1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // These classes wrap the information about a call or function
10 // definition used to handle ABI compliancy.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "TargetInfo.h"
15 #include "ABIInfo.h"
16 #include "CGBlocks.h"
17 #include "CGCXXABI.h"
18 #include "CGValue.h"
19 #include "CodeGenFunction.h"
20 #include "clang/AST/RecordLayout.h"
21 #include "clang/Basic/CodeGenOptions.h"
22 #include "clang/CodeGen/CGFunctionInfo.h"
23 #include "clang/CodeGen/SwiftCallingConv.h"
24 #include "llvm/ADT/StringExtras.h"
25 #include "llvm/ADT/StringSwitch.h"
26 #include "llvm/ADT/Triple.h"
27 #include "llvm/ADT/Twine.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/Type.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include <algorithm>    // std::sort
32 
33 using namespace clang;
34 using namespace CodeGen;
35 
36 // Helper for coercing an aggregate argument or return value into an integer
37 // array of the same size (including padding) and alignment.  This alternate
38 // coercion happens only for the RenderScript ABI and can be removed after
39 // runtimes that rely on it are no longer supported.
40 //
41 // RenderScript assumes that the size of the argument / return value in the IR
42 // is the same as the size of the corresponding qualified type. This helper
43 // coerces the aggregate type into an array of the same size (including
44 // padding).  This coercion is used in lieu of expansion of struct members or
45 // other canonical coercions that return a coerced-type of larger size.
46 //
47 // Ty          - The argument / return value type
48 // Context     - The associated ASTContext
49 // LLVMContext - The associated LLVMContext
50 static ABIArgInfo coerceToIntArray(QualType Ty,
51                                    ASTContext &Context,
52                                    llvm::LLVMContext &LLVMContext) {
53   // Alignment and Size are measured in bits.
54   const uint64_t Size = Context.getTypeSize(Ty);
55   const uint64_t Alignment = Context.getTypeAlign(Ty);
56   llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment);
57   const uint64_t NumElements = (Size + Alignment - 1) / Alignment;
58   return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements));
59 }
60 
61 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
62                                llvm::Value *Array,
63                                llvm::Value *Value,
64                                unsigned FirstIndex,
65                                unsigned LastIndex) {
66   // Alternatively, we could emit this as a loop in the source.
67   for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
68     llvm::Value *Cell =
69         Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I);
70     Builder.CreateAlignedStore(Value, Cell, CharUnits::One());
71   }
72 }
73 
74 static bool isAggregateTypeForABI(QualType T) {
75   return !CodeGenFunction::hasScalarEvaluationKind(T) ||
76          T->isMemberFunctionPointerType();
77 }
78 
79 ABIArgInfo
80 ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByRef, bool Realign,
81                                  llvm::Type *Padding) const {
82   return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty),
83                                  ByRef, Realign, Padding);
84 }
85 
86 ABIArgInfo
87 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const {
88   return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty),
89                                       /*ByRef*/ false, Realign);
90 }
91 
92 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
93                              QualType Ty) const {
94   return Address::invalid();
95 }
96 
97 ABIInfo::~ABIInfo() {}
98 
99 /// Does the given lowering require more than the given number of
100 /// registers when expanded?
101 ///
102 /// This is intended to be the basis of a reasonable basic implementation
103 /// of should{Pass,Return}IndirectlyForSwift.
104 ///
105 /// For most targets, a limit of four total registers is reasonable; this
106 /// limits the amount of code required in order to move around the value
107 /// in case it wasn't produced immediately prior to the call by the caller
108 /// (or wasn't produced in exactly the right registers) or isn't used
109 /// immediately within the callee.  But some targets may need to further
110 /// limit the register count due to an inability to support that many
111 /// return registers.
112 static bool occupiesMoreThan(CodeGenTypes &cgt,
113                              ArrayRef<llvm::Type*> scalarTypes,
114                              unsigned maxAllRegisters) {
115   unsigned intCount = 0, fpCount = 0;
116   for (llvm::Type *type : scalarTypes) {
117     if (type->isPointerTy()) {
118       intCount++;
119     } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) {
120       auto ptrWidth = cgt.getTarget().getPointerWidth(0);
121       intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth;
122     } else {
123       assert(type->isVectorTy() || type->isFloatingPointTy());
124       fpCount++;
125     }
126   }
127 
128   return (intCount + fpCount > maxAllRegisters);
129 }
130 
131 bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize,
132                                              llvm::Type *eltTy,
133                                              unsigned numElts) const {
134   // The default implementation of this assumes that the target guarantees
135   // 128-bit SIMD support but nothing more.
136   return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16);
137 }
138 
139 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT,
140                                               CGCXXABI &CXXABI) {
141   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
142   if (!RD) {
143     if (!RT->getDecl()->canPassInRegisters())
144       return CGCXXABI::RAA_Indirect;
145     return CGCXXABI::RAA_Default;
146   }
147   return CXXABI.getRecordArgABI(RD);
148 }
149 
150 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T,
151                                               CGCXXABI &CXXABI) {
152   const RecordType *RT = T->getAs<RecordType>();
153   if (!RT)
154     return CGCXXABI::RAA_Default;
155   return getRecordArgABI(RT, CXXABI);
156 }
157 
158 static bool classifyReturnType(const CGCXXABI &CXXABI, CGFunctionInfo &FI,
159                                const ABIInfo &Info) {
160   QualType Ty = FI.getReturnType();
161 
162   if (const auto *RT = Ty->getAs<RecordType>())
163     if (!isa<CXXRecordDecl>(RT->getDecl()) &&
164         !RT->getDecl()->canPassInRegisters()) {
165       FI.getReturnInfo() = Info.getNaturalAlignIndirect(Ty);
166       return true;
167     }
168 
169   return CXXABI.classifyReturnType(FI);
170 }
171 
172 /// Pass transparent unions as if they were the type of the first element. Sema
173 /// should ensure that all elements of the union have the same "machine type".
174 static QualType useFirstFieldIfTransparentUnion(QualType Ty) {
175   if (const RecordType *UT = Ty->getAsUnionType()) {
176     const RecordDecl *UD = UT->getDecl();
177     if (UD->hasAttr<TransparentUnionAttr>()) {
178       assert(!UD->field_empty() && "sema created an empty transparent union");
179       return UD->field_begin()->getType();
180     }
181   }
182   return Ty;
183 }
184 
185 CGCXXABI &ABIInfo::getCXXABI() const {
186   return CGT.getCXXABI();
187 }
188 
189 ASTContext &ABIInfo::getContext() const {
190   return CGT.getContext();
191 }
192 
193 llvm::LLVMContext &ABIInfo::getVMContext() const {
194   return CGT.getLLVMContext();
195 }
196 
197 const llvm::DataLayout &ABIInfo::getDataLayout() const {
198   return CGT.getDataLayout();
199 }
200 
201 const TargetInfo &ABIInfo::getTarget() const {
202   return CGT.getTarget();
203 }
204 
205 const CodeGenOptions &ABIInfo::getCodeGenOpts() const {
206   return CGT.getCodeGenOpts();
207 }
208 
209 bool ABIInfo::isAndroid() const { return getTarget().getTriple().isAndroid(); }
210 
211 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
212   return false;
213 }
214 
215 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
216                                                 uint64_t Members) const {
217   return false;
218 }
219 
220 LLVM_DUMP_METHOD void ABIArgInfo::dump() const {
221   raw_ostream &OS = llvm::errs();
222   OS << "(ABIArgInfo Kind=";
223   switch (TheKind) {
224   case Direct:
225     OS << "Direct Type=";
226     if (llvm::Type *Ty = getCoerceToType())
227       Ty->print(OS);
228     else
229       OS << "null";
230     break;
231   case Extend:
232     OS << "Extend";
233     break;
234   case Ignore:
235     OS << "Ignore";
236     break;
237   case InAlloca:
238     OS << "InAlloca Offset=" << getInAllocaFieldIndex();
239     break;
240   case Indirect:
241     OS << "Indirect Align=" << getIndirectAlign().getQuantity()
242        << " ByVal=" << getIndirectByVal()
243        << " Realign=" << getIndirectRealign();
244     break;
245   case Expand:
246     OS << "Expand";
247     break;
248   case CoerceAndExpand:
249     OS << "CoerceAndExpand Type=";
250     getCoerceAndExpandType()->print(OS);
251     break;
252   }
253   OS << ")\n";
254 }
255 
256 // Dynamically round a pointer up to a multiple of the given alignment.
257 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF,
258                                                   llvm::Value *Ptr,
259                                                   CharUnits Align) {
260   llvm::Value *PtrAsInt = Ptr;
261   // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align;
262   PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy);
263   PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt,
264         llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1));
265   PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt,
266            llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity()));
267   PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt,
268                                         Ptr->getType(),
269                                         Ptr->getName() + ".aligned");
270   return PtrAsInt;
271 }
272 
273 /// Emit va_arg for a platform using the common void* representation,
274 /// where arguments are simply emitted in an array of slots on the stack.
275 ///
276 /// This version implements the core direct-value passing rules.
277 ///
278 /// \param SlotSize - The size and alignment of a stack slot.
279 ///   Each argument will be allocated to a multiple of this number of
280 ///   slots, and all the slots will be aligned to this value.
281 /// \param AllowHigherAlign - The slot alignment is not a cap;
282 ///   an argument type with an alignment greater than the slot size
283 ///   will be emitted on a higher-alignment address, potentially
284 ///   leaving one or more empty slots behind as padding.  If this
285 ///   is false, the returned address might be less-aligned than
286 ///   DirectAlign.
287 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF,
288                                       Address VAListAddr,
289                                       llvm::Type *DirectTy,
290                                       CharUnits DirectSize,
291                                       CharUnits DirectAlign,
292                                       CharUnits SlotSize,
293                                       bool AllowHigherAlign) {
294   // Cast the element type to i8* if necessary.  Some platforms define
295   // va_list as a struct containing an i8* instead of just an i8*.
296   if (VAListAddr.getElementType() != CGF.Int8PtrTy)
297     VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy);
298 
299   llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur");
300 
301   // If the CC aligns values higher than the slot size, do so if needed.
302   Address Addr = Address::invalid();
303   if (AllowHigherAlign && DirectAlign > SlotSize) {
304     Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign),
305                                                  DirectAlign);
306   } else {
307     Addr = Address(Ptr, SlotSize);
308   }
309 
310   // Advance the pointer past the argument, then store that back.
311   CharUnits FullDirectSize = DirectSize.alignTo(SlotSize);
312   Address NextPtr =
313       CGF.Builder.CreateConstInBoundsByteGEP(Addr, FullDirectSize, "argp.next");
314   CGF.Builder.CreateStore(NextPtr.getPointer(), VAListAddr);
315 
316   // If the argument is smaller than a slot, and this is a big-endian
317   // target, the argument will be right-adjusted in its slot.
318   if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() &&
319       !DirectTy->isStructTy()) {
320     Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize);
321   }
322 
323   Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy);
324   return Addr;
325 }
326 
327 /// Emit va_arg for a platform using the common void* representation,
328 /// where arguments are simply emitted in an array of slots on the stack.
329 ///
330 /// \param IsIndirect - Values of this type are passed indirectly.
331 /// \param ValueInfo - The size and alignment of this type, generally
332 ///   computed with getContext().getTypeInfoInChars(ValueTy).
333 /// \param SlotSizeAndAlign - The size and alignment of a stack slot.
334 ///   Each argument will be allocated to a multiple of this number of
335 ///   slots, and all the slots will be aligned to this value.
336 /// \param AllowHigherAlign - The slot alignment is not a cap;
337 ///   an argument type with an alignment greater than the slot size
338 ///   will be emitted on a higher-alignment address, potentially
339 ///   leaving one or more empty slots behind as padding.
340 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr,
341                                 QualType ValueTy, bool IsIndirect,
342                                 std::pair<CharUnits, CharUnits> ValueInfo,
343                                 CharUnits SlotSizeAndAlign,
344                                 bool AllowHigherAlign) {
345   // The size and alignment of the value that was passed directly.
346   CharUnits DirectSize, DirectAlign;
347   if (IsIndirect) {
348     DirectSize = CGF.getPointerSize();
349     DirectAlign = CGF.getPointerAlign();
350   } else {
351     DirectSize = ValueInfo.first;
352     DirectAlign = ValueInfo.second;
353   }
354 
355   // Cast the address we've calculated to the right type.
356   llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy);
357   if (IsIndirect)
358     DirectTy = DirectTy->getPointerTo(0);
359 
360   Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy,
361                                         DirectSize, DirectAlign,
362                                         SlotSizeAndAlign,
363                                         AllowHigherAlign);
364 
365   if (IsIndirect) {
366     Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.second);
367   }
368 
369   return Addr;
370 
371 }
372 
373 static Address emitMergePHI(CodeGenFunction &CGF,
374                             Address Addr1, llvm::BasicBlock *Block1,
375                             Address Addr2, llvm::BasicBlock *Block2,
376                             const llvm::Twine &Name = "") {
377   assert(Addr1.getType() == Addr2.getType());
378   llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name);
379   PHI->addIncoming(Addr1.getPointer(), Block1);
380   PHI->addIncoming(Addr2.getPointer(), Block2);
381   CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment());
382   return Address(PHI, Align);
383 }
384 
385 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }
386 
387 // If someone can figure out a general rule for this, that would be great.
388 // It's probably just doomed to be platform-dependent, though.
389 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const {
390   // Verified for:
391   //   x86-64     FreeBSD, Linux, Darwin
392   //   x86-32     FreeBSD, Linux, Darwin
393   //   PowerPC    Linux, Darwin
394   //   ARM        Darwin (*not* EABI)
395   //   AArch64    Linux
396   return 32;
397 }
398 
399 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args,
400                                      const FunctionNoProtoType *fnType) const {
401   // The following conventions are known to require this to be false:
402   //   x86_stdcall
403   //   MIPS
404   // For everything else, we just prefer false unless we opt out.
405   return false;
406 }
407 
408 void
409 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib,
410                                              llvm::SmallString<24> &Opt) const {
411   // This assumes the user is passing a library name like "rt" instead of a
412   // filename like "librt.a/so", and that they don't care whether it's static or
413   // dynamic.
414   Opt = "-l";
415   Opt += Lib;
416 }
417 
418 unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const {
419   // OpenCL kernels are called via an explicit runtime API with arguments
420   // set with clSetKernelArg(), not as normal sub-functions.
421   // Return SPIR_KERNEL by default as the kernel calling convention to
422   // ensure the fingerprint is fixed such way that each OpenCL argument
423   // gets one matching argument in the produced kernel function argument
424   // list to enable feasible implementation of clSetKernelArg() with
425   // aggregates etc. In case we would use the default C calling conv here,
426   // clSetKernelArg() might break depending on the target-specific
427   // conventions; different targets might split structs passed as values
428   // to multiple function arguments etc.
429   return llvm::CallingConv::SPIR_KERNEL;
430 }
431 
432 llvm::Constant *TargetCodeGenInfo::getNullPointer(const CodeGen::CodeGenModule &CGM,
433     llvm::PointerType *T, QualType QT) const {
434   return llvm::ConstantPointerNull::get(T);
435 }
436 
437 LangAS TargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM,
438                                                    const VarDecl *D) const {
439   assert(!CGM.getLangOpts().OpenCL &&
440          !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) &&
441          "Address space agnostic languages only");
442   return D ? D->getType().getAddressSpace() : LangAS::Default;
443 }
444 
445 llvm::Value *TargetCodeGenInfo::performAddrSpaceCast(
446     CodeGen::CodeGenFunction &CGF, llvm::Value *Src, LangAS SrcAddr,
447     LangAS DestAddr, llvm::Type *DestTy, bool isNonNull) const {
448   // Since target may map different address spaces in AST to the same address
449   // space, an address space conversion may end up as a bitcast.
450   if (auto *C = dyn_cast<llvm::Constant>(Src))
451     return performAddrSpaceCast(CGF.CGM, C, SrcAddr, DestAddr, DestTy);
452   return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DestTy);
453 }
454 
455 llvm::Constant *
456 TargetCodeGenInfo::performAddrSpaceCast(CodeGenModule &CGM, llvm::Constant *Src,
457                                         LangAS SrcAddr, LangAS DestAddr,
458                                         llvm::Type *DestTy) const {
459   // Since target may map different address spaces in AST to the same address
460   // space, an address space conversion may end up as a bitcast.
461   return llvm::ConstantExpr::getPointerCast(Src, DestTy);
462 }
463 
464 llvm::SyncScope::ID
465 TargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts,
466                                       SyncScope Scope,
467                                       llvm::AtomicOrdering Ordering,
468                                       llvm::LLVMContext &Ctx) const {
469   return Ctx.getOrInsertSyncScopeID(""); /* default sync scope */
470 }
471 
472 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
473 
474 /// isEmptyField - Return true iff a the field is "empty", that is it
475 /// is an unnamed bit-field or an (array of) empty record(s).
476 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
477                          bool AllowArrays) {
478   if (FD->isUnnamedBitfield())
479     return true;
480 
481   QualType FT = FD->getType();
482 
483   // Constant arrays of empty records count as empty, strip them off.
484   // Constant arrays of zero length always count as empty.
485   if (AllowArrays)
486     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
487       if (AT->getSize() == 0)
488         return true;
489       FT = AT->getElementType();
490     }
491 
492   const RecordType *RT = FT->getAs<RecordType>();
493   if (!RT)
494     return false;
495 
496   // C++ record fields are never empty, at least in the Itanium ABI.
497   //
498   // FIXME: We should use a predicate for whether this behavior is true in the
499   // current ABI.
500   if (isa<CXXRecordDecl>(RT->getDecl()))
501     return false;
502 
503   return isEmptyRecord(Context, FT, AllowArrays);
504 }
505 
506 /// isEmptyRecord - Return true iff a structure contains only empty
507 /// fields. Note that a structure with a flexible array member is not
508 /// considered empty.
509 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
510   const RecordType *RT = T->getAs<RecordType>();
511   if (!RT)
512     return false;
513   const RecordDecl *RD = RT->getDecl();
514   if (RD->hasFlexibleArrayMember())
515     return false;
516 
517   // If this is a C++ record, check the bases first.
518   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
519     for (const auto &I : CXXRD->bases())
520       if (!isEmptyRecord(Context, I.getType(), true))
521         return false;
522 
523   for (const auto *I : RD->fields())
524     if (!isEmptyField(Context, I, AllowArrays))
525       return false;
526   return true;
527 }
528 
529 /// isSingleElementStruct - Determine if a structure is a "single
530 /// element struct", i.e. it has exactly one non-empty field or
531 /// exactly one field which is itself a single element
532 /// struct. Structures with flexible array members are never
533 /// considered single element structs.
534 ///
535 /// \return The field declaration for the single non-empty field, if
536 /// it exists.
537 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
538   const RecordType *RT = T->getAs<RecordType>();
539   if (!RT)
540     return nullptr;
541 
542   const RecordDecl *RD = RT->getDecl();
543   if (RD->hasFlexibleArrayMember())
544     return nullptr;
545 
546   const Type *Found = nullptr;
547 
548   // If this is a C++ record, check the bases first.
549   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
550     for (const auto &I : CXXRD->bases()) {
551       // Ignore empty records.
552       if (isEmptyRecord(Context, I.getType(), true))
553         continue;
554 
555       // If we already found an element then this isn't a single-element struct.
556       if (Found)
557         return nullptr;
558 
559       // If this is non-empty and not a single element struct, the composite
560       // cannot be a single element struct.
561       Found = isSingleElementStruct(I.getType(), Context);
562       if (!Found)
563         return nullptr;
564     }
565   }
566 
567   // Check for single element.
568   for (const auto *FD : RD->fields()) {
569     QualType FT = FD->getType();
570 
571     // Ignore empty fields.
572     if (isEmptyField(Context, FD, true))
573       continue;
574 
575     // If we already found an element then this isn't a single-element
576     // struct.
577     if (Found)
578       return nullptr;
579 
580     // Treat single element arrays as the element.
581     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
582       if (AT->getSize().getZExtValue() != 1)
583         break;
584       FT = AT->getElementType();
585     }
586 
587     if (!isAggregateTypeForABI(FT)) {
588       Found = FT.getTypePtr();
589     } else {
590       Found = isSingleElementStruct(FT, Context);
591       if (!Found)
592         return nullptr;
593     }
594   }
595 
596   // We don't consider a struct a single-element struct if it has
597   // padding beyond the element type.
598   if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T))
599     return nullptr;
600 
601   return Found;
602 }
603 
604 namespace {
605 Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty,
606                        const ABIArgInfo &AI) {
607   // This default implementation defers to the llvm backend's va_arg
608   // instruction. It can handle only passing arguments directly
609   // (typically only handled in the backend for primitive types), or
610   // aggregates passed indirectly by pointer (NOTE: if the "byval"
611   // flag has ABI impact in the callee, this implementation cannot
612   // work.)
613 
614   // Only a few cases are covered here at the moment -- those needed
615   // by the default abi.
616   llvm::Value *Val;
617 
618   if (AI.isIndirect()) {
619     assert(!AI.getPaddingType() &&
620            "Unexpected PaddingType seen in arginfo in generic VAArg emitter!");
621     assert(
622         !AI.getIndirectRealign() &&
623         "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!");
624 
625     auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty);
626     CharUnits TyAlignForABI = TyInfo.second;
627 
628     llvm::Type *BaseTy =
629         llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
630     llvm::Value *Addr =
631         CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy);
632     return Address(Addr, TyAlignForABI);
633   } else {
634     assert((AI.isDirect() || AI.isExtend()) &&
635            "Unexpected ArgInfo Kind in generic VAArg emitter!");
636 
637     assert(!AI.getInReg() &&
638            "Unexpected InReg seen in arginfo in generic VAArg emitter!");
639     assert(!AI.getPaddingType() &&
640            "Unexpected PaddingType seen in arginfo in generic VAArg emitter!");
641     assert(!AI.getDirectOffset() &&
642            "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!");
643     assert(!AI.getCoerceToType() &&
644            "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!");
645 
646     Address Temp = CGF.CreateMemTemp(Ty, "varet");
647     Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), CGF.ConvertType(Ty));
648     CGF.Builder.CreateStore(Val, Temp);
649     return Temp;
650   }
651 }
652 
653 /// DefaultABIInfo - The default implementation for ABI specific
654 /// details. This implementation provides information which results in
655 /// self-consistent and sensible LLVM IR generation, but does not
656 /// conform to any particular ABI.
657 class DefaultABIInfo : public ABIInfo {
658 public:
659   DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
660 
661   ABIArgInfo classifyReturnType(QualType RetTy) const;
662   ABIArgInfo classifyArgumentType(QualType RetTy) const;
663 
664   void computeInfo(CGFunctionInfo &FI) const override {
665     if (!getCXXABI().classifyReturnType(FI))
666       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
667     for (auto &I : FI.arguments())
668       I.info = classifyArgumentType(I.type);
669   }
670 
671   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
672                     QualType Ty) const override {
673     return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty));
674   }
675 };
676 
677 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
678 public:
679   DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
680     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
681 };
682 
683 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
684   Ty = useFirstFieldIfTransparentUnion(Ty);
685 
686   if (isAggregateTypeForABI(Ty)) {
687     // Records with non-trivial destructors/copy-constructors should not be
688     // passed by value.
689     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
690       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
691 
692     return getNaturalAlignIndirect(Ty);
693   }
694 
695   // Treat an enum type as its underlying type.
696   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
697     Ty = EnumTy->getDecl()->getIntegerType();
698 
699   return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
700                                         : ABIArgInfo::getDirect());
701 }
702 
703 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
704   if (RetTy->isVoidType())
705     return ABIArgInfo::getIgnore();
706 
707   if (isAggregateTypeForABI(RetTy))
708     return getNaturalAlignIndirect(RetTy);
709 
710   // Treat an enum type as its underlying type.
711   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
712     RetTy = EnumTy->getDecl()->getIntegerType();
713 
714   return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
715                                            : ABIArgInfo::getDirect());
716 }
717 
718 //===----------------------------------------------------------------------===//
719 // WebAssembly ABI Implementation
720 //
721 // This is a very simple ABI that relies a lot on DefaultABIInfo.
722 //===----------------------------------------------------------------------===//
723 
724 class WebAssemblyABIInfo final : public SwiftABIInfo {
725   DefaultABIInfo defaultInfo;
726 
727 public:
728   explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT)
729       : SwiftABIInfo(CGT), defaultInfo(CGT) {}
730 
731 private:
732   ABIArgInfo classifyReturnType(QualType RetTy) const;
733   ABIArgInfo classifyArgumentType(QualType Ty) const;
734 
735   // DefaultABIInfo's classifyReturnType and classifyArgumentType are
736   // non-virtual, but computeInfo and EmitVAArg are virtual, so we
737   // overload them.
738   void computeInfo(CGFunctionInfo &FI) const override {
739     if (!getCXXABI().classifyReturnType(FI))
740       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
741     for (auto &Arg : FI.arguments())
742       Arg.info = classifyArgumentType(Arg.type);
743   }
744 
745   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
746                     QualType Ty) const override;
747 
748   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
749                                     bool asReturnValue) const override {
750     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
751   }
752 
753   bool isSwiftErrorInRegister() const override {
754     return false;
755   }
756 };
757 
758 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo {
759 public:
760   explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
761       : TargetCodeGenInfo(new WebAssemblyABIInfo(CGT)) {}
762 
763   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
764                            CodeGen::CodeGenModule &CGM) const override {
765     TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
766     if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) {
767       if (const auto *Attr = FD->getAttr<WebAssemblyImportModuleAttr>()) {
768         llvm::Function *Fn = cast<llvm::Function>(GV);
769         llvm::AttrBuilder B;
770         B.addAttribute("wasm-import-module", Attr->getImportModule());
771         Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
772       }
773       if (const auto *Attr = FD->getAttr<WebAssemblyImportNameAttr>()) {
774         llvm::Function *Fn = cast<llvm::Function>(GV);
775         llvm::AttrBuilder B;
776         B.addAttribute("wasm-import-name", Attr->getImportName());
777         Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
778       }
779     }
780 
781     if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) {
782       llvm::Function *Fn = cast<llvm::Function>(GV);
783       if (!FD->doesThisDeclarationHaveABody() && !FD->hasPrototype())
784         Fn->addFnAttr("no-prototype");
785     }
786   }
787 };
788 
789 /// Classify argument of given type \p Ty.
790 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const {
791   Ty = useFirstFieldIfTransparentUnion(Ty);
792 
793   if (isAggregateTypeForABI(Ty)) {
794     // Records with non-trivial destructors/copy-constructors should not be
795     // passed by value.
796     if (auto RAA = getRecordArgABI(Ty, getCXXABI()))
797       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
798     // Ignore empty structs/unions.
799     if (isEmptyRecord(getContext(), Ty, true))
800       return ABIArgInfo::getIgnore();
801     // Lower single-element structs to just pass a regular value. TODO: We
802     // could do reasonable-size multiple-element structs too, using getExpand(),
803     // though watch out for things like bitfields.
804     if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
805       return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
806   }
807 
808   // Otherwise just do the default thing.
809   return defaultInfo.classifyArgumentType(Ty);
810 }
811 
812 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const {
813   if (isAggregateTypeForABI(RetTy)) {
814     // Records with non-trivial destructors/copy-constructors should not be
815     // returned by value.
816     if (!getRecordArgABI(RetTy, getCXXABI())) {
817       // Ignore empty structs/unions.
818       if (isEmptyRecord(getContext(), RetTy, true))
819         return ABIArgInfo::getIgnore();
820       // Lower single-element structs to just return a regular value. TODO: We
821       // could do reasonable-size multiple-element structs too, using
822       // ABIArgInfo::getDirect().
823       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
824         return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
825     }
826   }
827 
828   // Otherwise just do the default thing.
829   return defaultInfo.classifyReturnType(RetTy);
830 }
831 
832 Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
833                                       QualType Ty) const {
834   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect=*/ false,
835                           getContext().getTypeInfoInChars(Ty),
836                           CharUnits::fromQuantity(4),
837                           /*AllowHigherAlign=*/ true);
838 }
839 
840 //===----------------------------------------------------------------------===//
841 // le32/PNaCl bitcode ABI Implementation
842 //
843 // This is a simplified version of the x86_32 ABI.  Arguments and return values
844 // are always passed on the stack.
845 //===----------------------------------------------------------------------===//
846 
847 class PNaClABIInfo : public ABIInfo {
848  public:
849   PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
850 
851   ABIArgInfo classifyReturnType(QualType RetTy) const;
852   ABIArgInfo classifyArgumentType(QualType RetTy) const;
853 
854   void computeInfo(CGFunctionInfo &FI) const override;
855   Address EmitVAArg(CodeGenFunction &CGF,
856                     Address VAListAddr, QualType Ty) const override;
857 };
858 
859 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo {
860  public:
861   PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
862     : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {}
863 };
864 
865 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const {
866   if (!getCXXABI().classifyReturnType(FI))
867     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
868 
869   for (auto &I : FI.arguments())
870     I.info = classifyArgumentType(I.type);
871 }
872 
873 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
874                                 QualType Ty) const {
875   // The PNaCL ABI is a bit odd, in that varargs don't use normal
876   // function classification. Structs get passed directly for varargs
877   // functions, through a rewriting transform in
878   // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows
879   // this target to actually support a va_arg instructions with an
880   // aggregate type, unlike other targets.
881   return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect());
882 }
883 
884 /// Classify argument of given type \p Ty.
885 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const {
886   if (isAggregateTypeForABI(Ty)) {
887     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
888       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
889     return getNaturalAlignIndirect(Ty);
890   } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
891     // Treat an enum type as its underlying type.
892     Ty = EnumTy->getDecl()->getIntegerType();
893   } else if (Ty->isFloatingType()) {
894     // Floating-point types don't go inreg.
895     return ABIArgInfo::getDirect();
896   }
897 
898   return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
899                                         : ABIArgInfo::getDirect());
900 }
901 
902 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const {
903   if (RetTy->isVoidType())
904     return ABIArgInfo::getIgnore();
905 
906   // In the PNaCl ABI we always return records/structures on the stack.
907   if (isAggregateTypeForABI(RetTy))
908     return getNaturalAlignIndirect(RetTy);
909 
910   // Treat an enum type as its underlying type.
911   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
912     RetTy = EnumTy->getDecl()->getIntegerType();
913 
914   return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
915                                            : ABIArgInfo::getDirect());
916 }
917 
918 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
919                                           StringRef Constraint,
920                                           llvm::Type* Ty) {
921   bool IsMMXCons = llvm::StringSwitch<bool>(Constraint)
922                      .Cases("y", "&y", "^Ym", true)
923                      .Default(false);
924   if (IsMMXCons && Ty->isVectorTy()) {
925     if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) {
926       // Invalid MMX constraint
927       return nullptr;
928     }
929 
930     return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
931   }
932 
933   // No operation needed
934   return Ty;
935 }
936 
937 /// Returns true if this type can be passed in SSE registers with the
938 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64.
939 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) {
940   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
941     if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) {
942       if (BT->getKind() == BuiltinType::LongDouble) {
943         if (&Context.getTargetInfo().getLongDoubleFormat() ==
944             &llvm::APFloat::x87DoubleExtended())
945           return false;
946       }
947       return true;
948     }
949   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
950     // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX
951     // registers specially.
952     unsigned VecSize = Context.getTypeSize(VT);
953     if (VecSize == 128 || VecSize == 256 || VecSize == 512)
954       return true;
955   }
956   return false;
957 }
958 
959 /// Returns true if this aggregate is small enough to be passed in SSE registers
960 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64.
961 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) {
962   return NumMembers <= 4;
963 }
964 
965 /// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86.
966 static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) {
967   auto AI = ABIArgInfo::getDirect(T);
968   AI.setInReg(true);
969   AI.setCanBeFlattened(false);
970   return AI;
971 }
972 
973 //===----------------------------------------------------------------------===//
974 // X86-32 ABI Implementation
975 //===----------------------------------------------------------------------===//
976 
977 /// Similar to llvm::CCState, but for Clang.
978 struct CCState {
979   CCState(unsigned CC) : CC(CC), FreeRegs(0), FreeSSERegs(0) {}
980 
981   unsigned CC;
982   unsigned FreeRegs;
983   unsigned FreeSSERegs;
984 };
985 
986 enum {
987   // Vectorcall only allows the first 6 parameters to be passed in registers.
988   VectorcallMaxParamNumAsReg = 6
989 };
990 
991 /// X86_32ABIInfo - The X86-32 ABI information.
992 class X86_32ABIInfo : public SwiftABIInfo {
993   enum Class {
994     Integer,
995     Float
996   };
997 
998   static const unsigned MinABIStackAlignInBytes = 4;
999 
1000   bool IsDarwinVectorABI;
1001   bool IsRetSmallStructInRegABI;
1002   bool IsWin32StructABI;
1003   bool IsSoftFloatABI;
1004   bool IsMCUABI;
1005   unsigned DefaultNumRegisterParameters;
1006   bool IsMMXEnabled;
1007 
1008   static bool isRegisterSize(unsigned Size) {
1009     return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
1010   }
1011 
1012   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
1013     // FIXME: Assumes vectorcall is in use.
1014     return isX86VectorTypeForVectorCall(getContext(), Ty);
1015   }
1016 
1017   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
1018                                          uint64_t NumMembers) const override {
1019     // FIXME: Assumes vectorcall is in use.
1020     return isX86VectorCallAggregateSmallEnough(NumMembers);
1021   }
1022 
1023   bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const;
1024 
1025   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1026   /// such that the argument will be passed in memory.
1027   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
1028 
1029   ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const;
1030 
1031   /// Return the alignment to use for the given type on the stack.
1032   unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
1033 
1034   Class classify(QualType Ty) const;
1035   ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const;
1036   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
1037 
1038   /// Updates the number of available free registers, returns
1039   /// true if any registers were allocated.
1040   bool updateFreeRegs(QualType Ty, CCState &State) const;
1041 
1042   bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg,
1043                                 bool &NeedsPadding) const;
1044   bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const;
1045 
1046   bool canExpandIndirectArgument(QualType Ty) const;
1047 
1048   /// Rewrite the function info so that all memory arguments use
1049   /// inalloca.
1050   void rewriteWithInAlloca(CGFunctionInfo &FI) const;
1051 
1052   void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
1053                            CharUnits &StackOffset, ABIArgInfo &Info,
1054                            QualType Type) const;
1055   void computeVectorCallArgs(CGFunctionInfo &FI, CCState &State,
1056                              bool &UsedInAlloca) const;
1057 
1058 public:
1059 
1060   void computeInfo(CGFunctionInfo &FI) const override;
1061   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
1062                     QualType Ty) const override;
1063 
1064   X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
1065                 bool RetSmallStructInRegABI, bool Win32StructABI,
1066                 unsigned NumRegisterParameters, bool SoftFloatABI,
1067                 bool MMXEnabled)
1068     : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI),
1069       IsRetSmallStructInRegABI(RetSmallStructInRegABI),
1070       IsWin32StructABI(Win32StructABI),
1071       IsSoftFloatABI(SoftFloatABI),
1072       IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()),
1073       DefaultNumRegisterParameters(NumRegisterParameters),
1074       IsMMXEnabled(MMXEnabled) {}
1075 
1076   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
1077                                     bool asReturnValue) const override {
1078     // LLVM's x86-32 lowering currently only assigns up to three
1079     // integer registers and three fp registers.  Oddly, it'll use up to
1080     // four vector registers for vectors, but those can overlap with the
1081     // scalar registers.
1082     return occupiesMoreThan(CGT, scalars, /*total*/ 3);
1083   }
1084 
1085   bool isSwiftErrorInRegister() const override {
1086     // x86-32 lowering does not support passing swifterror in a register.
1087     return false;
1088   }
1089 
1090   bool isPassInMMXRegABI() const {
1091     // The System V i386 psABI requires __m64 to be passed in MMX registers.
1092     // Clang historically had a bug where it failed to apply this rule, and
1093     // some platforms (e.g. Darwin, PS4, and FreeBSD) have opted to maintain
1094     // compatibility with the old Clang behavior, so we only apply it on
1095     // platforms that have specifically requested it (currently just Linux and
1096     // NetBSD).
1097     const llvm::Triple &T = getTarget().getTriple();
1098     if (IsMMXEnabled && (T.isOSLinux() || T.isOSNetBSD()))
1099       return true;
1100     return false;
1101   }
1102 };
1103 
1104 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
1105 public:
1106   X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
1107                           bool RetSmallStructInRegABI, bool Win32StructABI,
1108                           unsigned NumRegisterParameters, bool SoftFloatABI,
1109                           bool MMXEnabled = false)
1110       : TargetCodeGenInfo(new X86_32ABIInfo(
1111             CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI,
1112             NumRegisterParameters, SoftFloatABI, MMXEnabled)) {}
1113 
1114   static bool isStructReturnInRegABI(
1115       const llvm::Triple &Triple, const CodeGenOptions &Opts);
1116 
1117   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
1118                            CodeGen::CodeGenModule &CGM) const override;
1119 
1120   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
1121     // Darwin uses different dwarf register numbers for EH.
1122     if (CGM.getTarget().getTriple().isOSDarwin()) return 5;
1123     return 4;
1124   }
1125 
1126   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1127                                llvm::Value *Address) const override;
1128 
1129   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
1130                                   StringRef Constraint,
1131                                   llvm::Type* Ty) const override {
1132     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
1133   }
1134 
1135   void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue,
1136                                 std::string &Constraints,
1137                                 std::vector<llvm::Type *> &ResultRegTypes,
1138                                 std::vector<llvm::Type *> &ResultTruncRegTypes,
1139                                 std::vector<LValue> &ResultRegDests,
1140                                 std::string &AsmString,
1141                                 unsigned NumOutputs) const override;
1142 
1143   llvm::Constant *
1144   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
1145     unsigned Sig = (0xeb << 0) |  // jmp rel8
1146                    (0x06 << 8) |  //           .+0x08
1147                    ('v' << 16) |
1148                    ('2' << 24);
1149     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
1150   }
1151 
1152   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
1153     return "movl\t%ebp, %ebp"
1154            "\t\t// marker for objc_retainAutoreleaseReturnValue";
1155   }
1156 };
1157 
1158 }
1159 
1160 /// Rewrite input constraint references after adding some output constraints.
1161 /// In the case where there is one output and one input and we add one output,
1162 /// we need to replace all operand references greater than or equal to 1:
1163 ///     mov $0, $1
1164 ///     mov eax, $1
1165 /// The result will be:
1166 ///     mov $0, $2
1167 ///     mov eax, $2
1168 static void rewriteInputConstraintReferences(unsigned FirstIn,
1169                                              unsigned NumNewOuts,
1170                                              std::string &AsmString) {
1171   std::string Buf;
1172   llvm::raw_string_ostream OS(Buf);
1173   size_t Pos = 0;
1174   while (Pos < AsmString.size()) {
1175     size_t DollarStart = AsmString.find('$', Pos);
1176     if (DollarStart == std::string::npos)
1177       DollarStart = AsmString.size();
1178     size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart);
1179     if (DollarEnd == std::string::npos)
1180       DollarEnd = AsmString.size();
1181     OS << StringRef(&AsmString[Pos], DollarEnd - Pos);
1182     Pos = DollarEnd;
1183     size_t NumDollars = DollarEnd - DollarStart;
1184     if (NumDollars % 2 != 0 && Pos < AsmString.size()) {
1185       // We have an operand reference.
1186       size_t DigitStart = Pos;
1187       size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart);
1188       if (DigitEnd == std::string::npos)
1189         DigitEnd = AsmString.size();
1190       StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart);
1191       unsigned OperandIndex;
1192       if (!OperandStr.getAsInteger(10, OperandIndex)) {
1193         if (OperandIndex >= FirstIn)
1194           OperandIndex += NumNewOuts;
1195         OS << OperandIndex;
1196       } else {
1197         OS << OperandStr;
1198       }
1199       Pos = DigitEnd;
1200     }
1201   }
1202   AsmString = std::move(OS.str());
1203 }
1204 
1205 /// Add output constraints for EAX:EDX because they are return registers.
1206 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs(
1207     CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints,
1208     std::vector<llvm::Type *> &ResultRegTypes,
1209     std::vector<llvm::Type *> &ResultTruncRegTypes,
1210     std::vector<LValue> &ResultRegDests, std::string &AsmString,
1211     unsigned NumOutputs) const {
1212   uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType());
1213 
1214   // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is
1215   // larger.
1216   if (!Constraints.empty())
1217     Constraints += ',';
1218   if (RetWidth <= 32) {
1219     Constraints += "={eax}";
1220     ResultRegTypes.push_back(CGF.Int32Ty);
1221   } else {
1222     // Use the 'A' constraint for EAX:EDX.
1223     Constraints += "=A";
1224     ResultRegTypes.push_back(CGF.Int64Ty);
1225   }
1226 
1227   // Truncate EAX or EAX:EDX to an integer of the appropriate size.
1228   llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth);
1229   ResultTruncRegTypes.push_back(CoerceTy);
1230 
1231   // Coerce the integer by bitcasting the return slot pointer.
1232   ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(),
1233                                                   CoerceTy->getPointerTo()));
1234   ResultRegDests.push_back(ReturnSlot);
1235 
1236   rewriteInputConstraintReferences(NumOutputs, 1, AsmString);
1237 }
1238 
1239 /// shouldReturnTypeInRegister - Determine if the given type should be
1240 /// returned in a register (for the Darwin and MCU ABI).
1241 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
1242                                                ASTContext &Context) const {
1243   uint64_t Size = Context.getTypeSize(Ty);
1244 
1245   // For i386, type must be register sized.
1246   // For the MCU ABI, it only needs to be <= 8-byte
1247   if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size)))
1248    return false;
1249 
1250   if (Ty->isVectorType()) {
1251     // 64- and 128- bit vectors inside structures are not returned in
1252     // registers.
1253     if (Size == 64 || Size == 128)
1254       return false;
1255 
1256     return true;
1257   }
1258 
1259   // If this is a builtin, pointer, enum, complex type, member pointer, or
1260   // member function pointer it is ok.
1261   if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
1262       Ty->isAnyComplexType() || Ty->isEnumeralType() ||
1263       Ty->isBlockPointerType() || Ty->isMemberPointerType())
1264     return true;
1265 
1266   // Arrays are treated like records.
1267   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
1268     return shouldReturnTypeInRegister(AT->getElementType(), Context);
1269 
1270   // Otherwise, it must be a record type.
1271   const RecordType *RT = Ty->getAs<RecordType>();
1272   if (!RT) return false;
1273 
1274   // FIXME: Traverse bases here too.
1275 
1276   // Structure types are passed in register if all fields would be
1277   // passed in a register.
1278   for (const auto *FD : RT->getDecl()->fields()) {
1279     // Empty fields are ignored.
1280     if (isEmptyField(Context, FD, true))
1281       continue;
1282 
1283     // Check fields recursively.
1284     if (!shouldReturnTypeInRegister(FD->getType(), Context))
1285       return false;
1286   }
1287   return true;
1288 }
1289 
1290 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
1291   // Treat complex types as the element type.
1292   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
1293     Ty = CTy->getElementType();
1294 
1295   // Check for a type which we know has a simple scalar argument-passing
1296   // convention without any padding.  (We're specifically looking for 32
1297   // and 64-bit integer and integer-equivalents, float, and double.)
1298   if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
1299       !Ty->isEnumeralType() && !Ty->isBlockPointerType())
1300     return false;
1301 
1302   uint64_t Size = Context.getTypeSize(Ty);
1303   return Size == 32 || Size == 64;
1304 }
1305 
1306 static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD,
1307                           uint64_t &Size) {
1308   for (const auto *FD : RD->fields()) {
1309     // Scalar arguments on the stack get 4 byte alignment on x86. If the
1310     // argument is smaller than 32-bits, expanding the struct will create
1311     // alignment padding.
1312     if (!is32Or64BitBasicType(FD->getType(), Context))
1313       return false;
1314 
1315     // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
1316     // how to expand them yet, and the predicate for telling if a bitfield still
1317     // counts as "basic" is more complicated than what we were doing previously.
1318     if (FD->isBitField())
1319       return false;
1320 
1321     Size += Context.getTypeSize(FD->getType());
1322   }
1323   return true;
1324 }
1325 
1326 static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD,
1327                                  uint64_t &Size) {
1328   // Don't do this if there are any non-empty bases.
1329   for (const CXXBaseSpecifier &Base : RD->bases()) {
1330     if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(),
1331                               Size))
1332       return false;
1333   }
1334   if (!addFieldSizes(Context, RD, Size))
1335     return false;
1336   return true;
1337 }
1338 
1339 /// Test whether an argument type which is to be passed indirectly (on the
1340 /// stack) would have the equivalent layout if it was expanded into separate
1341 /// arguments. If so, we prefer to do the latter to avoid inhibiting
1342 /// optimizations.
1343 bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const {
1344   // We can only expand structure types.
1345   const RecordType *RT = Ty->getAs<RecordType>();
1346   if (!RT)
1347     return false;
1348   const RecordDecl *RD = RT->getDecl();
1349   uint64_t Size = 0;
1350   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1351     if (!IsWin32StructABI) {
1352       // On non-Windows, we have to conservatively match our old bitcode
1353       // prototypes in order to be ABI-compatible at the bitcode level.
1354       if (!CXXRD->isCLike())
1355         return false;
1356     } else {
1357       // Don't do this for dynamic classes.
1358       if (CXXRD->isDynamicClass())
1359         return false;
1360     }
1361     if (!addBaseAndFieldSizes(getContext(), CXXRD, Size))
1362       return false;
1363   } else {
1364     if (!addFieldSizes(getContext(), RD, Size))
1365       return false;
1366   }
1367 
1368   // We can do this if there was no alignment padding.
1369   return Size == getContext().getTypeSize(Ty);
1370 }
1371 
1372 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const {
1373   // If the return value is indirect, then the hidden argument is consuming one
1374   // integer register.
1375   if (State.FreeRegs) {
1376     --State.FreeRegs;
1377     if (!IsMCUABI)
1378       return getNaturalAlignIndirectInReg(RetTy);
1379   }
1380   return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
1381 }
1382 
1383 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
1384                                              CCState &State) const {
1385   if (RetTy->isVoidType())
1386     return ABIArgInfo::getIgnore();
1387 
1388   const Type *Base = nullptr;
1389   uint64_t NumElts = 0;
1390   if ((State.CC == llvm::CallingConv::X86_VectorCall ||
1391        State.CC == llvm::CallingConv::X86_RegCall) &&
1392       isHomogeneousAggregate(RetTy, Base, NumElts)) {
1393     // The LLVM struct type for such an aggregate should lower properly.
1394     return ABIArgInfo::getDirect();
1395   }
1396 
1397   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
1398     uint64_t Size = getContext().getTypeSize(RetTy);
1399     // On Darwin, some vectors are returned in registers.
1400     if (IsDarwinVectorABI) {
1401       // 128-bit vectors are a special case; they are returned in
1402       // registers and we need to make sure to pick a type the LLVM
1403       // backend will like.
1404       if (Size == 128)
1405         return ABIArgInfo::getDirect(llvm::VectorType::get(
1406                   llvm::Type::getInt64Ty(getVMContext()), 2));
1407 
1408       // Always return in register if it fits in a general purpose
1409       // register, or if it is 64 bits and has a single element.
1410       if ((Size == 8 || Size == 16 || Size == 32) ||
1411           (Size == 64 && VT->getNumElements() == 1))
1412         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1413                                                             Size));
1414 
1415       return getIndirectReturnResult(RetTy, State);
1416     }
1417 
1418     if (VT->getElementType()->isIntegerType() && Size == 64 &&
1419         isPassInMMXRegABI())
1420       return ABIArgInfo::getDirect(llvm::Type::getX86_MMXTy(getVMContext()));
1421 
1422     return ABIArgInfo::getDirect();
1423   }
1424 
1425   if (isAggregateTypeForABI(RetTy)) {
1426     if (const RecordType *RT = RetTy->getAs<RecordType>()) {
1427       // Structures with flexible arrays are always indirect.
1428       if (RT->getDecl()->hasFlexibleArrayMember())
1429         return getIndirectReturnResult(RetTy, State);
1430     }
1431 
1432     // If specified, structs and unions are always indirect.
1433     if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType())
1434       return getIndirectReturnResult(RetTy, State);
1435 
1436     // Ignore empty structs/unions.
1437     if (isEmptyRecord(getContext(), RetTy, true))
1438       return ABIArgInfo::getIgnore();
1439 
1440     // Small structures which are register sized are generally returned
1441     // in a register.
1442     if (shouldReturnTypeInRegister(RetTy, getContext())) {
1443       uint64_t Size = getContext().getTypeSize(RetTy);
1444 
1445       // As a special-case, if the struct is a "single-element" struct, and
1446       // the field is of type "float" or "double", return it in a
1447       // floating-point register. (MSVC does not apply this special case.)
1448       // We apply a similar transformation for pointer types to improve the
1449       // quality of the generated IR.
1450       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
1451         if ((!IsWin32StructABI && SeltTy->isRealFloatingType())
1452             || SeltTy->hasPointerRepresentation())
1453           return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
1454 
1455       // FIXME: We should be able to narrow this integer in cases with dead
1456       // padding.
1457       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
1458     }
1459 
1460     return getIndirectReturnResult(RetTy, State);
1461   }
1462 
1463   // Treat an enum type as its underlying type.
1464   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
1465     RetTy = EnumTy->getDecl()->getIntegerType();
1466 
1467   return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
1468                                            : ABIArgInfo::getDirect());
1469 }
1470 
1471 static bool isSSEVectorType(ASTContext &Context, QualType Ty) {
1472   return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128;
1473 }
1474 
1475 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) {
1476   const RecordType *RT = Ty->getAs<RecordType>();
1477   if (!RT)
1478     return 0;
1479   const RecordDecl *RD = RT->getDecl();
1480 
1481   // If this is a C++ record, check the bases first.
1482   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
1483     for (const auto &I : CXXRD->bases())
1484       if (!isRecordWithSSEVectorType(Context, I.getType()))
1485         return false;
1486 
1487   for (const auto *i : RD->fields()) {
1488     QualType FT = i->getType();
1489 
1490     if (isSSEVectorType(Context, FT))
1491       return true;
1492 
1493     if (isRecordWithSSEVectorType(Context, FT))
1494       return true;
1495   }
1496 
1497   return false;
1498 }
1499 
1500 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
1501                                                  unsigned Align) const {
1502   // Otherwise, if the alignment is less than or equal to the minimum ABI
1503   // alignment, just use the default; the backend will handle this.
1504   if (Align <= MinABIStackAlignInBytes)
1505     return 0; // Use default alignment.
1506 
1507   // On non-Darwin, the stack type alignment is always 4.
1508   if (!IsDarwinVectorABI) {
1509     // Set explicit alignment, since we may need to realign the top.
1510     return MinABIStackAlignInBytes;
1511   }
1512 
1513   // Otherwise, if the type contains an SSE vector type, the alignment is 16.
1514   if (Align >= 16 && (isSSEVectorType(getContext(), Ty) ||
1515                       isRecordWithSSEVectorType(getContext(), Ty)))
1516     return 16;
1517 
1518   return MinABIStackAlignInBytes;
1519 }
1520 
1521 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal,
1522                                             CCState &State) const {
1523   if (!ByVal) {
1524     if (State.FreeRegs) {
1525       --State.FreeRegs; // Non-byval indirects just use one pointer.
1526       if (!IsMCUABI)
1527         return getNaturalAlignIndirectInReg(Ty);
1528     }
1529     return getNaturalAlignIndirect(Ty, false);
1530   }
1531 
1532   // Compute the byval alignment.
1533   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
1534   unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
1535   if (StackAlign == 0)
1536     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true);
1537 
1538   // If the stack alignment is less than the type alignment, realign the
1539   // argument.
1540   bool Realign = TypeAlign > StackAlign;
1541   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign),
1542                                  /*ByVal=*/true, Realign);
1543 }
1544 
1545 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const {
1546   const Type *T = isSingleElementStruct(Ty, getContext());
1547   if (!T)
1548     T = Ty.getTypePtr();
1549 
1550   if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
1551     BuiltinType::Kind K = BT->getKind();
1552     if (K == BuiltinType::Float || K == BuiltinType::Double)
1553       return Float;
1554   }
1555   return Integer;
1556 }
1557 
1558 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const {
1559   if (!IsSoftFloatABI) {
1560     Class C = classify(Ty);
1561     if (C == Float)
1562       return false;
1563   }
1564 
1565   unsigned Size = getContext().getTypeSize(Ty);
1566   unsigned SizeInRegs = (Size + 31) / 32;
1567 
1568   if (SizeInRegs == 0)
1569     return false;
1570 
1571   if (!IsMCUABI) {
1572     if (SizeInRegs > State.FreeRegs) {
1573       State.FreeRegs = 0;
1574       return false;
1575     }
1576   } else {
1577     // The MCU psABI allows passing parameters in-reg even if there are
1578     // earlier parameters that are passed on the stack. Also,
1579     // it does not allow passing >8-byte structs in-register,
1580     // even if there are 3 free registers available.
1581     if (SizeInRegs > State.FreeRegs || SizeInRegs > 2)
1582       return false;
1583   }
1584 
1585   State.FreeRegs -= SizeInRegs;
1586   return true;
1587 }
1588 
1589 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State,
1590                                              bool &InReg,
1591                                              bool &NeedsPadding) const {
1592   // On Windows, aggregates other than HFAs are never passed in registers, and
1593   // they do not consume register slots. Homogenous floating-point aggregates
1594   // (HFAs) have already been dealt with at this point.
1595   if (IsWin32StructABI && isAggregateTypeForABI(Ty))
1596     return false;
1597 
1598   NeedsPadding = false;
1599   InReg = !IsMCUABI;
1600 
1601   if (!updateFreeRegs(Ty, State))
1602     return false;
1603 
1604   if (IsMCUABI)
1605     return true;
1606 
1607   if (State.CC == llvm::CallingConv::X86_FastCall ||
1608       State.CC == llvm::CallingConv::X86_VectorCall ||
1609       State.CC == llvm::CallingConv::X86_RegCall) {
1610     if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs)
1611       NeedsPadding = true;
1612 
1613     return false;
1614   }
1615 
1616   return true;
1617 }
1618 
1619 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const {
1620   if (!updateFreeRegs(Ty, State))
1621     return false;
1622 
1623   if (IsMCUABI)
1624     return false;
1625 
1626   if (State.CC == llvm::CallingConv::X86_FastCall ||
1627       State.CC == llvm::CallingConv::X86_VectorCall ||
1628       State.CC == llvm::CallingConv::X86_RegCall) {
1629     if (getContext().getTypeSize(Ty) > 32)
1630       return false;
1631 
1632     return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() ||
1633         Ty->isReferenceType());
1634   }
1635 
1636   return true;
1637 }
1638 
1639 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
1640                                                CCState &State) const {
1641   // FIXME: Set alignment on indirect arguments.
1642 
1643   Ty = useFirstFieldIfTransparentUnion(Ty);
1644 
1645   // Check with the C++ ABI first.
1646   const RecordType *RT = Ty->getAs<RecordType>();
1647   if (RT) {
1648     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
1649     if (RAA == CGCXXABI::RAA_Indirect) {
1650       return getIndirectResult(Ty, false, State);
1651     } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
1652       // The field index doesn't matter, we'll fix it up later.
1653       return ABIArgInfo::getInAlloca(/*FieldIndex=*/0);
1654     }
1655   }
1656 
1657   // Regcall uses the concept of a homogenous vector aggregate, similar
1658   // to other targets.
1659   const Type *Base = nullptr;
1660   uint64_t NumElts = 0;
1661   if (State.CC == llvm::CallingConv::X86_RegCall &&
1662       isHomogeneousAggregate(Ty, Base, NumElts)) {
1663 
1664     if (State.FreeSSERegs >= NumElts) {
1665       State.FreeSSERegs -= NumElts;
1666       if (Ty->isBuiltinType() || Ty->isVectorType())
1667         return ABIArgInfo::getDirect();
1668       return ABIArgInfo::getExpand();
1669     }
1670     return getIndirectResult(Ty, /*ByVal=*/false, State);
1671   }
1672 
1673   if (isAggregateTypeForABI(Ty)) {
1674     // Structures with flexible arrays are always indirect.
1675     // FIXME: This should not be byval!
1676     if (RT && RT->getDecl()->hasFlexibleArrayMember())
1677       return getIndirectResult(Ty, true, State);
1678 
1679     // Ignore empty structs/unions on non-Windows.
1680     if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true))
1681       return ABIArgInfo::getIgnore();
1682 
1683     llvm::LLVMContext &LLVMContext = getVMContext();
1684     llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
1685     bool NeedsPadding = false;
1686     bool InReg;
1687     if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) {
1688       unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
1689       SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32);
1690       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
1691       if (InReg)
1692         return ABIArgInfo::getDirectInReg(Result);
1693       else
1694         return ABIArgInfo::getDirect(Result);
1695     }
1696     llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr;
1697 
1698     // Expand small (<= 128-bit) record types when we know that the stack layout
1699     // of those arguments will match the struct. This is important because the
1700     // LLVM backend isn't smart enough to remove byval, which inhibits many
1701     // optimizations.
1702     // Don't do this for the MCU if there are still free integer registers
1703     // (see X86_64 ABI for full explanation).
1704     if (getContext().getTypeSize(Ty) <= 4 * 32 &&
1705         (!IsMCUABI || State.FreeRegs == 0) && canExpandIndirectArgument(Ty))
1706       return ABIArgInfo::getExpandWithPadding(
1707           State.CC == llvm::CallingConv::X86_FastCall ||
1708               State.CC == llvm::CallingConv::X86_VectorCall ||
1709               State.CC == llvm::CallingConv::X86_RegCall,
1710           PaddingType);
1711 
1712     return getIndirectResult(Ty, true, State);
1713   }
1714 
1715   if (const VectorType *VT = Ty->getAs<VectorType>()) {
1716     uint64_t Size = getContext().getTypeSize(Ty);
1717     // On Darwin, some vectors are passed in memory, we handle this by passing
1718     // it as an i8/i16/i32/i64.
1719     if (IsDarwinVectorABI) {
1720       if ((Size == 8 || Size == 16 || Size == 32) ||
1721           (Size == 64 && VT->getNumElements() == 1))
1722         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1723                                                             Size));
1724     }
1725 
1726     if (VT->getElementType()->isIntegerType() && Size == 64) {
1727       if (isPassInMMXRegABI())
1728         return ABIArgInfo::getDirect(llvm::Type::getX86_MMXTy(getVMContext()));
1729       else
1730         return ABIArgInfo::getDirect(
1731           llvm::IntegerType::get(getVMContext(), 64));
1732     }
1733     return ABIArgInfo::getDirect();
1734   }
1735 
1736   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1737     Ty = EnumTy->getDecl()->getIntegerType();
1738 
1739   bool InReg = shouldPrimitiveUseInReg(Ty, State);
1740 
1741   if (Ty->isPromotableIntegerType()) {
1742     if (InReg)
1743       return ABIArgInfo::getExtendInReg(Ty);
1744     return ABIArgInfo::getExtend(Ty);
1745   }
1746 
1747   if (InReg)
1748     return ABIArgInfo::getDirectInReg();
1749   return ABIArgInfo::getDirect();
1750 }
1751 
1752 void X86_32ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI, CCState &State,
1753                                           bool &UsedInAlloca) const {
1754   // Vectorcall x86 works subtly different than in x64, so the format is
1755   // a bit different than the x64 version.  First, all vector types (not HVAs)
1756   // are assigned, with the first 6 ending up in the YMM0-5 or XMM0-5 registers.
1757   // This differs from the x64 implementation, where the first 6 by INDEX get
1758   // registers.
1759   // After that, integers AND HVAs are assigned Left to Right in the same pass.
1760   // Integers are passed as ECX/EDX if one is available (in order).  HVAs will
1761   // first take up the remaining YMM/XMM registers. If insufficient registers
1762   // remain but an integer register (ECX/EDX) is available, it will be passed
1763   // in that, else, on the stack.
1764   for (auto &I : FI.arguments()) {
1765     // First pass do all the vector types.
1766     const Type *Base = nullptr;
1767     uint64_t NumElts = 0;
1768     const QualType& Ty = I.type;
1769     if ((Ty->isVectorType() || Ty->isBuiltinType()) &&
1770         isHomogeneousAggregate(Ty, Base, NumElts)) {
1771       if (State.FreeSSERegs >= NumElts) {
1772         State.FreeSSERegs -= NumElts;
1773         I.info = ABIArgInfo::getDirect();
1774       } else {
1775         I.info = classifyArgumentType(Ty, State);
1776       }
1777       UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca);
1778     }
1779   }
1780 
1781   for (auto &I : FI.arguments()) {
1782     // Second pass, do the rest!
1783     const Type *Base = nullptr;
1784     uint64_t NumElts = 0;
1785     const QualType& Ty = I.type;
1786     bool IsHva = isHomogeneousAggregate(Ty, Base, NumElts);
1787 
1788     if (IsHva && !Ty->isVectorType() && !Ty->isBuiltinType()) {
1789       // Assign true HVAs (non vector/native FP types).
1790       if (State.FreeSSERegs >= NumElts) {
1791         State.FreeSSERegs -= NumElts;
1792         I.info = getDirectX86Hva();
1793       } else {
1794         I.info = getIndirectResult(Ty, /*ByVal=*/false, State);
1795       }
1796     } else if (!IsHva) {
1797       // Assign all Non-HVAs, so this will exclude Vector/FP args.
1798       I.info = classifyArgumentType(Ty, State);
1799       UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca);
1800     }
1801   }
1802 }
1803 
1804 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
1805   CCState State(FI.getCallingConvention());
1806   if (IsMCUABI)
1807     State.FreeRegs = 3;
1808   else if (State.CC == llvm::CallingConv::X86_FastCall)
1809     State.FreeRegs = 2;
1810   else if (State.CC == llvm::CallingConv::X86_VectorCall) {
1811     State.FreeRegs = 2;
1812     State.FreeSSERegs = 6;
1813   } else if (FI.getHasRegParm())
1814     State.FreeRegs = FI.getRegParm();
1815   else if (State.CC == llvm::CallingConv::X86_RegCall) {
1816     State.FreeRegs = 5;
1817     State.FreeSSERegs = 8;
1818   } else
1819     State.FreeRegs = DefaultNumRegisterParameters;
1820 
1821   if (!::classifyReturnType(getCXXABI(), FI, *this)) {
1822     FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State);
1823   } else if (FI.getReturnInfo().isIndirect()) {
1824     // The C++ ABI is not aware of register usage, so we have to check if the
1825     // return value was sret and put it in a register ourselves if appropriate.
1826     if (State.FreeRegs) {
1827       --State.FreeRegs;  // The sret parameter consumes a register.
1828       if (!IsMCUABI)
1829         FI.getReturnInfo().setInReg(true);
1830     }
1831   }
1832 
1833   // The chain argument effectively gives us another free register.
1834   if (FI.isChainCall())
1835     ++State.FreeRegs;
1836 
1837   bool UsedInAlloca = false;
1838   if (State.CC == llvm::CallingConv::X86_VectorCall) {
1839     computeVectorCallArgs(FI, State, UsedInAlloca);
1840   } else {
1841     // If not vectorcall, revert to normal behavior.
1842     for (auto &I : FI.arguments()) {
1843       I.info = classifyArgumentType(I.type, State);
1844       UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca);
1845     }
1846   }
1847 
1848   // If we needed to use inalloca for any argument, do a second pass and rewrite
1849   // all the memory arguments to use inalloca.
1850   if (UsedInAlloca)
1851     rewriteWithInAlloca(FI);
1852 }
1853 
1854 void
1855 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
1856                                    CharUnits &StackOffset, ABIArgInfo &Info,
1857                                    QualType Type) const {
1858   // Arguments are always 4-byte-aligned.
1859   CharUnits FieldAlign = CharUnits::fromQuantity(4);
1860 
1861   assert(StackOffset.isMultipleOf(FieldAlign) && "unaligned inalloca struct");
1862   Info = ABIArgInfo::getInAlloca(FrameFields.size());
1863   FrameFields.push_back(CGT.ConvertTypeForMem(Type));
1864   StackOffset += getContext().getTypeSizeInChars(Type);
1865 
1866   // Insert padding bytes to respect alignment.
1867   CharUnits FieldEnd = StackOffset;
1868   StackOffset = FieldEnd.alignTo(FieldAlign);
1869   if (StackOffset != FieldEnd) {
1870     CharUnits NumBytes = StackOffset - FieldEnd;
1871     llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext());
1872     Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity());
1873     FrameFields.push_back(Ty);
1874   }
1875 }
1876 
1877 static bool isArgInAlloca(const ABIArgInfo &Info) {
1878   // Leave ignored and inreg arguments alone.
1879   switch (Info.getKind()) {
1880   case ABIArgInfo::InAlloca:
1881     return true;
1882   case ABIArgInfo::Indirect:
1883     assert(Info.getIndirectByVal());
1884     return true;
1885   case ABIArgInfo::Ignore:
1886     return false;
1887   case ABIArgInfo::Direct:
1888   case ABIArgInfo::Extend:
1889     if (Info.getInReg())
1890       return false;
1891     return true;
1892   case ABIArgInfo::Expand:
1893   case ABIArgInfo::CoerceAndExpand:
1894     // These are aggregate types which are never passed in registers when
1895     // inalloca is involved.
1896     return true;
1897   }
1898   llvm_unreachable("invalid enum");
1899 }
1900 
1901 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const {
1902   assert(IsWin32StructABI && "inalloca only supported on win32");
1903 
1904   // Build a packed struct type for all of the arguments in memory.
1905   SmallVector<llvm::Type *, 6> FrameFields;
1906 
1907   // The stack alignment is always 4.
1908   CharUnits StackAlign = CharUnits::fromQuantity(4);
1909 
1910   CharUnits StackOffset;
1911   CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end();
1912 
1913   // Put 'this' into the struct before 'sret', if necessary.
1914   bool IsThisCall =
1915       FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall;
1916   ABIArgInfo &Ret = FI.getReturnInfo();
1917   if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall &&
1918       isArgInAlloca(I->info)) {
1919     addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
1920     ++I;
1921   }
1922 
1923   // Put the sret parameter into the inalloca struct if it's in memory.
1924   if (Ret.isIndirect() && !Ret.getInReg()) {
1925     CanQualType PtrTy = getContext().getPointerType(FI.getReturnType());
1926     addFieldToArgStruct(FrameFields, StackOffset, Ret, PtrTy);
1927     // On Windows, the hidden sret parameter is always returned in eax.
1928     Ret.setInAllocaSRet(IsWin32StructABI);
1929   }
1930 
1931   // Skip the 'this' parameter in ecx.
1932   if (IsThisCall)
1933     ++I;
1934 
1935   // Put arguments passed in memory into the struct.
1936   for (; I != E; ++I) {
1937     if (isArgInAlloca(I->info))
1938       addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
1939   }
1940 
1941   FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields,
1942                                         /*isPacked=*/true),
1943                   StackAlign);
1944 }
1945 
1946 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF,
1947                                  Address VAListAddr, QualType Ty) const {
1948 
1949   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
1950 
1951   // x86-32 changes the alignment of certain arguments on the stack.
1952   //
1953   // Just messing with TypeInfo like this works because we never pass
1954   // anything indirectly.
1955   TypeInfo.second = CharUnits::fromQuantity(
1956                 getTypeStackAlignInBytes(Ty, TypeInfo.second.getQuantity()));
1957 
1958   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
1959                           TypeInfo, CharUnits::fromQuantity(4),
1960                           /*AllowHigherAlign*/ true);
1961 }
1962 
1963 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI(
1964     const llvm::Triple &Triple, const CodeGenOptions &Opts) {
1965   assert(Triple.getArch() == llvm::Triple::x86);
1966 
1967   switch (Opts.getStructReturnConvention()) {
1968   case CodeGenOptions::SRCK_Default:
1969     break;
1970   case CodeGenOptions::SRCK_OnStack:  // -fpcc-struct-return
1971     return false;
1972   case CodeGenOptions::SRCK_InRegs:  // -freg-struct-return
1973     return true;
1974   }
1975 
1976   if (Triple.isOSDarwin() || Triple.isOSIAMCU())
1977     return true;
1978 
1979   switch (Triple.getOS()) {
1980   case llvm::Triple::DragonFly:
1981   case llvm::Triple::FreeBSD:
1982   case llvm::Triple::OpenBSD:
1983   case llvm::Triple::Win32:
1984     return true;
1985   default:
1986     return false;
1987   }
1988 }
1989 
1990 void X86_32TargetCodeGenInfo::setTargetAttributes(
1991     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
1992   if (GV->isDeclaration())
1993     return;
1994   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
1995     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
1996       llvm::Function *Fn = cast<llvm::Function>(GV);
1997       Fn->addFnAttr("stackrealign");
1998     }
1999     if (FD->hasAttr<AnyX86InterruptAttr>()) {
2000       llvm::Function *Fn = cast<llvm::Function>(GV);
2001       Fn->setCallingConv(llvm::CallingConv::X86_INTR);
2002     }
2003   }
2004 }
2005 
2006 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
2007                                                CodeGen::CodeGenFunction &CGF,
2008                                                llvm::Value *Address) const {
2009   CodeGen::CGBuilderTy &Builder = CGF.Builder;
2010 
2011   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
2012 
2013   // 0-7 are the eight integer registers;  the order is different
2014   //   on Darwin (for EH), but the range is the same.
2015   // 8 is %eip.
2016   AssignToArrayRange(Builder, Address, Four8, 0, 8);
2017 
2018   if (CGF.CGM.getTarget().getTriple().isOSDarwin()) {
2019     // 12-16 are st(0..4).  Not sure why we stop at 4.
2020     // These have size 16, which is sizeof(long double) on
2021     // platforms with 8-byte alignment for that type.
2022     llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
2023     AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
2024 
2025   } else {
2026     // 9 is %eflags, which doesn't get a size on Darwin for some
2027     // reason.
2028     Builder.CreateAlignedStore(
2029         Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9),
2030                                CharUnits::One());
2031 
2032     // 11-16 are st(0..5).  Not sure why we stop at 5.
2033     // These have size 12, which is sizeof(long double) on
2034     // platforms with 4-byte alignment for that type.
2035     llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
2036     AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
2037   }
2038 
2039   return false;
2040 }
2041 
2042 //===----------------------------------------------------------------------===//
2043 // X86-64 ABI Implementation
2044 //===----------------------------------------------------------------------===//
2045 
2046 
2047 namespace {
2048 /// The AVX ABI level for X86 targets.
2049 enum class X86AVXABILevel {
2050   None,
2051   AVX,
2052   AVX512
2053 };
2054 
2055 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel.
2056 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) {
2057   switch (AVXLevel) {
2058   case X86AVXABILevel::AVX512:
2059     return 512;
2060   case X86AVXABILevel::AVX:
2061     return 256;
2062   case X86AVXABILevel::None:
2063     return 128;
2064   }
2065   llvm_unreachable("Unknown AVXLevel");
2066 }
2067 
2068 /// X86_64ABIInfo - The X86_64 ABI information.
2069 class X86_64ABIInfo : public SwiftABIInfo {
2070   enum Class {
2071     Integer = 0,
2072     SSE,
2073     SSEUp,
2074     X87,
2075     X87Up,
2076     ComplexX87,
2077     NoClass,
2078     Memory
2079   };
2080 
2081   /// merge - Implement the X86_64 ABI merging algorithm.
2082   ///
2083   /// Merge an accumulating classification \arg Accum with a field
2084   /// classification \arg Field.
2085   ///
2086   /// \param Accum - The accumulating classification. This should
2087   /// always be either NoClass or the result of a previous merge
2088   /// call. In addition, this should never be Memory (the caller
2089   /// should just return Memory for the aggregate).
2090   static Class merge(Class Accum, Class Field);
2091 
2092   /// postMerge - Implement the X86_64 ABI post merging algorithm.
2093   ///
2094   /// Post merger cleanup, reduces a malformed Hi and Lo pair to
2095   /// final MEMORY or SSE classes when necessary.
2096   ///
2097   /// \param AggregateSize - The size of the current aggregate in
2098   /// the classification process.
2099   ///
2100   /// \param Lo - The classification for the parts of the type
2101   /// residing in the low word of the containing object.
2102   ///
2103   /// \param Hi - The classification for the parts of the type
2104   /// residing in the higher words of the containing object.
2105   ///
2106   void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
2107 
2108   /// classify - Determine the x86_64 register classes in which the
2109   /// given type T should be passed.
2110   ///
2111   /// \param Lo - The classification for the parts of the type
2112   /// residing in the low word of the containing object.
2113   ///
2114   /// \param Hi - The classification for the parts of the type
2115   /// residing in the high word of the containing object.
2116   ///
2117   /// \param OffsetBase - The bit offset of this type in the
2118   /// containing object.  Some parameters are classified different
2119   /// depending on whether they straddle an eightbyte boundary.
2120   ///
2121   /// \param isNamedArg - Whether the argument in question is a "named"
2122   /// argument, as used in AMD64-ABI 3.5.7.
2123   ///
2124   /// If a word is unused its result will be NoClass; if a type should
2125   /// be passed in Memory then at least the classification of \arg Lo
2126   /// will be Memory.
2127   ///
2128   /// The \arg Lo class will be NoClass iff the argument is ignored.
2129   ///
2130   /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
2131   /// also be ComplexX87.
2132   void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi,
2133                 bool isNamedArg) const;
2134 
2135   llvm::Type *GetByteVectorType(QualType Ty) const;
2136   llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
2137                                  unsigned IROffset, QualType SourceTy,
2138                                  unsigned SourceOffset) const;
2139   llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
2140                                      unsigned IROffset, QualType SourceTy,
2141                                      unsigned SourceOffset) const;
2142 
2143   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
2144   /// such that the argument will be returned in memory.
2145   ABIArgInfo getIndirectReturnResult(QualType Ty) const;
2146 
2147   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
2148   /// such that the argument will be passed in memory.
2149   ///
2150   /// \param freeIntRegs - The number of free integer registers remaining
2151   /// available.
2152   ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;
2153 
2154   ABIArgInfo classifyReturnType(QualType RetTy) const;
2155 
2156   ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs,
2157                                   unsigned &neededInt, unsigned &neededSSE,
2158                                   bool isNamedArg) const;
2159 
2160   ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt,
2161                                        unsigned &NeededSSE) const;
2162 
2163   ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
2164                                            unsigned &NeededSSE) const;
2165 
2166   bool IsIllegalVectorType(QualType Ty) const;
2167 
2168   /// The 0.98 ABI revision clarified a lot of ambiguities,
2169   /// unfortunately in ways that were not always consistent with
2170   /// certain previous compilers.  In particular, platforms which
2171   /// required strict binary compatibility with older versions of GCC
2172   /// may need to exempt themselves.
2173   bool honorsRevision0_98() const {
2174     return !getTarget().getTriple().isOSDarwin();
2175   }
2176 
2177   /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to
2178   /// classify it as INTEGER (for compatibility with older clang compilers).
2179   bool classifyIntegerMMXAsSSE() const {
2180     // Clang <= 3.8 did not do this.
2181     if (getContext().getLangOpts().getClangABICompat() <=
2182         LangOptions::ClangABI::Ver3_8)
2183       return false;
2184 
2185     const llvm::Triple &Triple = getTarget().getTriple();
2186     if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::PS4)
2187       return false;
2188     if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10)
2189       return false;
2190     return true;
2191   }
2192 
2193   X86AVXABILevel AVXLevel;
2194   // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on
2195   // 64-bit hardware.
2196   bool Has64BitPointers;
2197 
2198 public:
2199   X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) :
2200       SwiftABIInfo(CGT), AVXLevel(AVXLevel),
2201       Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {
2202   }
2203 
2204   bool isPassedUsingAVXType(QualType type) const {
2205     unsigned neededInt, neededSSE;
2206     // The freeIntRegs argument doesn't matter here.
2207     ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE,
2208                                            /*isNamedArg*/true);
2209     if (info.isDirect()) {
2210       llvm::Type *ty = info.getCoerceToType();
2211       if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
2212         return (vectorTy->getBitWidth() > 128);
2213     }
2214     return false;
2215   }
2216 
2217   void computeInfo(CGFunctionInfo &FI) const override;
2218 
2219   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
2220                     QualType Ty) const override;
2221   Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
2222                       QualType Ty) const override;
2223 
2224   bool has64BitPointers() const {
2225     return Has64BitPointers;
2226   }
2227 
2228   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
2229                                     bool asReturnValue) const override {
2230     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
2231   }
2232   bool isSwiftErrorInRegister() const override {
2233     return true;
2234   }
2235 };
2236 
2237 /// WinX86_64ABIInfo - The Windows X86_64 ABI information.
2238 class WinX86_64ABIInfo : public SwiftABIInfo {
2239 public:
2240   WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT)
2241       : SwiftABIInfo(CGT),
2242         IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {}
2243 
2244   void computeInfo(CGFunctionInfo &FI) const override;
2245 
2246   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
2247                     QualType Ty) const override;
2248 
2249   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
2250     // FIXME: Assumes vectorcall is in use.
2251     return isX86VectorTypeForVectorCall(getContext(), Ty);
2252   }
2253 
2254   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
2255                                          uint64_t NumMembers) const override {
2256     // FIXME: Assumes vectorcall is in use.
2257     return isX86VectorCallAggregateSmallEnough(NumMembers);
2258   }
2259 
2260   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type *> scalars,
2261                                     bool asReturnValue) const override {
2262     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
2263   }
2264 
2265   bool isSwiftErrorInRegister() const override {
2266     return true;
2267   }
2268 
2269 private:
2270   ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType,
2271                       bool IsVectorCall, bool IsRegCall) const;
2272   ABIArgInfo reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs,
2273                                       const ABIArgInfo &current) const;
2274   void computeVectorCallArgs(CGFunctionInfo &FI, unsigned FreeSSERegs,
2275                              bool IsVectorCall, bool IsRegCall) const;
2276 
2277     bool IsMingw64;
2278 };
2279 
2280 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
2281 public:
2282   X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
2283       : TargetCodeGenInfo(new X86_64ABIInfo(CGT, AVXLevel)) {}
2284 
2285   const X86_64ABIInfo &getABIInfo() const {
2286     return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
2287   }
2288 
2289   /// Disable tail call on x86-64. The epilogue code before the tail jump blocks
2290   /// the autoreleaseRV/retainRV optimization.
2291   bool shouldSuppressTailCallsOfRetainAutoreleasedReturnValue() const override {
2292     return true;
2293   }
2294 
2295   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
2296     return 7;
2297   }
2298 
2299   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2300                                llvm::Value *Address) const override {
2301     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
2302 
2303     // 0-15 are the 16 integer registers.
2304     // 16 is %rip.
2305     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
2306     return false;
2307   }
2308 
2309   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
2310                                   StringRef Constraint,
2311                                   llvm::Type* Ty) const override {
2312     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
2313   }
2314 
2315   bool isNoProtoCallVariadic(const CallArgList &args,
2316                              const FunctionNoProtoType *fnType) const override {
2317     // The default CC on x86-64 sets %al to the number of SSA
2318     // registers used, and GCC sets this when calling an unprototyped
2319     // function, so we override the default behavior.  However, don't do
2320     // that when AVX types are involved: the ABI explicitly states it is
2321     // undefined, and it doesn't work in practice because of how the ABI
2322     // defines varargs anyway.
2323     if (fnType->getCallConv() == CC_C) {
2324       bool HasAVXType = false;
2325       for (CallArgList::const_iterator
2326              it = args.begin(), ie = args.end(); it != ie; ++it) {
2327         if (getABIInfo().isPassedUsingAVXType(it->Ty)) {
2328           HasAVXType = true;
2329           break;
2330         }
2331       }
2332 
2333       if (!HasAVXType)
2334         return true;
2335     }
2336 
2337     return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
2338   }
2339 
2340   llvm::Constant *
2341   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
2342     unsigned Sig = (0xeb << 0) | // jmp rel8
2343                    (0x06 << 8) | //           .+0x08
2344                    ('v' << 16) |
2345                    ('2' << 24);
2346     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
2347   }
2348 
2349   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2350                            CodeGen::CodeGenModule &CGM) const override {
2351     if (GV->isDeclaration())
2352       return;
2353     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
2354       if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
2355         llvm::Function *Fn = cast<llvm::Function>(GV);
2356         Fn->addFnAttr("stackrealign");
2357       }
2358       if (FD->hasAttr<AnyX86InterruptAttr>()) {
2359         llvm::Function *Fn = cast<llvm::Function>(GV);
2360         Fn->setCallingConv(llvm::CallingConv::X86_INTR);
2361       }
2362     }
2363   }
2364 };
2365 
2366 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) {
2367   // If the argument does not end in .lib, automatically add the suffix.
2368   // If the argument contains a space, enclose it in quotes.
2369   // This matches the behavior of MSVC.
2370   bool Quote = (Lib.find(" ") != StringRef::npos);
2371   std::string ArgStr = Quote ? "\"" : "";
2372   ArgStr += Lib;
2373   if (!Lib.endswith_lower(".lib") && !Lib.endswith_lower(".a"))
2374     ArgStr += ".lib";
2375   ArgStr += Quote ? "\"" : "";
2376   return ArgStr;
2377 }
2378 
2379 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo {
2380 public:
2381   WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
2382         bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI,
2383         unsigned NumRegisterParameters)
2384     : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI,
2385         Win32StructABI, NumRegisterParameters, false) {}
2386 
2387   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2388                            CodeGen::CodeGenModule &CGM) const override;
2389 
2390   void getDependentLibraryOption(llvm::StringRef Lib,
2391                                  llvm::SmallString<24> &Opt) const override {
2392     Opt = "/DEFAULTLIB:";
2393     Opt += qualifyWindowsLibrary(Lib);
2394   }
2395 
2396   void getDetectMismatchOption(llvm::StringRef Name,
2397                                llvm::StringRef Value,
2398                                llvm::SmallString<32> &Opt) const override {
2399     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
2400   }
2401 };
2402 
2403 static void addStackProbeTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2404                                           CodeGen::CodeGenModule &CGM) {
2405   if (llvm::Function *Fn = dyn_cast_or_null<llvm::Function>(GV)) {
2406 
2407     if (CGM.getCodeGenOpts().StackProbeSize != 4096)
2408       Fn->addFnAttr("stack-probe-size",
2409                     llvm::utostr(CGM.getCodeGenOpts().StackProbeSize));
2410     if (CGM.getCodeGenOpts().NoStackArgProbe)
2411       Fn->addFnAttr("no-stack-arg-probe");
2412   }
2413 }
2414 
2415 void WinX86_32TargetCodeGenInfo::setTargetAttributes(
2416     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
2417   X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
2418   if (GV->isDeclaration())
2419     return;
2420   addStackProbeTargetAttributes(D, GV, CGM);
2421 }
2422 
2423 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
2424 public:
2425   WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
2426                              X86AVXABILevel AVXLevel)
2427       : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {}
2428 
2429   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2430                            CodeGen::CodeGenModule &CGM) const override;
2431 
2432   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
2433     return 7;
2434   }
2435 
2436   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2437                                llvm::Value *Address) const override {
2438     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
2439 
2440     // 0-15 are the 16 integer registers.
2441     // 16 is %rip.
2442     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
2443     return false;
2444   }
2445 
2446   void getDependentLibraryOption(llvm::StringRef Lib,
2447                                  llvm::SmallString<24> &Opt) const override {
2448     Opt = "/DEFAULTLIB:";
2449     Opt += qualifyWindowsLibrary(Lib);
2450   }
2451 
2452   void getDetectMismatchOption(llvm::StringRef Name,
2453                                llvm::StringRef Value,
2454                                llvm::SmallString<32> &Opt) const override {
2455     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
2456   }
2457 };
2458 
2459 void WinX86_64TargetCodeGenInfo::setTargetAttributes(
2460     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
2461   TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
2462   if (GV->isDeclaration())
2463     return;
2464   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
2465     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
2466       llvm::Function *Fn = cast<llvm::Function>(GV);
2467       Fn->addFnAttr("stackrealign");
2468     }
2469     if (FD->hasAttr<AnyX86InterruptAttr>()) {
2470       llvm::Function *Fn = cast<llvm::Function>(GV);
2471       Fn->setCallingConv(llvm::CallingConv::X86_INTR);
2472     }
2473   }
2474 
2475   addStackProbeTargetAttributes(D, GV, CGM);
2476 }
2477 }
2478 
2479 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
2480                               Class &Hi) const {
2481   // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
2482   //
2483   // (a) If one of the classes is Memory, the whole argument is passed in
2484   //     memory.
2485   //
2486   // (b) If X87UP is not preceded by X87, the whole argument is passed in
2487   //     memory.
2488   //
2489   // (c) If the size of the aggregate exceeds two eightbytes and the first
2490   //     eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
2491   //     argument is passed in memory. NOTE: This is necessary to keep the
2492   //     ABI working for processors that don't support the __m256 type.
2493   //
2494   // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
2495   //
2496   // Some of these are enforced by the merging logic.  Others can arise
2497   // only with unions; for example:
2498   //   union { _Complex double; unsigned; }
2499   //
2500   // Note that clauses (b) and (c) were added in 0.98.
2501   //
2502   if (Hi == Memory)
2503     Lo = Memory;
2504   if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
2505     Lo = Memory;
2506   if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
2507     Lo = Memory;
2508   if (Hi == SSEUp && Lo != SSE)
2509     Hi = SSE;
2510 }
2511 
2512 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
2513   // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
2514   // classified recursively so that always two fields are
2515   // considered. The resulting class is calculated according to
2516   // the classes of the fields in the eightbyte:
2517   //
2518   // (a) If both classes are equal, this is the resulting class.
2519   //
2520   // (b) If one of the classes is NO_CLASS, the resulting class is
2521   // the other class.
2522   //
2523   // (c) If one of the classes is MEMORY, the result is the MEMORY
2524   // class.
2525   //
2526   // (d) If one of the classes is INTEGER, the result is the
2527   // INTEGER.
2528   //
2529   // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
2530   // MEMORY is used as class.
2531   //
2532   // (f) Otherwise class SSE is used.
2533 
2534   // Accum should never be memory (we should have returned) or
2535   // ComplexX87 (because this cannot be passed in a structure).
2536   assert((Accum != Memory && Accum != ComplexX87) &&
2537          "Invalid accumulated classification during merge.");
2538   if (Accum == Field || Field == NoClass)
2539     return Accum;
2540   if (Field == Memory)
2541     return Memory;
2542   if (Accum == NoClass)
2543     return Field;
2544   if (Accum == Integer || Field == Integer)
2545     return Integer;
2546   if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
2547       Accum == X87 || Accum == X87Up)
2548     return Memory;
2549   return SSE;
2550 }
2551 
2552 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
2553                              Class &Lo, Class &Hi, bool isNamedArg) const {
2554   // FIXME: This code can be simplified by introducing a simple value class for
2555   // Class pairs with appropriate constructor methods for the various
2556   // situations.
2557 
2558   // FIXME: Some of the split computations are wrong; unaligned vectors
2559   // shouldn't be passed in registers for example, so there is no chance they
2560   // can straddle an eightbyte. Verify & simplify.
2561 
2562   Lo = Hi = NoClass;
2563 
2564   Class &Current = OffsetBase < 64 ? Lo : Hi;
2565   Current = Memory;
2566 
2567   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
2568     BuiltinType::Kind k = BT->getKind();
2569 
2570     if (k == BuiltinType::Void) {
2571       Current = NoClass;
2572     } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
2573       Lo = Integer;
2574       Hi = Integer;
2575     } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
2576       Current = Integer;
2577     } else if (k == BuiltinType::Float || k == BuiltinType::Double) {
2578       Current = SSE;
2579     } else if (k == BuiltinType::LongDouble) {
2580       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
2581       if (LDF == &llvm::APFloat::IEEEquad()) {
2582         Lo = SSE;
2583         Hi = SSEUp;
2584       } else if (LDF == &llvm::APFloat::x87DoubleExtended()) {
2585         Lo = X87;
2586         Hi = X87Up;
2587       } else if (LDF == &llvm::APFloat::IEEEdouble()) {
2588         Current = SSE;
2589       } else
2590         llvm_unreachable("unexpected long double representation!");
2591     }
2592     // FIXME: _Decimal32 and _Decimal64 are SSE.
2593     // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
2594     return;
2595   }
2596 
2597   if (const EnumType *ET = Ty->getAs<EnumType>()) {
2598     // Classify the underlying integer type.
2599     classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg);
2600     return;
2601   }
2602 
2603   if (Ty->hasPointerRepresentation()) {
2604     Current = Integer;
2605     return;
2606   }
2607 
2608   if (Ty->isMemberPointerType()) {
2609     if (Ty->isMemberFunctionPointerType()) {
2610       if (Has64BitPointers) {
2611         // If Has64BitPointers, this is an {i64, i64}, so classify both
2612         // Lo and Hi now.
2613         Lo = Hi = Integer;
2614       } else {
2615         // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that
2616         // straddles an eightbyte boundary, Hi should be classified as well.
2617         uint64_t EB_FuncPtr = (OffsetBase) / 64;
2618         uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64;
2619         if (EB_FuncPtr != EB_ThisAdj) {
2620           Lo = Hi = Integer;
2621         } else {
2622           Current = Integer;
2623         }
2624       }
2625     } else {
2626       Current = Integer;
2627     }
2628     return;
2629   }
2630 
2631   if (const VectorType *VT = Ty->getAs<VectorType>()) {
2632     uint64_t Size = getContext().getTypeSize(VT);
2633     if (Size == 1 || Size == 8 || Size == 16 || Size == 32) {
2634       // gcc passes the following as integer:
2635       // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float>
2636       // 2 bytes - <2 x char>, <1 x short>
2637       // 1 byte  - <1 x char>
2638       Current = Integer;
2639 
2640       // If this type crosses an eightbyte boundary, it should be
2641       // split.
2642       uint64_t EB_Lo = (OffsetBase) / 64;
2643       uint64_t EB_Hi = (OffsetBase + Size - 1) / 64;
2644       if (EB_Lo != EB_Hi)
2645         Hi = Lo;
2646     } else if (Size == 64) {
2647       QualType ElementType = VT->getElementType();
2648 
2649       // gcc passes <1 x double> in memory. :(
2650       if (ElementType->isSpecificBuiltinType(BuiltinType::Double))
2651         return;
2652 
2653       // gcc passes <1 x long long> as SSE but clang used to unconditionally
2654       // pass them as integer.  For platforms where clang is the de facto
2655       // platform compiler, we must continue to use integer.
2656       if (!classifyIntegerMMXAsSSE() &&
2657           (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) ||
2658            ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) ||
2659            ElementType->isSpecificBuiltinType(BuiltinType::Long) ||
2660            ElementType->isSpecificBuiltinType(BuiltinType::ULong)))
2661         Current = Integer;
2662       else
2663         Current = SSE;
2664 
2665       // If this type crosses an eightbyte boundary, it should be
2666       // split.
2667       if (OffsetBase && OffsetBase != 64)
2668         Hi = Lo;
2669     } else if (Size == 128 ||
2670                (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) {
2671       // Arguments of 256-bits are split into four eightbyte chunks. The
2672       // least significant one belongs to class SSE and all the others to class
2673       // SSEUP. The original Lo and Hi design considers that types can't be
2674       // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
2675       // This design isn't correct for 256-bits, but since there're no cases
2676       // where the upper parts would need to be inspected, avoid adding
2677       // complexity and just consider Hi to match the 64-256 part.
2678       //
2679       // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in
2680       // registers if they are "named", i.e. not part of the "..." of a
2681       // variadic function.
2682       //
2683       // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are
2684       // split into eight eightbyte chunks, one SSE and seven SSEUP.
2685       Lo = SSE;
2686       Hi = SSEUp;
2687     }
2688     return;
2689   }
2690 
2691   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
2692     QualType ET = getContext().getCanonicalType(CT->getElementType());
2693 
2694     uint64_t Size = getContext().getTypeSize(Ty);
2695     if (ET->isIntegralOrEnumerationType()) {
2696       if (Size <= 64)
2697         Current = Integer;
2698       else if (Size <= 128)
2699         Lo = Hi = Integer;
2700     } else if (ET == getContext().FloatTy) {
2701       Current = SSE;
2702     } else if (ET == getContext().DoubleTy) {
2703       Lo = Hi = SSE;
2704     } else if (ET == getContext().LongDoubleTy) {
2705       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
2706       if (LDF == &llvm::APFloat::IEEEquad())
2707         Current = Memory;
2708       else if (LDF == &llvm::APFloat::x87DoubleExtended())
2709         Current = ComplexX87;
2710       else if (LDF == &llvm::APFloat::IEEEdouble())
2711         Lo = Hi = SSE;
2712       else
2713         llvm_unreachable("unexpected long double representation!");
2714     }
2715 
2716     // If this complex type crosses an eightbyte boundary then it
2717     // should be split.
2718     uint64_t EB_Real = (OffsetBase) / 64;
2719     uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
2720     if (Hi == NoClass && EB_Real != EB_Imag)
2721       Hi = Lo;
2722 
2723     return;
2724   }
2725 
2726   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
2727     // Arrays are treated like structures.
2728 
2729     uint64_t Size = getContext().getTypeSize(Ty);
2730 
2731     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
2732     // than eight eightbytes, ..., it has class MEMORY.
2733     if (Size > 512)
2734       return;
2735 
2736     // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
2737     // fields, it has class MEMORY.
2738     //
2739     // Only need to check alignment of array base.
2740     if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
2741       return;
2742 
2743     // Otherwise implement simplified merge. We could be smarter about
2744     // this, but it isn't worth it and would be harder to verify.
2745     Current = NoClass;
2746     uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
2747     uint64_t ArraySize = AT->getSize().getZExtValue();
2748 
2749     // The only case a 256-bit wide vector could be used is when the array
2750     // contains a single 256-bit element. Since Lo and Hi logic isn't extended
2751     // to work for sizes wider than 128, early check and fallback to memory.
2752     //
2753     if (Size > 128 &&
2754         (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel)))
2755       return;
2756 
2757     for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
2758       Class FieldLo, FieldHi;
2759       classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg);
2760       Lo = merge(Lo, FieldLo);
2761       Hi = merge(Hi, FieldHi);
2762       if (Lo == Memory || Hi == Memory)
2763         break;
2764     }
2765 
2766     postMerge(Size, Lo, Hi);
2767     assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
2768     return;
2769   }
2770 
2771   if (const RecordType *RT = Ty->getAs<RecordType>()) {
2772     uint64_t Size = getContext().getTypeSize(Ty);
2773 
2774     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
2775     // than eight eightbytes, ..., it has class MEMORY.
2776     if (Size > 512)
2777       return;
2778 
2779     // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
2780     // copy constructor or a non-trivial destructor, it is passed by invisible
2781     // reference.
2782     if (getRecordArgABI(RT, getCXXABI()))
2783       return;
2784 
2785     const RecordDecl *RD = RT->getDecl();
2786 
2787     // Assume variable sized types are passed in memory.
2788     if (RD->hasFlexibleArrayMember())
2789       return;
2790 
2791     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
2792 
2793     // Reset Lo class, this will be recomputed.
2794     Current = NoClass;
2795 
2796     // If this is a C++ record, classify the bases first.
2797     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
2798       for (const auto &I : CXXRD->bases()) {
2799         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
2800                "Unexpected base class!");
2801         const CXXRecordDecl *Base =
2802           cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
2803 
2804         // Classify this field.
2805         //
2806         // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
2807         // single eightbyte, each is classified separately. Each eightbyte gets
2808         // initialized to class NO_CLASS.
2809         Class FieldLo, FieldHi;
2810         uint64_t Offset =
2811           OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base));
2812         classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg);
2813         Lo = merge(Lo, FieldLo);
2814         Hi = merge(Hi, FieldHi);
2815         if (Lo == Memory || Hi == Memory) {
2816           postMerge(Size, Lo, Hi);
2817           return;
2818         }
2819       }
2820     }
2821 
2822     // Classify the fields one at a time, merging the results.
2823     unsigned idx = 0;
2824     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2825            i != e; ++i, ++idx) {
2826       uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
2827       bool BitField = i->isBitField();
2828 
2829       // Ignore padding bit-fields.
2830       if (BitField && i->isUnnamedBitfield())
2831         continue;
2832 
2833       // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
2834       // four eightbytes, or it contains unaligned fields, it has class MEMORY.
2835       //
2836       // The only case a 256-bit wide vector could be used is when the struct
2837       // contains a single 256-bit element. Since Lo and Hi logic isn't extended
2838       // to work for sizes wider than 128, early check and fallback to memory.
2839       //
2840       if (Size > 128 && (Size != getContext().getTypeSize(i->getType()) ||
2841                          Size > getNativeVectorSizeForAVXABI(AVXLevel))) {
2842         Lo = Memory;
2843         postMerge(Size, Lo, Hi);
2844         return;
2845       }
2846       // Note, skip this test for bit-fields, see below.
2847       if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
2848         Lo = Memory;
2849         postMerge(Size, Lo, Hi);
2850         return;
2851       }
2852 
2853       // Classify this field.
2854       //
2855       // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
2856       // exceeds a single eightbyte, each is classified
2857       // separately. Each eightbyte gets initialized to class
2858       // NO_CLASS.
2859       Class FieldLo, FieldHi;
2860 
2861       // Bit-fields require special handling, they do not force the
2862       // structure to be passed in memory even if unaligned, and
2863       // therefore they can straddle an eightbyte.
2864       if (BitField) {
2865         assert(!i->isUnnamedBitfield());
2866         uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
2867         uint64_t Size = i->getBitWidthValue(getContext());
2868 
2869         uint64_t EB_Lo = Offset / 64;
2870         uint64_t EB_Hi = (Offset + Size - 1) / 64;
2871 
2872         if (EB_Lo) {
2873           assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
2874           FieldLo = NoClass;
2875           FieldHi = Integer;
2876         } else {
2877           FieldLo = Integer;
2878           FieldHi = EB_Hi ? Integer : NoClass;
2879         }
2880       } else
2881         classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg);
2882       Lo = merge(Lo, FieldLo);
2883       Hi = merge(Hi, FieldHi);
2884       if (Lo == Memory || Hi == Memory)
2885         break;
2886     }
2887 
2888     postMerge(Size, Lo, Hi);
2889   }
2890 }
2891 
2892 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
2893   // If this is a scalar LLVM value then assume LLVM will pass it in the right
2894   // place naturally.
2895   if (!isAggregateTypeForABI(Ty)) {
2896     // Treat an enum type as its underlying type.
2897     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2898       Ty = EnumTy->getDecl()->getIntegerType();
2899 
2900     return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
2901                                           : ABIArgInfo::getDirect());
2902   }
2903 
2904   return getNaturalAlignIndirect(Ty);
2905 }
2906 
2907 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
2908   if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
2909     uint64_t Size = getContext().getTypeSize(VecTy);
2910     unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel);
2911     if (Size <= 64 || Size > LargestVector)
2912       return true;
2913   }
2914 
2915   return false;
2916 }
2917 
2918 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
2919                                             unsigned freeIntRegs) const {
2920   // If this is a scalar LLVM value then assume LLVM will pass it in the right
2921   // place naturally.
2922   //
2923   // This assumption is optimistic, as there could be free registers available
2924   // when we need to pass this argument in memory, and LLVM could try to pass
2925   // the argument in the free register. This does not seem to happen currently,
2926   // but this code would be much safer if we could mark the argument with
2927   // 'onstack'. See PR12193.
2928   if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) {
2929     // Treat an enum type as its underlying type.
2930     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2931       Ty = EnumTy->getDecl()->getIntegerType();
2932 
2933     return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
2934                                           : ABIArgInfo::getDirect());
2935   }
2936 
2937   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
2938     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
2939 
2940   // Compute the byval alignment. We specify the alignment of the byval in all
2941   // cases so that the mid-level optimizer knows the alignment of the byval.
2942   unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
2943 
2944   // Attempt to avoid passing indirect results using byval when possible. This
2945   // is important for good codegen.
2946   //
2947   // We do this by coercing the value into a scalar type which the backend can
2948   // handle naturally (i.e., without using byval).
2949   //
2950   // For simplicity, we currently only do this when we have exhausted all of the
2951   // free integer registers. Doing this when there are free integer registers
2952   // would require more care, as we would have to ensure that the coerced value
2953   // did not claim the unused register. That would require either reording the
2954   // arguments to the function (so that any subsequent inreg values came first),
2955   // or only doing this optimization when there were no following arguments that
2956   // might be inreg.
2957   //
2958   // We currently expect it to be rare (particularly in well written code) for
2959   // arguments to be passed on the stack when there are still free integer
2960   // registers available (this would typically imply large structs being passed
2961   // by value), so this seems like a fair tradeoff for now.
2962   //
2963   // We can revisit this if the backend grows support for 'onstack' parameter
2964   // attributes. See PR12193.
2965   if (freeIntRegs == 0) {
2966     uint64_t Size = getContext().getTypeSize(Ty);
2967 
2968     // If this type fits in an eightbyte, coerce it into the matching integral
2969     // type, which will end up on the stack (with alignment 8).
2970     if (Align == 8 && Size <= 64)
2971       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2972                                                           Size));
2973   }
2974 
2975   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align));
2976 }
2977 
2978 /// The ABI specifies that a value should be passed in a full vector XMM/YMM
2979 /// register. Pick an LLVM IR type that will be passed as a vector register.
2980 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
2981   // Wrapper structs/arrays that only contain vectors are passed just like
2982   // vectors; strip them off if present.
2983   if (const Type *InnerTy = isSingleElementStruct(Ty, getContext()))
2984     Ty = QualType(InnerTy, 0);
2985 
2986   llvm::Type *IRType = CGT.ConvertType(Ty);
2987   if (isa<llvm::VectorType>(IRType) ||
2988       IRType->getTypeID() == llvm::Type::FP128TyID)
2989     return IRType;
2990 
2991   // We couldn't find the preferred IR vector type for 'Ty'.
2992   uint64_t Size = getContext().getTypeSize(Ty);
2993   assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!");
2994 
2995   // Return a LLVM IR vector type based on the size of 'Ty'.
2996   return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()),
2997                                Size / 64);
2998 }
2999 
3000 /// BitsContainNoUserData - Return true if the specified [start,end) bit range
3001 /// is known to either be off the end of the specified type or being in
3002 /// alignment padding.  The user type specified is known to be at most 128 bits
3003 /// in size, and have passed through X86_64ABIInfo::classify with a successful
3004 /// classification that put one of the two halves in the INTEGER class.
3005 ///
3006 /// It is conservatively correct to return false.
3007 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
3008                                   unsigned EndBit, ASTContext &Context) {
3009   // If the bytes being queried are off the end of the type, there is no user
3010   // data hiding here.  This handles analysis of builtins, vectors and other
3011   // types that don't contain interesting padding.
3012   unsigned TySize = (unsigned)Context.getTypeSize(Ty);
3013   if (TySize <= StartBit)
3014     return true;
3015 
3016   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
3017     unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
3018     unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
3019 
3020     // Check each element to see if the element overlaps with the queried range.
3021     for (unsigned i = 0; i != NumElts; ++i) {
3022       // If the element is after the span we care about, then we're done..
3023       unsigned EltOffset = i*EltSize;
3024       if (EltOffset >= EndBit) break;
3025 
3026       unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
3027       if (!BitsContainNoUserData(AT->getElementType(), EltStart,
3028                                  EndBit-EltOffset, Context))
3029         return false;
3030     }
3031     // If it overlaps no elements, then it is safe to process as padding.
3032     return true;
3033   }
3034 
3035   if (const RecordType *RT = Ty->getAs<RecordType>()) {
3036     const RecordDecl *RD = RT->getDecl();
3037     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3038 
3039     // If this is a C++ record, check the bases first.
3040     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
3041       for (const auto &I : CXXRD->bases()) {
3042         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
3043                "Unexpected base class!");
3044         const CXXRecordDecl *Base =
3045           cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
3046 
3047         // If the base is after the span we care about, ignore it.
3048         unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base));
3049         if (BaseOffset >= EndBit) continue;
3050 
3051         unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
3052         if (!BitsContainNoUserData(I.getType(), BaseStart,
3053                                    EndBit-BaseOffset, Context))
3054           return false;
3055       }
3056     }
3057 
3058     // Verify that no field has data that overlaps the region of interest.  Yes
3059     // this could be sped up a lot by being smarter about queried fields,
3060     // however we're only looking at structs up to 16 bytes, so we don't care
3061     // much.
3062     unsigned idx = 0;
3063     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
3064          i != e; ++i, ++idx) {
3065       unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
3066 
3067       // If we found a field after the region we care about, then we're done.
3068       if (FieldOffset >= EndBit) break;
3069 
3070       unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
3071       if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
3072                                  Context))
3073         return false;
3074     }
3075 
3076     // If nothing in this record overlapped the area of interest, then we're
3077     // clean.
3078     return true;
3079   }
3080 
3081   return false;
3082 }
3083 
3084 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
3085 /// float member at the specified offset.  For example, {int,{float}} has a
3086 /// float at offset 4.  It is conservatively correct for this routine to return
3087 /// false.
3088 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset,
3089                                   const llvm::DataLayout &TD) {
3090   // Base case if we find a float.
3091   if (IROffset == 0 && IRType->isFloatTy())
3092     return true;
3093 
3094   // If this is a struct, recurse into the field at the specified offset.
3095   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
3096     const llvm::StructLayout *SL = TD.getStructLayout(STy);
3097     unsigned Elt = SL->getElementContainingOffset(IROffset);
3098     IROffset -= SL->getElementOffset(Elt);
3099     return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
3100   }
3101 
3102   // If this is an array, recurse into the field at the specified offset.
3103   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
3104     llvm::Type *EltTy = ATy->getElementType();
3105     unsigned EltSize = TD.getTypeAllocSize(EltTy);
3106     IROffset -= IROffset/EltSize*EltSize;
3107     return ContainsFloatAtOffset(EltTy, IROffset, TD);
3108   }
3109 
3110   return false;
3111 }
3112 
3113 
3114 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
3115 /// low 8 bytes of an XMM register, corresponding to the SSE class.
3116 llvm::Type *X86_64ABIInfo::
3117 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
3118                    QualType SourceTy, unsigned SourceOffset) const {
3119   // The only three choices we have are either double, <2 x float>, or float. We
3120   // pass as float if the last 4 bytes is just padding.  This happens for
3121   // structs that contain 3 floats.
3122   if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
3123                             SourceOffset*8+64, getContext()))
3124     return llvm::Type::getFloatTy(getVMContext());
3125 
3126   // We want to pass as <2 x float> if the LLVM IR type contains a float at
3127   // offset+0 and offset+4.  Walk the LLVM IR type to find out if this is the
3128   // case.
3129   if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) &&
3130       ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout()))
3131     return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2);
3132 
3133   return llvm::Type::getDoubleTy(getVMContext());
3134 }
3135 
3136 
3137 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
3138 /// an 8-byte GPR.  This means that we either have a scalar or we are talking
3139 /// about the high or low part of an up-to-16-byte struct.  This routine picks
3140 /// the best LLVM IR type to represent this, which may be i64 or may be anything
3141 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
3142 /// etc).
3143 ///
3144 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
3145 /// the source type.  IROffset is an offset in bytes into the LLVM IR type that
3146 /// the 8-byte value references.  PrefType may be null.
3147 ///
3148 /// SourceTy is the source-level type for the entire argument.  SourceOffset is
3149 /// an offset into this that we're processing (which is always either 0 or 8).
3150 ///
3151 llvm::Type *X86_64ABIInfo::
3152 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
3153                        QualType SourceTy, unsigned SourceOffset) const {
3154   // If we're dealing with an un-offset LLVM IR type, then it means that we're
3155   // returning an 8-byte unit starting with it.  See if we can safely use it.
3156   if (IROffset == 0) {
3157     // Pointers and int64's always fill the 8-byte unit.
3158     if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) ||
3159         IRType->isIntegerTy(64))
3160       return IRType;
3161 
3162     // If we have a 1/2/4-byte integer, we can use it only if the rest of the
3163     // goodness in the source type is just tail padding.  This is allowed to
3164     // kick in for struct {double,int} on the int, but not on
3165     // struct{double,int,int} because we wouldn't return the second int.  We
3166     // have to do this analysis on the source type because we can't depend on
3167     // unions being lowered a specific way etc.
3168     if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
3169         IRType->isIntegerTy(32) ||
3170         (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) {
3171       unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 :
3172           cast<llvm::IntegerType>(IRType)->getBitWidth();
3173 
3174       if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
3175                                 SourceOffset*8+64, getContext()))
3176         return IRType;
3177     }
3178   }
3179 
3180   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
3181     // If this is a struct, recurse into the field at the specified offset.
3182     const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy);
3183     if (IROffset < SL->getSizeInBytes()) {
3184       unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
3185       IROffset -= SL->getElementOffset(FieldIdx);
3186 
3187       return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
3188                                     SourceTy, SourceOffset);
3189     }
3190   }
3191 
3192   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
3193     llvm::Type *EltTy = ATy->getElementType();
3194     unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy);
3195     unsigned EltOffset = IROffset/EltSize*EltSize;
3196     return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
3197                                   SourceOffset);
3198   }
3199 
3200   // Okay, we don't have any better idea of what to pass, so we pass this in an
3201   // integer register that isn't too big to fit the rest of the struct.
3202   unsigned TySizeInBytes =
3203     (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
3204 
3205   assert(TySizeInBytes != SourceOffset && "Empty field?");
3206 
3207   // It is always safe to classify this as an integer type up to i64 that
3208   // isn't larger than the structure.
3209   return llvm::IntegerType::get(getVMContext(),
3210                                 std::min(TySizeInBytes-SourceOffset, 8U)*8);
3211 }
3212 
3213 
3214 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
3215 /// be used as elements of a two register pair to pass or return, return a
3216 /// first class aggregate to represent them.  For example, if the low part of
3217 /// a by-value argument should be passed as i32* and the high part as float,
3218 /// return {i32*, float}.
3219 static llvm::Type *
3220 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
3221                            const llvm::DataLayout &TD) {
3222   // In order to correctly satisfy the ABI, we need to the high part to start
3223   // at offset 8.  If the high and low parts we inferred are both 4-byte types
3224   // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
3225   // the second element at offset 8.  Check for this:
3226   unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
3227   unsigned HiAlign = TD.getABITypeAlignment(Hi);
3228   unsigned HiStart = llvm::alignTo(LoSize, HiAlign);
3229   assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
3230 
3231   // To handle this, we have to increase the size of the low part so that the
3232   // second element will start at an 8 byte offset.  We can't increase the size
3233   // of the second element because it might make us access off the end of the
3234   // struct.
3235   if (HiStart != 8) {
3236     // There are usually two sorts of types the ABI generation code can produce
3237     // for the low part of a pair that aren't 8 bytes in size: float or
3238     // i8/i16/i32.  This can also include pointers when they are 32-bit (X32 and
3239     // NaCl).
3240     // Promote these to a larger type.
3241     if (Lo->isFloatTy())
3242       Lo = llvm::Type::getDoubleTy(Lo->getContext());
3243     else {
3244       assert((Lo->isIntegerTy() || Lo->isPointerTy())
3245              && "Invalid/unknown lo type");
3246       Lo = llvm::Type::getInt64Ty(Lo->getContext());
3247     }
3248   }
3249 
3250   llvm::StructType *Result = llvm::StructType::get(Lo, Hi);
3251 
3252   // Verify that the second element is at an 8-byte offset.
3253   assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
3254          "Invalid x86-64 argument pair!");
3255   return Result;
3256 }
3257 
3258 ABIArgInfo X86_64ABIInfo::
3259 classifyReturnType(QualType RetTy) const {
3260   // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
3261   // classification algorithm.
3262   X86_64ABIInfo::Class Lo, Hi;
3263   classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true);
3264 
3265   // Check some invariants.
3266   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
3267   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
3268 
3269   llvm::Type *ResType = nullptr;
3270   switch (Lo) {
3271   case NoClass:
3272     if (Hi == NoClass)
3273       return ABIArgInfo::getIgnore();
3274     // If the low part is just padding, it takes no register, leave ResType
3275     // null.
3276     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
3277            "Unknown missing lo part");
3278     break;
3279 
3280   case SSEUp:
3281   case X87Up:
3282     llvm_unreachable("Invalid classification for lo word.");
3283 
3284     // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
3285     // hidden argument.
3286   case Memory:
3287     return getIndirectReturnResult(RetTy);
3288 
3289     // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
3290     // available register of the sequence %rax, %rdx is used.
3291   case Integer:
3292     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
3293 
3294     // If we have a sign or zero extended integer, make sure to return Extend
3295     // so that the parameter gets the right LLVM IR attributes.
3296     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
3297       // Treat an enum type as its underlying type.
3298       if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
3299         RetTy = EnumTy->getDecl()->getIntegerType();
3300 
3301       if (RetTy->isIntegralOrEnumerationType() &&
3302           RetTy->isPromotableIntegerType())
3303         return ABIArgInfo::getExtend(RetTy);
3304     }
3305     break;
3306 
3307     // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
3308     // available SSE register of the sequence %xmm0, %xmm1 is used.
3309   case SSE:
3310     ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
3311     break;
3312 
3313     // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
3314     // returned on the X87 stack in %st0 as 80-bit x87 number.
3315   case X87:
3316     ResType = llvm::Type::getX86_FP80Ty(getVMContext());
3317     break;
3318 
3319     // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
3320     // part of the value is returned in %st0 and the imaginary part in
3321     // %st1.
3322   case ComplexX87:
3323     assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
3324     ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
3325                                     llvm::Type::getX86_FP80Ty(getVMContext()));
3326     break;
3327   }
3328 
3329   llvm::Type *HighPart = nullptr;
3330   switch (Hi) {
3331     // Memory was handled previously and X87 should
3332     // never occur as a hi class.
3333   case Memory:
3334   case X87:
3335     llvm_unreachable("Invalid classification for hi word.");
3336 
3337   case ComplexX87: // Previously handled.
3338   case NoClass:
3339     break;
3340 
3341   case Integer:
3342     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3343     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3344       return ABIArgInfo::getDirect(HighPart, 8);
3345     break;
3346   case SSE:
3347     HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3348     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3349       return ABIArgInfo::getDirect(HighPart, 8);
3350     break;
3351 
3352     // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
3353     // is passed in the next available eightbyte chunk if the last used
3354     // vector register.
3355     //
3356     // SSEUP should always be preceded by SSE, just widen.
3357   case SSEUp:
3358     assert(Lo == SSE && "Unexpected SSEUp classification.");
3359     ResType = GetByteVectorType(RetTy);
3360     break;
3361 
3362     // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
3363     // returned together with the previous X87 value in %st0.
3364   case X87Up:
3365     // If X87Up is preceded by X87, we don't need to do
3366     // anything. However, in some cases with unions it may not be
3367     // preceded by X87. In such situations we follow gcc and pass the
3368     // extra bits in an SSE reg.
3369     if (Lo != X87) {
3370       HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3371       if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3372         return ABIArgInfo::getDirect(HighPart, 8);
3373     }
3374     break;
3375   }
3376 
3377   // If a high part was specified, merge it together with the low part.  It is
3378   // known to pass in the high eightbyte of the result.  We do this by forming a
3379   // first class struct aggregate with the high and low part: {low, high}
3380   if (HighPart)
3381     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
3382 
3383   return ABIArgInfo::getDirect(ResType);
3384 }
3385 
3386 ABIArgInfo X86_64ABIInfo::classifyArgumentType(
3387   QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE,
3388   bool isNamedArg)
3389   const
3390 {
3391   Ty = useFirstFieldIfTransparentUnion(Ty);
3392 
3393   X86_64ABIInfo::Class Lo, Hi;
3394   classify(Ty, 0, Lo, Hi, isNamedArg);
3395 
3396   // Check some invariants.
3397   // FIXME: Enforce these by construction.
3398   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
3399   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
3400 
3401   neededInt = 0;
3402   neededSSE = 0;
3403   llvm::Type *ResType = nullptr;
3404   switch (Lo) {
3405   case NoClass:
3406     if (Hi == NoClass)
3407       return ABIArgInfo::getIgnore();
3408     // If the low part is just padding, it takes no register, leave ResType
3409     // null.
3410     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
3411            "Unknown missing lo part");
3412     break;
3413 
3414     // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
3415     // on the stack.
3416   case Memory:
3417 
3418     // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
3419     // COMPLEX_X87, it is passed in memory.
3420   case X87:
3421   case ComplexX87:
3422     if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect)
3423       ++neededInt;
3424     return getIndirectResult(Ty, freeIntRegs);
3425 
3426   case SSEUp:
3427   case X87Up:
3428     llvm_unreachable("Invalid classification for lo word.");
3429 
3430     // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
3431     // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
3432     // and %r9 is used.
3433   case Integer:
3434     ++neededInt;
3435 
3436     // Pick an 8-byte type based on the preferred type.
3437     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
3438 
3439     // If we have a sign or zero extended integer, make sure to return Extend
3440     // so that the parameter gets the right LLVM IR attributes.
3441     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
3442       // Treat an enum type as its underlying type.
3443       if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3444         Ty = EnumTy->getDecl()->getIntegerType();
3445 
3446       if (Ty->isIntegralOrEnumerationType() &&
3447           Ty->isPromotableIntegerType())
3448         return ABIArgInfo::getExtend(Ty);
3449     }
3450 
3451     break;
3452 
3453     // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
3454     // available SSE register is used, the registers are taken in the
3455     // order from %xmm0 to %xmm7.
3456   case SSE: {
3457     llvm::Type *IRType = CGT.ConvertType(Ty);
3458     ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
3459     ++neededSSE;
3460     break;
3461   }
3462   }
3463 
3464   llvm::Type *HighPart = nullptr;
3465   switch (Hi) {
3466     // Memory was handled previously, ComplexX87 and X87 should
3467     // never occur as hi classes, and X87Up must be preceded by X87,
3468     // which is passed in memory.
3469   case Memory:
3470   case X87:
3471   case ComplexX87:
3472     llvm_unreachable("Invalid classification for hi word.");
3473 
3474   case NoClass: break;
3475 
3476   case Integer:
3477     ++neededInt;
3478     // Pick an 8-byte type based on the preferred type.
3479     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
3480 
3481     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
3482       return ABIArgInfo::getDirect(HighPart, 8);
3483     break;
3484 
3485     // X87Up generally doesn't occur here (long double is passed in
3486     // memory), except in situations involving unions.
3487   case X87Up:
3488   case SSE:
3489     HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
3490 
3491     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
3492       return ABIArgInfo::getDirect(HighPart, 8);
3493 
3494     ++neededSSE;
3495     break;
3496 
3497     // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
3498     // eightbyte is passed in the upper half of the last used SSE
3499     // register.  This only happens when 128-bit vectors are passed.
3500   case SSEUp:
3501     assert(Lo == SSE && "Unexpected SSEUp classification");
3502     ResType = GetByteVectorType(Ty);
3503     break;
3504   }
3505 
3506   // If a high part was specified, merge it together with the low part.  It is
3507   // known to pass in the high eightbyte of the result.  We do this by forming a
3508   // first class struct aggregate with the high and low part: {low, high}
3509   if (HighPart)
3510     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
3511 
3512   return ABIArgInfo::getDirect(ResType);
3513 }
3514 
3515 ABIArgInfo
3516 X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
3517                                              unsigned &NeededSSE) const {
3518   auto RT = Ty->getAs<RecordType>();
3519   assert(RT && "classifyRegCallStructType only valid with struct types");
3520 
3521   if (RT->getDecl()->hasFlexibleArrayMember())
3522     return getIndirectReturnResult(Ty);
3523 
3524   // Sum up bases
3525   if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
3526     if (CXXRD->isDynamicClass()) {
3527       NeededInt = NeededSSE = 0;
3528       return getIndirectReturnResult(Ty);
3529     }
3530 
3531     for (const auto &I : CXXRD->bases())
3532       if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE)
3533               .isIndirect()) {
3534         NeededInt = NeededSSE = 0;
3535         return getIndirectReturnResult(Ty);
3536       }
3537   }
3538 
3539   // Sum up members
3540   for (const auto *FD : RT->getDecl()->fields()) {
3541     if (FD->getType()->isRecordType() && !FD->getType()->isUnionType()) {
3542       if (classifyRegCallStructTypeImpl(FD->getType(), NeededInt, NeededSSE)
3543               .isIndirect()) {
3544         NeededInt = NeededSSE = 0;
3545         return getIndirectReturnResult(Ty);
3546       }
3547     } else {
3548       unsigned LocalNeededInt, LocalNeededSSE;
3549       if (classifyArgumentType(FD->getType(), UINT_MAX, LocalNeededInt,
3550                                LocalNeededSSE, true)
3551               .isIndirect()) {
3552         NeededInt = NeededSSE = 0;
3553         return getIndirectReturnResult(Ty);
3554       }
3555       NeededInt += LocalNeededInt;
3556       NeededSSE += LocalNeededSSE;
3557     }
3558   }
3559 
3560   return ABIArgInfo::getDirect();
3561 }
3562 
3563 ABIArgInfo X86_64ABIInfo::classifyRegCallStructType(QualType Ty,
3564                                                     unsigned &NeededInt,
3565                                                     unsigned &NeededSSE) const {
3566 
3567   NeededInt = 0;
3568   NeededSSE = 0;
3569 
3570   return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE);
3571 }
3572 
3573 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
3574 
3575   const unsigned CallingConv = FI.getCallingConvention();
3576   // It is possible to force Win64 calling convention on any x86_64 target by
3577   // using __attribute__((ms_abi)). In such case to correctly emit Win64
3578   // compatible code delegate this call to WinX86_64ABIInfo::computeInfo.
3579   if (CallingConv == llvm::CallingConv::Win64) {
3580     WinX86_64ABIInfo Win64ABIInfo(CGT);
3581     Win64ABIInfo.computeInfo(FI);
3582     return;
3583   }
3584 
3585   bool IsRegCall = CallingConv == llvm::CallingConv::X86_RegCall;
3586 
3587   // Keep track of the number of assigned registers.
3588   unsigned FreeIntRegs = IsRegCall ? 11 : 6;
3589   unsigned FreeSSERegs = IsRegCall ? 16 : 8;
3590   unsigned NeededInt, NeededSSE;
3591 
3592   if (!::classifyReturnType(getCXXABI(), FI, *this)) {
3593     if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() &&
3594         !FI.getReturnType()->getTypePtr()->isUnionType()) {
3595       FI.getReturnInfo() =
3596           classifyRegCallStructType(FI.getReturnType(), NeededInt, NeededSSE);
3597       if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
3598         FreeIntRegs -= NeededInt;
3599         FreeSSERegs -= NeededSSE;
3600       } else {
3601         FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType());
3602       }
3603     } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>()) {
3604       // Complex Long Double Type is passed in Memory when Regcall
3605       // calling convention is used.
3606       const ComplexType *CT = FI.getReturnType()->getAs<ComplexType>();
3607       if (getContext().getCanonicalType(CT->getElementType()) ==
3608           getContext().LongDoubleTy)
3609         FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType());
3610     } else
3611       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3612   }
3613 
3614   // If the return value is indirect, then the hidden argument is consuming one
3615   // integer register.
3616   if (FI.getReturnInfo().isIndirect())
3617     --FreeIntRegs;
3618 
3619   // The chain argument effectively gives us another free register.
3620   if (FI.isChainCall())
3621     ++FreeIntRegs;
3622 
3623   unsigned NumRequiredArgs = FI.getNumRequiredArgs();
3624   // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
3625   // get assigned (in left-to-right order) for passing as follows...
3626   unsigned ArgNo = 0;
3627   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3628        it != ie; ++it, ++ArgNo) {
3629     bool IsNamedArg = ArgNo < NumRequiredArgs;
3630 
3631     if (IsRegCall && it->type->isStructureOrClassType())
3632       it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE);
3633     else
3634       it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt,
3635                                       NeededSSE, IsNamedArg);
3636 
3637     // AMD64-ABI 3.2.3p3: If there are no registers available for any
3638     // eightbyte of an argument, the whole argument is passed on the
3639     // stack. If registers have already been assigned for some
3640     // eightbytes of such an argument, the assignments get reverted.
3641     if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
3642       FreeIntRegs -= NeededInt;
3643       FreeSSERegs -= NeededSSE;
3644     } else {
3645       it->info = getIndirectResult(it->type, FreeIntRegs);
3646     }
3647   }
3648 }
3649 
3650 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF,
3651                                          Address VAListAddr, QualType Ty) {
3652   Address overflow_arg_area_p =
3653       CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
3654   llvm::Value *overflow_arg_area =
3655     CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
3656 
3657   // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
3658   // byte boundary if alignment needed by type exceeds 8 byte boundary.
3659   // It isn't stated explicitly in the standard, but in practice we use
3660   // alignment greater than 16 where necessary.
3661   CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
3662   if (Align > CharUnits::fromQuantity(8)) {
3663     overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area,
3664                                                       Align);
3665   }
3666 
3667   // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
3668   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
3669   llvm::Value *Res =
3670     CGF.Builder.CreateBitCast(overflow_arg_area,
3671                               llvm::PointerType::getUnqual(LTy));
3672 
3673   // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
3674   // l->overflow_arg_area + sizeof(type).
3675   // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
3676   // an 8 byte boundary.
3677 
3678   uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
3679   llvm::Value *Offset =
3680       llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7);
3681   overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
3682                                             "overflow_arg_area.next");
3683   CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
3684 
3685   // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
3686   return Address(Res, Align);
3687 }
3688 
3689 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
3690                                  QualType Ty) const {
3691   // Assume that va_list type is correct; should be pointer to LLVM type:
3692   // struct {
3693   //   i32 gp_offset;
3694   //   i32 fp_offset;
3695   //   i8* overflow_arg_area;
3696   //   i8* reg_save_area;
3697   // };
3698   unsigned neededInt, neededSSE;
3699 
3700   Ty = getContext().getCanonicalType(Ty);
3701   ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE,
3702                                        /*isNamedArg*/false);
3703 
3704   // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
3705   // in the registers. If not go to step 7.
3706   if (!neededInt && !neededSSE)
3707     return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
3708 
3709   // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
3710   // general purpose registers needed to pass type and num_fp to hold
3711   // the number of floating point registers needed.
3712 
3713   // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
3714   // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
3715   // l->fp_offset > 304 - num_fp * 16 go to step 7.
3716   //
3717   // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
3718   // register save space).
3719 
3720   llvm::Value *InRegs = nullptr;
3721   Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid();
3722   llvm::Value *gp_offset = nullptr, *fp_offset = nullptr;
3723   if (neededInt) {
3724     gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
3725     gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
3726     InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
3727     InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
3728   }
3729 
3730   if (neededSSE) {
3731     fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
3732     fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
3733     llvm::Value *FitsInFP =
3734       llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
3735     FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
3736     InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
3737   }
3738 
3739   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
3740   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
3741   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
3742   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
3743 
3744   // Emit code to load the value if it was passed in registers.
3745 
3746   CGF.EmitBlock(InRegBlock);
3747 
3748   // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
3749   // an offset of l->gp_offset and/or l->fp_offset. This may require
3750   // copying to a temporary location in case the parameter is passed
3751   // in different register classes or requires an alignment greater
3752   // than 8 for general purpose registers and 16 for XMM registers.
3753   //
3754   // FIXME: This really results in shameful code when we end up needing to
3755   // collect arguments from different places; often what should result in a
3756   // simple assembling of a structure from scattered addresses has many more
3757   // loads than necessary. Can we clean this up?
3758   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
3759   llvm::Value *RegSaveArea = CGF.Builder.CreateLoad(
3760       CGF.Builder.CreateStructGEP(VAListAddr, 3), "reg_save_area");
3761 
3762   Address RegAddr = Address::invalid();
3763   if (neededInt && neededSSE) {
3764     // FIXME: Cleanup.
3765     assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
3766     llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
3767     Address Tmp = CGF.CreateMemTemp(Ty);
3768     Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
3769     assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
3770     llvm::Type *TyLo = ST->getElementType(0);
3771     llvm::Type *TyHi = ST->getElementType(1);
3772     assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
3773            "Unexpected ABI info for mixed regs");
3774     llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
3775     llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
3776     llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegSaveArea, gp_offset);
3777     llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegSaveArea, fp_offset);
3778     llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr;
3779     llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr;
3780 
3781     // Copy the first element.
3782     // FIXME: Our choice of alignment here and below is probably pessimistic.
3783     llvm::Value *V = CGF.Builder.CreateAlignedLoad(
3784         TyLo, CGF.Builder.CreateBitCast(RegLoAddr, PTyLo),
3785         CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyLo)));
3786     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
3787 
3788     // Copy the second element.
3789     V = CGF.Builder.CreateAlignedLoad(
3790         TyHi, CGF.Builder.CreateBitCast(RegHiAddr, PTyHi),
3791         CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyHi)));
3792     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
3793 
3794     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
3795   } else if (neededInt) {
3796     RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, gp_offset),
3797                       CharUnits::fromQuantity(8));
3798     RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
3799 
3800     // Copy to a temporary if necessary to ensure the appropriate alignment.
3801     std::pair<CharUnits, CharUnits> SizeAlign =
3802         getContext().getTypeInfoInChars(Ty);
3803     uint64_t TySize = SizeAlign.first.getQuantity();
3804     CharUnits TyAlign = SizeAlign.second;
3805 
3806     // Copy into a temporary if the type is more aligned than the
3807     // register save area.
3808     if (TyAlign.getQuantity() > 8) {
3809       Address Tmp = CGF.CreateMemTemp(Ty);
3810       CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false);
3811       RegAddr = Tmp;
3812     }
3813 
3814   } else if (neededSSE == 1) {
3815     RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset),
3816                       CharUnits::fromQuantity(16));
3817     RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
3818   } else {
3819     assert(neededSSE == 2 && "Invalid number of needed registers!");
3820     // SSE registers are spaced 16 bytes apart in the register save
3821     // area, we need to collect the two eightbytes together.
3822     // The ABI isn't explicit about this, but it seems reasonable
3823     // to assume that the slots are 16-byte aligned, since the stack is
3824     // naturally 16-byte aligned and the prologue is expected to store
3825     // all the SSE registers to the RSA.
3826     Address RegAddrLo = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset),
3827                                 CharUnits::fromQuantity(16));
3828     Address RegAddrHi =
3829       CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo,
3830                                              CharUnits::fromQuantity(16));
3831     llvm::Type *ST = AI.canHaveCoerceToType()
3832                          ? AI.getCoerceToType()
3833                          : llvm::StructType::get(CGF.DoubleTy, CGF.DoubleTy);
3834     llvm::Value *V;
3835     Address Tmp = CGF.CreateMemTemp(Ty);
3836     Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
3837     V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast(
3838         RegAddrLo, ST->getStructElementType(0)));
3839     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
3840     V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast(
3841         RegAddrHi, ST->getStructElementType(1)));
3842     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
3843 
3844     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
3845   }
3846 
3847   // AMD64-ABI 3.5.7p5: Step 5. Set:
3848   // l->gp_offset = l->gp_offset + num_gp * 8
3849   // l->fp_offset = l->fp_offset + num_fp * 16.
3850   if (neededInt) {
3851     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
3852     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
3853                             gp_offset_p);
3854   }
3855   if (neededSSE) {
3856     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
3857     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
3858                             fp_offset_p);
3859   }
3860   CGF.EmitBranch(ContBlock);
3861 
3862   // Emit code to load the value if it was passed in memory.
3863 
3864   CGF.EmitBlock(InMemBlock);
3865   Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
3866 
3867   // Return the appropriate result.
3868 
3869   CGF.EmitBlock(ContBlock);
3870   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock,
3871                                  "vaarg.addr");
3872   return ResAddr;
3873 }
3874 
3875 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
3876                                    QualType Ty) const {
3877   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
3878                           CGF.getContext().getTypeInfoInChars(Ty),
3879                           CharUnits::fromQuantity(8),
3880                           /*allowHigherAlign*/ false);
3881 }
3882 
3883 ABIArgInfo
3884 WinX86_64ABIInfo::reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs,
3885                                     const ABIArgInfo &current) const {
3886   // Assumes vectorCall calling convention.
3887   const Type *Base = nullptr;
3888   uint64_t NumElts = 0;
3889 
3890   if (!Ty->isBuiltinType() && !Ty->isVectorType() &&
3891       isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) {
3892     FreeSSERegs -= NumElts;
3893     return getDirectX86Hva();
3894   }
3895   return current;
3896 }
3897 
3898 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs,
3899                                       bool IsReturnType, bool IsVectorCall,
3900                                       bool IsRegCall) const {
3901 
3902   if (Ty->isVoidType())
3903     return ABIArgInfo::getIgnore();
3904 
3905   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3906     Ty = EnumTy->getDecl()->getIntegerType();
3907 
3908   TypeInfo Info = getContext().getTypeInfo(Ty);
3909   uint64_t Width = Info.Width;
3910   CharUnits Align = getContext().toCharUnitsFromBits(Info.Align);
3911 
3912   const RecordType *RT = Ty->getAs<RecordType>();
3913   if (RT) {
3914     if (!IsReturnType) {
3915       if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()))
3916         return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
3917     }
3918 
3919     if (RT->getDecl()->hasFlexibleArrayMember())
3920       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
3921 
3922   }
3923 
3924   const Type *Base = nullptr;
3925   uint64_t NumElts = 0;
3926   // vectorcall adds the concept of a homogenous vector aggregate, similar to
3927   // other targets.
3928   if ((IsVectorCall || IsRegCall) &&
3929       isHomogeneousAggregate(Ty, Base, NumElts)) {
3930     if (IsRegCall) {
3931       if (FreeSSERegs >= NumElts) {
3932         FreeSSERegs -= NumElts;
3933         if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())
3934           return ABIArgInfo::getDirect();
3935         return ABIArgInfo::getExpand();
3936       }
3937       return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3938     } else if (IsVectorCall) {
3939       if (FreeSSERegs >= NumElts &&
3940           (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) {
3941         FreeSSERegs -= NumElts;
3942         return ABIArgInfo::getDirect();
3943       } else if (IsReturnType) {
3944         return ABIArgInfo::getExpand();
3945       } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) {
3946         // HVAs are delayed and reclassified in the 2nd step.
3947         return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3948       }
3949     }
3950   }
3951 
3952   if (Ty->isMemberPointerType()) {
3953     // If the member pointer is represented by an LLVM int or ptr, pass it
3954     // directly.
3955     llvm::Type *LLTy = CGT.ConvertType(Ty);
3956     if (LLTy->isPointerTy() || LLTy->isIntegerTy())
3957       return ABIArgInfo::getDirect();
3958   }
3959 
3960   if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) {
3961     // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
3962     // not 1, 2, 4, or 8 bytes, must be passed by reference."
3963     if (Width > 64 || !llvm::isPowerOf2_64(Width))
3964       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
3965 
3966     // Otherwise, coerce it to a small integer.
3967     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width));
3968   }
3969 
3970   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
3971     switch (BT->getKind()) {
3972     case BuiltinType::Bool:
3973       // Bool type is always extended to the ABI, other builtin types are not
3974       // extended.
3975       return ABIArgInfo::getExtend(Ty);
3976 
3977     case BuiltinType::LongDouble:
3978       // Mingw64 GCC uses the old 80 bit extended precision floating point
3979       // unit. It passes them indirectly through memory.
3980       if (IsMingw64) {
3981         const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
3982         if (LDF == &llvm::APFloat::x87DoubleExtended())
3983           return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3984       }
3985       break;
3986 
3987     case BuiltinType::Int128:
3988     case BuiltinType::UInt128:
3989       // If it's a parameter type, the normal ABI rule is that arguments larger
3990       // than 8 bytes are passed indirectly. GCC follows it. We follow it too,
3991       // even though it isn't particularly efficient.
3992       if (!IsReturnType)
3993         return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3994 
3995       // Mingw64 GCC returns i128 in XMM0. Coerce to v2i64 to handle that.
3996       // Clang matches them for compatibility.
3997       return ABIArgInfo::getDirect(
3998           llvm::VectorType::get(llvm::Type::getInt64Ty(getVMContext()), 2));
3999 
4000     default:
4001       break;
4002     }
4003   }
4004 
4005   return ABIArgInfo::getDirect();
4006 }
4007 
4008 void WinX86_64ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI,
4009                                              unsigned FreeSSERegs,
4010                                              bool IsVectorCall,
4011                                              bool IsRegCall) const {
4012   unsigned Count = 0;
4013   for (auto &I : FI.arguments()) {
4014     // Vectorcall in x64 only permits the first 6 arguments to be passed
4015     // as XMM/YMM registers.
4016     if (Count < VectorcallMaxParamNumAsReg)
4017       I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall);
4018     else {
4019       // Since these cannot be passed in registers, pretend no registers
4020       // are left.
4021       unsigned ZeroSSERegsAvail = 0;
4022       I.info = classify(I.type, /*FreeSSERegs=*/ZeroSSERegsAvail, false,
4023                         IsVectorCall, IsRegCall);
4024     }
4025     ++Count;
4026   }
4027 
4028   for (auto &I : FI.arguments()) {
4029     I.info = reclassifyHvaArgType(I.type, FreeSSERegs, I.info);
4030   }
4031 }
4032 
4033 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
4034   bool IsVectorCall =
4035       FI.getCallingConvention() == llvm::CallingConv::X86_VectorCall;
4036   bool IsRegCall = FI.getCallingConvention() == llvm::CallingConv::X86_RegCall;
4037 
4038   unsigned FreeSSERegs = 0;
4039   if (IsVectorCall) {
4040     // We can use up to 4 SSE return registers with vectorcall.
4041     FreeSSERegs = 4;
4042   } else if (IsRegCall) {
4043     // RegCall gives us 16 SSE registers.
4044     FreeSSERegs = 16;
4045   }
4046 
4047   if (!getCXXABI().classifyReturnType(FI))
4048     FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true,
4049                                   IsVectorCall, IsRegCall);
4050 
4051   if (IsVectorCall) {
4052     // We can use up to 6 SSE register parameters with vectorcall.
4053     FreeSSERegs = 6;
4054   } else if (IsRegCall) {
4055     // RegCall gives us 16 SSE registers, we can reuse the return registers.
4056     FreeSSERegs = 16;
4057   }
4058 
4059   if (IsVectorCall) {
4060     computeVectorCallArgs(FI, FreeSSERegs, IsVectorCall, IsRegCall);
4061   } else {
4062     for (auto &I : FI.arguments())
4063       I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall);
4064   }
4065 
4066 }
4067 
4068 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4069                                     QualType Ty) const {
4070 
4071   bool IsIndirect = false;
4072 
4073   // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
4074   // not 1, 2, 4, or 8 bytes, must be passed by reference."
4075   if (isAggregateTypeForABI(Ty) || Ty->isMemberPointerType()) {
4076     uint64_t Width = getContext().getTypeSize(Ty);
4077     IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width);
4078   }
4079 
4080   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
4081                           CGF.getContext().getTypeInfoInChars(Ty),
4082                           CharUnits::fromQuantity(8),
4083                           /*allowHigherAlign*/ false);
4084 }
4085 
4086 // PowerPC-32
4087 namespace {
4088 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information.
4089 class PPC32_SVR4_ABIInfo : public DefaultABIInfo {
4090   bool IsSoftFloatABI;
4091 
4092   CharUnits getParamTypeAlignment(QualType Ty) const;
4093 
4094 public:
4095   PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI)
4096       : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI) {}
4097 
4098   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4099                     QualType Ty) const override;
4100 };
4101 
4102 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo {
4103 public:
4104   PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI)
4105       : TargetCodeGenInfo(new PPC32_SVR4_ABIInfo(CGT, SoftFloatABI)) {}
4106 
4107   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4108     // This is recovered from gcc output.
4109     return 1; // r1 is the dedicated stack pointer
4110   }
4111 
4112   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4113                                llvm::Value *Address) const override;
4114 };
4115 }
4116 
4117 CharUnits PPC32_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const {
4118   // Complex types are passed just like their elements
4119   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
4120     Ty = CTy->getElementType();
4121 
4122   if (Ty->isVectorType())
4123     return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16
4124                                                                        : 4);
4125 
4126   // For single-element float/vector structs, we consider the whole type
4127   // to have the same alignment requirements as its single element.
4128   const Type *AlignTy = nullptr;
4129   if (const Type *EltType = isSingleElementStruct(Ty, getContext())) {
4130     const BuiltinType *BT = EltType->getAs<BuiltinType>();
4131     if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) ||
4132         (BT && BT->isFloatingPoint()))
4133       AlignTy = EltType;
4134   }
4135 
4136   if (AlignTy)
4137     return CharUnits::fromQuantity(AlignTy->isVectorType() ? 16 : 4);
4138   return CharUnits::fromQuantity(4);
4139 }
4140 
4141 // TODO: this implementation is now likely redundant with
4142 // DefaultABIInfo::EmitVAArg.
4143 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList,
4144                                       QualType Ty) const {
4145   if (getTarget().getTriple().isOSDarwin()) {
4146     auto TI = getContext().getTypeInfoInChars(Ty);
4147     TI.second = getParamTypeAlignment(Ty);
4148 
4149     CharUnits SlotSize = CharUnits::fromQuantity(4);
4150     return emitVoidPtrVAArg(CGF, VAList, Ty,
4151                             classifyArgumentType(Ty).isIndirect(), TI, SlotSize,
4152                             /*AllowHigherAlign=*/true);
4153   }
4154 
4155   const unsigned OverflowLimit = 8;
4156   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
4157     // TODO: Implement this. For now ignore.
4158     (void)CTy;
4159     return Address::invalid(); // FIXME?
4160   }
4161 
4162   // struct __va_list_tag {
4163   //   unsigned char gpr;
4164   //   unsigned char fpr;
4165   //   unsigned short reserved;
4166   //   void *overflow_arg_area;
4167   //   void *reg_save_area;
4168   // };
4169 
4170   bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64;
4171   bool isInt =
4172       Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType();
4173   bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64;
4174 
4175   // All aggregates are passed indirectly?  That doesn't seem consistent
4176   // with the argument-lowering code.
4177   bool isIndirect = Ty->isAggregateType();
4178 
4179   CGBuilderTy &Builder = CGF.Builder;
4180 
4181   // The calling convention either uses 1-2 GPRs or 1 FPR.
4182   Address NumRegsAddr = Address::invalid();
4183   if (isInt || IsSoftFloatABI) {
4184     NumRegsAddr = Builder.CreateStructGEP(VAList, 0, "gpr");
4185   } else {
4186     NumRegsAddr = Builder.CreateStructGEP(VAList, 1, "fpr");
4187   }
4188 
4189   llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs");
4190 
4191   // "Align" the register count when TY is i64.
4192   if (isI64 || (isF64 && IsSoftFloatABI)) {
4193     NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1));
4194     NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U));
4195   }
4196 
4197   llvm::Value *CC =
4198       Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond");
4199 
4200   llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs");
4201   llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow");
4202   llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
4203 
4204   Builder.CreateCondBr(CC, UsingRegs, UsingOverflow);
4205 
4206   llvm::Type *DirectTy = CGF.ConvertType(Ty);
4207   if (isIndirect) DirectTy = DirectTy->getPointerTo(0);
4208 
4209   // Case 1: consume registers.
4210   Address RegAddr = Address::invalid();
4211   {
4212     CGF.EmitBlock(UsingRegs);
4213 
4214     Address RegSaveAreaPtr = Builder.CreateStructGEP(VAList, 4);
4215     RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr),
4216                       CharUnits::fromQuantity(8));
4217     assert(RegAddr.getElementType() == CGF.Int8Ty);
4218 
4219     // Floating-point registers start after the general-purpose registers.
4220     if (!(isInt || IsSoftFloatABI)) {
4221       RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr,
4222                                                    CharUnits::fromQuantity(32));
4223     }
4224 
4225     // Get the address of the saved value by scaling the number of
4226     // registers we've used by the number of
4227     CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8);
4228     llvm::Value *RegOffset =
4229       Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity()));
4230     RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty,
4231                                             RegAddr.getPointer(), RegOffset),
4232                       RegAddr.getAlignment().alignmentOfArrayElement(RegSize));
4233     RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy);
4234 
4235     // Increase the used-register count.
4236     NumRegs =
4237       Builder.CreateAdd(NumRegs,
4238                         Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1));
4239     Builder.CreateStore(NumRegs, NumRegsAddr);
4240 
4241     CGF.EmitBranch(Cont);
4242   }
4243 
4244   // Case 2: consume space in the overflow area.
4245   Address MemAddr = Address::invalid();
4246   {
4247     CGF.EmitBlock(UsingOverflow);
4248 
4249     Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr);
4250 
4251     // Everything in the overflow area is rounded up to a size of at least 4.
4252     CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4);
4253 
4254     CharUnits Size;
4255     if (!isIndirect) {
4256       auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty);
4257       Size = TypeInfo.first.alignTo(OverflowAreaAlign);
4258     } else {
4259       Size = CGF.getPointerSize();
4260     }
4261 
4262     Address OverflowAreaAddr = Builder.CreateStructGEP(VAList, 3);
4263     Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"),
4264                          OverflowAreaAlign);
4265     // Round up address of argument to alignment
4266     CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
4267     if (Align > OverflowAreaAlign) {
4268       llvm::Value *Ptr = OverflowArea.getPointer();
4269       OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align),
4270                                                            Align);
4271     }
4272 
4273     MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy);
4274 
4275     // Increase the overflow area.
4276     OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size);
4277     Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr);
4278     CGF.EmitBranch(Cont);
4279   }
4280 
4281   CGF.EmitBlock(Cont);
4282 
4283   // Merge the cases with a phi.
4284   Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow,
4285                                 "vaarg.addr");
4286 
4287   // Load the pointer if the argument was passed indirectly.
4288   if (isIndirect) {
4289     Result = Address(Builder.CreateLoad(Result, "aggr"),
4290                      getContext().getTypeAlignInChars(Ty));
4291   }
4292 
4293   return Result;
4294 }
4295 
4296 bool
4297 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4298                                                 llvm::Value *Address) const {
4299   // This is calculated from the LLVM and GCC tables and verified
4300   // against gcc output.  AFAIK all ABIs use the same encoding.
4301 
4302   CodeGen::CGBuilderTy &Builder = CGF.Builder;
4303 
4304   llvm::IntegerType *i8 = CGF.Int8Ty;
4305   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
4306   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
4307   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
4308 
4309   // 0-31: r0-31, the 4-byte general-purpose registers
4310   AssignToArrayRange(Builder, Address, Four8, 0, 31);
4311 
4312   // 32-63: fp0-31, the 8-byte floating-point registers
4313   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
4314 
4315   // 64-76 are various 4-byte special-purpose registers:
4316   // 64: mq
4317   // 65: lr
4318   // 66: ctr
4319   // 67: ap
4320   // 68-75 cr0-7
4321   // 76: xer
4322   AssignToArrayRange(Builder, Address, Four8, 64, 76);
4323 
4324   // 77-108: v0-31, the 16-byte vector registers
4325   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
4326 
4327   // 109: vrsave
4328   // 110: vscr
4329   // 111: spe_acc
4330   // 112: spefscr
4331   // 113: sfp
4332   AssignToArrayRange(Builder, Address, Four8, 109, 113);
4333 
4334   return false;
4335 }
4336 
4337 // PowerPC-64
4338 
4339 namespace {
4340 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information.
4341 class PPC64_SVR4_ABIInfo : public SwiftABIInfo {
4342 public:
4343   enum ABIKind {
4344     ELFv1 = 0,
4345     ELFv2
4346   };
4347 
4348 private:
4349   static const unsigned GPRBits = 64;
4350   ABIKind Kind;
4351   bool HasQPX;
4352   bool IsSoftFloatABI;
4353 
4354   // A vector of float or double will be promoted to <4 x f32> or <4 x f64> and
4355   // will be passed in a QPX register.
4356   bool IsQPXVectorTy(const Type *Ty) const {
4357     if (!HasQPX)
4358       return false;
4359 
4360     if (const VectorType *VT = Ty->getAs<VectorType>()) {
4361       unsigned NumElements = VT->getNumElements();
4362       if (NumElements == 1)
4363         return false;
4364 
4365       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) {
4366         if (getContext().getTypeSize(Ty) <= 256)
4367           return true;
4368       } else if (VT->getElementType()->
4369                    isSpecificBuiltinType(BuiltinType::Float)) {
4370         if (getContext().getTypeSize(Ty) <= 128)
4371           return true;
4372       }
4373     }
4374 
4375     return false;
4376   }
4377 
4378   bool IsQPXVectorTy(QualType Ty) const {
4379     return IsQPXVectorTy(Ty.getTypePtr());
4380   }
4381 
4382 public:
4383   PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, bool HasQPX,
4384                      bool SoftFloatABI)
4385       : SwiftABIInfo(CGT), Kind(Kind), HasQPX(HasQPX),
4386         IsSoftFloatABI(SoftFloatABI) {}
4387 
4388   bool isPromotableTypeForABI(QualType Ty) const;
4389   CharUnits getParamTypeAlignment(QualType Ty) const;
4390 
4391   ABIArgInfo classifyReturnType(QualType RetTy) const;
4392   ABIArgInfo classifyArgumentType(QualType Ty) const;
4393 
4394   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
4395   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
4396                                          uint64_t Members) const override;
4397 
4398   // TODO: We can add more logic to computeInfo to improve performance.
4399   // Example: For aggregate arguments that fit in a register, we could
4400   // use getDirectInReg (as is done below for structs containing a single
4401   // floating-point value) to avoid pushing them to memory on function
4402   // entry.  This would require changing the logic in PPCISelLowering
4403   // when lowering the parameters in the caller and args in the callee.
4404   void computeInfo(CGFunctionInfo &FI) const override {
4405     if (!getCXXABI().classifyReturnType(FI))
4406       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4407     for (auto &I : FI.arguments()) {
4408       // We rely on the default argument classification for the most part.
4409       // One exception:  An aggregate containing a single floating-point
4410       // or vector item must be passed in a register if one is available.
4411       const Type *T = isSingleElementStruct(I.type, getContext());
4412       if (T) {
4413         const BuiltinType *BT = T->getAs<BuiltinType>();
4414         if (IsQPXVectorTy(T) ||
4415             (T->isVectorType() && getContext().getTypeSize(T) == 128) ||
4416             (BT && BT->isFloatingPoint())) {
4417           QualType QT(T, 0);
4418           I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT));
4419           continue;
4420         }
4421       }
4422       I.info = classifyArgumentType(I.type);
4423     }
4424   }
4425 
4426   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4427                     QualType Ty) const override;
4428 
4429   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
4430                                     bool asReturnValue) const override {
4431     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
4432   }
4433 
4434   bool isSwiftErrorInRegister() const override {
4435     return false;
4436   }
4437 };
4438 
4439 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo {
4440 
4441 public:
4442   PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT,
4443                                PPC64_SVR4_ABIInfo::ABIKind Kind, bool HasQPX,
4444                                bool SoftFloatABI)
4445       : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT, Kind, HasQPX,
4446                                                  SoftFloatABI)) {}
4447 
4448   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4449     // This is recovered from gcc output.
4450     return 1; // r1 is the dedicated stack pointer
4451   }
4452 
4453   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4454                                llvm::Value *Address) const override;
4455 };
4456 
4457 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
4458 public:
4459   PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
4460 
4461   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4462     // This is recovered from gcc output.
4463     return 1; // r1 is the dedicated stack pointer
4464   }
4465 
4466   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4467                                llvm::Value *Address) const override;
4468 };
4469 
4470 }
4471 
4472 // Return true if the ABI requires Ty to be passed sign- or zero-
4473 // extended to 64 bits.
4474 bool
4475 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const {
4476   // Treat an enum type as its underlying type.
4477   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4478     Ty = EnumTy->getDecl()->getIntegerType();
4479 
4480   // Promotable integer types are required to be promoted by the ABI.
4481   if (Ty->isPromotableIntegerType())
4482     return true;
4483 
4484   // In addition to the usual promotable integer types, we also need to
4485   // extend all 32-bit types, since the ABI requires promotion to 64 bits.
4486   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
4487     switch (BT->getKind()) {
4488     case BuiltinType::Int:
4489     case BuiltinType::UInt:
4490       return true;
4491     default:
4492       break;
4493     }
4494 
4495   return false;
4496 }
4497 
4498 /// isAlignedParamType - Determine whether a type requires 16-byte or
4499 /// higher alignment in the parameter area.  Always returns at least 8.
4500 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const {
4501   // Complex types are passed just like their elements.
4502   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
4503     Ty = CTy->getElementType();
4504 
4505   // Only vector types of size 16 bytes need alignment (larger types are
4506   // passed via reference, smaller types are not aligned).
4507   if (IsQPXVectorTy(Ty)) {
4508     if (getContext().getTypeSize(Ty) > 128)
4509       return CharUnits::fromQuantity(32);
4510 
4511     return CharUnits::fromQuantity(16);
4512   } else if (Ty->isVectorType()) {
4513     return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8);
4514   }
4515 
4516   // For single-element float/vector structs, we consider the whole type
4517   // to have the same alignment requirements as its single element.
4518   const Type *AlignAsType = nullptr;
4519   const Type *EltType = isSingleElementStruct(Ty, getContext());
4520   if (EltType) {
4521     const BuiltinType *BT = EltType->getAs<BuiltinType>();
4522     if (IsQPXVectorTy(EltType) || (EltType->isVectorType() &&
4523          getContext().getTypeSize(EltType) == 128) ||
4524         (BT && BT->isFloatingPoint()))
4525       AlignAsType = EltType;
4526   }
4527 
4528   // Likewise for ELFv2 homogeneous aggregates.
4529   const Type *Base = nullptr;
4530   uint64_t Members = 0;
4531   if (!AlignAsType && Kind == ELFv2 &&
4532       isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members))
4533     AlignAsType = Base;
4534 
4535   // With special case aggregates, only vector base types need alignment.
4536   if (AlignAsType && IsQPXVectorTy(AlignAsType)) {
4537     if (getContext().getTypeSize(AlignAsType) > 128)
4538       return CharUnits::fromQuantity(32);
4539 
4540     return CharUnits::fromQuantity(16);
4541   } else if (AlignAsType) {
4542     return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8);
4543   }
4544 
4545   // Otherwise, we only need alignment for any aggregate type that
4546   // has an alignment requirement of >= 16 bytes.
4547   if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) {
4548     if (HasQPX && getContext().getTypeAlign(Ty) >= 256)
4549       return CharUnits::fromQuantity(32);
4550     return CharUnits::fromQuantity(16);
4551   }
4552 
4553   return CharUnits::fromQuantity(8);
4554 }
4555 
4556 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous
4557 /// aggregate.  Base is set to the base element type, and Members is set
4558 /// to the number of base elements.
4559 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base,
4560                                      uint64_t &Members) const {
4561   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
4562     uint64_t NElements = AT->getSize().getZExtValue();
4563     if (NElements == 0)
4564       return false;
4565     if (!isHomogeneousAggregate(AT->getElementType(), Base, Members))
4566       return false;
4567     Members *= NElements;
4568   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
4569     const RecordDecl *RD = RT->getDecl();
4570     if (RD->hasFlexibleArrayMember())
4571       return false;
4572 
4573     Members = 0;
4574 
4575     // If this is a C++ record, check the bases first.
4576     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
4577       for (const auto &I : CXXRD->bases()) {
4578         // Ignore empty records.
4579         if (isEmptyRecord(getContext(), I.getType(), true))
4580           continue;
4581 
4582         uint64_t FldMembers;
4583         if (!isHomogeneousAggregate(I.getType(), Base, FldMembers))
4584           return false;
4585 
4586         Members += FldMembers;
4587       }
4588     }
4589 
4590     for (const auto *FD : RD->fields()) {
4591       // Ignore (non-zero arrays of) empty records.
4592       QualType FT = FD->getType();
4593       while (const ConstantArrayType *AT =
4594              getContext().getAsConstantArrayType(FT)) {
4595         if (AT->getSize().getZExtValue() == 0)
4596           return false;
4597         FT = AT->getElementType();
4598       }
4599       if (isEmptyRecord(getContext(), FT, true))
4600         continue;
4601 
4602       // For compatibility with GCC, ignore empty bitfields in C++ mode.
4603       if (getContext().getLangOpts().CPlusPlus &&
4604           FD->isZeroLengthBitField(getContext()))
4605         continue;
4606 
4607       uint64_t FldMembers;
4608       if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers))
4609         return false;
4610 
4611       Members = (RD->isUnion() ?
4612                  std::max(Members, FldMembers) : Members + FldMembers);
4613     }
4614 
4615     if (!Base)
4616       return false;
4617 
4618     // Ensure there is no padding.
4619     if (getContext().getTypeSize(Base) * Members !=
4620         getContext().getTypeSize(Ty))
4621       return false;
4622   } else {
4623     Members = 1;
4624     if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
4625       Members = 2;
4626       Ty = CT->getElementType();
4627     }
4628 
4629     // Most ABIs only support float, double, and some vector type widths.
4630     if (!isHomogeneousAggregateBaseType(Ty))
4631       return false;
4632 
4633     // The base type must be the same for all members.  Types that
4634     // agree in both total size and mode (float vs. vector) are
4635     // treated as being equivalent here.
4636     const Type *TyPtr = Ty.getTypePtr();
4637     if (!Base) {
4638       Base = TyPtr;
4639       // If it's a non-power-of-2 vector, its size is already a power-of-2,
4640       // so make sure to widen it explicitly.
4641       if (const VectorType *VT = Base->getAs<VectorType>()) {
4642         QualType EltTy = VT->getElementType();
4643         unsigned NumElements =
4644             getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy);
4645         Base = getContext()
4646                    .getVectorType(EltTy, NumElements, VT->getVectorKind())
4647                    .getTypePtr();
4648       }
4649     }
4650 
4651     if (Base->isVectorType() != TyPtr->isVectorType() ||
4652         getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr))
4653       return false;
4654   }
4655   return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members);
4656 }
4657 
4658 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
4659   // Homogeneous aggregates for ELFv2 must have base types of float,
4660   // double, long double, or 128-bit vectors.
4661   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
4662     if (BT->getKind() == BuiltinType::Float ||
4663         BT->getKind() == BuiltinType::Double ||
4664         BT->getKind() == BuiltinType::LongDouble ||
4665         (getContext().getTargetInfo().hasFloat128Type() &&
4666           (BT->getKind() == BuiltinType::Float128))) {
4667       if (IsSoftFloatABI)
4668         return false;
4669       return true;
4670     }
4671   }
4672   if (const VectorType *VT = Ty->getAs<VectorType>()) {
4673     if (getContext().getTypeSize(VT) == 128 || IsQPXVectorTy(Ty))
4674       return true;
4675   }
4676   return false;
4677 }
4678 
4679 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough(
4680     const Type *Base, uint64_t Members) const {
4681   // Vector and fp128 types require one register, other floating point types
4682   // require one or two registers depending on their size.
4683   uint32_t NumRegs =
4684       ((getContext().getTargetInfo().hasFloat128Type() &&
4685           Base->isFloat128Type()) ||
4686         Base->isVectorType()) ? 1
4687                               : (getContext().getTypeSize(Base) + 63) / 64;
4688 
4689   // Homogeneous Aggregates may occupy at most 8 registers.
4690   return Members * NumRegs <= 8;
4691 }
4692 
4693 ABIArgInfo
4694 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const {
4695   Ty = useFirstFieldIfTransparentUnion(Ty);
4696 
4697   if (Ty->isAnyComplexType())
4698     return ABIArgInfo::getDirect();
4699 
4700   // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes)
4701   // or via reference (larger than 16 bytes).
4702   if (Ty->isVectorType() && !IsQPXVectorTy(Ty)) {
4703     uint64_t Size = getContext().getTypeSize(Ty);
4704     if (Size > 128)
4705       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
4706     else if (Size < 128) {
4707       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
4708       return ABIArgInfo::getDirect(CoerceTy);
4709     }
4710   }
4711 
4712   if (isAggregateTypeForABI(Ty)) {
4713     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
4714       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
4715 
4716     uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity();
4717     uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity();
4718 
4719     // ELFv2 homogeneous aggregates are passed as array types.
4720     const Type *Base = nullptr;
4721     uint64_t Members = 0;
4722     if (Kind == ELFv2 &&
4723         isHomogeneousAggregate(Ty, Base, Members)) {
4724       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
4725       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
4726       return ABIArgInfo::getDirect(CoerceTy);
4727     }
4728 
4729     // If an aggregate may end up fully in registers, we do not
4730     // use the ByVal method, but pass the aggregate as array.
4731     // This is usually beneficial since we avoid forcing the
4732     // back-end to store the argument to memory.
4733     uint64_t Bits = getContext().getTypeSize(Ty);
4734     if (Bits > 0 && Bits <= 8 * GPRBits) {
4735       llvm::Type *CoerceTy;
4736 
4737       // Types up to 8 bytes are passed as integer type (which will be
4738       // properly aligned in the argument save area doubleword).
4739       if (Bits <= GPRBits)
4740         CoerceTy =
4741             llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8));
4742       // Larger types are passed as arrays, with the base type selected
4743       // according to the required alignment in the save area.
4744       else {
4745         uint64_t RegBits = ABIAlign * 8;
4746         uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits;
4747         llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits);
4748         CoerceTy = llvm::ArrayType::get(RegTy, NumRegs);
4749       }
4750 
4751       return ABIArgInfo::getDirect(CoerceTy);
4752     }
4753 
4754     // All other aggregates are passed ByVal.
4755     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
4756                                    /*ByVal=*/true,
4757                                    /*Realign=*/TyAlign > ABIAlign);
4758   }
4759 
4760   return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
4761                                      : ABIArgInfo::getDirect());
4762 }
4763 
4764 ABIArgInfo
4765 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
4766   if (RetTy->isVoidType())
4767     return ABIArgInfo::getIgnore();
4768 
4769   if (RetTy->isAnyComplexType())
4770     return ABIArgInfo::getDirect();
4771 
4772   // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes)
4773   // or via reference (larger than 16 bytes).
4774   if (RetTy->isVectorType() && !IsQPXVectorTy(RetTy)) {
4775     uint64_t Size = getContext().getTypeSize(RetTy);
4776     if (Size > 128)
4777       return getNaturalAlignIndirect(RetTy);
4778     else if (Size < 128) {
4779       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
4780       return ABIArgInfo::getDirect(CoerceTy);
4781     }
4782   }
4783 
4784   if (isAggregateTypeForABI(RetTy)) {
4785     // ELFv2 homogeneous aggregates are returned as array types.
4786     const Type *Base = nullptr;
4787     uint64_t Members = 0;
4788     if (Kind == ELFv2 &&
4789         isHomogeneousAggregate(RetTy, Base, Members)) {
4790       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
4791       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
4792       return ABIArgInfo::getDirect(CoerceTy);
4793     }
4794 
4795     // ELFv2 small aggregates are returned in up to two registers.
4796     uint64_t Bits = getContext().getTypeSize(RetTy);
4797     if (Kind == ELFv2 && Bits <= 2 * GPRBits) {
4798       if (Bits == 0)
4799         return ABIArgInfo::getIgnore();
4800 
4801       llvm::Type *CoerceTy;
4802       if (Bits > GPRBits) {
4803         CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits);
4804         CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy);
4805       } else
4806         CoerceTy =
4807             llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8));
4808       return ABIArgInfo::getDirect(CoerceTy);
4809     }
4810 
4811     // All other aggregates are returned indirectly.
4812     return getNaturalAlignIndirect(RetTy);
4813   }
4814 
4815   return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
4816                                         : ABIArgInfo::getDirect());
4817 }
4818 
4819 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine.
4820 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4821                                       QualType Ty) const {
4822   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
4823   TypeInfo.second = getParamTypeAlignment(Ty);
4824 
4825   CharUnits SlotSize = CharUnits::fromQuantity(8);
4826 
4827   // If we have a complex type and the base type is smaller than 8 bytes,
4828   // the ABI calls for the real and imaginary parts to be right-adjusted
4829   // in separate doublewords.  However, Clang expects us to produce a
4830   // pointer to a structure with the two parts packed tightly.  So generate
4831   // loads of the real and imaginary parts relative to the va_list pointer,
4832   // and store them to a temporary structure.
4833   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
4834     CharUnits EltSize = TypeInfo.first / 2;
4835     if (EltSize < SlotSize) {
4836       Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty,
4837                                             SlotSize * 2, SlotSize,
4838                                             SlotSize, /*AllowHigher*/ true);
4839 
4840       Address RealAddr = Addr;
4841       Address ImagAddr = RealAddr;
4842       if (CGF.CGM.getDataLayout().isBigEndian()) {
4843         RealAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr,
4844                                                           SlotSize - EltSize);
4845         ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr,
4846                                                       2 * SlotSize - EltSize);
4847       } else {
4848         ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize);
4849       }
4850 
4851       llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType());
4852       RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy);
4853       ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy);
4854       llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal");
4855       llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag");
4856 
4857       Address Temp = CGF.CreateMemTemp(Ty, "vacplx");
4858       CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty),
4859                              /*init*/ true);
4860       return Temp;
4861     }
4862   }
4863 
4864   // Otherwise, just use the general rule.
4865   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
4866                           TypeInfo, SlotSize, /*AllowHigher*/ true);
4867 }
4868 
4869 static bool
4870 PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4871                               llvm::Value *Address) {
4872   // This is calculated from the LLVM and GCC tables and verified
4873   // against gcc output.  AFAIK all ABIs use the same encoding.
4874 
4875   CodeGen::CGBuilderTy &Builder = CGF.Builder;
4876 
4877   llvm::IntegerType *i8 = CGF.Int8Ty;
4878   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
4879   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
4880   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
4881 
4882   // 0-31: r0-31, the 8-byte general-purpose registers
4883   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
4884 
4885   // 32-63: fp0-31, the 8-byte floating-point registers
4886   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
4887 
4888   // 64-67 are various 8-byte special-purpose registers:
4889   // 64: mq
4890   // 65: lr
4891   // 66: ctr
4892   // 67: ap
4893   AssignToArrayRange(Builder, Address, Eight8, 64, 67);
4894 
4895   // 68-76 are various 4-byte special-purpose registers:
4896   // 68-75 cr0-7
4897   // 76: xer
4898   AssignToArrayRange(Builder, Address, Four8, 68, 76);
4899 
4900   // 77-108: v0-31, the 16-byte vector registers
4901   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
4902 
4903   // 109: vrsave
4904   // 110: vscr
4905   // 111: spe_acc
4906   // 112: spefscr
4907   // 113: sfp
4908   // 114: tfhar
4909   // 115: tfiar
4910   // 116: texasr
4911   AssignToArrayRange(Builder, Address, Eight8, 109, 116);
4912 
4913   return false;
4914 }
4915 
4916 bool
4917 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable(
4918   CodeGen::CodeGenFunction &CGF,
4919   llvm::Value *Address) const {
4920 
4921   return PPC64_initDwarfEHRegSizeTable(CGF, Address);
4922 }
4923 
4924 bool
4925 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4926                                                 llvm::Value *Address) const {
4927 
4928   return PPC64_initDwarfEHRegSizeTable(CGF, Address);
4929 }
4930 
4931 //===----------------------------------------------------------------------===//
4932 // AArch64 ABI Implementation
4933 //===----------------------------------------------------------------------===//
4934 
4935 namespace {
4936 
4937 class AArch64ABIInfo : public SwiftABIInfo {
4938 public:
4939   enum ABIKind {
4940     AAPCS = 0,
4941     DarwinPCS,
4942     Win64
4943   };
4944 
4945 private:
4946   ABIKind Kind;
4947 
4948 public:
4949   AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind)
4950     : SwiftABIInfo(CGT), Kind(Kind) {}
4951 
4952 private:
4953   ABIKind getABIKind() const { return Kind; }
4954   bool isDarwinPCS() const { return Kind == DarwinPCS; }
4955 
4956   ABIArgInfo classifyReturnType(QualType RetTy) const;
4957   ABIArgInfo classifyArgumentType(QualType RetTy) const;
4958   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
4959   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
4960                                          uint64_t Members) const override;
4961 
4962   bool isIllegalVectorType(QualType Ty) const;
4963 
4964   void computeInfo(CGFunctionInfo &FI) const override {
4965     if (!::classifyReturnType(getCXXABI(), FI, *this))
4966       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4967 
4968     for (auto &it : FI.arguments())
4969       it.info = classifyArgumentType(it.type);
4970   }
4971 
4972   Address EmitDarwinVAArg(Address VAListAddr, QualType Ty,
4973                           CodeGenFunction &CGF) const;
4974 
4975   Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty,
4976                          CodeGenFunction &CGF) const;
4977 
4978   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4979                     QualType Ty) const override {
4980     return Kind == Win64 ? EmitMSVAArg(CGF, VAListAddr, Ty)
4981                          : isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF)
4982                                          : EmitAAPCSVAArg(VAListAddr, Ty, CGF);
4983   }
4984 
4985   Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
4986                       QualType Ty) const override;
4987 
4988   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
4989                                     bool asReturnValue) const override {
4990     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
4991   }
4992   bool isSwiftErrorInRegister() const override {
4993     return true;
4994   }
4995 
4996   bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy,
4997                                  unsigned elts) const override;
4998 };
4999 
5000 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo {
5001 public:
5002   AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind)
5003       : TargetCodeGenInfo(new AArch64ABIInfo(CGT, Kind)) {}
5004 
5005   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
5006     return "mov\tfp, fp\t\t// marker for objc_retainAutoreleaseReturnValue";
5007   }
5008 
5009   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
5010     return 31;
5011   }
5012 
5013   bool doesReturnSlotInterfereWithArgs() const override { return false; }
5014 
5015   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5016                            CodeGen::CodeGenModule &CGM) const override {
5017     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
5018     if (!FD)
5019       return;
5020     llvm::Function *Fn = cast<llvm::Function>(GV);
5021 
5022     auto Kind = CGM.getCodeGenOpts().getSignReturnAddress();
5023     if (Kind != CodeGenOptions::SignReturnAddressScope::None) {
5024       Fn->addFnAttr("sign-return-address",
5025                     Kind == CodeGenOptions::SignReturnAddressScope::All
5026                         ? "all"
5027                         : "non-leaf");
5028 
5029       auto Key = CGM.getCodeGenOpts().getSignReturnAddressKey();
5030       Fn->addFnAttr("sign-return-address-key",
5031                     Key == CodeGenOptions::SignReturnAddressKeyValue::AKey
5032                         ? "a_key"
5033                         : "b_key");
5034     }
5035 
5036     if (CGM.getCodeGenOpts().BranchTargetEnforcement)
5037       Fn->addFnAttr("branch-target-enforcement");
5038   }
5039 };
5040 
5041 class WindowsAArch64TargetCodeGenInfo : public AArch64TargetCodeGenInfo {
5042 public:
5043   WindowsAArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind K)
5044       : AArch64TargetCodeGenInfo(CGT, K) {}
5045 
5046   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5047                            CodeGen::CodeGenModule &CGM) const override;
5048 
5049   void getDependentLibraryOption(llvm::StringRef Lib,
5050                                  llvm::SmallString<24> &Opt) const override {
5051     Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib);
5052   }
5053 
5054   void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value,
5055                                llvm::SmallString<32> &Opt) const override {
5056     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
5057   }
5058 };
5059 
5060 void WindowsAArch64TargetCodeGenInfo::setTargetAttributes(
5061     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
5062   AArch64TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
5063   if (GV->isDeclaration())
5064     return;
5065   addStackProbeTargetAttributes(D, GV, CGM);
5066 }
5067 }
5068 
5069 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const {
5070   Ty = useFirstFieldIfTransparentUnion(Ty);
5071 
5072   // Handle illegal vector types here.
5073   if (isIllegalVectorType(Ty)) {
5074     uint64_t Size = getContext().getTypeSize(Ty);
5075     // Android promotes <2 x i8> to i16, not i32
5076     if (isAndroid() && (Size <= 16)) {
5077       llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext());
5078       return ABIArgInfo::getDirect(ResType);
5079     }
5080     if (Size <= 32) {
5081       llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext());
5082       return ABIArgInfo::getDirect(ResType);
5083     }
5084     if (Size == 64) {
5085       llvm::Type *ResType =
5086           llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2);
5087       return ABIArgInfo::getDirect(ResType);
5088     }
5089     if (Size == 128) {
5090       llvm::Type *ResType =
5091           llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4);
5092       return ABIArgInfo::getDirect(ResType);
5093     }
5094     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5095   }
5096 
5097   if (!isAggregateTypeForABI(Ty)) {
5098     // Treat an enum type as its underlying type.
5099     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5100       Ty = EnumTy->getDecl()->getIntegerType();
5101 
5102     return (Ty->isPromotableIntegerType() && isDarwinPCS()
5103                 ? ABIArgInfo::getExtend(Ty)
5104                 : ABIArgInfo::getDirect());
5105   }
5106 
5107   // Structures with either a non-trivial destructor or a non-trivial
5108   // copy constructor are always indirect.
5109   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
5110     return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
5111                                      CGCXXABI::RAA_DirectInMemory);
5112   }
5113 
5114   // Empty records are always ignored on Darwin, but actually passed in C++ mode
5115   // elsewhere for GNU compatibility.
5116   uint64_t Size = getContext().getTypeSize(Ty);
5117   bool IsEmpty = isEmptyRecord(getContext(), Ty, true);
5118   if (IsEmpty || Size == 0) {
5119     if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS())
5120       return ABIArgInfo::getIgnore();
5121 
5122     // GNU C mode. The only argument that gets ignored is an empty one with size
5123     // 0.
5124     if (IsEmpty && Size == 0)
5125       return ABIArgInfo::getIgnore();
5126     return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
5127   }
5128 
5129   // Homogeneous Floating-point Aggregates (HFAs) need to be expanded.
5130   const Type *Base = nullptr;
5131   uint64_t Members = 0;
5132   if (isHomogeneousAggregate(Ty, Base, Members)) {
5133     return ABIArgInfo::getDirect(
5134         llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members));
5135   }
5136 
5137   // Aggregates <= 16 bytes are passed directly in registers or on the stack.
5138   if (Size <= 128) {
5139     // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of
5140     // same size and alignment.
5141     if (getTarget().isRenderScriptTarget()) {
5142       return coerceToIntArray(Ty, getContext(), getVMContext());
5143     }
5144     unsigned Alignment;
5145     if (Kind == AArch64ABIInfo::AAPCS) {
5146       Alignment = getContext().getTypeUnadjustedAlign(Ty);
5147       Alignment = Alignment < 128 ? 64 : 128;
5148     } else {
5149       Alignment = getContext().getTypeAlign(Ty);
5150     }
5151     Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes
5152 
5153     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
5154     // For aggregates with 16-byte alignment, we use i128.
5155     if (Alignment < 128 && Size == 128) {
5156       llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
5157       return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
5158     }
5159     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
5160   }
5161 
5162   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5163 }
5164 
5165 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy) const {
5166   if (RetTy->isVoidType())
5167     return ABIArgInfo::getIgnore();
5168 
5169   // Large vector types should be returned via memory.
5170   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
5171     return getNaturalAlignIndirect(RetTy);
5172 
5173   if (!isAggregateTypeForABI(RetTy)) {
5174     // Treat an enum type as its underlying type.
5175     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5176       RetTy = EnumTy->getDecl()->getIntegerType();
5177 
5178     return (RetTy->isPromotableIntegerType() && isDarwinPCS()
5179                 ? ABIArgInfo::getExtend(RetTy)
5180                 : ABIArgInfo::getDirect());
5181   }
5182 
5183   uint64_t Size = getContext().getTypeSize(RetTy);
5184   if (isEmptyRecord(getContext(), RetTy, true) || Size == 0)
5185     return ABIArgInfo::getIgnore();
5186 
5187   const Type *Base = nullptr;
5188   uint64_t Members = 0;
5189   if (isHomogeneousAggregate(RetTy, Base, Members))
5190     // Homogeneous Floating-point Aggregates (HFAs) are returned directly.
5191     return ABIArgInfo::getDirect();
5192 
5193   // Aggregates <= 16 bytes are returned directly in registers or on the stack.
5194   if (Size <= 128) {
5195     // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of
5196     // same size and alignment.
5197     if (getTarget().isRenderScriptTarget()) {
5198       return coerceToIntArray(RetTy, getContext(), getVMContext());
5199     }
5200     unsigned Alignment = getContext().getTypeAlign(RetTy);
5201     Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes
5202 
5203     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
5204     // For aggregates with 16-byte alignment, we use i128.
5205     if (Alignment < 128 && Size == 128) {
5206       llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
5207       return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
5208     }
5209     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
5210   }
5211 
5212   return getNaturalAlignIndirect(RetTy);
5213 }
5214 
5215 /// isIllegalVectorType - check whether the vector type is legal for AArch64.
5216 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const {
5217   if (const VectorType *VT = Ty->getAs<VectorType>()) {
5218     // Check whether VT is legal.
5219     unsigned NumElements = VT->getNumElements();
5220     uint64_t Size = getContext().getTypeSize(VT);
5221     // NumElements should be power of 2.
5222     if (!llvm::isPowerOf2_32(NumElements))
5223       return true;
5224     return Size != 64 && (Size != 128 || NumElements == 1);
5225   }
5226   return false;
5227 }
5228 
5229 bool AArch64ABIInfo::isLegalVectorTypeForSwift(CharUnits totalSize,
5230                                                llvm::Type *eltTy,
5231                                                unsigned elts) const {
5232   if (!llvm::isPowerOf2_32(elts))
5233     return false;
5234   if (totalSize.getQuantity() != 8 &&
5235       (totalSize.getQuantity() != 16 || elts == 1))
5236     return false;
5237   return true;
5238 }
5239 
5240 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
5241   // Homogeneous aggregates for AAPCS64 must have base types of a floating
5242   // point type or a short-vector type. This is the same as the 32-bit ABI,
5243   // but with the difference that any floating-point type is allowed,
5244   // including __fp16.
5245   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
5246     if (BT->isFloatingPoint())
5247       return true;
5248   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
5249     unsigned VecSize = getContext().getTypeSize(VT);
5250     if (VecSize == 64 || VecSize == 128)
5251       return true;
5252   }
5253   return false;
5254 }
5255 
5256 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
5257                                                        uint64_t Members) const {
5258   return Members <= 4;
5259 }
5260 
5261 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr,
5262                                             QualType Ty,
5263                                             CodeGenFunction &CGF) const {
5264   ABIArgInfo AI = classifyArgumentType(Ty);
5265   bool IsIndirect = AI.isIndirect();
5266 
5267   llvm::Type *BaseTy = CGF.ConvertType(Ty);
5268   if (IsIndirect)
5269     BaseTy = llvm::PointerType::getUnqual(BaseTy);
5270   else if (AI.getCoerceToType())
5271     BaseTy = AI.getCoerceToType();
5272 
5273   unsigned NumRegs = 1;
5274   if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) {
5275     BaseTy = ArrTy->getElementType();
5276     NumRegs = ArrTy->getNumElements();
5277   }
5278   bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy();
5279 
5280   // The AArch64 va_list type and handling is specified in the Procedure Call
5281   // Standard, section B.4:
5282   //
5283   // struct {
5284   //   void *__stack;
5285   //   void *__gr_top;
5286   //   void *__vr_top;
5287   //   int __gr_offs;
5288   //   int __vr_offs;
5289   // };
5290 
5291   llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
5292   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
5293   llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
5294   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
5295 
5296   CharUnits TySize = getContext().getTypeSizeInChars(Ty);
5297   CharUnits TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty);
5298 
5299   Address reg_offs_p = Address::invalid();
5300   llvm::Value *reg_offs = nullptr;
5301   int reg_top_index;
5302   int RegSize = IsIndirect ? 8 : TySize.getQuantity();
5303   if (!IsFPR) {
5304     // 3 is the field number of __gr_offs
5305     reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p");
5306     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs");
5307     reg_top_index = 1; // field number for __gr_top
5308     RegSize = llvm::alignTo(RegSize, 8);
5309   } else {
5310     // 4 is the field number of __vr_offs.
5311     reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p");
5312     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs");
5313     reg_top_index = 2; // field number for __vr_top
5314     RegSize = 16 * NumRegs;
5315   }
5316 
5317   //=======================================
5318   // Find out where argument was passed
5319   //=======================================
5320 
5321   // If reg_offs >= 0 we're already using the stack for this type of
5322   // argument. We don't want to keep updating reg_offs (in case it overflows,
5323   // though anyone passing 2GB of arguments, each at most 16 bytes, deserves
5324   // whatever they get).
5325   llvm::Value *UsingStack = nullptr;
5326   UsingStack = CGF.Builder.CreateICmpSGE(
5327       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0));
5328 
5329   CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock);
5330 
5331   // Otherwise, at least some kind of argument could go in these registers, the
5332   // question is whether this particular type is too big.
5333   CGF.EmitBlock(MaybeRegBlock);
5334 
5335   // Integer arguments may need to correct register alignment (for example a
5336   // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we
5337   // align __gr_offs to calculate the potential address.
5338   if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) {
5339     int Align = TyAlign.getQuantity();
5340 
5341     reg_offs = CGF.Builder.CreateAdd(
5342         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1),
5343         "align_regoffs");
5344     reg_offs = CGF.Builder.CreateAnd(
5345         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align),
5346         "aligned_regoffs");
5347   }
5348 
5349   // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list.
5350   // The fact that this is done unconditionally reflects the fact that
5351   // allocating an argument to the stack also uses up all the remaining
5352   // registers of the appropriate kind.
5353   llvm::Value *NewOffset = nullptr;
5354   NewOffset = CGF.Builder.CreateAdd(
5355       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs");
5356   CGF.Builder.CreateStore(NewOffset, reg_offs_p);
5357 
5358   // Now we're in a position to decide whether this argument really was in
5359   // registers or not.
5360   llvm::Value *InRegs = nullptr;
5361   InRegs = CGF.Builder.CreateICmpSLE(
5362       NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg");
5363 
5364   CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock);
5365 
5366   //=======================================
5367   // Argument was in registers
5368   //=======================================
5369 
5370   // Now we emit the code for if the argument was originally passed in
5371   // registers. First start the appropriate block:
5372   CGF.EmitBlock(InRegBlock);
5373 
5374   llvm::Value *reg_top = nullptr;
5375   Address reg_top_p =
5376       CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p");
5377   reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top");
5378   Address BaseAddr(CGF.Builder.CreateInBoundsGEP(reg_top, reg_offs),
5379                    CharUnits::fromQuantity(IsFPR ? 16 : 8));
5380   Address RegAddr = Address::invalid();
5381   llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty);
5382 
5383   if (IsIndirect) {
5384     // If it's been passed indirectly (actually a struct), whatever we find from
5385     // stored registers or on the stack will actually be a struct **.
5386     MemTy = llvm::PointerType::getUnqual(MemTy);
5387   }
5388 
5389   const Type *Base = nullptr;
5390   uint64_t NumMembers = 0;
5391   bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers);
5392   if (IsHFA && NumMembers > 1) {
5393     // Homogeneous aggregates passed in registers will have their elements split
5394     // and stored 16-bytes apart regardless of size (they're notionally in qN,
5395     // qN+1, ...). We reload and store into a temporary local variable
5396     // contiguously.
5397     assert(!IsIndirect && "Homogeneous aggregates should be passed directly");
5398     auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0));
5399     llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0));
5400     llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers);
5401     Address Tmp = CGF.CreateTempAlloca(HFATy,
5402                                        std::max(TyAlign, BaseTyInfo.second));
5403 
5404     // On big-endian platforms, the value will be right-aligned in its slot.
5405     int Offset = 0;
5406     if (CGF.CGM.getDataLayout().isBigEndian() &&
5407         BaseTyInfo.first.getQuantity() < 16)
5408       Offset = 16 - BaseTyInfo.first.getQuantity();
5409 
5410     for (unsigned i = 0; i < NumMembers; ++i) {
5411       CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset);
5412       Address LoadAddr =
5413         CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset);
5414       LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy);
5415 
5416       Address StoreAddr = CGF.Builder.CreateConstArrayGEP(Tmp, i);
5417 
5418       llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr);
5419       CGF.Builder.CreateStore(Elem, StoreAddr);
5420     }
5421 
5422     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy);
5423   } else {
5424     // Otherwise the object is contiguous in memory.
5425 
5426     // It might be right-aligned in its slot.
5427     CharUnits SlotSize = BaseAddr.getAlignment();
5428     if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect &&
5429         (IsHFA || !isAggregateTypeForABI(Ty)) &&
5430         TySize < SlotSize) {
5431       CharUnits Offset = SlotSize - TySize;
5432       BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset);
5433     }
5434 
5435     RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy);
5436   }
5437 
5438   CGF.EmitBranch(ContBlock);
5439 
5440   //=======================================
5441   // Argument was on the stack
5442   //=======================================
5443   CGF.EmitBlock(OnStackBlock);
5444 
5445   Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p");
5446   llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack");
5447 
5448   // Again, stack arguments may need realignment. In this case both integer and
5449   // floating-point ones might be affected.
5450   if (!IsIndirect && TyAlign.getQuantity() > 8) {
5451     int Align = TyAlign.getQuantity();
5452 
5453     OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty);
5454 
5455     OnStackPtr = CGF.Builder.CreateAdd(
5456         OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1),
5457         "align_stack");
5458     OnStackPtr = CGF.Builder.CreateAnd(
5459         OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align),
5460         "align_stack");
5461 
5462     OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy);
5463   }
5464   Address OnStackAddr(OnStackPtr,
5465                       std::max(CharUnits::fromQuantity(8), TyAlign));
5466 
5467   // All stack slots are multiples of 8 bytes.
5468   CharUnits StackSlotSize = CharUnits::fromQuantity(8);
5469   CharUnits StackSize;
5470   if (IsIndirect)
5471     StackSize = StackSlotSize;
5472   else
5473     StackSize = TySize.alignTo(StackSlotSize);
5474 
5475   llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize);
5476   llvm::Value *NewStack =
5477       CGF.Builder.CreateInBoundsGEP(OnStackPtr, StackSizeC, "new_stack");
5478 
5479   // Write the new value of __stack for the next call to va_arg
5480   CGF.Builder.CreateStore(NewStack, stack_p);
5481 
5482   if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) &&
5483       TySize < StackSlotSize) {
5484     CharUnits Offset = StackSlotSize - TySize;
5485     OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset);
5486   }
5487 
5488   OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy);
5489 
5490   CGF.EmitBranch(ContBlock);
5491 
5492   //=======================================
5493   // Tidy up
5494   //=======================================
5495   CGF.EmitBlock(ContBlock);
5496 
5497   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
5498                                  OnStackAddr, OnStackBlock, "vaargs.addr");
5499 
5500   if (IsIndirect)
5501     return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"),
5502                    TyAlign);
5503 
5504   return ResAddr;
5505 }
5506 
5507 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty,
5508                                         CodeGenFunction &CGF) const {
5509   // The backend's lowering doesn't support va_arg for aggregates or
5510   // illegal vector types.  Lower VAArg here for these cases and use
5511   // the LLVM va_arg instruction for everything else.
5512   if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty))
5513     return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect());
5514 
5515   CharUnits SlotSize = CharUnits::fromQuantity(8);
5516 
5517   // Empty records are ignored for parameter passing purposes.
5518   if (isEmptyRecord(getContext(), Ty, true)) {
5519     Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
5520     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
5521     return Addr;
5522   }
5523 
5524   // The size of the actual thing passed, which might end up just
5525   // being a pointer for indirect types.
5526   auto TyInfo = getContext().getTypeInfoInChars(Ty);
5527 
5528   // Arguments bigger than 16 bytes which aren't homogeneous
5529   // aggregates should be passed indirectly.
5530   bool IsIndirect = false;
5531   if (TyInfo.first.getQuantity() > 16) {
5532     const Type *Base = nullptr;
5533     uint64_t Members = 0;
5534     IsIndirect = !isHomogeneousAggregate(Ty, Base, Members);
5535   }
5536 
5537   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
5538                           TyInfo, SlotSize, /*AllowHigherAlign*/ true);
5539 }
5540 
5541 Address AArch64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
5542                                     QualType Ty) const {
5543   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
5544                           CGF.getContext().getTypeInfoInChars(Ty),
5545                           CharUnits::fromQuantity(8),
5546                           /*allowHigherAlign*/ false);
5547 }
5548 
5549 //===----------------------------------------------------------------------===//
5550 // ARM ABI Implementation
5551 //===----------------------------------------------------------------------===//
5552 
5553 namespace {
5554 
5555 class ARMABIInfo : public SwiftABIInfo {
5556 public:
5557   enum ABIKind {
5558     APCS = 0,
5559     AAPCS = 1,
5560     AAPCS_VFP = 2,
5561     AAPCS16_VFP = 3,
5562   };
5563 
5564 private:
5565   ABIKind Kind;
5566 
5567 public:
5568   ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind)
5569       : SwiftABIInfo(CGT), Kind(_Kind) {
5570     setCCs();
5571   }
5572 
5573   bool isEABI() const {
5574     switch (getTarget().getTriple().getEnvironment()) {
5575     case llvm::Triple::Android:
5576     case llvm::Triple::EABI:
5577     case llvm::Triple::EABIHF:
5578     case llvm::Triple::GNUEABI:
5579     case llvm::Triple::GNUEABIHF:
5580     case llvm::Triple::MuslEABI:
5581     case llvm::Triple::MuslEABIHF:
5582       return true;
5583     default:
5584       return false;
5585     }
5586   }
5587 
5588   bool isEABIHF() const {
5589     switch (getTarget().getTriple().getEnvironment()) {
5590     case llvm::Triple::EABIHF:
5591     case llvm::Triple::GNUEABIHF:
5592     case llvm::Triple::MuslEABIHF:
5593       return true;
5594     default:
5595       return false;
5596     }
5597   }
5598 
5599   ABIKind getABIKind() const { return Kind; }
5600 
5601 private:
5602   ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic,
5603                                 unsigned functionCallConv) const;
5604   ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic,
5605                                   unsigned functionCallConv) const;
5606   ABIArgInfo classifyHomogeneousAggregate(QualType Ty, const Type *Base,
5607                                           uint64_t Members) const;
5608   ABIArgInfo coerceIllegalVector(QualType Ty) const;
5609   bool isIllegalVectorType(QualType Ty) const;
5610   bool containsAnyFP16Vectors(QualType Ty) const;
5611 
5612   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
5613   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
5614                                          uint64_t Members) const override;
5615 
5616   bool isEffectivelyAAPCS_VFP(unsigned callConvention, bool acceptHalf) const;
5617 
5618   void computeInfo(CGFunctionInfo &FI) const override;
5619 
5620   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5621                     QualType Ty) const override;
5622 
5623   llvm::CallingConv::ID getLLVMDefaultCC() const;
5624   llvm::CallingConv::ID getABIDefaultCC() const;
5625   void setCCs();
5626 
5627   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
5628                                     bool asReturnValue) const override {
5629     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
5630   }
5631   bool isSwiftErrorInRegister() const override {
5632     return true;
5633   }
5634   bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy,
5635                                  unsigned elts) const override;
5636 };
5637 
5638 class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
5639 public:
5640   ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
5641     :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {}
5642 
5643   const ARMABIInfo &getABIInfo() const {
5644     return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo());
5645   }
5646 
5647   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
5648     return 13;
5649   }
5650 
5651   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
5652     return "mov\tr7, r7\t\t// marker for objc_retainAutoreleaseReturnValue";
5653   }
5654 
5655   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5656                                llvm::Value *Address) const override {
5657     llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
5658 
5659     // 0-15 are the 16 integer registers.
5660     AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15);
5661     return false;
5662   }
5663 
5664   unsigned getSizeOfUnwindException() const override {
5665     if (getABIInfo().isEABI()) return 88;
5666     return TargetCodeGenInfo::getSizeOfUnwindException();
5667   }
5668 
5669   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5670                            CodeGen::CodeGenModule &CGM) const override {
5671     if (GV->isDeclaration())
5672       return;
5673     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
5674     if (!FD)
5675       return;
5676 
5677     const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>();
5678     if (!Attr)
5679       return;
5680 
5681     const char *Kind;
5682     switch (Attr->getInterrupt()) {
5683     case ARMInterruptAttr::Generic: Kind = ""; break;
5684     case ARMInterruptAttr::IRQ:     Kind = "IRQ"; break;
5685     case ARMInterruptAttr::FIQ:     Kind = "FIQ"; break;
5686     case ARMInterruptAttr::SWI:     Kind = "SWI"; break;
5687     case ARMInterruptAttr::ABORT:   Kind = "ABORT"; break;
5688     case ARMInterruptAttr::UNDEF:   Kind = "UNDEF"; break;
5689     }
5690 
5691     llvm::Function *Fn = cast<llvm::Function>(GV);
5692 
5693     Fn->addFnAttr("interrupt", Kind);
5694 
5695     ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind();
5696     if (ABI == ARMABIInfo::APCS)
5697       return;
5698 
5699     // AAPCS guarantees that sp will be 8-byte aligned on any public interface,
5700     // however this is not necessarily true on taking any interrupt. Instruct
5701     // the backend to perform a realignment as part of the function prologue.
5702     llvm::AttrBuilder B;
5703     B.addStackAlignmentAttr(8);
5704     Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
5705   }
5706 };
5707 
5708 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo {
5709 public:
5710   WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
5711       : ARMTargetCodeGenInfo(CGT, K) {}
5712 
5713   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5714                            CodeGen::CodeGenModule &CGM) const override;
5715 
5716   void getDependentLibraryOption(llvm::StringRef Lib,
5717                                  llvm::SmallString<24> &Opt) const override {
5718     Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib);
5719   }
5720 
5721   void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value,
5722                                llvm::SmallString<32> &Opt) const override {
5723     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
5724   }
5725 };
5726 
5727 void WindowsARMTargetCodeGenInfo::setTargetAttributes(
5728     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
5729   ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
5730   if (GV->isDeclaration())
5731     return;
5732   addStackProbeTargetAttributes(D, GV, CGM);
5733 }
5734 }
5735 
5736 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
5737   if (!::classifyReturnType(getCXXABI(), FI, *this))
5738     FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), FI.isVariadic(),
5739                                             FI.getCallingConvention());
5740 
5741   for (auto &I : FI.arguments())
5742     I.info = classifyArgumentType(I.type, FI.isVariadic(),
5743                                   FI.getCallingConvention());
5744 
5745 
5746   // Always honor user-specified calling convention.
5747   if (FI.getCallingConvention() != llvm::CallingConv::C)
5748     return;
5749 
5750   llvm::CallingConv::ID cc = getRuntimeCC();
5751   if (cc != llvm::CallingConv::C)
5752     FI.setEffectiveCallingConvention(cc);
5753 }
5754 
5755 /// Return the default calling convention that LLVM will use.
5756 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const {
5757   // The default calling convention that LLVM will infer.
5758   if (isEABIHF() || getTarget().getTriple().isWatchABI())
5759     return llvm::CallingConv::ARM_AAPCS_VFP;
5760   else if (isEABI())
5761     return llvm::CallingConv::ARM_AAPCS;
5762   else
5763     return llvm::CallingConv::ARM_APCS;
5764 }
5765 
5766 /// Return the calling convention that our ABI would like us to use
5767 /// as the C calling convention.
5768 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const {
5769   switch (getABIKind()) {
5770   case APCS: return llvm::CallingConv::ARM_APCS;
5771   case AAPCS: return llvm::CallingConv::ARM_AAPCS;
5772   case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
5773   case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
5774   }
5775   llvm_unreachable("bad ABI kind");
5776 }
5777 
5778 void ARMABIInfo::setCCs() {
5779   assert(getRuntimeCC() == llvm::CallingConv::C);
5780 
5781   // Don't muddy up the IR with a ton of explicit annotations if
5782   // they'd just match what LLVM will infer from the triple.
5783   llvm::CallingConv::ID abiCC = getABIDefaultCC();
5784   if (abiCC != getLLVMDefaultCC())
5785     RuntimeCC = abiCC;
5786 }
5787 
5788 ABIArgInfo ARMABIInfo::coerceIllegalVector(QualType Ty) const {
5789   uint64_t Size = getContext().getTypeSize(Ty);
5790   if (Size <= 32) {
5791     llvm::Type *ResType =
5792         llvm::Type::getInt32Ty(getVMContext());
5793     return ABIArgInfo::getDirect(ResType);
5794   }
5795   if (Size == 64 || Size == 128) {
5796     llvm::Type *ResType = llvm::VectorType::get(
5797         llvm::Type::getInt32Ty(getVMContext()), Size / 32);
5798     return ABIArgInfo::getDirect(ResType);
5799   }
5800   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5801 }
5802 
5803 ABIArgInfo ARMABIInfo::classifyHomogeneousAggregate(QualType Ty,
5804                                                     const Type *Base,
5805                                                     uint64_t Members) const {
5806   assert(Base && "Base class should be set for homogeneous aggregate");
5807   // Base can be a floating-point or a vector.
5808   if (const VectorType *VT = Base->getAs<VectorType>()) {
5809     // FP16 vectors should be converted to integer vectors
5810     if (!getTarget().hasLegalHalfType() && containsAnyFP16Vectors(Ty)) {
5811       uint64_t Size = getContext().getTypeSize(VT);
5812       llvm::Type *NewVecTy = llvm::VectorType::get(
5813           llvm::Type::getInt32Ty(getVMContext()), Size / 32);
5814       llvm::Type *Ty = llvm::ArrayType::get(NewVecTy, Members);
5815       return ABIArgInfo::getDirect(Ty, 0, nullptr, false);
5816     }
5817   }
5818   return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
5819 }
5820 
5821 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, bool isVariadic,
5822                                             unsigned functionCallConv) const {
5823   // 6.1.2.1 The following argument types are VFP CPRCs:
5824   //   A single-precision floating-point type (including promoted
5825   //   half-precision types); A double-precision floating-point type;
5826   //   A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate
5827   //   with a Base Type of a single- or double-precision floating-point type,
5828   //   64-bit containerized vectors or 128-bit containerized vectors with one
5829   //   to four Elements.
5830   // Variadic functions should always marshal to the base standard.
5831   bool IsAAPCS_VFP =
5832       !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ false);
5833 
5834   Ty = useFirstFieldIfTransparentUnion(Ty);
5835 
5836   // Handle illegal vector types here.
5837   if (isIllegalVectorType(Ty))
5838     return coerceIllegalVector(Ty);
5839 
5840   // _Float16 and __fp16 get passed as if it were an int or float, but with
5841   // the top 16 bits unspecified. This is not done for OpenCL as it handles the
5842   // half type natively, and does not need to interwork with AAPCS code.
5843   if ((Ty->isFloat16Type() || Ty->isHalfType()) &&
5844       !getContext().getLangOpts().NativeHalfArgsAndReturns) {
5845     llvm::Type *ResType = IsAAPCS_VFP ?
5846       llvm::Type::getFloatTy(getVMContext()) :
5847       llvm::Type::getInt32Ty(getVMContext());
5848     return ABIArgInfo::getDirect(ResType);
5849   }
5850 
5851   if (!isAggregateTypeForABI(Ty)) {
5852     // Treat an enum type as its underlying type.
5853     if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
5854       Ty = EnumTy->getDecl()->getIntegerType();
5855     }
5856 
5857     return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
5858                                           : ABIArgInfo::getDirect());
5859   }
5860 
5861   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
5862     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
5863   }
5864 
5865   // Ignore empty records.
5866   if (isEmptyRecord(getContext(), Ty, true))
5867     return ABIArgInfo::getIgnore();
5868 
5869   if (IsAAPCS_VFP) {
5870     // Homogeneous Aggregates need to be expanded when we can fit the aggregate
5871     // into VFP registers.
5872     const Type *Base = nullptr;
5873     uint64_t Members = 0;
5874     if (isHomogeneousAggregate(Ty, Base, Members))
5875       return classifyHomogeneousAggregate(Ty, Base, Members);
5876   } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) {
5877     // WatchOS does have homogeneous aggregates. Note that we intentionally use
5878     // this convention even for a variadic function: the backend will use GPRs
5879     // if needed.
5880     const Type *Base = nullptr;
5881     uint64_t Members = 0;
5882     if (isHomogeneousAggregate(Ty, Base, Members)) {
5883       assert(Base && Members <= 4 && "unexpected homogeneous aggregate");
5884       llvm::Type *Ty =
5885         llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members);
5886       return ABIArgInfo::getDirect(Ty, 0, nullptr, false);
5887     }
5888   }
5889 
5890   if (getABIKind() == ARMABIInfo::AAPCS16_VFP &&
5891       getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) {
5892     // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're
5893     // bigger than 128-bits, they get placed in space allocated by the caller,
5894     // and a pointer is passed.
5895     return ABIArgInfo::getIndirect(
5896         CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false);
5897   }
5898 
5899   // Support byval for ARM.
5900   // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at
5901   // most 8-byte. We realign the indirect argument if type alignment is bigger
5902   // than ABI alignment.
5903   uint64_t ABIAlign = 4;
5904   uint64_t TyAlign;
5905   if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
5906       getABIKind() == ARMABIInfo::AAPCS) {
5907     TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity();
5908     ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
5909   } else {
5910     TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity();
5911   }
5912   if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) {
5913     assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval");
5914     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
5915                                    /*ByVal=*/true,
5916                                    /*Realign=*/TyAlign > ABIAlign);
5917   }
5918 
5919   // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of
5920   // same size and alignment.
5921   if (getTarget().isRenderScriptTarget()) {
5922     return coerceToIntArray(Ty, getContext(), getVMContext());
5923   }
5924 
5925   // Otherwise, pass by coercing to a structure of the appropriate size.
5926   llvm::Type* ElemTy;
5927   unsigned SizeRegs;
5928   // FIXME: Try to match the types of the arguments more accurately where
5929   // we can.
5930   if (TyAlign <= 4) {
5931     ElemTy = llvm::Type::getInt32Ty(getVMContext());
5932     SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
5933   } else {
5934     ElemTy = llvm::Type::getInt64Ty(getVMContext());
5935     SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
5936   }
5937 
5938   return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs));
5939 }
5940 
5941 static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
5942                               llvm::LLVMContext &VMContext) {
5943   // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
5944   // is called integer-like if its size is less than or equal to one word, and
5945   // the offset of each of its addressable sub-fields is zero.
5946 
5947   uint64_t Size = Context.getTypeSize(Ty);
5948 
5949   // Check that the type fits in a word.
5950   if (Size > 32)
5951     return false;
5952 
5953   // FIXME: Handle vector types!
5954   if (Ty->isVectorType())
5955     return false;
5956 
5957   // Float types are never treated as "integer like".
5958   if (Ty->isRealFloatingType())
5959     return false;
5960 
5961   // If this is a builtin or pointer type then it is ok.
5962   if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
5963     return true;
5964 
5965   // Small complex integer types are "integer like".
5966   if (const ComplexType *CT = Ty->getAs<ComplexType>())
5967     return isIntegerLikeType(CT->getElementType(), Context, VMContext);
5968 
5969   // Single element and zero sized arrays should be allowed, by the definition
5970   // above, but they are not.
5971 
5972   // Otherwise, it must be a record type.
5973   const RecordType *RT = Ty->getAs<RecordType>();
5974   if (!RT) return false;
5975 
5976   // Ignore records with flexible arrays.
5977   const RecordDecl *RD = RT->getDecl();
5978   if (RD->hasFlexibleArrayMember())
5979     return false;
5980 
5981   // Check that all sub-fields are at offset 0, and are themselves "integer
5982   // like".
5983   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
5984 
5985   bool HadField = false;
5986   unsigned idx = 0;
5987   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
5988        i != e; ++i, ++idx) {
5989     const FieldDecl *FD = *i;
5990 
5991     // Bit-fields are not addressable, we only need to verify they are "integer
5992     // like". We still have to disallow a subsequent non-bitfield, for example:
5993     //   struct { int : 0; int x }
5994     // is non-integer like according to gcc.
5995     if (FD->isBitField()) {
5996       if (!RD->isUnion())
5997         HadField = true;
5998 
5999       if (!isIntegerLikeType(FD->getType(), Context, VMContext))
6000         return false;
6001 
6002       continue;
6003     }
6004 
6005     // Check if this field is at offset 0.
6006     if (Layout.getFieldOffset(idx) != 0)
6007       return false;
6008 
6009     if (!isIntegerLikeType(FD->getType(), Context, VMContext))
6010       return false;
6011 
6012     // Only allow at most one field in a structure. This doesn't match the
6013     // wording above, but follows gcc in situations with a field following an
6014     // empty structure.
6015     if (!RD->isUnion()) {
6016       if (HadField)
6017         return false;
6018 
6019       HadField = true;
6020     }
6021   }
6022 
6023   return true;
6024 }
6025 
6026 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, bool isVariadic,
6027                                           unsigned functionCallConv) const {
6028 
6029   // Variadic functions should always marshal to the base standard.
6030   bool IsAAPCS_VFP =
6031       !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ true);
6032 
6033   if (RetTy->isVoidType())
6034     return ABIArgInfo::getIgnore();
6035 
6036   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
6037     // Large vector types should be returned via memory.
6038     if (getContext().getTypeSize(RetTy) > 128)
6039       return getNaturalAlignIndirect(RetTy);
6040     // FP16 vectors should be converted to integer vectors
6041     if (!getTarget().hasLegalHalfType() &&
6042         (VT->getElementType()->isFloat16Type() ||
6043          VT->getElementType()->isHalfType()))
6044       return coerceIllegalVector(RetTy);
6045   }
6046 
6047   // _Float16 and __fp16 get returned as if it were an int or float, but with
6048   // the top 16 bits unspecified. This is not done for OpenCL as it handles the
6049   // half type natively, and does not need to interwork with AAPCS code.
6050   if ((RetTy->isFloat16Type() || RetTy->isHalfType()) &&
6051       !getContext().getLangOpts().NativeHalfArgsAndReturns) {
6052     llvm::Type *ResType = IsAAPCS_VFP ?
6053       llvm::Type::getFloatTy(getVMContext()) :
6054       llvm::Type::getInt32Ty(getVMContext());
6055     return ABIArgInfo::getDirect(ResType);
6056   }
6057 
6058   if (!isAggregateTypeForABI(RetTy)) {
6059     // Treat an enum type as its underlying type.
6060     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
6061       RetTy = EnumTy->getDecl()->getIntegerType();
6062 
6063     return RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
6064                                             : ABIArgInfo::getDirect();
6065   }
6066 
6067   // Are we following APCS?
6068   if (getABIKind() == APCS) {
6069     if (isEmptyRecord(getContext(), RetTy, false))
6070       return ABIArgInfo::getIgnore();
6071 
6072     // Complex types are all returned as packed integers.
6073     //
6074     // FIXME: Consider using 2 x vector types if the back end handles them
6075     // correctly.
6076     if (RetTy->isAnyComplexType())
6077       return ABIArgInfo::getDirect(llvm::IntegerType::get(
6078           getVMContext(), getContext().getTypeSize(RetTy)));
6079 
6080     // Integer like structures are returned in r0.
6081     if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
6082       // Return in the smallest viable integer type.
6083       uint64_t Size = getContext().getTypeSize(RetTy);
6084       if (Size <= 8)
6085         return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
6086       if (Size <= 16)
6087         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
6088       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6089     }
6090 
6091     // Otherwise return in memory.
6092     return getNaturalAlignIndirect(RetTy);
6093   }
6094 
6095   // Otherwise this is an AAPCS variant.
6096 
6097   if (isEmptyRecord(getContext(), RetTy, true))
6098     return ABIArgInfo::getIgnore();
6099 
6100   // Check for homogeneous aggregates with AAPCS-VFP.
6101   if (IsAAPCS_VFP) {
6102     const Type *Base = nullptr;
6103     uint64_t Members = 0;
6104     if (isHomogeneousAggregate(RetTy, Base, Members))
6105       return classifyHomogeneousAggregate(RetTy, Base, Members);
6106   }
6107 
6108   // Aggregates <= 4 bytes are returned in r0; other aggregates
6109   // are returned indirectly.
6110   uint64_t Size = getContext().getTypeSize(RetTy);
6111   if (Size <= 32) {
6112     // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of
6113     // same size and alignment.
6114     if (getTarget().isRenderScriptTarget()) {
6115       return coerceToIntArray(RetTy, getContext(), getVMContext());
6116     }
6117     if (getDataLayout().isBigEndian())
6118       // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4)
6119       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6120 
6121     // Return in the smallest viable integer type.
6122     if (Size <= 8)
6123       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
6124     if (Size <= 16)
6125       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
6126     return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6127   } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) {
6128     llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext());
6129     llvm::Type *CoerceTy =
6130         llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32);
6131     return ABIArgInfo::getDirect(CoerceTy);
6132   }
6133 
6134   return getNaturalAlignIndirect(RetTy);
6135 }
6136 
6137 /// isIllegalVector - check whether Ty is an illegal vector type.
6138 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const {
6139   if (const VectorType *VT = Ty->getAs<VectorType> ()) {
6140     // On targets that don't support FP16, FP16 is expanded into float, and we
6141     // don't want the ABI to depend on whether or not FP16 is supported in
6142     // hardware. Thus return false to coerce FP16 vectors into integer vectors.
6143     if (!getTarget().hasLegalHalfType() &&
6144         (VT->getElementType()->isFloat16Type() ||
6145          VT->getElementType()->isHalfType()))
6146       return true;
6147     if (isAndroid()) {
6148       // Android shipped using Clang 3.1, which supported a slightly different
6149       // vector ABI. The primary differences were that 3-element vector types
6150       // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path
6151       // accepts that legacy behavior for Android only.
6152       // Check whether VT is legal.
6153       unsigned NumElements = VT->getNumElements();
6154       // NumElements should be power of 2 or equal to 3.
6155       if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3)
6156         return true;
6157     } else {
6158       // Check whether VT is legal.
6159       unsigned NumElements = VT->getNumElements();
6160       uint64_t Size = getContext().getTypeSize(VT);
6161       // NumElements should be power of 2.
6162       if (!llvm::isPowerOf2_32(NumElements))
6163         return true;
6164       // Size should be greater than 32 bits.
6165       return Size <= 32;
6166     }
6167   }
6168   return false;
6169 }
6170 
6171 /// Return true if a type contains any 16-bit floating point vectors
6172 bool ARMABIInfo::containsAnyFP16Vectors(QualType Ty) const {
6173   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
6174     uint64_t NElements = AT->getSize().getZExtValue();
6175     if (NElements == 0)
6176       return false;
6177     return containsAnyFP16Vectors(AT->getElementType());
6178   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
6179     const RecordDecl *RD = RT->getDecl();
6180 
6181     // If this is a C++ record, check the bases first.
6182     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
6183       if (llvm::any_of(CXXRD->bases(), [this](const CXXBaseSpecifier &B) {
6184             return containsAnyFP16Vectors(B.getType());
6185           }))
6186         return true;
6187 
6188     if (llvm::any_of(RD->fields(), [this](FieldDecl *FD) {
6189           return FD && containsAnyFP16Vectors(FD->getType());
6190         }))
6191       return true;
6192 
6193     return false;
6194   } else {
6195     if (const VectorType *VT = Ty->getAs<VectorType>())
6196       return (VT->getElementType()->isFloat16Type() ||
6197               VT->getElementType()->isHalfType());
6198     return false;
6199   }
6200 }
6201 
6202 bool ARMABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize,
6203                                            llvm::Type *eltTy,
6204                                            unsigned numElts) const {
6205   if (!llvm::isPowerOf2_32(numElts))
6206     return false;
6207   unsigned size = getDataLayout().getTypeStoreSizeInBits(eltTy);
6208   if (size > 64)
6209     return false;
6210   if (vectorSize.getQuantity() != 8 &&
6211       (vectorSize.getQuantity() != 16 || numElts == 1))
6212     return false;
6213   return true;
6214 }
6215 
6216 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
6217   // Homogeneous aggregates for AAPCS-VFP must have base types of float,
6218   // double, or 64-bit or 128-bit vectors.
6219   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
6220     if (BT->getKind() == BuiltinType::Float ||
6221         BT->getKind() == BuiltinType::Double ||
6222         BT->getKind() == BuiltinType::LongDouble)
6223       return true;
6224   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
6225     unsigned VecSize = getContext().getTypeSize(VT);
6226     if (VecSize == 64 || VecSize == 128)
6227       return true;
6228   }
6229   return false;
6230 }
6231 
6232 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
6233                                                    uint64_t Members) const {
6234   return Members <= 4;
6235 }
6236 
6237 bool ARMABIInfo::isEffectivelyAAPCS_VFP(unsigned callConvention,
6238                                         bool acceptHalf) const {
6239   // Give precedence to user-specified calling conventions.
6240   if (callConvention != llvm::CallingConv::C)
6241     return (callConvention == llvm::CallingConv::ARM_AAPCS_VFP);
6242   else
6243     return (getABIKind() == AAPCS_VFP) ||
6244            (acceptHalf && (getABIKind() == AAPCS16_VFP));
6245 }
6246 
6247 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6248                               QualType Ty) const {
6249   CharUnits SlotSize = CharUnits::fromQuantity(4);
6250 
6251   // Empty records are ignored for parameter passing purposes.
6252   if (isEmptyRecord(getContext(), Ty, true)) {
6253     Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize);
6254     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
6255     return Addr;
6256   }
6257 
6258   CharUnits TySize = getContext().getTypeSizeInChars(Ty);
6259   CharUnits TyAlignForABI = getContext().getTypeUnadjustedAlignInChars(Ty);
6260 
6261   // Use indirect if size of the illegal vector is bigger than 16 bytes.
6262   bool IsIndirect = false;
6263   const Type *Base = nullptr;
6264   uint64_t Members = 0;
6265   if (TySize > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) {
6266     IsIndirect = true;
6267 
6268   // ARMv7k passes structs bigger than 16 bytes indirectly, in space
6269   // allocated by the caller.
6270   } else if (TySize > CharUnits::fromQuantity(16) &&
6271              getABIKind() == ARMABIInfo::AAPCS16_VFP &&
6272              !isHomogeneousAggregate(Ty, Base, Members)) {
6273     IsIndirect = true;
6274 
6275   // Otherwise, bound the type's ABI alignment.
6276   // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for
6277   // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte.
6278   // Our callers should be prepared to handle an under-aligned address.
6279   } else if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
6280              getABIKind() == ARMABIInfo::AAPCS) {
6281     TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
6282     TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8));
6283   } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) {
6284     // ARMv7k allows type alignment up to 16 bytes.
6285     TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
6286     TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16));
6287   } else {
6288     TyAlignForABI = CharUnits::fromQuantity(4);
6289   }
6290 
6291   std::pair<CharUnits, CharUnits> TyInfo = { TySize, TyAlignForABI };
6292   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo,
6293                           SlotSize, /*AllowHigherAlign*/ true);
6294 }
6295 
6296 //===----------------------------------------------------------------------===//
6297 // NVPTX ABI Implementation
6298 //===----------------------------------------------------------------------===//
6299 
6300 namespace {
6301 
6302 class NVPTXABIInfo : public ABIInfo {
6303 public:
6304   NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
6305 
6306   ABIArgInfo classifyReturnType(QualType RetTy) const;
6307   ABIArgInfo classifyArgumentType(QualType Ty) const;
6308 
6309   void computeInfo(CGFunctionInfo &FI) const override;
6310   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6311                     QualType Ty) const override;
6312 };
6313 
6314 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo {
6315 public:
6316   NVPTXTargetCodeGenInfo(CodeGenTypes &CGT)
6317     : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {}
6318 
6319   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6320                            CodeGen::CodeGenModule &M) const override;
6321   bool shouldEmitStaticExternCAliases() const override;
6322 
6323 private:
6324   // Adds a NamedMDNode with F, Name, and Operand as operands, and adds the
6325   // resulting MDNode to the nvvm.annotations MDNode.
6326   static void addNVVMMetadata(llvm::Function *F, StringRef Name, int Operand);
6327 };
6328 
6329 /// Checks if the type is unsupported directly by the current target.
6330 static bool isUnsupportedType(ASTContext &Context, QualType T) {
6331   if (!Context.getTargetInfo().hasFloat16Type() && T->isFloat16Type())
6332     return true;
6333   if (!Context.getTargetInfo().hasFloat128Type() && T->isFloat128Type())
6334     return true;
6335   if (!Context.getTargetInfo().hasInt128Type() && T->isIntegerType() &&
6336       Context.getTypeSize(T) > 64)
6337     return true;
6338   if (const auto *AT = T->getAsArrayTypeUnsafe())
6339     return isUnsupportedType(Context, AT->getElementType());
6340   const auto *RT = T->getAs<RecordType>();
6341   if (!RT)
6342     return false;
6343   const RecordDecl *RD = RT->getDecl();
6344 
6345   // If this is a C++ record, check the bases first.
6346   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
6347     for (const CXXBaseSpecifier &I : CXXRD->bases())
6348       if (isUnsupportedType(Context, I.getType()))
6349         return true;
6350 
6351   for (const FieldDecl *I : RD->fields())
6352     if (isUnsupportedType(Context, I->getType()))
6353       return true;
6354   return false;
6355 }
6356 
6357 /// Coerce the given type into an array with maximum allowed size of elements.
6358 static ABIArgInfo coerceToIntArrayWithLimit(QualType Ty, ASTContext &Context,
6359                                             llvm::LLVMContext &LLVMContext,
6360                                             unsigned MaxSize) {
6361   // Alignment and Size are measured in bits.
6362   const uint64_t Size = Context.getTypeSize(Ty);
6363   const uint64_t Alignment = Context.getTypeAlign(Ty);
6364   const unsigned Div = std::min<unsigned>(MaxSize, Alignment);
6365   llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Div);
6366   const uint64_t NumElements = (Size + Div - 1) / Div;
6367   return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements));
6368 }
6369 
6370 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const {
6371   if (RetTy->isVoidType())
6372     return ABIArgInfo::getIgnore();
6373 
6374   if (getContext().getLangOpts().OpenMP &&
6375       getContext().getLangOpts().OpenMPIsDevice &&
6376       isUnsupportedType(getContext(), RetTy))
6377     return coerceToIntArrayWithLimit(RetTy, getContext(), getVMContext(), 64);
6378 
6379   // note: this is different from default ABI
6380   if (!RetTy->isScalarType())
6381     return ABIArgInfo::getDirect();
6382 
6383   // Treat an enum type as its underlying type.
6384   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
6385     RetTy = EnumTy->getDecl()->getIntegerType();
6386 
6387   return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
6388                                            : ABIArgInfo::getDirect());
6389 }
6390 
6391 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const {
6392   // Treat an enum type as its underlying type.
6393   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
6394     Ty = EnumTy->getDecl()->getIntegerType();
6395 
6396   // Return aggregates type as indirect by value
6397   if (isAggregateTypeForABI(Ty))
6398     return getNaturalAlignIndirect(Ty, /* byval */ true);
6399 
6400   return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
6401                                         : ABIArgInfo::getDirect());
6402 }
6403 
6404 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
6405   if (!getCXXABI().classifyReturnType(FI))
6406     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
6407   for (auto &I : FI.arguments())
6408     I.info = classifyArgumentType(I.type);
6409 
6410   // Always honor user-specified calling convention.
6411   if (FI.getCallingConvention() != llvm::CallingConv::C)
6412     return;
6413 
6414   FI.setEffectiveCallingConvention(getRuntimeCC());
6415 }
6416 
6417 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6418                                 QualType Ty) const {
6419   llvm_unreachable("NVPTX does not support varargs");
6420 }
6421 
6422 void NVPTXTargetCodeGenInfo::setTargetAttributes(
6423     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
6424   if (GV->isDeclaration())
6425     return;
6426   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
6427   if (!FD) return;
6428 
6429   llvm::Function *F = cast<llvm::Function>(GV);
6430 
6431   // Perform special handling in OpenCL mode
6432   if (M.getLangOpts().OpenCL) {
6433     // Use OpenCL function attributes to check for kernel functions
6434     // By default, all functions are device functions
6435     if (FD->hasAttr<OpenCLKernelAttr>()) {
6436       // OpenCL __kernel functions get kernel metadata
6437       // Create !{<func-ref>, metadata !"kernel", i32 1} node
6438       addNVVMMetadata(F, "kernel", 1);
6439       // And kernel functions are not subject to inlining
6440       F->addFnAttr(llvm::Attribute::NoInline);
6441     }
6442   }
6443 
6444   // Perform special handling in CUDA mode.
6445   if (M.getLangOpts().CUDA) {
6446     // CUDA __global__ functions get a kernel metadata entry.  Since
6447     // __global__ functions cannot be called from the device, we do not
6448     // need to set the noinline attribute.
6449     if (FD->hasAttr<CUDAGlobalAttr>()) {
6450       // Create !{<func-ref>, metadata !"kernel", i32 1} node
6451       addNVVMMetadata(F, "kernel", 1);
6452     }
6453     if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) {
6454       // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node
6455       llvm::APSInt MaxThreads(32);
6456       MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext());
6457       if (MaxThreads > 0)
6458         addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue());
6459 
6460       // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was
6461       // not specified in __launch_bounds__ or if the user specified a 0 value,
6462       // we don't have to add a PTX directive.
6463       if (Attr->getMinBlocks()) {
6464         llvm::APSInt MinBlocks(32);
6465         MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext());
6466         if (MinBlocks > 0)
6467           // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node
6468           addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue());
6469       }
6470     }
6471   }
6472 }
6473 
6474 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::Function *F, StringRef Name,
6475                                              int Operand) {
6476   llvm::Module *M = F->getParent();
6477   llvm::LLVMContext &Ctx = M->getContext();
6478 
6479   // Get "nvvm.annotations" metadata node
6480   llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations");
6481 
6482   llvm::Metadata *MDVals[] = {
6483       llvm::ConstantAsMetadata::get(F), llvm::MDString::get(Ctx, Name),
6484       llvm::ConstantAsMetadata::get(
6485           llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))};
6486   // Append metadata to nvvm.annotations
6487   MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
6488 }
6489 
6490 bool NVPTXTargetCodeGenInfo::shouldEmitStaticExternCAliases() const {
6491   return false;
6492 }
6493 }
6494 
6495 //===----------------------------------------------------------------------===//
6496 // SystemZ ABI Implementation
6497 //===----------------------------------------------------------------------===//
6498 
6499 namespace {
6500 
6501 class SystemZABIInfo : public SwiftABIInfo {
6502   bool HasVector;
6503 
6504 public:
6505   SystemZABIInfo(CodeGenTypes &CGT, bool HV)
6506     : SwiftABIInfo(CGT), HasVector(HV) {}
6507 
6508   bool isPromotableIntegerType(QualType Ty) const;
6509   bool isCompoundType(QualType Ty) const;
6510   bool isVectorArgumentType(QualType Ty) const;
6511   bool isFPArgumentType(QualType Ty) const;
6512   QualType GetSingleElementType(QualType Ty) const;
6513 
6514   ABIArgInfo classifyReturnType(QualType RetTy) const;
6515   ABIArgInfo classifyArgumentType(QualType ArgTy) const;
6516 
6517   void computeInfo(CGFunctionInfo &FI) const override {
6518     if (!getCXXABI().classifyReturnType(FI))
6519       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
6520     for (auto &I : FI.arguments())
6521       I.info = classifyArgumentType(I.type);
6522   }
6523 
6524   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6525                     QualType Ty) const override;
6526 
6527   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
6528                                     bool asReturnValue) const override {
6529     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
6530   }
6531   bool isSwiftErrorInRegister() const override {
6532     return false;
6533   }
6534 };
6535 
6536 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
6537 public:
6538   SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector)
6539     : TargetCodeGenInfo(new SystemZABIInfo(CGT, HasVector)) {}
6540 };
6541 
6542 }
6543 
6544 bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const {
6545   // Treat an enum type as its underlying type.
6546   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
6547     Ty = EnumTy->getDecl()->getIntegerType();
6548 
6549   // Promotable integer types are required to be promoted by the ABI.
6550   if (Ty->isPromotableIntegerType())
6551     return true;
6552 
6553   // 32-bit values must also be promoted.
6554   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
6555     switch (BT->getKind()) {
6556     case BuiltinType::Int:
6557     case BuiltinType::UInt:
6558       return true;
6559     default:
6560       return false;
6561     }
6562   return false;
6563 }
6564 
6565 bool SystemZABIInfo::isCompoundType(QualType Ty) const {
6566   return (Ty->isAnyComplexType() ||
6567           Ty->isVectorType() ||
6568           isAggregateTypeForABI(Ty));
6569 }
6570 
6571 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const {
6572   return (HasVector &&
6573           Ty->isVectorType() &&
6574           getContext().getTypeSize(Ty) <= 128);
6575 }
6576 
6577 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const {
6578   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
6579     switch (BT->getKind()) {
6580     case BuiltinType::Float:
6581     case BuiltinType::Double:
6582       return true;
6583     default:
6584       return false;
6585     }
6586 
6587   return false;
6588 }
6589 
6590 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const {
6591   if (const RecordType *RT = Ty->getAsStructureType()) {
6592     const RecordDecl *RD = RT->getDecl();
6593     QualType Found;
6594 
6595     // If this is a C++ record, check the bases first.
6596     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
6597       for (const auto &I : CXXRD->bases()) {
6598         QualType Base = I.getType();
6599 
6600         // Empty bases don't affect things either way.
6601         if (isEmptyRecord(getContext(), Base, true))
6602           continue;
6603 
6604         if (!Found.isNull())
6605           return Ty;
6606         Found = GetSingleElementType(Base);
6607       }
6608 
6609     // Check the fields.
6610     for (const auto *FD : RD->fields()) {
6611       // For compatibility with GCC, ignore empty bitfields in C++ mode.
6612       // Unlike isSingleElementStruct(), empty structure and array fields
6613       // do count.  So do anonymous bitfields that aren't zero-sized.
6614       if (getContext().getLangOpts().CPlusPlus &&
6615           FD->isZeroLengthBitField(getContext()))
6616         continue;
6617 
6618       // Unlike isSingleElementStruct(), arrays do not count.
6619       // Nested structures still do though.
6620       if (!Found.isNull())
6621         return Ty;
6622       Found = GetSingleElementType(FD->getType());
6623     }
6624 
6625     // Unlike isSingleElementStruct(), trailing padding is allowed.
6626     // An 8-byte aligned struct s { float f; } is passed as a double.
6627     if (!Found.isNull())
6628       return Found;
6629   }
6630 
6631   return Ty;
6632 }
6633 
6634 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6635                                   QualType Ty) const {
6636   // Assume that va_list type is correct; should be pointer to LLVM type:
6637   // struct {
6638   //   i64 __gpr;
6639   //   i64 __fpr;
6640   //   i8 *__overflow_arg_area;
6641   //   i8 *__reg_save_area;
6642   // };
6643 
6644   // Every non-vector argument occupies 8 bytes and is passed by preference
6645   // in either GPRs or FPRs.  Vector arguments occupy 8 or 16 bytes and are
6646   // always passed on the stack.
6647   Ty = getContext().getCanonicalType(Ty);
6648   auto TyInfo = getContext().getTypeInfoInChars(Ty);
6649   llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty);
6650   llvm::Type *DirectTy = ArgTy;
6651   ABIArgInfo AI = classifyArgumentType(Ty);
6652   bool IsIndirect = AI.isIndirect();
6653   bool InFPRs = false;
6654   bool IsVector = false;
6655   CharUnits UnpaddedSize;
6656   CharUnits DirectAlign;
6657   if (IsIndirect) {
6658     DirectTy = llvm::PointerType::getUnqual(DirectTy);
6659     UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8);
6660   } else {
6661     if (AI.getCoerceToType())
6662       ArgTy = AI.getCoerceToType();
6663     InFPRs = ArgTy->isFloatTy() || ArgTy->isDoubleTy();
6664     IsVector = ArgTy->isVectorTy();
6665     UnpaddedSize = TyInfo.first;
6666     DirectAlign = TyInfo.second;
6667   }
6668   CharUnits PaddedSize = CharUnits::fromQuantity(8);
6669   if (IsVector && UnpaddedSize > PaddedSize)
6670     PaddedSize = CharUnits::fromQuantity(16);
6671   assert((UnpaddedSize <= PaddedSize) && "Invalid argument size.");
6672 
6673   CharUnits Padding = (PaddedSize - UnpaddedSize);
6674 
6675   llvm::Type *IndexTy = CGF.Int64Ty;
6676   llvm::Value *PaddedSizeV =
6677     llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity());
6678 
6679   if (IsVector) {
6680     // Work out the address of a vector argument on the stack.
6681     // Vector arguments are always passed in the high bits of a
6682     // single (8 byte) or double (16 byte) stack slot.
6683     Address OverflowArgAreaPtr =
6684         CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr");
6685     Address OverflowArgArea =
6686       Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
6687               TyInfo.second);
6688     Address MemAddr =
6689       CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr");
6690 
6691     // Update overflow_arg_area_ptr pointer
6692     llvm::Value *NewOverflowArgArea =
6693       CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV,
6694                             "overflow_arg_area");
6695     CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
6696 
6697     return MemAddr;
6698   }
6699 
6700   assert(PaddedSize.getQuantity() == 8);
6701 
6702   unsigned MaxRegs, RegCountField, RegSaveIndex;
6703   CharUnits RegPadding;
6704   if (InFPRs) {
6705     MaxRegs = 4; // Maximum of 4 FPR arguments
6706     RegCountField = 1; // __fpr
6707     RegSaveIndex = 16; // save offset for f0
6708     RegPadding = CharUnits(); // floats are passed in the high bits of an FPR
6709   } else {
6710     MaxRegs = 5; // Maximum of 5 GPR arguments
6711     RegCountField = 0; // __gpr
6712     RegSaveIndex = 2; // save offset for r2
6713     RegPadding = Padding; // values are passed in the low bits of a GPR
6714   }
6715 
6716   Address RegCountPtr =
6717       CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr");
6718   llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count");
6719   llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs);
6720   llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV,
6721                                                  "fits_in_regs");
6722 
6723   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
6724   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
6725   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
6726   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
6727 
6728   // Emit code to load the value if it was passed in registers.
6729   CGF.EmitBlock(InRegBlock);
6730 
6731   // Work out the address of an argument register.
6732   llvm::Value *ScaledRegCount =
6733     CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count");
6734   llvm::Value *RegBase =
6735     llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity()
6736                                       + RegPadding.getQuantity());
6737   llvm::Value *RegOffset =
6738     CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset");
6739   Address RegSaveAreaPtr =
6740       CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr");
6741   llvm::Value *RegSaveArea =
6742     CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area");
6743   Address RawRegAddr(CGF.Builder.CreateGEP(RegSaveArea, RegOffset,
6744                                            "raw_reg_addr"),
6745                      PaddedSize);
6746   Address RegAddr =
6747     CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr");
6748 
6749   // Update the register count
6750   llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1);
6751   llvm::Value *NewRegCount =
6752     CGF.Builder.CreateAdd(RegCount, One, "reg_count");
6753   CGF.Builder.CreateStore(NewRegCount, RegCountPtr);
6754   CGF.EmitBranch(ContBlock);
6755 
6756   // Emit code to load the value if it was passed in memory.
6757   CGF.EmitBlock(InMemBlock);
6758 
6759   // Work out the address of a stack argument.
6760   Address OverflowArgAreaPtr =
6761       CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr");
6762   Address OverflowArgArea =
6763     Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
6764             PaddedSize);
6765   Address RawMemAddr =
6766     CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr");
6767   Address MemAddr =
6768     CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr");
6769 
6770   // Update overflow_arg_area_ptr pointer
6771   llvm::Value *NewOverflowArgArea =
6772     CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV,
6773                           "overflow_arg_area");
6774   CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
6775   CGF.EmitBranch(ContBlock);
6776 
6777   // Return the appropriate result.
6778   CGF.EmitBlock(ContBlock);
6779   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
6780                                  MemAddr, InMemBlock, "va_arg.addr");
6781 
6782   if (IsIndirect)
6783     ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"),
6784                       TyInfo.second);
6785 
6786   return ResAddr;
6787 }
6788 
6789 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const {
6790   if (RetTy->isVoidType())
6791     return ABIArgInfo::getIgnore();
6792   if (isVectorArgumentType(RetTy))
6793     return ABIArgInfo::getDirect();
6794   if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64)
6795     return getNaturalAlignIndirect(RetTy);
6796   return (isPromotableIntegerType(RetTy) ? ABIArgInfo::getExtend(RetTy)
6797                                          : ABIArgInfo::getDirect());
6798 }
6799 
6800 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const {
6801   // Handle the generic C++ ABI.
6802   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
6803     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
6804 
6805   // Integers and enums are extended to full register width.
6806   if (isPromotableIntegerType(Ty))
6807     return ABIArgInfo::getExtend(Ty);
6808 
6809   // Handle vector types and vector-like structure types.  Note that
6810   // as opposed to float-like structure types, we do not allow any
6811   // padding for vector-like structures, so verify the sizes match.
6812   uint64_t Size = getContext().getTypeSize(Ty);
6813   QualType SingleElementTy = GetSingleElementType(Ty);
6814   if (isVectorArgumentType(SingleElementTy) &&
6815       getContext().getTypeSize(SingleElementTy) == Size)
6816     return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy));
6817 
6818   // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly.
6819   if (Size != 8 && Size != 16 && Size != 32 && Size != 64)
6820     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
6821 
6822   // Handle small structures.
6823   if (const RecordType *RT = Ty->getAs<RecordType>()) {
6824     // Structures with flexible arrays have variable length, so really
6825     // fail the size test above.
6826     const RecordDecl *RD = RT->getDecl();
6827     if (RD->hasFlexibleArrayMember())
6828       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
6829 
6830     // The structure is passed as an unextended integer, a float, or a double.
6831     llvm::Type *PassTy;
6832     if (isFPArgumentType(SingleElementTy)) {
6833       assert(Size == 32 || Size == 64);
6834       if (Size == 32)
6835         PassTy = llvm::Type::getFloatTy(getVMContext());
6836       else
6837         PassTy = llvm::Type::getDoubleTy(getVMContext());
6838     } else
6839       PassTy = llvm::IntegerType::get(getVMContext(), Size);
6840     return ABIArgInfo::getDirect(PassTy);
6841   }
6842 
6843   // Non-structure compounds are passed indirectly.
6844   if (isCompoundType(Ty))
6845     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
6846 
6847   return ABIArgInfo::getDirect(nullptr);
6848 }
6849 
6850 //===----------------------------------------------------------------------===//
6851 // MSP430 ABI Implementation
6852 //===----------------------------------------------------------------------===//
6853 
6854 namespace {
6855 
6856 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
6857 public:
6858   MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
6859     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
6860   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6861                            CodeGen::CodeGenModule &M) const override;
6862 };
6863 
6864 }
6865 
6866 void MSP430TargetCodeGenInfo::setTargetAttributes(
6867     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
6868   if (GV->isDeclaration())
6869     return;
6870   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
6871     const auto *InterruptAttr = FD->getAttr<MSP430InterruptAttr>();
6872     if (!InterruptAttr)
6873       return;
6874 
6875     // Handle 'interrupt' attribute:
6876     llvm::Function *F = cast<llvm::Function>(GV);
6877 
6878     // Step 1: Set ISR calling convention.
6879     F->setCallingConv(llvm::CallingConv::MSP430_INTR);
6880 
6881     // Step 2: Add attributes goodness.
6882     F->addFnAttr(llvm::Attribute::NoInline);
6883     F->addFnAttr("interrupt", llvm::utostr(InterruptAttr->getNumber()));
6884   }
6885 }
6886 
6887 //===----------------------------------------------------------------------===//
6888 // MIPS ABI Implementation.  This works for both little-endian and
6889 // big-endian variants.
6890 //===----------------------------------------------------------------------===//
6891 
6892 namespace {
6893 class MipsABIInfo : public ABIInfo {
6894   bool IsO32;
6895   unsigned MinABIStackAlignInBytes, StackAlignInBytes;
6896   void CoerceToIntArgs(uint64_t TySize,
6897                        SmallVectorImpl<llvm::Type *> &ArgList) const;
6898   llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const;
6899   llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const;
6900   llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const;
6901 public:
6902   MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) :
6903     ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8),
6904     StackAlignInBytes(IsO32 ? 8 : 16) {}
6905 
6906   ABIArgInfo classifyReturnType(QualType RetTy) const;
6907   ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const;
6908   void computeInfo(CGFunctionInfo &FI) const override;
6909   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6910                     QualType Ty) const override;
6911   ABIArgInfo extendType(QualType Ty) const;
6912 };
6913 
6914 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
6915   unsigned SizeOfUnwindException;
6916 public:
6917   MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32)
6918     : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)),
6919       SizeOfUnwindException(IsO32 ? 24 : 32) {}
6920 
6921   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
6922     return 29;
6923   }
6924 
6925   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6926                            CodeGen::CodeGenModule &CGM) const override {
6927     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
6928     if (!FD) return;
6929     llvm::Function *Fn = cast<llvm::Function>(GV);
6930 
6931     if (FD->hasAttr<MipsLongCallAttr>())
6932       Fn->addFnAttr("long-call");
6933     else if (FD->hasAttr<MipsShortCallAttr>())
6934       Fn->addFnAttr("short-call");
6935 
6936     // Other attributes do not have a meaning for declarations.
6937     if (GV->isDeclaration())
6938       return;
6939 
6940     if (FD->hasAttr<Mips16Attr>()) {
6941       Fn->addFnAttr("mips16");
6942     }
6943     else if (FD->hasAttr<NoMips16Attr>()) {
6944       Fn->addFnAttr("nomips16");
6945     }
6946 
6947     if (FD->hasAttr<MicroMipsAttr>())
6948       Fn->addFnAttr("micromips");
6949     else if (FD->hasAttr<NoMicroMipsAttr>())
6950       Fn->addFnAttr("nomicromips");
6951 
6952     const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>();
6953     if (!Attr)
6954       return;
6955 
6956     const char *Kind;
6957     switch (Attr->getInterrupt()) {
6958     case MipsInterruptAttr::eic:     Kind = "eic"; break;
6959     case MipsInterruptAttr::sw0:     Kind = "sw0"; break;
6960     case MipsInterruptAttr::sw1:     Kind = "sw1"; break;
6961     case MipsInterruptAttr::hw0:     Kind = "hw0"; break;
6962     case MipsInterruptAttr::hw1:     Kind = "hw1"; break;
6963     case MipsInterruptAttr::hw2:     Kind = "hw2"; break;
6964     case MipsInterruptAttr::hw3:     Kind = "hw3"; break;
6965     case MipsInterruptAttr::hw4:     Kind = "hw4"; break;
6966     case MipsInterruptAttr::hw5:     Kind = "hw5"; break;
6967     }
6968 
6969     Fn->addFnAttr("interrupt", Kind);
6970 
6971   }
6972 
6973   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
6974                                llvm::Value *Address) const override;
6975 
6976   unsigned getSizeOfUnwindException() const override {
6977     return SizeOfUnwindException;
6978   }
6979 };
6980 }
6981 
6982 void MipsABIInfo::CoerceToIntArgs(
6983     uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const {
6984   llvm::IntegerType *IntTy =
6985     llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
6986 
6987   // Add (TySize / MinABIStackAlignInBytes) args of IntTy.
6988   for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N)
6989     ArgList.push_back(IntTy);
6990 
6991   // If necessary, add one more integer type to ArgList.
6992   unsigned R = TySize % (MinABIStackAlignInBytes * 8);
6993 
6994   if (R)
6995     ArgList.push_back(llvm::IntegerType::get(getVMContext(), R));
6996 }
6997 
6998 // In N32/64, an aligned double precision floating point field is passed in
6999 // a register.
7000 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const {
7001   SmallVector<llvm::Type*, 8> ArgList, IntArgList;
7002 
7003   if (IsO32) {
7004     CoerceToIntArgs(TySize, ArgList);
7005     return llvm::StructType::get(getVMContext(), ArgList);
7006   }
7007 
7008   if (Ty->isComplexType())
7009     return CGT.ConvertType(Ty);
7010 
7011   const RecordType *RT = Ty->getAs<RecordType>();
7012 
7013   // Unions/vectors are passed in integer registers.
7014   if (!RT || !RT->isStructureOrClassType()) {
7015     CoerceToIntArgs(TySize, ArgList);
7016     return llvm::StructType::get(getVMContext(), ArgList);
7017   }
7018 
7019   const RecordDecl *RD = RT->getDecl();
7020   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
7021   assert(!(TySize % 8) && "Size of structure must be multiple of 8.");
7022 
7023   uint64_t LastOffset = 0;
7024   unsigned idx = 0;
7025   llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64);
7026 
7027   // Iterate over fields in the struct/class and check if there are any aligned
7028   // double fields.
7029   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
7030        i != e; ++i, ++idx) {
7031     const QualType Ty = i->getType();
7032     const BuiltinType *BT = Ty->getAs<BuiltinType>();
7033 
7034     if (!BT || BT->getKind() != BuiltinType::Double)
7035       continue;
7036 
7037     uint64_t Offset = Layout.getFieldOffset(idx);
7038     if (Offset % 64) // Ignore doubles that are not aligned.
7039       continue;
7040 
7041     // Add ((Offset - LastOffset) / 64) args of type i64.
7042     for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j)
7043       ArgList.push_back(I64);
7044 
7045     // Add double type.
7046     ArgList.push_back(llvm::Type::getDoubleTy(getVMContext()));
7047     LastOffset = Offset + 64;
7048   }
7049 
7050   CoerceToIntArgs(TySize - LastOffset, IntArgList);
7051   ArgList.append(IntArgList.begin(), IntArgList.end());
7052 
7053   return llvm::StructType::get(getVMContext(), ArgList);
7054 }
7055 
7056 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset,
7057                                         uint64_t Offset) const {
7058   if (OrigOffset + MinABIStackAlignInBytes > Offset)
7059     return nullptr;
7060 
7061   return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8);
7062 }
7063 
7064 ABIArgInfo
7065 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const {
7066   Ty = useFirstFieldIfTransparentUnion(Ty);
7067 
7068   uint64_t OrigOffset = Offset;
7069   uint64_t TySize = getContext().getTypeSize(Ty);
7070   uint64_t Align = getContext().getTypeAlign(Ty) / 8;
7071 
7072   Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes),
7073                    (uint64_t)StackAlignInBytes);
7074   unsigned CurrOffset = llvm::alignTo(Offset, Align);
7075   Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8;
7076 
7077   if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) {
7078     // Ignore empty aggregates.
7079     if (TySize == 0)
7080       return ABIArgInfo::getIgnore();
7081 
7082     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
7083       Offset = OrigOffset + MinABIStackAlignInBytes;
7084       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
7085     }
7086 
7087     // If we have reached here, aggregates are passed directly by coercing to
7088     // another structure type. Padding is inserted if the offset of the
7089     // aggregate is unaligned.
7090     ABIArgInfo ArgInfo =
7091         ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0,
7092                               getPaddingType(OrigOffset, CurrOffset));
7093     ArgInfo.setInReg(true);
7094     return ArgInfo;
7095   }
7096 
7097   // Treat an enum type as its underlying type.
7098   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
7099     Ty = EnumTy->getDecl()->getIntegerType();
7100 
7101   // All integral types are promoted to the GPR width.
7102   if (Ty->isIntegralOrEnumerationType())
7103     return extendType(Ty);
7104 
7105   return ABIArgInfo::getDirect(
7106       nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset));
7107 }
7108 
7109 llvm::Type*
7110 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const {
7111   const RecordType *RT = RetTy->getAs<RecordType>();
7112   SmallVector<llvm::Type*, 8> RTList;
7113 
7114   if (RT && RT->isStructureOrClassType()) {
7115     const RecordDecl *RD = RT->getDecl();
7116     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
7117     unsigned FieldCnt = Layout.getFieldCount();
7118 
7119     // N32/64 returns struct/classes in floating point registers if the
7120     // following conditions are met:
7121     // 1. The size of the struct/class is no larger than 128-bit.
7122     // 2. The struct/class has one or two fields all of which are floating
7123     //    point types.
7124     // 3. The offset of the first field is zero (this follows what gcc does).
7125     //
7126     // Any other composite results are returned in integer registers.
7127     //
7128     if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) {
7129       RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end();
7130       for (; b != e; ++b) {
7131         const BuiltinType *BT = b->getType()->getAs<BuiltinType>();
7132 
7133         if (!BT || !BT->isFloatingPoint())
7134           break;
7135 
7136         RTList.push_back(CGT.ConvertType(b->getType()));
7137       }
7138 
7139       if (b == e)
7140         return llvm::StructType::get(getVMContext(), RTList,
7141                                      RD->hasAttr<PackedAttr>());
7142 
7143       RTList.clear();
7144     }
7145   }
7146 
7147   CoerceToIntArgs(Size, RTList);
7148   return llvm::StructType::get(getVMContext(), RTList);
7149 }
7150 
7151 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
7152   uint64_t Size = getContext().getTypeSize(RetTy);
7153 
7154   if (RetTy->isVoidType())
7155     return ABIArgInfo::getIgnore();
7156 
7157   // O32 doesn't treat zero-sized structs differently from other structs.
7158   // However, N32/N64 ignores zero sized return values.
7159   if (!IsO32 && Size == 0)
7160     return ABIArgInfo::getIgnore();
7161 
7162   if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) {
7163     if (Size <= 128) {
7164       if (RetTy->isAnyComplexType())
7165         return ABIArgInfo::getDirect();
7166 
7167       // O32 returns integer vectors in registers and N32/N64 returns all small
7168       // aggregates in registers.
7169       if (!IsO32 ||
7170           (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) {
7171         ABIArgInfo ArgInfo =
7172             ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
7173         ArgInfo.setInReg(true);
7174         return ArgInfo;
7175       }
7176     }
7177 
7178     return getNaturalAlignIndirect(RetTy);
7179   }
7180 
7181   // Treat an enum type as its underlying type.
7182   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
7183     RetTy = EnumTy->getDecl()->getIntegerType();
7184 
7185   if (RetTy->isPromotableIntegerType())
7186     return ABIArgInfo::getExtend(RetTy);
7187 
7188   if ((RetTy->isUnsignedIntegerOrEnumerationType() ||
7189       RetTy->isSignedIntegerOrEnumerationType()) && Size == 32 && !IsO32)
7190     return ABIArgInfo::getSignExtend(RetTy);
7191 
7192   return ABIArgInfo::getDirect();
7193 }
7194 
7195 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
7196   ABIArgInfo &RetInfo = FI.getReturnInfo();
7197   if (!getCXXABI().classifyReturnType(FI))
7198     RetInfo = classifyReturnType(FI.getReturnType());
7199 
7200   // Check if a pointer to an aggregate is passed as a hidden argument.
7201   uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0;
7202 
7203   for (auto &I : FI.arguments())
7204     I.info = classifyArgumentType(I.type, Offset);
7205 }
7206 
7207 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7208                                QualType OrigTy) const {
7209   QualType Ty = OrigTy;
7210 
7211   // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64.
7212   // Pointers are also promoted in the same way but this only matters for N32.
7213   unsigned SlotSizeInBits = IsO32 ? 32 : 64;
7214   unsigned PtrWidth = getTarget().getPointerWidth(0);
7215   bool DidPromote = false;
7216   if ((Ty->isIntegerType() &&
7217           getContext().getIntWidth(Ty) < SlotSizeInBits) ||
7218       (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) {
7219     DidPromote = true;
7220     Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits,
7221                                             Ty->isSignedIntegerType());
7222   }
7223 
7224   auto TyInfo = getContext().getTypeInfoInChars(Ty);
7225 
7226   // The alignment of things in the argument area is never larger than
7227   // StackAlignInBytes.
7228   TyInfo.second =
7229     std::min(TyInfo.second, CharUnits::fromQuantity(StackAlignInBytes));
7230 
7231   // MinABIStackAlignInBytes is the size of argument slots on the stack.
7232   CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes);
7233 
7234   Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
7235                           TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true);
7236 
7237 
7238   // If there was a promotion, "unpromote" into a temporary.
7239   // TODO: can we just use a pointer into a subset of the original slot?
7240   if (DidPromote) {
7241     Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp");
7242     llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr);
7243 
7244     // Truncate down to the right width.
7245     llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType()
7246                                                  : CGF.IntPtrTy);
7247     llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy);
7248     if (OrigTy->isPointerType())
7249       V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType());
7250 
7251     CGF.Builder.CreateStore(V, Temp);
7252     Addr = Temp;
7253   }
7254 
7255   return Addr;
7256 }
7257 
7258 ABIArgInfo MipsABIInfo::extendType(QualType Ty) const {
7259   int TySize = getContext().getTypeSize(Ty);
7260 
7261   // MIPS64 ABI requires unsigned 32 bit integers to be sign extended.
7262   if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
7263     return ABIArgInfo::getSignExtend(Ty);
7264 
7265   return ABIArgInfo::getExtend(Ty);
7266 }
7267 
7268 bool
7269 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
7270                                                llvm::Value *Address) const {
7271   // This information comes from gcc's implementation, which seems to
7272   // as canonical as it gets.
7273 
7274   // Everything on MIPS is 4 bytes.  Double-precision FP registers
7275   // are aliased to pairs of single-precision FP registers.
7276   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
7277 
7278   // 0-31 are the general purpose registers, $0 - $31.
7279   // 32-63 are the floating-point registers, $f0 - $f31.
7280   // 64 and 65 are the multiply/divide registers, $hi and $lo.
7281   // 66 is the (notional, I think) register for signal-handler return.
7282   AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65);
7283 
7284   // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
7285   // They are one bit wide and ignored here.
7286 
7287   // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
7288   // (coprocessor 1 is the FP unit)
7289   // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
7290   // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
7291   // 176-181 are the DSP accumulator registers.
7292   AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181);
7293   return false;
7294 }
7295 
7296 //===----------------------------------------------------------------------===//
7297 // AVR ABI Implementation.
7298 //===----------------------------------------------------------------------===//
7299 
7300 namespace {
7301 class AVRTargetCodeGenInfo : public TargetCodeGenInfo {
7302 public:
7303   AVRTargetCodeGenInfo(CodeGenTypes &CGT)
7304     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) { }
7305 
7306   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7307                            CodeGen::CodeGenModule &CGM) const override {
7308     if (GV->isDeclaration())
7309       return;
7310     const auto *FD = dyn_cast_or_null<FunctionDecl>(D);
7311     if (!FD) return;
7312     auto *Fn = cast<llvm::Function>(GV);
7313 
7314     if (FD->getAttr<AVRInterruptAttr>())
7315       Fn->addFnAttr("interrupt");
7316 
7317     if (FD->getAttr<AVRSignalAttr>())
7318       Fn->addFnAttr("signal");
7319   }
7320 };
7321 }
7322 
7323 //===----------------------------------------------------------------------===//
7324 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults.
7325 // Currently subclassed only to implement custom OpenCL C function attribute
7326 // handling.
7327 //===----------------------------------------------------------------------===//
7328 
7329 namespace {
7330 
7331 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo {
7332 public:
7333   TCETargetCodeGenInfo(CodeGenTypes &CGT)
7334     : DefaultTargetCodeGenInfo(CGT) {}
7335 
7336   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7337                            CodeGen::CodeGenModule &M) const override;
7338 };
7339 
7340 void TCETargetCodeGenInfo::setTargetAttributes(
7341     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
7342   if (GV->isDeclaration())
7343     return;
7344   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
7345   if (!FD) return;
7346 
7347   llvm::Function *F = cast<llvm::Function>(GV);
7348 
7349   if (M.getLangOpts().OpenCL) {
7350     if (FD->hasAttr<OpenCLKernelAttr>()) {
7351       // OpenCL C Kernel functions are not subject to inlining
7352       F->addFnAttr(llvm::Attribute::NoInline);
7353       const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>();
7354       if (Attr) {
7355         // Convert the reqd_work_group_size() attributes to metadata.
7356         llvm::LLVMContext &Context = F->getContext();
7357         llvm::NamedMDNode *OpenCLMetadata =
7358             M.getModule().getOrInsertNamedMetadata(
7359                 "opencl.kernel_wg_size_info");
7360 
7361         SmallVector<llvm::Metadata *, 5> Operands;
7362         Operands.push_back(llvm::ConstantAsMetadata::get(F));
7363 
7364         Operands.push_back(
7365             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
7366                 M.Int32Ty, llvm::APInt(32, Attr->getXDim()))));
7367         Operands.push_back(
7368             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
7369                 M.Int32Ty, llvm::APInt(32, Attr->getYDim()))));
7370         Operands.push_back(
7371             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
7372                 M.Int32Ty, llvm::APInt(32, Attr->getZDim()))));
7373 
7374         // Add a boolean constant operand for "required" (true) or "hint"
7375         // (false) for implementing the work_group_size_hint attr later.
7376         // Currently always true as the hint is not yet implemented.
7377         Operands.push_back(
7378             llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context)));
7379         OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands));
7380       }
7381     }
7382   }
7383 }
7384 
7385 }
7386 
7387 //===----------------------------------------------------------------------===//
7388 // Hexagon ABI Implementation
7389 //===----------------------------------------------------------------------===//
7390 
7391 namespace {
7392 
7393 class HexagonABIInfo : public ABIInfo {
7394 
7395 
7396 public:
7397   HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
7398 
7399 private:
7400 
7401   ABIArgInfo classifyReturnType(QualType RetTy) const;
7402   ABIArgInfo classifyArgumentType(QualType RetTy) const;
7403 
7404   void computeInfo(CGFunctionInfo &FI) const override;
7405 
7406   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7407                     QualType Ty) const override;
7408 };
7409 
7410 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo {
7411 public:
7412   HexagonTargetCodeGenInfo(CodeGenTypes &CGT)
7413     :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {}
7414 
7415   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
7416     return 29;
7417   }
7418 };
7419 
7420 }
7421 
7422 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const {
7423   if (!getCXXABI().classifyReturnType(FI))
7424     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7425   for (auto &I : FI.arguments())
7426     I.info = classifyArgumentType(I.type);
7427 }
7428 
7429 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const {
7430   if (!isAggregateTypeForABI(Ty)) {
7431     // Treat an enum type as its underlying type.
7432     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
7433       Ty = EnumTy->getDecl()->getIntegerType();
7434 
7435     return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
7436                                           : ABIArgInfo::getDirect());
7437   }
7438 
7439   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
7440     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
7441 
7442   // Ignore empty records.
7443   if (isEmptyRecord(getContext(), Ty, true))
7444     return ABIArgInfo::getIgnore();
7445 
7446   uint64_t Size = getContext().getTypeSize(Ty);
7447   if (Size > 64)
7448     return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
7449     // Pass in the smallest viable integer type.
7450   else if (Size > 32)
7451       return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
7452   else if (Size > 16)
7453       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
7454   else if (Size > 8)
7455       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
7456   else
7457       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
7458 }
7459 
7460 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const {
7461   if (RetTy->isVoidType())
7462     return ABIArgInfo::getIgnore();
7463 
7464   // Large vector types should be returned via memory.
7465   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64)
7466     return getNaturalAlignIndirect(RetTy);
7467 
7468   if (!isAggregateTypeForABI(RetTy)) {
7469     // Treat an enum type as its underlying type.
7470     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
7471       RetTy = EnumTy->getDecl()->getIntegerType();
7472 
7473     return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
7474                                              : ABIArgInfo::getDirect());
7475   }
7476 
7477   if (isEmptyRecord(getContext(), RetTy, true))
7478     return ABIArgInfo::getIgnore();
7479 
7480   // Aggregates <= 8 bytes are returned in r0; other aggregates
7481   // are returned indirectly.
7482   uint64_t Size = getContext().getTypeSize(RetTy);
7483   if (Size <= 64) {
7484     // Return in the smallest viable integer type.
7485     if (Size <= 8)
7486       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
7487     if (Size <= 16)
7488       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
7489     if (Size <= 32)
7490       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
7491     return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
7492   }
7493 
7494   return getNaturalAlignIndirect(RetTy, /*ByVal=*/true);
7495 }
7496 
7497 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7498                                   QualType Ty) const {
7499   // FIXME: Someone needs to audit that this handle alignment correctly.
7500   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
7501                           getContext().getTypeInfoInChars(Ty),
7502                           CharUnits::fromQuantity(4),
7503                           /*AllowHigherAlign*/ true);
7504 }
7505 
7506 //===----------------------------------------------------------------------===//
7507 // Lanai ABI Implementation
7508 //===----------------------------------------------------------------------===//
7509 
7510 namespace {
7511 class LanaiABIInfo : public DefaultABIInfo {
7512 public:
7513   LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
7514 
7515   bool shouldUseInReg(QualType Ty, CCState &State) const;
7516 
7517   void computeInfo(CGFunctionInfo &FI) const override {
7518     CCState State(FI.getCallingConvention());
7519     // Lanai uses 4 registers to pass arguments unless the function has the
7520     // regparm attribute set.
7521     if (FI.getHasRegParm()) {
7522       State.FreeRegs = FI.getRegParm();
7523     } else {
7524       State.FreeRegs = 4;
7525     }
7526 
7527     if (!getCXXABI().classifyReturnType(FI))
7528       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7529     for (auto &I : FI.arguments())
7530       I.info = classifyArgumentType(I.type, State);
7531   }
7532 
7533   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
7534   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
7535 };
7536 } // end anonymous namespace
7537 
7538 bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const {
7539   unsigned Size = getContext().getTypeSize(Ty);
7540   unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U;
7541 
7542   if (SizeInRegs == 0)
7543     return false;
7544 
7545   if (SizeInRegs > State.FreeRegs) {
7546     State.FreeRegs = 0;
7547     return false;
7548   }
7549 
7550   State.FreeRegs -= SizeInRegs;
7551 
7552   return true;
7553 }
7554 
7555 ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal,
7556                                            CCState &State) const {
7557   if (!ByVal) {
7558     if (State.FreeRegs) {
7559       --State.FreeRegs; // Non-byval indirects just use one pointer.
7560       return getNaturalAlignIndirectInReg(Ty);
7561     }
7562     return getNaturalAlignIndirect(Ty, false);
7563   }
7564 
7565   // Compute the byval alignment.
7566   const unsigned MinABIStackAlignInBytes = 4;
7567   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
7568   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true,
7569                                  /*Realign=*/TypeAlign >
7570                                      MinABIStackAlignInBytes);
7571 }
7572 
7573 ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty,
7574                                               CCState &State) const {
7575   // Check with the C++ ABI first.
7576   const RecordType *RT = Ty->getAs<RecordType>();
7577   if (RT) {
7578     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
7579     if (RAA == CGCXXABI::RAA_Indirect) {
7580       return getIndirectResult(Ty, /*ByVal=*/false, State);
7581     } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
7582       return getNaturalAlignIndirect(Ty, /*ByRef=*/true);
7583     }
7584   }
7585 
7586   if (isAggregateTypeForABI(Ty)) {
7587     // Structures with flexible arrays are always indirect.
7588     if (RT && RT->getDecl()->hasFlexibleArrayMember())
7589       return getIndirectResult(Ty, /*ByVal=*/true, State);
7590 
7591     // Ignore empty structs/unions.
7592     if (isEmptyRecord(getContext(), Ty, true))
7593       return ABIArgInfo::getIgnore();
7594 
7595     llvm::LLVMContext &LLVMContext = getVMContext();
7596     unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
7597     if (SizeInRegs <= State.FreeRegs) {
7598       llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
7599       SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32);
7600       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
7601       State.FreeRegs -= SizeInRegs;
7602       return ABIArgInfo::getDirectInReg(Result);
7603     } else {
7604       State.FreeRegs = 0;
7605     }
7606     return getIndirectResult(Ty, true, State);
7607   }
7608 
7609   // Treat an enum type as its underlying type.
7610   if (const auto *EnumTy = Ty->getAs<EnumType>())
7611     Ty = EnumTy->getDecl()->getIntegerType();
7612 
7613   bool InReg = shouldUseInReg(Ty, State);
7614   if (Ty->isPromotableIntegerType()) {
7615     if (InReg)
7616       return ABIArgInfo::getDirectInReg();
7617     return ABIArgInfo::getExtend(Ty);
7618   }
7619   if (InReg)
7620     return ABIArgInfo::getDirectInReg();
7621   return ABIArgInfo::getDirect();
7622 }
7623 
7624 namespace {
7625 class LanaiTargetCodeGenInfo : public TargetCodeGenInfo {
7626 public:
7627   LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
7628       : TargetCodeGenInfo(new LanaiABIInfo(CGT)) {}
7629 };
7630 }
7631 
7632 //===----------------------------------------------------------------------===//
7633 // AMDGPU ABI Implementation
7634 //===----------------------------------------------------------------------===//
7635 
7636 namespace {
7637 
7638 class AMDGPUABIInfo final : public DefaultABIInfo {
7639 private:
7640   static const unsigned MaxNumRegsForArgsRet = 16;
7641 
7642   unsigned numRegsForType(QualType Ty) const;
7643 
7644   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
7645   bool isHomogeneousAggregateSmallEnough(const Type *Base,
7646                                          uint64_t Members) const override;
7647 
7648 public:
7649   explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) :
7650     DefaultABIInfo(CGT) {}
7651 
7652   ABIArgInfo classifyReturnType(QualType RetTy) const;
7653   ABIArgInfo classifyKernelArgumentType(QualType Ty) const;
7654   ABIArgInfo classifyArgumentType(QualType Ty, unsigned &NumRegsLeft) const;
7655 
7656   void computeInfo(CGFunctionInfo &FI) const override;
7657 };
7658 
7659 bool AMDGPUABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
7660   return true;
7661 }
7662 
7663 bool AMDGPUABIInfo::isHomogeneousAggregateSmallEnough(
7664   const Type *Base, uint64_t Members) const {
7665   uint32_t NumRegs = (getContext().getTypeSize(Base) + 31) / 32;
7666 
7667   // Homogeneous Aggregates may occupy at most 16 registers.
7668   return Members * NumRegs <= MaxNumRegsForArgsRet;
7669 }
7670 
7671 /// Estimate number of registers the type will use when passed in registers.
7672 unsigned AMDGPUABIInfo::numRegsForType(QualType Ty) const {
7673   unsigned NumRegs = 0;
7674 
7675   if (const VectorType *VT = Ty->getAs<VectorType>()) {
7676     // Compute from the number of elements. The reported size is based on the
7677     // in-memory size, which includes the padding 4th element for 3-vectors.
7678     QualType EltTy = VT->getElementType();
7679     unsigned EltSize = getContext().getTypeSize(EltTy);
7680 
7681     // 16-bit element vectors should be passed as packed.
7682     if (EltSize == 16)
7683       return (VT->getNumElements() + 1) / 2;
7684 
7685     unsigned EltNumRegs = (EltSize + 31) / 32;
7686     return EltNumRegs * VT->getNumElements();
7687   }
7688 
7689   if (const RecordType *RT = Ty->getAs<RecordType>()) {
7690     const RecordDecl *RD = RT->getDecl();
7691     assert(!RD->hasFlexibleArrayMember());
7692 
7693     for (const FieldDecl *Field : RD->fields()) {
7694       QualType FieldTy = Field->getType();
7695       NumRegs += numRegsForType(FieldTy);
7696     }
7697 
7698     return NumRegs;
7699   }
7700 
7701   return (getContext().getTypeSize(Ty) + 31) / 32;
7702 }
7703 
7704 void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const {
7705   llvm::CallingConv::ID CC = FI.getCallingConvention();
7706 
7707   if (!getCXXABI().classifyReturnType(FI))
7708     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7709 
7710   unsigned NumRegsLeft = MaxNumRegsForArgsRet;
7711   for (auto &Arg : FI.arguments()) {
7712     if (CC == llvm::CallingConv::AMDGPU_KERNEL) {
7713       Arg.info = classifyKernelArgumentType(Arg.type);
7714     } else {
7715       Arg.info = classifyArgumentType(Arg.type, NumRegsLeft);
7716     }
7717   }
7718 }
7719 
7720 ABIArgInfo AMDGPUABIInfo::classifyReturnType(QualType RetTy) const {
7721   if (isAggregateTypeForABI(RetTy)) {
7722     // Records with non-trivial destructors/copy-constructors should not be
7723     // returned by value.
7724     if (!getRecordArgABI(RetTy, getCXXABI())) {
7725       // Ignore empty structs/unions.
7726       if (isEmptyRecord(getContext(), RetTy, true))
7727         return ABIArgInfo::getIgnore();
7728 
7729       // Lower single-element structs to just return a regular value.
7730       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
7731         return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
7732 
7733       if (const RecordType *RT = RetTy->getAs<RecordType>()) {
7734         const RecordDecl *RD = RT->getDecl();
7735         if (RD->hasFlexibleArrayMember())
7736           return DefaultABIInfo::classifyReturnType(RetTy);
7737       }
7738 
7739       // Pack aggregates <= 4 bytes into single VGPR or pair.
7740       uint64_t Size = getContext().getTypeSize(RetTy);
7741       if (Size <= 16)
7742         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
7743 
7744       if (Size <= 32)
7745         return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
7746 
7747       if (Size <= 64) {
7748         llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext());
7749         return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2));
7750       }
7751 
7752       if (numRegsForType(RetTy) <= MaxNumRegsForArgsRet)
7753         return ABIArgInfo::getDirect();
7754     }
7755   }
7756 
7757   // Otherwise just do the default thing.
7758   return DefaultABIInfo::classifyReturnType(RetTy);
7759 }
7760 
7761 /// For kernels all parameters are really passed in a special buffer. It doesn't
7762 /// make sense to pass anything byval, so everything must be direct.
7763 ABIArgInfo AMDGPUABIInfo::classifyKernelArgumentType(QualType Ty) const {
7764   Ty = useFirstFieldIfTransparentUnion(Ty);
7765 
7766   // TODO: Can we omit empty structs?
7767 
7768   // Coerce single element structs to its element.
7769   if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
7770     return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
7771 
7772   // If we set CanBeFlattened to true, CodeGen will expand the struct to its
7773   // individual elements, which confuses the Clover OpenCL backend; therefore we
7774   // have to set it to false here. Other args of getDirect() are just defaults.
7775   return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
7776 }
7777 
7778 ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty,
7779                                                unsigned &NumRegsLeft) const {
7780   assert(NumRegsLeft <= MaxNumRegsForArgsRet && "register estimate underflow");
7781 
7782   Ty = useFirstFieldIfTransparentUnion(Ty);
7783 
7784   if (isAggregateTypeForABI(Ty)) {
7785     // Records with non-trivial destructors/copy-constructors should not be
7786     // passed by value.
7787     if (auto RAA = getRecordArgABI(Ty, getCXXABI()))
7788       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
7789 
7790     // Ignore empty structs/unions.
7791     if (isEmptyRecord(getContext(), Ty, true))
7792       return ABIArgInfo::getIgnore();
7793 
7794     // Lower single-element structs to just pass a regular value. TODO: We
7795     // could do reasonable-size multiple-element structs too, using getExpand(),
7796     // though watch out for things like bitfields.
7797     if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
7798       return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
7799 
7800     if (const RecordType *RT = Ty->getAs<RecordType>()) {
7801       const RecordDecl *RD = RT->getDecl();
7802       if (RD->hasFlexibleArrayMember())
7803         return DefaultABIInfo::classifyArgumentType(Ty);
7804     }
7805 
7806     // Pack aggregates <= 8 bytes into single VGPR or pair.
7807     uint64_t Size = getContext().getTypeSize(Ty);
7808     if (Size <= 64) {
7809       unsigned NumRegs = (Size + 31) / 32;
7810       NumRegsLeft -= std::min(NumRegsLeft, NumRegs);
7811 
7812       if (Size <= 16)
7813         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
7814 
7815       if (Size <= 32)
7816         return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
7817 
7818       // XXX: Should this be i64 instead, and should the limit increase?
7819       llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext());
7820       return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2));
7821     }
7822 
7823     if (NumRegsLeft > 0) {
7824       unsigned NumRegs = numRegsForType(Ty);
7825       if (NumRegsLeft >= NumRegs) {
7826         NumRegsLeft -= NumRegs;
7827         return ABIArgInfo::getDirect();
7828       }
7829     }
7830   }
7831 
7832   // Otherwise just do the default thing.
7833   ABIArgInfo ArgInfo = DefaultABIInfo::classifyArgumentType(Ty);
7834   if (!ArgInfo.isIndirect()) {
7835     unsigned NumRegs = numRegsForType(Ty);
7836     NumRegsLeft -= std::min(NumRegs, NumRegsLeft);
7837   }
7838 
7839   return ArgInfo;
7840 }
7841 
7842 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo {
7843 public:
7844   AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT)
7845     : TargetCodeGenInfo(new AMDGPUABIInfo(CGT)) {}
7846   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7847                            CodeGen::CodeGenModule &M) const override;
7848   unsigned getOpenCLKernelCallingConv() const override;
7849 
7850   llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM,
7851       llvm::PointerType *T, QualType QT) const override;
7852 
7853   LangAS getASTAllocaAddressSpace() const override {
7854     return getLangASFromTargetAS(
7855         getABIInfo().getDataLayout().getAllocaAddrSpace());
7856   }
7857   LangAS getGlobalVarAddressSpace(CodeGenModule &CGM,
7858                                   const VarDecl *D) const override;
7859   llvm::SyncScope::ID getLLVMSyncScopeID(const LangOptions &LangOpts,
7860                                          SyncScope Scope,
7861                                          llvm::AtomicOrdering Ordering,
7862                                          llvm::LLVMContext &Ctx) const override;
7863   llvm::Function *
7864   createEnqueuedBlockKernel(CodeGenFunction &CGF,
7865                             llvm::Function *BlockInvokeFunc,
7866                             llvm::Value *BlockLiteral) const override;
7867   bool shouldEmitStaticExternCAliases() const override;
7868   void setCUDAKernelCallingConvention(const FunctionType *&FT) const override;
7869 };
7870 }
7871 
7872 static bool requiresAMDGPUProtectedVisibility(const Decl *D,
7873                                               llvm::GlobalValue *GV) {
7874   if (GV->getVisibility() != llvm::GlobalValue::HiddenVisibility)
7875     return false;
7876 
7877   return D->hasAttr<OpenCLKernelAttr>() ||
7878          (isa<FunctionDecl>(D) && D->hasAttr<CUDAGlobalAttr>()) ||
7879          (isa<VarDecl>(D) &&
7880           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()));
7881 }
7882 
7883 void AMDGPUTargetCodeGenInfo::setTargetAttributes(
7884     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
7885   if (requiresAMDGPUProtectedVisibility(D, GV)) {
7886     GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
7887     GV->setDSOLocal(true);
7888   }
7889 
7890   if (GV->isDeclaration())
7891     return;
7892   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
7893   if (!FD)
7894     return;
7895 
7896   llvm::Function *F = cast<llvm::Function>(GV);
7897 
7898   const auto *ReqdWGS = M.getLangOpts().OpenCL ?
7899     FD->getAttr<ReqdWorkGroupSizeAttr>() : nullptr;
7900 
7901   if (((M.getLangOpts().OpenCL && FD->hasAttr<OpenCLKernelAttr>()) ||
7902       (M.getLangOpts().HIP && FD->hasAttr<CUDAGlobalAttr>())) &&
7903       (M.getTriple().getOS() == llvm::Triple::AMDHSA))
7904     F->addFnAttr("amdgpu-implicitarg-num-bytes", "48");
7905 
7906   const auto *FlatWGS = FD->getAttr<AMDGPUFlatWorkGroupSizeAttr>();
7907   if (ReqdWGS || FlatWGS) {
7908     unsigned Min = 0;
7909     unsigned Max = 0;
7910     if (FlatWGS) {
7911       Min = FlatWGS->getMin()
7912                 ->EvaluateKnownConstInt(M.getContext())
7913                 .getExtValue();
7914       Max = FlatWGS->getMax()
7915                 ->EvaluateKnownConstInt(M.getContext())
7916                 .getExtValue();
7917     }
7918     if (ReqdWGS && Min == 0 && Max == 0)
7919       Min = Max = ReqdWGS->getXDim() * ReqdWGS->getYDim() * ReqdWGS->getZDim();
7920 
7921     if (Min != 0) {
7922       assert(Min <= Max && "Min must be less than or equal Max");
7923 
7924       std::string AttrVal = llvm::utostr(Min) + "," + llvm::utostr(Max);
7925       F->addFnAttr("amdgpu-flat-work-group-size", AttrVal);
7926     } else
7927       assert(Max == 0 && "Max must be zero");
7928   }
7929 
7930   if (const auto *Attr = FD->getAttr<AMDGPUWavesPerEUAttr>()) {
7931     unsigned Min =
7932         Attr->getMin()->EvaluateKnownConstInt(M.getContext()).getExtValue();
7933     unsigned Max = Attr->getMax() ? Attr->getMax()
7934                                         ->EvaluateKnownConstInt(M.getContext())
7935                                         .getExtValue()
7936                                   : 0;
7937 
7938     if (Min != 0) {
7939       assert((Max == 0 || Min <= Max) && "Min must be less than or equal Max");
7940 
7941       std::string AttrVal = llvm::utostr(Min);
7942       if (Max != 0)
7943         AttrVal = AttrVal + "," + llvm::utostr(Max);
7944       F->addFnAttr("amdgpu-waves-per-eu", AttrVal);
7945     } else
7946       assert(Max == 0 && "Max must be zero");
7947   }
7948 
7949   if (const auto *Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) {
7950     unsigned NumSGPR = Attr->getNumSGPR();
7951 
7952     if (NumSGPR != 0)
7953       F->addFnAttr("amdgpu-num-sgpr", llvm::utostr(NumSGPR));
7954   }
7955 
7956   if (const auto *Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) {
7957     uint32_t NumVGPR = Attr->getNumVGPR();
7958 
7959     if (NumVGPR != 0)
7960       F->addFnAttr("amdgpu-num-vgpr", llvm::utostr(NumVGPR));
7961   }
7962 }
7963 
7964 unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const {
7965   return llvm::CallingConv::AMDGPU_KERNEL;
7966 }
7967 
7968 // Currently LLVM assumes null pointers always have value 0,
7969 // which results in incorrectly transformed IR. Therefore, instead of
7970 // emitting null pointers in private and local address spaces, a null
7971 // pointer in generic address space is emitted which is casted to a
7972 // pointer in local or private address space.
7973 llvm::Constant *AMDGPUTargetCodeGenInfo::getNullPointer(
7974     const CodeGen::CodeGenModule &CGM, llvm::PointerType *PT,
7975     QualType QT) const {
7976   if (CGM.getContext().getTargetNullPointerValue(QT) == 0)
7977     return llvm::ConstantPointerNull::get(PT);
7978 
7979   auto &Ctx = CGM.getContext();
7980   auto NPT = llvm::PointerType::get(PT->getElementType(),
7981       Ctx.getTargetAddressSpace(LangAS::opencl_generic));
7982   return llvm::ConstantExpr::getAddrSpaceCast(
7983       llvm::ConstantPointerNull::get(NPT), PT);
7984 }
7985 
7986 LangAS
7987 AMDGPUTargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM,
7988                                                   const VarDecl *D) const {
7989   assert(!CGM.getLangOpts().OpenCL &&
7990          !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) &&
7991          "Address space agnostic languages only");
7992   LangAS DefaultGlobalAS = getLangASFromTargetAS(
7993       CGM.getContext().getTargetAddressSpace(LangAS::opencl_global));
7994   if (!D)
7995     return DefaultGlobalAS;
7996 
7997   LangAS AddrSpace = D->getType().getAddressSpace();
7998   assert(AddrSpace == LangAS::Default || isTargetAddressSpace(AddrSpace));
7999   if (AddrSpace != LangAS::Default)
8000     return AddrSpace;
8001 
8002   if (CGM.isTypeConstant(D->getType(), false)) {
8003     if (auto ConstAS = CGM.getTarget().getConstantAddressSpace())
8004       return ConstAS.getValue();
8005   }
8006   return DefaultGlobalAS;
8007 }
8008 
8009 llvm::SyncScope::ID
8010 AMDGPUTargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts,
8011                                             SyncScope Scope,
8012                                             llvm::AtomicOrdering Ordering,
8013                                             llvm::LLVMContext &Ctx) const {
8014   std::string Name;
8015   switch (Scope) {
8016   case SyncScope::OpenCLWorkGroup:
8017     Name = "workgroup";
8018     break;
8019   case SyncScope::OpenCLDevice:
8020     Name = "agent";
8021     break;
8022   case SyncScope::OpenCLAllSVMDevices:
8023     Name = "";
8024     break;
8025   case SyncScope::OpenCLSubGroup:
8026     Name = "wavefront";
8027   }
8028 
8029   if (Ordering != llvm::AtomicOrdering::SequentiallyConsistent) {
8030     if (!Name.empty())
8031       Name = Twine(Twine(Name) + Twine("-")).str();
8032 
8033     Name = Twine(Twine(Name) + Twine("one-as")).str();
8034   }
8035 
8036   return Ctx.getOrInsertSyncScopeID(Name);
8037 }
8038 
8039 bool AMDGPUTargetCodeGenInfo::shouldEmitStaticExternCAliases() const {
8040   return false;
8041 }
8042 
8043 void AMDGPUTargetCodeGenInfo::setCUDAKernelCallingConvention(
8044     const FunctionType *&FT) const {
8045   FT = getABIInfo().getContext().adjustFunctionType(
8046       FT, FT->getExtInfo().withCallingConv(CC_OpenCLKernel));
8047 }
8048 
8049 //===----------------------------------------------------------------------===//
8050 // SPARC v8 ABI Implementation.
8051 // Based on the SPARC Compliance Definition version 2.4.1.
8052 //
8053 // Ensures that complex values are passed in registers.
8054 //
8055 namespace {
8056 class SparcV8ABIInfo : public DefaultABIInfo {
8057 public:
8058   SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
8059 
8060 private:
8061   ABIArgInfo classifyReturnType(QualType RetTy) const;
8062   void computeInfo(CGFunctionInfo &FI) const override;
8063 };
8064 } // end anonymous namespace
8065 
8066 
8067 ABIArgInfo
8068 SparcV8ABIInfo::classifyReturnType(QualType Ty) const {
8069   if (Ty->isAnyComplexType()) {
8070     return ABIArgInfo::getDirect();
8071   }
8072   else {
8073     return DefaultABIInfo::classifyReturnType(Ty);
8074   }
8075 }
8076 
8077 void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const {
8078 
8079   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
8080   for (auto &Arg : FI.arguments())
8081     Arg.info = classifyArgumentType(Arg.type);
8082 }
8083 
8084 namespace {
8085 class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo {
8086 public:
8087   SparcV8TargetCodeGenInfo(CodeGenTypes &CGT)
8088     : TargetCodeGenInfo(new SparcV8ABIInfo(CGT)) {}
8089 };
8090 } // end anonymous namespace
8091 
8092 //===----------------------------------------------------------------------===//
8093 // SPARC v9 ABI Implementation.
8094 // Based on the SPARC Compliance Definition version 2.4.1.
8095 //
8096 // Function arguments a mapped to a nominal "parameter array" and promoted to
8097 // registers depending on their type. Each argument occupies 8 or 16 bytes in
8098 // the array, structs larger than 16 bytes are passed indirectly.
8099 //
8100 // One case requires special care:
8101 //
8102 //   struct mixed {
8103 //     int i;
8104 //     float f;
8105 //   };
8106 //
8107 // When a struct mixed is passed by value, it only occupies 8 bytes in the
8108 // parameter array, but the int is passed in an integer register, and the float
8109 // is passed in a floating point register. This is represented as two arguments
8110 // with the LLVM IR inreg attribute:
8111 //
8112 //   declare void f(i32 inreg %i, float inreg %f)
8113 //
8114 // The code generator will only allocate 4 bytes from the parameter array for
8115 // the inreg arguments. All other arguments are allocated a multiple of 8
8116 // bytes.
8117 //
8118 namespace {
8119 class SparcV9ABIInfo : public ABIInfo {
8120 public:
8121   SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
8122 
8123 private:
8124   ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const;
8125   void computeInfo(CGFunctionInfo &FI) const override;
8126   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8127                     QualType Ty) const override;
8128 
8129   // Coercion type builder for structs passed in registers. The coercion type
8130   // serves two purposes:
8131   //
8132   // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned'
8133   //    in registers.
8134   // 2. Expose aligned floating point elements as first-level elements, so the
8135   //    code generator knows to pass them in floating point registers.
8136   //
8137   // We also compute the InReg flag which indicates that the struct contains
8138   // aligned 32-bit floats.
8139   //
8140   struct CoerceBuilder {
8141     llvm::LLVMContext &Context;
8142     const llvm::DataLayout &DL;
8143     SmallVector<llvm::Type*, 8> Elems;
8144     uint64_t Size;
8145     bool InReg;
8146 
8147     CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl)
8148       : Context(c), DL(dl), Size(0), InReg(false) {}
8149 
8150     // Pad Elems with integers until Size is ToSize.
8151     void pad(uint64_t ToSize) {
8152       assert(ToSize >= Size && "Cannot remove elements");
8153       if (ToSize == Size)
8154         return;
8155 
8156       // Finish the current 64-bit word.
8157       uint64_t Aligned = llvm::alignTo(Size, 64);
8158       if (Aligned > Size && Aligned <= ToSize) {
8159         Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size));
8160         Size = Aligned;
8161       }
8162 
8163       // Add whole 64-bit words.
8164       while (Size + 64 <= ToSize) {
8165         Elems.push_back(llvm::Type::getInt64Ty(Context));
8166         Size += 64;
8167       }
8168 
8169       // Final in-word padding.
8170       if (Size < ToSize) {
8171         Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size));
8172         Size = ToSize;
8173       }
8174     }
8175 
8176     // Add a floating point element at Offset.
8177     void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) {
8178       // Unaligned floats are treated as integers.
8179       if (Offset % Bits)
8180         return;
8181       // The InReg flag is only required if there are any floats < 64 bits.
8182       if (Bits < 64)
8183         InReg = true;
8184       pad(Offset);
8185       Elems.push_back(Ty);
8186       Size = Offset + Bits;
8187     }
8188 
8189     // Add a struct type to the coercion type, starting at Offset (in bits).
8190     void addStruct(uint64_t Offset, llvm::StructType *StrTy) {
8191       const llvm::StructLayout *Layout = DL.getStructLayout(StrTy);
8192       for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) {
8193         llvm::Type *ElemTy = StrTy->getElementType(i);
8194         uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i);
8195         switch (ElemTy->getTypeID()) {
8196         case llvm::Type::StructTyID:
8197           addStruct(ElemOffset, cast<llvm::StructType>(ElemTy));
8198           break;
8199         case llvm::Type::FloatTyID:
8200           addFloat(ElemOffset, ElemTy, 32);
8201           break;
8202         case llvm::Type::DoubleTyID:
8203           addFloat(ElemOffset, ElemTy, 64);
8204           break;
8205         case llvm::Type::FP128TyID:
8206           addFloat(ElemOffset, ElemTy, 128);
8207           break;
8208         case llvm::Type::PointerTyID:
8209           if (ElemOffset % 64 == 0) {
8210             pad(ElemOffset);
8211             Elems.push_back(ElemTy);
8212             Size += 64;
8213           }
8214           break;
8215         default:
8216           break;
8217         }
8218       }
8219     }
8220 
8221     // Check if Ty is a usable substitute for the coercion type.
8222     bool isUsableType(llvm::StructType *Ty) const {
8223       return llvm::makeArrayRef(Elems) == Ty->elements();
8224     }
8225 
8226     // Get the coercion type as a literal struct type.
8227     llvm::Type *getType() const {
8228       if (Elems.size() == 1)
8229         return Elems.front();
8230       else
8231         return llvm::StructType::get(Context, Elems);
8232     }
8233   };
8234 };
8235 } // end anonymous namespace
8236 
8237 ABIArgInfo
8238 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const {
8239   if (Ty->isVoidType())
8240     return ABIArgInfo::getIgnore();
8241 
8242   uint64_t Size = getContext().getTypeSize(Ty);
8243 
8244   // Anything too big to fit in registers is passed with an explicit indirect
8245   // pointer / sret pointer.
8246   if (Size > SizeLimit)
8247     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
8248 
8249   // Treat an enum type as its underlying type.
8250   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
8251     Ty = EnumTy->getDecl()->getIntegerType();
8252 
8253   // Integer types smaller than a register are extended.
8254   if (Size < 64 && Ty->isIntegerType())
8255     return ABIArgInfo::getExtend(Ty);
8256 
8257   // Other non-aggregates go in registers.
8258   if (!isAggregateTypeForABI(Ty))
8259     return ABIArgInfo::getDirect();
8260 
8261   // If a C++ object has either a non-trivial copy constructor or a non-trivial
8262   // destructor, it is passed with an explicit indirect pointer / sret pointer.
8263   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
8264     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
8265 
8266   // This is a small aggregate type that should be passed in registers.
8267   // Build a coercion type from the LLVM struct type.
8268   llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty));
8269   if (!StrTy)
8270     return ABIArgInfo::getDirect();
8271 
8272   CoerceBuilder CB(getVMContext(), getDataLayout());
8273   CB.addStruct(0, StrTy);
8274   CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64));
8275 
8276   // Try to use the original type for coercion.
8277   llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType();
8278 
8279   if (CB.InReg)
8280     return ABIArgInfo::getDirectInReg(CoerceTy);
8281   else
8282     return ABIArgInfo::getDirect(CoerceTy);
8283 }
8284 
8285 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8286                                   QualType Ty) const {
8287   ABIArgInfo AI = classifyType(Ty, 16 * 8);
8288   llvm::Type *ArgTy = CGT.ConvertType(Ty);
8289   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
8290     AI.setCoerceToType(ArgTy);
8291 
8292   CharUnits SlotSize = CharUnits::fromQuantity(8);
8293 
8294   CGBuilderTy &Builder = CGF.Builder;
8295   Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
8296   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
8297 
8298   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
8299 
8300   Address ArgAddr = Address::invalid();
8301   CharUnits Stride;
8302   switch (AI.getKind()) {
8303   case ABIArgInfo::Expand:
8304   case ABIArgInfo::CoerceAndExpand:
8305   case ABIArgInfo::InAlloca:
8306     llvm_unreachable("Unsupported ABI kind for va_arg");
8307 
8308   case ABIArgInfo::Extend: {
8309     Stride = SlotSize;
8310     CharUnits Offset = SlotSize - TypeInfo.first;
8311     ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend");
8312     break;
8313   }
8314 
8315   case ABIArgInfo::Direct: {
8316     auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
8317     Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize);
8318     ArgAddr = Addr;
8319     break;
8320   }
8321 
8322   case ABIArgInfo::Indirect:
8323     Stride = SlotSize;
8324     ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect");
8325     ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"),
8326                       TypeInfo.second);
8327     break;
8328 
8329   case ABIArgInfo::Ignore:
8330     return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.second);
8331   }
8332 
8333   // Update VAList.
8334   Address NextPtr = Builder.CreateConstInBoundsByteGEP(Addr, Stride, "ap.next");
8335   Builder.CreateStore(NextPtr.getPointer(), VAListAddr);
8336 
8337   return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr");
8338 }
8339 
8340 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const {
8341   FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8);
8342   for (auto &I : FI.arguments())
8343     I.info = classifyType(I.type, 16 * 8);
8344 }
8345 
8346 namespace {
8347 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo {
8348 public:
8349   SparcV9TargetCodeGenInfo(CodeGenTypes &CGT)
8350     : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {}
8351 
8352   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
8353     return 14;
8354   }
8355 
8356   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
8357                                llvm::Value *Address) const override;
8358 };
8359 } // end anonymous namespace
8360 
8361 bool
8362 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
8363                                                 llvm::Value *Address) const {
8364   // This is calculated from the LLVM and GCC tables and verified
8365   // against gcc output.  AFAIK all ABIs use the same encoding.
8366 
8367   CodeGen::CGBuilderTy &Builder = CGF.Builder;
8368 
8369   llvm::IntegerType *i8 = CGF.Int8Ty;
8370   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
8371   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
8372 
8373   // 0-31: the 8-byte general-purpose registers
8374   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
8375 
8376   // 32-63: f0-31, the 4-byte floating-point registers
8377   AssignToArrayRange(Builder, Address, Four8, 32, 63);
8378 
8379   //   Y   = 64
8380   //   PSR = 65
8381   //   WIM = 66
8382   //   TBR = 67
8383   //   PC  = 68
8384   //   NPC = 69
8385   //   FSR = 70
8386   //   CSR = 71
8387   AssignToArrayRange(Builder, Address, Eight8, 64, 71);
8388 
8389   // 72-87: d0-15, the 8-byte floating-point registers
8390   AssignToArrayRange(Builder, Address, Eight8, 72, 87);
8391 
8392   return false;
8393 }
8394 
8395 // ARC ABI implementation.
8396 namespace {
8397 
8398 class ARCABIInfo : public DefaultABIInfo {
8399 public:
8400   using DefaultABIInfo::DefaultABIInfo;
8401 
8402 private:
8403   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8404                     QualType Ty) const override;
8405 
8406   void updateState(const ABIArgInfo &Info, QualType Ty, CCState &State) const {
8407     if (!State.FreeRegs)
8408       return;
8409     if (Info.isIndirect() && Info.getInReg())
8410       State.FreeRegs--;
8411     else if (Info.isDirect() && Info.getInReg()) {
8412       unsigned sz = (getContext().getTypeSize(Ty) + 31) / 32;
8413       if (sz < State.FreeRegs)
8414         State.FreeRegs -= sz;
8415       else
8416         State.FreeRegs = 0;
8417     }
8418   }
8419 
8420   void computeInfo(CGFunctionInfo &FI) const override {
8421     CCState State(FI.getCallingConvention());
8422     // ARC uses 8 registers to pass arguments.
8423     State.FreeRegs = 8;
8424 
8425     if (!getCXXABI().classifyReturnType(FI))
8426       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
8427     updateState(FI.getReturnInfo(), FI.getReturnType(), State);
8428     for (auto &I : FI.arguments()) {
8429       I.info = classifyArgumentType(I.type, State.FreeRegs);
8430       updateState(I.info, I.type, State);
8431     }
8432   }
8433 
8434   ABIArgInfo getIndirectByRef(QualType Ty, bool HasFreeRegs) const;
8435   ABIArgInfo getIndirectByValue(QualType Ty) const;
8436   ABIArgInfo classifyArgumentType(QualType Ty, uint8_t FreeRegs) const;
8437   ABIArgInfo classifyReturnType(QualType RetTy) const;
8438 };
8439 
8440 class ARCTargetCodeGenInfo : public TargetCodeGenInfo {
8441 public:
8442   ARCTargetCodeGenInfo(CodeGenTypes &CGT)
8443       : TargetCodeGenInfo(new ARCABIInfo(CGT)) {}
8444 };
8445 
8446 
8447 ABIArgInfo ARCABIInfo::getIndirectByRef(QualType Ty, bool HasFreeRegs) const {
8448   return HasFreeRegs ? getNaturalAlignIndirectInReg(Ty) :
8449                        getNaturalAlignIndirect(Ty, false);
8450 }
8451 
8452 ABIArgInfo ARCABIInfo::getIndirectByValue(QualType Ty) const {
8453   // Compute the byval alignment.
8454   const unsigned MinABIStackAlignInBytes = 4;
8455   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
8456   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true,
8457                                  TypeAlign > MinABIStackAlignInBytes);
8458 }
8459 
8460 Address ARCABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8461                               QualType Ty) const {
8462   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
8463                           getContext().getTypeInfoInChars(Ty),
8464                           CharUnits::fromQuantity(4), true);
8465 }
8466 
8467 ABIArgInfo ARCABIInfo::classifyArgumentType(QualType Ty,
8468                                             uint8_t FreeRegs) const {
8469   // Handle the generic C++ ABI.
8470   const RecordType *RT = Ty->getAs<RecordType>();
8471   if (RT) {
8472     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
8473     if (RAA == CGCXXABI::RAA_Indirect)
8474       return getIndirectByRef(Ty, FreeRegs > 0);
8475 
8476     if (RAA == CGCXXABI::RAA_DirectInMemory)
8477       return getIndirectByValue(Ty);
8478   }
8479 
8480   // Treat an enum type as its underlying type.
8481   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
8482     Ty = EnumTy->getDecl()->getIntegerType();
8483 
8484   auto SizeInRegs = llvm::alignTo(getContext().getTypeSize(Ty), 32) / 32;
8485 
8486   if (isAggregateTypeForABI(Ty)) {
8487     // Structures with flexible arrays are always indirect.
8488     if (RT && RT->getDecl()->hasFlexibleArrayMember())
8489       return getIndirectByValue(Ty);
8490 
8491     // Ignore empty structs/unions.
8492     if (isEmptyRecord(getContext(), Ty, true))
8493       return ABIArgInfo::getIgnore();
8494 
8495     llvm::LLVMContext &LLVMContext = getVMContext();
8496 
8497     llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
8498     SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32);
8499     llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
8500 
8501     return FreeRegs >= SizeInRegs ?
8502         ABIArgInfo::getDirectInReg(Result) :
8503         ABIArgInfo::getDirect(Result, 0, nullptr, false);
8504   }
8505 
8506   return Ty->isPromotableIntegerType() ?
8507       (FreeRegs >= SizeInRegs ? ABIArgInfo::getExtendInReg(Ty) :
8508                                 ABIArgInfo::getExtend(Ty)) :
8509       (FreeRegs >= SizeInRegs ? ABIArgInfo::getDirectInReg() :
8510                                 ABIArgInfo::getDirect());
8511 }
8512 
8513 ABIArgInfo ARCABIInfo::classifyReturnType(QualType RetTy) const {
8514   if (RetTy->isAnyComplexType())
8515     return ABIArgInfo::getDirectInReg();
8516 
8517   // Arguments of size > 4 registers are indirect.
8518   auto RetSize = llvm::alignTo(getContext().getTypeSize(RetTy), 32) / 32;
8519   if (RetSize > 4)
8520     return getIndirectByRef(RetTy, /*HasFreeRegs*/ true);
8521 
8522   return DefaultABIInfo::classifyReturnType(RetTy);
8523 }
8524 
8525 } // End anonymous namespace.
8526 
8527 //===----------------------------------------------------------------------===//
8528 // XCore ABI Implementation
8529 //===----------------------------------------------------------------------===//
8530 
8531 namespace {
8532 
8533 /// A SmallStringEnc instance is used to build up the TypeString by passing
8534 /// it by reference between functions that append to it.
8535 typedef llvm::SmallString<128> SmallStringEnc;
8536 
8537 /// TypeStringCache caches the meta encodings of Types.
8538 ///
8539 /// The reason for caching TypeStrings is two fold:
8540 ///   1. To cache a type's encoding for later uses;
8541 ///   2. As a means to break recursive member type inclusion.
8542 ///
8543 /// A cache Entry can have a Status of:
8544 ///   NonRecursive:   The type encoding is not recursive;
8545 ///   Recursive:      The type encoding is recursive;
8546 ///   Incomplete:     An incomplete TypeString;
8547 ///   IncompleteUsed: An incomplete TypeString that has been used in a
8548 ///                   Recursive type encoding.
8549 ///
8550 /// A NonRecursive entry will have all of its sub-members expanded as fully
8551 /// as possible. Whilst it may contain types which are recursive, the type
8552 /// itself is not recursive and thus its encoding may be safely used whenever
8553 /// the type is encountered.
8554 ///
8555 /// A Recursive entry will have all of its sub-members expanded as fully as
8556 /// possible. The type itself is recursive and it may contain other types which
8557 /// are recursive. The Recursive encoding must not be used during the expansion
8558 /// of a recursive type's recursive branch. For simplicity the code uses
8559 /// IncompleteCount to reject all usage of Recursive encodings for member types.
8560 ///
8561 /// An Incomplete entry is always a RecordType and only encodes its
8562 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and
8563 /// are placed into the cache during type expansion as a means to identify and
8564 /// handle recursive inclusion of types as sub-members. If there is recursion
8565 /// the entry becomes IncompleteUsed.
8566 ///
8567 /// During the expansion of a RecordType's members:
8568 ///
8569 ///   If the cache contains a NonRecursive encoding for the member type, the
8570 ///   cached encoding is used;
8571 ///
8572 ///   If the cache contains a Recursive encoding for the member type, the
8573 ///   cached encoding is 'Swapped' out, as it may be incorrect, and...
8574 ///
8575 ///   If the member is a RecordType, an Incomplete encoding is placed into the
8576 ///   cache to break potential recursive inclusion of itself as a sub-member;
8577 ///
8578 ///   Once a member RecordType has been expanded, its temporary incomplete
8579 ///   entry is removed from the cache. If a Recursive encoding was swapped out
8580 ///   it is swapped back in;
8581 ///
8582 ///   If an incomplete entry is used to expand a sub-member, the incomplete
8583 ///   entry is marked as IncompleteUsed. The cache keeps count of how many
8584 ///   IncompleteUsed entries it currently contains in IncompleteUsedCount;
8585 ///
8586 ///   If a member's encoding is found to be a NonRecursive or Recursive viz:
8587 ///   IncompleteUsedCount==0, the member's encoding is added to the cache.
8588 ///   Else the member is part of a recursive type and thus the recursion has
8589 ///   been exited too soon for the encoding to be correct for the member.
8590 ///
8591 class TypeStringCache {
8592   enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed};
8593   struct Entry {
8594     std::string Str;     // The encoded TypeString for the type.
8595     enum Status State;   // Information about the encoding in 'Str'.
8596     std::string Swapped; // A temporary place holder for a Recursive encoding
8597                          // during the expansion of RecordType's members.
8598   };
8599   std::map<const IdentifierInfo *, struct Entry> Map;
8600   unsigned IncompleteCount;     // Number of Incomplete entries in the Map.
8601   unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map.
8602 public:
8603   TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {}
8604   void addIncomplete(const IdentifierInfo *ID, std::string StubEnc);
8605   bool removeIncomplete(const IdentifierInfo *ID);
8606   void addIfComplete(const IdentifierInfo *ID, StringRef Str,
8607                      bool IsRecursive);
8608   StringRef lookupStr(const IdentifierInfo *ID);
8609 };
8610 
8611 /// TypeString encodings for enum & union fields must be order.
8612 /// FieldEncoding is a helper for this ordering process.
8613 class FieldEncoding {
8614   bool HasName;
8615   std::string Enc;
8616 public:
8617   FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {}
8618   StringRef str() { return Enc; }
8619   bool operator<(const FieldEncoding &rhs) const {
8620     if (HasName != rhs.HasName) return HasName;
8621     return Enc < rhs.Enc;
8622   }
8623 };
8624 
8625 class XCoreABIInfo : public DefaultABIInfo {
8626 public:
8627   XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
8628   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8629                     QualType Ty) const override;
8630 };
8631 
8632 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo {
8633   mutable TypeStringCache TSC;
8634 public:
8635   XCoreTargetCodeGenInfo(CodeGenTypes &CGT)
8636     :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {}
8637   void emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
8638                     CodeGen::CodeGenModule &M) const override;
8639 };
8640 
8641 } // End anonymous namespace.
8642 
8643 // TODO: this implementation is likely now redundant with the default
8644 // EmitVAArg.
8645 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8646                                 QualType Ty) const {
8647   CGBuilderTy &Builder = CGF.Builder;
8648 
8649   // Get the VAList.
8650   CharUnits SlotSize = CharUnits::fromQuantity(4);
8651   Address AP(Builder.CreateLoad(VAListAddr), SlotSize);
8652 
8653   // Handle the argument.
8654   ABIArgInfo AI = classifyArgumentType(Ty);
8655   CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty);
8656   llvm::Type *ArgTy = CGT.ConvertType(Ty);
8657   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
8658     AI.setCoerceToType(ArgTy);
8659   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
8660 
8661   Address Val = Address::invalid();
8662   CharUnits ArgSize = CharUnits::Zero();
8663   switch (AI.getKind()) {
8664   case ABIArgInfo::Expand:
8665   case ABIArgInfo::CoerceAndExpand:
8666   case ABIArgInfo::InAlloca:
8667     llvm_unreachable("Unsupported ABI kind for va_arg");
8668   case ABIArgInfo::Ignore:
8669     Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign);
8670     ArgSize = CharUnits::Zero();
8671     break;
8672   case ABIArgInfo::Extend:
8673   case ABIArgInfo::Direct:
8674     Val = Builder.CreateBitCast(AP, ArgPtrTy);
8675     ArgSize = CharUnits::fromQuantity(
8676                        getDataLayout().getTypeAllocSize(AI.getCoerceToType()));
8677     ArgSize = ArgSize.alignTo(SlotSize);
8678     break;
8679   case ABIArgInfo::Indirect:
8680     Val = Builder.CreateElementBitCast(AP, ArgPtrTy);
8681     Val = Address(Builder.CreateLoad(Val), TypeAlign);
8682     ArgSize = SlotSize;
8683     break;
8684   }
8685 
8686   // Increment the VAList.
8687   if (!ArgSize.isZero()) {
8688     Address APN = Builder.CreateConstInBoundsByteGEP(AP, ArgSize);
8689     Builder.CreateStore(APN.getPointer(), VAListAddr);
8690   }
8691 
8692   return Val;
8693 }
8694 
8695 /// During the expansion of a RecordType, an incomplete TypeString is placed
8696 /// into the cache as a means to identify and break recursion.
8697 /// If there is a Recursive encoding in the cache, it is swapped out and will
8698 /// be reinserted by removeIncomplete().
8699 /// All other types of encoding should have been used rather than arriving here.
8700 void TypeStringCache::addIncomplete(const IdentifierInfo *ID,
8701                                     std::string StubEnc) {
8702   if (!ID)
8703     return;
8704   Entry &E = Map[ID];
8705   assert( (E.Str.empty() || E.State == Recursive) &&
8706          "Incorrectly use of addIncomplete");
8707   assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()");
8708   E.Swapped.swap(E.Str); // swap out the Recursive
8709   E.Str.swap(StubEnc);
8710   E.State = Incomplete;
8711   ++IncompleteCount;
8712 }
8713 
8714 /// Once the RecordType has been expanded, the temporary incomplete TypeString
8715 /// must be removed from the cache.
8716 /// If a Recursive was swapped out by addIncomplete(), it will be replaced.
8717 /// Returns true if the RecordType was defined recursively.
8718 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) {
8719   if (!ID)
8720     return false;
8721   auto I = Map.find(ID);
8722   assert(I != Map.end() && "Entry not present");
8723   Entry &E = I->second;
8724   assert( (E.State == Incomplete ||
8725            E.State == IncompleteUsed) &&
8726          "Entry must be an incomplete type");
8727   bool IsRecursive = false;
8728   if (E.State == IncompleteUsed) {
8729     // We made use of our Incomplete encoding, thus we are recursive.
8730     IsRecursive = true;
8731     --IncompleteUsedCount;
8732   }
8733   if (E.Swapped.empty())
8734     Map.erase(I);
8735   else {
8736     // Swap the Recursive back.
8737     E.Swapped.swap(E.Str);
8738     E.Swapped.clear();
8739     E.State = Recursive;
8740   }
8741   --IncompleteCount;
8742   return IsRecursive;
8743 }
8744 
8745 /// Add the encoded TypeString to the cache only if it is NonRecursive or
8746 /// Recursive (viz: all sub-members were expanded as fully as possible).
8747 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str,
8748                                     bool IsRecursive) {
8749   if (!ID || IncompleteUsedCount)
8750     return; // No key or it is is an incomplete sub-type so don't add.
8751   Entry &E = Map[ID];
8752   if (IsRecursive && !E.Str.empty()) {
8753     assert(E.State==Recursive && E.Str.size() == Str.size() &&
8754            "This is not the same Recursive entry");
8755     // The parent container was not recursive after all, so we could have used
8756     // this Recursive sub-member entry after all, but we assumed the worse when
8757     // we started viz: IncompleteCount!=0.
8758     return;
8759   }
8760   assert(E.Str.empty() && "Entry already present");
8761   E.Str = Str.str();
8762   E.State = IsRecursive? Recursive : NonRecursive;
8763 }
8764 
8765 /// Return a cached TypeString encoding for the ID. If there isn't one, or we
8766 /// are recursively expanding a type (IncompleteCount != 0) and the cached
8767 /// encoding is Recursive, return an empty StringRef.
8768 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) {
8769   if (!ID)
8770     return StringRef();   // We have no key.
8771   auto I = Map.find(ID);
8772   if (I == Map.end())
8773     return StringRef();   // We have no encoding.
8774   Entry &E = I->second;
8775   if (E.State == Recursive && IncompleteCount)
8776     return StringRef();   // We don't use Recursive encodings for member types.
8777 
8778   if (E.State == Incomplete) {
8779     // The incomplete type is being used to break out of recursion.
8780     E.State = IncompleteUsed;
8781     ++IncompleteUsedCount;
8782   }
8783   return E.Str;
8784 }
8785 
8786 /// The XCore ABI includes a type information section that communicates symbol
8787 /// type information to the linker. The linker uses this information to verify
8788 /// safety/correctness of things such as array bound and pointers et al.
8789 /// The ABI only requires C (and XC) language modules to emit TypeStrings.
8790 /// This type information (TypeString) is emitted into meta data for all global
8791 /// symbols: definitions, declarations, functions & variables.
8792 ///
8793 /// The TypeString carries type, qualifier, name, size & value details.
8794 /// Please see 'Tools Development Guide' section 2.16.2 for format details:
8795 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf
8796 /// The output is tested by test/CodeGen/xcore-stringtype.c.
8797 ///
8798 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
8799                           CodeGen::CodeGenModule &CGM, TypeStringCache &TSC);
8800 
8801 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols.
8802 void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
8803                                           CodeGen::CodeGenModule &CGM) const {
8804   SmallStringEnc Enc;
8805   if (getTypeString(Enc, D, CGM, TSC)) {
8806     llvm::LLVMContext &Ctx = CGM.getModule().getContext();
8807     llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV),
8808                                 llvm::MDString::get(Ctx, Enc.str())};
8809     llvm::NamedMDNode *MD =
8810       CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings");
8811     MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
8812   }
8813 }
8814 
8815 //===----------------------------------------------------------------------===//
8816 // SPIR ABI Implementation
8817 //===----------------------------------------------------------------------===//
8818 
8819 namespace {
8820 class SPIRTargetCodeGenInfo : public TargetCodeGenInfo {
8821 public:
8822   SPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
8823     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
8824   unsigned getOpenCLKernelCallingConv() const override;
8825 };
8826 
8827 } // End anonymous namespace.
8828 
8829 namespace clang {
8830 namespace CodeGen {
8831 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) {
8832   DefaultABIInfo SPIRABI(CGM.getTypes());
8833   SPIRABI.computeInfo(FI);
8834 }
8835 }
8836 }
8837 
8838 unsigned SPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const {
8839   return llvm::CallingConv::SPIR_KERNEL;
8840 }
8841 
8842 static bool appendType(SmallStringEnc &Enc, QualType QType,
8843                        const CodeGen::CodeGenModule &CGM,
8844                        TypeStringCache &TSC);
8845 
8846 /// Helper function for appendRecordType().
8847 /// Builds a SmallVector containing the encoded field types in declaration
8848 /// order.
8849 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE,
8850                              const RecordDecl *RD,
8851                              const CodeGen::CodeGenModule &CGM,
8852                              TypeStringCache &TSC) {
8853   for (const auto *Field : RD->fields()) {
8854     SmallStringEnc Enc;
8855     Enc += "m(";
8856     Enc += Field->getName();
8857     Enc += "){";
8858     if (Field->isBitField()) {
8859       Enc += "b(";
8860       llvm::raw_svector_ostream OS(Enc);
8861       OS << Field->getBitWidthValue(CGM.getContext());
8862       Enc += ':';
8863     }
8864     if (!appendType(Enc, Field->getType(), CGM, TSC))
8865       return false;
8866     if (Field->isBitField())
8867       Enc += ')';
8868     Enc += '}';
8869     FE.emplace_back(!Field->getName().empty(), Enc);
8870   }
8871   return true;
8872 }
8873 
8874 /// Appends structure and union types to Enc and adds encoding to cache.
8875 /// Recursively calls appendType (via extractFieldType) for each field.
8876 /// Union types have their fields ordered according to the ABI.
8877 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT,
8878                              const CodeGen::CodeGenModule &CGM,
8879                              TypeStringCache &TSC, const IdentifierInfo *ID) {
8880   // Append the cached TypeString if we have one.
8881   StringRef TypeString = TSC.lookupStr(ID);
8882   if (!TypeString.empty()) {
8883     Enc += TypeString;
8884     return true;
8885   }
8886 
8887   // Start to emit an incomplete TypeString.
8888   size_t Start = Enc.size();
8889   Enc += (RT->isUnionType()? 'u' : 's');
8890   Enc += '(';
8891   if (ID)
8892     Enc += ID->getName();
8893   Enc += "){";
8894 
8895   // We collect all encoded fields and order as necessary.
8896   bool IsRecursive = false;
8897   const RecordDecl *RD = RT->getDecl()->getDefinition();
8898   if (RD && !RD->field_empty()) {
8899     // An incomplete TypeString stub is placed in the cache for this RecordType
8900     // so that recursive calls to this RecordType will use it whilst building a
8901     // complete TypeString for this RecordType.
8902     SmallVector<FieldEncoding, 16> FE;
8903     std::string StubEnc(Enc.substr(Start).str());
8904     StubEnc += '}';  // StubEnc now holds a valid incomplete TypeString.
8905     TSC.addIncomplete(ID, std::move(StubEnc));
8906     if (!extractFieldType(FE, RD, CGM, TSC)) {
8907       (void) TSC.removeIncomplete(ID);
8908       return false;
8909     }
8910     IsRecursive = TSC.removeIncomplete(ID);
8911     // The ABI requires unions to be sorted but not structures.
8912     // See FieldEncoding::operator< for sort algorithm.
8913     if (RT->isUnionType())
8914       llvm::sort(FE);
8915     // We can now complete the TypeString.
8916     unsigned E = FE.size();
8917     for (unsigned I = 0; I != E; ++I) {
8918       if (I)
8919         Enc += ',';
8920       Enc += FE[I].str();
8921     }
8922   }
8923   Enc += '}';
8924   TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive);
8925   return true;
8926 }
8927 
8928 /// Appends enum types to Enc and adds the encoding to the cache.
8929 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET,
8930                            TypeStringCache &TSC,
8931                            const IdentifierInfo *ID) {
8932   // Append the cached TypeString if we have one.
8933   StringRef TypeString = TSC.lookupStr(ID);
8934   if (!TypeString.empty()) {
8935     Enc += TypeString;
8936     return true;
8937   }
8938 
8939   size_t Start = Enc.size();
8940   Enc += "e(";
8941   if (ID)
8942     Enc += ID->getName();
8943   Enc += "){";
8944 
8945   // We collect all encoded enumerations and order them alphanumerically.
8946   if (const EnumDecl *ED = ET->getDecl()->getDefinition()) {
8947     SmallVector<FieldEncoding, 16> FE;
8948     for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E;
8949          ++I) {
8950       SmallStringEnc EnumEnc;
8951       EnumEnc += "m(";
8952       EnumEnc += I->getName();
8953       EnumEnc += "){";
8954       I->getInitVal().toString(EnumEnc);
8955       EnumEnc += '}';
8956       FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc));
8957     }
8958     llvm::sort(FE);
8959     unsigned E = FE.size();
8960     for (unsigned I = 0; I != E; ++I) {
8961       if (I)
8962         Enc += ',';
8963       Enc += FE[I].str();
8964     }
8965   }
8966   Enc += '}';
8967   TSC.addIfComplete(ID, Enc.substr(Start), false);
8968   return true;
8969 }
8970 
8971 /// Appends type's qualifier to Enc.
8972 /// This is done prior to appending the type's encoding.
8973 static void appendQualifier(SmallStringEnc &Enc, QualType QT) {
8974   // Qualifiers are emitted in alphabetical order.
8975   static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"};
8976   int Lookup = 0;
8977   if (QT.isConstQualified())
8978     Lookup += 1<<0;
8979   if (QT.isRestrictQualified())
8980     Lookup += 1<<1;
8981   if (QT.isVolatileQualified())
8982     Lookup += 1<<2;
8983   Enc += Table[Lookup];
8984 }
8985 
8986 /// Appends built-in types to Enc.
8987 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) {
8988   const char *EncType;
8989   switch (BT->getKind()) {
8990     case BuiltinType::Void:
8991       EncType = "0";
8992       break;
8993     case BuiltinType::Bool:
8994       EncType = "b";
8995       break;
8996     case BuiltinType::Char_U:
8997       EncType = "uc";
8998       break;
8999     case BuiltinType::UChar:
9000       EncType = "uc";
9001       break;
9002     case BuiltinType::SChar:
9003       EncType = "sc";
9004       break;
9005     case BuiltinType::UShort:
9006       EncType = "us";
9007       break;
9008     case BuiltinType::Short:
9009       EncType = "ss";
9010       break;
9011     case BuiltinType::UInt:
9012       EncType = "ui";
9013       break;
9014     case BuiltinType::Int:
9015       EncType = "si";
9016       break;
9017     case BuiltinType::ULong:
9018       EncType = "ul";
9019       break;
9020     case BuiltinType::Long:
9021       EncType = "sl";
9022       break;
9023     case BuiltinType::ULongLong:
9024       EncType = "ull";
9025       break;
9026     case BuiltinType::LongLong:
9027       EncType = "sll";
9028       break;
9029     case BuiltinType::Float:
9030       EncType = "ft";
9031       break;
9032     case BuiltinType::Double:
9033       EncType = "d";
9034       break;
9035     case BuiltinType::LongDouble:
9036       EncType = "ld";
9037       break;
9038     default:
9039       return false;
9040   }
9041   Enc += EncType;
9042   return true;
9043 }
9044 
9045 /// Appends a pointer encoding to Enc before calling appendType for the pointee.
9046 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT,
9047                               const CodeGen::CodeGenModule &CGM,
9048                               TypeStringCache &TSC) {
9049   Enc += "p(";
9050   if (!appendType(Enc, PT->getPointeeType(), CGM, TSC))
9051     return false;
9052   Enc += ')';
9053   return true;
9054 }
9055 
9056 /// Appends array encoding to Enc before calling appendType for the element.
9057 static bool appendArrayType(SmallStringEnc &Enc, QualType QT,
9058                             const ArrayType *AT,
9059                             const CodeGen::CodeGenModule &CGM,
9060                             TypeStringCache &TSC, StringRef NoSizeEnc) {
9061   if (AT->getSizeModifier() != ArrayType::Normal)
9062     return false;
9063   Enc += "a(";
9064   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
9065     CAT->getSize().toStringUnsigned(Enc);
9066   else
9067     Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "".
9068   Enc += ':';
9069   // The Qualifiers should be attached to the type rather than the array.
9070   appendQualifier(Enc, QT);
9071   if (!appendType(Enc, AT->getElementType(), CGM, TSC))
9072     return false;
9073   Enc += ')';
9074   return true;
9075 }
9076 
9077 /// Appends a function encoding to Enc, calling appendType for the return type
9078 /// and the arguments.
9079 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT,
9080                              const CodeGen::CodeGenModule &CGM,
9081                              TypeStringCache &TSC) {
9082   Enc += "f{";
9083   if (!appendType(Enc, FT->getReturnType(), CGM, TSC))
9084     return false;
9085   Enc += "}(";
9086   if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) {
9087     // N.B. we are only interested in the adjusted param types.
9088     auto I = FPT->param_type_begin();
9089     auto E = FPT->param_type_end();
9090     if (I != E) {
9091       do {
9092         if (!appendType(Enc, *I, CGM, TSC))
9093           return false;
9094         ++I;
9095         if (I != E)
9096           Enc += ',';
9097       } while (I != E);
9098       if (FPT->isVariadic())
9099         Enc += ",va";
9100     } else {
9101       if (FPT->isVariadic())
9102         Enc += "va";
9103       else
9104         Enc += '0';
9105     }
9106   }
9107   Enc += ')';
9108   return true;
9109 }
9110 
9111 /// Handles the type's qualifier before dispatching a call to handle specific
9112 /// type encodings.
9113 static bool appendType(SmallStringEnc &Enc, QualType QType,
9114                        const CodeGen::CodeGenModule &CGM,
9115                        TypeStringCache &TSC) {
9116 
9117   QualType QT = QType.getCanonicalType();
9118 
9119   if (const ArrayType *AT = QT->getAsArrayTypeUnsafe())
9120     // The Qualifiers should be attached to the type rather than the array.
9121     // Thus we don't call appendQualifier() here.
9122     return appendArrayType(Enc, QT, AT, CGM, TSC, "");
9123 
9124   appendQualifier(Enc, QT);
9125 
9126   if (const BuiltinType *BT = QT->getAs<BuiltinType>())
9127     return appendBuiltinType(Enc, BT);
9128 
9129   if (const PointerType *PT = QT->getAs<PointerType>())
9130     return appendPointerType(Enc, PT, CGM, TSC);
9131 
9132   if (const EnumType *ET = QT->getAs<EnumType>())
9133     return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier());
9134 
9135   if (const RecordType *RT = QT->getAsStructureType())
9136     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
9137 
9138   if (const RecordType *RT = QT->getAsUnionType())
9139     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
9140 
9141   if (const FunctionType *FT = QT->getAs<FunctionType>())
9142     return appendFunctionType(Enc, FT, CGM, TSC);
9143 
9144   return false;
9145 }
9146 
9147 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
9148                           CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) {
9149   if (!D)
9150     return false;
9151 
9152   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
9153     if (FD->getLanguageLinkage() != CLanguageLinkage)
9154       return false;
9155     return appendType(Enc, FD->getType(), CGM, TSC);
9156   }
9157 
9158   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
9159     if (VD->getLanguageLinkage() != CLanguageLinkage)
9160       return false;
9161     QualType QT = VD->getType().getCanonicalType();
9162     if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) {
9163       // Global ArrayTypes are given a size of '*' if the size is unknown.
9164       // The Qualifiers should be attached to the type rather than the array.
9165       // Thus we don't call appendQualifier() here.
9166       return appendArrayType(Enc, QT, AT, CGM, TSC, "*");
9167     }
9168     return appendType(Enc, QT, CGM, TSC);
9169   }
9170   return false;
9171 }
9172 
9173 //===----------------------------------------------------------------------===//
9174 // RISCV ABI Implementation
9175 //===----------------------------------------------------------------------===//
9176 
9177 namespace {
9178 class RISCVABIInfo : public DefaultABIInfo {
9179 private:
9180   unsigned XLen; // Size of the integer ('x') registers in bits.
9181   static const int NumArgGPRs = 8;
9182 
9183 public:
9184   RISCVABIInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen)
9185       : DefaultABIInfo(CGT), XLen(XLen) {}
9186 
9187   // DefaultABIInfo's classifyReturnType and classifyArgumentType are
9188   // non-virtual, but computeInfo is virtual, so we overload it.
9189   void computeInfo(CGFunctionInfo &FI) const override;
9190 
9191   ABIArgInfo classifyArgumentType(QualType Ty, bool IsFixed,
9192                                   int &ArgGPRsLeft) const;
9193   ABIArgInfo classifyReturnType(QualType RetTy) const;
9194 
9195   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9196                     QualType Ty) const override;
9197 
9198   ABIArgInfo extendType(QualType Ty) const;
9199 };
9200 } // end anonymous namespace
9201 
9202 void RISCVABIInfo::computeInfo(CGFunctionInfo &FI) const {
9203   QualType RetTy = FI.getReturnType();
9204   if (!getCXXABI().classifyReturnType(FI))
9205     FI.getReturnInfo() = classifyReturnType(RetTy);
9206 
9207   // IsRetIndirect is true if classifyArgumentType indicated the value should
9208   // be passed indirect or if the type size is greater than 2*xlen. e.g. fp128
9209   // is passed direct in LLVM IR, relying on the backend lowering code to
9210   // rewrite the argument list and pass indirectly on RV32.
9211   bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect ||
9212                        getContext().getTypeSize(RetTy) > (2 * XLen);
9213 
9214   // We must track the number of GPRs used in order to conform to the RISC-V
9215   // ABI, as integer scalars passed in registers should have signext/zeroext
9216   // when promoted, but are anyext if passed on the stack. As GPR usage is
9217   // different for variadic arguments, we must also track whether we are
9218   // examining a vararg or not.
9219   int ArgGPRsLeft = IsRetIndirect ? NumArgGPRs - 1 : NumArgGPRs;
9220   int NumFixedArgs = FI.getNumRequiredArgs();
9221 
9222   int ArgNum = 0;
9223   for (auto &ArgInfo : FI.arguments()) {
9224     bool IsFixed = ArgNum < NumFixedArgs;
9225     ArgInfo.info = classifyArgumentType(ArgInfo.type, IsFixed, ArgGPRsLeft);
9226     ArgNum++;
9227   }
9228 }
9229 
9230 ABIArgInfo RISCVABIInfo::classifyArgumentType(QualType Ty, bool IsFixed,
9231                                               int &ArgGPRsLeft) const {
9232   assert(ArgGPRsLeft <= NumArgGPRs && "Arg GPR tracking underflow");
9233   Ty = useFirstFieldIfTransparentUnion(Ty);
9234 
9235   // Structures with either a non-trivial destructor or a non-trivial
9236   // copy constructor are always passed indirectly.
9237   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
9238     if (ArgGPRsLeft)
9239       ArgGPRsLeft -= 1;
9240     return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
9241                                            CGCXXABI::RAA_DirectInMemory);
9242   }
9243 
9244   // Ignore empty structs/unions.
9245   if (isEmptyRecord(getContext(), Ty, true))
9246     return ABIArgInfo::getIgnore();
9247 
9248   uint64_t Size = getContext().getTypeSize(Ty);
9249   uint64_t NeededAlign = getContext().getTypeAlign(Ty);
9250   bool MustUseStack = false;
9251   // Determine the number of GPRs needed to pass the current argument
9252   // according to the ABI. 2*XLen-aligned varargs are passed in "aligned"
9253   // register pairs, so may consume 3 registers.
9254   int NeededArgGPRs = 1;
9255   if (!IsFixed && NeededAlign == 2 * XLen)
9256     NeededArgGPRs = 2 + (ArgGPRsLeft % 2);
9257   else if (Size > XLen && Size <= 2 * XLen)
9258     NeededArgGPRs = 2;
9259 
9260   if (NeededArgGPRs > ArgGPRsLeft) {
9261     MustUseStack = true;
9262     NeededArgGPRs = ArgGPRsLeft;
9263   }
9264 
9265   ArgGPRsLeft -= NeededArgGPRs;
9266 
9267   if (!isAggregateTypeForABI(Ty) && !Ty->isVectorType()) {
9268     // Treat an enum type as its underlying type.
9269     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
9270       Ty = EnumTy->getDecl()->getIntegerType();
9271 
9272     // All integral types are promoted to XLen width, unless passed on the
9273     // stack.
9274     if (Size < XLen && Ty->isIntegralOrEnumerationType() && !MustUseStack) {
9275       return extendType(Ty);
9276     }
9277 
9278     return ABIArgInfo::getDirect();
9279   }
9280 
9281   // Aggregates which are <= 2*XLen will be passed in registers if possible,
9282   // so coerce to integers.
9283   if (Size <= 2 * XLen) {
9284     unsigned Alignment = getContext().getTypeAlign(Ty);
9285 
9286     // Use a single XLen int if possible, 2*XLen if 2*XLen alignment is
9287     // required, and a 2-element XLen array if only XLen alignment is required.
9288     if (Size <= XLen) {
9289       return ABIArgInfo::getDirect(
9290           llvm::IntegerType::get(getVMContext(), XLen));
9291     } else if (Alignment == 2 * XLen) {
9292       return ABIArgInfo::getDirect(
9293           llvm::IntegerType::get(getVMContext(), 2 * XLen));
9294     } else {
9295       return ABIArgInfo::getDirect(llvm::ArrayType::get(
9296           llvm::IntegerType::get(getVMContext(), XLen), 2));
9297     }
9298   }
9299   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
9300 }
9301 
9302 ABIArgInfo RISCVABIInfo::classifyReturnType(QualType RetTy) const {
9303   if (RetTy->isVoidType())
9304     return ABIArgInfo::getIgnore();
9305 
9306   int ArgGPRsLeft = 2;
9307 
9308   // The rules for return and argument types are the same, so defer to
9309   // classifyArgumentType.
9310   return classifyArgumentType(RetTy, /*IsFixed=*/true, ArgGPRsLeft);
9311 }
9312 
9313 Address RISCVABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9314                                 QualType Ty) const {
9315   CharUnits SlotSize = CharUnits::fromQuantity(XLen / 8);
9316 
9317   // Empty records are ignored for parameter passing purposes.
9318   if (isEmptyRecord(getContext(), Ty, true)) {
9319     Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize);
9320     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
9321     return Addr;
9322   }
9323 
9324   std::pair<CharUnits, CharUnits> SizeAndAlign =
9325       getContext().getTypeInfoInChars(Ty);
9326 
9327   // Arguments bigger than 2*Xlen bytes are passed indirectly.
9328   bool IsIndirect = SizeAndAlign.first > 2 * SlotSize;
9329 
9330   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, SizeAndAlign,
9331                           SlotSize, /*AllowHigherAlign=*/true);
9332 }
9333 
9334 ABIArgInfo RISCVABIInfo::extendType(QualType Ty) const {
9335   int TySize = getContext().getTypeSize(Ty);
9336   // RV64 ABI requires unsigned 32 bit integers to be sign extended.
9337   if (XLen == 64 && Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
9338     return ABIArgInfo::getSignExtend(Ty);
9339   return ABIArgInfo::getExtend(Ty);
9340 }
9341 
9342 namespace {
9343 class RISCVTargetCodeGenInfo : public TargetCodeGenInfo {
9344 public:
9345   RISCVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen)
9346       : TargetCodeGenInfo(new RISCVABIInfo(CGT, XLen)) {}
9347 
9348   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
9349                            CodeGen::CodeGenModule &CGM) const override {
9350     const auto *FD = dyn_cast_or_null<FunctionDecl>(D);
9351     if (!FD) return;
9352 
9353     const auto *Attr = FD->getAttr<RISCVInterruptAttr>();
9354     if (!Attr)
9355       return;
9356 
9357     const char *Kind;
9358     switch (Attr->getInterrupt()) {
9359     case RISCVInterruptAttr::user: Kind = "user"; break;
9360     case RISCVInterruptAttr::supervisor: Kind = "supervisor"; break;
9361     case RISCVInterruptAttr::machine: Kind = "machine"; break;
9362     }
9363 
9364     auto *Fn = cast<llvm::Function>(GV);
9365 
9366     Fn->addFnAttr("interrupt", Kind);
9367   }
9368 };
9369 } // namespace
9370 
9371 //===----------------------------------------------------------------------===//
9372 // Driver code
9373 //===----------------------------------------------------------------------===//
9374 
9375 bool CodeGenModule::supportsCOMDAT() const {
9376   return getTriple().supportsCOMDAT();
9377 }
9378 
9379 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
9380   if (TheTargetCodeGenInfo)
9381     return *TheTargetCodeGenInfo;
9382 
9383   // Helper to set the unique_ptr while still keeping the return value.
9384   auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & {
9385     this->TheTargetCodeGenInfo.reset(P);
9386     return *P;
9387   };
9388 
9389   const llvm::Triple &Triple = getTarget().getTriple();
9390   switch (Triple.getArch()) {
9391   default:
9392     return SetCGInfo(new DefaultTargetCodeGenInfo(Types));
9393 
9394   case llvm::Triple::le32:
9395     return SetCGInfo(new PNaClTargetCodeGenInfo(Types));
9396   case llvm::Triple::mips:
9397   case llvm::Triple::mipsel:
9398     if (Triple.getOS() == llvm::Triple::NaCl)
9399       return SetCGInfo(new PNaClTargetCodeGenInfo(Types));
9400     return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true));
9401 
9402   case llvm::Triple::mips64:
9403   case llvm::Triple::mips64el:
9404     return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false));
9405 
9406   case llvm::Triple::avr:
9407     return SetCGInfo(new AVRTargetCodeGenInfo(Types));
9408 
9409   case llvm::Triple::aarch64:
9410   case llvm::Triple::aarch64_be: {
9411     AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS;
9412     if (getTarget().getABI() == "darwinpcs")
9413       Kind = AArch64ABIInfo::DarwinPCS;
9414     else if (Triple.isOSWindows())
9415       return SetCGInfo(
9416           new WindowsAArch64TargetCodeGenInfo(Types, AArch64ABIInfo::Win64));
9417 
9418     return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind));
9419   }
9420 
9421   case llvm::Triple::wasm32:
9422   case llvm::Triple::wasm64:
9423     return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types));
9424 
9425   case llvm::Triple::arm:
9426   case llvm::Triple::armeb:
9427   case llvm::Triple::thumb:
9428   case llvm::Triple::thumbeb: {
9429     if (Triple.getOS() == llvm::Triple::Win32) {
9430       return SetCGInfo(
9431           new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP));
9432     }
9433 
9434     ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
9435     StringRef ABIStr = getTarget().getABI();
9436     if (ABIStr == "apcs-gnu")
9437       Kind = ARMABIInfo::APCS;
9438     else if (ABIStr == "aapcs16")
9439       Kind = ARMABIInfo::AAPCS16_VFP;
9440     else if (CodeGenOpts.FloatABI == "hard" ||
9441              (CodeGenOpts.FloatABI != "soft" &&
9442               (Triple.getEnvironment() == llvm::Triple::GNUEABIHF ||
9443                Triple.getEnvironment() == llvm::Triple::MuslEABIHF ||
9444                Triple.getEnvironment() == llvm::Triple::EABIHF)))
9445       Kind = ARMABIInfo::AAPCS_VFP;
9446 
9447     return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind));
9448   }
9449 
9450   case llvm::Triple::ppc:
9451     return SetCGInfo(
9452         new PPC32TargetCodeGenInfo(Types, CodeGenOpts.FloatABI == "soft"));
9453   case llvm::Triple::ppc64:
9454     if (Triple.isOSBinFormatELF()) {
9455       PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1;
9456       if (getTarget().getABI() == "elfv2")
9457         Kind = PPC64_SVR4_ABIInfo::ELFv2;
9458       bool HasQPX = getTarget().getABI() == "elfv1-qpx";
9459       bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
9460 
9461       return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX,
9462                                                         IsSoftFloat));
9463     } else
9464       return SetCGInfo(new PPC64TargetCodeGenInfo(Types));
9465   case llvm::Triple::ppc64le: {
9466     assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
9467     PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2;
9468     if (getTarget().getABI() == "elfv1" || getTarget().getABI() == "elfv1-qpx")
9469       Kind = PPC64_SVR4_ABIInfo::ELFv1;
9470     bool HasQPX = getTarget().getABI() == "elfv1-qpx";
9471     bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
9472 
9473     return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX,
9474                                                       IsSoftFloat));
9475   }
9476 
9477   case llvm::Triple::nvptx:
9478   case llvm::Triple::nvptx64:
9479     return SetCGInfo(new NVPTXTargetCodeGenInfo(Types));
9480 
9481   case llvm::Triple::msp430:
9482     return SetCGInfo(new MSP430TargetCodeGenInfo(Types));
9483 
9484   case llvm::Triple::riscv32:
9485     return SetCGInfo(new RISCVTargetCodeGenInfo(Types, 32));
9486   case llvm::Triple::riscv64:
9487     return SetCGInfo(new RISCVTargetCodeGenInfo(Types, 64));
9488 
9489   case llvm::Triple::systemz: {
9490     bool HasVector = getTarget().getABI() == "vector";
9491     return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector));
9492   }
9493 
9494   case llvm::Triple::tce:
9495   case llvm::Triple::tcele:
9496     return SetCGInfo(new TCETargetCodeGenInfo(Types));
9497 
9498   case llvm::Triple::x86: {
9499     bool IsDarwinVectorABI = Triple.isOSDarwin();
9500     bool RetSmallStructInRegABI =
9501         X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
9502     bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing();
9503 
9504     if (Triple.getOS() == llvm::Triple::Win32) {
9505       return SetCGInfo(new WinX86_32TargetCodeGenInfo(
9506           Types, IsDarwinVectorABI, RetSmallStructInRegABI,
9507           IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters));
9508     } else {
9509       bool EnableMMX = getContext().getTargetInfo().getABI() != "no-mmx";
9510       return SetCGInfo(new X86_32TargetCodeGenInfo(
9511           Types, IsDarwinVectorABI, RetSmallStructInRegABI,
9512           IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters,
9513           CodeGenOpts.FloatABI == "soft", EnableMMX));
9514     }
9515   }
9516 
9517   case llvm::Triple::x86_64: {
9518     StringRef ABI = getTarget().getABI();
9519     X86AVXABILevel AVXLevel =
9520         (ABI == "avx512"
9521              ? X86AVXABILevel::AVX512
9522              : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None);
9523 
9524     switch (Triple.getOS()) {
9525     case llvm::Triple::Win32:
9526       return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel));
9527     default:
9528       return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel));
9529     }
9530   }
9531   case llvm::Triple::hexagon:
9532     return SetCGInfo(new HexagonTargetCodeGenInfo(Types));
9533   case llvm::Triple::lanai:
9534     return SetCGInfo(new LanaiTargetCodeGenInfo(Types));
9535   case llvm::Triple::r600:
9536     return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types));
9537   case llvm::Triple::amdgcn:
9538     return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types));
9539   case llvm::Triple::sparc:
9540     return SetCGInfo(new SparcV8TargetCodeGenInfo(Types));
9541   case llvm::Triple::sparcv9:
9542     return SetCGInfo(new SparcV9TargetCodeGenInfo(Types));
9543   case llvm::Triple::xcore:
9544     return SetCGInfo(new XCoreTargetCodeGenInfo(Types));
9545   case llvm::Triple::arc:
9546     return SetCGInfo(new ARCTargetCodeGenInfo(Types));
9547   case llvm::Triple::spir:
9548   case llvm::Triple::spir64:
9549     return SetCGInfo(new SPIRTargetCodeGenInfo(Types));
9550   }
9551 }
9552 
9553 /// Create an OpenCL kernel for an enqueued block.
9554 ///
9555 /// The kernel has the same function type as the block invoke function. Its
9556 /// name is the name of the block invoke function postfixed with "_kernel".
9557 /// It simply calls the block invoke function then returns.
9558 llvm::Function *
9559 TargetCodeGenInfo::createEnqueuedBlockKernel(CodeGenFunction &CGF,
9560                                              llvm::Function *Invoke,
9561                                              llvm::Value *BlockLiteral) const {
9562   auto *InvokeFT = Invoke->getFunctionType();
9563   llvm::SmallVector<llvm::Type *, 2> ArgTys;
9564   for (auto &P : InvokeFT->params())
9565     ArgTys.push_back(P);
9566   auto &C = CGF.getLLVMContext();
9567   std::string Name = Invoke->getName().str() + "_kernel";
9568   auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false);
9569   auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name,
9570                                    &CGF.CGM.getModule());
9571   auto IP = CGF.Builder.saveIP();
9572   auto *BB = llvm::BasicBlock::Create(C, "entry", F);
9573   auto &Builder = CGF.Builder;
9574   Builder.SetInsertPoint(BB);
9575   llvm::SmallVector<llvm::Value *, 2> Args;
9576   for (auto &A : F->args())
9577     Args.push_back(&A);
9578   Builder.CreateCall(Invoke, Args);
9579   Builder.CreateRetVoid();
9580   Builder.restoreIP(IP);
9581   return F;
9582 }
9583 
9584 /// Create an OpenCL kernel for an enqueued block.
9585 ///
9586 /// The type of the first argument (the block literal) is the struct type
9587 /// of the block literal instead of a pointer type. The first argument
9588 /// (block literal) is passed directly by value to the kernel. The kernel
9589 /// allocates the same type of struct on stack and stores the block literal
9590 /// to it and passes its pointer to the block invoke function. The kernel
9591 /// has "enqueued-block" function attribute and kernel argument metadata.
9592 llvm::Function *AMDGPUTargetCodeGenInfo::createEnqueuedBlockKernel(
9593     CodeGenFunction &CGF, llvm::Function *Invoke,
9594     llvm::Value *BlockLiteral) const {
9595   auto &Builder = CGF.Builder;
9596   auto &C = CGF.getLLVMContext();
9597 
9598   auto *BlockTy = BlockLiteral->getType()->getPointerElementType();
9599   auto *InvokeFT = Invoke->getFunctionType();
9600   llvm::SmallVector<llvm::Type *, 2> ArgTys;
9601   llvm::SmallVector<llvm::Metadata *, 8> AddressQuals;
9602   llvm::SmallVector<llvm::Metadata *, 8> AccessQuals;
9603   llvm::SmallVector<llvm::Metadata *, 8> ArgTypeNames;
9604   llvm::SmallVector<llvm::Metadata *, 8> ArgBaseTypeNames;
9605   llvm::SmallVector<llvm::Metadata *, 8> ArgTypeQuals;
9606   llvm::SmallVector<llvm::Metadata *, 8> ArgNames;
9607 
9608   ArgTys.push_back(BlockTy);
9609   ArgTypeNames.push_back(llvm::MDString::get(C, "__block_literal"));
9610   AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(0)));
9611   ArgBaseTypeNames.push_back(llvm::MDString::get(C, "__block_literal"));
9612   ArgTypeQuals.push_back(llvm::MDString::get(C, ""));
9613   AccessQuals.push_back(llvm::MDString::get(C, "none"));
9614   ArgNames.push_back(llvm::MDString::get(C, "block_literal"));
9615   for (unsigned I = 1, E = InvokeFT->getNumParams(); I < E; ++I) {
9616     ArgTys.push_back(InvokeFT->getParamType(I));
9617     ArgTypeNames.push_back(llvm::MDString::get(C, "void*"));
9618     AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(3)));
9619     AccessQuals.push_back(llvm::MDString::get(C, "none"));
9620     ArgBaseTypeNames.push_back(llvm::MDString::get(C, "void*"));
9621     ArgTypeQuals.push_back(llvm::MDString::get(C, ""));
9622     ArgNames.push_back(
9623         llvm::MDString::get(C, (Twine("local_arg") + Twine(I)).str()));
9624   }
9625   std::string Name = Invoke->getName().str() + "_kernel";
9626   auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false);
9627   auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name,
9628                                    &CGF.CGM.getModule());
9629   F->addFnAttr("enqueued-block");
9630   auto IP = CGF.Builder.saveIP();
9631   auto *BB = llvm::BasicBlock::Create(C, "entry", F);
9632   Builder.SetInsertPoint(BB);
9633   unsigned BlockAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(BlockTy);
9634   auto *BlockPtr = Builder.CreateAlloca(BlockTy, nullptr);
9635   BlockPtr->setAlignment(BlockAlign);
9636   Builder.CreateAlignedStore(F->arg_begin(), BlockPtr, BlockAlign);
9637   auto *Cast = Builder.CreatePointerCast(BlockPtr, InvokeFT->getParamType(0));
9638   llvm::SmallVector<llvm::Value *, 2> Args;
9639   Args.push_back(Cast);
9640   for (auto I = F->arg_begin() + 1, E = F->arg_end(); I != E; ++I)
9641     Args.push_back(I);
9642   Builder.CreateCall(Invoke, Args);
9643   Builder.CreateRetVoid();
9644   Builder.restoreIP(IP);
9645 
9646   F->setMetadata("kernel_arg_addr_space", llvm::MDNode::get(C, AddressQuals));
9647   F->setMetadata("kernel_arg_access_qual", llvm::MDNode::get(C, AccessQuals));
9648   F->setMetadata("kernel_arg_type", llvm::MDNode::get(C, ArgTypeNames));
9649   F->setMetadata("kernel_arg_base_type",
9650                  llvm::MDNode::get(C, ArgBaseTypeNames));
9651   F->setMetadata("kernel_arg_type_qual", llvm::MDNode::get(C, ArgTypeQuals));
9652   if (CGF.CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
9653     F->setMetadata("kernel_arg_name", llvm::MDNode::get(C, ArgNames));
9654 
9655   return F;
9656 }
9657