 'Ty'. 2967 return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 2968 Size / 64); 2969 } 2970 2971 /// BitsContainNoUserData - Return true if the specified [start,end) bit range 2972 /// is known to either be off the end of the specified type or being in 2973 /// alignment padding. The user type specified is known to be at most 128 bits 2974 /// in size, and have passed through X86_64ABIInfo::classify with a successful 2975 /// classification that put one of the two halves in the INTEGER class. 2976 /// 2977 /// It is conservatively correct to return false. 2978 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit, 2979 unsigned EndBit, ASTContext &Context) { 2980 // If the bytes being queried are off the end of the type, there is no user 2981 // data hiding here. This handles analysis of builtins, vectors and other 2982 // types that don't contain interesting padding. 2983 unsigned TySize = (unsigned)Context.getTypeSize(Ty); 2984 if (TySize <= StartBit) 2985 return true; 2986 2987 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 2988 unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType()); 2989 unsigned NumElts = (unsigned)AT->getSize().getZExtValue(); 2990 2991 // Check each element to see if the element overlaps with the queried range. 2992 for (unsigned i = 0; i != NumElts; ++i) { 2993 // If the element is after the span we care about, then we're done.. 2994 unsigned EltOffset = i*EltSize; 2995 if (EltOffset >= EndBit) break; 2996 2997 unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0; 2998 if (!BitsContainNoUserData(AT->getElementType(), EltStart, 2999 EndBit-EltOffset, Context)) 3000 return false; 3001 } 3002 // If it overlaps no elements, then it is safe to process as padding. 3003 return true; 3004 } 3005 3006 if (const RecordType *RT = Ty->getAs<RecordType>()) { 3007 const RecordDecl *RD = RT->getDecl(); 3008 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 3009 3010 // If this is a C++ record, check the bases first. 3011 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 3012 for (const auto &I : CXXRD->bases()) { 3013 assert(!I.isVirtual() && !I.getType()->isDependentType() && 3014 "Unexpected base class!"); 3015 const CXXRecordDecl *Base = 3016 cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); 3017 3018 // If the base is after the span we care about, ignore it. 3019 unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base)); 3020 if (BaseOffset >= EndBit) continue; 3021 3022 unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0; 3023 if (!BitsContainNoUserData(I.getType(), BaseStart, 3024 EndBit-BaseOffset, Context)) 3025 return false; 3026 } 3027 } 3028 3029 // Verify that no field has data that overlaps the region of interest. Yes 3030 // this could be sped up a lot by being smarter about queried fields, 3031 // however we're only looking at structs up to 16 bytes, so we don't care 3032 // much. 3033 unsigned idx = 0; 3034 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 3035 i != e; ++i, ++idx) { 3036 unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx); 3037 3038 // If we found a field after the region we care about, then we're done. 3039 if (FieldOffset >= EndBit) break; 3040 3041 unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0; 3042 if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset, 3043 Context)) 3044 return false; 3045 } 3046 3047 // If nothing in this record overlapped the area of interest, then we're 3048 // clean. 3049 return true; 3050 } 3051 3052 return false; 3053 } 3054 3055 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a 3056 /// float member at the specified offset. For example, {int,{float}} has a 3057 /// float at offset 4. It is conservatively correct for this routine to return 3058 /// false. 3059 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset, 3060 const llvm::DataLayout &TD) { 3061 // Base case if we find a float. 3062 if (IROffset == 0 && IRType->isFloatTy()) 3063 return true; 3064 3065 // If this is a struct, recurse into the field at the specified offset. 3066 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 3067 const llvm::StructLayout *SL = TD.getStructLayout(STy); 3068 unsigned Elt = SL->getElementContainingOffset(IROffset); 3069 IROffset -= SL->getElementOffset(Elt); 3070 return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD); 3071 } 3072 3073 // If this is an array, recurse into the field at the specified offset. 3074 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 3075 llvm::Type *EltTy = ATy->getElementType(); 3076 unsigned EltSize = TD.getTypeAllocSize(EltTy); 3077 IROffset -= IROffset/EltSize*EltSize; 3078 return ContainsFloatAtOffset(EltTy, IROffset, TD); 3079 } 3080 3081 return false; 3082 } 3083 3084 3085 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the 3086 /// low 8 bytes of an XMM register, corresponding to the SSE class. 3087 llvm::Type *X86_64ABIInfo:: 3088 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3089 QualType SourceTy, unsigned SourceOffset) const { 3090 // The only three choices we have are either double, <2 x float>, or float. We 3091 // pass as float if the last 4 bytes is just padding. This happens for 3092 // structs that contain 3 floats. 3093 if (BitsContainNoUserData(SourceTy, SourceOffset*8+32, 3094 SourceOffset*8+64, getContext())) 3095 return llvm::Type::getFloatTy(getVMContext()); 3096 3097 // We want to pass as <2 x float> if the LLVM IR type contains a float at 3098 // offset+0 and offset+4. Walk the LLVM IR type to find out if this is the 3099 // case. 3100 if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) && 3101 ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout())) 3102 return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2); 3103 3104 return llvm::Type::getDoubleTy(getVMContext()); 3105 } 3106 3107 3108 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in 3109 /// an 8-byte GPR. This means that we either have a scalar or we are talking 3110 /// about the high or low part of an up-to-16-byte struct. This routine picks 3111 /// the best LLVM IR type to represent this, which may be i64 or may be anything 3112 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*, 3113 /// etc). 3114 /// 3115 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for 3116 /// the source type. IROffset is an offset in bytes into the LLVM IR type that 3117 /// the 8-byte value references. PrefType may be null. 3118 /// 3119 /// SourceTy is the source-level type for the entire argument. SourceOffset is 3120 /// an offset into this that we're processing (which is always either 0 or 8). 3121 /// 3122 llvm::Type *X86_64ABIInfo:: 3123 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3124 QualType SourceTy, unsigned SourceOffset) const { 3125 // If we're dealing with an un-offset LLVM IR type, then it means that we're 3126 // returning an 8-byte unit starting with it. See if we can safely use it. 3127 if (IROffset == 0) { 3128 // Pointers and int64's always fill the 8-byte unit. 3129 if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) || 3130 IRType->isIntegerTy(64)) 3131 return IRType; 3132 3133 // If we have a 1/2/4-byte integer, we can use it only if the rest of the 3134 // goodness in the source type is just tail padding. This is allowed to 3135 // kick in for struct {double,int} on the int, but not on 3136 // struct{double,int,int} because we wouldn't return the second int. We 3137 // have to do this analysis on the source type because we can't depend on 3138 // unions being lowered a specific way etc. 3139 if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) || 3140 IRType->isIntegerTy(32) || 3141 (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) { 3142 unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 : 3143 cast<llvm::IntegerType>(IRType)->getBitWidth(); 3144 3145 if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth, 3146 SourceOffset*8+64, getContext())) 3147 return IRType; 3148 } 3149 } 3150 3151 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 3152 // If this is a struct, recurse into the field at the specified offset. 3153 const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy); 3154 if (IROffset < SL->getSizeInBytes()) { 3155 unsigned FieldIdx = SL->getElementContainingOffset(IROffset); 3156 IROffset -= SL->getElementOffset(FieldIdx); 3157 3158 return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset, 3159 SourceTy, SourceOffset); 3160 } 3161 } 3162 3163 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 3164 llvm::Type *EltTy = ATy->getElementType(); 3165 unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy); 3166 unsigned EltOffset = IROffset/EltSize*EltSize; 3167 return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy, 3168 SourceOffset); 3169 } 3170 3171 // Okay, we don't have any better idea of what to pass, so we pass this in an 3172 // integer register that isn't too big to fit the rest of the struct. 3173 unsigned TySizeInBytes = 3174 (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity(); 3175 3176 assert(TySizeInBytes != SourceOffset && "Empty field?"); 3177 3178 // It is always safe to classify this as an integer type up to i64 that 3179 // isn't larger than the structure. 3180 return llvm::IntegerType::get(getVMContext(), 3181 std::min(TySizeInBytes-SourceOffset, 8U)*8); 3182 } 3183 3184 3185 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally 3186 /// be used as elements of a two register pair to pass or return, return a 3187 /// first class aggregate to represent them. For example, if the low part of 3188 /// a by-value argument should be passed as i32* and the high part as float, 3189 /// return {i32*, float}. 3190 static llvm::Type * 3191 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi, 3192 const llvm::DataLayout &TD) { 3193 // In order to correctly satisfy the ABI, we need to the high part to start 3194 // at offset 8. If the high and low parts we inferred are both 4-byte types 3195 // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have 3196 // the second element at offset 8. Check for this: 3197 unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo); 3198 unsigned HiAlign = TD.getABITypeAlignment(Hi); 3199 unsigned HiStart = llvm::alignTo(LoSize, HiAlign); 3200 assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!"); 3201 3202 // To handle this, we have to increase the size of the low part so that the 3203 // second element will start at an 8 byte offset. We can't increase the size 3204 // of the second element because it might make us access off the end of the 3205 // struct. 3206 if (HiStart != 8) { 3207 // There are usually two sorts of types the ABI generation code can produce 3208 // for the low part of a pair that aren't 8 bytes in size: float or 3209 // i8/i16/i32. This can also include pointers when they are 32-bit (X32 and 3210 // NaCl). 3211 // Promote these to a larger type. 3212 if (Lo->isFloatTy()) 3213 Lo = llvm::Type::getDoubleTy(Lo->getContext()); 3214 else { 3215 assert((Lo->isIntegerTy() || Lo->isPointerTy()) 3216 && "Invalid/unknown lo type"); 3217 Lo = llvm::Type::getInt64Ty(Lo->getContext()); 3218 } 3219 } 3220 3221 llvm::StructType *Result = llvm::StructType::get(Lo, Hi); 3222 3223 // Verify that the second element is at an 8-byte offset. 3224 assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 && 3225 "Invalid x86-64 argument pair!"); 3226 return Result; 3227 } 3228 3229 ABIArgInfo X86_64ABIInfo:: 3230 classifyReturnType(QualType RetTy) const { 3231 // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the 3232 // classification algorithm. 3233 X86_64ABIInfo::Class Lo, Hi; 3234 classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true); 3235 3236 // Check some invariants. 3237 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3238 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3239 3240 llvm::Type *ResType = nullptr; 3241 switch (Lo) { 3242 case NoClass: 3243 if (Hi == NoClass) 3244 return ABIArgInfo::getIgnore(); 3245 // If the low part is just padding, it takes no register, leave ResType 3246 // null. 3247 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3248 "Unknown missing lo part"); 3249 break; 3250 3251 case SSEUp: 3252 case X87Up: 3253 llvm_unreachable("Invalid classification for lo word."); 3254 3255 // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via 3256 // hidden argument. 3257 case Memory: 3258 return getIndirectReturnResult(RetTy); 3259 3260 // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next 3261 // available register of the sequence %rax, %rdx is used. 3262 case Integer: 3263 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3264 3265 // If we have a sign or zero extended integer, make sure to return Extend 3266 // so that the parameter gets the right LLVM IR attributes. 3267 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3268 // Treat an enum type as its underlying type. 3269 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 3270 RetTy = EnumTy->getDecl()->getIntegerType(); 3271 3272 if (RetTy->isIntegralOrEnumerationType() && 3273 RetTy->isPromotableIntegerType()) 3274 return ABIArgInfo::getExtend(); 3275 } 3276 break; 3277 3278 // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next 3279 // available SSE register of the sequence %xmm0, %xmm1 is used. 3280 case SSE: 3281 ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3282 break; 3283 3284 // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is 3285 // returned on the X87 stack in %st0 as 80-bit x87 number. 3286 case X87: 3287 ResType = llvm::Type::getX86_FP80Ty(getVMContext()); 3288 break; 3289 3290 // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real 3291 // part of the value is returned in %st0 and the imaginary part in 3292 // %st1. 3293 case ComplexX87: 3294 assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification."); 3295 ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()), 3296 llvm::Type::getX86_FP80Ty(getVMContext())); 3297 break; 3298 } 3299 3300 llvm::Type *HighPart = nullptr; 3301 switch (Hi) { 3302 // Memory was handled previously and X87 should 3303 // never occur as a hi class. 3304 case Memory: 3305 case X87: 3306 llvm_unreachable("Invalid classification for hi word."); 3307 3308 case ComplexX87: // Previously handled. 3309 case NoClass: 3310 break; 3311 3312 case Integer: 3313 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3314 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3315 return ABIArgInfo::getDirect(HighPart, 8); 3316 break; 3317 case SSE: 3318 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3319 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3320 return ABIArgInfo::getDirect(HighPart, 8); 3321 break; 3322 3323 // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte 3324 // is passed in the next available eightbyte chunk if the last used 3325 // vector register. 3326 // 3327 // SSEUP should always be preceded by SSE, just widen. 3328 case SSEUp: 3329 assert(Lo == SSE && "Unexpected SSEUp classification."); 3330 ResType = GetByteVectorType(RetTy); 3331 break; 3332 3333 // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is 3334 // returned together with the previous X87 value in %st0. 3335 case X87Up: 3336 // If X87Up is preceded by X87, we don't need to do 3337 // anything. However, in some cases with unions it may not be 3338 // preceded by X87. In such situations we follow gcc and pass the 3339 // extra bits in an SSE reg. 3340 if (Lo != X87) { 3341 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3342 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3343 return ABIArgInfo::getDirect(HighPart, 8); 3344 } 3345 break; 3346 } 3347 3348 // If a high part was specified, merge it together with the low part. It is 3349 // known to pass in the high eightbyte of the result. We do this by forming a 3350 // first class struct aggregate with the high and low part: {low, high} 3351 if (HighPart) 3352 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3353 3354 return ABIArgInfo::getDirect(ResType); 3355 } 3356 3357 ABIArgInfo X86_64ABIInfo::classifyArgumentType( 3358 QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE, 3359 bool isNamedArg) 3360 const 3361 { 3362 Ty = useFirstFieldIfTransparentUnion(Ty); 3363 3364 X86_64ABIInfo::Class Lo, Hi; 3365 classify(Ty, 0, Lo, Hi, isNamedArg); 3366 3367 // Check some invariants. 3368 // FIXME: Enforce these by construction. 3369 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3370 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3371 3372 neededInt = 0; 3373 neededSSE = 0; 3374 llvm::Type *ResType = nullptr; 3375 switch (Lo) { 3376 case NoClass: 3377 if (Hi == NoClass) 3378 return ABIArgInfo::getIgnore(); 3379 // If the low part is just padding, it takes no register, leave ResType 3380 // null. 3381 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3382 "Unknown missing lo part"); 3383 break; 3384 3385 // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument 3386 // on the stack. 3387 case Memory: 3388 3389 // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or 3390 // COMPLEX_X87, it is passed in memory. 3391 case X87: 3392 case ComplexX87: 3393 if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect) 3394 ++neededInt; 3395 return getIndirectResult(Ty, freeIntRegs); 3396 3397 case SSEUp: 3398 case X87Up: 3399 llvm_unreachable("Invalid classification for lo word."); 3400 3401 // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next 3402 // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8 3403 // and %r9 is used. 3404 case Integer: 3405 ++neededInt; 3406 3407 // Pick an 8-byte type based on the preferred type. 3408 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0); 3409 3410 // If we have a sign or zero extended integer, make sure to return Extend 3411 // so that the parameter gets the right LLVM IR attributes. 3412 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3413 // Treat an enum type as its underlying type. 3414 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3415 Ty = EnumTy->getDecl()->getIntegerType(); 3416 3417 if (Ty->isIntegralOrEnumerationType() && 3418 Ty->isPromotableIntegerType()) 3419 return ABIArgInfo::getExtend(); 3420 } 3421 3422 break; 3423 3424 // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next 3425 // available SSE register is used, the registers are taken in the 3426 // order from %xmm0 to %xmm7. 3427 case SSE: { 3428 llvm::Type *IRType = CGT.ConvertType(Ty); 3429 ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0); 3430 ++neededSSE; 3431 break; 3432 } 3433 } 3434 3435 llvm::Type *HighPart = nullptr; 3436 switch (Hi) { 3437 // Memory was handled previously, ComplexX87 and X87 should 3438 // never occur as hi classes, and X87Up must be preceded by X87, 3439 // which is passed in memory. 3440 case Memory: 3441 case X87: 3442 case ComplexX87: 3443 llvm_unreachable("Invalid classification for hi word."); 3444 3445 case NoClass: break; 3446 3447 case Integer: 3448 ++neededInt; 3449 // Pick an 8-byte type based on the preferred type. 3450 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3451 3452 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3453 return ABIArgInfo::getDirect(HighPart, 8); 3454 break; 3455 3456 // X87Up generally doesn't occur here (long double is passed in 3457 // memory), except in situations involving unions. 3458 case X87Up: 3459 case SSE: 3460 HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3461 3462 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3463 return ABIArgInfo::getDirect(HighPart, 8); 3464 3465 ++neededSSE; 3466 break; 3467 3468 // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the 3469 // eightbyte is passed in the upper half of the last used SSE 3470 // register. This only happens when 128-bit vectors are passed. 3471 case SSEUp: 3472 assert(Lo == SSE && "Unexpected SSEUp classification"); 3473 ResType = GetByteVectorType(Ty); 3474 break; 3475 } 3476 3477 // If a high part was specified, merge it together with the low part. It is 3478 // known to pass in the high eightbyte of the result. We do this by forming a 3479 // first class struct aggregate with the high and low part: {low, high} 3480 if (HighPart) 3481 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3482 3483 return ABIArgInfo::getDirect(ResType); 3484 } 3485 3486 ABIArgInfo 3487 X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 3488 unsigned &NeededSSE) const { 3489 auto RT = Ty->getAs<RecordType>(); 3490 assert(RT && "classifyRegCallStructType only valid with struct types"); 3491 3492 if (RT->getDecl()->hasFlexibleArrayMember()) 3493 return getIndirectReturnResult(Ty); 3494 3495 // Sum up bases 3496 if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 3497 if (CXXRD->isDynamicClass()) { 3498 NeededInt = NeededSSE = 0; 3499 return getIndirectReturnResult(Ty); 3500 } 3501 3502 for (const auto &I : CXXRD->bases()) 3503 if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE) 3504 .isIndirect()) { 3505 NeededInt = NeededSSE = 0; 3506 return getIndirectReturnResult(Ty); 3507 } 3508 } 3509 3510 // Sum up members 3511 for (const auto *FD : RT->getDecl()->fields()) { 3512 if (FD->getType()->isRecordType() && !FD->getType()->isUnionType()) { 3513 if (classifyRegCallStructTypeImpl(FD->getType(), NeededInt, NeededSSE) 3514 .isIndirect()) { 3515 NeededInt = NeededSSE = 0; 3516 return getIndirectReturnResult(Ty); 3517 } 3518 } else { 3519 unsigned LocalNeededInt, LocalNeededSSE; 3520 if (classifyArgumentType(FD->getType(), UINT_MAX, LocalNeededInt, 3521 LocalNeededSSE, true) 3522 .isIndirect()) { 3523 NeededInt = NeededSSE = 0; 3524 return getIndirectReturnResult(Ty); 3525 } 3526 NeededInt += LocalNeededInt; 3527 NeededSSE += LocalNeededSSE; 3528 } 3529 } 3530 3531 return ABIArgInfo::getDirect(); 3532 } 3533 3534 ABIArgInfo X86_64ABIInfo::classifyRegCallStructType(QualType Ty, 3535 unsigned &NeededInt, 3536 unsigned &NeededSSE) const { 3537 3538 NeededInt = 0; 3539 NeededSSE = 0; 3540 3541 return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE); 3542 } 3543 3544 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 3545 3546 bool IsRegCall = FI.getCallingConvention() == llvm::CallingConv::X86_RegCall; 3547 3548 // Keep track of the number of assigned registers. 3549 unsigned FreeIntRegs = IsRegCall ? 11 : 6; 3550 unsigned FreeSSERegs = IsRegCall ? 16 : 8; 3551 unsigned NeededInt, NeededSSE; 3552 3553 if (!getCXXABI().classifyReturnType(FI)) { 3554 if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() && 3555 !FI.getReturnType()->getTypePtr()->isUnionType()) { 3556 FI.getReturnInfo() = 3557 classifyRegCallStructType(FI.getReturnType(), NeededInt, NeededSSE); 3558 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 3559 FreeIntRegs -= NeededInt; 3560 FreeSSERegs -= NeededSSE; 3561 } else { 3562 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 3563 } 3564 } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>()) { 3565 // Complex Long Double Type is passed in Memory when Regcall 3566 // calling convention is used. 3567 const ComplexType *CT = FI.getReturnType()->getAs<ComplexType>(); 3568 if (getContext().getCanonicalType(CT->getElementType()) == 3569 getContext().LongDoubleTy) 3570 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 3571 } else 3572 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 3573 } 3574 3575 // If the return value is indirect, then the hidden argument is consuming one 3576 // integer register. 3577 if (FI.getReturnInfo().isIndirect()) 3578 --FreeIntRegs; 3579 3580 // The chain argument effectively gives us another free register. 3581 if (FI.isChainCall()) 3582 ++FreeIntRegs; 3583 3584 unsigned NumRequiredArgs = FI.getNumRequiredArgs(); 3585 // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers 3586 // get assigned (in left-to-right order) for passing as follows... 3587 unsigned ArgNo = 0; 3588 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 3589 it != ie; ++it, ++ArgNo) { 3590 bool IsNamedArg = ArgNo < NumRequiredArgs; 3591 3592 if (IsRegCall && it->type->isStructureOrClassType()) 3593 it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE); 3594 else 3595 it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt, 3596 NeededSSE, IsNamedArg); 3597 3598 // AMD64-ABI 3.2.3p3: If there are no registers available for any 3599 // eightbyte of an argument, the whole argument is passed on the 3600 // stack. If registers have already been assigned for some 3601 // eightbytes of such an argument, the assignments get reverted. 3602 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 3603 FreeIntRegs -= NeededInt; 3604 FreeSSERegs -= NeededSSE; 3605 } else { 3606 it->info = getIndirectResult(it->type, FreeIntRegs); 3607 } 3608 } 3609 } 3610 3611 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF, 3612 Address VAListAddr, QualType Ty) { 3613 Address overflow_arg_area_p = CGF.Builder.CreateStructGEP( 3614 VAListAddr, 2, CharUnits::fromQuantity(8), "overflow_arg_area_p"); 3615 llvm::Value *overflow_arg_area = 3616 CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area"); 3617 3618 // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16 3619 // byte boundary if alignment needed by type exceeds 8 byte boundary. 3620 // It isn't stated explicitly in the standard, but in practice we use 3621 // alignment greater than 16 where necessary. 3622 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 3623 if (Align > CharUnits::fromQuantity(8)) { 3624 overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area, 3625 Align); 3626 } 3627 3628 // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area. 3629 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 3630 llvm::Value *Res = 3631 CGF.Builder.CreateBitCast(overflow_arg_area, 3632 llvm::PointerType::getUnqual(LTy)); 3633 3634 // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to: 3635 // l->overflow_arg_area + sizeof(type). 3636 // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to 3637 // an 8 byte boundary. 3638 3639 uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8; 3640 llvm::Value *Offset = 3641 llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7); 3642 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset, 3643 "overflow_arg_area.next"); 3644 CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p); 3645 3646 // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type. 3647 return Address(Res, Align); 3648 } 3649 3650 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 3651 QualType Ty) const { 3652 // Assume that va_list type is correct; should be pointer to LLVM type: 3653 // struct { 3654 // i32 gp_offset; 3655 // i32 fp_offset; 3656 // i8* overflow_arg_area; 3657 // i8* reg_save_area; 3658 // }; 3659 unsigned neededInt, neededSSE; 3660 3661 Ty = getContext().getCanonicalType(Ty); 3662 ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE, 3663 /*isNamedArg*/false); 3664 3665 // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed 3666 // in the registers. If not go to step 7. 3667 if (!neededInt && !neededSSE) 3668 return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 3669 3670 // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of 3671 // general purpose registers needed to pass type and num_fp to hold 3672 // the number of floating point registers needed. 3673 3674 // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into 3675 // registers. In the case: l->gp_offset > 48 - num_gp * 8 or 3676 // l->fp_offset > 304 - num_fp * 16 go to step 7. 3677 // 3678 // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of 3679 // register save space). 3680 3681 llvm::Value *InRegs = nullptr; 3682 Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid(); 3683 llvm::Value *gp_offset = nullptr, *fp_offset = nullptr; 3684 if (neededInt) { 3685 gp_offset_p = 3686 CGF.Builder.CreateStructGEP(VAListAddr, 0, CharUnits::Zero(), 3687 "gp_offset_p"); 3688 gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset"); 3689 InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8); 3690 InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp"); 3691 } 3692 3693 if (neededSSE) { 3694 fp_offset_p = 3695 CGF.Builder.CreateStructGEP(VAListAddr, 1, CharUnits::fromQuantity(4), 3696 "fp_offset_p"); 3697 fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset"); 3698 llvm::Value *FitsInFP = 3699 llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16); 3700 FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp"); 3701 InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP; 3702 } 3703 3704 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 3705 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 3706 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 3707 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 3708 3709 // Emit code to load the value if it was passed in registers. 3710 3711 CGF.EmitBlock(InRegBlock); 3712 3713 // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with 3714 // an offset of l->gp_offset and/or l->fp_offset. This may require 3715 // copying to a temporary location in case the parameter is passed 3716 // in different register classes or requires an alignment greater 3717 // than 8 for general purpose registers and 16 for XMM registers. 3718 // 3719 // FIXME: This really results in shameful code when we end up needing to 3720 // collect arguments from different places; often what should result in a 3721 // simple assembling of a structure from scattered addresses has many more 3722 // loads than necessary. Can we clean this up? 3723 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 3724 llvm::Value *RegSaveArea = CGF.Builder.CreateLoad( 3725 CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(16)), 3726 "reg_save_area"); 3727 3728 Address RegAddr = Address::invalid(); 3729 if (neededInt && neededSSE) { 3730 // FIXME: Cleanup. 3731 assert(AI.isDirect() && "Unexpected ABI info for mixed regs"); 3732 llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType()); 3733 Address Tmp = CGF.CreateMemTemp(Ty); 3734 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 3735 assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs"); 3736 llvm::Type *TyLo = ST->getElementType(0); 3737 llvm::Type *TyHi = ST->getElementType(1); 3738 assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) && 3739 "Unexpected ABI info for mixed regs"); 3740 llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo); 3741 llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi); 3742 llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegSaveArea, gp_offset); 3743 llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegSaveArea, fp_offset); 3744 llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr; 3745 llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr; 3746 3747 // Copy the first element. 3748 // FIXME: Our choice of alignment here and below is probably pessimistic. 3749 llvm::Value *V = CGF.Builder.CreateAlignedLoad( 3750 TyLo, CGF.Builder.CreateBitCast(RegLoAddr, PTyLo), 3751 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyLo))); 3752 CGF.Builder.CreateStore(V, 3753 CGF.Builder.CreateStructGEP(Tmp, 0, CharUnits::Zero())); 3754 3755 // Copy the second element. 3756 V = CGF.Builder.CreateAlignedLoad( 3757 TyHi, CGF.Builder.CreateBitCast(RegHiAddr, PTyHi), 3758 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyHi))); 3759 CharUnits Offset = CharUnits::fromQuantity( 3760 getDataLayout().getStructLayout(ST)->getElementOffset(1)); 3761 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1, Offset)); 3762 3763 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 3764 } else if (neededInt) { 3765 RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, gp_offset), 3766 CharUnits::fromQuantity(8)); 3767 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 3768 3769 // Copy to a temporary if necessary to ensure the appropriate alignment. 3770 std::pair<CharUnits, CharUnits> SizeAlign = 3771 getContext().getTypeInfoInChars(Ty); 3772 uint64_t TySize = SizeAlign.first.getQuantity(); 3773 CharUnits TyAlign = SizeAlign.second; 3774 3775 // Copy into a temporary if the type is more aligned than the 3776 // register save area. 3777 if (TyAlign.getQuantity() > 8) { 3778 Address Tmp = CGF.CreateMemTemp(Ty); 3779 CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false); 3780 RegAddr = Tmp; 3781 } 3782 3783 } else if (neededSSE == 1) { 3784 RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset), 3785 CharUnits::fromQuantity(16)); 3786 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 3787 } else { 3788 assert(neededSSE == 2 && "Invalid number of needed registers!"); 3789 // SSE registers are spaced 16 bytes apart in the register save 3790 // area, we need to collect the two eightbytes together. 3791 // The ABI isn't explicit about this, but it seems reasonable 3792 // to assume that the slots are 16-byte aligned, since the stack is 3793 // naturally 16-byte aligned and the prologue is expected to store 3794 // all the SSE registers to the RSA. 3795 Address RegAddrLo = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset), 3796 CharUnits::fromQuantity(16)); 3797 Address RegAddrHi = 3798 CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo, 3799 CharUnits::fromQuantity(16)); 3800 llvm::Type *DoubleTy = CGF.DoubleTy; 3801 llvm::StructType *ST = llvm::StructType::get(DoubleTy, DoubleTy); 3802 llvm::Value *V; 3803 Address Tmp = CGF.CreateMemTemp(Ty); 3804 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 3805 V = CGF.Builder.CreateLoad( 3806 CGF.Builder.CreateElementBitCast(RegAddrLo, DoubleTy)); 3807 CGF.Builder.CreateStore(V, 3808 CGF.Builder.CreateStructGEP(Tmp, 0, CharUnits::Zero())); 3809 V = CGF.Builder.CreateLoad( 3810 CGF.Builder.CreateElementBitCast(RegAddrHi, DoubleTy)); 3811 CGF.Builder.CreateStore(V, 3812 CGF.Builder.CreateStructGEP(Tmp, 1, CharUnits::fromQuantity(8))); 3813 3814 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 3815 } 3816 3817 // AMD64-ABI 3.5.7p5: Step 5. Set: 3818 // l->gp_offset = l->gp_offset + num_gp * 8 3819 // l->fp_offset = l->fp_offset + num_fp * 16. 3820 if (neededInt) { 3821 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8); 3822 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset), 3823 gp_offset_p); 3824 } 3825 if (neededSSE) { 3826 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16); 3827 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset), 3828 fp_offset_p); 3829 } 3830 CGF.EmitBranch(ContBlock); 3831 3832 // Emit code to load the value if it was passed in memory. 3833 3834 CGF.EmitBlock(InMemBlock); 3835 Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 3836 3837 // Return the appropriate result. 3838 3839 CGF.EmitBlock(ContBlock); 3840 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock, 3841 "vaarg.addr"); 3842 return ResAddr; 3843 } 3844 3845 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 3846 QualType Ty) const { 3847 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 3848 CGF.getContext().getTypeInfoInChars(Ty), 3849 CharUnits::fromQuantity(8), 3850 /*allowHigherAlign*/ false); 3851 } 3852 3853 ABIArgInfo 3854 WinX86_64ABIInfo::reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs, 3855 const ABIArgInfo ¤t) const { 3856 // Assumes vectorCall calling convention. 3857 const Type *Base = nullptr; 3858 uint64_t NumElts = 0; 3859 3860 if (!Ty->isBuiltinType() && !Ty->isVectorType() && 3861 isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) { 3862 FreeSSERegs -= NumElts; 3863 return getDirectX86Hva(); 3864 } 3865 return current; 3866 } 3867 3868 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs, 3869 bool IsReturnType, bool IsVectorCall, 3870 bool IsRegCall) const { 3871 3872 if (Ty->isVoidType()) 3873 return ABIArgInfo::getIgnore(); 3874 3875 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3876 Ty = EnumTy->getDecl()->getIntegerType(); 3877 3878 TypeInfo Info = getContext().getTypeInfo(Ty); 3879 uint64_t Width = Info.Width; 3880 CharUnits Align = getContext().toCharUnitsFromBits(Info.Align); 3881 3882 const RecordType *RT = Ty->getAs<RecordType>(); 3883 if (RT) { 3884 if (!IsReturnType) { 3885 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI())) 3886 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 3887 } 3888 3889 if (RT->getDecl()->hasFlexibleArrayMember()) 3890 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 3891 3892 } 3893 3894 const Type *Base = nullptr; 3895 uint64_t NumElts = 0; 3896 // vectorcall adds the concept of a homogenous vector aggregate, similar to 3897 // other targets. 3898 if ((IsVectorCall || IsRegCall) && 3899 isHomogeneousAggregate(Ty, Base, NumElts)) { 3900 if (IsRegCall) { 3901 if (FreeSSERegs >= NumElts) { 3902 FreeSSERegs -= NumElts; 3903 if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType()) 3904 return ABIArgInfo::getDirect(); 3905 return ABIArgInfo::getExpand(); 3906 } 3907 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3908 } else if (IsVectorCall) { 3909 if (FreeSSERegs >= NumElts && 3910 (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) { 3911 FreeSSERegs -= NumElts; 3912 return ABIArgInfo::getDirect(); 3913 } else if (IsReturnType) { 3914 return ABIArgInfo::getExpand(); 3915 } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) { 3916 // HVAs are delayed and reclassified in the 2nd step. 3917 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3918 } 3919 } 3920 } 3921 3922 if (Ty->isMemberPointerType()) { 3923 // If the member pointer is represented by an LLVM int or ptr, pass it 3924 // directly. 3925 llvm::Type *LLTy = CGT.ConvertType(Ty); 3926 if (LLTy->isPointerTy() || LLTy->isIntegerTy()) 3927 return ABIArgInfo::getDirect(); 3928 } 3929 3930 if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) { 3931 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 3932 // not 1, 2, 4, or 8 bytes, must be passed by reference." 3933 if (Width > 64 || !llvm::isPowerOf2_64(Width)) 3934 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 3935 3936 // Otherwise, coerce it to a small integer. 3937 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width)); 3938 } 3939 3940 // Bool type is always extended to the ABI, other builtin types are not 3941 // extended. 3942 const BuiltinType *BT = Ty->getAs<BuiltinType>(); 3943 if (BT && BT->getKind() == BuiltinType::Bool) 3944 return ABIArgInfo::getExtend(); 3945 3946 // Mingw64 GCC uses the old 80 bit extended precision floating point unit. It 3947 // passes them indirectly through memory. 3948 if (IsMingw64 && BT && BT->getKind() == BuiltinType::LongDouble) { 3949 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 3950 if (LDF == &llvm::APFloat::x87DoubleExtended()) 3951 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3952 } 3953 3954 return ABIArgInfo::getDirect(); 3955 } 3956 3957 void WinX86_64ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI, 3958 unsigned FreeSSERegs, 3959 bool IsVectorCall, 3960 bool IsRegCall) const { 3961 unsigned Count = 0; 3962 for (auto &I : FI.arguments()) { 3963 // Vectorcall in x64 only permits the first 6 arguments to be passed 3964 // as XMM/YMM registers. 3965 if (Count < VectorcallMaxParamNumAsReg) 3966 I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall); 3967 else { 3968 // Since these cannot be passed in registers, pretend no registers 3969 // are left. 3970 unsigned ZeroSSERegsAvail = 0; 3971 I.info = classify(I.type, /*FreeSSERegs=*/ZeroSSERegsAvail, false, 3972 IsVectorCall, IsRegCall); 3973 } 3974 ++Count; 3975 } 3976 3977 for (auto &I : FI.arguments()) { 3978 I.info = reclassifyHvaArgType(I.type, FreeSSERegs, I.info); 3979 } 3980 } 3981 3982 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 3983 bool IsVectorCall = 3984 FI.getCallingConvention() == llvm::CallingConv::X86_VectorCall; 3985 bool IsRegCall = FI.getCallingConvention() == llvm::CallingConv::X86_RegCall; 3986 3987 unsigned FreeSSERegs = 0; 3988 if (IsVectorCall) { 3989 // We can use up to 4 SSE return registers with vectorcall. 3990 FreeSSERegs = 4; 3991 } else if (IsRegCall) { 3992 // RegCall gives us 16 SSE registers. 3993 FreeSSERegs = 16; 3994 } 3995 3996 if (!getCXXABI().classifyReturnType(FI)) 3997 FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true, 3998 IsVectorCall, IsRegCall); 3999 4000 if (IsVectorCall) { 4001 // We can use up to 6 SSE register parameters with vectorcall. 4002 FreeSSERegs = 6; 4003 } else if (IsRegCall) { 4004 // RegCall gives us 16 SSE registers, we can reuse the return registers. 4005 FreeSSERegs = 16; 4006 } 4007 4008 if (IsVectorCall) { 4009 computeVectorCallArgs(FI, FreeSSERegs, IsVectorCall, IsRegCall); 4010 } else { 4011 for (auto &I : FI.arguments()) 4012 I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall); 4013 } 4014 4015 } 4016 4017 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4018 QualType Ty) const { 4019 4020 bool IsIndirect = false; 4021 4022 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4023 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4024 if (isAggregateTypeForABI(Ty) || Ty->isMemberPointerType()) { 4025 uint64_t Width = getContext().getTypeSize(Ty); 4026 IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width); 4027 } 4028 4029 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 4030 CGF.getContext().getTypeInfoInChars(Ty), 4031 CharUnits::fromQuantity(8), 4032 /*allowHigherAlign*/ false); 4033 } 4034 4035 // PowerPC-32 4036 namespace { 4037 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information. 4038 class PPC32_SVR4_ABIInfo : public DefaultABIInfo { 4039 bool IsSoftFloatABI; 4040 4041 CharUnits getParamTypeAlignment(QualType Ty) const; 4042 4043 public: 4044 PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI) 4045 : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI) {} 4046 4047 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4048 QualType Ty) const override; 4049 }; 4050 4051 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo { 4052 public: 4053 PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI) 4054 : TargetCodeGenInfo(new PPC32_SVR4_ABIInfo(CGT, SoftFloatABI)) {} 4055 4056 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4057 // This is recovered from gcc output. 4058 return 1; // r1 is the dedicated stack pointer 4059 } 4060 4061 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4062 llvm::Value *Address) const override; 4063 }; 4064 } 4065 4066 CharUnits PPC32_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 4067 // Complex types are passed just like their elements 4068 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 4069 Ty = CTy->getElementType(); 4070 4071 if (Ty->isVectorType()) 4072 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 4073 : 4); 4074 4075 // For single-element float/vector structs, we consider the whole type 4076 // to have the same alignment requirements as its single element. 4077 const Type *AlignTy = nullptr; 4078 if (const Type *EltType = isSingleElementStruct(Ty, getContext())) { 4079 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 4080 if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) || 4081 (BT && BT->isFloatingPoint())) 4082 AlignTy = EltType; 4083 } 4084 4085 if (AlignTy) 4086 return CharUnits::fromQuantity(AlignTy->isVectorType() ? 16 : 4); 4087 return CharUnits::fromQuantity(4); 4088 } 4089 4090 // TODO: this implementation is now likely redundant with 4091 // DefaultABIInfo::EmitVAArg. 4092 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList, 4093 QualType Ty) const { 4094 if (getTarget().getTriple().isOSDarwin()) { 4095 auto TI = getContext().getTypeInfoInChars(Ty); 4096 TI.second = getParamTypeAlignment(Ty); 4097 4098 CharUnits SlotSize = CharUnits::fromQuantity(4); 4099 return emitVoidPtrVAArg(CGF, VAList, Ty, 4100 classifyArgumentType(Ty).isIndirect(), TI, SlotSize, 4101 /*AllowHigherAlign=*/true); 4102 } 4103 4104 const unsigned OverflowLimit = 8; 4105 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 4106 // TODO: Implement this. For now ignore. 4107 (void)CTy; 4108 return Address::invalid(); // FIXME? 4109 } 4110 4111 // struct __va_list_tag { 4112 // unsigned char gpr; 4113 // unsigned char fpr; 4114 // unsigned short reserved; 4115 // void *overflow_arg_area; 4116 // void *reg_save_area; 4117 // }; 4118 4119 bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64; 4120 bool isInt = 4121 Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType(); 4122 bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64; 4123 4124 // All aggregates are passed indirectly? That doesn't seem consistent 4125 // with the argument-lowering code. 4126 bool isIndirect = Ty->isAggregateType(); 4127 4128 CGBuilderTy &Builder = CGF.Builder; 4129 4130 // The calling convention either uses 1-2 GPRs or 1 FPR. 4131 Address NumRegsAddr = Address::invalid(); 4132 if (isInt || IsSoftFloatABI) { 4133 NumRegsAddr = Builder.CreateStructGEP(VAList, 0, CharUnits::Zero(), "gpr"); 4134 } else { 4135 NumRegsAddr = Builder.CreateStructGEP(VAList, 1, CharUnits::One(), "fpr"); 4136 } 4137 4138 llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs"); 4139 4140 // "Align" the register count when TY is i64. 4141 if (isI64 || (isF64 && IsSoftFloatABI)) { 4142 NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1)); 4143 NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U)); 4144 } 4145 4146 llvm::Value *CC = 4147 Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond"); 4148 4149 llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs"); 4150 llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow"); 4151 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 4152 4153 Builder.CreateCondBr(CC, UsingRegs, UsingOverflow); 4154 4155 llvm::Type *DirectTy = CGF.ConvertType(Ty); 4156 if (isIndirect) DirectTy = DirectTy->getPointerTo(0); 4157 4158 // Case 1: consume registers. 4159 Address RegAddr = Address::invalid(); 4160 { 4161 CGF.EmitBlock(UsingRegs); 4162 4163 Address RegSaveAreaPtr = 4164 Builder.CreateStructGEP(VAList, 4, CharUnits::fromQuantity(8)); 4165 RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr), 4166 CharUnits::fromQuantity(8)); 4167 assert(RegAddr.getElementType() == CGF.Int8Ty); 4168 4169 // Floating-point registers start after the general-purpose registers. 4170 if (!(isInt || IsSoftFloatABI)) { 4171 RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr, 4172 CharUnits::fromQuantity(32)); 4173 } 4174 4175 // Get the address of the saved value by scaling the number of 4176 // registers we've used by the number of 4177 CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8); 4178 llvm::Value *RegOffset = 4179 Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity())); 4180 RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty, 4181 RegAddr.getPointer(), RegOffset), 4182 RegAddr.getAlignment().alignmentOfArrayElement(RegSize)); 4183 RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy); 4184 4185 // Increase the used-register count. 4186 NumRegs = 4187 Builder.CreateAdd(NumRegs, 4188 Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1)); 4189 Builder.CreateStore(NumRegs, NumRegsAddr); 4190 4191 CGF.EmitBranch(Cont); 4192 } 4193 4194 // Case 2: consume space in the overflow area. 4195 Address MemAddr = Address::invalid(); 4196 { 4197 CGF.EmitBlock(UsingOverflow); 4198 4199 Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr); 4200 4201 // Everything in the overflow area is rounded up to a size of at least 4. 4202 CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4); 4203 4204 CharUnits Size; 4205 if (!isIndirect) { 4206 auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty); 4207 Size = TypeInfo.first.alignTo(OverflowAreaAlign); 4208 } else { 4209 Size = CGF.getPointerSize(); 4210 } 4211 4212 Address OverflowAreaAddr = 4213 Builder.CreateStructGEP(VAList, 3, CharUnits::fromQuantity(4)); 4214 Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"), 4215 OverflowAreaAlign); 4216 // Round up address of argument to alignment 4217 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 4218 if (Align > OverflowAreaAlign) { 4219 llvm::Value *Ptr = OverflowArea.getPointer(); 4220 OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align), 4221 Align); 4222 } 4223 4224 MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy); 4225 4226 // Increase the overflow area. 4227 OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size); 4228 Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr); 4229 CGF.EmitBranch(Cont); 4230 } 4231 4232 CGF.EmitBlock(Cont); 4233 4234 // Merge the cases with a phi. 4235 Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow, 4236 "vaarg.addr"); 4237 4238 // Load the pointer if the argument was passed indirectly. 4239 if (isIndirect) { 4240 Result = Address(Builder.CreateLoad(Result, "aggr"), 4241 getContext().getTypeAlignInChars(Ty)); 4242 } 4243 4244 return Result; 4245 } 4246 4247 bool 4248 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4249 llvm::Value *Address) const { 4250 // This is calculated from the LLVM and GCC tables and verified 4251 // against gcc output. AFAIK all ABIs use the same encoding. 4252 4253 CodeGen::CGBuilderTy &Builder = CGF.Builder; 4254 4255 llvm::IntegerType *i8 = CGF.Int8Ty; 4256 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 4257 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 4258 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 4259 4260 // 0-31: r0-31, the 4-byte general-purpose registers 4261 AssignToArrayRange(Builder, Address, Four8, 0, 31); 4262 4263 // 32-63: fp0-31, the 8-byte floating-point registers 4264 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 4265 4266 // 64-76 are various 4-byte special-purpose registers: 4267 // 64: mq 4268 // 65: lr 4269 // 66: ctr 4270 // 67: ap 4271 // 68-75 cr0-7 4272 // 76: xer 4273 AssignToArrayRange(Builder, Address, Four8, 64, 76); 4274 4275 // 77-108: v0-31, the 16-byte vector registers 4276 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 4277 4278 // 109: vrsave 4279 // 110: vscr 4280 // 111: spe_acc 4281 // 112: spefscr 4282 // 113: sfp 4283 AssignToArrayRange(Builder, Address, Four8, 109, 113); 4284 4285 return false; 4286 } 4287 4288 // PowerPC-64 4289 4290 namespace { 4291 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information. 4292 class PPC64_SVR4_ABIInfo : public ABIInfo { 4293 public: 4294 enum ABIKind { 4295 ELFv1 = 0, 4296 ELFv2 4297 }; 4298 4299 private: 4300 static const unsigned GPRBits = 64; 4301 ABIKind Kind; 4302 bool HasQPX; 4303 bool IsSoftFloatABI; 4304 4305 // A vector of float or double will be promoted to <4 x f32> or <4 x f64> and 4306 // will be passed in a QPX register. 4307 bool IsQPXVectorTy(const Type *Ty) const { 4308 if (!HasQPX) 4309 return false; 4310 4311 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4312 unsigned NumElements = VT->getNumElements(); 4313 if (NumElements == 1) 4314 return false; 4315 4316 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) { 4317 if (getContext().getTypeSize(Ty) <= 256) 4318 return true; 4319 } else if (VT->getElementType()-> 4320 isSpecificBuiltinType(BuiltinType::Float)) { 4321 if (getContext().getTypeSize(Ty) <= 128) 4322 return true; 4323 } 4324 } 4325 4326 return false; 4327 } 4328 4329 bool IsQPXVectorTy(QualType Ty) const { 4330 return IsQPXVectorTy(Ty.getTypePtr()); 4331 } 4332 4333 public: 4334 PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, bool HasQPX, 4335 bool SoftFloatABI) 4336 : ABIInfo(CGT), Kind(Kind), HasQPX(HasQPX), 4337 IsSoftFloatABI(SoftFloatABI) {} 4338 4339 bool isPromotableTypeForABI(QualType Ty) const; 4340 CharUnits getParamTypeAlignment(QualType Ty) const; 4341 4342 ABIArgInfo classifyReturnType(QualType RetTy) const; 4343 ABIArgInfo classifyArgumentType(QualType Ty) const; 4344 4345 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 4346 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 4347 uint64_t Members) const override; 4348 4349 // TODO: We can add more logic to computeInfo to improve performance. 4350 // Example: For aggregate arguments that fit in a register, we could 4351 // use getDirectInReg (as is done below for structs containing a single 4352 // floating-point value) to avoid pushing them to memory on function 4353 // entry. This would require changing the logic in PPCISelLowering 4354 // when lowering the parameters in the caller and args in the callee. 4355 void computeInfo(CGFunctionInfo &FI) const override { 4356 if (!getCXXABI().classifyReturnType(FI)) 4357 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4358 for (auto &I : FI.arguments()) { 4359 // We rely on the default argument classification for the most part. 4360 // One exception: An aggregate containing a single floating-point 4361 // or vector item must be passed in a register if one is available. 4362 const Type *T = isSingleElementStruct(I.type, getContext()); 4363 if (T) { 4364 const BuiltinType *BT = T->getAs<BuiltinType>(); 4365 if (IsQPXVectorTy(T) || 4366 (T->isVectorType() && getContext().getTypeSize(T) == 128) || 4367 (BT && BT->isFloatingPoint())) { 4368 QualType QT(T, 0); 4369 I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT)); 4370 continue; 4371 } 4372 } 4373 I.info = classifyArgumentType(I.type); 4374 } 4375 } 4376 4377 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4378 QualType Ty) const override; 4379 }; 4380 4381 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo { 4382 4383 public: 4384 PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT, 4385 PPC64_SVR4_ABIInfo::ABIKind Kind, bool HasQPX, 4386 bool SoftFloatABI) 4387 : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT, Kind, HasQPX, 4388 SoftFloatABI)) {} 4389 4390 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4391 // This is recovered from gcc output. 4392 return 1; // r1 is the dedicated stack pointer 4393 } 4394 4395 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4396 llvm::Value *Address) const override; 4397 }; 4398 4399 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo { 4400 public: 4401 PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {} 4402 4403 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4404 // This is recovered from gcc output. 4405 return 1; // r1 is the dedicated stack pointer 4406 } 4407 4408 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4409 llvm::Value *Address) const override; 4410 }; 4411 4412 } 4413 4414 // Return true if the ABI requires Ty to be passed sign- or zero- 4415 // extended to 64 bits. 4416 bool 4417 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const { 4418 // Treat an enum type as its underlying type. 4419 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4420 Ty = EnumTy->getDecl()->getIntegerType(); 4421 4422 // Promotable integer types are required to be promoted by the ABI. 4423 if (Ty->isPromotableIntegerType()) 4424 return true; 4425 4426 // In addition to the usual promotable integer types, we also need to 4427 // extend all 32-bit types, since the ABI requires promotion to 64 bits. 4428 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 4429 switch (BT->getKind()) { 4430 case BuiltinType::Int: 4431 case BuiltinType::UInt: 4432 return true; 4433 default: 4434 break; 4435 } 4436 4437 return false; 4438 } 4439 4440 /// isAlignedParamType - Determine whether a type requires 16-byte or 4441 /// higher alignment in the parameter area. Always returns at least 8. 4442 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 4443 // Complex types are passed just like their elements. 4444 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 4445 Ty = CTy->getElementType(); 4446 4447 // Only vector types of size 16 bytes need alignment (larger types are 4448 // passed via reference, smaller types are not aligned). 4449 if (IsQPXVectorTy(Ty)) { 4450 if (getContext().getTypeSize(Ty) > 128) 4451 return CharUnits::fromQuantity(32); 4452 4453 return CharUnits::fromQuantity(16); 4454 } else if (Ty->isVectorType()) { 4455 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8); 4456 } 4457 4458 // For single-element float/vector structs, we consider the whole type 4459 // to have the same alignment requirements as its single element. 4460 const Type *AlignAsType = nullptr; 4461 const Type *EltType = isSingleElementStruct(Ty, getContext()); 4462 if (EltType) { 4463 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 4464 if (IsQPXVectorTy(EltType) || (EltType->isVectorType() && 4465 getContext().getTypeSize(EltType) == 128) || 4466 (BT && BT->isFloatingPoint())) 4467 AlignAsType = EltType; 4468 } 4469 4470 // Likewise for ELFv2 homogeneous aggregates. 4471 const Type *Base = nullptr; 4472 uint64_t Members = 0; 4473 if (!AlignAsType && Kind == ELFv2 && 4474 isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members)) 4475 AlignAsType = Base; 4476 4477 // With special case aggregates, only vector base types need alignment. 4478 if (AlignAsType && IsQPXVectorTy(AlignAsType)) { 4479 if (getContext().getTypeSize(AlignAsType) > 128) 4480 return CharUnits::fromQuantity(32); 4481 4482 return CharUnits::fromQuantity(16); 4483 } else if (AlignAsType) { 4484 return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8); 4485 } 4486 4487 // Otherwise, we only need alignment for any aggregate type that 4488 // has an alignment requirement of >= 16 bytes. 4489 if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) { 4490 if (HasQPX && getContext().getTypeAlign(Ty) >= 256) 4491 return CharUnits::fromQuantity(32); 4492 return CharUnits::fromQuantity(16); 4493 } 4494 4495 return CharUnits::fromQuantity(8); 4496 } 4497 4498 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous 4499 /// aggregate. Base is set to the base element type, and Members is set 4500 /// to the number of base elements. 4501 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base, 4502 uint64_t &Members) const { 4503 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 4504 uint64_t NElements = AT->getSize().getZExtValue(); 4505 if (NElements == 0) 4506 return false; 4507 if (!isHomogeneousAggregate(AT->getElementType(), Base, Members)) 4508 return false; 4509 Members *= NElements; 4510 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 4511 const RecordDecl *RD = RT->getDecl(); 4512 if (RD->hasFlexibleArrayMember()) 4513 return false; 4514 4515 Members = 0; 4516 4517 // If this is a C++ record, check the bases first. 4518 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 4519 for (const auto &I : CXXRD->bases()) { 4520 // Ignore empty records. 4521 if (isEmptyRecord(getContext(), I.getType(), true)) 4522 continue; 4523 4524 uint64_t FldMembers; 4525 if (!isHomogeneousAggregate(I.getType(), Base, FldMembers)) 4526 return false; 4527 4528 Members += FldMembers; 4529 } 4530 } 4531 4532 for (const auto *FD : RD->fields()) { 4533 // Ignore (non-zero arrays of) empty records. 4534 QualType FT = FD->getType(); 4535 while (const ConstantArrayType *AT = 4536 getContext().getAsConstantArrayType(FT)) { 4537 if (AT->getSize().getZExtValue() == 0) 4538 return false; 4539 FT = AT->getElementType(); 4540 } 4541 if (isEmptyRecord(getContext(), FT, true)) 4542 continue; 4543 4544 // For compatibility with GCC, ignore empty bitfields in C++ mode. 4545 if (getContext().getLangOpts().CPlusPlus && 4546 FD->isBitField() && FD->getBitWidthValue(getContext()) == 0) 4547 continue; 4548 4549 uint64_t FldMembers; 4550 if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers)) 4551 return false; 4552 4553 Members = (RD->isUnion() ? 4554 std::max(Members, FldMembers) : Members + FldMembers); 4555 } 4556 4557 if (!Base) 4558 return false; 4559 4560 // Ensure there is no padding. 4561 if (getContext().getTypeSize(Base) * Members != 4562 getContext().getTypeSize(Ty)) 4563 return false; 4564 } else { 4565 Members = 1; 4566 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 4567 Members = 2; 4568 Ty = CT->getElementType(); 4569 } 4570 4571 // Most ABIs only support float, double, and some vector type widths. 4572 if (!isHomogeneousAggregateBaseType(Ty)) 4573 return false; 4574 4575 // The base type must be the same for all members. Types that 4576 // agree in both total size and mode (float vs. vector) are 4577 // treated as being equivalent here. 4578 const Type *TyPtr = Ty.getTypePtr(); 4579 if (!Base) { 4580 Base = TyPtr; 4581 // If it's a non-power-of-2 vector, its size is already a power-of-2, 4582 // so make sure to widen it explicitly. 4583 if (const VectorType *VT = Base->getAs<VectorType>()) { 4584 QualType EltTy = VT->getElementType(); 4585 unsigned NumElements = 4586 getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy); 4587 Base = getContext() 4588 .getVectorType(EltTy, NumElements, VT->getVectorKind()) 4589 .getTypePtr(); 4590 } 4591 } 4592 4593 if (Base->isVectorType() != TyPtr->isVectorType() || 4594 getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr)) 4595 return false; 4596 } 4597 return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members); 4598 } 4599 4600 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 4601 // Homogeneous aggregates for ELFv2 must have base types of float, 4602 // double, long double, or 128-bit vectors. 4603 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 4604 if (BT->getKind() == BuiltinType::Float || 4605 BT->getKind() == BuiltinType::Double || 4606 BT->getKind() == BuiltinType::LongDouble) { 4607 if (IsSoftFloatABI) 4608 return false; 4609 return true; 4610 } 4611 } 4612 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4613 if (getContext().getTypeSize(VT) == 128 || IsQPXVectorTy(Ty)) 4614 return true; 4615 } 4616 return false; 4617 } 4618 4619 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough( 4620 const Type *Base, uint64_t Members) const { 4621 // Vector types require one register, floating point types require one 4622 // or two registers depending on their size. 4623 uint32_t NumRegs = 4624 Base->isVectorType() ? 1 : (getContext().getTypeSize(Base) + 63) / 64; 4625 4626 // Homogeneous Aggregates may occupy at most 8 registers. 4627 return Members * NumRegs <= 8; 4628 } 4629 4630 ABIArgInfo 4631 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const { 4632 Ty = useFirstFieldIfTransparentUnion(Ty); 4633 4634 if (Ty->isAnyComplexType()) 4635 return ABIArgInfo::getDirect(); 4636 4637 // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes) 4638 // or via reference (larger than 16 bytes). 4639 if (Ty->isVectorType() && !IsQPXVectorTy(Ty)) { 4640 uint64_t Size = getContext().getTypeSize(Ty); 4641 if (Size > 128) 4642 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4643 else if (Size < 128) { 4644 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 4645 return ABIArgInfo::getDirect(CoerceTy); 4646 } 4647 } 4648 4649 if (isAggregateTypeForABI(Ty)) { 4650 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 4651 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 4652 4653 uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity(); 4654 uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); 4655 4656 // ELFv2 homogeneous aggregates are passed as array types. 4657 const Type *Base = nullptr; 4658 uint64_t Members = 0; 4659 if (Kind == ELFv2 && 4660 isHomogeneousAggregate(Ty, Base, Members)) { 4661 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 4662 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 4663 return ABIArgInfo::getDirect(CoerceTy); 4664 } 4665 4666 // If an aggregate may end up fully in registers, we do not 4667 // use the ByVal method, but pass the aggregate as array. 4668 // This is usually beneficial since we avoid forcing the 4669 // back-end to store the argument to memory. 4670 uint64_t Bits = getContext().getTypeSize(Ty); 4671 if (Bits > 0 && Bits <= 8 * GPRBits) { 4672 llvm::Type *CoerceTy; 4673 4674 // Types up to 8 bytes are passed as integer type (which will be 4675 // properly aligned in the argument save area doubleword). 4676 if (Bits <= GPRBits) 4677 CoerceTy = 4678 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 4679 // Larger types are passed as arrays, with the base type selected 4680 // according to the required alignment in the save area. 4681 else { 4682 uint64_t RegBits = ABIAlign * 8; 4683 uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits; 4684 llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits); 4685 CoerceTy = llvm::ArrayType::get(RegTy, NumRegs); 4686 } 4687 4688 return ABIArgInfo::getDirect(CoerceTy); 4689 } 4690 4691 // All other aggregates are passed ByVal. 4692 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 4693 /*ByVal=*/true, 4694 /*Realign=*/TyAlign > ABIAlign); 4695 } 4696 4697 return (isPromotableTypeForABI(Ty) ? 4698 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 4699 } 4700 4701 ABIArgInfo 4702 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { 4703 if (RetTy->isVoidType()) 4704 return ABIArgInfo::getIgnore(); 4705 4706 if (RetTy->isAnyComplexType()) 4707 return ABIArgInfo::getDirect(); 4708 4709 // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes) 4710 // or via reference (larger than 16 bytes). 4711 if (RetTy->isVectorType() && !IsQPXVectorTy(RetTy)) { 4712 uint64_t Size = getContext().getTypeSize(RetTy); 4713 if (Size > 128) 4714 return getNaturalAlignIndirect(RetTy); 4715 else if (Size < 128) { 4716 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 4717 return ABIArgInfo::getDirect(CoerceTy); 4718 } 4719 } 4720 4721 if (isAggregateTypeForABI(RetTy)) { 4722 // ELFv2 homogeneous aggregates are returned as array types. 4723 const Type *Base = nullptr; 4724 uint64_t Members = 0; 4725 if (Kind == ELFv2 && 4726 isHomogeneousAggregate(RetTy, Base, Members)) { 4727 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 4728 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 4729 return ABIArgInfo::getDirect(CoerceTy); 4730 } 4731 4732 // ELFv2 small aggregates are returned in up to two registers. 4733 uint64_t Bits = getContext().getTypeSize(RetTy); 4734 if (Kind == ELFv2 && Bits <= 2 * GPRBits) { 4735 if (Bits == 0) 4736 return ABIArgInfo::getIgnore(); 4737 4738 llvm::Type *CoerceTy; 4739 if (Bits > GPRBits) { 4740 CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits); 4741 CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy); 4742 } else 4743 CoerceTy = 4744 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 4745 return ABIArgInfo::getDirect(CoerceTy); 4746 } 4747 4748 // All other aggregates are returned indirectly. 4749 return getNaturalAlignIndirect(RetTy); 4750 } 4751 4752 return (isPromotableTypeForABI(RetTy) ? 4753 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 4754 } 4755 4756 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine. 4757 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4758 QualType Ty) const { 4759 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 4760 TypeInfo.second = getParamTypeAlignment(Ty); 4761 4762 CharUnits SlotSize = CharUnits::fromQuantity(8); 4763 4764 // If we have a complex type and the base type is smaller than 8 bytes, 4765 // the ABI calls for the real and imaginary parts to be right-adjusted 4766 // in separate doublewords. However, Clang expects us to produce a 4767 // pointer to a structure with the two parts packed tightly. So generate 4768 // loads of the real and imaginary parts relative to the va_list pointer, 4769 // and store them to a temporary structure. 4770 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 4771 CharUnits EltSize = TypeInfo.first / 2; 4772 if (EltSize < SlotSize) { 4773 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty, 4774 SlotSize * 2, SlotSize, 4775 SlotSize, /*AllowHigher*/ true); 4776 4777 Address RealAddr = Addr; 4778 Address ImagAddr = RealAddr; 4779 if (CGF.CGM.getDataLayout().isBigEndian()) { 4780 RealAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, 4781 SlotSize - EltSize); 4782 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr, 4783 2 * SlotSize - EltSize); 4784 } else { 4785 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize); 4786 } 4787 4788 llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType()); 4789 RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy); 4790 ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy); 4791 llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal"); 4792 llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag"); 4793 4794 Address Temp = CGF.CreateMemTemp(Ty, "vacplx"); 4795 CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty), 4796 /*init*/ true); 4797 return Temp; 4798 } 4799 } 4800 4801 // Otherwise, just use the general rule. 4802 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 4803 TypeInfo, SlotSize, /*AllowHigher*/ true); 4804 } 4805 4806 static bool 4807 PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4808 llvm::Value *Address) { 4809 // This is calculated from the LLVM and GCC tables and verified 4810 // against gcc output. AFAIK all ABIs use the same encoding. 4811 4812 CodeGen::CGBuilderTy &Builder = CGF.Builder; 4813 4814 llvm::IntegerType *i8 = CGF.Int8Ty; 4815 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 4816 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 4817 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 4818 4819 // 0-31: r0-31, the 8-byte general-purpose registers 4820 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 4821 4822 // 32-63: fp0-31, the 8-byte floating-point registers 4823 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 4824 4825 // 64-67 are various 8-byte special-purpose registers: 4826 // 64: mq 4827 // 65: lr 4828 // 66: ctr 4829 // 67: ap 4830 AssignToArrayRange(Builder, Address, Eight8, 64, 67); 4831 4832 // 68-76 are various 4-byte special-purpose registers: 4833 // 68-75 cr0-7 4834 // 76: xer 4835 AssignToArrayRange(Builder, Address, Four8, 68, 76); 4836 4837 // 77-108: v0-31, the 16-byte vector registers 4838 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 4839 4840 // 109: vrsave 4841 // 110: vscr 4842 // 111: spe_acc 4843 // 112: spefscr 4844 // 113: sfp 4845 // 114: tfhar 4846 // 115: tfiar 4847 // 116: texasr 4848 AssignToArrayRange(Builder, Address, Eight8, 109, 116); 4849 4850 return false; 4851 } 4852 4853 bool 4854 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable( 4855 CodeGen::CodeGenFunction &CGF, 4856 llvm::Value *Address) const { 4857 4858 return PPC64_initDwarfEHRegSizeTable(CGF, Address); 4859 } 4860 4861 bool 4862 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4863 llvm::Value *Address) const { 4864 4865 return PPC64_initDwarfEHRegSizeTable(CGF, Address); 4866 } 4867 4868 //===----------------------------------------------------------------------===// 4869 // AArch64 ABI Implementation 4870 //===----------------------------------------------------------------------===// 4871 4872 namespace { 4873 4874 class AArch64ABIInfo : public SwiftABIInfo { 4875 public: 4876 enum ABIKind { 4877 AAPCS = 0, 4878 DarwinPCS, 4879 Win64 4880 }; 4881 4882 private: 4883 ABIKind Kind; 4884 4885 public: 4886 AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind) 4887 : SwiftABIInfo(CGT), Kind(Kind) {} 4888 4889 private: 4890 ABIKind getABIKind() const { return Kind; } 4891 bool isDarwinPCS() const { return Kind == DarwinPCS; } 4892 4893 ABIArgInfo classifyReturnType(QualType RetTy) const; 4894 ABIArgInfo classifyArgumentType(QualType RetTy) const; 4895 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 4896 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 4897 uint64_t Members) const override; 4898 4899 bool isIllegalVectorType(QualType Ty) const; 4900 4901 void computeInfo(CGFunctionInfo &FI) const override { 4902 if (!getCXXABI().classifyReturnType(FI)) 4903 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4904 4905 for (auto &it : FI.arguments()) 4906 it.info = classifyArgumentType(it.type); 4907 } 4908 4909 Address EmitDarwinVAArg(Address VAListAddr, QualType Ty, 4910 CodeGenFunction &CGF) const; 4911 4912 Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty, 4913 CodeGenFunction &CGF) const; 4914 4915 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4916 QualType Ty) const override { 4917 return Kind == Win64 ? EmitMSVAArg(CGF, VAListAddr, Ty) 4918 : isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF) 4919 : EmitAAPCSVAArg(VAListAddr, Ty, CGF); 4920 } 4921 4922 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 4923 QualType Ty) const override; 4924 4925 bool shouldPassIndirectlyForSwift(CharUnits totalSize, 4926 ArrayRef<llvm::Type*> scalars, 4927 bool asReturnValue) const override { 4928 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 4929 } 4930 bool isSwiftErrorInRegister() const override { 4931 return true; 4932 } 4933 4934 bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy, 4935 unsigned elts) const override; 4936 }; 4937 4938 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo { 4939 public: 4940 AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind) 4941 : TargetCodeGenInfo(new AArch64ABIInfo(CGT, Kind)) {} 4942 4943 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 4944 return "mov\tfp, fp\t\t// marker for objc_retainAutoreleaseReturnValue"; 4945 } 4946 4947 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4948 return 31; 4949 } 4950 4951 bool doesReturnSlotInterfereWithArgs() const override { return false; } 4952 }; 4953 4954 class WindowsAArch64TargetCodeGenInfo : public AArch64TargetCodeGenInfo { 4955 public: 4956 WindowsAArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind K) 4957 : AArch64TargetCodeGenInfo(CGT, K) {} 4958 4959 void getDependentLibraryOption(llvm::StringRef Lib, 4960 llvm::SmallString<24> &Opt) const override { 4961 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); 4962 } 4963 4964 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, 4965 llvm::SmallString<32> &Opt) const override { 4966 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 4967 } 4968 }; 4969 } 4970 4971 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const { 4972 Ty = useFirstFieldIfTransparentUnion(Ty); 4973 4974 // Handle illegal vector types here. 4975 if (isIllegalVectorType(Ty)) { 4976 uint64_t Size = getContext().getTypeSize(Ty); 4977 // Android promotes <2 x i8> to i16, not i32 4978 if (isAndroid() && (Size <= 16)) { 4979 llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext()); 4980 return ABIArgInfo::getDirect(ResType); 4981 } 4982 if (Size <= 32) { 4983 llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext()); 4984 return ABIArgInfo::getDirect(ResType); 4985 } 4986 if (Size == 64) { 4987 llvm::Type *ResType = 4988 llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2); 4989 return ABIArgInfo::getDirect(ResType); 4990 } 4991 if (Size == 128) { 4992 llvm::Type *ResType = 4993 llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4); 4994 return ABIArgInfo::getDirect(ResType); 4995 } 4996 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4997 } 4998 4999 if (!isAggregateTypeForABI(Ty)) { 5000 // Treat an enum type as its underlying type. 5001 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5002 Ty = EnumTy->getDecl()->getIntegerType(); 5003 5004 return (Ty->isPromotableIntegerType() && isDarwinPCS() 5005 ? ABIArgInfo::getExtend() 5006 : ABIArgInfo::getDirect()); 5007 } 5008 5009 // Structures with either a non-trivial destructor or a non-trivial 5010 // copy constructor are always indirect. 5011 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 5012 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 5013 CGCXXABI::RAA_DirectInMemory); 5014 } 5015 5016 // Empty records are always ignored on Darwin, but actually passed in C++ mode 5017 // elsewhere for GNU compatibility. 5018 uint64_t Size = getContext().getTypeSize(Ty); 5019 bool IsEmpty = isEmptyRecord(getContext(), Ty, true); 5020 if (IsEmpty || Size == 0) { 5021 if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS()) 5022 return ABIArgInfo::getIgnore(); 5023 5024 // GNU C mode. The only argument that gets ignored is an empty one with size 5025 // 0. 5026 if (IsEmpty && Size == 0) 5027 return ABIArgInfo::getIgnore(); 5028 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 5029 } 5030 5031 // Homogeneous Floating-point Aggregates (HFAs) need to be expanded. 5032 const Type *Base = nullptr; 5033 uint64_t Members = 0; 5034 if (isHomogeneousAggregate(Ty, Base, Members)) { 5035 return ABIArgInfo::getDirect( 5036 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members)); 5037 } 5038 5039 // Aggregates <= 16 bytes are passed directly in registers or on the stack. 5040 if (Size <= 128) { 5041 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 5042 // same size and alignment. 5043 if (getTarget().isRenderScriptTarget()) { 5044 return coerceToIntArray(Ty, getContext(), getVMContext()); 5045 } 5046 unsigned Alignment = getContext().getTypeAlign(Ty); 5047 Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes 5048 5049 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 5050 // For aggregates with 16-byte alignment, we use i128. 5051 if (Alignment < 128 && Size == 128) { 5052 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); 5053 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 5054 } 5055 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 5056 } 5057 5058 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5059 } 5060 5061 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy) const { 5062 if (RetTy->isVoidType()) 5063 return ABIArgInfo::getIgnore(); 5064 5065 // Large vector types should be returned via memory. 5066 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) 5067 return getNaturalAlignIndirect(RetTy); 5068 5069 if (!isAggregateTypeForABI(RetTy)) { 5070 // Treat an enum type as its underlying type. 5071 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5072 RetTy = EnumTy->getDecl()->getIntegerType(); 5073 5074 return (RetTy->isPromotableIntegerType() && isDarwinPCS() 5075 ? ABIArgInfo::getExtend() 5076 : ABIArgInfo::getDirect()); 5077 } 5078 5079 uint64_t Size = getContext().getTypeSize(RetTy); 5080 if (isEmptyRecord(getContext(), RetTy, true) || Size == 0) 5081 return ABIArgInfo::getIgnore(); 5082 5083 const Type *Base = nullptr; 5084 uint64_t Members = 0; 5085 if (isHomogeneousAggregate(RetTy, Base, Members)) 5086 // Homogeneous Floating-point Aggregates (HFAs) are returned directly. 5087 return ABIArgInfo::getDirect(); 5088 5089 // Aggregates <= 16 bytes are returned directly in registers or on the stack. 5090 if (Size <= 128) { 5091 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 5092 // same size and alignment. 5093 if (getTarget().isRenderScriptTarget()) { 5094 return coerceToIntArray(RetTy, getContext(), getVMContext()); 5095 } 5096 unsigned Alignment = getContext().getTypeAlign(RetTy); 5097 Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes 5098 5099 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 5100 // For aggregates with 16-byte alignment, we use i128. 5101 if (Alignment < 128 && Size == 128) { 5102 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); 5103 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 5104 } 5105 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 5106 } 5107 5108 return getNaturalAlignIndirect(RetTy); 5109 } 5110 5111 /// isIllegalVectorType - check whether the vector type is legal for AArch64. 5112 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const { 5113 if (const VectorType *VT = Ty->getAs<VectorType>()) { 5114 // Check whether VT is legal. 5115 unsigned NumElements = VT->getNumElements(); 5116 uint64_t Size = getContext().getTypeSize(VT); 5117 // NumElements should be power of 2. 5118 if (!llvm::isPowerOf2_32(NumElements)) 5119 return true; 5120 return Size != 64 && (Size != 128 || NumElements == 1); 5121 } 5122 return false; 5123 } 5124 5125 bool AArch64ABIInfo::isLegalVectorTypeForSwift(CharUnits totalSize, 5126 llvm::Type *eltTy, 5127 unsigned elts) const { 5128 if (!llvm::isPowerOf2_32(elts)) 5129 return false; 5130 if (totalSize.getQuantity() != 8 && 5131 (totalSize.getQuantity() != 16 || elts == 1)) 5132 return false; 5133 return true; 5134 } 5135 5136 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 5137 // Homogeneous aggregates for AAPCS64 must have base types of a floating 5138 // point type or a short-vector type. This is the same as the 32-bit ABI, 5139 // but with the difference that any floating-point type is allowed, 5140 // including __fp16. 5141 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 5142 if (BT->isFloatingPoint()) 5143 return true; 5144 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 5145 unsigned VecSize = getContext().getTypeSize(VT); 5146 if (VecSize == 64 || VecSize == 128) 5147 return true; 5148 } 5149 return false; 5150 } 5151 5152 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 5153 uint64_t Members) const { 5154 return Members <= 4; 5155 } 5156 5157 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr, 5158 QualType Ty, 5159 CodeGenFunction &CGF) const { 5160 ABIArgInfo AI = classifyArgumentType(Ty); 5161 bool IsIndirect = AI.isIndirect(); 5162 5163 llvm::Type *BaseTy = CGF.ConvertType(Ty); 5164 if (IsIndirect) 5165 BaseTy = llvm::PointerType::getUnqual(BaseTy); 5166 else if (AI.getCoerceToType()) 5167 BaseTy = AI.getCoerceToType(); 5168 5169 unsigned NumRegs = 1; 5170 if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) { 5171 BaseTy = ArrTy->getElementType(); 5172 NumRegs = ArrTy->getNumElements(); 5173 } 5174 bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy(); 5175 5176 // The AArch64 va_list type and handling is specified in the Procedure Call 5177 // Standard, section B.4: 5178 // 5179 // struct { 5180 // void *__stack; 5181 // void *__gr_top; 5182 // void *__vr_top; 5183 // int __gr_offs; 5184 // int __vr_offs; 5185 // }; 5186 5187 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); 5188 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 5189 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); 5190 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 5191 5192 auto TyInfo = getContext().getTypeInfoInChars(Ty); 5193 CharUnits TyAlign = TyInfo.second; 5194 5195 Address reg_offs_p = Address::invalid(); 5196 llvm::Value *reg_offs = nullptr; 5197 int reg_top_index; 5198 CharUnits reg_top_offset; 5199 int RegSize = IsIndirect ? 8 : TyInfo.first.getQuantity(); 5200 if (!IsFPR) { 5201 // 3 is the field number of __gr_offs 5202 reg_offs_p = 5203 CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(24), 5204 "gr_offs_p"); 5205 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs"); 5206 reg_top_index = 1; // field number for __gr_top 5207 reg_top_offset = CharUnits::fromQuantity(8); 5208 RegSize = llvm::alignTo(RegSize, 8); 5209 } else { 5210 // 4 is the field number of __vr_offs. 5211 reg_offs_p = 5212 CGF.Builder.CreateStructGEP(VAListAddr, 4, CharUnits::fromQuantity(28), 5213 "vr_offs_p"); 5214 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs"); 5215 reg_top_index = 2; // field number for __vr_top 5216 reg_top_offset = CharUnits::fromQuantity(16); 5217 RegSize = 16 * NumRegs; 5218 } 5219 5220 //======================================= 5221 // Find out where argument was passed 5222 //======================================= 5223 5224 // If reg_offs >= 0 we're already using the stack for this type of 5225 // argument. We don't want to keep updating reg_offs (in case it overflows, 5226 // though anyone passing 2GB of arguments, each at most 16 bytes, deserves 5227 // whatever they get). 5228 llvm::Value *UsingStack = nullptr; 5229 UsingStack = CGF.Builder.CreateICmpSGE( 5230 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0)); 5231 5232 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock); 5233 5234 // Otherwise, at least some kind of argument could go in these registers, the 5235 // question is whether this particular type is too big. 5236 CGF.EmitBlock(MaybeRegBlock); 5237 5238 // Integer arguments may need to correct register alignment (for example a 5239 // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we 5240 // align __gr_offs to calculate the potential address. 5241 if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) { 5242 int Align = TyAlign.getQuantity(); 5243 5244 reg_offs = CGF.Builder.CreateAdd( 5245 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1), 5246 "align_regoffs"); 5247 reg_offs = CGF.Builder.CreateAnd( 5248 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align), 5249 "aligned_regoffs"); 5250 } 5251 5252 // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list. 5253 // The fact that this is done unconditionally reflects the fact that 5254 // allocating an argument to the stack also uses up all the remaining 5255 // registers of the appropriate kind. 5256 llvm::Value *NewOffset = nullptr; 5257 NewOffset = CGF.Builder.CreateAdd( 5258 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs"); 5259 CGF.Builder.CreateStore(NewOffset, reg_offs_p); 5260 5261 // Now we're in a position to decide whether this argument really was in 5262 // registers or not. 5263 llvm::Value *InRegs = nullptr; 5264 InRegs = CGF.Builder.CreateICmpSLE( 5265 NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg"); 5266 5267 CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock); 5268 5269 //======================================= 5270 // Argument was in registers 5271 //======================================= 5272 5273 // Now we emit the code for if the argument was originally passed in 5274 // registers. First start the appropriate block: 5275 CGF.EmitBlock(InRegBlock); 5276 5277 llvm::Value *reg_top = nullptr; 5278 Address reg_top_p = CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, 5279 reg_top_offset, "reg_top_p"); 5280 reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top"); 5281 Address BaseAddr(CGF.Builder.CreateInBoundsGEP(reg_top, reg_offs), 5282 CharUnits::fromQuantity(IsFPR ? 16 : 8)); 5283 Address RegAddr = Address::invalid(); 5284 llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty); 5285 5286 if (IsIndirect) { 5287 // If it's been passed indirectly (actually a struct), whatever we find from 5288 // stored registers or on the stack will actually be a struct **. 5289 MemTy = llvm::PointerType::getUnqual(MemTy); 5290 } 5291 5292 const Type *Base = nullptr; 5293 uint64_t NumMembers = 0; 5294 bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers); 5295 if (IsHFA && NumMembers > 1) { 5296 // Homogeneous aggregates passed in registers will have their elements split 5297 // and stored 16-bytes apart regardless of size (they're notionally in qN, 5298 // qN+1, ...). We reload and store into a temporary local variable 5299 // contiguously. 5300 assert(!IsIndirect && "Homogeneous aggregates should be passed directly"); 5301 auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0)); 5302 llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0)); 5303 llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers); 5304 Address Tmp = CGF.CreateTempAlloca(HFATy, 5305 std::max(TyAlign, BaseTyInfo.second)); 5306 5307 // On big-endian platforms, the value will be right-aligned in its slot. 5308 int Offset = 0; 5309 if (CGF.CGM.getDataLayout().isBigEndian() && 5310 BaseTyInfo.first.getQuantity() < 16) 5311 Offset = 16 - BaseTyInfo.first.getQuantity(); 5312 5313 for (unsigned i = 0; i < NumMembers; ++i) { 5314 CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset); 5315 Address LoadAddr = 5316 CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset); 5317 LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy); 5318 5319 Address StoreAddr = 5320 CGF.Builder.CreateConstArrayGEP(Tmp, i, BaseTyInfo.first); 5321 5322 llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr); 5323 CGF.Builder.CreateStore(Elem, StoreAddr); 5324 } 5325 5326 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy); 5327 } else { 5328 // Otherwise the object is contiguous in memory. 5329 5330 // It might be right-aligned in its slot. 5331 CharUnits SlotSize = BaseAddr.getAlignment(); 5332 if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect && 5333 (IsHFA || !isAggregateTypeForABI(Ty)) && 5334 TyInfo.first < SlotSize) { 5335 CharUnits Offset = SlotSize - TyInfo.first; 5336 BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset); 5337 } 5338 5339 RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy); 5340 } 5341 5342 CGF.EmitBranch(ContBlock); 5343 5344 //======================================= 5345 // Argument was on the stack 5346 //======================================= 5347 CGF.EmitBlock(OnStackBlock); 5348 5349 Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, 5350 CharUnits::Zero(), "stack_p"); 5351 llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack"); 5352 5353 // Again, stack arguments may need realignment. In this case both integer and 5354 // floating-point ones might be affected. 5355 if (!IsIndirect && TyAlign.getQuantity() > 8) { 5356 int Align = TyAlign.getQuantity(); 5357 5358 OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty); 5359 5360 OnStackPtr = CGF.Builder.CreateAdd( 5361 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1), 5362 "align_stack"); 5363 OnStackPtr = CGF.Builder.CreateAnd( 5364 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align), 5365 "align_stack"); 5366 5367 OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy); 5368 } 5369 Address OnStackAddr(OnStackPtr, 5370 std::max(CharUnits::fromQuantity(8), TyAlign)); 5371 5372 // All stack slots are multiples of 8 bytes. 5373 CharUnits StackSlotSize = CharUnits::fromQuantity(8); 5374 CharUnits StackSize; 5375 if (IsIndirect) 5376 StackSize = StackSlotSize; 5377 else 5378 StackSize = TyInfo.first.alignTo(StackSlotSize); 5379 5380 llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize); 5381 llvm::Value *NewStack = 5382 CGF.Builder.CreateInBoundsGEP(OnStackPtr, StackSizeC, "new_stack"); 5383 5384 // Write the new value of __stack for the next call to va_arg 5385 CGF.Builder.CreateStore(NewStack, stack_p); 5386 5387 if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) && 5388 TyInfo.first < StackSlotSize) { 5389 CharUnits Offset = StackSlotSize - TyInfo.first; 5390 OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset); 5391 } 5392 5393 OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy); 5394 5395 CGF.EmitBranch(ContBlock); 5396 5397 //======================================= 5398 // Tidy up 5399 //======================================= 5400 CGF.EmitBlock(ContBlock); 5401 5402 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 5403 OnStackAddr, OnStackBlock, "vaargs.addr"); 5404 5405 if (IsIndirect) 5406 return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"), 5407 TyInfo.second); 5408 5409 return ResAddr; 5410 } 5411 5412 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty, 5413 CodeGenFunction &CGF) const { 5414 // The backend's lowering doesn't support va_arg for aggregates or 5415 // illegal vector types. Lower VAArg here for these cases and use 5416 // the LLVM va_arg instruction for everything else. 5417 if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty)) 5418 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 5419 5420 CharUnits SlotSize = CharUnits::fromQuantity(8); 5421 5422 // Empty records are ignored for parameter passing purposes. 5423 if (isEmptyRecord(getContext(), Ty, true)) { 5424 Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 5425 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 5426 return Addr; 5427 } 5428 5429 // The size of the actual thing passed, which might end up just 5430 // being a pointer for indirect types. 5431 auto TyInfo = getContext().getTypeInfoInChars(Ty); 5432 5433 // Arguments bigger than 16 bytes which aren't homogeneous 5434 // aggregates should be passed indirectly. 5435 bool IsIndirect = false; 5436 if (TyInfo.first.getQuantity() > 16) { 5437 const Type *Base = nullptr; 5438 uint64_t Members = 0; 5439 IsIndirect = !isHomogeneousAggregate(Ty, Base, Members); 5440 } 5441 5442 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 5443 TyInfo, SlotSize, /*AllowHigherAlign*/ true); 5444 } 5445 5446 Address AArch64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 5447 QualType Ty) const { 5448 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 5449 CGF.getContext().getTypeInfoInChars(Ty), 5450 CharUnits::fromQuantity(8), 5451 /*allowHigherAlign*/ false); 5452 } 5453 5454 //===----------------------------------------------------------------------===// 5455 // ARM ABI Implementation 5456 //===----------------------------------------------------------------------===// 5457 5458 namespace { 5459 5460 class ARMABIInfo : public SwiftABIInfo { 5461 public: 5462 enum ABIKind { 5463 APCS = 0, 5464 AAPCS = 1, 5465 AAPCS_VFP = 2, 5466 AAPCS16_VFP = 3, 5467 }; 5468 5469 private: 5470 ABIKind Kind; 5471 5472 public: 5473 ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) 5474 : SwiftABIInfo(CGT), Kind(_Kind) { 5475 setCCs(); 5476 } 5477 5478 bool isEABI() const { 5479 switch (getTarget().getTriple().getEnvironment()) { 5480 case llvm::Triple::Android: 5481 case llvm::Triple::EABI: 5482 case llvm::Triple::EABIHF: 5483 case llvm::Triple::GNUEABI: 5484 case llvm::Triple::GNUEABIHF: 5485 case llvm::Triple::MuslEABI: 5486 case llvm::Triple::MuslEABIHF: 5487 return true; 5488 default: 5489 return false; 5490 } 5491 } 5492 5493 bool isEABIHF() const { 5494 switch (getTarget().getTriple().getEnvironment()) { 5495 case llvm::Triple::EABIHF: 5496 case llvm::Triple::GNUEABIHF: 5497 case llvm::Triple::MuslEABIHF: 5498 return true; 5499 default: 5500 return false; 5501 } 5502 } 5503 5504 ABIKind getABIKind() const { return Kind; } 5505 5506 private: 5507 ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic) const; 5508 ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic) const; 5509 bool isIllegalVectorType(QualType Ty) const; 5510 5511 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 5512 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 5513 uint64_t Members) const override; 5514 5515 void computeInfo(CGFunctionInfo &FI) const override; 5516 5517 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5518 QualType Ty) const override; 5519 5520 llvm::CallingConv::ID getLLVMDefaultCC() const; 5521 llvm::CallingConv::ID getABIDefaultCC() const; 5522 void setCCs(); 5523 5524 bool shouldPassIndirectlyForSwift(CharUnits totalSize, 5525 ArrayRef<llvm::Type*> scalars, 5526 bool asReturnValue) const override { 5527 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 5528 } 5529 bool isSwiftErrorInRegister() const override { 5530 return true; 5531 } 5532 bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy, 5533 unsigned elts) const override; 5534 }; 5535 5536 class ARMTargetCodeGenInfo : public TargetCodeGenInfo { 5537 public: 5538 ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 5539 :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {} 5540 5541 const ARMABIInfo &getABIInfo() const { 5542 return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo()); 5543 } 5544 5545 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 5546 return 13; 5547 } 5548 5549 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 5550 return "mov\tr7, r7\t\t// marker for objc_retainAutoreleaseReturnValue"; 5551 } 5552 5553 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5554 llvm::Value *Address) const override { 5555 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 5556 5557 // 0-15 are the 16 integer registers. 5558 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15); 5559 return false; 5560 } 5561 5562 unsigned getSizeOfUnwindException() const override { 5563 if (getABIInfo().isEABI()) return 88; 5564 return TargetCodeGenInfo::getSizeOfUnwindException(); 5565 } 5566 5567 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5568 CodeGen::CodeGenModule &CGM, 5569 ForDefinition_t IsForDefinition) const override { 5570 if (!IsForDefinition) 5571 return; 5572 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 5573 if (!FD) 5574 return; 5575 5576 const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>(); 5577 if (!Attr) 5578 return; 5579 5580 const char *Kind; 5581 switch (Attr->getInterrupt()) { 5582 case ARMInterruptAttr::Generic: Kind = ""; break; 5583 case ARMInterruptAttr::IRQ: Kind = "IRQ"; break; 5584 case ARMInterruptAttr::FIQ: Kind = "FIQ"; break; 5585 case ARMInterruptAttr::SWI: Kind = "SWI"; break; 5586 case ARMInterruptAttr::ABORT: Kind = "ABORT"; break; 5587 case ARMInterruptAttr::UNDEF: Kind = "UNDEF"; break; 5588 } 5589 5590 llvm::Function *Fn = cast<llvm::Function>(GV); 5591 5592 Fn->addFnAttr("interrupt", Kind); 5593 5594 ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind(); 5595 if (ABI == ARMABIInfo::APCS) 5596 return; 5597 5598 // AAPCS guarantees that sp will be 8-byte aligned on any public interface, 5599 // however this is not necessarily true on taking any interrupt. Instruct 5600 // the backend to perform a realignment as part of the function prologue. 5601 llvm::AttrBuilder B; 5602 B.addStackAlignmentAttr(8); 5603 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 5604 } 5605 }; 5606 5607 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo { 5608 public: 5609 WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 5610 : ARMTargetCodeGenInfo(CGT, K) {} 5611 5612 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5613 CodeGen::CodeGenModule &CGM, 5614 ForDefinition_t IsForDefinition) const override; 5615 5616 void getDependentLibraryOption(llvm::StringRef Lib, 5617 llvm::SmallString<24> &Opt) const override { 5618 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); 5619 } 5620 5621 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, 5622 llvm::SmallString<32> &Opt) const override { 5623 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 5624 } 5625 }; 5626 5627 void WindowsARMTargetCodeGenInfo::setTargetAttributes( 5628 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM, 5629 ForDefinition_t IsForDefinition) const { 5630 ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM, IsForDefinition); 5631 if (!IsForDefinition) 5632 return; 5633 addStackProbeSizeTargetAttribute(D, GV, CGM); 5634 } 5635 } 5636 5637 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const { 5638 if (!getCXXABI().classifyReturnType(FI)) 5639 FI.getReturnInfo() = 5640 classifyReturnType(FI.getReturnType(), FI.isVariadic()); 5641 5642 for (auto &I : FI.arguments()) 5643 I.info = classifyArgumentType(I.type, FI.isVariadic()); 5644 5645 // Always honor user-specified calling convention. 5646 if (FI.getCallingConvention() != llvm::CallingConv::C) 5647 return; 5648 5649 llvm::CallingConv::ID cc = getRuntimeCC(); 5650 if (cc != llvm::CallingConv::C) 5651 FI.setEffectiveCallingConvention(cc); 5652 } 5653 5654 /// Return the default calling convention that LLVM will use. 5655 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const { 5656 // The default calling convention that LLVM will infer. 5657 if (isEABIHF() || getTarget().getTriple().isWatchABI()) 5658 return llvm::CallingConv::ARM_AAPCS_VFP; 5659 else if (isEABI()) 5660 return llvm::CallingConv::ARM_AAPCS; 5661 else 5662 return llvm::CallingConv::ARM_APCS; 5663 } 5664 5665 /// Return the calling convention that our ABI would like us to use 5666 /// as the C calling convention. 5667 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const { 5668 switch (getABIKind()) { 5669 case APCS: return llvm::CallingConv::ARM_APCS; 5670 case AAPCS: return llvm::CallingConv::ARM_AAPCS; 5671 case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 5672 case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 5673 } 5674 llvm_unreachable("bad ABI kind"); 5675 } 5676 5677 void ARMABIInfo::setCCs() { 5678 assert(getRuntimeCC() == llvm::CallingConv::C); 5679 5680 // Don't muddy up the IR with a ton of explicit annotations if 5681 // they'd just match what LLVM will infer from the triple. 5682 llvm::CallingConv::ID abiCC = getABIDefaultCC(); 5683 if (abiCC != getLLVMDefaultCC()) 5684 RuntimeCC = abiCC; 5685 5686 // AAPCS apparently requires runtime support functions to be soft-float, but 5687 // that's almost certainly for historic reasons (Thumb1 not supporting VFP 5688 // most likely). It's more convenient for AAPCS16_VFP to be hard-float. 5689 5690 // The Run-time ABI for the ARM Architecture section 4.1.2 requires 5691 // AEABI-complying FP helper functions to use the base AAPCS. 5692 // These AEABI functions are expanded in the ARM llvm backend, all the builtin 5693 // support functions emitted by clang such as the _Complex helpers follow the 5694 // abiCC. 5695 if (abiCC != getLLVMDefaultCC()) 5696 BuiltinCC = abiCC; 5697 } 5698 5699 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, 5700 bool isVariadic) const { 5701 // 6.1.2.1 The following argument types are VFP CPRCs: 5702 // A single-precision floating-point type (including promoted 5703 // half-precision types); A double-precision floating-point type; 5704 // A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate 5705 // with a Base Type of a single- or double-precision floating-point type, 5706 // 64-bit containerized vectors or 128-bit containerized vectors with one 5707 // to four Elements. 5708 bool IsEffectivelyAAPCS_VFP = getABIKind() == AAPCS_VFP && !isVariadic; 5709 5710 Ty = useFirstFieldIfTransparentUnion(Ty); 5711 5712 // Handle illegal vector types here. 5713 if (isIllegalVectorType(Ty)) { 5714 uint64_t Size = getContext().getTypeSize(Ty); 5715 if (Size <= 32) { 5716 llvm::Type *ResType = 5717 llvm::Type::getInt32Ty(getVMContext()); 5718 return ABIArgInfo::getDirect(ResType); 5719 } 5720 if (Size == 64) { 5721 llvm::Type *ResType = llvm::VectorType::get( 5722 llvm::Type::getInt32Ty(getVMContext()), 2); 5723 return ABIArgInfo::getDirect(ResType); 5724 } 5725 if (Size == 128) { 5726 llvm::Type *ResType = llvm::VectorType::get( 5727 llvm::Type::getInt32Ty(getVMContext()), 4); 5728 return ABIArgInfo::getDirect(ResType); 5729 } 5730 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5731 } 5732 5733 // __fp16 gets passed as if it were an int or float, but with the top 16 bits 5734 // unspecified. This is not done for OpenCL as it handles the half type 5735 // natively, and does not need to interwork with AAPCS code. 5736 if (Ty->isHalfType() && !getContext().getLangOpts().NativeHalfArgsAndReturns) { 5737 llvm::Type *ResType = IsEffectivelyAAPCS_VFP ? 5738 llvm::Type::getFloatTy(getVMContext()) : 5739 llvm::Type::getInt32Ty(getVMContext()); 5740 return ABIArgInfo::getDirect(ResType); 5741 } 5742 5743 if (!isAggregateTypeForABI(Ty)) { 5744 // Treat an enum type as its underlying type. 5745 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 5746 Ty = EnumTy->getDecl()->getIntegerType(); 5747 } 5748 5749 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend() 5750 : ABIArgInfo::getDirect()); 5751 } 5752 5753 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 5754 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 5755 } 5756 5757 // Ignore empty records. 5758 if (isEmptyRecord(getContext(), Ty, true)) 5759 return ABIArgInfo::getIgnore(); 5760 5761 if (IsEffectivelyAAPCS_VFP) { 5762 // Homogeneous Aggregates need to be expanded when we can fit the aggregate 5763 // into VFP registers. 5764 const Type *Base = nullptr; 5765 uint64_t Members = 0; 5766 if (isHomogeneousAggregate(Ty, Base, Members)) { 5767 assert(Base && "Base class should be set for homogeneous aggregate"); 5768 // Base can be a floating-point or a vector. 5769 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); 5770 } 5771 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 5772 // WatchOS does have homogeneous aggregates. Note that we intentionally use 5773 // this convention even for a variadic function: the backend will use GPRs 5774 // if needed. 5775 const Type *Base = nullptr; 5776 uint64_t Members = 0; 5777 if (isHomogeneousAggregate(Ty, Base, Members)) { 5778 assert(Base && Members <= 4 && "unexpected homogeneous aggregate"); 5779 llvm::Type *Ty = 5780 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members); 5781 return ABIArgInfo::getDirect(Ty, 0, nullptr, false); 5782 } 5783 } 5784 5785 if (getABIKind() == ARMABIInfo::AAPCS16_VFP && 5786 getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) { 5787 // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're 5788 // bigger than 128-bits, they get placed in space allocated by the caller, 5789 // and a pointer is passed. 5790 return ABIArgInfo::getIndirect( 5791 CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false); 5792 } 5793 5794 // Support byval for ARM. 5795 // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at 5796 // most 8-byte. We realign the indirect argument if type alignment is bigger 5797 // than ABI alignment. 5798 uint64_t ABIAlign = 4; 5799 uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8; 5800 if (getABIKind() == ARMABIInfo::AAPCS_VFP || 5801 getABIKind() == ARMABIInfo::AAPCS) 5802 ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8); 5803 5804 if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) { 5805 assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval"); 5806 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 5807 /*ByVal=*/true, 5808 /*Realign=*/TyAlign > ABIAlign); 5809 } 5810 5811 // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of 5812 // same size and alignment. 5813 if (getTarget().isRenderScriptTarget()) { 5814 return coerceToIntArray(Ty, getContext(), getVMContext()); 5815 } 5816 5817 // Otherwise, pass by coercing to a structure of the appropriate size. 5818 llvm::Type* ElemTy; 5819 unsigned SizeRegs; 5820 // FIXME: Try to match the types of the arguments more accurately where 5821 // we can. 5822 if (getContext().getTypeAlign(Ty) <= 32) { 5823 ElemTy = llvm::Type::getInt32Ty(getVMContext()); 5824 SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32; 5825 } else { 5826 ElemTy = llvm::Type::getInt64Ty(getVMContext()); 5827 SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64; 5828 } 5829 5830 return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs)); 5831 } 5832 5833 static bool isIntegerLikeType(QualType Ty, ASTContext &Context, 5834 llvm::LLVMContext &VMContext) { 5835 // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure 5836 // is called integer-like if its size is less than or equal to one word, and 5837 // the offset of each of its addressable sub-fields is zero. 5838 5839 uint64_t Size = Context.getTypeSize(Ty); 5840 5841 // Check that the type fits in a word. 5842 if (Size > 32) 5843 return false; 5844 5845 // FIXME: Handle vector types! 5846 if (Ty->isVectorType()) 5847 return false; 5848 5849 // Float types are never treated as "integer like". 5850 if (Ty->isRealFloatingType()) 5851 return false; 5852 5853 // If this is a builtin or pointer type then it is ok. 5854 if (Ty->getAs<BuiltinType>() || Ty->isPointerType()) 5855 return true; 5856 5857 // Small complex integer types are "integer like". 5858 if (const ComplexType *CT = Ty->getAs<ComplexType>()) 5859 return isIntegerLikeType(CT->getElementType(), Context, VMContext); 5860 5861 // Single element and zero sized arrays should be allowed, by the definition 5862 // above, but they are not. 5863 5864 // Otherwise, it must be a record type. 5865 const RecordType *RT = Ty->getAs<RecordType>(); 5866 if (!RT) return false; 5867 5868 // Ignore records with flexible arrays. 5869 const RecordDecl *RD = RT->getDecl(); 5870 if (RD->hasFlexibleArrayMember()) 5871 return false; 5872 5873 // Check that all sub-fields are at offset 0, and are themselves "integer 5874 // like". 5875 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 5876 5877 bool HadField = false; 5878 unsigned idx = 0; 5879 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 5880 i != e; ++i, ++idx) { 5881 const FieldDecl *FD = *i; 5882 5883 // Bit-fields are not addressable, we only need to verify they are "integer 5884 // like". We still have to disallow a subsequent non-bitfield, for example: 5885 // struct { int : 0; int x } 5886 // is non-integer like according to gcc. 5887 if (FD->isBitField()) { 5888 if (!RD->isUnion()) 5889 HadField = true; 5890 5891 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 5892 return false; 5893 5894 continue; 5895 } 5896 5897 // Check if this field is at offset 0. 5898 if (Layout.getFieldOffset(idx) != 0) 5899 return false; 5900 5901 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 5902 return false; 5903 5904 // Only allow at most one field in a structure. This doesn't match the 5905 // wording above, but follows gcc in situations with a field following an 5906 // empty structure. 5907 if (!RD->isUnion()) { 5908 if (HadField) 5909 return false; 5910 5911 HadField = true; 5912 } 5913 } 5914 5915 return true; 5916 } 5917 5918 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, 5919 bool isVariadic) const { 5920 bool IsEffectivelyAAPCS_VFP = 5921 (getABIKind() == AAPCS_VFP || getABIKind() == AAPCS16_VFP) && !isVariadic; 5922 5923 if (RetTy->isVoidType()) 5924 return ABIArgInfo::getIgnore(); 5925 5926 // Large vector types should be returned via memory. 5927 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) { 5928 return getNaturalAlignIndirect(RetTy); 5929 } 5930 5931 // __fp16 gets returned as if it were an int or float, but with the top 16 5932 // bits unspecified. This is not done for OpenCL as it handles the half type 5933 // natively, and does not need to interwork with AAPCS code. 5934 if (RetTy->isHalfType() && !getContext().getLangOpts().NativeHalfArgsAndReturns) { 5935 llvm::Type *ResType = IsEffectivelyAAPCS_VFP ? 5936 llvm::Type::getFloatTy(getVMContext()) : 5937 llvm::Type::getInt32Ty(getVMContext()); 5938 return ABIArgInfo::getDirect(ResType); 5939 } 5940 5941 if (!isAggregateTypeForABI(RetTy)) { 5942 // Treat an enum type as its underlying type. 5943 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5944 RetTy = EnumTy->getDecl()->getIntegerType(); 5945 5946 return RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend() 5947 : ABIArgInfo::getDirect(); 5948 } 5949 5950 // Are we following APCS? 5951 if (getABIKind() == APCS) { 5952 if (isEmptyRecord(getContext(), RetTy, false)) 5953 return ABIArgInfo::getIgnore(); 5954 5955 // Complex types are all returned as packed integers. 5956 // 5957 // FIXME: Consider using 2 x vector types if the back end handles them 5958 // correctly. 5959 if (RetTy->isAnyComplexType()) 5960 return ABIArgInfo::getDirect(llvm::IntegerType::get( 5961 getVMContext(), getContext().getTypeSize(RetTy))); 5962 5963 // Integer like structures are returned in r0. 5964 if (isIntegerLikeType(RetTy, getContext(), getVMContext())) { 5965 // Return in the smallest viable integer type. 5966 uint64_t Size = getContext().getTypeSize(RetTy); 5967 if (Size <= 8) 5968 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 5969 if (Size <= 16) 5970 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 5971 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 5972 } 5973 5974 // Otherwise return in memory. 5975 return getNaturalAlignIndirect(RetTy); 5976 } 5977 5978 // Otherwise this is an AAPCS variant. 5979 5980 if (isEmptyRecord(getContext(), RetTy, true)) 5981 return ABIArgInfo::getIgnore(); 5982 5983 // Check for homogeneous aggregates with AAPCS-VFP. 5984 if (IsEffectivelyAAPCS_VFP) { 5985 const Type *Base = nullptr; 5986 uint64_t Members = 0; 5987 if (isHomogeneousAggregate(RetTy, Base, Members)) { 5988 assert(Base && "Base class should be set for homogeneous aggregate"); 5989 // Homogeneous Aggregates are returned directly. 5990 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); 5991 } 5992 } 5993 5994 // Aggregates <= 4 bytes are returned in r0; other aggregates 5995 // are returned indirectly. 5996 uint64_t Size = getContext().getTypeSize(RetTy); 5997 if (Size <= 32) { 5998 // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of 5999 // same size and alignment. 6000 if (getTarget().isRenderScriptTarget()) { 6001 return coerceToIntArray(RetTy, getContext(), getVMContext()); 6002 } 6003 if (getDataLayout().isBigEndian()) 6004 // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4) 6005 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6006 6007 // Return in the smallest viable integer type. 6008 if (Size <= 8) 6009 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6010 if (Size <= 16) 6011 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6012 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6013 } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) { 6014 llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext()); 6015 llvm::Type *CoerceTy = 6016 llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32); 6017 return ABIArgInfo::getDirect(CoerceTy); 6018 } 6019 6020 return getNaturalAlignIndirect(RetTy); 6021 } 6022 6023 /// isIllegalVector - check whether Ty is an illegal vector type. 6024 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const { 6025 if (const VectorType *VT = Ty->getAs<VectorType> ()) { 6026 if (isAndroid()) { 6027 // Android shipped using Clang 3.1, which supported a slightly different 6028 // vector ABI. The primary differences were that 3-element vector types 6029 // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path 6030 // accepts that legacy behavior for Android only. 6031 // Check whether VT is legal. 6032 unsigned NumElements = VT->getNumElements(); 6033 // NumElements should be power of 2 or equal to 3. 6034 if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3) 6035 return true; 6036 } else { 6037 // Check whether VT is legal. 6038 unsigned NumElements = VT->getNumElements(); 6039 uint64_t Size = getContext().getTypeSize(VT); 6040 // NumElements should be power of 2. 6041 if (!llvm::isPowerOf2_32(NumElements)) 6042 return true; 6043 // Size should be greater than 32 bits. 6044 return Size <= 32; 6045 } 6046 } 6047 return false; 6048 } 6049 6050 bool ARMABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, 6051 llvm::Type *eltTy, 6052 unsigned numElts) const { 6053 if (!llvm::isPowerOf2_32(numElts)) 6054 return false; 6055 unsigned size = getDataLayout().getTypeStoreSizeInBits(eltTy); 6056 if (size > 64) 6057 return false; 6058 if (vectorSize.getQuantity() != 8 && 6059 (vectorSize.getQuantity() != 16 || numElts == 1)) 6060 return false; 6061 return true; 6062 } 6063 6064 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 6065 // Homogeneous aggregates for AAPCS-VFP must have base types of float, 6066 // double, or 64-bit or 128-bit vectors. 6067 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 6068 if (BT->getKind() == BuiltinType::Float || 6069 BT->getKind() == BuiltinType::Double || 6070 BT->getKind() == BuiltinType::LongDouble) 6071 return true; 6072 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 6073 unsigned VecSize = getContext().getTypeSize(VT); 6074 if (VecSize == 64 || VecSize == 128) 6075 return true; 6076 } 6077 return false; 6078 } 6079 6080 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 6081 uint64_t Members) const { 6082 return Members <= 4; 6083 } 6084 6085 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6086 QualType Ty) const { 6087 CharUnits SlotSize = CharUnits::fromQuantity(4); 6088 6089 // Empty records are ignored for parameter passing purposes. 6090 if (isEmptyRecord(getContext(), Ty, true)) { 6091 Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize); 6092 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 6093 return Addr; 6094 } 6095 6096 auto TyInfo = getContext().getTypeInfoInChars(Ty); 6097 CharUnits TyAlignForABI = TyInfo.second; 6098 6099 // Use indirect if size of the illegal vector is bigger than 16 bytes. 6100 bool IsIndirect = false; 6101 const Type *Base = nullptr; 6102 uint64_t Members = 0; 6103 if (TyInfo.first > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) { 6104 IsIndirect = true; 6105 6106 // ARMv7k passes structs bigger than 16 bytes indirectly, in space 6107 // allocated by the caller. 6108 } else if (TyInfo.first > CharUnits::fromQuantity(16) && 6109 getABIKind() == ARMABIInfo::AAPCS16_VFP && 6110 !isHomogeneousAggregate(Ty, Base, Members)) { 6111 IsIndirect = true; 6112 6113 // Otherwise, bound the type's ABI alignment. 6114 // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for 6115 // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte. 6116 // Our callers should be prepared to handle an under-aligned address. 6117 } else if (getABIKind() == ARMABIInfo::AAPCS_VFP || 6118 getABIKind() == ARMABIInfo::AAPCS) { 6119 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 6120 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8)); 6121 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 6122 // ARMv7k allows type alignment up to 16 bytes. 6123 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 6124 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16)); 6125 } else { 6126 TyAlignForABI = CharUnits::fromQuantity(4); 6127 } 6128 TyInfo.second = TyAlignForABI; 6129 6130 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo, 6131 SlotSize, /*AllowHigherAlign*/ true); 6132 } 6133 6134 //===----------------------------------------------------------------------===// 6135 // NVPTX ABI Implementation 6136 //===----------------------------------------------------------------------===// 6137 6138 namespace { 6139 6140 class NVPTXABIInfo : public ABIInfo { 6141 public: 6142 NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 6143 6144 ABIArgInfo classifyReturnType(QualType RetTy) const; 6145 ABIArgInfo classifyArgumentType(QualType Ty) const; 6146 6147 void computeInfo(CGFunctionInfo &FI) const override; 6148 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6149 QualType Ty) const override; 6150 }; 6151 6152 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo { 6153 public: 6154 NVPTXTargetCodeGenInfo(CodeGenTypes &CGT) 6155 : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {} 6156 6157 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6158 CodeGen::CodeGenModule &M, 6159 ForDefinition_t IsForDefinition) const override; 6160 6161 private: 6162 // Adds a NamedMDNode with F, Name, and Operand as operands, and adds the 6163 // resulting MDNode to the nvvm.annotations MDNode. 6164 static void addNVVMMetadata(llvm::Function *F, StringRef Name, int Operand); 6165 }; 6166 6167 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const { 6168 if (RetTy->isVoidType()) 6169 return ABIArgInfo::getIgnore(); 6170 6171 // note: this is different from default ABI 6172 if (!RetTy->isScalarType()) 6173 return ABIArgInfo::getDirect(); 6174 6175 // Treat an enum type as its underlying type. 6176 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 6177 RetTy = EnumTy->getDecl()->getIntegerType(); 6178 6179 return (RetTy->isPromotableIntegerType() ? 6180 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 6181 } 6182 6183 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const { 6184 // Treat an enum type as its underlying type. 6185 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 6186 Ty = EnumTy->getDecl()->getIntegerType(); 6187 6188 // Return aggregates type as indirect by value 6189 if (isAggregateTypeForABI(Ty)) 6190 return getNaturalAlignIndirect(Ty, /* byval */ true); 6191 6192 return (Ty->isPromotableIntegerType() ? 6193 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 6194 } 6195 6196 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const { 6197 if (!getCXXABI().classifyReturnType(FI)) 6198 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 6199 for (auto &I : FI.arguments()) 6200 I.info = classifyArgumentType(I.type); 6201 6202 // Always honor user-specified calling convention. 6203 if (FI.getCallingConvention() != llvm::CallingConv::C) 6204 return; 6205 6206 FI.setEffectiveCallingConvention(getRuntimeCC()); 6207 } 6208 6209 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6210 QualType Ty) const { 6211 llvm_unreachable("NVPTX does not support varargs"); 6212 } 6213 6214 void NVPTXTargetCodeGenInfo::setTargetAttributes( 6215 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M, 6216 ForDefinition_t IsForDefinition) const { 6217 if (!IsForDefinition) 6218 return; 6219 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 6220 if (!FD) return; 6221 6222 llvm::Function *F = cast<llvm::Function>(GV); 6223 6224 // Perform special handling in OpenCL mode 6225 if (M.getLangOpts().OpenCL) { 6226 // Use OpenCL function attributes to check for kernel functions 6227 // By default, all functions are device functions 6228 if (FD->hasAttr<OpenCLKernelAttr>()) { 6229 // OpenCL __kernel functions get kernel metadata 6230 // Create !{<func-ref>, metadata !"kernel", i32 1} node 6231 addNVVMMetadata(F, "kernel", 1); 6232 // And kernel functions are not subject to inlining 6233 F->addFnAttr(llvm::Attribute::NoInline); 6234 } 6235 } 6236 6237 // Perform special handling in CUDA mode. 6238 if (M.getLangOpts().CUDA) { 6239 // CUDA __global__ functions get a kernel metadata entry. Since 6240 // __global__ functions cannot be called from the device, we do not 6241 // need to set the noinline attribute. 6242 if (FD->hasAttr<CUDAGlobalAttr>()) { 6243 // Create !{<func-ref>, metadata !"kernel", i32 1} node 6244 addNVVMMetadata(F, "kernel", 1); 6245 } 6246 if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) { 6247 // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node 6248 llvm::APSInt MaxThreads(32); 6249 MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext()); 6250 if (MaxThreads > 0) 6251 addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue()); 6252 6253 // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was 6254 // not specified in __launch_bounds__ or if the user specified a 0 value, 6255 // we don't have to add a PTX directive. 6256 if (Attr->getMinBlocks()) { 6257 llvm::APSInt MinBlocks(32); 6258 MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext()); 6259 if (MinBlocks > 0) 6260 // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node 6261 addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue()); 6262 } 6263 } 6264 } 6265 } 6266 6267 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::Function *F, StringRef Name, 6268 int Operand) { 6269 llvm::Module *M = F->getParent(); 6270 llvm::LLVMContext &Ctx = M->getContext(); 6271 6272 // Get "nvvm.annotations" metadata node 6273 llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations"); 6274 6275 llvm::Metadata *MDVals[] = { 6276 llvm::ConstantAsMetadata::get(F), llvm::MDString::get(Ctx, Name), 6277 llvm::ConstantAsMetadata::get( 6278 llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))}; 6279 // Append metadata to nvvm.annotations 6280 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 6281 } 6282 } 6283 6284 //===----------------------------------------------------------------------===// 6285 // SystemZ ABI Implementation 6286 //===----------------------------------------------------------------------===// 6287 6288 namespace { 6289 6290 class SystemZABIInfo : public SwiftABIInfo { 6291 bool HasVector; 6292 6293 public: 6294 SystemZABIInfo(CodeGenTypes &CGT, bool HV) 6295 : SwiftABIInfo(CGT), HasVector(HV) {} 6296 6297 bool isPromotableIntegerType(QualType Ty) const; 6298 bool isCompoundType(QualType Ty) const; 6299 bool isVectorArgumentType(QualType Ty) const; 6300 bool isFPArgumentType(QualType Ty) const; 6301 QualType GetSingleElementType(QualType Ty) const; 6302 6303 ABIArgInfo classifyReturnType(QualType RetTy) const; 6304 ABIArgInfo classifyArgumentType(QualType ArgTy) const; 6305 6306 void computeInfo(CGFunctionInfo &FI) const override { 6307 if (!getCXXABI().classifyReturnType(FI)) 6308 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 6309 for (auto &I : FI.arguments()) 6310 I.info = classifyArgumentType(I.type); 6311 } 6312 6313 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6314 QualType Ty) const override; 6315 6316 bool shouldPassIndirectlyForSwift(CharUnits totalSize, 6317 ArrayRef<llvm::Type*> scalars, 6318 bool asReturnValue) const override { 6319 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 6320 } 6321 bool isSwiftErrorInRegister() const override { 6322 return false; 6323 } 6324 }; 6325 6326 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo { 6327 public: 6328 SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector) 6329 : TargetCodeGenInfo(new SystemZABIInfo(CGT, HasVector)) {} 6330 }; 6331 6332 } 6333 6334 bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const { 6335 // Treat an enum type as its underlying type. 6336 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 6337 Ty = EnumTy->getDecl()->getIntegerType(); 6338 6339 // Promotable integer types are required to be promoted by the ABI. 6340 if (Ty->isPromotableIntegerType()) 6341 return true; 6342 6343 // 32-bit values must also be promoted. 6344 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 6345 switch (BT->getKind()) { 6346 case BuiltinType::Int: 6347 case BuiltinType::UInt: 6348 return true; 6349 default: 6350 return false; 6351 } 6352 return false; 6353 } 6354 6355 bool SystemZABIInfo::isCompoundType(QualType Ty) const { 6356 return (Ty->isAnyComplexType() || 6357 Ty->isVectorType() || 6358 isAggregateTypeForABI(Ty)); 6359 } 6360 6361 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const { 6362 return (HasVector && 6363 Ty->isVectorType() && 6364 getContext().getTypeSize(Ty) <= 128); 6365 } 6366 6367 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const { 6368 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 6369 switch (BT->getKind()) { 6370 case BuiltinType::Float: 6371 case BuiltinType::Double: 6372 return true; 6373 default: 6374 return false; 6375 } 6376 6377 return false; 6378 } 6379 6380 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const { 6381 if (const RecordType *RT = Ty->getAsStructureType()) { 6382 const RecordDecl *RD = RT->getDecl(); 6383 QualType Found; 6384 6385 // If this is a C++ record, check the bases first. 6386 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 6387 for (const auto &I : CXXRD->bases()) { 6388 QualType Base = I.getType(); 6389 6390 // Empty bases don't affect things either way. 6391 if (isEmptyRecord(getContext(), Base, true)) 6392 continue; 6393 6394 if (!Found.isNull()) 6395 return Ty; 6396 Found = GetSingleElementType(Base); 6397 } 6398 6399 // Check the fields. 6400 for (const auto *FD : RD->fields()) { 6401 // For compatibility with GCC, ignore empty bitfields in C++ mode. 6402 // Unlike isSingleElementStruct(), empty structure and array fields 6403 // do count. So do anonymous bitfields that aren't zero-sized. 6404 if (getContext().getLangOpts().CPlusPlus && 6405 FD->isBitField() && FD->getBitWidthValue(getContext()) == 0) 6406 continue; 6407 6408 // Unlike isSingleElementStruct(), arrays do not count. 6409 // Nested structures still do though. 6410 if (!Found.isNull()) 6411 return Ty; 6412 Found = GetSingleElementType(FD->getType()); 6413 } 6414 6415 // Unlike isSingleElementStruct(), trailing padding is allowed. 6416 // An 8-byte aligned struct s { float f; } is passed as a double. 6417 if (!Found.isNull()) 6418 return Found; 6419 } 6420 6421 return Ty; 6422 } 6423 6424 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6425 QualType Ty) const { 6426 // Assume that va_list type is correct; should be pointer to LLVM type: 6427 // struct { 6428 // i64 __gpr; 6429 // i64 __fpr; 6430 // i8 *__overflow_arg_area; 6431 // i8 *__reg_save_area; 6432 // }; 6433 6434 // Every non-vector argument occupies 8 bytes and is passed by preference 6435 // in either GPRs or FPRs. Vector arguments occupy 8 or 16 bytes and are 6436 // always passed on the stack. 6437 Ty = getContext().getCanonicalType(Ty); 6438 auto TyInfo = getContext().getTypeInfoInChars(Ty); 6439 llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty); 6440 llvm::Type *DirectTy = ArgTy; 6441 ABIArgInfo AI = classifyArgumentType(Ty); 6442 bool IsIndirect = AI.isIndirect(); 6443 bool InFPRs = false; 6444 bool IsVector = false; 6445 CharUnits UnpaddedSize; 6446 CharUnits DirectAlign; 6447 if (IsIndirect) { 6448 DirectTy = llvm::PointerType::getUnqual(DirectTy); 6449 UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8); 6450 } else { 6451 if (AI.getCoerceToType()) 6452 ArgTy = AI.getCoerceToType(); 6453 InFPRs = ArgTy->isFloatTy() || ArgTy->isDoubleTy(); 6454 IsVector = ArgTy->isVectorTy(); 6455 UnpaddedSize = TyInfo.first; 6456 DirectAlign = TyInfo.second; 6457 } 6458 CharUnits PaddedSize = CharUnits::fromQuantity(8); 6459 if (IsVector && UnpaddedSize > PaddedSize) 6460 PaddedSize = CharUnits::fromQuantity(16); 6461 assert((UnpaddedSize <= PaddedSize) && "Invalid argument size."); 6462 6463 CharUnits Padding = (PaddedSize - UnpaddedSize); 6464 6465 llvm::Type *IndexTy = CGF.Int64Ty; 6466 llvm::Value *PaddedSizeV = 6467 llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity()); 6468 6469 if (IsVector) { 6470 // Work out the address of a vector argument on the stack. 6471 // Vector arguments are always passed in the high bits of a 6472 // single (8 byte) or double (16 byte) stack slot. 6473 Address OverflowArgAreaPtr = 6474 CGF.Builder.CreateStructGEP(VAListAddr, 2, CharUnits::fromQuantity(16), 6475 "overflow_arg_area_ptr"); 6476 Address OverflowArgArea = 6477 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 6478 TyInfo.second); 6479 Address MemAddr = 6480 CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr"); 6481 6482 // Update overflow_arg_area_ptr pointer 6483 llvm::Value *NewOverflowArgArea = 6484 CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV, 6485 "overflow_arg_area"); 6486 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 6487 6488 return MemAddr; 6489 } 6490 6491 assert(PaddedSize.getQuantity() == 8); 6492 6493 unsigned MaxRegs, RegCountField, RegSaveIndex; 6494 CharUnits RegPadding; 6495 if (InFPRs) { 6496 MaxRegs = 4; // Maximum of 4 FPR arguments 6497 RegCountField = 1; // __fpr 6498 RegSaveIndex = 16; // save offset for f0 6499 RegPadding = CharUnits(); // floats are passed in the high bits of an FPR 6500 } else { 6501 MaxRegs = 5; // Maximum of 5 GPR arguments 6502 RegCountField = 0; // __gpr 6503 RegSaveIndex = 2; // save offset for r2 6504 RegPadding = Padding; // values are passed in the low bits of a GPR 6505 } 6506 6507 Address RegCountPtr = CGF.Builder.CreateStructGEP( 6508 VAListAddr, RegCountField, RegCountField * CharUnits::fromQuantity(8), 6509 "reg_count_ptr"); 6510 llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count"); 6511 llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs); 6512 llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV, 6513 "fits_in_regs"); 6514 6515 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 6516 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 6517 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 6518 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 6519 6520 // Emit code to load the value if it was passed in registers. 6521 CGF.EmitBlock(InRegBlock); 6522 6523 // Work out the address of an argument register. 6524 llvm::Value *ScaledRegCount = 6525 CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count"); 6526 llvm::Value *RegBase = 6527 llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity() 6528 + RegPadding.getQuantity()); 6529 llvm::Value *RegOffset = 6530 CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset"); 6531 Address RegSaveAreaPtr = 6532 CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(24), 6533 "reg_save_area_ptr"); 6534 llvm::Value *RegSaveArea = 6535 CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area"); 6536 Address RawRegAddr(CGF.Builder.CreateGEP(RegSaveArea, RegOffset, 6537 "raw_reg_addr"), 6538 PaddedSize); 6539 Address RegAddr = 6540 CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr"); 6541 6542 // Update the register count 6543 llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1); 6544 llvm::Value *NewRegCount = 6545 CGF.Builder.CreateAdd(RegCount, One, "reg_count"); 6546 CGF.Builder.CreateStore(NewRegCount, RegCountPtr); 6547 CGF.EmitBranch(ContBlock); 6548 6549 // Emit code to load the value if it was passed in memory. 6550 CGF.EmitBlock(InMemBlock); 6551 6552 // Work out the address of a stack argument. 6553 Address OverflowArgAreaPtr = CGF.Builder.CreateStructGEP( 6554 VAListAddr, 2, CharUnits::fromQuantity(16), "overflow_arg_area_ptr"); 6555 Address OverflowArgArea = 6556 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 6557 PaddedSize); 6558 Address RawMemAddr = 6559 CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr"); 6560 Address MemAddr = 6561 CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr"); 6562 6563 // Update overflow_arg_area_ptr pointer 6564 llvm::Value *NewOverflowArgArea = 6565 CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV, 6566 "overflow_arg_area"); 6567 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 6568 CGF.EmitBranch(ContBlock); 6569 6570 // Return the appropriate result. 6571 CGF.EmitBlock(ContBlock); 6572 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 6573 MemAddr, InMemBlock, "va_arg.addr"); 6574 6575 if (IsIndirect) 6576 ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"), 6577 TyInfo.second); 6578 6579 return ResAddr; 6580 } 6581 6582 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const { 6583 if (RetTy->isVoidType()) 6584 return ABIArgInfo::getIgnore(); 6585 if (isVectorArgumentType(RetTy)) 6586 return ABIArgInfo::getDirect(); 6587 if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64) 6588 return getNaturalAlignIndirect(RetTy); 6589 return (isPromotableIntegerType(RetTy) ? 6590 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 6591 } 6592 6593 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const { 6594 // Handle the generic C++ ABI. 6595 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 6596 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 6597 6598 // Integers and enums are extended to full register width. 6599 if (isPromotableIntegerType(Ty)) 6600 return ABIArgInfo::getExtend(); 6601 6602 // Handle vector types and vector-like structure types. Note that 6603 // as opposed to float-like structure types, we do not allow any 6604 // padding for vector-like structures, so verify the sizes match. 6605 uint64_t Size = getContext().getTypeSize(Ty); 6606 QualType SingleElementTy = GetSingleElementType(Ty); 6607 if (isVectorArgumentType(SingleElementTy) && 6608 getContext().getTypeSize(SingleElementTy) == Size) 6609 return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy)); 6610 6611 // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly. 6612 if (Size != 8 && Size != 16 && Size != 32 && Size != 64) 6613 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6614 6615 // Handle small structures. 6616 if (const RecordType *RT = Ty->getAs<RecordType>()) { 6617 // Structures with flexible arrays have variable length, so really 6618 // fail the size test above. 6619 const RecordDecl *RD = RT->getDecl(); 6620 if (RD->hasFlexibleArrayMember()) 6621 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6622 6623 // The structure is passed as an unextended integer, a float, or a double. 6624 llvm::Type *PassTy; 6625 if (isFPArgumentType(SingleElementTy)) { 6626 assert(Size == 32 || Size == 64); 6627 if (Size == 32) 6628 PassTy = llvm::Type::getFloatTy(getVMContext()); 6629 else 6630 PassTy = llvm::Type::getDoubleTy(getVMContext()); 6631 } else 6632 PassTy = llvm::IntegerType::get(getVMContext(), Size); 6633 return ABIArgInfo::getDirect(PassTy); 6634 } 6635 6636 // Non-structure compounds are passed indirectly. 6637 if (isCompoundType(Ty)) 6638 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6639 6640 return ABIArgInfo::getDirect(nullptr); 6641 } 6642 6643 //===----------------------------------------------------------------------===// 6644 // MSP430 ABI Implementation 6645 //===----------------------------------------------------------------------===// 6646 6647 namespace { 6648 6649 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo { 6650 public: 6651 MSP430TargetCodeGenInfo(CodeGenTypes &CGT) 6652 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 6653 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6654 CodeGen::CodeGenModule &M, 6655 ForDefinition_t IsForDefinition) const override; 6656 }; 6657 6658 } 6659 6660 void MSP430TargetCodeGenInfo::setTargetAttributes( 6661 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M, 6662 ForDefinition_t IsForDefinition) const { 6663 if (!IsForDefinition) 6664 return; 6665 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 6666 if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) { 6667 // Handle 'interrupt' attribute: 6668 llvm::Function *F = cast<llvm::Function>(GV); 6669 6670 // Step 1: Set ISR calling convention. 6671 F->setCallingConv(llvm::CallingConv::MSP430_INTR); 6672 6673 // Step 2: Add attributes goodness. 6674 F->addFnAttr(llvm::Attribute::NoInline); 6675 6676 // Step 3: Emit ISR vector alias. 6677 unsigned Num = attr->getNumber() / 2; 6678 llvm::GlobalAlias::create(llvm::Function::ExternalLinkage, 6679 "__isr_" + Twine(Num), F); 6680 } 6681 } 6682 } 6683 6684 //===----------------------------------------------------------------------===// 6685 // MIPS ABI Implementation. This works for both little-endian and 6686 // big-endian variants. 6687 //===----------------------------------------------------------------------===// 6688 6689 namespace { 6690 class MipsABIInfo : public ABIInfo { 6691 bool IsO32; 6692 unsigned MinABIStackAlignInBytes, StackAlignInBytes; 6693 void CoerceToIntArgs(uint64_t TySize, 6694 SmallVectorImpl<llvm::Type *> &ArgList) const; 6695 llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const; 6696 llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const; 6697 llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const; 6698 public: 6699 MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) : 6700 ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8), 6701 StackAlignInBytes(IsO32 ? 8 : 16) {} 6702 6703 ABIArgInfo classifyReturnType(QualType RetTy) const; 6704 ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const; 6705 void computeInfo(CGFunctionInfo &FI) const override; 6706 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6707 QualType Ty) const override; 6708 bool shouldSignExtUnsignedType(QualType Ty) const override; 6709 }; 6710 6711 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo { 6712 unsigned SizeOfUnwindException; 6713 public: 6714 MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32) 6715 : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)), 6716 SizeOfUnwindException(IsO32 ? 24 : 32) {} 6717 6718 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 6719 return 29; 6720 } 6721 6722 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6723 CodeGen::CodeGenModule &CGM, 6724 ForDefinition_t IsForDefinition) const override { 6725 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 6726 if (!FD) return; 6727 llvm::Function *Fn = cast<llvm::Function>(GV); 6728 6729 if (FD->hasAttr<MipsLongCallAttr>()) 6730 Fn->addFnAttr("long-call"); 6731 else if (FD->hasAttr<MipsShortCallAttr>()) 6732 Fn->addFnAttr("short-call"); 6733 6734 // Other attributes do not have a meaning for declarations. 6735 if (!IsForDefinition) 6736 return; 6737 6738 if (FD->hasAttr<Mips16Attr>()) { 6739 Fn->addFnAttr("mips16"); 6740 } 6741 else if (FD->hasAttr<NoMips16Attr>()) { 6742 Fn->addFnAttr("nomips16"); 6743 } 6744 6745 if (FD->hasAttr<MicroMipsAttr>()) 6746 Fn->addFnAttr("micromips"); 6747 else if (FD->hasAttr<NoMicroMipsAttr>()) 6748 Fn->addFnAttr("nomicromips"); 6749 6750 const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>(); 6751 if (!Attr) 6752 return; 6753 6754 const char *Kind; 6755 switch (Attr->getInterrupt()) { 6756 case MipsInterruptAttr::eic: Kind = "eic"; break; 6757 case MipsInterruptAttr::sw0: Kind = "sw0"; break; 6758 case MipsInterruptAttr::sw1: Kind = "sw1"; break; 6759 case MipsInterruptAttr::hw0: Kind = "hw0"; break; 6760 case MipsInterruptAttr::hw1: Kind = "hw1"; break; 6761 case MipsInterruptAttr::hw2: Kind = "hw2"; break; 6762 case MipsInterruptAttr::hw3: Kind = "hw3"; break; 6763 case MipsInterruptAttr::hw4: Kind = "hw4"; break; 6764 case MipsInterruptAttr::hw5: Kind = "hw5"; break; 6765 } 6766 6767 Fn->addFnAttr("interrupt", Kind); 6768 6769 } 6770 6771 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 6772 llvm::Value *Address) const override; 6773 6774 unsigned getSizeOfUnwindException() const override { 6775 return SizeOfUnwindException; 6776 } 6777 }; 6778 } 6779 6780 void MipsABIInfo::CoerceToIntArgs( 6781 uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const { 6782 llvm::IntegerType *IntTy = 6783 llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8); 6784 6785 // Add (TySize / MinABIStackAlignInBytes) args of IntTy. 6786 for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N) 6787 ArgList.push_back(IntTy); 6788 6789 // If necessary, add one more integer type to ArgList. 6790 unsigned R = TySize % (MinABIStackAlignInBytes * 8); 6791 6792 if (R) 6793 ArgList.push_back(llvm::IntegerType::get(getVMContext(), R)); 6794 } 6795 6796 // In N32/64, an aligned double precision floating point field is passed in 6797 // a register. 6798 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const { 6799 SmallVector<llvm::Type*, 8> ArgList, IntArgList; 6800 6801 if (IsO32) { 6802 CoerceToIntArgs(TySize, ArgList); 6803 return llvm::StructType::get(getVMContext(), ArgList); 6804 } 6805 6806 if (Ty->isComplexType()) 6807 return CGT.ConvertType(Ty); 6808 6809 const RecordType *RT = Ty->getAs<RecordType>(); 6810 6811 // Unions/vectors are passed in integer registers. 6812 if (!RT || !RT->isStructureOrClassType()) { 6813 CoerceToIntArgs(TySize, ArgList); 6814 return llvm::StructType::get(getVMContext(), ArgList); 6815 } 6816 6817 const RecordDecl *RD = RT->getDecl(); 6818 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 6819 assert(!(TySize % 8) && "Size of structure must be multiple of 8."); 6820 6821 uint64_t LastOffset = 0; 6822 unsigned idx = 0; 6823 llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64); 6824 6825 // Iterate over fields in the struct/class and check if there are any aligned 6826 // double fields. 6827 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 6828 i != e; ++i, ++idx) { 6829 const QualType Ty = i->getType(); 6830 const BuiltinType *BT = Ty->getAs<BuiltinType>(); 6831 6832 if (!BT || BT->getKind() != BuiltinType::Double) 6833 continue; 6834 6835 uint64_t Offset = Layout.getFieldOffset(idx); 6836 if (Offset % 64) // Ignore doubles that are not aligned. 6837 continue; 6838 6839 // Add ((Offset - LastOffset) / 64) args of type i64. 6840 for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j) 6841 ArgList.push_back(I64); 6842 6843 // Add double type. 6844 ArgList.push_back(llvm::Type::getDoubleTy(getVMContext())); 6845 LastOffset = Offset + 64; 6846 } 6847 6848 CoerceToIntArgs(TySize - LastOffset, IntArgList); 6849 ArgList.append(IntArgList.begin(), IntArgList.end()); 6850 6851 return llvm::StructType::get(getVMContext(), ArgList); 6852 } 6853 6854 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset, 6855 uint64_t Offset) const { 6856 if (OrigOffset + MinABIStackAlignInBytes > Offset) 6857 return nullptr; 6858 6859 return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8); 6860 } 6861 6862 ABIArgInfo 6863 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const { 6864 Ty = useFirstFieldIfTransparentUnion(Ty); 6865 6866 uint64_t OrigOffset = Offset; 6867 uint64_t TySize = getContext().getTypeSize(Ty); 6868 uint64_t Align = getContext().getTypeAlign(Ty) / 8; 6869 6870 Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes), 6871 (uint64_t)StackAlignInBytes); 6872 unsigned CurrOffset = llvm::alignTo(Offset, Align); 6873 Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8; 6874 6875 if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) { 6876 // Ignore empty aggregates. 6877 if (TySize == 0) 6878 return ABIArgInfo::getIgnore(); 6879 6880 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 6881 Offset = OrigOffset + MinABIStackAlignInBytes; 6882 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 6883 } 6884 6885 // If we have reached here, aggregates are passed directly by coercing to 6886 // another structure type. Padding is inserted if the offset of the 6887 // aggregate is unaligned. 6888 ABIArgInfo ArgInfo = 6889 ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0, 6890 getPaddingType(OrigOffset, CurrOffset)); 6891 ArgInfo.setInReg(true); 6892 return ArgInfo; 6893 } 6894 6895 // Treat an enum type as its underlying type. 6896 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 6897 Ty = EnumTy->getDecl()->getIntegerType(); 6898 6899 // All integral types are promoted to the GPR width. 6900 if (Ty->isIntegralOrEnumerationType()) 6901 return ABIArgInfo::getExtend(); 6902 6903 return ABIArgInfo::getDirect( 6904 nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset)); 6905 } 6906 6907 llvm::Type* 6908 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const { 6909 const RecordType *RT = RetTy->getAs<RecordType>(); 6910 SmallVector<llvm::Type*, 8> RTList; 6911 6912 if (RT && RT->isStructureOrClassType()) { 6913 const RecordDecl *RD = RT->getDecl(); 6914 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 6915 unsigned FieldCnt = Layout.getFieldCount(); 6916 6917 // N32/64 returns struct/classes in floating point registers if the 6918 // following conditions are met: 6919 // 1. The size of the struct/class is no larger than 128-bit. 6920 // 2. The struct/class has one or two fields all of which are floating 6921 // point types. 6922 // 3. The offset of the first field is zero (this follows what gcc does). 6923 // 6924 // Any other composite results are returned in integer registers. 6925 // 6926 if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) { 6927 RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end(); 6928 for (; b != e; ++b) { 6929 const BuiltinType *BT = b->getType()->getAs<BuiltinType>(); 6930 6931 if (!BT || !BT->isFloatingPoint()) 6932 break; 6933 6934 RTList.push_back(CGT.ConvertType(b->getType())); 6935 } 6936 6937 if (b == e) 6938 return llvm::StructType::get(getVMContext(), RTList, 6939 RD->hasAttr<PackedAttr>()); 6940 6941 RTList.clear(); 6942 } 6943 } 6944 6945 CoerceToIntArgs(Size, RTList); 6946 return llvm::StructType::get(getVMContext(), RTList); 6947 } 6948 6949 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const { 6950 uint64_t Size = getContext().getTypeSize(RetTy); 6951 6952 if (RetTy->isVoidType()) 6953 return ABIArgInfo::getIgnore(); 6954 6955 // O32 doesn't treat zero-sized structs differently from other structs. 6956 // However, N32/N64 ignores zero sized return values. 6957 if (!IsO32 && Size == 0) 6958 return ABIArgInfo::getIgnore(); 6959 6960 if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) { 6961 if (Size <= 128) { 6962 if (RetTy->isAnyComplexType()) 6963 return ABIArgInfo::getDirect(); 6964 6965 // O32 returns integer vectors in registers and N32/N64 returns all small 6966 // aggregates in registers. 6967 if (!IsO32 || 6968 (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) { 6969 ABIArgInfo ArgInfo = 6970 ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size)); 6971 ArgInfo.setInReg(true); 6972 return ArgInfo; 6973 } 6974 } 6975 6976 return getNaturalAlignIndirect(RetTy); 6977 } 6978 6979 // Treat an enum type as its underlying type. 6980 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 6981 RetTy = EnumTy->getDecl()->getIntegerType(); 6982 6983 return (RetTy->isPromotableIntegerType() ? 6984 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 6985 } 6986 6987 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const { 6988 ABIArgInfo &RetInfo = FI.getReturnInfo(); 6989 if (!getCXXABI().classifyReturnType(FI)) 6990 RetInfo = classifyReturnType(FI.getReturnType()); 6991 6992 // Check if a pointer to an aggregate is passed as a hidden argument. 6993 uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0; 6994 6995 for (auto &I : FI.arguments()) 6996 I.info = classifyArgumentType(I.type, Offset); 6997 } 6998 6999 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7000 QualType OrigTy) const { 7001 QualType Ty = OrigTy; 7002 7003 // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64. 7004 // Pointers are also promoted in the same way but this only matters for N32. 7005 unsigned SlotSizeInBits = IsO32 ? 32 : 64; 7006 unsigned PtrWidth = getTarget().getPointerWidth(0); 7007 bool DidPromote = false; 7008 if ((Ty->isIntegerType() && 7009 getContext().getIntWidth(Ty) < SlotSizeInBits) || 7010 (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) { 7011 DidPromote = true; 7012 Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits, 7013 Ty->isSignedIntegerType()); 7014 } 7015 7016 auto TyInfo = getContext().getTypeInfoInChars(Ty); 7017 7018 // The alignment of things in the argument area is never larger than 7019 // StackAlignInBytes. 7020 TyInfo.second = 7021 std::min(TyInfo.second, CharUnits::fromQuantity(StackAlignInBytes)); 7022 7023 // MinABIStackAlignInBytes is the size of argument slots on the stack. 7024 CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes); 7025 7026 Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 7027 TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true); 7028 7029 7030 // If there was a promotion, "unpromote" into a temporary. 7031 // TODO: can we just use a pointer into a subset of the original slot? 7032 if (DidPromote) { 7033 Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp"); 7034 llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr); 7035 7036 // Truncate down to the right width. 7037 llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType() 7038 : CGF.IntPtrTy); 7039 llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy); 7040 if (OrigTy->isPointerType()) 7041 V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType()); 7042 7043 CGF.Builder.CreateStore(V, Temp); 7044 Addr = Temp; 7045 } 7046 7047 return Addr; 7048 } 7049 7050 bool MipsABIInfo::shouldSignExtUnsignedType(QualType Ty) const { 7051 int TySize = getContext().getTypeSize(Ty); 7052 7053 // MIPS64 ABI requires unsigned 32 bit integers to be sign extended. 7054 if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 7055 return true; 7056 7057 return false; 7058 } 7059 7060 bool 7061 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 7062 llvm::Value *Address) const { 7063 // This information comes from gcc's implementation, which seems to 7064 // as canonical as it gets. 7065 7066 // Everything on MIPS is 4 bytes. Double-precision FP registers 7067 // are aliased to pairs of single-precision FP registers. 7068 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 7069 7070 // 0-31 are the general purpose registers, $0 - $31. 7071 // 32-63 are the floating-point registers, $f0 - $f31. 7072 // 64 and 65 are the multiply/divide registers, $hi and $lo. 7073 // 66 is the (notional, I think) register for signal-handler return. 7074 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65); 7075 7076 // 67-74 are the floating-point status registers, $fcc0 - $fcc7. 7077 // They are one bit wide and ignored here. 7078 7079 // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31. 7080 // (coprocessor 1 is the FP unit) 7081 // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31. 7082 // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31. 7083 // 176-181 are the DSP accumulator registers. 7084 AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181); 7085 return false; 7086 } 7087 7088 //===----------------------------------------------------------------------===// 7089 // AVR ABI Implementation. 7090 //===----------------------------------------------------------------------===// 7091 7092 namespace { 7093 class AVRTargetCodeGenInfo : public TargetCodeGenInfo { 7094 public: 7095 AVRTargetCodeGenInfo(CodeGenTypes &CGT) 7096 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) { } 7097 7098 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7099 CodeGen::CodeGenModule &CGM, 7100 ForDefinition_t IsForDefinition) const override { 7101 if (!IsForDefinition) 7102 return; 7103 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 7104 if (!FD) return; 7105 auto *Fn = cast<llvm::Function>(GV); 7106 7107 if (FD->getAttr<AVRInterruptAttr>()) 7108 Fn->addFnAttr("interrupt"); 7109 7110 if (FD->getAttr<AVRSignalAttr>()) 7111 Fn->addFnAttr("signal"); 7112 } 7113 }; 7114 } 7115 7116 //===----------------------------------------------------------------------===// 7117 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults. 7118 // Currently subclassed only to implement custom OpenCL C function attribute 7119 // handling. 7120 //===----------------------------------------------------------------------===// 7121 7122 namespace { 7123 7124 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo { 7125 public: 7126 TCETargetCodeGenInfo(CodeGenTypes &CGT) 7127 : DefaultTargetCodeGenInfo(CGT) {} 7128 7129 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7130 CodeGen::CodeGenModule &M, 7131 ForDefinition_t IsForDefinition) const override; 7132 }; 7133 7134 void TCETargetCodeGenInfo::setTargetAttributes( 7135 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M, 7136 ForDefinition_t IsForDefinition) const { 7137 if (!IsForDefinition) 7138 return; 7139 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 7140 if (!FD) return; 7141 7142 llvm::Function *F = cast<llvm::Function>(GV); 7143 7144 if (M.getLangOpts().OpenCL) { 7145 if (FD->hasAttr<OpenCLKernelAttr>()) { 7146 // OpenCL C Kernel functions are not subject to inlining 7147 F->addFnAttr(llvm::Attribute::NoInline); 7148 const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>(); 7149 if (Attr) { 7150 // Convert the reqd_work_group_size() attributes to metadata. 7151 llvm::LLVMContext &Context = F->getContext(); 7152 llvm::NamedMDNode *OpenCLMetadata = 7153 M.getModule().getOrInsertNamedMetadata( 7154 "opencl.kernel_wg_size_info"); 7155 7156 SmallVector<llvm::Metadata *, 5> Operands; 7157 Operands.push_back(llvm::ConstantAsMetadata::get(F)); 7158 7159 Operands.push_back( 7160 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 7161 M.Int32Ty, llvm::APInt(32, Attr->getXDim())))); 7162 Operands.push_back( 7163 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 7164 M.Int32Ty, llvm::APInt(32, Attr->getYDim())))); 7165 Operands.push_back( 7166 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 7167 M.Int32Ty, llvm::APInt(32, Attr->getZDim())))); 7168 7169 // Add a boolean constant operand for "required" (true) or "hint" 7170 // (false) for implementing the work_group_size_hint attr later. 7171 // Currently always true as the hint is not yet implemented. 7172 Operands.push_back( 7173 llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context))); 7174 OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands)); 7175 } 7176 } 7177 } 7178 } 7179 7180 } 7181 7182 //===----------------------------------------------------------------------===// 7183 // Hexagon ABI Implementation 7184 //===----------------------------------------------------------------------===// 7185 7186 namespace { 7187 7188 class HexagonABIInfo : public ABIInfo { 7189 7190 7191 public: 7192 HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 7193 7194 private: 7195 7196 ABIArgInfo classifyReturnType(QualType RetTy) const; 7197 ABIArgInfo classifyArgumentType(QualType RetTy) const; 7198 7199 void computeInfo(CGFunctionInfo &FI) const override; 7200 7201 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7202 QualType Ty) const override; 7203 }; 7204 7205 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo { 7206 public: 7207 HexagonTargetCodeGenInfo(CodeGenTypes &CGT) 7208 :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {} 7209 7210 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 7211 return 29; 7212 } 7213 }; 7214 7215 } 7216 7217 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const { 7218 if (!getCXXABI().classifyReturnType(FI)) 7219 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7220 for (auto &I : FI.arguments()) 7221 I.info = classifyArgumentType(I.type); 7222 } 7223 7224 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const { 7225 if (!isAggregateTypeForABI(Ty)) { 7226 // Treat an enum type as its underlying type. 7227 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7228 Ty = EnumTy->getDecl()->getIntegerType(); 7229 7230 return (Ty->isPromotableIntegerType() ? 7231 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 7232 } 7233 7234 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 7235 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7236 7237 // Ignore empty records. 7238 if (isEmptyRecord(getContext(), Ty, true)) 7239 return ABIArgInfo::getIgnore(); 7240 7241 uint64_t Size = getContext().getTypeSize(Ty); 7242 if (Size > 64) 7243 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 7244 // Pass in the smallest viable integer type. 7245 else if (Size > 32) 7246 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); 7247 else if (Size > 16) 7248 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 7249 else if (Size > 8) 7250 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 7251 else 7252 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 7253 } 7254 7255 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const { 7256 if (RetTy->isVoidType()) 7257 return ABIArgInfo::getIgnore(); 7258 7259 // Large vector types should be returned via memory. 7260 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64) 7261 return getNaturalAlignIndirect(RetTy); 7262 7263 if (!isAggregateTypeForABI(RetTy)) { 7264 // Treat an enum type as its underlying type. 7265 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 7266 RetTy = EnumTy->getDecl()->getIntegerType(); 7267 7268 return (RetTy->isPromotableIntegerType() ? 7269 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 7270 } 7271 7272 if (isEmptyRecord(getContext(), RetTy, true)) 7273 return ABIArgInfo::getIgnore(); 7274 7275 // Aggregates <= 8 bytes are returned in r0; other aggregates 7276 // are returned indirectly. 7277 uint64_t Size = getContext().getTypeSize(RetTy); 7278 if (Size <= 64) { 7279 // Return in the smallest viable integer type. 7280 if (Size <= 8) 7281 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 7282 if (Size <= 16) 7283 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 7284 if (Size <= 32) 7285 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 7286 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); 7287 } 7288 7289 return getNaturalAlignIndirect(RetTy, /*ByVal=*/true); 7290 } 7291 7292 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7293 QualType Ty) const { 7294 // FIXME: Someone needs to audit that this handle alignment correctly. 7295 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 7296 getContext().getTypeInfoInChars(Ty), 7297 CharUnits::fromQuantity(4), 7298 /*AllowHigherAlign*/ true); 7299 } 7300 7301 //===----------------------------------------------------------------------===// 7302 // Lanai ABI Implementation 7303 //===----------------------------------------------------------------------===// 7304 7305 namespace { 7306 class LanaiABIInfo : public DefaultABIInfo { 7307 public: 7308 LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 7309 7310 bool shouldUseInReg(QualType Ty, CCState &State) const; 7311 7312 void computeInfo(CGFunctionInfo &FI) const override { 7313 CCState State(FI.getCallingConvention()); 7314 // Lanai uses 4 registers to pass arguments unless the function has the 7315 // regparm attribute set. 7316 if (FI.getHasRegParm()) { 7317 State.FreeRegs = FI.getRegParm(); 7318 } else { 7319 State.FreeRegs = 4; 7320 } 7321 7322 if (!getCXXABI().classifyReturnType(FI)) 7323 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7324 for (auto &I : FI.arguments()) 7325 I.info = classifyArgumentType(I.type, State); 7326 } 7327 7328 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 7329 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 7330 }; 7331 } // end anonymous namespace 7332 7333 bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const { 7334 unsigned Size = getContext().getTypeSize(Ty); 7335 unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U; 7336 7337 if (SizeInRegs == 0) 7338 return false; 7339 7340 if (SizeInRegs > State.FreeRegs) { 7341 State.FreeRegs = 0; 7342 return false; 7343 } 7344 7345 State.FreeRegs -= SizeInRegs; 7346 7347 return true; 7348 } 7349 7350 ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal, 7351 CCState &State) const { 7352 if (!ByVal) { 7353 if (State.FreeRegs) { 7354 --State.FreeRegs; // Non-byval indirects just use one pointer. 7355 return getNaturalAlignIndirectInReg(Ty); 7356 } 7357 return getNaturalAlignIndirect(Ty, false); 7358 } 7359 7360 // Compute the byval alignment. 7361 const unsigned MinABIStackAlignInBytes = 4; 7362 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 7363 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true, 7364 /*Realign=*/TypeAlign > 7365 MinABIStackAlignInBytes); 7366 } 7367 7368 ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty, 7369 CCState &State) const { 7370 // Check with the C++ ABI first. 7371 const RecordType *RT = Ty->getAs<RecordType>(); 7372 if (RT) { 7373 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 7374 if (RAA == CGCXXABI::RAA_Indirect) { 7375 return getIndirectResult(Ty, /*ByVal=*/false, State); 7376 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 7377 return getNaturalAlignIndirect(Ty, /*ByRef=*/true); 7378 } 7379 } 7380 7381 if (isAggregateTypeForABI(Ty)) { 7382 // Structures with flexible arrays are always indirect. 7383 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 7384 return getIndirectResult(Ty, /*ByVal=*/true, State); 7385 7386 // Ignore empty structs/unions. 7387 if (isEmptyRecord(getContext(), Ty, true)) 7388 return ABIArgInfo::getIgnore(); 7389 7390 llvm::LLVMContext &LLVMContext = getVMContext(); 7391 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; 7392 if (SizeInRegs <= State.FreeRegs) { 7393 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 7394 SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32); 7395 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 7396 State.FreeRegs -= SizeInRegs; 7397 return ABIArgInfo::getDirectInReg(Result); 7398 } else { 7399 State.FreeRegs = 0; 7400 } 7401 return getIndirectResult(Ty, true, State); 7402 } 7403 7404 // Treat an enum type as its underlying type. 7405 if (const auto *EnumTy = Ty->getAs<EnumType>()) 7406 Ty = EnumTy->getDecl()->getIntegerType(); 7407 7408 bool InReg = shouldUseInReg(Ty, State); 7409 if (Ty->isPromotableIntegerType()) { 7410 if (InReg) 7411 return ABIArgInfo::getDirectInReg(); 7412 return ABIArgInfo::getExtend(); 7413 } 7414 if (InReg) 7415 return ABIArgInfo::getDirectInReg(); 7416 return ABIArgInfo::getDirect(); 7417 } 7418 7419 namespace { 7420 class LanaiTargetCodeGenInfo : public TargetCodeGenInfo { 7421 public: 7422 LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 7423 : TargetCodeGenInfo(new LanaiABIInfo(CGT)) {} 7424 }; 7425 } 7426 7427 //===----------------------------------------------------------------------===// 7428 // AMDGPU ABI Implementation 7429 //===----------------------------------------------------------------------===// 7430 7431 namespace { 7432 7433 class AMDGPUABIInfo final : public DefaultABIInfo { 7434 private: 7435 static const unsigned MaxNumRegsForArgsRet = 16; 7436 7437 unsigned numRegsForType(QualType Ty) const; 7438 7439 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 7440 bool isHomogeneousAggregateSmallEnough(const Type *Base, 7441 uint64_t Members) const override; 7442 7443 public: 7444 explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) : 7445 DefaultABIInfo(CGT) {} 7446 7447 ABIArgInfo classifyReturnType(QualType RetTy) const; 7448 ABIArgInfo classifyKernelArgumentType(QualType Ty) const; 7449 ABIArgInfo classifyArgumentType(QualType Ty, unsigned &NumRegsLeft) const; 7450 7451 void computeInfo(CGFunctionInfo &FI) const override; 7452 }; 7453 7454 bool AMDGPUABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 7455 return true; 7456 } 7457 7458 bool AMDGPUABIInfo::isHomogeneousAggregateSmallEnough( 7459 const Type *Base, uint64_t Members) const { 7460 uint32_t NumRegs = (getContext().getTypeSize(Base) + 31) / 32; 7461 7462 // Homogeneous Aggregates may occupy at most 16 registers. 7463 return Members * NumRegs <= MaxNumRegsForArgsRet; 7464 } 7465 7466 /// Estimate number of registers the type will use when passed in registers. 7467 unsigned AMDGPUABIInfo::numRegsForType(QualType Ty) const { 7468 unsigned NumRegs = 0; 7469 7470 if (const VectorType *VT = Ty->getAs<VectorType>()) { 7471 // Compute from the number of elements. The reported size is based on the 7472 // in-memory size, which includes the padding 4th element for 3-vectors. 7473 QualType EltTy = VT->getElementType(); 7474 unsigned EltSize = getContext().getTypeSize(EltTy); 7475 7476 // 16-bit element vectors should be passed as packed. 7477 if (EltSize == 16) 7478 return (VT->getNumElements() + 1) / 2; 7479 7480 unsigned EltNumRegs = (EltSize + 31) / 32; 7481 return EltNumRegs * VT->getNumElements(); 7482 } 7483 7484 if (const RecordType *RT = Ty->getAs<RecordType>()) { 7485 const RecordDecl *RD = RT->getDecl(); 7486 assert(!RD->hasFlexibleArrayMember()); 7487 7488 for (const FieldDecl *Field : RD->fields()) { 7489 QualType FieldTy = Field->getType(); 7490 NumRegs += numRegsForType(FieldTy); 7491 } 7492 7493 return NumRegs; 7494 } 7495 7496 return (getContext().getTypeSize(Ty) + 31) / 32; 7497 } 7498 7499 void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const { 7500 llvm::CallingConv::ID CC = FI.getCallingConvention(); 7501 7502 if (!getCXXABI().classifyReturnType(FI)) 7503 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7504 7505 unsigned NumRegsLeft = MaxNumRegsForArgsRet; 7506 for (auto &Arg : FI.arguments()) { 7507 if (CC == llvm::CallingConv::AMDGPU_KERNEL) { 7508 Arg.info = classifyKernelArgumentType(Arg.type); 7509 } else { 7510 Arg.info = classifyArgumentType(Arg.type, NumRegsLeft); 7511 } 7512 } 7513 } 7514 7515 ABIArgInfo AMDGPUABIInfo::classifyReturnType(QualType RetTy) const { 7516 if (isAggregateTypeForABI(RetTy)) { 7517 // Records with non-trivial destructors/copy-constructors should not be 7518 // returned by value. 7519 if (!getRecordArgABI(RetTy, getCXXABI())) { 7520 // Ignore empty structs/unions. 7521 if (isEmptyRecord(getContext(), RetTy, true)) 7522 return ABIArgInfo::getIgnore(); 7523 7524 // Lower single-element structs to just return a regular value. 7525 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 7526 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 7527 7528 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 7529 const RecordDecl *RD = RT->getDecl(); 7530 if (RD->hasFlexibleArrayMember()) 7531 return DefaultABIInfo::classifyReturnType(RetTy); 7532 } 7533 7534 // Pack aggregates <= 4 bytes into single VGPR or pair. 7535 uint64_t Size = getContext().getTypeSize(RetTy); 7536 if (Size <= 16) 7537 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 7538 7539 if (Size <= 32) 7540 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 7541 7542 if (Size <= 64) { 7543 llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext()); 7544 return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2)); 7545 } 7546 7547 if (numRegsForType(RetTy) <= MaxNumRegsForArgsRet) 7548 return ABIArgInfo::getDirect(); 7549 } 7550 } 7551 7552 // Otherwise just do the default thing. 7553 return DefaultABIInfo::classifyReturnType(RetTy); 7554 } 7555 7556 /// For kernels all parameters are really passed in a special buffer. It doesn't 7557 /// make sense to pass anything byval, so everything must be direct. 7558 ABIArgInfo AMDGPUABIInfo::classifyKernelArgumentType(QualType Ty) const { 7559 Ty = useFirstFieldIfTransparentUnion(Ty); 7560 7561 // TODO: Can we omit empty structs? 7562 7563 // Coerce single element structs to its element. 7564 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 7565 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 7566 7567 // If we set CanBeFlattened to true, CodeGen will expand the struct to its 7568 // individual elements, which confuses the Clover OpenCL backend; therefore we 7569 // have to set it to false here. Other args of getDirect() are just defaults. 7570 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); 7571 } 7572 7573 ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty, 7574 unsigned &NumRegsLeft) const { 7575 assert(NumRegsLeft <= MaxNumRegsForArgsRet && "register estimate underflow"); 7576 7577 Ty = useFirstFieldIfTransparentUnion(Ty); 7578 7579 if (isAggregateTypeForABI(Ty)) { 7580 // Records with non-trivial destructors/copy-constructors should not be 7581 // passed by value. 7582 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 7583 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7584 7585 // Ignore empty structs/unions. 7586 if (isEmptyRecord(getContext(), Ty, true)) 7587 return ABIArgInfo::getIgnore(); 7588 7589 // Lower single-element structs to just pass a regular value. TODO: We 7590 // could do reasonable-size multiple-element structs too, using getExpand(), 7591 // though watch out for things like bitfields. 7592 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 7593 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 7594 7595 if (const RecordType *RT = Ty->getAs<RecordType>()) { 7596 const RecordDecl *RD = RT->getDecl(); 7597 if (RD->hasFlexibleArrayMember()) 7598 return DefaultABIInfo::classifyArgumentType(Ty); 7599 } 7600 7601 // Pack aggregates <= 8 bytes into single VGPR or pair. 7602 uint64_t Size = getContext().getTypeSize(Ty); 7603 if (Size <= 64) { 7604 unsigned NumRegs = (Size + 31) / 32; 7605 NumRegsLeft -= std::min(NumRegsLeft, NumRegs); 7606 7607 if (Size <= 16) 7608 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 7609 7610 if (Size <= 32) 7611 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 7612 7613 // XXX: Should this be i64 instead, and should the limit increase? 7614 llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext()); 7615 return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2)); 7616 } 7617 7618 if (NumRegsLeft > 0) { 7619 unsigned NumRegs = numRegsForType(Ty); 7620 if (NumRegsLeft >= NumRegs) { 7621 NumRegsLeft -= NumRegs; 7622 return ABIArgInfo::getDirect(); 7623 } 7624 } 7625 } 7626 7627 // Otherwise just do the default thing. 7628 ABIArgInfo ArgInfo = DefaultABIInfo::classifyArgumentType(Ty); 7629 if (!ArgInfo.isIndirect()) { 7630 unsigned NumRegs = numRegsForType(Ty); 7631 NumRegsLeft -= std::min(NumRegs, NumRegsLeft); 7632 } 7633 7634 return ArgInfo; 7635 } 7636 7637 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo { 7638 public: 7639 AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT) 7640 : TargetCodeGenInfo(new AMDGPUABIInfo(CGT)) {} 7641 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7642 CodeGen::CodeGenModule &M, 7643 ForDefinition_t IsForDefinition) const override; 7644 unsigned getOpenCLKernelCallingConv() const override; 7645 7646 llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM, 7647 llvm::PointerType *T, QualType QT) const override; 7648 7649 LangAS getASTAllocaAddressSpace() const override { 7650 return getLangASFromTargetAS( 7651 getABIInfo().getDataLayout().getAllocaAddrSpace()); 7652 } 7653 LangAS getGlobalVarAddressSpace(CodeGenModule &CGM, 7654 const VarDecl *D) const override; 7655 llvm::SyncScope::ID getLLVMSyncScopeID(SyncScope S, 7656 llvm::LLVMContext &C) const override; 7657 llvm::Function * 7658 createEnqueuedBlockKernel(CodeGenFunction &CGF, 7659 llvm::Function *BlockInvokeFunc, 7660 llvm::Value *BlockLiteral) const override; 7661 }; 7662 } 7663 7664 void AMDGPUTargetCodeGenInfo::setTargetAttributes( 7665 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M, 7666 ForDefinition_t IsForDefinition) const { 7667 if (!IsForDefinition) 7668 return; 7669 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 7670 if (!FD) 7671 return; 7672 7673 llvm::Function *F = cast<llvm::Function>(GV); 7674 7675 const auto *ReqdWGS = M.getLangOpts().OpenCL ? 7676 FD->getAttr<ReqdWorkGroupSizeAttr>() : nullptr; 7677 const auto *FlatWGS = FD->getAttr<AMDGPUFlatWorkGroupSizeAttr>(); 7678 if (ReqdWGS || FlatWGS) { 7679 unsigned Min = FlatWGS ? FlatWGS->getMin() : 0; 7680 unsigned Max = FlatWGS ? FlatWGS->getMax() : 0; 7681 if (ReqdWGS && Min == 0 && Max == 0) 7682 Min = Max = ReqdWGS->getXDim() * ReqdWGS->getYDim() * ReqdWGS->getZDim(); 7683 7684 if (Min != 0) { 7685 assert(Min <= Max && "Min must be less than or equal Max"); 7686 7687 std::string AttrVal = llvm::utostr(Min) + "," + llvm::utostr(Max); 7688 F->addFnAttr("amdgpu-flat-work-group-size", AttrVal); 7689 } else 7690 assert(Max == 0 && "Max must be zero"); 7691 } 7692 7693 if (const auto *Attr = FD->getAttr<AMDGPUWavesPerEUAttr>()) { 7694 unsigned Min = Attr->getMin(); 7695 unsigned Max = Attr->getMax(); 7696 7697 if (Min != 0) { 7698 assert((Max == 0 || Min <= Max) && "Min must be less than or equal Max"); 7699 7700 std::string AttrVal = llvm::utostr(Min); 7701 if (Max != 0) 7702 AttrVal = AttrVal + "," + llvm::utostr(Max); 7703 F->addFnAttr("amdgpu-waves-per-eu", AttrVal); 7704 } else 7705 assert(Max == 0 && "Max must be zero"); 7706 } 7707 7708 if (const auto *Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) { 7709 unsigned NumSGPR = Attr->getNumSGPR(); 7710 7711 if (NumSGPR != 0) 7712 F->addFnAttr("amdgpu-num-sgpr", llvm::utostr(NumSGPR)); 7713 } 7714 7715 if (const auto *Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) { 7716 uint32_t NumVGPR = Attr->getNumVGPR(); 7717 7718 if (NumVGPR != 0) 7719 F->addFnAttr("amdgpu-num-vgpr", llvm::utostr(NumVGPR)); 7720 } 7721 } 7722 7723 unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 7724 return llvm::CallingConv::AMDGPU_KERNEL; 7725 } 7726 7727 // Currently LLVM assumes null pointers always have value 0, 7728 // which results in incorrectly transformed IR. Therefore, instead of 7729 // emitting null pointers in private and local address spaces, a null 7730 // pointer in generic address space is emitted which is casted to a 7731 // pointer in local or private address space. 7732 llvm::Constant *AMDGPUTargetCodeGenInfo::getNullPointer( 7733 const CodeGen::CodeGenModule &CGM, llvm::PointerType *PT, 7734 QualType QT) const { 7735 if (CGM.getContext().getTargetNullPointerValue(QT) == 0) 7736 return llvm::ConstantPointerNull::get(PT); 7737 7738 auto &Ctx = CGM.getContext(); 7739 auto NPT = llvm::PointerType::get(PT->getElementType(), 7740 Ctx.getTargetAddressSpace(LangAS::opencl_generic)); 7741 return llvm::ConstantExpr::getAddrSpaceCast( 7742 llvm::ConstantPointerNull::get(NPT), PT); 7743 } 7744 7745 LangAS 7746 AMDGPUTargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM, 7747 const VarDecl *D) const { 7748 assert(!CGM.getLangOpts().OpenCL && 7749 !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && 7750 "Address space agnostic languages only"); 7751 LangAS DefaultGlobalAS = getLangASFromTargetAS( 7752 CGM.getContext().getTargetAddressSpace(LangAS::opencl_global)); 7753 if (!D) 7754 return DefaultGlobalAS; 7755 7756 LangAS AddrSpace = D->getType().getAddressSpace(); 7757 assert(AddrSpace == LangAS::Default || isTargetAddressSpace(AddrSpace)); 7758 if (AddrSpace != LangAS::Default) 7759 return AddrSpace; 7760 7761 if (CGM.isTypeConstant(D->getType(), false)) { 7762 if (auto ConstAS = CGM.getTarget().getConstantAddressSpace()) 7763 return ConstAS.getValue(); 7764 } 7765 return DefaultGlobalAS; 7766 } 7767 7768 llvm::SyncScope::ID 7769 AMDGPUTargetCodeGenInfo::getLLVMSyncScopeID(SyncScope S, 7770 llvm::LLVMContext &C) const { 7771 StringRef Name; 7772 switch (S) { 7773 case SyncScope::OpenCLWorkGroup: 7774 Name = "workgroup"; 7775 break; 7776 case SyncScope::OpenCLDevice: 7777 Name = "agent"; 7778 break; 7779 case SyncScope::OpenCLAllSVMDevices: 7780 Name = ""; 7781 break; 7782 case SyncScope::OpenCLSubGroup: 7783 Name = "subgroup"; 7784 } 7785 return C.getOrInsertSyncScopeID(Name); 7786 } 7787 7788 //===----------------------------------------------------------------------===// 7789 // SPARC v8 ABI Implementation. 7790 // Based on the SPARC Compliance Definition version 2.4.1. 7791 // 7792 // Ensures that complex values are passed in registers. 7793 // 7794 namespace { 7795 class SparcV8ABIInfo : public DefaultABIInfo { 7796 public: 7797 SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 7798 7799 private: 7800 ABIArgInfo classifyReturnType(QualType RetTy) const; 7801 void computeInfo(CGFunctionInfo &FI) const override; 7802 }; 7803 } // end anonymous namespace 7804 7805 7806 ABIArgInfo 7807 SparcV8ABIInfo::classifyReturnType(QualType Ty) const { 7808 if (Ty->isAnyComplexType()) { 7809 return ABIArgInfo::getDirect(); 7810 } 7811 else { 7812 return DefaultABIInfo::classifyReturnType(Ty); 7813 } 7814 } 7815 7816 void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const { 7817 7818 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7819 for (auto &Arg : FI.arguments()) 7820 Arg.info = classifyArgumentType(Arg.type); 7821 } 7822 7823 namespace { 7824 class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo { 7825 public: 7826 SparcV8TargetCodeGenInfo(CodeGenTypes &CGT) 7827 : TargetCodeGenInfo(new SparcV8ABIInfo(CGT)) {} 7828 }; 7829 } // end anonymous namespace 7830 7831 //===----------------------------------------------------------------------===// 7832 // SPARC v9 ABI Implementation. 7833 // Based on the SPARC Compliance Definition version 2.4.1. 7834 // 7835 // Function arguments a mapped to a nominal "parameter array" and promoted to 7836 // registers depending on their type. Each argument occupies 8 or 16 bytes in 7837 // the array, structs larger than 16 bytes are passed indirectly. 7838 // 7839 // One case requires special care: 7840 // 7841 // struct mixed { 7842 // int i; 7843 // float f; 7844 // }; 7845 // 7846 // When a struct mixed is passed by value, it only occupies 8 bytes in the 7847 // parameter array, but the int is passed in an integer register, and the float 7848 // is passed in a floating point register. This is represented as two arguments 7849 // with the LLVM IR inreg attribute: 7850 // 7851 // declare void f(i32 inreg %i, float inreg %f) 7852 // 7853 // The code generator will only allocate 4 bytes from the parameter array for 7854 // the inreg arguments. All other arguments are allocated a multiple of 8 7855 // bytes. 7856 // 7857 namespace { 7858 class SparcV9ABIInfo : public ABIInfo { 7859 public: 7860 SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 7861 7862 private: 7863 ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const; 7864 void computeInfo(CGFunctionInfo &FI) const override; 7865 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7866 QualType Ty) const override; 7867 7868 // Coercion type builder for structs passed in registers. The coercion type 7869 // serves two purposes: 7870 // 7871 // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned' 7872 // in registers. 7873 // 2. Expose aligned floating point elements as first-level elements, so the 7874 // code generator knows to pass them in floating point registers. 7875 // 7876 // We also compute the InReg flag which indicates that the struct contains 7877 // aligned 32-bit floats. 7878 // 7879 struct CoerceBuilder { 7880 llvm::LLVMContext &Context; 7881 const llvm::DataLayout &DL; 7882 SmallVector<llvm::Type*, 8> Elems; 7883 uint64_t Size; 7884 bool InReg; 7885 7886 CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl) 7887 : Context(c), DL(dl), Size(0), InReg(false) {} 7888 7889 // Pad Elems with integers until Size is ToSize. 7890 void pad(uint64_t ToSize) { 7891 assert(ToSize >= Size && "Cannot remove elements"); 7892 if (ToSize == Size) 7893 return; 7894 7895 // Finish the current 64-bit word. 7896 uint64_t Aligned = llvm::alignTo(Size, 64); 7897 if (Aligned > Size && Aligned <= ToSize) { 7898 Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size)); 7899 Size = Aligned; 7900 } 7901 7902 // Add whole 64-bit words. 7903 while (Size + 64 <= ToSize) { 7904 Elems.push_back(llvm::Type::getInt64Ty(Context)); 7905 Size += 64; 7906 } 7907 7908 // Final in-word padding. 7909 if (Size < ToSize) { 7910 Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size)); 7911 Size = ToSize; 7912 } 7913 } 7914 7915 // Add a floating point element at Offset. 7916 void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) { 7917 // Unaligned floats are treated as integers. 7918 if (Offset % Bits) 7919 return; 7920 // The InReg flag is only required if there are any floats < 64 bits. 7921 if (Bits < 64) 7922 InReg = true; 7923 pad(Offset); 7924 Elems.push_back(Ty); 7925 Size = Offset + Bits; 7926 } 7927 7928 // Add a struct type to the coercion type, starting at Offset (in bits). 7929 void addStruct(uint64_t Offset, llvm::StructType *StrTy) { 7930 const llvm::StructLayout *Layout = DL.getStructLayout(StrTy); 7931 for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) { 7932 llvm::Type *ElemTy = StrTy->getElementType(i); 7933 uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i); 7934 switch (ElemTy->getTypeID()) { 7935 case llvm::Type::StructTyID: 7936 addStruct(ElemOffset, cast<llvm::StructType>(ElemTy)); 7937 break; 7938 case llvm::Type::FloatTyID: 7939 addFloat(ElemOffset, ElemTy, 32); 7940 break; 7941 case llvm::Type::DoubleTyID: 7942 addFloat(ElemOffset, ElemTy, 64); 7943 break; 7944 case llvm::Type::FP128TyID: 7945 addFloat(ElemOffset, ElemTy, 128); 7946 break; 7947 case llvm::Type::PointerTyID: 7948 if (ElemOffset % 64 == 0) { 7949 pad(ElemOffset); 7950 Elems.push_back(ElemTy); 7951 Size += 64; 7952 } 7953 break; 7954 default: 7955 break; 7956 } 7957 } 7958 } 7959 7960 // Check if Ty is a usable substitute for the coercion type. 7961 bool isUsableType(llvm::StructType *Ty) const { 7962 return llvm::makeArrayRef(Elems) == Ty->elements(); 7963 } 7964 7965 // Get the coercion type as a literal struct type. 7966 llvm::Type *getType() const { 7967 if (Elems.size() == 1) 7968 return Elems.front(); 7969 else 7970 return llvm::StructType::get(Context, Elems); 7971 } 7972 }; 7973 }; 7974 } // end anonymous namespace 7975 7976 ABIArgInfo 7977 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const { 7978 if (Ty->isVoidType()) 7979 return ABIArgInfo::getIgnore(); 7980 7981 uint64_t Size = getContext().getTypeSize(Ty); 7982 7983 // Anything too big to fit in registers is passed with an explicit indirect 7984 // pointer / sret pointer. 7985 if (Size > SizeLimit) 7986 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 7987 7988 // Treat an enum type as its underlying type. 7989 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7990 Ty = EnumTy->getDecl()->getIntegerType(); 7991 7992 // Integer types smaller than a register are extended. 7993 if (Size < 64 && Ty->isIntegerType()) 7994 return ABIArgInfo::getExtend(); 7995 7996 // Other non-aggregates go in registers. 7997 if (!isAggregateTypeForABI(Ty)) 7998 return ABIArgInfo::getDirect(); 7999 8000 // If a C++ object has either a non-trivial copy constructor or a non-trivial 8001 // destructor, it is passed with an explicit indirect pointer / sret pointer. 8002 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 8003 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 8004 8005 // This is a small aggregate type that should be passed in registers. 8006 // Build a coercion type from the LLVM struct type. 8007 llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty)); 8008 if (!StrTy) 8009 return ABIArgInfo::getDirect(); 8010 8011 CoerceBuilder CB(getVMContext(), getDataLayout()); 8012 CB.addStruct(0, StrTy); 8013 CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64)); 8014 8015 // Try to use the original type for coercion. 8016 llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType(); 8017 8018 if (CB.InReg) 8019 return ABIArgInfo::getDirectInReg(CoerceTy); 8020 else 8021 return ABIArgInfo::getDirect(CoerceTy); 8022 } 8023 8024 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8025 QualType Ty) const { 8026 ABIArgInfo AI = classifyType(Ty, 16 * 8); 8027 llvm::Type *ArgTy = CGT.ConvertType(Ty); 8028 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 8029 AI.setCoerceToType(ArgTy); 8030 8031 CharUnits SlotSize = CharUnits::fromQuantity(8); 8032 8033 CGBuilderTy &Builder = CGF.Builder; 8034 Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 8035 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 8036 8037 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 8038 8039 Address ArgAddr = Address::invalid(); 8040 CharUnits Stride; 8041 switch (AI.getKind()) { 8042 case ABIArgInfo::Expand: 8043 case ABIArgInfo::CoerceAndExpand: 8044 case ABIArgInfo::InAlloca: 8045 llvm_unreachable("Unsupported ABI kind for va_arg"); 8046 8047 case ABIArgInfo::Extend: { 8048 Stride = SlotSize; 8049 CharUnits Offset = SlotSize - TypeInfo.first; 8050 ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend"); 8051 break; 8052 } 8053 8054 case ABIArgInfo::Direct: { 8055 auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType()); 8056 Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize); 8057 ArgAddr = Addr; 8058 break; 8059 } 8060 8061 case ABIArgInfo::Indirect: 8062 Stride = SlotSize; 8063 ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect"); 8064 ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"), 8065 TypeInfo.second); 8066 break; 8067 8068 case ABIArgInfo::Ignore: 8069 return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.second); 8070 } 8071 8072 // Update VAList. 8073 llvm::Value *NextPtr = 8074 Builder.CreateConstInBoundsByteGEP(Addr.getPointer(), Stride, "ap.next"); 8075 Builder.CreateStore(NextPtr, VAListAddr); 8076 8077 return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr"); 8078 } 8079 8080 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const { 8081 FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8); 8082 for (auto &I : FI.arguments()) 8083 I.info = classifyType(I.type, 16 * 8); 8084 } 8085 8086 namespace { 8087 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo { 8088 public: 8089 SparcV9TargetCodeGenInfo(CodeGenTypes &CGT) 8090 : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {} 8091 8092 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 8093 return 14; 8094 } 8095 8096 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 8097 llvm::Value *Address) const override; 8098 }; 8099 } // end anonymous namespace 8100 8101 bool 8102 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 8103 llvm::Value *Address) const { 8104 // This is calculated from the LLVM and GCC tables and verified 8105 // against gcc output. AFAIK all ABIs use the same encoding. 8106 8107 CodeGen::CGBuilderTy &Builder = CGF.Builder; 8108 8109 llvm::IntegerType *i8 = CGF.Int8Ty; 8110 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 8111 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 8112 8113 // 0-31: the 8-byte general-purpose registers 8114 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 8115 8116 // 32-63: f0-31, the 4-byte floating-point registers 8117 AssignToArrayRange(Builder, Address, Four8, 32, 63); 8118 8119 // Y = 64 8120 // PSR = 65 8121 // WIM = 66 8122 // TBR = 67 8123 // PC = 68 8124 // NPC = 69 8125 // FSR = 70 8126 // CSR = 71 8127 AssignToArrayRange(Builder, Address, Eight8, 64, 71); 8128 8129 // 72-87: d0-15, the 8-byte floating-point registers 8130 AssignToArrayRange(Builder, Address, Eight8, 72, 87); 8131 8132 return false; 8133 } 8134 8135 8136 //===----------------------------------------------------------------------===// 8137 // XCore ABI Implementation 8138 //===----------------------------------------------------------------------===// 8139 8140 namespace { 8141 8142 /// A SmallStringEnc instance is used to build up the TypeString by passing 8143 /// it by reference between functions that append to it. 8144 typedef llvm::SmallString<128> SmallStringEnc; 8145 8146 /// TypeStringCache caches the meta encodings of Types. 8147 /// 8148 /// The reason for caching TypeStrings is two fold: 8149 /// 1. To cache a type's encoding for later uses; 8150 /// 2. As a means to break recursive member type inclusion. 8151 /// 8152 /// A cache Entry can have a Status of: 8153 /// NonRecursive: The type encoding is not recursive; 8154 /// Recursive: The type encoding is recursive; 8155 /// Incomplete: An incomplete TypeString; 8156 /// IncompleteUsed: An incomplete TypeString that has been used in a 8157 /// Recursive type encoding. 8158 /// 8159 /// A NonRecursive entry will have all of its sub-members expanded as fully 8160 /// as possible. Whilst it may contain types which are recursive, the type 8161 /// itself is not recursive and thus its encoding may be safely used whenever 8162 /// the type is encountered. 8163 /// 8164 /// A Recursive entry will have all of its sub-members expanded as fully as 8165 /// possible. The type itself is recursive and it may contain other types which 8166 /// are recursive. The Recursive encoding must not be used during the expansion 8167 /// of a recursive type's recursive branch. For simplicity the code uses 8168 /// IncompleteCount to reject all usage of Recursive encodings for member types. 8169 /// 8170 /// An Incomplete entry is always a RecordType and only encodes its 8171 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and 8172 /// are placed into the cache during type expansion as a means to identify and 8173 /// handle recursive inclusion of types as sub-members. If there is recursion 8174 /// the entry becomes IncompleteUsed. 8175 /// 8176 /// During the expansion of a RecordType's members: 8177 /// 8178 /// If the cache contains a NonRecursive encoding for the member type, the 8179 /// cached encoding is used; 8180 /// 8181 /// If the cache contains a Recursive encoding for the member type, the 8182 /// cached encoding is 'Swapped' out, as it may be incorrect, and... 8183 /// 8184 /// If the member is a RecordType, an Incomplete encoding is placed into the 8185 /// cache to break potential recursive inclusion of itself as a sub-member; 8186 /// 8187 /// Once a member RecordType has been expanded, its temporary incomplete 8188 /// entry is removed from the cache. If a Recursive encoding was swapped out 8189 /// it is swapped back in; 8190 /// 8191 /// If an incomplete entry is used to expand a sub-member, the incomplete 8192 /// entry is marked as IncompleteUsed. The cache keeps count of how many 8193 /// IncompleteUsed entries it currently contains in IncompleteUsedCount; 8194 /// 8195 /// If a member's encoding is found to be a NonRecursive or Recursive viz: 8196 /// IncompleteUsedCount==0, the member's encoding is added to the cache. 8197 /// Else the member is part of a recursive type and thus the recursion has 8198 /// been exited too soon for the encoding to be correct for the member. 8199 /// 8200 class TypeStringCache { 8201 enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed}; 8202 struct Entry { 8203 std::string Str; // The encoded TypeString for the type. 8204 enum Status State; // Information about the encoding in 'Str'. 8205 std::string Swapped; // A temporary place holder for a Recursive encoding 8206 // during the expansion of RecordType's members. 8207 }; 8208 std::map<const IdentifierInfo *, struct Entry> Map; 8209 unsigned IncompleteCount; // Number of Incomplete entries in the Map. 8210 unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map. 8211 public: 8212 TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {} 8213 void addIncomplete(const IdentifierInfo *ID, std::string StubEnc); 8214 bool removeIncomplete(const IdentifierInfo *ID); 8215 void addIfComplete(const IdentifierInfo *ID, StringRef Str, 8216 bool IsRecursive); 8217 StringRef lookupStr(const IdentifierInfo *ID); 8218 }; 8219 8220 /// TypeString encodings for enum & union fields must be order. 8221 /// FieldEncoding is a helper for this ordering process. 8222 class FieldEncoding { 8223 bool HasName; 8224 std::string Enc; 8225 public: 8226 FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {} 8227 StringRef str() { return Enc; } 8228 bool operator<(const FieldEncoding &rhs) const { 8229 if (HasName != rhs.HasName) return HasName; 8230 return Enc < rhs.Enc; 8231 } 8232 }; 8233 8234 class XCoreABIInfo : public DefaultABIInfo { 8235 public: 8236 XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 8237 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8238 QualType Ty) const override; 8239 }; 8240 8241 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo { 8242 mutable TypeStringCache TSC; 8243 public: 8244 XCoreTargetCodeGenInfo(CodeGenTypes &CGT) 8245 :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {} 8246 void emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 8247 CodeGen::CodeGenModule &M) const override; 8248 }; 8249 8250 } // End anonymous namespace. 8251 8252 // TODO: this implementation is likely now redundant with the default 8253 // EmitVAArg. 8254 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8255 QualType Ty) const { 8256 CGBuilderTy &Builder = CGF.Builder; 8257 8258 // Get the VAList. 8259 CharUnits SlotSize = CharUnits::fromQuantity(4); 8260 Address AP(Builder.CreateLoad(VAListAddr), SlotSize); 8261 8262 // Handle the argument. 8263 ABIArgInfo AI = classifyArgumentType(Ty); 8264 CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty); 8265 llvm::Type *ArgTy = CGT.ConvertType(Ty); 8266 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 8267 AI.setCoerceToType(ArgTy); 8268 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 8269 8270 Address Val = Address::invalid(); 8271 CharUnits ArgSize = CharUnits::Zero(); 8272 switch (AI.getKind()) { 8273 case ABIArgInfo::Expand: 8274 case ABIArgInfo::CoerceAndExpand: 8275 case ABIArgInfo::InAlloca: 8276 llvm_unreachable("Unsupported ABI kind for va_arg"); 8277 case ABIArgInfo::Ignore: 8278 Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign); 8279 ArgSize = CharUnits::Zero(); 8280 break; 8281 case ABIArgInfo::Extend: 8282 case ABIArgInfo::Direct: 8283 Val = Builder.CreateBitCast(AP, ArgPtrTy); 8284 ArgSize = CharUnits::fromQuantity( 8285 getDataLayout().getTypeAllocSize(AI.getCoerceToType())); 8286 ArgSize = ArgSize.alignTo(SlotSize); 8287 break; 8288 case ABIArgInfo::Indirect: 8289 Val = Builder.CreateElementBitCast(AP, ArgPtrTy); 8290 Val = Address(Builder.CreateLoad(Val), TypeAlign); 8291 ArgSize = SlotSize; 8292 break; 8293 } 8294 8295 // Increment the VAList. 8296 if (!ArgSize.isZero()) { 8297 llvm::Value *APN = 8298 Builder.CreateConstInBoundsByteGEP(AP.getPointer(), ArgSize); 8299 Builder.CreateStore(APN, VAListAddr); 8300 } 8301 8302 return Val; 8303 } 8304 8305 /// During the expansion of a RecordType, an incomplete TypeString is placed 8306 /// into the cache as a means to identify and break recursion. 8307 /// If there is a Recursive encoding in the cache, it is swapped out and will 8308 /// be reinserted by removeIncomplete(). 8309 /// All other types of encoding should have been used rather than arriving here. 8310 void TypeStringCache::addIncomplete(const IdentifierInfo *ID, 8311 std::string StubEnc) { 8312 if (!ID) 8313 return; 8314 Entry &E = Map[ID]; 8315 assert( (E.Str.empty() || E.State == Recursive) && 8316 "Incorrectly use of addIncomplete"); 8317 assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()"); 8318 E.Swapped.swap(E.Str); // swap out the Recursive 8319 E.Str.swap(StubEnc); 8320 E.State = Incomplete; 8321 ++IncompleteCount; 8322 } 8323 8324 /// Once the RecordType has been expanded, the temporary incomplete TypeString 8325 /// must be removed from the cache. 8326 /// If a Recursive was swapped out by addIncomplete(), it will be replaced. 8327 /// Returns true if the RecordType was defined recursively. 8328 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) { 8329 if (!ID) 8330 return false; 8331 auto I = Map.find(ID); 8332 assert(I != Map.end() && "Entry not present"); 8333 Entry &E = I->second; 8334 assert( (E.State == Incomplete || 8335 E.State == IncompleteUsed) && 8336 "Entry must be an incomplete type"); 8337 bool IsRecursive = false; 8338 if (E.State == IncompleteUsed) { 8339 // We made use of our Incomplete encoding, thus we are recursive. 8340 IsRecursive = true; 8341 --IncompleteUsedCount; 8342 } 8343 if (E.Swapped.empty()) 8344 Map.erase(I); 8345 else { 8346 // Swap the Recursive back. 8347 E.Swapped.swap(E.Str); 8348 E.Swapped.clear(); 8349 E.State = Recursive; 8350 } 8351 --IncompleteCount; 8352 return IsRecursive; 8353 } 8354 8355 /// Add the encoded TypeString to the cache only if it is NonRecursive or 8356 /// Recursive (viz: all sub-members were expanded as fully as possible). 8357 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str, 8358 bool IsRecursive) { 8359 if (!ID || IncompleteUsedCount) 8360 return; // No key or it is is an incomplete sub-type so don't add. 8361 Entry &E = Map[ID]; 8362 if (IsRecursive && !E.Str.empty()) { 8363 assert(E.State==Recursive && E.Str.size() == Str.size() && 8364 "This is not the same Recursive entry"); 8365 // The parent container was not recursive after all, so we could have used 8366 // this Recursive sub-member entry after all, but we assumed the worse when 8367 // we started viz: IncompleteCount!=0. 8368 return; 8369 } 8370 assert(E.Str.empty() && "Entry already present"); 8371 E.Str = Str.str(); 8372 E.State = IsRecursive? Recursive : NonRecursive; 8373 } 8374 8375 /// Return a cached TypeString encoding for the ID. If there isn't one, or we 8376 /// are recursively expanding a type (IncompleteCount != 0) and the cached 8377 /// encoding is Recursive, return an empty StringRef. 8378 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) { 8379 if (!ID) 8380 return StringRef(); // We have no key. 8381 auto I = Map.find(ID); 8382 if (I == Map.end()) 8383 return StringRef(); // We have no encoding. 8384 Entry &E = I->second; 8385 if (E.State == Recursive && IncompleteCount) 8386 return StringRef(); // We don't use Recursive encodings for member types. 8387 8388 if (E.State == Incomplete) { 8389 // The incomplete type is being used to break out of recursion. 8390 E.State = IncompleteUsed; 8391 ++IncompleteUsedCount; 8392 } 8393 return E.Str; 8394 } 8395 8396 /// The XCore ABI includes a type information section that communicates symbol 8397 /// type information to the linker. The linker uses this information to verify 8398 /// safety/correctness of things such as array bound and pointers et al. 8399 /// The ABI only requires C (and XC) language modules to emit TypeStrings. 8400 /// This type information (TypeString) is emitted into meta data for all global 8401 /// symbols: definitions, declarations, functions & variables. 8402 /// 8403 /// The TypeString carries type, qualifier, name, size & value details. 8404 /// Please see 'Tools Development Guide' section 2.16.2 for format details: 8405 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf 8406 /// The output is tested by test/CodeGen/xcore-stringtype.c. 8407 /// 8408 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 8409 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC); 8410 8411 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols. 8412 void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 8413 CodeGen::CodeGenModule &CGM) const { 8414 SmallStringEnc Enc; 8415 if (getTypeString(Enc, D, CGM, TSC)) { 8416 llvm::LLVMContext &Ctx = CGM.getModule().getContext(); 8417 llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV), 8418 llvm::MDString::get(Ctx, Enc.str())}; 8419 llvm::NamedMDNode *MD = 8420 CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings"); 8421 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 8422 } 8423 } 8424 8425 //===----------------------------------------------------------------------===// 8426 // SPIR ABI Implementation 8427 //===----------------------------------------------------------------------===// 8428 8429 namespace { 8430 class SPIRTargetCodeGenInfo : public TargetCodeGenInfo { 8431 public: 8432 SPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 8433 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 8434 unsigned getOpenCLKernelCallingConv() const override; 8435 }; 8436 8437 } // End anonymous namespace. 8438 8439 namespace clang { 8440 namespace CodeGen { 8441 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) { 8442 DefaultABIInfo SPIRABI(CGM.getTypes()); 8443 SPIRABI.computeInfo(FI); 8444 } 8445 } 8446 } 8447 8448 unsigned SPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 8449 return llvm::CallingConv::SPIR_KERNEL; 8450 } 8451 8452 static bool appendType(SmallStringEnc &Enc, QualType QType, 8453 const CodeGen::CodeGenModule &CGM, 8454 TypeStringCache &TSC); 8455 8456 /// Helper function for appendRecordType(). 8457 /// Builds a SmallVector containing the encoded field types in declaration 8458 /// order. 8459 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE, 8460 const RecordDecl *RD, 8461 const CodeGen::CodeGenModule &CGM, 8462 TypeStringCache &TSC) { 8463 for (const auto *Field : RD->fields()) { 8464 SmallStringEnc Enc; 8465 Enc += "m("; 8466 Enc += Field->getName(); 8467 Enc += "){"; 8468 if (Field->isBitField()) { 8469 Enc += "b("; 8470 llvm::raw_svector_ostream OS(Enc); 8471 OS << Field->getBitWidthValue(CGM.getContext()); 8472 Enc += ':'; 8473 } 8474 if (!appendType(Enc, Field->getType(), CGM, TSC)) 8475 return false; 8476 if (Field->isBitField()) 8477 Enc += ')'; 8478 Enc += '}'; 8479 FE.emplace_back(!Field->getName().empty(), Enc); 8480 } 8481 return true; 8482 } 8483 8484 /// Appends structure and union types to Enc and adds encoding to cache. 8485 /// Recursively calls appendType (via extractFieldType) for each field. 8486 /// Union types have their fields ordered according to the ABI. 8487 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT, 8488 const CodeGen::CodeGenModule &CGM, 8489 TypeStringCache &TSC, const IdentifierInfo *ID) { 8490 // Append the cached TypeString if we have one. 8491 StringRef TypeString = TSC.lookupStr(ID); 8492 if (!TypeString.empty()) { 8493 Enc += TypeString; 8494 return true; 8495 } 8496 8497 // Start to emit an incomplete TypeString. 8498 size_t Start = Enc.size(); 8499 Enc += (RT->isUnionType()? 'u' : 's'); 8500 Enc += '('; 8501 if (ID) 8502 Enc += ID->getName(); 8503 Enc += "){"; 8504 8505 // We collect all encoded fields and order as necessary. 8506 bool IsRecursive = false; 8507 const RecordDecl *RD = RT->getDecl()->getDefinition(); 8508 if (RD && !RD->field_empty()) { 8509 // An incomplete TypeString stub is placed in the cache for this RecordType 8510 // so that recursive calls to this RecordType will use it whilst building a 8511 // complete TypeString for this RecordType. 8512 SmallVector<FieldEncoding, 16> FE; 8513 std::string StubEnc(Enc.substr(Start).str()); 8514 StubEnc += '}'; // StubEnc now holds a valid incomplete TypeString. 8515 TSC.addIncomplete(ID, std::move(StubEnc)); 8516 if (!extractFieldType(FE, RD, CGM, TSC)) { 8517 (void) TSC.removeIncomplete(ID); 8518 return false; 8519 } 8520 IsRecursive = TSC.removeIncomplete(ID); 8521 // The ABI requires unions to be sorted but not structures. 8522 // See FieldEncoding::operator< for sort algorithm. 8523 if (RT->isUnionType()) 8524 std::sort(FE.begin(), FE.end()); 8525 // We can now complete the TypeString. 8526 unsigned E = FE.size(); 8527 for (unsigned I = 0; I != E; ++I) { 8528 if (I) 8529 Enc += ','; 8530 Enc += FE[I].str(); 8531 } 8532 } 8533 Enc += '}'; 8534 TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive); 8535 return true; 8536 } 8537 8538 /// Appends enum types to Enc and adds the encoding to the cache. 8539 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET, 8540 TypeStringCache &TSC, 8541 const IdentifierInfo *ID) { 8542 // Append the cached TypeString if we have one. 8543 StringRef TypeString = TSC.lookupStr(ID); 8544 if (!TypeString.empty()) { 8545 Enc += TypeString; 8546 return true; 8547 } 8548 8549 size_t Start = Enc.size(); 8550 Enc += "e("; 8551 if (ID) 8552 Enc += ID->getName(); 8553 Enc += "){"; 8554 8555 // We collect all encoded enumerations and order them alphanumerically. 8556 if (const EnumDecl *ED = ET->getDecl()->getDefinition()) { 8557 SmallVector<FieldEncoding, 16> FE; 8558 for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E; 8559 ++I) { 8560 SmallStringEnc EnumEnc; 8561 EnumEnc += "m("; 8562 EnumEnc += I->getName(); 8563 EnumEnc += "){"; 8564 I->getInitVal().toString(EnumEnc); 8565 EnumEnc += '}'; 8566 FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc)); 8567 } 8568 std::sort(FE.begin(), FE.end()); 8569 unsigned E = FE.size(); 8570 for (unsigned I = 0; I != E; ++I) { 8571 if (I) 8572 Enc += ','; 8573 Enc += FE[I].str(); 8574 } 8575 } 8576 Enc += '}'; 8577 TSC.addIfComplete(ID, Enc.substr(Start), false); 8578 return true; 8579 } 8580 8581 /// Appends type's qualifier to Enc. 8582 /// This is done prior to appending the type's encoding. 8583 static void appendQualifier(SmallStringEnc &Enc, QualType QT) { 8584 // Qualifiers are emitted in alphabetical order. 8585 static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"}; 8586 int Lookup = 0; 8587 if (QT.isConstQualified()) 8588 Lookup += 1<<0; 8589 if (QT.isRestrictQualified()) 8590 Lookup += 1<<1; 8591 if (QT.isVolatileQualified()) 8592 Lookup += 1<<2; 8593 Enc += Table[Lookup]; 8594 } 8595 8596 /// Appends built-in types to Enc. 8597 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) { 8598 const char *EncType; 8599 switch (BT->getKind()) { 8600 case BuiltinType::Void: 8601 EncType = "0"; 8602 break; 8603 case BuiltinType::Bool: 8604 EncType = "b"; 8605 break; 8606 case BuiltinType::Char_U: 8607 EncType = "uc"; 8608 break; 8609 case BuiltinType::UChar: 8610 EncType = "uc"; 8611 break; 8612 case BuiltinType::SChar: 8613 EncType = "sc"; 8614 break; 8615 case BuiltinType::UShort: 8616 EncType = "us"; 8617 break; 8618 case BuiltinType::Short: 8619 EncType = "ss"; 8620 break; 8621 case BuiltinType::UInt: 8622 EncType = "ui"; 8623 break; 8624 case BuiltinType::Int: 8625 EncType = "si"; 8626 break; 8627 case BuiltinType::ULong: 8628 EncType = "ul"; 8629 break; 8630 case BuiltinType::Long: 8631 EncType = "sl"; 8632 break; 8633 case BuiltinType::ULongLong: 8634 EncType = "ull"; 8635 break; 8636 case BuiltinType::LongLong: 8637 EncType = "sll"; 8638 break; 8639 case BuiltinType::Float: 8640 EncType = "ft"; 8641 break; 8642 case BuiltinType::Double: 8643 EncType = "d"; 8644 break; 8645 case BuiltinType::LongDouble: 8646 EncType = "ld"; 8647 break; 8648 default: 8649 return false; 8650 } 8651 Enc += EncType; 8652 return true; 8653 } 8654 8655 /// Appends a pointer encoding to Enc before calling appendType for the pointee. 8656 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT, 8657 const CodeGen::CodeGenModule &CGM, 8658 TypeStringCache &TSC) { 8659 Enc += "p("; 8660 if (!appendType(Enc, PT->getPointeeType(), CGM, TSC)) 8661 return false; 8662 Enc += ')'; 8663 return true; 8664 } 8665 8666 /// Appends array encoding to Enc before calling appendType for the element. 8667 static bool appendArrayType(SmallStringEnc &Enc, QualType QT, 8668 const ArrayType *AT, 8669 const CodeGen::CodeGenModule &CGM, 8670 TypeStringCache &TSC, StringRef NoSizeEnc) { 8671 if (AT->getSizeModifier() != ArrayType::Normal) 8672 return false; 8673 Enc += "a("; 8674 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) 8675 CAT->getSize().toStringUnsigned(Enc); 8676 else 8677 Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "". 8678 Enc += ':'; 8679 // The Qualifiers should be attached to the type rather than the array. 8680 appendQualifier(Enc, QT); 8681 if (!appendType(Enc, AT->getElementType(), CGM, TSC)) 8682 return false; 8683 Enc += ')'; 8684 return true; 8685 } 8686 8687 /// Appends a function encoding to Enc, calling appendType for the return type 8688 /// and the arguments. 8689 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT, 8690 const CodeGen::CodeGenModule &CGM, 8691 TypeStringCache &TSC) { 8692 Enc += "f{"; 8693 if (!appendType(Enc, FT->getReturnType(), CGM, TSC)) 8694 return false; 8695 Enc += "}("; 8696 if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) { 8697 // N.B. we are only interested in the adjusted param types. 8698 auto I = FPT->param_type_begin(); 8699 auto E = FPT->param_type_end(); 8700 if (I != E) { 8701 do { 8702 if (!appendType(Enc, *I, CGM, TSC)) 8703 return false; 8704 ++I; 8705 if (I != E) 8706 Enc += ','; 8707 } while (I != E); 8708 if (FPT->isVariadic()) 8709 Enc += ",va"; 8710 } else { 8711 if (FPT->isVariadic()) 8712 Enc += "va"; 8713 else 8714 Enc += '0'; 8715 } 8716 } 8717 Enc += ')'; 8718 return true; 8719 } 8720 8721 /// Handles the type's qualifier before dispatching a call to handle specific 8722 /// type encodings. 8723 static bool appendType(SmallStringEnc &Enc, QualType QType, 8724 const CodeGen::CodeGenModule &CGM, 8725 TypeStringCache &TSC) { 8726 8727 QualType QT = QType.getCanonicalType(); 8728 8729 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) 8730 // The Qualifiers should be attached to the type rather than the array. 8731 // Thus we don't call appendQualifier() here. 8732 return appendArrayType(Enc, QT, AT, CGM, TSC, ""); 8733 8734 appendQualifier(Enc, QT); 8735 8736 if (const BuiltinType *BT = QT->getAs<BuiltinType>()) 8737 return appendBuiltinType(Enc, BT); 8738 8739 if (const PointerType *PT = QT->getAs<PointerType>()) 8740 return appendPointerType(Enc, PT, CGM, TSC); 8741 8742 if (const EnumType *ET = QT->getAs<EnumType>()) 8743 return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier()); 8744 8745 if (const RecordType *RT = QT->getAsStructureType()) 8746 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 8747 8748 if (const RecordType *RT = QT->getAsUnionType()) 8749 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 8750 8751 if (const FunctionType *FT = QT->getAs<FunctionType>()) 8752 return appendFunctionType(Enc, FT, CGM, TSC); 8753 8754 return false; 8755 } 8756 8757 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 8758 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) { 8759 if (!D) 8760 return false; 8761 8762 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 8763 if (FD->getLanguageLinkage() != CLanguageLinkage) 8764 return false; 8765 return appendType(Enc, FD->getType(), CGM, TSC); 8766 } 8767 8768 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 8769 if (VD->getLanguageLinkage() != CLanguageLinkage) 8770 return false; 8771 QualType QT = VD->getType().getCanonicalType(); 8772 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) { 8773 // Global ArrayTypes are given a size of '*' if the size is unknown. 8774 // The Qualifiers should be attached to the type rather than the array. 8775 // Thus we don't call appendQualifier() here. 8776 return appendArrayType(Enc, QT, AT, CGM, TSC, "*"); 8777 } 8778 return appendType(Enc, QT, CGM, TSC); 8779 } 8780 return false; 8781 } 8782 8783 8784 //===----------------------------------------------------------------------===// 8785 // Driver code 8786 //===----------------------------------------------------------------------===// 8787 8788 bool CodeGenModule::supportsCOMDAT() const { 8789 return getTriple().supportsCOMDAT(); 8790 } 8791 8792 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { 8793 if (TheTargetCodeGenInfo) 8794 return *TheTargetCodeGenInfo; 8795 8796 // Helper to set the unique_ptr while still keeping the return value. 8797 auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & { 8798 this->TheTargetCodeGenInfo.reset(P); 8799 return *P; 8800 }; 8801 8802 const llvm::Triple &Triple = getTarget().getTriple(); 8803 switch (Triple.getArch()) { 8804 default: 8805 return SetCGInfo(new DefaultTargetCodeGenInfo(Types)); 8806 8807 case llvm::Triple::le32: 8808 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 8809 case llvm::Triple::mips: 8810 case llvm::Triple::mipsel: 8811 if (Triple.getOS() == llvm::Triple::NaCl) 8812 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 8813 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true)); 8814 8815 case llvm::Triple::mips64: 8816 case llvm::Triple::mips64el: 8817 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false)); 8818 8819 case llvm::Triple::avr: 8820 return SetCGInfo(new AVRTargetCodeGenInfo(Types)); 8821 8822 case llvm::Triple::aarch64: 8823 case llvm::Triple::aarch64_be: { 8824 AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS; 8825 if (getTarget().getABI() == "darwinpcs") 8826 Kind = AArch64ABIInfo::DarwinPCS; 8827 else if (Triple.isOSWindows()) 8828 return SetCGInfo( 8829 new WindowsAArch64TargetCodeGenInfo(Types, AArch64ABIInfo::Win64)); 8830 8831 return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind)); 8832 } 8833 8834 case llvm::Triple::wasm32: 8835 case llvm::Triple::wasm64: 8836 return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types)); 8837 8838 case llvm::Triple::arm: 8839 case llvm::Triple::armeb: 8840 case llvm::Triple::thumb: 8841 case llvm::Triple::thumbeb: { 8842 if (Triple.getOS() == llvm::Triple::Win32) { 8843 return SetCGInfo( 8844 new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP)); 8845 } 8846 8847 ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS; 8848 StringRef ABIStr = getTarget().getABI(); 8849 if (ABIStr == "apcs-gnu") 8850 Kind = ARMABIInfo::APCS; 8851 else if (ABIStr == "aapcs16") 8852 Kind = ARMABIInfo::AAPCS16_VFP; 8853 else if (CodeGenOpts.FloatABI == "hard" || 8854 (CodeGenOpts.FloatABI != "soft" && 8855 (Triple.getEnvironment() == llvm::Triple::GNUEABIHF || 8856 Triple.getEnvironment() == llvm::Triple::MuslEABIHF || 8857 Triple.getEnvironment() == llvm::Triple::EABIHF))) 8858 Kind = ARMABIInfo::AAPCS_VFP; 8859 8860 return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind)); 8861 } 8862 8863 case llvm::Triple::ppc: 8864 return SetCGInfo( 8865 new PPC32TargetCodeGenInfo(Types, CodeGenOpts.FloatABI == "soft")); 8866 case llvm::Triple::ppc64: 8867 if (Triple.isOSBinFormatELF()) { 8868 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1; 8869 if (getTarget().getABI() == "elfv2") 8870 Kind = PPC64_SVR4_ABIInfo::ELFv2; 8871 bool HasQPX = getTarget().getABI() == "elfv1-qpx"; 8872 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 8873 8874 return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX, 8875 IsSoftFloat)); 8876 } else 8877 return SetCGInfo(new PPC64TargetCodeGenInfo(Types)); 8878 case llvm::Triple::ppc64le: { 8879 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); 8880 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2; 8881 if (getTarget().getABI() == "elfv1" || getTarget().getABI() == "elfv1-qpx") 8882 Kind = PPC64_SVR4_ABIInfo::ELFv1; 8883 bool HasQPX = getTarget().getABI() == "elfv1-qpx"; 8884 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 8885 8886 return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX, 8887 IsSoftFloat)); 8888 } 8889 8890 case llvm::Triple::nvptx: 8891 case llvm::Triple::nvptx64: 8892 return SetCGInfo(new NVPTXTargetCodeGenInfo(Types)); 8893 8894 case llvm::Triple::msp430: 8895 return SetCGInfo(new MSP430TargetCodeGenInfo(Types)); 8896 8897 case llvm::Triple::systemz: { 8898 bool HasVector = getTarget().getABI() == "vector"; 8899 return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector)); 8900 } 8901 8902 case llvm::Triple::tce: 8903 case llvm::Triple::tcele: 8904 return SetCGInfo(new TCETargetCodeGenInfo(Types)); 8905 8906 case llvm::Triple::x86: { 8907 bool IsDarwinVectorABI = Triple.isOSDarwin(); 8908 bool RetSmallStructInRegABI = 8909 X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 8910 bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing(); 8911 8912 if (Triple.getOS() == llvm::Triple::Win32) { 8913 return SetCGInfo(new WinX86_32TargetCodeGenInfo( 8914 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 8915 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters)); 8916 } else { 8917 return SetCGInfo(new X86_32TargetCodeGenInfo( 8918 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 8919 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters, 8920 CodeGenOpts.FloatABI == "soft")); 8921 } 8922 } 8923 8924 case llvm::Triple::x86_64: { 8925 StringRef ABI = getTarget().getABI(); 8926 X86AVXABILevel AVXLevel = 8927 (ABI == "avx512" 8928 ? X86AVXABILevel::AVX512 8929 : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None); 8930 8931 switch (Triple.getOS()) { 8932 case llvm::Triple::Win32: 8933 return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel)); 8934 case llvm::Triple::PS4: 8935 return SetCGInfo(new PS4TargetCodeGenInfo(Types, AVXLevel)); 8936 default: 8937 return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel)); 8938 } 8939 } 8940 case llvm::Triple::hexagon: 8941 return SetCGInfo(new HexagonTargetCodeGenInfo(Types)); 8942 case llvm::Triple::lanai: 8943 return SetCGInfo(new LanaiTargetCodeGenInfo(Types)); 8944 case llvm::Triple::r600: 8945 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 8946 case llvm::Triple::amdgcn: 8947 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 8948 case llvm::Triple::sparc: 8949 return SetCGInfo(new SparcV8TargetCodeGenInfo(Types)); 8950 case llvm::Triple::sparcv9: 8951 return SetCGInfo(new SparcV9TargetCodeGenInfo(Types)); 8952 case llvm::Triple::xcore: 8953 return SetCGInfo(new XCoreTargetCodeGenInfo(Types)); 8954 case llvm::Triple::spir: 8955 case llvm::Triple::spir64: 8956 return SetCGInfo(new SPIRTargetCodeGenInfo(Types)); 8957 } 8958 } 8959 8960 /// Create an OpenCL kernel for an enqueued block. 8961 /// 8962 /// The kernel has the same function type as the block invoke function. Its 8963 /// name is the name of the block invoke function postfixed with "_kernel". 8964 /// It simply calls the block invoke function then returns. 8965 llvm::Function * 8966 TargetCodeGenInfo::createEnqueuedBlockKernel(CodeGenFunction &CGF, 8967 llvm::Function *Invoke, 8968 llvm::Value *BlockLiteral) const { 8969 auto *InvokeFT = Invoke->getFunctionType(); 8970 llvm::SmallVector<llvm::Type *, 2> ArgTys; 8971 for (auto &P : InvokeFT->params()) 8972 ArgTys.push_back(P); 8973 auto &C = CGF.getLLVMContext(); 8974 std::string Name = Invoke->getName().str() + "_kernel"; 8975 auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false); 8976 auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name, 8977 &CGF.CGM.getModule()); 8978 auto IP = CGF.Builder.saveIP(); 8979 auto *BB = llvm::BasicBlock::Create(C, "entry", F); 8980 auto &Builder = CGF.Builder; 8981 Builder.SetInsertPoint(BB); 8982 llvm::SmallVector<llvm::Value *, 2> Args; 8983 for (auto &A : F->args()) 8984 Args.push_back(&A); 8985 Builder.CreateCall(Invoke, Args); 8986 Builder.CreateRetVoid(); 8987 Builder.restoreIP(IP); 8988 return F; 8989 } 8990 8991 /// Create an OpenCL kernel for an enqueued block. 8992 /// 8993 /// The type of the first argument (the block literal) is the struct type 8994 /// of the block literal instead of a pointer type. The first argument 8995 /// (block literal) is passed directly by value to the kernel. The kernel 8996 /// allocates the same type of struct on stack and stores the block literal 8997 /// to it and passes its pointer to the block invoke function. The kernel 8998 /// has "enqueued-block" function attribute and kernel argument metadata. 8999 llvm::Function *AMDGPUTargetCodeGenInfo::createEnqueuedBlockKernel( 9000 CodeGenFunction &CGF, llvm::Function *Invoke, 9001 llvm::Value *BlockLiteral) const { 9002 auto &Builder = CGF.Builder; 9003 auto &C = CGF.getLLVMContext(); 9004 9005 auto *BlockTy = BlockLiteral->getType()->getPointerElementType(); 9006 auto *InvokeFT = Invoke->getFunctionType(); 9007 llvm::SmallVector<llvm::Type *, 2> ArgTys; 9008 llvm::SmallVector<llvm::Metadata *, 8> AddressQuals; 9009 llvm::SmallVector<llvm::Metadata *, 8> AccessQuals; 9010 llvm::SmallVector<llvm::Metadata *, 8> ArgTypeNames; 9011 llvm::SmallVector<llvm::Metadata *, 8> ArgBaseTypeNames; 9012 llvm::SmallVector<llvm::Metadata *, 8> ArgTypeQuals; 9013 llvm::SmallVector<llvm::Metadata *, 8> ArgNames; 9014 9015 ArgTys.push_back(BlockTy); 9016 ArgTypeNames.push_back(llvm::MDString::get(C, "__block_literal")); 9017 AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(0))); 9018 ArgBaseTypeNames.push_back(llvm::MDString::get(C, "__block_literal")); 9019 ArgTypeQuals.push_back(llvm::MDString::get(C, "")); 9020 AccessQuals.push_back(llvm::MDString::get(C, "none")); 9021 ArgNames.push_back(llvm::MDString::get(C, "block_literal")); 9022 for (unsigned I = 1, E = InvokeFT->getNumParams(); I < E; ++I) { 9023 ArgTys.push_back(InvokeFT->getParamType(I)); 9024 ArgTypeNames.push_back(llvm::MDString::get(C, "void*")); 9025 AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(3))); 9026 AccessQuals.push_back(llvm::MDString::get(C, "none")); 9027 ArgBaseTypeNames.push_back(llvm::MDString::get(C, "void*")); 9028 ArgTypeQuals.push_back(llvm::MDString::get(C, "")); 9029 ArgNames.push_back( 9030 llvm::MDString::get(C, (Twine("local_arg") + Twine(I)).str())); 9031 } 9032 std::string Name = Invoke->getName().str() + "_kernel"; 9033 auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false); 9034 auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name, 9035 &CGF.CGM.getModule()); 9036 F->addFnAttr("enqueued-block"); 9037 auto IP = CGF.Builder.saveIP(); 9038 auto *BB = llvm::BasicBlock::Create(C, "entry", F); 9039 Builder.SetInsertPoint(BB); 9040 unsigned BlockAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(BlockTy); 9041 auto *BlockPtr = Builder.CreateAlloca(BlockTy, nullptr); 9042 BlockPtr->setAlignment(BlockAlign); 9043 Builder.CreateAlignedStore(F->arg_begin(), BlockPtr, BlockAlign); 9044 auto *Cast = Builder.CreatePointerCast(BlockPtr, InvokeFT->getParamType(0)); 9045 llvm::SmallVector<llvm::Value *, 2> Args; 9046 Args.push_back(Cast); 9047 for (auto I = F->arg_begin() + 1, E = F->arg_end(); I != E; ++I) 9048 Args.push_back(I); 9049 Builder.CreateCall(Invoke, Args); 9050 Builder.CreateRetVoid(); 9051 Builder.restoreIP(IP); 9052 9053 F->setMetadata("kernel_arg_addr_space", llvm::MDNode::get(C, AddressQuals)); 9054 F->setMetadata("kernel_arg_access_qual", llvm::MDNode::get(C, AccessQuals)); 9055 F->setMetadata("kernel_arg_type", llvm::MDNode::get(C, ArgTypeNames)); 9056 F->setMetadata("kernel_arg_base_type", 9057 llvm::MDNode::get(C, ArgBaseTypeNames)); 9058 F->setMetadata("kernel_arg_type_qual", llvm::MDNode::get(C, ArgTypeQuals)); 9059 if (CGF.CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 9060 F->setMetadata("kernel_arg_name", llvm::MDNode::get(C, ArgNames)); 9061 9062 return F; 9063 } 9064