1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // These classes wrap the information about a call or function 10 // definition used to handle ABI compliancy. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "TargetInfo.h" 15 #include "ABIInfo.h" 16 #include "CGBlocks.h" 17 #include "CGCXXABI.h" 18 #include "CGValue.h" 19 #include "CodeGenFunction.h" 20 #include "clang/AST/Attr.h" 21 #include "clang/AST/RecordLayout.h" 22 #include "clang/Basic/CodeGenOptions.h" 23 #include "clang/Basic/DiagnosticFrontend.h" 24 #include "clang/Basic/Builtins.h" 25 #include "clang/CodeGen/CGFunctionInfo.h" 26 #include "clang/CodeGen/SwiftCallingConv.h" 27 #include "llvm/ADT/SmallBitVector.h" 28 #include "llvm/ADT/StringExtras.h" 29 #include "llvm/ADT/StringSwitch.h" 30 #include "llvm/ADT/Triple.h" 31 #include "llvm/ADT/Twine.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/IntrinsicsNVPTX.h" 34 #include "llvm/IR/IntrinsicsS390.h" 35 #include "llvm/IR/Type.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include <algorithm> // std::sort 38 39 using namespace clang; 40 using namespace CodeGen; 41 42 // Helper for coercing an aggregate argument or return value into an integer 43 // array of the same size (including padding) and alignment. This alternate 44 // coercion happens only for the RenderScript ABI and can be removed after 45 // runtimes that rely on it are no longer supported. 46 // 47 // RenderScript assumes that the size of the argument / return value in the IR 48 // is the same as the size of the corresponding qualified type. This helper 49 // coerces the aggregate type into an array of the same size (including 50 // padding). This coercion is used in lieu of expansion of struct members or 51 // other canonical coercions that return a coerced-type of larger size. 52 // 53 // Ty - The argument / return value type 54 // Context - The associated ASTContext 55 // LLVMContext - The associated LLVMContext 56 static ABIArgInfo coerceToIntArray(QualType Ty, 57 ASTContext &Context, 58 llvm::LLVMContext &LLVMContext) { 59 // Alignment and Size are measured in bits. 60 const uint64_t Size = Context.getTypeSize(Ty); 61 const uint64_t Alignment = Context.getTypeAlign(Ty); 62 llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment); 63 const uint64_t NumElements = (Size + Alignment - 1) / Alignment; 64 return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements)); 65 } 66 67 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder, 68 llvm::Value *Array, 69 llvm::Value *Value, 70 unsigned FirstIndex, 71 unsigned LastIndex) { 72 // Alternatively, we could emit this as a loop in the source. 73 for (unsigned I = FirstIndex; I <= LastIndex; ++I) { 74 llvm::Value *Cell = 75 Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I); 76 Builder.CreateAlignedStore(Value, Cell, CharUnits::One()); 77 } 78 } 79 80 static bool isAggregateTypeForABI(QualType T) { 81 return !CodeGenFunction::hasScalarEvaluationKind(T) || 82 T->isMemberFunctionPointerType(); 83 } 84 85 ABIArgInfo ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByVal, 86 bool Realign, 87 llvm::Type *Padding) const { 88 return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty), ByVal, 89 Realign, Padding); 90 } 91 92 ABIArgInfo 93 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const { 94 return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty), 95 /*ByVal*/ false, Realign); 96 } 97 98 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 99 QualType Ty) const { 100 return Address::invalid(); 101 } 102 103 bool ABIInfo::isPromotableIntegerTypeForABI(QualType Ty) const { 104 if (Ty->isPromotableIntegerType()) 105 return true; 106 107 if (const auto *EIT = Ty->getAs<ExtIntType>()) 108 if (EIT->getNumBits() < getContext().getTypeSize(getContext().IntTy)) 109 return true; 110 111 return false; 112 } 113 114 ABIInfo::~ABIInfo() {} 115 116 /// Does the given lowering require more than the given number of 117 /// registers when expanded? 118 /// 119 /// This is intended to be the basis of a reasonable basic implementation 120 /// of should{Pass,Return}IndirectlyForSwift. 121 /// 122 /// For most targets, a limit of four total registers is reasonable; this 123 /// limits the amount of code required in order to move around the value 124 /// in case it wasn't produced immediately prior to the call by the caller 125 /// (or wasn't produced in exactly the right registers) or isn't used 126 /// immediately within the callee. But some targets may need to further 127 /// limit the register count due to an inability to support that many 128 /// return registers. 129 static bool occupiesMoreThan(CodeGenTypes &cgt, 130 ArrayRef<llvm::Type*> scalarTypes, 131 unsigned maxAllRegisters) { 132 unsigned intCount = 0, fpCount = 0; 133 for (llvm::Type *type : scalarTypes) { 134 if (type->isPointerTy()) { 135 intCount++; 136 } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) { 137 auto ptrWidth = cgt.getTarget().getPointerWidth(0); 138 intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth; 139 } else { 140 assert(type->isVectorTy() || type->isFloatingPointTy()); 141 fpCount++; 142 } 143 } 144 145 return (intCount + fpCount > maxAllRegisters); 146 } 147 148 bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, 149 llvm::Type *eltTy, 150 unsigned numElts) const { 151 // The default implementation of this assumes that the target guarantees 152 // 128-bit SIMD support but nothing more. 153 return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16); 154 } 155 156 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT, 157 CGCXXABI &CXXABI) { 158 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); 159 if (!RD) { 160 if (!RT->getDecl()->canPassInRegisters()) 161 return CGCXXABI::RAA_Indirect; 162 return CGCXXABI::RAA_Default; 163 } 164 return CXXABI.getRecordArgABI(RD); 165 } 166 167 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T, 168 CGCXXABI &CXXABI) { 169 const RecordType *RT = T->getAs<RecordType>(); 170 if (!RT) 171 return CGCXXABI::RAA_Default; 172 return getRecordArgABI(RT, CXXABI); 173 } 174 175 static bool classifyReturnType(const CGCXXABI &CXXABI, CGFunctionInfo &FI, 176 const ABIInfo &Info) { 177 QualType Ty = FI.getReturnType(); 178 179 if (const auto *RT = Ty->getAs<RecordType>()) 180 if (!isa<CXXRecordDecl>(RT->getDecl()) && 181 !RT->getDecl()->canPassInRegisters()) { 182 FI.getReturnInfo() = Info.getNaturalAlignIndirect(Ty); 183 return true; 184 } 185 186 return CXXABI.classifyReturnType(FI); 187 } 188 189 /// Pass transparent unions as if they were the type of the first element. Sema 190 /// should ensure that all elements of the union have the same "machine type". 191 static QualType useFirstFieldIfTransparentUnion(QualType Ty) { 192 if (const RecordType *UT = Ty->getAsUnionType()) { 193 const RecordDecl *UD = UT->getDecl(); 194 if (UD->hasAttr<TransparentUnionAttr>()) { 195 assert(!UD->field_empty() && "sema created an empty transparent union"); 196 return UD->field_begin()->getType(); 197 } 198 } 199 return Ty; 200 } 201 202 CGCXXABI &ABIInfo::getCXXABI() const { 203 return CGT.getCXXABI(); 204 } 205 206 ASTContext &ABIInfo::getContext() const { 207 return CGT.getContext(); 208 } 209 210 llvm::LLVMContext &ABIInfo::getVMContext() const { 211 return CGT.getLLVMContext(); 212 } 213 214 const llvm::DataLayout &ABIInfo::getDataLayout() const { 215 return CGT.getDataLayout(); 216 } 217 218 const TargetInfo &ABIInfo::getTarget() const { 219 return CGT.getTarget(); 220 } 221 222 const CodeGenOptions &ABIInfo::getCodeGenOpts() const { 223 return CGT.getCodeGenOpts(); 224 } 225 226 bool ABIInfo::isAndroid() const { return getTarget().getTriple().isAndroid(); } 227 228 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 229 return false; 230 } 231 232 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 233 uint64_t Members) const { 234 return false; 235 } 236 237 LLVM_DUMP_METHOD void ABIArgInfo::dump() const { 238 raw_ostream &OS = llvm::errs(); 239 OS << "(ABIArgInfo Kind="; 240 switch (TheKind) { 241 case Direct: 242 OS << "Direct Type="; 243 if (llvm::Type *Ty = getCoerceToType()) 244 Ty->print(OS); 245 else 246 OS << "null"; 247 break; 248 case Extend: 249 OS << "Extend"; 250 break; 251 case Ignore: 252 OS << "Ignore"; 253 break; 254 case InAlloca: 255 OS << "InAlloca Offset=" << getInAllocaFieldIndex(); 256 break; 257 case Indirect: 258 OS << "Indirect Align=" << getIndirectAlign().getQuantity() 259 << " ByVal=" << getIndirectByVal() 260 << " Realign=" << getIndirectRealign(); 261 break; 262 case IndirectAliased: 263 OS << "Indirect Align=" << getIndirectAlign().getQuantity() 264 << " AadrSpace=" << getIndirectAddrSpace() 265 << " Realign=" << getIndirectRealign(); 266 break; 267 case Expand: 268 OS << "Expand"; 269 break; 270 case CoerceAndExpand: 271 OS << "CoerceAndExpand Type="; 272 getCoerceAndExpandType()->print(OS); 273 break; 274 } 275 OS << ")\n"; 276 } 277 278 // Dynamically round a pointer up to a multiple of the given alignment. 279 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF, 280 llvm::Value *Ptr, 281 CharUnits Align) { 282 llvm::Value *PtrAsInt = Ptr; 283 // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align; 284 PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy); 285 PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt, 286 llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1)); 287 PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt, 288 llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity())); 289 PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt, 290 Ptr->getType(), 291 Ptr->getName() + ".aligned"); 292 return PtrAsInt; 293 } 294 295 /// Emit va_arg for a platform using the common void* representation, 296 /// where arguments are simply emitted in an array of slots on the stack. 297 /// 298 /// This version implements the core direct-value passing rules. 299 /// 300 /// \param SlotSize - The size and alignment of a stack slot. 301 /// Each argument will be allocated to a multiple of this number of 302 /// slots, and all the slots will be aligned to this value. 303 /// \param AllowHigherAlign - The slot alignment is not a cap; 304 /// an argument type with an alignment greater than the slot size 305 /// will be emitted on a higher-alignment address, potentially 306 /// leaving one or more empty slots behind as padding. If this 307 /// is false, the returned address might be less-aligned than 308 /// DirectAlign. 309 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF, 310 Address VAListAddr, 311 llvm::Type *DirectTy, 312 CharUnits DirectSize, 313 CharUnits DirectAlign, 314 CharUnits SlotSize, 315 bool AllowHigherAlign) { 316 // Cast the element type to i8* if necessary. Some platforms define 317 // va_list as a struct containing an i8* instead of just an i8*. 318 if (VAListAddr.getElementType() != CGF.Int8PtrTy) 319 VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy); 320 321 llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur"); 322 323 // If the CC aligns values higher than the slot size, do so if needed. 324 Address Addr = Address::invalid(); 325 if (AllowHigherAlign && DirectAlign > SlotSize) { 326 Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign), 327 DirectAlign); 328 } else { 329 Addr = Address(Ptr, SlotSize); 330 } 331 332 // Advance the pointer past the argument, then store that back. 333 CharUnits FullDirectSize = DirectSize.alignTo(SlotSize); 334 Address NextPtr = 335 CGF.Builder.CreateConstInBoundsByteGEP(Addr, FullDirectSize, "argp.next"); 336 CGF.Builder.CreateStore(NextPtr.getPointer(), VAListAddr); 337 338 // If the argument is smaller than a slot, and this is a big-endian 339 // target, the argument will be right-adjusted in its slot. 340 if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() && 341 !DirectTy->isStructTy()) { 342 Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize); 343 } 344 345 Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy); 346 return Addr; 347 } 348 349 /// Emit va_arg for a platform using the common void* representation, 350 /// where arguments are simply emitted in an array of slots on the stack. 351 /// 352 /// \param IsIndirect - Values of this type are passed indirectly. 353 /// \param ValueInfo - The size and alignment of this type, generally 354 /// computed with getContext().getTypeInfoInChars(ValueTy). 355 /// \param SlotSizeAndAlign - The size and alignment of a stack slot. 356 /// Each argument will be allocated to a multiple of this number of 357 /// slots, and all the slots will be aligned to this value. 358 /// \param AllowHigherAlign - The slot alignment is not a cap; 359 /// an argument type with an alignment greater than the slot size 360 /// will be emitted on a higher-alignment address, potentially 361 /// leaving one or more empty slots behind as padding. 362 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr, 363 QualType ValueTy, bool IsIndirect, 364 TypeInfoChars ValueInfo, 365 CharUnits SlotSizeAndAlign, 366 bool AllowHigherAlign) { 367 // The size and alignment of the value that was passed directly. 368 CharUnits DirectSize, DirectAlign; 369 if (IsIndirect) { 370 DirectSize = CGF.getPointerSize(); 371 DirectAlign = CGF.getPointerAlign(); 372 } else { 373 DirectSize = ValueInfo.Width; 374 DirectAlign = ValueInfo.Align; 375 } 376 377 // Cast the address we've calculated to the right type. 378 llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy); 379 if (IsIndirect) 380 DirectTy = DirectTy->getPointerTo(0); 381 382 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy, 383 DirectSize, DirectAlign, 384 SlotSizeAndAlign, 385 AllowHigherAlign); 386 387 if (IsIndirect) { 388 Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.Align); 389 } 390 391 return Addr; 392 393 } 394 395 static Address emitMergePHI(CodeGenFunction &CGF, 396 Address Addr1, llvm::BasicBlock *Block1, 397 Address Addr2, llvm::BasicBlock *Block2, 398 const llvm::Twine &Name = "") { 399 assert(Addr1.getType() == Addr2.getType()); 400 llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name); 401 PHI->addIncoming(Addr1.getPointer(), Block1); 402 PHI->addIncoming(Addr2.getPointer(), Block2); 403 CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment()); 404 return Address(PHI, Align); 405 } 406 407 TargetCodeGenInfo::~TargetCodeGenInfo() = default; 408 409 // If someone can figure out a general rule for this, that would be great. 410 // It's probably just doomed to be platform-dependent, though. 411 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const { 412 // Verified for: 413 // x86-64 FreeBSD, Linux, Darwin 414 // x86-32 FreeBSD, Linux, Darwin 415 // PowerPC Linux, Darwin 416 // ARM Darwin (*not* EABI) 417 // AArch64 Linux 418 return 32; 419 } 420 421 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args, 422 const FunctionNoProtoType *fnType) const { 423 // The following conventions are known to require this to be false: 424 // x86_stdcall 425 // MIPS 426 // For everything else, we just prefer false unless we opt out. 427 return false; 428 } 429 430 void 431 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib, 432 llvm::SmallString<24> &Opt) const { 433 // This assumes the user is passing a library name like "rt" instead of a 434 // filename like "librt.a/so", and that they don't care whether it's static or 435 // dynamic. 436 Opt = "-l"; 437 Opt += Lib; 438 } 439 440 unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const { 441 // OpenCL kernels are called via an explicit runtime API with arguments 442 // set with clSetKernelArg(), not as normal sub-functions. 443 // Return SPIR_KERNEL by default as the kernel calling convention to 444 // ensure the fingerprint is fixed such way that each OpenCL argument 445 // gets one matching argument in the produced kernel function argument 446 // list to enable feasible implementation of clSetKernelArg() with 447 // aggregates etc. In case we would use the default C calling conv here, 448 // clSetKernelArg() might break depending on the target-specific 449 // conventions; different targets might split structs passed as values 450 // to multiple function arguments etc. 451 return llvm::CallingConv::SPIR_KERNEL; 452 } 453 454 llvm::Constant *TargetCodeGenInfo::getNullPointer(const CodeGen::CodeGenModule &CGM, 455 llvm::PointerType *T, QualType QT) const { 456 return llvm::ConstantPointerNull::get(T); 457 } 458 459 LangAS TargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM, 460 const VarDecl *D) const { 461 assert(!CGM.getLangOpts().OpenCL && 462 !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && 463 "Address space agnostic languages only"); 464 return D ? D->getType().getAddressSpace() : LangAS::Default; 465 } 466 467 llvm::Value *TargetCodeGenInfo::performAddrSpaceCast( 468 CodeGen::CodeGenFunction &CGF, llvm::Value *Src, LangAS SrcAddr, 469 LangAS DestAddr, llvm::Type *DestTy, bool isNonNull) const { 470 // Since target may map different address spaces in AST to the same address 471 // space, an address space conversion may end up as a bitcast. 472 if (auto *C = dyn_cast<llvm::Constant>(Src)) 473 return performAddrSpaceCast(CGF.CGM, C, SrcAddr, DestAddr, DestTy); 474 // Try to preserve the source's name to make IR more readable. 475 return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 476 Src, DestTy, Src->hasName() ? Src->getName() + ".ascast" : ""); 477 } 478 479 llvm::Constant * 480 TargetCodeGenInfo::performAddrSpaceCast(CodeGenModule &CGM, llvm::Constant *Src, 481 LangAS SrcAddr, LangAS DestAddr, 482 llvm::Type *DestTy) const { 483 // Since target may map different address spaces in AST to the same address 484 // space, an address space conversion may end up as a bitcast. 485 return llvm::ConstantExpr::getPointerCast(Src, DestTy); 486 } 487 488 llvm::SyncScope::ID 489 TargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts, 490 SyncScope Scope, 491 llvm::AtomicOrdering Ordering, 492 llvm::LLVMContext &Ctx) const { 493 return Ctx.getOrInsertSyncScopeID(""); /* default sync scope */ 494 } 495 496 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays); 497 498 /// isEmptyField - Return true iff a the field is "empty", that is it 499 /// is an unnamed bit-field or an (array of) empty record(s). 500 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD, 501 bool AllowArrays) { 502 if (FD->isUnnamedBitfield()) 503 return true; 504 505 QualType FT = FD->getType(); 506 507 // Constant arrays of empty records count as empty, strip them off. 508 // Constant arrays of zero length always count as empty. 509 bool WasArray = false; 510 if (AllowArrays) 511 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 512 if (AT->getSize() == 0) 513 return true; 514 FT = AT->getElementType(); 515 // The [[no_unique_address]] special case below does not apply to 516 // arrays of C++ empty records, so we need to remember this fact. 517 WasArray = true; 518 } 519 520 const RecordType *RT = FT->getAs<RecordType>(); 521 if (!RT) 522 return false; 523 524 // C++ record fields are never empty, at least in the Itanium ABI. 525 // 526 // FIXME: We should use a predicate for whether this behavior is true in the 527 // current ABI. 528 // 529 // The exception to the above rule are fields marked with the 530 // [[no_unique_address]] attribute (since C++20). Those do count as empty 531 // according to the Itanium ABI. The exception applies only to records, 532 // not arrays of records, so we must also check whether we stripped off an 533 // array type above. 534 if (isa<CXXRecordDecl>(RT->getDecl()) && 535 (WasArray || !FD->hasAttr<NoUniqueAddressAttr>())) 536 return false; 537 538 return isEmptyRecord(Context, FT, AllowArrays); 539 } 540 541 /// isEmptyRecord - Return true iff a structure contains only empty 542 /// fields. Note that a structure with a flexible array member is not 543 /// considered empty. 544 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) { 545 const RecordType *RT = T->getAs<RecordType>(); 546 if (!RT) 547 return false; 548 const RecordDecl *RD = RT->getDecl(); 549 if (RD->hasFlexibleArrayMember()) 550 return false; 551 552 // If this is a C++ record, check the bases first. 553 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 554 for (const auto &I : CXXRD->bases()) 555 if (!isEmptyRecord(Context, I.getType(), true)) 556 return false; 557 558 for (const auto *I : RD->fields()) 559 if (!isEmptyField(Context, I, AllowArrays)) 560 return false; 561 return true; 562 } 563 564 /// isSingleElementStruct - Determine if a structure is a "single 565 /// element struct", i.e. it has exactly one non-empty field or 566 /// exactly one field which is itself a single element 567 /// struct. Structures with flexible array members are never 568 /// considered single element structs. 569 /// 570 /// \return The field declaration for the single non-empty field, if 571 /// it exists. 572 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) { 573 const RecordType *RT = T->getAs<RecordType>(); 574 if (!RT) 575 return nullptr; 576 577 const RecordDecl *RD = RT->getDecl(); 578 if (RD->hasFlexibleArrayMember()) 579 return nullptr; 580 581 const Type *Found = nullptr; 582 583 // If this is a C++ record, check the bases first. 584 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 585 for (const auto &I : CXXRD->bases()) { 586 // Ignore empty records. 587 if (isEmptyRecord(Context, I.getType(), true)) 588 continue; 589 590 // If we already found an element then this isn't a single-element struct. 591 if (Found) 592 return nullptr; 593 594 // If this is non-empty and not a single element struct, the composite 595 // cannot be a single element struct. 596 Found = isSingleElementStruct(I.getType(), Context); 597 if (!Found) 598 return nullptr; 599 } 600 } 601 602 // Check for single element. 603 for (const auto *FD : RD->fields()) { 604 QualType FT = FD->getType(); 605 606 // Ignore empty fields. 607 if (isEmptyField(Context, FD, true)) 608 continue; 609 610 // If we already found an element then this isn't a single-element 611 // struct. 612 if (Found) 613 return nullptr; 614 615 // Treat single element arrays as the element. 616 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 617 if (AT->getSize().getZExtValue() != 1) 618 break; 619 FT = AT->getElementType(); 620 } 621 622 if (!isAggregateTypeForABI(FT)) { 623 Found = FT.getTypePtr(); 624 } else { 625 Found = isSingleElementStruct(FT, Context); 626 if (!Found) 627 return nullptr; 628 } 629 } 630 631 // We don't consider a struct a single-element struct if it has 632 // padding beyond the element type. 633 if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T)) 634 return nullptr; 635 636 return Found; 637 } 638 639 namespace { 640 Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty, 641 const ABIArgInfo &AI) { 642 // This default implementation defers to the llvm backend's va_arg 643 // instruction. It can handle only passing arguments directly 644 // (typically only handled in the backend for primitive types), or 645 // aggregates passed indirectly by pointer (NOTE: if the "byval" 646 // flag has ABI impact in the callee, this implementation cannot 647 // work.) 648 649 // Only a few cases are covered here at the moment -- those needed 650 // by the default abi. 651 llvm::Value *Val; 652 653 if (AI.isIndirect()) { 654 assert(!AI.getPaddingType() && 655 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 656 assert( 657 !AI.getIndirectRealign() && 658 "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!"); 659 660 auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty); 661 CharUnits TyAlignForABI = TyInfo.Align; 662 663 llvm::Type *BaseTy = 664 llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); 665 llvm::Value *Addr = 666 CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy); 667 return Address(Addr, TyAlignForABI); 668 } else { 669 assert((AI.isDirect() || AI.isExtend()) && 670 "Unexpected ArgInfo Kind in generic VAArg emitter!"); 671 672 assert(!AI.getInReg() && 673 "Unexpected InReg seen in arginfo in generic VAArg emitter!"); 674 assert(!AI.getPaddingType() && 675 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 676 assert(!AI.getDirectOffset() && 677 "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!"); 678 assert(!AI.getCoerceToType() && 679 "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!"); 680 681 Address Temp = CGF.CreateMemTemp(Ty, "varet"); 682 Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), CGF.ConvertType(Ty)); 683 CGF.Builder.CreateStore(Val, Temp); 684 return Temp; 685 } 686 } 687 688 /// DefaultABIInfo - The default implementation for ABI specific 689 /// details. This implementation provides information which results in 690 /// self-consistent and sensible LLVM IR generation, but does not 691 /// conform to any particular ABI. 692 class DefaultABIInfo : public ABIInfo { 693 public: 694 DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 695 696 ABIArgInfo classifyReturnType(QualType RetTy) const; 697 ABIArgInfo classifyArgumentType(QualType RetTy) const; 698 699 void computeInfo(CGFunctionInfo &FI) const override { 700 if (!getCXXABI().classifyReturnType(FI)) 701 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 702 for (auto &I : FI.arguments()) 703 I.info = classifyArgumentType(I.type); 704 } 705 706 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 707 QualType Ty) const override { 708 return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty)); 709 } 710 }; 711 712 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo { 713 public: 714 DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 715 : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {} 716 }; 717 718 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const { 719 Ty = useFirstFieldIfTransparentUnion(Ty); 720 721 if (isAggregateTypeForABI(Ty)) { 722 // Records with non-trivial destructors/copy-constructors should not be 723 // passed by value. 724 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 725 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 726 727 return getNaturalAlignIndirect(Ty); 728 } 729 730 // Treat an enum type as its underlying type. 731 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 732 Ty = EnumTy->getDecl()->getIntegerType(); 733 734 ASTContext &Context = getContext(); 735 if (const auto *EIT = Ty->getAs<ExtIntType>()) 736 if (EIT->getNumBits() > 737 Context.getTypeSize(Context.getTargetInfo().hasInt128Type() 738 ? Context.Int128Ty 739 : Context.LongLongTy)) 740 return getNaturalAlignIndirect(Ty); 741 742 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 743 : ABIArgInfo::getDirect()); 744 } 745 746 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const { 747 if (RetTy->isVoidType()) 748 return ABIArgInfo::getIgnore(); 749 750 if (isAggregateTypeForABI(RetTy)) 751 return getNaturalAlignIndirect(RetTy); 752 753 // Treat an enum type as its underlying type. 754 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 755 RetTy = EnumTy->getDecl()->getIntegerType(); 756 757 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 758 if (EIT->getNumBits() > 759 getContext().getTypeSize(getContext().getTargetInfo().hasInt128Type() 760 ? getContext().Int128Ty 761 : getContext().LongLongTy)) 762 return getNaturalAlignIndirect(RetTy); 763 764 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 765 : ABIArgInfo::getDirect()); 766 } 767 768 //===----------------------------------------------------------------------===// 769 // WebAssembly ABI Implementation 770 // 771 // This is a very simple ABI that relies a lot on DefaultABIInfo. 772 //===----------------------------------------------------------------------===// 773 774 class WebAssemblyABIInfo final : public SwiftABIInfo { 775 public: 776 enum ABIKind { 777 MVP = 0, 778 ExperimentalMV = 1, 779 }; 780 781 private: 782 DefaultABIInfo defaultInfo; 783 ABIKind Kind; 784 785 public: 786 explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind) 787 : SwiftABIInfo(CGT), defaultInfo(CGT), Kind(Kind) {} 788 789 private: 790 ABIArgInfo classifyReturnType(QualType RetTy) const; 791 ABIArgInfo classifyArgumentType(QualType Ty) const; 792 793 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 794 // non-virtual, but computeInfo and EmitVAArg are virtual, so we 795 // overload them. 796 void computeInfo(CGFunctionInfo &FI) const override { 797 if (!getCXXABI().classifyReturnType(FI)) 798 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 799 for (auto &Arg : FI.arguments()) 800 Arg.info = classifyArgumentType(Arg.type); 801 } 802 803 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 804 QualType Ty) const override; 805 806 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 807 bool asReturnValue) const override { 808 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 809 } 810 811 bool isSwiftErrorInRegister() const override { 812 return false; 813 } 814 }; 815 816 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo { 817 public: 818 explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 819 WebAssemblyABIInfo::ABIKind K) 820 : TargetCodeGenInfo(std::make_unique<WebAssemblyABIInfo>(CGT, K)) {} 821 822 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 823 CodeGen::CodeGenModule &CGM) const override { 824 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 825 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 826 if (const auto *Attr = FD->getAttr<WebAssemblyImportModuleAttr>()) { 827 llvm::Function *Fn = cast<llvm::Function>(GV); 828 llvm::AttrBuilder B; 829 B.addAttribute("wasm-import-module", Attr->getImportModule()); 830 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 831 } 832 if (const auto *Attr = FD->getAttr<WebAssemblyImportNameAttr>()) { 833 llvm::Function *Fn = cast<llvm::Function>(GV); 834 llvm::AttrBuilder B; 835 B.addAttribute("wasm-import-name", Attr->getImportName()); 836 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 837 } 838 if (const auto *Attr = FD->getAttr<WebAssemblyExportNameAttr>()) { 839 llvm::Function *Fn = cast<llvm::Function>(GV); 840 llvm::AttrBuilder B; 841 B.addAttribute("wasm-export-name", Attr->getExportName()); 842 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 843 } 844 } 845 846 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 847 llvm::Function *Fn = cast<llvm::Function>(GV); 848 if (!FD->doesThisDeclarationHaveABody() && !FD->hasPrototype()) 849 Fn->addFnAttr("no-prototype"); 850 } 851 } 852 }; 853 854 /// Classify argument of given type \p Ty. 855 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const { 856 Ty = useFirstFieldIfTransparentUnion(Ty); 857 858 if (isAggregateTypeForABI(Ty)) { 859 // Records with non-trivial destructors/copy-constructors should not be 860 // passed by value. 861 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 862 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 863 // Ignore empty structs/unions. 864 if (isEmptyRecord(getContext(), Ty, true)) 865 return ABIArgInfo::getIgnore(); 866 // Lower single-element structs to just pass a regular value. TODO: We 867 // could do reasonable-size multiple-element structs too, using getExpand(), 868 // though watch out for things like bitfields. 869 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 870 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 871 // For the experimental multivalue ABI, fully expand all other aggregates 872 if (Kind == ABIKind::ExperimentalMV) { 873 const RecordType *RT = Ty->getAs<RecordType>(); 874 assert(RT); 875 bool HasBitField = false; 876 for (auto *Field : RT->getDecl()->fields()) { 877 if (Field->isBitField()) { 878 HasBitField = true; 879 break; 880 } 881 } 882 if (!HasBitField) 883 return ABIArgInfo::getExpand(); 884 } 885 } 886 887 // Otherwise just do the default thing. 888 return defaultInfo.classifyArgumentType(Ty); 889 } 890 891 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const { 892 if (isAggregateTypeForABI(RetTy)) { 893 // Records with non-trivial destructors/copy-constructors should not be 894 // returned by value. 895 if (!getRecordArgABI(RetTy, getCXXABI())) { 896 // Ignore empty structs/unions. 897 if (isEmptyRecord(getContext(), RetTy, true)) 898 return ABIArgInfo::getIgnore(); 899 // Lower single-element structs to just return a regular value. TODO: We 900 // could do reasonable-size multiple-element structs too, using 901 // ABIArgInfo::getDirect(). 902 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 903 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 904 // For the experimental multivalue ABI, return all other aggregates 905 if (Kind == ABIKind::ExperimentalMV) 906 return ABIArgInfo::getDirect(); 907 } 908 } 909 910 // Otherwise just do the default thing. 911 return defaultInfo.classifyReturnType(RetTy); 912 } 913 914 Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 915 QualType Ty) const { 916 bool IsIndirect = isAggregateTypeForABI(Ty) && 917 !isEmptyRecord(getContext(), Ty, true) && 918 !isSingleElementStruct(Ty, getContext()); 919 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 920 getContext().getTypeInfoInChars(Ty), 921 CharUnits::fromQuantity(4), 922 /*AllowHigherAlign=*/true); 923 } 924 925 //===----------------------------------------------------------------------===// 926 // le32/PNaCl bitcode ABI Implementation 927 // 928 // This is a simplified version of the x86_32 ABI. Arguments and return values 929 // are always passed on the stack. 930 //===----------------------------------------------------------------------===// 931 932 class PNaClABIInfo : public ABIInfo { 933 public: 934 PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 935 936 ABIArgInfo classifyReturnType(QualType RetTy) const; 937 ABIArgInfo classifyArgumentType(QualType RetTy) const; 938 939 void computeInfo(CGFunctionInfo &FI) const override; 940 Address EmitVAArg(CodeGenFunction &CGF, 941 Address VAListAddr, QualType Ty) const override; 942 }; 943 944 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo { 945 public: 946 PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 947 : TargetCodeGenInfo(std::make_unique<PNaClABIInfo>(CGT)) {} 948 }; 949 950 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const { 951 if (!getCXXABI().classifyReturnType(FI)) 952 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 953 954 for (auto &I : FI.arguments()) 955 I.info = classifyArgumentType(I.type); 956 } 957 958 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 959 QualType Ty) const { 960 // The PNaCL ABI is a bit odd, in that varargs don't use normal 961 // function classification. Structs get passed directly for varargs 962 // functions, through a rewriting transform in 963 // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows 964 // this target to actually support a va_arg instructions with an 965 // aggregate type, unlike other targets. 966 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 967 } 968 969 /// Classify argument of given type \p Ty. 970 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const { 971 if (isAggregateTypeForABI(Ty)) { 972 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 973 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 974 return getNaturalAlignIndirect(Ty); 975 } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 976 // Treat an enum type as its underlying type. 977 Ty = EnumTy->getDecl()->getIntegerType(); 978 } else if (Ty->isFloatingType()) { 979 // Floating-point types don't go inreg. 980 return ABIArgInfo::getDirect(); 981 } else if (const auto *EIT = Ty->getAs<ExtIntType>()) { 982 // Treat extended integers as integers if <=64, otherwise pass indirectly. 983 if (EIT->getNumBits() > 64) 984 return getNaturalAlignIndirect(Ty); 985 return ABIArgInfo::getDirect(); 986 } 987 988 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 989 : ABIArgInfo::getDirect()); 990 } 991 992 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const { 993 if (RetTy->isVoidType()) 994 return ABIArgInfo::getIgnore(); 995 996 // In the PNaCl ABI we always return records/structures on the stack. 997 if (isAggregateTypeForABI(RetTy)) 998 return getNaturalAlignIndirect(RetTy); 999 1000 // Treat extended integers as integers if <=64, otherwise pass indirectly. 1001 if (const auto *EIT = RetTy->getAs<ExtIntType>()) { 1002 if (EIT->getNumBits() > 64) 1003 return getNaturalAlignIndirect(RetTy); 1004 return ABIArgInfo::getDirect(); 1005 } 1006 1007 // Treat an enum type as its underlying type. 1008 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 1009 RetTy = EnumTy->getDecl()->getIntegerType(); 1010 1011 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 1012 : ABIArgInfo::getDirect()); 1013 } 1014 1015 /// IsX86_MMXType - Return true if this is an MMX type. 1016 bool IsX86_MMXType(llvm::Type *IRType) { 1017 // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>. 1018 return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 && 1019 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() && 1020 IRType->getScalarSizeInBits() != 64; 1021 } 1022 1023 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 1024 StringRef Constraint, 1025 llvm::Type* Ty) { 1026 bool IsMMXCons = llvm::StringSwitch<bool>(Constraint) 1027 .Cases("y", "&y", "^Ym", true) 1028 .Default(false); 1029 if (IsMMXCons && Ty->isVectorTy()) { 1030 if (cast<llvm::VectorType>(Ty)->getPrimitiveSizeInBits().getFixedSize() != 1031 64) { 1032 // Invalid MMX constraint 1033 return nullptr; 1034 } 1035 1036 return llvm::Type::getX86_MMXTy(CGF.getLLVMContext()); 1037 } 1038 1039 // No operation needed 1040 return Ty; 1041 } 1042 1043 /// Returns true if this type can be passed in SSE registers with the 1044 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64. 1045 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) { 1046 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 1047 if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) { 1048 if (BT->getKind() == BuiltinType::LongDouble) { 1049 if (&Context.getTargetInfo().getLongDoubleFormat() == 1050 &llvm::APFloat::x87DoubleExtended()) 1051 return false; 1052 } 1053 return true; 1054 } 1055 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 1056 // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX 1057 // registers specially. 1058 unsigned VecSize = Context.getTypeSize(VT); 1059 if (VecSize == 128 || VecSize == 256 || VecSize == 512) 1060 return true; 1061 } 1062 return false; 1063 } 1064 1065 /// Returns true if this aggregate is small enough to be passed in SSE registers 1066 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64. 1067 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) { 1068 return NumMembers <= 4; 1069 } 1070 1071 /// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86. 1072 static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) { 1073 auto AI = ABIArgInfo::getDirect(T); 1074 AI.setInReg(true); 1075 AI.setCanBeFlattened(false); 1076 return AI; 1077 } 1078 1079 //===----------------------------------------------------------------------===// 1080 // X86-32 ABI Implementation 1081 //===----------------------------------------------------------------------===// 1082 1083 /// Similar to llvm::CCState, but for Clang. 1084 struct CCState { 1085 CCState(CGFunctionInfo &FI) 1086 : IsPreassigned(FI.arg_size()), CC(FI.getCallingConvention()) {} 1087 1088 llvm::SmallBitVector IsPreassigned; 1089 unsigned CC = CallingConv::CC_C; 1090 unsigned FreeRegs = 0; 1091 unsigned FreeSSERegs = 0; 1092 }; 1093 1094 /// X86_32ABIInfo - The X86-32 ABI information. 1095 class X86_32ABIInfo : public SwiftABIInfo { 1096 enum Class { 1097 Integer, 1098 Float 1099 }; 1100 1101 static const unsigned MinABIStackAlignInBytes = 4; 1102 1103 bool IsDarwinVectorABI; 1104 bool IsRetSmallStructInRegABI; 1105 bool IsWin32StructABI; 1106 bool IsSoftFloatABI; 1107 bool IsMCUABI; 1108 bool IsLinuxABI; 1109 unsigned DefaultNumRegisterParameters; 1110 1111 static bool isRegisterSize(unsigned Size) { 1112 return (Size == 8 || Size == 16 || Size == 32 || Size == 64); 1113 } 1114 1115 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 1116 // FIXME: Assumes vectorcall is in use. 1117 return isX86VectorTypeForVectorCall(getContext(), Ty); 1118 } 1119 1120 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 1121 uint64_t NumMembers) const override { 1122 // FIXME: Assumes vectorcall is in use. 1123 return isX86VectorCallAggregateSmallEnough(NumMembers); 1124 } 1125 1126 bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const; 1127 1128 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 1129 /// such that the argument will be passed in memory. 1130 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 1131 1132 ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const; 1133 1134 /// Return the alignment to use for the given type on the stack. 1135 unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const; 1136 1137 Class classify(QualType Ty) const; 1138 ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const; 1139 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 1140 1141 /// Updates the number of available free registers, returns 1142 /// true if any registers were allocated. 1143 bool updateFreeRegs(QualType Ty, CCState &State) const; 1144 1145 bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg, 1146 bool &NeedsPadding) const; 1147 bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const; 1148 1149 bool canExpandIndirectArgument(QualType Ty) const; 1150 1151 /// Rewrite the function info so that all memory arguments use 1152 /// inalloca. 1153 void rewriteWithInAlloca(CGFunctionInfo &FI) const; 1154 1155 void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1156 CharUnits &StackOffset, ABIArgInfo &Info, 1157 QualType Type) const; 1158 void runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const; 1159 1160 public: 1161 1162 void computeInfo(CGFunctionInfo &FI) const override; 1163 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 1164 QualType Ty) const override; 1165 1166 X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 1167 bool RetSmallStructInRegABI, bool Win32StructABI, 1168 unsigned NumRegisterParameters, bool SoftFloatABI) 1169 : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI), 1170 IsRetSmallStructInRegABI(RetSmallStructInRegABI), 1171 IsWin32StructABI(Win32StructABI), IsSoftFloatABI(SoftFloatABI), 1172 IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()), 1173 IsLinuxABI(CGT.getTarget().getTriple().isOSLinux()), 1174 DefaultNumRegisterParameters(NumRegisterParameters) {} 1175 1176 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 1177 bool asReturnValue) const override { 1178 // LLVM's x86-32 lowering currently only assigns up to three 1179 // integer registers and three fp registers. Oddly, it'll use up to 1180 // four vector registers for vectors, but those can overlap with the 1181 // scalar registers. 1182 return occupiesMoreThan(CGT, scalars, /*total*/ 3); 1183 } 1184 1185 bool isSwiftErrorInRegister() const override { 1186 // x86-32 lowering does not support passing swifterror in a register. 1187 return false; 1188 } 1189 }; 1190 1191 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo { 1192 public: 1193 X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 1194 bool RetSmallStructInRegABI, bool Win32StructABI, 1195 unsigned NumRegisterParameters, bool SoftFloatABI) 1196 : TargetCodeGenInfo(std::make_unique<X86_32ABIInfo>( 1197 CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI, 1198 NumRegisterParameters, SoftFloatABI)) {} 1199 1200 static bool isStructReturnInRegABI( 1201 const llvm::Triple &Triple, const CodeGenOptions &Opts); 1202 1203 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 1204 CodeGen::CodeGenModule &CGM) const override; 1205 1206 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 1207 // Darwin uses different dwarf register numbers for EH. 1208 if (CGM.getTarget().getTriple().isOSDarwin()) return 5; 1209 return 4; 1210 } 1211 1212 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 1213 llvm::Value *Address) const override; 1214 1215 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 1216 StringRef Constraint, 1217 llvm::Type* Ty) const override { 1218 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 1219 } 1220 1221 void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue, 1222 std::string &Constraints, 1223 std::vector<llvm::Type *> &ResultRegTypes, 1224 std::vector<llvm::Type *> &ResultTruncRegTypes, 1225 std::vector<LValue> &ResultRegDests, 1226 std::string &AsmString, 1227 unsigned NumOutputs) const override; 1228 1229 llvm::Constant * 1230 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 1231 unsigned Sig = (0xeb << 0) | // jmp rel8 1232 (0x06 << 8) | // .+0x08 1233 ('v' << 16) | 1234 ('2' << 24); 1235 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 1236 } 1237 1238 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 1239 return "movl\t%ebp, %ebp" 1240 "\t\t// marker for objc_retainAutoreleaseReturnValue"; 1241 } 1242 }; 1243 1244 } 1245 1246 /// Rewrite input constraint references after adding some output constraints. 1247 /// In the case where there is one output and one input and we add one output, 1248 /// we need to replace all operand references greater than or equal to 1: 1249 /// mov $0, $1 1250 /// mov eax, $1 1251 /// The result will be: 1252 /// mov $0, $2 1253 /// mov eax, $2 1254 static void rewriteInputConstraintReferences(unsigned FirstIn, 1255 unsigned NumNewOuts, 1256 std::string &AsmString) { 1257 std::string Buf; 1258 llvm::raw_string_ostream OS(Buf); 1259 size_t Pos = 0; 1260 while (Pos < AsmString.size()) { 1261 size_t DollarStart = AsmString.find('$', Pos); 1262 if (DollarStart == std::string::npos) 1263 DollarStart = AsmString.size(); 1264 size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart); 1265 if (DollarEnd == std::string::npos) 1266 DollarEnd = AsmString.size(); 1267 OS << StringRef(&AsmString[Pos], DollarEnd - Pos); 1268 Pos = DollarEnd; 1269 size_t NumDollars = DollarEnd - DollarStart; 1270 if (NumDollars % 2 != 0 && Pos < AsmString.size()) { 1271 // We have an operand reference. 1272 size_t DigitStart = Pos; 1273 if (AsmString[DigitStart] == '{') { 1274 OS << '{'; 1275 ++DigitStart; 1276 } 1277 size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart); 1278 if (DigitEnd == std::string::npos) 1279 DigitEnd = AsmString.size(); 1280 StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart); 1281 unsigned OperandIndex; 1282 if (!OperandStr.getAsInteger(10, OperandIndex)) { 1283 if (OperandIndex >= FirstIn) 1284 OperandIndex += NumNewOuts; 1285 OS << OperandIndex; 1286 } else { 1287 OS << OperandStr; 1288 } 1289 Pos = DigitEnd; 1290 } 1291 } 1292 AsmString = std::move(OS.str()); 1293 } 1294 1295 /// Add output constraints for EAX:EDX because they are return registers. 1296 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs( 1297 CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints, 1298 std::vector<llvm::Type *> &ResultRegTypes, 1299 std::vector<llvm::Type *> &ResultTruncRegTypes, 1300 std::vector<LValue> &ResultRegDests, std::string &AsmString, 1301 unsigned NumOutputs) const { 1302 uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType()); 1303 1304 // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is 1305 // larger. 1306 if (!Constraints.empty()) 1307 Constraints += ','; 1308 if (RetWidth <= 32) { 1309 Constraints += "={eax}"; 1310 ResultRegTypes.push_back(CGF.Int32Ty); 1311 } else { 1312 // Use the 'A' constraint for EAX:EDX. 1313 Constraints += "=A"; 1314 ResultRegTypes.push_back(CGF.Int64Ty); 1315 } 1316 1317 // Truncate EAX or EAX:EDX to an integer of the appropriate size. 1318 llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth); 1319 ResultTruncRegTypes.push_back(CoerceTy); 1320 1321 // Coerce the integer by bitcasting the return slot pointer. 1322 ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(CGF), 1323 CoerceTy->getPointerTo())); 1324 ResultRegDests.push_back(ReturnSlot); 1325 1326 rewriteInputConstraintReferences(NumOutputs, 1, AsmString); 1327 } 1328 1329 /// shouldReturnTypeInRegister - Determine if the given type should be 1330 /// returned in a register (for the Darwin and MCU ABI). 1331 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty, 1332 ASTContext &Context) const { 1333 uint64_t Size = Context.getTypeSize(Ty); 1334 1335 // For i386, type must be register sized. 1336 // For the MCU ABI, it only needs to be <= 8-byte 1337 if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size))) 1338 return false; 1339 1340 if (Ty->isVectorType()) { 1341 // 64- and 128- bit vectors inside structures are not returned in 1342 // registers. 1343 if (Size == 64 || Size == 128) 1344 return false; 1345 1346 return true; 1347 } 1348 1349 // If this is a builtin, pointer, enum, complex type, member pointer, or 1350 // member function pointer it is ok. 1351 if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() || 1352 Ty->isAnyComplexType() || Ty->isEnumeralType() || 1353 Ty->isBlockPointerType() || Ty->isMemberPointerType()) 1354 return true; 1355 1356 // Arrays are treated like records. 1357 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) 1358 return shouldReturnTypeInRegister(AT->getElementType(), Context); 1359 1360 // Otherwise, it must be a record type. 1361 const RecordType *RT = Ty->getAs<RecordType>(); 1362 if (!RT) return false; 1363 1364 // FIXME: Traverse bases here too. 1365 1366 // Structure types are passed in register if all fields would be 1367 // passed in a register. 1368 for (const auto *FD : RT->getDecl()->fields()) { 1369 // Empty fields are ignored. 1370 if (isEmptyField(Context, FD, true)) 1371 continue; 1372 1373 // Check fields recursively. 1374 if (!shouldReturnTypeInRegister(FD->getType(), Context)) 1375 return false; 1376 } 1377 return true; 1378 } 1379 1380 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) { 1381 // Treat complex types as the element type. 1382 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 1383 Ty = CTy->getElementType(); 1384 1385 // Check for a type which we know has a simple scalar argument-passing 1386 // convention without any padding. (We're specifically looking for 32 1387 // and 64-bit integer and integer-equivalents, float, and double.) 1388 if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() && 1389 !Ty->isEnumeralType() && !Ty->isBlockPointerType()) 1390 return false; 1391 1392 uint64_t Size = Context.getTypeSize(Ty); 1393 return Size == 32 || Size == 64; 1394 } 1395 1396 static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD, 1397 uint64_t &Size) { 1398 for (const auto *FD : RD->fields()) { 1399 // Scalar arguments on the stack get 4 byte alignment on x86. If the 1400 // argument is smaller than 32-bits, expanding the struct will create 1401 // alignment padding. 1402 if (!is32Or64BitBasicType(FD->getType(), Context)) 1403 return false; 1404 1405 // FIXME: Reject bit-fields wholesale; there are two problems, we don't know 1406 // how to expand them yet, and the predicate for telling if a bitfield still 1407 // counts as "basic" is more complicated than what we were doing previously. 1408 if (FD->isBitField()) 1409 return false; 1410 1411 Size += Context.getTypeSize(FD->getType()); 1412 } 1413 return true; 1414 } 1415 1416 static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD, 1417 uint64_t &Size) { 1418 // Don't do this if there are any non-empty bases. 1419 for (const CXXBaseSpecifier &Base : RD->bases()) { 1420 if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(), 1421 Size)) 1422 return false; 1423 } 1424 if (!addFieldSizes(Context, RD, Size)) 1425 return false; 1426 return true; 1427 } 1428 1429 /// Test whether an argument type which is to be passed indirectly (on the 1430 /// stack) would have the equivalent layout if it was expanded into separate 1431 /// arguments. If so, we prefer to do the latter to avoid inhibiting 1432 /// optimizations. 1433 bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const { 1434 // We can only expand structure types. 1435 const RecordType *RT = Ty->getAs<RecordType>(); 1436 if (!RT) 1437 return false; 1438 const RecordDecl *RD = RT->getDecl(); 1439 uint64_t Size = 0; 1440 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 1441 if (!IsWin32StructABI) { 1442 // On non-Windows, we have to conservatively match our old bitcode 1443 // prototypes in order to be ABI-compatible at the bitcode level. 1444 if (!CXXRD->isCLike()) 1445 return false; 1446 } else { 1447 // Don't do this for dynamic classes. 1448 if (CXXRD->isDynamicClass()) 1449 return false; 1450 } 1451 if (!addBaseAndFieldSizes(getContext(), CXXRD, Size)) 1452 return false; 1453 } else { 1454 if (!addFieldSizes(getContext(), RD, Size)) 1455 return false; 1456 } 1457 1458 // We can do this if there was no alignment padding. 1459 return Size == getContext().getTypeSize(Ty); 1460 } 1461 1462 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const { 1463 // If the return value is indirect, then the hidden argument is consuming one 1464 // integer register. 1465 if (State.FreeRegs) { 1466 --State.FreeRegs; 1467 if (!IsMCUABI) 1468 return getNaturalAlignIndirectInReg(RetTy); 1469 } 1470 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 1471 } 1472 1473 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, 1474 CCState &State) const { 1475 if (RetTy->isVoidType()) 1476 return ABIArgInfo::getIgnore(); 1477 1478 const Type *Base = nullptr; 1479 uint64_t NumElts = 0; 1480 if ((State.CC == llvm::CallingConv::X86_VectorCall || 1481 State.CC == llvm::CallingConv::X86_RegCall) && 1482 isHomogeneousAggregate(RetTy, Base, NumElts)) { 1483 // The LLVM struct type for such an aggregate should lower properly. 1484 return ABIArgInfo::getDirect(); 1485 } 1486 1487 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 1488 // On Darwin, some vectors are returned in registers. 1489 if (IsDarwinVectorABI) { 1490 uint64_t Size = getContext().getTypeSize(RetTy); 1491 1492 // 128-bit vectors are a special case; they are returned in 1493 // registers and we need to make sure to pick a type the LLVM 1494 // backend will like. 1495 if (Size == 128) 1496 return ABIArgInfo::getDirect(llvm::FixedVectorType::get( 1497 llvm::Type::getInt64Ty(getVMContext()), 2)); 1498 1499 // Always return in register if it fits in a general purpose 1500 // register, or if it is 64 bits and has a single element. 1501 if ((Size == 8 || Size == 16 || Size == 32) || 1502 (Size == 64 && VT->getNumElements() == 1)) 1503 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1504 Size)); 1505 1506 return getIndirectReturnResult(RetTy, State); 1507 } 1508 1509 return ABIArgInfo::getDirect(); 1510 } 1511 1512 if (isAggregateTypeForABI(RetTy)) { 1513 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 1514 // Structures with flexible arrays are always indirect. 1515 if (RT->getDecl()->hasFlexibleArrayMember()) 1516 return getIndirectReturnResult(RetTy, State); 1517 } 1518 1519 // If specified, structs and unions are always indirect. 1520 if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType()) 1521 return getIndirectReturnResult(RetTy, State); 1522 1523 // Ignore empty structs/unions. 1524 if (isEmptyRecord(getContext(), RetTy, true)) 1525 return ABIArgInfo::getIgnore(); 1526 1527 // Small structures which are register sized are generally returned 1528 // in a register. 1529 if (shouldReturnTypeInRegister(RetTy, getContext())) { 1530 uint64_t Size = getContext().getTypeSize(RetTy); 1531 1532 // As a special-case, if the struct is a "single-element" struct, and 1533 // the field is of type "float" or "double", return it in a 1534 // floating-point register. (MSVC does not apply this special case.) 1535 // We apply a similar transformation for pointer types to improve the 1536 // quality of the generated IR. 1537 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 1538 if ((!IsWin32StructABI && SeltTy->isRealFloatingType()) 1539 || SeltTy->hasPointerRepresentation()) 1540 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 1541 1542 // FIXME: We should be able to narrow this integer in cases with dead 1543 // padding. 1544 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size)); 1545 } 1546 1547 return getIndirectReturnResult(RetTy, State); 1548 } 1549 1550 // Treat an enum type as its underlying type. 1551 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 1552 RetTy = EnumTy->getDecl()->getIntegerType(); 1553 1554 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 1555 if (EIT->getNumBits() > 64) 1556 return getIndirectReturnResult(RetTy, State); 1557 1558 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 1559 : ABIArgInfo::getDirect()); 1560 } 1561 1562 static bool isSIMDVectorType(ASTContext &Context, QualType Ty) { 1563 return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128; 1564 } 1565 1566 static bool isRecordWithSIMDVectorType(ASTContext &Context, QualType Ty) { 1567 const RecordType *RT = Ty->getAs<RecordType>(); 1568 if (!RT) 1569 return 0; 1570 const RecordDecl *RD = RT->getDecl(); 1571 1572 // If this is a C++ record, check the bases first. 1573 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 1574 for (const auto &I : CXXRD->bases()) 1575 if (!isRecordWithSIMDVectorType(Context, I.getType())) 1576 return false; 1577 1578 for (const auto *i : RD->fields()) { 1579 QualType FT = i->getType(); 1580 1581 if (isSIMDVectorType(Context, FT)) 1582 return true; 1583 1584 if (isRecordWithSIMDVectorType(Context, FT)) 1585 return true; 1586 } 1587 1588 return false; 1589 } 1590 1591 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty, 1592 unsigned Align) const { 1593 // Otherwise, if the alignment is less than or equal to the minimum ABI 1594 // alignment, just use the default; the backend will handle this. 1595 if (Align <= MinABIStackAlignInBytes) 1596 return 0; // Use default alignment. 1597 1598 if (IsLinuxABI) { 1599 // Exclude other System V OS (e.g Darwin, PS4 and FreeBSD) since we don't 1600 // want to spend any effort dealing with the ramifications of ABI breaks. 1601 // 1602 // If the vector type is __m128/__m256/__m512, return the default alignment. 1603 if (Ty->isVectorType() && (Align == 16 || Align == 32 || Align == 64)) 1604 return Align; 1605 } 1606 // On non-Darwin, the stack type alignment is always 4. 1607 if (!IsDarwinVectorABI) { 1608 // Set explicit alignment, since we may need to realign the top. 1609 return MinABIStackAlignInBytes; 1610 } 1611 1612 // Otherwise, if the type contains an SSE vector type, the alignment is 16. 1613 if (Align >= 16 && (isSIMDVectorType(getContext(), Ty) || 1614 isRecordWithSIMDVectorType(getContext(), Ty))) 1615 return 16; 1616 1617 return MinABIStackAlignInBytes; 1618 } 1619 1620 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal, 1621 CCState &State) const { 1622 if (!ByVal) { 1623 if (State.FreeRegs) { 1624 --State.FreeRegs; // Non-byval indirects just use one pointer. 1625 if (!IsMCUABI) 1626 return getNaturalAlignIndirectInReg(Ty); 1627 } 1628 return getNaturalAlignIndirect(Ty, false); 1629 } 1630 1631 // Compute the byval alignment. 1632 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 1633 unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign); 1634 if (StackAlign == 0) 1635 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true); 1636 1637 // If the stack alignment is less than the type alignment, realign the 1638 // argument. 1639 bool Realign = TypeAlign > StackAlign; 1640 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign), 1641 /*ByVal=*/true, Realign); 1642 } 1643 1644 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const { 1645 const Type *T = isSingleElementStruct(Ty, getContext()); 1646 if (!T) 1647 T = Ty.getTypePtr(); 1648 1649 if (const BuiltinType *BT = T->getAs<BuiltinType>()) { 1650 BuiltinType::Kind K = BT->getKind(); 1651 if (K == BuiltinType::Float || K == BuiltinType::Double) 1652 return Float; 1653 } 1654 return Integer; 1655 } 1656 1657 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const { 1658 if (!IsSoftFloatABI) { 1659 Class C = classify(Ty); 1660 if (C == Float) 1661 return false; 1662 } 1663 1664 unsigned Size = getContext().getTypeSize(Ty); 1665 unsigned SizeInRegs = (Size + 31) / 32; 1666 1667 if (SizeInRegs == 0) 1668 return false; 1669 1670 if (!IsMCUABI) { 1671 if (SizeInRegs > State.FreeRegs) { 1672 State.FreeRegs = 0; 1673 return false; 1674 } 1675 } else { 1676 // The MCU psABI allows passing parameters in-reg even if there are 1677 // earlier parameters that are passed on the stack. Also, 1678 // it does not allow passing >8-byte structs in-register, 1679 // even if there are 3 free registers available. 1680 if (SizeInRegs > State.FreeRegs || SizeInRegs > 2) 1681 return false; 1682 } 1683 1684 State.FreeRegs -= SizeInRegs; 1685 return true; 1686 } 1687 1688 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State, 1689 bool &InReg, 1690 bool &NeedsPadding) const { 1691 // On Windows, aggregates other than HFAs are never passed in registers, and 1692 // they do not consume register slots. Homogenous floating-point aggregates 1693 // (HFAs) have already been dealt with at this point. 1694 if (IsWin32StructABI && isAggregateTypeForABI(Ty)) 1695 return false; 1696 1697 NeedsPadding = false; 1698 InReg = !IsMCUABI; 1699 1700 if (!updateFreeRegs(Ty, State)) 1701 return false; 1702 1703 if (IsMCUABI) 1704 return true; 1705 1706 if (State.CC == llvm::CallingConv::X86_FastCall || 1707 State.CC == llvm::CallingConv::X86_VectorCall || 1708 State.CC == llvm::CallingConv::X86_RegCall) { 1709 if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs) 1710 NeedsPadding = true; 1711 1712 return false; 1713 } 1714 1715 return true; 1716 } 1717 1718 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const { 1719 if (!updateFreeRegs(Ty, State)) 1720 return false; 1721 1722 if (IsMCUABI) 1723 return false; 1724 1725 if (State.CC == llvm::CallingConv::X86_FastCall || 1726 State.CC == llvm::CallingConv::X86_VectorCall || 1727 State.CC == llvm::CallingConv::X86_RegCall) { 1728 if (getContext().getTypeSize(Ty) > 32) 1729 return false; 1730 1731 return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() || 1732 Ty->isReferenceType()); 1733 } 1734 1735 return true; 1736 } 1737 1738 void X86_32ABIInfo::runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const { 1739 // Vectorcall x86 works subtly different than in x64, so the format is 1740 // a bit different than the x64 version. First, all vector types (not HVAs) 1741 // are assigned, with the first 6 ending up in the [XYZ]MM0-5 registers. 1742 // This differs from the x64 implementation, where the first 6 by INDEX get 1743 // registers. 1744 // In the second pass over the arguments, HVAs are passed in the remaining 1745 // vector registers if possible, or indirectly by address. The address will be 1746 // passed in ECX/EDX if available. Any other arguments are passed according to 1747 // the usual fastcall rules. 1748 MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments(); 1749 for (int I = 0, E = Args.size(); I < E; ++I) { 1750 const Type *Base = nullptr; 1751 uint64_t NumElts = 0; 1752 const QualType &Ty = Args[I].type; 1753 if ((Ty->isVectorType() || Ty->isBuiltinType()) && 1754 isHomogeneousAggregate(Ty, Base, NumElts)) { 1755 if (State.FreeSSERegs >= NumElts) { 1756 State.FreeSSERegs -= NumElts; 1757 Args[I].info = ABIArgInfo::getDirectInReg(); 1758 State.IsPreassigned.set(I); 1759 } 1760 } 1761 } 1762 } 1763 1764 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, 1765 CCState &State) const { 1766 // FIXME: Set alignment on indirect arguments. 1767 bool IsFastCall = State.CC == llvm::CallingConv::X86_FastCall; 1768 bool IsRegCall = State.CC == llvm::CallingConv::X86_RegCall; 1769 bool IsVectorCall = State.CC == llvm::CallingConv::X86_VectorCall; 1770 1771 Ty = useFirstFieldIfTransparentUnion(Ty); 1772 TypeInfo TI = getContext().getTypeInfo(Ty); 1773 1774 // Check with the C++ ABI first. 1775 const RecordType *RT = Ty->getAs<RecordType>(); 1776 if (RT) { 1777 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 1778 if (RAA == CGCXXABI::RAA_Indirect) { 1779 return getIndirectResult(Ty, false, State); 1780 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 1781 // The field index doesn't matter, we'll fix it up later. 1782 return ABIArgInfo::getInAlloca(/*FieldIndex=*/0); 1783 } 1784 } 1785 1786 // Regcall uses the concept of a homogenous vector aggregate, similar 1787 // to other targets. 1788 const Type *Base = nullptr; 1789 uint64_t NumElts = 0; 1790 if ((IsRegCall || IsVectorCall) && 1791 isHomogeneousAggregate(Ty, Base, NumElts)) { 1792 if (State.FreeSSERegs >= NumElts) { 1793 State.FreeSSERegs -= NumElts; 1794 1795 // Vectorcall passes HVAs directly and does not flatten them, but regcall 1796 // does. 1797 if (IsVectorCall) 1798 return getDirectX86Hva(); 1799 1800 if (Ty->isBuiltinType() || Ty->isVectorType()) 1801 return ABIArgInfo::getDirect(); 1802 return ABIArgInfo::getExpand(); 1803 } 1804 return getIndirectResult(Ty, /*ByVal=*/false, State); 1805 } 1806 1807 if (isAggregateTypeForABI(Ty)) { 1808 // Structures with flexible arrays are always indirect. 1809 // FIXME: This should not be byval! 1810 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 1811 return getIndirectResult(Ty, true, State); 1812 1813 // Ignore empty structs/unions on non-Windows. 1814 if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true)) 1815 return ABIArgInfo::getIgnore(); 1816 1817 llvm::LLVMContext &LLVMContext = getVMContext(); 1818 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 1819 bool NeedsPadding = false; 1820 bool InReg; 1821 if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) { 1822 unsigned SizeInRegs = (TI.Width + 31) / 32; 1823 SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32); 1824 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 1825 if (InReg) 1826 return ABIArgInfo::getDirectInReg(Result); 1827 else 1828 return ABIArgInfo::getDirect(Result); 1829 } 1830 llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr; 1831 1832 // Pass over-aligned aggregates on Windows indirectly. This behavior was 1833 // added in MSVC 2015. 1834 if (IsWin32StructABI && TI.AlignIsRequired && TI.Align > 32) 1835 return getIndirectResult(Ty, /*ByVal=*/false, State); 1836 1837 // Expand small (<= 128-bit) record types when we know that the stack layout 1838 // of those arguments will match the struct. This is important because the 1839 // LLVM backend isn't smart enough to remove byval, which inhibits many 1840 // optimizations. 1841 // Don't do this for the MCU if there are still free integer registers 1842 // (see X86_64 ABI for full explanation). 1843 if (TI.Width <= 4 * 32 && (!IsMCUABI || State.FreeRegs == 0) && 1844 canExpandIndirectArgument(Ty)) 1845 return ABIArgInfo::getExpandWithPadding( 1846 IsFastCall || IsVectorCall || IsRegCall, PaddingType); 1847 1848 return getIndirectResult(Ty, true, State); 1849 } 1850 1851 if (const VectorType *VT = Ty->getAs<VectorType>()) { 1852 // On Windows, vectors are passed directly if registers are available, or 1853 // indirectly if not. This avoids the need to align argument memory. Pass 1854 // user-defined vector types larger than 512 bits indirectly for simplicity. 1855 if (IsWin32StructABI) { 1856 if (TI.Width <= 512 && State.FreeSSERegs > 0) { 1857 --State.FreeSSERegs; 1858 return ABIArgInfo::getDirectInReg(); 1859 } 1860 return getIndirectResult(Ty, /*ByVal=*/false, State); 1861 } 1862 1863 // On Darwin, some vectors are passed in memory, we handle this by passing 1864 // it as an i8/i16/i32/i64. 1865 if (IsDarwinVectorABI) { 1866 if ((TI.Width == 8 || TI.Width == 16 || TI.Width == 32) || 1867 (TI.Width == 64 && VT->getNumElements() == 1)) 1868 return ABIArgInfo::getDirect( 1869 llvm::IntegerType::get(getVMContext(), TI.Width)); 1870 } 1871 1872 if (IsX86_MMXType(CGT.ConvertType(Ty))) 1873 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64)); 1874 1875 return ABIArgInfo::getDirect(); 1876 } 1877 1878 1879 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 1880 Ty = EnumTy->getDecl()->getIntegerType(); 1881 1882 bool InReg = shouldPrimitiveUseInReg(Ty, State); 1883 1884 if (isPromotableIntegerTypeForABI(Ty)) { 1885 if (InReg) 1886 return ABIArgInfo::getExtendInReg(Ty); 1887 return ABIArgInfo::getExtend(Ty); 1888 } 1889 1890 if (const auto * EIT = Ty->getAs<ExtIntType>()) { 1891 if (EIT->getNumBits() <= 64) { 1892 if (InReg) 1893 return ABIArgInfo::getDirectInReg(); 1894 return ABIArgInfo::getDirect(); 1895 } 1896 return getIndirectResult(Ty, /*ByVal=*/false, State); 1897 } 1898 1899 if (InReg) 1900 return ABIArgInfo::getDirectInReg(); 1901 return ABIArgInfo::getDirect(); 1902 } 1903 1904 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const { 1905 CCState State(FI); 1906 if (IsMCUABI) 1907 State.FreeRegs = 3; 1908 else if (State.CC == llvm::CallingConv::X86_FastCall) { 1909 State.FreeRegs = 2; 1910 State.FreeSSERegs = 3; 1911 } else if (State.CC == llvm::CallingConv::X86_VectorCall) { 1912 State.FreeRegs = 2; 1913 State.FreeSSERegs = 6; 1914 } else if (FI.getHasRegParm()) 1915 State.FreeRegs = FI.getRegParm(); 1916 else if (State.CC == llvm::CallingConv::X86_RegCall) { 1917 State.FreeRegs = 5; 1918 State.FreeSSERegs = 8; 1919 } else if (IsWin32StructABI) { 1920 // Since MSVC 2015, the first three SSE vectors have been passed in 1921 // registers. The rest are passed indirectly. 1922 State.FreeRegs = DefaultNumRegisterParameters; 1923 State.FreeSSERegs = 3; 1924 } else 1925 State.FreeRegs = DefaultNumRegisterParameters; 1926 1927 if (!::classifyReturnType(getCXXABI(), FI, *this)) { 1928 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State); 1929 } else if (FI.getReturnInfo().isIndirect()) { 1930 // The C++ ABI is not aware of register usage, so we have to check if the 1931 // return value was sret and put it in a register ourselves if appropriate. 1932 if (State.FreeRegs) { 1933 --State.FreeRegs; // The sret parameter consumes a register. 1934 if (!IsMCUABI) 1935 FI.getReturnInfo().setInReg(true); 1936 } 1937 } 1938 1939 // The chain argument effectively gives us another free register. 1940 if (FI.isChainCall()) 1941 ++State.FreeRegs; 1942 1943 // For vectorcall, do a first pass over the arguments, assigning FP and vector 1944 // arguments to XMM registers as available. 1945 if (State.CC == llvm::CallingConv::X86_VectorCall) 1946 runVectorCallFirstPass(FI, State); 1947 1948 bool UsedInAlloca = false; 1949 MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments(); 1950 for (int I = 0, E = Args.size(); I < E; ++I) { 1951 // Skip arguments that have already been assigned. 1952 if (State.IsPreassigned.test(I)) 1953 continue; 1954 1955 Args[I].info = classifyArgumentType(Args[I].type, State); 1956 UsedInAlloca |= (Args[I].info.getKind() == ABIArgInfo::InAlloca); 1957 } 1958 1959 // If we needed to use inalloca for any argument, do a second pass and rewrite 1960 // all the memory arguments to use inalloca. 1961 if (UsedInAlloca) 1962 rewriteWithInAlloca(FI); 1963 } 1964 1965 void 1966 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1967 CharUnits &StackOffset, ABIArgInfo &Info, 1968 QualType Type) const { 1969 // Arguments are always 4-byte-aligned. 1970 CharUnits WordSize = CharUnits::fromQuantity(4); 1971 assert(StackOffset.isMultipleOf(WordSize) && "unaligned inalloca struct"); 1972 1973 // sret pointers and indirect things will require an extra pointer 1974 // indirection, unless they are byval. Most things are byval, and will not 1975 // require this indirection. 1976 bool IsIndirect = false; 1977 if (Info.isIndirect() && !Info.getIndirectByVal()) 1978 IsIndirect = true; 1979 Info = ABIArgInfo::getInAlloca(FrameFields.size(), IsIndirect); 1980 llvm::Type *LLTy = CGT.ConvertTypeForMem(Type); 1981 if (IsIndirect) 1982 LLTy = LLTy->getPointerTo(0); 1983 FrameFields.push_back(LLTy); 1984 StackOffset += IsIndirect ? WordSize : getContext().getTypeSizeInChars(Type); 1985 1986 // Insert padding bytes to respect alignment. 1987 CharUnits FieldEnd = StackOffset; 1988 StackOffset = FieldEnd.alignTo(WordSize); 1989 if (StackOffset != FieldEnd) { 1990 CharUnits NumBytes = StackOffset - FieldEnd; 1991 llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext()); 1992 Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity()); 1993 FrameFields.push_back(Ty); 1994 } 1995 } 1996 1997 static bool isArgInAlloca(const ABIArgInfo &Info) { 1998 // Leave ignored and inreg arguments alone. 1999 switch (Info.getKind()) { 2000 case ABIArgInfo::InAlloca: 2001 return true; 2002 case ABIArgInfo::Ignore: 2003 case ABIArgInfo::IndirectAliased: 2004 return false; 2005 case ABIArgInfo::Indirect: 2006 case ABIArgInfo::Direct: 2007 case ABIArgInfo::Extend: 2008 return !Info.getInReg(); 2009 case ABIArgInfo::Expand: 2010 case ABIArgInfo::CoerceAndExpand: 2011 // These are aggregate types which are never passed in registers when 2012 // inalloca is involved. 2013 return true; 2014 } 2015 llvm_unreachable("invalid enum"); 2016 } 2017 2018 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const { 2019 assert(IsWin32StructABI && "inalloca only supported on win32"); 2020 2021 // Build a packed struct type for all of the arguments in memory. 2022 SmallVector<llvm::Type *, 6> FrameFields; 2023 2024 // The stack alignment is always 4. 2025 CharUnits StackAlign = CharUnits::fromQuantity(4); 2026 2027 CharUnits StackOffset; 2028 CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end(); 2029 2030 // Put 'this' into the struct before 'sret', if necessary. 2031 bool IsThisCall = 2032 FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall; 2033 ABIArgInfo &Ret = FI.getReturnInfo(); 2034 if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall && 2035 isArgInAlloca(I->info)) { 2036 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 2037 ++I; 2038 } 2039 2040 // Put the sret parameter into the inalloca struct if it's in memory. 2041 if (Ret.isIndirect() && !Ret.getInReg()) { 2042 addFieldToArgStruct(FrameFields, StackOffset, Ret, FI.getReturnType()); 2043 // On Windows, the hidden sret parameter is always returned in eax. 2044 Ret.setInAllocaSRet(IsWin32StructABI); 2045 } 2046 2047 // Skip the 'this' parameter in ecx. 2048 if (IsThisCall) 2049 ++I; 2050 2051 // Put arguments passed in memory into the struct. 2052 for (; I != E; ++I) { 2053 if (isArgInAlloca(I->info)) 2054 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 2055 } 2056 2057 FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields, 2058 /*isPacked=*/true), 2059 StackAlign); 2060 } 2061 2062 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF, 2063 Address VAListAddr, QualType Ty) const { 2064 2065 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 2066 2067 // x86-32 changes the alignment of certain arguments on the stack. 2068 // 2069 // Just messing with TypeInfo like this works because we never pass 2070 // anything indirectly. 2071 TypeInfo.Align = CharUnits::fromQuantity( 2072 getTypeStackAlignInBytes(Ty, TypeInfo.Align.getQuantity())); 2073 2074 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 2075 TypeInfo, CharUnits::fromQuantity(4), 2076 /*AllowHigherAlign*/ true); 2077 } 2078 2079 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI( 2080 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 2081 assert(Triple.getArch() == llvm::Triple::x86); 2082 2083 switch (Opts.getStructReturnConvention()) { 2084 case CodeGenOptions::SRCK_Default: 2085 break; 2086 case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return 2087 return false; 2088 case CodeGenOptions::SRCK_InRegs: // -freg-struct-return 2089 return true; 2090 } 2091 2092 if (Triple.isOSDarwin() || Triple.isOSIAMCU()) 2093 return true; 2094 2095 switch (Triple.getOS()) { 2096 case llvm::Triple::DragonFly: 2097 case llvm::Triple::FreeBSD: 2098 case llvm::Triple::OpenBSD: 2099 case llvm::Triple::Win32: 2100 return true; 2101 default: 2102 return false; 2103 } 2104 } 2105 2106 static void addX86InterruptAttrs(const FunctionDecl *FD, llvm::GlobalValue *GV, 2107 CodeGen::CodeGenModule &CGM) { 2108 if (!FD->hasAttr<AnyX86InterruptAttr>()) 2109 return; 2110 2111 llvm::Function *Fn = cast<llvm::Function>(GV); 2112 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2113 if (FD->getNumParams() == 0) 2114 return; 2115 2116 auto PtrTy = cast<PointerType>(FD->getParamDecl(0)->getType()); 2117 llvm::Type *ByValTy = CGM.getTypes().ConvertType(PtrTy->getPointeeType()); 2118 llvm::Attribute NewAttr = llvm::Attribute::getWithByValType( 2119 Fn->getContext(), ByValTy); 2120 Fn->addParamAttr(0, NewAttr); 2121 } 2122 2123 void X86_32TargetCodeGenInfo::setTargetAttributes( 2124 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2125 if (GV->isDeclaration()) 2126 return; 2127 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2128 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2129 llvm::Function *Fn = cast<llvm::Function>(GV); 2130 Fn->addFnAttr("stackrealign"); 2131 } 2132 2133 addX86InterruptAttrs(FD, GV, CGM); 2134 } 2135 } 2136 2137 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable( 2138 CodeGen::CodeGenFunction &CGF, 2139 llvm::Value *Address) const { 2140 CodeGen::CGBuilderTy &Builder = CGF.Builder; 2141 2142 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 2143 2144 // 0-7 are the eight integer registers; the order is different 2145 // on Darwin (for EH), but the range is the same. 2146 // 8 is %eip. 2147 AssignToArrayRange(Builder, Address, Four8, 0, 8); 2148 2149 if (CGF.CGM.getTarget().getTriple().isOSDarwin()) { 2150 // 12-16 are st(0..4). Not sure why we stop at 4. 2151 // These have size 16, which is sizeof(long double) on 2152 // platforms with 8-byte alignment for that type. 2153 llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16); 2154 AssignToArrayRange(Builder, Address, Sixteen8, 12, 16); 2155 2156 } else { 2157 // 9 is %eflags, which doesn't get a size on Darwin for some 2158 // reason. 2159 Builder.CreateAlignedStore( 2160 Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9), 2161 CharUnits::One()); 2162 2163 // 11-16 are st(0..5). Not sure why we stop at 5. 2164 // These have size 12, which is sizeof(long double) on 2165 // platforms with 4-byte alignment for that type. 2166 llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12); 2167 AssignToArrayRange(Builder, Address, Twelve8, 11, 16); 2168 } 2169 2170 return false; 2171 } 2172 2173 //===----------------------------------------------------------------------===// 2174 // X86-64 ABI Implementation 2175 //===----------------------------------------------------------------------===// 2176 2177 2178 namespace { 2179 /// The AVX ABI level for X86 targets. 2180 enum class X86AVXABILevel { 2181 None, 2182 AVX, 2183 AVX512 2184 }; 2185 2186 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel. 2187 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) { 2188 switch (AVXLevel) { 2189 case X86AVXABILevel::AVX512: 2190 return 512; 2191 case X86AVXABILevel::AVX: 2192 return 256; 2193 case X86AVXABILevel::None: 2194 return 128; 2195 } 2196 llvm_unreachable("Unknown AVXLevel"); 2197 } 2198 2199 /// X86_64ABIInfo - The X86_64 ABI information. 2200 class X86_64ABIInfo : public SwiftABIInfo { 2201 enum Class { 2202 Integer = 0, 2203 SSE, 2204 SSEUp, 2205 X87, 2206 X87Up, 2207 ComplexX87, 2208 NoClass, 2209 Memory 2210 }; 2211 2212 /// merge - Implement the X86_64 ABI merging algorithm. 2213 /// 2214 /// Merge an accumulating classification \arg Accum with a field 2215 /// classification \arg Field. 2216 /// 2217 /// \param Accum - The accumulating classification. This should 2218 /// always be either NoClass or the result of a previous merge 2219 /// call. In addition, this should never be Memory (the caller 2220 /// should just return Memory for the aggregate). 2221 static Class merge(Class Accum, Class Field); 2222 2223 /// postMerge - Implement the X86_64 ABI post merging algorithm. 2224 /// 2225 /// Post merger cleanup, reduces a malformed Hi and Lo pair to 2226 /// final MEMORY or SSE classes when necessary. 2227 /// 2228 /// \param AggregateSize - The size of the current aggregate in 2229 /// the classification process. 2230 /// 2231 /// \param Lo - The classification for the parts of the type 2232 /// residing in the low word of the containing object. 2233 /// 2234 /// \param Hi - The classification for the parts of the type 2235 /// residing in the higher words of the containing object. 2236 /// 2237 void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const; 2238 2239 /// classify - Determine the x86_64 register classes in which the 2240 /// given type T should be passed. 2241 /// 2242 /// \param Lo - The classification for the parts of the type 2243 /// residing in the low word of the containing object. 2244 /// 2245 /// \param Hi - The classification for the parts of the type 2246 /// residing in the high word of the containing object. 2247 /// 2248 /// \param OffsetBase - The bit offset of this type in the 2249 /// containing object. Some parameters are classified different 2250 /// depending on whether they straddle an eightbyte boundary. 2251 /// 2252 /// \param isNamedArg - Whether the argument in question is a "named" 2253 /// argument, as used in AMD64-ABI 3.5.7. 2254 /// 2255 /// If a word is unused its result will be NoClass; if a type should 2256 /// be passed in Memory then at least the classification of \arg Lo 2257 /// will be Memory. 2258 /// 2259 /// The \arg Lo class will be NoClass iff the argument is ignored. 2260 /// 2261 /// If the \arg Lo class is ComplexX87, then the \arg Hi class will 2262 /// also be ComplexX87. 2263 void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi, 2264 bool isNamedArg) const; 2265 2266 llvm::Type *GetByteVectorType(QualType Ty) const; 2267 llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType, 2268 unsigned IROffset, QualType SourceTy, 2269 unsigned SourceOffset) const; 2270 llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType, 2271 unsigned IROffset, QualType SourceTy, 2272 unsigned SourceOffset) const; 2273 2274 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 2275 /// such that the argument will be returned in memory. 2276 ABIArgInfo getIndirectReturnResult(QualType Ty) const; 2277 2278 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 2279 /// such that the argument will be passed in memory. 2280 /// 2281 /// \param freeIntRegs - The number of free integer registers remaining 2282 /// available. 2283 ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const; 2284 2285 ABIArgInfo classifyReturnType(QualType RetTy) const; 2286 2287 ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs, 2288 unsigned &neededInt, unsigned &neededSSE, 2289 bool isNamedArg) const; 2290 2291 ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt, 2292 unsigned &NeededSSE) const; 2293 2294 ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 2295 unsigned &NeededSSE) const; 2296 2297 bool IsIllegalVectorType(QualType Ty) const; 2298 2299 /// The 0.98 ABI revision clarified a lot of ambiguities, 2300 /// unfortunately in ways that were not always consistent with 2301 /// certain previous compilers. In particular, platforms which 2302 /// required strict binary compatibility with older versions of GCC 2303 /// may need to exempt themselves. 2304 bool honorsRevision0_98() const { 2305 return !getTarget().getTriple().isOSDarwin(); 2306 } 2307 2308 /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to 2309 /// classify it as INTEGER (for compatibility with older clang compilers). 2310 bool classifyIntegerMMXAsSSE() const { 2311 // Clang <= 3.8 did not do this. 2312 if (getContext().getLangOpts().getClangABICompat() <= 2313 LangOptions::ClangABI::Ver3_8) 2314 return false; 2315 2316 const llvm::Triple &Triple = getTarget().getTriple(); 2317 if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::PS4) 2318 return false; 2319 if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10) 2320 return false; 2321 return true; 2322 } 2323 2324 // GCC classifies vectors of __int128 as memory. 2325 bool passInt128VectorsInMem() const { 2326 // Clang <= 9.0 did not do this. 2327 if (getContext().getLangOpts().getClangABICompat() <= 2328 LangOptions::ClangABI::Ver9) 2329 return false; 2330 2331 const llvm::Triple &T = getTarget().getTriple(); 2332 return T.isOSLinux() || T.isOSNetBSD(); 2333 } 2334 2335 X86AVXABILevel AVXLevel; 2336 // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on 2337 // 64-bit hardware. 2338 bool Has64BitPointers; 2339 2340 public: 2341 X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) : 2342 SwiftABIInfo(CGT), AVXLevel(AVXLevel), 2343 Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) { 2344 } 2345 2346 bool isPassedUsingAVXType(QualType type) const { 2347 unsigned neededInt, neededSSE; 2348 // The freeIntRegs argument doesn't matter here. 2349 ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE, 2350 /*isNamedArg*/true); 2351 if (info.isDirect()) { 2352 llvm::Type *ty = info.getCoerceToType(); 2353 if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty)) 2354 return vectorTy->getPrimitiveSizeInBits().getFixedSize() > 128; 2355 } 2356 return false; 2357 } 2358 2359 void computeInfo(CGFunctionInfo &FI) const override; 2360 2361 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2362 QualType Ty) const override; 2363 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 2364 QualType Ty) const override; 2365 2366 bool has64BitPointers() const { 2367 return Has64BitPointers; 2368 } 2369 2370 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 2371 bool asReturnValue) const override { 2372 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2373 } 2374 bool isSwiftErrorInRegister() const override { 2375 return true; 2376 } 2377 }; 2378 2379 /// WinX86_64ABIInfo - The Windows X86_64 ABI information. 2380 class WinX86_64ABIInfo : public SwiftABIInfo { 2381 public: 2382 WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2383 : SwiftABIInfo(CGT), AVXLevel(AVXLevel), 2384 IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {} 2385 2386 void computeInfo(CGFunctionInfo &FI) const override; 2387 2388 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2389 QualType Ty) const override; 2390 2391 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 2392 // FIXME: Assumes vectorcall is in use. 2393 return isX86VectorTypeForVectorCall(getContext(), Ty); 2394 } 2395 2396 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 2397 uint64_t NumMembers) const override { 2398 // FIXME: Assumes vectorcall is in use. 2399 return isX86VectorCallAggregateSmallEnough(NumMembers); 2400 } 2401 2402 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type *> scalars, 2403 bool asReturnValue) const override { 2404 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2405 } 2406 2407 bool isSwiftErrorInRegister() const override { 2408 return true; 2409 } 2410 2411 private: 2412 ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType, 2413 bool IsVectorCall, bool IsRegCall) const; 2414 ABIArgInfo reclassifyHvaArgForVectorCall(QualType Ty, unsigned &FreeSSERegs, 2415 const ABIArgInfo ¤t) const; 2416 2417 X86AVXABILevel AVXLevel; 2418 2419 bool IsMingw64; 2420 }; 2421 2422 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2423 public: 2424 X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2425 : TargetCodeGenInfo(std::make_unique<X86_64ABIInfo>(CGT, AVXLevel)) {} 2426 2427 const X86_64ABIInfo &getABIInfo() const { 2428 return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo()); 2429 } 2430 2431 /// Disable tail call on x86-64. The epilogue code before the tail jump blocks 2432 /// autoreleaseRV/retainRV and autoreleaseRV/unsafeClaimRV optimizations. 2433 bool markARCOptimizedReturnCallsAsNoTail() const override { return true; } 2434 2435 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2436 return 7; 2437 } 2438 2439 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2440 llvm::Value *Address) const override { 2441 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2442 2443 // 0-15 are the 16 integer registers. 2444 // 16 is %rip. 2445 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2446 return false; 2447 } 2448 2449 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 2450 StringRef Constraint, 2451 llvm::Type* Ty) const override { 2452 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 2453 } 2454 2455 bool isNoProtoCallVariadic(const CallArgList &args, 2456 const FunctionNoProtoType *fnType) const override { 2457 // The default CC on x86-64 sets %al to the number of SSA 2458 // registers used, and GCC sets this when calling an unprototyped 2459 // function, so we override the default behavior. However, don't do 2460 // that when AVX types are involved: the ABI explicitly states it is 2461 // undefined, and it doesn't work in practice because of how the ABI 2462 // defines varargs anyway. 2463 if (fnType->getCallConv() == CC_C) { 2464 bool HasAVXType = false; 2465 for (CallArgList::const_iterator 2466 it = args.begin(), ie = args.end(); it != ie; ++it) { 2467 if (getABIInfo().isPassedUsingAVXType(it->Ty)) { 2468 HasAVXType = true; 2469 break; 2470 } 2471 } 2472 2473 if (!HasAVXType) 2474 return true; 2475 } 2476 2477 return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType); 2478 } 2479 2480 llvm::Constant * 2481 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 2482 unsigned Sig = (0xeb << 0) | // jmp rel8 2483 (0x06 << 8) | // .+0x08 2484 ('v' << 16) | 2485 ('2' << 24); 2486 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 2487 } 2488 2489 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2490 CodeGen::CodeGenModule &CGM) const override { 2491 if (GV->isDeclaration()) 2492 return; 2493 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2494 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2495 llvm::Function *Fn = cast<llvm::Function>(GV); 2496 Fn->addFnAttr("stackrealign"); 2497 } 2498 2499 addX86InterruptAttrs(FD, GV, CGM); 2500 } 2501 } 2502 2503 void checkFunctionCallABI(CodeGenModule &CGM, SourceLocation CallLoc, 2504 const FunctionDecl *Caller, 2505 const FunctionDecl *Callee, 2506 const CallArgList &Args) const override; 2507 }; 2508 2509 static void initFeatureMaps(const ASTContext &Ctx, 2510 llvm::StringMap<bool> &CallerMap, 2511 const FunctionDecl *Caller, 2512 llvm::StringMap<bool> &CalleeMap, 2513 const FunctionDecl *Callee) { 2514 if (CalleeMap.empty() && CallerMap.empty()) { 2515 // The caller is potentially nullptr in the case where the call isn't in a 2516 // function. In this case, the getFunctionFeatureMap ensures we just get 2517 // the TU level setting (since it cannot be modified by 'target'.. 2518 Ctx.getFunctionFeatureMap(CallerMap, Caller); 2519 Ctx.getFunctionFeatureMap(CalleeMap, Callee); 2520 } 2521 } 2522 2523 static bool checkAVXParamFeature(DiagnosticsEngine &Diag, 2524 SourceLocation CallLoc, 2525 const llvm::StringMap<bool> &CallerMap, 2526 const llvm::StringMap<bool> &CalleeMap, 2527 QualType Ty, StringRef Feature, 2528 bool IsArgument) { 2529 bool CallerHasFeat = CallerMap.lookup(Feature); 2530 bool CalleeHasFeat = CalleeMap.lookup(Feature); 2531 if (!CallerHasFeat && !CalleeHasFeat) 2532 return Diag.Report(CallLoc, diag::warn_avx_calling_convention) 2533 << IsArgument << Ty << Feature; 2534 2535 // Mixing calling conventions here is very clearly an error. 2536 if (!CallerHasFeat || !CalleeHasFeat) 2537 return Diag.Report(CallLoc, diag::err_avx_calling_convention) 2538 << IsArgument << Ty << Feature; 2539 2540 // Else, both caller and callee have the required feature, so there is no need 2541 // to diagnose. 2542 return false; 2543 } 2544 2545 static bool checkAVXParam(DiagnosticsEngine &Diag, ASTContext &Ctx, 2546 SourceLocation CallLoc, 2547 const llvm::StringMap<bool> &CallerMap, 2548 const llvm::StringMap<bool> &CalleeMap, QualType Ty, 2549 bool IsArgument) { 2550 uint64_t Size = Ctx.getTypeSize(Ty); 2551 if (Size > 256) 2552 return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty, 2553 "avx512f", IsArgument); 2554 2555 if (Size > 128) 2556 return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty, "avx", 2557 IsArgument); 2558 2559 return false; 2560 } 2561 2562 void X86_64TargetCodeGenInfo::checkFunctionCallABI( 2563 CodeGenModule &CGM, SourceLocation CallLoc, const FunctionDecl *Caller, 2564 const FunctionDecl *Callee, const CallArgList &Args) const { 2565 llvm::StringMap<bool> CallerMap; 2566 llvm::StringMap<bool> CalleeMap; 2567 unsigned ArgIndex = 0; 2568 2569 // We need to loop through the actual call arguments rather than the the 2570 // function's parameters, in case this variadic. 2571 for (const CallArg &Arg : Args) { 2572 // The "avx" feature changes how vectors >128 in size are passed. "avx512f" 2573 // additionally changes how vectors >256 in size are passed. Like GCC, we 2574 // warn when a function is called with an argument where this will change. 2575 // Unlike GCC, we also error when it is an obvious ABI mismatch, that is, 2576 // the caller and callee features are mismatched. 2577 // Unfortunately, we cannot do this diagnostic in SEMA, since the callee can 2578 // change its ABI with attribute-target after this call. 2579 if (Arg.getType()->isVectorType() && 2580 CGM.getContext().getTypeSize(Arg.getType()) > 128) { 2581 initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee); 2582 QualType Ty = Arg.getType(); 2583 // The CallArg seems to have desugared the type already, so for clearer 2584 // diagnostics, replace it with the type in the FunctionDecl if possible. 2585 if (ArgIndex < Callee->getNumParams()) 2586 Ty = Callee->getParamDecl(ArgIndex)->getType(); 2587 2588 if (checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap, 2589 CalleeMap, Ty, /*IsArgument*/ true)) 2590 return; 2591 } 2592 ++ArgIndex; 2593 } 2594 2595 // Check return always, as we don't have a good way of knowing in codegen 2596 // whether this value is used, tail-called, etc. 2597 if (Callee->getReturnType()->isVectorType() && 2598 CGM.getContext().getTypeSize(Callee->getReturnType()) > 128) { 2599 initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee); 2600 checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap, 2601 CalleeMap, Callee->getReturnType(), 2602 /*IsArgument*/ false); 2603 } 2604 } 2605 2606 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) { 2607 // If the argument does not end in .lib, automatically add the suffix. 2608 // If the argument contains a space, enclose it in quotes. 2609 // This matches the behavior of MSVC. 2610 bool Quote = (Lib.find(' ') != StringRef::npos); 2611 std::string ArgStr = Quote ? "\"" : ""; 2612 ArgStr += Lib; 2613 if (!Lib.endswith_lower(".lib") && !Lib.endswith_lower(".a")) 2614 ArgStr += ".lib"; 2615 ArgStr += Quote ? "\"" : ""; 2616 return ArgStr; 2617 } 2618 2619 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo { 2620 public: 2621 WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2622 bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI, 2623 unsigned NumRegisterParameters) 2624 : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI, 2625 Win32StructABI, NumRegisterParameters, false) {} 2626 2627 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2628 CodeGen::CodeGenModule &CGM) const override; 2629 2630 void getDependentLibraryOption(llvm::StringRef Lib, 2631 llvm::SmallString<24> &Opt) const override { 2632 Opt = "/DEFAULTLIB:"; 2633 Opt += qualifyWindowsLibrary(Lib); 2634 } 2635 2636 void getDetectMismatchOption(llvm::StringRef Name, 2637 llvm::StringRef Value, 2638 llvm::SmallString<32> &Opt) const override { 2639 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2640 } 2641 }; 2642 2643 static void addStackProbeTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2644 CodeGen::CodeGenModule &CGM) { 2645 if (llvm::Function *Fn = dyn_cast_or_null<llvm::Function>(GV)) { 2646 2647 if (CGM.getCodeGenOpts().StackProbeSize != 4096) 2648 Fn->addFnAttr("stack-probe-size", 2649 llvm::utostr(CGM.getCodeGenOpts().StackProbeSize)); 2650 if (CGM.getCodeGenOpts().NoStackArgProbe) 2651 Fn->addFnAttr("no-stack-arg-probe"); 2652 } 2653 } 2654 2655 void WinX86_32TargetCodeGenInfo::setTargetAttributes( 2656 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2657 X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2658 if (GV->isDeclaration()) 2659 return; 2660 addStackProbeTargetAttributes(D, GV, CGM); 2661 } 2662 2663 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2664 public: 2665 WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2666 X86AVXABILevel AVXLevel) 2667 : TargetCodeGenInfo(std::make_unique<WinX86_64ABIInfo>(CGT, AVXLevel)) {} 2668 2669 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2670 CodeGen::CodeGenModule &CGM) const override; 2671 2672 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2673 return 7; 2674 } 2675 2676 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2677 llvm::Value *Address) const override { 2678 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2679 2680 // 0-15 are the 16 integer registers. 2681 // 16 is %rip. 2682 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2683 return false; 2684 } 2685 2686 void getDependentLibraryOption(llvm::StringRef Lib, 2687 llvm::SmallString<24> &Opt) const override { 2688 Opt = "/DEFAULTLIB:"; 2689 Opt += qualifyWindowsLibrary(Lib); 2690 } 2691 2692 void getDetectMismatchOption(llvm::StringRef Name, 2693 llvm::StringRef Value, 2694 llvm::SmallString<32> &Opt) const override { 2695 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2696 } 2697 }; 2698 2699 void WinX86_64TargetCodeGenInfo::setTargetAttributes( 2700 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2701 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2702 if (GV->isDeclaration()) 2703 return; 2704 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2705 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2706 llvm::Function *Fn = cast<llvm::Function>(GV); 2707 Fn->addFnAttr("stackrealign"); 2708 } 2709 2710 addX86InterruptAttrs(FD, GV, CGM); 2711 } 2712 2713 addStackProbeTargetAttributes(D, GV, CGM); 2714 } 2715 } 2716 2717 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo, 2718 Class &Hi) const { 2719 // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done: 2720 // 2721 // (a) If one of the classes is Memory, the whole argument is passed in 2722 // memory. 2723 // 2724 // (b) If X87UP is not preceded by X87, the whole argument is passed in 2725 // memory. 2726 // 2727 // (c) If the size of the aggregate exceeds two eightbytes and the first 2728 // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole 2729 // argument is passed in memory. NOTE: This is necessary to keep the 2730 // ABI working for processors that don't support the __m256 type. 2731 // 2732 // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE. 2733 // 2734 // Some of these are enforced by the merging logic. Others can arise 2735 // only with unions; for example: 2736 // union { _Complex double; unsigned; } 2737 // 2738 // Note that clauses (b) and (c) were added in 0.98. 2739 // 2740 if (Hi == Memory) 2741 Lo = Memory; 2742 if (Hi == X87Up && Lo != X87 && honorsRevision0_98()) 2743 Lo = Memory; 2744 if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp)) 2745 Lo = Memory; 2746 if (Hi == SSEUp && Lo != SSE) 2747 Hi = SSE; 2748 } 2749 2750 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) { 2751 // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is 2752 // classified recursively so that always two fields are 2753 // considered. The resulting class is calculated according to 2754 // the classes of the fields in the eightbyte: 2755 // 2756 // (a) If both classes are equal, this is the resulting class. 2757 // 2758 // (b) If one of the classes is NO_CLASS, the resulting class is 2759 // the other class. 2760 // 2761 // (c) If one of the classes is MEMORY, the result is the MEMORY 2762 // class. 2763 // 2764 // (d) If one of the classes is INTEGER, the result is the 2765 // INTEGER. 2766 // 2767 // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class, 2768 // MEMORY is used as class. 2769 // 2770 // (f) Otherwise class SSE is used. 2771 2772 // Accum should never be memory (we should have returned) or 2773 // ComplexX87 (because this cannot be passed in a structure). 2774 assert((Accum != Memory && Accum != ComplexX87) && 2775 "Invalid accumulated classification during merge."); 2776 if (Accum == Field || Field == NoClass) 2777 return Accum; 2778 if (Field == Memory) 2779 return Memory; 2780 if (Accum == NoClass) 2781 return Field; 2782 if (Accum == Integer || Field == Integer) 2783 return Integer; 2784 if (Field == X87 || Field == X87Up || Field == ComplexX87 || 2785 Accum == X87 || Accum == X87Up) 2786 return Memory; 2787 return SSE; 2788 } 2789 2790 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, 2791 Class &Lo, Class &Hi, bool isNamedArg) const { 2792 // FIXME: This code can be simplified by introducing a simple value class for 2793 // Class pairs with appropriate constructor methods for the various 2794 // situations. 2795 2796 // FIXME: Some of the split computations are wrong; unaligned vectors 2797 // shouldn't be passed in registers for example, so there is no chance they 2798 // can straddle an eightbyte. Verify & simplify. 2799 2800 Lo = Hi = NoClass; 2801 2802 Class &Current = OffsetBase < 64 ? Lo : Hi; 2803 Current = Memory; 2804 2805 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 2806 BuiltinType::Kind k = BT->getKind(); 2807 2808 if (k == BuiltinType::Void) { 2809 Current = NoClass; 2810 } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) { 2811 Lo = Integer; 2812 Hi = Integer; 2813 } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) { 2814 Current = Integer; 2815 } else if (k == BuiltinType::Float || k == BuiltinType::Double) { 2816 Current = SSE; 2817 } else if (k == BuiltinType::LongDouble) { 2818 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2819 if (LDF == &llvm::APFloat::IEEEquad()) { 2820 Lo = SSE; 2821 Hi = SSEUp; 2822 } else if (LDF == &llvm::APFloat::x87DoubleExtended()) { 2823 Lo = X87; 2824 Hi = X87Up; 2825 } else if (LDF == &llvm::APFloat::IEEEdouble()) { 2826 Current = SSE; 2827 } else 2828 llvm_unreachable("unexpected long double representation!"); 2829 } 2830 // FIXME: _Decimal32 and _Decimal64 are SSE. 2831 // FIXME: _float128 and _Decimal128 are (SSE, SSEUp). 2832 return; 2833 } 2834 2835 if (const EnumType *ET = Ty->getAs<EnumType>()) { 2836 // Classify the underlying integer type. 2837 classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg); 2838 return; 2839 } 2840 2841 if (Ty->hasPointerRepresentation()) { 2842 Current = Integer; 2843 return; 2844 } 2845 2846 if (Ty->isMemberPointerType()) { 2847 if (Ty->isMemberFunctionPointerType()) { 2848 if (Has64BitPointers) { 2849 // If Has64BitPointers, this is an {i64, i64}, so classify both 2850 // Lo and Hi now. 2851 Lo = Hi = Integer; 2852 } else { 2853 // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that 2854 // straddles an eightbyte boundary, Hi should be classified as well. 2855 uint64_t EB_FuncPtr = (OffsetBase) / 64; 2856 uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64; 2857 if (EB_FuncPtr != EB_ThisAdj) { 2858 Lo = Hi = Integer; 2859 } else { 2860 Current = Integer; 2861 } 2862 } 2863 } else { 2864 Current = Integer; 2865 } 2866 return; 2867 } 2868 2869 if (const VectorType *VT = Ty->getAs<VectorType>()) { 2870 uint64_t Size = getContext().getTypeSize(VT); 2871 if (Size == 1 || Size == 8 || Size == 16 || Size == 32) { 2872 // gcc passes the following as integer: 2873 // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float> 2874 // 2 bytes - <2 x char>, <1 x short> 2875 // 1 byte - <1 x char> 2876 Current = Integer; 2877 2878 // If this type crosses an eightbyte boundary, it should be 2879 // split. 2880 uint64_t EB_Lo = (OffsetBase) / 64; 2881 uint64_t EB_Hi = (OffsetBase + Size - 1) / 64; 2882 if (EB_Lo != EB_Hi) 2883 Hi = Lo; 2884 } else if (Size == 64) { 2885 QualType ElementType = VT->getElementType(); 2886 2887 // gcc passes <1 x double> in memory. :( 2888 if (ElementType->isSpecificBuiltinType(BuiltinType::Double)) 2889 return; 2890 2891 // gcc passes <1 x long long> as SSE but clang used to unconditionally 2892 // pass them as integer. For platforms where clang is the de facto 2893 // platform compiler, we must continue to use integer. 2894 if (!classifyIntegerMMXAsSSE() && 2895 (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) || 2896 ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) || 2897 ElementType->isSpecificBuiltinType(BuiltinType::Long) || 2898 ElementType->isSpecificBuiltinType(BuiltinType::ULong))) 2899 Current = Integer; 2900 else 2901 Current = SSE; 2902 2903 // If this type crosses an eightbyte boundary, it should be 2904 // split. 2905 if (OffsetBase && OffsetBase != 64) 2906 Hi = Lo; 2907 } else if (Size == 128 || 2908 (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) { 2909 QualType ElementType = VT->getElementType(); 2910 2911 // gcc passes 256 and 512 bit <X x __int128> vectors in memory. :( 2912 if (passInt128VectorsInMem() && Size != 128 && 2913 (ElementType->isSpecificBuiltinType(BuiltinType::Int128) || 2914 ElementType->isSpecificBuiltinType(BuiltinType::UInt128))) 2915 return; 2916 2917 // Arguments of 256-bits are split into four eightbyte chunks. The 2918 // least significant one belongs to class SSE and all the others to class 2919 // SSEUP. The original Lo and Hi design considers that types can't be 2920 // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense. 2921 // This design isn't correct for 256-bits, but since there're no cases 2922 // where the upper parts would need to be inspected, avoid adding 2923 // complexity and just consider Hi to match the 64-256 part. 2924 // 2925 // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in 2926 // registers if they are "named", i.e. not part of the "..." of a 2927 // variadic function. 2928 // 2929 // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are 2930 // split into eight eightbyte chunks, one SSE and seven SSEUP. 2931 Lo = SSE; 2932 Hi = SSEUp; 2933 } 2934 return; 2935 } 2936 2937 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 2938 QualType ET = getContext().getCanonicalType(CT->getElementType()); 2939 2940 uint64_t Size = getContext().getTypeSize(Ty); 2941 if (ET->isIntegralOrEnumerationType()) { 2942 if (Size <= 64) 2943 Current = Integer; 2944 else if (Size <= 128) 2945 Lo = Hi = Integer; 2946 } else if (ET == getContext().FloatTy) { 2947 Current = SSE; 2948 } else if (ET == getContext().DoubleTy) { 2949 Lo = Hi = SSE; 2950 } else if (ET == getContext().LongDoubleTy) { 2951 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2952 if (LDF == &llvm::APFloat::IEEEquad()) 2953 Current = Memory; 2954 else if (LDF == &llvm::APFloat::x87DoubleExtended()) 2955 Current = ComplexX87; 2956 else if (LDF == &llvm::APFloat::IEEEdouble()) 2957 Lo = Hi = SSE; 2958 else 2959 llvm_unreachable("unexpected long double representation!"); 2960 } 2961 2962 // If this complex type crosses an eightbyte boundary then it 2963 // should be split. 2964 uint64_t EB_Real = (OffsetBase) / 64; 2965 uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64; 2966 if (Hi == NoClass && EB_Real != EB_Imag) 2967 Hi = Lo; 2968 2969 return; 2970 } 2971 2972 if (const auto *EITy = Ty->getAs<ExtIntType>()) { 2973 if (EITy->getNumBits() <= 64) 2974 Current = Integer; 2975 else if (EITy->getNumBits() <= 128) 2976 Lo = Hi = Integer; 2977 // Larger values need to get passed in memory. 2978 return; 2979 } 2980 2981 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 2982 // Arrays are treated like structures. 2983 2984 uint64_t Size = getContext().getTypeSize(Ty); 2985 2986 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 2987 // than eight eightbytes, ..., it has class MEMORY. 2988 if (Size > 512) 2989 return; 2990 2991 // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned 2992 // fields, it has class MEMORY. 2993 // 2994 // Only need to check alignment of array base. 2995 if (OffsetBase % getContext().getTypeAlign(AT->getElementType())) 2996 return; 2997 2998 // Otherwise implement simplified merge. We could be smarter about 2999 // this, but it isn't worth it and would be harder to verify. 3000 Current = NoClass; 3001 uint64_t EltSize = getContext().getTypeSize(AT->getElementType()); 3002 uint64_t ArraySize = AT->getSize().getZExtValue(); 3003 3004 // The only case a 256-bit wide vector could be used is when the array 3005 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 3006 // to work for sizes wider than 128, early check and fallback to memory. 3007 // 3008 if (Size > 128 && 3009 (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel))) 3010 return; 3011 3012 for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) { 3013 Class FieldLo, FieldHi; 3014 classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg); 3015 Lo = merge(Lo, FieldLo); 3016 Hi = merge(Hi, FieldHi); 3017 if (Lo == Memory || Hi == Memory) 3018 break; 3019 } 3020 3021 postMerge(Size, Lo, Hi); 3022 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification."); 3023 return; 3024 } 3025 3026 if (const RecordType *RT = Ty->getAs<RecordType>()) { 3027 uint64_t Size = getContext().getTypeSize(Ty); 3028 3029 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 3030 // than eight eightbytes, ..., it has class MEMORY. 3031 if (Size > 512) 3032 return; 3033 3034 // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial 3035 // copy constructor or a non-trivial destructor, it is passed by invisible 3036 // reference. 3037 if (getRecordArgABI(RT, getCXXABI())) 3038 return; 3039 3040 const RecordDecl *RD = RT->getDecl(); 3041 3042 // Assume variable sized types are passed in memory. 3043 if (RD->hasFlexibleArrayMember()) 3044 return; 3045 3046 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 3047 3048 // Reset Lo class, this will be recomputed. 3049 Current = NoClass; 3050 3051 // If this is a C++ record, classify the bases first. 3052 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 3053 for (const auto &I : CXXRD->bases()) { 3054 assert(!I.isVirtual() && !I.getType()->isDependentType() && 3055 "Unexpected base class!"); 3056 const auto *Base = 3057 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 3058 3059 // Classify this field. 3060 // 3061 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a 3062 // single eightbyte, each is classified separately. Each eightbyte gets 3063 // initialized to class NO_CLASS. 3064 Class FieldLo, FieldHi; 3065 uint64_t Offset = 3066 OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base)); 3067 classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg); 3068 Lo = merge(Lo, FieldLo); 3069 Hi = merge(Hi, FieldHi); 3070 if (Lo == Memory || Hi == Memory) { 3071 postMerge(Size, Lo, Hi); 3072 return; 3073 } 3074 } 3075 } 3076 3077 // Classify the fields one at a time, merging the results. 3078 unsigned idx = 0; 3079 bool UseClang11Compat = getContext().getLangOpts().getClangABICompat() <= 3080 LangOptions::ClangABI::Ver11 || 3081 getContext().getTargetInfo().getTriple().isPS4(); 3082 bool IsUnion = RT->isUnionType() && !UseClang11Compat; 3083 3084 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 3085 i != e; ++i, ++idx) { 3086 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 3087 bool BitField = i->isBitField(); 3088 3089 // Ignore padding bit-fields. 3090 if (BitField && i->isUnnamedBitfield()) 3091 continue; 3092 3093 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than 3094 // eight eightbytes, or it contains unaligned fields, it has class MEMORY. 3095 // 3096 // The only case a 256-bit or a 512-bit wide vector could be used is when 3097 // the struct contains a single 256-bit or 512-bit element. Early check 3098 // and fallback to memory. 3099 // 3100 // FIXME: Extended the Lo and Hi logic properly to work for size wider 3101 // than 128. 3102 if (Size > 128 && 3103 ((!IsUnion && Size != getContext().getTypeSize(i->getType())) || 3104 Size > getNativeVectorSizeForAVXABI(AVXLevel))) { 3105 Lo = Memory; 3106 postMerge(Size, Lo, Hi); 3107 return; 3108 } 3109 // Note, skip this test for bit-fields, see below. 3110 if (!BitField && Offset % getContext().getTypeAlign(i->getType())) { 3111 Lo = Memory; 3112 postMerge(Size, Lo, Hi); 3113 return; 3114 } 3115 3116 // Classify this field. 3117 // 3118 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate 3119 // exceeds a single eightbyte, each is classified 3120 // separately. Each eightbyte gets initialized to class 3121 // NO_CLASS. 3122 Class FieldLo, FieldHi; 3123 3124 // Bit-fields require special handling, they do not force the 3125 // structure to be passed in memory even if unaligned, and 3126 // therefore they can straddle an eightbyte. 3127 if (BitField) { 3128 assert(!i->isUnnamedBitfield()); 3129 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 3130 uint64_t Size = i->getBitWidthValue(getContext()); 3131 3132 uint64_t EB_Lo = Offset / 64; 3133 uint64_t EB_Hi = (Offset + Size - 1) / 64; 3134 3135 if (EB_Lo) { 3136 assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes."); 3137 FieldLo = NoClass; 3138 FieldHi = Integer; 3139 } else { 3140 FieldLo = Integer; 3141 FieldHi = EB_Hi ? Integer : NoClass; 3142 } 3143 } else 3144 classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg); 3145 Lo = merge(Lo, FieldLo); 3146 Hi = merge(Hi, FieldHi); 3147 if (Lo == Memory || Hi == Memory) 3148 break; 3149 } 3150 3151 postMerge(Size, Lo, Hi); 3152 } 3153 } 3154 3155 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const { 3156 // If this is a scalar LLVM value then assume LLVM will pass it in the right 3157 // place naturally. 3158 if (!isAggregateTypeForABI(Ty)) { 3159 // Treat an enum type as its underlying type. 3160 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3161 Ty = EnumTy->getDecl()->getIntegerType(); 3162 3163 if (Ty->isExtIntType()) 3164 return getNaturalAlignIndirect(Ty); 3165 3166 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 3167 : ABIArgInfo::getDirect()); 3168 } 3169 3170 return getNaturalAlignIndirect(Ty); 3171 } 3172 3173 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const { 3174 if (const VectorType *VecTy = Ty->getAs<VectorType>()) { 3175 uint64_t Size = getContext().getTypeSize(VecTy); 3176 unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel); 3177 if (Size <= 64 || Size > LargestVector) 3178 return true; 3179 QualType EltTy = VecTy->getElementType(); 3180 if (passInt128VectorsInMem() && 3181 (EltTy->isSpecificBuiltinType(BuiltinType::Int128) || 3182 EltTy->isSpecificBuiltinType(BuiltinType::UInt128))) 3183 return true; 3184 } 3185 3186 return false; 3187 } 3188 3189 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty, 3190 unsigned freeIntRegs) const { 3191 // If this is a scalar LLVM value then assume LLVM will pass it in the right 3192 // place naturally. 3193 // 3194 // This assumption is optimistic, as there could be free registers available 3195 // when we need to pass this argument in memory, and LLVM could try to pass 3196 // the argument in the free register. This does not seem to happen currently, 3197 // but this code would be much safer if we could mark the argument with 3198 // 'onstack'. See PR12193. 3199 if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty) && 3200 !Ty->isExtIntType()) { 3201 // Treat an enum type as its underlying type. 3202 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3203 Ty = EnumTy->getDecl()->getIntegerType(); 3204 3205 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 3206 : ABIArgInfo::getDirect()); 3207 } 3208 3209 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 3210 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 3211 3212 // Compute the byval alignment. We specify the alignment of the byval in all 3213 // cases so that the mid-level optimizer knows the alignment of the byval. 3214 unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U); 3215 3216 // Attempt to avoid passing indirect results using byval when possible. This 3217 // is important for good codegen. 3218 // 3219 // We do this by coercing the value into a scalar type which the backend can 3220 // handle naturally (i.e., without using byval). 3221 // 3222 // For simplicity, we currently only do this when we have exhausted all of the 3223 // free integer registers. Doing this when there are free integer registers 3224 // would require more care, as we would have to ensure that the coerced value 3225 // did not claim the unused register. That would require either reording the 3226 // arguments to the function (so that any subsequent inreg values came first), 3227 // or only doing this optimization when there were no following arguments that 3228 // might be inreg. 3229 // 3230 // We currently expect it to be rare (particularly in well written code) for 3231 // arguments to be passed on the stack when there are still free integer 3232 // registers available (this would typically imply large structs being passed 3233 // by value), so this seems like a fair tradeoff for now. 3234 // 3235 // We can revisit this if the backend grows support for 'onstack' parameter 3236 // attributes. See PR12193. 3237 if (freeIntRegs == 0) { 3238 uint64_t Size = getContext().getTypeSize(Ty); 3239 3240 // If this type fits in an eightbyte, coerce it into the matching integral 3241 // type, which will end up on the stack (with alignment 8). 3242 if (Align == 8 && Size <= 64) 3243 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 3244 Size)); 3245 } 3246 3247 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align)); 3248 } 3249 3250 /// The ABI specifies that a value should be passed in a full vector XMM/YMM 3251 /// register. Pick an LLVM IR type that will be passed as a vector register. 3252 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const { 3253 // Wrapper structs/arrays that only contain vectors are passed just like 3254 // vectors; strip them off if present. 3255 if (const Type *InnerTy = isSingleElementStruct(Ty, getContext())) 3256 Ty = QualType(InnerTy, 0); 3257 3258 llvm::Type *IRType = CGT.ConvertType(Ty); 3259 if (isa<llvm::VectorType>(IRType)) { 3260 // Don't pass vXi128 vectors in their native type, the backend can't 3261 // legalize them. 3262 if (passInt128VectorsInMem() && 3263 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy(128)) { 3264 // Use a vXi64 vector. 3265 uint64_t Size = getContext().getTypeSize(Ty); 3266 return llvm::FixedVectorType::get(llvm::Type::getInt64Ty(getVMContext()), 3267 Size / 64); 3268 } 3269 3270 return IRType; 3271 } 3272 3273 if (IRType->getTypeID() == llvm::Type::FP128TyID) 3274 return IRType; 3275 3276 // We couldn't find the preferred IR vector type for 'Ty'. 3277 uint64_t Size = getContext().getTypeSize(Ty); 3278 assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!"); 3279 3280 3281 // Return a LLVM IR vector type based on the size of 'Ty'. 3282 return llvm::FixedVectorType::get(llvm::Type::getDoubleTy(getVMContext()), 3283 Size / 64); 3284 } 3285 3286 /// BitsContainNoUserData - Return true if the specified [start,end) bit range 3287 /// is known to either be off the end of the specified type or being in 3288 /// alignment padding. The user type specified is known to be at most 128 bits 3289 /// in size, and have passed through X86_64ABIInfo::classify with a successful 3290 /// classification that put one of the two halves in the INTEGER class. 3291 /// 3292 /// It is conservatively correct to return false. 3293 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit, 3294 unsigned EndBit, ASTContext &Context) { 3295 // If the bytes being queried are off the end of the type, there is no user 3296 // data hiding here. This handles analysis of builtins, vectors and other 3297 // types that don't contain interesting padding. 3298 unsigned TySize = (unsigned)Context.getTypeSize(Ty); 3299 if (TySize <= StartBit) 3300 return true; 3301 3302 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 3303 unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType()); 3304 unsigned NumElts = (unsigned)AT->getSize().getZExtValue(); 3305 3306 // Check each element to see if the element overlaps with the queried range. 3307 for (unsigned i = 0; i != NumElts; ++i) { 3308 // If the element is after the span we care about, then we're done.. 3309 unsigned EltOffset = i*EltSize; 3310 if (EltOffset >= EndBit) break; 3311 3312 unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0; 3313 if (!BitsContainNoUserData(AT->getElementType(), EltStart, 3314 EndBit-EltOffset, Context)) 3315 return false; 3316 } 3317 // If it overlaps no elements, then it is safe to process as padding. 3318 return true; 3319 } 3320 3321 if (const RecordType *RT = Ty->getAs<RecordType>()) { 3322 const RecordDecl *RD = RT->getDecl(); 3323 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 3324 3325 // If this is a C++ record, check the bases first. 3326 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 3327 for (const auto &I : CXXRD->bases()) { 3328 assert(!I.isVirtual() && !I.getType()->isDependentType() && 3329 "Unexpected base class!"); 3330 const auto *Base = 3331 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 3332 3333 // If the base is after the span we care about, ignore it. 3334 unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base)); 3335 if (BaseOffset >= EndBit) continue; 3336 3337 unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0; 3338 if (!BitsContainNoUserData(I.getType(), BaseStart, 3339 EndBit-BaseOffset, Context)) 3340 return false; 3341 } 3342 } 3343 3344 // Verify that no field has data that overlaps the region of interest. Yes 3345 // this could be sped up a lot by being smarter about queried fields, 3346 // however we're only looking at structs up to 16 bytes, so we don't care 3347 // much. 3348 unsigned idx = 0; 3349 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 3350 i != e; ++i, ++idx) { 3351 unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx); 3352 3353 // If we found a field after the region we care about, then we're done. 3354 if (FieldOffset >= EndBit) break; 3355 3356 unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0; 3357 if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset, 3358 Context)) 3359 return false; 3360 } 3361 3362 // If nothing in this record overlapped the area of interest, then we're 3363 // clean. 3364 return true; 3365 } 3366 3367 return false; 3368 } 3369 3370 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a 3371 /// float member at the specified offset. For example, {int,{float}} has a 3372 /// float at offset 4. It is conservatively correct for this routine to return 3373 /// false. 3374 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset, 3375 const llvm::DataLayout &TD) { 3376 // Base case if we find a float. 3377 if (IROffset == 0 && IRType->isFloatTy()) 3378 return true; 3379 3380 // If this is a struct, recurse into the field at the specified offset. 3381 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 3382 const llvm::StructLayout *SL = TD.getStructLayout(STy); 3383 unsigned Elt = SL->getElementContainingOffset(IROffset); 3384 IROffset -= SL->getElementOffset(Elt); 3385 return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD); 3386 } 3387 3388 // If this is an array, recurse into the field at the specified offset. 3389 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 3390 llvm::Type *EltTy = ATy->getElementType(); 3391 unsigned EltSize = TD.getTypeAllocSize(EltTy); 3392 IROffset -= IROffset/EltSize*EltSize; 3393 return ContainsFloatAtOffset(EltTy, IROffset, TD); 3394 } 3395 3396 return false; 3397 } 3398 3399 3400 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the 3401 /// low 8 bytes of an XMM register, corresponding to the SSE class. 3402 llvm::Type *X86_64ABIInfo:: 3403 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3404 QualType SourceTy, unsigned SourceOffset) const { 3405 // The only three choices we have are either double, <2 x float>, or float. We 3406 // pass as float if the last 4 bytes is just padding. This happens for 3407 // structs that contain 3 floats. 3408 if (BitsContainNoUserData(SourceTy, SourceOffset*8+32, 3409 SourceOffset*8+64, getContext())) 3410 return llvm::Type::getFloatTy(getVMContext()); 3411 3412 // We want to pass as <2 x float> if the LLVM IR type contains a float at 3413 // offset+0 and offset+4. Walk the LLVM IR type to find out if this is the 3414 // case. 3415 if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) && 3416 ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout())) 3417 return llvm::FixedVectorType::get(llvm::Type::getFloatTy(getVMContext()), 3418 2); 3419 3420 return llvm::Type::getDoubleTy(getVMContext()); 3421 } 3422 3423 3424 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in 3425 /// an 8-byte GPR. This means that we either have a scalar or we are talking 3426 /// about the high or low part of an up-to-16-byte struct. This routine picks 3427 /// the best LLVM IR type to represent this, which may be i64 or may be anything 3428 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*, 3429 /// etc). 3430 /// 3431 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for 3432 /// the source type. IROffset is an offset in bytes into the LLVM IR type that 3433 /// the 8-byte value references. PrefType may be null. 3434 /// 3435 /// SourceTy is the source-level type for the entire argument. SourceOffset is 3436 /// an offset into this that we're processing (which is always either 0 or 8). 3437 /// 3438 llvm::Type *X86_64ABIInfo:: 3439 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3440 QualType SourceTy, unsigned SourceOffset) const { 3441 // If we're dealing with an un-offset LLVM IR type, then it means that we're 3442 // returning an 8-byte unit starting with it. See if we can safely use it. 3443 if (IROffset == 0) { 3444 // Pointers and int64's always fill the 8-byte unit. 3445 if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) || 3446 IRType->isIntegerTy(64)) 3447 return IRType; 3448 3449 // If we have a 1/2/4-byte integer, we can use it only if the rest of the 3450 // goodness in the source type is just tail padding. This is allowed to 3451 // kick in for struct {double,int} on the int, but not on 3452 // struct{double,int,int} because we wouldn't return the second int. We 3453 // have to do this analysis on the source type because we can't depend on 3454 // unions being lowered a specific way etc. 3455 if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) || 3456 IRType->isIntegerTy(32) || 3457 (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) { 3458 unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 : 3459 cast<llvm::IntegerType>(IRType)->getBitWidth(); 3460 3461 if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth, 3462 SourceOffset*8+64, getContext())) 3463 return IRType; 3464 } 3465 } 3466 3467 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 3468 // If this is a struct, recurse into the field at the specified offset. 3469 const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy); 3470 if (IROffset < SL->getSizeInBytes()) { 3471 unsigned FieldIdx = SL->getElementContainingOffset(IROffset); 3472 IROffset -= SL->getElementOffset(FieldIdx); 3473 3474 return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset, 3475 SourceTy, SourceOffset); 3476 } 3477 } 3478 3479 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 3480 llvm::Type *EltTy = ATy->getElementType(); 3481 unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy); 3482 unsigned EltOffset = IROffset/EltSize*EltSize; 3483 return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy, 3484 SourceOffset); 3485 } 3486 3487 // Okay, we don't have any better idea of what to pass, so we pass this in an 3488 // integer register that isn't too big to fit the rest of the struct. 3489 unsigned TySizeInBytes = 3490 (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity(); 3491 3492 assert(TySizeInBytes != SourceOffset && "Empty field?"); 3493 3494 // It is always safe to classify this as an integer type up to i64 that 3495 // isn't larger than the structure. 3496 return llvm::IntegerType::get(getVMContext(), 3497 std::min(TySizeInBytes-SourceOffset, 8U)*8); 3498 } 3499 3500 3501 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally 3502 /// be used as elements of a two register pair to pass or return, return a 3503 /// first class aggregate to represent them. For example, if the low part of 3504 /// a by-value argument should be passed as i32* and the high part as float, 3505 /// return {i32*, float}. 3506 static llvm::Type * 3507 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi, 3508 const llvm::DataLayout &TD) { 3509 // In order to correctly satisfy the ABI, we need to the high part to start 3510 // at offset 8. If the high and low parts we inferred are both 4-byte types 3511 // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have 3512 // the second element at offset 8. Check for this: 3513 unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo); 3514 unsigned HiAlign = TD.getABITypeAlignment(Hi); 3515 unsigned HiStart = llvm::alignTo(LoSize, HiAlign); 3516 assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!"); 3517 3518 // To handle this, we have to increase the size of the low part so that the 3519 // second element will start at an 8 byte offset. We can't increase the size 3520 // of the second element because it might make us access off the end of the 3521 // struct. 3522 if (HiStart != 8) { 3523 // There are usually two sorts of types the ABI generation code can produce 3524 // for the low part of a pair that aren't 8 bytes in size: float or 3525 // i8/i16/i32. This can also include pointers when they are 32-bit (X32 and 3526 // NaCl). 3527 // Promote these to a larger type. 3528 if (Lo->isFloatTy()) 3529 Lo = llvm::Type::getDoubleTy(Lo->getContext()); 3530 else { 3531 assert((Lo->isIntegerTy() || Lo->isPointerTy()) 3532 && "Invalid/unknown lo type"); 3533 Lo = llvm::Type::getInt64Ty(Lo->getContext()); 3534 } 3535 } 3536 3537 llvm::StructType *Result = llvm::StructType::get(Lo, Hi); 3538 3539 // Verify that the second element is at an 8-byte offset. 3540 assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 && 3541 "Invalid x86-64 argument pair!"); 3542 return Result; 3543 } 3544 3545 ABIArgInfo X86_64ABIInfo:: 3546 classifyReturnType(QualType RetTy) const { 3547 // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the 3548 // classification algorithm. 3549 X86_64ABIInfo::Class Lo, Hi; 3550 classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true); 3551 3552 // Check some invariants. 3553 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3554 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3555 3556 llvm::Type *ResType = nullptr; 3557 switch (Lo) { 3558 case NoClass: 3559 if (Hi == NoClass) 3560 return ABIArgInfo::getIgnore(); 3561 // If the low part is just padding, it takes no register, leave ResType 3562 // null. 3563 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3564 "Unknown missing lo part"); 3565 break; 3566 3567 case SSEUp: 3568 case X87Up: 3569 llvm_unreachable("Invalid classification for lo word."); 3570 3571 // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via 3572 // hidden argument. 3573 case Memory: 3574 return getIndirectReturnResult(RetTy); 3575 3576 // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next 3577 // available register of the sequence %rax, %rdx is used. 3578 case Integer: 3579 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3580 3581 // If we have a sign or zero extended integer, make sure to return Extend 3582 // so that the parameter gets the right LLVM IR attributes. 3583 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3584 // Treat an enum type as its underlying type. 3585 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 3586 RetTy = EnumTy->getDecl()->getIntegerType(); 3587 3588 if (RetTy->isIntegralOrEnumerationType() && 3589 isPromotableIntegerTypeForABI(RetTy)) 3590 return ABIArgInfo::getExtend(RetTy); 3591 } 3592 break; 3593 3594 // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next 3595 // available SSE register of the sequence %xmm0, %xmm1 is used. 3596 case SSE: 3597 ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3598 break; 3599 3600 // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is 3601 // returned on the X87 stack in %st0 as 80-bit x87 number. 3602 case X87: 3603 ResType = llvm::Type::getX86_FP80Ty(getVMContext()); 3604 break; 3605 3606 // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real 3607 // part of the value is returned in %st0 and the imaginary part in 3608 // %st1. 3609 case ComplexX87: 3610 assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification."); 3611 ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()), 3612 llvm::Type::getX86_FP80Ty(getVMContext())); 3613 break; 3614 } 3615 3616 llvm::Type *HighPart = nullptr; 3617 switch (Hi) { 3618 // Memory was handled previously and X87 should 3619 // never occur as a hi class. 3620 case Memory: 3621 case X87: 3622 llvm_unreachable("Invalid classification for hi word."); 3623 3624 case ComplexX87: // Previously handled. 3625 case NoClass: 3626 break; 3627 3628 case Integer: 3629 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3630 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3631 return ABIArgInfo::getDirect(HighPart, 8); 3632 break; 3633 case SSE: 3634 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3635 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3636 return ABIArgInfo::getDirect(HighPart, 8); 3637 break; 3638 3639 // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte 3640 // is passed in the next available eightbyte chunk if the last used 3641 // vector register. 3642 // 3643 // SSEUP should always be preceded by SSE, just widen. 3644 case SSEUp: 3645 assert(Lo == SSE && "Unexpected SSEUp classification."); 3646 ResType = GetByteVectorType(RetTy); 3647 break; 3648 3649 // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is 3650 // returned together with the previous X87 value in %st0. 3651 case X87Up: 3652 // If X87Up is preceded by X87, we don't need to do 3653 // anything. However, in some cases with unions it may not be 3654 // preceded by X87. In such situations we follow gcc and pass the 3655 // extra bits in an SSE reg. 3656 if (Lo != X87) { 3657 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3658 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3659 return ABIArgInfo::getDirect(HighPart, 8); 3660 } 3661 break; 3662 } 3663 3664 // If a high part was specified, merge it together with the low part. It is 3665 // known to pass in the high eightbyte of the result. We do this by forming a 3666 // first class struct aggregate with the high and low part: {low, high} 3667 if (HighPart) 3668 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3669 3670 return ABIArgInfo::getDirect(ResType); 3671 } 3672 3673 ABIArgInfo X86_64ABIInfo::classifyArgumentType( 3674 QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE, 3675 bool isNamedArg) 3676 const 3677 { 3678 Ty = useFirstFieldIfTransparentUnion(Ty); 3679 3680 X86_64ABIInfo::Class Lo, Hi; 3681 classify(Ty, 0, Lo, Hi, isNamedArg); 3682 3683 // Check some invariants. 3684 // FIXME: Enforce these by construction. 3685 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3686 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3687 3688 neededInt = 0; 3689 neededSSE = 0; 3690 llvm::Type *ResType = nullptr; 3691 switch (Lo) { 3692 case NoClass: 3693 if (Hi == NoClass) 3694 return ABIArgInfo::getIgnore(); 3695 // If the low part is just padding, it takes no register, leave ResType 3696 // null. 3697 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3698 "Unknown missing lo part"); 3699 break; 3700 3701 // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument 3702 // on the stack. 3703 case Memory: 3704 3705 // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or 3706 // COMPLEX_X87, it is passed in memory. 3707 case X87: 3708 case ComplexX87: 3709 if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect) 3710 ++neededInt; 3711 return getIndirectResult(Ty, freeIntRegs); 3712 3713 case SSEUp: 3714 case X87Up: 3715 llvm_unreachable("Invalid classification for lo word."); 3716 3717 // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next 3718 // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8 3719 // and %r9 is used. 3720 case Integer: 3721 ++neededInt; 3722 3723 // Pick an 8-byte type based on the preferred type. 3724 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0); 3725 3726 // If we have a sign or zero extended integer, make sure to return Extend 3727 // so that the parameter gets the right LLVM IR attributes. 3728 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3729 // Treat an enum type as its underlying type. 3730 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3731 Ty = EnumTy->getDecl()->getIntegerType(); 3732 3733 if (Ty->isIntegralOrEnumerationType() && 3734 isPromotableIntegerTypeForABI(Ty)) 3735 return ABIArgInfo::getExtend(Ty); 3736 } 3737 3738 break; 3739 3740 // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next 3741 // available SSE register is used, the registers are taken in the 3742 // order from %xmm0 to %xmm7. 3743 case SSE: { 3744 llvm::Type *IRType = CGT.ConvertType(Ty); 3745 ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0); 3746 ++neededSSE; 3747 break; 3748 } 3749 } 3750 3751 llvm::Type *HighPart = nullptr; 3752 switch (Hi) { 3753 // Memory was handled previously, ComplexX87 and X87 should 3754 // never occur as hi classes, and X87Up must be preceded by X87, 3755 // which is passed in memory. 3756 case Memory: 3757 case X87: 3758 case ComplexX87: 3759 llvm_unreachable("Invalid classification for hi word."); 3760 3761 case NoClass: break; 3762 3763 case Integer: 3764 ++neededInt; 3765 // Pick an 8-byte type based on the preferred type. 3766 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3767 3768 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3769 return ABIArgInfo::getDirect(HighPart, 8); 3770 break; 3771 3772 // X87Up generally doesn't occur here (long double is passed in 3773 // memory), except in situations involving unions. 3774 case X87Up: 3775 case SSE: 3776 HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3777 3778 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3779 return ABIArgInfo::getDirect(HighPart, 8); 3780 3781 ++neededSSE; 3782 break; 3783 3784 // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the 3785 // eightbyte is passed in the upper half of the last used SSE 3786 // register. This only happens when 128-bit vectors are passed. 3787 case SSEUp: 3788 assert(Lo == SSE && "Unexpected SSEUp classification"); 3789 ResType = GetByteVectorType(Ty); 3790 break; 3791 } 3792 3793 // If a high part was specified, merge it together with the low part. It is 3794 // known to pass in the high eightbyte of the result. We do this by forming a 3795 // first class struct aggregate with the high and low part: {low, high} 3796 if (HighPart) 3797 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3798 3799 return ABIArgInfo::getDirect(ResType); 3800 } 3801 3802 ABIArgInfo 3803 X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 3804 unsigned &NeededSSE) const { 3805 auto RT = Ty->getAs<RecordType>(); 3806 assert(RT && "classifyRegCallStructType only valid with struct types"); 3807 3808 if (RT->getDecl()->hasFlexibleArrayMember()) 3809 return getIndirectReturnResult(Ty); 3810 3811 // Sum up bases 3812 if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 3813 if (CXXRD->isDynamicClass()) { 3814 NeededInt = NeededSSE = 0; 3815 return getIndirectReturnResult(Ty); 3816 } 3817 3818 for (const auto &I : CXXRD->bases()) 3819 if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE) 3820 .isIndirect()) { 3821 NeededInt = NeededSSE = 0; 3822 return getIndirectReturnResult(Ty); 3823 } 3824 } 3825 3826 // Sum up members 3827 for (const auto *FD : RT->getDecl()->fields()) { 3828 if (FD->getType()->isRecordType() && !FD->getType()->isUnionType()) { 3829 if (classifyRegCallStructTypeImpl(FD->getType(), NeededInt, NeededSSE) 3830 .isIndirect()) { 3831 NeededInt = NeededSSE = 0; 3832 return getIndirectReturnResult(Ty); 3833 } 3834 } else { 3835 unsigned LocalNeededInt, LocalNeededSSE; 3836 if (classifyArgumentType(FD->getType(), UINT_MAX, LocalNeededInt, 3837 LocalNeededSSE, true) 3838 .isIndirect()) { 3839 NeededInt = NeededSSE = 0; 3840 return getIndirectReturnResult(Ty); 3841 } 3842 NeededInt += LocalNeededInt; 3843 NeededSSE += LocalNeededSSE; 3844 } 3845 } 3846 3847 return ABIArgInfo::getDirect(); 3848 } 3849 3850 ABIArgInfo X86_64ABIInfo::classifyRegCallStructType(QualType Ty, 3851 unsigned &NeededInt, 3852 unsigned &NeededSSE) const { 3853 3854 NeededInt = 0; 3855 NeededSSE = 0; 3856 3857 return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE); 3858 } 3859 3860 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 3861 3862 const unsigned CallingConv = FI.getCallingConvention(); 3863 // It is possible to force Win64 calling convention on any x86_64 target by 3864 // using __attribute__((ms_abi)). In such case to correctly emit Win64 3865 // compatible code delegate this call to WinX86_64ABIInfo::computeInfo. 3866 if (CallingConv == llvm::CallingConv::Win64) { 3867 WinX86_64ABIInfo Win64ABIInfo(CGT, AVXLevel); 3868 Win64ABIInfo.computeInfo(FI); 3869 return; 3870 } 3871 3872 bool IsRegCall = CallingConv == llvm::CallingConv::X86_RegCall; 3873 3874 // Keep track of the number of assigned registers. 3875 unsigned FreeIntRegs = IsRegCall ? 11 : 6; 3876 unsigned FreeSSERegs = IsRegCall ? 16 : 8; 3877 unsigned NeededInt, NeededSSE; 3878 3879 if (!::classifyReturnType(getCXXABI(), FI, *this)) { 3880 if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() && 3881 !FI.getReturnType()->getTypePtr()->isUnionType()) { 3882 FI.getReturnInfo() = 3883 classifyRegCallStructType(FI.getReturnType(), NeededInt, NeededSSE); 3884 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 3885 FreeIntRegs -= NeededInt; 3886 FreeSSERegs -= NeededSSE; 3887 } else { 3888 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 3889 } 3890 } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>() && 3891 getContext().getCanonicalType(FI.getReturnType() 3892 ->getAs<ComplexType>() 3893 ->getElementType()) == 3894 getContext().LongDoubleTy) 3895 // Complex Long Double Type is passed in Memory when Regcall 3896 // calling convention is used. 3897 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 3898 else 3899 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 3900 } 3901 3902 // If the return value is indirect, then the hidden argument is consuming one 3903 // integer register. 3904 if (FI.getReturnInfo().isIndirect()) 3905 --FreeIntRegs; 3906 3907 // The chain argument effectively gives us another free register. 3908 if (FI.isChainCall()) 3909 ++FreeIntRegs; 3910 3911 unsigned NumRequiredArgs = FI.getNumRequiredArgs(); 3912 // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers 3913 // get assigned (in left-to-right order) for passing as follows... 3914 unsigned ArgNo = 0; 3915 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 3916 it != ie; ++it, ++ArgNo) { 3917 bool IsNamedArg = ArgNo < NumRequiredArgs; 3918 3919 if (IsRegCall && it->type->isStructureOrClassType()) 3920 it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE); 3921 else 3922 it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt, 3923 NeededSSE, IsNamedArg); 3924 3925 // AMD64-ABI 3.2.3p3: If there are no registers available for any 3926 // eightbyte of an argument, the whole argument is passed on the 3927 // stack. If registers have already been assigned for some 3928 // eightbytes of such an argument, the assignments get reverted. 3929 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 3930 FreeIntRegs -= NeededInt; 3931 FreeSSERegs -= NeededSSE; 3932 } else { 3933 it->info = getIndirectResult(it->type, FreeIntRegs); 3934 } 3935 } 3936 } 3937 3938 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF, 3939 Address VAListAddr, QualType Ty) { 3940 Address overflow_arg_area_p = 3941 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p"); 3942 llvm::Value *overflow_arg_area = 3943 CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area"); 3944 3945 // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16 3946 // byte boundary if alignment needed by type exceeds 8 byte boundary. 3947 // It isn't stated explicitly in the standard, but in practice we use 3948 // alignment greater than 16 where necessary. 3949 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 3950 if (Align > CharUnits::fromQuantity(8)) { 3951 overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area, 3952 Align); 3953 } 3954 3955 // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area. 3956 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 3957 llvm::Value *Res = 3958 CGF.Builder.CreateBitCast(overflow_arg_area, 3959 llvm::PointerType::getUnqual(LTy)); 3960 3961 // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to: 3962 // l->overflow_arg_area + sizeof(type). 3963 // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to 3964 // an 8 byte boundary. 3965 3966 uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8; 3967 llvm::Value *Offset = 3968 llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7); 3969 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset, 3970 "overflow_arg_area.next"); 3971 CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p); 3972 3973 // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type. 3974 return Address(Res, Align); 3975 } 3976 3977 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 3978 QualType Ty) const { 3979 // Assume that va_list type is correct; should be pointer to LLVM type: 3980 // struct { 3981 // i32 gp_offset; 3982 // i32 fp_offset; 3983 // i8* overflow_arg_area; 3984 // i8* reg_save_area; 3985 // }; 3986 unsigned neededInt, neededSSE; 3987 3988 Ty = getContext().getCanonicalType(Ty); 3989 ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE, 3990 /*isNamedArg*/false); 3991 3992 // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed 3993 // in the registers. If not go to step 7. 3994 if (!neededInt && !neededSSE) 3995 return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 3996 3997 // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of 3998 // general purpose registers needed to pass type and num_fp to hold 3999 // the number of floating point registers needed. 4000 4001 // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into 4002 // registers. In the case: l->gp_offset > 48 - num_gp * 8 or 4003 // l->fp_offset > 304 - num_fp * 16 go to step 7. 4004 // 4005 // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of 4006 // register save space). 4007 4008 llvm::Value *InRegs = nullptr; 4009 Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid(); 4010 llvm::Value *gp_offset = nullptr, *fp_offset = nullptr; 4011 if (neededInt) { 4012 gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p"); 4013 gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset"); 4014 InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8); 4015 InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp"); 4016 } 4017 4018 if (neededSSE) { 4019 fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p"); 4020 fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset"); 4021 llvm::Value *FitsInFP = 4022 llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16); 4023 FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp"); 4024 InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP; 4025 } 4026 4027 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 4028 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 4029 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 4030 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 4031 4032 // Emit code to load the value if it was passed in registers. 4033 4034 CGF.EmitBlock(InRegBlock); 4035 4036 // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with 4037 // an offset of l->gp_offset and/or l->fp_offset. This may require 4038 // copying to a temporary location in case the parameter is passed 4039 // in different register classes or requires an alignment greater 4040 // than 8 for general purpose registers and 16 for XMM registers. 4041 // 4042 // FIXME: This really results in shameful code when we end up needing to 4043 // collect arguments from different places; often what should result in a 4044 // simple assembling of a structure from scattered addresses has many more 4045 // loads than necessary. Can we clean this up? 4046 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 4047 llvm::Value *RegSaveArea = CGF.Builder.CreateLoad( 4048 CGF.Builder.CreateStructGEP(VAListAddr, 3), "reg_save_area"); 4049 4050 Address RegAddr = Address::invalid(); 4051 if (neededInt && neededSSE) { 4052 // FIXME: Cleanup. 4053 assert(AI.isDirect() && "Unexpected ABI info for mixed regs"); 4054 llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType()); 4055 Address Tmp = CGF.CreateMemTemp(Ty); 4056 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 4057 assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs"); 4058 llvm::Type *TyLo = ST->getElementType(0); 4059 llvm::Type *TyHi = ST->getElementType(1); 4060 assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) && 4061 "Unexpected ABI info for mixed regs"); 4062 llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo); 4063 llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi); 4064 llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegSaveArea, gp_offset); 4065 llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegSaveArea, fp_offset); 4066 llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr; 4067 llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr; 4068 4069 // Copy the first element. 4070 // FIXME: Our choice of alignment here and below is probably pessimistic. 4071 llvm::Value *V = CGF.Builder.CreateAlignedLoad( 4072 TyLo, CGF.Builder.CreateBitCast(RegLoAddr, PTyLo), 4073 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyLo))); 4074 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 4075 4076 // Copy the second element. 4077 V = CGF.Builder.CreateAlignedLoad( 4078 TyHi, CGF.Builder.CreateBitCast(RegHiAddr, PTyHi), 4079 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyHi))); 4080 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 4081 4082 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 4083 } else if (neededInt) { 4084 RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, gp_offset), 4085 CharUnits::fromQuantity(8)); 4086 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 4087 4088 // Copy to a temporary if necessary to ensure the appropriate alignment. 4089 auto TInfo = getContext().getTypeInfoInChars(Ty); 4090 uint64_t TySize = TInfo.Width.getQuantity(); 4091 CharUnits TyAlign = TInfo.Align; 4092 4093 // Copy into a temporary if the type is more aligned than the 4094 // register save area. 4095 if (TyAlign.getQuantity() > 8) { 4096 Address Tmp = CGF.CreateMemTemp(Ty); 4097 CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false); 4098 RegAddr = Tmp; 4099 } 4100 4101 } else if (neededSSE == 1) { 4102 RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset), 4103 CharUnits::fromQuantity(16)); 4104 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 4105 } else { 4106 assert(neededSSE == 2 && "Invalid number of needed registers!"); 4107 // SSE registers are spaced 16 bytes apart in the register save 4108 // area, we need to collect the two eightbytes together. 4109 // The ABI isn't explicit about this, but it seems reasonable 4110 // to assume that the slots are 16-byte aligned, since the stack is 4111 // naturally 16-byte aligned and the prologue is expected to store 4112 // all the SSE registers to the RSA. 4113 Address RegAddrLo = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset), 4114 CharUnits::fromQuantity(16)); 4115 Address RegAddrHi = 4116 CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo, 4117 CharUnits::fromQuantity(16)); 4118 llvm::Type *ST = AI.canHaveCoerceToType() 4119 ? AI.getCoerceToType() 4120 : llvm::StructType::get(CGF.DoubleTy, CGF.DoubleTy); 4121 llvm::Value *V; 4122 Address Tmp = CGF.CreateMemTemp(Ty); 4123 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 4124 V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast( 4125 RegAddrLo, ST->getStructElementType(0))); 4126 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 4127 V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast( 4128 RegAddrHi, ST->getStructElementType(1))); 4129 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 4130 4131 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 4132 } 4133 4134 // AMD64-ABI 3.5.7p5: Step 5. Set: 4135 // l->gp_offset = l->gp_offset + num_gp * 8 4136 // l->fp_offset = l->fp_offset + num_fp * 16. 4137 if (neededInt) { 4138 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8); 4139 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset), 4140 gp_offset_p); 4141 } 4142 if (neededSSE) { 4143 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16); 4144 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset), 4145 fp_offset_p); 4146 } 4147 CGF.EmitBranch(ContBlock); 4148 4149 // Emit code to load the value if it was passed in memory. 4150 4151 CGF.EmitBlock(InMemBlock); 4152 Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 4153 4154 // Return the appropriate result. 4155 4156 CGF.EmitBlock(ContBlock); 4157 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock, 4158 "vaarg.addr"); 4159 return ResAddr; 4160 } 4161 4162 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 4163 QualType Ty) const { 4164 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 4165 CGF.getContext().getTypeInfoInChars(Ty), 4166 CharUnits::fromQuantity(8), 4167 /*allowHigherAlign*/ false); 4168 } 4169 4170 ABIArgInfo WinX86_64ABIInfo::reclassifyHvaArgForVectorCall( 4171 QualType Ty, unsigned &FreeSSERegs, const ABIArgInfo ¤t) const { 4172 const Type *Base = nullptr; 4173 uint64_t NumElts = 0; 4174 4175 if (!Ty->isBuiltinType() && !Ty->isVectorType() && 4176 isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) { 4177 FreeSSERegs -= NumElts; 4178 return getDirectX86Hva(); 4179 } 4180 return current; 4181 } 4182 4183 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs, 4184 bool IsReturnType, bool IsVectorCall, 4185 bool IsRegCall) const { 4186 4187 if (Ty->isVoidType()) 4188 return ABIArgInfo::getIgnore(); 4189 4190 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4191 Ty = EnumTy->getDecl()->getIntegerType(); 4192 4193 TypeInfo Info = getContext().getTypeInfo(Ty); 4194 uint64_t Width = Info.Width; 4195 CharUnits Align = getContext().toCharUnitsFromBits(Info.Align); 4196 4197 const RecordType *RT = Ty->getAs<RecordType>(); 4198 if (RT) { 4199 if (!IsReturnType) { 4200 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI())) 4201 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 4202 } 4203 4204 if (RT->getDecl()->hasFlexibleArrayMember()) 4205 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4206 4207 } 4208 4209 const Type *Base = nullptr; 4210 uint64_t NumElts = 0; 4211 // vectorcall adds the concept of a homogenous vector aggregate, similar to 4212 // other targets. 4213 if ((IsVectorCall || IsRegCall) && 4214 isHomogeneousAggregate(Ty, Base, NumElts)) { 4215 if (IsRegCall) { 4216 if (FreeSSERegs >= NumElts) { 4217 FreeSSERegs -= NumElts; 4218 if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType()) 4219 return ABIArgInfo::getDirect(); 4220 return ABIArgInfo::getExpand(); 4221 } 4222 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4223 } else if (IsVectorCall) { 4224 if (FreeSSERegs >= NumElts && 4225 (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) { 4226 FreeSSERegs -= NumElts; 4227 return ABIArgInfo::getDirect(); 4228 } else if (IsReturnType) { 4229 return ABIArgInfo::getExpand(); 4230 } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) { 4231 // HVAs are delayed and reclassified in the 2nd step. 4232 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4233 } 4234 } 4235 } 4236 4237 if (Ty->isMemberPointerType()) { 4238 // If the member pointer is represented by an LLVM int or ptr, pass it 4239 // directly. 4240 llvm::Type *LLTy = CGT.ConvertType(Ty); 4241 if (LLTy->isPointerTy() || LLTy->isIntegerTy()) 4242 return ABIArgInfo::getDirect(); 4243 } 4244 4245 if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) { 4246 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4247 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4248 if (Width > 64 || !llvm::isPowerOf2_64(Width)) 4249 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4250 4251 // Otherwise, coerce it to a small integer. 4252 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width)); 4253 } 4254 4255 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 4256 switch (BT->getKind()) { 4257 case BuiltinType::Bool: 4258 // Bool type is always extended to the ABI, other builtin types are not 4259 // extended. 4260 return ABIArgInfo::getExtend(Ty); 4261 4262 case BuiltinType::LongDouble: 4263 // Mingw64 GCC uses the old 80 bit extended precision floating point 4264 // unit. It passes them indirectly through memory. 4265 if (IsMingw64) { 4266 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 4267 if (LDF == &llvm::APFloat::x87DoubleExtended()) 4268 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4269 } 4270 break; 4271 4272 case BuiltinType::Int128: 4273 case BuiltinType::UInt128: 4274 // If it's a parameter type, the normal ABI rule is that arguments larger 4275 // than 8 bytes are passed indirectly. GCC follows it. We follow it too, 4276 // even though it isn't particularly efficient. 4277 if (!IsReturnType) 4278 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4279 4280 // Mingw64 GCC returns i128 in XMM0. Coerce to v2i64 to handle that. 4281 // Clang matches them for compatibility. 4282 return ABIArgInfo::getDirect(llvm::FixedVectorType::get( 4283 llvm::Type::getInt64Ty(getVMContext()), 2)); 4284 4285 default: 4286 break; 4287 } 4288 } 4289 4290 if (Ty->isExtIntType()) { 4291 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4292 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4293 // However, non-power-of-two _ExtInts will be passed as 1,2,4 or 8 bytes 4294 // anyway as long is it fits in them, so we don't have to check the power of 4295 // 2. 4296 if (Width <= 64) 4297 return ABIArgInfo::getDirect(); 4298 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4299 } 4300 4301 return ABIArgInfo::getDirect(); 4302 } 4303 4304 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 4305 const unsigned CC = FI.getCallingConvention(); 4306 bool IsVectorCall = CC == llvm::CallingConv::X86_VectorCall; 4307 bool IsRegCall = CC == llvm::CallingConv::X86_RegCall; 4308 4309 // If __attribute__((sysv_abi)) is in use, use the SysV argument 4310 // classification rules. 4311 if (CC == llvm::CallingConv::X86_64_SysV) { 4312 X86_64ABIInfo SysVABIInfo(CGT, AVXLevel); 4313 SysVABIInfo.computeInfo(FI); 4314 return; 4315 } 4316 4317 unsigned FreeSSERegs = 0; 4318 if (IsVectorCall) { 4319 // We can use up to 4 SSE return registers with vectorcall. 4320 FreeSSERegs = 4; 4321 } else if (IsRegCall) { 4322 // RegCall gives us 16 SSE registers. 4323 FreeSSERegs = 16; 4324 } 4325 4326 if (!getCXXABI().classifyReturnType(FI)) 4327 FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true, 4328 IsVectorCall, IsRegCall); 4329 4330 if (IsVectorCall) { 4331 // We can use up to 6 SSE register parameters with vectorcall. 4332 FreeSSERegs = 6; 4333 } else if (IsRegCall) { 4334 // RegCall gives us 16 SSE registers, we can reuse the return registers. 4335 FreeSSERegs = 16; 4336 } 4337 4338 unsigned ArgNum = 0; 4339 unsigned ZeroSSERegs = 0; 4340 for (auto &I : FI.arguments()) { 4341 // Vectorcall in x64 only permits the first 6 arguments to be passed as 4342 // XMM/YMM registers. After the sixth argument, pretend no vector 4343 // registers are left. 4344 unsigned *MaybeFreeSSERegs = 4345 (IsVectorCall && ArgNum >= 6) ? &ZeroSSERegs : &FreeSSERegs; 4346 I.info = 4347 classify(I.type, *MaybeFreeSSERegs, false, IsVectorCall, IsRegCall); 4348 ++ArgNum; 4349 } 4350 4351 if (IsVectorCall) { 4352 // For vectorcall, assign aggregate HVAs to any free vector registers in a 4353 // second pass. 4354 for (auto &I : FI.arguments()) 4355 I.info = reclassifyHvaArgForVectorCall(I.type, FreeSSERegs, I.info); 4356 } 4357 } 4358 4359 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4360 QualType Ty) const { 4361 4362 bool IsIndirect = false; 4363 4364 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4365 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4366 if (isAggregateTypeForABI(Ty) || Ty->isMemberPointerType()) { 4367 uint64_t Width = getContext().getTypeSize(Ty); 4368 IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width); 4369 } 4370 4371 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 4372 CGF.getContext().getTypeInfoInChars(Ty), 4373 CharUnits::fromQuantity(8), 4374 /*allowHigherAlign*/ false); 4375 } 4376 4377 static bool PPC_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4378 llvm::Value *Address, bool Is64Bit, 4379 bool IsAIX) { 4380 // This is calculated from the LLVM and GCC tables and verified 4381 // against gcc output. AFAIK all PPC ABIs use the same encoding. 4382 4383 CodeGen::CGBuilderTy &Builder = CGF.Builder; 4384 4385 llvm::IntegerType *i8 = CGF.Int8Ty; 4386 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 4387 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 4388 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 4389 4390 // 0-31: r0-31, the 4-byte or 8-byte general-purpose registers 4391 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 0, 31); 4392 4393 // 32-63: fp0-31, the 8-byte floating-point registers 4394 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 4395 4396 // 64-67 are various 4-byte or 8-byte special-purpose registers: 4397 // 64: mq 4398 // 65: lr 4399 // 66: ctr 4400 // 67: ap 4401 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 64, 67); 4402 4403 // 68-76 are various 4-byte special-purpose registers: 4404 // 68-75 cr0-7 4405 // 76: xer 4406 AssignToArrayRange(Builder, Address, Four8, 68, 76); 4407 4408 // 77-108: v0-31, the 16-byte vector registers 4409 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 4410 4411 // 109: vrsave 4412 // 110: vscr 4413 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 109, 110); 4414 4415 // AIX does not utilize the rest of the registers. 4416 if (IsAIX) 4417 return false; 4418 4419 // 111: spe_acc 4420 // 112: spefscr 4421 // 113: sfp 4422 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 111, 113); 4423 4424 if (!Is64Bit) 4425 return false; 4426 4427 // TODO: Need to verify if these registers are used on 64 bit AIX with Power8 4428 // or above CPU. 4429 // 64-bit only registers: 4430 // 114: tfhar 4431 // 115: tfiar 4432 // 116: texasr 4433 AssignToArrayRange(Builder, Address, Eight8, 114, 116); 4434 4435 return false; 4436 } 4437 4438 // AIX 4439 namespace { 4440 /// AIXABIInfo - The AIX XCOFF ABI information. 4441 class AIXABIInfo : public ABIInfo { 4442 const bool Is64Bit; 4443 const unsigned PtrByteSize; 4444 CharUnits getParamTypeAlignment(QualType Ty) const; 4445 4446 public: 4447 AIXABIInfo(CodeGen::CodeGenTypes &CGT, bool Is64Bit) 4448 : ABIInfo(CGT), Is64Bit(Is64Bit), PtrByteSize(Is64Bit ? 8 : 4) {} 4449 4450 bool isPromotableTypeForABI(QualType Ty) const; 4451 4452 ABIArgInfo classifyReturnType(QualType RetTy) const; 4453 ABIArgInfo classifyArgumentType(QualType Ty) const; 4454 4455 void computeInfo(CGFunctionInfo &FI) const override { 4456 if (!getCXXABI().classifyReturnType(FI)) 4457 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4458 4459 for (auto &I : FI.arguments()) 4460 I.info = classifyArgumentType(I.type); 4461 } 4462 4463 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4464 QualType Ty) const override; 4465 }; 4466 4467 class AIXTargetCodeGenInfo : public TargetCodeGenInfo { 4468 const bool Is64Bit; 4469 4470 public: 4471 AIXTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool Is64Bit) 4472 : TargetCodeGenInfo(std::make_unique<AIXABIInfo>(CGT, Is64Bit)), 4473 Is64Bit(Is64Bit) {} 4474 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4475 return 1; // r1 is the dedicated stack pointer 4476 } 4477 4478 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4479 llvm::Value *Address) const override; 4480 }; 4481 } // namespace 4482 4483 // Return true if the ABI requires Ty to be passed sign- or zero- 4484 // extended to 32/64 bits. 4485 bool AIXABIInfo::isPromotableTypeForABI(QualType Ty) const { 4486 // Treat an enum type as its underlying type. 4487 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4488 Ty = EnumTy->getDecl()->getIntegerType(); 4489 4490 // Promotable integer types are required to be promoted by the ABI. 4491 if (Ty->isPromotableIntegerType()) 4492 return true; 4493 4494 if (!Is64Bit) 4495 return false; 4496 4497 // For 64 bit mode, in addition to the usual promotable integer types, we also 4498 // need to extend all 32-bit types, since the ABI requires promotion to 64 4499 // bits. 4500 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 4501 switch (BT->getKind()) { 4502 case BuiltinType::Int: 4503 case BuiltinType::UInt: 4504 return true; 4505 default: 4506 break; 4507 } 4508 4509 return false; 4510 } 4511 4512 ABIArgInfo AIXABIInfo::classifyReturnType(QualType RetTy) const { 4513 if (RetTy->isAnyComplexType()) 4514 return ABIArgInfo::getDirect(); 4515 4516 if (RetTy->isVectorType()) 4517 return ABIArgInfo::getDirect(); 4518 4519 if (RetTy->isVoidType()) 4520 return ABIArgInfo::getIgnore(); 4521 4522 if (isAggregateTypeForABI(RetTy)) 4523 return getNaturalAlignIndirect(RetTy); 4524 4525 return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 4526 : ABIArgInfo::getDirect()); 4527 } 4528 4529 ABIArgInfo AIXABIInfo::classifyArgumentType(QualType Ty) const { 4530 Ty = useFirstFieldIfTransparentUnion(Ty); 4531 4532 if (Ty->isAnyComplexType()) 4533 return ABIArgInfo::getDirect(); 4534 4535 if (Ty->isVectorType()) 4536 return ABIArgInfo::getDirect(); 4537 4538 if (isAggregateTypeForABI(Ty)) { 4539 // Records with non-trivial destructors/copy-constructors should not be 4540 // passed by value. 4541 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 4542 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 4543 4544 CharUnits CCAlign = getParamTypeAlignment(Ty); 4545 CharUnits TyAlign = getContext().getTypeAlignInChars(Ty); 4546 4547 return ABIArgInfo::getIndirect(CCAlign, /*ByVal*/ true, 4548 /*Realign*/ TyAlign > CCAlign); 4549 } 4550 4551 return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 4552 : ABIArgInfo::getDirect()); 4553 } 4554 4555 CharUnits AIXABIInfo::getParamTypeAlignment(QualType Ty) const { 4556 // Complex types are passed just like their elements. 4557 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 4558 Ty = CTy->getElementType(); 4559 4560 if (Ty->isVectorType()) 4561 return CharUnits::fromQuantity(16); 4562 4563 // If the structure contains a vector type, the alignment is 16. 4564 if (isRecordWithSIMDVectorType(getContext(), Ty)) 4565 return CharUnits::fromQuantity(16); 4566 4567 return CharUnits::fromQuantity(PtrByteSize); 4568 } 4569 4570 Address AIXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4571 QualType Ty) const { 4572 if (Ty->isAnyComplexType()) 4573 llvm::report_fatal_error("complex type is not supported on AIX yet"); 4574 4575 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 4576 TypeInfo.Align = getParamTypeAlignment(Ty); 4577 4578 CharUnits SlotSize = CharUnits::fromQuantity(PtrByteSize); 4579 4580 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, TypeInfo, 4581 SlotSize, /*AllowHigher*/ true); 4582 } 4583 4584 bool AIXTargetCodeGenInfo::initDwarfEHRegSizeTable( 4585 CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const { 4586 return PPC_initDwarfEHRegSizeTable(CGF, Address, Is64Bit, /*IsAIX*/ true); 4587 } 4588 4589 // PowerPC-32 4590 namespace { 4591 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information. 4592 class PPC32_SVR4_ABIInfo : public DefaultABIInfo { 4593 bool IsSoftFloatABI; 4594 bool IsRetSmallStructInRegABI; 4595 4596 CharUnits getParamTypeAlignment(QualType Ty) const; 4597 4598 public: 4599 PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI, 4600 bool RetSmallStructInRegABI) 4601 : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI), 4602 IsRetSmallStructInRegABI(RetSmallStructInRegABI) {} 4603 4604 ABIArgInfo classifyReturnType(QualType RetTy) const; 4605 4606 void computeInfo(CGFunctionInfo &FI) const override { 4607 if (!getCXXABI().classifyReturnType(FI)) 4608 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4609 for (auto &I : FI.arguments()) 4610 I.info = classifyArgumentType(I.type); 4611 } 4612 4613 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4614 QualType Ty) const override; 4615 }; 4616 4617 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo { 4618 public: 4619 PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI, 4620 bool RetSmallStructInRegABI) 4621 : TargetCodeGenInfo(std::make_unique<PPC32_SVR4_ABIInfo>( 4622 CGT, SoftFloatABI, RetSmallStructInRegABI)) {} 4623 4624 static bool isStructReturnInRegABI(const llvm::Triple &Triple, 4625 const CodeGenOptions &Opts); 4626 4627 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4628 // This is recovered from gcc output. 4629 return 1; // r1 is the dedicated stack pointer 4630 } 4631 4632 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4633 llvm::Value *Address) const override; 4634 }; 4635 } 4636 4637 CharUnits PPC32_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 4638 // Complex types are passed just like their elements. 4639 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 4640 Ty = CTy->getElementType(); 4641 4642 if (Ty->isVectorType()) 4643 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 4644 : 4); 4645 4646 // For single-element float/vector structs, we consider the whole type 4647 // to have the same alignment requirements as its single element. 4648 const Type *AlignTy = nullptr; 4649 if (const Type *EltType = isSingleElementStruct(Ty, getContext())) { 4650 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 4651 if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) || 4652 (BT && BT->isFloatingPoint())) 4653 AlignTy = EltType; 4654 } 4655 4656 if (AlignTy) 4657 return CharUnits::fromQuantity(AlignTy->isVectorType() ? 16 : 4); 4658 return CharUnits::fromQuantity(4); 4659 } 4660 4661 ABIArgInfo PPC32_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { 4662 uint64_t Size; 4663 4664 // -msvr4-struct-return puts small aggregates in GPR3 and GPR4. 4665 if (isAggregateTypeForABI(RetTy) && IsRetSmallStructInRegABI && 4666 (Size = getContext().getTypeSize(RetTy)) <= 64) { 4667 // System V ABI (1995), page 3-22, specified: 4668 // > A structure or union whose size is less than or equal to 8 bytes 4669 // > shall be returned in r3 and r4, as if it were first stored in the 4670 // > 8-byte aligned memory area and then the low addressed word were 4671 // > loaded into r3 and the high-addressed word into r4. Bits beyond 4672 // > the last member of the structure or union are not defined. 4673 // 4674 // GCC for big-endian PPC32 inserts the pad before the first member, 4675 // not "beyond the last member" of the struct. To stay compatible 4676 // with GCC, we coerce the struct to an integer of the same size. 4677 // LLVM will extend it and return i32 in r3, or i64 in r3:r4. 4678 if (Size == 0) 4679 return ABIArgInfo::getIgnore(); 4680 else { 4681 llvm::Type *CoerceTy = llvm::Type::getIntNTy(getVMContext(), Size); 4682 return ABIArgInfo::getDirect(CoerceTy); 4683 } 4684 } 4685 4686 return DefaultABIInfo::classifyReturnType(RetTy); 4687 } 4688 4689 // TODO: this implementation is now likely redundant with 4690 // DefaultABIInfo::EmitVAArg. 4691 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList, 4692 QualType Ty) const { 4693 if (getTarget().getTriple().isOSDarwin()) { 4694 auto TI = getContext().getTypeInfoInChars(Ty); 4695 TI.Align = getParamTypeAlignment(Ty); 4696 4697 CharUnits SlotSize = CharUnits::fromQuantity(4); 4698 return emitVoidPtrVAArg(CGF, VAList, Ty, 4699 classifyArgumentType(Ty).isIndirect(), TI, SlotSize, 4700 /*AllowHigherAlign=*/true); 4701 } 4702 4703 const unsigned OverflowLimit = 8; 4704 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 4705 // TODO: Implement this. For now ignore. 4706 (void)CTy; 4707 return Address::invalid(); // FIXME? 4708 } 4709 4710 // struct __va_list_tag { 4711 // unsigned char gpr; 4712 // unsigned char fpr; 4713 // unsigned short reserved; 4714 // void *overflow_arg_area; 4715 // void *reg_save_area; 4716 // }; 4717 4718 bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64; 4719 bool isInt = !Ty->isFloatingType(); 4720 bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64; 4721 4722 // All aggregates are passed indirectly? That doesn't seem consistent 4723 // with the argument-lowering code. 4724 bool isIndirect = isAggregateTypeForABI(Ty); 4725 4726 CGBuilderTy &Builder = CGF.Builder; 4727 4728 // The calling convention either uses 1-2 GPRs or 1 FPR. 4729 Address NumRegsAddr = Address::invalid(); 4730 if (isInt || IsSoftFloatABI) { 4731 NumRegsAddr = Builder.CreateStructGEP(VAList, 0, "gpr"); 4732 } else { 4733 NumRegsAddr = Builder.CreateStructGEP(VAList, 1, "fpr"); 4734 } 4735 4736 llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs"); 4737 4738 // "Align" the register count when TY is i64. 4739 if (isI64 || (isF64 && IsSoftFloatABI)) { 4740 NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1)); 4741 NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U)); 4742 } 4743 4744 llvm::Value *CC = 4745 Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond"); 4746 4747 llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs"); 4748 llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow"); 4749 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 4750 4751 Builder.CreateCondBr(CC, UsingRegs, UsingOverflow); 4752 4753 llvm::Type *DirectTy = CGF.ConvertType(Ty); 4754 if (isIndirect) DirectTy = DirectTy->getPointerTo(0); 4755 4756 // Case 1: consume registers. 4757 Address RegAddr = Address::invalid(); 4758 { 4759 CGF.EmitBlock(UsingRegs); 4760 4761 Address RegSaveAreaPtr = Builder.CreateStructGEP(VAList, 4); 4762 RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr), 4763 CharUnits::fromQuantity(8)); 4764 assert(RegAddr.getElementType() == CGF.Int8Ty); 4765 4766 // Floating-point registers start after the general-purpose registers. 4767 if (!(isInt || IsSoftFloatABI)) { 4768 RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr, 4769 CharUnits::fromQuantity(32)); 4770 } 4771 4772 // Get the address of the saved value by scaling the number of 4773 // registers we've used by the number of 4774 CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8); 4775 llvm::Value *RegOffset = 4776 Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity())); 4777 RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty, 4778 RegAddr.getPointer(), RegOffset), 4779 RegAddr.getAlignment().alignmentOfArrayElement(RegSize)); 4780 RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy); 4781 4782 // Increase the used-register count. 4783 NumRegs = 4784 Builder.CreateAdd(NumRegs, 4785 Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1)); 4786 Builder.CreateStore(NumRegs, NumRegsAddr); 4787 4788 CGF.EmitBranch(Cont); 4789 } 4790 4791 // Case 2: consume space in the overflow area. 4792 Address MemAddr = Address::invalid(); 4793 { 4794 CGF.EmitBlock(UsingOverflow); 4795 4796 Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr); 4797 4798 // Everything in the overflow area is rounded up to a size of at least 4. 4799 CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4); 4800 4801 CharUnits Size; 4802 if (!isIndirect) { 4803 auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty); 4804 Size = TypeInfo.Width.alignTo(OverflowAreaAlign); 4805 } else { 4806 Size = CGF.getPointerSize(); 4807 } 4808 4809 Address OverflowAreaAddr = Builder.CreateStructGEP(VAList, 3); 4810 Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"), 4811 OverflowAreaAlign); 4812 // Round up address of argument to alignment 4813 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 4814 if (Align > OverflowAreaAlign) { 4815 llvm::Value *Ptr = OverflowArea.getPointer(); 4816 OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align), 4817 Align); 4818 } 4819 4820 MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy); 4821 4822 // Increase the overflow area. 4823 OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size); 4824 Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr); 4825 CGF.EmitBranch(Cont); 4826 } 4827 4828 CGF.EmitBlock(Cont); 4829 4830 // Merge the cases with a phi. 4831 Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow, 4832 "vaarg.addr"); 4833 4834 // Load the pointer if the argument was passed indirectly. 4835 if (isIndirect) { 4836 Result = Address(Builder.CreateLoad(Result, "aggr"), 4837 getContext().getTypeAlignInChars(Ty)); 4838 } 4839 4840 return Result; 4841 } 4842 4843 bool PPC32TargetCodeGenInfo::isStructReturnInRegABI( 4844 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 4845 assert(Triple.isPPC32()); 4846 4847 switch (Opts.getStructReturnConvention()) { 4848 case CodeGenOptions::SRCK_Default: 4849 break; 4850 case CodeGenOptions::SRCK_OnStack: // -maix-struct-return 4851 return false; 4852 case CodeGenOptions::SRCK_InRegs: // -msvr4-struct-return 4853 return true; 4854 } 4855 4856 if (Triple.isOSBinFormatELF() && !Triple.isOSLinux()) 4857 return true; 4858 4859 return false; 4860 } 4861 4862 bool 4863 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4864 llvm::Value *Address) const { 4865 return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ false, 4866 /*IsAIX*/ false); 4867 } 4868 4869 // PowerPC-64 4870 4871 namespace { 4872 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information. 4873 class PPC64_SVR4_ABIInfo : public SwiftABIInfo { 4874 public: 4875 enum ABIKind { 4876 ELFv1 = 0, 4877 ELFv2 4878 }; 4879 4880 private: 4881 static const unsigned GPRBits = 64; 4882 ABIKind Kind; 4883 bool IsSoftFloatABI; 4884 4885 public: 4886 PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, 4887 bool SoftFloatABI) 4888 : SwiftABIInfo(CGT), Kind(Kind), IsSoftFloatABI(SoftFloatABI) {} 4889 4890 bool isPromotableTypeForABI(QualType Ty) const; 4891 CharUnits getParamTypeAlignment(QualType Ty) const; 4892 4893 ABIArgInfo classifyReturnType(QualType RetTy) const; 4894 ABIArgInfo classifyArgumentType(QualType Ty) const; 4895 4896 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 4897 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 4898 uint64_t Members) const override; 4899 4900 // TODO: We can add more logic to computeInfo to improve performance. 4901 // Example: For aggregate arguments that fit in a register, we could 4902 // use getDirectInReg (as is done below for structs containing a single 4903 // floating-point value) to avoid pushing them to memory on function 4904 // entry. This would require changing the logic in PPCISelLowering 4905 // when lowering the parameters in the caller and args in the callee. 4906 void computeInfo(CGFunctionInfo &FI) const override { 4907 if (!getCXXABI().classifyReturnType(FI)) 4908 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4909 for (auto &I : FI.arguments()) { 4910 // We rely on the default argument classification for the most part. 4911 // One exception: An aggregate containing a single floating-point 4912 // or vector item must be passed in a register if one is available. 4913 const Type *T = isSingleElementStruct(I.type, getContext()); 4914 if (T) { 4915 const BuiltinType *BT = T->getAs<BuiltinType>(); 4916 if ((T->isVectorType() && getContext().getTypeSize(T) == 128) || 4917 (BT && BT->isFloatingPoint())) { 4918 QualType QT(T, 0); 4919 I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT)); 4920 continue; 4921 } 4922 } 4923 I.info = classifyArgumentType(I.type); 4924 } 4925 } 4926 4927 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4928 QualType Ty) const override; 4929 4930 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 4931 bool asReturnValue) const override { 4932 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 4933 } 4934 4935 bool isSwiftErrorInRegister() const override { 4936 return false; 4937 } 4938 }; 4939 4940 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo { 4941 4942 public: 4943 PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT, 4944 PPC64_SVR4_ABIInfo::ABIKind Kind, 4945 bool SoftFloatABI) 4946 : TargetCodeGenInfo( 4947 std::make_unique<PPC64_SVR4_ABIInfo>(CGT, Kind, SoftFloatABI)) {} 4948 4949 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4950 // This is recovered from gcc output. 4951 return 1; // r1 is the dedicated stack pointer 4952 } 4953 4954 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4955 llvm::Value *Address) const override; 4956 }; 4957 4958 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo { 4959 public: 4960 PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {} 4961 4962 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4963 // This is recovered from gcc output. 4964 return 1; // r1 is the dedicated stack pointer 4965 } 4966 4967 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4968 llvm::Value *Address) const override; 4969 }; 4970 4971 } 4972 4973 // Return true if the ABI requires Ty to be passed sign- or zero- 4974 // extended to 64 bits. 4975 bool 4976 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const { 4977 // Treat an enum type as its underlying type. 4978 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4979 Ty = EnumTy->getDecl()->getIntegerType(); 4980 4981 // Promotable integer types are required to be promoted by the ABI. 4982 if (isPromotableIntegerTypeForABI(Ty)) 4983 return true; 4984 4985 // In addition to the usual promotable integer types, we also need to 4986 // extend all 32-bit types, since the ABI requires promotion to 64 bits. 4987 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 4988 switch (BT->getKind()) { 4989 case BuiltinType::Int: 4990 case BuiltinType::UInt: 4991 return true; 4992 default: 4993 break; 4994 } 4995 4996 if (const auto *EIT = Ty->getAs<ExtIntType>()) 4997 if (EIT->getNumBits() < 64) 4998 return true; 4999 5000 return false; 5001 } 5002 5003 /// isAlignedParamType - Determine whether a type requires 16-byte or 5004 /// higher alignment in the parameter area. Always returns at least 8. 5005 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 5006 // Complex types are passed just like their elements. 5007 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 5008 Ty = CTy->getElementType(); 5009 5010 // Only vector types of size 16 bytes need alignment (larger types are 5011 // passed via reference, smaller types are not aligned). 5012 if (Ty->isVectorType()) { 5013 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8); 5014 } else if (Ty->isRealFloatingType() && 5015 &getContext().getFloatTypeSemantics(Ty) == 5016 &llvm::APFloat::IEEEquad()) { 5017 // According to ABI document section 'Optional Save Areas': If extended 5018 // precision floating-point values in IEEE BINARY 128 QUADRUPLE PRECISION 5019 // format are supported, map them to a single quadword, quadword aligned. 5020 return CharUnits::fromQuantity(16); 5021 } 5022 5023 // For single-element float/vector structs, we consider the whole type 5024 // to have the same alignment requirements as its single element. 5025 const Type *AlignAsType = nullptr; 5026 const Type *EltType = isSingleElementStruct(Ty, getContext()); 5027 if (EltType) { 5028 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 5029 if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) || 5030 (BT && BT->isFloatingPoint())) 5031 AlignAsType = EltType; 5032 } 5033 5034 // Likewise for ELFv2 homogeneous aggregates. 5035 const Type *Base = nullptr; 5036 uint64_t Members = 0; 5037 if (!AlignAsType && Kind == ELFv2 && 5038 isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members)) 5039 AlignAsType = Base; 5040 5041 // With special case aggregates, only vector base types need alignment. 5042 if (AlignAsType) { 5043 return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8); 5044 } 5045 5046 // Otherwise, we only need alignment for any aggregate type that 5047 // has an alignment requirement of >= 16 bytes. 5048 if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) { 5049 return CharUnits::fromQuantity(16); 5050 } 5051 5052 return CharUnits::fromQuantity(8); 5053 } 5054 5055 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous 5056 /// aggregate. Base is set to the base element type, and Members is set 5057 /// to the number of base elements. 5058 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base, 5059 uint64_t &Members) const { 5060 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 5061 uint64_t NElements = AT->getSize().getZExtValue(); 5062 if (NElements == 0) 5063 return false; 5064 if (!isHomogeneousAggregate(AT->getElementType(), Base, Members)) 5065 return false; 5066 Members *= NElements; 5067 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 5068 const RecordDecl *RD = RT->getDecl(); 5069 if (RD->hasFlexibleArrayMember()) 5070 return false; 5071 5072 Members = 0; 5073 5074 // If this is a C++ record, check the properties of the record such as 5075 // bases and ABI specific restrictions 5076 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 5077 if (!getCXXABI().isPermittedToBeHomogeneousAggregate(CXXRD)) 5078 return false; 5079 5080 for (const auto &I : CXXRD->bases()) { 5081 // Ignore empty records. 5082 if (isEmptyRecord(getContext(), I.getType(), true)) 5083 continue; 5084 5085 uint64_t FldMembers; 5086 if (!isHomogeneousAggregate(I.getType(), Base, FldMembers)) 5087 return false; 5088 5089 Members += FldMembers; 5090 } 5091 } 5092 5093 for (const auto *FD : RD->fields()) { 5094 // Ignore (non-zero arrays of) empty records. 5095 QualType FT = FD->getType(); 5096 while (const ConstantArrayType *AT = 5097 getContext().getAsConstantArrayType(FT)) { 5098 if (AT->getSize().getZExtValue() == 0) 5099 return false; 5100 FT = AT->getElementType(); 5101 } 5102 if (isEmptyRecord(getContext(), FT, true)) 5103 continue; 5104 5105 // For compatibility with GCC, ignore empty bitfields in C++ mode. 5106 if (getContext().getLangOpts().CPlusPlus && 5107 FD->isZeroLengthBitField(getContext())) 5108 continue; 5109 5110 uint64_t FldMembers; 5111 if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers)) 5112 return false; 5113 5114 Members = (RD->isUnion() ? 5115 std::max(Members, FldMembers) : Members + FldMembers); 5116 } 5117 5118 if (!Base) 5119 return false; 5120 5121 // Ensure there is no padding. 5122 if (getContext().getTypeSize(Base) * Members != 5123 getContext().getTypeSize(Ty)) 5124 return false; 5125 } else { 5126 Members = 1; 5127 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 5128 Members = 2; 5129 Ty = CT->getElementType(); 5130 } 5131 5132 // Most ABIs only support float, double, and some vector type widths. 5133 if (!isHomogeneousAggregateBaseType(Ty)) 5134 return false; 5135 5136 // The base type must be the same for all members. Types that 5137 // agree in both total size and mode (float vs. vector) are 5138 // treated as being equivalent here. 5139 const Type *TyPtr = Ty.getTypePtr(); 5140 if (!Base) { 5141 Base = TyPtr; 5142 // If it's a non-power-of-2 vector, its size is already a power-of-2, 5143 // so make sure to widen it explicitly. 5144 if (const VectorType *VT = Base->getAs<VectorType>()) { 5145 QualType EltTy = VT->getElementType(); 5146 unsigned NumElements = 5147 getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy); 5148 Base = getContext() 5149 .getVectorType(EltTy, NumElements, VT->getVectorKind()) 5150 .getTypePtr(); 5151 } 5152 } 5153 5154 if (Base->isVectorType() != TyPtr->isVectorType() || 5155 getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr)) 5156 return false; 5157 } 5158 return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members); 5159 } 5160 5161 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 5162 // Homogeneous aggregates for ELFv2 must have base types of float, 5163 // double, long double, or 128-bit vectors. 5164 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 5165 if (BT->getKind() == BuiltinType::Float || 5166 BT->getKind() == BuiltinType::Double || 5167 BT->getKind() == BuiltinType::LongDouble || 5168 (getContext().getTargetInfo().hasFloat128Type() && 5169 (BT->getKind() == BuiltinType::Float128))) { 5170 if (IsSoftFloatABI) 5171 return false; 5172 return true; 5173 } 5174 } 5175 if (const VectorType *VT = Ty->getAs<VectorType>()) { 5176 if (getContext().getTypeSize(VT) == 128) 5177 return true; 5178 } 5179 return false; 5180 } 5181 5182 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough( 5183 const Type *Base, uint64_t Members) const { 5184 // Vector and fp128 types require one register, other floating point types 5185 // require one or two registers depending on their size. 5186 uint32_t NumRegs = 5187 ((getContext().getTargetInfo().hasFloat128Type() && 5188 Base->isFloat128Type()) || 5189 Base->isVectorType()) ? 1 5190 : (getContext().getTypeSize(Base) + 63) / 64; 5191 5192 // Homogeneous Aggregates may occupy at most 8 registers. 5193 return Members * NumRegs <= 8; 5194 } 5195 5196 ABIArgInfo 5197 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const { 5198 Ty = useFirstFieldIfTransparentUnion(Ty); 5199 5200 if (Ty->isAnyComplexType()) 5201 return ABIArgInfo::getDirect(); 5202 5203 // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes) 5204 // or via reference (larger than 16 bytes). 5205 if (Ty->isVectorType()) { 5206 uint64_t Size = getContext().getTypeSize(Ty); 5207 if (Size > 128) 5208 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5209 else if (Size < 128) { 5210 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 5211 return ABIArgInfo::getDirect(CoerceTy); 5212 } 5213 } 5214 5215 if (const auto *EIT = Ty->getAs<ExtIntType>()) 5216 if (EIT->getNumBits() > 128) 5217 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 5218 5219 if (isAggregateTypeForABI(Ty)) { 5220 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 5221 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 5222 5223 uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity(); 5224 uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); 5225 5226 // ELFv2 homogeneous aggregates are passed as array types. 5227 const Type *Base = nullptr; 5228 uint64_t Members = 0; 5229 if (Kind == ELFv2 && 5230 isHomogeneousAggregate(Ty, Base, Members)) { 5231 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 5232 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 5233 return ABIArgInfo::getDirect(CoerceTy); 5234 } 5235 5236 // If an aggregate may end up fully in registers, we do not 5237 // use the ByVal method, but pass the aggregate as array. 5238 // This is usually beneficial since we avoid forcing the 5239 // back-end to store the argument to memory. 5240 uint64_t Bits = getContext().getTypeSize(Ty); 5241 if (Bits > 0 && Bits <= 8 * GPRBits) { 5242 llvm::Type *CoerceTy; 5243 5244 // Types up to 8 bytes are passed as integer type (which will be 5245 // properly aligned in the argument save area doubleword). 5246 if (Bits <= GPRBits) 5247 CoerceTy = 5248 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 5249 // Larger types are passed as arrays, with the base type selected 5250 // according to the required alignment in the save area. 5251 else { 5252 uint64_t RegBits = ABIAlign * 8; 5253 uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits; 5254 llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits); 5255 CoerceTy = llvm::ArrayType::get(RegTy, NumRegs); 5256 } 5257 5258 return ABIArgInfo::getDirect(CoerceTy); 5259 } 5260 5261 // All other aggregates are passed ByVal. 5262 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 5263 /*ByVal=*/true, 5264 /*Realign=*/TyAlign > ABIAlign); 5265 } 5266 5267 return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 5268 : ABIArgInfo::getDirect()); 5269 } 5270 5271 ABIArgInfo 5272 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { 5273 if (RetTy->isVoidType()) 5274 return ABIArgInfo::getIgnore(); 5275 5276 if (RetTy->isAnyComplexType()) 5277 return ABIArgInfo::getDirect(); 5278 5279 // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes) 5280 // or via reference (larger than 16 bytes). 5281 if (RetTy->isVectorType()) { 5282 uint64_t Size = getContext().getTypeSize(RetTy); 5283 if (Size > 128) 5284 return getNaturalAlignIndirect(RetTy); 5285 else if (Size < 128) { 5286 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 5287 return ABIArgInfo::getDirect(CoerceTy); 5288 } 5289 } 5290 5291 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 5292 if (EIT->getNumBits() > 128) 5293 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 5294 5295 if (isAggregateTypeForABI(RetTy)) { 5296 // ELFv2 homogeneous aggregates are returned as array types. 5297 const Type *Base = nullptr; 5298 uint64_t Members = 0; 5299 if (Kind == ELFv2 && 5300 isHomogeneousAggregate(RetTy, Base, Members)) { 5301 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 5302 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 5303 return ABIArgInfo::getDirect(CoerceTy); 5304 } 5305 5306 // ELFv2 small aggregates are returned in up to two registers. 5307 uint64_t Bits = getContext().getTypeSize(RetTy); 5308 if (Kind == ELFv2 && Bits <= 2 * GPRBits) { 5309 if (Bits == 0) 5310 return ABIArgInfo::getIgnore(); 5311 5312 llvm::Type *CoerceTy; 5313 if (Bits > GPRBits) { 5314 CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits); 5315 CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy); 5316 } else 5317 CoerceTy = 5318 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 5319 return ABIArgInfo::getDirect(CoerceTy); 5320 } 5321 5322 // All other aggregates are returned indirectly. 5323 return getNaturalAlignIndirect(RetTy); 5324 } 5325 5326 return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 5327 : ABIArgInfo::getDirect()); 5328 } 5329 5330 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine. 5331 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5332 QualType Ty) const { 5333 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 5334 TypeInfo.Align = getParamTypeAlignment(Ty); 5335 5336 CharUnits SlotSize = CharUnits::fromQuantity(8); 5337 5338 // If we have a complex type and the base type is smaller than 8 bytes, 5339 // the ABI calls for the real and imaginary parts to be right-adjusted 5340 // in separate doublewords. However, Clang expects us to produce a 5341 // pointer to a structure with the two parts packed tightly. So generate 5342 // loads of the real and imaginary parts relative to the va_list pointer, 5343 // and store them to a temporary structure. 5344 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 5345 CharUnits EltSize = TypeInfo.Width / 2; 5346 if (EltSize < SlotSize) { 5347 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty, 5348 SlotSize * 2, SlotSize, 5349 SlotSize, /*AllowHigher*/ true); 5350 5351 Address RealAddr = Addr; 5352 Address ImagAddr = RealAddr; 5353 if (CGF.CGM.getDataLayout().isBigEndian()) { 5354 RealAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, 5355 SlotSize - EltSize); 5356 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr, 5357 2 * SlotSize - EltSize); 5358 } else { 5359 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize); 5360 } 5361 5362 llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType()); 5363 RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy); 5364 ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy); 5365 llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal"); 5366 llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag"); 5367 5368 Address Temp = CGF.CreateMemTemp(Ty, "vacplx"); 5369 CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty), 5370 /*init*/ true); 5371 return Temp; 5372 } 5373 } 5374 5375 // Otherwise, just use the general rule. 5376 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 5377 TypeInfo, SlotSize, /*AllowHigher*/ true); 5378 } 5379 5380 bool 5381 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable( 5382 CodeGen::CodeGenFunction &CGF, 5383 llvm::Value *Address) const { 5384 return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ true, 5385 /*IsAIX*/ false); 5386 } 5387 5388 bool 5389 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5390 llvm::Value *Address) const { 5391 return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ true, 5392 /*IsAIX*/ false); 5393 } 5394 5395 //===----------------------------------------------------------------------===// 5396 // AArch64 ABI Implementation 5397 //===----------------------------------------------------------------------===// 5398 5399 namespace { 5400 5401 class AArch64ABIInfo : public SwiftABIInfo { 5402 public: 5403 enum ABIKind { 5404 AAPCS = 0, 5405 DarwinPCS, 5406 Win64 5407 }; 5408 5409 private: 5410 ABIKind Kind; 5411 5412 public: 5413 AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind) 5414 : SwiftABIInfo(CGT), Kind(Kind) {} 5415 5416 private: 5417 ABIKind getABIKind() const { return Kind; } 5418 bool isDarwinPCS() const { return Kind == DarwinPCS; } 5419 5420 ABIArgInfo classifyReturnType(QualType RetTy, bool IsVariadic) const; 5421 ABIArgInfo classifyArgumentType(QualType RetTy, bool IsVariadic, 5422 unsigned CallingConvention) const; 5423 ABIArgInfo coerceIllegalVector(QualType Ty) const; 5424 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 5425 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 5426 uint64_t Members) const override; 5427 5428 bool isIllegalVectorType(QualType Ty) const; 5429 5430 void computeInfo(CGFunctionInfo &FI) const override { 5431 if (!::classifyReturnType(getCXXABI(), FI, *this)) 5432 FI.getReturnInfo() = 5433 classifyReturnType(FI.getReturnType(), FI.isVariadic()); 5434 5435 for (auto &it : FI.arguments()) 5436 it.info = classifyArgumentType(it.type, FI.isVariadic(), 5437 FI.getCallingConvention()); 5438 } 5439 5440 Address EmitDarwinVAArg(Address VAListAddr, QualType Ty, 5441 CodeGenFunction &CGF) const; 5442 5443 Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty, 5444 CodeGenFunction &CGF) const; 5445 5446 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5447 QualType Ty) const override { 5448 llvm::Type *BaseTy = CGF.ConvertType(Ty); 5449 if (isa<llvm::ScalableVectorType>(BaseTy)) 5450 llvm::report_fatal_error("Passing SVE types to variadic functions is " 5451 "currently not supported"); 5452 5453 return Kind == Win64 ? EmitMSVAArg(CGF, VAListAddr, Ty) 5454 : isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF) 5455 : EmitAAPCSVAArg(VAListAddr, Ty, CGF); 5456 } 5457 5458 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 5459 QualType Ty) const override; 5460 5461 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 5462 bool asReturnValue) const override { 5463 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 5464 } 5465 bool isSwiftErrorInRegister() const override { 5466 return true; 5467 } 5468 5469 bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy, 5470 unsigned elts) const override; 5471 5472 bool allowBFloatArgsAndRet() const override { 5473 return getTarget().hasBFloat16Type(); 5474 } 5475 }; 5476 5477 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo { 5478 public: 5479 AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind) 5480 : TargetCodeGenInfo(std::make_unique<AArch64ABIInfo>(CGT, Kind)) {} 5481 5482 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 5483 return "mov\tfp, fp\t\t// marker for objc_retainAutoreleaseReturnValue"; 5484 } 5485 5486 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 5487 return 31; 5488 } 5489 5490 bool doesReturnSlotInterfereWithArgs() const override { return false; } 5491 5492 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5493 CodeGen::CodeGenModule &CGM) const override { 5494 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 5495 if (!FD) 5496 return; 5497 5498 const auto *TA = FD->getAttr<TargetAttr>(); 5499 if (TA == nullptr) 5500 return; 5501 5502 ParsedTargetAttr Attr = TA->parse(); 5503 if (Attr.BranchProtection.empty()) 5504 return; 5505 5506 TargetInfo::BranchProtectionInfo BPI; 5507 StringRef Error; 5508 (void)CGM.getTarget().validateBranchProtection(Attr.BranchProtection, 5509 BPI, Error); 5510 assert(Error.empty()); 5511 5512 auto *Fn = cast<llvm::Function>(GV); 5513 static const char *SignReturnAddrStr[] = {"none", "non-leaf", "all"}; 5514 Fn->addFnAttr("sign-return-address", SignReturnAddrStr[static_cast<int>(BPI.SignReturnAddr)]); 5515 5516 if (BPI.SignReturnAddr != LangOptions::SignReturnAddressScopeKind::None) { 5517 Fn->addFnAttr("sign-return-address-key", 5518 BPI.SignKey == LangOptions::SignReturnAddressKeyKind::AKey 5519 ? "a_key" 5520 : "b_key"); 5521 } 5522 5523 Fn->addFnAttr("branch-target-enforcement", 5524 BPI.BranchTargetEnforcement ? "true" : "false"); 5525 } 5526 }; 5527 5528 class WindowsAArch64TargetCodeGenInfo : public AArch64TargetCodeGenInfo { 5529 public: 5530 WindowsAArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind K) 5531 : AArch64TargetCodeGenInfo(CGT, K) {} 5532 5533 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5534 CodeGen::CodeGenModule &CGM) const override; 5535 5536 void getDependentLibraryOption(llvm::StringRef Lib, 5537 llvm::SmallString<24> &Opt) const override { 5538 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); 5539 } 5540 5541 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, 5542 llvm::SmallString<32> &Opt) const override { 5543 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 5544 } 5545 }; 5546 5547 void WindowsAArch64TargetCodeGenInfo::setTargetAttributes( 5548 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 5549 AArch64TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 5550 if (GV->isDeclaration()) 5551 return; 5552 addStackProbeTargetAttributes(D, GV, CGM); 5553 } 5554 } 5555 5556 ABIArgInfo AArch64ABIInfo::coerceIllegalVector(QualType Ty) const { 5557 assert(Ty->isVectorType() && "expected vector type!"); 5558 5559 const auto *VT = Ty->castAs<VectorType>(); 5560 if (VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector) { 5561 assert(VT->getElementType()->isBuiltinType() && "expected builtin type!"); 5562 assert(VT->getElementType()->castAs<BuiltinType>()->getKind() == 5563 BuiltinType::UChar && 5564 "unexpected builtin type for SVE predicate!"); 5565 return ABIArgInfo::getDirect(llvm::ScalableVectorType::get( 5566 llvm::Type::getInt1Ty(getVMContext()), 16)); 5567 } 5568 5569 if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector) { 5570 assert(VT->getElementType()->isBuiltinType() && "expected builtin type!"); 5571 5572 const auto *BT = VT->getElementType()->castAs<BuiltinType>(); 5573 llvm::ScalableVectorType *ResType = nullptr; 5574 switch (BT->getKind()) { 5575 default: 5576 llvm_unreachable("unexpected builtin type for SVE vector!"); 5577 case BuiltinType::SChar: 5578 case BuiltinType::UChar: 5579 ResType = llvm::ScalableVectorType::get( 5580 llvm::Type::getInt8Ty(getVMContext()), 16); 5581 break; 5582 case BuiltinType::Short: 5583 case BuiltinType::UShort: 5584 ResType = llvm::ScalableVectorType::get( 5585 llvm::Type::getInt16Ty(getVMContext()), 8); 5586 break; 5587 case BuiltinType::Int: 5588 case BuiltinType::UInt: 5589 ResType = llvm::ScalableVectorType::get( 5590 llvm::Type::getInt32Ty(getVMContext()), 4); 5591 break; 5592 case BuiltinType::Long: 5593 case BuiltinType::ULong: 5594 ResType = llvm::ScalableVectorType::get( 5595 llvm::Type::getInt64Ty(getVMContext()), 2); 5596 break; 5597 case BuiltinType::Half: 5598 ResType = llvm::ScalableVectorType::get( 5599 llvm::Type::getHalfTy(getVMContext()), 8); 5600 break; 5601 case BuiltinType::Float: 5602 ResType = llvm::ScalableVectorType::get( 5603 llvm::Type::getFloatTy(getVMContext()), 4); 5604 break; 5605 case BuiltinType::Double: 5606 ResType = llvm::ScalableVectorType::get( 5607 llvm::Type::getDoubleTy(getVMContext()), 2); 5608 break; 5609 case BuiltinType::BFloat16: 5610 ResType = llvm::ScalableVectorType::get( 5611 llvm::Type::getBFloatTy(getVMContext()), 8); 5612 break; 5613 } 5614 return ABIArgInfo::getDirect(ResType); 5615 } 5616 5617 uint64_t Size = getContext().getTypeSize(Ty); 5618 // Android promotes <2 x i8> to i16, not i32 5619 if (isAndroid() && (Size <= 16)) { 5620 llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext()); 5621 return ABIArgInfo::getDirect(ResType); 5622 } 5623 if (Size <= 32) { 5624 llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext()); 5625 return ABIArgInfo::getDirect(ResType); 5626 } 5627 if (Size == 64) { 5628 auto *ResType = 5629 llvm::FixedVectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2); 5630 return ABIArgInfo::getDirect(ResType); 5631 } 5632 if (Size == 128) { 5633 auto *ResType = 5634 llvm::FixedVectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4); 5635 return ABIArgInfo::getDirect(ResType); 5636 } 5637 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5638 } 5639 5640 ABIArgInfo 5641 AArch64ABIInfo::classifyArgumentType(QualType Ty, bool IsVariadic, 5642 unsigned CallingConvention) const { 5643 Ty = useFirstFieldIfTransparentUnion(Ty); 5644 5645 // Handle illegal vector types here. 5646 if (isIllegalVectorType(Ty)) 5647 return coerceIllegalVector(Ty); 5648 5649 if (!isAggregateTypeForABI(Ty)) { 5650 // Treat an enum type as its underlying type. 5651 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5652 Ty = EnumTy->getDecl()->getIntegerType(); 5653 5654 if (const auto *EIT = Ty->getAs<ExtIntType>()) 5655 if (EIT->getNumBits() > 128) 5656 return getNaturalAlignIndirect(Ty); 5657 5658 return (isPromotableIntegerTypeForABI(Ty) && isDarwinPCS() 5659 ? ABIArgInfo::getExtend(Ty) 5660 : ABIArgInfo::getDirect()); 5661 } 5662 5663 // Structures with either a non-trivial destructor or a non-trivial 5664 // copy constructor are always indirect. 5665 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 5666 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 5667 CGCXXABI::RAA_DirectInMemory); 5668 } 5669 5670 // Empty records are always ignored on Darwin, but actually passed in C++ mode 5671 // elsewhere for GNU compatibility. 5672 uint64_t Size = getContext().getTypeSize(Ty); 5673 bool IsEmpty = isEmptyRecord(getContext(), Ty, true); 5674 if (IsEmpty || Size == 0) { 5675 if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS()) 5676 return ABIArgInfo::getIgnore(); 5677 5678 // GNU C mode. The only argument that gets ignored is an empty one with size 5679 // 0. 5680 if (IsEmpty && Size == 0) 5681 return ABIArgInfo::getIgnore(); 5682 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 5683 } 5684 5685 // Homogeneous Floating-point Aggregates (HFAs) need to be expanded. 5686 const Type *Base = nullptr; 5687 uint64_t Members = 0; 5688 bool IsWin64 = Kind == Win64 || CallingConvention == llvm::CallingConv::Win64; 5689 bool IsWinVariadic = IsWin64 && IsVariadic; 5690 // In variadic functions on Windows, all composite types are treated alike, 5691 // no special handling of HFAs/HVAs. 5692 if (!IsWinVariadic && isHomogeneousAggregate(Ty, Base, Members)) { 5693 if (Kind != AArch64ABIInfo::AAPCS) 5694 return ABIArgInfo::getDirect( 5695 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members)); 5696 5697 // For alignment adjusted HFAs, cap the argument alignment to 16, leave it 5698 // default otherwise. 5699 unsigned Align = 5700 getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity(); 5701 unsigned BaseAlign = getContext().getTypeAlignInChars(Base).getQuantity(); 5702 Align = (Align > BaseAlign && Align >= 16) ? 16 : 0; 5703 return ABIArgInfo::getDirect( 5704 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members), 0, 5705 nullptr, true, Align); 5706 } 5707 5708 // Aggregates <= 16 bytes are passed directly in registers or on the stack. 5709 if (Size <= 128) { 5710 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 5711 // same size and alignment. 5712 if (getTarget().isRenderScriptTarget()) { 5713 return coerceToIntArray(Ty, getContext(), getVMContext()); 5714 } 5715 unsigned Alignment; 5716 if (Kind == AArch64ABIInfo::AAPCS) { 5717 Alignment = getContext().getTypeUnadjustedAlign(Ty); 5718 Alignment = Alignment < 128 ? 64 : 128; 5719 } else { 5720 Alignment = std::max(getContext().getTypeAlign(Ty), 5721 (unsigned)getTarget().getPointerWidth(0)); 5722 } 5723 Size = llvm::alignTo(Size, Alignment); 5724 5725 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 5726 // For aggregates with 16-byte alignment, we use i128. 5727 llvm::Type *BaseTy = llvm::Type::getIntNTy(getVMContext(), Alignment); 5728 return ABIArgInfo::getDirect( 5729 Size == Alignment ? BaseTy 5730 : llvm::ArrayType::get(BaseTy, Size / Alignment)); 5731 } 5732 5733 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5734 } 5735 5736 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy, 5737 bool IsVariadic) const { 5738 if (RetTy->isVoidType()) 5739 return ABIArgInfo::getIgnore(); 5740 5741 if (const auto *VT = RetTy->getAs<VectorType>()) { 5742 if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector || 5743 VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector) 5744 return coerceIllegalVector(RetTy); 5745 } 5746 5747 // Large vector types should be returned via memory. 5748 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) 5749 return getNaturalAlignIndirect(RetTy); 5750 5751 if (!isAggregateTypeForABI(RetTy)) { 5752 // Treat an enum type as its underlying type. 5753 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5754 RetTy = EnumTy->getDecl()->getIntegerType(); 5755 5756 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 5757 if (EIT->getNumBits() > 128) 5758 return getNaturalAlignIndirect(RetTy); 5759 5760 return (isPromotableIntegerTypeForABI(RetTy) && isDarwinPCS() 5761 ? ABIArgInfo::getExtend(RetTy) 5762 : ABIArgInfo::getDirect()); 5763 } 5764 5765 uint64_t Size = getContext().getTypeSize(RetTy); 5766 if (isEmptyRecord(getContext(), RetTy, true) || Size == 0) 5767 return ABIArgInfo::getIgnore(); 5768 5769 const Type *Base = nullptr; 5770 uint64_t Members = 0; 5771 if (isHomogeneousAggregate(RetTy, Base, Members) && 5772 !(getTarget().getTriple().getArch() == llvm::Triple::aarch64_32 && 5773 IsVariadic)) 5774 // Homogeneous Floating-point Aggregates (HFAs) are returned directly. 5775 return ABIArgInfo::getDirect(); 5776 5777 // Aggregates <= 16 bytes are returned directly in registers or on the stack. 5778 if (Size <= 128) { 5779 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 5780 // same size and alignment. 5781 if (getTarget().isRenderScriptTarget()) { 5782 return coerceToIntArray(RetTy, getContext(), getVMContext()); 5783 } 5784 unsigned Alignment = getContext().getTypeAlign(RetTy); 5785 Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes 5786 5787 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 5788 // For aggregates with 16-byte alignment, we use i128. 5789 if (Alignment < 128 && Size == 128) { 5790 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); 5791 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 5792 } 5793 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 5794 } 5795 5796 return getNaturalAlignIndirect(RetTy); 5797 } 5798 5799 /// isIllegalVectorType - check whether the vector type is legal for AArch64. 5800 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const { 5801 if (const VectorType *VT = Ty->getAs<VectorType>()) { 5802 // Check whether VT is a fixed-length SVE vector. These types are 5803 // represented as scalable vectors in function args/return and must be 5804 // coerced from fixed vectors. 5805 if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector || 5806 VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector) 5807 return true; 5808 5809 // Check whether VT is legal. 5810 unsigned NumElements = VT->getNumElements(); 5811 uint64_t Size = getContext().getTypeSize(VT); 5812 // NumElements should be power of 2. 5813 if (!llvm::isPowerOf2_32(NumElements)) 5814 return true; 5815 5816 // arm64_32 has to be compatible with the ARM logic here, which allows huge 5817 // vectors for some reason. 5818 llvm::Triple Triple = getTarget().getTriple(); 5819 if (Triple.getArch() == llvm::Triple::aarch64_32 && 5820 Triple.isOSBinFormatMachO()) 5821 return Size <= 32; 5822 5823 return Size != 64 && (Size != 128 || NumElements == 1); 5824 } 5825 return false; 5826 } 5827 5828 bool AArch64ABIInfo::isLegalVectorTypeForSwift(CharUnits totalSize, 5829 llvm::Type *eltTy, 5830 unsigned elts) const { 5831 if (!llvm::isPowerOf2_32(elts)) 5832 return false; 5833 if (totalSize.getQuantity() != 8 && 5834 (totalSize.getQuantity() != 16 || elts == 1)) 5835 return false; 5836 return true; 5837 } 5838 5839 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 5840 // Homogeneous aggregates for AAPCS64 must have base types of a floating 5841 // point type or a short-vector type. This is the same as the 32-bit ABI, 5842 // but with the difference that any floating-point type is allowed, 5843 // including __fp16. 5844 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 5845 if (BT->isFloatingPoint()) 5846 return true; 5847 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 5848 unsigned VecSize = getContext().getTypeSize(VT); 5849 if (VecSize == 64 || VecSize == 128) 5850 return true; 5851 } 5852 return false; 5853 } 5854 5855 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 5856 uint64_t Members) const { 5857 return Members <= 4; 5858 } 5859 5860 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr, QualType Ty, 5861 CodeGenFunction &CGF) const { 5862 ABIArgInfo AI = classifyArgumentType(Ty, /*IsVariadic=*/true, 5863 CGF.CurFnInfo->getCallingConvention()); 5864 bool IsIndirect = AI.isIndirect(); 5865 5866 llvm::Type *BaseTy = CGF.ConvertType(Ty); 5867 if (IsIndirect) 5868 BaseTy = llvm::PointerType::getUnqual(BaseTy); 5869 else if (AI.getCoerceToType()) 5870 BaseTy = AI.getCoerceToType(); 5871 5872 unsigned NumRegs = 1; 5873 if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) { 5874 BaseTy = ArrTy->getElementType(); 5875 NumRegs = ArrTy->getNumElements(); 5876 } 5877 bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy(); 5878 5879 // The AArch64 va_list type and handling is specified in the Procedure Call 5880 // Standard, section B.4: 5881 // 5882 // struct { 5883 // void *__stack; 5884 // void *__gr_top; 5885 // void *__vr_top; 5886 // int __gr_offs; 5887 // int __vr_offs; 5888 // }; 5889 5890 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); 5891 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 5892 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); 5893 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 5894 5895 CharUnits TySize = getContext().getTypeSizeInChars(Ty); 5896 CharUnits TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty); 5897 5898 Address reg_offs_p = Address::invalid(); 5899 llvm::Value *reg_offs = nullptr; 5900 int reg_top_index; 5901 int RegSize = IsIndirect ? 8 : TySize.getQuantity(); 5902 if (!IsFPR) { 5903 // 3 is the field number of __gr_offs 5904 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p"); 5905 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs"); 5906 reg_top_index = 1; // field number for __gr_top 5907 RegSize = llvm::alignTo(RegSize, 8); 5908 } else { 5909 // 4 is the field number of __vr_offs. 5910 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p"); 5911 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs"); 5912 reg_top_index = 2; // field number for __vr_top 5913 RegSize = 16 * NumRegs; 5914 } 5915 5916 //======================================= 5917 // Find out where argument was passed 5918 //======================================= 5919 5920 // If reg_offs >= 0 we're already using the stack for this type of 5921 // argument. We don't want to keep updating reg_offs (in case it overflows, 5922 // though anyone passing 2GB of arguments, each at most 16 bytes, deserves 5923 // whatever they get). 5924 llvm::Value *UsingStack = nullptr; 5925 UsingStack = CGF.Builder.CreateICmpSGE( 5926 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0)); 5927 5928 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock); 5929 5930 // Otherwise, at least some kind of argument could go in these registers, the 5931 // question is whether this particular type is too big. 5932 CGF.EmitBlock(MaybeRegBlock); 5933 5934 // Integer arguments may need to correct register alignment (for example a 5935 // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we 5936 // align __gr_offs to calculate the potential address. 5937 if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) { 5938 int Align = TyAlign.getQuantity(); 5939 5940 reg_offs = CGF.Builder.CreateAdd( 5941 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1), 5942 "align_regoffs"); 5943 reg_offs = CGF.Builder.CreateAnd( 5944 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align), 5945 "aligned_regoffs"); 5946 } 5947 5948 // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list. 5949 // The fact that this is done unconditionally reflects the fact that 5950 // allocating an argument to the stack also uses up all the remaining 5951 // registers of the appropriate kind. 5952 llvm::Value *NewOffset = nullptr; 5953 NewOffset = CGF.Builder.CreateAdd( 5954 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs"); 5955 CGF.Builder.CreateStore(NewOffset, reg_offs_p); 5956 5957 // Now we're in a position to decide whether this argument really was in 5958 // registers or not. 5959 llvm::Value *InRegs = nullptr; 5960 InRegs = CGF.Builder.CreateICmpSLE( 5961 NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg"); 5962 5963 CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock); 5964 5965 //======================================= 5966 // Argument was in registers 5967 //======================================= 5968 5969 // Now we emit the code for if the argument was originally passed in 5970 // registers. First start the appropriate block: 5971 CGF.EmitBlock(InRegBlock); 5972 5973 llvm::Value *reg_top = nullptr; 5974 Address reg_top_p = 5975 CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p"); 5976 reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top"); 5977 Address BaseAddr(CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, reg_top, reg_offs), 5978 CharUnits::fromQuantity(IsFPR ? 16 : 8)); 5979 Address RegAddr = Address::invalid(); 5980 llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty); 5981 5982 if (IsIndirect) { 5983 // If it's been passed indirectly (actually a struct), whatever we find from 5984 // stored registers or on the stack will actually be a struct **. 5985 MemTy = llvm::PointerType::getUnqual(MemTy); 5986 } 5987 5988 const Type *Base = nullptr; 5989 uint64_t NumMembers = 0; 5990 bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers); 5991 if (IsHFA && NumMembers > 1) { 5992 // Homogeneous aggregates passed in registers will have their elements split 5993 // and stored 16-bytes apart regardless of size (they're notionally in qN, 5994 // qN+1, ...). We reload and store into a temporary local variable 5995 // contiguously. 5996 assert(!IsIndirect && "Homogeneous aggregates should be passed directly"); 5997 auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0)); 5998 llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0)); 5999 llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers); 6000 Address Tmp = CGF.CreateTempAlloca(HFATy, 6001 std::max(TyAlign, BaseTyInfo.Align)); 6002 6003 // On big-endian platforms, the value will be right-aligned in its slot. 6004 int Offset = 0; 6005 if (CGF.CGM.getDataLayout().isBigEndian() && 6006 BaseTyInfo.Width.getQuantity() < 16) 6007 Offset = 16 - BaseTyInfo.Width.getQuantity(); 6008 6009 for (unsigned i = 0; i < NumMembers; ++i) { 6010 CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset); 6011 Address LoadAddr = 6012 CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset); 6013 LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy); 6014 6015 Address StoreAddr = CGF.Builder.CreateConstArrayGEP(Tmp, i); 6016 6017 llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr); 6018 CGF.Builder.CreateStore(Elem, StoreAddr); 6019 } 6020 6021 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy); 6022 } else { 6023 // Otherwise the object is contiguous in memory. 6024 6025 // It might be right-aligned in its slot. 6026 CharUnits SlotSize = BaseAddr.getAlignment(); 6027 if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect && 6028 (IsHFA || !isAggregateTypeForABI(Ty)) && 6029 TySize < SlotSize) { 6030 CharUnits Offset = SlotSize - TySize; 6031 BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset); 6032 } 6033 6034 RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy); 6035 } 6036 6037 CGF.EmitBranch(ContBlock); 6038 6039 //======================================= 6040 // Argument was on the stack 6041 //======================================= 6042 CGF.EmitBlock(OnStackBlock); 6043 6044 Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p"); 6045 llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack"); 6046 6047 // Again, stack arguments may need realignment. In this case both integer and 6048 // floating-point ones might be affected. 6049 if (!IsIndirect && TyAlign.getQuantity() > 8) { 6050 int Align = TyAlign.getQuantity(); 6051 6052 OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty); 6053 6054 OnStackPtr = CGF.Builder.CreateAdd( 6055 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1), 6056 "align_stack"); 6057 OnStackPtr = CGF.Builder.CreateAnd( 6058 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align), 6059 "align_stack"); 6060 6061 OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy); 6062 } 6063 Address OnStackAddr(OnStackPtr, 6064 std::max(CharUnits::fromQuantity(8), TyAlign)); 6065 6066 // All stack slots are multiples of 8 bytes. 6067 CharUnits StackSlotSize = CharUnits::fromQuantity(8); 6068 CharUnits StackSize; 6069 if (IsIndirect) 6070 StackSize = StackSlotSize; 6071 else 6072 StackSize = TySize.alignTo(StackSlotSize); 6073 6074 llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize); 6075 llvm::Value *NewStack = CGF.Builder.CreateInBoundsGEP( 6076 CGF.Int8Ty, OnStackPtr, StackSizeC, "new_stack"); 6077 6078 // Write the new value of __stack for the next call to va_arg 6079 CGF.Builder.CreateStore(NewStack, stack_p); 6080 6081 if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) && 6082 TySize < StackSlotSize) { 6083 CharUnits Offset = StackSlotSize - TySize; 6084 OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset); 6085 } 6086 6087 OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy); 6088 6089 CGF.EmitBranch(ContBlock); 6090 6091 //======================================= 6092 // Tidy up 6093 //======================================= 6094 CGF.EmitBlock(ContBlock); 6095 6096 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 6097 OnStackAddr, OnStackBlock, "vaargs.addr"); 6098 6099 if (IsIndirect) 6100 return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"), 6101 TyAlign); 6102 6103 return ResAddr; 6104 } 6105 6106 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty, 6107 CodeGenFunction &CGF) const { 6108 // The backend's lowering doesn't support va_arg for aggregates or 6109 // illegal vector types. Lower VAArg here for these cases and use 6110 // the LLVM va_arg instruction for everything else. 6111 if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty)) 6112 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 6113 6114 uint64_t PointerSize = getTarget().getPointerWidth(0) / 8; 6115 CharUnits SlotSize = CharUnits::fromQuantity(PointerSize); 6116 6117 // Empty records are ignored for parameter passing purposes. 6118 if (isEmptyRecord(getContext(), Ty, true)) { 6119 Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 6120 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 6121 return Addr; 6122 } 6123 6124 // The size of the actual thing passed, which might end up just 6125 // being a pointer for indirect types. 6126 auto TyInfo = getContext().getTypeInfoInChars(Ty); 6127 6128 // Arguments bigger than 16 bytes which aren't homogeneous 6129 // aggregates should be passed indirectly. 6130 bool IsIndirect = false; 6131 if (TyInfo.Width.getQuantity() > 16) { 6132 const Type *Base = nullptr; 6133 uint64_t Members = 0; 6134 IsIndirect = !isHomogeneousAggregate(Ty, Base, Members); 6135 } 6136 6137 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 6138 TyInfo, SlotSize, /*AllowHigherAlign*/ true); 6139 } 6140 6141 Address AArch64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 6142 QualType Ty) const { 6143 bool IsIndirect = false; 6144 6145 // Composites larger than 16 bytes are passed by reference. 6146 if (isAggregateTypeForABI(Ty) && getContext().getTypeSize(Ty) > 128) 6147 IsIndirect = true; 6148 6149 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 6150 CGF.getContext().getTypeInfoInChars(Ty), 6151 CharUnits::fromQuantity(8), 6152 /*allowHigherAlign*/ false); 6153 } 6154 6155 //===----------------------------------------------------------------------===// 6156 // ARM ABI Implementation 6157 //===----------------------------------------------------------------------===// 6158 6159 namespace { 6160 6161 class ARMABIInfo : public SwiftABIInfo { 6162 public: 6163 enum ABIKind { 6164 APCS = 0, 6165 AAPCS = 1, 6166 AAPCS_VFP = 2, 6167 AAPCS16_VFP = 3, 6168 }; 6169 6170 private: 6171 ABIKind Kind; 6172 bool IsFloatABISoftFP; 6173 6174 public: 6175 ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) 6176 : SwiftABIInfo(CGT), Kind(_Kind) { 6177 setCCs(); 6178 IsFloatABISoftFP = CGT.getCodeGenOpts().FloatABI == "softfp" || 6179 CGT.getCodeGenOpts().FloatABI == ""; // default 6180 } 6181 6182 bool isEABI() const { 6183 switch (getTarget().getTriple().getEnvironment()) { 6184 case llvm::Triple::Android: 6185 case llvm::Triple::EABI: 6186 case llvm::Triple::EABIHF: 6187 case llvm::Triple::GNUEABI: 6188 case llvm::Triple::GNUEABIHF: 6189 case llvm::Triple::MuslEABI: 6190 case llvm::Triple::MuslEABIHF: 6191 return true; 6192 default: 6193 return false; 6194 } 6195 } 6196 6197 bool isEABIHF() const { 6198 switch (getTarget().getTriple().getEnvironment()) { 6199 case llvm::Triple::EABIHF: 6200 case llvm::Triple::GNUEABIHF: 6201 case llvm::Triple::MuslEABIHF: 6202 return true; 6203 default: 6204 return false; 6205 } 6206 } 6207 6208 ABIKind getABIKind() const { return Kind; } 6209 6210 bool allowBFloatArgsAndRet() const override { 6211 return !IsFloatABISoftFP && getTarget().hasBFloat16Type(); 6212 } 6213 6214 private: 6215 ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic, 6216 unsigned functionCallConv) const; 6217 ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic, 6218 unsigned functionCallConv) const; 6219 ABIArgInfo classifyHomogeneousAggregate(QualType Ty, const Type *Base, 6220 uint64_t Members) const; 6221 ABIArgInfo coerceIllegalVector(QualType Ty) const; 6222 bool isIllegalVectorType(QualType Ty) const; 6223 bool containsAnyFP16Vectors(QualType Ty) const; 6224 6225 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 6226 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 6227 uint64_t Members) const override; 6228 6229 bool isEffectivelyAAPCS_VFP(unsigned callConvention, bool acceptHalf) const; 6230 6231 void computeInfo(CGFunctionInfo &FI) const override; 6232 6233 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6234 QualType Ty) const override; 6235 6236 llvm::CallingConv::ID getLLVMDefaultCC() const; 6237 llvm::CallingConv::ID getABIDefaultCC() const; 6238 void setCCs(); 6239 6240 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 6241 bool asReturnValue) const override { 6242 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 6243 } 6244 bool isSwiftErrorInRegister() const override { 6245 return true; 6246 } 6247 bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy, 6248 unsigned elts) const override; 6249 }; 6250 6251 class ARMTargetCodeGenInfo : public TargetCodeGenInfo { 6252 public: 6253 ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 6254 : TargetCodeGenInfo(std::make_unique<ARMABIInfo>(CGT, K)) {} 6255 6256 const ARMABIInfo &getABIInfo() const { 6257 return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo()); 6258 } 6259 6260 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 6261 return 13; 6262 } 6263 6264 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 6265 return "mov\tr7, r7\t\t// marker for objc_retainAutoreleaseReturnValue"; 6266 } 6267 6268 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 6269 llvm::Value *Address) const override { 6270 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 6271 6272 // 0-15 are the 16 integer registers. 6273 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15); 6274 return false; 6275 } 6276 6277 unsigned getSizeOfUnwindException() const override { 6278 if (getABIInfo().isEABI()) return 88; 6279 return TargetCodeGenInfo::getSizeOfUnwindException(); 6280 } 6281 6282 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6283 CodeGen::CodeGenModule &CGM) const override { 6284 if (GV->isDeclaration()) 6285 return; 6286 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 6287 if (!FD) 6288 return; 6289 6290 const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>(); 6291 if (!Attr) 6292 return; 6293 6294 const char *Kind; 6295 switch (Attr->getInterrupt()) { 6296 case ARMInterruptAttr::Generic: Kind = ""; break; 6297 case ARMInterruptAttr::IRQ: Kind = "IRQ"; break; 6298 case ARMInterruptAttr::FIQ: Kind = "FIQ"; break; 6299 case ARMInterruptAttr::SWI: Kind = "SWI"; break; 6300 case ARMInterruptAttr::ABORT: Kind = "ABORT"; break; 6301 case ARMInterruptAttr::UNDEF: Kind = "UNDEF"; break; 6302 } 6303 6304 llvm::Function *Fn = cast<llvm::Function>(GV); 6305 6306 Fn->addFnAttr("interrupt", Kind); 6307 6308 ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind(); 6309 if (ABI == ARMABIInfo::APCS) 6310 return; 6311 6312 // AAPCS guarantees that sp will be 8-byte aligned on any public interface, 6313 // however this is not necessarily true on taking any interrupt. Instruct 6314 // the backend to perform a realignment as part of the function prologue. 6315 llvm::AttrBuilder B; 6316 B.addStackAlignmentAttr(8); 6317 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 6318 } 6319 }; 6320 6321 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo { 6322 public: 6323 WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 6324 : ARMTargetCodeGenInfo(CGT, K) {} 6325 6326 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6327 CodeGen::CodeGenModule &CGM) const override; 6328 6329 void getDependentLibraryOption(llvm::StringRef Lib, 6330 llvm::SmallString<24> &Opt) const override { 6331 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); 6332 } 6333 6334 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, 6335 llvm::SmallString<32> &Opt) const override { 6336 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 6337 } 6338 }; 6339 6340 void WindowsARMTargetCodeGenInfo::setTargetAttributes( 6341 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 6342 ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 6343 if (GV->isDeclaration()) 6344 return; 6345 addStackProbeTargetAttributes(D, GV, CGM); 6346 } 6347 } 6348 6349 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const { 6350 if (!::classifyReturnType(getCXXABI(), FI, *this)) 6351 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), FI.isVariadic(), 6352 FI.getCallingConvention()); 6353 6354 for (auto &I : FI.arguments()) 6355 I.info = classifyArgumentType(I.type, FI.isVariadic(), 6356 FI.getCallingConvention()); 6357 6358 6359 // Always honor user-specified calling convention. 6360 if (FI.getCallingConvention() != llvm::CallingConv::C) 6361 return; 6362 6363 llvm::CallingConv::ID cc = getRuntimeCC(); 6364 if (cc != llvm::CallingConv::C) 6365 FI.setEffectiveCallingConvention(cc); 6366 } 6367 6368 /// Return the default calling convention that LLVM will use. 6369 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const { 6370 // The default calling convention that LLVM will infer. 6371 if (isEABIHF() || getTarget().getTriple().isWatchABI()) 6372 return llvm::CallingConv::ARM_AAPCS_VFP; 6373 else if (isEABI()) 6374 return llvm::CallingConv::ARM_AAPCS; 6375 else 6376 return llvm::CallingConv::ARM_APCS; 6377 } 6378 6379 /// Return the calling convention that our ABI would like us to use 6380 /// as the C calling convention. 6381 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const { 6382 switch (getABIKind()) { 6383 case APCS: return llvm::CallingConv::ARM_APCS; 6384 case AAPCS: return llvm::CallingConv::ARM_AAPCS; 6385 case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 6386 case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 6387 } 6388 llvm_unreachable("bad ABI kind"); 6389 } 6390 6391 void ARMABIInfo::setCCs() { 6392 assert(getRuntimeCC() == llvm::CallingConv::C); 6393 6394 // Don't muddy up the IR with a ton of explicit annotations if 6395 // they'd just match what LLVM will infer from the triple. 6396 llvm::CallingConv::ID abiCC = getABIDefaultCC(); 6397 if (abiCC != getLLVMDefaultCC()) 6398 RuntimeCC = abiCC; 6399 } 6400 6401 ABIArgInfo ARMABIInfo::coerceIllegalVector(QualType Ty) const { 6402 uint64_t Size = getContext().getTypeSize(Ty); 6403 if (Size <= 32) { 6404 llvm::Type *ResType = 6405 llvm::Type::getInt32Ty(getVMContext()); 6406 return ABIArgInfo::getDirect(ResType); 6407 } 6408 if (Size == 64 || Size == 128) { 6409 auto *ResType = llvm::FixedVectorType::get( 6410 llvm::Type::getInt32Ty(getVMContext()), Size / 32); 6411 return ABIArgInfo::getDirect(ResType); 6412 } 6413 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6414 } 6415 6416 ABIArgInfo ARMABIInfo::classifyHomogeneousAggregate(QualType Ty, 6417 const Type *Base, 6418 uint64_t Members) const { 6419 assert(Base && "Base class should be set for homogeneous aggregate"); 6420 // Base can be a floating-point or a vector. 6421 if (const VectorType *VT = Base->getAs<VectorType>()) { 6422 // FP16 vectors should be converted to integer vectors 6423 if (!getTarget().hasLegalHalfType() && containsAnyFP16Vectors(Ty)) { 6424 uint64_t Size = getContext().getTypeSize(VT); 6425 auto *NewVecTy = llvm::FixedVectorType::get( 6426 llvm::Type::getInt32Ty(getVMContext()), Size / 32); 6427 llvm::Type *Ty = llvm::ArrayType::get(NewVecTy, Members); 6428 return ABIArgInfo::getDirect(Ty, 0, nullptr, false); 6429 } 6430 } 6431 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); 6432 } 6433 6434 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, bool isVariadic, 6435 unsigned functionCallConv) const { 6436 // 6.1.2.1 The following argument types are VFP CPRCs: 6437 // A single-precision floating-point type (including promoted 6438 // half-precision types); A double-precision floating-point type; 6439 // A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate 6440 // with a Base Type of a single- or double-precision floating-point type, 6441 // 64-bit containerized vectors or 128-bit containerized vectors with one 6442 // to four Elements. 6443 // Variadic functions should always marshal to the base standard. 6444 bool IsAAPCS_VFP = 6445 !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ false); 6446 6447 Ty = useFirstFieldIfTransparentUnion(Ty); 6448 6449 // Handle illegal vector types here. 6450 if (isIllegalVectorType(Ty)) 6451 return coerceIllegalVector(Ty); 6452 6453 if (!isAggregateTypeForABI(Ty)) { 6454 // Treat an enum type as its underlying type. 6455 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 6456 Ty = EnumTy->getDecl()->getIntegerType(); 6457 } 6458 6459 if (const auto *EIT = Ty->getAs<ExtIntType>()) 6460 if (EIT->getNumBits() > 64) 6461 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 6462 6463 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 6464 : ABIArgInfo::getDirect()); 6465 } 6466 6467 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 6468 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 6469 } 6470 6471 // Ignore empty records. 6472 if (isEmptyRecord(getContext(), Ty, true)) 6473 return ABIArgInfo::getIgnore(); 6474 6475 if (IsAAPCS_VFP) { 6476 // Homogeneous Aggregates need to be expanded when we can fit the aggregate 6477 // into VFP registers. 6478 const Type *Base = nullptr; 6479 uint64_t Members = 0; 6480 if (isHomogeneousAggregate(Ty, Base, Members)) 6481 return classifyHomogeneousAggregate(Ty, Base, Members); 6482 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 6483 // WatchOS does have homogeneous aggregates. Note that we intentionally use 6484 // this convention even for a variadic function: the backend will use GPRs 6485 // if needed. 6486 const Type *Base = nullptr; 6487 uint64_t Members = 0; 6488 if (isHomogeneousAggregate(Ty, Base, Members)) { 6489 assert(Base && Members <= 4 && "unexpected homogeneous aggregate"); 6490 llvm::Type *Ty = 6491 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members); 6492 return ABIArgInfo::getDirect(Ty, 0, nullptr, false); 6493 } 6494 } 6495 6496 if (getABIKind() == ARMABIInfo::AAPCS16_VFP && 6497 getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) { 6498 // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're 6499 // bigger than 128-bits, they get placed in space allocated by the caller, 6500 // and a pointer is passed. 6501 return ABIArgInfo::getIndirect( 6502 CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false); 6503 } 6504 6505 // Support byval for ARM. 6506 // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at 6507 // most 8-byte. We realign the indirect argument if type alignment is bigger 6508 // than ABI alignment. 6509 uint64_t ABIAlign = 4; 6510 uint64_t TyAlign; 6511 if (getABIKind() == ARMABIInfo::AAPCS_VFP || 6512 getABIKind() == ARMABIInfo::AAPCS) { 6513 TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity(); 6514 ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8); 6515 } else { 6516 TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); 6517 } 6518 if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) { 6519 assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval"); 6520 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 6521 /*ByVal=*/true, 6522 /*Realign=*/TyAlign > ABIAlign); 6523 } 6524 6525 // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of 6526 // same size and alignment. 6527 if (getTarget().isRenderScriptTarget()) { 6528 return coerceToIntArray(Ty, getContext(), getVMContext()); 6529 } 6530 6531 // Otherwise, pass by coercing to a structure of the appropriate size. 6532 llvm::Type* ElemTy; 6533 unsigned SizeRegs; 6534 // FIXME: Try to match the types of the arguments more accurately where 6535 // we can. 6536 if (TyAlign <= 4) { 6537 ElemTy = llvm::Type::getInt32Ty(getVMContext()); 6538 SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32; 6539 } else { 6540 ElemTy = llvm::Type::getInt64Ty(getVMContext()); 6541 SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64; 6542 } 6543 6544 return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs)); 6545 } 6546 6547 static bool isIntegerLikeType(QualType Ty, ASTContext &Context, 6548 llvm::LLVMContext &VMContext) { 6549 // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure 6550 // is called integer-like if its size is less than or equal to one word, and 6551 // the offset of each of its addressable sub-fields is zero. 6552 6553 uint64_t Size = Context.getTypeSize(Ty); 6554 6555 // Check that the type fits in a word. 6556 if (Size > 32) 6557 return false; 6558 6559 // FIXME: Handle vector types! 6560 if (Ty->isVectorType()) 6561 return false; 6562 6563 // Float types are never treated as "integer like". 6564 if (Ty->isRealFloatingType()) 6565 return false; 6566 6567 // If this is a builtin or pointer type then it is ok. 6568 if (Ty->getAs<BuiltinType>() || Ty->isPointerType()) 6569 return true; 6570 6571 // Small complex integer types are "integer like". 6572 if (const ComplexType *CT = Ty->getAs<ComplexType>()) 6573 return isIntegerLikeType(CT->getElementType(), Context, VMContext); 6574 6575 // Single element and zero sized arrays should be allowed, by the definition 6576 // above, but they are not. 6577 6578 // Otherwise, it must be a record type. 6579 const RecordType *RT = Ty->getAs<RecordType>(); 6580 if (!RT) return false; 6581 6582 // Ignore records with flexible arrays. 6583 const RecordDecl *RD = RT->getDecl(); 6584 if (RD->hasFlexibleArrayMember()) 6585 return false; 6586 6587 // Check that all sub-fields are at offset 0, and are themselves "integer 6588 // like". 6589 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 6590 6591 bool HadField = false; 6592 unsigned idx = 0; 6593 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 6594 i != e; ++i, ++idx) { 6595 const FieldDecl *FD = *i; 6596 6597 // Bit-fields are not addressable, we only need to verify they are "integer 6598 // like". We still have to disallow a subsequent non-bitfield, for example: 6599 // struct { int : 0; int x } 6600 // is non-integer like according to gcc. 6601 if (FD->isBitField()) { 6602 if (!RD->isUnion()) 6603 HadField = true; 6604 6605 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 6606 return false; 6607 6608 continue; 6609 } 6610 6611 // Check if this field is at offset 0. 6612 if (Layout.getFieldOffset(idx) != 0) 6613 return false; 6614 6615 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 6616 return false; 6617 6618 // Only allow at most one field in a structure. This doesn't match the 6619 // wording above, but follows gcc in situations with a field following an 6620 // empty structure. 6621 if (!RD->isUnion()) { 6622 if (HadField) 6623 return false; 6624 6625 HadField = true; 6626 } 6627 } 6628 6629 return true; 6630 } 6631 6632 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, bool isVariadic, 6633 unsigned functionCallConv) const { 6634 6635 // Variadic functions should always marshal to the base standard. 6636 bool IsAAPCS_VFP = 6637 !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ true); 6638 6639 if (RetTy->isVoidType()) 6640 return ABIArgInfo::getIgnore(); 6641 6642 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 6643 // Large vector types should be returned via memory. 6644 if (getContext().getTypeSize(RetTy) > 128) 6645 return getNaturalAlignIndirect(RetTy); 6646 // TODO: FP16/BF16 vectors should be converted to integer vectors 6647 // This check is similar to isIllegalVectorType - refactor? 6648 if ((!getTarget().hasLegalHalfType() && 6649 (VT->getElementType()->isFloat16Type() || 6650 VT->getElementType()->isHalfType())) || 6651 (IsFloatABISoftFP && 6652 VT->getElementType()->isBFloat16Type())) 6653 return coerceIllegalVector(RetTy); 6654 } 6655 6656 if (!isAggregateTypeForABI(RetTy)) { 6657 // Treat an enum type as its underlying type. 6658 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 6659 RetTy = EnumTy->getDecl()->getIntegerType(); 6660 6661 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 6662 if (EIT->getNumBits() > 64) 6663 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 6664 6665 return isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 6666 : ABIArgInfo::getDirect(); 6667 } 6668 6669 // Are we following APCS? 6670 if (getABIKind() == APCS) { 6671 if (isEmptyRecord(getContext(), RetTy, false)) 6672 return ABIArgInfo::getIgnore(); 6673 6674 // Complex types are all returned as packed integers. 6675 // 6676 // FIXME: Consider using 2 x vector types if the back end handles them 6677 // correctly. 6678 if (RetTy->isAnyComplexType()) 6679 return ABIArgInfo::getDirect(llvm::IntegerType::get( 6680 getVMContext(), getContext().getTypeSize(RetTy))); 6681 6682 // Integer like structures are returned in r0. 6683 if (isIntegerLikeType(RetTy, getContext(), getVMContext())) { 6684 // Return in the smallest viable integer type. 6685 uint64_t Size = getContext().getTypeSize(RetTy); 6686 if (Size <= 8) 6687 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6688 if (Size <= 16) 6689 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6690 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6691 } 6692 6693 // Otherwise return in memory. 6694 return getNaturalAlignIndirect(RetTy); 6695 } 6696 6697 // Otherwise this is an AAPCS variant. 6698 6699 if (isEmptyRecord(getContext(), RetTy, true)) 6700 return ABIArgInfo::getIgnore(); 6701 6702 // Check for homogeneous aggregates with AAPCS-VFP. 6703 if (IsAAPCS_VFP) { 6704 const Type *Base = nullptr; 6705 uint64_t Members = 0; 6706 if (isHomogeneousAggregate(RetTy, Base, Members)) 6707 return classifyHomogeneousAggregate(RetTy, Base, Members); 6708 } 6709 6710 // Aggregates <= 4 bytes are returned in r0; other aggregates 6711 // are returned indirectly. 6712 uint64_t Size = getContext().getTypeSize(RetTy); 6713 if (Size <= 32) { 6714 // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of 6715 // same size and alignment. 6716 if (getTarget().isRenderScriptTarget()) { 6717 return coerceToIntArray(RetTy, getContext(), getVMContext()); 6718 } 6719 if (getDataLayout().isBigEndian()) 6720 // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4) 6721 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6722 6723 // Return in the smallest viable integer type. 6724 if (Size <= 8) 6725 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6726 if (Size <= 16) 6727 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6728 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6729 } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) { 6730 llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext()); 6731 llvm::Type *CoerceTy = 6732 llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32); 6733 return ABIArgInfo::getDirect(CoerceTy); 6734 } 6735 6736 return getNaturalAlignIndirect(RetTy); 6737 } 6738 6739 /// isIllegalVector - check whether Ty is an illegal vector type. 6740 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const { 6741 if (const VectorType *VT = Ty->getAs<VectorType> ()) { 6742 // On targets that don't support half, fp16 or bfloat, they are expanded 6743 // into float, and we don't want the ABI to depend on whether or not they 6744 // are supported in hardware. Thus return false to coerce vectors of these 6745 // types into integer vectors. 6746 // We do not depend on hasLegalHalfType for bfloat as it is a 6747 // separate IR type. 6748 if ((!getTarget().hasLegalHalfType() && 6749 (VT->getElementType()->isFloat16Type() || 6750 VT->getElementType()->isHalfType())) || 6751 (IsFloatABISoftFP && 6752 VT->getElementType()->isBFloat16Type())) 6753 return true; 6754 if (isAndroid()) { 6755 // Android shipped using Clang 3.1, which supported a slightly different 6756 // vector ABI. The primary differences were that 3-element vector types 6757 // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path 6758 // accepts that legacy behavior for Android only. 6759 // Check whether VT is legal. 6760 unsigned NumElements = VT->getNumElements(); 6761 // NumElements should be power of 2 or equal to 3. 6762 if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3) 6763 return true; 6764 } else { 6765 // Check whether VT is legal. 6766 unsigned NumElements = VT->getNumElements(); 6767 uint64_t Size = getContext().getTypeSize(VT); 6768 // NumElements should be power of 2. 6769 if (!llvm::isPowerOf2_32(NumElements)) 6770 return true; 6771 // Size should be greater than 32 bits. 6772 return Size <= 32; 6773 } 6774 } 6775 return false; 6776 } 6777 6778 /// Return true if a type contains any 16-bit floating point vectors 6779 bool ARMABIInfo::containsAnyFP16Vectors(QualType Ty) const { 6780 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 6781 uint64_t NElements = AT->getSize().getZExtValue(); 6782 if (NElements == 0) 6783 return false; 6784 return containsAnyFP16Vectors(AT->getElementType()); 6785 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 6786 const RecordDecl *RD = RT->getDecl(); 6787 6788 // If this is a C++ record, check the bases first. 6789 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 6790 if (llvm::any_of(CXXRD->bases(), [this](const CXXBaseSpecifier &B) { 6791 return containsAnyFP16Vectors(B.getType()); 6792 })) 6793 return true; 6794 6795 if (llvm::any_of(RD->fields(), [this](FieldDecl *FD) { 6796 return FD && containsAnyFP16Vectors(FD->getType()); 6797 })) 6798 return true; 6799 6800 return false; 6801 } else { 6802 if (const VectorType *VT = Ty->getAs<VectorType>()) 6803 return (VT->getElementType()->isFloat16Type() || 6804 VT->getElementType()->isBFloat16Type() || 6805 VT->getElementType()->isHalfType()); 6806 return false; 6807 } 6808 } 6809 6810 bool ARMABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, 6811 llvm::Type *eltTy, 6812 unsigned numElts) const { 6813 if (!llvm::isPowerOf2_32(numElts)) 6814 return false; 6815 unsigned size = getDataLayout().getTypeStoreSizeInBits(eltTy); 6816 if (size > 64) 6817 return false; 6818 if (vectorSize.getQuantity() != 8 && 6819 (vectorSize.getQuantity() != 16 || numElts == 1)) 6820 return false; 6821 return true; 6822 } 6823 6824 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 6825 // Homogeneous aggregates for AAPCS-VFP must have base types of float, 6826 // double, or 64-bit or 128-bit vectors. 6827 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 6828 if (BT->getKind() == BuiltinType::Float || 6829 BT->getKind() == BuiltinType::Double || 6830 BT->getKind() == BuiltinType::LongDouble) 6831 return true; 6832 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 6833 unsigned VecSize = getContext().getTypeSize(VT); 6834 if (VecSize == 64 || VecSize == 128) 6835 return true; 6836 } 6837 return false; 6838 } 6839 6840 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 6841 uint64_t Members) const { 6842 return Members <= 4; 6843 } 6844 6845 bool ARMABIInfo::isEffectivelyAAPCS_VFP(unsigned callConvention, 6846 bool acceptHalf) const { 6847 // Give precedence to user-specified calling conventions. 6848 if (callConvention != llvm::CallingConv::C) 6849 return (callConvention == llvm::CallingConv::ARM_AAPCS_VFP); 6850 else 6851 return (getABIKind() == AAPCS_VFP) || 6852 (acceptHalf && (getABIKind() == AAPCS16_VFP)); 6853 } 6854 6855 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6856 QualType Ty) const { 6857 CharUnits SlotSize = CharUnits::fromQuantity(4); 6858 6859 // Empty records are ignored for parameter passing purposes. 6860 if (isEmptyRecord(getContext(), Ty, true)) { 6861 Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize); 6862 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 6863 return Addr; 6864 } 6865 6866 CharUnits TySize = getContext().getTypeSizeInChars(Ty); 6867 CharUnits TyAlignForABI = getContext().getTypeUnadjustedAlignInChars(Ty); 6868 6869 // Use indirect if size of the illegal vector is bigger than 16 bytes. 6870 bool IsIndirect = false; 6871 const Type *Base = nullptr; 6872 uint64_t Members = 0; 6873 if (TySize > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) { 6874 IsIndirect = true; 6875 6876 // ARMv7k passes structs bigger than 16 bytes indirectly, in space 6877 // allocated by the caller. 6878 } else if (TySize > CharUnits::fromQuantity(16) && 6879 getABIKind() == ARMABIInfo::AAPCS16_VFP && 6880 !isHomogeneousAggregate(Ty, Base, Members)) { 6881 IsIndirect = true; 6882 6883 // Otherwise, bound the type's ABI alignment. 6884 // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for 6885 // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte. 6886 // Our callers should be prepared to handle an under-aligned address. 6887 } else if (getABIKind() == ARMABIInfo::AAPCS_VFP || 6888 getABIKind() == ARMABIInfo::AAPCS) { 6889 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 6890 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8)); 6891 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 6892 // ARMv7k allows type alignment up to 16 bytes. 6893 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 6894 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16)); 6895 } else { 6896 TyAlignForABI = CharUnits::fromQuantity(4); 6897 } 6898 6899 TypeInfoChars TyInfo(TySize, TyAlignForABI, false); 6900 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo, 6901 SlotSize, /*AllowHigherAlign*/ true); 6902 } 6903 6904 //===----------------------------------------------------------------------===// 6905 // NVPTX ABI Implementation 6906 //===----------------------------------------------------------------------===// 6907 6908 namespace { 6909 6910 class NVPTXTargetCodeGenInfo; 6911 6912 class NVPTXABIInfo : public ABIInfo { 6913 NVPTXTargetCodeGenInfo &CGInfo; 6914 6915 public: 6916 NVPTXABIInfo(CodeGenTypes &CGT, NVPTXTargetCodeGenInfo &Info) 6917 : ABIInfo(CGT), CGInfo(Info) {} 6918 6919 ABIArgInfo classifyReturnType(QualType RetTy) const; 6920 ABIArgInfo classifyArgumentType(QualType Ty) const; 6921 6922 void computeInfo(CGFunctionInfo &FI) const override; 6923 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6924 QualType Ty) const override; 6925 bool isUnsupportedType(QualType T) const; 6926 ABIArgInfo coerceToIntArrayWithLimit(QualType Ty, unsigned MaxSize) const; 6927 }; 6928 6929 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo { 6930 public: 6931 NVPTXTargetCodeGenInfo(CodeGenTypes &CGT) 6932 : TargetCodeGenInfo(std::make_unique<NVPTXABIInfo>(CGT, *this)) {} 6933 6934 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6935 CodeGen::CodeGenModule &M) const override; 6936 bool shouldEmitStaticExternCAliases() const override; 6937 6938 llvm::Type *getCUDADeviceBuiltinSurfaceDeviceType() const override { 6939 // On the device side, surface reference is represented as an object handle 6940 // in 64-bit integer. 6941 return llvm::Type::getInt64Ty(getABIInfo().getVMContext()); 6942 } 6943 6944 llvm::Type *getCUDADeviceBuiltinTextureDeviceType() const override { 6945 // On the device side, texture reference is represented as an object handle 6946 // in 64-bit integer. 6947 return llvm::Type::getInt64Ty(getABIInfo().getVMContext()); 6948 } 6949 6950 bool emitCUDADeviceBuiltinSurfaceDeviceCopy(CodeGenFunction &CGF, LValue Dst, 6951 LValue Src) const override { 6952 emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src); 6953 return true; 6954 } 6955 6956 bool emitCUDADeviceBuiltinTextureDeviceCopy(CodeGenFunction &CGF, LValue Dst, 6957 LValue Src) const override { 6958 emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src); 6959 return true; 6960 } 6961 6962 private: 6963 // Adds a NamedMDNode with GV, Name, and Operand as operands, and adds the 6964 // resulting MDNode to the nvvm.annotations MDNode. 6965 static void addNVVMMetadata(llvm::GlobalValue *GV, StringRef Name, 6966 int Operand); 6967 6968 static void emitBuiltinSurfTexDeviceCopy(CodeGenFunction &CGF, LValue Dst, 6969 LValue Src) { 6970 llvm::Value *Handle = nullptr; 6971 llvm::Constant *C = 6972 llvm::dyn_cast<llvm::Constant>(Src.getAddress(CGF).getPointer()); 6973 // Lookup `addrspacecast` through the constant pointer if any. 6974 if (auto *ASC = llvm::dyn_cast_or_null<llvm::AddrSpaceCastOperator>(C)) 6975 C = llvm::cast<llvm::Constant>(ASC->getPointerOperand()); 6976 if (auto *GV = llvm::dyn_cast_or_null<llvm::GlobalVariable>(C)) { 6977 // Load the handle from the specific global variable using 6978 // `nvvm.texsurf.handle.internal` intrinsic. 6979 Handle = CGF.EmitRuntimeCall( 6980 CGF.CGM.getIntrinsic(llvm::Intrinsic::nvvm_texsurf_handle_internal, 6981 {GV->getType()}), 6982 {GV}, "texsurf_handle"); 6983 } else 6984 Handle = CGF.EmitLoadOfScalar(Src, SourceLocation()); 6985 CGF.EmitStoreOfScalar(Handle, Dst); 6986 } 6987 }; 6988 6989 /// Checks if the type is unsupported directly by the current target. 6990 bool NVPTXABIInfo::isUnsupportedType(QualType T) const { 6991 ASTContext &Context = getContext(); 6992 if (!Context.getTargetInfo().hasFloat16Type() && T->isFloat16Type()) 6993 return true; 6994 if (!Context.getTargetInfo().hasFloat128Type() && 6995 (T->isFloat128Type() || 6996 (T->isRealFloatingType() && Context.getTypeSize(T) == 128))) 6997 return true; 6998 if (const auto *EIT = T->getAs<ExtIntType>()) 6999 return EIT->getNumBits() > 7000 (Context.getTargetInfo().hasInt128Type() ? 128U : 64U); 7001 if (!Context.getTargetInfo().hasInt128Type() && T->isIntegerType() && 7002 Context.getTypeSize(T) > 64U) 7003 return true; 7004 if (const auto *AT = T->getAsArrayTypeUnsafe()) 7005 return isUnsupportedType(AT->getElementType()); 7006 const auto *RT = T->getAs<RecordType>(); 7007 if (!RT) 7008 return false; 7009 const RecordDecl *RD = RT->getDecl(); 7010 7011 // If this is a C++ record, check the bases first. 7012 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 7013 for (const CXXBaseSpecifier &I : CXXRD->bases()) 7014 if (isUnsupportedType(I.getType())) 7015 return true; 7016 7017 for (const FieldDecl *I : RD->fields()) 7018 if (isUnsupportedType(I->getType())) 7019 return true; 7020 return false; 7021 } 7022 7023 /// Coerce the given type into an array with maximum allowed size of elements. 7024 ABIArgInfo NVPTXABIInfo::coerceToIntArrayWithLimit(QualType Ty, 7025 unsigned MaxSize) const { 7026 // Alignment and Size are measured in bits. 7027 const uint64_t Size = getContext().getTypeSize(Ty); 7028 const uint64_t Alignment = getContext().getTypeAlign(Ty); 7029 const unsigned Div = std::min<unsigned>(MaxSize, Alignment); 7030 llvm::Type *IntType = llvm::Type::getIntNTy(getVMContext(), Div); 7031 const uint64_t NumElements = (Size + Div - 1) / Div; 7032 return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements)); 7033 } 7034 7035 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const { 7036 if (RetTy->isVoidType()) 7037 return ABIArgInfo::getIgnore(); 7038 7039 if (getContext().getLangOpts().OpenMP && 7040 getContext().getLangOpts().OpenMPIsDevice && isUnsupportedType(RetTy)) 7041 return coerceToIntArrayWithLimit(RetTy, 64); 7042 7043 // note: this is different from default ABI 7044 if (!RetTy->isScalarType()) 7045 return ABIArgInfo::getDirect(); 7046 7047 // Treat an enum type as its underlying type. 7048 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 7049 RetTy = EnumTy->getDecl()->getIntegerType(); 7050 7051 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 7052 : ABIArgInfo::getDirect()); 7053 } 7054 7055 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const { 7056 // Treat an enum type as its underlying type. 7057 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7058 Ty = EnumTy->getDecl()->getIntegerType(); 7059 7060 // Return aggregates type as indirect by value 7061 if (isAggregateTypeForABI(Ty)) { 7062 // Under CUDA device compilation, tex/surf builtin types are replaced with 7063 // object types and passed directly. 7064 if (getContext().getLangOpts().CUDAIsDevice) { 7065 if (Ty->isCUDADeviceBuiltinSurfaceType()) 7066 return ABIArgInfo::getDirect( 7067 CGInfo.getCUDADeviceBuiltinSurfaceDeviceType()); 7068 if (Ty->isCUDADeviceBuiltinTextureType()) 7069 return ABIArgInfo::getDirect( 7070 CGInfo.getCUDADeviceBuiltinTextureDeviceType()); 7071 } 7072 return getNaturalAlignIndirect(Ty, /* byval */ true); 7073 } 7074 7075 if (const auto *EIT = Ty->getAs<ExtIntType>()) { 7076 if ((EIT->getNumBits() > 128) || 7077 (!getContext().getTargetInfo().hasInt128Type() && 7078 EIT->getNumBits() > 64)) 7079 return getNaturalAlignIndirect(Ty, /* byval */ true); 7080 } 7081 7082 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 7083 : ABIArgInfo::getDirect()); 7084 } 7085 7086 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const { 7087 if (!getCXXABI().classifyReturnType(FI)) 7088 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7089 for (auto &I : FI.arguments()) 7090 I.info = classifyArgumentType(I.type); 7091 7092 // Always honor user-specified calling convention. 7093 if (FI.getCallingConvention() != llvm::CallingConv::C) 7094 return; 7095 7096 FI.setEffectiveCallingConvention(getRuntimeCC()); 7097 } 7098 7099 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7100 QualType Ty) const { 7101 llvm_unreachable("NVPTX does not support varargs"); 7102 } 7103 7104 void NVPTXTargetCodeGenInfo::setTargetAttributes( 7105 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 7106 if (GV->isDeclaration()) 7107 return; 7108 const VarDecl *VD = dyn_cast_or_null<VarDecl>(D); 7109 if (VD) { 7110 if (M.getLangOpts().CUDA) { 7111 if (VD->getType()->isCUDADeviceBuiltinSurfaceType()) 7112 addNVVMMetadata(GV, "surface", 1); 7113 else if (VD->getType()->isCUDADeviceBuiltinTextureType()) 7114 addNVVMMetadata(GV, "texture", 1); 7115 return; 7116 } 7117 } 7118 7119 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 7120 if (!FD) return; 7121 7122 llvm::Function *F = cast<llvm::Function>(GV); 7123 7124 // Perform special handling in OpenCL mode 7125 if (M.getLangOpts().OpenCL) { 7126 // Use OpenCL function attributes to check for kernel functions 7127 // By default, all functions are device functions 7128 if (FD->hasAttr<OpenCLKernelAttr>()) { 7129 // OpenCL __kernel functions get kernel metadata 7130 // Create !{<func-ref>, metadata !"kernel", i32 1} node 7131 addNVVMMetadata(F, "kernel", 1); 7132 // And kernel functions are not subject to inlining 7133 F->addFnAttr(llvm::Attribute::NoInline); 7134 } 7135 } 7136 7137 // Perform special handling in CUDA mode. 7138 if (M.getLangOpts().CUDA) { 7139 // CUDA __global__ functions get a kernel metadata entry. Since 7140 // __global__ functions cannot be called from the device, we do not 7141 // need to set the noinline attribute. 7142 if (FD->hasAttr<CUDAGlobalAttr>()) { 7143 // Create !{<func-ref>, metadata !"kernel", i32 1} node 7144 addNVVMMetadata(F, "kernel", 1); 7145 } 7146 if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) { 7147 // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node 7148 llvm::APSInt MaxThreads(32); 7149 MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext()); 7150 if (MaxThreads > 0) 7151 addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue()); 7152 7153 // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was 7154 // not specified in __launch_bounds__ or if the user specified a 0 value, 7155 // we don't have to add a PTX directive. 7156 if (Attr->getMinBlocks()) { 7157 llvm::APSInt MinBlocks(32); 7158 MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext()); 7159 if (MinBlocks > 0) 7160 // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node 7161 addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue()); 7162 } 7163 } 7164 } 7165 } 7166 7167 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::GlobalValue *GV, 7168 StringRef Name, int Operand) { 7169 llvm::Module *M = GV->getParent(); 7170 llvm::LLVMContext &Ctx = M->getContext(); 7171 7172 // Get "nvvm.annotations" metadata node 7173 llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations"); 7174 7175 llvm::Metadata *MDVals[] = { 7176 llvm::ConstantAsMetadata::get(GV), llvm::MDString::get(Ctx, Name), 7177 llvm::ConstantAsMetadata::get( 7178 llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))}; 7179 // Append metadata to nvvm.annotations 7180 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 7181 } 7182 7183 bool NVPTXTargetCodeGenInfo::shouldEmitStaticExternCAliases() const { 7184 return false; 7185 } 7186 } 7187 7188 //===----------------------------------------------------------------------===// 7189 // SystemZ ABI Implementation 7190 //===----------------------------------------------------------------------===// 7191 7192 namespace { 7193 7194 class SystemZABIInfo : public SwiftABIInfo { 7195 bool HasVector; 7196 bool IsSoftFloatABI; 7197 7198 public: 7199 SystemZABIInfo(CodeGenTypes &CGT, bool HV, bool SF) 7200 : SwiftABIInfo(CGT), HasVector(HV), IsSoftFloatABI(SF) {} 7201 7202 bool isPromotableIntegerTypeForABI(QualType Ty) const; 7203 bool isCompoundType(QualType Ty) const; 7204 bool isVectorArgumentType(QualType Ty) const; 7205 bool isFPArgumentType(QualType Ty) const; 7206 QualType GetSingleElementType(QualType Ty) const; 7207 7208 ABIArgInfo classifyReturnType(QualType RetTy) const; 7209 ABIArgInfo classifyArgumentType(QualType ArgTy) const; 7210 7211 void computeInfo(CGFunctionInfo &FI) const override { 7212 if (!getCXXABI().classifyReturnType(FI)) 7213 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7214 for (auto &I : FI.arguments()) 7215 I.info = classifyArgumentType(I.type); 7216 } 7217 7218 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7219 QualType Ty) const override; 7220 7221 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 7222 bool asReturnValue) const override { 7223 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 7224 } 7225 bool isSwiftErrorInRegister() const override { 7226 return false; 7227 } 7228 }; 7229 7230 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo { 7231 public: 7232 SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector, bool SoftFloatABI) 7233 : TargetCodeGenInfo( 7234 std::make_unique<SystemZABIInfo>(CGT, HasVector, SoftFloatABI)) {} 7235 7236 llvm::Value *testFPKind(llvm::Value *V, unsigned BuiltinID, 7237 CGBuilderTy &Builder, 7238 CodeGenModule &CGM) const override { 7239 assert(V->getType()->isFloatingPointTy() && "V should have an FP type."); 7240 // Only use TDC in constrained FP mode. 7241 if (!Builder.getIsFPConstrained()) 7242 return nullptr; 7243 7244 llvm::Type *Ty = V->getType(); 7245 if (Ty->isFloatTy() || Ty->isDoubleTy() || Ty->isFP128Ty()) { 7246 llvm::Module &M = CGM.getModule(); 7247 auto &Ctx = M.getContext(); 7248 llvm::Function *TDCFunc = 7249 llvm::Intrinsic::getDeclaration(&M, llvm::Intrinsic::s390_tdc, Ty); 7250 unsigned TDCBits = 0; 7251 switch (BuiltinID) { 7252 case Builtin::BI__builtin_isnan: 7253 TDCBits = 0xf; 7254 break; 7255 case Builtin::BIfinite: 7256 case Builtin::BI__finite: 7257 case Builtin::BIfinitef: 7258 case Builtin::BI__finitef: 7259 case Builtin::BIfinitel: 7260 case Builtin::BI__finitel: 7261 case Builtin::BI__builtin_isfinite: 7262 TDCBits = 0xfc0; 7263 break; 7264 case Builtin::BI__builtin_isinf: 7265 TDCBits = 0x30; 7266 break; 7267 default: 7268 break; 7269 } 7270 if (TDCBits) 7271 return Builder.CreateCall( 7272 TDCFunc, 7273 {V, llvm::ConstantInt::get(llvm::Type::getInt64Ty(Ctx), TDCBits)}); 7274 } 7275 return nullptr; 7276 } 7277 }; 7278 } 7279 7280 bool SystemZABIInfo::isPromotableIntegerTypeForABI(QualType Ty) const { 7281 // Treat an enum type as its underlying type. 7282 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7283 Ty = EnumTy->getDecl()->getIntegerType(); 7284 7285 // Promotable integer types are required to be promoted by the ABI. 7286 if (ABIInfo::isPromotableIntegerTypeForABI(Ty)) 7287 return true; 7288 7289 if (const auto *EIT = Ty->getAs<ExtIntType>()) 7290 if (EIT->getNumBits() < 64) 7291 return true; 7292 7293 // 32-bit values must also be promoted. 7294 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 7295 switch (BT->getKind()) { 7296 case BuiltinType::Int: 7297 case BuiltinType::UInt: 7298 return true; 7299 default: 7300 return false; 7301 } 7302 return false; 7303 } 7304 7305 bool SystemZABIInfo::isCompoundType(QualType Ty) const { 7306 return (Ty->isAnyComplexType() || 7307 Ty->isVectorType() || 7308 isAggregateTypeForABI(Ty)); 7309 } 7310 7311 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const { 7312 return (HasVector && 7313 Ty->isVectorType() && 7314 getContext().getTypeSize(Ty) <= 128); 7315 } 7316 7317 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const { 7318 if (IsSoftFloatABI) 7319 return false; 7320 7321 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 7322 switch (BT->getKind()) { 7323 case BuiltinType::Float: 7324 case BuiltinType::Double: 7325 return true; 7326 default: 7327 return false; 7328 } 7329 7330 return false; 7331 } 7332 7333 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const { 7334 const RecordType *RT = Ty->getAs<RecordType>(); 7335 7336 if (RT && RT->isStructureOrClassType()) { 7337 const RecordDecl *RD = RT->getDecl(); 7338 QualType Found; 7339 7340 // If this is a C++ record, check the bases first. 7341 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 7342 for (const auto &I : CXXRD->bases()) { 7343 QualType Base = I.getType(); 7344 7345 // Empty bases don't affect things either way. 7346 if (isEmptyRecord(getContext(), Base, true)) 7347 continue; 7348 7349 if (!Found.isNull()) 7350 return Ty; 7351 Found = GetSingleElementType(Base); 7352 } 7353 7354 // Check the fields. 7355 for (const auto *FD : RD->fields()) { 7356 // For compatibility with GCC, ignore empty bitfields in C++ mode. 7357 // Unlike isSingleElementStruct(), empty structure and array fields 7358 // do count. So do anonymous bitfields that aren't zero-sized. 7359 if (getContext().getLangOpts().CPlusPlus && 7360 FD->isZeroLengthBitField(getContext())) 7361 continue; 7362 // Like isSingleElementStruct(), ignore C++20 empty data members. 7363 if (FD->hasAttr<NoUniqueAddressAttr>() && 7364 isEmptyRecord(getContext(), FD->getType(), true)) 7365 continue; 7366 7367 // Unlike isSingleElementStruct(), arrays do not count. 7368 // Nested structures still do though. 7369 if (!Found.isNull()) 7370 return Ty; 7371 Found = GetSingleElementType(FD->getType()); 7372 } 7373 7374 // Unlike isSingleElementStruct(), trailing padding is allowed. 7375 // An 8-byte aligned struct s { float f; } is passed as a double. 7376 if (!Found.isNull()) 7377 return Found; 7378 } 7379 7380 return Ty; 7381 } 7382 7383 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7384 QualType Ty) const { 7385 // Assume that va_list type is correct; should be pointer to LLVM type: 7386 // struct { 7387 // i64 __gpr; 7388 // i64 __fpr; 7389 // i8 *__overflow_arg_area; 7390 // i8 *__reg_save_area; 7391 // }; 7392 7393 // Every non-vector argument occupies 8 bytes and is passed by preference 7394 // in either GPRs or FPRs. Vector arguments occupy 8 or 16 bytes and are 7395 // always passed on the stack. 7396 Ty = getContext().getCanonicalType(Ty); 7397 auto TyInfo = getContext().getTypeInfoInChars(Ty); 7398 llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty); 7399 llvm::Type *DirectTy = ArgTy; 7400 ABIArgInfo AI = classifyArgumentType(Ty); 7401 bool IsIndirect = AI.isIndirect(); 7402 bool InFPRs = false; 7403 bool IsVector = false; 7404 CharUnits UnpaddedSize; 7405 CharUnits DirectAlign; 7406 if (IsIndirect) { 7407 DirectTy = llvm::PointerType::getUnqual(DirectTy); 7408 UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8); 7409 } else { 7410 if (AI.getCoerceToType()) 7411 ArgTy = AI.getCoerceToType(); 7412 InFPRs = (!IsSoftFloatABI && (ArgTy->isFloatTy() || ArgTy->isDoubleTy())); 7413 IsVector = ArgTy->isVectorTy(); 7414 UnpaddedSize = TyInfo.Width; 7415 DirectAlign = TyInfo.Align; 7416 } 7417 CharUnits PaddedSize = CharUnits::fromQuantity(8); 7418 if (IsVector && UnpaddedSize > PaddedSize) 7419 PaddedSize = CharUnits::fromQuantity(16); 7420 assert((UnpaddedSize <= PaddedSize) && "Invalid argument size."); 7421 7422 CharUnits Padding = (PaddedSize - UnpaddedSize); 7423 7424 llvm::Type *IndexTy = CGF.Int64Ty; 7425 llvm::Value *PaddedSizeV = 7426 llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity()); 7427 7428 if (IsVector) { 7429 // Work out the address of a vector argument on the stack. 7430 // Vector arguments are always passed in the high bits of a 7431 // single (8 byte) or double (16 byte) stack slot. 7432 Address OverflowArgAreaPtr = 7433 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr"); 7434 Address OverflowArgArea = 7435 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 7436 TyInfo.Align); 7437 Address MemAddr = 7438 CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr"); 7439 7440 // Update overflow_arg_area_ptr pointer 7441 llvm::Value *NewOverflowArgArea = 7442 CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV, 7443 "overflow_arg_area"); 7444 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 7445 7446 return MemAddr; 7447 } 7448 7449 assert(PaddedSize.getQuantity() == 8); 7450 7451 unsigned MaxRegs, RegCountField, RegSaveIndex; 7452 CharUnits RegPadding; 7453 if (InFPRs) { 7454 MaxRegs = 4; // Maximum of 4 FPR arguments 7455 RegCountField = 1; // __fpr 7456 RegSaveIndex = 16; // save offset for f0 7457 RegPadding = CharUnits(); // floats are passed in the high bits of an FPR 7458 } else { 7459 MaxRegs = 5; // Maximum of 5 GPR arguments 7460 RegCountField = 0; // __gpr 7461 RegSaveIndex = 2; // save offset for r2 7462 RegPadding = Padding; // values are passed in the low bits of a GPR 7463 } 7464 7465 Address RegCountPtr = 7466 CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr"); 7467 llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count"); 7468 llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs); 7469 llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV, 7470 "fits_in_regs"); 7471 7472 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 7473 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 7474 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 7475 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 7476 7477 // Emit code to load the value if it was passed in registers. 7478 CGF.EmitBlock(InRegBlock); 7479 7480 // Work out the address of an argument register. 7481 llvm::Value *ScaledRegCount = 7482 CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count"); 7483 llvm::Value *RegBase = 7484 llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity() 7485 + RegPadding.getQuantity()); 7486 llvm::Value *RegOffset = 7487 CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset"); 7488 Address RegSaveAreaPtr = 7489 CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr"); 7490 llvm::Value *RegSaveArea = 7491 CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area"); 7492 Address RawRegAddr(CGF.Builder.CreateGEP(RegSaveArea, RegOffset, 7493 "raw_reg_addr"), 7494 PaddedSize); 7495 Address RegAddr = 7496 CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr"); 7497 7498 // Update the register count 7499 llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1); 7500 llvm::Value *NewRegCount = 7501 CGF.Builder.CreateAdd(RegCount, One, "reg_count"); 7502 CGF.Builder.CreateStore(NewRegCount, RegCountPtr); 7503 CGF.EmitBranch(ContBlock); 7504 7505 // Emit code to load the value if it was passed in memory. 7506 CGF.EmitBlock(InMemBlock); 7507 7508 // Work out the address of a stack argument. 7509 Address OverflowArgAreaPtr = 7510 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr"); 7511 Address OverflowArgArea = 7512 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 7513 PaddedSize); 7514 Address RawMemAddr = 7515 CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr"); 7516 Address MemAddr = 7517 CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr"); 7518 7519 // Update overflow_arg_area_ptr pointer 7520 llvm::Value *NewOverflowArgArea = 7521 CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV, 7522 "overflow_arg_area"); 7523 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 7524 CGF.EmitBranch(ContBlock); 7525 7526 // Return the appropriate result. 7527 CGF.EmitBlock(ContBlock); 7528 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 7529 MemAddr, InMemBlock, "va_arg.addr"); 7530 7531 if (IsIndirect) 7532 ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"), 7533 TyInfo.Align); 7534 7535 return ResAddr; 7536 } 7537 7538 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const { 7539 if (RetTy->isVoidType()) 7540 return ABIArgInfo::getIgnore(); 7541 if (isVectorArgumentType(RetTy)) 7542 return ABIArgInfo::getDirect(); 7543 if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64) 7544 return getNaturalAlignIndirect(RetTy); 7545 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 7546 : ABIArgInfo::getDirect()); 7547 } 7548 7549 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const { 7550 // Handle the generic C++ ABI. 7551 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 7552 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7553 7554 // Integers and enums are extended to full register width. 7555 if (isPromotableIntegerTypeForABI(Ty)) 7556 return ABIArgInfo::getExtend(Ty); 7557 7558 // Handle vector types and vector-like structure types. Note that 7559 // as opposed to float-like structure types, we do not allow any 7560 // padding for vector-like structures, so verify the sizes match. 7561 uint64_t Size = getContext().getTypeSize(Ty); 7562 QualType SingleElementTy = GetSingleElementType(Ty); 7563 if (isVectorArgumentType(SingleElementTy) && 7564 getContext().getTypeSize(SingleElementTy) == Size) 7565 return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy)); 7566 7567 // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly. 7568 if (Size != 8 && Size != 16 && Size != 32 && Size != 64) 7569 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 7570 7571 // Handle small structures. 7572 if (const RecordType *RT = Ty->getAs<RecordType>()) { 7573 // Structures with flexible arrays have variable length, so really 7574 // fail the size test above. 7575 const RecordDecl *RD = RT->getDecl(); 7576 if (RD->hasFlexibleArrayMember()) 7577 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 7578 7579 // The structure is passed as an unextended integer, a float, or a double. 7580 llvm::Type *PassTy; 7581 if (isFPArgumentType(SingleElementTy)) { 7582 assert(Size == 32 || Size == 64); 7583 if (Size == 32) 7584 PassTy = llvm::Type::getFloatTy(getVMContext()); 7585 else 7586 PassTy = llvm::Type::getDoubleTy(getVMContext()); 7587 } else 7588 PassTy = llvm::IntegerType::get(getVMContext(), Size); 7589 return ABIArgInfo::getDirect(PassTy); 7590 } 7591 7592 // Non-structure compounds are passed indirectly. 7593 if (isCompoundType(Ty)) 7594 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 7595 7596 return ABIArgInfo::getDirect(nullptr); 7597 } 7598 7599 //===----------------------------------------------------------------------===// 7600 // MSP430 ABI Implementation 7601 //===----------------------------------------------------------------------===// 7602 7603 namespace { 7604 7605 class MSP430ABIInfo : public DefaultABIInfo { 7606 static ABIArgInfo complexArgInfo() { 7607 ABIArgInfo Info = ABIArgInfo::getDirect(); 7608 Info.setCanBeFlattened(false); 7609 return Info; 7610 } 7611 7612 public: 7613 MSP430ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 7614 7615 ABIArgInfo classifyReturnType(QualType RetTy) const { 7616 if (RetTy->isAnyComplexType()) 7617 return complexArgInfo(); 7618 7619 return DefaultABIInfo::classifyReturnType(RetTy); 7620 } 7621 7622 ABIArgInfo classifyArgumentType(QualType RetTy) const { 7623 if (RetTy->isAnyComplexType()) 7624 return complexArgInfo(); 7625 7626 return DefaultABIInfo::classifyArgumentType(RetTy); 7627 } 7628 7629 // Just copy the original implementations because 7630 // DefaultABIInfo::classify{Return,Argument}Type() are not virtual 7631 void computeInfo(CGFunctionInfo &FI) const override { 7632 if (!getCXXABI().classifyReturnType(FI)) 7633 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7634 for (auto &I : FI.arguments()) 7635 I.info = classifyArgumentType(I.type); 7636 } 7637 7638 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7639 QualType Ty) const override { 7640 return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty)); 7641 } 7642 }; 7643 7644 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo { 7645 public: 7646 MSP430TargetCodeGenInfo(CodeGenTypes &CGT) 7647 : TargetCodeGenInfo(std::make_unique<MSP430ABIInfo>(CGT)) {} 7648 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7649 CodeGen::CodeGenModule &M) const override; 7650 }; 7651 7652 } 7653 7654 void MSP430TargetCodeGenInfo::setTargetAttributes( 7655 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 7656 if (GV->isDeclaration()) 7657 return; 7658 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 7659 const auto *InterruptAttr = FD->getAttr<MSP430InterruptAttr>(); 7660 if (!InterruptAttr) 7661 return; 7662 7663 // Handle 'interrupt' attribute: 7664 llvm::Function *F = cast<llvm::Function>(GV); 7665 7666 // Step 1: Set ISR calling convention. 7667 F->setCallingConv(llvm::CallingConv::MSP430_INTR); 7668 7669 // Step 2: Add attributes goodness. 7670 F->addFnAttr(llvm::Attribute::NoInline); 7671 F->addFnAttr("interrupt", llvm::utostr(InterruptAttr->getNumber())); 7672 } 7673 } 7674 7675 //===----------------------------------------------------------------------===// 7676 // MIPS ABI Implementation. This works for both little-endian and 7677 // big-endian variants. 7678 //===----------------------------------------------------------------------===// 7679 7680 namespace { 7681 class MipsABIInfo : public ABIInfo { 7682 bool IsO32; 7683 unsigned MinABIStackAlignInBytes, StackAlignInBytes; 7684 void CoerceToIntArgs(uint64_t TySize, 7685 SmallVectorImpl<llvm::Type *> &ArgList) const; 7686 llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const; 7687 llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const; 7688 llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const; 7689 public: 7690 MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) : 7691 ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8), 7692 StackAlignInBytes(IsO32 ? 8 : 16) {} 7693 7694 ABIArgInfo classifyReturnType(QualType RetTy) const; 7695 ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const; 7696 void computeInfo(CGFunctionInfo &FI) const override; 7697 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7698 QualType Ty) const override; 7699 ABIArgInfo extendType(QualType Ty) const; 7700 }; 7701 7702 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo { 7703 unsigned SizeOfUnwindException; 7704 public: 7705 MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32) 7706 : TargetCodeGenInfo(std::make_unique<MipsABIInfo>(CGT, IsO32)), 7707 SizeOfUnwindException(IsO32 ? 24 : 32) {} 7708 7709 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 7710 return 29; 7711 } 7712 7713 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7714 CodeGen::CodeGenModule &CGM) const override { 7715 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 7716 if (!FD) return; 7717 llvm::Function *Fn = cast<llvm::Function>(GV); 7718 7719 if (FD->hasAttr<MipsLongCallAttr>()) 7720 Fn->addFnAttr("long-call"); 7721 else if (FD->hasAttr<MipsShortCallAttr>()) 7722 Fn->addFnAttr("short-call"); 7723 7724 // Other attributes do not have a meaning for declarations. 7725 if (GV->isDeclaration()) 7726 return; 7727 7728 if (FD->hasAttr<Mips16Attr>()) { 7729 Fn->addFnAttr("mips16"); 7730 } 7731 else if (FD->hasAttr<NoMips16Attr>()) { 7732 Fn->addFnAttr("nomips16"); 7733 } 7734 7735 if (FD->hasAttr<MicroMipsAttr>()) 7736 Fn->addFnAttr("micromips"); 7737 else if (FD->hasAttr<NoMicroMipsAttr>()) 7738 Fn->addFnAttr("nomicromips"); 7739 7740 const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>(); 7741 if (!Attr) 7742 return; 7743 7744 const char *Kind; 7745 switch (Attr->getInterrupt()) { 7746 case MipsInterruptAttr::eic: Kind = "eic"; break; 7747 case MipsInterruptAttr::sw0: Kind = "sw0"; break; 7748 case MipsInterruptAttr::sw1: Kind = "sw1"; break; 7749 case MipsInterruptAttr::hw0: Kind = "hw0"; break; 7750 case MipsInterruptAttr::hw1: Kind = "hw1"; break; 7751 case MipsInterruptAttr::hw2: Kind = "hw2"; break; 7752 case MipsInterruptAttr::hw3: Kind = "hw3"; break; 7753 case MipsInterruptAttr::hw4: Kind = "hw4"; break; 7754 case MipsInterruptAttr::hw5: Kind = "hw5"; break; 7755 } 7756 7757 Fn->addFnAttr("interrupt", Kind); 7758 7759 } 7760 7761 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 7762 llvm::Value *Address) const override; 7763 7764 unsigned getSizeOfUnwindException() const override { 7765 return SizeOfUnwindException; 7766 } 7767 }; 7768 } 7769 7770 void MipsABIInfo::CoerceToIntArgs( 7771 uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const { 7772 llvm::IntegerType *IntTy = 7773 llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8); 7774 7775 // Add (TySize / MinABIStackAlignInBytes) args of IntTy. 7776 for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N) 7777 ArgList.push_back(IntTy); 7778 7779 // If necessary, add one more integer type to ArgList. 7780 unsigned R = TySize % (MinABIStackAlignInBytes * 8); 7781 7782 if (R) 7783 ArgList.push_back(llvm::IntegerType::get(getVMContext(), R)); 7784 } 7785 7786 // In N32/64, an aligned double precision floating point field is passed in 7787 // a register. 7788 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const { 7789 SmallVector<llvm::Type*, 8> ArgList, IntArgList; 7790 7791 if (IsO32) { 7792 CoerceToIntArgs(TySize, ArgList); 7793 return llvm::StructType::get(getVMContext(), ArgList); 7794 } 7795 7796 if (Ty->isComplexType()) 7797 return CGT.ConvertType(Ty); 7798 7799 const RecordType *RT = Ty->getAs<RecordType>(); 7800 7801 // Unions/vectors are passed in integer registers. 7802 if (!RT || !RT->isStructureOrClassType()) { 7803 CoerceToIntArgs(TySize, ArgList); 7804 return llvm::StructType::get(getVMContext(), ArgList); 7805 } 7806 7807 const RecordDecl *RD = RT->getDecl(); 7808 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 7809 assert(!(TySize % 8) && "Size of structure must be multiple of 8."); 7810 7811 uint64_t LastOffset = 0; 7812 unsigned idx = 0; 7813 llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64); 7814 7815 // Iterate over fields in the struct/class and check if there are any aligned 7816 // double fields. 7817 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 7818 i != e; ++i, ++idx) { 7819 const QualType Ty = i->getType(); 7820 const BuiltinType *BT = Ty->getAs<BuiltinType>(); 7821 7822 if (!BT || BT->getKind() != BuiltinType::Double) 7823 continue; 7824 7825 uint64_t Offset = Layout.getFieldOffset(idx); 7826 if (Offset % 64) // Ignore doubles that are not aligned. 7827 continue; 7828 7829 // Add ((Offset - LastOffset) / 64) args of type i64. 7830 for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j) 7831 ArgList.push_back(I64); 7832 7833 // Add double type. 7834 ArgList.push_back(llvm::Type::getDoubleTy(getVMContext())); 7835 LastOffset = Offset + 64; 7836 } 7837 7838 CoerceToIntArgs(TySize - LastOffset, IntArgList); 7839 ArgList.append(IntArgList.begin(), IntArgList.end()); 7840 7841 return llvm::StructType::get(getVMContext(), ArgList); 7842 } 7843 7844 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset, 7845 uint64_t Offset) const { 7846 if (OrigOffset + MinABIStackAlignInBytes > Offset) 7847 return nullptr; 7848 7849 return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8); 7850 } 7851 7852 ABIArgInfo 7853 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const { 7854 Ty = useFirstFieldIfTransparentUnion(Ty); 7855 7856 uint64_t OrigOffset = Offset; 7857 uint64_t TySize = getContext().getTypeSize(Ty); 7858 uint64_t Align = getContext().getTypeAlign(Ty) / 8; 7859 7860 Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes), 7861 (uint64_t)StackAlignInBytes); 7862 unsigned CurrOffset = llvm::alignTo(Offset, Align); 7863 Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8; 7864 7865 if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) { 7866 // Ignore empty aggregates. 7867 if (TySize == 0) 7868 return ABIArgInfo::getIgnore(); 7869 7870 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 7871 Offset = OrigOffset + MinABIStackAlignInBytes; 7872 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7873 } 7874 7875 // If we have reached here, aggregates are passed directly by coercing to 7876 // another structure type. Padding is inserted if the offset of the 7877 // aggregate is unaligned. 7878 ABIArgInfo ArgInfo = 7879 ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0, 7880 getPaddingType(OrigOffset, CurrOffset)); 7881 ArgInfo.setInReg(true); 7882 return ArgInfo; 7883 } 7884 7885 // Treat an enum type as its underlying type. 7886 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7887 Ty = EnumTy->getDecl()->getIntegerType(); 7888 7889 // Make sure we pass indirectly things that are too large. 7890 if (const auto *EIT = Ty->getAs<ExtIntType>()) 7891 if (EIT->getNumBits() > 128 || 7892 (EIT->getNumBits() > 64 && 7893 !getContext().getTargetInfo().hasInt128Type())) 7894 return getNaturalAlignIndirect(Ty); 7895 7896 // All integral types are promoted to the GPR width. 7897 if (Ty->isIntegralOrEnumerationType()) 7898 return extendType(Ty); 7899 7900 return ABIArgInfo::getDirect( 7901 nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset)); 7902 } 7903 7904 llvm::Type* 7905 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const { 7906 const RecordType *RT = RetTy->getAs<RecordType>(); 7907 SmallVector<llvm::Type*, 8> RTList; 7908 7909 if (RT && RT->isStructureOrClassType()) { 7910 const RecordDecl *RD = RT->getDecl(); 7911 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 7912 unsigned FieldCnt = Layout.getFieldCount(); 7913 7914 // N32/64 returns struct/classes in floating point registers if the 7915 // following conditions are met: 7916 // 1. The size of the struct/class is no larger than 128-bit. 7917 // 2. The struct/class has one or two fields all of which are floating 7918 // point types. 7919 // 3. The offset of the first field is zero (this follows what gcc does). 7920 // 7921 // Any other composite results are returned in integer registers. 7922 // 7923 if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) { 7924 RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end(); 7925 for (; b != e; ++b) { 7926 const BuiltinType *BT = b->getType()->getAs<BuiltinType>(); 7927 7928 if (!BT || !BT->isFloatingPoint()) 7929 break; 7930 7931 RTList.push_back(CGT.ConvertType(b->getType())); 7932 } 7933 7934 if (b == e) 7935 return llvm::StructType::get(getVMContext(), RTList, 7936 RD->hasAttr<PackedAttr>()); 7937 7938 RTList.clear(); 7939 } 7940 } 7941 7942 CoerceToIntArgs(Size, RTList); 7943 return llvm::StructType::get(getVMContext(), RTList); 7944 } 7945 7946 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const { 7947 uint64_t Size = getContext().getTypeSize(RetTy); 7948 7949 if (RetTy->isVoidType()) 7950 return ABIArgInfo::getIgnore(); 7951 7952 // O32 doesn't treat zero-sized structs differently from other structs. 7953 // However, N32/N64 ignores zero sized return values. 7954 if (!IsO32 && Size == 0) 7955 return ABIArgInfo::getIgnore(); 7956 7957 if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) { 7958 if (Size <= 128) { 7959 if (RetTy->isAnyComplexType()) 7960 return ABIArgInfo::getDirect(); 7961 7962 // O32 returns integer vectors in registers and N32/N64 returns all small 7963 // aggregates in registers. 7964 if (!IsO32 || 7965 (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) { 7966 ABIArgInfo ArgInfo = 7967 ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size)); 7968 ArgInfo.setInReg(true); 7969 return ArgInfo; 7970 } 7971 } 7972 7973 return getNaturalAlignIndirect(RetTy); 7974 } 7975 7976 // Treat an enum type as its underlying type. 7977 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 7978 RetTy = EnumTy->getDecl()->getIntegerType(); 7979 7980 // Make sure we pass indirectly things that are too large. 7981 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 7982 if (EIT->getNumBits() > 128 || 7983 (EIT->getNumBits() > 64 && 7984 !getContext().getTargetInfo().hasInt128Type())) 7985 return getNaturalAlignIndirect(RetTy); 7986 7987 if (isPromotableIntegerTypeForABI(RetTy)) 7988 return ABIArgInfo::getExtend(RetTy); 7989 7990 if ((RetTy->isUnsignedIntegerOrEnumerationType() || 7991 RetTy->isSignedIntegerOrEnumerationType()) && Size == 32 && !IsO32) 7992 return ABIArgInfo::getSignExtend(RetTy); 7993 7994 return ABIArgInfo::getDirect(); 7995 } 7996 7997 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const { 7998 ABIArgInfo &RetInfo = FI.getReturnInfo(); 7999 if (!getCXXABI().classifyReturnType(FI)) 8000 RetInfo = classifyReturnType(FI.getReturnType()); 8001 8002 // Check if a pointer to an aggregate is passed as a hidden argument. 8003 uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0; 8004 8005 for (auto &I : FI.arguments()) 8006 I.info = classifyArgumentType(I.type, Offset); 8007 } 8008 8009 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8010 QualType OrigTy) const { 8011 QualType Ty = OrigTy; 8012 8013 // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64. 8014 // Pointers are also promoted in the same way but this only matters for N32. 8015 unsigned SlotSizeInBits = IsO32 ? 32 : 64; 8016 unsigned PtrWidth = getTarget().getPointerWidth(0); 8017 bool DidPromote = false; 8018 if ((Ty->isIntegerType() && 8019 getContext().getIntWidth(Ty) < SlotSizeInBits) || 8020 (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) { 8021 DidPromote = true; 8022 Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits, 8023 Ty->isSignedIntegerType()); 8024 } 8025 8026 auto TyInfo = getContext().getTypeInfoInChars(Ty); 8027 8028 // The alignment of things in the argument area is never larger than 8029 // StackAlignInBytes. 8030 TyInfo.Align = 8031 std::min(TyInfo.Align, CharUnits::fromQuantity(StackAlignInBytes)); 8032 8033 // MinABIStackAlignInBytes is the size of argument slots on the stack. 8034 CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes); 8035 8036 Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 8037 TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true); 8038 8039 8040 // If there was a promotion, "unpromote" into a temporary. 8041 // TODO: can we just use a pointer into a subset of the original slot? 8042 if (DidPromote) { 8043 Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp"); 8044 llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr); 8045 8046 // Truncate down to the right width. 8047 llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType() 8048 : CGF.IntPtrTy); 8049 llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy); 8050 if (OrigTy->isPointerType()) 8051 V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType()); 8052 8053 CGF.Builder.CreateStore(V, Temp); 8054 Addr = Temp; 8055 } 8056 8057 return Addr; 8058 } 8059 8060 ABIArgInfo MipsABIInfo::extendType(QualType Ty) const { 8061 int TySize = getContext().getTypeSize(Ty); 8062 8063 // MIPS64 ABI requires unsigned 32 bit integers to be sign extended. 8064 if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 8065 return ABIArgInfo::getSignExtend(Ty); 8066 8067 return ABIArgInfo::getExtend(Ty); 8068 } 8069 8070 bool 8071 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 8072 llvm::Value *Address) const { 8073 // This information comes from gcc's implementation, which seems to 8074 // as canonical as it gets. 8075 8076 // Everything on MIPS is 4 bytes. Double-precision FP registers 8077 // are aliased to pairs of single-precision FP registers. 8078 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 8079 8080 // 0-31 are the general purpose registers, $0 - $31. 8081 // 32-63 are the floating-point registers, $f0 - $f31. 8082 // 64 and 65 are the multiply/divide registers, $hi and $lo. 8083 // 66 is the (notional, I think) register for signal-handler return. 8084 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65); 8085 8086 // 67-74 are the floating-point status registers, $fcc0 - $fcc7. 8087 // They are one bit wide and ignored here. 8088 8089 // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31. 8090 // (coprocessor 1 is the FP unit) 8091 // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31. 8092 // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31. 8093 // 176-181 are the DSP accumulator registers. 8094 AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181); 8095 return false; 8096 } 8097 8098 //===----------------------------------------------------------------------===// 8099 // M68k ABI Implementation 8100 //===----------------------------------------------------------------------===// 8101 8102 namespace { 8103 8104 class M68kTargetCodeGenInfo : public TargetCodeGenInfo { 8105 public: 8106 M68kTargetCodeGenInfo(CodeGenTypes &CGT) 8107 : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {} 8108 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 8109 CodeGen::CodeGenModule &M) const override; 8110 }; 8111 8112 } // namespace 8113 8114 void M68kTargetCodeGenInfo::setTargetAttributes( 8115 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 8116 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 8117 if (const auto *attr = FD->getAttr<M68kInterruptAttr>()) { 8118 // Handle 'interrupt' attribute: 8119 llvm::Function *F = cast<llvm::Function>(GV); 8120 8121 // Step 1: Set ISR calling convention. 8122 F->setCallingConv(llvm::CallingConv::M68k_INTR); 8123 8124 // Step 2: Add attributes goodness. 8125 F->addFnAttr(llvm::Attribute::NoInline); 8126 8127 // Step 3: Emit ISR vector alias. 8128 unsigned Num = attr->getNumber() / 2; 8129 llvm::GlobalAlias::create(llvm::Function::ExternalLinkage, 8130 "__isr_" + Twine(Num), F); 8131 } 8132 } 8133 } 8134 8135 //===----------------------------------------------------------------------===// 8136 // AVR ABI Implementation. 8137 //===----------------------------------------------------------------------===// 8138 8139 namespace { 8140 class AVRTargetCodeGenInfo : public TargetCodeGenInfo { 8141 public: 8142 AVRTargetCodeGenInfo(CodeGenTypes &CGT) 8143 : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {} 8144 8145 LangAS getGlobalVarAddressSpace(CodeGenModule &CGM, 8146 const VarDecl *D) const override { 8147 // Check if a global/static variable is defined within address space 1 8148 // but not constant. 8149 LangAS AS = D->getType().getAddressSpace(); 8150 if (isTargetAddressSpace(AS) && toTargetAddressSpace(AS) == 1 && 8151 !D->getType().isConstQualified()) 8152 CGM.getDiags().Report(D->getLocation(), 8153 diag::err_verify_nonconst_addrspace) 8154 << "__flash"; 8155 return TargetCodeGenInfo::getGlobalVarAddressSpace(CGM, D); 8156 } 8157 8158 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 8159 CodeGen::CodeGenModule &CGM) const override { 8160 if (GV->isDeclaration()) 8161 return; 8162 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 8163 if (!FD) return; 8164 auto *Fn = cast<llvm::Function>(GV); 8165 8166 if (FD->getAttr<AVRInterruptAttr>()) 8167 Fn->addFnAttr("interrupt"); 8168 8169 if (FD->getAttr<AVRSignalAttr>()) 8170 Fn->addFnAttr("signal"); 8171 } 8172 }; 8173 } 8174 8175 //===----------------------------------------------------------------------===// 8176 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults. 8177 // Currently subclassed only to implement custom OpenCL C function attribute 8178 // handling. 8179 //===----------------------------------------------------------------------===// 8180 8181 namespace { 8182 8183 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo { 8184 public: 8185 TCETargetCodeGenInfo(CodeGenTypes &CGT) 8186 : DefaultTargetCodeGenInfo(CGT) {} 8187 8188 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 8189 CodeGen::CodeGenModule &M) const override; 8190 }; 8191 8192 void TCETargetCodeGenInfo::setTargetAttributes( 8193 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 8194 if (GV->isDeclaration()) 8195 return; 8196 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 8197 if (!FD) return; 8198 8199 llvm::Function *F = cast<llvm::Function>(GV); 8200 8201 if (M.getLangOpts().OpenCL) { 8202 if (FD->hasAttr<OpenCLKernelAttr>()) { 8203 // OpenCL C Kernel functions are not subject to inlining 8204 F->addFnAttr(llvm::Attribute::NoInline); 8205 const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>(); 8206 if (Attr) { 8207 // Convert the reqd_work_group_size() attributes to metadata. 8208 llvm::LLVMContext &Context = F->getContext(); 8209 llvm::NamedMDNode *OpenCLMetadata = 8210 M.getModule().getOrInsertNamedMetadata( 8211 "opencl.kernel_wg_size_info"); 8212 8213 SmallVector<llvm::Metadata *, 5> Operands; 8214 Operands.push_back(llvm::ConstantAsMetadata::get(F)); 8215 8216 Operands.push_back( 8217 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 8218 M.Int32Ty, llvm::APInt(32, Attr->getXDim())))); 8219 Operands.push_back( 8220 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 8221 M.Int32Ty, llvm::APInt(32, Attr->getYDim())))); 8222 Operands.push_back( 8223 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 8224 M.Int32Ty, llvm::APInt(32, Attr->getZDim())))); 8225 8226 // Add a boolean constant operand for "required" (true) or "hint" 8227 // (false) for implementing the work_group_size_hint attr later. 8228 // Currently always true as the hint is not yet implemented. 8229 Operands.push_back( 8230 llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context))); 8231 OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands)); 8232 } 8233 } 8234 } 8235 } 8236 8237 } 8238 8239 //===----------------------------------------------------------------------===// 8240 // Hexagon ABI Implementation 8241 //===----------------------------------------------------------------------===// 8242 8243 namespace { 8244 8245 class HexagonABIInfo : public DefaultABIInfo { 8246 public: 8247 HexagonABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 8248 8249 private: 8250 ABIArgInfo classifyReturnType(QualType RetTy) const; 8251 ABIArgInfo classifyArgumentType(QualType RetTy) const; 8252 ABIArgInfo classifyArgumentType(QualType RetTy, unsigned *RegsLeft) const; 8253 8254 void computeInfo(CGFunctionInfo &FI) const override; 8255 8256 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8257 QualType Ty) const override; 8258 Address EmitVAArgFromMemory(CodeGenFunction &CFG, Address VAListAddr, 8259 QualType Ty) const; 8260 Address EmitVAArgForHexagon(CodeGenFunction &CFG, Address VAListAddr, 8261 QualType Ty) const; 8262 Address EmitVAArgForHexagonLinux(CodeGenFunction &CFG, Address VAListAddr, 8263 QualType Ty) const; 8264 }; 8265 8266 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo { 8267 public: 8268 HexagonTargetCodeGenInfo(CodeGenTypes &CGT) 8269 : TargetCodeGenInfo(std::make_unique<HexagonABIInfo>(CGT)) {} 8270 8271 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 8272 return 29; 8273 } 8274 8275 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 8276 CodeGen::CodeGenModule &GCM) const override { 8277 if (GV->isDeclaration()) 8278 return; 8279 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 8280 if (!FD) 8281 return; 8282 } 8283 }; 8284 8285 } // namespace 8286 8287 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const { 8288 unsigned RegsLeft = 6; 8289 if (!getCXXABI().classifyReturnType(FI)) 8290 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 8291 for (auto &I : FI.arguments()) 8292 I.info = classifyArgumentType(I.type, &RegsLeft); 8293 } 8294 8295 static bool HexagonAdjustRegsLeft(uint64_t Size, unsigned *RegsLeft) { 8296 assert(Size <= 64 && "Not expecting to pass arguments larger than 64 bits" 8297 " through registers"); 8298 8299 if (*RegsLeft == 0) 8300 return false; 8301 8302 if (Size <= 32) { 8303 (*RegsLeft)--; 8304 return true; 8305 } 8306 8307 if (2 <= (*RegsLeft & (~1U))) { 8308 *RegsLeft = (*RegsLeft & (~1U)) - 2; 8309 return true; 8310 } 8311 8312 // Next available register was r5 but candidate was greater than 32-bits so it 8313 // has to go on the stack. However we still consume r5 8314 if (*RegsLeft == 1) 8315 *RegsLeft = 0; 8316 8317 return false; 8318 } 8319 8320 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty, 8321 unsigned *RegsLeft) const { 8322 if (!isAggregateTypeForABI(Ty)) { 8323 // Treat an enum type as its underlying type. 8324 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 8325 Ty = EnumTy->getDecl()->getIntegerType(); 8326 8327 uint64_t Size = getContext().getTypeSize(Ty); 8328 if (Size <= 64) 8329 HexagonAdjustRegsLeft(Size, RegsLeft); 8330 8331 if (Size > 64 && Ty->isExtIntType()) 8332 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 8333 8334 return isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 8335 : ABIArgInfo::getDirect(); 8336 } 8337 8338 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 8339 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 8340 8341 // Ignore empty records. 8342 if (isEmptyRecord(getContext(), Ty, true)) 8343 return ABIArgInfo::getIgnore(); 8344 8345 uint64_t Size = getContext().getTypeSize(Ty); 8346 unsigned Align = getContext().getTypeAlign(Ty); 8347 8348 if (Size > 64) 8349 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 8350 8351 if (HexagonAdjustRegsLeft(Size, RegsLeft)) 8352 Align = Size <= 32 ? 32 : 64; 8353 if (Size <= Align) { 8354 // Pass in the smallest viable integer type. 8355 if (!llvm::isPowerOf2_64(Size)) 8356 Size = llvm::NextPowerOf2(Size); 8357 return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size)); 8358 } 8359 return DefaultABIInfo::classifyArgumentType(Ty); 8360 } 8361 8362 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const { 8363 if (RetTy->isVoidType()) 8364 return ABIArgInfo::getIgnore(); 8365 8366 const TargetInfo &T = CGT.getTarget(); 8367 uint64_t Size = getContext().getTypeSize(RetTy); 8368 8369 if (RetTy->getAs<VectorType>()) { 8370 // HVX vectors are returned in vector registers or register pairs. 8371 if (T.hasFeature("hvx")) { 8372 assert(T.hasFeature("hvx-length64b") || T.hasFeature("hvx-length128b")); 8373 uint64_t VecSize = T.hasFeature("hvx-length64b") ? 64*8 : 128*8; 8374 if (Size == VecSize || Size == 2*VecSize) 8375 return ABIArgInfo::getDirectInReg(); 8376 } 8377 // Large vector types should be returned via memory. 8378 if (Size > 64) 8379 return getNaturalAlignIndirect(RetTy); 8380 } 8381 8382 if (!isAggregateTypeForABI(RetTy)) { 8383 // Treat an enum type as its underlying type. 8384 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 8385 RetTy = EnumTy->getDecl()->getIntegerType(); 8386 8387 if (Size > 64 && RetTy->isExtIntType()) 8388 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 8389 8390 return isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 8391 : ABIArgInfo::getDirect(); 8392 } 8393 8394 if (isEmptyRecord(getContext(), RetTy, true)) 8395 return ABIArgInfo::getIgnore(); 8396 8397 // Aggregates <= 8 bytes are returned in registers, other aggregates 8398 // are returned indirectly. 8399 if (Size <= 64) { 8400 // Return in the smallest viable integer type. 8401 if (!llvm::isPowerOf2_64(Size)) 8402 Size = llvm::NextPowerOf2(Size); 8403 return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size)); 8404 } 8405 return getNaturalAlignIndirect(RetTy, /*ByVal=*/true); 8406 } 8407 8408 Address HexagonABIInfo::EmitVAArgFromMemory(CodeGenFunction &CGF, 8409 Address VAListAddr, 8410 QualType Ty) const { 8411 // Load the overflow area pointer. 8412 Address __overflow_area_pointer_p = 8413 CGF.Builder.CreateStructGEP(VAListAddr, 2, "__overflow_area_pointer_p"); 8414 llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad( 8415 __overflow_area_pointer_p, "__overflow_area_pointer"); 8416 8417 uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8; 8418 if (Align > 4) { 8419 // Alignment should be a power of 2. 8420 assert((Align & (Align - 1)) == 0 && "Alignment is not power of 2!"); 8421 8422 // overflow_arg_area = (overflow_arg_area + align - 1) & -align; 8423 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int64Ty, Align - 1); 8424 8425 // Add offset to the current pointer to access the argument. 8426 __overflow_area_pointer = 8427 CGF.Builder.CreateGEP(__overflow_area_pointer, Offset); 8428 llvm::Value *AsInt = 8429 CGF.Builder.CreatePtrToInt(__overflow_area_pointer, CGF.Int32Ty); 8430 8431 // Create a mask which should be "AND"ed 8432 // with (overflow_arg_area + align - 1) 8433 llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -(int)Align); 8434 __overflow_area_pointer = CGF.Builder.CreateIntToPtr( 8435 CGF.Builder.CreateAnd(AsInt, Mask), __overflow_area_pointer->getType(), 8436 "__overflow_area_pointer.align"); 8437 } 8438 8439 // Get the type of the argument from memory and bitcast 8440 // overflow area pointer to the argument type. 8441 llvm::Type *PTy = CGF.ConvertTypeForMem(Ty); 8442 Address AddrTyped = CGF.Builder.CreateBitCast( 8443 Address(__overflow_area_pointer, CharUnits::fromQuantity(Align)), 8444 llvm::PointerType::getUnqual(PTy)); 8445 8446 // Round up to the minimum stack alignment for varargs which is 4 bytes. 8447 uint64_t Offset = llvm::alignTo(CGF.getContext().getTypeSize(Ty) / 8, 4); 8448 8449 __overflow_area_pointer = CGF.Builder.CreateGEP( 8450 __overflow_area_pointer, llvm::ConstantInt::get(CGF.Int32Ty, Offset), 8451 "__overflow_area_pointer.next"); 8452 CGF.Builder.CreateStore(__overflow_area_pointer, __overflow_area_pointer_p); 8453 8454 return AddrTyped; 8455 } 8456 8457 Address HexagonABIInfo::EmitVAArgForHexagon(CodeGenFunction &CGF, 8458 Address VAListAddr, 8459 QualType Ty) const { 8460 // FIXME: Need to handle alignment 8461 llvm::Type *BP = CGF.Int8PtrTy; 8462 llvm::Type *BPP = CGF.Int8PtrPtrTy; 8463 CGBuilderTy &Builder = CGF.Builder; 8464 Address VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); 8465 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 8466 // Handle address alignment for type alignment > 32 bits 8467 uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8; 8468 if (TyAlign > 4) { 8469 assert((TyAlign & (TyAlign - 1)) == 0 && "Alignment is not power of 2!"); 8470 llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty); 8471 AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1)); 8472 AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1))); 8473 Addr = Builder.CreateIntToPtr(AddrAsInt, BP); 8474 } 8475 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 8476 Address AddrTyped = Builder.CreateBitCast( 8477 Address(Addr, CharUnits::fromQuantity(TyAlign)), PTy); 8478 8479 uint64_t Offset = llvm::alignTo(CGF.getContext().getTypeSize(Ty) / 8, 4); 8480 llvm::Value *NextAddr = Builder.CreateGEP( 8481 Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), "ap.next"); 8482 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 8483 8484 return AddrTyped; 8485 } 8486 8487 Address HexagonABIInfo::EmitVAArgForHexagonLinux(CodeGenFunction &CGF, 8488 Address VAListAddr, 8489 QualType Ty) const { 8490 int ArgSize = CGF.getContext().getTypeSize(Ty) / 8; 8491 8492 if (ArgSize > 8) 8493 return EmitVAArgFromMemory(CGF, VAListAddr, Ty); 8494 8495 // Here we have check if the argument is in register area or 8496 // in overflow area. 8497 // If the saved register area pointer + argsize rounded up to alignment > 8498 // saved register area end pointer, argument is in overflow area. 8499 unsigned RegsLeft = 6; 8500 Ty = CGF.getContext().getCanonicalType(Ty); 8501 (void)classifyArgumentType(Ty, &RegsLeft); 8502 8503 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); 8504 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 8505 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); 8506 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 8507 8508 // Get rounded size of the argument.GCC does not allow vararg of 8509 // size < 4 bytes. We follow the same logic here. 8510 ArgSize = (CGF.getContext().getTypeSize(Ty) <= 32) ? 4 : 8; 8511 int ArgAlign = (CGF.getContext().getTypeSize(Ty) <= 32) ? 4 : 8; 8512 8513 // Argument may be in saved register area 8514 CGF.EmitBlock(MaybeRegBlock); 8515 8516 // Load the current saved register area pointer. 8517 Address __current_saved_reg_area_pointer_p = CGF.Builder.CreateStructGEP( 8518 VAListAddr, 0, "__current_saved_reg_area_pointer_p"); 8519 llvm::Value *__current_saved_reg_area_pointer = CGF.Builder.CreateLoad( 8520 __current_saved_reg_area_pointer_p, "__current_saved_reg_area_pointer"); 8521 8522 // Load the saved register area end pointer. 8523 Address __saved_reg_area_end_pointer_p = CGF.Builder.CreateStructGEP( 8524 VAListAddr, 1, "__saved_reg_area_end_pointer_p"); 8525 llvm::Value *__saved_reg_area_end_pointer = CGF.Builder.CreateLoad( 8526 __saved_reg_area_end_pointer_p, "__saved_reg_area_end_pointer"); 8527 8528 // If the size of argument is > 4 bytes, check if the stack 8529 // location is aligned to 8 bytes 8530 if (ArgAlign > 4) { 8531 8532 llvm::Value *__current_saved_reg_area_pointer_int = 8533 CGF.Builder.CreatePtrToInt(__current_saved_reg_area_pointer, 8534 CGF.Int32Ty); 8535 8536 __current_saved_reg_area_pointer_int = CGF.Builder.CreateAdd( 8537 __current_saved_reg_area_pointer_int, 8538 llvm::ConstantInt::get(CGF.Int32Ty, (ArgAlign - 1)), 8539 "align_current_saved_reg_area_pointer"); 8540 8541 __current_saved_reg_area_pointer_int = 8542 CGF.Builder.CreateAnd(__current_saved_reg_area_pointer_int, 8543 llvm::ConstantInt::get(CGF.Int32Ty, -ArgAlign), 8544 "align_current_saved_reg_area_pointer"); 8545 8546 __current_saved_reg_area_pointer = 8547 CGF.Builder.CreateIntToPtr(__current_saved_reg_area_pointer_int, 8548 __current_saved_reg_area_pointer->getType(), 8549 "align_current_saved_reg_area_pointer"); 8550 } 8551 8552 llvm::Value *__new_saved_reg_area_pointer = 8553 CGF.Builder.CreateGEP(__current_saved_reg_area_pointer, 8554 llvm::ConstantInt::get(CGF.Int32Ty, ArgSize), 8555 "__new_saved_reg_area_pointer"); 8556 8557 llvm::Value *UsingStack = 0; 8558 UsingStack = CGF.Builder.CreateICmpSGT(__new_saved_reg_area_pointer, 8559 __saved_reg_area_end_pointer); 8560 8561 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, InRegBlock); 8562 8563 // Argument in saved register area 8564 // Implement the block where argument is in register saved area 8565 CGF.EmitBlock(InRegBlock); 8566 8567 llvm::Type *PTy = CGF.ConvertType(Ty); 8568 llvm::Value *__saved_reg_area_p = CGF.Builder.CreateBitCast( 8569 __current_saved_reg_area_pointer, llvm::PointerType::getUnqual(PTy)); 8570 8571 CGF.Builder.CreateStore(__new_saved_reg_area_pointer, 8572 __current_saved_reg_area_pointer_p); 8573 8574 CGF.EmitBranch(ContBlock); 8575 8576 // Argument in overflow area 8577 // Implement the block where the argument is in overflow area. 8578 CGF.EmitBlock(OnStackBlock); 8579 8580 // Load the overflow area pointer 8581 Address __overflow_area_pointer_p = 8582 CGF.Builder.CreateStructGEP(VAListAddr, 2, "__overflow_area_pointer_p"); 8583 llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad( 8584 __overflow_area_pointer_p, "__overflow_area_pointer"); 8585 8586 // Align the overflow area pointer according to the alignment of the argument 8587 if (ArgAlign > 4) { 8588 llvm::Value *__overflow_area_pointer_int = 8589 CGF.Builder.CreatePtrToInt(__overflow_area_pointer, CGF.Int32Ty); 8590 8591 __overflow_area_pointer_int = 8592 CGF.Builder.CreateAdd(__overflow_area_pointer_int, 8593 llvm::ConstantInt::get(CGF.Int32Ty, ArgAlign - 1), 8594 "align_overflow_area_pointer"); 8595 8596 __overflow_area_pointer_int = 8597 CGF.Builder.CreateAnd(__overflow_area_pointer_int, 8598 llvm::ConstantInt::get(CGF.Int32Ty, -ArgAlign), 8599 "align_overflow_area_pointer"); 8600 8601 __overflow_area_pointer = CGF.Builder.CreateIntToPtr( 8602 __overflow_area_pointer_int, __overflow_area_pointer->getType(), 8603 "align_overflow_area_pointer"); 8604 } 8605 8606 // Get the pointer for next argument in overflow area and store it 8607 // to overflow area pointer. 8608 llvm::Value *__new_overflow_area_pointer = CGF.Builder.CreateGEP( 8609 __overflow_area_pointer, llvm::ConstantInt::get(CGF.Int32Ty, ArgSize), 8610 "__overflow_area_pointer.next"); 8611 8612 CGF.Builder.CreateStore(__new_overflow_area_pointer, 8613 __overflow_area_pointer_p); 8614 8615 CGF.Builder.CreateStore(__new_overflow_area_pointer, 8616 __current_saved_reg_area_pointer_p); 8617 8618 // Bitcast the overflow area pointer to the type of argument. 8619 llvm::Type *OverflowPTy = CGF.ConvertTypeForMem(Ty); 8620 llvm::Value *__overflow_area_p = CGF.Builder.CreateBitCast( 8621 __overflow_area_pointer, llvm::PointerType::getUnqual(OverflowPTy)); 8622 8623 CGF.EmitBranch(ContBlock); 8624 8625 // Get the correct pointer to load the variable argument 8626 // Implement the ContBlock 8627 CGF.EmitBlock(ContBlock); 8628 8629 llvm::Type *MemPTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); 8630 llvm::PHINode *ArgAddr = CGF.Builder.CreatePHI(MemPTy, 2, "vaarg.addr"); 8631 ArgAddr->addIncoming(__saved_reg_area_p, InRegBlock); 8632 ArgAddr->addIncoming(__overflow_area_p, OnStackBlock); 8633 8634 return Address(ArgAddr, CharUnits::fromQuantity(ArgAlign)); 8635 } 8636 8637 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8638 QualType Ty) const { 8639 8640 if (getTarget().getTriple().isMusl()) 8641 return EmitVAArgForHexagonLinux(CGF, VAListAddr, Ty); 8642 8643 return EmitVAArgForHexagon(CGF, VAListAddr, Ty); 8644 } 8645 8646 //===----------------------------------------------------------------------===// 8647 // Lanai ABI Implementation 8648 //===----------------------------------------------------------------------===// 8649 8650 namespace { 8651 class LanaiABIInfo : public DefaultABIInfo { 8652 public: 8653 LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 8654 8655 bool shouldUseInReg(QualType Ty, CCState &State) const; 8656 8657 void computeInfo(CGFunctionInfo &FI) const override { 8658 CCState State(FI); 8659 // Lanai uses 4 registers to pass arguments unless the function has the 8660 // regparm attribute set. 8661 if (FI.getHasRegParm()) { 8662 State.FreeRegs = FI.getRegParm(); 8663 } else { 8664 State.FreeRegs = 4; 8665 } 8666 8667 if (!getCXXABI().classifyReturnType(FI)) 8668 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 8669 for (auto &I : FI.arguments()) 8670 I.info = classifyArgumentType(I.type, State); 8671 } 8672 8673 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 8674 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 8675 }; 8676 } // end anonymous namespace 8677 8678 bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const { 8679 unsigned Size = getContext().getTypeSize(Ty); 8680 unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U; 8681 8682 if (SizeInRegs == 0) 8683 return false; 8684 8685 if (SizeInRegs > State.FreeRegs) { 8686 State.FreeRegs = 0; 8687 return false; 8688 } 8689 8690 State.FreeRegs -= SizeInRegs; 8691 8692 return true; 8693 } 8694 8695 ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal, 8696 CCState &State) const { 8697 if (!ByVal) { 8698 if (State.FreeRegs) { 8699 --State.FreeRegs; // Non-byval indirects just use one pointer. 8700 return getNaturalAlignIndirectInReg(Ty); 8701 } 8702 return getNaturalAlignIndirect(Ty, false); 8703 } 8704 8705 // Compute the byval alignment. 8706 const unsigned MinABIStackAlignInBytes = 4; 8707 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 8708 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true, 8709 /*Realign=*/TypeAlign > 8710 MinABIStackAlignInBytes); 8711 } 8712 8713 ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty, 8714 CCState &State) const { 8715 // Check with the C++ ABI first. 8716 const RecordType *RT = Ty->getAs<RecordType>(); 8717 if (RT) { 8718 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 8719 if (RAA == CGCXXABI::RAA_Indirect) { 8720 return getIndirectResult(Ty, /*ByVal=*/false, State); 8721 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 8722 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 8723 } 8724 } 8725 8726 if (isAggregateTypeForABI(Ty)) { 8727 // Structures with flexible arrays are always indirect. 8728 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 8729 return getIndirectResult(Ty, /*ByVal=*/true, State); 8730 8731 // Ignore empty structs/unions. 8732 if (isEmptyRecord(getContext(), Ty, true)) 8733 return ABIArgInfo::getIgnore(); 8734 8735 llvm::LLVMContext &LLVMContext = getVMContext(); 8736 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; 8737 if (SizeInRegs <= State.FreeRegs) { 8738 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 8739 SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32); 8740 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 8741 State.FreeRegs -= SizeInRegs; 8742 return ABIArgInfo::getDirectInReg(Result); 8743 } else { 8744 State.FreeRegs = 0; 8745 } 8746 return getIndirectResult(Ty, true, State); 8747 } 8748 8749 // Treat an enum type as its underlying type. 8750 if (const auto *EnumTy = Ty->getAs<EnumType>()) 8751 Ty = EnumTy->getDecl()->getIntegerType(); 8752 8753 bool InReg = shouldUseInReg(Ty, State); 8754 8755 // Don't pass >64 bit integers in registers. 8756 if (const auto *EIT = Ty->getAs<ExtIntType>()) 8757 if (EIT->getNumBits() > 64) 8758 return getIndirectResult(Ty, /*ByVal=*/true, State); 8759 8760 if (isPromotableIntegerTypeForABI(Ty)) { 8761 if (InReg) 8762 return ABIArgInfo::getDirectInReg(); 8763 return ABIArgInfo::getExtend(Ty); 8764 } 8765 if (InReg) 8766 return ABIArgInfo::getDirectInReg(); 8767 return ABIArgInfo::getDirect(); 8768 } 8769 8770 namespace { 8771 class LanaiTargetCodeGenInfo : public TargetCodeGenInfo { 8772 public: 8773 LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 8774 : TargetCodeGenInfo(std::make_unique<LanaiABIInfo>(CGT)) {} 8775 }; 8776 } 8777 8778 //===----------------------------------------------------------------------===// 8779 // AMDGPU ABI Implementation 8780 //===----------------------------------------------------------------------===// 8781 8782 namespace { 8783 8784 class AMDGPUABIInfo final : public DefaultABIInfo { 8785 private: 8786 static const unsigned MaxNumRegsForArgsRet = 16; 8787 8788 unsigned numRegsForType(QualType Ty) const; 8789 8790 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 8791 bool isHomogeneousAggregateSmallEnough(const Type *Base, 8792 uint64_t Members) const override; 8793 8794 // Coerce HIP scalar pointer arguments from generic pointers to global ones. 8795 llvm::Type *coerceKernelArgumentType(llvm::Type *Ty, unsigned FromAS, 8796 unsigned ToAS) const { 8797 // Single value types. 8798 if (Ty->isPointerTy() && Ty->getPointerAddressSpace() == FromAS) 8799 return llvm::PointerType::get( 8800 cast<llvm::PointerType>(Ty)->getElementType(), ToAS); 8801 return Ty; 8802 } 8803 8804 public: 8805 explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) : 8806 DefaultABIInfo(CGT) {} 8807 8808 ABIArgInfo classifyReturnType(QualType RetTy) const; 8809 ABIArgInfo classifyKernelArgumentType(QualType Ty) const; 8810 ABIArgInfo classifyArgumentType(QualType Ty, unsigned &NumRegsLeft) const; 8811 8812 void computeInfo(CGFunctionInfo &FI) const override; 8813 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8814 QualType Ty) const override; 8815 }; 8816 8817 bool AMDGPUABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 8818 return true; 8819 } 8820 8821 bool AMDGPUABIInfo::isHomogeneousAggregateSmallEnough( 8822 const Type *Base, uint64_t Members) const { 8823 uint32_t NumRegs = (getContext().getTypeSize(Base) + 31) / 32; 8824 8825 // Homogeneous Aggregates may occupy at most 16 registers. 8826 return Members * NumRegs <= MaxNumRegsForArgsRet; 8827 } 8828 8829 /// Estimate number of registers the type will use when passed in registers. 8830 unsigned AMDGPUABIInfo::numRegsForType(QualType Ty) const { 8831 unsigned NumRegs = 0; 8832 8833 if (const VectorType *VT = Ty->getAs<VectorType>()) { 8834 // Compute from the number of elements. The reported size is based on the 8835 // in-memory size, which includes the padding 4th element for 3-vectors. 8836 QualType EltTy = VT->getElementType(); 8837 unsigned EltSize = getContext().getTypeSize(EltTy); 8838 8839 // 16-bit element vectors should be passed as packed. 8840 if (EltSize == 16) 8841 return (VT->getNumElements() + 1) / 2; 8842 8843 unsigned EltNumRegs = (EltSize + 31) / 32; 8844 return EltNumRegs * VT->getNumElements(); 8845 } 8846 8847 if (const RecordType *RT = Ty->getAs<RecordType>()) { 8848 const RecordDecl *RD = RT->getDecl(); 8849 assert(!RD->hasFlexibleArrayMember()); 8850 8851 for (const FieldDecl *Field : RD->fields()) { 8852 QualType FieldTy = Field->getType(); 8853 NumRegs += numRegsForType(FieldTy); 8854 } 8855 8856 return NumRegs; 8857 } 8858 8859 return (getContext().getTypeSize(Ty) + 31) / 32; 8860 } 8861 8862 void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const { 8863 llvm::CallingConv::ID CC = FI.getCallingConvention(); 8864 8865 if (!getCXXABI().classifyReturnType(FI)) 8866 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 8867 8868 unsigned NumRegsLeft = MaxNumRegsForArgsRet; 8869 for (auto &Arg : FI.arguments()) { 8870 if (CC == llvm::CallingConv::AMDGPU_KERNEL) { 8871 Arg.info = classifyKernelArgumentType(Arg.type); 8872 } else { 8873 Arg.info = classifyArgumentType(Arg.type, NumRegsLeft); 8874 } 8875 } 8876 } 8877 8878 Address AMDGPUABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8879 QualType Ty) const { 8880 llvm_unreachable("AMDGPU does not support varargs"); 8881 } 8882 8883 ABIArgInfo AMDGPUABIInfo::classifyReturnType(QualType RetTy) const { 8884 if (isAggregateTypeForABI(RetTy)) { 8885 // Records with non-trivial destructors/copy-constructors should not be 8886 // returned by value. 8887 if (!getRecordArgABI(RetTy, getCXXABI())) { 8888 // Ignore empty structs/unions. 8889 if (isEmptyRecord(getContext(), RetTy, true)) 8890 return ABIArgInfo::getIgnore(); 8891 8892 // Lower single-element structs to just return a regular value. 8893 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 8894 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 8895 8896 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 8897 const RecordDecl *RD = RT->getDecl(); 8898 if (RD->hasFlexibleArrayMember()) 8899 return DefaultABIInfo::classifyReturnType(RetTy); 8900 } 8901 8902 // Pack aggregates <= 4 bytes into single VGPR or pair. 8903 uint64_t Size = getContext().getTypeSize(RetTy); 8904 if (Size <= 16) 8905 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 8906 8907 if (Size <= 32) 8908 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 8909 8910 if (Size <= 64) { 8911 llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext()); 8912 return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2)); 8913 } 8914 8915 if (numRegsForType(RetTy) <= MaxNumRegsForArgsRet) 8916 return ABIArgInfo::getDirect(); 8917 } 8918 } 8919 8920 // Otherwise just do the default thing. 8921 return DefaultABIInfo::classifyReturnType(RetTy); 8922 } 8923 8924 /// For kernels all parameters are really passed in a special buffer. It doesn't 8925 /// make sense to pass anything byval, so everything must be direct. 8926 ABIArgInfo AMDGPUABIInfo::classifyKernelArgumentType(QualType Ty) const { 8927 Ty = useFirstFieldIfTransparentUnion(Ty); 8928 8929 // TODO: Can we omit empty structs? 8930 8931 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 8932 Ty = QualType(SeltTy, 0); 8933 8934 llvm::Type *OrigLTy = CGT.ConvertType(Ty); 8935 llvm::Type *LTy = OrigLTy; 8936 if (getContext().getLangOpts().HIP) { 8937 LTy = coerceKernelArgumentType( 8938 OrigLTy, /*FromAS=*/getContext().getTargetAddressSpace(LangAS::Default), 8939 /*ToAS=*/getContext().getTargetAddressSpace(LangAS::cuda_device)); 8940 } 8941 8942 // FIXME: Should also use this for OpenCL, but it requires addressing the 8943 // problem of kernels being called. 8944 // 8945 // FIXME: This doesn't apply the optimization of coercing pointers in structs 8946 // to global address space when using byref. This would require implementing a 8947 // new kind of coercion of the in-memory type when for indirect arguments. 8948 if (!getContext().getLangOpts().OpenCL && LTy == OrigLTy && 8949 isAggregateTypeForABI(Ty)) { 8950 return ABIArgInfo::getIndirectAliased( 8951 getContext().getTypeAlignInChars(Ty), 8952 getContext().getTargetAddressSpace(LangAS::opencl_constant), 8953 false /*Realign*/, nullptr /*Padding*/); 8954 } 8955 8956 // If we set CanBeFlattened to true, CodeGen will expand the struct to its 8957 // individual elements, which confuses the Clover OpenCL backend; therefore we 8958 // have to set it to false here. Other args of getDirect() are just defaults. 8959 return ABIArgInfo::getDirect(LTy, 0, nullptr, false); 8960 } 8961 8962 ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty, 8963 unsigned &NumRegsLeft) const { 8964 assert(NumRegsLeft <= MaxNumRegsForArgsRet && "register estimate underflow"); 8965 8966 Ty = useFirstFieldIfTransparentUnion(Ty); 8967 8968 if (isAggregateTypeForABI(Ty)) { 8969 // Records with non-trivial destructors/copy-constructors should not be 8970 // passed by value. 8971 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 8972 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 8973 8974 // Ignore empty structs/unions. 8975 if (isEmptyRecord(getContext(), Ty, true)) 8976 return ABIArgInfo::getIgnore(); 8977 8978 // Lower single-element structs to just pass a regular value. TODO: We 8979 // could do reasonable-size multiple-element structs too, using getExpand(), 8980 // though watch out for things like bitfields. 8981 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 8982 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 8983 8984 if (const RecordType *RT = Ty->getAs<RecordType>()) { 8985 const RecordDecl *RD = RT->getDecl(); 8986 if (RD->hasFlexibleArrayMember()) 8987 return DefaultABIInfo::classifyArgumentType(Ty); 8988 } 8989 8990 // Pack aggregates <= 8 bytes into single VGPR or pair. 8991 uint64_t Size = getContext().getTypeSize(Ty); 8992 if (Size <= 64) { 8993 unsigned NumRegs = (Size + 31) / 32; 8994 NumRegsLeft -= std::min(NumRegsLeft, NumRegs); 8995 8996 if (Size <= 16) 8997 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 8998 8999 if (Size <= 32) 9000 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 9001 9002 // XXX: Should this be i64 instead, and should the limit increase? 9003 llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext()); 9004 return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2)); 9005 } 9006 9007 if (NumRegsLeft > 0) { 9008 unsigned NumRegs = numRegsForType(Ty); 9009 if (NumRegsLeft >= NumRegs) { 9010 NumRegsLeft -= NumRegs; 9011 return ABIArgInfo::getDirect(); 9012 } 9013 } 9014 } 9015 9016 // Otherwise just do the default thing. 9017 ABIArgInfo ArgInfo = DefaultABIInfo::classifyArgumentType(Ty); 9018 if (!ArgInfo.isIndirect()) { 9019 unsigned NumRegs = numRegsForType(Ty); 9020 NumRegsLeft -= std::min(NumRegs, NumRegsLeft); 9021 } 9022 9023 return ArgInfo; 9024 } 9025 9026 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo { 9027 public: 9028 AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT) 9029 : TargetCodeGenInfo(std::make_unique<AMDGPUABIInfo>(CGT)) {} 9030 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 9031 CodeGen::CodeGenModule &M) const override; 9032 unsigned getOpenCLKernelCallingConv() const override; 9033 9034 llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM, 9035 llvm::PointerType *T, QualType QT) const override; 9036 9037 LangAS getASTAllocaAddressSpace() const override { 9038 return getLangASFromTargetAS( 9039 getABIInfo().getDataLayout().getAllocaAddrSpace()); 9040 } 9041 LangAS getGlobalVarAddressSpace(CodeGenModule &CGM, 9042 const VarDecl *D) const override; 9043 llvm::SyncScope::ID getLLVMSyncScopeID(const LangOptions &LangOpts, 9044 SyncScope Scope, 9045 llvm::AtomicOrdering Ordering, 9046 llvm::LLVMContext &Ctx) const override; 9047 llvm::Function * 9048 createEnqueuedBlockKernel(CodeGenFunction &CGF, 9049 llvm::Function *BlockInvokeFunc, 9050 llvm::Value *BlockLiteral) const override; 9051 bool shouldEmitStaticExternCAliases() const override; 9052 void setCUDAKernelCallingConvention(const FunctionType *&FT) const override; 9053 }; 9054 } 9055 9056 static bool requiresAMDGPUProtectedVisibility(const Decl *D, 9057 llvm::GlobalValue *GV) { 9058 if (GV->getVisibility() != llvm::GlobalValue::HiddenVisibility) 9059 return false; 9060 9061 return D->hasAttr<OpenCLKernelAttr>() || 9062 (isa<FunctionDecl>(D) && D->hasAttr<CUDAGlobalAttr>()) || 9063 (isa<VarDecl>(D) && 9064 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || 9065 cast<VarDecl>(D)->getType()->isCUDADeviceBuiltinSurfaceType() || 9066 cast<VarDecl>(D)->getType()->isCUDADeviceBuiltinTextureType())); 9067 } 9068 9069 void AMDGPUTargetCodeGenInfo::setTargetAttributes( 9070 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 9071 if (requiresAMDGPUProtectedVisibility(D, GV)) { 9072 GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 9073 GV->setDSOLocal(true); 9074 } 9075 9076 if (GV->isDeclaration()) 9077 return; 9078 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 9079 if (!FD) 9080 return; 9081 9082 llvm::Function *F = cast<llvm::Function>(GV); 9083 9084 const auto *ReqdWGS = M.getLangOpts().OpenCL ? 9085 FD->getAttr<ReqdWorkGroupSizeAttr>() : nullptr; 9086 9087 9088 const bool IsOpenCLKernel = M.getLangOpts().OpenCL && 9089 FD->hasAttr<OpenCLKernelAttr>(); 9090 const bool IsHIPKernel = M.getLangOpts().HIP && 9091 FD->hasAttr<CUDAGlobalAttr>(); 9092 if ((IsOpenCLKernel || IsHIPKernel) && 9093 (M.getTriple().getOS() == llvm::Triple::AMDHSA)) 9094 F->addFnAttr("amdgpu-implicitarg-num-bytes", "56"); 9095 9096 if (IsHIPKernel) 9097 F->addFnAttr("uniform-work-group-size", "true"); 9098 9099 9100 const auto *FlatWGS = FD->getAttr<AMDGPUFlatWorkGroupSizeAttr>(); 9101 if (ReqdWGS || FlatWGS) { 9102 unsigned Min = 0; 9103 unsigned Max = 0; 9104 if (FlatWGS) { 9105 Min = FlatWGS->getMin() 9106 ->EvaluateKnownConstInt(M.getContext()) 9107 .getExtValue(); 9108 Max = FlatWGS->getMax() 9109 ->EvaluateKnownConstInt(M.getContext()) 9110 .getExtValue(); 9111 } 9112 if (ReqdWGS && Min == 0 && Max == 0) 9113 Min = Max = ReqdWGS->getXDim() * ReqdWGS->getYDim() * ReqdWGS->getZDim(); 9114 9115 if (Min != 0) { 9116 assert(Min <= Max && "Min must be less than or equal Max"); 9117 9118 std::string AttrVal = llvm::utostr(Min) + "," + llvm::utostr(Max); 9119 F->addFnAttr("amdgpu-flat-work-group-size", AttrVal); 9120 } else 9121 assert(Max == 0 && "Max must be zero"); 9122 } else if (IsOpenCLKernel || IsHIPKernel) { 9123 // By default, restrict the maximum size to a value specified by 9124 // --gpu-max-threads-per-block=n or its default value for HIP. 9125 const unsigned OpenCLDefaultMaxWorkGroupSize = 256; 9126 const unsigned DefaultMaxWorkGroupSize = 9127 IsOpenCLKernel ? OpenCLDefaultMaxWorkGroupSize 9128 : M.getLangOpts().GPUMaxThreadsPerBlock; 9129 std::string AttrVal = 9130 std::string("1,") + llvm::utostr(DefaultMaxWorkGroupSize); 9131 F->addFnAttr("amdgpu-flat-work-group-size", AttrVal); 9132 } 9133 9134 if (const auto *Attr = FD->getAttr<AMDGPUWavesPerEUAttr>()) { 9135 unsigned Min = 9136 Attr->getMin()->EvaluateKnownConstInt(M.getContext()).getExtValue(); 9137 unsigned Max = Attr->getMax() ? Attr->getMax() 9138 ->EvaluateKnownConstInt(M.getContext()) 9139 .getExtValue() 9140 : 0; 9141 9142 if (Min != 0) { 9143 assert((Max == 0 || Min <= Max) && "Min must be less than or equal Max"); 9144 9145 std::string AttrVal = llvm::utostr(Min); 9146 if (Max != 0) 9147 AttrVal = AttrVal + "," + llvm::utostr(Max); 9148 F->addFnAttr("amdgpu-waves-per-eu", AttrVal); 9149 } else 9150 assert(Max == 0 && "Max must be zero"); 9151 } 9152 9153 if (const auto *Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) { 9154 unsigned NumSGPR = Attr->getNumSGPR(); 9155 9156 if (NumSGPR != 0) 9157 F->addFnAttr("amdgpu-num-sgpr", llvm::utostr(NumSGPR)); 9158 } 9159 9160 if (const auto *Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) { 9161 uint32_t NumVGPR = Attr->getNumVGPR(); 9162 9163 if (NumVGPR != 0) 9164 F->addFnAttr("amdgpu-num-vgpr", llvm::utostr(NumVGPR)); 9165 } 9166 9167 if (M.getContext().getTargetInfo().allowAMDGPUUnsafeFPAtomics()) 9168 F->addFnAttr("amdgpu-unsafe-fp-atomics", "true"); 9169 } 9170 9171 unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 9172 return llvm::CallingConv::AMDGPU_KERNEL; 9173 } 9174 9175 // Currently LLVM assumes null pointers always have value 0, 9176 // which results in incorrectly transformed IR. Therefore, instead of 9177 // emitting null pointers in private and local address spaces, a null 9178 // pointer in generic address space is emitted which is casted to a 9179 // pointer in local or private address space. 9180 llvm::Constant *AMDGPUTargetCodeGenInfo::getNullPointer( 9181 const CodeGen::CodeGenModule &CGM, llvm::PointerType *PT, 9182 QualType QT) const { 9183 if (CGM.getContext().getTargetNullPointerValue(QT) == 0) 9184 return llvm::ConstantPointerNull::get(PT); 9185 9186 auto &Ctx = CGM.getContext(); 9187 auto NPT = llvm::PointerType::get(PT->getElementType(), 9188 Ctx.getTargetAddressSpace(LangAS::opencl_generic)); 9189 return llvm::ConstantExpr::getAddrSpaceCast( 9190 llvm::ConstantPointerNull::get(NPT), PT); 9191 } 9192 9193 LangAS 9194 AMDGPUTargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM, 9195 const VarDecl *D) const { 9196 assert(!CGM.getLangOpts().OpenCL && 9197 !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && 9198 "Address space agnostic languages only"); 9199 LangAS DefaultGlobalAS = getLangASFromTargetAS( 9200 CGM.getContext().getTargetAddressSpace(LangAS::opencl_global)); 9201 if (!D) 9202 return DefaultGlobalAS; 9203 9204 LangAS AddrSpace = D->getType().getAddressSpace(); 9205 assert(AddrSpace == LangAS::Default || isTargetAddressSpace(AddrSpace)); 9206 if (AddrSpace != LangAS::Default) 9207 return AddrSpace; 9208 9209 if (CGM.isTypeConstant(D->getType(), false)) { 9210 if (auto ConstAS = CGM.getTarget().getConstantAddressSpace()) 9211 return ConstAS.getValue(); 9212 } 9213 return DefaultGlobalAS; 9214 } 9215 9216 llvm::SyncScope::ID 9217 AMDGPUTargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts, 9218 SyncScope Scope, 9219 llvm::AtomicOrdering Ordering, 9220 llvm::LLVMContext &Ctx) const { 9221 std::string Name; 9222 switch (Scope) { 9223 case SyncScope::OpenCLWorkGroup: 9224 Name = "workgroup"; 9225 break; 9226 case SyncScope::OpenCLDevice: 9227 Name = "agent"; 9228 break; 9229 case SyncScope::OpenCLAllSVMDevices: 9230 Name = ""; 9231 break; 9232 case SyncScope::OpenCLSubGroup: 9233 Name = "wavefront"; 9234 } 9235 9236 if (Ordering != llvm::AtomicOrdering::SequentiallyConsistent) { 9237 if (!Name.empty()) 9238 Name = Twine(Twine(Name) + Twine("-")).str(); 9239 9240 Name = Twine(Twine(Name) + Twine("one-as")).str(); 9241 } 9242 9243 return Ctx.getOrInsertSyncScopeID(Name); 9244 } 9245 9246 bool AMDGPUTargetCodeGenInfo::shouldEmitStaticExternCAliases() const { 9247 return false; 9248 } 9249 9250 void AMDGPUTargetCodeGenInfo::setCUDAKernelCallingConvention( 9251 const FunctionType *&FT) const { 9252 FT = getABIInfo().getContext().adjustFunctionType( 9253 FT, FT->getExtInfo().withCallingConv(CC_OpenCLKernel)); 9254 } 9255 9256 //===----------------------------------------------------------------------===// 9257 // SPARC v8 ABI Implementation. 9258 // Based on the SPARC Compliance Definition version 2.4.1. 9259 // 9260 // Ensures that complex values are passed in registers. 9261 // 9262 namespace { 9263 class SparcV8ABIInfo : public DefaultABIInfo { 9264 public: 9265 SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 9266 9267 private: 9268 ABIArgInfo classifyReturnType(QualType RetTy) const; 9269 void computeInfo(CGFunctionInfo &FI) const override; 9270 }; 9271 } // end anonymous namespace 9272 9273 9274 ABIArgInfo 9275 SparcV8ABIInfo::classifyReturnType(QualType Ty) const { 9276 if (Ty->isAnyComplexType()) { 9277 return ABIArgInfo::getDirect(); 9278 } 9279 else { 9280 return DefaultABIInfo::classifyReturnType(Ty); 9281 } 9282 } 9283 9284 void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const { 9285 9286 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 9287 for (auto &Arg : FI.arguments()) 9288 Arg.info = classifyArgumentType(Arg.type); 9289 } 9290 9291 namespace { 9292 class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo { 9293 public: 9294 SparcV8TargetCodeGenInfo(CodeGenTypes &CGT) 9295 : TargetCodeGenInfo(std::make_unique<SparcV8ABIInfo>(CGT)) {} 9296 }; 9297 } // end anonymous namespace 9298 9299 //===----------------------------------------------------------------------===// 9300 // SPARC v9 ABI Implementation. 9301 // Based on the SPARC Compliance Definition version 2.4.1. 9302 // 9303 // Function arguments a mapped to a nominal "parameter array" and promoted to 9304 // registers depending on their type. Each argument occupies 8 or 16 bytes in 9305 // the array, structs larger than 16 bytes are passed indirectly. 9306 // 9307 // One case requires special care: 9308 // 9309 // struct mixed { 9310 // int i; 9311 // float f; 9312 // }; 9313 // 9314 // When a struct mixed is passed by value, it only occupies 8 bytes in the 9315 // parameter array, but the int is passed in an integer register, and the float 9316 // is passed in a floating point register. This is represented as two arguments 9317 // with the LLVM IR inreg attribute: 9318 // 9319 // declare void f(i32 inreg %i, float inreg %f) 9320 // 9321 // The code generator will only allocate 4 bytes from the parameter array for 9322 // the inreg arguments. All other arguments are allocated a multiple of 8 9323 // bytes. 9324 // 9325 namespace { 9326 class SparcV9ABIInfo : public ABIInfo { 9327 public: 9328 SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 9329 9330 private: 9331 ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const; 9332 void computeInfo(CGFunctionInfo &FI) const override; 9333 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9334 QualType Ty) const override; 9335 9336 // Coercion type builder for structs passed in registers. The coercion type 9337 // serves two purposes: 9338 // 9339 // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned' 9340 // in registers. 9341 // 2. Expose aligned floating point elements as first-level elements, so the 9342 // code generator knows to pass them in floating point registers. 9343 // 9344 // We also compute the InReg flag which indicates that the struct contains 9345 // aligned 32-bit floats. 9346 // 9347 struct CoerceBuilder { 9348 llvm::LLVMContext &Context; 9349 const llvm::DataLayout &DL; 9350 SmallVector<llvm::Type*, 8> Elems; 9351 uint64_t Size; 9352 bool InReg; 9353 9354 CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl) 9355 : Context(c), DL(dl), Size(0), InReg(false) {} 9356 9357 // Pad Elems with integers until Size is ToSize. 9358 void pad(uint64_t ToSize) { 9359 assert(ToSize >= Size && "Cannot remove elements"); 9360 if (ToSize == Size) 9361 return; 9362 9363 // Finish the current 64-bit word. 9364 uint64_t Aligned = llvm::alignTo(Size, 64); 9365 if (Aligned > Size && Aligned <= ToSize) { 9366 Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size)); 9367 Size = Aligned; 9368 } 9369 9370 // Add whole 64-bit words. 9371 while (Size + 64 <= ToSize) { 9372 Elems.push_back(llvm::Type::getInt64Ty(Context)); 9373 Size += 64; 9374 } 9375 9376 // Final in-word padding. 9377 if (Size < ToSize) { 9378 Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size)); 9379 Size = ToSize; 9380 } 9381 } 9382 9383 // Add a floating point element at Offset. 9384 void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) { 9385 // Unaligned floats are treated as integers. 9386 if (Offset % Bits) 9387 return; 9388 // The InReg flag is only required if there are any floats < 64 bits. 9389 if (Bits < 64) 9390 InReg = true; 9391 pad(Offset); 9392 Elems.push_back(Ty); 9393 Size = Offset + Bits; 9394 } 9395 9396 // Add a struct type to the coercion type, starting at Offset (in bits). 9397 void addStruct(uint64_t Offset, llvm::StructType *StrTy) { 9398 const llvm::StructLayout *Layout = DL.getStructLayout(StrTy); 9399 for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) { 9400 llvm::Type *ElemTy = StrTy->getElementType(i); 9401 uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i); 9402 switch (ElemTy->getTypeID()) { 9403 case llvm::Type::StructTyID: 9404 addStruct(ElemOffset, cast<llvm::StructType>(ElemTy)); 9405 break; 9406 case llvm::Type::FloatTyID: 9407 addFloat(ElemOffset, ElemTy, 32); 9408 break; 9409 case llvm::Type::DoubleTyID: 9410 addFloat(ElemOffset, ElemTy, 64); 9411 break; 9412 case llvm::Type::FP128TyID: 9413 addFloat(ElemOffset, ElemTy, 128); 9414 break; 9415 case llvm::Type::PointerTyID: 9416 if (ElemOffset % 64 == 0) { 9417 pad(ElemOffset); 9418 Elems.push_back(ElemTy); 9419 Size += 64; 9420 } 9421 break; 9422 default: 9423 break; 9424 } 9425 } 9426 } 9427 9428 // Check if Ty is a usable substitute for the coercion type. 9429 bool isUsableType(llvm::StructType *Ty) const { 9430 return llvm::makeArrayRef(Elems) == Ty->elements(); 9431 } 9432 9433 // Get the coercion type as a literal struct type. 9434 llvm::Type *getType() const { 9435 if (Elems.size() == 1) 9436 return Elems.front(); 9437 else 9438 return llvm::StructType::get(Context, Elems); 9439 } 9440 }; 9441 }; 9442 } // end anonymous namespace 9443 9444 ABIArgInfo 9445 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const { 9446 if (Ty->isVoidType()) 9447 return ABIArgInfo::getIgnore(); 9448 9449 uint64_t Size = getContext().getTypeSize(Ty); 9450 9451 // Anything too big to fit in registers is passed with an explicit indirect 9452 // pointer / sret pointer. 9453 if (Size > SizeLimit) 9454 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 9455 9456 // Treat an enum type as its underlying type. 9457 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 9458 Ty = EnumTy->getDecl()->getIntegerType(); 9459 9460 // Integer types smaller than a register are extended. 9461 if (Size < 64 && Ty->isIntegerType()) 9462 return ABIArgInfo::getExtend(Ty); 9463 9464 if (const auto *EIT = Ty->getAs<ExtIntType>()) 9465 if (EIT->getNumBits() < 64) 9466 return ABIArgInfo::getExtend(Ty); 9467 9468 // Other non-aggregates go in registers. 9469 if (!isAggregateTypeForABI(Ty)) 9470 return ABIArgInfo::getDirect(); 9471 9472 // If a C++ object has either a non-trivial copy constructor or a non-trivial 9473 // destructor, it is passed with an explicit indirect pointer / sret pointer. 9474 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 9475 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 9476 9477 // This is a small aggregate type that should be passed in registers. 9478 // Build a coercion type from the LLVM struct type. 9479 llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty)); 9480 if (!StrTy) 9481 return ABIArgInfo::getDirect(); 9482 9483 CoerceBuilder CB(getVMContext(), getDataLayout()); 9484 CB.addStruct(0, StrTy); 9485 CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64)); 9486 9487 // Try to use the original type for coercion. 9488 llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType(); 9489 9490 if (CB.InReg) 9491 return ABIArgInfo::getDirectInReg(CoerceTy); 9492 else 9493 return ABIArgInfo::getDirect(CoerceTy); 9494 } 9495 9496 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9497 QualType Ty) const { 9498 ABIArgInfo AI = classifyType(Ty, 16 * 8); 9499 llvm::Type *ArgTy = CGT.ConvertType(Ty); 9500 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 9501 AI.setCoerceToType(ArgTy); 9502 9503 CharUnits SlotSize = CharUnits::fromQuantity(8); 9504 9505 CGBuilderTy &Builder = CGF.Builder; 9506 Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 9507 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 9508 9509 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 9510 9511 Address ArgAddr = Address::invalid(); 9512 CharUnits Stride; 9513 switch (AI.getKind()) { 9514 case ABIArgInfo::Expand: 9515 case ABIArgInfo::CoerceAndExpand: 9516 case ABIArgInfo::InAlloca: 9517 llvm_unreachable("Unsupported ABI kind for va_arg"); 9518 9519 case ABIArgInfo::Extend: { 9520 Stride = SlotSize; 9521 CharUnits Offset = SlotSize - TypeInfo.Width; 9522 ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend"); 9523 break; 9524 } 9525 9526 case ABIArgInfo::Direct: { 9527 auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType()); 9528 Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize); 9529 ArgAddr = Addr; 9530 break; 9531 } 9532 9533 case ABIArgInfo::Indirect: 9534 case ABIArgInfo::IndirectAliased: 9535 Stride = SlotSize; 9536 ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect"); 9537 ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"), 9538 TypeInfo.Align); 9539 break; 9540 9541 case ABIArgInfo::Ignore: 9542 return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.Align); 9543 } 9544 9545 // Update VAList. 9546 Address NextPtr = Builder.CreateConstInBoundsByteGEP(Addr, Stride, "ap.next"); 9547 Builder.CreateStore(NextPtr.getPointer(), VAListAddr); 9548 9549 return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr"); 9550 } 9551 9552 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const { 9553 FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8); 9554 for (auto &I : FI.arguments()) 9555 I.info = classifyType(I.type, 16 * 8); 9556 } 9557 9558 namespace { 9559 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo { 9560 public: 9561 SparcV9TargetCodeGenInfo(CodeGenTypes &CGT) 9562 : TargetCodeGenInfo(std::make_unique<SparcV9ABIInfo>(CGT)) {} 9563 9564 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 9565 return 14; 9566 } 9567 9568 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 9569 llvm::Value *Address) const override; 9570 }; 9571 } // end anonymous namespace 9572 9573 bool 9574 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 9575 llvm::Value *Address) const { 9576 // This is calculated from the LLVM and GCC tables and verified 9577 // against gcc output. AFAIK all ABIs use the same encoding. 9578 9579 CodeGen::CGBuilderTy &Builder = CGF.Builder; 9580 9581 llvm::IntegerType *i8 = CGF.Int8Ty; 9582 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 9583 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 9584 9585 // 0-31: the 8-byte general-purpose registers 9586 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 9587 9588 // 32-63: f0-31, the 4-byte floating-point registers 9589 AssignToArrayRange(Builder, Address, Four8, 32, 63); 9590 9591 // Y = 64 9592 // PSR = 65 9593 // WIM = 66 9594 // TBR = 67 9595 // PC = 68 9596 // NPC = 69 9597 // FSR = 70 9598 // CSR = 71 9599 AssignToArrayRange(Builder, Address, Eight8, 64, 71); 9600 9601 // 72-87: d0-15, the 8-byte floating-point registers 9602 AssignToArrayRange(Builder, Address, Eight8, 72, 87); 9603 9604 return false; 9605 } 9606 9607 // ARC ABI implementation. 9608 namespace { 9609 9610 class ARCABIInfo : public DefaultABIInfo { 9611 public: 9612 using DefaultABIInfo::DefaultABIInfo; 9613 9614 private: 9615 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9616 QualType Ty) const override; 9617 9618 void updateState(const ABIArgInfo &Info, QualType Ty, CCState &State) const { 9619 if (!State.FreeRegs) 9620 return; 9621 if (Info.isIndirect() && Info.getInReg()) 9622 State.FreeRegs--; 9623 else if (Info.isDirect() && Info.getInReg()) { 9624 unsigned sz = (getContext().getTypeSize(Ty) + 31) / 32; 9625 if (sz < State.FreeRegs) 9626 State.FreeRegs -= sz; 9627 else 9628 State.FreeRegs = 0; 9629 } 9630 } 9631 9632 void computeInfo(CGFunctionInfo &FI) const override { 9633 CCState State(FI); 9634 // ARC uses 8 registers to pass arguments. 9635 State.FreeRegs = 8; 9636 9637 if (!getCXXABI().classifyReturnType(FI)) 9638 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 9639 updateState(FI.getReturnInfo(), FI.getReturnType(), State); 9640 for (auto &I : FI.arguments()) { 9641 I.info = classifyArgumentType(I.type, State.FreeRegs); 9642 updateState(I.info, I.type, State); 9643 } 9644 } 9645 9646 ABIArgInfo getIndirectByRef(QualType Ty, bool HasFreeRegs) const; 9647 ABIArgInfo getIndirectByValue(QualType Ty) const; 9648 ABIArgInfo classifyArgumentType(QualType Ty, uint8_t FreeRegs) const; 9649 ABIArgInfo classifyReturnType(QualType RetTy) const; 9650 }; 9651 9652 class ARCTargetCodeGenInfo : public TargetCodeGenInfo { 9653 public: 9654 ARCTargetCodeGenInfo(CodeGenTypes &CGT) 9655 : TargetCodeGenInfo(std::make_unique<ARCABIInfo>(CGT)) {} 9656 }; 9657 9658 9659 ABIArgInfo ARCABIInfo::getIndirectByRef(QualType Ty, bool HasFreeRegs) const { 9660 return HasFreeRegs ? getNaturalAlignIndirectInReg(Ty) : 9661 getNaturalAlignIndirect(Ty, false); 9662 } 9663 9664 ABIArgInfo ARCABIInfo::getIndirectByValue(QualType Ty) const { 9665 // Compute the byval alignment. 9666 const unsigned MinABIStackAlignInBytes = 4; 9667 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 9668 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true, 9669 TypeAlign > MinABIStackAlignInBytes); 9670 } 9671 9672 Address ARCABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9673 QualType Ty) const { 9674 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 9675 getContext().getTypeInfoInChars(Ty), 9676 CharUnits::fromQuantity(4), true); 9677 } 9678 9679 ABIArgInfo ARCABIInfo::classifyArgumentType(QualType Ty, 9680 uint8_t FreeRegs) const { 9681 // Handle the generic C++ ABI. 9682 const RecordType *RT = Ty->getAs<RecordType>(); 9683 if (RT) { 9684 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 9685 if (RAA == CGCXXABI::RAA_Indirect) 9686 return getIndirectByRef(Ty, FreeRegs > 0); 9687 9688 if (RAA == CGCXXABI::RAA_DirectInMemory) 9689 return getIndirectByValue(Ty); 9690 } 9691 9692 // Treat an enum type as its underlying type. 9693 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 9694 Ty = EnumTy->getDecl()->getIntegerType(); 9695 9696 auto SizeInRegs = llvm::alignTo(getContext().getTypeSize(Ty), 32) / 32; 9697 9698 if (isAggregateTypeForABI(Ty)) { 9699 // Structures with flexible arrays are always indirect. 9700 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 9701 return getIndirectByValue(Ty); 9702 9703 // Ignore empty structs/unions. 9704 if (isEmptyRecord(getContext(), Ty, true)) 9705 return ABIArgInfo::getIgnore(); 9706 9707 llvm::LLVMContext &LLVMContext = getVMContext(); 9708 9709 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 9710 SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32); 9711 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 9712 9713 return FreeRegs >= SizeInRegs ? 9714 ABIArgInfo::getDirectInReg(Result) : 9715 ABIArgInfo::getDirect(Result, 0, nullptr, false); 9716 } 9717 9718 if (const auto *EIT = Ty->getAs<ExtIntType>()) 9719 if (EIT->getNumBits() > 64) 9720 return getIndirectByValue(Ty); 9721 9722 return isPromotableIntegerTypeForABI(Ty) 9723 ? (FreeRegs >= SizeInRegs ? ABIArgInfo::getExtendInReg(Ty) 9724 : ABIArgInfo::getExtend(Ty)) 9725 : (FreeRegs >= SizeInRegs ? ABIArgInfo::getDirectInReg() 9726 : ABIArgInfo::getDirect()); 9727 } 9728 9729 ABIArgInfo ARCABIInfo::classifyReturnType(QualType RetTy) const { 9730 if (RetTy->isAnyComplexType()) 9731 return ABIArgInfo::getDirectInReg(); 9732 9733 // Arguments of size > 4 registers are indirect. 9734 auto RetSize = llvm::alignTo(getContext().getTypeSize(RetTy), 32) / 32; 9735 if (RetSize > 4) 9736 return getIndirectByRef(RetTy, /*HasFreeRegs*/ true); 9737 9738 return DefaultABIInfo::classifyReturnType(RetTy); 9739 } 9740 9741 } // End anonymous namespace. 9742 9743 //===----------------------------------------------------------------------===// 9744 // XCore ABI Implementation 9745 //===----------------------------------------------------------------------===// 9746 9747 namespace { 9748 9749 /// A SmallStringEnc instance is used to build up the TypeString by passing 9750 /// it by reference between functions that append to it. 9751 typedef llvm::SmallString<128> SmallStringEnc; 9752 9753 /// TypeStringCache caches the meta encodings of Types. 9754 /// 9755 /// The reason for caching TypeStrings is two fold: 9756 /// 1. To cache a type's encoding for later uses; 9757 /// 2. As a means to break recursive member type inclusion. 9758 /// 9759 /// A cache Entry can have a Status of: 9760 /// NonRecursive: The type encoding is not recursive; 9761 /// Recursive: The type encoding is recursive; 9762 /// Incomplete: An incomplete TypeString; 9763 /// IncompleteUsed: An incomplete TypeString that has been used in a 9764 /// Recursive type encoding. 9765 /// 9766 /// A NonRecursive entry will have all of its sub-members expanded as fully 9767 /// as possible. Whilst it may contain types which are recursive, the type 9768 /// itself is not recursive and thus its encoding may be safely used whenever 9769 /// the type is encountered. 9770 /// 9771 /// A Recursive entry will have all of its sub-members expanded as fully as 9772 /// possible. The type itself is recursive and it may contain other types which 9773 /// are recursive. The Recursive encoding must not be used during the expansion 9774 /// of a recursive type's recursive branch. For simplicity the code uses 9775 /// IncompleteCount to reject all usage of Recursive encodings for member types. 9776 /// 9777 /// An Incomplete entry is always a RecordType and only encodes its 9778 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and 9779 /// are placed into the cache during type expansion as a means to identify and 9780 /// handle recursive inclusion of types as sub-members. If there is recursion 9781 /// the entry becomes IncompleteUsed. 9782 /// 9783 /// During the expansion of a RecordType's members: 9784 /// 9785 /// If the cache contains a NonRecursive encoding for the member type, the 9786 /// cached encoding is used; 9787 /// 9788 /// If the cache contains a Recursive encoding for the member type, the 9789 /// cached encoding is 'Swapped' out, as it may be incorrect, and... 9790 /// 9791 /// If the member is a RecordType, an Incomplete encoding is placed into the 9792 /// cache to break potential recursive inclusion of itself as a sub-member; 9793 /// 9794 /// Once a member RecordType has been expanded, its temporary incomplete 9795 /// entry is removed from the cache. If a Recursive encoding was swapped out 9796 /// it is swapped back in; 9797 /// 9798 /// If an incomplete entry is used to expand a sub-member, the incomplete 9799 /// entry is marked as IncompleteUsed. The cache keeps count of how many 9800 /// IncompleteUsed entries it currently contains in IncompleteUsedCount; 9801 /// 9802 /// If a member's encoding is found to be a NonRecursive or Recursive viz: 9803 /// IncompleteUsedCount==0, the member's encoding is added to the cache. 9804 /// Else the member is part of a recursive type and thus the recursion has 9805 /// been exited too soon for the encoding to be correct for the member. 9806 /// 9807 class TypeStringCache { 9808 enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed}; 9809 struct Entry { 9810 std::string Str; // The encoded TypeString for the type. 9811 enum Status State; // Information about the encoding in 'Str'. 9812 std::string Swapped; // A temporary place holder for a Recursive encoding 9813 // during the expansion of RecordType's members. 9814 }; 9815 std::map<const IdentifierInfo *, struct Entry> Map; 9816 unsigned IncompleteCount; // Number of Incomplete entries in the Map. 9817 unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map. 9818 public: 9819 TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {} 9820 void addIncomplete(const IdentifierInfo *ID, std::string StubEnc); 9821 bool removeIncomplete(const IdentifierInfo *ID); 9822 void addIfComplete(const IdentifierInfo *ID, StringRef Str, 9823 bool IsRecursive); 9824 StringRef lookupStr(const IdentifierInfo *ID); 9825 }; 9826 9827 /// TypeString encodings for enum & union fields must be order. 9828 /// FieldEncoding is a helper for this ordering process. 9829 class FieldEncoding { 9830 bool HasName; 9831 std::string Enc; 9832 public: 9833 FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {} 9834 StringRef str() { return Enc; } 9835 bool operator<(const FieldEncoding &rhs) const { 9836 if (HasName != rhs.HasName) return HasName; 9837 return Enc < rhs.Enc; 9838 } 9839 }; 9840 9841 class XCoreABIInfo : public DefaultABIInfo { 9842 public: 9843 XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 9844 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9845 QualType Ty) const override; 9846 }; 9847 9848 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo { 9849 mutable TypeStringCache TSC; 9850 void emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 9851 const CodeGen::CodeGenModule &M) const; 9852 9853 public: 9854 XCoreTargetCodeGenInfo(CodeGenTypes &CGT) 9855 : TargetCodeGenInfo(std::make_unique<XCoreABIInfo>(CGT)) {} 9856 void emitTargetMetadata(CodeGen::CodeGenModule &CGM, 9857 const llvm::MapVector<GlobalDecl, StringRef> 9858 &MangledDeclNames) const override; 9859 }; 9860 9861 } // End anonymous namespace. 9862 9863 // TODO: this implementation is likely now redundant with the default 9864 // EmitVAArg. 9865 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9866 QualType Ty) const { 9867 CGBuilderTy &Builder = CGF.Builder; 9868 9869 // Get the VAList. 9870 CharUnits SlotSize = CharUnits::fromQuantity(4); 9871 Address AP(Builder.CreateLoad(VAListAddr), SlotSize); 9872 9873 // Handle the argument. 9874 ABIArgInfo AI = classifyArgumentType(Ty); 9875 CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty); 9876 llvm::Type *ArgTy = CGT.ConvertType(Ty); 9877 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 9878 AI.setCoerceToType(ArgTy); 9879 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 9880 9881 Address Val = Address::invalid(); 9882 CharUnits ArgSize = CharUnits::Zero(); 9883 switch (AI.getKind()) { 9884 case ABIArgInfo::Expand: 9885 case ABIArgInfo::CoerceAndExpand: 9886 case ABIArgInfo::InAlloca: 9887 llvm_unreachable("Unsupported ABI kind for va_arg"); 9888 case ABIArgInfo::Ignore: 9889 Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign); 9890 ArgSize = CharUnits::Zero(); 9891 break; 9892 case ABIArgInfo::Extend: 9893 case ABIArgInfo::Direct: 9894 Val = Builder.CreateBitCast(AP, ArgPtrTy); 9895 ArgSize = CharUnits::fromQuantity( 9896 getDataLayout().getTypeAllocSize(AI.getCoerceToType())); 9897 ArgSize = ArgSize.alignTo(SlotSize); 9898 break; 9899 case ABIArgInfo::Indirect: 9900 case ABIArgInfo::IndirectAliased: 9901 Val = Builder.CreateElementBitCast(AP, ArgPtrTy); 9902 Val = Address(Builder.CreateLoad(Val), TypeAlign); 9903 ArgSize = SlotSize; 9904 break; 9905 } 9906 9907 // Increment the VAList. 9908 if (!ArgSize.isZero()) { 9909 Address APN = Builder.CreateConstInBoundsByteGEP(AP, ArgSize); 9910 Builder.CreateStore(APN.getPointer(), VAListAddr); 9911 } 9912 9913 return Val; 9914 } 9915 9916 /// During the expansion of a RecordType, an incomplete TypeString is placed 9917 /// into the cache as a means to identify and break recursion. 9918 /// If there is a Recursive encoding in the cache, it is swapped out and will 9919 /// be reinserted by removeIncomplete(). 9920 /// All other types of encoding should have been used rather than arriving here. 9921 void TypeStringCache::addIncomplete(const IdentifierInfo *ID, 9922 std::string StubEnc) { 9923 if (!ID) 9924 return; 9925 Entry &E = Map[ID]; 9926 assert( (E.Str.empty() || E.State == Recursive) && 9927 "Incorrectly use of addIncomplete"); 9928 assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()"); 9929 E.Swapped.swap(E.Str); // swap out the Recursive 9930 E.Str.swap(StubEnc); 9931 E.State = Incomplete; 9932 ++IncompleteCount; 9933 } 9934 9935 /// Once the RecordType has been expanded, the temporary incomplete TypeString 9936 /// must be removed from the cache. 9937 /// If a Recursive was swapped out by addIncomplete(), it will be replaced. 9938 /// Returns true if the RecordType was defined recursively. 9939 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) { 9940 if (!ID) 9941 return false; 9942 auto I = Map.find(ID); 9943 assert(I != Map.end() && "Entry not present"); 9944 Entry &E = I->second; 9945 assert( (E.State == Incomplete || 9946 E.State == IncompleteUsed) && 9947 "Entry must be an incomplete type"); 9948 bool IsRecursive = false; 9949 if (E.State == IncompleteUsed) { 9950 // We made use of our Incomplete encoding, thus we are recursive. 9951 IsRecursive = true; 9952 --IncompleteUsedCount; 9953 } 9954 if (E.Swapped.empty()) 9955 Map.erase(I); 9956 else { 9957 // Swap the Recursive back. 9958 E.Swapped.swap(E.Str); 9959 E.Swapped.clear(); 9960 E.State = Recursive; 9961 } 9962 --IncompleteCount; 9963 return IsRecursive; 9964 } 9965 9966 /// Add the encoded TypeString to the cache only if it is NonRecursive or 9967 /// Recursive (viz: all sub-members were expanded as fully as possible). 9968 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str, 9969 bool IsRecursive) { 9970 if (!ID || IncompleteUsedCount) 9971 return; // No key or it is is an incomplete sub-type so don't add. 9972 Entry &E = Map[ID]; 9973 if (IsRecursive && !E.Str.empty()) { 9974 assert(E.State==Recursive && E.Str.size() == Str.size() && 9975 "This is not the same Recursive entry"); 9976 // The parent container was not recursive after all, so we could have used 9977 // this Recursive sub-member entry after all, but we assumed the worse when 9978 // we started viz: IncompleteCount!=0. 9979 return; 9980 } 9981 assert(E.Str.empty() && "Entry already present"); 9982 E.Str = Str.str(); 9983 E.State = IsRecursive? Recursive : NonRecursive; 9984 } 9985 9986 /// Return a cached TypeString encoding for the ID. If there isn't one, or we 9987 /// are recursively expanding a type (IncompleteCount != 0) and the cached 9988 /// encoding is Recursive, return an empty StringRef. 9989 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) { 9990 if (!ID) 9991 return StringRef(); // We have no key. 9992 auto I = Map.find(ID); 9993 if (I == Map.end()) 9994 return StringRef(); // We have no encoding. 9995 Entry &E = I->second; 9996 if (E.State == Recursive && IncompleteCount) 9997 return StringRef(); // We don't use Recursive encodings for member types. 9998 9999 if (E.State == Incomplete) { 10000 // The incomplete type is being used to break out of recursion. 10001 E.State = IncompleteUsed; 10002 ++IncompleteUsedCount; 10003 } 10004 return E.Str; 10005 } 10006 10007 /// The XCore ABI includes a type information section that communicates symbol 10008 /// type information to the linker. The linker uses this information to verify 10009 /// safety/correctness of things such as array bound and pointers et al. 10010 /// The ABI only requires C (and XC) language modules to emit TypeStrings. 10011 /// This type information (TypeString) is emitted into meta data for all global 10012 /// symbols: definitions, declarations, functions & variables. 10013 /// 10014 /// The TypeString carries type, qualifier, name, size & value details. 10015 /// Please see 'Tools Development Guide' section 2.16.2 for format details: 10016 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf 10017 /// The output is tested by test/CodeGen/xcore-stringtype.c. 10018 /// 10019 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 10020 const CodeGen::CodeGenModule &CGM, 10021 TypeStringCache &TSC); 10022 10023 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols. 10024 void XCoreTargetCodeGenInfo::emitTargetMD( 10025 const Decl *D, llvm::GlobalValue *GV, 10026 const CodeGen::CodeGenModule &CGM) const { 10027 SmallStringEnc Enc; 10028 if (getTypeString(Enc, D, CGM, TSC)) { 10029 llvm::LLVMContext &Ctx = CGM.getModule().getContext(); 10030 llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV), 10031 llvm::MDString::get(Ctx, Enc.str())}; 10032 llvm::NamedMDNode *MD = 10033 CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings"); 10034 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 10035 } 10036 } 10037 10038 void XCoreTargetCodeGenInfo::emitTargetMetadata( 10039 CodeGen::CodeGenModule &CGM, 10040 const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames) const { 10041 // Warning, new MangledDeclNames may be appended within this loop. 10042 // We rely on MapVector insertions adding new elements to the end 10043 // of the container. 10044 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 10045 auto Val = *(MangledDeclNames.begin() + I); 10046 llvm::GlobalValue *GV = CGM.GetGlobalValue(Val.second); 10047 if (GV) { 10048 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 10049 emitTargetMD(D, GV, CGM); 10050 } 10051 } 10052 } 10053 //===----------------------------------------------------------------------===// 10054 // SPIR ABI Implementation 10055 //===----------------------------------------------------------------------===// 10056 10057 namespace { 10058 class SPIRABIInfo : public DefaultABIInfo { 10059 public: 10060 SPIRABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) { setCCs(); } 10061 10062 private: 10063 void setCCs(); 10064 }; 10065 } // end anonymous namespace 10066 namespace { 10067 class SPIRTargetCodeGenInfo : public TargetCodeGenInfo { 10068 public: 10069 SPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 10070 : TargetCodeGenInfo(std::make_unique<SPIRABIInfo>(CGT)) {} 10071 10072 LangAS getASTAllocaAddressSpace() const override { 10073 return getLangASFromTargetAS( 10074 getABIInfo().getDataLayout().getAllocaAddrSpace()); 10075 } 10076 10077 unsigned getOpenCLKernelCallingConv() const override; 10078 }; 10079 10080 } // End anonymous namespace. 10081 void SPIRABIInfo::setCCs() { 10082 assert(getRuntimeCC() == llvm::CallingConv::C); 10083 RuntimeCC = llvm::CallingConv::SPIR_FUNC; 10084 } 10085 10086 namespace clang { 10087 namespace CodeGen { 10088 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) { 10089 DefaultABIInfo SPIRABI(CGM.getTypes()); 10090 SPIRABI.computeInfo(FI); 10091 } 10092 } 10093 } 10094 10095 unsigned SPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 10096 return llvm::CallingConv::SPIR_KERNEL; 10097 } 10098 10099 static bool appendType(SmallStringEnc &Enc, QualType QType, 10100 const CodeGen::CodeGenModule &CGM, 10101 TypeStringCache &TSC); 10102 10103 /// Helper function for appendRecordType(). 10104 /// Builds a SmallVector containing the encoded field types in declaration 10105 /// order. 10106 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE, 10107 const RecordDecl *RD, 10108 const CodeGen::CodeGenModule &CGM, 10109 TypeStringCache &TSC) { 10110 for (const auto *Field : RD->fields()) { 10111 SmallStringEnc Enc; 10112 Enc += "m("; 10113 Enc += Field->getName(); 10114 Enc += "){"; 10115 if (Field->isBitField()) { 10116 Enc += "b("; 10117 llvm::raw_svector_ostream OS(Enc); 10118 OS << Field->getBitWidthValue(CGM.getContext()); 10119 Enc += ':'; 10120 } 10121 if (!appendType(Enc, Field->getType(), CGM, TSC)) 10122 return false; 10123 if (Field->isBitField()) 10124 Enc += ')'; 10125 Enc += '}'; 10126 FE.emplace_back(!Field->getName().empty(), Enc); 10127 } 10128 return true; 10129 } 10130 10131 /// Appends structure and union types to Enc and adds encoding to cache. 10132 /// Recursively calls appendType (via extractFieldType) for each field. 10133 /// Union types have their fields ordered according to the ABI. 10134 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT, 10135 const CodeGen::CodeGenModule &CGM, 10136 TypeStringCache &TSC, const IdentifierInfo *ID) { 10137 // Append the cached TypeString if we have one. 10138 StringRef TypeString = TSC.lookupStr(ID); 10139 if (!TypeString.empty()) { 10140 Enc += TypeString; 10141 return true; 10142 } 10143 10144 // Start to emit an incomplete TypeString. 10145 size_t Start = Enc.size(); 10146 Enc += (RT->isUnionType()? 'u' : 's'); 10147 Enc += '('; 10148 if (ID) 10149 Enc += ID->getName(); 10150 Enc += "){"; 10151 10152 // We collect all encoded fields and order as necessary. 10153 bool IsRecursive = false; 10154 const RecordDecl *RD = RT->getDecl()->getDefinition(); 10155 if (RD && !RD->field_empty()) { 10156 // An incomplete TypeString stub is placed in the cache for this RecordType 10157 // so that recursive calls to this RecordType will use it whilst building a 10158 // complete TypeString for this RecordType. 10159 SmallVector<FieldEncoding, 16> FE; 10160 std::string StubEnc(Enc.substr(Start).str()); 10161 StubEnc += '}'; // StubEnc now holds a valid incomplete TypeString. 10162 TSC.addIncomplete(ID, std::move(StubEnc)); 10163 if (!extractFieldType(FE, RD, CGM, TSC)) { 10164 (void) TSC.removeIncomplete(ID); 10165 return false; 10166 } 10167 IsRecursive = TSC.removeIncomplete(ID); 10168 // The ABI requires unions to be sorted but not structures. 10169 // See FieldEncoding::operator< for sort algorithm. 10170 if (RT->isUnionType()) 10171 llvm::sort(FE); 10172 // We can now complete the TypeString. 10173 unsigned E = FE.size(); 10174 for (unsigned I = 0; I != E; ++I) { 10175 if (I) 10176 Enc += ','; 10177 Enc += FE[I].str(); 10178 } 10179 } 10180 Enc += '}'; 10181 TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive); 10182 return true; 10183 } 10184 10185 /// Appends enum types to Enc and adds the encoding to the cache. 10186 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET, 10187 TypeStringCache &TSC, 10188 const IdentifierInfo *ID) { 10189 // Append the cached TypeString if we have one. 10190 StringRef TypeString = TSC.lookupStr(ID); 10191 if (!TypeString.empty()) { 10192 Enc += TypeString; 10193 return true; 10194 } 10195 10196 size_t Start = Enc.size(); 10197 Enc += "e("; 10198 if (ID) 10199 Enc += ID->getName(); 10200 Enc += "){"; 10201 10202 // We collect all encoded enumerations and order them alphanumerically. 10203 if (const EnumDecl *ED = ET->getDecl()->getDefinition()) { 10204 SmallVector<FieldEncoding, 16> FE; 10205 for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E; 10206 ++I) { 10207 SmallStringEnc EnumEnc; 10208 EnumEnc += "m("; 10209 EnumEnc += I->getName(); 10210 EnumEnc += "){"; 10211 I->getInitVal().toString(EnumEnc); 10212 EnumEnc += '}'; 10213 FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc)); 10214 } 10215 llvm::sort(FE); 10216 unsigned E = FE.size(); 10217 for (unsigned I = 0; I != E; ++I) { 10218 if (I) 10219 Enc += ','; 10220 Enc += FE[I].str(); 10221 } 10222 } 10223 Enc += '}'; 10224 TSC.addIfComplete(ID, Enc.substr(Start), false); 10225 return true; 10226 } 10227 10228 /// Appends type's qualifier to Enc. 10229 /// This is done prior to appending the type's encoding. 10230 static void appendQualifier(SmallStringEnc &Enc, QualType QT) { 10231 // Qualifiers are emitted in alphabetical order. 10232 static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"}; 10233 int Lookup = 0; 10234 if (QT.isConstQualified()) 10235 Lookup += 1<<0; 10236 if (QT.isRestrictQualified()) 10237 Lookup += 1<<1; 10238 if (QT.isVolatileQualified()) 10239 Lookup += 1<<2; 10240 Enc += Table[Lookup]; 10241 } 10242 10243 /// Appends built-in types to Enc. 10244 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) { 10245 const char *EncType; 10246 switch (BT->getKind()) { 10247 case BuiltinType::Void: 10248 EncType = "0"; 10249 break; 10250 case BuiltinType::Bool: 10251 EncType = "b"; 10252 break; 10253 case BuiltinType::Char_U: 10254 EncType = "uc"; 10255 break; 10256 case BuiltinType::UChar: 10257 EncType = "uc"; 10258 break; 10259 case BuiltinType::SChar: 10260 EncType = "sc"; 10261 break; 10262 case BuiltinType::UShort: 10263 EncType = "us"; 10264 break; 10265 case BuiltinType::Short: 10266 EncType = "ss"; 10267 break; 10268 case BuiltinType::UInt: 10269 EncType = "ui"; 10270 break; 10271 case BuiltinType::Int: 10272 EncType = "si"; 10273 break; 10274 case BuiltinType::ULong: 10275 EncType = "ul"; 10276 break; 10277 case BuiltinType::Long: 10278 EncType = "sl"; 10279 break; 10280 case BuiltinType::ULongLong: 10281 EncType = "ull"; 10282 break; 10283 case BuiltinType::LongLong: 10284 EncType = "sll"; 10285 break; 10286 case BuiltinType::Float: 10287 EncType = "ft"; 10288 break; 10289 case BuiltinType::Double: 10290 EncType = "d"; 10291 break; 10292 case BuiltinType::LongDouble: 10293 EncType = "ld"; 10294 break; 10295 default: 10296 return false; 10297 } 10298 Enc += EncType; 10299 return true; 10300 } 10301 10302 /// Appends a pointer encoding to Enc before calling appendType for the pointee. 10303 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT, 10304 const CodeGen::CodeGenModule &CGM, 10305 TypeStringCache &TSC) { 10306 Enc += "p("; 10307 if (!appendType(Enc, PT->getPointeeType(), CGM, TSC)) 10308 return false; 10309 Enc += ')'; 10310 return true; 10311 } 10312 10313 /// Appends array encoding to Enc before calling appendType for the element. 10314 static bool appendArrayType(SmallStringEnc &Enc, QualType QT, 10315 const ArrayType *AT, 10316 const CodeGen::CodeGenModule &CGM, 10317 TypeStringCache &TSC, StringRef NoSizeEnc) { 10318 if (AT->getSizeModifier() != ArrayType::Normal) 10319 return false; 10320 Enc += "a("; 10321 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) 10322 CAT->getSize().toStringUnsigned(Enc); 10323 else 10324 Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "". 10325 Enc += ':'; 10326 // The Qualifiers should be attached to the type rather than the array. 10327 appendQualifier(Enc, QT); 10328 if (!appendType(Enc, AT->getElementType(), CGM, TSC)) 10329 return false; 10330 Enc += ')'; 10331 return true; 10332 } 10333 10334 /// Appends a function encoding to Enc, calling appendType for the return type 10335 /// and the arguments. 10336 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT, 10337 const CodeGen::CodeGenModule &CGM, 10338 TypeStringCache &TSC) { 10339 Enc += "f{"; 10340 if (!appendType(Enc, FT->getReturnType(), CGM, TSC)) 10341 return false; 10342 Enc += "}("; 10343 if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) { 10344 // N.B. we are only interested in the adjusted param types. 10345 auto I = FPT->param_type_begin(); 10346 auto E = FPT->param_type_end(); 10347 if (I != E) { 10348 do { 10349 if (!appendType(Enc, *I, CGM, TSC)) 10350 return false; 10351 ++I; 10352 if (I != E) 10353 Enc += ','; 10354 } while (I != E); 10355 if (FPT->isVariadic()) 10356 Enc += ",va"; 10357 } else { 10358 if (FPT->isVariadic()) 10359 Enc += "va"; 10360 else 10361 Enc += '0'; 10362 } 10363 } 10364 Enc += ')'; 10365 return true; 10366 } 10367 10368 /// Handles the type's qualifier before dispatching a call to handle specific 10369 /// type encodings. 10370 static bool appendType(SmallStringEnc &Enc, QualType QType, 10371 const CodeGen::CodeGenModule &CGM, 10372 TypeStringCache &TSC) { 10373 10374 QualType QT = QType.getCanonicalType(); 10375 10376 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) 10377 // The Qualifiers should be attached to the type rather than the array. 10378 // Thus we don't call appendQualifier() here. 10379 return appendArrayType(Enc, QT, AT, CGM, TSC, ""); 10380 10381 appendQualifier(Enc, QT); 10382 10383 if (const BuiltinType *BT = QT->getAs<BuiltinType>()) 10384 return appendBuiltinType(Enc, BT); 10385 10386 if (const PointerType *PT = QT->getAs<PointerType>()) 10387 return appendPointerType(Enc, PT, CGM, TSC); 10388 10389 if (const EnumType *ET = QT->getAs<EnumType>()) 10390 return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier()); 10391 10392 if (const RecordType *RT = QT->getAsStructureType()) 10393 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 10394 10395 if (const RecordType *RT = QT->getAsUnionType()) 10396 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 10397 10398 if (const FunctionType *FT = QT->getAs<FunctionType>()) 10399 return appendFunctionType(Enc, FT, CGM, TSC); 10400 10401 return false; 10402 } 10403 10404 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 10405 const CodeGen::CodeGenModule &CGM, 10406 TypeStringCache &TSC) { 10407 if (!D) 10408 return false; 10409 10410 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 10411 if (FD->getLanguageLinkage() != CLanguageLinkage) 10412 return false; 10413 return appendType(Enc, FD->getType(), CGM, TSC); 10414 } 10415 10416 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 10417 if (VD->getLanguageLinkage() != CLanguageLinkage) 10418 return false; 10419 QualType QT = VD->getType().getCanonicalType(); 10420 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) { 10421 // Global ArrayTypes are given a size of '*' if the size is unknown. 10422 // The Qualifiers should be attached to the type rather than the array. 10423 // Thus we don't call appendQualifier() here. 10424 return appendArrayType(Enc, QT, AT, CGM, TSC, "*"); 10425 } 10426 return appendType(Enc, QT, CGM, TSC); 10427 } 10428 return false; 10429 } 10430 10431 //===----------------------------------------------------------------------===// 10432 // RISCV ABI Implementation 10433 //===----------------------------------------------------------------------===// 10434 10435 namespace { 10436 class RISCVABIInfo : public DefaultABIInfo { 10437 private: 10438 // Size of the integer ('x') registers in bits. 10439 unsigned XLen; 10440 // Size of the floating point ('f') registers in bits. Note that the target 10441 // ISA might have a wider FLen than the selected ABI (e.g. an RV32IF target 10442 // with soft float ABI has FLen==0). 10443 unsigned FLen; 10444 static const int NumArgGPRs = 8; 10445 static const int NumArgFPRs = 8; 10446 bool detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff, 10447 llvm::Type *&Field1Ty, 10448 CharUnits &Field1Off, 10449 llvm::Type *&Field2Ty, 10450 CharUnits &Field2Off) const; 10451 10452 public: 10453 RISCVABIInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen, unsigned FLen) 10454 : DefaultABIInfo(CGT), XLen(XLen), FLen(FLen) {} 10455 10456 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 10457 // non-virtual, but computeInfo is virtual, so we overload it. 10458 void computeInfo(CGFunctionInfo &FI) const override; 10459 10460 ABIArgInfo classifyArgumentType(QualType Ty, bool IsFixed, int &ArgGPRsLeft, 10461 int &ArgFPRsLeft) const; 10462 ABIArgInfo classifyReturnType(QualType RetTy) const; 10463 10464 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 10465 QualType Ty) const override; 10466 10467 ABIArgInfo extendType(QualType Ty) const; 10468 10469 bool detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty, 10470 CharUnits &Field1Off, llvm::Type *&Field2Ty, 10471 CharUnits &Field2Off, int &NeededArgGPRs, 10472 int &NeededArgFPRs) const; 10473 ABIArgInfo coerceAndExpandFPCCEligibleStruct(llvm::Type *Field1Ty, 10474 CharUnits Field1Off, 10475 llvm::Type *Field2Ty, 10476 CharUnits Field2Off) const; 10477 }; 10478 } // end anonymous namespace 10479 10480 void RISCVABIInfo::computeInfo(CGFunctionInfo &FI) const { 10481 QualType RetTy = FI.getReturnType(); 10482 if (!getCXXABI().classifyReturnType(FI)) 10483 FI.getReturnInfo() = classifyReturnType(RetTy); 10484 10485 // IsRetIndirect is true if classifyArgumentType indicated the value should 10486 // be passed indirect, or if the type size is a scalar greater than 2*XLen 10487 // and not a complex type with elements <= FLen. e.g. fp128 is passed direct 10488 // in LLVM IR, relying on the backend lowering code to rewrite the argument 10489 // list and pass indirectly on RV32. 10490 bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect; 10491 if (!IsRetIndirect && RetTy->isScalarType() && 10492 getContext().getTypeSize(RetTy) > (2 * XLen)) { 10493 if (RetTy->isComplexType() && FLen) { 10494 QualType EltTy = RetTy->castAs<ComplexType>()->getElementType(); 10495 IsRetIndirect = getContext().getTypeSize(EltTy) > FLen; 10496 } else { 10497 // This is a normal scalar > 2*XLen, such as fp128 on RV32. 10498 IsRetIndirect = true; 10499 } 10500 } 10501 10502 // We must track the number of GPRs used in order to conform to the RISC-V 10503 // ABI, as integer scalars passed in registers should have signext/zeroext 10504 // when promoted, but are anyext if passed on the stack. As GPR usage is 10505 // different for variadic arguments, we must also track whether we are 10506 // examining a vararg or not. 10507 int ArgGPRsLeft = IsRetIndirect ? NumArgGPRs - 1 : NumArgGPRs; 10508 int ArgFPRsLeft = FLen ? NumArgFPRs : 0; 10509 int NumFixedArgs = FI.getNumRequiredArgs(); 10510 10511 int ArgNum = 0; 10512 for (auto &ArgInfo : FI.arguments()) { 10513 bool IsFixed = ArgNum < NumFixedArgs; 10514 ArgInfo.info = 10515 classifyArgumentType(ArgInfo.type, IsFixed, ArgGPRsLeft, ArgFPRsLeft); 10516 ArgNum++; 10517 } 10518 } 10519 10520 // Returns true if the struct is a potential candidate for the floating point 10521 // calling convention. If this function returns true, the caller is 10522 // responsible for checking that if there is only a single field then that 10523 // field is a float. 10524 bool RISCVABIInfo::detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff, 10525 llvm::Type *&Field1Ty, 10526 CharUnits &Field1Off, 10527 llvm::Type *&Field2Ty, 10528 CharUnits &Field2Off) const { 10529 bool IsInt = Ty->isIntegralOrEnumerationType(); 10530 bool IsFloat = Ty->isRealFloatingType(); 10531 10532 if (IsInt || IsFloat) { 10533 uint64_t Size = getContext().getTypeSize(Ty); 10534 if (IsInt && Size > XLen) 10535 return false; 10536 // Can't be eligible if larger than the FP registers. Half precision isn't 10537 // currently supported on RISC-V and the ABI hasn't been confirmed, so 10538 // default to the integer ABI in that case. 10539 if (IsFloat && (Size > FLen || Size < 32)) 10540 return false; 10541 // Can't be eligible if an integer type was already found (int+int pairs 10542 // are not eligible). 10543 if (IsInt && Field1Ty && Field1Ty->isIntegerTy()) 10544 return false; 10545 if (!Field1Ty) { 10546 Field1Ty = CGT.ConvertType(Ty); 10547 Field1Off = CurOff; 10548 return true; 10549 } 10550 if (!Field2Ty) { 10551 Field2Ty = CGT.ConvertType(Ty); 10552 Field2Off = CurOff; 10553 return true; 10554 } 10555 return false; 10556 } 10557 10558 if (auto CTy = Ty->getAs<ComplexType>()) { 10559 if (Field1Ty) 10560 return false; 10561 QualType EltTy = CTy->getElementType(); 10562 if (getContext().getTypeSize(EltTy) > FLen) 10563 return false; 10564 Field1Ty = CGT.ConvertType(EltTy); 10565 Field1Off = CurOff; 10566 Field2Ty = Field1Ty; 10567 Field2Off = Field1Off + getContext().getTypeSizeInChars(EltTy); 10568 return true; 10569 } 10570 10571 if (const ConstantArrayType *ATy = getContext().getAsConstantArrayType(Ty)) { 10572 uint64_t ArraySize = ATy->getSize().getZExtValue(); 10573 QualType EltTy = ATy->getElementType(); 10574 CharUnits EltSize = getContext().getTypeSizeInChars(EltTy); 10575 for (uint64_t i = 0; i < ArraySize; ++i) { 10576 bool Ret = detectFPCCEligibleStructHelper(EltTy, CurOff, Field1Ty, 10577 Field1Off, Field2Ty, Field2Off); 10578 if (!Ret) 10579 return false; 10580 CurOff += EltSize; 10581 } 10582 return true; 10583 } 10584 10585 if (const auto *RTy = Ty->getAs<RecordType>()) { 10586 // Structures with either a non-trivial destructor or a non-trivial 10587 // copy constructor are not eligible for the FP calling convention. 10588 if (getRecordArgABI(Ty, CGT.getCXXABI())) 10589 return false; 10590 if (isEmptyRecord(getContext(), Ty, true)) 10591 return true; 10592 const RecordDecl *RD = RTy->getDecl(); 10593 // Unions aren't eligible unless they're empty (which is caught above). 10594 if (RD->isUnion()) 10595 return false; 10596 int ZeroWidthBitFieldCount = 0; 10597 for (const FieldDecl *FD : RD->fields()) { 10598 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 10599 uint64_t FieldOffInBits = Layout.getFieldOffset(FD->getFieldIndex()); 10600 QualType QTy = FD->getType(); 10601 if (FD->isBitField()) { 10602 unsigned BitWidth = FD->getBitWidthValue(getContext()); 10603 // Allow a bitfield with a type greater than XLen as long as the 10604 // bitwidth is XLen or less. 10605 if (getContext().getTypeSize(QTy) > XLen && BitWidth <= XLen) 10606 QTy = getContext().getIntTypeForBitwidth(XLen, false); 10607 if (BitWidth == 0) { 10608 ZeroWidthBitFieldCount++; 10609 continue; 10610 } 10611 } 10612 10613 bool Ret = detectFPCCEligibleStructHelper( 10614 QTy, CurOff + getContext().toCharUnitsFromBits(FieldOffInBits), 10615 Field1Ty, Field1Off, Field2Ty, Field2Off); 10616 if (!Ret) 10617 return false; 10618 10619 // As a quirk of the ABI, zero-width bitfields aren't ignored for fp+fp 10620 // or int+fp structs, but are ignored for a struct with an fp field and 10621 // any number of zero-width bitfields. 10622 if (Field2Ty && ZeroWidthBitFieldCount > 0) 10623 return false; 10624 } 10625 return Field1Ty != nullptr; 10626 } 10627 10628 return false; 10629 } 10630 10631 // Determine if a struct is eligible for passing according to the floating 10632 // point calling convention (i.e., when flattened it contains a single fp 10633 // value, fp+fp, or int+fp of appropriate size). If so, NeededArgFPRs and 10634 // NeededArgGPRs are incremented appropriately. 10635 bool RISCVABIInfo::detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty, 10636 CharUnits &Field1Off, 10637 llvm::Type *&Field2Ty, 10638 CharUnits &Field2Off, 10639 int &NeededArgGPRs, 10640 int &NeededArgFPRs) const { 10641 Field1Ty = nullptr; 10642 Field2Ty = nullptr; 10643 NeededArgGPRs = 0; 10644 NeededArgFPRs = 0; 10645 bool IsCandidate = detectFPCCEligibleStructHelper( 10646 Ty, CharUnits::Zero(), Field1Ty, Field1Off, Field2Ty, Field2Off); 10647 // Not really a candidate if we have a single int but no float. 10648 if (Field1Ty && !Field2Ty && !Field1Ty->isFloatingPointTy()) 10649 return false; 10650 if (!IsCandidate) 10651 return false; 10652 if (Field1Ty && Field1Ty->isFloatingPointTy()) 10653 NeededArgFPRs++; 10654 else if (Field1Ty) 10655 NeededArgGPRs++; 10656 if (Field2Ty && Field2Ty->isFloatingPointTy()) 10657 NeededArgFPRs++; 10658 else if (Field2Ty) 10659 NeededArgGPRs++; 10660 return true; 10661 } 10662 10663 // Call getCoerceAndExpand for the two-element flattened struct described by 10664 // Field1Ty, Field1Off, Field2Ty, Field2Off. This method will create an 10665 // appropriate coerceToType and unpaddedCoerceToType. 10666 ABIArgInfo RISCVABIInfo::coerceAndExpandFPCCEligibleStruct( 10667 llvm::Type *Field1Ty, CharUnits Field1Off, llvm::Type *Field2Ty, 10668 CharUnits Field2Off) const { 10669 SmallVector<llvm::Type *, 3> CoerceElts; 10670 SmallVector<llvm::Type *, 2> UnpaddedCoerceElts; 10671 if (!Field1Off.isZero()) 10672 CoerceElts.push_back(llvm::ArrayType::get( 10673 llvm::Type::getInt8Ty(getVMContext()), Field1Off.getQuantity())); 10674 10675 CoerceElts.push_back(Field1Ty); 10676 UnpaddedCoerceElts.push_back(Field1Ty); 10677 10678 if (!Field2Ty) { 10679 return ABIArgInfo::getCoerceAndExpand( 10680 llvm::StructType::get(getVMContext(), CoerceElts, !Field1Off.isZero()), 10681 UnpaddedCoerceElts[0]); 10682 } 10683 10684 CharUnits Field2Align = 10685 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(Field2Ty)); 10686 CharUnits Field1End = Field1Off + 10687 CharUnits::fromQuantity(getDataLayout().getTypeStoreSize(Field1Ty)); 10688 CharUnits Field2OffNoPadNoPack = Field1End.alignTo(Field2Align); 10689 10690 CharUnits Padding = CharUnits::Zero(); 10691 if (Field2Off > Field2OffNoPadNoPack) 10692 Padding = Field2Off - Field2OffNoPadNoPack; 10693 else if (Field2Off != Field2Align && Field2Off > Field1End) 10694 Padding = Field2Off - Field1End; 10695 10696 bool IsPacked = !Field2Off.isMultipleOf(Field2Align); 10697 10698 if (!Padding.isZero()) 10699 CoerceElts.push_back(llvm::ArrayType::get( 10700 llvm::Type::getInt8Ty(getVMContext()), Padding.getQuantity())); 10701 10702 CoerceElts.push_back(Field2Ty); 10703 UnpaddedCoerceElts.push_back(Field2Ty); 10704 10705 auto CoerceToType = 10706 llvm::StructType::get(getVMContext(), CoerceElts, IsPacked); 10707 auto UnpaddedCoerceToType = 10708 llvm::StructType::get(getVMContext(), UnpaddedCoerceElts, IsPacked); 10709 10710 return ABIArgInfo::getCoerceAndExpand(CoerceToType, UnpaddedCoerceToType); 10711 } 10712 10713 ABIArgInfo RISCVABIInfo::classifyArgumentType(QualType Ty, bool IsFixed, 10714 int &ArgGPRsLeft, 10715 int &ArgFPRsLeft) const { 10716 assert(ArgGPRsLeft <= NumArgGPRs && "Arg GPR tracking underflow"); 10717 Ty = useFirstFieldIfTransparentUnion(Ty); 10718 10719 // Structures with either a non-trivial destructor or a non-trivial 10720 // copy constructor are always passed indirectly. 10721 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 10722 if (ArgGPRsLeft) 10723 ArgGPRsLeft -= 1; 10724 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 10725 CGCXXABI::RAA_DirectInMemory); 10726 } 10727 10728 // Ignore empty structs/unions. 10729 if (isEmptyRecord(getContext(), Ty, true)) 10730 return ABIArgInfo::getIgnore(); 10731 10732 uint64_t Size = getContext().getTypeSize(Ty); 10733 10734 // Pass floating point values via FPRs if possible. 10735 if (IsFixed && Ty->isFloatingType() && !Ty->isComplexType() && 10736 FLen >= Size && ArgFPRsLeft) { 10737 ArgFPRsLeft--; 10738 return ABIArgInfo::getDirect(); 10739 } 10740 10741 // Complex types for the hard float ABI must be passed direct rather than 10742 // using CoerceAndExpand. 10743 if (IsFixed && Ty->isComplexType() && FLen && ArgFPRsLeft >= 2) { 10744 QualType EltTy = Ty->castAs<ComplexType>()->getElementType(); 10745 if (getContext().getTypeSize(EltTy) <= FLen) { 10746 ArgFPRsLeft -= 2; 10747 return ABIArgInfo::getDirect(); 10748 } 10749 } 10750 10751 if (IsFixed && FLen && Ty->isStructureOrClassType()) { 10752 llvm::Type *Field1Ty = nullptr; 10753 llvm::Type *Field2Ty = nullptr; 10754 CharUnits Field1Off = CharUnits::Zero(); 10755 CharUnits Field2Off = CharUnits::Zero(); 10756 int NeededArgGPRs = 0; 10757 int NeededArgFPRs = 0; 10758 bool IsCandidate = 10759 detectFPCCEligibleStruct(Ty, Field1Ty, Field1Off, Field2Ty, Field2Off, 10760 NeededArgGPRs, NeededArgFPRs); 10761 if (IsCandidate && NeededArgGPRs <= ArgGPRsLeft && 10762 NeededArgFPRs <= ArgFPRsLeft) { 10763 ArgGPRsLeft -= NeededArgGPRs; 10764 ArgFPRsLeft -= NeededArgFPRs; 10765 return coerceAndExpandFPCCEligibleStruct(Field1Ty, Field1Off, Field2Ty, 10766 Field2Off); 10767 } 10768 } 10769 10770 uint64_t NeededAlign = getContext().getTypeAlign(Ty); 10771 bool MustUseStack = false; 10772 // Determine the number of GPRs needed to pass the current argument 10773 // according to the ABI. 2*XLen-aligned varargs are passed in "aligned" 10774 // register pairs, so may consume 3 registers. 10775 int NeededArgGPRs = 1; 10776 if (!IsFixed && NeededAlign == 2 * XLen) 10777 NeededArgGPRs = 2 + (ArgGPRsLeft % 2); 10778 else if (Size > XLen && Size <= 2 * XLen) 10779 NeededArgGPRs = 2; 10780 10781 if (NeededArgGPRs > ArgGPRsLeft) { 10782 MustUseStack = true; 10783 NeededArgGPRs = ArgGPRsLeft; 10784 } 10785 10786 ArgGPRsLeft -= NeededArgGPRs; 10787 10788 if (!isAggregateTypeForABI(Ty) && !Ty->isVectorType()) { 10789 // Treat an enum type as its underlying type. 10790 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 10791 Ty = EnumTy->getDecl()->getIntegerType(); 10792 10793 // All integral types are promoted to XLen width, unless passed on the 10794 // stack. 10795 if (Size < XLen && Ty->isIntegralOrEnumerationType() && !MustUseStack) { 10796 return extendType(Ty); 10797 } 10798 10799 if (const auto *EIT = Ty->getAs<ExtIntType>()) { 10800 if (EIT->getNumBits() < XLen && !MustUseStack) 10801 return extendType(Ty); 10802 if (EIT->getNumBits() > 128 || 10803 (!getContext().getTargetInfo().hasInt128Type() && 10804 EIT->getNumBits() > 64)) 10805 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 10806 } 10807 10808 return ABIArgInfo::getDirect(); 10809 } 10810 10811 // Aggregates which are <= 2*XLen will be passed in registers if possible, 10812 // so coerce to integers. 10813 if (Size <= 2 * XLen) { 10814 unsigned Alignment = getContext().getTypeAlign(Ty); 10815 10816 // Use a single XLen int if possible, 2*XLen if 2*XLen alignment is 10817 // required, and a 2-element XLen array if only XLen alignment is required. 10818 if (Size <= XLen) { 10819 return ABIArgInfo::getDirect( 10820 llvm::IntegerType::get(getVMContext(), XLen)); 10821 } else if (Alignment == 2 * XLen) { 10822 return ABIArgInfo::getDirect( 10823 llvm::IntegerType::get(getVMContext(), 2 * XLen)); 10824 } else { 10825 return ABIArgInfo::getDirect(llvm::ArrayType::get( 10826 llvm::IntegerType::get(getVMContext(), XLen), 2)); 10827 } 10828 } 10829 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 10830 } 10831 10832 ABIArgInfo RISCVABIInfo::classifyReturnType(QualType RetTy) const { 10833 if (RetTy->isVoidType()) 10834 return ABIArgInfo::getIgnore(); 10835 10836 int ArgGPRsLeft = 2; 10837 int ArgFPRsLeft = FLen ? 2 : 0; 10838 10839 // The rules for return and argument types are the same, so defer to 10840 // classifyArgumentType. 10841 return classifyArgumentType(RetTy, /*IsFixed=*/true, ArgGPRsLeft, 10842 ArgFPRsLeft); 10843 } 10844 10845 Address RISCVABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 10846 QualType Ty) const { 10847 CharUnits SlotSize = CharUnits::fromQuantity(XLen / 8); 10848 10849 // Empty records are ignored for parameter passing purposes. 10850 if (isEmptyRecord(getContext(), Ty, true)) { 10851 Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize); 10852 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 10853 return Addr; 10854 } 10855 10856 auto TInfo = getContext().getTypeInfoInChars(Ty); 10857 10858 // Arguments bigger than 2*Xlen bytes are passed indirectly. 10859 bool IsIndirect = TInfo.Width > 2 * SlotSize; 10860 10861 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TInfo, 10862 SlotSize, /*AllowHigherAlign=*/true); 10863 } 10864 10865 ABIArgInfo RISCVABIInfo::extendType(QualType Ty) const { 10866 int TySize = getContext().getTypeSize(Ty); 10867 // RV64 ABI requires unsigned 32 bit integers to be sign extended. 10868 if (XLen == 64 && Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 10869 return ABIArgInfo::getSignExtend(Ty); 10870 return ABIArgInfo::getExtend(Ty); 10871 } 10872 10873 namespace { 10874 class RISCVTargetCodeGenInfo : public TargetCodeGenInfo { 10875 public: 10876 RISCVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen, 10877 unsigned FLen) 10878 : TargetCodeGenInfo(std::make_unique<RISCVABIInfo>(CGT, XLen, FLen)) {} 10879 10880 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 10881 CodeGen::CodeGenModule &CGM) const override { 10882 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 10883 if (!FD) return; 10884 10885 const auto *Attr = FD->getAttr<RISCVInterruptAttr>(); 10886 if (!Attr) 10887 return; 10888 10889 const char *Kind; 10890 switch (Attr->getInterrupt()) { 10891 case RISCVInterruptAttr::user: Kind = "user"; break; 10892 case RISCVInterruptAttr::supervisor: Kind = "supervisor"; break; 10893 case RISCVInterruptAttr::machine: Kind = "machine"; break; 10894 } 10895 10896 auto *Fn = cast<llvm::Function>(GV); 10897 10898 Fn->addFnAttr("interrupt", Kind); 10899 } 10900 }; 10901 } // namespace 10902 10903 //===----------------------------------------------------------------------===// 10904 // VE ABI Implementation. 10905 // 10906 namespace { 10907 class VEABIInfo : public DefaultABIInfo { 10908 public: 10909 VEABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 10910 10911 private: 10912 ABIArgInfo classifyReturnType(QualType RetTy) const; 10913 ABIArgInfo classifyArgumentType(QualType RetTy) const; 10914 void computeInfo(CGFunctionInfo &FI) const override; 10915 }; 10916 } // end anonymous namespace 10917 10918 ABIArgInfo VEABIInfo::classifyReturnType(QualType Ty) const { 10919 if (Ty->isAnyComplexType()) 10920 return ABIArgInfo::getDirect(); 10921 uint64_t Size = getContext().getTypeSize(Ty); 10922 if (Size < 64 && Ty->isIntegerType()) 10923 return ABIArgInfo::getExtend(Ty); 10924 return DefaultABIInfo::classifyReturnType(Ty); 10925 } 10926 10927 ABIArgInfo VEABIInfo::classifyArgumentType(QualType Ty) const { 10928 if (Ty->isAnyComplexType()) 10929 return ABIArgInfo::getDirect(); 10930 uint64_t Size = getContext().getTypeSize(Ty); 10931 if (Size < 64 && Ty->isIntegerType()) 10932 return ABIArgInfo::getExtend(Ty); 10933 return DefaultABIInfo::classifyArgumentType(Ty); 10934 } 10935 10936 void VEABIInfo::computeInfo(CGFunctionInfo &FI) const { 10937 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 10938 for (auto &Arg : FI.arguments()) 10939 Arg.info = classifyArgumentType(Arg.type); 10940 } 10941 10942 namespace { 10943 class VETargetCodeGenInfo : public TargetCodeGenInfo { 10944 public: 10945 VETargetCodeGenInfo(CodeGenTypes &CGT) 10946 : TargetCodeGenInfo(std::make_unique<VEABIInfo>(CGT)) {} 10947 // VE ABI requires the arguments of variadic and prototype-less functions 10948 // are passed in both registers and memory. 10949 bool isNoProtoCallVariadic(const CallArgList &args, 10950 const FunctionNoProtoType *fnType) const override { 10951 return true; 10952 } 10953 }; 10954 } // end anonymous namespace 10955 10956 //===----------------------------------------------------------------------===// 10957 // Driver code 10958 //===----------------------------------------------------------------------===// 10959 10960 bool CodeGenModule::supportsCOMDAT() const { 10961 return getTriple().supportsCOMDAT(); 10962 } 10963 10964 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { 10965 if (TheTargetCodeGenInfo) 10966 return *TheTargetCodeGenInfo; 10967 10968 // Helper to set the unique_ptr while still keeping the return value. 10969 auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & { 10970 this->TheTargetCodeGenInfo.reset(P); 10971 return *P; 10972 }; 10973 10974 const llvm::Triple &Triple = getTarget().getTriple(); 10975 switch (Triple.getArch()) { 10976 default: 10977 return SetCGInfo(new DefaultTargetCodeGenInfo(Types)); 10978 10979 case llvm::Triple::le32: 10980 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 10981 case llvm::Triple::m68k: 10982 return SetCGInfo(new M68kTargetCodeGenInfo(Types)); 10983 case llvm::Triple::mips: 10984 case llvm::Triple::mipsel: 10985 if (Triple.getOS() == llvm::Triple::NaCl) 10986 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 10987 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true)); 10988 10989 case llvm::Triple::mips64: 10990 case llvm::Triple::mips64el: 10991 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false)); 10992 10993 case llvm::Triple::avr: 10994 return SetCGInfo(new AVRTargetCodeGenInfo(Types)); 10995 10996 case llvm::Triple::aarch64: 10997 case llvm::Triple::aarch64_32: 10998 case llvm::Triple::aarch64_be: { 10999 AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS; 11000 if (getTarget().getABI() == "darwinpcs") 11001 Kind = AArch64ABIInfo::DarwinPCS; 11002 else if (Triple.isOSWindows()) 11003 return SetCGInfo( 11004 new WindowsAArch64TargetCodeGenInfo(Types, AArch64ABIInfo::Win64)); 11005 11006 return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind)); 11007 } 11008 11009 case llvm::Triple::wasm32: 11010 case llvm::Triple::wasm64: { 11011 WebAssemblyABIInfo::ABIKind Kind = WebAssemblyABIInfo::MVP; 11012 if (getTarget().getABI() == "experimental-mv") 11013 Kind = WebAssemblyABIInfo::ExperimentalMV; 11014 return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types, Kind)); 11015 } 11016 11017 case llvm::Triple::arm: 11018 case llvm::Triple::armeb: 11019 case llvm::Triple::thumb: 11020 case llvm::Triple::thumbeb: { 11021 if (Triple.getOS() == llvm::Triple::Win32) { 11022 return SetCGInfo( 11023 new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP)); 11024 } 11025 11026 ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS; 11027 StringRef ABIStr = getTarget().getABI(); 11028 if (ABIStr == "apcs-gnu") 11029 Kind = ARMABIInfo::APCS; 11030 else if (ABIStr == "aapcs16") 11031 Kind = ARMABIInfo::AAPCS16_VFP; 11032 else if (CodeGenOpts.FloatABI == "hard" || 11033 (CodeGenOpts.FloatABI != "soft" && 11034 (Triple.getEnvironment() == llvm::Triple::GNUEABIHF || 11035 Triple.getEnvironment() == llvm::Triple::MuslEABIHF || 11036 Triple.getEnvironment() == llvm::Triple::EABIHF))) 11037 Kind = ARMABIInfo::AAPCS_VFP; 11038 11039 return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind)); 11040 } 11041 11042 case llvm::Triple::ppc: { 11043 if (Triple.isOSAIX()) 11044 return SetCGInfo(new AIXTargetCodeGenInfo(Types, /*Is64Bit*/ false)); 11045 11046 bool IsSoftFloat = 11047 CodeGenOpts.FloatABI == "soft" || getTarget().hasFeature("spe"); 11048 bool RetSmallStructInRegABI = 11049 PPC32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 11050 return SetCGInfo( 11051 new PPC32TargetCodeGenInfo(Types, IsSoftFloat, RetSmallStructInRegABI)); 11052 } 11053 case llvm::Triple::ppcle: { 11054 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 11055 bool RetSmallStructInRegABI = 11056 PPC32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 11057 return SetCGInfo( 11058 new PPC32TargetCodeGenInfo(Types, IsSoftFloat, RetSmallStructInRegABI)); 11059 } 11060 case llvm::Triple::ppc64: 11061 if (Triple.isOSAIX()) 11062 return SetCGInfo(new AIXTargetCodeGenInfo(Types, /*Is64Bit*/ true)); 11063 11064 if (Triple.isOSBinFormatELF()) { 11065 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1; 11066 if (getTarget().getABI() == "elfv2") 11067 Kind = PPC64_SVR4_ABIInfo::ELFv2; 11068 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 11069 11070 return SetCGInfo( 11071 new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, IsSoftFloat)); 11072 } 11073 return SetCGInfo(new PPC64TargetCodeGenInfo(Types)); 11074 case llvm::Triple::ppc64le: { 11075 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); 11076 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2; 11077 if (getTarget().getABI() == "elfv1") 11078 Kind = PPC64_SVR4_ABIInfo::ELFv1; 11079 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 11080 11081 return SetCGInfo( 11082 new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, IsSoftFloat)); 11083 } 11084 11085 case llvm::Triple::nvptx: 11086 case llvm::Triple::nvptx64: 11087 return SetCGInfo(new NVPTXTargetCodeGenInfo(Types)); 11088 11089 case llvm::Triple::msp430: 11090 return SetCGInfo(new MSP430TargetCodeGenInfo(Types)); 11091 11092 case llvm::Triple::riscv32: 11093 case llvm::Triple::riscv64: { 11094 StringRef ABIStr = getTarget().getABI(); 11095 unsigned XLen = getTarget().getPointerWidth(0); 11096 unsigned ABIFLen = 0; 11097 if (ABIStr.endswith("f")) 11098 ABIFLen = 32; 11099 else if (ABIStr.endswith("d")) 11100 ABIFLen = 64; 11101 return SetCGInfo(new RISCVTargetCodeGenInfo(Types, XLen, ABIFLen)); 11102 } 11103 11104 case llvm::Triple::systemz: { 11105 bool SoftFloat = CodeGenOpts.FloatABI == "soft"; 11106 bool HasVector = !SoftFloat && getTarget().getABI() == "vector"; 11107 return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector, SoftFloat)); 11108 } 11109 11110 case llvm::Triple::tce: 11111 case llvm::Triple::tcele: 11112 return SetCGInfo(new TCETargetCodeGenInfo(Types)); 11113 11114 case llvm::Triple::x86: { 11115 bool IsDarwinVectorABI = Triple.isOSDarwin(); 11116 bool RetSmallStructInRegABI = 11117 X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 11118 bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing(); 11119 11120 if (Triple.getOS() == llvm::Triple::Win32) { 11121 return SetCGInfo(new WinX86_32TargetCodeGenInfo( 11122 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 11123 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters)); 11124 } else { 11125 return SetCGInfo(new X86_32TargetCodeGenInfo( 11126 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 11127 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters, 11128 CodeGenOpts.FloatABI == "soft")); 11129 } 11130 } 11131 11132 case llvm::Triple::x86_64: { 11133 StringRef ABI = getTarget().getABI(); 11134 X86AVXABILevel AVXLevel = 11135 (ABI == "avx512" 11136 ? X86AVXABILevel::AVX512 11137 : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None); 11138 11139 switch (Triple.getOS()) { 11140 case llvm::Triple::Win32: 11141 return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel)); 11142 default: 11143 return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel)); 11144 } 11145 } 11146 case llvm::Triple::hexagon: 11147 return SetCGInfo(new HexagonTargetCodeGenInfo(Types)); 11148 case llvm::Triple::lanai: 11149 return SetCGInfo(new LanaiTargetCodeGenInfo(Types)); 11150 case llvm::Triple::r600: 11151 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 11152 case llvm::Triple::amdgcn: 11153 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 11154 case llvm::Triple::sparc: 11155 return SetCGInfo(new SparcV8TargetCodeGenInfo(Types)); 11156 case llvm::Triple::sparcv9: 11157 return SetCGInfo(new SparcV9TargetCodeGenInfo(Types)); 11158 case llvm::Triple::xcore: 11159 return SetCGInfo(new XCoreTargetCodeGenInfo(Types)); 11160 case llvm::Triple::arc: 11161 return SetCGInfo(new ARCTargetCodeGenInfo(Types)); 11162 case llvm::Triple::spir: 11163 case llvm::Triple::spir64: 11164 return SetCGInfo(new SPIRTargetCodeGenInfo(Types)); 11165 case llvm::Triple::ve: 11166 return SetCGInfo(new VETargetCodeGenInfo(Types)); 11167 } 11168 } 11169 11170 /// Create an OpenCL kernel for an enqueued block. 11171 /// 11172 /// The kernel has the same function type as the block invoke function. Its 11173 /// name is the name of the block invoke function postfixed with "_kernel". 11174 /// It simply calls the block invoke function then returns. 11175 llvm::Function * 11176 TargetCodeGenInfo::createEnqueuedBlockKernel(CodeGenFunction &CGF, 11177 llvm::Function *Invoke, 11178 llvm::Value *BlockLiteral) const { 11179 auto *InvokeFT = Invoke->getFunctionType(); 11180 llvm::SmallVector<llvm::Type *, 2> ArgTys; 11181 for (auto &P : InvokeFT->params()) 11182 ArgTys.push_back(P); 11183 auto &C = CGF.getLLVMContext(); 11184 std::string Name = Invoke->getName().str() + "_kernel"; 11185 auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false); 11186 auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name, 11187 &CGF.CGM.getModule()); 11188 auto IP = CGF.Builder.saveIP(); 11189 auto *BB = llvm::BasicBlock::Create(C, "entry", F); 11190 auto &Builder = CGF.Builder; 11191 Builder.SetInsertPoint(BB); 11192 llvm::SmallVector<llvm::Value *, 2> Args; 11193 for (auto &A : F->args()) 11194 Args.push_back(&A); 11195 llvm::CallInst *call = Builder.CreateCall(Invoke, Args); 11196 call->setCallingConv(Invoke->getCallingConv()); 11197 Builder.CreateRetVoid(); 11198 Builder.restoreIP(IP); 11199 return F; 11200 } 11201 11202 /// Create an OpenCL kernel for an enqueued block. 11203 /// 11204 /// The type of the first argument (the block literal) is the struct type 11205 /// of the block literal instead of a pointer type. The first argument 11206 /// (block literal) is passed directly by value to the kernel. The kernel 11207 /// allocates the same type of struct on stack and stores the block literal 11208 /// to it and passes its pointer to the block invoke function. The kernel 11209 /// has "enqueued-block" function attribute and kernel argument metadata. 11210 llvm::Function *AMDGPUTargetCodeGenInfo::createEnqueuedBlockKernel( 11211 CodeGenFunction &CGF, llvm::Function *Invoke, 11212 llvm::Value *BlockLiteral) const { 11213 auto &Builder = CGF.Builder; 11214 auto &C = CGF.getLLVMContext(); 11215 11216 auto *BlockTy = BlockLiteral->getType()->getPointerElementType(); 11217 auto *InvokeFT = Invoke->getFunctionType(); 11218 llvm::SmallVector<llvm::Type *, 2> ArgTys; 11219 llvm::SmallVector<llvm::Metadata *, 8> AddressQuals; 11220 llvm::SmallVector<llvm::Metadata *, 8> AccessQuals; 11221 llvm::SmallVector<llvm::Metadata *, 8> ArgTypeNames; 11222 llvm::SmallVector<llvm::Metadata *, 8> ArgBaseTypeNames; 11223 llvm::SmallVector<llvm::Metadata *, 8> ArgTypeQuals; 11224 llvm::SmallVector<llvm::Metadata *, 8> ArgNames; 11225 11226 ArgTys.push_back(BlockTy); 11227 ArgTypeNames.push_back(llvm::MDString::get(C, "__block_literal")); 11228 AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(0))); 11229 ArgBaseTypeNames.push_back(llvm::MDString::get(C, "__block_literal")); 11230 ArgTypeQuals.push_back(llvm::MDString::get(C, "")); 11231 AccessQuals.push_back(llvm::MDString::get(C, "none")); 11232 ArgNames.push_back(llvm::MDString::get(C, "block_literal")); 11233 for (unsigned I = 1, E = InvokeFT->getNumParams(); I < E; ++I) { 11234 ArgTys.push_back(InvokeFT->getParamType(I)); 11235 ArgTypeNames.push_back(llvm::MDString::get(C, "void*")); 11236 AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(3))); 11237 AccessQuals.push_back(llvm::MDString::get(C, "none")); 11238 ArgBaseTypeNames.push_back(llvm::MDString::get(C, "void*")); 11239 ArgTypeQuals.push_back(llvm::MDString::get(C, "")); 11240 ArgNames.push_back( 11241 llvm::MDString::get(C, (Twine("local_arg") + Twine(I)).str())); 11242 } 11243 std::string Name = Invoke->getName().str() + "_kernel"; 11244 auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false); 11245 auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name, 11246 &CGF.CGM.getModule()); 11247 F->addFnAttr("enqueued-block"); 11248 auto IP = CGF.Builder.saveIP(); 11249 auto *BB = llvm::BasicBlock::Create(C, "entry", F); 11250 Builder.SetInsertPoint(BB); 11251 const auto BlockAlign = CGF.CGM.getDataLayout().getPrefTypeAlign(BlockTy); 11252 auto *BlockPtr = Builder.CreateAlloca(BlockTy, nullptr); 11253 BlockPtr->setAlignment(BlockAlign); 11254 Builder.CreateAlignedStore(F->arg_begin(), BlockPtr, BlockAlign); 11255 auto *Cast = Builder.CreatePointerCast(BlockPtr, InvokeFT->getParamType(0)); 11256 llvm::SmallVector<llvm::Value *, 2> Args; 11257 Args.push_back(Cast); 11258 for (auto I = F->arg_begin() + 1, E = F->arg_end(); I != E; ++I) 11259 Args.push_back(I); 11260 llvm::CallInst *call = Builder.CreateCall(Invoke, Args); 11261 call->setCallingConv(Invoke->getCallingConv()); 11262 Builder.CreateRetVoid(); 11263 Builder.restoreIP(IP); 11264 11265 F->setMetadata("kernel_arg_addr_space", llvm::MDNode::get(C, AddressQuals)); 11266 F->setMetadata("kernel_arg_access_qual", llvm::MDNode::get(C, AccessQuals)); 11267 F->setMetadata("kernel_arg_type", llvm::MDNode::get(C, ArgTypeNames)); 11268 F->setMetadata("kernel_arg_base_type", 11269 llvm::MDNode::get(C, ArgBaseTypeNames)); 11270 F->setMetadata("kernel_arg_type_qual", llvm::MDNode::get(C, ArgTypeQuals)); 11271 if (CGF.CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 11272 F->setMetadata("kernel_arg_name", llvm::MDNode::get(C, ArgNames)); 11273 11274 return F; 11275 } 11276