1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // These classes wrap the information about a call or function 10 // definition used to handle ABI compliancy. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "TargetInfo.h" 15 #include "ABIInfo.h" 16 #include "CGBlocks.h" 17 #include "CGCXXABI.h" 18 #include "CGValue.h" 19 #include "CodeGenFunction.h" 20 #include "clang/AST/Attr.h" 21 #include "clang/AST/RecordLayout.h" 22 #include "clang/Basic/CodeGenOptions.h" 23 #include "clang/Basic/DiagnosticFrontend.h" 24 #include "clang/Basic/Builtins.h" 25 #include "clang/CodeGen/CGFunctionInfo.h" 26 #include "clang/CodeGen/SwiftCallingConv.h" 27 #include "llvm/ADT/SmallBitVector.h" 28 #include "llvm/ADT/StringExtras.h" 29 #include "llvm/ADT/StringSwitch.h" 30 #include "llvm/ADT/Triple.h" 31 #include "llvm/ADT/Twine.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/IntrinsicsNVPTX.h" 34 #include "llvm/IR/IntrinsicsS390.h" 35 #include "llvm/IR/Type.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include <algorithm> // std::sort 38 39 using namespace clang; 40 using namespace CodeGen; 41 42 // Helper for coercing an aggregate argument or return value into an integer 43 // array of the same size (including padding) and alignment. This alternate 44 // coercion happens only for the RenderScript ABI and can be removed after 45 // runtimes that rely on it are no longer supported. 46 // 47 // RenderScript assumes that the size of the argument / return value in the IR 48 // is the same as the size of the corresponding qualified type. This helper 49 // coerces the aggregate type into an array of the same size (including 50 // padding). This coercion is used in lieu of expansion of struct members or 51 // other canonical coercions that return a coerced-type of larger size. 52 // 53 // Ty - The argument / return value type 54 // Context - The associated ASTContext 55 // LLVMContext - The associated LLVMContext 56 static ABIArgInfo coerceToIntArray(QualType Ty, 57 ASTContext &Context, 58 llvm::LLVMContext &LLVMContext) { 59 // Alignment and Size are measured in bits. 60 const uint64_t Size = Context.getTypeSize(Ty); 61 const uint64_t Alignment = Context.getTypeAlign(Ty); 62 llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment); 63 const uint64_t NumElements = (Size + Alignment - 1) / Alignment; 64 return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements)); 65 } 66 67 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder, 68 llvm::Value *Array, 69 llvm::Value *Value, 70 unsigned FirstIndex, 71 unsigned LastIndex) { 72 // Alternatively, we could emit this as a loop in the source. 73 for (unsigned I = FirstIndex; I <= LastIndex; ++I) { 74 llvm::Value *Cell = 75 Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I); 76 Builder.CreateAlignedStore(Value, Cell, CharUnits::One()); 77 } 78 } 79 80 static bool isAggregateTypeForABI(QualType T) { 81 return !CodeGenFunction::hasScalarEvaluationKind(T) || 82 T->isMemberFunctionPointerType(); 83 } 84 85 ABIArgInfo ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByVal, 86 bool Realign, 87 llvm::Type *Padding) const { 88 return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty), ByVal, 89 Realign, Padding); 90 } 91 92 ABIArgInfo 93 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const { 94 return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty), 95 /*ByVal*/ false, Realign); 96 } 97 98 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 99 QualType Ty) const { 100 return Address::invalid(); 101 } 102 103 bool ABIInfo::isPromotableIntegerTypeForABI(QualType Ty) const { 104 if (Ty->isPromotableIntegerType()) 105 return true; 106 107 if (const auto *EIT = Ty->getAs<BitIntType>()) 108 if (EIT->getNumBits() < getContext().getTypeSize(getContext().IntTy)) 109 return true; 110 111 return false; 112 } 113 114 ABIInfo::~ABIInfo() {} 115 116 /// Does the given lowering require more than the given number of 117 /// registers when expanded? 118 /// 119 /// This is intended to be the basis of a reasonable basic implementation 120 /// of should{Pass,Return}IndirectlyForSwift. 121 /// 122 /// For most targets, a limit of four total registers is reasonable; this 123 /// limits the amount of code required in order to move around the value 124 /// in case it wasn't produced immediately prior to the call by the caller 125 /// (or wasn't produced in exactly the right registers) or isn't used 126 /// immediately within the callee. But some targets may need to further 127 /// limit the register count due to an inability to support that many 128 /// return registers. 129 static bool occupiesMoreThan(CodeGenTypes &cgt, 130 ArrayRef<llvm::Type*> scalarTypes, 131 unsigned maxAllRegisters) { 132 unsigned intCount = 0, fpCount = 0; 133 for (llvm::Type *type : scalarTypes) { 134 if (type->isPointerTy()) { 135 intCount++; 136 } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) { 137 auto ptrWidth = cgt.getTarget().getPointerWidth(0); 138 intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth; 139 } else { 140 assert(type->isVectorTy() || type->isFloatingPointTy()); 141 fpCount++; 142 } 143 } 144 145 return (intCount + fpCount > maxAllRegisters); 146 } 147 148 bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, 149 llvm::Type *eltTy, 150 unsigned numElts) const { 151 // The default implementation of this assumes that the target guarantees 152 // 128-bit SIMD support but nothing more. 153 return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16); 154 } 155 156 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT, 157 CGCXXABI &CXXABI) { 158 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); 159 if (!RD) { 160 if (!RT->getDecl()->canPassInRegisters()) 161 return CGCXXABI::RAA_Indirect; 162 return CGCXXABI::RAA_Default; 163 } 164 return CXXABI.getRecordArgABI(RD); 165 } 166 167 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T, 168 CGCXXABI &CXXABI) { 169 const RecordType *RT = T->getAs<RecordType>(); 170 if (!RT) 171 return CGCXXABI::RAA_Default; 172 return getRecordArgABI(RT, CXXABI); 173 } 174 175 static bool classifyReturnType(const CGCXXABI &CXXABI, CGFunctionInfo &FI, 176 const ABIInfo &Info) { 177 QualType Ty = FI.getReturnType(); 178 179 if (const auto *RT = Ty->getAs<RecordType>()) 180 if (!isa<CXXRecordDecl>(RT->getDecl()) && 181 !RT->getDecl()->canPassInRegisters()) { 182 FI.getReturnInfo() = Info.getNaturalAlignIndirect(Ty); 183 return true; 184 } 185 186 return CXXABI.classifyReturnType(FI); 187 } 188 189 /// Pass transparent unions as if they were the type of the first element. Sema 190 /// should ensure that all elements of the union have the same "machine type". 191 static QualType useFirstFieldIfTransparentUnion(QualType Ty) { 192 if (const RecordType *UT = Ty->getAsUnionType()) { 193 const RecordDecl *UD = UT->getDecl(); 194 if (UD->hasAttr<TransparentUnionAttr>()) { 195 assert(!UD->field_empty() && "sema created an empty transparent union"); 196 return UD->field_begin()->getType(); 197 } 198 } 199 return Ty; 200 } 201 202 CGCXXABI &ABIInfo::getCXXABI() const { 203 return CGT.getCXXABI(); 204 } 205 206 ASTContext &ABIInfo::getContext() const { 207 return CGT.getContext(); 208 } 209 210 llvm::LLVMContext &ABIInfo::getVMContext() const { 211 return CGT.getLLVMContext(); 212 } 213 214 const llvm::DataLayout &ABIInfo::getDataLayout() const { 215 return CGT.getDataLayout(); 216 } 217 218 const TargetInfo &ABIInfo::getTarget() const { 219 return CGT.getTarget(); 220 } 221 222 const CodeGenOptions &ABIInfo::getCodeGenOpts() const { 223 return CGT.getCodeGenOpts(); 224 } 225 226 bool ABIInfo::isAndroid() const { return getTarget().getTriple().isAndroid(); } 227 228 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 229 return false; 230 } 231 232 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 233 uint64_t Members) const { 234 return false; 235 } 236 237 LLVM_DUMP_METHOD void ABIArgInfo::dump() const { 238 raw_ostream &OS = llvm::errs(); 239 OS << "(ABIArgInfo Kind="; 240 switch (TheKind) { 241 case Direct: 242 OS << "Direct Type="; 243 if (llvm::Type *Ty = getCoerceToType()) 244 Ty->print(OS); 245 else 246 OS << "null"; 247 break; 248 case Extend: 249 OS << "Extend"; 250 break; 251 case Ignore: 252 OS << "Ignore"; 253 break; 254 case InAlloca: 255 OS << "InAlloca Offset=" << getInAllocaFieldIndex(); 256 break; 257 case Indirect: 258 OS << "Indirect Align=" << getIndirectAlign().getQuantity() 259 << " ByVal=" << getIndirectByVal() 260 << " Realign=" << getIndirectRealign(); 261 break; 262 case IndirectAliased: 263 OS << "Indirect Align=" << getIndirectAlign().getQuantity() 264 << " AadrSpace=" << getIndirectAddrSpace() 265 << " Realign=" << getIndirectRealign(); 266 break; 267 case Expand: 268 OS << "Expand"; 269 break; 270 case CoerceAndExpand: 271 OS << "CoerceAndExpand Type="; 272 getCoerceAndExpandType()->print(OS); 273 break; 274 } 275 OS << ")\n"; 276 } 277 278 // Dynamically round a pointer up to a multiple of the given alignment. 279 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF, 280 llvm::Value *Ptr, 281 CharUnits Align) { 282 llvm::Value *PtrAsInt = Ptr; 283 // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align; 284 PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy); 285 PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt, 286 llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1)); 287 PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt, 288 llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity())); 289 PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt, 290 Ptr->getType(), 291 Ptr->getName() + ".aligned"); 292 return PtrAsInt; 293 } 294 295 /// Emit va_arg for a platform using the common void* representation, 296 /// where arguments are simply emitted in an array of slots on the stack. 297 /// 298 /// This version implements the core direct-value passing rules. 299 /// 300 /// \param SlotSize - The size and alignment of a stack slot. 301 /// Each argument will be allocated to a multiple of this number of 302 /// slots, and all the slots will be aligned to this value. 303 /// \param AllowHigherAlign - The slot alignment is not a cap; 304 /// an argument type with an alignment greater than the slot size 305 /// will be emitted on a higher-alignment address, potentially 306 /// leaving one or more empty slots behind as padding. If this 307 /// is false, the returned address might be less-aligned than 308 /// DirectAlign. 309 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF, 310 Address VAListAddr, 311 llvm::Type *DirectTy, 312 CharUnits DirectSize, 313 CharUnits DirectAlign, 314 CharUnits SlotSize, 315 bool AllowHigherAlign) { 316 // Cast the element type to i8* if necessary. Some platforms define 317 // va_list as a struct containing an i8* instead of just an i8*. 318 if (VAListAddr.getElementType() != CGF.Int8PtrTy) 319 VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy); 320 321 llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur"); 322 323 // If the CC aligns values higher than the slot size, do so if needed. 324 Address Addr = Address::invalid(); 325 if (AllowHigherAlign && DirectAlign > SlotSize) { 326 Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign), 327 DirectAlign); 328 } else { 329 Addr = Address(Ptr, SlotSize); 330 } 331 332 // Advance the pointer past the argument, then store that back. 333 CharUnits FullDirectSize = DirectSize.alignTo(SlotSize); 334 Address NextPtr = 335 CGF.Builder.CreateConstInBoundsByteGEP(Addr, FullDirectSize, "argp.next"); 336 CGF.Builder.CreateStore(NextPtr.getPointer(), VAListAddr); 337 338 // If the argument is smaller than a slot, and this is a big-endian 339 // target, the argument will be right-adjusted in its slot. 340 if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() && 341 !DirectTy->isStructTy()) { 342 Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize); 343 } 344 345 Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy); 346 return Addr; 347 } 348 349 /// Emit va_arg for a platform using the common void* representation, 350 /// where arguments are simply emitted in an array of slots on the stack. 351 /// 352 /// \param IsIndirect - Values of this type are passed indirectly. 353 /// \param ValueInfo - The size and alignment of this type, generally 354 /// computed with getContext().getTypeInfoInChars(ValueTy). 355 /// \param SlotSizeAndAlign - The size and alignment of a stack slot. 356 /// Each argument will be allocated to a multiple of this number of 357 /// slots, and all the slots will be aligned to this value. 358 /// \param AllowHigherAlign - The slot alignment is not a cap; 359 /// an argument type with an alignment greater than the slot size 360 /// will be emitted on a higher-alignment address, potentially 361 /// leaving one or more empty slots behind as padding. 362 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr, 363 QualType ValueTy, bool IsIndirect, 364 TypeInfoChars ValueInfo, 365 CharUnits SlotSizeAndAlign, 366 bool AllowHigherAlign) { 367 // The size and alignment of the value that was passed directly. 368 CharUnits DirectSize, DirectAlign; 369 if (IsIndirect) { 370 DirectSize = CGF.getPointerSize(); 371 DirectAlign = CGF.getPointerAlign(); 372 } else { 373 DirectSize = ValueInfo.Width; 374 DirectAlign = ValueInfo.Align; 375 } 376 377 // Cast the address we've calculated to the right type. 378 llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy); 379 if (IsIndirect) 380 DirectTy = DirectTy->getPointerTo(0); 381 382 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy, 383 DirectSize, DirectAlign, 384 SlotSizeAndAlign, 385 AllowHigherAlign); 386 387 if (IsIndirect) { 388 Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.Align); 389 } 390 391 return Addr; 392 393 } 394 395 static Address complexTempStructure(CodeGenFunction &CGF, Address VAListAddr, 396 QualType Ty, CharUnits SlotSize, 397 CharUnits EltSize, const ComplexType *CTy) { 398 Address Addr = 399 emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty, SlotSize * 2, 400 SlotSize, SlotSize, /*AllowHigher*/ true); 401 402 Address RealAddr = Addr; 403 Address ImagAddr = RealAddr; 404 if (CGF.CGM.getDataLayout().isBigEndian()) { 405 RealAddr = 406 CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize - EltSize); 407 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr, 408 2 * SlotSize - EltSize); 409 } else { 410 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize); 411 } 412 413 llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType()); 414 RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy); 415 ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy); 416 llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal"); 417 llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag"); 418 419 Address Temp = CGF.CreateMemTemp(Ty, "vacplx"); 420 CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty), 421 /*init*/ true); 422 return Temp; 423 } 424 425 static Address emitMergePHI(CodeGenFunction &CGF, 426 Address Addr1, llvm::BasicBlock *Block1, 427 Address Addr2, llvm::BasicBlock *Block2, 428 const llvm::Twine &Name = "") { 429 assert(Addr1.getType() == Addr2.getType()); 430 llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name); 431 PHI->addIncoming(Addr1.getPointer(), Block1); 432 PHI->addIncoming(Addr2.getPointer(), Block2); 433 CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment()); 434 return Address(PHI, Addr1.getElementType(), Align); 435 } 436 437 TargetCodeGenInfo::~TargetCodeGenInfo() = default; 438 439 // If someone can figure out a general rule for this, that would be great. 440 // It's probably just doomed to be platform-dependent, though. 441 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const { 442 // Verified for: 443 // x86-64 FreeBSD, Linux, Darwin 444 // x86-32 FreeBSD, Linux, Darwin 445 // PowerPC Linux, Darwin 446 // ARM Darwin (*not* EABI) 447 // AArch64 Linux 448 return 32; 449 } 450 451 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args, 452 const FunctionNoProtoType *fnType) const { 453 // The following conventions are known to require this to be false: 454 // x86_stdcall 455 // MIPS 456 // For everything else, we just prefer false unless we opt out. 457 return false; 458 } 459 460 void 461 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib, 462 llvm::SmallString<24> &Opt) const { 463 // This assumes the user is passing a library name like "rt" instead of a 464 // filename like "librt.a/so", and that they don't care whether it's static or 465 // dynamic. 466 Opt = "-l"; 467 Opt += Lib; 468 } 469 470 unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const { 471 // OpenCL kernels are called via an explicit runtime API with arguments 472 // set with clSetKernelArg(), not as normal sub-functions. 473 // Return SPIR_KERNEL by default as the kernel calling convention to 474 // ensure the fingerprint is fixed such way that each OpenCL argument 475 // gets one matching argument in the produced kernel function argument 476 // list to enable feasible implementation of clSetKernelArg() with 477 // aggregates etc. In case we would use the default C calling conv here, 478 // clSetKernelArg() might break depending on the target-specific 479 // conventions; different targets might split structs passed as values 480 // to multiple function arguments etc. 481 return llvm::CallingConv::SPIR_KERNEL; 482 } 483 484 llvm::Constant *TargetCodeGenInfo::getNullPointer(const CodeGen::CodeGenModule &CGM, 485 llvm::PointerType *T, QualType QT) const { 486 return llvm::ConstantPointerNull::get(T); 487 } 488 489 LangAS TargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM, 490 const VarDecl *D) const { 491 assert(!CGM.getLangOpts().OpenCL && 492 !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && 493 "Address space agnostic languages only"); 494 return D ? D->getType().getAddressSpace() : LangAS::Default; 495 } 496 497 llvm::Value *TargetCodeGenInfo::performAddrSpaceCast( 498 CodeGen::CodeGenFunction &CGF, llvm::Value *Src, LangAS SrcAddr, 499 LangAS DestAddr, llvm::Type *DestTy, bool isNonNull) const { 500 // Since target may map different address spaces in AST to the same address 501 // space, an address space conversion may end up as a bitcast. 502 if (auto *C = dyn_cast<llvm::Constant>(Src)) 503 return performAddrSpaceCast(CGF.CGM, C, SrcAddr, DestAddr, DestTy); 504 // Try to preserve the source's name to make IR more readable. 505 return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 506 Src, DestTy, Src->hasName() ? Src->getName() + ".ascast" : ""); 507 } 508 509 llvm::Constant * 510 TargetCodeGenInfo::performAddrSpaceCast(CodeGenModule &CGM, llvm::Constant *Src, 511 LangAS SrcAddr, LangAS DestAddr, 512 llvm::Type *DestTy) const { 513 // Since target may map different address spaces in AST to the same address 514 // space, an address space conversion may end up as a bitcast. 515 return llvm::ConstantExpr::getPointerCast(Src, DestTy); 516 } 517 518 llvm::SyncScope::ID 519 TargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts, 520 SyncScope Scope, 521 llvm::AtomicOrdering Ordering, 522 llvm::LLVMContext &Ctx) const { 523 return Ctx.getOrInsertSyncScopeID(""); /* default sync scope */ 524 } 525 526 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays); 527 528 /// isEmptyField - Return true iff a the field is "empty", that is it 529 /// is an unnamed bit-field or an (array of) empty record(s). 530 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD, 531 bool AllowArrays) { 532 if (FD->isUnnamedBitfield()) 533 return true; 534 535 QualType FT = FD->getType(); 536 537 // Constant arrays of empty records count as empty, strip them off. 538 // Constant arrays of zero length always count as empty. 539 bool WasArray = false; 540 if (AllowArrays) 541 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 542 if (AT->getSize() == 0) 543 return true; 544 FT = AT->getElementType(); 545 // The [[no_unique_address]] special case below does not apply to 546 // arrays of C++ empty records, so we need to remember this fact. 547 WasArray = true; 548 } 549 550 const RecordType *RT = FT->getAs<RecordType>(); 551 if (!RT) 552 return false; 553 554 // C++ record fields are never empty, at least in the Itanium ABI. 555 // 556 // FIXME: We should use a predicate for whether this behavior is true in the 557 // current ABI. 558 // 559 // The exception to the above rule are fields marked with the 560 // [[no_unique_address]] attribute (since C++20). Those do count as empty 561 // according to the Itanium ABI. The exception applies only to records, 562 // not arrays of records, so we must also check whether we stripped off an 563 // array type above. 564 if (isa<CXXRecordDecl>(RT->getDecl()) && 565 (WasArray || !FD->hasAttr<NoUniqueAddressAttr>())) 566 return false; 567 568 return isEmptyRecord(Context, FT, AllowArrays); 569 } 570 571 /// isEmptyRecord - Return true iff a structure contains only empty 572 /// fields. Note that a structure with a flexible array member is not 573 /// considered empty. 574 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) { 575 const RecordType *RT = T->getAs<RecordType>(); 576 if (!RT) 577 return false; 578 const RecordDecl *RD = RT->getDecl(); 579 if (RD->hasFlexibleArrayMember()) 580 return false; 581 582 // If this is a C++ record, check the bases first. 583 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 584 for (const auto &I : CXXRD->bases()) 585 if (!isEmptyRecord(Context, I.getType(), true)) 586 return false; 587 588 for (const auto *I : RD->fields()) 589 if (!isEmptyField(Context, I, AllowArrays)) 590 return false; 591 return true; 592 } 593 594 /// isSingleElementStruct - Determine if a structure is a "single 595 /// element struct", i.e. it has exactly one non-empty field or 596 /// exactly one field which is itself a single element 597 /// struct. Structures with flexible array members are never 598 /// considered single element structs. 599 /// 600 /// \return The field declaration for the single non-empty field, if 601 /// it exists. 602 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) { 603 const RecordType *RT = T->getAs<RecordType>(); 604 if (!RT) 605 return nullptr; 606 607 const RecordDecl *RD = RT->getDecl(); 608 if (RD->hasFlexibleArrayMember()) 609 return nullptr; 610 611 const Type *Found = nullptr; 612 613 // If this is a C++ record, check the bases first. 614 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 615 for (const auto &I : CXXRD->bases()) { 616 // Ignore empty records. 617 if (isEmptyRecord(Context, I.getType(), true)) 618 continue; 619 620 // If we already found an element then this isn't a single-element struct. 621 if (Found) 622 return nullptr; 623 624 // If this is non-empty and not a single element struct, the composite 625 // cannot be a single element struct. 626 Found = isSingleElementStruct(I.getType(), Context); 627 if (!Found) 628 return nullptr; 629 } 630 } 631 632 // Check for single element. 633 for (const auto *FD : RD->fields()) { 634 QualType FT = FD->getType(); 635 636 // Ignore empty fields. 637 if (isEmptyField(Context, FD, true)) 638 continue; 639 640 // If we already found an element then this isn't a single-element 641 // struct. 642 if (Found) 643 return nullptr; 644 645 // Treat single element arrays as the element. 646 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 647 if (AT->getSize().getZExtValue() != 1) 648 break; 649 FT = AT->getElementType(); 650 } 651 652 if (!isAggregateTypeForABI(FT)) { 653 Found = FT.getTypePtr(); 654 } else { 655 Found = isSingleElementStruct(FT, Context); 656 if (!Found) 657 return nullptr; 658 } 659 } 660 661 // We don't consider a struct a single-element struct if it has 662 // padding beyond the element type. 663 if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T)) 664 return nullptr; 665 666 return Found; 667 } 668 669 namespace { 670 Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty, 671 const ABIArgInfo &AI) { 672 // This default implementation defers to the llvm backend's va_arg 673 // instruction. It can handle only passing arguments directly 674 // (typically only handled in the backend for primitive types), or 675 // aggregates passed indirectly by pointer (NOTE: if the "byval" 676 // flag has ABI impact in the callee, this implementation cannot 677 // work.) 678 679 // Only a few cases are covered here at the moment -- those needed 680 // by the default abi. 681 llvm::Value *Val; 682 683 if (AI.isIndirect()) { 684 assert(!AI.getPaddingType() && 685 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 686 assert( 687 !AI.getIndirectRealign() && 688 "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!"); 689 690 auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty); 691 CharUnits TyAlignForABI = TyInfo.Align; 692 693 llvm::Type *BaseTy = 694 llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); 695 llvm::Value *Addr = 696 CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy); 697 return Address(Addr, TyAlignForABI); 698 } else { 699 assert((AI.isDirect() || AI.isExtend()) && 700 "Unexpected ArgInfo Kind in generic VAArg emitter!"); 701 702 assert(!AI.getInReg() && 703 "Unexpected InReg seen in arginfo in generic VAArg emitter!"); 704 assert(!AI.getPaddingType() && 705 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 706 assert(!AI.getDirectOffset() && 707 "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!"); 708 assert(!AI.getCoerceToType() && 709 "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!"); 710 711 Address Temp = CGF.CreateMemTemp(Ty, "varet"); 712 Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), CGF.ConvertType(Ty)); 713 CGF.Builder.CreateStore(Val, Temp); 714 return Temp; 715 } 716 } 717 718 /// DefaultABIInfo - The default implementation for ABI specific 719 /// details. This implementation provides information which results in 720 /// self-consistent and sensible LLVM IR generation, but does not 721 /// conform to any particular ABI. 722 class DefaultABIInfo : public ABIInfo { 723 public: 724 DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 725 726 ABIArgInfo classifyReturnType(QualType RetTy) const; 727 ABIArgInfo classifyArgumentType(QualType RetTy) const; 728 729 void computeInfo(CGFunctionInfo &FI) const override { 730 if (!getCXXABI().classifyReturnType(FI)) 731 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 732 for (auto &I : FI.arguments()) 733 I.info = classifyArgumentType(I.type); 734 } 735 736 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 737 QualType Ty) const override { 738 return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty)); 739 } 740 }; 741 742 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo { 743 public: 744 DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 745 : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {} 746 }; 747 748 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const { 749 Ty = useFirstFieldIfTransparentUnion(Ty); 750 751 if (isAggregateTypeForABI(Ty)) { 752 // Records with non-trivial destructors/copy-constructors should not be 753 // passed by value. 754 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 755 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 756 757 return getNaturalAlignIndirect(Ty); 758 } 759 760 // Treat an enum type as its underlying type. 761 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 762 Ty = EnumTy->getDecl()->getIntegerType(); 763 764 ASTContext &Context = getContext(); 765 if (const auto *EIT = Ty->getAs<BitIntType>()) 766 if (EIT->getNumBits() > 767 Context.getTypeSize(Context.getTargetInfo().hasInt128Type() 768 ? Context.Int128Ty 769 : Context.LongLongTy)) 770 return getNaturalAlignIndirect(Ty); 771 772 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 773 : ABIArgInfo::getDirect()); 774 } 775 776 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const { 777 if (RetTy->isVoidType()) 778 return ABIArgInfo::getIgnore(); 779 780 if (isAggregateTypeForABI(RetTy)) 781 return getNaturalAlignIndirect(RetTy); 782 783 // Treat an enum type as its underlying type. 784 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 785 RetTy = EnumTy->getDecl()->getIntegerType(); 786 787 if (const auto *EIT = RetTy->getAs<BitIntType>()) 788 if (EIT->getNumBits() > 789 getContext().getTypeSize(getContext().getTargetInfo().hasInt128Type() 790 ? getContext().Int128Ty 791 : getContext().LongLongTy)) 792 return getNaturalAlignIndirect(RetTy); 793 794 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 795 : ABIArgInfo::getDirect()); 796 } 797 798 //===----------------------------------------------------------------------===// 799 // WebAssembly ABI Implementation 800 // 801 // This is a very simple ABI that relies a lot on DefaultABIInfo. 802 //===----------------------------------------------------------------------===// 803 804 class WebAssemblyABIInfo final : public SwiftABIInfo { 805 public: 806 enum ABIKind { 807 MVP = 0, 808 ExperimentalMV = 1, 809 }; 810 811 private: 812 DefaultABIInfo defaultInfo; 813 ABIKind Kind; 814 815 public: 816 explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind) 817 : SwiftABIInfo(CGT), defaultInfo(CGT), Kind(Kind) {} 818 819 private: 820 ABIArgInfo classifyReturnType(QualType RetTy) const; 821 ABIArgInfo classifyArgumentType(QualType Ty) const; 822 823 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 824 // non-virtual, but computeInfo and EmitVAArg are virtual, so we 825 // overload them. 826 void computeInfo(CGFunctionInfo &FI) const override { 827 if (!getCXXABI().classifyReturnType(FI)) 828 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 829 for (auto &Arg : FI.arguments()) 830 Arg.info = classifyArgumentType(Arg.type); 831 } 832 833 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 834 QualType Ty) const override; 835 836 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 837 bool asReturnValue) const override { 838 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 839 } 840 841 bool isSwiftErrorInRegister() const override { 842 return false; 843 } 844 }; 845 846 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo { 847 public: 848 explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 849 WebAssemblyABIInfo::ABIKind K) 850 : TargetCodeGenInfo(std::make_unique<WebAssemblyABIInfo>(CGT, K)) {} 851 852 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 853 CodeGen::CodeGenModule &CGM) const override { 854 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 855 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 856 if (const auto *Attr = FD->getAttr<WebAssemblyImportModuleAttr>()) { 857 llvm::Function *Fn = cast<llvm::Function>(GV); 858 llvm::AttrBuilder B(GV->getContext()); 859 B.addAttribute("wasm-import-module", Attr->getImportModule()); 860 Fn->addFnAttrs(B); 861 } 862 if (const auto *Attr = FD->getAttr<WebAssemblyImportNameAttr>()) { 863 llvm::Function *Fn = cast<llvm::Function>(GV); 864 llvm::AttrBuilder B(GV->getContext()); 865 B.addAttribute("wasm-import-name", Attr->getImportName()); 866 Fn->addFnAttrs(B); 867 } 868 if (const auto *Attr = FD->getAttr<WebAssemblyExportNameAttr>()) { 869 llvm::Function *Fn = cast<llvm::Function>(GV); 870 llvm::AttrBuilder B(GV->getContext()); 871 B.addAttribute("wasm-export-name", Attr->getExportName()); 872 Fn->addFnAttrs(B); 873 } 874 } 875 876 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 877 llvm::Function *Fn = cast<llvm::Function>(GV); 878 if (!FD->doesThisDeclarationHaveABody() && !FD->hasPrototype()) 879 Fn->addFnAttr("no-prototype"); 880 } 881 } 882 }; 883 884 /// Classify argument of given type \p Ty. 885 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const { 886 Ty = useFirstFieldIfTransparentUnion(Ty); 887 888 if (isAggregateTypeForABI(Ty)) { 889 // Records with non-trivial destructors/copy-constructors should not be 890 // passed by value. 891 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 892 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 893 // Ignore empty structs/unions. 894 if (isEmptyRecord(getContext(), Ty, true)) 895 return ABIArgInfo::getIgnore(); 896 // Lower single-element structs to just pass a regular value. TODO: We 897 // could do reasonable-size multiple-element structs too, using getExpand(), 898 // though watch out for things like bitfields. 899 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 900 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 901 // For the experimental multivalue ABI, fully expand all other aggregates 902 if (Kind == ABIKind::ExperimentalMV) { 903 const RecordType *RT = Ty->getAs<RecordType>(); 904 assert(RT); 905 bool HasBitField = false; 906 for (auto *Field : RT->getDecl()->fields()) { 907 if (Field->isBitField()) { 908 HasBitField = true; 909 break; 910 } 911 } 912 if (!HasBitField) 913 return ABIArgInfo::getExpand(); 914 } 915 } 916 917 // Otherwise just do the default thing. 918 return defaultInfo.classifyArgumentType(Ty); 919 } 920 921 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const { 922 if (isAggregateTypeForABI(RetTy)) { 923 // Records with non-trivial destructors/copy-constructors should not be 924 // returned by value. 925 if (!getRecordArgABI(RetTy, getCXXABI())) { 926 // Ignore empty structs/unions. 927 if (isEmptyRecord(getContext(), RetTy, true)) 928 return ABIArgInfo::getIgnore(); 929 // Lower single-element structs to just return a regular value. TODO: We 930 // could do reasonable-size multiple-element structs too, using 931 // ABIArgInfo::getDirect(). 932 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 933 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 934 // For the experimental multivalue ABI, return all other aggregates 935 if (Kind == ABIKind::ExperimentalMV) 936 return ABIArgInfo::getDirect(); 937 } 938 } 939 940 // Otherwise just do the default thing. 941 return defaultInfo.classifyReturnType(RetTy); 942 } 943 944 Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 945 QualType Ty) const { 946 bool IsIndirect = isAggregateTypeForABI(Ty) && 947 !isEmptyRecord(getContext(), Ty, true) && 948 !isSingleElementStruct(Ty, getContext()); 949 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 950 getContext().getTypeInfoInChars(Ty), 951 CharUnits::fromQuantity(4), 952 /*AllowHigherAlign=*/true); 953 } 954 955 //===----------------------------------------------------------------------===// 956 // le32/PNaCl bitcode ABI Implementation 957 // 958 // This is a simplified version of the x86_32 ABI. Arguments and return values 959 // are always passed on the stack. 960 //===----------------------------------------------------------------------===// 961 962 class PNaClABIInfo : public ABIInfo { 963 public: 964 PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 965 966 ABIArgInfo classifyReturnType(QualType RetTy) const; 967 ABIArgInfo classifyArgumentType(QualType RetTy) const; 968 969 void computeInfo(CGFunctionInfo &FI) const override; 970 Address EmitVAArg(CodeGenFunction &CGF, 971 Address VAListAddr, QualType Ty) const override; 972 }; 973 974 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo { 975 public: 976 PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 977 : TargetCodeGenInfo(std::make_unique<PNaClABIInfo>(CGT)) {} 978 }; 979 980 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const { 981 if (!getCXXABI().classifyReturnType(FI)) 982 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 983 984 for (auto &I : FI.arguments()) 985 I.info = classifyArgumentType(I.type); 986 } 987 988 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 989 QualType Ty) const { 990 // The PNaCL ABI is a bit odd, in that varargs don't use normal 991 // function classification. Structs get passed directly for varargs 992 // functions, through a rewriting transform in 993 // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows 994 // this target to actually support a va_arg instructions with an 995 // aggregate type, unlike other targets. 996 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 997 } 998 999 /// Classify argument of given type \p Ty. 1000 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const { 1001 if (isAggregateTypeForABI(Ty)) { 1002 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 1003 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 1004 return getNaturalAlignIndirect(Ty); 1005 } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 1006 // Treat an enum type as its underlying type. 1007 Ty = EnumTy->getDecl()->getIntegerType(); 1008 } else if (Ty->isFloatingType()) { 1009 // Floating-point types don't go inreg. 1010 return ABIArgInfo::getDirect(); 1011 } else if (const auto *EIT = Ty->getAs<BitIntType>()) { 1012 // Treat bit-precise integers as integers if <= 64, otherwise pass 1013 // indirectly. 1014 if (EIT->getNumBits() > 64) 1015 return getNaturalAlignIndirect(Ty); 1016 return ABIArgInfo::getDirect(); 1017 } 1018 1019 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 1020 : ABIArgInfo::getDirect()); 1021 } 1022 1023 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const { 1024 if (RetTy->isVoidType()) 1025 return ABIArgInfo::getIgnore(); 1026 1027 // In the PNaCl ABI we always return records/structures on the stack. 1028 if (isAggregateTypeForABI(RetTy)) 1029 return getNaturalAlignIndirect(RetTy); 1030 1031 // Treat bit-precise integers as integers if <= 64, otherwise pass indirectly. 1032 if (const auto *EIT = RetTy->getAs<BitIntType>()) { 1033 if (EIT->getNumBits() > 64) 1034 return getNaturalAlignIndirect(RetTy); 1035 return ABIArgInfo::getDirect(); 1036 } 1037 1038 // Treat an enum type as its underlying type. 1039 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 1040 RetTy = EnumTy->getDecl()->getIntegerType(); 1041 1042 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 1043 : ABIArgInfo::getDirect()); 1044 } 1045 1046 /// IsX86_MMXType - Return true if this is an MMX type. 1047 bool IsX86_MMXType(llvm::Type *IRType) { 1048 // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>. 1049 return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 && 1050 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() && 1051 IRType->getScalarSizeInBits() != 64; 1052 } 1053 1054 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 1055 StringRef Constraint, 1056 llvm::Type* Ty) { 1057 bool IsMMXCons = llvm::StringSwitch<bool>(Constraint) 1058 .Cases("y", "&y", "^Ym", true) 1059 .Default(false); 1060 if (IsMMXCons && Ty->isVectorTy()) { 1061 if (cast<llvm::VectorType>(Ty)->getPrimitiveSizeInBits().getFixedSize() != 1062 64) { 1063 // Invalid MMX constraint 1064 return nullptr; 1065 } 1066 1067 return llvm::Type::getX86_MMXTy(CGF.getLLVMContext()); 1068 } 1069 1070 // No operation needed 1071 return Ty; 1072 } 1073 1074 /// Returns true if this type can be passed in SSE registers with the 1075 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64. 1076 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) { 1077 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 1078 if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) { 1079 if (BT->getKind() == BuiltinType::LongDouble) { 1080 if (&Context.getTargetInfo().getLongDoubleFormat() == 1081 &llvm::APFloat::x87DoubleExtended()) 1082 return false; 1083 } 1084 return true; 1085 } 1086 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 1087 // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX 1088 // registers specially. 1089 unsigned VecSize = Context.getTypeSize(VT); 1090 if (VecSize == 128 || VecSize == 256 || VecSize == 512) 1091 return true; 1092 } 1093 return false; 1094 } 1095 1096 /// Returns true if this aggregate is small enough to be passed in SSE registers 1097 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64. 1098 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) { 1099 return NumMembers <= 4; 1100 } 1101 1102 /// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86. 1103 static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) { 1104 auto AI = ABIArgInfo::getDirect(T); 1105 AI.setInReg(true); 1106 AI.setCanBeFlattened(false); 1107 return AI; 1108 } 1109 1110 //===----------------------------------------------------------------------===// 1111 // X86-32 ABI Implementation 1112 //===----------------------------------------------------------------------===// 1113 1114 /// Similar to llvm::CCState, but for Clang. 1115 struct CCState { 1116 CCState(CGFunctionInfo &FI) 1117 : IsPreassigned(FI.arg_size()), CC(FI.getCallingConvention()) {} 1118 1119 llvm::SmallBitVector IsPreassigned; 1120 unsigned CC = CallingConv::CC_C; 1121 unsigned FreeRegs = 0; 1122 unsigned FreeSSERegs = 0; 1123 }; 1124 1125 /// X86_32ABIInfo - The X86-32 ABI information. 1126 class X86_32ABIInfo : public SwiftABIInfo { 1127 enum Class { 1128 Integer, 1129 Float 1130 }; 1131 1132 static const unsigned MinABIStackAlignInBytes = 4; 1133 1134 bool IsDarwinVectorABI; 1135 bool IsRetSmallStructInRegABI; 1136 bool IsWin32StructABI; 1137 bool IsSoftFloatABI; 1138 bool IsMCUABI; 1139 bool IsLinuxABI; 1140 unsigned DefaultNumRegisterParameters; 1141 1142 static bool isRegisterSize(unsigned Size) { 1143 return (Size == 8 || Size == 16 || Size == 32 || Size == 64); 1144 } 1145 1146 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 1147 // FIXME: Assumes vectorcall is in use. 1148 return isX86VectorTypeForVectorCall(getContext(), Ty); 1149 } 1150 1151 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 1152 uint64_t NumMembers) const override { 1153 // FIXME: Assumes vectorcall is in use. 1154 return isX86VectorCallAggregateSmallEnough(NumMembers); 1155 } 1156 1157 bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const; 1158 1159 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 1160 /// such that the argument will be passed in memory. 1161 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 1162 1163 ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const; 1164 1165 /// Return the alignment to use for the given type on the stack. 1166 unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const; 1167 1168 Class classify(QualType Ty) const; 1169 ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const; 1170 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 1171 1172 /// Updates the number of available free registers, returns 1173 /// true if any registers were allocated. 1174 bool updateFreeRegs(QualType Ty, CCState &State) const; 1175 1176 bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg, 1177 bool &NeedsPadding) const; 1178 bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const; 1179 1180 bool canExpandIndirectArgument(QualType Ty) const; 1181 1182 /// Rewrite the function info so that all memory arguments use 1183 /// inalloca. 1184 void rewriteWithInAlloca(CGFunctionInfo &FI) const; 1185 1186 void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1187 CharUnits &StackOffset, ABIArgInfo &Info, 1188 QualType Type) const; 1189 void runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const; 1190 1191 public: 1192 1193 void computeInfo(CGFunctionInfo &FI) const override; 1194 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 1195 QualType Ty) const override; 1196 1197 X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 1198 bool RetSmallStructInRegABI, bool Win32StructABI, 1199 unsigned NumRegisterParameters, bool SoftFloatABI) 1200 : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI), 1201 IsRetSmallStructInRegABI(RetSmallStructInRegABI), 1202 IsWin32StructABI(Win32StructABI), IsSoftFloatABI(SoftFloatABI), 1203 IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()), 1204 IsLinuxABI(CGT.getTarget().getTriple().isOSLinux() || 1205 CGT.getTarget().getTriple().isOSCygMing()), 1206 DefaultNumRegisterParameters(NumRegisterParameters) {} 1207 1208 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 1209 bool asReturnValue) const override { 1210 // LLVM's x86-32 lowering currently only assigns up to three 1211 // integer registers and three fp registers. Oddly, it'll use up to 1212 // four vector registers for vectors, but those can overlap with the 1213 // scalar registers. 1214 return occupiesMoreThan(CGT, scalars, /*total*/ 3); 1215 } 1216 1217 bool isSwiftErrorInRegister() const override { 1218 // x86-32 lowering does not support passing swifterror in a register. 1219 return false; 1220 } 1221 }; 1222 1223 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo { 1224 public: 1225 X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 1226 bool RetSmallStructInRegABI, bool Win32StructABI, 1227 unsigned NumRegisterParameters, bool SoftFloatABI) 1228 : TargetCodeGenInfo(std::make_unique<X86_32ABIInfo>( 1229 CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI, 1230 NumRegisterParameters, SoftFloatABI)) {} 1231 1232 static bool isStructReturnInRegABI( 1233 const llvm::Triple &Triple, const CodeGenOptions &Opts); 1234 1235 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 1236 CodeGen::CodeGenModule &CGM) const override; 1237 1238 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 1239 // Darwin uses different dwarf register numbers for EH. 1240 if (CGM.getTarget().getTriple().isOSDarwin()) return 5; 1241 return 4; 1242 } 1243 1244 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 1245 llvm::Value *Address) const override; 1246 1247 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 1248 StringRef Constraint, 1249 llvm::Type* Ty) const override { 1250 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 1251 } 1252 1253 void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue, 1254 std::string &Constraints, 1255 std::vector<llvm::Type *> &ResultRegTypes, 1256 std::vector<llvm::Type *> &ResultTruncRegTypes, 1257 std::vector<LValue> &ResultRegDests, 1258 std::string &AsmString, 1259 unsigned NumOutputs) const override; 1260 1261 llvm::Constant * 1262 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 1263 unsigned Sig = (0xeb << 0) | // jmp rel8 1264 (0x06 << 8) | // .+0x08 1265 ('v' << 16) | 1266 ('2' << 24); 1267 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 1268 } 1269 1270 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 1271 return "movl\t%ebp, %ebp" 1272 "\t\t// marker for objc_retainAutoreleaseReturnValue"; 1273 } 1274 }; 1275 1276 } 1277 1278 /// Rewrite input constraint references after adding some output constraints. 1279 /// In the case where there is one output and one input and we add one output, 1280 /// we need to replace all operand references greater than or equal to 1: 1281 /// mov $0, $1 1282 /// mov eax, $1 1283 /// The result will be: 1284 /// mov $0, $2 1285 /// mov eax, $2 1286 static void rewriteInputConstraintReferences(unsigned FirstIn, 1287 unsigned NumNewOuts, 1288 std::string &AsmString) { 1289 std::string Buf; 1290 llvm::raw_string_ostream OS(Buf); 1291 size_t Pos = 0; 1292 while (Pos < AsmString.size()) { 1293 size_t DollarStart = AsmString.find('$', Pos); 1294 if (DollarStart == std::string::npos) 1295 DollarStart = AsmString.size(); 1296 size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart); 1297 if (DollarEnd == std::string::npos) 1298 DollarEnd = AsmString.size(); 1299 OS << StringRef(&AsmString[Pos], DollarEnd - Pos); 1300 Pos = DollarEnd; 1301 size_t NumDollars = DollarEnd - DollarStart; 1302 if (NumDollars % 2 != 0 && Pos < AsmString.size()) { 1303 // We have an operand reference. 1304 size_t DigitStart = Pos; 1305 if (AsmString[DigitStart] == '{') { 1306 OS << '{'; 1307 ++DigitStart; 1308 } 1309 size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart); 1310 if (DigitEnd == std::string::npos) 1311 DigitEnd = AsmString.size(); 1312 StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart); 1313 unsigned OperandIndex; 1314 if (!OperandStr.getAsInteger(10, OperandIndex)) { 1315 if (OperandIndex >= FirstIn) 1316 OperandIndex += NumNewOuts; 1317 OS << OperandIndex; 1318 } else { 1319 OS << OperandStr; 1320 } 1321 Pos = DigitEnd; 1322 } 1323 } 1324 AsmString = std::move(OS.str()); 1325 } 1326 1327 /// Add output constraints for EAX:EDX because they are return registers. 1328 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs( 1329 CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints, 1330 std::vector<llvm::Type *> &ResultRegTypes, 1331 std::vector<llvm::Type *> &ResultTruncRegTypes, 1332 std::vector<LValue> &ResultRegDests, std::string &AsmString, 1333 unsigned NumOutputs) const { 1334 uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType()); 1335 1336 // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is 1337 // larger. 1338 if (!Constraints.empty()) 1339 Constraints += ','; 1340 if (RetWidth <= 32) { 1341 Constraints += "={eax}"; 1342 ResultRegTypes.push_back(CGF.Int32Ty); 1343 } else { 1344 // Use the 'A' constraint for EAX:EDX. 1345 Constraints += "=A"; 1346 ResultRegTypes.push_back(CGF.Int64Ty); 1347 } 1348 1349 // Truncate EAX or EAX:EDX to an integer of the appropriate size. 1350 llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth); 1351 ResultTruncRegTypes.push_back(CoerceTy); 1352 1353 // Coerce the integer by bitcasting the return slot pointer. 1354 ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(CGF), 1355 CoerceTy->getPointerTo())); 1356 ResultRegDests.push_back(ReturnSlot); 1357 1358 rewriteInputConstraintReferences(NumOutputs, 1, AsmString); 1359 } 1360 1361 /// shouldReturnTypeInRegister - Determine if the given type should be 1362 /// returned in a register (for the Darwin and MCU ABI). 1363 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty, 1364 ASTContext &Context) const { 1365 uint64_t Size = Context.getTypeSize(Ty); 1366 1367 // For i386, type must be register sized. 1368 // For the MCU ABI, it only needs to be <= 8-byte 1369 if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size))) 1370 return false; 1371 1372 if (Ty->isVectorType()) { 1373 // 64- and 128- bit vectors inside structures are not returned in 1374 // registers. 1375 if (Size == 64 || Size == 128) 1376 return false; 1377 1378 return true; 1379 } 1380 1381 // If this is a builtin, pointer, enum, complex type, member pointer, or 1382 // member function pointer it is ok. 1383 if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() || 1384 Ty->isAnyComplexType() || Ty->isEnumeralType() || 1385 Ty->isBlockPointerType() || Ty->isMemberPointerType()) 1386 return true; 1387 1388 // Arrays are treated like records. 1389 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) 1390 return shouldReturnTypeInRegister(AT->getElementType(), Context); 1391 1392 // Otherwise, it must be a record type. 1393 const RecordType *RT = Ty->getAs<RecordType>(); 1394 if (!RT) return false; 1395 1396 // FIXME: Traverse bases here too. 1397 1398 // Structure types are passed in register if all fields would be 1399 // passed in a register. 1400 for (const auto *FD : RT->getDecl()->fields()) { 1401 // Empty fields are ignored. 1402 if (isEmptyField(Context, FD, true)) 1403 continue; 1404 1405 // Check fields recursively. 1406 if (!shouldReturnTypeInRegister(FD->getType(), Context)) 1407 return false; 1408 } 1409 return true; 1410 } 1411 1412 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) { 1413 // Treat complex types as the element type. 1414 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 1415 Ty = CTy->getElementType(); 1416 1417 // Check for a type which we know has a simple scalar argument-passing 1418 // convention without any padding. (We're specifically looking for 32 1419 // and 64-bit integer and integer-equivalents, float, and double.) 1420 if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() && 1421 !Ty->isEnumeralType() && !Ty->isBlockPointerType()) 1422 return false; 1423 1424 uint64_t Size = Context.getTypeSize(Ty); 1425 return Size == 32 || Size == 64; 1426 } 1427 1428 static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD, 1429 uint64_t &Size) { 1430 for (const auto *FD : RD->fields()) { 1431 // Scalar arguments on the stack get 4 byte alignment on x86. If the 1432 // argument is smaller than 32-bits, expanding the struct will create 1433 // alignment padding. 1434 if (!is32Or64BitBasicType(FD->getType(), Context)) 1435 return false; 1436 1437 // FIXME: Reject bit-fields wholesale; there are two problems, we don't know 1438 // how to expand them yet, and the predicate for telling if a bitfield still 1439 // counts as "basic" is more complicated than what we were doing previously. 1440 if (FD->isBitField()) 1441 return false; 1442 1443 Size += Context.getTypeSize(FD->getType()); 1444 } 1445 return true; 1446 } 1447 1448 static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD, 1449 uint64_t &Size) { 1450 // Don't do this if there are any non-empty bases. 1451 for (const CXXBaseSpecifier &Base : RD->bases()) { 1452 if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(), 1453 Size)) 1454 return false; 1455 } 1456 if (!addFieldSizes(Context, RD, Size)) 1457 return false; 1458 return true; 1459 } 1460 1461 /// Test whether an argument type which is to be passed indirectly (on the 1462 /// stack) would have the equivalent layout if it was expanded into separate 1463 /// arguments. If so, we prefer to do the latter to avoid inhibiting 1464 /// optimizations. 1465 bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const { 1466 // We can only expand structure types. 1467 const RecordType *RT = Ty->getAs<RecordType>(); 1468 if (!RT) 1469 return false; 1470 const RecordDecl *RD = RT->getDecl(); 1471 uint64_t Size = 0; 1472 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 1473 if (!IsWin32StructABI) { 1474 // On non-Windows, we have to conservatively match our old bitcode 1475 // prototypes in order to be ABI-compatible at the bitcode level. 1476 if (!CXXRD->isCLike()) 1477 return false; 1478 } else { 1479 // Don't do this for dynamic classes. 1480 if (CXXRD->isDynamicClass()) 1481 return false; 1482 } 1483 if (!addBaseAndFieldSizes(getContext(), CXXRD, Size)) 1484 return false; 1485 } else { 1486 if (!addFieldSizes(getContext(), RD, Size)) 1487 return false; 1488 } 1489 1490 // We can do this if there was no alignment padding. 1491 return Size == getContext().getTypeSize(Ty); 1492 } 1493 1494 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const { 1495 // If the return value is indirect, then the hidden argument is consuming one 1496 // integer register. 1497 if (State.FreeRegs) { 1498 --State.FreeRegs; 1499 if (!IsMCUABI) 1500 return getNaturalAlignIndirectInReg(RetTy); 1501 } 1502 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 1503 } 1504 1505 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, 1506 CCState &State) const { 1507 if (RetTy->isVoidType()) 1508 return ABIArgInfo::getIgnore(); 1509 1510 const Type *Base = nullptr; 1511 uint64_t NumElts = 0; 1512 if ((State.CC == llvm::CallingConv::X86_VectorCall || 1513 State.CC == llvm::CallingConv::X86_RegCall) && 1514 isHomogeneousAggregate(RetTy, Base, NumElts)) { 1515 // The LLVM struct type for such an aggregate should lower properly. 1516 return ABIArgInfo::getDirect(); 1517 } 1518 1519 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 1520 // On Darwin, some vectors are returned in registers. 1521 if (IsDarwinVectorABI) { 1522 uint64_t Size = getContext().getTypeSize(RetTy); 1523 1524 // 128-bit vectors are a special case; they are returned in 1525 // registers and we need to make sure to pick a type the LLVM 1526 // backend will like. 1527 if (Size == 128) 1528 return ABIArgInfo::getDirect(llvm::FixedVectorType::get( 1529 llvm::Type::getInt64Ty(getVMContext()), 2)); 1530 1531 // Always return in register if it fits in a general purpose 1532 // register, or if it is 64 bits and has a single element. 1533 if ((Size == 8 || Size == 16 || Size == 32) || 1534 (Size == 64 && VT->getNumElements() == 1)) 1535 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1536 Size)); 1537 1538 return getIndirectReturnResult(RetTy, State); 1539 } 1540 1541 return ABIArgInfo::getDirect(); 1542 } 1543 1544 if (isAggregateTypeForABI(RetTy)) { 1545 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 1546 // Structures with flexible arrays are always indirect. 1547 if (RT->getDecl()->hasFlexibleArrayMember()) 1548 return getIndirectReturnResult(RetTy, State); 1549 } 1550 1551 // If specified, structs and unions are always indirect. 1552 if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType()) 1553 return getIndirectReturnResult(RetTy, State); 1554 1555 // Ignore empty structs/unions. 1556 if (isEmptyRecord(getContext(), RetTy, true)) 1557 return ABIArgInfo::getIgnore(); 1558 1559 // Return complex of _Float16 as <2 x half> so the backend will use xmm0. 1560 if (const ComplexType *CT = RetTy->getAs<ComplexType>()) { 1561 QualType ET = getContext().getCanonicalType(CT->getElementType()); 1562 if (ET->isFloat16Type()) 1563 return ABIArgInfo::getDirect(llvm::FixedVectorType::get( 1564 llvm::Type::getHalfTy(getVMContext()), 2)); 1565 } 1566 1567 // Small structures which are register sized are generally returned 1568 // in a register. 1569 if (shouldReturnTypeInRegister(RetTy, getContext())) { 1570 uint64_t Size = getContext().getTypeSize(RetTy); 1571 1572 // As a special-case, if the struct is a "single-element" struct, and 1573 // the field is of type "float" or "double", return it in a 1574 // floating-point register. (MSVC does not apply this special case.) 1575 // We apply a similar transformation for pointer types to improve the 1576 // quality of the generated IR. 1577 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 1578 if ((!IsWin32StructABI && SeltTy->isRealFloatingType()) 1579 || SeltTy->hasPointerRepresentation()) 1580 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 1581 1582 // FIXME: We should be able to narrow this integer in cases with dead 1583 // padding. 1584 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size)); 1585 } 1586 1587 return getIndirectReturnResult(RetTy, State); 1588 } 1589 1590 // Treat an enum type as its underlying type. 1591 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 1592 RetTy = EnumTy->getDecl()->getIntegerType(); 1593 1594 if (const auto *EIT = RetTy->getAs<BitIntType>()) 1595 if (EIT->getNumBits() > 64) 1596 return getIndirectReturnResult(RetTy, State); 1597 1598 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 1599 : ABIArgInfo::getDirect()); 1600 } 1601 1602 static bool isSIMDVectorType(ASTContext &Context, QualType Ty) { 1603 return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128; 1604 } 1605 1606 static bool isRecordWithSIMDVectorType(ASTContext &Context, QualType Ty) { 1607 const RecordType *RT = Ty->getAs<RecordType>(); 1608 if (!RT) 1609 return false; 1610 const RecordDecl *RD = RT->getDecl(); 1611 1612 // If this is a C++ record, check the bases first. 1613 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 1614 for (const auto &I : CXXRD->bases()) 1615 if (!isRecordWithSIMDVectorType(Context, I.getType())) 1616 return false; 1617 1618 for (const auto *i : RD->fields()) { 1619 QualType FT = i->getType(); 1620 1621 if (isSIMDVectorType(Context, FT)) 1622 return true; 1623 1624 if (isRecordWithSIMDVectorType(Context, FT)) 1625 return true; 1626 } 1627 1628 return false; 1629 } 1630 1631 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty, 1632 unsigned Align) const { 1633 // Otherwise, if the alignment is less than or equal to the minimum ABI 1634 // alignment, just use the default; the backend will handle this. 1635 if (Align <= MinABIStackAlignInBytes) 1636 return 0; // Use default alignment. 1637 1638 if (IsLinuxABI) { 1639 // Exclude other System V OS (e.g Darwin, PS4 and FreeBSD) since we don't 1640 // want to spend any effort dealing with the ramifications of ABI breaks. 1641 // 1642 // If the vector type is __m128/__m256/__m512, return the default alignment. 1643 if (Ty->isVectorType() && (Align == 16 || Align == 32 || Align == 64)) 1644 return Align; 1645 } 1646 // On non-Darwin, the stack type alignment is always 4. 1647 if (!IsDarwinVectorABI) { 1648 // Set explicit alignment, since we may need to realign the top. 1649 return MinABIStackAlignInBytes; 1650 } 1651 1652 // Otherwise, if the type contains an SSE vector type, the alignment is 16. 1653 if (Align >= 16 && (isSIMDVectorType(getContext(), Ty) || 1654 isRecordWithSIMDVectorType(getContext(), Ty))) 1655 return 16; 1656 1657 return MinABIStackAlignInBytes; 1658 } 1659 1660 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal, 1661 CCState &State) const { 1662 if (!ByVal) { 1663 if (State.FreeRegs) { 1664 --State.FreeRegs; // Non-byval indirects just use one pointer. 1665 if (!IsMCUABI) 1666 return getNaturalAlignIndirectInReg(Ty); 1667 } 1668 return getNaturalAlignIndirect(Ty, false); 1669 } 1670 1671 // Compute the byval alignment. 1672 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 1673 unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign); 1674 if (StackAlign == 0) 1675 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true); 1676 1677 // If the stack alignment is less than the type alignment, realign the 1678 // argument. 1679 bool Realign = TypeAlign > StackAlign; 1680 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign), 1681 /*ByVal=*/true, Realign); 1682 } 1683 1684 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const { 1685 const Type *T = isSingleElementStruct(Ty, getContext()); 1686 if (!T) 1687 T = Ty.getTypePtr(); 1688 1689 if (const BuiltinType *BT = T->getAs<BuiltinType>()) { 1690 BuiltinType::Kind K = BT->getKind(); 1691 if (K == BuiltinType::Float || K == BuiltinType::Double) 1692 return Float; 1693 } 1694 return Integer; 1695 } 1696 1697 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const { 1698 if (!IsSoftFloatABI) { 1699 Class C = classify(Ty); 1700 if (C == Float) 1701 return false; 1702 } 1703 1704 unsigned Size = getContext().getTypeSize(Ty); 1705 unsigned SizeInRegs = (Size + 31) / 32; 1706 1707 if (SizeInRegs == 0) 1708 return false; 1709 1710 if (!IsMCUABI) { 1711 if (SizeInRegs > State.FreeRegs) { 1712 State.FreeRegs = 0; 1713 return false; 1714 } 1715 } else { 1716 // The MCU psABI allows passing parameters in-reg even if there are 1717 // earlier parameters that are passed on the stack. Also, 1718 // it does not allow passing >8-byte structs in-register, 1719 // even if there are 3 free registers available. 1720 if (SizeInRegs > State.FreeRegs || SizeInRegs > 2) 1721 return false; 1722 } 1723 1724 State.FreeRegs -= SizeInRegs; 1725 return true; 1726 } 1727 1728 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State, 1729 bool &InReg, 1730 bool &NeedsPadding) const { 1731 // On Windows, aggregates other than HFAs are never passed in registers, and 1732 // they do not consume register slots. Homogenous floating-point aggregates 1733 // (HFAs) have already been dealt with at this point. 1734 if (IsWin32StructABI && isAggregateTypeForABI(Ty)) 1735 return false; 1736 1737 NeedsPadding = false; 1738 InReg = !IsMCUABI; 1739 1740 if (!updateFreeRegs(Ty, State)) 1741 return false; 1742 1743 if (IsMCUABI) 1744 return true; 1745 1746 if (State.CC == llvm::CallingConv::X86_FastCall || 1747 State.CC == llvm::CallingConv::X86_VectorCall || 1748 State.CC == llvm::CallingConv::X86_RegCall) { 1749 if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs) 1750 NeedsPadding = true; 1751 1752 return false; 1753 } 1754 1755 return true; 1756 } 1757 1758 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const { 1759 if (!updateFreeRegs(Ty, State)) 1760 return false; 1761 1762 if (IsMCUABI) 1763 return false; 1764 1765 if (State.CC == llvm::CallingConv::X86_FastCall || 1766 State.CC == llvm::CallingConv::X86_VectorCall || 1767 State.CC == llvm::CallingConv::X86_RegCall) { 1768 if (getContext().getTypeSize(Ty) > 32) 1769 return false; 1770 1771 return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() || 1772 Ty->isReferenceType()); 1773 } 1774 1775 return true; 1776 } 1777 1778 void X86_32ABIInfo::runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const { 1779 // Vectorcall x86 works subtly different than in x64, so the format is 1780 // a bit different than the x64 version. First, all vector types (not HVAs) 1781 // are assigned, with the first 6 ending up in the [XYZ]MM0-5 registers. 1782 // This differs from the x64 implementation, where the first 6 by INDEX get 1783 // registers. 1784 // In the second pass over the arguments, HVAs are passed in the remaining 1785 // vector registers if possible, or indirectly by address. The address will be 1786 // passed in ECX/EDX if available. Any other arguments are passed according to 1787 // the usual fastcall rules. 1788 MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments(); 1789 for (int I = 0, E = Args.size(); I < E; ++I) { 1790 const Type *Base = nullptr; 1791 uint64_t NumElts = 0; 1792 const QualType &Ty = Args[I].type; 1793 if ((Ty->isVectorType() || Ty->isBuiltinType()) && 1794 isHomogeneousAggregate(Ty, Base, NumElts)) { 1795 if (State.FreeSSERegs >= NumElts) { 1796 State.FreeSSERegs -= NumElts; 1797 Args[I].info = ABIArgInfo::getDirectInReg(); 1798 State.IsPreassigned.set(I); 1799 } 1800 } 1801 } 1802 } 1803 1804 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, 1805 CCState &State) const { 1806 // FIXME: Set alignment on indirect arguments. 1807 bool IsFastCall = State.CC == llvm::CallingConv::X86_FastCall; 1808 bool IsRegCall = State.CC == llvm::CallingConv::X86_RegCall; 1809 bool IsVectorCall = State.CC == llvm::CallingConv::X86_VectorCall; 1810 1811 Ty = useFirstFieldIfTransparentUnion(Ty); 1812 TypeInfo TI = getContext().getTypeInfo(Ty); 1813 1814 // Check with the C++ ABI first. 1815 const RecordType *RT = Ty->getAs<RecordType>(); 1816 if (RT) { 1817 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 1818 if (RAA == CGCXXABI::RAA_Indirect) { 1819 return getIndirectResult(Ty, false, State); 1820 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 1821 // The field index doesn't matter, we'll fix it up later. 1822 return ABIArgInfo::getInAlloca(/*FieldIndex=*/0); 1823 } 1824 } 1825 1826 // Regcall uses the concept of a homogenous vector aggregate, similar 1827 // to other targets. 1828 const Type *Base = nullptr; 1829 uint64_t NumElts = 0; 1830 if ((IsRegCall || IsVectorCall) && 1831 isHomogeneousAggregate(Ty, Base, NumElts)) { 1832 if (State.FreeSSERegs >= NumElts) { 1833 State.FreeSSERegs -= NumElts; 1834 1835 // Vectorcall passes HVAs directly and does not flatten them, but regcall 1836 // does. 1837 if (IsVectorCall) 1838 return getDirectX86Hva(); 1839 1840 if (Ty->isBuiltinType() || Ty->isVectorType()) 1841 return ABIArgInfo::getDirect(); 1842 return ABIArgInfo::getExpand(); 1843 } 1844 return getIndirectResult(Ty, /*ByVal=*/false, State); 1845 } 1846 1847 if (isAggregateTypeForABI(Ty)) { 1848 // Structures with flexible arrays are always indirect. 1849 // FIXME: This should not be byval! 1850 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 1851 return getIndirectResult(Ty, true, State); 1852 1853 // Ignore empty structs/unions on non-Windows. 1854 if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true)) 1855 return ABIArgInfo::getIgnore(); 1856 1857 llvm::LLVMContext &LLVMContext = getVMContext(); 1858 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 1859 bool NeedsPadding = false; 1860 bool InReg; 1861 if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) { 1862 unsigned SizeInRegs = (TI.Width + 31) / 32; 1863 SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32); 1864 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 1865 if (InReg) 1866 return ABIArgInfo::getDirectInReg(Result); 1867 else 1868 return ABIArgInfo::getDirect(Result); 1869 } 1870 llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr; 1871 1872 // Pass over-aligned aggregates on Windows indirectly. This behavior was 1873 // added in MSVC 2015. 1874 if (IsWin32StructABI && TI.isAlignRequired() && TI.Align > 32) 1875 return getIndirectResult(Ty, /*ByVal=*/false, State); 1876 1877 // Expand small (<= 128-bit) record types when we know that the stack layout 1878 // of those arguments will match the struct. This is important because the 1879 // LLVM backend isn't smart enough to remove byval, which inhibits many 1880 // optimizations. 1881 // Don't do this for the MCU if there are still free integer registers 1882 // (see X86_64 ABI for full explanation). 1883 if (TI.Width <= 4 * 32 && (!IsMCUABI || State.FreeRegs == 0) && 1884 canExpandIndirectArgument(Ty)) 1885 return ABIArgInfo::getExpandWithPadding( 1886 IsFastCall || IsVectorCall || IsRegCall, PaddingType); 1887 1888 return getIndirectResult(Ty, true, State); 1889 } 1890 1891 if (const VectorType *VT = Ty->getAs<VectorType>()) { 1892 // On Windows, vectors are passed directly if registers are available, or 1893 // indirectly if not. This avoids the need to align argument memory. Pass 1894 // user-defined vector types larger than 512 bits indirectly for simplicity. 1895 if (IsWin32StructABI) { 1896 if (TI.Width <= 512 && State.FreeSSERegs > 0) { 1897 --State.FreeSSERegs; 1898 return ABIArgInfo::getDirectInReg(); 1899 } 1900 return getIndirectResult(Ty, /*ByVal=*/false, State); 1901 } 1902 1903 // On Darwin, some vectors are passed in memory, we handle this by passing 1904 // it as an i8/i16/i32/i64. 1905 if (IsDarwinVectorABI) { 1906 if ((TI.Width == 8 || TI.Width == 16 || TI.Width == 32) || 1907 (TI.Width == 64 && VT->getNumElements() == 1)) 1908 return ABIArgInfo::getDirect( 1909 llvm::IntegerType::get(getVMContext(), TI.Width)); 1910 } 1911 1912 if (IsX86_MMXType(CGT.ConvertType(Ty))) 1913 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64)); 1914 1915 return ABIArgInfo::getDirect(); 1916 } 1917 1918 1919 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 1920 Ty = EnumTy->getDecl()->getIntegerType(); 1921 1922 bool InReg = shouldPrimitiveUseInReg(Ty, State); 1923 1924 if (isPromotableIntegerTypeForABI(Ty)) { 1925 if (InReg) 1926 return ABIArgInfo::getExtendInReg(Ty); 1927 return ABIArgInfo::getExtend(Ty); 1928 } 1929 1930 if (const auto *EIT = Ty->getAs<BitIntType>()) { 1931 if (EIT->getNumBits() <= 64) { 1932 if (InReg) 1933 return ABIArgInfo::getDirectInReg(); 1934 return ABIArgInfo::getDirect(); 1935 } 1936 return getIndirectResult(Ty, /*ByVal=*/false, State); 1937 } 1938 1939 if (InReg) 1940 return ABIArgInfo::getDirectInReg(); 1941 return ABIArgInfo::getDirect(); 1942 } 1943 1944 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const { 1945 CCState State(FI); 1946 if (IsMCUABI) 1947 State.FreeRegs = 3; 1948 else if (State.CC == llvm::CallingConv::X86_FastCall) { 1949 State.FreeRegs = 2; 1950 State.FreeSSERegs = 3; 1951 } else if (State.CC == llvm::CallingConv::X86_VectorCall) { 1952 State.FreeRegs = 2; 1953 State.FreeSSERegs = 6; 1954 } else if (FI.getHasRegParm()) 1955 State.FreeRegs = FI.getRegParm(); 1956 else if (State.CC == llvm::CallingConv::X86_RegCall) { 1957 State.FreeRegs = 5; 1958 State.FreeSSERegs = 8; 1959 } else if (IsWin32StructABI) { 1960 // Since MSVC 2015, the first three SSE vectors have been passed in 1961 // registers. The rest are passed indirectly. 1962 State.FreeRegs = DefaultNumRegisterParameters; 1963 State.FreeSSERegs = 3; 1964 } else 1965 State.FreeRegs = DefaultNumRegisterParameters; 1966 1967 if (!::classifyReturnType(getCXXABI(), FI, *this)) { 1968 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State); 1969 } else if (FI.getReturnInfo().isIndirect()) { 1970 // The C++ ABI is not aware of register usage, so we have to check if the 1971 // return value was sret and put it in a register ourselves if appropriate. 1972 if (State.FreeRegs) { 1973 --State.FreeRegs; // The sret parameter consumes a register. 1974 if (!IsMCUABI) 1975 FI.getReturnInfo().setInReg(true); 1976 } 1977 } 1978 1979 // The chain argument effectively gives us another free register. 1980 if (FI.isChainCall()) 1981 ++State.FreeRegs; 1982 1983 // For vectorcall, do a first pass over the arguments, assigning FP and vector 1984 // arguments to XMM registers as available. 1985 if (State.CC == llvm::CallingConv::X86_VectorCall) 1986 runVectorCallFirstPass(FI, State); 1987 1988 bool UsedInAlloca = false; 1989 MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments(); 1990 for (int I = 0, E = Args.size(); I < E; ++I) { 1991 // Skip arguments that have already been assigned. 1992 if (State.IsPreassigned.test(I)) 1993 continue; 1994 1995 Args[I].info = classifyArgumentType(Args[I].type, State); 1996 UsedInAlloca |= (Args[I].info.getKind() == ABIArgInfo::InAlloca); 1997 } 1998 1999 // If we needed to use inalloca for any argument, do a second pass and rewrite 2000 // all the memory arguments to use inalloca. 2001 if (UsedInAlloca) 2002 rewriteWithInAlloca(FI); 2003 } 2004 2005 void 2006 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 2007 CharUnits &StackOffset, ABIArgInfo &Info, 2008 QualType Type) const { 2009 // Arguments are always 4-byte-aligned. 2010 CharUnits WordSize = CharUnits::fromQuantity(4); 2011 assert(StackOffset.isMultipleOf(WordSize) && "unaligned inalloca struct"); 2012 2013 // sret pointers and indirect things will require an extra pointer 2014 // indirection, unless they are byval. Most things are byval, and will not 2015 // require this indirection. 2016 bool IsIndirect = false; 2017 if (Info.isIndirect() && !Info.getIndirectByVal()) 2018 IsIndirect = true; 2019 Info = ABIArgInfo::getInAlloca(FrameFields.size(), IsIndirect); 2020 llvm::Type *LLTy = CGT.ConvertTypeForMem(Type); 2021 if (IsIndirect) 2022 LLTy = LLTy->getPointerTo(0); 2023 FrameFields.push_back(LLTy); 2024 StackOffset += IsIndirect ? WordSize : getContext().getTypeSizeInChars(Type); 2025 2026 // Insert padding bytes to respect alignment. 2027 CharUnits FieldEnd = StackOffset; 2028 StackOffset = FieldEnd.alignTo(WordSize); 2029 if (StackOffset != FieldEnd) { 2030 CharUnits NumBytes = StackOffset - FieldEnd; 2031 llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext()); 2032 Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity()); 2033 FrameFields.push_back(Ty); 2034 } 2035 } 2036 2037 static bool isArgInAlloca(const ABIArgInfo &Info) { 2038 // Leave ignored and inreg arguments alone. 2039 switch (Info.getKind()) { 2040 case ABIArgInfo::InAlloca: 2041 return true; 2042 case ABIArgInfo::Ignore: 2043 case ABIArgInfo::IndirectAliased: 2044 return false; 2045 case ABIArgInfo::Indirect: 2046 case ABIArgInfo::Direct: 2047 case ABIArgInfo::Extend: 2048 return !Info.getInReg(); 2049 case ABIArgInfo::Expand: 2050 case ABIArgInfo::CoerceAndExpand: 2051 // These are aggregate types which are never passed in registers when 2052 // inalloca is involved. 2053 return true; 2054 } 2055 llvm_unreachable("invalid enum"); 2056 } 2057 2058 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const { 2059 assert(IsWin32StructABI && "inalloca only supported on win32"); 2060 2061 // Build a packed struct type for all of the arguments in memory. 2062 SmallVector<llvm::Type *, 6> FrameFields; 2063 2064 // The stack alignment is always 4. 2065 CharUnits StackAlign = CharUnits::fromQuantity(4); 2066 2067 CharUnits StackOffset; 2068 CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end(); 2069 2070 // Put 'this' into the struct before 'sret', if necessary. 2071 bool IsThisCall = 2072 FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall; 2073 ABIArgInfo &Ret = FI.getReturnInfo(); 2074 if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall && 2075 isArgInAlloca(I->info)) { 2076 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 2077 ++I; 2078 } 2079 2080 // Put the sret parameter into the inalloca struct if it's in memory. 2081 if (Ret.isIndirect() && !Ret.getInReg()) { 2082 addFieldToArgStruct(FrameFields, StackOffset, Ret, FI.getReturnType()); 2083 // On Windows, the hidden sret parameter is always returned in eax. 2084 Ret.setInAllocaSRet(IsWin32StructABI); 2085 } 2086 2087 // Skip the 'this' parameter in ecx. 2088 if (IsThisCall) 2089 ++I; 2090 2091 // Put arguments passed in memory into the struct. 2092 for (; I != E; ++I) { 2093 if (isArgInAlloca(I->info)) 2094 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 2095 } 2096 2097 FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields, 2098 /*isPacked=*/true), 2099 StackAlign); 2100 } 2101 2102 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF, 2103 Address VAListAddr, QualType Ty) const { 2104 2105 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 2106 2107 // x86-32 changes the alignment of certain arguments on the stack. 2108 // 2109 // Just messing with TypeInfo like this works because we never pass 2110 // anything indirectly. 2111 TypeInfo.Align = CharUnits::fromQuantity( 2112 getTypeStackAlignInBytes(Ty, TypeInfo.Align.getQuantity())); 2113 2114 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 2115 TypeInfo, CharUnits::fromQuantity(4), 2116 /*AllowHigherAlign*/ true); 2117 } 2118 2119 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI( 2120 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 2121 assert(Triple.getArch() == llvm::Triple::x86); 2122 2123 switch (Opts.getStructReturnConvention()) { 2124 case CodeGenOptions::SRCK_Default: 2125 break; 2126 case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return 2127 return false; 2128 case CodeGenOptions::SRCK_InRegs: // -freg-struct-return 2129 return true; 2130 } 2131 2132 if (Triple.isOSDarwin() || Triple.isOSIAMCU()) 2133 return true; 2134 2135 switch (Triple.getOS()) { 2136 case llvm::Triple::DragonFly: 2137 case llvm::Triple::FreeBSD: 2138 case llvm::Triple::OpenBSD: 2139 case llvm::Triple::Win32: 2140 return true; 2141 default: 2142 return false; 2143 } 2144 } 2145 2146 static void addX86InterruptAttrs(const FunctionDecl *FD, llvm::GlobalValue *GV, 2147 CodeGen::CodeGenModule &CGM) { 2148 if (!FD->hasAttr<AnyX86InterruptAttr>()) 2149 return; 2150 2151 llvm::Function *Fn = cast<llvm::Function>(GV); 2152 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2153 if (FD->getNumParams() == 0) 2154 return; 2155 2156 auto PtrTy = cast<PointerType>(FD->getParamDecl(0)->getType()); 2157 llvm::Type *ByValTy = CGM.getTypes().ConvertType(PtrTy->getPointeeType()); 2158 llvm::Attribute NewAttr = llvm::Attribute::getWithByValType( 2159 Fn->getContext(), ByValTy); 2160 Fn->addParamAttr(0, NewAttr); 2161 } 2162 2163 void X86_32TargetCodeGenInfo::setTargetAttributes( 2164 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2165 if (GV->isDeclaration()) 2166 return; 2167 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2168 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2169 llvm::Function *Fn = cast<llvm::Function>(GV); 2170 Fn->addFnAttr("stackrealign"); 2171 } 2172 2173 addX86InterruptAttrs(FD, GV, CGM); 2174 } 2175 } 2176 2177 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable( 2178 CodeGen::CodeGenFunction &CGF, 2179 llvm::Value *Address) const { 2180 CodeGen::CGBuilderTy &Builder = CGF.Builder; 2181 2182 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 2183 2184 // 0-7 are the eight integer registers; the order is different 2185 // on Darwin (for EH), but the range is the same. 2186 // 8 is %eip. 2187 AssignToArrayRange(Builder, Address, Four8, 0, 8); 2188 2189 if (CGF.CGM.getTarget().getTriple().isOSDarwin()) { 2190 // 12-16 are st(0..4). Not sure why we stop at 4. 2191 // These have size 16, which is sizeof(long double) on 2192 // platforms with 8-byte alignment for that type. 2193 llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16); 2194 AssignToArrayRange(Builder, Address, Sixteen8, 12, 16); 2195 2196 } else { 2197 // 9 is %eflags, which doesn't get a size on Darwin for some 2198 // reason. 2199 Builder.CreateAlignedStore( 2200 Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9), 2201 CharUnits::One()); 2202 2203 // 11-16 are st(0..5). Not sure why we stop at 5. 2204 // These have size 12, which is sizeof(long double) on 2205 // platforms with 4-byte alignment for that type. 2206 llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12); 2207 AssignToArrayRange(Builder, Address, Twelve8, 11, 16); 2208 } 2209 2210 return false; 2211 } 2212 2213 //===----------------------------------------------------------------------===// 2214 // X86-64 ABI Implementation 2215 //===----------------------------------------------------------------------===// 2216 2217 2218 namespace { 2219 /// The AVX ABI level for X86 targets. 2220 enum class X86AVXABILevel { 2221 None, 2222 AVX, 2223 AVX512 2224 }; 2225 2226 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel. 2227 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) { 2228 switch (AVXLevel) { 2229 case X86AVXABILevel::AVX512: 2230 return 512; 2231 case X86AVXABILevel::AVX: 2232 return 256; 2233 case X86AVXABILevel::None: 2234 return 128; 2235 } 2236 llvm_unreachable("Unknown AVXLevel"); 2237 } 2238 2239 /// X86_64ABIInfo - The X86_64 ABI information. 2240 class X86_64ABIInfo : public SwiftABIInfo { 2241 enum Class { 2242 Integer = 0, 2243 SSE, 2244 SSEUp, 2245 X87, 2246 X87Up, 2247 ComplexX87, 2248 NoClass, 2249 Memory 2250 }; 2251 2252 /// merge - Implement the X86_64 ABI merging algorithm. 2253 /// 2254 /// Merge an accumulating classification \arg Accum with a field 2255 /// classification \arg Field. 2256 /// 2257 /// \param Accum - The accumulating classification. This should 2258 /// always be either NoClass or the result of a previous merge 2259 /// call. In addition, this should never be Memory (the caller 2260 /// should just return Memory for the aggregate). 2261 static Class merge(Class Accum, Class Field); 2262 2263 /// postMerge - Implement the X86_64 ABI post merging algorithm. 2264 /// 2265 /// Post merger cleanup, reduces a malformed Hi and Lo pair to 2266 /// final MEMORY or SSE classes when necessary. 2267 /// 2268 /// \param AggregateSize - The size of the current aggregate in 2269 /// the classification process. 2270 /// 2271 /// \param Lo - The classification for the parts of the type 2272 /// residing in the low word of the containing object. 2273 /// 2274 /// \param Hi - The classification for the parts of the type 2275 /// residing in the higher words of the containing object. 2276 /// 2277 void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const; 2278 2279 /// classify - Determine the x86_64 register classes in which the 2280 /// given type T should be passed. 2281 /// 2282 /// \param Lo - The classification for the parts of the type 2283 /// residing in the low word of the containing object. 2284 /// 2285 /// \param Hi - The classification for the parts of the type 2286 /// residing in the high word of the containing object. 2287 /// 2288 /// \param OffsetBase - The bit offset of this type in the 2289 /// containing object. Some parameters are classified different 2290 /// depending on whether they straddle an eightbyte boundary. 2291 /// 2292 /// \param isNamedArg - Whether the argument in question is a "named" 2293 /// argument, as used in AMD64-ABI 3.5.7. 2294 /// 2295 /// If a word is unused its result will be NoClass; if a type should 2296 /// be passed in Memory then at least the classification of \arg Lo 2297 /// will be Memory. 2298 /// 2299 /// The \arg Lo class will be NoClass iff the argument is ignored. 2300 /// 2301 /// If the \arg Lo class is ComplexX87, then the \arg Hi class will 2302 /// also be ComplexX87. 2303 void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi, 2304 bool isNamedArg) const; 2305 2306 llvm::Type *GetByteVectorType(QualType Ty) const; 2307 llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType, 2308 unsigned IROffset, QualType SourceTy, 2309 unsigned SourceOffset) const; 2310 llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType, 2311 unsigned IROffset, QualType SourceTy, 2312 unsigned SourceOffset) const; 2313 2314 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 2315 /// such that the argument will be returned in memory. 2316 ABIArgInfo getIndirectReturnResult(QualType Ty) const; 2317 2318 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 2319 /// such that the argument will be passed in memory. 2320 /// 2321 /// \param freeIntRegs - The number of free integer registers remaining 2322 /// available. 2323 ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const; 2324 2325 ABIArgInfo classifyReturnType(QualType RetTy) const; 2326 2327 ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs, 2328 unsigned &neededInt, unsigned &neededSSE, 2329 bool isNamedArg) const; 2330 2331 ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt, 2332 unsigned &NeededSSE) const; 2333 2334 ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 2335 unsigned &NeededSSE) const; 2336 2337 bool IsIllegalVectorType(QualType Ty) const; 2338 2339 /// The 0.98 ABI revision clarified a lot of ambiguities, 2340 /// unfortunately in ways that were not always consistent with 2341 /// certain previous compilers. In particular, platforms which 2342 /// required strict binary compatibility with older versions of GCC 2343 /// may need to exempt themselves. 2344 bool honorsRevision0_98() const { 2345 return !getTarget().getTriple().isOSDarwin(); 2346 } 2347 2348 /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to 2349 /// classify it as INTEGER (for compatibility with older clang compilers). 2350 bool classifyIntegerMMXAsSSE() const { 2351 // Clang <= 3.8 did not do this. 2352 if (getContext().getLangOpts().getClangABICompat() <= 2353 LangOptions::ClangABI::Ver3_8) 2354 return false; 2355 2356 const llvm::Triple &Triple = getTarget().getTriple(); 2357 if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::PS4) 2358 return false; 2359 if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10) 2360 return false; 2361 return true; 2362 } 2363 2364 // GCC classifies vectors of __int128 as memory. 2365 bool passInt128VectorsInMem() const { 2366 // Clang <= 9.0 did not do this. 2367 if (getContext().getLangOpts().getClangABICompat() <= 2368 LangOptions::ClangABI::Ver9) 2369 return false; 2370 2371 const llvm::Triple &T = getTarget().getTriple(); 2372 return T.isOSLinux() || T.isOSNetBSD(); 2373 } 2374 2375 X86AVXABILevel AVXLevel; 2376 // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on 2377 // 64-bit hardware. 2378 bool Has64BitPointers; 2379 2380 public: 2381 X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) : 2382 SwiftABIInfo(CGT), AVXLevel(AVXLevel), 2383 Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) { 2384 } 2385 2386 bool isPassedUsingAVXType(QualType type) const { 2387 unsigned neededInt, neededSSE; 2388 // The freeIntRegs argument doesn't matter here. 2389 ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE, 2390 /*isNamedArg*/true); 2391 if (info.isDirect()) { 2392 llvm::Type *ty = info.getCoerceToType(); 2393 if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty)) 2394 return vectorTy->getPrimitiveSizeInBits().getFixedSize() > 128; 2395 } 2396 return false; 2397 } 2398 2399 void computeInfo(CGFunctionInfo &FI) const override; 2400 2401 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2402 QualType Ty) const override; 2403 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 2404 QualType Ty) const override; 2405 2406 bool has64BitPointers() const { 2407 return Has64BitPointers; 2408 } 2409 2410 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 2411 bool asReturnValue) const override { 2412 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2413 } 2414 bool isSwiftErrorInRegister() const override { 2415 return true; 2416 } 2417 }; 2418 2419 /// WinX86_64ABIInfo - The Windows X86_64 ABI information. 2420 class WinX86_64ABIInfo : public SwiftABIInfo { 2421 public: 2422 WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2423 : SwiftABIInfo(CGT), AVXLevel(AVXLevel), 2424 IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {} 2425 2426 void computeInfo(CGFunctionInfo &FI) const override; 2427 2428 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2429 QualType Ty) const override; 2430 2431 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 2432 // FIXME: Assumes vectorcall is in use. 2433 return isX86VectorTypeForVectorCall(getContext(), Ty); 2434 } 2435 2436 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 2437 uint64_t NumMembers) const override { 2438 // FIXME: Assumes vectorcall is in use. 2439 return isX86VectorCallAggregateSmallEnough(NumMembers); 2440 } 2441 2442 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type *> scalars, 2443 bool asReturnValue) const override { 2444 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2445 } 2446 2447 bool isSwiftErrorInRegister() const override { 2448 return true; 2449 } 2450 2451 private: 2452 ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType, 2453 bool IsVectorCall, bool IsRegCall) const; 2454 ABIArgInfo reclassifyHvaArgForVectorCall(QualType Ty, unsigned &FreeSSERegs, 2455 const ABIArgInfo ¤t) const; 2456 2457 X86AVXABILevel AVXLevel; 2458 2459 bool IsMingw64; 2460 }; 2461 2462 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2463 public: 2464 X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2465 : TargetCodeGenInfo(std::make_unique<X86_64ABIInfo>(CGT, AVXLevel)) {} 2466 2467 const X86_64ABIInfo &getABIInfo() const { 2468 return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo()); 2469 } 2470 2471 /// Disable tail call on x86-64. The epilogue code before the tail jump blocks 2472 /// autoreleaseRV/retainRV and autoreleaseRV/unsafeClaimRV optimizations. 2473 bool markARCOptimizedReturnCallsAsNoTail() const override { return true; } 2474 2475 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2476 return 7; 2477 } 2478 2479 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2480 llvm::Value *Address) const override { 2481 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2482 2483 // 0-15 are the 16 integer registers. 2484 // 16 is %rip. 2485 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2486 return false; 2487 } 2488 2489 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 2490 StringRef Constraint, 2491 llvm::Type* Ty) const override { 2492 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 2493 } 2494 2495 bool isNoProtoCallVariadic(const CallArgList &args, 2496 const FunctionNoProtoType *fnType) const override { 2497 // The default CC on x86-64 sets %al to the number of SSA 2498 // registers used, and GCC sets this when calling an unprototyped 2499 // function, so we override the default behavior. However, don't do 2500 // that when AVX types are involved: the ABI explicitly states it is 2501 // undefined, and it doesn't work in practice because of how the ABI 2502 // defines varargs anyway. 2503 if (fnType->getCallConv() == CC_C) { 2504 bool HasAVXType = false; 2505 for (CallArgList::const_iterator 2506 it = args.begin(), ie = args.end(); it != ie; ++it) { 2507 if (getABIInfo().isPassedUsingAVXType(it->Ty)) { 2508 HasAVXType = true; 2509 break; 2510 } 2511 } 2512 2513 if (!HasAVXType) 2514 return true; 2515 } 2516 2517 return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType); 2518 } 2519 2520 llvm::Constant * 2521 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 2522 unsigned Sig = (0xeb << 0) | // jmp rel8 2523 (0x06 << 8) | // .+0x08 2524 ('v' << 16) | 2525 ('2' << 24); 2526 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 2527 } 2528 2529 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2530 CodeGen::CodeGenModule &CGM) const override { 2531 if (GV->isDeclaration()) 2532 return; 2533 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2534 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2535 llvm::Function *Fn = cast<llvm::Function>(GV); 2536 Fn->addFnAttr("stackrealign"); 2537 } 2538 2539 addX86InterruptAttrs(FD, GV, CGM); 2540 } 2541 } 2542 2543 void checkFunctionCallABI(CodeGenModule &CGM, SourceLocation CallLoc, 2544 const FunctionDecl *Caller, 2545 const FunctionDecl *Callee, 2546 const CallArgList &Args) const override; 2547 }; 2548 2549 static void initFeatureMaps(const ASTContext &Ctx, 2550 llvm::StringMap<bool> &CallerMap, 2551 const FunctionDecl *Caller, 2552 llvm::StringMap<bool> &CalleeMap, 2553 const FunctionDecl *Callee) { 2554 if (CalleeMap.empty() && CallerMap.empty()) { 2555 // The caller is potentially nullptr in the case where the call isn't in a 2556 // function. In this case, the getFunctionFeatureMap ensures we just get 2557 // the TU level setting (since it cannot be modified by 'target'.. 2558 Ctx.getFunctionFeatureMap(CallerMap, Caller); 2559 Ctx.getFunctionFeatureMap(CalleeMap, Callee); 2560 } 2561 } 2562 2563 static bool checkAVXParamFeature(DiagnosticsEngine &Diag, 2564 SourceLocation CallLoc, 2565 const llvm::StringMap<bool> &CallerMap, 2566 const llvm::StringMap<bool> &CalleeMap, 2567 QualType Ty, StringRef Feature, 2568 bool IsArgument) { 2569 bool CallerHasFeat = CallerMap.lookup(Feature); 2570 bool CalleeHasFeat = CalleeMap.lookup(Feature); 2571 if (!CallerHasFeat && !CalleeHasFeat) 2572 return Diag.Report(CallLoc, diag::warn_avx_calling_convention) 2573 << IsArgument << Ty << Feature; 2574 2575 // Mixing calling conventions here is very clearly an error. 2576 if (!CallerHasFeat || !CalleeHasFeat) 2577 return Diag.Report(CallLoc, diag::err_avx_calling_convention) 2578 << IsArgument << Ty << Feature; 2579 2580 // Else, both caller and callee have the required feature, so there is no need 2581 // to diagnose. 2582 return false; 2583 } 2584 2585 static bool checkAVXParam(DiagnosticsEngine &Diag, ASTContext &Ctx, 2586 SourceLocation CallLoc, 2587 const llvm::StringMap<bool> &CallerMap, 2588 const llvm::StringMap<bool> &CalleeMap, QualType Ty, 2589 bool IsArgument) { 2590 uint64_t Size = Ctx.getTypeSize(Ty); 2591 if (Size > 256) 2592 return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty, 2593 "avx512f", IsArgument); 2594 2595 if (Size > 128) 2596 return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty, "avx", 2597 IsArgument); 2598 2599 return false; 2600 } 2601 2602 void X86_64TargetCodeGenInfo::checkFunctionCallABI( 2603 CodeGenModule &CGM, SourceLocation CallLoc, const FunctionDecl *Caller, 2604 const FunctionDecl *Callee, const CallArgList &Args) const { 2605 llvm::StringMap<bool> CallerMap; 2606 llvm::StringMap<bool> CalleeMap; 2607 unsigned ArgIndex = 0; 2608 2609 // We need to loop through the actual call arguments rather than the the 2610 // function's parameters, in case this variadic. 2611 for (const CallArg &Arg : Args) { 2612 // The "avx" feature changes how vectors >128 in size are passed. "avx512f" 2613 // additionally changes how vectors >256 in size are passed. Like GCC, we 2614 // warn when a function is called with an argument where this will change. 2615 // Unlike GCC, we also error when it is an obvious ABI mismatch, that is, 2616 // the caller and callee features are mismatched. 2617 // Unfortunately, we cannot do this diagnostic in SEMA, since the callee can 2618 // change its ABI with attribute-target after this call. 2619 if (Arg.getType()->isVectorType() && 2620 CGM.getContext().getTypeSize(Arg.getType()) > 128) { 2621 initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee); 2622 QualType Ty = Arg.getType(); 2623 // The CallArg seems to have desugared the type already, so for clearer 2624 // diagnostics, replace it with the type in the FunctionDecl if possible. 2625 if (ArgIndex < Callee->getNumParams()) 2626 Ty = Callee->getParamDecl(ArgIndex)->getType(); 2627 2628 if (checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap, 2629 CalleeMap, Ty, /*IsArgument*/ true)) 2630 return; 2631 } 2632 ++ArgIndex; 2633 } 2634 2635 // Check return always, as we don't have a good way of knowing in codegen 2636 // whether this value is used, tail-called, etc. 2637 if (Callee->getReturnType()->isVectorType() && 2638 CGM.getContext().getTypeSize(Callee->getReturnType()) > 128) { 2639 initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee); 2640 checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap, 2641 CalleeMap, Callee->getReturnType(), 2642 /*IsArgument*/ false); 2643 } 2644 } 2645 2646 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) { 2647 // If the argument does not end in .lib, automatically add the suffix. 2648 // If the argument contains a space, enclose it in quotes. 2649 // This matches the behavior of MSVC. 2650 bool Quote = Lib.contains(' '); 2651 std::string ArgStr = Quote ? "\"" : ""; 2652 ArgStr += Lib; 2653 if (!Lib.endswith_insensitive(".lib") && !Lib.endswith_insensitive(".a")) 2654 ArgStr += ".lib"; 2655 ArgStr += Quote ? "\"" : ""; 2656 return ArgStr; 2657 } 2658 2659 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo { 2660 public: 2661 WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2662 bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI, 2663 unsigned NumRegisterParameters) 2664 : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI, 2665 Win32StructABI, NumRegisterParameters, false) {} 2666 2667 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2668 CodeGen::CodeGenModule &CGM) const override; 2669 2670 void getDependentLibraryOption(llvm::StringRef Lib, 2671 llvm::SmallString<24> &Opt) const override { 2672 Opt = "/DEFAULTLIB:"; 2673 Opt += qualifyWindowsLibrary(Lib); 2674 } 2675 2676 void getDetectMismatchOption(llvm::StringRef Name, 2677 llvm::StringRef Value, 2678 llvm::SmallString<32> &Opt) const override { 2679 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2680 } 2681 }; 2682 2683 static void addStackProbeTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2684 CodeGen::CodeGenModule &CGM) { 2685 if (llvm::Function *Fn = dyn_cast_or_null<llvm::Function>(GV)) { 2686 2687 if (CGM.getCodeGenOpts().StackProbeSize != 4096) 2688 Fn->addFnAttr("stack-probe-size", 2689 llvm::utostr(CGM.getCodeGenOpts().StackProbeSize)); 2690 if (CGM.getCodeGenOpts().NoStackArgProbe) 2691 Fn->addFnAttr("no-stack-arg-probe"); 2692 } 2693 } 2694 2695 void WinX86_32TargetCodeGenInfo::setTargetAttributes( 2696 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2697 X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2698 if (GV->isDeclaration()) 2699 return; 2700 addStackProbeTargetAttributes(D, GV, CGM); 2701 } 2702 2703 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2704 public: 2705 WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2706 X86AVXABILevel AVXLevel) 2707 : TargetCodeGenInfo(std::make_unique<WinX86_64ABIInfo>(CGT, AVXLevel)) {} 2708 2709 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2710 CodeGen::CodeGenModule &CGM) const override; 2711 2712 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2713 return 7; 2714 } 2715 2716 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2717 llvm::Value *Address) const override { 2718 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2719 2720 // 0-15 are the 16 integer registers. 2721 // 16 is %rip. 2722 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2723 return false; 2724 } 2725 2726 void getDependentLibraryOption(llvm::StringRef Lib, 2727 llvm::SmallString<24> &Opt) const override { 2728 Opt = "/DEFAULTLIB:"; 2729 Opt += qualifyWindowsLibrary(Lib); 2730 } 2731 2732 void getDetectMismatchOption(llvm::StringRef Name, 2733 llvm::StringRef Value, 2734 llvm::SmallString<32> &Opt) const override { 2735 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2736 } 2737 }; 2738 2739 void WinX86_64TargetCodeGenInfo::setTargetAttributes( 2740 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2741 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2742 if (GV->isDeclaration()) 2743 return; 2744 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2745 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2746 llvm::Function *Fn = cast<llvm::Function>(GV); 2747 Fn->addFnAttr("stackrealign"); 2748 } 2749 2750 addX86InterruptAttrs(FD, GV, CGM); 2751 } 2752 2753 addStackProbeTargetAttributes(D, GV, CGM); 2754 } 2755 } 2756 2757 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo, 2758 Class &Hi) const { 2759 // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done: 2760 // 2761 // (a) If one of the classes is Memory, the whole argument is passed in 2762 // memory. 2763 // 2764 // (b) If X87UP is not preceded by X87, the whole argument is passed in 2765 // memory. 2766 // 2767 // (c) If the size of the aggregate exceeds two eightbytes and the first 2768 // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole 2769 // argument is passed in memory. NOTE: This is necessary to keep the 2770 // ABI working for processors that don't support the __m256 type. 2771 // 2772 // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE. 2773 // 2774 // Some of these are enforced by the merging logic. Others can arise 2775 // only with unions; for example: 2776 // union { _Complex double; unsigned; } 2777 // 2778 // Note that clauses (b) and (c) were added in 0.98. 2779 // 2780 if (Hi == Memory) 2781 Lo = Memory; 2782 if (Hi == X87Up && Lo != X87 && honorsRevision0_98()) 2783 Lo = Memory; 2784 if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp)) 2785 Lo = Memory; 2786 if (Hi == SSEUp && Lo != SSE) 2787 Hi = SSE; 2788 } 2789 2790 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) { 2791 // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is 2792 // classified recursively so that always two fields are 2793 // considered. The resulting class is calculated according to 2794 // the classes of the fields in the eightbyte: 2795 // 2796 // (a) If both classes are equal, this is the resulting class. 2797 // 2798 // (b) If one of the classes is NO_CLASS, the resulting class is 2799 // the other class. 2800 // 2801 // (c) If one of the classes is MEMORY, the result is the MEMORY 2802 // class. 2803 // 2804 // (d) If one of the classes is INTEGER, the result is the 2805 // INTEGER. 2806 // 2807 // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class, 2808 // MEMORY is used as class. 2809 // 2810 // (f) Otherwise class SSE is used. 2811 2812 // Accum should never be memory (we should have returned) or 2813 // ComplexX87 (because this cannot be passed in a structure). 2814 assert((Accum != Memory && Accum != ComplexX87) && 2815 "Invalid accumulated classification during merge."); 2816 if (Accum == Field || Field == NoClass) 2817 return Accum; 2818 if (Field == Memory) 2819 return Memory; 2820 if (Accum == NoClass) 2821 return Field; 2822 if (Accum == Integer || Field == Integer) 2823 return Integer; 2824 if (Field == X87 || Field == X87Up || Field == ComplexX87 || 2825 Accum == X87 || Accum == X87Up) 2826 return Memory; 2827 return SSE; 2828 } 2829 2830 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, 2831 Class &Lo, Class &Hi, bool isNamedArg) const { 2832 // FIXME: This code can be simplified by introducing a simple value class for 2833 // Class pairs with appropriate constructor methods for the various 2834 // situations. 2835 2836 // FIXME: Some of the split computations are wrong; unaligned vectors 2837 // shouldn't be passed in registers for example, so there is no chance they 2838 // can straddle an eightbyte. Verify & simplify. 2839 2840 Lo = Hi = NoClass; 2841 2842 Class &Current = OffsetBase < 64 ? Lo : Hi; 2843 Current = Memory; 2844 2845 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 2846 BuiltinType::Kind k = BT->getKind(); 2847 2848 if (k == BuiltinType::Void) { 2849 Current = NoClass; 2850 } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) { 2851 Lo = Integer; 2852 Hi = Integer; 2853 } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) { 2854 Current = Integer; 2855 } else if (k == BuiltinType::Float || k == BuiltinType::Double || 2856 k == BuiltinType::Float16) { 2857 Current = SSE; 2858 } else if (k == BuiltinType::LongDouble) { 2859 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2860 if (LDF == &llvm::APFloat::IEEEquad()) { 2861 Lo = SSE; 2862 Hi = SSEUp; 2863 } else if (LDF == &llvm::APFloat::x87DoubleExtended()) { 2864 Lo = X87; 2865 Hi = X87Up; 2866 } else if (LDF == &llvm::APFloat::IEEEdouble()) { 2867 Current = SSE; 2868 } else 2869 llvm_unreachable("unexpected long double representation!"); 2870 } 2871 // FIXME: _Decimal32 and _Decimal64 are SSE. 2872 // FIXME: _float128 and _Decimal128 are (SSE, SSEUp). 2873 return; 2874 } 2875 2876 if (const EnumType *ET = Ty->getAs<EnumType>()) { 2877 // Classify the underlying integer type. 2878 classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg); 2879 return; 2880 } 2881 2882 if (Ty->hasPointerRepresentation()) { 2883 Current = Integer; 2884 return; 2885 } 2886 2887 if (Ty->isMemberPointerType()) { 2888 if (Ty->isMemberFunctionPointerType()) { 2889 if (Has64BitPointers) { 2890 // If Has64BitPointers, this is an {i64, i64}, so classify both 2891 // Lo and Hi now. 2892 Lo = Hi = Integer; 2893 } else { 2894 // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that 2895 // straddles an eightbyte boundary, Hi should be classified as well. 2896 uint64_t EB_FuncPtr = (OffsetBase) / 64; 2897 uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64; 2898 if (EB_FuncPtr != EB_ThisAdj) { 2899 Lo = Hi = Integer; 2900 } else { 2901 Current = Integer; 2902 } 2903 } 2904 } else { 2905 Current = Integer; 2906 } 2907 return; 2908 } 2909 2910 if (const VectorType *VT = Ty->getAs<VectorType>()) { 2911 uint64_t Size = getContext().getTypeSize(VT); 2912 if (Size == 1 || Size == 8 || Size == 16 || Size == 32) { 2913 // gcc passes the following as integer: 2914 // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float> 2915 // 2 bytes - <2 x char>, <1 x short> 2916 // 1 byte - <1 x char> 2917 Current = Integer; 2918 2919 // If this type crosses an eightbyte boundary, it should be 2920 // split. 2921 uint64_t EB_Lo = (OffsetBase) / 64; 2922 uint64_t EB_Hi = (OffsetBase + Size - 1) / 64; 2923 if (EB_Lo != EB_Hi) 2924 Hi = Lo; 2925 } else if (Size == 64) { 2926 QualType ElementType = VT->getElementType(); 2927 2928 // gcc passes <1 x double> in memory. :( 2929 if (ElementType->isSpecificBuiltinType(BuiltinType::Double)) 2930 return; 2931 2932 // gcc passes <1 x long long> as SSE but clang used to unconditionally 2933 // pass them as integer. For platforms where clang is the de facto 2934 // platform compiler, we must continue to use integer. 2935 if (!classifyIntegerMMXAsSSE() && 2936 (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) || 2937 ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) || 2938 ElementType->isSpecificBuiltinType(BuiltinType::Long) || 2939 ElementType->isSpecificBuiltinType(BuiltinType::ULong))) 2940 Current = Integer; 2941 else 2942 Current = SSE; 2943 2944 // If this type crosses an eightbyte boundary, it should be 2945 // split. 2946 if (OffsetBase && OffsetBase != 64) 2947 Hi = Lo; 2948 } else if (Size == 128 || 2949 (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) { 2950 QualType ElementType = VT->getElementType(); 2951 2952 // gcc passes 256 and 512 bit <X x __int128> vectors in memory. :( 2953 if (passInt128VectorsInMem() && Size != 128 && 2954 (ElementType->isSpecificBuiltinType(BuiltinType::Int128) || 2955 ElementType->isSpecificBuiltinType(BuiltinType::UInt128))) 2956 return; 2957 2958 // Arguments of 256-bits are split into four eightbyte chunks. The 2959 // least significant one belongs to class SSE and all the others to class 2960 // SSEUP. The original Lo and Hi design considers that types can't be 2961 // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense. 2962 // This design isn't correct for 256-bits, but since there're no cases 2963 // where the upper parts would need to be inspected, avoid adding 2964 // complexity and just consider Hi to match the 64-256 part. 2965 // 2966 // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in 2967 // registers if they are "named", i.e. not part of the "..." of a 2968 // variadic function. 2969 // 2970 // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are 2971 // split into eight eightbyte chunks, one SSE and seven SSEUP. 2972 Lo = SSE; 2973 Hi = SSEUp; 2974 } 2975 return; 2976 } 2977 2978 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 2979 QualType ET = getContext().getCanonicalType(CT->getElementType()); 2980 2981 uint64_t Size = getContext().getTypeSize(Ty); 2982 if (ET->isIntegralOrEnumerationType()) { 2983 if (Size <= 64) 2984 Current = Integer; 2985 else if (Size <= 128) 2986 Lo = Hi = Integer; 2987 } else if (ET->isFloat16Type() || ET == getContext().FloatTy) { 2988 Current = SSE; 2989 } else if (ET == getContext().DoubleTy) { 2990 Lo = Hi = SSE; 2991 } else if (ET == getContext().LongDoubleTy) { 2992 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2993 if (LDF == &llvm::APFloat::IEEEquad()) 2994 Current = Memory; 2995 else if (LDF == &llvm::APFloat::x87DoubleExtended()) 2996 Current = ComplexX87; 2997 else if (LDF == &llvm::APFloat::IEEEdouble()) 2998 Lo = Hi = SSE; 2999 else 3000 llvm_unreachable("unexpected long double representation!"); 3001 } 3002 3003 // If this complex type crosses an eightbyte boundary then it 3004 // should be split. 3005 uint64_t EB_Real = (OffsetBase) / 64; 3006 uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64; 3007 if (Hi == NoClass && EB_Real != EB_Imag) 3008 Hi = Lo; 3009 3010 return; 3011 } 3012 3013 if (const auto *EITy = Ty->getAs<BitIntType>()) { 3014 if (EITy->getNumBits() <= 64) 3015 Current = Integer; 3016 else if (EITy->getNumBits() <= 128) 3017 Lo = Hi = Integer; 3018 // Larger values need to get passed in memory. 3019 return; 3020 } 3021 3022 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 3023 // Arrays are treated like structures. 3024 3025 uint64_t Size = getContext().getTypeSize(Ty); 3026 3027 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 3028 // than eight eightbytes, ..., it has class MEMORY. 3029 if (Size > 512) 3030 return; 3031 3032 // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned 3033 // fields, it has class MEMORY. 3034 // 3035 // Only need to check alignment of array base. 3036 if (OffsetBase % getContext().getTypeAlign(AT->getElementType())) 3037 return; 3038 3039 // Otherwise implement simplified merge. We could be smarter about 3040 // this, but it isn't worth it and would be harder to verify. 3041 Current = NoClass; 3042 uint64_t EltSize = getContext().getTypeSize(AT->getElementType()); 3043 uint64_t ArraySize = AT->getSize().getZExtValue(); 3044 3045 // The only case a 256-bit wide vector could be used is when the array 3046 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 3047 // to work for sizes wider than 128, early check and fallback to memory. 3048 // 3049 if (Size > 128 && 3050 (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel))) 3051 return; 3052 3053 for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) { 3054 Class FieldLo, FieldHi; 3055 classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg); 3056 Lo = merge(Lo, FieldLo); 3057 Hi = merge(Hi, FieldHi); 3058 if (Lo == Memory || Hi == Memory) 3059 break; 3060 } 3061 3062 postMerge(Size, Lo, Hi); 3063 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification."); 3064 return; 3065 } 3066 3067 if (const RecordType *RT = Ty->getAs<RecordType>()) { 3068 uint64_t Size = getContext().getTypeSize(Ty); 3069 3070 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 3071 // than eight eightbytes, ..., it has class MEMORY. 3072 if (Size > 512) 3073 return; 3074 3075 // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial 3076 // copy constructor or a non-trivial destructor, it is passed by invisible 3077 // reference. 3078 if (getRecordArgABI(RT, getCXXABI())) 3079 return; 3080 3081 const RecordDecl *RD = RT->getDecl(); 3082 3083 // Assume variable sized types are passed in memory. 3084 if (RD->hasFlexibleArrayMember()) 3085 return; 3086 3087 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 3088 3089 // Reset Lo class, this will be recomputed. 3090 Current = NoClass; 3091 3092 // If this is a C++ record, classify the bases first. 3093 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 3094 for (const auto &I : CXXRD->bases()) { 3095 assert(!I.isVirtual() && !I.getType()->isDependentType() && 3096 "Unexpected base class!"); 3097 const auto *Base = 3098 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 3099 3100 // Classify this field. 3101 // 3102 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a 3103 // single eightbyte, each is classified separately. Each eightbyte gets 3104 // initialized to class NO_CLASS. 3105 Class FieldLo, FieldHi; 3106 uint64_t Offset = 3107 OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base)); 3108 classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg); 3109 Lo = merge(Lo, FieldLo); 3110 Hi = merge(Hi, FieldHi); 3111 if (Lo == Memory || Hi == Memory) { 3112 postMerge(Size, Lo, Hi); 3113 return; 3114 } 3115 } 3116 } 3117 3118 // Classify the fields one at a time, merging the results. 3119 unsigned idx = 0; 3120 bool UseClang11Compat = getContext().getLangOpts().getClangABICompat() <= 3121 LangOptions::ClangABI::Ver11 || 3122 getContext().getTargetInfo().getTriple().isPS4(); 3123 bool IsUnion = RT->isUnionType() && !UseClang11Compat; 3124 3125 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 3126 i != e; ++i, ++idx) { 3127 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 3128 bool BitField = i->isBitField(); 3129 3130 // Ignore padding bit-fields. 3131 if (BitField && i->isUnnamedBitfield()) 3132 continue; 3133 3134 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than 3135 // eight eightbytes, or it contains unaligned fields, it has class MEMORY. 3136 // 3137 // The only case a 256-bit or a 512-bit wide vector could be used is when 3138 // the struct contains a single 256-bit or 512-bit element. Early check 3139 // and fallback to memory. 3140 // 3141 // FIXME: Extended the Lo and Hi logic properly to work for size wider 3142 // than 128. 3143 if (Size > 128 && 3144 ((!IsUnion && Size != getContext().getTypeSize(i->getType())) || 3145 Size > getNativeVectorSizeForAVXABI(AVXLevel))) { 3146 Lo = Memory; 3147 postMerge(Size, Lo, Hi); 3148 return; 3149 } 3150 // Note, skip this test for bit-fields, see below. 3151 if (!BitField && Offset % getContext().getTypeAlign(i->getType())) { 3152 Lo = Memory; 3153 postMerge(Size, Lo, Hi); 3154 return; 3155 } 3156 3157 // Classify this field. 3158 // 3159 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate 3160 // exceeds a single eightbyte, each is classified 3161 // separately. Each eightbyte gets initialized to class 3162 // NO_CLASS. 3163 Class FieldLo, FieldHi; 3164 3165 // Bit-fields require special handling, they do not force the 3166 // structure to be passed in memory even if unaligned, and 3167 // therefore they can straddle an eightbyte. 3168 if (BitField) { 3169 assert(!i->isUnnamedBitfield()); 3170 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 3171 uint64_t Size = i->getBitWidthValue(getContext()); 3172 3173 uint64_t EB_Lo = Offset / 64; 3174 uint64_t EB_Hi = (Offset + Size - 1) / 64; 3175 3176 if (EB_Lo) { 3177 assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes."); 3178 FieldLo = NoClass; 3179 FieldHi = Integer; 3180 } else { 3181 FieldLo = Integer; 3182 FieldHi = EB_Hi ? Integer : NoClass; 3183 } 3184 } else 3185 classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg); 3186 Lo = merge(Lo, FieldLo); 3187 Hi = merge(Hi, FieldHi); 3188 if (Lo == Memory || Hi == Memory) 3189 break; 3190 } 3191 3192 postMerge(Size, Lo, Hi); 3193 } 3194 } 3195 3196 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const { 3197 // If this is a scalar LLVM value then assume LLVM will pass it in the right 3198 // place naturally. 3199 if (!isAggregateTypeForABI(Ty)) { 3200 // Treat an enum type as its underlying type. 3201 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3202 Ty = EnumTy->getDecl()->getIntegerType(); 3203 3204 if (Ty->isBitIntType()) 3205 return getNaturalAlignIndirect(Ty); 3206 3207 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 3208 : ABIArgInfo::getDirect()); 3209 } 3210 3211 return getNaturalAlignIndirect(Ty); 3212 } 3213 3214 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const { 3215 if (const VectorType *VecTy = Ty->getAs<VectorType>()) { 3216 uint64_t Size = getContext().getTypeSize(VecTy); 3217 unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel); 3218 if (Size <= 64 || Size > LargestVector) 3219 return true; 3220 QualType EltTy = VecTy->getElementType(); 3221 if (passInt128VectorsInMem() && 3222 (EltTy->isSpecificBuiltinType(BuiltinType::Int128) || 3223 EltTy->isSpecificBuiltinType(BuiltinType::UInt128))) 3224 return true; 3225 } 3226 3227 return false; 3228 } 3229 3230 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty, 3231 unsigned freeIntRegs) const { 3232 // If this is a scalar LLVM value then assume LLVM will pass it in the right 3233 // place naturally. 3234 // 3235 // This assumption is optimistic, as there could be free registers available 3236 // when we need to pass this argument in memory, and LLVM could try to pass 3237 // the argument in the free register. This does not seem to happen currently, 3238 // but this code would be much safer if we could mark the argument with 3239 // 'onstack'. See PR12193. 3240 if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty) && 3241 !Ty->isBitIntType()) { 3242 // Treat an enum type as its underlying type. 3243 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3244 Ty = EnumTy->getDecl()->getIntegerType(); 3245 3246 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 3247 : ABIArgInfo::getDirect()); 3248 } 3249 3250 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 3251 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 3252 3253 // Compute the byval alignment. We specify the alignment of the byval in all 3254 // cases so that the mid-level optimizer knows the alignment of the byval. 3255 unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U); 3256 3257 // Attempt to avoid passing indirect results using byval when possible. This 3258 // is important for good codegen. 3259 // 3260 // We do this by coercing the value into a scalar type which the backend can 3261 // handle naturally (i.e., without using byval). 3262 // 3263 // For simplicity, we currently only do this when we have exhausted all of the 3264 // free integer registers. Doing this when there are free integer registers 3265 // would require more care, as we would have to ensure that the coerced value 3266 // did not claim the unused register. That would require either reording the 3267 // arguments to the function (so that any subsequent inreg values came first), 3268 // or only doing this optimization when there were no following arguments that 3269 // might be inreg. 3270 // 3271 // We currently expect it to be rare (particularly in well written code) for 3272 // arguments to be passed on the stack when there are still free integer 3273 // registers available (this would typically imply large structs being passed 3274 // by value), so this seems like a fair tradeoff for now. 3275 // 3276 // We can revisit this if the backend grows support for 'onstack' parameter 3277 // attributes. See PR12193. 3278 if (freeIntRegs == 0) { 3279 uint64_t Size = getContext().getTypeSize(Ty); 3280 3281 // If this type fits in an eightbyte, coerce it into the matching integral 3282 // type, which will end up on the stack (with alignment 8). 3283 if (Align == 8 && Size <= 64) 3284 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 3285 Size)); 3286 } 3287 3288 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align)); 3289 } 3290 3291 /// The ABI specifies that a value should be passed in a full vector XMM/YMM 3292 /// register. Pick an LLVM IR type that will be passed as a vector register. 3293 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const { 3294 // Wrapper structs/arrays that only contain vectors are passed just like 3295 // vectors; strip them off if present. 3296 if (const Type *InnerTy = isSingleElementStruct(Ty, getContext())) 3297 Ty = QualType(InnerTy, 0); 3298 3299 llvm::Type *IRType = CGT.ConvertType(Ty); 3300 if (isa<llvm::VectorType>(IRType)) { 3301 // Don't pass vXi128 vectors in their native type, the backend can't 3302 // legalize them. 3303 if (passInt128VectorsInMem() && 3304 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy(128)) { 3305 // Use a vXi64 vector. 3306 uint64_t Size = getContext().getTypeSize(Ty); 3307 return llvm::FixedVectorType::get(llvm::Type::getInt64Ty(getVMContext()), 3308 Size / 64); 3309 } 3310 3311 return IRType; 3312 } 3313 3314 if (IRType->getTypeID() == llvm::Type::FP128TyID) 3315 return IRType; 3316 3317 // We couldn't find the preferred IR vector type for 'Ty'. 3318 uint64_t Size = getContext().getTypeSize(Ty); 3319 assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!"); 3320 3321 3322 // Return a LLVM IR vector type based on the size of 'Ty'. 3323 return llvm::FixedVectorType::get(llvm::Type::getDoubleTy(getVMContext()), 3324 Size / 64); 3325 } 3326 3327 /// BitsContainNoUserData - Return true if the specified [start,end) bit range 3328 /// is known to either be off the end of the specified type or being in 3329 /// alignment padding. The user type specified is known to be at most 128 bits 3330 /// in size, and have passed through X86_64ABIInfo::classify with a successful 3331 /// classification that put one of the two halves in the INTEGER class. 3332 /// 3333 /// It is conservatively correct to return false. 3334 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit, 3335 unsigned EndBit, ASTContext &Context) { 3336 // If the bytes being queried are off the end of the type, there is no user 3337 // data hiding here. This handles analysis of builtins, vectors and other 3338 // types that don't contain interesting padding. 3339 unsigned TySize = (unsigned)Context.getTypeSize(Ty); 3340 if (TySize <= StartBit) 3341 return true; 3342 3343 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 3344 unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType()); 3345 unsigned NumElts = (unsigned)AT->getSize().getZExtValue(); 3346 3347 // Check each element to see if the element overlaps with the queried range. 3348 for (unsigned i = 0; i != NumElts; ++i) { 3349 // If the element is after the span we care about, then we're done.. 3350 unsigned EltOffset = i*EltSize; 3351 if (EltOffset >= EndBit) break; 3352 3353 unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0; 3354 if (!BitsContainNoUserData(AT->getElementType(), EltStart, 3355 EndBit-EltOffset, Context)) 3356 return false; 3357 } 3358 // If it overlaps no elements, then it is safe to process as padding. 3359 return true; 3360 } 3361 3362 if (const RecordType *RT = Ty->getAs<RecordType>()) { 3363 const RecordDecl *RD = RT->getDecl(); 3364 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 3365 3366 // If this is a C++ record, check the bases first. 3367 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 3368 for (const auto &I : CXXRD->bases()) { 3369 assert(!I.isVirtual() && !I.getType()->isDependentType() && 3370 "Unexpected base class!"); 3371 const auto *Base = 3372 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 3373 3374 // If the base is after the span we care about, ignore it. 3375 unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base)); 3376 if (BaseOffset >= EndBit) continue; 3377 3378 unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0; 3379 if (!BitsContainNoUserData(I.getType(), BaseStart, 3380 EndBit-BaseOffset, Context)) 3381 return false; 3382 } 3383 } 3384 3385 // Verify that no field has data that overlaps the region of interest. Yes 3386 // this could be sped up a lot by being smarter about queried fields, 3387 // however we're only looking at structs up to 16 bytes, so we don't care 3388 // much. 3389 unsigned idx = 0; 3390 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 3391 i != e; ++i, ++idx) { 3392 unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx); 3393 3394 // If we found a field after the region we care about, then we're done. 3395 if (FieldOffset >= EndBit) break; 3396 3397 unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0; 3398 if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset, 3399 Context)) 3400 return false; 3401 } 3402 3403 // If nothing in this record overlapped the area of interest, then we're 3404 // clean. 3405 return true; 3406 } 3407 3408 return false; 3409 } 3410 3411 /// getFPTypeAtOffset - Return a floating point type at the specified offset. 3412 static llvm::Type *getFPTypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3413 const llvm::DataLayout &TD) { 3414 if (IROffset == 0 && IRType->isFloatingPointTy()) 3415 return IRType; 3416 3417 // If this is a struct, recurse into the field at the specified offset. 3418 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 3419 if (!STy->getNumContainedTypes()) 3420 return nullptr; 3421 3422 const llvm::StructLayout *SL = TD.getStructLayout(STy); 3423 unsigned Elt = SL->getElementContainingOffset(IROffset); 3424 IROffset -= SL->getElementOffset(Elt); 3425 return getFPTypeAtOffset(STy->getElementType(Elt), IROffset, TD); 3426 } 3427 3428 // If this is an array, recurse into the field at the specified offset. 3429 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 3430 llvm::Type *EltTy = ATy->getElementType(); 3431 unsigned EltSize = TD.getTypeAllocSize(EltTy); 3432 IROffset -= IROffset / EltSize * EltSize; 3433 return getFPTypeAtOffset(EltTy, IROffset, TD); 3434 } 3435 3436 return nullptr; 3437 } 3438 3439 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the 3440 /// low 8 bytes of an XMM register, corresponding to the SSE class. 3441 llvm::Type *X86_64ABIInfo:: 3442 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3443 QualType SourceTy, unsigned SourceOffset) const { 3444 const llvm::DataLayout &TD = getDataLayout(); 3445 unsigned SourceSize = 3446 (unsigned)getContext().getTypeSize(SourceTy) / 8 - SourceOffset; 3447 llvm::Type *T0 = getFPTypeAtOffset(IRType, IROffset, TD); 3448 if (!T0 || T0->isDoubleTy()) 3449 return llvm::Type::getDoubleTy(getVMContext()); 3450 3451 // Get the adjacent FP type. 3452 llvm::Type *T1 = nullptr; 3453 unsigned T0Size = TD.getTypeAllocSize(T0); 3454 if (SourceSize > T0Size) 3455 T1 = getFPTypeAtOffset(IRType, IROffset + T0Size, TD); 3456 if (T1 == nullptr) { 3457 // Check if IRType is a half + float. float type will be in IROffset+4 due 3458 // to its alignment. 3459 if (T0->isHalfTy() && SourceSize > 4) 3460 T1 = getFPTypeAtOffset(IRType, IROffset + 4, TD); 3461 // If we can't get a second FP type, return a simple half or float. 3462 // avx512fp16-abi.c:pr51813_2 shows it works to return float for 3463 // {float, i8} too. 3464 if (T1 == nullptr) 3465 return T0; 3466 } 3467 3468 if (T0->isFloatTy() && T1->isFloatTy()) 3469 return llvm::FixedVectorType::get(T0, 2); 3470 3471 if (T0->isHalfTy() && T1->isHalfTy()) { 3472 llvm::Type *T2 = nullptr; 3473 if (SourceSize > 4) 3474 T2 = getFPTypeAtOffset(IRType, IROffset + 4, TD); 3475 if (T2 == nullptr) 3476 return llvm::FixedVectorType::get(T0, 2); 3477 return llvm::FixedVectorType::get(T0, 4); 3478 } 3479 3480 if (T0->isHalfTy() || T1->isHalfTy()) 3481 return llvm::FixedVectorType::get(llvm::Type::getHalfTy(getVMContext()), 4); 3482 3483 return llvm::Type::getDoubleTy(getVMContext()); 3484 } 3485 3486 3487 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in 3488 /// an 8-byte GPR. This means that we either have a scalar or we are talking 3489 /// about the high or low part of an up-to-16-byte struct. This routine picks 3490 /// the best LLVM IR type to represent this, which may be i64 or may be anything 3491 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*, 3492 /// etc). 3493 /// 3494 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for 3495 /// the source type. IROffset is an offset in bytes into the LLVM IR type that 3496 /// the 8-byte value references. PrefType may be null. 3497 /// 3498 /// SourceTy is the source-level type for the entire argument. SourceOffset is 3499 /// an offset into this that we're processing (which is always either 0 or 8). 3500 /// 3501 llvm::Type *X86_64ABIInfo:: 3502 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3503 QualType SourceTy, unsigned SourceOffset) const { 3504 // If we're dealing with an un-offset LLVM IR type, then it means that we're 3505 // returning an 8-byte unit starting with it. See if we can safely use it. 3506 if (IROffset == 0) { 3507 // Pointers and int64's always fill the 8-byte unit. 3508 if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) || 3509 IRType->isIntegerTy(64)) 3510 return IRType; 3511 3512 // If we have a 1/2/4-byte integer, we can use it only if the rest of the 3513 // goodness in the source type is just tail padding. This is allowed to 3514 // kick in for struct {double,int} on the int, but not on 3515 // struct{double,int,int} because we wouldn't return the second int. We 3516 // have to do this analysis on the source type because we can't depend on 3517 // unions being lowered a specific way etc. 3518 if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) || 3519 IRType->isIntegerTy(32) || 3520 (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) { 3521 unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 : 3522 cast<llvm::IntegerType>(IRType)->getBitWidth(); 3523 3524 if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth, 3525 SourceOffset*8+64, getContext())) 3526 return IRType; 3527 } 3528 } 3529 3530 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 3531 // If this is a struct, recurse into the field at the specified offset. 3532 const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy); 3533 if (IROffset < SL->getSizeInBytes()) { 3534 unsigned FieldIdx = SL->getElementContainingOffset(IROffset); 3535 IROffset -= SL->getElementOffset(FieldIdx); 3536 3537 return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset, 3538 SourceTy, SourceOffset); 3539 } 3540 } 3541 3542 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 3543 llvm::Type *EltTy = ATy->getElementType(); 3544 unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy); 3545 unsigned EltOffset = IROffset/EltSize*EltSize; 3546 return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy, 3547 SourceOffset); 3548 } 3549 3550 // Okay, we don't have any better idea of what to pass, so we pass this in an 3551 // integer register that isn't too big to fit the rest of the struct. 3552 unsigned TySizeInBytes = 3553 (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity(); 3554 3555 assert(TySizeInBytes != SourceOffset && "Empty field?"); 3556 3557 // It is always safe to classify this as an integer type up to i64 that 3558 // isn't larger than the structure. 3559 return llvm::IntegerType::get(getVMContext(), 3560 std::min(TySizeInBytes-SourceOffset, 8U)*8); 3561 } 3562 3563 3564 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally 3565 /// be used as elements of a two register pair to pass or return, return a 3566 /// first class aggregate to represent them. For example, if the low part of 3567 /// a by-value argument should be passed as i32* and the high part as float, 3568 /// return {i32*, float}. 3569 static llvm::Type * 3570 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi, 3571 const llvm::DataLayout &TD) { 3572 // In order to correctly satisfy the ABI, we need to the high part to start 3573 // at offset 8. If the high and low parts we inferred are both 4-byte types 3574 // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have 3575 // the second element at offset 8. Check for this: 3576 unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo); 3577 unsigned HiAlign = TD.getABITypeAlignment(Hi); 3578 unsigned HiStart = llvm::alignTo(LoSize, HiAlign); 3579 assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!"); 3580 3581 // To handle this, we have to increase the size of the low part so that the 3582 // second element will start at an 8 byte offset. We can't increase the size 3583 // of the second element because it might make us access off the end of the 3584 // struct. 3585 if (HiStart != 8) { 3586 // There are usually two sorts of types the ABI generation code can produce 3587 // for the low part of a pair that aren't 8 bytes in size: half, float or 3588 // i8/i16/i32. This can also include pointers when they are 32-bit (X32 and 3589 // NaCl). 3590 // Promote these to a larger type. 3591 if (Lo->isHalfTy() || Lo->isFloatTy()) 3592 Lo = llvm::Type::getDoubleTy(Lo->getContext()); 3593 else { 3594 assert((Lo->isIntegerTy() || Lo->isPointerTy()) 3595 && "Invalid/unknown lo type"); 3596 Lo = llvm::Type::getInt64Ty(Lo->getContext()); 3597 } 3598 } 3599 3600 llvm::StructType *Result = llvm::StructType::get(Lo, Hi); 3601 3602 // Verify that the second element is at an 8-byte offset. 3603 assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 && 3604 "Invalid x86-64 argument pair!"); 3605 return Result; 3606 } 3607 3608 ABIArgInfo X86_64ABIInfo:: 3609 classifyReturnType(QualType RetTy) const { 3610 // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the 3611 // classification algorithm. 3612 X86_64ABIInfo::Class Lo, Hi; 3613 classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true); 3614 3615 // Check some invariants. 3616 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3617 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3618 3619 llvm::Type *ResType = nullptr; 3620 switch (Lo) { 3621 case NoClass: 3622 if (Hi == NoClass) 3623 return ABIArgInfo::getIgnore(); 3624 // If the low part is just padding, it takes no register, leave ResType 3625 // null. 3626 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3627 "Unknown missing lo part"); 3628 break; 3629 3630 case SSEUp: 3631 case X87Up: 3632 llvm_unreachable("Invalid classification for lo word."); 3633 3634 // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via 3635 // hidden argument. 3636 case Memory: 3637 return getIndirectReturnResult(RetTy); 3638 3639 // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next 3640 // available register of the sequence %rax, %rdx is used. 3641 case Integer: 3642 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3643 3644 // If we have a sign or zero extended integer, make sure to return Extend 3645 // so that the parameter gets the right LLVM IR attributes. 3646 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3647 // Treat an enum type as its underlying type. 3648 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 3649 RetTy = EnumTy->getDecl()->getIntegerType(); 3650 3651 if (RetTy->isIntegralOrEnumerationType() && 3652 isPromotableIntegerTypeForABI(RetTy)) 3653 return ABIArgInfo::getExtend(RetTy); 3654 } 3655 break; 3656 3657 // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next 3658 // available SSE register of the sequence %xmm0, %xmm1 is used. 3659 case SSE: 3660 ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3661 break; 3662 3663 // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is 3664 // returned on the X87 stack in %st0 as 80-bit x87 number. 3665 case X87: 3666 ResType = llvm::Type::getX86_FP80Ty(getVMContext()); 3667 break; 3668 3669 // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real 3670 // part of the value is returned in %st0 and the imaginary part in 3671 // %st1. 3672 case ComplexX87: 3673 assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification."); 3674 ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()), 3675 llvm::Type::getX86_FP80Ty(getVMContext())); 3676 break; 3677 } 3678 3679 llvm::Type *HighPart = nullptr; 3680 switch (Hi) { 3681 // Memory was handled previously and X87 should 3682 // never occur as a hi class. 3683 case Memory: 3684 case X87: 3685 llvm_unreachable("Invalid classification for hi word."); 3686 3687 case ComplexX87: // Previously handled. 3688 case NoClass: 3689 break; 3690 3691 case Integer: 3692 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3693 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3694 return ABIArgInfo::getDirect(HighPart, 8); 3695 break; 3696 case SSE: 3697 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3698 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3699 return ABIArgInfo::getDirect(HighPart, 8); 3700 break; 3701 3702 // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte 3703 // is passed in the next available eightbyte chunk if the last used 3704 // vector register. 3705 // 3706 // SSEUP should always be preceded by SSE, just widen. 3707 case SSEUp: 3708 assert(Lo == SSE && "Unexpected SSEUp classification."); 3709 ResType = GetByteVectorType(RetTy); 3710 break; 3711 3712 // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is 3713 // returned together with the previous X87 value in %st0. 3714 case X87Up: 3715 // If X87Up is preceded by X87, we don't need to do 3716 // anything. However, in some cases with unions it may not be 3717 // preceded by X87. In such situations we follow gcc and pass the 3718 // extra bits in an SSE reg. 3719 if (Lo != X87) { 3720 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3721 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3722 return ABIArgInfo::getDirect(HighPart, 8); 3723 } 3724 break; 3725 } 3726 3727 // If a high part was specified, merge it together with the low part. It is 3728 // known to pass in the high eightbyte of the result. We do this by forming a 3729 // first class struct aggregate with the high and low part: {low, high} 3730 if (HighPart) 3731 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3732 3733 return ABIArgInfo::getDirect(ResType); 3734 } 3735 3736 ABIArgInfo X86_64ABIInfo::classifyArgumentType( 3737 QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE, 3738 bool isNamedArg) 3739 const 3740 { 3741 Ty = useFirstFieldIfTransparentUnion(Ty); 3742 3743 X86_64ABIInfo::Class Lo, Hi; 3744 classify(Ty, 0, Lo, Hi, isNamedArg); 3745 3746 // Check some invariants. 3747 // FIXME: Enforce these by construction. 3748 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3749 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3750 3751 neededInt = 0; 3752 neededSSE = 0; 3753 llvm::Type *ResType = nullptr; 3754 switch (Lo) { 3755 case NoClass: 3756 if (Hi == NoClass) 3757 return ABIArgInfo::getIgnore(); 3758 // If the low part is just padding, it takes no register, leave ResType 3759 // null. 3760 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3761 "Unknown missing lo part"); 3762 break; 3763 3764 // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument 3765 // on the stack. 3766 case Memory: 3767 3768 // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or 3769 // COMPLEX_X87, it is passed in memory. 3770 case X87: 3771 case ComplexX87: 3772 if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect) 3773 ++neededInt; 3774 return getIndirectResult(Ty, freeIntRegs); 3775 3776 case SSEUp: 3777 case X87Up: 3778 llvm_unreachable("Invalid classification for lo word."); 3779 3780 // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next 3781 // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8 3782 // and %r9 is used. 3783 case Integer: 3784 ++neededInt; 3785 3786 // Pick an 8-byte type based on the preferred type. 3787 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0); 3788 3789 // If we have a sign or zero extended integer, make sure to return Extend 3790 // so that the parameter gets the right LLVM IR attributes. 3791 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3792 // Treat an enum type as its underlying type. 3793 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3794 Ty = EnumTy->getDecl()->getIntegerType(); 3795 3796 if (Ty->isIntegralOrEnumerationType() && 3797 isPromotableIntegerTypeForABI(Ty)) 3798 return ABIArgInfo::getExtend(Ty); 3799 } 3800 3801 break; 3802 3803 // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next 3804 // available SSE register is used, the registers are taken in the 3805 // order from %xmm0 to %xmm7. 3806 case SSE: { 3807 llvm::Type *IRType = CGT.ConvertType(Ty); 3808 ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0); 3809 ++neededSSE; 3810 break; 3811 } 3812 } 3813 3814 llvm::Type *HighPart = nullptr; 3815 switch (Hi) { 3816 // Memory was handled previously, ComplexX87 and X87 should 3817 // never occur as hi classes, and X87Up must be preceded by X87, 3818 // which is passed in memory. 3819 case Memory: 3820 case X87: 3821 case ComplexX87: 3822 llvm_unreachable("Invalid classification for hi word."); 3823 3824 case NoClass: break; 3825 3826 case Integer: 3827 ++neededInt; 3828 // Pick an 8-byte type based on the preferred type. 3829 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3830 3831 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3832 return ABIArgInfo::getDirect(HighPart, 8); 3833 break; 3834 3835 // X87Up generally doesn't occur here (long double is passed in 3836 // memory), except in situations involving unions. 3837 case X87Up: 3838 case SSE: 3839 HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3840 3841 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3842 return ABIArgInfo::getDirect(HighPart, 8); 3843 3844 ++neededSSE; 3845 break; 3846 3847 // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the 3848 // eightbyte is passed in the upper half of the last used SSE 3849 // register. This only happens when 128-bit vectors are passed. 3850 case SSEUp: 3851 assert(Lo == SSE && "Unexpected SSEUp classification"); 3852 ResType = GetByteVectorType(Ty); 3853 break; 3854 } 3855 3856 // If a high part was specified, merge it together with the low part. It is 3857 // known to pass in the high eightbyte of the result. We do this by forming a 3858 // first class struct aggregate with the high and low part: {low, high} 3859 if (HighPart) 3860 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3861 3862 return ABIArgInfo::getDirect(ResType); 3863 } 3864 3865 ABIArgInfo 3866 X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 3867 unsigned &NeededSSE) const { 3868 auto RT = Ty->getAs<RecordType>(); 3869 assert(RT && "classifyRegCallStructType only valid with struct types"); 3870 3871 if (RT->getDecl()->hasFlexibleArrayMember()) 3872 return getIndirectReturnResult(Ty); 3873 3874 // Sum up bases 3875 if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 3876 if (CXXRD->isDynamicClass()) { 3877 NeededInt = NeededSSE = 0; 3878 return getIndirectReturnResult(Ty); 3879 } 3880 3881 for (const auto &I : CXXRD->bases()) 3882 if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE) 3883 .isIndirect()) { 3884 NeededInt = NeededSSE = 0; 3885 return getIndirectReturnResult(Ty); 3886 } 3887 } 3888 3889 // Sum up members 3890 for (const auto *FD : RT->getDecl()->fields()) { 3891 if (FD->getType()->isRecordType() && !FD->getType()->isUnionType()) { 3892 if (classifyRegCallStructTypeImpl(FD->getType(), NeededInt, NeededSSE) 3893 .isIndirect()) { 3894 NeededInt = NeededSSE = 0; 3895 return getIndirectReturnResult(Ty); 3896 } 3897 } else { 3898 unsigned LocalNeededInt, LocalNeededSSE; 3899 if (classifyArgumentType(FD->getType(), UINT_MAX, LocalNeededInt, 3900 LocalNeededSSE, true) 3901 .isIndirect()) { 3902 NeededInt = NeededSSE = 0; 3903 return getIndirectReturnResult(Ty); 3904 } 3905 NeededInt += LocalNeededInt; 3906 NeededSSE += LocalNeededSSE; 3907 } 3908 } 3909 3910 return ABIArgInfo::getDirect(); 3911 } 3912 3913 ABIArgInfo X86_64ABIInfo::classifyRegCallStructType(QualType Ty, 3914 unsigned &NeededInt, 3915 unsigned &NeededSSE) const { 3916 3917 NeededInt = 0; 3918 NeededSSE = 0; 3919 3920 return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE); 3921 } 3922 3923 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 3924 3925 const unsigned CallingConv = FI.getCallingConvention(); 3926 // It is possible to force Win64 calling convention on any x86_64 target by 3927 // using __attribute__((ms_abi)). In such case to correctly emit Win64 3928 // compatible code delegate this call to WinX86_64ABIInfo::computeInfo. 3929 if (CallingConv == llvm::CallingConv::Win64) { 3930 WinX86_64ABIInfo Win64ABIInfo(CGT, AVXLevel); 3931 Win64ABIInfo.computeInfo(FI); 3932 return; 3933 } 3934 3935 bool IsRegCall = CallingConv == llvm::CallingConv::X86_RegCall; 3936 3937 // Keep track of the number of assigned registers. 3938 unsigned FreeIntRegs = IsRegCall ? 11 : 6; 3939 unsigned FreeSSERegs = IsRegCall ? 16 : 8; 3940 unsigned NeededInt, NeededSSE; 3941 3942 if (!::classifyReturnType(getCXXABI(), FI, *this)) { 3943 if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() && 3944 !FI.getReturnType()->getTypePtr()->isUnionType()) { 3945 FI.getReturnInfo() = 3946 classifyRegCallStructType(FI.getReturnType(), NeededInt, NeededSSE); 3947 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 3948 FreeIntRegs -= NeededInt; 3949 FreeSSERegs -= NeededSSE; 3950 } else { 3951 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 3952 } 3953 } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>() && 3954 getContext().getCanonicalType(FI.getReturnType() 3955 ->getAs<ComplexType>() 3956 ->getElementType()) == 3957 getContext().LongDoubleTy) 3958 // Complex Long Double Type is passed in Memory when Regcall 3959 // calling convention is used. 3960 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 3961 else 3962 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 3963 } 3964 3965 // If the return value is indirect, then the hidden argument is consuming one 3966 // integer register. 3967 if (FI.getReturnInfo().isIndirect()) 3968 --FreeIntRegs; 3969 3970 // The chain argument effectively gives us another free register. 3971 if (FI.isChainCall()) 3972 ++FreeIntRegs; 3973 3974 unsigned NumRequiredArgs = FI.getNumRequiredArgs(); 3975 // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers 3976 // get assigned (in left-to-right order) for passing as follows... 3977 unsigned ArgNo = 0; 3978 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 3979 it != ie; ++it, ++ArgNo) { 3980 bool IsNamedArg = ArgNo < NumRequiredArgs; 3981 3982 if (IsRegCall && it->type->isStructureOrClassType()) 3983 it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE); 3984 else 3985 it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt, 3986 NeededSSE, IsNamedArg); 3987 3988 // AMD64-ABI 3.2.3p3: If there are no registers available for any 3989 // eightbyte of an argument, the whole argument is passed on the 3990 // stack. If registers have already been assigned for some 3991 // eightbytes of such an argument, the assignments get reverted. 3992 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 3993 FreeIntRegs -= NeededInt; 3994 FreeSSERegs -= NeededSSE; 3995 } else { 3996 it->info = getIndirectResult(it->type, FreeIntRegs); 3997 } 3998 } 3999 } 4000 4001 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF, 4002 Address VAListAddr, QualType Ty) { 4003 Address overflow_arg_area_p = 4004 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p"); 4005 llvm::Value *overflow_arg_area = 4006 CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area"); 4007 4008 // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16 4009 // byte boundary if alignment needed by type exceeds 8 byte boundary. 4010 // It isn't stated explicitly in the standard, but in practice we use 4011 // alignment greater than 16 where necessary. 4012 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 4013 if (Align > CharUnits::fromQuantity(8)) { 4014 overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area, 4015 Align); 4016 } 4017 4018 // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area. 4019 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 4020 llvm::Value *Res = 4021 CGF.Builder.CreateBitCast(overflow_arg_area, 4022 llvm::PointerType::getUnqual(LTy)); 4023 4024 // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to: 4025 // l->overflow_arg_area + sizeof(type). 4026 // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to 4027 // an 8 byte boundary. 4028 4029 uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8; 4030 llvm::Value *Offset = 4031 llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7); 4032 overflow_arg_area = CGF.Builder.CreateGEP(CGF.Int8Ty, overflow_arg_area, 4033 Offset, "overflow_arg_area.next"); 4034 CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p); 4035 4036 // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type. 4037 return Address(Res, LTy, Align); 4038 } 4039 4040 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4041 QualType Ty) const { 4042 // Assume that va_list type is correct; should be pointer to LLVM type: 4043 // struct { 4044 // i32 gp_offset; 4045 // i32 fp_offset; 4046 // i8* overflow_arg_area; 4047 // i8* reg_save_area; 4048 // }; 4049 unsigned neededInt, neededSSE; 4050 4051 Ty = getContext().getCanonicalType(Ty); 4052 ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE, 4053 /*isNamedArg*/false); 4054 4055 // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed 4056 // in the registers. If not go to step 7. 4057 if (!neededInt && !neededSSE) 4058 return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 4059 4060 // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of 4061 // general purpose registers needed to pass type and num_fp to hold 4062 // the number of floating point registers needed. 4063 4064 // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into 4065 // registers. In the case: l->gp_offset > 48 - num_gp * 8 or 4066 // l->fp_offset > 304 - num_fp * 16 go to step 7. 4067 // 4068 // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of 4069 // register save space). 4070 4071 llvm::Value *InRegs = nullptr; 4072 Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid(); 4073 llvm::Value *gp_offset = nullptr, *fp_offset = nullptr; 4074 if (neededInt) { 4075 gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p"); 4076 gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset"); 4077 InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8); 4078 InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp"); 4079 } 4080 4081 if (neededSSE) { 4082 fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p"); 4083 fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset"); 4084 llvm::Value *FitsInFP = 4085 llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16); 4086 FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp"); 4087 InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP; 4088 } 4089 4090 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 4091 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 4092 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 4093 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 4094 4095 // Emit code to load the value if it was passed in registers. 4096 4097 CGF.EmitBlock(InRegBlock); 4098 4099 // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with 4100 // an offset of l->gp_offset and/or l->fp_offset. This may require 4101 // copying to a temporary location in case the parameter is passed 4102 // in different register classes or requires an alignment greater 4103 // than 8 for general purpose registers and 16 for XMM registers. 4104 // 4105 // FIXME: This really results in shameful code when we end up needing to 4106 // collect arguments from different places; often what should result in a 4107 // simple assembling of a structure from scattered addresses has many more 4108 // loads than necessary. Can we clean this up? 4109 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 4110 llvm::Value *RegSaveArea = CGF.Builder.CreateLoad( 4111 CGF.Builder.CreateStructGEP(VAListAddr, 3), "reg_save_area"); 4112 4113 Address RegAddr = Address::invalid(); 4114 if (neededInt && neededSSE) { 4115 // FIXME: Cleanup. 4116 assert(AI.isDirect() && "Unexpected ABI info for mixed regs"); 4117 llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType()); 4118 Address Tmp = CGF.CreateMemTemp(Ty); 4119 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 4120 assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs"); 4121 llvm::Type *TyLo = ST->getElementType(0); 4122 llvm::Type *TyHi = ST->getElementType(1); 4123 assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) && 4124 "Unexpected ABI info for mixed regs"); 4125 llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo); 4126 llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi); 4127 llvm::Value *GPAddr = 4128 CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, gp_offset); 4129 llvm::Value *FPAddr = 4130 CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, fp_offset); 4131 llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr; 4132 llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr; 4133 4134 // Copy the first element. 4135 // FIXME: Our choice of alignment here and below is probably pessimistic. 4136 llvm::Value *V = CGF.Builder.CreateAlignedLoad( 4137 TyLo, CGF.Builder.CreateBitCast(RegLoAddr, PTyLo), 4138 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyLo))); 4139 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 4140 4141 // Copy the second element. 4142 V = CGF.Builder.CreateAlignedLoad( 4143 TyHi, CGF.Builder.CreateBitCast(RegHiAddr, PTyHi), 4144 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyHi))); 4145 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 4146 4147 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 4148 } else if (neededInt) { 4149 RegAddr = Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, gp_offset), 4150 CGF.Int8Ty, CharUnits::fromQuantity(8)); 4151 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 4152 4153 // Copy to a temporary if necessary to ensure the appropriate alignment. 4154 auto TInfo = getContext().getTypeInfoInChars(Ty); 4155 uint64_t TySize = TInfo.Width.getQuantity(); 4156 CharUnits TyAlign = TInfo.Align; 4157 4158 // Copy into a temporary if the type is more aligned than the 4159 // register save area. 4160 if (TyAlign.getQuantity() > 8) { 4161 Address Tmp = CGF.CreateMemTemp(Ty); 4162 CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false); 4163 RegAddr = Tmp; 4164 } 4165 4166 } else if (neededSSE == 1) { 4167 RegAddr = Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, fp_offset), 4168 CGF.Int8Ty, CharUnits::fromQuantity(16)); 4169 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 4170 } else { 4171 assert(neededSSE == 2 && "Invalid number of needed registers!"); 4172 // SSE registers are spaced 16 bytes apart in the register save 4173 // area, we need to collect the two eightbytes together. 4174 // The ABI isn't explicit about this, but it seems reasonable 4175 // to assume that the slots are 16-byte aligned, since the stack is 4176 // naturally 16-byte aligned and the prologue is expected to store 4177 // all the SSE registers to the RSA. 4178 Address RegAddrLo = Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, 4179 fp_offset), 4180 CGF.Int8Ty, CharUnits::fromQuantity(16)); 4181 Address RegAddrHi = 4182 CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo, 4183 CharUnits::fromQuantity(16)); 4184 llvm::Type *ST = AI.canHaveCoerceToType() 4185 ? AI.getCoerceToType() 4186 : llvm::StructType::get(CGF.DoubleTy, CGF.DoubleTy); 4187 llvm::Value *V; 4188 Address Tmp = CGF.CreateMemTemp(Ty); 4189 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 4190 V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast( 4191 RegAddrLo, ST->getStructElementType(0))); 4192 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 4193 V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast( 4194 RegAddrHi, ST->getStructElementType(1))); 4195 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 4196 4197 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 4198 } 4199 4200 // AMD64-ABI 3.5.7p5: Step 5. Set: 4201 // l->gp_offset = l->gp_offset + num_gp * 8 4202 // l->fp_offset = l->fp_offset + num_fp * 16. 4203 if (neededInt) { 4204 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8); 4205 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset), 4206 gp_offset_p); 4207 } 4208 if (neededSSE) { 4209 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16); 4210 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset), 4211 fp_offset_p); 4212 } 4213 CGF.EmitBranch(ContBlock); 4214 4215 // Emit code to load the value if it was passed in memory. 4216 4217 CGF.EmitBlock(InMemBlock); 4218 Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 4219 4220 // Return the appropriate result. 4221 4222 CGF.EmitBlock(ContBlock); 4223 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock, 4224 "vaarg.addr"); 4225 return ResAddr; 4226 } 4227 4228 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 4229 QualType Ty) const { 4230 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4231 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4232 uint64_t Width = getContext().getTypeSize(Ty); 4233 bool IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width); 4234 4235 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 4236 CGF.getContext().getTypeInfoInChars(Ty), 4237 CharUnits::fromQuantity(8), 4238 /*allowHigherAlign*/ false); 4239 } 4240 4241 ABIArgInfo WinX86_64ABIInfo::reclassifyHvaArgForVectorCall( 4242 QualType Ty, unsigned &FreeSSERegs, const ABIArgInfo ¤t) const { 4243 const Type *Base = nullptr; 4244 uint64_t NumElts = 0; 4245 4246 if (!Ty->isBuiltinType() && !Ty->isVectorType() && 4247 isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) { 4248 FreeSSERegs -= NumElts; 4249 return getDirectX86Hva(); 4250 } 4251 return current; 4252 } 4253 4254 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs, 4255 bool IsReturnType, bool IsVectorCall, 4256 bool IsRegCall) const { 4257 4258 if (Ty->isVoidType()) 4259 return ABIArgInfo::getIgnore(); 4260 4261 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4262 Ty = EnumTy->getDecl()->getIntegerType(); 4263 4264 TypeInfo Info = getContext().getTypeInfo(Ty); 4265 uint64_t Width = Info.Width; 4266 CharUnits Align = getContext().toCharUnitsFromBits(Info.Align); 4267 4268 const RecordType *RT = Ty->getAs<RecordType>(); 4269 if (RT) { 4270 if (!IsReturnType) { 4271 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI())) 4272 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 4273 } 4274 4275 if (RT->getDecl()->hasFlexibleArrayMember()) 4276 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4277 4278 } 4279 4280 const Type *Base = nullptr; 4281 uint64_t NumElts = 0; 4282 // vectorcall adds the concept of a homogenous vector aggregate, similar to 4283 // other targets. 4284 if ((IsVectorCall || IsRegCall) && 4285 isHomogeneousAggregate(Ty, Base, NumElts)) { 4286 if (IsRegCall) { 4287 if (FreeSSERegs >= NumElts) { 4288 FreeSSERegs -= NumElts; 4289 if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType()) 4290 return ABIArgInfo::getDirect(); 4291 return ABIArgInfo::getExpand(); 4292 } 4293 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4294 } else if (IsVectorCall) { 4295 if (FreeSSERegs >= NumElts && 4296 (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) { 4297 FreeSSERegs -= NumElts; 4298 return ABIArgInfo::getDirect(); 4299 } else if (IsReturnType) { 4300 return ABIArgInfo::getExpand(); 4301 } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) { 4302 // HVAs are delayed and reclassified in the 2nd step. 4303 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4304 } 4305 } 4306 } 4307 4308 if (Ty->isMemberPointerType()) { 4309 // If the member pointer is represented by an LLVM int or ptr, pass it 4310 // directly. 4311 llvm::Type *LLTy = CGT.ConvertType(Ty); 4312 if (LLTy->isPointerTy() || LLTy->isIntegerTy()) 4313 return ABIArgInfo::getDirect(); 4314 } 4315 4316 if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) { 4317 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4318 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4319 if (Width > 64 || !llvm::isPowerOf2_64(Width)) 4320 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4321 4322 // Otherwise, coerce it to a small integer. 4323 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width)); 4324 } 4325 4326 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 4327 switch (BT->getKind()) { 4328 case BuiltinType::Bool: 4329 // Bool type is always extended to the ABI, other builtin types are not 4330 // extended. 4331 return ABIArgInfo::getExtend(Ty); 4332 4333 case BuiltinType::LongDouble: 4334 // Mingw64 GCC uses the old 80 bit extended precision floating point 4335 // unit. It passes them indirectly through memory. 4336 if (IsMingw64) { 4337 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 4338 if (LDF == &llvm::APFloat::x87DoubleExtended()) 4339 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4340 } 4341 break; 4342 4343 case BuiltinType::Int128: 4344 case BuiltinType::UInt128: 4345 // If it's a parameter type, the normal ABI rule is that arguments larger 4346 // than 8 bytes are passed indirectly. GCC follows it. We follow it too, 4347 // even though it isn't particularly efficient. 4348 if (!IsReturnType) 4349 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4350 4351 // Mingw64 GCC returns i128 in XMM0. Coerce to v2i64 to handle that. 4352 // Clang matches them for compatibility. 4353 return ABIArgInfo::getDirect(llvm::FixedVectorType::get( 4354 llvm::Type::getInt64Ty(getVMContext()), 2)); 4355 4356 default: 4357 break; 4358 } 4359 } 4360 4361 if (Ty->isBitIntType()) { 4362 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4363 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4364 // However, non-power-of-two bit-precise integers will be passed as 1, 2, 4, 4365 // or 8 bytes anyway as long is it fits in them, so we don't have to check 4366 // the power of 2. 4367 if (Width <= 64) 4368 return ABIArgInfo::getDirect(); 4369 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4370 } 4371 4372 return ABIArgInfo::getDirect(); 4373 } 4374 4375 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 4376 const unsigned CC = FI.getCallingConvention(); 4377 bool IsVectorCall = CC == llvm::CallingConv::X86_VectorCall; 4378 bool IsRegCall = CC == llvm::CallingConv::X86_RegCall; 4379 4380 // If __attribute__((sysv_abi)) is in use, use the SysV argument 4381 // classification rules. 4382 if (CC == llvm::CallingConv::X86_64_SysV) { 4383 X86_64ABIInfo SysVABIInfo(CGT, AVXLevel); 4384 SysVABIInfo.computeInfo(FI); 4385 return; 4386 } 4387 4388 unsigned FreeSSERegs = 0; 4389 if (IsVectorCall) { 4390 // We can use up to 4 SSE return registers with vectorcall. 4391 FreeSSERegs = 4; 4392 } else if (IsRegCall) { 4393 // RegCall gives us 16 SSE registers. 4394 FreeSSERegs = 16; 4395 } 4396 4397 if (!getCXXABI().classifyReturnType(FI)) 4398 FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true, 4399 IsVectorCall, IsRegCall); 4400 4401 if (IsVectorCall) { 4402 // We can use up to 6 SSE register parameters with vectorcall. 4403 FreeSSERegs = 6; 4404 } else if (IsRegCall) { 4405 // RegCall gives us 16 SSE registers, we can reuse the return registers. 4406 FreeSSERegs = 16; 4407 } 4408 4409 unsigned ArgNum = 0; 4410 unsigned ZeroSSERegs = 0; 4411 for (auto &I : FI.arguments()) { 4412 // Vectorcall in x64 only permits the first 6 arguments to be passed as 4413 // XMM/YMM registers. After the sixth argument, pretend no vector 4414 // registers are left. 4415 unsigned *MaybeFreeSSERegs = 4416 (IsVectorCall && ArgNum >= 6) ? &ZeroSSERegs : &FreeSSERegs; 4417 I.info = 4418 classify(I.type, *MaybeFreeSSERegs, false, IsVectorCall, IsRegCall); 4419 ++ArgNum; 4420 } 4421 4422 if (IsVectorCall) { 4423 // For vectorcall, assign aggregate HVAs to any free vector registers in a 4424 // second pass. 4425 for (auto &I : FI.arguments()) 4426 I.info = reclassifyHvaArgForVectorCall(I.type, FreeSSERegs, I.info); 4427 } 4428 } 4429 4430 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4431 QualType Ty) const { 4432 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4433 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4434 uint64_t Width = getContext().getTypeSize(Ty); 4435 bool IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width); 4436 4437 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 4438 CGF.getContext().getTypeInfoInChars(Ty), 4439 CharUnits::fromQuantity(8), 4440 /*allowHigherAlign*/ false); 4441 } 4442 4443 static bool PPC_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4444 llvm::Value *Address, bool Is64Bit, 4445 bool IsAIX) { 4446 // This is calculated from the LLVM and GCC tables and verified 4447 // against gcc output. AFAIK all PPC ABIs use the same encoding. 4448 4449 CodeGen::CGBuilderTy &Builder = CGF.Builder; 4450 4451 llvm::IntegerType *i8 = CGF.Int8Ty; 4452 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 4453 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 4454 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 4455 4456 // 0-31: r0-31, the 4-byte or 8-byte general-purpose registers 4457 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 0, 31); 4458 4459 // 32-63: fp0-31, the 8-byte floating-point registers 4460 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 4461 4462 // 64-67 are various 4-byte or 8-byte special-purpose registers: 4463 // 64: mq 4464 // 65: lr 4465 // 66: ctr 4466 // 67: ap 4467 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 64, 67); 4468 4469 // 68-76 are various 4-byte special-purpose registers: 4470 // 68-75 cr0-7 4471 // 76: xer 4472 AssignToArrayRange(Builder, Address, Four8, 68, 76); 4473 4474 // 77-108: v0-31, the 16-byte vector registers 4475 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 4476 4477 // 109: vrsave 4478 // 110: vscr 4479 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 109, 110); 4480 4481 // AIX does not utilize the rest of the registers. 4482 if (IsAIX) 4483 return false; 4484 4485 // 111: spe_acc 4486 // 112: spefscr 4487 // 113: sfp 4488 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 111, 113); 4489 4490 if (!Is64Bit) 4491 return false; 4492 4493 // TODO: Need to verify if these registers are used on 64 bit AIX with Power8 4494 // or above CPU. 4495 // 64-bit only registers: 4496 // 114: tfhar 4497 // 115: tfiar 4498 // 116: texasr 4499 AssignToArrayRange(Builder, Address, Eight8, 114, 116); 4500 4501 return false; 4502 } 4503 4504 // AIX 4505 namespace { 4506 /// AIXABIInfo - The AIX XCOFF ABI information. 4507 class AIXABIInfo : public ABIInfo { 4508 const bool Is64Bit; 4509 const unsigned PtrByteSize; 4510 CharUnits getParamTypeAlignment(QualType Ty) const; 4511 4512 public: 4513 AIXABIInfo(CodeGen::CodeGenTypes &CGT, bool Is64Bit) 4514 : ABIInfo(CGT), Is64Bit(Is64Bit), PtrByteSize(Is64Bit ? 8 : 4) {} 4515 4516 bool isPromotableTypeForABI(QualType Ty) const; 4517 4518 ABIArgInfo classifyReturnType(QualType RetTy) const; 4519 ABIArgInfo classifyArgumentType(QualType Ty) const; 4520 4521 void computeInfo(CGFunctionInfo &FI) const override { 4522 if (!getCXXABI().classifyReturnType(FI)) 4523 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4524 4525 for (auto &I : FI.arguments()) 4526 I.info = classifyArgumentType(I.type); 4527 } 4528 4529 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4530 QualType Ty) const override; 4531 }; 4532 4533 class AIXTargetCodeGenInfo : public TargetCodeGenInfo { 4534 const bool Is64Bit; 4535 4536 public: 4537 AIXTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool Is64Bit) 4538 : TargetCodeGenInfo(std::make_unique<AIXABIInfo>(CGT, Is64Bit)), 4539 Is64Bit(Is64Bit) {} 4540 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4541 return 1; // r1 is the dedicated stack pointer 4542 } 4543 4544 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4545 llvm::Value *Address) const override; 4546 }; 4547 } // namespace 4548 4549 // Return true if the ABI requires Ty to be passed sign- or zero- 4550 // extended to 32/64 bits. 4551 bool AIXABIInfo::isPromotableTypeForABI(QualType Ty) const { 4552 // Treat an enum type as its underlying type. 4553 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4554 Ty = EnumTy->getDecl()->getIntegerType(); 4555 4556 // Promotable integer types are required to be promoted by the ABI. 4557 if (Ty->isPromotableIntegerType()) 4558 return true; 4559 4560 if (!Is64Bit) 4561 return false; 4562 4563 // For 64 bit mode, in addition to the usual promotable integer types, we also 4564 // need to extend all 32-bit types, since the ABI requires promotion to 64 4565 // bits. 4566 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 4567 switch (BT->getKind()) { 4568 case BuiltinType::Int: 4569 case BuiltinType::UInt: 4570 return true; 4571 default: 4572 break; 4573 } 4574 4575 return false; 4576 } 4577 4578 ABIArgInfo AIXABIInfo::classifyReturnType(QualType RetTy) const { 4579 if (RetTy->isAnyComplexType()) 4580 return ABIArgInfo::getDirect(); 4581 4582 if (RetTy->isVectorType()) 4583 return ABIArgInfo::getDirect(); 4584 4585 if (RetTy->isVoidType()) 4586 return ABIArgInfo::getIgnore(); 4587 4588 if (isAggregateTypeForABI(RetTy)) 4589 return getNaturalAlignIndirect(RetTy); 4590 4591 return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 4592 : ABIArgInfo::getDirect()); 4593 } 4594 4595 ABIArgInfo AIXABIInfo::classifyArgumentType(QualType Ty) const { 4596 Ty = useFirstFieldIfTransparentUnion(Ty); 4597 4598 if (Ty->isAnyComplexType()) 4599 return ABIArgInfo::getDirect(); 4600 4601 if (Ty->isVectorType()) 4602 return ABIArgInfo::getDirect(); 4603 4604 if (isAggregateTypeForABI(Ty)) { 4605 // Records with non-trivial destructors/copy-constructors should not be 4606 // passed by value. 4607 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 4608 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 4609 4610 CharUnits CCAlign = getParamTypeAlignment(Ty); 4611 CharUnits TyAlign = getContext().getTypeAlignInChars(Ty); 4612 4613 return ABIArgInfo::getIndirect(CCAlign, /*ByVal*/ true, 4614 /*Realign*/ TyAlign > CCAlign); 4615 } 4616 4617 return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 4618 : ABIArgInfo::getDirect()); 4619 } 4620 4621 CharUnits AIXABIInfo::getParamTypeAlignment(QualType Ty) const { 4622 // Complex types are passed just like their elements. 4623 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 4624 Ty = CTy->getElementType(); 4625 4626 if (Ty->isVectorType()) 4627 return CharUnits::fromQuantity(16); 4628 4629 // If the structure contains a vector type, the alignment is 16. 4630 if (isRecordWithSIMDVectorType(getContext(), Ty)) 4631 return CharUnits::fromQuantity(16); 4632 4633 return CharUnits::fromQuantity(PtrByteSize); 4634 } 4635 4636 Address AIXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4637 QualType Ty) const { 4638 4639 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 4640 TypeInfo.Align = getParamTypeAlignment(Ty); 4641 4642 CharUnits SlotSize = CharUnits::fromQuantity(PtrByteSize); 4643 4644 // If we have a complex type and the base type is smaller than the register 4645 // size, the ABI calls for the real and imaginary parts to be right-adjusted 4646 // in separate words in 32bit mode or doublewords in 64bit mode. However, 4647 // Clang expects us to produce a pointer to a structure with the two parts 4648 // packed tightly. So generate loads of the real and imaginary parts relative 4649 // to the va_list pointer, and store them to a temporary structure. We do the 4650 // same as the PPC64ABI here. 4651 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 4652 CharUnits EltSize = TypeInfo.Width / 2; 4653 if (EltSize < SlotSize) 4654 return complexTempStructure(CGF, VAListAddr, Ty, SlotSize, EltSize, CTy); 4655 } 4656 4657 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, TypeInfo, 4658 SlotSize, /*AllowHigher*/ true); 4659 } 4660 4661 bool AIXTargetCodeGenInfo::initDwarfEHRegSizeTable( 4662 CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const { 4663 return PPC_initDwarfEHRegSizeTable(CGF, Address, Is64Bit, /*IsAIX*/ true); 4664 } 4665 4666 // PowerPC-32 4667 namespace { 4668 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information. 4669 class PPC32_SVR4_ABIInfo : public DefaultABIInfo { 4670 bool IsSoftFloatABI; 4671 bool IsRetSmallStructInRegABI; 4672 4673 CharUnits getParamTypeAlignment(QualType Ty) const; 4674 4675 public: 4676 PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI, 4677 bool RetSmallStructInRegABI) 4678 : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI), 4679 IsRetSmallStructInRegABI(RetSmallStructInRegABI) {} 4680 4681 ABIArgInfo classifyReturnType(QualType RetTy) const; 4682 4683 void computeInfo(CGFunctionInfo &FI) const override { 4684 if (!getCXXABI().classifyReturnType(FI)) 4685 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4686 for (auto &I : FI.arguments()) 4687 I.info = classifyArgumentType(I.type); 4688 } 4689 4690 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4691 QualType Ty) const override; 4692 }; 4693 4694 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo { 4695 public: 4696 PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI, 4697 bool RetSmallStructInRegABI) 4698 : TargetCodeGenInfo(std::make_unique<PPC32_SVR4_ABIInfo>( 4699 CGT, SoftFloatABI, RetSmallStructInRegABI)) {} 4700 4701 static bool isStructReturnInRegABI(const llvm::Triple &Triple, 4702 const CodeGenOptions &Opts); 4703 4704 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4705 // This is recovered from gcc output. 4706 return 1; // r1 is the dedicated stack pointer 4707 } 4708 4709 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4710 llvm::Value *Address) const override; 4711 }; 4712 } 4713 4714 CharUnits PPC32_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 4715 // Complex types are passed just like their elements. 4716 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 4717 Ty = CTy->getElementType(); 4718 4719 if (Ty->isVectorType()) 4720 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 4721 : 4); 4722 4723 // For single-element float/vector structs, we consider the whole type 4724 // to have the same alignment requirements as its single element. 4725 const Type *AlignTy = nullptr; 4726 if (const Type *EltType = isSingleElementStruct(Ty, getContext())) { 4727 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 4728 if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) || 4729 (BT && BT->isFloatingPoint())) 4730 AlignTy = EltType; 4731 } 4732 4733 if (AlignTy) 4734 return CharUnits::fromQuantity(AlignTy->isVectorType() ? 16 : 4); 4735 return CharUnits::fromQuantity(4); 4736 } 4737 4738 ABIArgInfo PPC32_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { 4739 uint64_t Size; 4740 4741 // -msvr4-struct-return puts small aggregates in GPR3 and GPR4. 4742 if (isAggregateTypeForABI(RetTy) && IsRetSmallStructInRegABI && 4743 (Size = getContext().getTypeSize(RetTy)) <= 64) { 4744 // System V ABI (1995), page 3-22, specified: 4745 // > A structure or union whose size is less than or equal to 8 bytes 4746 // > shall be returned in r3 and r4, as if it were first stored in the 4747 // > 8-byte aligned memory area and then the low addressed word were 4748 // > loaded into r3 and the high-addressed word into r4. Bits beyond 4749 // > the last member of the structure or union are not defined. 4750 // 4751 // GCC for big-endian PPC32 inserts the pad before the first member, 4752 // not "beyond the last member" of the struct. To stay compatible 4753 // with GCC, we coerce the struct to an integer of the same size. 4754 // LLVM will extend it and return i32 in r3, or i64 in r3:r4. 4755 if (Size == 0) 4756 return ABIArgInfo::getIgnore(); 4757 else { 4758 llvm::Type *CoerceTy = llvm::Type::getIntNTy(getVMContext(), Size); 4759 return ABIArgInfo::getDirect(CoerceTy); 4760 } 4761 } 4762 4763 return DefaultABIInfo::classifyReturnType(RetTy); 4764 } 4765 4766 // TODO: this implementation is now likely redundant with 4767 // DefaultABIInfo::EmitVAArg. 4768 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList, 4769 QualType Ty) const { 4770 if (getTarget().getTriple().isOSDarwin()) { 4771 auto TI = getContext().getTypeInfoInChars(Ty); 4772 TI.Align = getParamTypeAlignment(Ty); 4773 4774 CharUnits SlotSize = CharUnits::fromQuantity(4); 4775 return emitVoidPtrVAArg(CGF, VAList, Ty, 4776 classifyArgumentType(Ty).isIndirect(), TI, SlotSize, 4777 /*AllowHigherAlign=*/true); 4778 } 4779 4780 const unsigned OverflowLimit = 8; 4781 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 4782 // TODO: Implement this. For now ignore. 4783 (void)CTy; 4784 return Address::invalid(); // FIXME? 4785 } 4786 4787 // struct __va_list_tag { 4788 // unsigned char gpr; 4789 // unsigned char fpr; 4790 // unsigned short reserved; 4791 // void *overflow_arg_area; 4792 // void *reg_save_area; 4793 // }; 4794 4795 bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64; 4796 bool isInt = !Ty->isFloatingType(); 4797 bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64; 4798 4799 // All aggregates are passed indirectly? That doesn't seem consistent 4800 // with the argument-lowering code. 4801 bool isIndirect = isAggregateTypeForABI(Ty); 4802 4803 CGBuilderTy &Builder = CGF.Builder; 4804 4805 // The calling convention either uses 1-2 GPRs or 1 FPR. 4806 Address NumRegsAddr = Address::invalid(); 4807 if (isInt || IsSoftFloatABI) { 4808 NumRegsAddr = Builder.CreateStructGEP(VAList, 0, "gpr"); 4809 } else { 4810 NumRegsAddr = Builder.CreateStructGEP(VAList, 1, "fpr"); 4811 } 4812 4813 llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs"); 4814 4815 // "Align" the register count when TY is i64. 4816 if (isI64 || (isF64 && IsSoftFloatABI)) { 4817 NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1)); 4818 NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U)); 4819 } 4820 4821 llvm::Value *CC = 4822 Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond"); 4823 4824 llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs"); 4825 llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow"); 4826 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 4827 4828 Builder.CreateCondBr(CC, UsingRegs, UsingOverflow); 4829 4830 llvm::Type *DirectTy = CGF.ConvertType(Ty); 4831 if (isIndirect) DirectTy = DirectTy->getPointerTo(0); 4832 4833 // Case 1: consume registers. 4834 Address RegAddr = Address::invalid(); 4835 { 4836 CGF.EmitBlock(UsingRegs); 4837 4838 Address RegSaveAreaPtr = Builder.CreateStructGEP(VAList, 4); 4839 RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr), 4840 CharUnits::fromQuantity(8)); 4841 assert(RegAddr.getElementType() == CGF.Int8Ty); 4842 4843 // Floating-point registers start after the general-purpose registers. 4844 if (!(isInt || IsSoftFloatABI)) { 4845 RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr, 4846 CharUnits::fromQuantity(32)); 4847 } 4848 4849 // Get the address of the saved value by scaling the number of 4850 // registers we've used by the number of 4851 CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8); 4852 llvm::Value *RegOffset = 4853 Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity())); 4854 RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty, 4855 RegAddr.getPointer(), RegOffset), 4856 RegAddr.getAlignment().alignmentOfArrayElement(RegSize)); 4857 RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy); 4858 4859 // Increase the used-register count. 4860 NumRegs = 4861 Builder.CreateAdd(NumRegs, 4862 Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1)); 4863 Builder.CreateStore(NumRegs, NumRegsAddr); 4864 4865 CGF.EmitBranch(Cont); 4866 } 4867 4868 // Case 2: consume space in the overflow area. 4869 Address MemAddr = Address::invalid(); 4870 { 4871 CGF.EmitBlock(UsingOverflow); 4872 4873 Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr); 4874 4875 // Everything in the overflow area is rounded up to a size of at least 4. 4876 CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4); 4877 4878 CharUnits Size; 4879 if (!isIndirect) { 4880 auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty); 4881 Size = TypeInfo.Width.alignTo(OverflowAreaAlign); 4882 } else { 4883 Size = CGF.getPointerSize(); 4884 } 4885 4886 Address OverflowAreaAddr = Builder.CreateStructGEP(VAList, 3); 4887 Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"), 4888 OverflowAreaAlign); 4889 // Round up address of argument to alignment 4890 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 4891 if (Align > OverflowAreaAlign) { 4892 llvm::Value *Ptr = OverflowArea.getPointer(); 4893 OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align), 4894 Align); 4895 } 4896 4897 MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy); 4898 4899 // Increase the overflow area. 4900 OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size); 4901 Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr); 4902 CGF.EmitBranch(Cont); 4903 } 4904 4905 CGF.EmitBlock(Cont); 4906 4907 // Merge the cases with a phi. 4908 Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow, 4909 "vaarg.addr"); 4910 4911 // Load the pointer if the argument was passed indirectly. 4912 if (isIndirect) { 4913 Result = Address(Builder.CreateLoad(Result, "aggr"), 4914 getContext().getTypeAlignInChars(Ty)); 4915 } 4916 4917 return Result; 4918 } 4919 4920 bool PPC32TargetCodeGenInfo::isStructReturnInRegABI( 4921 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 4922 assert(Triple.isPPC32()); 4923 4924 switch (Opts.getStructReturnConvention()) { 4925 case CodeGenOptions::SRCK_Default: 4926 break; 4927 case CodeGenOptions::SRCK_OnStack: // -maix-struct-return 4928 return false; 4929 case CodeGenOptions::SRCK_InRegs: // -msvr4-struct-return 4930 return true; 4931 } 4932 4933 if (Triple.isOSBinFormatELF() && !Triple.isOSLinux()) 4934 return true; 4935 4936 return false; 4937 } 4938 4939 bool 4940 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4941 llvm::Value *Address) const { 4942 return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ false, 4943 /*IsAIX*/ false); 4944 } 4945 4946 // PowerPC-64 4947 4948 namespace { 4949 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information. 4950 class PPC64_SVR4_ABIInfo : public SwiftABIInfo { 4951 public: 4952 enum ABIKind { 4953 ELFv1 = 0, 4954 ELFv2 4955 }; 4956 4957 private: 4958 static const unsigned GPRBits = 64; 4959 ABIKind Kind; 4960 bool IsSoftFloatABI; 4961 4962 public: 4963 PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, 4964 bool SoftFloatABI) 4965 : SwiftABIInfo(CGT), Kind(Kind), IsSoftFloatABI(SoftFloatABI) {} 4966 4967 bool isPromotableTypeForABI(QualType Ty) const; 4968 CharUnits getParamTypeAlignment(QualType Ty) const; 4969 4970 ABIArgInfo classifyReturnType(QualType RetTy) const; 4971 ABIArgInfo classifyArgumentType(QualType Ty) const; 4972 4973 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 4974 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 4975 uint64_t Members) const override; 4976 4977 // TODO: We can add more logic to computeInfo to improve performance. 4978 // Example: For aggregate arguments that fit in a register, we could 4979 // use getDirectInReg (as is done below for structs containing a single 4980 // floating-point value) to avoid pushing them to memory on function 4981 // entry. This would require changing the logic in PPCISelLowering 4982 // when lowering the parameters in the caller and args in the callee. 4983 void computeInfo(CGFunctionInfo &FI) const override { 4984 if (!getCXXABI().classifyReturnType(FI)) 4985 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4986 for (auto &I : FI.arguments()) { 4987 // We rely on the default argument classification for the most part. 4988 // One exception: An aggregate containing a single floating-point 4989 // or vector item must be passed in a register if one is available. 4990 const Type *T = isSingleElementStruct(I.type, getContext()); 4991 if (T) { 4992 const BuiltinType *BT = T->getAs<BuiltinType>(); 4993 if ((T->isVectorType() && getContext().getTypeSize(T) == 128) || 4994 (BT && BT->isFloatingPoint())) { 4995 QualType QT(T, 0); 4996 I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT)); 4997 continue; 4998 } 4999 } 5000 I.info = classifyArgumentType(I.type); 5001 } 5002 } 5003 5004 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5005 QualType Ty) const override; 5006 5007 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 5008 bool asReturnValue) const override { 5009 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 5010 } 5011 5012 bool isSwiftErrorInRegister() const override { 5013 return false; 5014 } 5015 }; 5016 5017 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo { 5018 5019 public: 5020 PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT, 5021 PPC64_SVR4_ABIInfo::ABIKind Kind, 5022 bool SoftFloatABI) 5023 : TargetCodeGenInfo( 5024 std::make_unique<PPC64_SVR4_ABIInfo>(CGT, Kind, SoftFloatABI)) {} 5025 5026 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 5027 // This is recovered from gcc output. 5028 return 1; // r1 is the dedicated stack pointer 5029 } 5030 5031 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5032 llvm::Value *Address) const override; 5033 }; 5034 5035 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo { 5036 public: 5037 PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {} 5038 5039 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 5040 // This is recovered from gcc output. 5041 return 1; // r1 is the dedicated stack pointer 5042 } 5043 5044 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5045 llvm::Value *Address) const override; 5046 }; 5047 5048 } 5049 5050 // Return true if the ABI requires Ty to be passed sign- or zero- 5051 // extended to 64 bits. 5052 bool 5053 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const { 5054 // Treat an enum type as its underlying type. 5055 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5056 Ty = EnumTy->getDecl()->getIntegerType(); 5057 5058 // Promotable integer types are required to be promoted by the ABI. 5059 if (isPromotableIntegerTypeForABI(Ty)) 5060 return true; 5061 5062 // In addition to the usual promotable integer types, we also need to 5063 // extend all 32-bit types, since the ABI requires promotion to 64 bits. 5064 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 5065 switch (BT->getKind()) { 5066 case BuiltinType::Int: 5067 case BuiltinType::UInt: 5068 return true; 5069 default: 5070 break; 5071 } 5072 5073 if (const auto *EIT = Ty->getAs<BitIntType>()) 5074 if (EIT->getNumBits() < 64) 5075 return true; 5076 5077 return false; 5078 } 5079 5080 /// isAlignedParamType - Determine whether a type requires 16-byte or 5081 /// higher alignment in the parameter area. Always returns at least 8. 5082 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 5083 // Complex types are passed just like their elements. 5084 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 5085 Ty = CTy->getElementType(); 5086 5087 auto FloatUsesVector = [this](QualType Ty){ 5088 return Ty->isRealFloatingType() && &getContext().getFloatTypeSemantics( 5089 Ty) == &llvm::APFloat::IEEEquad(); 5090 }; 5091 5092 // Only vector types of size 16 bytes need alignment (larger types are 5093 // passed via reference, smaller types are not aligned). 5094 if (Ty->isVectorType()) { 5095 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8); 5096 } else if (FloatUsesVector(Ty)) { 5097 // According to ABI document section 'Optional Save Areas': If extended 5098 // precision floating-point values in IEEE BINARY 128 QUADRUPLE PRECISION 5099 // format are supported, map them to a single quadword, quadword aligned. 5100 return CharUnits::fromQuantity(16); 5101 } 5102 5103 // For single-element float/vector structs, we consider the whole type 5104 // to have the same alignment requirements as its single element. 5105 const Type *AlignAsType = nullptr; 5106 const Type *EltType = isSingleElementStruct(Ty, getContext()); 5107 if (EltType) { 5108 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 5109 if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) || 5110 (BT && BT->isFloatingPoint())) 5111 AlignAsType = EltType; 5112 } 5113 5114 // Likewise for ELFv2 homogeneous aggregates. 5115 const Type *Base = nullptr; 5116 uint64_t Members = 0; 5117 if (!AlignAsType && Kind == ELFv2 && 5118 isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members)) 5119 AlignAsType = Base; 5120 5121 // With special case aggregates, only vector base types need alignment. 5122 if (AlignAsType) { 5123 bool UsesVector = AlignAsType->isVectorType() || 5124 FloatUsesVector(QualType(AlignAsType, 0)); 5125 return CharUnits::fromQuantity(UsesVector ? 16 : 8); 5126 } 5127 5128 // Otherwise, we only need alignment for any aggregate type that 5129 // has an alignment requirement of >= 16 bytes. 5130 if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) { 5131 return CharUnits::fromQuantity(16); 5132 } 5133 5134 return CharUnits::fromQuantity(8); 5135 } 5136 5137 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous 5138 /// aggregate. Base is set to the base element type, and Members is set 5139 /// to the number of base elements. 5140 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base, 5141 uint64_t &Members) const { 5142 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 5143 uint64_t NElements = AT->getSize().getZExtValue(); 5144 if (NElements == 0) 5145 return false; 5146 if (!isHomogeneousAggregate(AT->getElementType(), Base, Members)) 5147 return false; 5148 Members *= NElements; 5149 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 5150 const RecordDecl *RD = RT->getDecl(); 5151 if (RD->hasFlexibleArrayMember()) 5152 return false; 5153 5154 Members = 0; 5155 5156 // If this is a C++ record, check the properties of the record such as 5157 // bases and ABI specific restrictions 5158 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 5159 if (!getCXXABI().isPermittedToBeHomogeneousAggregate(CXXRD)) 5160 return false; 5161 5162 for (const auto &I : CXXRD->bases()) { 5163 // Ignore empty records. 5164 if (isEmptyRecord(getContext(), I.getType(), true)) 5165 continue; 5166 5167 uint64_t FldMembers; 5168 if (!isHomogeneousAggregate(I.getType(), Base, FldMembers)) 5169 return false; 5170 5171 Members += FldMembers; 5172 } 5173 } 5174 5175 for (const auto *FD : RD->fields()) { 5176 // Ignore (non-zero arrays of) empty records. 5177 QualType FT = FD->getType(); 5178 while (const ConstantArrayType *AT = 5179 getContext().getAsConstantArrayType(FT)) { 5180 if (AT->getSize().getZExtValue() == 0) 5181 return false; 5182 FT = AT->getElementType(); 5183 } 5184 if (isEmptyRecord(getContext(), FT, true)) 5185 continue; 5186 5187 // For compatibility with GCC, ignore empty bitfields in C++ mode. 5188 if (getContext().getLangOpts().CPlusPlus && 5189 FD->isZeroLengthBitField(getContext())) 5190 continue; 5191 5192 uint64_t FldMembers; 5193 if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers)) 5194 return false; 5195 5196 Members = (RD->isUnion() ? 5197 std::max(Members, FldMembers) : Members + FldMembers); 5198 } 5199 5200 if (!Base) 5201 return false; 5202 5203 // Ensure there is no padding. 5204 if (getContext().getTypeSize(Base) * Members != 5205 getContext().getTypeSize(Ty)) 5206 return false; 5207 } else { 5208 Members = 1; 5209 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 5210 Members = 2; 5211 Ty = CT->getElementType(); 5212 } 5213 5214 // Most ABIs only support float, double, and some vector type widths. 5215 if (!isHomogeneousAggregateBaseType(Ty)) 5216 return false; 5217 5218 // The base type must be the same for all members. Types that 5219 // agree in both total size and mode (float vs. vector) are 5220 // treated as being equivalent here. 5221 const Type *TyPtr = Ty.getTypePtr(); 5222 if (!Base) { 5223 Base = TyPtr; 5224 // If it's a non-power-of-2 vector, its size is already a power-of-2, 5225 // so make sure to widen it explicitly. 5226 if (const VectorType *VT = Base->getAs<VectorType>()) { 5227 QualType EltTy = VT->getElementType(); 5228 unsigned NumElements = 5229 getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy); 5230 Base = getContext() 5231 .getVectorType(EltTy, NumElements, VT->getVectorKind()) 5232 .getTypePtr(); 5233 } 5234 } 5235 5236 if (Base->isVectorType() != TyPtr->isVectorType() || 5237 getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr)) 5238 return false; 5239 } 5240 return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members); 5241 } 5242 5243 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 5244 // Homogeneous aggregates for ELFv2 must have base types of float, 5245 // double, long double, or 128-bit vectors. 5246 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 5247 if (BT->getKind() == BuiltinType::Float || 5248 BT->getKind() == BuiltinType::Double || 5249 BT->getKind() == BuiltinType::LongDouble || 5250 BT->getKind() == BuiltinType::Ibm128 || 5251 (getContext().getTargetInfo().hasFloat128Type() && 5252 (BT->getKind() == BuiltinType::Float128))) { 5253 if (IsSoftFloatABI) 5254 return false; 5255 return true; 5256 } 5257 } 5258 if (const VectorType *VT = Ty->getAs<VectorType>()) { 5259 if (getContext().getTypeSize(VT) == 128) 5260 return true; 5261 } 5262 return false; 5263 } 5264 5265 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough( 5266 const Type *Base, uint64_t Members) const { 5267 // Vector and fp128 types require one register, other floating point types 5268 // require one or two registers depending on their size. 5269 uint32_t NumRegs = 5270 ((getContext().getTargetInfo().hasFloat128Type() && 5271 Base->isFloat128Type()) || 5272 Base->isVectorType()) ? 1 5273 : (getContext().getTypeSize(Base) + 63) / 64; 5274 5275 // Homogeneous Aggregates may occupy at most 8 registers. 5276 return Members * NumRegs <= 8; 5277 } 5278 5279 ABIArgInfo 5280 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const { 5281 Ty = useFirstFieldIfTransparentUnion(Ty); 5282 5283 if (Ty->isAnyComplexType()) 5284 return ABIArgInfo::getDirect(); 5285 5286 // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes) 5287 // or via reference (larger than 16 bytes). 5288 if (Ty->isVectorType()) { 5289 uint64_t Size = getContext().getTypeSize(Ty); 5290 if (Size > 128) 5291 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5292 else if (Size < 128) { 5293 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 5294 return ABIArgInfo::getDirect(CoerceTy); 5295 } 5296 } 5297 5298 if (const auto *EIT = Ty->getAs<BitIntType>()) 5299 if (EIT->getNumBits() > 128) 5300 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 5301 5302 if (isAggregateTypeForABI(Ty)) { 5303 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 5304 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 5305 5306 uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity(); 5307 uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); 5308 5309 // ELFv2 homogeneous aggregates are passed as array types. 5310 const Type *Base = nullptr; 5311 uint64_t Members = 0; 5312 if (Kind == ELFv2 && 5313 isHomogeneousAggregate(Ty, Base, Members)) { 5314 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 5315 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 5316 return ABIArgInfo::getDirect(CoerceTy); 5317 } 5318 5319 // If an aggregate may end up fully in registers, we do not 5320 // use the ByVal method, but pass the aggregate as array. 5321 // This is usually beneficial since we avoid forcing the 5322 // back-end to store the argument to memory. 5323 uint64_t Bits = getContext().getTypeSize(Ty); 5324 if (Bits > 0 && Bits <= 8 * GPRBits) { 5325 llvm::Type *CoerceTy; 5326 5327 // Types up to 8 bytes are passed as integer type (which will be 5328 // properly aligned in the argument save area doubleword). 5329 if (Bits <= GPRBits) 5330 CoerceTy = 5331 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 5332 // Larger types are passed as arrays, with the base type selected 5333 // according to the required alignment in the save area. 5334 else { 5335 uint64_t RegBits = ABIAlign * 8; 5336 uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits; 5337 llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits); 5338 CoerceTy = llvm::ArrayType::get(RegTy, NumRegs); 5339 } 5340 5341 return ABIArgInfo::getDirect(CoerceTy); 5342 } 5343 5344 // All other aggregates are passed ByVal. 5345 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 5346 /*ByVal=*/true, 5347 /*Realign=*/TyAlign > ABIAlign); 5348 } 5349 5350 return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 5351 : ABIArgInfo::getDirect()); 5352 } 5353 5354 ABIArgInfo 5355 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { 5356 if (RetTy->isVoidType()) 5357 return ABIArgInfo::getIgnore(); 5358 5359 if (RetTy->isAnyComplexType()) 5360 return ABIArgInfo::getDirect(); 5361 5362 // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes) 5363 // or via reference (larger than 16 bytes). 5364 if (RetTy->isVectorType()) { 5365 uint64_t Size = getContext().getTypeSize(RetTy); 5366 if (Size > 128) 5367 return getNaturalAlignIndirect(RetTy); 5368 else if (Size < 128) { 5369 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 5370 return ABIArgInfo::getDirect(CoerceTy); 5371 } 5372 } 5373 5374 if (const auto *EIT = RetTy->getAs<BitIntType>()) 5375 if (EIT->getNumBits() > 128) 5376 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 5377 5378 if (isAggregateTypeForABI(RetTy)) { 5379 // ELFv2 homogeneous aggregates are returned as array types. 5380 const Type *Base = nullptr; 5381 uint64_t Members = 0; 5382 if (Kind == ELFv2 && 5383 isHomogeneousAggregate(RetTy, Base, Members)) { 5384 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 5385 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 5386 return ABIArgInfo::getDirect(CoerceTy); 5387 } 5388 5389 // ELFv2 small aggregates are returned in up to two registers. 5390 uint64_t Bits = getContext().getTypeSize(RetTy); 5391 if (Kind == ELFv2 && Bits <= 2 * GPRBits) { 5392 if (Bits == 0) 5393 return ABIArgInfo::getIgnore(); 5394 5395 llvm::Type *CoerceTy; 5396 if (Bits > GPRBits) { 5397 CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits); 5398 CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy); 5399 } else 5400 CoerceTy = 5401 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 5402 return ABIArgInfo::getDirect(CoerceTy); 5403 } 5404 5405 // All other aggregates are returned indirectly. 5406 return getNaturalAlignIndirect(RetTy); 5407 } 5408 5409 return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 5410 : ABIArgInfo::getDirect()); 5411 } 5412 5413 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine. 5414 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5415 QualType Ty) const { 5416 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 5417 TypeInfo.Align = getParamTypeAlignment(Ty); 5418 5419 CharUnits SlotSize = CharUnits::fromQuantity(8); 5420 5421 // If we have a complex type and the base type is smaller than 8 bytes, 5422 // the ABI calls for the real and imaginary parts to be right-adjusted 5423 // in separate doublewords. However, Clang expects us to produce a 5424 // pointer to a structure with the two parts packed tightly. So generate 5425 // loads of the real and imaginary parts relative to the va_list pointer, 5426 // and store them to a temporary structure. 5427 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 5428 CharUnits EltSize = TypeInfo.Width / 2; 5429 if (EltSize < SlotSize) 5430 return complexTempStructure(CGF, VAListAddr, Ty, SlotSize, EltSize, CTy); 5431 } 5432 5433 // Otherwise, just use the general rule. 5434 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 5435 TypeInfo, SlotSize, /*AllowHigher*/ true); 5436 } 5437 5438 bool 5439 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable( 5440 CodeGen::CodeGenFunction &CGF, 5441 llvm::Value *Address) const { 5442 return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ true, 5443 /*IsAIX*/ false); 5444 } 5445 5446 bool 5447 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5448 llvm::Value *Address) const { 5449 return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ true, 5450 /*IsAIX*/ false); 5451 } 5452 5453 //===----------------------------------------------------------------------===// 5454 // AArch64 ABI Implementation 5455 //===----------------------------------------------------------------------===// 5456 5457 namespace { 5458 5459 class AArch64ABIInfo : public SwiftABIInfo { 5460 public: 5461 enum ABIKind { 5462 AAPCS = 0, 5463 DarwinPCS, 5464 Win64 5465 }; 5466 5467 private: 5468 ABIKind Kind; 5469 5470 public: 5471 AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind) 5472 : SwiftABIInfo(CGT), Kind(Kind) {} 5473 5474 private: 5475 ABIKind getABIKind() const { return Kind; } 5476 bool isDarwinPCS() const { return Kind == DarwinPCS; } 5477 5478 ABIArgInfo classifyReturnType(QualType RetTy, bool IsVariadic) const; 5479 ABIArgInfo classifyArgumentType(QualType RetTy, bool IsVariadic, 5480 unsigned CallingConvention) const; 5481 ABIArgInfo coerceIllegalVector(QualType Ty) const; 5482 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 5483 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 5484 uint64_t Members) const override; 5485 5486 bool isIllegalVectorType(QualType Ty) const; 5487 5488 void computeInfo(CGFunctionInfo &FI) const override { 5489 if (!::classifyReturnType(getCXXABI(), FI, *this)) 5490 FI.getReturnInfo() = 5491 classifyReturnType(FI.getReturnType(), FI.isVariadic()); 5492 5493 for (auto &it : FI.arguments()) 5494 it.info = classifyArgumentType(it.type, FI.isVariadic(), 5495 FI.getCallingConvention()); 5496 } 5497 5498 Address EmitDarwinVAArg(Address VAListAddr, QualType Ty, 5499 CodeGenFunction &CGF) const; 5500 5501 Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty, 5502 CodeGenFunction &CGF) const; 5503 5504 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5505 QualType Ty) const override { 5506 llvm::Type *BaseTy = CGF.ConvertType(Ty); 5507 if (isa<llvm::ScalableVectorType>(BaseTy)) 5508 llvm::report_fatal_error("Passing SVE types to variadic functions is " 5509 "currently not supported"); 5510 5511 return Kind == Win64 ? EmitMSVAArg(CGF, VAListAddr, Ty) 5512 : isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF) 5513 : EmitAAPCSVAArg(VAListAddr, Ty, CGF); 5514 } 5515 5516 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 5517 QualType Ty) const override; 5518 5519 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 5520 bool asReturnValue) const override { 5521 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 5522 } 5523 bool isSwiftErrorInRegister() const override { 5524 return true; 5525 } 5526 5527 bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy, 5528 unsigned elts) const override; 5529 5530 bool allowBFloatArgsAndRet() const override { 5531 return getTarget().hasBFloat16Type(); 5532 } 5533 }; 5534 5535 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo { 5536 public: 5537 AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind) 5538 : TargetCodeGenInfo(std::make_unique<AArch64ABIInfo>(CGT, Kind)) {} 5539 5540 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 5541 return "mov\tfp, fp\t\t// marker for objc_retainAutoreleaseReturnValue"; 5542 } 5543 5544 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 5545 return 31; 5546 } 5547 5548 bool doesReturnSlotInterfereWithArgs() const override { return false; } 5549 5550 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5551 CodeGen::CodeGenModule &CGM) const override { 5552 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 5553 if (!FD) 5554 return; 5555 5556 const auto *TA = FD->getAttr<TargetAttr>(); 5557 if (TA == nullptr) 5558 return; 5559 5560 ParsedTargetAttr Attr = TA->parse(); 5561 if (Attr.BranchProtection.empty()) 5562 return; 5563 5564 TargetInfo::BranchProtectionInfo BPI; 5565 StringRef Error; 5566 (void)CGM.getTarget().validateBranchProtection( 5567 Attr.BranchProtection, Attr.Architecture, BPI, Error); 5568 assert(Error.empty()); 5569 5570 auto *Fn = cast<llvm::Function>(GV); 5571 static const char *SignReturnAddrStr[] = {"none", "non-leaf", "all"}; 5572 Fn->addFnAttr("sign-return-address", SignReturnAddrStr[static_cast<int>(BPI.SignReturnAddr)]); 5573 5574 if (BPI.SignReturnAddr != LangOptions::SignReturnAddressScopeKind::None) { 5575 Fn->addFnAttr("sign-return-address-key", 5576 BPI.SignKey == LangOptions::SignReturnAddressKeyKind::AKey 5577 ? "a_key" 5578 : "b_key"); 5579 } 5580 5581 Fn->addFnAttr("branch-target-enforcement", 5582 BPI.BranchTargetEnforcement ? "true" : "false"); 5583 } 5584 5585 bool isScalarizableAsmOperand(CodeGen::CodeGenFunction &CGF, 5586 llvm::Type *Ty) const override { 5587 if (CGF.getTarget().hasFeature("ls64")) { 5588 auto *ST = dyn_cast<llvm::StructType>(Ty); 5589 if (ST && ST->getNumElements() == 1) { 5590 auto *AT = dyn_cast<llvm::ArrayType>(ST->getElementType(0)); 5591 if (AT && AT->getNumElements() == 8 && 5592 AT->getElementType()->isIntegerTy(64)) 5593 return true; 5594 } 5595 } 5596 return TargetCodeGenInfo::isScalarizableAsmOperand(CGF, Ty); 5597 } 5598 }; 5599 5600 class WindowsAArch64TargetCodeGenInfo : public AArch64TargetCodeGenInfo { 5601 public: 5602 WindowsAArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind K) 5603 : AArch64TargetCodeGenInfo(CGT, K) {} 5604 5605 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5606 CodeGen::CodeGenModule &CGM) const override; 5607 5608 void getDependentLibraryOption(llvm::StringRef Lib, 5609 llvm::SmallString<24> &Opt) const override { 5610 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); 5611 } 5612 5613 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, 5614 llvm::SmallString<32> &Opt) const override { 5615 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 5616 } 5617 }; 5618 5619 void WindowsAArch64TargetCodeGenInfo::setTargetAttributes( 5620 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 5621 AArch64TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 5622 if (GV->isDeclaration()) 5623 return; 5624 addStackProbeTargetAttributes(D, GV, CGM); 5625 } 5626 } 5627 5628 ABIArgInfo AArch64ABIInfo::coerceIllegalVector(QualType Ty) const { 5629 assert(Ty->isVectorType() && "expected vector type!"); 5630 5631 const auto *VT = Ty->castAs<VectorType>(); 5632 if (VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector) { 5633 assert(VT->getElementType()->isBuiltinType() && "expected builtin type!"); 5634 assert(VT->getElementType()->castAs<BuiltinType>()->getKind() == 5635 BuiltinType::UChar && 5636 "unexpected builtin type for SVE predicate!"); 5637 return ABIArgInfo::getDirect(llvm::ScalableVectorType::get( 5638 llvm::Type::getInt1Ty(getVMContext()), 16)); 5639 } 5640 5641 if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector) { 5642 assert(VT->getElementType()->isBuiltinType() && "expected builtin type!"); 5643 5644 const auto *BT = VT->getElementType()->castAs<BuiltinType>(); 5645 llvm::ScalableVectorType *ResType = nullptr; 5646 switch (BT->getKind()) { 5647 default: 5648 llvm_unreachable("unexpected builtin type for SVE vector!"); 5649 case BuiltinType::SChar: 5650 case BuiltinType::UChar: 5651 ResType = llvm::ScalableVectorType::get( 5652 llvm::Type::getInt8Ty(getVMContext()), 16); 5653 break; 5654 case BuiltinType::Short: 5655 case BuiltinType::UShort: 5656 ResType = llvm::ScalableVectorType::get( 5657 llvm::Type::getInt16Ty(getVMContext()), 8); 5658 break; 5659 case BuiltinType::Int: 5660 case BuiltinType::UInt: 5661 ResType = llvm::ScalableVectorType::get( 5662 llvm::Type::getInt32Ty(getVMContext()), 4); 5663 break; 5664 case BuiltinType::Long: 5665 case BuiltinType::ULong: 5666 ResType = llvm::ScalableVectorType::get( 5667 llvm::Type::getInt64Ty(getVMContext()), 2); 5668 break; 5669 case BuiltinType::Half: 5670 ResType = llvm::ScalableVectorType::get( 5671 llvm::Type::getHalfTy(getVMContext()), 8); 5672 break; 5673 case BuiltinType::Float: 5674 ResType = llvm::ScalableVectorType::get( 5675 llvm::Type::getFloatTy(getVMContext()), 4); 5676 break; 5677 case BuiltinType::Double: 5678 ResType = llvm::ScalableVectorType::get( 5679 llvm::Type::getDoubleTy(getVMContext()), 2); 5680 break; 5681 case BuiltinType::BFloat16: 5682 ResType = llvm::ScalableVectorType::get( 5683 llvm::Type::getBFloatTy(getVMContext()), 8); 5684 break; 5685 } 5686 return ABIArgInfo::getDirect(ResType); 5687 } 5688 5689 uint64_t Size = getContext().getTypeSize(Ty); 5690 // Android promotes <2 x i8> to i16, not i32 5691 if (isAndroid() && (Size <= 16)) { 5692 llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext()); 5693 return ABIArgInfo::getDirect(ResType); 5694 } 5695 if (Size <= 32) { 5696 llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext()); 5697 return ABIArgInfo::getDirect(ResType); 5698 } 5699 if (Size == 64) { 5700 auto *ResType = 5701 llvm::FixedVectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2); 5702 return ABIArgInfo::getDirect(ResType); 5703 } 5704 if (Size == 128) { 5705 auto *ResType = 5706 llvm::FixedVectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4); 5707 return ABIArgInfo::getDirect(ResType); 5708 } 5709 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5710 } 5711 5712 ABIArgInfo 5713 AArch64ABIInfo::classifyArgumentType(QualType Ty, bool IsVariadic, 5714 unsigned CallingConvention) const { 5715 Ty = useFirstFieldIfTransparentUnion(Ty); 5716 5717 // Handle illegal vector types here. 5718 if (isIllegalVectorType(Ty)) 5719 return coerceIllegalVector(Ty); 5720 5721 if (!isAggregateTypeForABI(Ty)) { 5722 // Treat an enum type as its underlying type. 5723 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5724 Ty = EnumTy->getDecl()->getIntegerType(); 5725 5726 if (const auto *EIT = Ty->getAs<BitIntType>()) 5727 if (EIT->getNumBits() > 128) 5728 return getNaturalAlignIndirect(Ty); 5729 5730 return (isPromotableIntegerTypeForABI(Ty) && isDarwinPCS() 5731 ? ABIArgInfo::getExtend(Ty) 5732 : ABIArgInfo::getDirect()); 5733 } 5734 5735 // Structures with either a non-trivial destructor or a non-trivial 5736 // copy constructor are always indirect. 5737 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 5738 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 5739 CGCXXABI::RAA_DirectInMemory); 5740 } 5741 5742 // Empty records are always ignored on Darwin, but actually passed in C++ mode 5743 // elsewhere for GNU compatibility. 5744 uint64_t Size = getContext().getTypeSize(Ty); 5745 bool IsEmpty = isEmptyRecord(getContext(), Ty, true); 5746 if (IsEmpty || Size == 0) { 5747 if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS()) 5748 return ABIArgInfo::getIgnore(); 5749 5750 // GNU C mode. The only argument that gets ignored is an empty one with size 5751 // 0. 5752 if (IsEmpty && Size == 0) 5753 return ABIArgInfo::getIgnore(); 5754 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 5755 } 5756 5757 // Homogeneous Floating-point Aggregates (HFAs) need to be expanded. 5758 const Type *Base = nullptr; 5759 uint64_t Members = 0; 5760 bool IsWin64 = Kind == Win64 || CallingConvention == llvm::CallingConv::Win64; 5761 bool IsWinVariadic = IsWin64 && IsVariadic; 5762 // In variadic functions on Windows, all composite types are treated alike, 5763 // no special handling of HFAs/HVAs. 5764 if (!IsWinVariadic && isHomogeneousAggregate(Ty, Base, Members)) { 5765 if (Kind != AArch64ABIInfo::AAPCS) 5766 return ABIArgInfo::getDirect( 5767 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members)); 5768 5769 // For alignment adjusted HFAs, cap the argument alignment to 16, leave it 5770 // default otherwise. 5771 unsigned Align = 5772 getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity(); 5773 unsigned BaseAlign = getContext().getTypeAlignInChars(Base).getQuantity(); 5774 Align = (Align > BaseAlign && Align >= 16) ? 16 : 0; 5775 return ABIArgInfo::getDirect( 5776 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members), 0, 5777 nullptr, true, Align); 5778 } 5779 5780 // Aggregates <= 16 bytes are passed directly in registers or on the stack. 5781 if (Size <= 128) { 5782 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 5783 // same size and alignment. 5784 if (getTarget().isRenderScriptTarget()) { 5785 return coerceToIntArray(Ty, getContext(), getVMContext()); 5786 } 5787 unsigned Alignment; 5788 if (Kind == AArch64ABIInfo::AAPCS) { 5789 Alignment = getContext().getTypeUnadjustedAlign(Ty); 5790 Alignment = Alignment < 128 ? 64 : 128; 5791 } else { 5792 Alignment = std::max(getContext().getTypeAlign(Ty), 5793 (unsigned)getTarget().getPointerWidth(0)); 5794 } 5795 Size = llvm::alignTo(Size, Alignment); 5796 5797 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 5798 // For aggregates with 16-byte alignment, we use i128. 5799 llvm::Type *BaseTy = llvm::Type::getIntNTy(getVMContext(), Alignment); 5800 return ABIArgInfo::getDirect( 5801 Size == Alignment ? BaseTy 5802 : llvm::ArrayType::get(BaseTy, Size / Alignment)); 5803 } 5804 5805 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5806 } 5807 5808 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy, 5809 bool IsVariadic) const { 5810 if (RetTy->isVoidType()) 5811 return ABIArgInfo::getIgnore(); 5812 5813 if (const auto *VT = RetTy->getAs<VectorType>()) { 5814 if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector || 5815 VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector) 5816 return coerceIllegalVector(RetTy); 5817 } 5818 5819 // Large vector types should be returned via memory. 5820 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) 5821 return getNaturalAlignIndirect(RetTy); 5822 5823 if (!isAggregateTypeForABI(RetTy)) { 5824 // Treat an enum type as its underlying type. 5825 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5826 RetTy = EnumTy->getDecl()->getIntegerType(); 5827 5828 if (const auto *EIT = RetTy->getAs<BitIntType>()) 5829 if (EIT->getNumBits() > 128) 5830 return getNaturalAlignIndirect(RetTy); 5831 5832 return (isPromotableIntegerTypeForABI(RetTy) && isDarwinPCS() 5833 ? ABIArgInfo::getExtend(RetTy) 5834 : ABIArgInfo::getDirect()); 5835 } 5836 5837 uint64_t Size = getContext().getTypeSize(RetTy); 5838 if (isEmptyRecord(getContext(), RetTy, true) || Size == 0) 5839 return ABIArgInfo::getIgnore(); 5840 5841 const Type *Base = nullptr; 5842 uint64_t Members = 0; 5843 if (isHomogeneousAggregate(RetTy, Base, Members) && 5844 !(getTarget().getTriple().getArch() == llvm::Triple::aarch64_32 && 5845 IsVariadic)) 5846 // Homogeneous Floating-point Aggregates (HFAs) are returned directly. 5847 return ABIArgInfo::getDirect(); 5848 5849 // Aggregates <= 16 bytes are returned directly in registers or on the stack. 5850 if (Size <= 128) { 5851 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 5852 // same size and alignment. 5853 if (getTarget().isRenderScriptTarget()) { 5854 return coerceToIntArray(RetTy, getContext(), getVMContext()); 5855 } 5856 5857 if (Size <= 64 && getDataLayout().isLittleEndian()) { 5858 // Composite types are returned in lower bits of a 64-bit register for LE, 5859 // and in higher bits for BE. However, integer types are always returned 5860 // in lower bits for both LE and BE, and they are not rounded up to 5861 // 64-bits. We can skip rounding up of composite types for LE, but not for 5862 // BE, otherwise composite types will be indistinguishable from integer 5863 // types. 5864 return ABIArgInfo::getDirect( 5865 llvm::IntegerType::get(getVMContext(), Size)); 5866 } 5867 5868 unsigned Alignment = getContext().getTypeAlign(RetTy); 5869 Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes 5870 5871 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 5872 // For aggregates with 16-byte alignment, we use i128. 5873 if (Alignment < 128 && Size == 128) { 5874 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); 5875 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 5876 } 5877 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 5878 } 5879 5880 return getNaturalAlignIndirect(RetTy); 5881 } 5882 5883 /// isIllegalVectorType - check whether the vector type is legal for AArch64. 5884 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const { 5885 if (const VectorType *VT = Ty->getAs<VectorType>()) { 5886 // Check whether VT is a fixed-length SVE vector. These types are 5887 // represented as scalable vectors in function args/return and must be 5888 // coerced from fixed vectors. 5889 if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector || 5890 VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector) 5891 return true; 5892 5893 // Check whether VT is legal. 5894 unsigned NumElements = VT->getNumElements(); 5895 uint64_t Size = getContext().getTypeSize(VT); 5896 // NumElements should be power of 2. 5897 if (!llvm::isPowerOf2_32(NumElements)) 5898 return true; 5899 5900 // arm64_32 has to be compatible with the ARM logic here, which allows huge 5901 // vectors for some reason. 5902 llvm::Triple Triple = getTarget().getTriple(); 5903 if (Triple.getArch() == llvm::Triple::aarch64_32 && 5904 Triple.isOSBinFormatMachO()) 5905 return Size <= 32; 5906 5907 return Size != 64 && (Size != 128 || NumElements == 1); 5908 } 5909 return false; 5910 } 5911 5912 bool AArch64ABIInfo::isLegalVectorTypeForSwift(CharUnits totalSize, 5913 llvm::Type *eltTy, 5914 unsigned elts) const { 5915 if (!llvm::isPowerOf2_32(elts)) 5916 return false; 5917 if (totalSize.getQuantity() != 8 && 5918 (totalSize.getQuantity() != 16 || elts == 1)) 5919 return false; 5920 return true; 5921 } 5922 5923 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 5924 // Homogeneous aggregates for AAPCS64 must have base types of a floating 5925 // point type or a short-vector type. This is the same as the 32-bit ABI, 5926 // but with the difference that any floating-point type is allowed, 5927 // including __fp16. 5928 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 5929 if (BT->isFloatingPoint()) 5930 return true; 5931 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 5932 unsigned VecSize = getContext().getTypeSize(VT); 5933 if (VecSize == 64 || VecSize == 128) 5934 return true; 5935 } 5936 return false; 5937 } 5938 5939 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 5940 uint64_t Members) const { 5941 return Members <= 4; 5942 } 5943 5944 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr, QualType Ty, 5945 CodeGenFunction &CGF) const { 5946 ABIArgInfo AI = classifyArgumentType(Ty, /*IsVariadic=*/true, 5947 CGF.CurFnInfo->getCallingConvention()); 5948 bool IsIndirect = AI.isIndirect(); 5949 5950 llvm::Type *BaseTy = CGF.ConvertType(Ty); 5951 if (IsIndirect) 5952 BaseTy = llvm::PointerType::getUnqual(BaseTy); 5953 else if (AI.getCoerceToType()) 5954 BaseTy = AI.getCoerceToType(); 5955 5956 unsigned NumRegs = 1; 5957 if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) { 5958 BaseTy = ArrTy->getElementType(); 5959 NumRegs = ArrTy->getNumElements(); 5960 } 5961 bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy(); 5962 5963 // The AArch64 va_list type and handling is specified in the Procedure Call 5964 // Standard, section B.4: 5965 // 5966 // struct { 5967 // void *__stack; 5968 // void *__gr_top; 5969 // void *__vr_top; 5970 // int __gr_offs; 5971 // int __vr_offs; 5972 // }; 5973 5974 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); 5975 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 5976 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); 5977 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 5978 5979 CharUnits TySize = getContext().getTypeSizeInChars(Ty); 5980 CharUnits TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty); 5981 5982 Address reg_offs_p = Address::invalid(); 5983 llvm::Value *reg_offs = nullptr; 5984 int reg_top_index; 5985 int RegSize = IsIndirect ? 8 : TySize.getQuantity(); 5986 if (!IsFPR) { 5987 // 3 is the field number of __gr_offs 5988 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p"); 5989 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs"); 5990 reg_top_index = 1; // field number for __gr_top 5991 RegSize = llvm::alignTo(RegSize, 8); 5992 } else { 5993 // 4 is the field number of __vr_offs. 5994 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p"); 5995 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs"); 5996 reg_top_index = 2; // field number for __vr_top 5997 RegSize = 16 * NumRegs; 5998 } 5999 6000 //======================================= 6001 // Find out where argument was passed 6002 //======================================= 6003 6004 // If reg_offs >= 0 we're already using the stack for this type of 6005 // argument. We don't want to keep updating reg_offs (in case it overflows, 6006 // though anyone passing 2GB of arguments, each at most 16 bytes, deserves 6007 // whatever they get). 6008 llvm::Value *UsingStack = nullptr; 6009 UsingStack = CGF.Builder.CreateICmpSGE( 6010 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0)); 6011 6012 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock); 6013 6014 // Otherwise, at least some kind of argument could go in these registers, the 6015 // question is whether this particular type is too big. 6016 CGF.EmitBlock(MaybeRegBlock); 6017 6018 // Integer arguments may need to correct register alignment (for example a 6019 // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we 6020 // align __gr_offs to calculate the potential address. 6021 if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) { 6022 int Align = TyAlign.getQuantity(); 6023 6024 reg_offs = CGF.Builder.CreateAdd( 6025 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1), 6026 "align_regoffs"); 6027 reg_offs = CGF.Builder.CreateAnd( 6028 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align), 6029 "aligned_regoffs"); 6030 } 6031 6032 // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list. 6033 // The fact that this is done unconditionally reflects the fact that 6034 // allocating an argument to the stack also uses up all the remaining 6035 // registers of the appropriate kind. 6036 llvm::Value *NewOffset = nullptr; 6037 NewOffset = CGF.Builder.CreateAdd( 6038 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs"); 6039 CGF.Builder.CreateStore(NewOffset, reg_offs_p); 6040 6041 // Now we're in a position to decide whether this argument really was in 6042 // registers or not. 6043 llvm::Value *InRegs = nullptr; 6044 InRegs = CGF.Builder.CreateICmpSLE( 6045 NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg"); 6046 6047 CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock); 6048 6049 //======================================= 6050 // Argument was in registers 6051 //======================================= 6052 6053 // Now we emit the code for if the argument was originally passed in 6054 // registers. First start the appropriate block: 6055 CGF.EmitBlock(InRegBlock); 6056 6057 llvm::Value *reg_top = nullptr; 6058 Address reg_top_p = 6059 CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p"); 6060 reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top"); 6061 Address BaseAddr(CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, reg_top, reg_offs), 6062 CharUnits::fromQuantity(IsFPR ? 16 : 8)); 6063 Address RegAddr = Address::invalid(); 6064 llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty); 6065 6066 if (IsIndirect) { 6067 // If it's been passed indirectly (actually a struct), whatever we find from 6068 // stored registers or on the stack will actually be a struct **. 6069 MemTy = llvm::PointerType::getUnqual(MemTy); 6070 } 6071 6072 const Type *Base = nullptr; 6073 uint64_t NumMembers = 0; 6074 bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers); 6075 if (IsHFA && NumMembers > 1) { 6076 // Homogeneous aggregates passed in registers will have their elements split 6077 // and stored 16-bytes apart regardless of size (they're notionally in qN, 6078 // qN+1, ...). We reload and store into a temporary local variable 6079 // contiguously. 6080 assert(!IsIndirect && "Homogeneous aggregates should be passed directly"); 6081 auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0)); 6082 llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0)); 6083 llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers); 6084 Address Tmp = CGF.CreateTempAlloca(HFATy, 6085 std::max(TyAlign, BaseTyInfo.Align)); 6086 6087 // On big-endian platforms, the value will be right-aligned in its slot. 6088 int Offset = 0; 6089 if (CGF.CGM.getDataLayout().isBigEndian() && 6090 BaseTyInfo.Width.getQuantity() < 16) 6091 Offset = 16 - BaseTyInfo.Width.getQuantity(); 6092 6093 for (unsigned i = 0; i < NumMembers; ++i) { 6094 CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset); 6095 Address LoadAddr = 6096 CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset); 6097 LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy); 6098 6099 Address StoreAddr = CGF.Builder.CreateConstArrayGEP(Tmp, i); 6100 6101 llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr); 6102 CGF.Builder.CreateStore(Elem, StoreAddr); 6103 } 6104 6105 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy); 6106 } else { 6107 // Otherwise the object is contiguous in memory. 6108 6109 // It might be right-aligned in its slot. 6110 CharUnits SlotSize = BaseAddr.getAlignment(); 6111 if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect && 6112 (IsHFA || !isAggregateTypeForABI(Ty)) && 6113 TySize < SlotSize) { 6114 CharUnits Offset = SlotSize - TySize; 6115 BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset); 6116 } 6117 6118 RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy); 6119 } 6120 6121 CGF.EmitBranch(ContBlock); 6122 6123 //======================================= 6124 // Argument was on the stack 6125 //======================================= 6126 CGF.EmitBlock(OnStackBlock); 6127 6128 Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p"); 6129 llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack"); 6130 6131 // Again, stack arguments may need realignment. In this case both integer and 6132 // floating-point ones might be affected. 6133 if (!IsIndirect && TyAlign.getQuantity() > 8) { 6134 int Align = TyAlign.getQuantity(); 6135 6136 OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty); 6137 6138 OnStackPtr = CGF.Builder.CreateAdd( 6139 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1), 6140 "align_stack"); 6141 OnStackPtr = CGF.Builder.CreateAnd( 6142 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align), 6143 "align_stack"); 6144 6145 OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy); 6146 } 6147 Address OnStackAddr(OnStackPtr, 6148 std::max(CharUnits::fromQuantity(8), TyAlign)); 6149 6150 // All stack slots are multiples of 8 bytes. 6151 CharUnits StackSlotSize = CharUnits::fromQuantity(8); 6152 CharUnits StackSize; 6153 if (IsIndirect) 6154 StackSize = StackSlotSize; 6155 else 6156 StackSize = TySize.alignTo(StackSlotSize); 6157 6158 llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize); 6159 llvm::Value *NewStack = CGF.Builder.CreateInBoundsGEP( 6160 CGF.Int8Ty, OnStackPtr, StackSizeC, "new_stack"); 6161 6162 // Write the new value of __stack for the next call to va_arg 6163 CGF.Builder.CreateStore(NewStack, stack_p); 6164 6165 if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) && 6166 TySize < StackSlotSize) { 6167 CharUnits Offset = StackSlotSize - TySize; 6168 OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset); 6169 } 6170 6171 OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy); 6172 6173 CGF.EmitBranch(ContBlock); 6174 6175 //======================================= 6176 // Tidy up 6177 //======================================= 6178 CGF.EmitBlock(ContBlock); 6179 6180 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 6181 OnStackAddr, OnStackBlock, "vaargs.addr"); 6182 6183 if (IsIndirect) 6184 return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"), 6185 TyAlign); 6186 6187 return ResAddr; 6188 } 6189 6190 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty, 6191 CodeGenFunction &CGF) const { 6192 // The backend's lowering doesn't support va_arg for aggregates or 6193 // illegal vector types. Lower VAArg here for these cases and use 6194 // the LLVM va_arg instruction for everything else. 6195 if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty)) 6196 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 6197 6198 uint64_t PointerSize = getTarget().getPointerWidth(0) / 8; 6199 CharUnits SlotSize = CharUnits::fromQuantity(PointerSize); 6200 6201 // Empty records are ignored for parameter passing purposes. 6202 if (isEmptyRecord(getContext(), Ty, true)) { 6203 Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 6204 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 6205 return Addr; 6206 } 6207 6208 // The size of the actual thing passed, which might end up just 6209 // being a pointer for indirect types. 6210 auto TyInfo = getContext().getTypeInfoInChars(Ty); 6211 6212 // Arguments bigger than 16 bytes which aren't homogeneous 6213 // aggregates should be passed indirectly. 6214 bool IsIndirect = false; 6215 if (TyInfo.Width.getQuantity() > 16) { 6216 const Type *Base = nullptr; 6217 uint64_t Members = 0; 6218 IsIndirect = !isHomogeneousAggregate(Ty, Base, Members); 6219 } 6220 6221 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 6222 TyInfo, SlotSize, /*AllowHigherAlign*/ true); 6223 } 6224 6225 Address AArch64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 6226 QualType Ty) const { 6227 bool IsIndirect = false; 6228 6229 // Composites larger than 16 bytes are passed by reference. 6230 if (isAggregateTypeForABI(Ty) && getContext().getTypeSize(Ty) > 128) 6231 IsIndirect = true; 6232 6233 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 6234 CGF.getContext().getTypeInfoInChars(Ty), 6235 CharUnits::fromQuantity(8), 6236 /*allowHigherAlign*/ false); 6237 } 6238 6239 //===----------------------------------------------------------------------===// 6240 // ARM ABI Implementation 6241 //===----------------------------------------------------------------------===// 6242 6243 namespace { 6244 6245 class ARMABIInfo : public SwiftABIInfo { 6246 public: 6247 enum ABIKind { 6248 APCS = 0, 6249 AAPCS = 1, 6250 AAPCS_VFP = 2, 6251 AAPCS16_VFP = 3, 6252 }; 6253 6254 private: 6255 ABIKind Kind; 6256 bool IsFloatABISoftFP; 6257 6258 public: 6259 ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) 6260 : SwiftABIInfo(CGT), Kind(_Kind) { 6261 setCCs(); 6262 IsFloatABISoftFP = CGT.getCodeGenOpts().FloatABI == "softfp" || 6263 CGT.getCodeGenOpts().FloatABI == ""; // default 6264 } 6265 6266 bool isEABI() const { 6267 switch (getTarget().getTriple().getEnvironment()) { 6268 case llvm::Triple::Android: 6269 case llvm::Triple::EABI: 6270 case llvm::Triple::EABIHF: 6271 case llvm::Triple::GNUEABI: 6272 case llvm::Triple::GNUEABIHF: 6273 case llvm::Triple::MuslEABI: 6274 case llvm::Triple::MuslEABIHF: 6275 return true; 6276 default: 6277 return false; 6278 } 6279 } 6280 6281 bool isEABIHF() const { 6282 switch (getTarget().getTriple().getEnvironment()) { 6283 case llvm::Triple::EABIHF: 6284 case llvm::Triple::GNUEABIHF: 6285 case llvm::Triple::MuslEABIHF: 6286 return true; 6287 default: 6288 return false; 6289 } 6290 } 6291 6292 ABIKind getABIKind() const { return Kind; } 6293 6294 bool allowBFloatArgsAndRet() const override { 6295 return !IsFloatABISoftFP && getTarget().hasBFloat16Type(); 6296 } 6297 6298 private: 6299 ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic, 6300 unsigned functionCallConv) const; 6301 ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic, 6302 unsigned functionCallConv) const; 6303 ABIArgInfo classifyHomogeneousAggregate(QualType Ty, const Type *Base, 6304 uint64_t Members) const; 6305 ABIArgInfo coerceIllegalVector(QualType Ty) const; 6306 bool isIllegalVectorType(QualType Ty) const; 6307 bool containsAnyFP16Vectors(QualType Ty) const; 6308 6309 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 6310 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 6311 uint64_t Members) const override; 6312 6313 bool isEffectivelyAAPCS_VFP(unsigned callConvention, bool acceptHalf) const; 6314 6315 void computeInfo(CGFunctionInfo &FI) const override; 6316 6317 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6318 QualType Ty) const override; 6319 6320 llvm::CallingConv::ID getLLVMDefaultCC() const; 6321 llvm::CallingConv::ID getABIDefaultCC() const; 6322 void setCCs(); 6323 6324 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 6325 bool asReturnValue) const override { 6326 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 6327 } 6328 bool isSwiftErrorInRegister() const override { 6329 return true; 6330 } 6331 bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy, 6332 unsigned elts) const override; 6333 }; 6334 6335 class ARMTargetCodeGenInfo : public TargetCodeGenInfo { 6336 public: 6337 ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 6338 : TargetCodeGenInfo(std::make_unique<ARMABIInfo>(CGT, K)) {} 6339 6340 const ARMABIInfo &getABIInfo() const { 6341 return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo()); 6342 } 6343 6344 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 6345 return 13; 6346 } 6347 6348 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 6349 return "mov\tr7, r7\t\t// marker for objc_retainAutoreleaseReturnValue"; 6350 } 6351 6352 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 6353 llvm::Value *Address) const override { 6354 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 6355 6356 // 0-15 are the 16 integer registers. 6357 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15); 6358 return false; 6359 } 6360 6361 unsigned getSizeOfUnwindException() const override { 6362 if (getABIInfo().isEABI()) return 88; 6363 return TargetCodeGenInfo::getSizeOfUnwindException(); 6364 } 6365 6366 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6367 CodeGen::CodeGenModule &CGM) const override { 6368 if (GV->isDeclaration()) 6369 return; 6370 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 6371 if (!FD) 6372 return; 6373 auto *Fn = cast<llvm::Function>(GV); 6374 6375 if (const auto *TA = FD->getAttr<TargetAttr>()) { 6376 ParsedTargetAttr Attr = TA->parse(); 6377 if (!Attr.BranchProtection.empty()) { 6378 TargetInfo::BranchProtectionInfo BPI; 6379 StringRef DiagMsg; 6380 StringRef Arch = Attr.Architecture.empty() 6381 ? CGM.getTarget().getTargetOpts().CPU 6382 : Attr.Architecture; 6383 if (!CGM.getTarget().validateBranchProtection(Attr.BranchProtection, 6384 Arch, BPI, DiagMsg)) { 6385 CGM.getDiags().Report( 6386 D->getLocation(), 6387 diag::warn_target_unsupported_branch_protection_attribute) 6388 << Arch; 6389 } else { 6390 static const char *SignReturnAddrStr[] = {"none", "non-leaf", "all"}; 6391 assert(static_cast<unsigned>(BPI.SignReturnAddr) <= 2 && 6392 "Unexpected SignReturnAddressScopeKind"); 6393 Fn->addFnAttr( 6394 "sign-return-address", 6395 SignReturnAddrStr[static_cast<int>(BPI.SignReturnAddr)]); 6396 6397 Fn->addFnAttr("branch-target-enforcement", 6398 BPI.BranchTargetEnforcement ? "true" : "false"); 6399 } 6400 } else if (CGM.getLangOpts().BranchTargetEnforcement || 6401 CGM.getLangOpts().hasSignReturnAddress()) { 6402 // If the Branch Protection attribute is missing, validate the target 6403 // Architecture attribute against Branch Protection command line 6404 // settings. 6405 if (!CGM.getTarget().isBranchProtectionSupportedArch(Attr.Architecture)) 6406 CGM.getDiags().Report( 6407 D->getLocation(), 6408 diag::warn_target_unsupported_branch_protection_attribute) 6409 << Attr.Architecture; 6410 } 6411 } 6412 6413 const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>(); 6414 if (!Attr) 6415 return; 6416 6417 const char *Kind; 6418 switch (Attr->getInterrupt()) { 6419 case ARMInterruptAttr::Generic: Kind = ""; break; 6420 case ARMInterruptAttr::IRQ: Kind = "IRQ"; break; 6421 case ARMInterruptAttr::FIQ: Kind = "FIQ"; break; 6422 case ARMInterruptAttr::SWI: Kind = "SWI"; break; 6423 case ARMInterruptAttr::ABORT: Kind = "ABORT"; break; 6424 case ARMInterruptAttr::UNDEF: Kind = "UNDEF"; break; 6425 } 6426 6427 Fn->addFnAttr("interrupt", Kind); 6428 6429 ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind(); 6430 if (ABI == ARMABIInfo::APCS) 6431 return; 6432 6433 // AAPCS guarantees that sp will be 8-byte aligned on any public interface, 6434 // however this is not necessarily true on taking any interrupt. Instruct 6435 // the backend to perform a realignment as part of the function prologue. 6436 llvm::AttrBuilder B(Fn->getContext()); 6437 B.addStackAlignmentAttr(8); 6438 Fn->addFnAttrs(B); 6439 } 6440 }; 6441 6442 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo { 6443 public: 6444 WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 6445 : ARMTargetCodeGenInfo(CGT, K) {} 6446 6447 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6448 CodeGen::CodeGenModule &CGM) const override; 6449 6450 void getDependentLibraryOption(llvm::StringRef Lib, 6451 llvm::SmallString<24> &Opt) const override { 6452 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); 6453 } 6454 6455 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, 6456 llvm::SmallString<32> &Opt) const override { 6457 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 6458 } 6459 }; 6460 6461 void WindowsARMTargetCodeGenInfo::setTargetAttributes( 6462 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 6463 ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 6464 if (GV->isDeclaration()) 6465 return; 6466 addStackProbeTargetAttributes(D, GV, CGM); 6467 } 6468 } 6469 6470 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const { 6471 if (!::classifyReturnType(getCXXABI(), FI, *this)) 6472 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), FI.isVariadic(), 6473 FI.getCallingConvention()); 6474 6475 for (auto &I : FI.arguments()) 6476 I.info = classifyArgumentType(I.type, FI.isVariadic(), 6477 FI.getCallingConvention()); 6478 6479 6480 // Always honor user-specified calling convention. 6481 if (FI.getCallingConvention() != llvm::CallingConv::C) 6482 return; 6483 6484 llvm::CallingConv::ID cc = getRuntimeCC(); 6485 if (cc != llvm::CallingConv::C) 6486 FI.setEffectiveCallingConvention(cc); 6487 } 6488 6489 /// Return the default calling convention that LLVM will use. 6490 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const { 6491 // The default calling convention that LLVM will infer. 6492 if (isEABIHF() || getTarget().getTriple().isWatchABI()) 6493 return llvm::CallingConv::ARM_AAPCS_VFP; 6494 else if (isEABI()) 6495 return llvm::CallingConv::ARM_AAPCS; 6496 else 6497 return llvm::CallingConv::ARM_APCS; 6498 } 6499 6500 /// Return the calling convention that our ABI would like us to use 6501 /// as the C calling convention. 6502 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const { 6503 switch (getABIKind()) { 6504 case APCS: return llvm::CallingConv::ARM_APCS; 6505 case AAPCS: return llvm::CallingConv::ARM_AAPCS; 6506 case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 6507 case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 6508 } 6509 llvm_unreachable("bad ABI kind"); 6510 } 6511 6512 void ARMABIInfo::setCCs() { 6513 assert(getRuntimeCC() == llvm::CallingConv::C); 6514 6515 // Don't muddy up the IR with a ton of explicit annotations if 6516 // they'd just match what LLVM will infer from the triple. 6517 llvm::CallingConv::ID abiCC = getABIDefaultCC(); 6518 if (abiCC != getLLVMDefaultCC()) 6519 RuntimeCC = abiCC; 6520 } 6521 6522 ABIArgInfo ARMABIInfo::coerceIllegalVector(QualType Ty) const { 6523 uint64_t Size = getContext().getTypeSize(Ty); 6524 if (Size <= 32) { 6525 llvm::Type *ResType = 6526 llvm::Type::getInt32Ty(getVMContext()); 6527 return ABIArgInfo::getDirect(ResType); 6528 } 6529 if (Size == 64 || Size == 128) { 6530 auto *ResType = llvm::FixedVectorType::get( 6531 llvm::Type::getInt32Ty(getVMContext()), Size / 32); 6532 return ABIArgInfo::getDirect(ResType); 6533 } 6534 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6535 } 6536 6537 ABIArgInfo ARMABIInfo::classifyHomogeneousAggregate(QualType Ty, 6538 const Type *Base, 6539 uint64_t Members) const { 6540 assert(Base && "Base class should be set for homogeneous aggregate"); 6541 // Base can be a floating-point or a vector. 6542 if (const VectorType *VT = Base->getAs<VectorType>()) { 6543 // FP16 vectors should be converted to integer vectors 6544 if (!getTarget().hasLegalHalfType() && containsAnyFP16Vectors(Ty)) { 6545 uint64_t Size = getContext().getTypeSize(VT); 6546 auto *NewVecTy = llvm::FixedVectorType::get( 6547 llvm::Type::getInt32Ty(getVMContext()), Size / 32); 6548 llvm::Type *Ty = llvm::ArrayType::get(NewVecTy, Members); 6549 return ABIArgInfo::getDirect(Ty, 0, nullptr, false); 6550 } 6551 } 6552 unsigned Align = 0; 6553 if (getABIKind() == ARMABIInfo::AAPCS || 6554 getABIKind() == ARMABIInfo::AAPCS_VFP) { 6555 // For alignment adjusted HFAs, cap the argument alignment to 8, leave it 6556 // default otherwise. 6557 Align = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity(); 6558 unsigned BaseAlign = getContext().getTypeAlignInChars(Base).getQuantity(); 6559 Align = (Align > BaseAlign && Align >= 8) ? 8 : 0; 6560 } 6561 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false, Align); 6562 } 6563 6564 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, bool isVariadic, 6565 unsigned functionCallConv) const { 6566 // 6.1.2.1 The following argument types are VFP CPRCs: 6567 // A single-precision floating-point type (including promoted 6568 // half-precision types); A double-precision floating-point type; 6569 // A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate 6570 // with a Base Type of a single- or double-precision floating-point type, 6571 // 64-bit containerized vectors or 128-bit containerized vectors with one 6572 // to four Elements. 6573 // Variadic functions should always marshal to the base standard. 6574 bool IsAAPCS_VFP = 6575 !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ false); 6576 6577 Ty = useFirstFieldIfTransparentUnion(Ty); 6578 6579 // Handle illegal vector types here. 6580 if (isIllegalVectorType(Ty)) 6581 return coerceIllegalVector(Ty); 6582 6583 if (!isAggregateTypeForABI(Ty)) { 6584 // Treat an enum type as its underlying type. 6585 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 6586 Ty = EnumTy->getDecl()->getIntegerType(); 6587 } 6588 6589 if (const auto *EIT = Ty->getAs<BitIntType>()) 6590 if (EIT->getNumBits() > 64) 6591 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 6592 6593 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 6594 : ABIArgInfo::getDirect()); 6595 } 6596 6597 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 6598 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 6599 } 6600 6601 // Ignore empty records. 6602 if (isEmptyRecord(getContext(), Ty, true)) 6603 return ABIArgInfo::getIgnore(); 6604 6605 if (IsAAPCS_VFP) { 6606 // Homogeneous Aggregates need to be expanded when we can fit the aggregate 6607 // into VFP registers. 6608 const Type *Base = nullptr; 6609 uint64_t Members = 0; 6610 if (isHomogeneousAggregate(Ty, Base, Members)) 6611 return classifyHomogeneousAggregate(Ty, Base, Members); 6612 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 6613 // WatchOS does have homogeneous aggregates. Note that we intentionally use 6614 // this convention even for a variadic function: the backend will use GPRs 6615 // if needed. 6616 const Type *Base = nullptr; 6617 uint64_t Members = 0; 6618 if (isHomogeneousAggregate(Ty, Base, Members)) { 6619 assert(Base && Members <= 4 && "unexpected homogeneous aggregate"); 6620 llvm::Type *Ty = 6621 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members); 6622 return ABIArgInfo::getDirect(Ty, 0, nullptr, false); 6623 } 6624 } 6625 6626 if (getABIKind() == ARMABIInfo::AAPCS16_VFP && 6627 getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) { 6628 // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're 6629 // bigger than 128-bits, they get placed in space allocated by the caller, 6630 // and a pointer is passed. 6631 return ABIArgInfo::getIndirect( 6632 CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false); 6633 } 6634 6635 // Support byval for ARM. 6636 // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at 6637 // most 8-byte. We realign the indirect argument if type alignment is bigger 6638 // than ABI alignment. 6639 uint64_t ABIAlign = 4; 6640 uint64_t TyAlign; 6641 if (getABIKind() == ARMABIInfo::AAPCS_VFP || 6642 getABIKind() == ARMABIInfo::AAPCS) { 6643 TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity(); 6644 ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8); 6645 } else { 6646 TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); 6647 } 6648 if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) { 6649 assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval"); 6650 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 6651 /*ByVal=*/true, 6652 /*Realign=*/TyAlign > ABIAlign); 6653 } 6654 6655 // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of 6656 // same size and alignment. 6657 if (getTarget().isRenderScriptTarget()) { 6658 return coerceToIntArray(Ty, getContext(), getVMContext()); 6659 } 6660 6661 // Otherwise, pass by coercing to a structure of the appropriate size. 6662 llvm::Type* ElemTy; 6663 unsigned SizeRegs; 6664 // FIXME: Try to match the types of the arguments more accurately where 6665 // we can. 6666 if (TyAlign <= 4) { 6667 ElemTy = llvm::Type::getInt32Ty(getVMContext()); 6668 SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32; 6669 } else { 6670 ElemTy = llvm::Type::getInt64Ty(getVMContext()); 6671 SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64; 6672 } 6673 6674 return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs)); 6675 } 6676 6677 static bool isIntegerLikeType(QualType Ty, ASTContext &Context, 6678 llvm::LLVMContext &VMContext) { 6679 // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure 6680 // is called integer-like if its size is less than or equal to one word, and 6681 // the offset of each of its addressable sub-fields is zero. 6682 6683 uint64_t Size = Context.getTypeSize(Ty); 6684 6685 // Check that the type fits in a word. 6686 if (Size > 32) 6687 return false; 6688 6689 // FIXME: Handle vector types! 6690 if (Ty->isVectorType()) 6691 return false; 6692 6693 // Float types are never treated as "integer like". 6694 if (Ty->isRealFloatingType()) 6695 return false; 6696 6697 // If this is a builtin or pointer type then it is ok. 6698 if (Ty->getAs<BuiltinType>() || Ty->isPointerType()) 6699 return true; 6700 6701 // Small complex integer types are "integer like". 6702 if (const ComplexType *CT = Ty->getAs<ComplexType>()) 6703 return isIntegerLikeType(CT->getElementType(), Context, VMContext); 6704 6705 // Single element and zero sized arrays should be allowed, by the definition 6706 // above, but they are not. 6707 6708 // Otherwise, it must be a record type. 6709 const RecordType *RT = Ty->getAs<RecordType>(); 6710 if (!RT) return false; 6711 6712 // Ignore records with flexible arrays. 6713 const RecordDecl *RD = RT->getDecl(); 6714 if (RD->hasFlexibleArrayMember()) 6715 return false; 6716 6717 // Check that all sub-fields are at offset 0, and are themselves "integer 6718 // like". 6719 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 6720 6721 bool HadField = false; 6722 unsigned idx = 0; 6723 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 6724 i != e; ++i, ++idx) { 6725 const FieldDecl *FD = *i; 6726 6727 // Bit-fields are not addressable, we only need to verify they are "integer 6728 // like". We still have to disallow a subsequent non-bitfield, for example: 6729 // struct { int : 0; int x } 6730 // is non-integer like according to gcc. 6731 if (FD->isBitField()) { 6732 if (!RD->isUnion()) 6733 HadField = true; 6734 6735 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 6736 return false; 6737 6738 continue; 6739 } 6740 6741 // Check if this field is at offset 0. 6742 if (Layout.getFieldOffset(idx) != 0) 6743 return false; 6744 6745 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 6746 return false; 6747 6748 // Only allow at most one field in a structure. This doesn't match the 6749 // wording above, but follows gcc in situations with a field following an 6750 // empty structure. 6751 if (!RD->isUnion()) { 6752 if (HadField) 6753 return false; 6754 6755 HadField = true; 6756 } 6757 } 6758 6759 return true; 6760 } 6761 6762 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, bool isVariadic, 6763 unsigned functionCallConv) const { 6764 6765 // Variadic functions should always marshal to the base standard. 6766 bool IsAAPCS_VFP = 6767 !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ true); 6768 6769 if (RetTy->isVoidType()) 6770 return ABIArgInfo::getIgnore(); 6771 6772 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 6773 // Large vector types should be returned via memory. 6774 if (getContext().getTypeSize(RetTy) > 128) 6775 return getNaturalAlignIndirect(RetTy); 6776 // TODO: FP16/BF16 vectors should be converted to integer vectors 6777 // This check is similar to isIllegalVectorType - refactor? 6778 if ((!getTarget().hasLegalHalfType() && 6779 (VT->getElementType()->isFloat16Type() || 6780 VT->getElementType()->isHalfType())) || 6781 (IsFloatABISoftFP && 6782 VT->getElementType()->isBFloat16Type())) 6783 return coerceIllegalVector(RetTy); 6784 } 6785 6786 if (!isAggregateTypeForABI(RetTy)) { 6787 // Treat an enum type as its underlying type. 6788 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 6789 RetTy = EnumTy->getDecl()->getIntegerType(); 6790 6791 if (const auto *EIT = RetTy->getAs<BitIntType>()) 6792 if (EIT->getNumBits() > 64) 6793 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 6794 6795 return isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 6796 : ABIArgInfo::getDirect(); 6797 } 6798 6799 // Are we following APCS? 6800 if (getABIKind() == APCS) { 6801 if (isEmptyRecord(getContext(), RetTy, false)) 6802 return ABIArgInfo::getIgnore(); 6803 6804 // Complex types are all returned as packed integers. 6805 // 6806 // FIXME: Consider using 2 x vector types if the back end handles them 6807 // correctly. 6808 if (RetTy->isAnyComplexType()) 6809 return ABIArgInfo::getDirect(llvm::IntegerType::get( 6810 getVMContext(), getContext().getTypeSize(RetTy))); 6811 6812 // Integer like structures are returned in r0. 6813 if (isIntegerLikeType(RetTy, getContext(), getVMContext())) { 6814 // Return in the smallest viable integer type. 6815 uint64_t Size = getContext().getTypeSize(RetTy); 6816 if (Size <= 8) 6817 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6818 if (Size <= 16) 6819 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6820 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6821 } 6822 6823 // Otherwise return in memory. 6824 return getNaturalAlignIndirect(RetTy); 6825 } 6826 6827 // Otherwise this is an AAPCS variant. 6828 6829 if (isEmptyRecord(getContext(), RetTy, true)) 6830 return ABIArgInfo::getIgnore(); 6831 6832 // Check for homogeneous aggregates with AAPCS-VFP. 6833 if (IsAAPCS_VFP) { 6834 const Type *Base = nullptr; 6835 uint64_t Members = 0; 6836 if (isHomogeneousAggregate(RetTy, Base, Members)) 6837 return classifyHomogeneousAggregate(RetTy, Base, Members); 6838 } 6839 6840 // Aggregates <= 4 bytes are returned in r0; other aggregates 6841 // are returned indirectly. 6842 uint64_t Size = getContext().getTypeSize(RetTy); 6843 if (Size <= 32) { 6844 // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of 6845 // same size and alignment. 6846 if (getTarget().isRenderScriptTarget()) { 6847 return coerceToIntArray(RetTy, getContext(), getVMContext()); 6848 } 6849 if (getDataLayout().isBigEndian()) 6850 // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4) 6851 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6852 6853 // Return in the smallest viable integer type. 6854 if (Size <= 8) 6855 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6856 if (Size <= 16) 6857 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6858 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6859 } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) { 6860 llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext()); 6861 llvm::Type *CoerceTy = 6862 llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32); 6863 return ABIArgInfo::getDirect(CoerceTy); 6864 } 6865 6866 return getNaturalAlignIndirect(RetTy); 6867 } 6868 6869 /// isIllegalVector - check whether Ty is an illegal vector type. 6870 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const { 6871 if (const VectorType *VT = Ty->getAs<VectorType> ()) { 6872 // On targets that don't support half, fp16 or bfloat, they are expanded 6873 // into float, and we don't want the ABI to depend on whether or not they 6874 // are supported in hardware. Thus return false to coerce vectors of these 6875 // types into integer vectors. 6876 // We do not depend on hasLegalHalfType for bfloat as it is a 6877 // separate IR type. 6878 if ((!getTarget().hasLegalHalfType() && 6879 (VT->getElementType()->isFloat16Type() || 6880 VT->getElementType()->isHalfType())) || 6881 (IsFloatABISoftFP && 6882 VT->getElementType()->isBFloat16Type())) 6883 return true; 6884 if (isAndroid()) { 6885 // Android shipped using Clang 3.1, which supported a slightly different 6886 // vector ABI. The primary differences were that 3-element vector types 6887 // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path 6888 // accepts that legacy behavior for Android only. 6889 // Check whether VT is legal. 6890 unsigned NumElements = VT->getNumElements(); 6891 // NumElements should be power of 2 or equal to 3. 6892 if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3) 6893 return true; 6894 } else { 6895 // Check whether VT is legal. 6896 unsigned NumElements = VT->getNumElements(); 6897 uint64_t Size = getContext().getTypeSize(VT); 6898 // NumElements should be power of 2. 6899 if (!llvm::isPowerOf2_32(NumElements)) 6900 return true; 6901 // Size should be greater than 32 bits. 6902 return Size <= 32; 6903 } 6904 } 6905 return false; 6906 } 6907 6908 /// Return true if a type contains any 16-bit floating point vectors 6909 bool ARMABIInfo::containsAnyFP16Vectors(QualType Ty) const { 6910 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 6911 uint64_t NElements = AT->getSize().getZExtValue(); 6912 if (NElements == 0) 6913 return false; 6914 return containsAnyFP16Vectors(AT->getElementType()); 6915 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 6916 const RecordDecl *RD = RT->getDecl(); 6917 6918 // If this is a C++ record, check the bases first. 6919 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 6920 if (llvm::any_of(CXXRD->bases(), [this](const CXXBaseSpecifier &B) { 6921 return containsAnyFP16Vectors(B.getType()); 6922 })) 6923 return true; 6924 6925 if (llvm::any_of(RD->fields(), [this](FieldDecl *FD) { 6926 return FD && containsAnyFP16Vectors(FD->getType()); 6927 })) 6928 return true; 6929 6930 return false; 6931 } else { 6932 if (const VectorType *VT = Ty->getAs<VectorType>()) 6933 return (VT->getElementType()->isFloat16Type() || 6934 VT->getElementType()->isBFloat16Type() || 6935 VT->getElementType()->isHalfType()); 6936 return false; 6937 } 6938 } 6939 6940 bool ARMABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, 6941 llvm::Type *eltTy, 6942 unsigned numElts) const { 6943 if (!llvm::isPowerOf2_32(numElts)) 6944 return false; 6945 unsigned size = getDataLayout().getTypeStoreSizeInBits(eltTy); 6946 if (size > 64) 6947 return false; 6948 if (vectorSize.getQuantity() != 8 && 6949 (vectorSize.getQuantity() != 16 || numElts == 1)) 6950 return false; 6951 return true; 6952 } 6953 6954 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 6955 // Homogeneous aggregates for AAPCS-VFP must have base types of float, 6956 // double, or 64-bit or 128-bit vectors. 6957 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 6958 if (BT->getKind() == BuiltinType::Float || 6959 BT->getKind() == BuiltinType::Double || 6960 BT->getKind() == BuiltinType::LongDouble) 6961 return true; 6962 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 6963 unsigned VecSize = getContext().getTypeSize(VT); 6964 if (VecSize == 64 || VecSize == 128) 6965 return true; 6966 } 6967 return false; 6968 } 6969 6970 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 6971 uint64_t Members) const { 6972 return Members <= 4; 6973 } 6974 6975 bool ARMABIInfo::isEffectivelyAAPCS_VFP(unsigned callConvention, 6976 bool acceptHalf) const { 6977 // Give precedence to user-specified calling conventions. 6978 if (callConvention != llvm::CallingConv::C) 6979 return (callConvention == llvm::CallingConv::ARM_AAPCS_VFP); 6980 else 6981 return (getABIKind() == AAPCS_VFP) || 6982 (acceptHalf && (getABIKind() == AAPCS16_VFP)); 6983 } 6984 6985 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6986 QualType Ty) const { 6987 CharUnits SlotSize = CharUnits::fromQuantity(4); 6988 6989 // Empty records are ignored for parameter passing purposes. 6990 if (isEmptyRecord(getContext(), Ty, true)) { 6991 Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize); 6992 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 6993 return Addr; 6994 } 6995 6996 CharUnits TySize = getContext().getTypeSizeInChars(Ty); 6997 CharUnits TyAlignForABI = getContext().getTypeUnadjustedAlignInChars(Ty); 6998 6999 // Use indirect if size of the illegal vector is bigger than 16 bytes. 7000 bool IsIndirect = false; 7001 const Type *Base = nullptr; 7002 uint64_t Members = 0; 7003 if (TySize > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) { 7004 IsIndirect = true; 7005 7006 // ARMv7k passes structs bigger than 16 bytes indirectly, in space 7007 // allocated by the caller. 7008 } else if (TySize > CharUnits::fromQuantity(16) && 7009 getABIKind() == ARMABIInfo::AAPCS16_VFP && 7010 !isHomogeneousAggregate(Ty, Base, Members)) { 7011 IsIndirect = true; 7012 7013 // Otherwise, bound the type's ABI alignment. 7014 // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for 7015 // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte. 7016 // Our callers should be prepared to handle an under-aligned address. 7017 } else if (getABIKind() == ARMABIInfo::AAPCS_VFP || 7018 getABIKind() == ARMABIInfo::AAPCS) { 7019 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 7020 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8)); 7021 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 7022 // ARMv7k allows type alignment up to 16 bytes. 7023 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 7024 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16)); 7025 } else { 7026 TyAlignForABI = CharUnits::fromQuantity(4); 7027 } 7028 7029 TypeInfoChars TyInfo(TySize, TyAlignForABI, AlignRequirementKind::None); 7030 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo, 7031 SlotSize, /*AllowHigherAlign*/ true); 7032 } 7033 7034 //===----------------------------------------------------------------------===// 7035 // NVPTX ABI Implementation 7036 //===----------------------------------------------------------------------===// 7037 7038 namespace { 7039 7040 class NVPTXTargetCodeGenInfo; 7041 7042 class NVPTXABIInfo : public ABIInfo { 7043 NVPTXTargetCodeGenInfo &CGInfo; 7044 7045 public: 7046 NVPTXABIInfo(CodeGenTypes &CGT, NVPTXTargetCodeGenInfo &Info) 7047 : ABIInfo(CGT), CGInfo(Info) {} 7048 7049 ABIArgInfo classifyReturnType(QualType RetTy) const; 7050 ABIArgInfo classifyArgumentType(QualType Ty) const; 7051 7052 void computeInfo(CGFunctionInfo &FI) const override; 7053 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7054 QualType Ty) const override; 7055 bool isUnsupportedType(QualType T) const; 7056 ABIArgInfo coerceToIntArrayWithLimit(QualType Ty, unsigned MaxSize) const; 7057 }; 7058 7059 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo { 7060 public: 7061 NVPTXTargetCodeGenInfo(CodeGenTypes &CGT) 7062 : TargetCodeGenInfo(std::make_unique<NVPTXABIInfo>(CGT, *this)) {} 7063 7064 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7065 CodeGen::CodeGenModule &M) const override; 7066 bool shouldEmitStaticExternCAliases() const override; 7067 7068 llvm::Type *getCUDADeviceBuiltinSurfaceDeviceType() const override { 7069 // On the device side, surface reference is represented as an object handle 7070 // in 64-bit integer. 7071 return llvm::Type::getInt64Ty(getABIInfo().getVMContext()); 7072 } 7073 7074 llvm::Type *getCUDADeviceBuiltinTextureDeviceType() const override { 7075 // On the device side, texture reference is represented as an object handle 7076 // in 64-bit integer. 7077 return llvm::Type::getInt64Ty(getABIInfo().getVMContext()); 7078 } 7079 7080 bool emitCUDADeviceBuiltinSurfaceDeviceCopy(CodeGenFunction &CGF, LValue Dst, 7081 LValue Src) const override { 7082 emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src); 7083 return true; 7084 } 7085 7086 bool emitCUDADeviceBuiltinTextureDeviceCopy(CodeGenFunction &CGF, LValue Dst, 7087 LValue Src) const override { 7088 emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src); 7089 return true; 7090 } 7091 7092 private: 7093 // Adds a NamedMDNode with GV, Name, and Operand as operands, and adds the 7094 // resulting MDNode to the nvvm.annotations MDNode. 7095 static void addNVVMMetadata(llvm::GlobalValue *GV, StringRef Name, 7096 int Operand); 7097 7098 static void emitBuiltinSurfTexDeviceCopy(CodeGenFunction &CGF, LValue Dst, 7099 LValue Src) { 7100 llvm::Value *Handle = nullptr; 7101 llvm::Constant *C = 7102 llvm::dyn_cast<llvm::Constant>(Src.getAddress(CGF).getPointer()); 7103 // Lookup `addrspacecast` through the constant pointer if any. 7104 if (auto *ASC = llvm::dyn_cast_or_null<llvm::AddrSpaceCastOperator>(C)) 7105 C = llvm::cast<llvm::Constant>(ASC->getPointerOperand()); 7106 if (auto *GV = llvm::dyn_cast_or_null<llvm::GlobalVariable>(C)) { 7107 // Load the handle from the specific global variable using 7108 // `nvvm.texsurf.handle.internal` intrinsic. 7109 Handle = CGF.EmitRuntimeCall( 7110 CGF.CGM.getIntrinsic(llvm::Intrinsic::nvvm_texsurf_handle_internal, 7111 {GV->getType()}), 7112 {GV}, "texsurf_handle"); 7113 } else 7114 Handle = CGF.EmitLoadOfScalar(Src, SourceLocation()); 7115 CGF.EmitStoreOfScalar(Handle, Dst); 7116 } 7117 }; 7118 7119 /// Checks if the type is unsupported directly by the current target. 7120 bool NVPTXABIInfo::isUnsupportedType(QualType T) const { 7121 ASTContext &Context = getContext(); 7122 if (!Context.getTargetInfo().hasFloat16Type() && T->isFloat16Type()) 7123 return true; 7124 if (!Context.getTargetInfo().hasFloat128Type() && 7125 (T->isFloat128Type() || 7126 (T->isRealFloatingType() && Context.getTypeSize(T) == 128))) 7127 return true; 7128 if (const auto *EIT = T->getAs<BitIntType>()) 7129 return EIT->getNumBits() > 7130 (Context.getTargetInfo().hasInt128Type() ? 128U : 64U); 7131 if (!Context.getTargetInfo().hasInt128Type() && T->isIntegerType() && 7132 Context.getTypeSize(T) > 64U) 7133 return true; 7134 if (const auto *AT = T->getAsArrayTypeUnsafe()) 7135 return isUnsupportedType(AT->getElementType()); 7136 const auto *RT = T->getAs<RecordType>(); 7137 if (!RT) 7138 return false; 7139 const RecordDecl *RD = RT->getDecl(); 7140 7141 // If this is a C++ record, check the bases first. 7142 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 7143 for (const CXXBaseSpecifier &I : CXXRD->bases()) 7144 if (isUnsupportedType(I.getType())) 7145 return true; 7146 7147 for (const FieldDecl *I : RD->fields()) 7148 if (isUnsupportedType(I->getType())) 7149 return true; 7150 return false; 7151 } 7152 7153 /// Coerce the given type into an array with maximum allowed size of elements. 7154 ABIArgInfo NVPTXABIInfo::coerceToIntArrayWithLimit(QualType Ty, 7155 unsigned MaxSize) const { 7156 // Alignment and Size are measured in bits. 7157 const uint64_t Size = getContext().getTypeSize(Ty); 7158 const uint64_t Alignment = getContext().getTypeAlign(Ty); 7159 const unsigned Div = std::min<unsigned>(MaxSize, Alignment); 7160 llvm::Type *IntType = llvm::Type::getIntNTy(getVMContext(), Div); 7161 const uint64_t NumElements = (Size + Div - 1) / Div; 7162 return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements)); 7163 } 7164 7165 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const { 7166 if (RetTy->isVoidType()) 7167 return ABIArgInfo::getIgnore(); 7168 7169 if (getContext().getLangOpts().OpenMP && 7170 getContext().getLangOpts().OpenMPIsDevice && isUnsupportedType(RetTy)) 7171 return coerceToIntArrayWithLimit(RetTy, 64); 7172 7173 // note: this is different from default ABI 7174 if (!RetTy->isScalarType()) 7175 return ABIArgInfo::getDirect(); 7176 7177 // Treat an enum type as its underlying type. 7178 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 7179 RetTy = EnumTy->getDecl()->getIntegerType(); 7180 7181 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 7182 : ABIArgInfo::getDirect()); 7183 } 7184 7185 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const { 7186 // Treat an enum type as its underlying type. 7187 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7188 Ty = EnumTy->getDecl()->getIntegerType(); 7189 7190 // Return aggregates type as indirect by value 7191 if (isAggregateTypeForABI(Ty)) { 7192 // Under CUDA device compilation, tex/surf builtin types are replaced with 7193 // object types and passed directly. 7194 if (getContext().getLangOpts().CUDAIsDevice) { 7195 if (Ty->isCUDADeviceBuiltinSurfaceType()) 7196 return ABIArgInfo::getDirect( 7197 CGInfo.getCUDADeviceBuiltinSurfaceDeviceType()); 7198 if (Ty->isCUDADeviceBuiltinTextureType()) 7199 return ABIArgInfo::getDirect( 7200 CGInfo.getCUDADeviceBuiltinTextureDeviceType()); 7201 } 7202 return getNaturalAlignIndirect(Ty, /* byval */ true); 7203 } 7204 7205 if (const auto *EIT = Ty->getAs<BitIntType>()) { 7206 if ((EIT->getNumBits() > 128) || 7207 (!getContext().getTargetInfo().hasInt128Type() && 7208 EIT->getNumBits() > 64)) 7209 return getNaturalAlignIndirect(Ty, /* byval */ true); 7210 } 7211 7212 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 7213 : ABIArgInfo::getDirect()); 7214 } 7215 7216 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const { 7217 if (!getCXXABI().classifyReturnType(FI)) 7218 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7219 for (auto &I : FI.arguments()) 7220 I.info = classifyArgumentType(I.type); 7221 7222 // Always honor user-specified calling convention. 7223 if (FI.getCallingConvention() != llvm::CallingConv::C) 7224 return; 7225 7226 FI.setEffectiveCallingConvention(getRuntimeCC()); 7227 } 7228 7229 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7230 QualType Ty) const { 7231 llvm_unreachable("NVPTX does not support varargs"); 7232 } 7233 7234 void NVPTXTargetCodeGenInfo::setTargetAttributes( 7235 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 7236 if (GV->isDeclaration()) 7237 return; 7238 const VarDecl *VD = dyn_cast_or_null<VarDecl>(D); 7239 if (VD) { 7240 if (M.getLangOpts().CUDA) { 7241 if (VD->getType()->isCUDADeviceBuiltinSurfaceType()) 7242 addNVVMMetadata(GV, "surface", 1); 7243 else if (VD->getType()->isCUDADeviceBuiltinTextureType()) 7244 addNVVMMetadata(GV, "texture", 1); 7245 return; 7246 } 7247 } 7248 7249 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 7250 if (!FD) return; 7251 7252 llvm::Function *F = cast<llvm::Function>(GV); 7253 7254 // Perform special handling in OpenCL mode 7255 if (M.getLangOpts().OpenCL) { 7256 // Use OpenCL function attributes to check for kernel functions 7257 // By default, all functions are device functions 7258 if (FD->hasAttr<OpenCLKernelAttr>()) { 7259 // OpenCL __kernel functions get kernel metadata 7260 // Create !{<func-ref>, metadata !"kernel", i32 1} node 7261 addNVVMMetadata(F, "kernel", 1); 7262 // And kernel functions are not subject to inlining 7263 F->addFnAttr(llvm::Attribute::NoInline); 7264 } 7265 } 7266 7267 // Perform special handling in CUDA mode. 7268 if (M.getLangOpts().CUDA) { 7269 // CUDA __global__ functions get a kernel metadata entry. Since 7270 // __global__ functions cannot be called from the device, we do not 7271 // need to set the noinline attribute. 7272 if (FD->hasAttr<CUDAGlobalAttr>()) { 7273 // Create !{<func-ref>, metadata !"kernel", i32 1} node 7274 addNVVMMetadata(F, "kernel", 1); 7275 } 7276 if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) { 7277 // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node 7278 llvm::APSInt MaxThreads(32); 7279 MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext()); 7280 if (MaxThreads > 0) 7281 addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue()); 7282 7283 // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was 7284 // not specified in __launch_bounds__ or if the user specified a 0 value, 7285 // we don't have to add a PTX directive. 7286 if (Attr->getMinBlocks()) { 7287 llvm::APSInt MinBlocks(32); 7288 MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext()); 7289 if (MinBlocks > 0) 7290 // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node 7291 addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue()); 7292 } 7293 } 7294 } 7295 } 7296 7297 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::GlobalValue *GV, 7298 StringRef Name, int Operand) { 7299 llvm::Module *M = GV->getParent(); 7300 llvm::LLVMContext &Ctx = M->getContext(); 7301 7302 // Get "nvvm.annotations" metadata node 7303 llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations"); 7304 7305 llvm::Metadata *MDVals[] = { 7306 llvm::ConstantAsMetadata::get(GV), llvm::MDString::get(Ctx, Name), 7307 llvm::ConstantAsMetadata::get( 7308 llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))}; 7309 // Append metadata to nvvm.annotations 7310 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 7311 } 7312 7313 bool NVPTXTargetCodeGenInfo::shouldEmitStaticExternCAliases() const { 7314 return false; 7315 } 7316 } 7317 7318 //===----------------------------------------------------------------------===// 7319 // SystemZ ABI Implementation 7320 //===----------------------------------------------------------------------===// 7321 7322 namespace { 7323 7324 class SystemZABIInfo : public SwiftABIInfo { 7325 bool HasVector; 7326 bool IsSoftFloatABI; 7327 7328 public: 7329 SystemZABIInfo(CodeGenTypes &CGT, bool HV, bool SF) 7330 : SwiftABIInfo(CGT), HasVector(HV), IsSoftFloatABI(SF) {} 7331 7332 bool isPromotableIntegerTypeForABI(QualType Ty) const; 7333 bool isCompoundType(QualType Ty) const; 7334 bool isVectorArgumentType(QualType Ty) const; 7335 bool isFPArgumentType(QualType Ty) const; 7336 QualType GetSingleElementType(QualType Ty) const; 7337 7338 ABIArgInfo classifyReturnType(QualType RetTy) const; 7339 ABIArgInfo classifyArgumentType(QualType ArgTy) const; 7340 7341 void computeInfo(CGFunctionInfo &FI) const override { 7342 if (!getCXXABI().classifyReturnType(FI)) 7343 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7344 for (auto &I : FI.arguments()) 7345 I.info = classifyArgumentType(I.type); 7346 } 7347 7348 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7349 QualType Ty) const override; 7350 7351 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 7352 bool asReturnValue) const override { 7353 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 7354 } 7355 bool isSwiftErrorInRegister() const override { 7356 return false; 7357 } 7358 }; 7359 7360 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo { 7361 public: 7362 SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector, bool SoftFloatABI) 7363 : TargetCodeGenInfo( 7364 std::make_unique<SystemZABIInfo>(CGT, HasVector, SoftFloatABI)) {} 7365 7366 llvm::Value *testFPKind(llvm::Value *V, unsigned BuiltinID, 7367 CGBuilderTy &Builder, 7368 CodeGenModule &CGM) const override { 7369 assert(V->getType()->isFloatingPointTy() && "V should have an FP type."); 7370 // Only use TDC in constrained FP mode. 7371 if (!Builder.getIsFPConstrained()) 7372 return nullptr; 7373 7374 llvm::Type *Ty = V->getType(); 7375 if (Ty->isFloatTy() || Ty->isDoubleTy() || Ty->isFP128Ty()) { 7376 llvm::Module &M = CGM.getModule(); 7377 auto &Ctx = M.getContext(); 7378 llvm::Function *TDCFunc = 7379 llvm::Intrinsic::getDeclaration(&M, llvm::Intrinsic::s390_tdc, Ty); 7380 unsigned TDCBits = 0; 7381 switch (BuiltinID) { 7382 case Builtin::BI__builtin_isnan: 7383 TDCBits = 0xf; 7384 break; 7385 case Builtin::BIfinite: 7386 case Builtin::BI__finite: 7387 case Builtin::BIfinitef: 7388 case Builtin::BI__finitef: 7389 case Builtin::BIfinitel: 7390 case Builtin::BI__finitel: 7391 case Builtin::BI__builtin_isfinite: 7392 TDCBits = 0xfc0; 7393 break; 7394 case Builtin::BI__builtin_isinf: 7395 TDCBits = 0x30; 7396 break; 7397 default: 7398 break; 7399 } 7400 if (TDCBits) 7401 return Builder.CreateCall( 7402 TDCFunc, 7403 {V, llvm::ConstantInt::get(llvm::Type::getInt64Ty(Ctx), TDCBits)}); 7404 } 7405 return nullptr; 7406 } 7407 }; 7408 } 7409 7410 bool SystemZABIInfo::isPromotableIntegerTypeForABI(QualType Ty) const { 7411 // Treat an enum type as its underlying type. 7412 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7413 Ty = EnumTy->getDecl()->getIntegerType(); 7414 7415 // Promotable integer types are required to be promoted by the ABI. 7416 if (ABIInfo::isPromotableIntegerTypeForABI(Ty)) 7417 return true; 7418 7419 if (const auto *EIT = Ty->getAs<BitIntType>()) 7420 if (EIT->getNumBits() < 64) 7421 return true; 7422 7423 // 32-bit values must also be promoted. 7424 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 7425 switch (BT->getKind()) { 7426 case BuiltinType::Int: 7427 case BuiltinType::UInt: 7428 return true; 7429 default: 7430 return false; 7431 } 7432 return false; 7433 } 7434 7435 bool SystemZABIInfo::isCompoundType(QualType Ty) const { 7436 return (Ty->isAnyComplexType() || 7437 Ty->isVectorType() || 7438 isAggregateTypeForABI(Ty)); 7439 } 7440 7441 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const { 7442 return (HasVector && 7443 Ty->isVectorType() && 7444 getContext().getTypeSize(Ty) <= 128); 7445 } 7446 7447 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const { 7448 if (IsSoftFloatABI) 7449 return false; 7450 7451 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 7452 switch (BT->getKind()) { 7453 case BuiltinType::Float: 7454 case BuiltinType::Double: 7455 return true; 7456 default: 7457 return false; 7458 } 7459 7460 return false; 7461 } 7462 7463 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const { 7464 const RecordType *RT = Ty->getAs<RecordType>(); 7465 7466 if (RT && RT->isStructureOrClassType()) { 7467 const RecordDecl *RD = RT->getDecl(); 7468 QualType Found; 7469 7470 // If this is a C++ record, check the bases first. 7471 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 7472 for (const auto &I : CXXRD->bases()) { 7473 QualType Base = I.getType(); 7474 7475 // Empty bases don't affect things either way. 7476 if (isEmptyRecord(getContext(), Base, true)) 7477 continue; 7478 7479 if (!Found.isNull()) 7480 return Ty; 7481 Found = GetSingleElementType(Base); 7482 } 7483 7484 // Check the fields. 7485 for (const auto *FD : RD->fields()) { 7486 // For compatibility with GCC, ignore empty bitfields in C++ mode. 7487 // Unlike isSingleElementStruct(), empty structure and array fields 7488 // do count. So do anonymous bitfields that aren't zero-sized. 7489 if (getContext().getLangOpts().CPlusPlus && 7490 FD->isZeroLengthBitField(getContext())) 7491 continue; 7492 // Like isSingleElementStruct(), ignore C++20 empty data members. 7493 if (FD->hasAttr<NoUniqueAddressAttr>() && 7494 isEmptyRecord(getContext(), FD->getType(), true)) 7495 continue; 7496 7497 // Unlike isSingleElementStruct(), arrays do not count. 7498 // Nested structures still do though. 7499 if (!Found.isNull()) 7500 return Ty; 7501 Found = GetSingleElementType(FD->getType()); 7502 } 7503 7504 // Unlike isSingleElementStruct(), trailing padding is allowed. 7505 // An 8-byte aligned struct s { float f; } is passed as a double. 7506 if (!Found.isNull()) 7507 return Found; 7508 } 7509 7510 return Ty; 7511 } 7512 7513 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7514 QualType Ty) const { 7515 // Assume that va_list type is correct; should be pointer to LLVM type: 7516 // struct { 7517 // i64 __gpr; 7518 // i64 __fpr; 7519 // i8 *__overflow_arg_area; 7520 // i8 *__reg_save_area; 7521 // }; 7522 7523 // Every non-vector argument occupies 8 bytes and is passed by preference 7524 // in either GPRs or FPRs. Vector arguments occupy 8 or 16 bytes and are 7525 // always passed on the stack. 7526 Ty = getContext().getCanonicalType(Ty); 7527 auto TyInfo = getContext().getTypeInfoInChars(Ty); 7528 llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty); 7529 llvm::Type *DirectTy = ArgTy; 7530 ABIArgInfo AI = classifyArgumentType(Ty); 7531 bool IsIndirect = AI.isIndirect(); 7532 bool InFPRs = false; 7533 bool IsVector = false; 7534 CharUnits UnpaddedSize; 7535 CharUnits DirectAlign; 7536 if (IsIndirect) { 7537 DirectTy = llvm::PointerType::getUnqual(DirectTy); 7538 UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8); 7539 } else { 7540 if (AI.getCoerceToType()) 7541 ArgTy = AI.getCoerceToType(); 7542 InFPRs = (!IsSoftFloatABI && (ArgTy->isFloatTy() || ArgTy->isDoubleTy())); 7543 IsVector = ArgTy->isVectorTy(); 7544 UnpaddedSize = TyInfo.Width; 7545 DirectAlign = TyInfo.Align; 7546 } 7547 CharUnits PaddedSize = CharUnits::fromQuantity(8); 7548 if (IsVector && UnpaddedSize > PaddedSize) 7549 PaddedSize = CharUnits::fromQuantity(16); 7550 assert((UnpaddedSize <= PaddedSize) && "Invalid argument size."); 7551 7552 CharUnits Padding = (PaddedSize - UnpaddedSize); 7553 7554 llvm::Type *IndexTy = CGF.Int64Ty; 7555 llvm::Value *PaddedSizeV = 7556 llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity()); 7557 7558 if (IsVector) { 7559 // Work out the address of a vector argument on the stack. 7560 // Vector arguments are always passed in the high bits of a 7561 // single (8 byte) or double (16 byte) stack slot. 7562 Address OverflowArgAreaPtr = 7563 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr"); 7564 Address OverflowArgArea = 7565 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 7566 TyInfo.Align); 7567 Address MemAddr = 7568 CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr"); 7569 7570 // Update overflow_arg_area_ptr pointer 7571 llvm::Value *NewOverflowArgArea = 7572 CGF.Builder.CreateGEP(OverflowArgArea.getElementType(), 7573 OverflowArgArea.getPointer(), PaddedSizeV, 7574 "overflow_arg_area"); 7575 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 7576 7577 return MemAddr; 7578 } 7579 7580 assert(PaddedSize.getQuantity() == 8); 7581 7582 unsigned MaxRegs, RegCountField, RegSaveIndex; 7583 CharUnits RegPadding; 7584 if (InFPRs) { 7585 MaxRegs = 4; // Maximum of 4 FPR arguments 7586 RegCountField = 1; // __fpr 7587 RegSaveIndex = 16; // save offset for f0 7588 RegPadding = CharUnits(); // floats are passed in the high bits of an FPR 7589 } else { 7590 MaxRegs = 5; // Maximum of 5 GPR arguments 7591 RegCountField = 0; // __gpr 7592 RegSaveIndex = 2; // save offset for r2 7593 RegPadding = Padding; // values are passed in the low bits of a GPR 7594 } 7595 7596 Address RegCountPtr = 7597 CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr"); 7598 llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count"); 7599 llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs); 7600 llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV, 7601 "fits_in_regs"); 7602 7603 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 7604 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 7605 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 7606 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 7607 7608 // Emit code to load the value if it was passed in registers. 7609 CGF.EmitBlock(InRegBlock); 7610 7611 // Work out the address of an argument register. 7612 llvm::Value *ScaledRegCount = 7613 CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count"); 7614 llvm::Value *RegBase = 7615 llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity() 7616 + RegPadding.getQuantity()); 7617 llvm::Value *RegOffset = 7618 CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset"); 7619 Address RegSaveAreaPtr = 7620 CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr"); 7621 llvm::Value *RegSaveArea = 7622 CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area"); 7623 Address RawRegAddr(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, RegOffset, 7624 "raw_reg_addr"), 7625 PaddedSize); 7626 Address RegAddr = 7627 CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr"); 7628 7629 // Update the register count 7630 llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1); 7631 llvm::Value *NewRegCount = 7632 CGF.Builder.CreateAdd(RegCount, One, "reg_count"); 7633 CGF.Builder.CreateStore(NewRegCount, RegCountPtr); 7634 CGF.EmitBranch(ContBlock); 7635 7636 // Emit code to load the value if it was passed in memory. 7637 CGF.EmitBlock(InMemBlock); 7638 7639 // Work out the address of a stack argument. 7640 Address OverflowArgAreaPtr = 7641 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr"); 7642 Address OverflowArgArea = 7643 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 7644 PaddedSize); 7645 Address RawMemAddr = 7646 CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr"); 7647 Address MemAddr = 7648 CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr"); 7649 7650 // Update overflow_arg_area_ptr pointer 7651 llvm::Value *NewOverflowArgArea = 7652 CGF.Builder.CreateGEP(OverflowArgArea.getElementType(), 7653 OverflowArgArea.getPointer(), PaddedSizeV, 7654 "overflow_arg_area"); 7655 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 7656 CGF.EmitBranch(ContBlock); 7657 7658 // Return the appropriate result. 7659 CGF.EmitBlock(ContBlock); 7660 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 7661 MemAddr, InMemBlock, "va_arg.addr"); 7662 7663 if (IsIndirect) 7664 ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"), 7665 TyInfo.Align); 7666 7667 return ResAddr; 7668 } 7669 7670 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const { 7671 if (RetTy->isVoidType()) 7672 return ABIArgInfo::getIgnore(); 7673 if (isVectorArgumentType(RetTy)) 7674 return ABIArgInfo::getDirect(); 7675 if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64) 7676 return getNaturalAlignIndirect(RetTy); 7677 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 7678 : ABIArgInfo::getDirect()); 7679 } 7680 7681 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const { 7682 // Handle the generic C++ ABI. 7683 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 7684 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7685 7686 // Integers and enums are extended to full register width. 7687 if (isPromotableIntegerTypeForABI(Ty)) 7688 return ABIArgInfo::getExtend(Ty); 7689 7690 // Handle vector types and vector-like structure types. Note that 7691 // as opposed to float-like structure types, we do not allow any 7692 // padding for vector-like structures, so verify the sizes match. 7693 uint64_t Size = getContext().getTypeSize(Ty); 7694 QualType SingleElementTy = GetSingleElementType(Ty); 7695 if (isVectorArgumentType(SingleElementTy) && 7696 getContext().getTypeSize(SingleElementTy) == Size) 7697 return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy)); 7698 7699 // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly. 7700 if (Size != 8 && Size != 16 && Size != 32 && Size != 64) 7701 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 7702 7703 // Handle small structures. 7704 if (const RecordType *RT = Ty->getAs<RecordType>()) { 7705 // Structures with flexible arrays have variable length, so really 7706 // fail the size test above. 7707 const RecordDecl *RD = RT->getDecl(); 7708 if (RD->hasFlexibleArrayMember()) 7709 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 7710 7711 // The structure is passed as an unextended integer, a float, or a double. 7712 llvm::Type *PassTy; 7713 if (isFPArgumentType(SingleElementTy)) { 7714 assert(Size == 32 || Size == 64); 7715 if (Size == 32) 7716 PassTy = llvm::Type::getFloatTy(getVMContext()); 7717 else 7718 PassTy = llvm::Type::getDoubleTy(getVMContext()); 7719 } else 7720 PassTy = llvm::IntegerType::get(getVMContext(), Size); 7721 return ABIArgInfo::getDirect(PassTy); 7722 } 7723 7724 // Non-structure compounds are passed indirectly. 7725 if (isCompoundType(Ty)) 7726 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 7727 7728 return ABIArgInfo::getDirect(nullptr); 7729 } 7730 7731 //===----------------------------------------------------------------------===// 7732 // MSP430 ABI Implementation 7733 //===----------------------------------------------------------------------===// 7734 7735 namespace { 7736 7737 class MSP430ABIInfo : public DefaultABIInfo { 7738 static ABIArgInfo complexArgInfo() { 7739 ABIArgInfo Info = ABIArgInfo::getDirect(); 7740 Info.setCanBeFlattened(false); 7741 return Info; 7742 } 7743 7744 public: 7745 MSP430ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 7746 7747 ABIArgInfo classifyReturnType(QualType RetTy) const { 7748 if (RetTy->isAnyComplexType()) 7749 return complexArgInfo(); 7750 7751 return DefaultABIInfo::classifyReturnType(RetTy); 7752 } 7753 7754 ABIArgInfo classifyArgumentType(QualType RetTy) const { 7755 if (RetTy->isAnyComplexType()) 7756 return complexArgInfo(); 7757 7758 return DefaultABIInfo::classifyArgumentType(RetTy); 7759 } 7760 7761 // Just copy the original implementations because 7762 // DefaultABIInfo::classify{Return,Argument}Type() are not virtual 7763 void computeInfo(CGFunctionInfo &FI) const override { 7764 if (!getCXXABI().classifyReturnType(FI)) 7765 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7766 for (auto &I : FI.arguments()) 7767 I.info = classifyArgumentType(I.type); 7768 } 7769 7770 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7771 QualType Ty) const override { 7772 return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty)); 7773 } 7774 }; 7775 7776 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo { 7777 public: 7778 MSP430TargetCodeGenInfo(CodeGenTypes &CGT) 7779 : TargetCodeGenInfo(std::make_unique<MSP430ABIInfo>(CGT)) {} 7780 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7781 CodeGen::CodeGenModule &M) const override; 7782 }; 7783 7784 } 7785 7786 void MSP430TargetCodeGenInfo::setTargetAttributes( 7787 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 7788 if (GV->isDeclaration()) 7789 return; 7790 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 7791 const auto *InterruptAttr = FD->getAttr<MSP430InterruptAttr>(); 7792 if (!InterruptAttr) 7793 return; 7794 7795 // Handle 'interrupt' attribute: 7796 llvm::Function *F = cast<llvm::Function>(GV); 7797 7798 // Step 1: Set ISR calling convention. 7799 F->setCallingConv(llvm::CallingConv::MSP430_INTR); 7800 7801 // Step 2: Add attributes goodness. 7802 F->addFnAttr(llvm::Attribute::NoInline); 7803 F->addFnAttr("interrupt", llvm::utostr(InterruptAttr->getNumber())); 7804 } 7805 } 7806 7807 //===----------------------------------------------------------------------===// 7808 // MIPS ABI Implementation. This works for both little-endian and 7809 // big-endian variants. 7810 //===----------------------------------------------------------------------===// 7811 7812 namespace { 7813 class MipsABIInfo : public ABIInfo { 7814 bool IsO32; 7815 unsigned MinABIStackAlignInBytes, StackAlignInBytes; 7816 void CoerceToIntArgs(uint64_t TySize, 7817 SmallVectorImpl<llvm::Type *> &ArgList) const; 7818 llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const; 7819 llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const; 7820 llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const; 7821 public: 7822 MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) : 7823 ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8), 7824 StackAlignInBytes(IsO32 ? 8 : 16) {} 7825 7826 ABIArgInfo classifyReturnType(QualType RetTy) const; 7827 ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const; 7828 void computeInfo(CGFunctionInfo &FI) const override; 7829 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7830 QualType Ty) const override; 7831 ABIArgInfo extendType(QualType Ty) const; 7832 }; 7833 7834 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo { 7835 unsigned SizeOfUnwindException; 7836 public: 7837 MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32) 7838 : TargetCodeGenInfo(std::make_unique<MipsABIInfo>(CGT, IsO32)), 7839 SizeOfUnwindException(IsO32 ? 24 : 32) {} 7840 7841 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 7842 return 29; 7843 } 7844 7845 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7846 CodeGen::CodeGenModule &CGM) const override { 7847 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 7848 if (!FD) return; 7849 llvm::Function *Fn = cast<llvm::Function>(GV); 7850 7851 if (FD->hasAttr<MipsLongCallAttr>()) 7852 Fn->addFnAttr("long-call"); 7853 else if (FD->hasAttr<MipsShortCallAttr>()) 7854 Fn->addFnAttr("short-call"); 7855 7856 // Other attributes do not have a meaning for declarations. 7857 if (GV->isDeclaration()) 7858 return; 7859 7860 if (FD->hasAttr<Mips16Attr>()) { 7861 Fn->addFnAttr("mips16"); 7862 } 7863 else if (FD->hasAttr<NoMips16Attr>()) { 7864 Fn->addFnAttr("nomips16"); 7865 } 7866 7867 if (FD->hasAttr<MicroMipsAttr>()) 7868 Fn->addFnAttr("micromips"); 7869 else if (FD->hasAttr<NoMicroMipsAttr>()) 7870 Fn->addFnAttr("nomicromips"); 7871 7872 const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>(); 7873 if (!Attr) 7874 return; 7875 7876 const char *Kind; 7877 switch (Attr->getInterrupt()) { 7878 case MipsInterruptAttr::eic: Kind = "eic"; break; 7879 case MipsInterruptAttr::sw0: Kind = "sw0"; break; 7880 case MipsInterruptAttr::sw1: Kind = "sw1"; break; 7881 case MipsInterruptAttr::hw0: Kind = "hw0"; break; 7882 case MipsInterruptAttr::hw1: Kind = "hw1"; break; 7883 case MipsInterruptAttr::hw2: Kind = "hw2"; break; 7884 case MipsInterruptAttr::hw3: Kind = "hw3"; break; 7885 case MipsInterruptAttr::hw4: Kind = "hw4"; break; 7886 case MipsInterruptAttr::hw5: Kind = "hw5"; break; 7887 } 7888 7889 Fn->addFnAttr("interrupt", Kind); 7890 7891 } 7892 7893 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 7894 llvm::Value *Address) const override; 7895 7896 unsigned getSizeOfUnwindException() const override { 7897 return SizeOfUnwindException; 7898 } 7899 }; 7900 } 7901 7902 void MipsABIInfo::CoerceToIntArgs( 7903 uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const { 7904 llvm::IntegerType *IntTy = 7905 llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8); 7906 7907 // Add (TySize / MinABIStackAlignInBytes) args of IntTy. 7908 for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N) 7909 ArgList.push_back(IntTy); 7910 7911 // If necessary, add one more integer type to ArgList. 7912 unsigned R = TySize % (MinABIStackAlignInBytes * 8); 7913 7914 if (R) 7915 ArgList.push_back(llvm::IntegerType::get(getVMContext(), R)); 7916 } 7917 7918 // In N32/64, an aligned double precision floating point field is passed in 7919 // a register. 7920 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const { 7921 SmallVector<llvm::Type*, 8> ArgList, IntArgList; 7922 7923 if (IsO32) { 7924 CoerceToIntArgs(TySize, ArgList); 7925 return llvm::StructType::get(getVMContext(), ArgList); 7926 } 7927 7928 if (Ty->isComplexType()) 7929 return CGT.ConvertType(Ty); 7930 7931 const RecordType *RT = Ty->getAs<RecordType>(); 7932 7933 // Unions/vectors are passed in integer registers. 7934 if (!RT || !RT->isStructureOrClassType()) { 7935 CoerceToIntArgs(TySize, ArgList); 7936 return llvm::StructType::get(getVMContext(), ArgList); 7937 } 7938 7939 const RecordDecl *RD = RT->getDecl(); 7940 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 7941 assert(!(TySize % 8) && "Size of structure must be multiple of 8."); 7942 7943 uint64_t LastOffset = 0; 7944 unsigned idx = 0; 7945 llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64); 7946 7947 // Iterate over fields in the struct/class and check if there are any aligned 7948 // double fields. 7949 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 7950 i != e; ++i, ++idx) { 7951 const QualType Ty = i->getType(); 7952 const BuiltinType *BT = Ty->getAs<BuiltinType>(); 7953 7954 if (!BT || BT->getKind() != BuiltinType::Double) 7955 continue; 7956 7957 uint64_t Offset = Layout.getFieldOffset(idx); 7958 if (Offset % 64) // Ignore doubles that are not aligned. 7959 continue; 7960 7961 // Add ((Offset - LastOffset) / 64) args of type i64. 7962 for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j) 7963 ArgList.push_back(I64); 7964 7965 // Add double type. 7966 ArgList.push_back(llvm::Type::getDoubleTy(getVMContext())); 7967 LastOffset = Offset + 64; 7968 } 7969 7970 CoerceToIntArgs(TySize - LastOffset, IntArgList); 7971 ArgList.append(IntArgList.begin(), IntArgList.end()); 7972 7973 return llvm::StructType::get(getVMContext(), ArgList); 7974 } 7975 7976 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset, 7977 uint64_t Offset) const { 7978 if (OrigOffset + MinABIStackAlignInBytes > Offset) 7979 return nullptr; 7980 7981 return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8); 7982 } 7983 7984 ABIArgInfo 7985 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const { 7986 Ty = useFirstFieldIfTransparentUnion(Ty); 7987 7988 uint64_t OrigOffset = Offset; 7989 uint64_t TySize = getContext().getTypeSize(Ty); 7990 uint64_t Align = getContext().getTypeAlign(Ty) / 8; 7991 7992 Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes), 7993 (uint64_t)StackAlignInBytes); 7994 unsigned CurrOffset = llvm::alignTo(Offset, Align); 7995 Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8; 7996 7997 if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) { 7998 // Ignore empty aggregates. 7999 if (TySize == 0) 8000 return ABIArgInfo::getIgnore(); 8001 8002 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 8003 Offset = OrigOffset + MinABIStackAlignInBytes; 8004 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 8005 } 8006 8007 // If we have reached here, aggregates are passed directly by coercing to 8008 // another structure type. Padding is inserted if the offset of the 8009 // aggregate is unaligned. 8010 ABIArgInfo ArgInfo = 8011 ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0, 8012 getPaddingType(OrigOffset, CurrOffset)); 8013 ArgInfo.setInReg(true); 8014 return ArgInfo; 8015 } 8016 8017 // Treat an enum type as its underlying type. 8018 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 8019 Ty = EnumTy->getDecl()->getIntegerType(); 8020 8021 // Make sure we pass indirectly things that are too large. 8022 if (const auto *EIT = Ty->getAs<BitIntType>()) 8023 if (EIT->getNumBits() > 128 || 8024 (EIT->getNumBits() > 64 && 8025 !getContext().getTargetInfo().hasInt128Type())) 8026 return getNaturalAlignIndirect(Ty); 8027 8028 // All integral types are promoted to the GPR width. 8029 if (Ty->isIntegralOrEnumerationType()) 8030 return extendType(Ty); 8031 8032 return ABIArgInfo::getDirect( 8033 nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset)); 8034 } 8035 8036 llvm::Type* 8037 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const { 8038 const RecordType *RT = RetTy->getAs<RecordType>(); 8039 SmallVector<llvm::Type*, 8> RTList; 8040 8041 if (RT && RT->isStructureOrClassType()) { 8042 const RecordDecl *RD = RT->getDecl(); 8043 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 8044 unsigned FieldCnt = Layout.getFieldCount(); 8045 8046 // N32/64 returns struct/classes in floating point registers if the 8047 // following conditions are met: 8048 // 1. The size of the struct/class is no larger than 128-bit. 8049 // 2. The struct/class has one or two fields all of which are floating 8050 // point types. 8051 // 3. The offset of the first field is zero (this follows what gcc does). 8052 // 8053 // Any other composite results are returned in integer registers. 8054 // 8055 if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) { 8056 RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end(); 8057 for (; b != e; ++b) { 8058 const BuiltinType *BT = b->getType()->getAs<BuiltinType>(); 8059 8060 if (!BT || !BT->isFloatingPoint()) 8061 break; 8062 8063 RTList.push_back(CGT.ConvertType(b->getType())); 8064 } 8065 8066 if (b == e) 8067 return llvm::StructType::get(getVMContext(), RTList, 8068 RD->hasAttr<PackedAttr>()); 8069 8070 RTList.clear(); 8071 } 8072 } 8073 8074 CoerceToIntArgs(Size, RTList); 8075 return llvm::StructType::get(getVMContext(), RTList); 8076 } 8077 8078 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const { 8079 uint64_t Size = getContext().getTypeSize(RetTy); 8080 8081 if (RetTy->isVoidType()) 8082 return ABIArgInfo::getIgnore(); 8083 8084 // O32 doesn't treat zero-sized structs differently from other structs. 8085 // However, N32/N64 ignores zero sized return values. 8086 if (!IsO32 && Size == 0) 8087 return ABIArgInfo::getIgnore(); 8088 8089 if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) { 8090 if (Size <= 128) { 8091 if (RetTy->isAnyComplexType()) 8092 return ABIArgInfo::getDirect(); 8093 8094 // O32 returns integer vectors in registers and N32/N64 returns all small 8095 // aggregates in registers. 8096 if (!IsO32 || 8097 (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) { 8098 ABIArgInfo ArgInfo = 8099 ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size)); 8100 ArgInfo.setInReg(true); 8101 return ArgInfo; 8102 } 8103 } 8104 8105 return getNaturalAlignIndirect(RetTy); 8106 } 8107 8108 // Treat an enum type as its underlying type. 8109 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 8110 RetTy = EnumTy->getDecl()->getIntegerType(); 8111 8112 // Make sure we pass indirectly things that are too large. 8113 if (const auto *EIT = RetTy->getAs<BitIntType>()) 8114 if (EIT->getNumBits() > 128 || 8115 (EIT->getNumBits() > 64 && 8116 !getContext().getTargetInfo().hasInt128Type())) 8117 return getNaturalAlignIndirect(RetTy); 8118 8119 if (isPromotableIntegerTypeForABI(RetTy)) 8120 return ABIArgInfo::getExtend(RetTy); 8121 8122 if ((RetTy->isUnsignedIntegerOrEnumerationType() || 8123 RetTy->isSignedIntegerOrEnumerationType()) && Size == 32 && !IsO32) 8124 return ABIArgInfo::getSignExtend(RetTy); 8125 8126 return ABIArgInfo::getDirect(); 8127 } 8128 8129 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const { 8130 ABIArgInfo &RetInfo = FI.getReturnInfo(); 8131 if (!getCXXABI().classifyReturnType(FI)) 8132 RetInfo = classifyReturnType(FI.getReturnType()); 8133 8134 // Check if a pointer to an aggregate is passed as a hidden argument. 8135 uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0; 8136 8137 for (auto &I : FI.arguments()) 8138 I.info = classifyArgumentType(I.type, Offset); 8139 } 8140 8141 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8142 QualType OrigTy) const { 8143 QualType Ty = OrigTy; 8144 8145 // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64. 8146 // Pointers are also promoted in the same way but this only matters for N32. 8147 unsigned SlotSizeInBits = IsO32 ? 32 : 64; 8148 unsigned PtrWidth = getTarget().getPointerWidth(0); 8149 bool DidPromote = false; 8150 if ((Ty->isIntegerType() && 8151 getContext().getIntWidth(Ty) < SlotSizeInBits) || 8152 (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) { 8153 DidPromote = true; 8154 Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits, 8155 Ty->isSignedIntegerType()); 8156 } 8157 8158 auto TyInfo = getContext().getTypeInfoInChars(Ty); 8159 8160 // The alignment of things in the argument area is never larger than 8161 // StackAlignInBytes. 8162 TyInfo.Align = 8163 std::min(TyInfo.Align, CharUnits::fromQuantity(StackAlignInBytes)); 8164 8165 // MinABIStackAlignInBytes is the size of argument slots on the stack. 8166 CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes); 8167 8168 Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 8169 TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true); 8170 8171 8172 // If there was a promotion, "unpromote" into a temporary. 8173 // TODO: can we just use a pointer into a subset of the original slot? 8174 if (DidPromote) { 8175 Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp"); 8176 llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr); 8177 8178 // Truncate down to the right width. 8179 llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType() 8180 : CGF.IntPtrTy); 8181 llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy); 8182 if (OrigTy->isPointerType()) 8183 V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType()); 8184 8185 CGF.Builder.CreateStore(V, Temp); 8186 Addr = Temp; 8187 } 8188 8189 return Addr; 8190 } 8191 8192 ABIArgInfo MipsABIInfo::extendType(QualType Ty) const { 8193 int TySize = getContext().getTypeSize(Ty); 8194 8195 // MIPS64 ABI requires unsigned 32 bit integers to be sign extended. 8196 if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 8197 return ABIArgInfo::getSignExtend(Ty); 8198 8199 return ABIArgInfo::getExtend(Ty); 8200 } 8201 8202 bool 8203 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 8204 llvm::Value *Address) const { 8205 // This information comes from gcc's implementation, which seems to 8206 // as canonical as it gets. 8207 8208 // Everything on MIPS is 4 bytes. Double-precision FP registers 8209 // are aliased to pairs of single-precision FP registers. 8210 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 8211 8212 // 0-31 are the general purpose registers, $0 - $31. 8213 // 32-63 are the floating-point registers, $f0 - $f31. 8214 // 64 and 65 are the multiply/divide registers, $hi and $lo. 8215 // 66 is the (notional, I think) register for signal-handler return. 8216 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65); 8217 8218 // 67-74 are the floating-point status registers, $fcc0 - $fcc7. 8219 // They are one bit wide and ignored here. 8220 8221 // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31. 8222 // (coprocessor 1 is the FP unit) 8223 // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31. 8224 // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31. 8225 // 176-181 are the DSP accumulator registers. 8226 AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181); 8227 return false; 8228 } 8229 8230 //===----------------------------------------------------------------------===// 8231 // M68k ABI Implementation 8232 //===----------------------------------------------------------------------===// 8233 8234 namespace { 8235 8236 class M68kTargetCodeGenInfo : public TargetCodeGenInfo { 8237 public: 8238 M68kTargetCodeGenInfo(CodeGenTypes &CGT) 8239 : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {} 8240 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 8241 CodeGen::CodeGenModule &M) const override; 8242 }; 8243 8244 } // namespace 8245 8246 void M68kTargetCodeGenInfo::setTargetAttributes( 8247 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 8248 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 8249 if (const auto *attr = FD->getAttr<M68kInterruptAttr>()) { 8250 // Handle 'interrupt' attribute: 8251 llvm::Function *F = cast<llvm::Function>(GV); 8252 8253 // Step 1: Set ISR calling convention. 8254 F->setCallingConv(llvm::CallingConv::M68k_INTR); 8255 8256 // Step 2: Add attributes goodness. 8257 F->addFnAttr(llvm::Attribute::NoInline); 8258 8259 // Step 3: Emit ISR vector alias. 8260 unsigned Num = attr->getNumber() / 2; 8261 llvm::GlobalAlias::create(llvm::Function::ExternalLinkage, 8262 "__isr_" + Twine(Num), F); 8263 } 8264 } 8265 } 8266 8267 //===----------------------------------------------------------------------===// 8268 // AVR ABI Implementation. Documented at 8269 // https://gcc.gnu.org/wiki/avr-gcc#Calling_Convention 8270 // https://gcc.gnu.org/wiki/avr-gcc#Reduced_Tiny 8271 //===----------------------------------------------------------------------===// 8272 8273 namespace { 8274 class AVRABIInfo : public DefaultABIInfo { 8275 public: 8276 AVRABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 8277 8278 ABIArgInfo classifyReturnType(QualType Ty) const { 8279 // A return struct with size less than or equal to 8 bytes is returned 8280 // directly via registers R18-R25. 8281 if (isAggregateTypeForABI(Ty) && getContext().getTypeSize(Ty) <= 64) 8282 return ABIArgInfo::getDirect(); 8283 else 8284 return DefaultABIInfo::classifyReturnType(Ty); 8285 } 8286 8287 // Just copy the original implementation of DefaultABIInfo::computeInfo(), 8288 // since DefaultABIInfo::classify{Return,Argument}Type() are not virtual. 8289 void computeInfo(CGFunctionInfo &FI) const override { 8290 if (!getCXXABI().classifyReturnType(FI)) 8291 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 8292 for (auto &I : FI.arguments()) 8293 I.info = classifyArgumentType(I.type); 8294 } 8295 }; 8296 8297 class AVRTargetCodeGenInfo : public TargetCodeGenInfo { 8298 public: 8299 AVRTargetCodeGenInfo(CodeGenTypes &CGT) 8300 : TargetCodeGenInfo(std::make_unique<AVRABIInfo>(CGT)) {} 8301 8302 LangAS getGlobalVarAddressSpace(CodeGenModule &CGM, 8303 const VarDecl *D) const override { 8304 // Check if global/static variable is defined in address space 8305 // 1~6 (__flash, __flash1, __flash2, __flash3, __flash4, __flash5) 8306 // but not constant. 8307 LangAS AS = D->getType().getAddressSpace(); 8308 if (isTargetAddressSpace(AS) && 1 <= toTargetAddressSpace(AS) && 8309 toTargetAddressSpace(AS) <= 6 && !D->getType().isConstQualified()) 8310 CGM.getDiags().Report(D->getLocation(), 8311 diag::err_verify_nonconst_addrspace) 8312 << "__flash*"; 8313 return TargetCodeGenInfo::getGlobalVarAddressSpace(CGM, D); 8314 } 8315 8316 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 8317 CodeGen::CodeGenModule &CGM) const override { 8318 if (GV->isDeclaration()) 8319 return; 8320 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 8321 if (!FD) return; 8322 auto *Fn = cast<llvm::Function>(GV); 8323 8324 if (FD->getAttr<AVRInterruptAttr>()) 8325 Fn->addFnAttr("interrupt"); 8326 8327 if (FD->getAttr<AVRSignalAttr>()) 8328 Fn->addFnAttr("signal"); 8329 } 8330 }; 8331 } 8332 8333 //===----------------------------------------------------------------------===// 8334 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults. 8335 // Currently subclassed only to implement custom OpenCL C function attribute 8336 // handling. 8337 //===----------------------------------------------------------------------===// 8338 8339 namespace { 8340 8341 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo { 8342 public: 8343 TCETargetCodeGenInfo(CodeGenTypes &CGT) 8344 : DefaultTargetCodeGenInfo(CGT) {} 8345 8346 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 8347 CodeGen::CodeGenModule &M) const override; 8348 }; 8349 8350 void TCETargetCodeGenInfo::setTargetAttributes( 8351 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 8352 if (GV->isDeclaration()) 8353 return; 8354 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 8355 if (!FD) return; 8356 8357 llvm::Function *F = cast<llvm::Function>(GV); 8358 8359 if (M.getLangOpts().OpenCL) { 8360 if (FD->hasAttr<OpenCLKernelAttr>()) { 8361 // OpenCL C Kernel functions are not subject to inlining 8362 F->addFnAttr(llvm::Attribute::NoInline); 8363 const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>(); 8364 if (Attr) { 8365 // Convert the reqd_work_group_size() attributes to metadata. 8366 llvm::LLVMContext &Context = F->getContext(); 8367 llvm::NamedMDNode *OpenCLMetadata = 8368 M.getModule().getOrInsertNamedMetadata( 8369 "opencl.kernel_wg_size_info"); 8370 8371 SmallVector<llvm::Metadata *, 5> Operands; 8372 Operands.push_back(llvm::ConstantAsMetadata::get(F)); 8373 8374 Operands.push_back( 8375 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 8376 M.Int32Ty, llvm::APInt(32, Attr->getXDim())))); 8377 Operands.push_back( 8378 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 8379 M.Int32Ty, llvm::APInt(32, Attr->getYDim())))); 8380 Operands.push_back( 8381 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 8382 M.Int32Ty, llvm::APInt(32, Attr->getZDim())))); 8383 8384 // Add a boolean constant operand for "required" (true) or "hint" 8385 // (false) for implementing the work_group_size_hint attr later. 8386 // Currently always true as the hint is not yet implemented. 8387 Operands.push_back( 8388 llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context))); 8389 OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands)); 8390 } 8391 } 8392 } 8393 } 8394 8395 } 8396 8397 //===----------------------------------------------------------------------===// 8398 // Hexagon ABI Implementation 8399 //===----------------------------------------------------------------------===// 8400 8401 namespace { 8402 8403 class HexagonABIInfo : public DefaultABIInfo { 8404 public: 8405 HexagonABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 8406 8407 private: 8408 ABIArgInfo classifyReturnType(QualType RetTy) const; 8409 ABIArgInfo classifyArgumentType(QualType RetTy) const; 8410 ABIArgInfo classifyArgumentType(QualType RetTy, unsigned *RegsLeft) const; 8411 8412 void computeInfo(CGFunctionInfo &FI) const override; 8413 8414 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8415 QualType Ty) const override; 8416 Address EmitVAArgFromMemory(CodeGenFunction &CFG, Address VAListAddr, 8417 QualType Ty) const; 8418 Address EmitVAArgForHexagon(CodeGenFunction &CFG, Address VAListAddr, 8419 QualType Ty) const; 8420 Address EmitVAArgForHexagonLinux(CodeGenFunction &CFG, Address VAListAddr, 8421 QualType Ty) const; 8422 }; 8423 8424 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo { 8425 public: 8426 HexagonTargetCodeGenInfo(CodeGenTypes &CGT) 8427 : TargetCodeGenInfo(std::make_unique<HexagonABIInfo>(CGT)) {} 8428 8429 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 8430 return 29; 8431 } 8432 8433 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 8434 CodeGen::CodeGenModule &GCM) const override { 8435 if (GV->isDeclaration()) 8436 return; 8437 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 8438 if (!FD) 8439 return; 8440 } 8441 }; 8442 8443 } // namespace 8444 8445 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const { 8446 unsigned RegsLeft = 6; 8447 if (!getCXXABI().classifyReturnType(FI)) 8448 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 8449 for (auto &I : FI.arguments()) 8450 I.info = classifyArgumentType(I.type, &RegsLeft); 8451 } 8452 8453 static bool HexagonAdjustRegsLeft(uint64_t Size, unsigned *RegsLeft) { 8454 assert(Size <= 64 && "Not expecting to pass arguments larger than 64 bits" 8455 " through registers"); 8456 8457 if (*RegsLeft == 0) 8458 return false; 8459 8460 if (Size <= 32) { 8461 (*RegsLeft)--; 8462 return true; 8463 } 8464 8465 if (2 <= (*RegsLeft & (~1U))) { 8466 *RegsLeft = (*RegsLeft & (~1U)) - 2; 8467 return true; 8468 } 8469 8470 // Next available register was r5 but candidate was greater than 32-bits so it 8471 // has to go on the stack. However we still consume r5 8472 if (*RegsLeft == 1) 8473 *RegsLeft = 0; 8474 8475 return false; 8476 } 8477 8478 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty, 8479 unsigned *RegsLeft) const { 8480 if (!isAggregateTypeForABI(Ty)) { 8481 // Treat an enum type as its underlying type. 8482 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 8483 Ty = EnumTy->getDecl()->getIntegerType(); 8484 8485 uint64_t Size = getContext().getTypeSize(Ty); 8486 if (Size <= 64) 8487 HexagonAdjustRegsLeft(Size, RegsLeft); 8488 8489 if (Size > 64 && Ty->isBitIntType()) 8490 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 8491 8492 return isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 8493 : ABIArgInfo::getDirect(); 8494 } 8495 8496 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 8497 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 8498 8499 // Ignore empty records. 8500 if (isEmptyRecord(getContext(), Ty, true)) 8501 return ABIArgInfo::getIgnore(); 8502 8503 uint64_t Size = getContext().getTypeSize(Ty); 8504 unsigned Align = getContext().getTypeAlign(Ty); 8505 8506 if (Size > 64) 8507 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 8508 8509 if (HexagonAdjustRegsLeft(Size, RegsLeft)) 8510 Align = Size <= 32 ? 32 : 64; 8511 if (Size <= Align) { 8512 // Pass in the smallest viable integer type. 8513 if (!llvm::isPowerOf2_64(Size)) 8514 Size = llvm::NextPowerOf2(Size); 8515 return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size)); 8516 } 8517 return DefaultABIInfo::classifyArgumentType(Ty); 8518 } 8519 8520 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const { 8521 if (RetTy->isVoidType()) 8522 return ABIArgInfo::getIgnore(); 8523 8524 const TargetInfo &T = CGT.getTarget(); 8525 uint64_t Size = getContext().getTypeSize(RetTy); 8526 8527 if (RetTy->getAs<VectorType>()) { 8528 // HVX vectors are returned in vector registers or register pairs. 8529 if (T.hasFeature("hvx")) { 8530 assert(T.hasFeature("hvx-length64b") || T.hasFeature("hvx-length128b")); 8531 uint64_t VecSize = T.hasFeature("hvx-length64b") ? 64*8 : 128*8; 8532 if (Size == VecSize || Size == 2*VecSize) 8533 return ABIArgInfo::getDirectInReg(); 8534 } 8535 // Large vector types should be returned via memory. 8536 if (Size > 64) 8537 return getNaturalAlignIndirect(RetTy); 8538 } 8539 8540 if (!isAggregateTypeForABI(RetTy)) { 8541 // Treat an enum type as its underlying type. 8542 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 8543 RetTy = EnumTy->getDecl()->getIntegerType(); 8544 8545 if (Size > 64 && RetTy->isBitIntType()) 8546 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 8547 8548 return isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 8549 : ABIArgInfo::getDirect(); 8550 } 8551 8552 if (isEmptyRecord(getContext(), RetTy, true)) 8553 return ABIArgInfo::getIgnore(); 8554 8555 // Aggregates <= 8 bytes are returned in registers, other aggregates 8556 // are returned indirectly. 8557 if (Size <= 64) { 8558 // Return in the smallest viable integer type. 8559 if (!llvm::isPowerOf2_64(Size)) 8560 Size = llvm::NextPowerOf2(Size); 8561 return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size)); 8562 } 8563 return getNaturalAlignIndirect(RetTy, /*ByVal=*/true); 8564 } 8565 8566 Address HexagonABIInfo::EmitVAArgFromMemory(CodeGenFunction &CGF, 8567 Address VAListAddr, 8568 QualType Ty) const { 8569 // Load the overflow area pointer. 8570 Address __overflow_area_pointer_p = 8571 CGF.Builder.CreateStructGEP(VAListAddr, 2, "__overflow_area_pointer_p"); 8572 llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad( 8573 __overflow_area_pointer_p, "__overflow_area_pointer"); 8574 8575 uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8; 8576 if (Align > 4) { 8577 // Alignment should be a power of 2. 8578 assert((Align & (Align - 1)) == 0 && "Alignment is not power of 2!"); 8579 8580 // overflow_arg_area = (overflow_arg_area + align - 1) & -align; 8581 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int64Ty, Align - 1); 8582 8583 // Add offset to the current pointer to access the argument. 8584 __overflow_area_pointer = 8585 CGF.Builder.CreateGEP(CGF.Int8Ty, __overflow_area_pointer, Offset); 8586 llvm::Value *AsInt = 8587 CGF.Builder.CreatePtrToInt(__overflow_area_pointer, CGF.Int32Ty); 8588 8589 // Create a mask which should be "AND"ed 8590 // with (overflow_arg_area + align - 1) 8591 llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -(int)Align); 8592 __overflow_area_pointer = CGF.Builder.CreateIntToPtr( 8593 CGF.Builder.CreateAnd(AsInt, Mask), __overflow_area_pointer->getType(), 8594 "__overflow_area_pointer.align"); 8595 } 8596 8597 // Get the type of the argument from memory and bitcast 8598 // overflow area pointer to the argument type. 8599 llvm::Type *PTy = CGF.ConvertTypeForMem(Ty); 8600 Address AddrTyped = CGF.Builder.CreateBitCast( 8601 Address(__overflow_area_pointer, CharUnits::fromQuantity(Align)), 8602 llvm::PointerType::getUnqual(PTy)); 8603 8604 // Round up to the minimum stack alignment for varargs which is 4 bytes. 8605 uint64_t Offset = llvm::alignTo(CGF.getContext().getTypeSize(Ty) / 8, 4); 8606 8607 __overflow_area_pointer = CGF.Builder.CreateGEP( 8608 CGF.Int8Ty, __overflow_area_pointer, 8609 llvm::ConstantInt::get(CGF.Int32Ty, Offset), 8610 "__overflow_area_pointer.next"); 8611 CGF.Builder.CreateStore(__overflow_area_pointer, __overflow_area_pointer_p); 8612 8613 return AddrTyped; 8614 } 8615 8616 Address HexagonABIInfo::EmitVAArgForHexagon(CodeGenFunction &CGF, 8617 Address VAListAddr, 8618 QualType Ty) const { 8619 // FIXME: Need to handle alignment 8620 llvm::Type *BP = CGF.Int8PtrTy; 8621 llvm::Type *BPP = CGF.Int8PtrPtrTy; 8622 CGBuilderTy &Builder = CGF.Builder; 8623 Address VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); 8624 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 8625 // Handle address alignment for type alignment > 32 bits 8626 uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8; 8627 if (TyAlign > 4) { 8628 assert((TyAlign & (TyAlign - 1)) == 0 && "Alignment is not power of 2!"); 8629 llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty); 8630 AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1)); 8631 AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1))); 8632 Addr = Builder.CreateIntToPtr(AddrAsInt, BP); 8633 } 8634 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 8635 Address AddrTyped = Builder.CreateBitCast( 8636 Address(Addr, CharUnits::fromQuantity(TyAlign)), PTy); 8637 8638 uint64_t Offset = llvm::alignTo(CGF.getContext().getTypeSize(Ty) / 8, 4); 8639 llvm::Value *NextAddr = Builder.CreateGEP( 8640 CGF.Int8Ty, Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), "ap.next"); 8641 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 8642 8643 return AddrTyped; 8644 } 8645 8646 Address HexagonABIInfo::EmitVAArgForHexagonLinux(CodeGenFunction &CGF, 8647 Address VAListAddr, 8648 QualType Ty) const { 8649 int ArgSize = CGF.getContext().getTypeSize(Ty) / 8; 8650 8651 if (ArgSize > 8) 8652 return EmitVAArgFromMemory(CGF, VAListAddr, Ty); 8653 8654 // Here we have check if the argument is in register area or 8655 // in overflow area. 8656 // If the saved register area pointer + argsize rounded up to alignment > 8657 // saved register area end pointer, argument is in overflow area. 8658 unsigned RegsLeft = 6; 8659 Ty = CGF.getContext().getCanonicalType(Ty); 8660 (void)classifyArgumentType(Ty, &RegsLeft); 8661 8662 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); 8663 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 8664 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); 8665 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 8666 8667 // Get rounded size of the argument.GCC does not allow vararg of 8668 // size < 4 bytes. We follow the same logic here. 8669 ArgSize = (CGF.getContext().getTypeSize(Ty) <= 32) ? 4 : 8; 8670 int ArgAlign = (CGF.getContext().getTypeSize(Ty) <= 32) ? 4 : 8; 8671 8672 // Argument may be in saved register area 8673 CGF.EmitBlock(MaybeRegBlock); 8674 8675 // Load the current saved register area pointer. 8676 Address __current_saved_reg_area_pointer_p = CGF.Builder.CreateStructGEP( 8677 VAListAddr, 0, "__current_saved_reg_area_pointer_p"); 8678 llvm::Value *__current_saved_reg_area_pointer = CGF.Builder.CreateLoad( 8679 __current_saved_reg_area_pointer_p, "__current_saved_reg_area_pointer"); 8680 8681 // Load the saved register area end pointer. 8682 Address __saved_reg_area_end_pointer_p = CGF.Builder.CreateStructGEP( 8683 VAListAddr, 1, "__saved_reg_area_end_pointer_p"); 8684 llvm::Value *__saved_reg_area_end_pointer = CGF.Builder.CreateLoad( 8685 __saved_reg_area_end_pointer_p, "__saved_reg_area_end_pointer"); 8686 8687 // If the size of argument is > 4 bytes, check if the stack 8688 // location is aligned to 8 bytes 8689 if (ArgAlign > 4) { 8690 8691 llvm::Value *__current_saved_reg_area_pointer_int = 8692 CGF.Builder.CreatePtrToInt(__current_saved_reg_area_pointer, 8693 CGF.Int32Ty); 8694 8695 __current_saved_reg_area_pointer_int = CGF.Builder.CreateAdd( 8696 __current_saved_reg_area_pointer_int, 8697 llvm::ConstantInt::get(CGF.Int32Ty, (ArgAlign - 1)), 8698 "align_current_saved_reg_area_pointer"); 8699 8700 __current_saved_reg_area_pointer_int = 8701 CGF.Builder.CreateAnd(__current_saved_reg_area_pointer_int, 8702 llvm::ConstantInt::get(CGF.Int32Ty, -ArgAlign), 8703 "align_current_saved_reg_area_pointer"); 8704 8705 __current_saved_reg_area_pointer = 8706 CGF.Builder.CreateIntToPtr(__current_saved_reg_area_pointer_int, 8707 __current_saved_reg_area_pointer->getType(), 8708 "align_current_saved_reg_area_pointer"); 8709 } 8710 8711 llvm::Value *__new_saved_reg_area_pointer = 8712 CGF.Builder.CreateGEP(CGF.Int8Ty, __current_saved_reg_area_pointer, 8713 llvm::ConstantInt::get(CGF.Int32Ty, ArgSize), 8714 "__new_saved_reg_area_pointer"); 8715 8716 llvm::Value *UsingStack = nullptr; 8717 UsingStack = CGF.Builder.CreateICmpSGT(__new_saved_reg_area_pointer, 8718 __saved_reg_area_end_pointer); 8719 8720 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, InRegBlock); 8721 8722 // Argument in saved register area 8723 // Implement the block where argument is in register saved area 8724 CGF.EmitBlock(InRegBlock); 8725 8726 llvm::Type *PTy = CGF.ConvertType(Ty); 8727 llvm::Value *__saved_reg_area_p = CGF.Builder.CreateBitCast( 8728 __current_saved_reg_area_pointer, llvm::PointerType::getUnqual(PTy)); 8729 8730 CGF.Builder.CreateStore(__new_saved_reg_area_pointer, 8731 __current_saved_reg_area_pointer_p); 8732 8733 CGF.EmitBranch(ContBlock); 8734 8735 // Argument in overflow area 8736 // Implement the block where the argument is in overflow area. 8737 CGF.EmitBlock(OnStackBlock); 8738 8739 // Load the overflow area pointer 8740 Address __overflow_area_pointer_p = 8741 CGF.Builder.CreateStructGEP(VAListAddr, 2, "__overflow_area_pointer_p"); 8742 llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad( 8743 __overflow_area_pointer_p, "__overflow_area_pointer"); 8744 8745 // Align the overflow area pointer according to the alignment of the argument 8746 if (ArgAlign > 4) { 8747 llvm::Value *__overflow_area_pointer_int = 8748 CGF.Builder.CreatePtrToInt(__overflow_area_pointer, CGF.Int32Ty); 8749 8750 __overflow_area_pointer_int = 8751 CGF.Builder.CreateAdd(__overflow_area_pointer_int, 8752 llvm::ConstantInt::get(CGF.Int32Ty, ArgAlign - 1), 8753 "align_overflow_area_pointer"); 8754 8755 __overflow_area_pointer_int = 8756 CGF.Builder.CreateAnd(__overflow_area_pointer_int, 8757 llvm::ConstantInt::get(CGF.Int32Ty, -ArgAlign), 8758 "align_overflow_area_pointer"); 8759 8760 __overflow_area_pointer = CGF.Builder.CreateIntToPtr( 8761 __overflow_area_pointer_int, __overflow_area_pointer->getType(), 8762 "align_overflow_area_pointer"); 8763 } 8764 8765 // Get the pointer for next argument in overflow area and store it 8766 // to overflow area pointer. 8767 llvm::Value *__new_overflow_area_pointer = CGF.Builder.CreateGEP( 8768 CGF.Int8Ty, __overflow_area_pointer, 8769 llvm::ConstantInt::get(CGF.Int32Ty, ArgSize), 8770 "__overflow_area_pointer.next"); 8771 8772 CGF.Builder.CreateStore(__new_overflow_area_pointer, 8773 __overflow_area_pointer_p); 8774 8775 CGF.Builder.CreateStore(__new_overflow_area_pointer, 8776 __current_saved_reg_area_pointer_p); 8777 8778 // Bitcast the overflow area pointer to the type of argument. 8779 llvm::Type *OverflowPTy = CGF.ConvertTypeForMem(Ty); 8780 llvm::Value *__overflow_area_p = CGF.Builder.CreateBitCast( 8781 __overflow_area_pointer, llvm::PointerType::getUnqual(OverflowPTy)); 8782 8783 CGF.EmitBranch(ContBlock); 8784 8785 // Get the correct pointer to load the variable argument 8786 // Implement the ContBlock 8787 CGF.EmitBlock(ContBlock); 8788 8789 llvm::Type *MemPTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); 8790 llvm::PHINode *ArgAddr = CGF.Builder.CreatePHI(MemPTy, 2, "vaarg.addr"); 8791 ArgAddr->addIncoming(__saved_reg_area_p, InRegBlock); 8792 ArgAddr->addIncoming(__overflow_area_p, OnStackBlock); 8793 8794 return Address(ArgAddr, CharUnits::fromQuantity(ArgAlign)); 8795 } 8796 8797 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8798 QualType Ty) const { 8799 8800 if (getTarget().getTriple().isMusl()) 8801 return EmitVAArgForHexagonLinux(CGF, VAListAddr, Ty); 8802 8803 return EmitVAArgForHexagon(CGF, VAListAddr, Ty); 8804 } 8805 8806 //===----------------------------------------------------------------------===// 8807 // Lanai ABI Implementation 8808 //===----------------------------------------------------------------------===// 8809 8810 namespace { 8811 class LanaiABIInfo : public DefaultABIInfo { 8812 public: 8813 LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 8814 8815 bool shouldUseInReg(QualType Ty, CCState &State) const; 8816 8817 void computeInfo(CGFunctionInfo &FI) const override { 8818 CCState State(FI); 8819 // Lanai uses 4 registers to pass arguments unless the function has the 8820 // regparm attribute set. 8821 if (FI.getHasRegParm()) { 8822 State.FreeRegs = FI.getRegParm(); 8823 } else { 8824 State.FreeRegs = 4; 8825 } 8826 8827 if (!getCXXABI().classifyReturnType(FI)) 8828 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 8829 for (auto &I : FI.arguments()) 8830 I.info = classifyArgumentType(I.type, State); 8831 } 8832 8833 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 8834 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 8835 }; 8836 } // end anonymous namespace 8837 8838 bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const { 8839 unsigned Size = getContext().getTypeSize(Ty); 8840 unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U; 8841 8842 if (SizeInRegs == 0) 8843 return false; 8844 8845 if (SizeInRegs > State.FreeRegs) { 8846 State.FreeRegs = 0; 8847 return false; 8848 } 8849 8850 State.FreeRegs -= SizeInRegs; 8851 8852 return true; 8853 } 8854 8855 ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal, 8856 CCState &State) const { 8857 if (!ByVal) { 8858 if (State.FreeRegs) { 8859 --State.FreeRegs; // Non-byval indirects just use one pointer. 8860 return getNaturalAlignIndirectInReg(Ty); 8861 } 8862 return getNaturalAlignIndirect(Ty, false); 8863 } 8864 8865 // Compute the byval alignment. 8866 const unsigned MinABIStackAlignInBytes = 4; 8867 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 8868 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true, 8869 /*Realign=*/TypeAlign > 8870 MinABIStackAlignInBytes); 8871 } 8872 8873 ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty, 8874 CCState &State) const { 8875 // Check with the C++ ABI first. 8876 const RecordType *RT = Ty->getAs<RecordType>(); 8877 if (RT) { 8878 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 8879 if (RAA == CGCXXABI::RAA_Indirect) { 8880 return getIndirectResult(Ty, /*ByVal=*/false, State); 8881 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 8882 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 8883 } 8884 } 8885 8886 if (isAggregateTypeForABI(Ty)) { 8887 // Structures with flexible arrays are always indirect. 8888 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 8889 return getIndirectResult(Ty, /*ByVal=*/true, State); 8890 8891 // Ignore empty structs/unions. 8892 if (isEmptyRecord(getContext(), Ty, true)) 8893 return ABIArgInfo::getIgnore(); 8894 8895 llvm::LLVMContext &LLVMContext = getVMContext(); 8896 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; 8897 if (SizeInRegs <= State.FreeRegs) { 8898 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 8899 SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32); 8900 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 8901 State.FreeRegs -= SizeInRegs; 8902 return ABIArgInfo::getDirectInReg(Result); 8903 } else { 8904 State.FreeRegs = 0; 8905 } 8906 return getIndirectResult(Ty, true, State); 8907 } 8908 8909 // Treat an enum type as its underlying type. 8910 if (const auto *EnumTy = Ty->getAs<EnumType>()) 8911 Ty = EnumTy->getDecl()->getIntegerType(); 8912 8913 bool InReg = shouldUseInReg(Ty, State); 8914 8915 // Don't pass >64 bit integers in registers. 8916 if (const auto *EIT = Ty->getAs<BitIntType>()) 8917 if (EIT->getNumBits() > 64) 8918 return getIndirectResult(Ty, /*ByVal=*/true, State); 8919 8920 if (isPromotableIntegerTypeForABI(Ty)) { 8921 if (InReg) 8922 return ABIArgInfo::getDirectInReg(); 8923 return ABIArgInfo::getExtend(Ty); 8924 } 8925 if (InReg) 8926 return ABIArgInfo::getDirectInReg(); 8927 return ABIArgInfo::getDirect(); 8928 } 8929 8930 namespace { 8931 class LanaiTargetCodeGenInfo : public TargetCodeGenInfo { 8932 public: 8933 LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 8934 : TargetCodeGenInfo(std::make_unique<LanaiABIInfo>(CGT)) {} 8935 }; 8936 } 8937 8938 //===----------------------------------------------------------------------===// 8939 // AMDGPU ABI Implementation 8940 //===----------------------------------------------------------------------===// 8941 8942 namespace { 8943 8944 class AMDGPUABIInfo final : public DefaultABIInfo { 8945 private: 8946 static const unsigned MaxNumRegsForArgsRet = 16; 8947 8948 unsigned numRegsForType(QualType Ty) const; 8949 8950 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 8951 bool isHomogeneousAggregateSmallEnough(const Type *Base, 8952 uint64_t Members) const override; 8953 8954 // Coerce HIP scalar pointer arguments from generic pointers to global ones. 8955 llvm::Type *coerceKernelArgumentType(llvm::Type *Ty, unsigned FromAS, 8956 unsigned ToAS) const { 8957 // Single value types. 8958 auto *PtrTy = llvm::dyn_cast<llvm::PointerType>(Ty); 8959 if (PtrTy && PtrTy->getAddressSpace() == FromAS) 8960 return llvm::PointerType::getWithSamePointeeType(PtrTy, ToAS); 8961 return Ty; 8962 } 8963 8964 public: 8965 explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) : 8966 DefaultABIInfo(CGT) {} 8967 8968 ABIArgInfo classifyReturnType(QualType RetTy) const; 8969 ABIArgInfo classifyKernelArgumentType(QualType Ty) const; 8970 ABIArgInfo classifyArgumentType(QualType Ty, unsigned &NumRegsLeft) const; 8971 8972 void computeInfo(CGFunctionInfo &FI) const override; 8973 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8974 QualType Ty) const override; 8975 }; 8976 8977 bool AMDGPUABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 8978 return true; 8979 } 8980 8981 bool AMDGPUABIInfo::isHomogeneousAggregateSmallEnough( 8982 const Type *Base, uint64_t Members) const { 8983 uint32_t NumRegs = (getContext().getTypeSize(Base) + 31) / 32; 8984 8985 // Homogeneous Aggregates may occupy at most 16 registers. 8986 return Members * NumRegs <= MaxNumRegsForArgsRet; 8987 } 8988 8989 /// Estimate number of registers the type will use when passed in registers. 8990 unsigned AMDGPUABIInfo::numRegsForType(QualType Ty) const { 8991 unsigned NumRegs = 0; 8992 8993 if (const VectorType *VT = Ty->getAs<VectorType>()) { 8994 // Compute from the number of elements. The reported size is based on the 8995 // in-memory size, which includes the padding 4th element for 3-vectors. 8996 QualType EltTy = VT->getElementType(); 8997 unsigned EltSize = getContext().getTypeSize(EltTy); 8998 8999 // 16-bit element vectors should be passed as packed. 9000 if (EltSize == 16) 9001 return (VT->getNumElements() + 1) / 2; 9002 9003 unsigned EltNumRegs = (EltSize + 31) / 32; 9004 return EltNumRegs * VT->getNumElements(); 9005 } 9006 9007 if (const RecordType *RT = Ty->getAs<RecordType>()) { 9008 const RecordDecl *RD = RT->getDecl(); 9009 assert(!RD->hasFlexibleArrayMember()); 9010 9011 for (const FieldDecl *Field : RD->fields()) { 9012 QualType FieldTy = Field->getType(); 9013 NumRegs += numRegsForType(FieldTy); 9014 } 9015 9016 return NumRegs; 9017 } 9018 9019 return (getContext().getTypeSize(Ty) + 31) / 32; 9020 } 9021 9022 void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const { 9023 llvm::CallingConv::ID CC = FI.getCallingConvention(); 9024 9025 if (!getCXXABI().classifyReturnType(FI)) 9026 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 9027 9028 unsigned NumRegsLeft = MaxNumRegsForArgsRet; 9029 for (auto &Arg : FI.arguments()) { 9030 if (CC == llvm::CallingConv::AMDGPU_KERNEL) { 9031 Arg.info = classifyKernelArgumentType(Arg.type); 9032 } else { 9033 Arg.info = classifyArgumentType(Arg.type, NumRegsLeft); 9034 } 9035 } 9036 } 9037 9038 Address AMDGPUABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9039 QualType Ty) const { 9040 llvm_unreachable("AMDGPU does not support varargs"); 9041 } 9042 9043 ABIArgInfo AMDGPUABIInfo::classifyReturnType(QualType RetTy) const { 9044 if (isAggregateTypeForABI(RetTy)) { 9045 // Records with non-trivial destructors/copy-constructors should not be 9046 // returned by value. 9047 if (!getRecordArgABI(RetTy, getCXXABI())) { 9048 // Ignore empty structs/unions. 9049 if (isEmptyRecord(getContext(), RetTy, true)) 9050 return ABIArgInfo::getIgnore(); 9051 9052 // Lower single-element structs to just return a regular value. 9053 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 9054 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 9055 9056 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 9057 const RecordDecl *RD = RT->getDecl(); 9058 if (RD->hasFlexibleArrayMember()) 9059 return DefaultABIInfo::classifyReturnType(RetTy); 9060 } 9061 9062 // Pack aggregates <= 4 bytes into single VGPR or pair. 9063 uint64_t Size = getContext().getTypeSize(RetTy); 9064 if (Size <= 16) 9065 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 9066 9067 if (Size <= 32) 9068 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 9069 9070 if (Size <= 64) { 9071 llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext()); 9072 return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2)); 9073 } 9074 9075 if (numRegsForType(RetTy) <= MaxNumRegsForArgsRet) 9076 return ABIArgInfo::getDirect(); 9077 } 9078 } 9079 9080 // Otherwise just do the default thing. 9081 return DefaultABIInfo::classifyReturnType(RetTy); 9082 } 9083 9084 /// For kernels all parameters are really passed in a special buffer. It doesn't 9085 /// make sense to pass anything byval, so everything must be direct. 9086 ABIArgInfo AMDGPUABIInfo::classifyKernelArgumentType(QualType Ty) const { 9087 Ty = useFirstFieldIfTransparentUnion(Ty); 9088 9089 // TODO: Can we omit empty structs? 9090 9091 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 9092 Ty = QualType(SeltTy, 0); 9093 9094 llvm::Type *OrigLTy = CGT.ConvertType(Ty); 9095 llvm::Type *LTy = OrigLTy; 9096 if (getContext().getLangOpts().HIP) { 9097 LTy = coerceKernelArgumentType( 9098 OrigLTy, /*FromAS=*/getContext().getTargetAddressSpace(LangAS::Default), 9099 /*ToAS=*/getContext().getTargetAddressSpace(LangAS::cuda_device)); 9100 } 9101 9102 // FIXME: Should also use this for OpenCL, but it requires addressing the 9103 // problem of kernels being called. 9104 // 9105 // FIXME: This doesn't apply the optimization of coercing pointers in structs 9106 // to global address space when using byref. This would require implementing a 9107 // new kind of coercion of the in-memory type when for indirect arguments. 9108 if (!getContext().getLangOpts().OpenCL && LTy == OrigLTy && 9109 isAggregateTypeForABI(Ty)) { 9110 return ABIArgInfo::getIndirectAliased( 9111 getContext().getTypeAlignInChars(Ty), 9112 getContext().getTargetAddressSpace(LangAS::opencl_constant), 9113 false /*Realign*/, nullptr /*Padding*/); 9114 } 9115 9116 // If we set CanBeFlattened to true, CodeGen will expand the struct to its 9117 // individual elements, which confuses the Clover OpenCL backend; therefore we 9118 // have to set it to false here. Other args of getDirect() are just defaults. 9119 return ABIArgInfo::getDirect(LTy, 0, nullptr, false); 9120 } 9121 9122 ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty, 9123 unsigned &NumRegsLeft) const { 9124 assert(NumRegsLeft <= MaxNumRegsForArgsRet && "register estimate underflow"); 9125 9126 Ty = useFirstFieldIfTransparentUnion(Ty); 9127 9128 if (isAggregateTypeForABI(Ty)) { 9129 // Records with non-trivial destructors/copy-constructors should not be 9130 // passed by value. 9131 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 9132 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 9133 9134 // Ignore empty structs/unions. 9135 if (isEmptyRecord(getContext(), Ty, true)) 9136 return ABIArgInfo::getIgnore(); 9137 9138 // Lower single-element structs to just pass a regular value. TODO: We 9139 // could do reasonable-size multiple-element structs too, using getExpand(), 9140 // though watch out for things like bitfields. 9141 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 9142 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 9143 9144 if (const RecordType *RT = Ty->getAs<RecordType>()) { 9145 const RecordDecl *RD = RT->getDecl(); 9146 if (RD->hasFlexibleArrayMember()) 9147 return DefaultABIInfo::classifyArgumentType(Ty); 9148 } 9149 9150 // Pack aggregates <= 8 bytes into single VGPR or pair. 9151 uint64_t Size = getContext().getTypeSize(Ty); 9152 if (Size <= 64) { 9153 unsigned NumRegs = (Size + 31) / 32; 9154 NumRegsLeft -= std::min(NumRegsLeft, NumRegs); 9155 9156 if (Size <= 16) 9157 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 9158 9159 if (Size <= 32) 9160 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 9161 9162 // XXX: Should this be i64 instead, and should the limit increase? 9163 llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext()); 9164 return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2)); 9165 } 9166 9167 if (NumRegsLeft > 0) { 9168 unsigned NumRegs = numRegsForType(Ty); 9169 if (NumRegsLeft >= NumRegs) { 9170 NumRegsLeft -= NumRegs; 9171 return ABIArgInfo::getDirect(); 9172 } 9173 } 9174 } 9175 9176 // Otherwise just do the default thing. 9177 ABIArgInfo ArgInfo = DefaultABIInfo::classifyArgumentType(Ty); 9178 if (!ArgInfo.isIndirect()) { 9179 unsigned NumRegs = numRegsForType(Ty); 9180 NumRegsLeft -= std::min(NumRegs, NumRegsLeft); 9181 } 9182 9183 return ArgInfo; 9184 } 9185 9186 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo { 9187 public: 9188 AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT) 9189 : TargetCodeGenInfo(std::make_unique<AMDGPUABIInfo>(CGT)) {} 9190 9191 void setFunctionDeclAttributes(const FunctionDecl *FD, llvm::Function *F, 9192 CodeGenModule &CGM) const; 9193 9194 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 9195 CodeGen::CodeGenModule &M) const override; 9196 unsigned getOpenCLKernelCallingConv() const override; 9197 9198 llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM, 9199 llvm::PointerType *T, QualType QT) const override; 9200 9201 LangAS getASTAllocaAddressSpace() const override { 9202 return getLangASFromTargetAS( 9203 getABIInfo().getDataLayout().getAllocaAddrSpace()); 9204 } 9205 LangAS getGlobalVarAddressSpace(CodeGenModule &CGM, 9206 const VarDecl *D) const override; 9207 llvm::SyncScope::ID getLLVMSyncScopeID(const LangOptions &LangOpts, 9208 SyncScope Scope, 9209 llvm::AtomicOrdering Ordering, 9210 llvm::LLVMContext &Ctx) const override; 9211 llvm::Function * 9212 createEnqueuedBlockKernel(CodeGenFunction &CGF, 9213 llvm::Function *BlockInvokeFunc, 9214 llvm::Value *BlockLiteral) const override; 9215 bool shouldEmitStaticExternCAliases() const override; 9216 void setCUDAKernelCallingConvention(const FunctionType *&FT) const override; 9217 }; 9218 } 9219 9220 static bool requiresAMDGPUProtectedVisibility(const Decl *D, 9221 llvm::GlobalValue *GV) { 9222 if (GV->getVisibility() != llvm::GlobalValue::HiddenVisibility) 9223 return false; 9224 9225 return D->hasAttr<OpenCLKernelAttr>() || 9226 (isa<FunctionDecl>(D) && D->hasAttr<CUDAGlobalAttr>()) || 9227 (isa<VarDecl>(D) && 9228 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || 9229 cast<VarDecl>(D)->getType()->isCUDADeviceBuiltinSurfaceType() || 9230 cast<VarDecl>(D)->getType()->isCUDADeviceBuiltinTextureType())); 9231 } 9232 9233 void AMDGPUTargetCodeGenInfo::setFunctionDeclAttributes( 9234 const FunctionDecl *FD, llvm::Function *F, CodeGenModule &M) const { 9235 const auto *ReqdWGS = 9236 M.getLangOpts().OpenCL ? FD->getAttr<ReqdWorkGroupSizeAttr>() : nullptr; 9237 const bool IsOpenCLKernel = 9238 M.getLangOpts().OpenCL && FD->hasAttr<OpenCLKernelAttr>(); 9239 const bool IsHIPKernel = M.getLangOpts().HIP && FD->hasAttr<CUDAGlobalAttr>(); 9240 9241 const auto *FlatWGS = FD->getAttr<AMDGPUFlatWorkGroupSizeAttr>(); 9242 if (ReqdWGS || FlatWGS) { 9243 unsigned Min = 0; 9244 unsigned Max = 0; 9245 if (FlatWGS) { 9246 Min = FlatWGS->getMin() 9247 ->EvaluateKnownConstInt(M.getContext()) 9248 .getExtValue(); 9249 Max = FlatWGS->getMax() 9250 ->EvaluateKnownConstInt(M.getContext()) 9251 .getExtValue(); 9252 } 9253 if (ReqdWGS && Min == 0 && Max == 0) 9254 Min = Max = ReqdWGS->getXDim() * ReqdWGS->getYDim() * ReqdWGS->getZDim(); 9255 9256 if (Min != 0) { 9257 assert(Min <= Max && "Min must be less than or equal Max"); 9258 9259 std::string AttrVal = llvm::utostr(Min) + "," + llvm::utostr(Max); 9260 F->addFnAttr("amdgpu-flat-work-group-size", AttrVal); 9261 } else 9262 assert(Max == 0 && "Max must be zero"); 9263 } else if (IsOpenCLKernel || IsHIPKernel) { 9264 // By default, restrict the maximum size to a value specified by 9265 // --gpu-max-threads-per-block=n or its default value for HIP. 9266 const unsigned OpenCLDefaultMaxWorkGroupSize = 256; 9267 const unsigned DefaultMaxWorkGroupSize = 9268 IsOpenCLKernel ? OpenCLDefaultMaxWorkGroupSize 9269 : M.getLangOpts().GPUMaxThreadsPerBlock; 9270 std::string AttrVal = 9271 std::string("1,") + llvm::utostr(DefaultMaxWorkGroupSize); 9272 F->addFnAttr("amdgpu-flat-work-group-size", AttrVal); 9273 } 9274 9275 if (const auto *Attr = FD->getAttr<AMDGPUWavesPerEUAttr>()) { 9276 unsigned Min = 9277 Attr->getMin()->EvaluateKnownConstInt(M.getContext()).getExtValue(); 9278 unsigned Max = Attr->getMax() ? Attr->getMax() 9279 ->EvaluateKnownConstInt(M.getContext()) 9280 .getExtValue() 9281 : 0; 9282 9283 if (Min != 0) { 9284 assert((Max == 0 || Min <= Max) && "Min must be less than or equal Max"); 9285 9286 std::string AttrVal = llvm::utostr(Min); 9287 if (Max != 0) 9288 AttrVal = AttrVal + "," + llvm::utostr(Max); 9289 F->addFnAttr("amdgpu-waves-per-eu", AttrVal); 9290 } else 9291 assert(Max == 0 && "Max must be zero"); 9292 } 9293 9294 if (const auto *Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) { 9295 unsigned NumSGPR = Attr->getNumSGPR(); 9296 9297 if (NumSGPR != 0) 9298 F->addFnAttr("amdgpu-num-sgpr", llvm::utostr(NumSGPR)); 9299 } 9300 9301 if (const auto *Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) { 9302 uint32_t NumVGPR = Attr->getNumVGPR(); 9303 9304 if (NumVGPR != 0) 9305 F->addFnAttr("amdgpu-num-vgpr", llvm::utostr(NumVGPR)); 9306 } 9307 } 9308 9309 void AMDGPUTargetCodeGenInfo::setTargetAttributes( 9310 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 9311 if (requiresAMDGPUProtectedVisibility(D, GV)) { 9312 GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 9313 GV->setDSOLocal(true); 9314 } 9315 9316 if (GV->isDeclaration()) 9317 return; 9318 9319 llvm::Function *F = dyn_cast<llvm::Function>(GV); 9320 if (!F) 9321 return; 9322 9323 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 9324 if (FD) 9325 setFunctionDeclAttributes(FD, F, M); 9326 9327 const bool IsHIPKernel = 9328 M.getLangOpts().HIP && FD && FD->hasAttr<CUDAGlobalAttr>(); 9329 9330 if (IsHIPKernel) 9331 F->addFnAttr("uniform-work-group-size", "true"); 9332 9333 if (M.getContext().getTargetInfo().allowAMDGPUUnsafeFPAtomics()) 9334 F->addFnAttr("amdgpu-unsafe-fp-atomics", "true"); 9335 9336 if (!getABIInfo().getCodeGenOpts().EmitIEEENaNCompliantInsts) 9337 F->addFnAttr("amdgpu-ieee", "false"); 9338 } 9339 9340 unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 9341 return llvm::CallingConv::AMDGPU_KERNEL; 9342 } 9343 9344 // Currently LLVM assumes null pointers always have value 0, 9345 // which results in incorrectly transformed IR. Therefore, instead of 9346 // emitting null pointers in private and local address spaces, a null 9347 // pointer in generic address space is emitted which is casted to a 9348 // pointer in local or private address space. 9349 llvm::Constant *AMDGPUTargetCodeGenInfo::getNullPointer( 9350 const CodeGen::CodeGenModule &CGM, llvm::PointerType *PT, 9351 QualType QT) const { 9352 if (CGM.getContext().getTargetNullPointerValue(QT) == 0) 9353 return llvm::ConstantPointerNull::get(PT); 9354 9355 auto &Ctx = CGM.getContext(); 9356 auto NPT = llvm::PointerType::getWithSamePointeeType( 9357 PT, Ctx.getTargetAddressSpace(LangAS::opencl_generic)); 9358 return llvm::ConstantExpr::getAddrSpaceCast( 9359 llvm::ConstantPointerNull::get(NPT), PT); 9360 } 9361 9362 LangAS 9363 AMDGPUTargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM, 9364 const VarDecl *D) const { 9365 assert(!CGM.getLangOpts().OpenCL && 9366 !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && 9367 "Address space agnostic languages only"); 9368 LangAS DefaultGlobalAS = getLangASFromTargetAS( 9369 CGM.getContext().getTargetAddressSpace(LangAS::opencl_global)); 9370 if (!D) 9371 return DefaultGlobalAS; 9372 9373 LangAS AddrSpace = D->getType().getAddressSpace(); 9374 assert(AddrSpace == LangAS::Default || isTargetAddressSpace(AddrSpace)); 9375 if (AddrSpace != LangAS::Default) 9376 return AddrSpace; 9377 9378 // Only promote to address space 4 if VarDecl has constant initialization. 9379 if (CGM.isTypeConstant(D->getType(), false) && 9380 D->hasConstantInitialization()) { 9381 if (auto ConstAS = CGM.getTarget().getConstantAddressSpace()) 9382 return ConstAS.getValue(); 9383 } 9384 return DefaultGlobalAS; 9385 } 9386 9387 llvm::SyncScope::ID 9388 AMDGPUTargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts, 9389 SyncScope Scope, 9390 llvm::AtomicOrdering Ordering, 9391 llvm::LLVMContext &Ctx) const { 9392 std::string Name; 9393 switch (Scope) { 9394 case SyncScope::HIPSingleThread: 9395 Name = "singlethread"; 9396 break; 9397 case SyncScope::HIPWavefront: 9398 case SyncScope::OpenCLSubGroup: 9399 Name = "wavefront"; 9400 break; 9401 case SyncScope::HIPWorkgroup: 9402 case SyncScope::OpenCLWorkGroup: 9403 Name = "workgroup"; 9404 break; 9405 case SyncScope::HIPAgent: 9406 case SyncScope::OpenCLDevice: 9407 Name = "agent"; 9408 break; 9409 case SyncScope::HIPSystem: 9410 case SyncScope::OpenCLAllSVMDevices: 9411 Name = ""; 9412 break; 9413 } 9414 9415 if (Ordering != llvm::AtomicOrdering::SequentiallyConsistent) { 9416 if (!Name.empty()) 9417 Name = Twine(Twine(Name) + Twine("-")).str(); 9418 9419 Name = Twine(Twine(Name) + Twine("one-as")).str(); 9420 } 9421 9422 return Ctx.getOrInsertSyncScopeID(Name); 9423 } 9424 9425 bool AMDGPUTargetCodeGenInfo::shouldEmitStaticExternCAliases() const { 9426 return false; 9427 } 9428 9429 void AMDGPUTargetCodeGenInfo::setCUDAKernelCallingConvention( 9430 const FunctionType *&FT) const { 9431 FT = getABIInfo().getContext().adjustFunctionType( 9432 FT, FT->getExtInfo().withCallingConv(CC_OpenCLKernel)); 9433 } 9434 9435 //===----------------------------------------------------------------------===// 9436 // SPARC v8 ABI Implementation. 9437 // Based on the SPARC Compliance Definition version 2.4.1. 9438 // 9439 // Ensures that complex values are passed in registers. 9440 // 9441 namespace { 9442 class SparcV8ABIInfo : public DefaultABIInfo { 9443 public: 9444 SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 9445 9446 private: 9447 ABIArgInfo classifyReturnType(QualType RetTy) const; 9448 void computeInfo(CGFunctionInfo &FI) const override; 9449 }; 9450 } // end anonymous namespace 9451 9452 9453 ABIArgInfo 9454 SparcV8ABIInfo::classifyReturnType(QualType Ty) const { 9455 if (Ty->isAnyComplexType()) { 9456 return ABIArgInfo::getDirect(); 9457 } 9458 else { 9459 return DefaultABIInfo::classifyReturnType(Ty); 9460 } 9461 } 9462 9463 void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const { 9464 9465 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 9466 for (auto &Arg : FI.arguments()) 9467 Arg.info = classifyArgumentType(Arg.type); 9468 } 9469 9470 namespace { 9471 class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo { 9472 public: 9473 SparcV8TargetCodeGenInfo(CodeGenTypes &CGT) 9474 : TargetCodeGenInfo(std::make_unique<SparcV8ABIInfo>(CGT)) {} 9475 }; 9476 } // end anonymous namespace 9477 9478 //===----------------------------------------------------------------------===// 9479 // SPARC v9 ABI Implementation. 9480 // Based on the SPARC Compliance Definition version 2.4.1. 9481 // 9482 // Function arguments a mapped to a nominal "parameter array" and promoted to 9483 // registers depending on their type. Each argument occupies 8 or 16 bytes in 9484 // the array, structs larger than 16 bytes are passed indirectly. 9485 // 9486 // One case requires special care: 9487 // 9488 // struct mixed { 9489 // int i; 9490 // float f; 9491 // }; 9492 // 9493 // When a struct mixed is passed by value, it only occupies 8 bytes in the 9494 // parameter array, but the int is passed in an integer register, and the float 9495 // is passed in a floating point register. This is represented as two arguments 9496 // with the LLVM IR inreg attribute: 9497 // 9498 // declare void f(i32 inreg %i, float inreg %f) 9499 // 9500 // The code generator will only allocate 4 bytes from the parameter array for 9501 // the inreg arguments. All other arguments are allocated a multiple of 8 9502 // bytes. 9503 // 9504 namespace { 9505 class SparcV9ABIInfo : public ABIInfo { 9506 public: 9507 SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 9508 9509 private: 9510 ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const; 9511 void computeInfo(CGFunctionInfo &FI) const override; 9512 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9513 QualType Ty) const override; 9514 9515 // Coercion type builder for structs passed in registers. The coercion type 9516 // serves two purposes: 9517 // 9518 // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned' 9519 // in registers. 9520 // 2. Expose aligned floating point elements as first-level elements, so the 9521 // code generator knows to pass them in floating point registers. 9522 // 9523 // We also compute the InReg flag which indicates that the struct contains 9524 // aligned 32-bit floats. 9525 // 9526 struct CoerceBuilder { 9527 llvm::LLVMContext &Context; 9528 const llvm::DataLayout &DL; 9529 SmallVector<llvm::Type*, 8> Elems; 9530 uint64_t Size; 9531 bool InReg; 9532 9533 CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl) 9534 : Context(c), DL(dl), Size(0), InReg(false) {} 9535 9536 // Pad Elems with integers until Size is ToSize. 9537 void pad(uint64_t ToSize) { 9538 assert(ToSize >= Size && "Cannot remove elements"); 9539 if (ToSize == Size) 9540 return; 9541 9542 // Finish the current 64-bit word. 9543 uint64_t Aligned = llvm::alignTo(Size, 64); 9544 if (Aligned > Size && Aligned <= ToSize) { 9545 Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size)); 9546 Size = Aligned; 9547 } 9548 9549 // Add whole 64-bit words. 9550 while (Size + 64 <= ToSize) { 9551 Elems.push_back(llvm::Type::getInt64Ty(Context)); 9552 Size += 64; 9553 } 9554 9555 // Final in-word padding. 9556 if (Size < ToSize) { 9557 Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size)); 9558 Size = ToSize; 9559 } 9560 } 9561 9562 // Add a floating point element at Offset. 9563 void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) { 9564 // Unaligned floats are treated as integers. 9565 if (Offset % Bits) 9566 return; 9567 // The InReg flag is only required if there are any floats < 64 bits. 9568 if (Bits < 64) 9569 InReg = true; 9570 pad(Offset); 9571 Elems.push_back(Ty); 9572 Size = Offset + Bits; 9573 } 9574 9575 // Add a struct type to the coercion type, starting at Offset (in bits). 9576 void addStruct(uint64_t Offset, llvm::StructType *StrTy) { 9577 const llvm::StructLayout *Layout = DL.getStructLayout(StrTy); 9578 for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) { 9579 llvm::Type *ElemTy = StrTy->getElementType(i); 9580 uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i); 9581 switch (ElemTy->getTypeID()) { 9582 case llvm::Type::StructTyID: 9583 addStruct(ElemOffset, cast<llvm::StructType>(ElemTy)); 9584 break; 9585 case llvm::Type::FloatTyID: 9586 addFloat(ElemOffset, ElemTy, 32); 9587 break; 9588 case llvm::Type::DoubleTyID: 9589 addFloat(ElemOffset, ElemTy, 64); 9590 break; 9591 case llvm::Type::FP128TyID: 9592 addFloat(ElemOffset, ElemTy, 128); 9593 break; 9594 case llvm::Type::PointerTyID: 9595 if (ElemOffset % 64 == 0) { 9596 pad(ElemOffset); 9597 Elems.push_back(ElemTy); 9598 Size += 64; 9599 } 9600 break; 9601 default: 9602 break; 9603 } 9604 } 9605 } 9606 9607 // Check if Ty is a usable substitute for the coercion type. 9608 bool isUsableType(llvm::StructType *Ty) const { 9609 return llvm::makeArrayRef(Elems) == Ty->elements(); 9610 } 9611 9612 // Get the coercion type as a literal struct type. 9613 llvm::Type *getType() const { 9614 if (Elems.size() == 1) 9615 return Elems.front(); 9616 else 9617 return llvm::StructType::get(Context, Elems); 9618 } 9619 }; 9620 }; 9621 } // end anonymous namespace 9622 9623 ABIArgInfo 9624 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const { 9625 if (Ty->isVoidType()) 9626 return ABIArgInfo::getIgnore(); 9627 9628 uint64_t Size = getContext().getTypeSize(Ty); 9629 9630 // Anything too big to fit in registers is passed with an explicit indirect 9631 // pointer / sret pointer. 9632 if (Size > SizeLimit) 9633 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 9634 9635 // Treat an enum type as its underlying type. 9636 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 9637 Ty = EnumTy->getDecl()->getIntegerType(); 9638 9639 // Integer types smaller than a register are extended. 9640 if (Size < 64 && Ty->isIntegerType()) 9641 return ABIArgInfo::getExtend(Ty); 9642 9643 if (const auto *EIT = Ty->getAs<BitIntType>()) 9644 if (EIT->getNumBits() < 64) 9645 return ABIArgInfo::getExtend(Ty); 9646 9647 // Other non-aggregates go in registers. 9648 if (!isAggregateTypeForABI(Ty)) 9649 return ABIArgInfo::getDirect(); 9650 9651 // If a C++ object has either a non-trivial copy constructor or a non-trivial 9652 // destructor, it is passed with an explicit indirect pointer / sret pointer. 9653 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 9654 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 9655 9656 // This is a small aggregate type that should be passed in registers. 9657 // Build a coercion type from the LLVM struct type. 9658 llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty)); 9659 if (!StrTy) 9660 return ABIArgInfo::getDirect(); 9661 9662 CoerceBuilder CB(getVMContext(), getDataLayout()); 9663 CB.addStruct(0, StrTy); 9664 CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64)); 9665 9666 // Try to use the original type for coercion. 9667 llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType(); 9668 9669 if (CB.InReg) 9670 return ABIArgInfo::getDirectInReg(CoerceTy); 9671 else 9672 return ABIArgInfo::getDirect(CoerceTy); 9673 } 9674 9675 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9676 QualType Ty) const { 9677 ABIArgInfo AI = classifyType(Ty, 16 * 8); 9678 llvm::Type *ArgTy = CGT.ConvertType(Ty); 9679 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 9680 AI.setCoerceToType(ArgTy); 9681 9682 CharUnits SlotSize = CharUnits::fromQuantity(8); 9683 9684 CGBuilderTy &Builder = CGF.Builder; 9685 Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 9686 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 9687 9688 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 9689 9690 Address ArgAddr = Address::invalid(); 9691 CharUnits Stride; 9692 switch (AI.getKind()) { 9693 case ABIArgInfo::Expand: 9694 case ABIArgInfo::CoerceAndExpand: 9695 case ABIArgInfo::InAlloca: 9696 llvm_unreachable("Unsupported ABI kind for va_arg"); 9697 9698 case ABIArgInfo::Extend: { 9699 Stride = SlotSize; 9700 CharUnits Offset = SlotSize - TypeInfo.Width; 9701 ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend"); 9702 break; 9703 } 9704 9705 case ABIArgInfo::Direct: { 9706 auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType()); 9707 Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize); 9708 ArgAddr = Addr; 9709 break; 9710 } 9711 9712 case ABIArgInfo::Indirect: 9713 case ABIArgInfo::IndirectAliased: 9714 Stride = SlotSize; 9715 ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect"); 9716 ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"), 9717 TypeInfo.Align); 9718 break; 9719 9720 case ABIArgInfo::Ignore: 9721 return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.Align); 9722 } 9723 9724 // Update VAList. 9725 Address NextPtr = Builder.CreateConstInBoundsByteGEP(Addr, Stride, "ap.next"); 9726 Builder.CreateStore(NextPtr.getPointer(), VAListAddr); 9727 9728 return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr"); 9729 } 9730 9731 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const { 9732 FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8); 9733 for (auto &I : FI.arguments()) 9734 I.info = classifyType(I.type, 16 * 8); 9735 } 9736 9737 namespace { 9738 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo { 9739 public: 9740 SparcV9TargetCodeGenInfo(CodeGenTypes &CGT) 9741 : TargetCodeGenInfo(std::make_unique<SparcV9ABIInfo>(CGT)) {} 9742 9743 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 9744 return 14; 9745 } 9746 9747 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 9748 llvm::Value *Address) const override; 9749 }; 9750 } // end anonymous namespace 9751 9752 bool 9753 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 9754 llvm::Value *Address) const { 9755 // This is calculated from the LLVM and GCC tables and verified 9756 // against gcc output. AFAIK all ABIs use the same encoding. 9757 9758 CodeGen::CGBuilderTy &Builder = CGF.Builder; 9759 9760 llvm::IntegerType *i8 = CGF.Int8Ty; 9761 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 9762 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 9763 9764 // 0-31: the 8-byte general-purpose registers 9765 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 9766 9767 // 32-63: f0-31, the 4-byte floating-point registers 9768 AssignToArrayRange(Builder, Address, Four8, 32, 63); 9769 9770 // Y = 64 9771 // PSR = 65 9772 // WIM = 66 9773 // TBR = 67 9774 // PC = 68 9775 // NPC = 69 9776 // FSR = 70 9777 // CSR = 71 9778 AssignToArrayRange(Builder, Address, Eight8, 64, 71); 9779 9780 // 72-87: d0-15, the 8-byte floating-point registers 9781 AssignToArrayRange(Builder, Address, Eight8, 72, 87); 9782 9783 return false; 9784 } 9785 9786 // ARC ABI implementation. 9787 namespace { 9788 9789 class ARCABIInfo : public DefaultABIInfo { 9790 public: 9791 using DefaultABIInfo::DefaultABIInfo; 9792 9793 private: 9794 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9795 QualType Ty) const override; 9796 9797 void updateState(const ABIArgInfo &Info, QualType Ty, CCState &State) const { 9798 if (!State.FreeRegs) 9799 return; 9800 if (Info.isIndirect() && Info.getInReg()) 9801 State.FreeRegs--; 9802 else if (Info.isDirect() && Info.getInReg()) { 9803 unsigned sz = (getContext().getTypeSize(Ty) + 31) / 32; 9804 if (sz < State.FreeRegs) 9805 State.FreeRegs -= sz; 9806 else 9807 State.FreeRegs = 0; 9808 } 9809 } 9810 9811 void computeInfo(CGFunctionInfo &FI) const override { 9812 CCState State(FI); 9813 // ARC uses 8 registers to pass arguments. 9814 State.FreeRegs = 8; 9815 9816 if (!getCXXABI().classifyReturnType(FI)) 9817 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 9818 updateState(FI.getReturnInfo(), FI.getReturnType(), State); 9819 for (auto &I : FI.arguments()) { 9820 I.info = classifyArgumentType(I.type, State.FreeRegs); 9821 updateState(I.info, I.type, State); 9822 } 9823 } 9824 9825 ABIArgInfo getIndirectByRef(QualType Ty, bool HasFreeRegs) const; 9826 ABIArgInfo getIndirectByValue(QualType Ty) const; 9827 ABIArgInfo classifyArgumentType(QualType Ty, uint8_t FreeRegs) const; 9828 ABIArgInfo classifyReturnType(QualType RetTy) const; 9829 }; 9830 9831 class ARCTargetCodeGenInfo : public TargetCodeGenInfo { 9832 public: 9833 ARCTargetCodeGenInfo(CodeGenTypes &CGT) 9834 : TargetCodeGenInfo(std::make_unique<ARCABIInfo>(CGT)) {} 9835 }; 9836 9837 9838 ABIArgInfo ARCABIInfo::getIndirectByRef(QualType Ty, bool HasFreeRegs) const { 9839 return HasFreeRegs ? getNaturalAlignIndirectInReg(Ty) : 9840 getNaturalAlignIndirect(Ty, false); 9841 } 9842 9843 ABIArgInfo ARCABIInfo::getIndirectByValue(QualType Ty) const { 9844 // Compute the byval alignment. 9845 const unsigned MinABIStackAlignInBytes = 4; 9846 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 9847 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true, 9848 TypeAlign > MinABIStackAlignInBytes); 9849 } 9850 9851 Address ARCABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9852 QualType Ty) const { 9853 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 9854 getContext().getTypeInfoInChars(Ty), 9855 CharUnits::fromQuantity(4), true); 9856 } 9857 9858 ABIArgInfo ARCABIInfo::classifyArgumentType(QualType Ty, 9859 uint8_t FreeRegs) const { 9860 // Handle the generic C++ ABI. 9861 const RecordType *RT = Ty->getAs<RecordType>(); 9862 if (RT) { 9863 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 9864 if (RAA == CGCXXABI::RAA_Indirect) 9865 return getIndirectByRef(Ty, FreeRegs > 0); 9866 9867 if (RAA == CGCXXABI::RAA_DirectInMemory) 9868 return getIndirectByValue(Ty); 9869 } 9870 9871 // Treat an enum type as its underlying type. 9872 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 9873 Ty = EnumTy->getDecl()->getIntegerType(); 9874 9875 auto SizeInRegs = llvm::alignTo(getContext().getTypeSize(Ty), 32) / 32; 9876 9877 if (isAggregateTypeForABI(Ty)) { 9878 // Structures with flexible arrays are always indirect. 9879 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 9880 return getIndirectByValue(Ty); 9881 9882 // Ignore empty structs/unions. 9883 if (isEmptyRecord(getContext(), Ty, true)) 9884 return ABIArgInfo::getIgnore(); 9885 9886 llvm::LLVMContext &LLVMContext = getVMContext(); 9887 9888 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 9889 SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32); 9890 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 9891 9892 return FreeRegs >= SizeInRegs ? 9893 ABIArgInfo::getDirectInReg(Result) : 9894 ABIArgInfo::getDirect(Result, 0, nullptr, false); 9895 } 9896 9897 if (const auto *EIT = Ty->getAs<BitIntType>()) 9898 if (EIT->getNumBits() > 64) 9899 return getIndirectByValue(Ty); 9900 9901 return isPromotableIntegerTypeForABI(Ty) 9902 ? (FreeRegs >= SizeInRegs ? ABIArgInfo::getExtendInReg(Ty) 9903 : ABIArgInfo::getExtend(Ty)) 9904 : (FreeRegs >= SizeInRegs ? ABIArgInfo::getDirectInReg() 9905 : ABIArgInfo::getDirect()); 9906 } 9907 9908 ABIArgInfo ARCABIInfo::classifyReturnType(QualType RetTy) const { 9909 if (RetTy->isAnyComplexType()) 9910 return ABIArgInfo::getDirectInReg(); 9911 9912 // Arguments of size > 4 registers are indirect. 9913 auto RetSize = llvm::alignTo(getContext().getTypeSize(RetTy), 32) / 32; 9914 if (RetSize > 4) 9915 return getIndirectByRef(RetTy, /*HasFreeRegs*/ true); 9916 9917 return DefaultABIInfo::classifyReturnType(RetTy); 9918 } 9919 9920 } // End anonymous namespace. 9921 9922 //===----------------------------------------------------------------------===// 9923 // XCore ABI Implementation 9924 //===----------------------------------------------------------------------===// 9925 9926 namespace { 9927 9928 /// A SmallStringEnc instance is used to build up the TypeString by passing 9929 /// it by reference between functions that append to it. 9930 typedef llvm::SmallString<128> SmallStringEnc; 9931 9932 /// TypeStringCache caches the meta encodings of Types. 9933 /// 9934 /// The reason for caching TypeStrings is two fold: 9935 /// 1. To cache a type's encoding for later uses; 9936 /// 2. As a means to break recursive member type inclusion. 9937 /// 9938 /// A cache Entry can have a Status of: 9939 /// NonRecursive: The type encoding is not recursive; 9940 /// Recursive: The type encoding is recursive; 9941 /// Incomplete: An incomplete TypeString; 9942 /// IncompleteUsed: An incomplete TypeString that has been used in a 9943 /// Recursive type encoding. 9944 /// 9945 /// A NonRecursive entry will have all of its sub-members expanded as fully 9946 /// as possible. Whilst it may contain types which are recursive, the type 9947 /// itself is not recursive and thus its encoding may be safely used whenever 9948 /// the type is encountered. 9949 /// 9950 /// A Recursive entry will have all of its sub-members expanded as fully as 9951 /// possible. The type itself is recursive and it may contain other types which 9952 /// are recursive. The Recursive encoding must not be used during the expansion 9953 /// of a recursive type's recursive branch. For simplicity the code uses 9954 /// IncompleteCount to reject all usage of Recursive encodings for member types. 9955 /// 9956 /// An Incomplete entry is always a RecordType and only encodes its 9957 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and 9958 /// are placed into the cache during type expansion as a means to identify and 9959 /// handle recursive inclusion of types as sub-members. If there is recursion 9960 /// the entry becomes IncompleteUsed. 9961 /// 9962 /// During the expansion of a RecordType's members: 9963 /// 9964 /// If the cache contains a NonRecursive encoding for the member type, the 9965 /// cached encoding is used; 9966 /// 9967 /// If the cache contains a Recursive encoding for the member type, the 9968 /// cached encoding is 'Swapped' out, as it may be incorrect, and... 9969 /// 9970 /// If the member is a RecordType, an Incomplete encoding is placed into the 9971 /// cache to break potential recursive inclusion of itself as a sub-member; 9972 /// 9973 /// Once a member RecordType has been expanded, its temporary incomplete 9974 /// entry is removed from the cache. If a Recursive encoding was swapped out 9975 /// it is swapped back in; 9976 /// 9977 /// If an incomplete entry is used to expand a sub-member, the incomplete 9978 /// entry is marked as IncompleteUsed. The cache keeps count of how many 9979 /// IncompleteUsed entries it currently contains in IncompleteUsedCount; 9980 /// 9981 /// If a member's encoding is found to be a NonRecursive or Recursive viz: 9982 /// IncompleteUsedCount==0, the member's encoding is added to the cache. 9983 /// Else the member is part of a recursive type and thus the recursion has 9984 /// been exited too soon for the encoding to be correct for the member. 9985 /// 9986 class TypeStringCache { 9987 enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed}; 9988 struct Entry { 9989 std::string Str; // The encoded TypeString for the type. 9990 enum Status State; // Information about the encoding in 'Str'. 9991 std::string Swapped; // A temporary place holder for a Recursive encoding 9992 // during the expansion of RecordType's members. 9993 }; 9994 std::map<const IdentifierInfo *, struct Entry> Map; 9995 unsigned IncompleteCount; // Number of Incomplete entries in the Map. 9996 unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map. 9997 public: 9998 TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {} 9999 void addIncomplete(const IdentifierInfo *ID, std::string StubEnc); 10000 bool removeIncomplete(const IdentifierInfo *ID); 10001 void addIfComplete(const IdentifierInfo *ID, StringRef Str, 10002 bool IsRecursive); 10003 StringRef lookupStr(const IdentifierInfo *ID); 10004 }; 10005 10006 /// TypeString encodings for enum & union fields must be order. 10007 /// FieldEncoding is a helper for this ordering process. 10008 class FieldEncoding { 10009 bool HasName; 10010 std::string Enc; 10011 public: 10012 FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {} 10013 StringRef str() { return Enc; } 10014 bool operator<(const FieldEncoding &rhs) const { 10015 if (HasName != rhs.HasName) return HasName; 10016 return Enc < rhs.Enc; 10017 } 10018 }; 10019 10020 class XCoreABIInfo : public DefaultABIInfo { 10021 public: 10022 XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 10023 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 10024 QualType Ty) const override; 10025 }; 10026 10027 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo { 10028 mutable TypeStringCache TSC; 10029 void emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 10030 const CodeGen::CodeGenModule &M) const; 10031 10032 public: 10033 XCoreTargetCodeGenInfo(CodeGenTypes &CGT) 10034 : TargetCodeGenInfo(std::make_unique<XCoreABIInfo>(CGT)) {} 10035 void emitTargetMetadata(CodeGen::CodeGenModule &CGM, 10036 const llvm::MapVector<GlobalDecl, StringRef> 10037 &MangledDeclNames) const override; 10038 }; 10039 10040 } // End anonymous namespace. 10041 10042 // TODO: this implementation is likely now redundant with the default 10043 // EmitVAArg. 10044 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 10045 QualType Ty) const { 10046 CGBuilderTy &Builder = CGF.Builder; 10047 10048 // Get the VAList. 10049 CharUnits SlotSize = CharUnits::fromQuantity(4); 10050 Address AP(Builder.CreateLoad(VAListAddr), SlotSize); 10051 10052 // Handle the argument. 10053 ABIArgInfo AI = classifyArgumentType(Ty); 10054 CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty); 10055 llvm::Type *ArgTy = CGT.ConvertType(Ty); 10056 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 10057 AI.setCoerceToType(ArgTy); 10058 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 10059 10060 Address Val = Address::invalid(); 10061 CharUnits ArgSize = CharUnits::Zero(); 10062 switch (AI.getKind()) { 10063 case ABIArgInfo::Expand: 10064 case ABIArgInfo::CoerceAndExpand: 10065 case ABIArgInfo::InAlloca: 10066 llvm_unreachable("Unsupported ABI kind for va_arg"); 10067 case ABIArgInfo::Ignore: 10068 Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign); 10069 ArgSize = CharUnits::Zero(); 10070 break; 10071 case ABIArgInfo::Extend: 10072 case ABIArgInfo::Direct: 10073 Val = Builder.CreateBitCast(AP, ArgPtrTy); 10074 ArgSize = CharUnits::fromQuantity( 10075 getDataLayout().getTypeAllocSize(AI.getCoerceToType())); 10076 ArgSize = ArgSize.alignTo(SlotSize); 10077 break; 10078 case ABIArgInfo::Indirect: 10079 case ABIArgInfo::IndirectAliased: 10080 Val = Builder.CreateElementBitCast(AP, ArgPtrTy); 10081 Val = Address(Builder.CreateLoad(Val), TypeAlign); 10082 ArgSize = SlotSize; 10083 break; 10084 } 10085 10086 // Increment the VAList. 10087 if (!ArgSize.isZero()) { 10088 Address APN = Builder.CreateConstInBoundsByteGEP(AP, ArgSize); 10089 Builder.CreateStore(APN.getPointer(), VAListAddr); 10090 } 10091 10092 return Val; 10093 } 10094 10095 /// During the expansion of a RecordType, an incomplete TypeString is placed 10096 /// into the cache as a means to identify and break recursion. 10097 /// If there is a Recursive encoding in the cache, it is swapped out and will 10098 /// be reinserted by removeIncomplete(). 10099 /// All other types of encoding should have been used rather than arriving here. 10100 void TypeStringCache::addIncomplete(const IdentifierInfo *ID, 10101 std::string StubEnc) { 10102 if (!ID) 10103 return; 10104 Entry &E = Map[ID]; 10105 assert( (E.Str.empty() || E.State == Recursive) && 10106 "Incorrectly use of addIncomplete"); 10107 assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()"); 10108 E.Swapped.swap(E.Str); // swap out the Recursive 10109 E.Str.swap(StubEnc); 10110 E.State = Incomplete; 10111 ++IncompleteCount; 10112 } 10113 10114 /// Once the RecordType has been expanded, the temporary incomplete TypeString 10115 /// must be removed from the cache. 10116 /// If a Recursive was swapped out by addIncomplete(), it will be replaced. 10117 /// Returns true if the RecordType was defined recursively. 10118 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) { 10119 if (!ID) 10120 return false; 10121 auto I = Map.find(ID); 10122 assert(I != Map.end() && "Entry not present"); 10123 Entry &E = I->second; 10124 assert( (E.State == Incomplete || 10125 E.State == IncompleteUsed) && 10126 "Entry must be an incomplete type"); 10127 bool IsRecursive = false; 10128 if (E.State == IncompleteUsed) { 10129 // We made use of our Incomplete encoding, thus we are recursive. 10130 IsRecursive = true; 10131 --IncompleteUsedCount; 10132 } 10133 if (E.Swapped.empty()) 10134 Map.erase(I); 10135 else { 10136 // Swap the Recursive back. 10137 E.Swapped.swap(E.Str); 10138 E.Swapped.clear(); 10139 E.State = Recursive; 10140 } 10141 --IncompleteCount; 10142 return IsRecursive; 10143 } 10144 10145 /// Add the encoded TypeString to the cache only if it is NonRecursive or 10146 /// Recursive (viz: all sub-members were expanded as fully as possible). 10147 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str, 10148 bool IsRecursive) { 10149 if (!ID || IncompleteUsedCount) 10150 return; // No key or it is is an incomplete sub-type so don't add. 10151 Entry &E = Map[ID]; 10152 if (IsRecursive && !E.Str.empty()) { 10153 assert(E.State==Recursive && E.Str.size() == Str.size() && 10154 "This is not the same Recursive entry"); 10155 // The parent container was not recursive after all, so we could have used 10156 // this Recursive sub-member entry after all, but we assumed the worse when 10157 // we started viz: IncompleteCount!=0. 10158 return; 10159 } 10160 assert(E.Str.empty() && "Entry already present"); 10161 E.Str = Str.str(); 10162 E.State = IsRecursive? Recursive : NonRecursive; 10163 } 10164 10165 /// Return a cached TypeString encoding for the ID. If there isn't one, or we 10166 /// are recursively expanding a type (IncompleteCount != 0) and the cached 10167 /// encoding is Recursive, return an empty StringRef. 10168 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) { 10169 if (!ID) 10170 return StringRef(); // We have no key. 10171 auto I = Map.find(ID); 10172 if (I == Map.end()) 10173 return StringRef(); // We have no encoding. 10174 Entry &E = I->second; 10175 if (E.State == Recursive && IncompleteCount) 10176 return StringRef(); // We don't use Recursive encodings for member types. 10177 10178 if (E.State == Incomplete) { 10179 // The incomplete type is being used to break out of recursion. 10180 E.State = IncompleteUsed; 10181 ++IncompleteUsedCount; 10182 } 10183 return E.Str; 10184 } 10185 10186 /// The XCore ABI includes a type information section that communicates symbol 10187 /// type information to the linker. The linker uses this information to verify 10188 /// safety/correctness of things such as array bound and pointers et al. 10189 /// The ABI only requires C (and XC) language modules to emit TypeStrings. 10190 /// This type information (TypeString) is emitted into meta data for all global 10191 /// symbols: definitions, declarations, functions & variables. 10192 /// 10193 /// The TypeString carries type, qualifier, name, size & value details. 10194 /// Please see 'Tools Development Guide' section 2.16.2 for format details: 10195 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf 10196 /// The output is tested by test/CodeGen/xcore-stringtype.c. 10197 /// 10198 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 10199 const CodeGen::CodeGenModule &CGM, 10200 TypeStringCache &TSC); 10201 10202 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols. 10203 void XCoreTargetCodeGenInfo::emitTargetMD( 10204 const Decl *D, llvm::GlobalValue *GV, 10205 const CodeGen::CodeGenModule &CGM) const { 10206 SmallStringEnc Enc; 10207 if (getTypeString(Enc, D, CGM, TSC)) { 10208 llvm::LLVMContext &Ctx = CGM.getModule().getContext(); 10209 llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV), 10210 llvm::MDString::get(Ctx, Enc.str())}; 10211 llvm::NamedMDNode *MD = 10212 CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings"); 10213 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 10214 } 10215 } 10216 10217 void XCoreTargetCodeGenInfo::emitTargetMetadata( 10218 CodeGen::CodeGenModule &CGM, 10219 const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames) const { 10220 // Warning, new MangledDeclNames may be appended within this loop. 10221 // We rely on MapVector insertions adding new elements to the end 10222 // of the container. 10223 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 10224 auto Val = *(MangledDeclNames.begin() + I); 10225 llvm::GlobalValue *GV = CGM.GetGlobalValue(Val.second); 10226 if (GV) { 10227 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 10228 emitTargetMD(D, GV, CGM); 10229 } 10230 } 10231 } 10232 10233 //===----------------------------------------------------------------------===// 10234 // Base ABI and target codegen info implementation common between SPIR and 10235 // SPIR-V. 10236 //===----------------------------------------------------------------------===// 10237 10238 namespace { 10239 class CommonSPIRABIInfo : public DefaultABIInfo { 10240 public: 10241 CommonSPIRABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) { setCCs(); } 10242 10243 private: 10244 void setCCs(); 10245 }; 10246 10247 class SPIRVABIInfo : public CommonSPIRABIInfo { 10248 public: 10249 SPIRVABIInfo(CodeGenTypes &CGT) : CommonSPIRABIInfo(CGT) {} 10250 void computeInfo(CGFunctionInfo &FI) const override; 10251 10252 private: 10253 ABIArgInfo classifyKernelArgumentType(QualType Ty) const; 10254 }; 10255 } // end anonymous namespace 10256 namespace { 10257 class CommonSPIRTargetCodeGenInfo : public TargetCodeGenInfo { 10258 public: 10259 CommonSPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 10260 : TargetCodeGenInfo(std::make_unique<CommonSPIRABIInfo>(CGT)) {} 10261 CommonSPIRTargetCodeGenInfo(std::unique_ptr<ABIInfo> ABIInfo) 10262 : TargetCodeGenInfo(std::move(ABIInfo)) {} 10263 10264 LangAS getASTAllocaAddressSpace() const override { 10265 return getLangASFromTargetAS( 10266 getABIInfo().getDataLayout().getAllocaAddrSpace()); 10267 } 10268 10269 unsigned getOpenCLKernelCallingConv() const override; 10270 }; 10271 class SPIRVTargetCodeGenInfo : public CommonSPIRTargetCodeGenInfo { 10272 public: 10273 SPIRVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 10274 : CommonSPIRTargetCodeGenInfo(std::make_unique<SPIRVABIInfo>(CGT)) {} 10275 void setCUDAKernelCallingConvention(const FunctionType *&FT) const override; 10276 }; 10277 } // End anonymous namespace. 10278 10279 void CommonSPIRABIInfo::setCCs() { 10280 assert(getRuntimeCC() == llvm::CallingConv::C); 10281 RuntimeCC = llvm::CallingConv::SPIR_FUNC; 10282 } 10283 10284 ABIArgInfo SPIRVABIInfo::classifyKernelArgumentType(QualType Ty) const { 10285 if (getContext().getLangOpts().HIP) { 10286 // Coerce pointer arguments with default address space to CrossWorkGroup 10287 // pointers for HIPSPV. When the language mode is HIP, the SPIRTargetInfo 10288 // maps cuda_device to SPIR-V's CrossWorkGroup address space. 10289 llvm::Type *LTy = CGT.ConvertType(Ty); 10290 auto DefaultAS = getContext().getTargetAddressSpace(LangAS::Default); 10291 auto GlobalAS = getContext().getTargetAddressSpace(LangAS::cuda_device); 10292 auto *PtrTy = llvm::dyn_cast<llvm::PointerType>(LTy); 10293 if (PtrTy && PtrTy->getAddressSpace() == DefaultAS) { 10294 LTy = llvm::PointerType::getWithSamePointeeType(PtrTy, GlobalAS); 10295 return ABIArgInfo::getDirect(LTy, 0, nullptr, false); 10296 } 10297 } 10298 return classifyArgumentType(Ty); 10299 } 10300 10301 void SPIRVABIInfo::computeInfo(CGFunctionInfo &FI) const { 10302 // The logic is same as in DefaultABIInfo with an exception on the kernel 10303 // arguments handling. 10304 llvm::CallingConv::ID CC = FI.getCallingConvention(); 10305 10306 if (!getCXXABI().classifyReturnType(FI)) 10307 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 10308 10309 for (auto &I : FI.arguments()) { 10310 if (CC == llvm::CallingConv::SPIR_KERNEL) { 10311 I.info = classifyKernelArgumentType(I.type); 10312 } else { 10313 I.info = classifyArgumentType(I.type); 10314 } 10315 } 10316 } 10317 10318 namespace clang { 10319 namespace CodeGen { 10320 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) { 10321 if (CGM.getTarget().getTriple().isSPIRV()) 10322 SPIRVABIInfo(CGM.getTypes()).computeInfo(FI); 10323 else 10324 CommonSPIRABIInfo(CGM.getTypes()).computeInfo(FI); 10325 } 10326 } 10327 } 10328 10329 unsigned CommonSPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 10330 return llvm::CallingConv::SPIR_KERNEL; 10331 } 10332 10333 void SPIRVTargetCodeGenInfo::setCUDAKernelCallingConvention( 10334 const FunctionType *&FT) const { 10335 // Convert HIP kernels to SPIR-V kernels. 10336 if (getABIInfo().getContext().getLangOpts().HIP) { 10337 FT = getABIInfo().getContext().adjustFunctionType( 10338 FT, FT->getExtInfo().withCallingConv(CC_OpenCLKernel)); 10339 return; 10340 } 10341 } 10342 10343 static bool appendType(SmallStringEnc &Enc, QualType QType, 10344 const CodeGen::CodeGenModule &CGM, 10345 TypeStringCache &TSC); 10346 10347 /// Helper function for appendRecordType(). 10348 /// Builds a SmallVector containing the encoded field types in declaration 10349 /// order. 10350 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE, 10351 const RecordDecl *RD, 10352 const CodeGen::CodeGenModule &CGM, 10353 TypeStringCache &TSC) { 10354 for (const auto *Field : RD->fields()) { 10355 SmallStringEnc Enc; 10356 Enc += "m("; 10357 Enc += Field->getName(); 10358 Enc += "){"; 10359 if (Field->isBitField()) { 10360 Enc += "b("; 10361 llvm::raw_svector_ostream OS(Enc); 10362 OS << Field->getBitWidthValue(CGM.getContext()); 10363 Enc += ':'; 10364 } 10365 if (!appendType(Enc, Field->getType(), CGM, TSC)) 10366 return false; 10367 if (Field->isBitField()) 10368 Enc += ')'; 10369 Enc += '}'; 10370 FE.emplace_back(!Field->getName().empty(), Enc); 10371 } 10372 return true; 10373 } 10374 10375 /// Appends structure and union types to Enc and adds encoding to cache. 10376 /// Recursively calls appendType (via extractFieldType) for each field. 10377 /// Union types have their fields ordered according to the ABI. 10378 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT, 10379 const CodeGen::CodeGenModule &CGM, 10380 TypeStringCache &TSC, const IdentifierInfo *ID) { 10381 // Append the cached TypeString if we have one. 10382 StringRef TypeString = TSC.lookupStr(ID); 10383 if (!TypeString.empty()) { 10384 Enc += TypeString; 10385 return true; 10386 } 10387 10388 // Start to emit an incomplete TypeString. 10389 size_t Start = Enc.size(); 10390 Enc += (RT->isUnionType()? 'u' : 's'); 10391 Enc += '('; 10392 if (ID) 10393 Enc += ID->getName(); 10394 Enc += "){"; 10395 10396 // We collect all encoded fields and order as necessary. 10397 bool IsRecursive = false; 10398 const RecordDecl *RD = RT->getDecl()->getDefinition(); 10399 if (RD && !RD->field_empty()) { 10400 // An incomplete TypeString stub is placed in the cache for this RecordType 10401 // so that recursive calls to this RecordType will use it whilst building a 10402 // complete TypeString for this RecordType. 10403 SmallVector<FieldEncoding, 16> FE; 10404 std::string StubEnc(Enc.substr(Start).str()); 10405 StubEnc += '}'; // StubEnc now holds a valid incomplete TypeString. 10406 TSC.addIncomplete(ID, std::move(StubEnc)); 10407 if (!extractFieldType(FE, RD, CGM, TSC)) { 10408 (void) TSC.removeIncomplete(ID); 10409 return false; 10410 } 10411 IsRecursive = TSC.removeIncomplete(ID); 10412 // The ABI requires unions to be sorted but not structures. 10413 // See FieldEncoding::operator< for sort algorithm. 10414 if (RT->isUnionType()) 10415 llvm::sort(FE); 10416 // We can now complete the TypeString. 10417 unsigned E = FE.size(); 10418 for (unsigned I = 0; I != E; ++I) { 10419 if (I) 10420 Enc += ','; 10421 Enc += FE[I].str(); 10422 } 10423 } 10424 Enc += '}'; 10425 TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive); 10426 return true; 10427 } 10428 10429 /// Appends enum types to Enc and adds the encoding to the cache. 10430 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET, 10431 TypeStringCache &TSC, 10432 const IdentifierInfo *ID) { 10433 // Append the cached TypeString if we have one. 10434 StringRef TypeString = TSC.lookupStr(ID); 10435 if (!TypeString.empty()) { 10436 Enc += TypeString; 10437 return true; 10438 } 10439 10440 size_t Start = Enc.size(); 10441 Enc += "e("; 10442 if (ID) 10443 Enc += ID->getName(); 10444 Enc += "){"; 10445 10446 // We collect all encoded enumerations and order them alphanumerically. 10447 if (const EnumDecl *ED = ET->getDecl()->getDefinition()) { 10448 SmallVector<FieldEncoding, 16> FE; 10449 for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E; 10450 ++I) { 10451 SmallStringEnc EnumEnc; 10452 EnumEnc += "m("; 10453 EnumEnc += I->getName(); 10454 EnumEnc += "){"; 10455 I->getInitVal().toString(EnumEnc); 10456 EnumEnc += '}'; 10457 FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc)); 10458 } 10459 llvm::sort(FE); 10460 unsigned E = FE.size(); 10461 for (unsigned I = 0; I != E; ++I) { 10462 if (I) 10463 Enc += ','; 10464 Enc += FE[I].str(); 10465 } 10466 } 10467 Enc += '}'; 10468 TSC.addIfComplete(ID, Enc.substr(Start), false); 10469 return true; 10470 } 10471 10472 /// Appends type's qualifier to Enc. 10473 /// This is done prior to appending the type's encoding. 10474 static void appendQualifier(SmallStringEnc &Enc, QualType QT) { 10475 // Qualifiers are emitted in alphabetical order. 10476 static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"}; 10477 int Lookup = 0; 10478 if (QT.isConstQualified()) 10479 Lookup += 1<<0; 10480 if (QT.isRestrictQualified()) 10481 Lookup += 1<<1; 10482 if (QT.isVolatileQualified()) 10483 Lookup += 1<<2; 10484 Enc += Table[Lookup]; 10485 } 10486 10487 /// Appends built-in types to Enc. 10488 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) { 10489 const char *EncType; 10490 switch (BT->getKind()) { 10491 case BuiltinType::Void: 10492 EncType = "0"; 10493 break; 10494 case BuiltinType::Bool: 10495 EncType = "b"; 10496 break; 10497 case BuiltinType::Char_U: 10498 EncType = "uc"; 10499 break; 10500 case BuiltinType::UChar: 10501 EncType = "uc"; 10502 break; 10503 case BuiltinType::SChar: 10504 EncType = "sc"; 10505 break; 10506 case BuiltinType::UShort: 10507 EncType = "us"; 10508 break; 10509 case BuiltinType::Short: 10510 EncType = "ss"; 10511 break; 10512 case BuiltinType::UInt: 10513 EncType = "ui"; 10514 break; 10515 case BuiltinType::Int: 10516 EncType = "si"; 10517 break; 10518 case BuiltinType::ULong: 10519 EncType = "ul"; 10520 break; 10521 case BuiltinType::Long: 10522 EncType = "sl"; 10523 break; 10524 case BuiltinType::ULongLong: 10525 EncType = "ull"; 10526 break; 10527 case BuiltinType::LongLong: 10528 EncType = "sll"; 10529 break; 10530 case BuiltinType::Float: 10531 EncType = "ft"; 10532 break; 10533 case BuiltinType::Double: 10534 EncType = "d"; 10535 break; 10536 case BuiltinType::LongDouble: 10537 EncType = "ld"; 10538 break; 10539 default: 10540 return false; 10541 } 10542 Enc += EncType; 10543 return true; 10544 } 10545 10546 /// Appends a pointer encoding to Enc before calling appendType for the pointee. 10547 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT, 10548 const CodeGen::CodeGenModule &CGM, 10549 TypeStringCache &TSC) { 10550 Enc += "p("; 10551 if (!appendType(Enc, PT->getPointeeType(), CGM, TSC)) 10552 return false; 10553 Enc += ')'; 10554 return true; 10555 } 10556 10557 /// Appends array encoding to Enc before calling appendType for the element. 10558 static bool appendArrayType(SmallStringEnc &Enc, QualType QT, 10559 const ArrayType *AT, 10560 const CodeGen::CodeGenModule &CGM, 10561 TypeStringCache &TSC, StringRef NoSizeEnc) { 10562 if (AT->getSizeModifier() != ArrayType::Normal) 10563 return false; 10564 Enc += "a("; 10565 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) 10566 CAT->getSize().toStringUnsigned(Enc); 10567 else 10568 Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "". 10569 Enc += ':'; 10570 // The Qualifiers should be attached to the type rather than the array. 10571 appendQualifier(Enc, QT); 10572 if (!appendType(Enc, AT->getElementType(), CGM, TSC)) 10573 return false; 10574 Enc += ')'; 10575 return true; 10576 } 10577 10578 /// Appends a function encoding to Enc, calling appendType for the return type 10579 /// and the arguments. 10580 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT, 10581 const CodeGen::CodeGenModule &CGM, 10582 TypeStringCache &TSC) { 10583 Enc += "f{"; 10584 if (!appendType(Enc, FT->getReturnType(), CGM, TSC)) 10585 return false; 10586 Enc += "}("; 10587 if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) { 10588 // N.B. we are only interested in the adjusted param types. 10589 auto I = FPT->param_type_begin(); 10590 auto E = FPT->param_type_end(); 10591 if (I != E) { 10592 do { 10593 if (!appendType(Enc, *I, CGM, TSC)) 10594 return false; 10595 ++I; 10596 if (I != E) 10597 Enc += ','; 10598 } while (I != E); 10599 if (FPT->isVariadic()) 10600 Enc += ",va"; 10601 } else { 10602 if (FPT->isVariadic()) 10603 Enc += "va"; 10604 else 10605 Enc += '0'; 10606 } 10607 } 10608 Enc += ')'; 10609 return true; 10610 } 10611 10612 /// Handles the type's qualifier before dispatching a call to handle specific 10613 /// type encodings. 10614 static bool appendType(SmallStringEnc &Enc, QualType QType, 10615 const CodeGen::CodeGenModule &CGM, 10616 TypeStringCache &TSC) { 10617 10618 QualType QT = QType.getCanonicalType(); 10619 10620 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) 10621 // The Qualifiers should be attached to the type rather than the array. 10622 // Thus we don't call appendQualifier() here. 10623 return appendArrayType(Enc, QT, AT, CGM, TSC, ""); 10624 10625 appendQualifier(Enc, QT); 10626 10627 if (const BuiltinType *BT = QT->getAs<BuiltinType>()) 10628 return appendBuiltinType(Enc, BT); 10629 10630 if (const PointerType *PT = QT->getAs<PointerType>()) 10631 return appendPointerType(Enc, PT, CGM, TSC); 10632 10633 if (const EnumType *ET = QT->getAs<EnumType>()) 10634 return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier()); 10635 10636 if (const RecordType *RT = QT->getAsStructureType()) 10637 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 10638 10639 if (const RecordType *RT = QT->getAsUnionType()) 10640 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 10641 10642 if (const FunctionType *FT = QT->getAs<FunctionType>()) 10643 return appendFunctionType(Enc, FT, CGM, TSC); 10644 10645 return false; 10646 } 10647 10648 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 10649 const CodeGen::CodeGenModule &CGM, 10650 TypeStringCache &TSC) { 10651 if (!D) 10652 return false; 10653 10654 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 10655 if (FD->getLanguageLinkage() != CLanguageLinkage) 10656 return false; 10657 return appendType(Enc, FD->getType(), CGM, TSC); 10658 } 10659 10660 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 10661 if (VD->getLanguageLinkage() != CLanguageLinkage) 10662 return false; 10663 QualType QT = VD->getType().getCanonicalType(); 10664 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) { 10665 // Global ArrayTypes are given a size of '*' if the size is unknown. 10666 // The Qualifiers should be attached to the type rather than the array. 10667 // Thus we don't call appendQualifier() here. 10668 return appendArrayType(Enc, QT, AT, CGM, TSC, "*"); 10669 } 10670 return appendType(Enc, QT, CGM, TSC); 10671 } 10672 return false; 10673 } 10674 10675 //===----------------------------------------------------------------------===// 10676 // RISCV ABI Implementation 10677 //===----------------------------------------------------------------------===// 10678 10679 namespace { 10680 class RISCVABIInfo : public DefaultABIInfo { 10681 private: 10682 // Size of the integer ('x') registers in bits. 10683 unsigned XLen; 10684 // Size of the floating point ('f') registers in bits. Note that the target 10685 // ISA might have a wider FLen than the selected ABI (e.g. an RV32IF target 10686 // with soft float ABI has FLen==0). 10687 unsigned FLen; 10688 static const int NumArgGPRs = 8; 10689 static const int NumArgFPRs = 8; 10690 bool detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff, 10691 llvm::Type *&Field1Ty, 10692 CharUnits &Field1Off, 10693 llvm::Type *&Field2Ty, 10694 CharUnits &Field2Off) const; 10695 10696 public: 10697 RISCVABIInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen, unsigned FLen) 10698 : DefaultABIInfo(CGT), XLen(XLen), FLen(FLen) {} 10699 10700 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 10701 // non-virtual, but computeInfo is virtual, so we overload it. 10702 void computeInfo(CGFunctionInfo &FI) const override; 10703 10704 ABIArgInfo classifyArgumentType(QualType Ty, bool IsFixed, int &ArgGPRsLeft, 10705 int &ArgFPRsLeft) const; 10706 ABIArgInfo classifyReturnType(QualType RetTy) const; 10707 10708 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 10709 QualType Ty) const override; 10710 10711 ABIArgInfo extendType(QualType Ty) const; 10712 10713 bool detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty, 10714 CharUnits &Field1Off, llvm::Type *&Field2Ty, 10715 CharUnits &Field2Off, int &NeededArgGPRs, 10716 int &NeededArgFPRs) const; 10717 ABIArgInfo coerceAndExpandFPCCEligibleStruct(llvm::Type *Field1Ty, 10718 CharUnits Field1Off, 10719 llvm::Type *Field2Ty, 10720 CharUnits Field2Off) const; 10721 }; 10722 } // end anonymous namespace 10723 10724 void RISCVABIInfo::computeInfo(CGFunctionInfo &FI) const { 10725 QualType RetTy = FI.getReturnType(); 10726 if (!getCXXABI().classifyReturnType(FI)) 10727 FI.getReturnInfo() = classifyReturnType(RetTy); 10728 10729 // IsRetIndirect is true if classifyArgumentType indicated the value should 10730 // be passed indirect, or if the type size is a scalar greater than 2*XLen 10731 // and not a complex type with elements <= FLen. e.g. fp128 is passed direct 10732 // in LLVM IR, relying on the backend lowering code to rewrite the argument 10733 // list and pass indirectly on RV32. 10734 bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect; 10735 if (!IsRetIndirect && RetTy->isScalarType() && 10736 getContext().getTypeSize(RetTy) > (2 * XLen)) { 10737 if (RetTy->isComplexType() && FLen) { 10738 QualType EltTy = RetTy->castAs<ComplexType>()->getElementType(); 10739 IsRetIndirect = getContext().getTypeSize(EltTy) > FLen; 10740 } else { 10741 // This is a normal scalar > 2*XLen, such as fp128 on RV32. 10742 IsRetIndirect = true; 10743 } 10744 } 10745 10746 // We must track the number of GPRs used in order to conform to the RISC-V 10747 // ABI, as integer scalars passed in registers should have signext/zeroext 10748 // when promoted, but are anyext if passed on the stack. As GPR usage is 10749 // different for variadic arguments, we must also track whether we are 10750 // examining a vararg or not. 10751 int ArgGPRsLeft = IsRetIndirect ? NumArgGPRs - 1 : NumArgGPRs; 10752 int ArgFPRsLeft = FLen ? NumArgFPRs : 0; 10753 int NumFixedArgs = FI.getNumRequiredArgs(); 10754 10755 int ArgNum = 0; 10756 for (auto &ArgInfo : FI.arguments()) { 10757 bool IsFixed = ArgNum < NumFixedArgs; 10758 ArgInfo.info = 10759 classifyArgumentType(ArgInfo.type, IsFixed, ArgGPRsLeft, ArgFPRsLeft); 10760 ArgNum++; 10761 } 10762 } 10763 10764 // Returns true if the struct is a potential candidate for the floating point 10765 // calling convention. If this function returns true, the caller is 10766 // responsible for checking that if there is only a single field then that 10767 // field is a float. 10768 bool RISCVABIInfo::detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff, 10769 llvm::Type *&Field1Ty, 10770 CharUnits &Field1Off, 10771 llvm::Type *&Field2Ty, 10772 CharUnits &Field2Off) const { 10773 bool IsInt = Ty->isIntegralOrEnumerationType(); 10774 bool IsFloat = Ty->isRealFloatingType(); 10775 10776 if (IsInt || IsFloat) { 10777 uint64_t Size = getContext().getTypeSize(Ty); 10778 if (IsInt && Size > XLen) 10779 return false; 10780 // Can't be eligible if larger than the FP registers. Half precision isn't 10781 // currently supported on RISC-V and the ABI hasn't been confirmed, so 10782 // default to the integer ABI in that case. 10783 if (IsFloat && (Size > FLen || Size < 32)) 10784 return false; 10785 // Can't be eligible if an integer type was already found (int+int pairs 10786 // are not eligible). 10787 if (IsInt && Field1Ty && Field1Ty->isIntegerTy()) 10788 return false; 10789 if (!Field1Ty) { 10790 Field1Ty = CGT.ConvertType(Ty); 10791 Field1Off = CurOff; 10792 return true; 10793 } 10794 if (!Field2Ty) { 10795 Field2Ty = CGT.ConvertType(Ty); 10796 Field2Off = CurOff; 10797 return true; 10798 } 10799 return false; 10800 } 10801 10802 if (auto CTy = Ty->getAs<ComplexType>()) { 10803 if (Field1Ty) 10804 return false; 10805 QualType EltTy = CTy->getElementType(); 10806 if (getContext().getTypeSize(EltTy) > FLen) 10807 return false; 10808 Field1Ty = CGT.ConvertType(EltTy); 10809 Field1Off = CurOff; 10810 Field2Ty = Field1Ty; 10811 Field2Off = Field1Off + getContext().getTypeSizeInChars(EltTy); 10812 return true; 10813 } 10814 10815 if (const ConstantArrayType *ATy = getContext().getAsConstantArrayType(Ty)) { 10816 uint64_t ArraySize = ATy->getSize().getZExtValue(); 10817 QualType EltTy = ATy->getElementType(); 10818 CharUnits EltSize = getContext().getTypeSizeInChars(EltTy); 10819 for (uint64_t i = 0; i < ArraySize; ++i) { 10820 bool Ret = detectFPCCEligibleStructHelper(EltTy, CurOff, Field1Ty, 10821 Field1Off, Field2Ty, Field2Off); 10822 if (!Ret) 10823 return false; 10824 CurOff += EltSize; 10825 } 10826 return true; 10827 } 10828 10829 if (const auto *RTy = Ty->getAs<RecordType>()) { 10830 // Structures with either a non-trivial destructor or a non-trivial 10831 // copy constructor are not eligible for the FP calling convention. 10832 if (getRecordArgABI(Ty, CGT.getCXXABI())) 10833 return false; 10834 if (isEmptyRecord(getContext(), Ty, true)) 10835 return true; 10836 const RecordDecl *RD = RTy->getDecl(); 10837 // Unions aren't eligible unless they're empty (which is caught above). 10838 if (RD->isUnion()) 10839 return false; 10840 int ZeroWidthBitFieldCount = 0; 10841 for (const FieldDecl *FD : RD->fields()) { 10842 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 10843 uint64_t FieldOffInBits = Layout.getFieldOffset(FD->getFieldIndex()); 10844 QualType QTy = FD->getType(); 10845 if (FD->isBitField()) { 10846 unsigned BitWidth = FD->getBitWidthValue(getContext()); 10847 // Allow a bitfield with a type greater than XLen as long as the 10848 // bitwidth is XLen or less. 10849 if (getContext().getTypeSize(QTy) > XLen && BitWidth <= XLen) 10850 QTy = getContext().getIntTypeForBitwidth(XLen, false); 10851 if (BitWidth == 0) { 10852 ZeroWidthBitFieldCount++; 10853 continue; 10854 } 10855 } 10856 10857 bool Ret = detectFPCCEligibleStructHelper( 10858 QTy, CurOff + getContext().toCharUnitsFromBits(FieldOffInBits), 10859 Field1Ty, Field1Off, Field2Ty, Field2Off); 10860 if (!Ret) 10861 return false; 10862 10863 // As a quirk of the ABI, zero-width bitfields aren't ignored for fp+fp 10864 // or int+fp structs, but are ignored for a struct with an fp field and 10865 // any number of zero-width bitfields. 10866 if (Field2Ty && ZeroWidthBitFieldCount > 0) 10867 return false; 10868 } 10869 return Field1Ty != nullptr; 10870 } 10871 10872 return false; 10873 } 10874 10875 // Determine if a struct is eligible for passing according to the floating 10876 // point calling convention (i.e., when flattened it contains a single fp 10877 // value, fp+fp, or int+fp of appropriate size). If so, NeededArgFPRs and 10878 // NeededArgGPRs are incremented appropriately. 10879 bool RISCVABIInfo::detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty, 10880 CharUnits &Field1Off, 10881 llvm::Type *&Field2Ty, 10882 CharUnits &Field2Off, 10883 int &NeededArgGPRs, 10884 int &NeededArgFPRs) const { 10885 Field1Ty = nullptr; 10886 Field2Ty = nullptr; 10887 NeededArgGPRs = 0; 10888 NeededArgFPRs = 0; 10889 bool IsCandidate = detectFPCCEligibleStructHelper( 10890 Ty, CharUnits::Zero(), Field1Ty, Field1Off, Field2Ty, Field2Off); 10891 // Not really a candidate if we have a single int but no float. 10892 if (Field1Ty && !Field2Ty && !Field1Ty->isFloatingPointTy()) 10893 return false; 10894 if (!IsCandidate) 10895 return false; 10896 if (Field1Ty && Field1Ty->isFloatingPointTy()) 10897 NeededArgFPRs++; 10898 else if (Field1Ty) 10899 NeededArgGPRs++; 10900 if (Field2Ty && Field2Ty->isFloatingPointTy()) 10901 NeededArgFPRs++; 10902 else if (Field2Ty) 10903 NeededArgGPRs++; 10904 return true; 10905 } 10906 10907 // Call getCoerceAndExpand for the two-element flattened struct described by 10908 // Field1Ty, Field1Off, Field2Ty, Field2Off. This method will create an 10909 // appropriate coerceToType and unpaddedCoerceToType. 10910 ABIArgInfo RISCVABIInfo::coerceAndExpandFPCCEligibleStruct( 10911 llvm::Type *Field1Ty, CharUnits Field1Off, llvm::Type *Field2Ty, 10912 CharUnits Field2Off) const { 10913 SmallVector<llvm::Type *, 3> CoerceElts; 10914 SmallVector<llvm::Type *, 2> UnpaddedCoerceElts; 10915 if (!Field1Off.isZero()) 10916 CoerceElts.push_back(llvm::ArrayType::get( 10917 llvm::Type::getInt8Ty(getVMContext()), Field1Off.getQuantity())); 10918 10919 CoerceElts.push_back(Field1Ty); 10920 UnpaddedCoerceElts.push_back(Field1Ty); 10921 10922 if (!Field2Ty) { 10923 return ABIArgInfo::getCoerceAndExpand( 10924 llvm::StructType::get(getVMContext(), CoerceElts, !Field1Off.isZero()), 10925 UnpaddedCoerceElts[0]); 10926 } 10927 10928 CharUnits Field2Align = 10929 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(Field2Ty)); 10930 CharUnits Field1End = Field1Off + 10931 CharUnits::fromQuantity(getDataLayout().getTypeStoreSize(Field1Ty)); 10932 CharUnits Field2OffNoPadNoPack = Field1End.alignTo(Field2Align); 10933 10934 CharUnits Padding = CharUnits::Zero(); 10935 if (Field2Off > Field2OffNoPadNoPack) 10936 Padding = Field2Off - Field2OffNoPadNoPack; 10937 else if (Field2Off != Field2Align && Field2Off > Field1End) 10938 Padding = Field2Off - Field1End; 10939 10940 bool IsPacked = !Field2Off.isMultipleOf(Field2Align); 10941 10942 if (!Padding.isZero()) 10943 CoerceElts.push_back(llvm::ArrayType::get( 10944 llvm::Type::getInt8Ty(getVMContext()), Padding.getQuantity())); 10945 10946 CoerceElts.push_back(Field2Ty); 10947 UnpaddedCoerceElts.push_back(Field2Ty); 10948 10949 auto CoerceToType = 10950 llvm::StructType::get(getVMContext(), CoerceElts, IsPacked); 10951 auto UnpaddedCoerceToType = 10952 llvm::StructType::get(getVMContext(), UnpaddedCoerceElts, IsPacked); 10953 10954 return ABIArgInfo::getCoerceAndExpand(CoerceToType, UnpaddedCoerceToType); 10955 } 10956 10957 ABIArgInfo RISCVABIInfo::classifyArgumentType(QualType Ty, bool IsFixed, 10958 int &ArgGPRsLeft, 10959 int &ArgFPRsLeft) const { 10960 assert(ArgGPRsLeft <= NumArgGPRs && "Arg GPR tracking underflow"); 10961 Ty = useFirstFieldIfTransparentUnion(Ty); 10962 10963 // Structures with either a non-trivial destructor or a non-trivial 10964 // copy constructor are always passed indirectly. 10965 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 10966 if (ArgGPRsLeft) 10967 ArgGPRsLeft -= 1; 10968 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 10969 CGCXXABI::RAA_DirectInMemory); 10970 } 10971 10972 // Ignore empty structs/unions. 10973 if (isEmptyRecord(getContext(), Ty, true)) 10974 return ABIArgInfo::getIgnore(); 10975 10976 uint64_t Size = getContext().getTypeSize(Ty); 10977 10978 // Pass floating point values via FPRs if possible. 10979 if (IsFixed && Ty->isFloatingType() && !Ty->isComplexType() && 10980 FLen >= Size && ArgFPRsLeft) { 10981 ArgFPRsLeft--; 10982 return ABIArgInfo::getDirect(); 10983 } 10984 10985 // Complex types for the hard float ABI must be passed direct rather than 10986 // using CoerceAndExpand. 10987 if (IsFixed && Ty->isComplexType() && FLen && ArgFPRsLeft >= 2) { 10988 QualType EltTy = Ty->castAs<ComplexType>()->getElementType(); 10989 if (getContext().getTypeSize(EltTy) <= FLen) { 10990 ArgFPRsLeft -= 2; 10991 return ABIArgInfo::getDirect(); 10992 } 10993 } 10994 10995 if (IsFixed && FLen && Ty->isStructureOrClassType()) { 10996 llvm::Type *Field1Ty = nullptr; 10997 llvm::Type *Field2Ty = nullptr; 10998 CharUnits Field1Off = CharUnits::Zero(); 10999 CharUnits Field2Off = CharUnits::Zero(); 11000 int NeededArgGPRs = 0; 11001 int NeededArgFPRs = 0; 11002 bool IsCandidate = 11003 detectFPCCEligibleStruct(Ty, Field1Ty, Field1Off, Field2Ty, Field2Off, 11004 NeededArgGPRs, NeededArgFPRs); 11005 if (IsCandidate && NeededArgGPRs <= ArgGPRsLeft && 11006 NeededArgFPRs <= ArgFPRsLeft) { 11007 ArgGPRsLeft -= NeededArgGPRs; 11008 ArgFPRsLeft -= NeededArgFPRs; 11009 return coerceAndExpandFPCCEligibleStruct(Field1Ty, Field1Off, Field2Ty, 11010 Field2Off); 11011 } 11012 } 11013 11014 uint64_t NeededAlign = getContext().getTypeAlign(Ty); 11015 bool MustUseStack = false; 11016 // Determine the number of GPRs needed to pass the current argument 11017 // according to the ABI. 2*XLen-aligned varargs are passed in "aligned" 11018 // register pairs, so may consume 3 registers. 11019 int NeededArgGPRs = 1; 11020 if (!IsFixed && NeededAlign == 2 * XLen) 11021 NeededArgGPRs = 2 + (ArgGPRsLeft % 2); 11022 else if (Size > XLen && Size <= 2 * XLen) 11023 NeededArgGPRs = 2; 11024 11025 if (NeededArgGPRs > ArgGPRsLeft) { 11026 MustUseStack = true; 11027 NeededArgGPRs = ArgGPRsLeft; 11028 } 11029 11030 ArgGPRsLeft -= NeededArgGPRs; 11031 11032 if (!isAggregateTypeForABI(Ty) && !Ty->isVectorType()) { 11033 // Treat an enum type as its underlying type. 11034 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 11035 Ty = EnumTy->getDecl()->getIntegerType(); 11036 11037 // All integral types are promoted to XLen width, unless passed on the 11038 // stack. 11039 if (Size < XLen && Ty->isIntegralOrEnumerationType() && !MustUseStack) { 11040 return extendType(Ty); 11041 } 11042 11043 if (const auto *EIT = Ty->getAs<BitIntType>()) { 11044 if (EIT->getNumBits() < XLen && !MustUseStack) 11045 return extendType(Ty); 11046 if (EIT->getNumBits() > 128 || 11047 (!getContext().getTargetInfo().hasInt128Type() && 11048 EIT->getNumBits() > 64)) 11049 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 11050 } 11051 11052 return ABIArgInfo::getDirect(); 11053 } 11054 11055 // Aggregates which are <= 2*XLen will be passed in registers if possible, 11056 // so coerce to integers. 11057 if (Size <= 2 * XLen) { 11058 unsigned Alignment = getContext().getTypeAlign(Ty); 11059 11060 // Use a single XLen int if possible, 2*XLen if 2*XLen alignment is 11061 // required, and a 2-element XLen array if only XLen alignment is required. 11062 if (Size <= XLen) { 11063 return ABIArgInfo::getDirect( 11064 llvm::IntegerType::get(getVMContext(), XLen)); 11065 } else if (Alignment == 2 * XLen) { 11066 return ABIArgInfo::getDirect( 11067 llvm::IntegerType::get(getVMContext(), 2 * XLen)); 11068 } else { 11069 return ABIArgInfo::getDirect(llvm::ArrayType::get( 11070 llvm::IntegerType::get(getVMContext(), XLen), 2)); 11071 } 11072 } 11073 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 11074 } 11075 11076 ABIArgInfo RISCVABIInfo::classifyReturnType(QualType RetTy) const { 11077 if (RetTy->isVoidType()) 11078 return ABIArgInfo::getIgnore(); 11079 11080 int ArgGPRsLeft = 2; 11081 int ArgFPRsLeft = FLen ? 2 : 0; 11082 11083 // The rules for return and argument types are the same, so defer to 11084 // classifyArgumentType. 11085 return classifyArgumentType(RetTy, /*IsFixed=*/true, ArgGPRsLeft, 11086 ArgFPRsLeft); 11087 } 11088 11089 Address RISCVABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 11090 QualType Ty) const { 11091 CharUnits SlotSize = CharUnits::fromQuantity(XLen / 8); 11092 11093 // Empty records are ignored for parameter passing purposes. 11094 if (isEmptyRecord(getContext(), Ty, true)) { 11095 Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize); 11096 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 11097 return Addr; 11098 } 11099 11100 auto TInfo = getContext().getTypeInfoInChars(Ty); 11101 11102 // Arguments bigger than 2*Xlen bytes are passed indirectly. 11103 bool IsIndirect = TInfo.Width > 2 * SlotSize; 11104 11105 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TInfo, 11106 SlotSize, /*AllowHigherAlign=*/true); 11107 } 11108 11109 ABIArgInfo RISCVABIInfo::extendType(QualType Ty) const { 11110 int TySize = getContext().getTypeSize(Ty); 11111 // RV64 ABI requires unsigned 32 bit integers to be sign extended. 11112 if (XLen == 64 && Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 11113 return ABIArgInfo::getSignExtend(Ty); 11114 return ABIArgInfo::getExtend(Ty); 11115 } 11116 11117 namespace { 11118 class RISCVTargetCodeGenInfo : public TargetCodeGenInfo { 11119 public: 11120 RISCVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen, 11121 unsigned FLen) 11122 : TargetCodeGenInfo(std::make_unique<RISCVABIInfo>(CGT, XLen, FLen)) {} 11123 11124 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 11125 CodeGen::CodeGenModule &CGM) const override { 11126 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 11127 if (!FD) return; 11128 11129 const auto *Attr = FD->getAttr<RISCVInterruptAttr>(); 11130 if (!Attr) 11131 return; 11132 11133 const char *Kind; 11134 switch (Attr->getInterrupt()) { 11135 case RISCVInterruptAttr::user: Kind = "user"; break; 11136 case RISCVInterruptAttr::supervisor: Kind = "supervisor"; break; 11137 case RISCVInterruptAttr::machine: Kind = "machine"; break; 11138 } 11139 11140 auto *Fn = cast<llvm::Function>(GV); 11141 11142 Fn->addFnAttr("interrupt", Kind); 11143 } 11144 }; 11145 } // namespace 11146 11147 //===----------------------------------------------------------------------===// 11148 // VE ABI Implementation. 11149 // 11150 namespace { 11151 class VEABIInfo : public DefaultABIInfo { 11152 public: 11153 VEABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 11154 11155 private: 11156 ABIArgInfo classifyReturnType(QualType RetTy) const; 11157 ABIArgInfo classifyArgumentType(QualType RetTy) const; 11158 void computeInfo(CGFunctionInfo &FI) const override; 11159 }; 11160 } // end anonymous namespace 11161 11162 ABIArgInfo VEABIInfo::classifyReturnType(QualType Ty) const { 11163 if (Ty->isAnyComplexType()) 11164 return ABIArgInfo::getDirect(); 11165 uint64_t Size = getContext().getTypeSize(Ty); 11166 if (Size < 64 && Ty->isIntegerType()) 11167 return ABIArgInfo::getExtend(Ty); 11168 return DefaultABIInfo::classifyReturnType(Ty); 11169 } 11170 11171 ABIArgInfo VEABIInfo::classifyArgumentType(QualType Ty) const { 11172 if (Ty->isAnyComplexType()) 11173 return ABIArgInfo::getDirect(); 11174 uint64_t Size = getContext().getTypeSize(Ty); 11175 if (Size < 64 && Ty->isIntegerType()) 11176 return ABIArgInfo::getExtend(Ty); 11177 return DefaultABIInfo::classifyArgumentType(Ty); 11178 } 11179 11180 void VEABIInfo::computeInfo(CGFunctionInfo &FI) const { 11181 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 11182 for (auto &Arg : FI.arguments()) 11183 Arg.info = classifyArgumentType(Arg.type); 11184 } 11185 11186 namespace { 11187 class VETargetCodeGenInfo : public TargetCodeGenInfo { 11188 public: 11189 VETargetCodeGenInfo(CodeGenTypes &CGT) 11190 : TargetCodeGenInfo(std::make_unique<VEABIInfo>(CGT)) {} 11191 // VE ABI requires the arguments of variadic and prototype-less functions 11192 // are passed in both registers and memory. 11193 bool isNoProtoCallVariadic(const CallArgList &args, 11194 const FunctionNoProtoType *fnType) const override { 11195 return true; 11196 } 11197 }; 11198 } // end anonymous namespace 11199 11200 //===----------------------------------------------------------------------===// 11201 // Driver code 11202 //===----------------------------------------------------------------------===// 11203 11204 bool CodeGenModule::supportsCOMDAT() const { 11205 return getTriple().supportsCOMDAT(); 11206 } 11207 11208 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { 11209 if (TheTargetCodeGenInfo) 11210 return *TheTargetCodeGenInfo; 11211 11212 // Helper to set the unique_ptr while still keeping the return value. 11213 auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & { 11214 this->TheTargetCodeGenInfo.reset(P); 11215 return *P; 11216 }; 11217 11218 const llvm::Triple &Triple = getTarget().getTriple(); 11219 switch (Triple.getArch()) { 11220 default: 11221 return SetCGInfo(new DefaultTargetCodeGenInfo(Types)); 11222 11223 case llvm::Triple::le32: 11224 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 11225 case llvm::Triple::m68k: 11226 return SetCGInfo(new M68kTargetCodeGenInfo(Types)); 11227 case llvm::Triple::mips: 11228 case llvm::Triple::mipsel: 11229 if (Triple.getOS() == llvm::Triple::NaCl) 11230 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 11231 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true)); 11232 11233 case llvm::Triple::mips64: 11234 case llvm::Triple::mips64el: 11235 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false)); 11236 11237 case llvm::Triple::avr: 11238 return SetCGInfo(new AVRTargetCodeGenInfo(Types)); 11239 11240 case llvm::Triple::aarch64: 11241 case llvm::Triple::aarch64_32: 11242 case llvm::Triple::aarch64_be: { 11243 AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS; 11244 if (getTarget().getABI() == "darwinpcs") 11245 Kind = AArch64ABIInfo::DarwinPCS; 11246 else if (Triple.isOSWindows()) 11247 return SetCGInfo( 11248 new WindowsAArch64TargetCodeGenInfo(Types, AArch64ABIInfo::Win64)); 11249 11250 return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind)); 11251 } 11252 11253 case llvm::Triple::wasm32: 11254 case llvm::Triple::wasm64: { 11255 WebAssemblyABIInfo::ABIKind Kind = WebAssemblyABIInfo::MVP; 11256 if (getTarget().getABI() == "experimental-mv") 11257 Kind = WebAssemblyABIInfo::ExperimentalMV; 11258 return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types, Kind)); 11259 } 11260 11261 case llvm::Triple::arm: 11262 case llvm::Triple::armeb: 11263 case llvm::Triple::thumb: 11264 case llvm::Triple::thumbeb: { 11265 if (Triple.getOS() == llvm::Triple::Win32) { 11266 return SetCGInfo( 11267 new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP)); 11268 } 11269 11270 ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS; 11271 StringRef ABIStr = getTarget().getABI(); 11272 if (ABIStr == "apcs-gnu") 11273 Kind = ARMABIInfo::APCS; 11274 else if (ABIStr == "aapcs16") 11275 Kind = ARMABIInfo::AAPCS16_VFP; 11276 else if (CodeGenOpts.FloatABI == "hard" || 11277 (CodeGenOpts.FloatABI != "soft" && 11278 (Triple.getEnvironment() == llvm::Triple::GNUEABIHF || 11279 Triple.getEnvironment() == llvm::Triple::MuslEABIHF || 11280 Triple.getEnvironment() == llvm::Triple::EABIHF))) 11281 Kind = ARMABIInfo::AAPCS_VFP; 11282 11283 return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind)); 11284 } 11285 11286 case llvm::Triple::ppc: { 11287 if (Triple.isOSAIX()) 11288 return SetCGInfo(new AIXTargetCodeGenInfo(Types, /*Is64Bit*/ false)); 11289 11290 bool IsSoftFloat = 11291 CodeGenOpts.FloatABI == "soft" || getTarget().hasFeature("spe"); 11292 bool RetSmallStructInRegABI = 11293 PPC32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 11294 return SetCGInfo( 11295 new PPC32TargetCodeGenInfo(Types, IsSoftFloat, RetSmallStructInRegABI)); 11296 } 11297 case llvm::Triple::ppcle: { 11298 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 11299 bool RetSmallStructInRegABI = 11300 PPC32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 11301 return SetCGInfo( 11302 new PPC32TargetCodeGenInfo(Types, IsSoftFloat, RetSmallStructInRegABI)); 11303 } 11304 case llvm::Triple::ppc64: 11305 if (Triple.isOSAIX()) 11306 return SetCGInfo(new AIXTargetCodeGenInfo(Types, /*Is64Bit*/ true)); 11307 11308 if (Triple.isOSBinFormatELF()) { 11309 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1; 11310 if (getTarget().getABI() == "elfv2") 11311 Kind = PPC64_SVR4_ABIInfo::ELFv2; 11312 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 11313 11314 return SetCGInfo( 11315 new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, IsSoftFloat)); 11316 } 11317 return SetCGInfo(new PPC64TargetCodeGenInfo(Types)); 11318 case llvm::Triple::ppc64le: { 11319 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); 11320 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2; 11321 if (getTarget().getABI() == "elfv1") 11322 Kind = PPC64_SVR4_ABIInfo::ELFv1; 11323 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 11324 11325 return SetCGInfo( 11326 new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, IsSoftFloat)); 11327 } 11328 11329 case llvm::Triple::nvptx: 11330 case llvm::Triple::nvptx64: 11331 return SetCGInfo(new NVPTXTargetCodeGenInfo(Types)); 11332 11333 case llvm::Triple::msp430: 11334 return SetCGInfo(new MSP430TargetCodeGenInfo(Types)); 11335 11336 case llvm::Triple::riscv32: 11337 case llvm::Triple::riscv64: { 11338 StringRef ABIStr = getTarget().getABI(); 11339 unsigned XLen = getTarget().getPointerWidth(0); 11340 unsigned ABIFLen = 0; 11341 if (ABIStr.endswith("f")) 11342 ABIFLen = 32; 11343 else if (ABIStr.endswith("d")) 11344 ABIFLen = 64; 11345 return SetCGInfo(new RISCVTargetCodeGenInfo(Types, XLen, ABIFLen)); 11346 } 11347 11348 case llvm::Triple::systemz: { 11349 bool SoftFloat = CodeGenOpts.FloatABI == "soft"; 11350 bool HasVector = !SoftFloat && getTarget().getABI() == "vector"; 11351 return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector, SoftFloat)); 11352 } 11353 11354 case llvm::Triple::tce: 11355 case llvm::Triple::tcele: 11356 return SetCGInfo(new TCETargetCodeGenInfo(Types)); 11357 11358 case llvm::Triple::x86: { 11359 bool IsDarwinVectorABI = Triple.isOSDarwin(); 11360 bool RetSmallStructInRegABI = 11361 X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 11362 bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing(); 11363 11364 if (Triple.getOS() == llvm::Triple::Win32) { 11365 return SetCGInfo(new WinX86_32TargetCodeGenInfo( 11366 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 11367 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters)); 11368 } else { 11369 return SetCGInfo(new X86_32TargetCodeGenInfo( 11370 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 11371 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters, 11372 CodeGenOpts.FloatABI == "soft")); 11373 } 11374 } 11375 11376 case llvm::Triple::x86_64: { 11377 StringRef ABI = getTarget().getABI(); 11378 X86AVXABILevel AVXLevel = 11379 (ABI == "avx512" 11380 ? X86AVXABILevel::AVX512 11381 : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None); 11382 11383 switch (Triple.getOS()) { 11384 case llvm::Triple::Win32: 11385 return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel)); 11386 default: 11387 return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel)); 11388 } 11389 } 11390 case llvm::Triple::hexagon: 11391 return SetCGInfo(new HexagonTargetCodeGenInfo(Types)); 11392 case llvm::Triple::lanai: 11393 return SetCGInfo(new LanaiTargetCodeGenInfo(Types)); 11394 case llvm::Triple::r600: 11395 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 11396 case llvm::Triple::amdgcn: 11397 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 11398 case llvm::Triple::sparc: 11399 return SetCGInfo(new SparcV8TargetCodeGenInfo(Types)); 11400 case llvm::Triple::sparcv9: 11401 return SetCGInfo(new SparcV9TargetCodeGenInfo(Types)); 11402 case llvm::Triple::xcore: 11403 return SetCGInfo(new XCoreTargetCodeGenInfo(Types)); 11404 case llvm::Triple::arc: 11405 return SetCGInfo(new ARCTargetCodeGenInfo(Types)); 11406 case llvm::Triple::spir: 11407 case llvm::Triple::spir64: 11408 return SetCGInfo(new CommonSPIRTargetCodeGenInfo(Types)); 11409 case llvm::Triple::spirv32: 11410 case llvm::Triple::spirv64: 11411 return SetCGInfo(new SPIRVTargetCodeGenInfo(Types)); 11412 case llvm::Triple::ve: 11413 return SetCGInfo(new VETargetCodeGenInfo(Types)); 11414 } 11415 } 11416 11417 /// Create an OpenCL kernel for an enqueued block. 11418 /// 11419 /// The kernel has the same function type as the block invoke function. Its 11420 /// name is the name of the block invoke function postfixed with "_kernel". 11421 /// It simply calls the block invoke function then returns. 11422 llvm::Function * 11423 TargetCodeGenInfo::createEnqueuedBlockKernel(CodeGenFunction &CGF, 11424 llvm::Function *Invoke, 11425 llvm::Value *BlockLiteral) const { 11426 auto *InvokeFT = Invoke->getFunctionType(); 11427 llvm::SmallVector<llvm::Type *, 2> ArgTys; 11428 for (auto &P : InvokeFT->params()) 11429 ArgTys.push_back(P); 11430 auto &C = CGF.getLLVMContext(); 11431 std::string Name = Invoke->getName().str() + "_kernel"; 11432 auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false); 11433 auto *F = llvm::Function::Create(FT, llvm::GlobalValue::ExternalLinkage, Name, 11434 &CGF.CGM.getModule()); 11435 auto IP = CGF.Builder.saveIP(); 11436 auto *BB = llvm::BasicBlock::Create(C, "entry", F); 11437 auto &Builder = CGF.Builder; 11438 Builder.SetInsertPoint(BB); 11439 llvm::SmallVector<llvm::Value *, 2> Args; 11440 for (auto &A : F->args()) 11441 Args.push_back(&A); 11442 llvm::CallInst *call = Builder.CreateCall(Invoke, Args); 11443 call->setCallingConv(Invoke->getCallingConv()); 11444 Builder.CreateRetVoid(); 11445 Builder.restoreIP(IP); 11446 return F; 11447 } 11448 11449 /// Create an OpenCL kernel for an enqueued block. 11450 /// 11451 /// The type of the first argument (the block literal) is the struct type 11452 /// of the block literal instead of a pointer type. The first argument 11453 /// (block literal) is passed directly by value to the kernel. The kernel 11454 /// allocates the same type of struct on stack and stores the block literal 11455 /// to it and passes its pointer to the block invoke function. The kernel 11456 /// has "enqueued-block" function attribute and kernel argument metadata. 11457 llvm::Function *AMDGPUTargetCodeGenInfo::createEnqueuedBlockKernel( 11458 CodeGenFunction &CGF, llvm::Function *Invoke, 11459 llvm::Value *BlockLiteral) const { 11460 auto &Builder = CGF.Builder; 11461 auto &C = CGF.getLLVMContext(); 11462 11463 auto *BlockTy = BlockLiteral->getType()->getPointerElementType(); 11464 auto *InvokeFT = Invoke->getFunctionType(); 11465 llvm::SmallVector<llvm::Type *, 2> ArgTys; 11466 llvm::SmallVector<llvm::Metadata *, 8> AddressQuals; 11467 llvm::SmallVector<llvm::Metadata *, 8> AccessQuals; 11468 llvm::SmallVector<llvm::Metadata *, 8> ArgTypeNames; 11469 llvm::SmallVector<llvm::Metadata *, 8> ArgBaseTypeNames; 11470 llvm::SmallVector<llvm::Metadata *, 8> ArgTypeQuals; 11471 llvm::SmallVector<llvm::Metadata *, 8> ArgNames; 11472 11473 ArgTys.push_back(BlockTy); 11474 ArgTypeNames.push_back(llvm::MDString::get(C, "__block_literal")); 11475 AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(0))); 11476 ArgBaseTypeNames.push_back(llvm::MDString::get(C, "__block_literal")); 11477 ArgTypeQuals.push_back(llvm::MDString::get(C, "")); 11478 AccessQuals.push_back(llvm::MDString::get(C, "none")); 11479 ArgNames.push_back(llvm::MDString::get(C, "block_literal")); 11480 for (unsigned I = 1, E = InvokeFT->getNumParams(); I < E; ++I) { 11481 ArgTys.push_back(InvokeFT->getParamType(I)); 11482 ArgTypeNames.push_back(llvm::MDString::get(C, "void*")); 11483 AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(3))); 11484 AccessQuals.push_back(llvm::MDString::get(C, "none")); 11485 ArgBaseTypeNames.push_back(llvm::MDString::get(C, "void*")); 11486 ArgTypeQuals.push_back(llvm::MDString::get(C, "")); 11487 ArgNames.push_back( 11488 llvm::MDString::get(C, (Twine("local_arg") + Twine(I)).str())); 11489 } 11490 std::string Name = Invoke->getName().str() + "_kernel"; 11491 auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false); 11492 auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name, 11493 &CGF.CGM.getModule()); 11494 F->addFnAttr("enqueued-block"); 11495 auto IP = CGF.Builder.saveIP(); 11496 auto *BB = llvm::BasicBlock::Create(C, "entry", F); 11497 Builder.SetInsertPoint(BB); 11498 const auto BlockAlign = CGF.CGM.getDataLayout().getPrefTypeAlign(BlockTy); 11499 auto *BlockPtr = Builder.CreateAlloca(BlockTy, nullptr); 11500 BlockPtr->setAlignment(BlockAlign); 11501 Builder.CreateAlignedStore(F->arg_begin(), BlockPtr, BlockAlign); 11502 auto *Cast = Builder.CreatePointerCast(BlockPtr, InvokeFT->getParamType(0)); 11503 llvm::SmallVector<llvm::Value *, 2> Args; 11504 Args.push_back(Cast); 11505 for (auto I = F->arg_begin() + 1, E = F->arg_end(); I != E; ++I) 11506 Args.push_back(I); 11507 llvm::CallInst *call = Builder.CreateCall(Invoke, Args); 11508 call->setCallingConv(Invoke->getCallingConv()); 11509 Builder.CreateRetVoid(); 11510 Builder.restoreIP(IP); 11511 11512 F->setMetadata("kernel_arg_addr_space", llvm::MDNode::get(C, AddressQuals)); 11513 F->setMetadata("kernel_arg_access_qual", llvm::MDNode::get(C, AccessQuals)); 11514 F->setMetadata("kernel_arg_type", llvm::MDNode::get(C, ArgTypeNames)); 11515 F->setMetadata("kernel_arg_base_type", 11516 llvm::MDNode::get(C, ArgBaseTypeNames)); 11517 F->setMetadata("kernel_arg_type_qual", llvm::MDNode::get(C, ArgTypeQuals)); 11518 if (CGF.CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 11519 F->setMetadata("kernel_arg_name", llvm::MDNode::get(C, ArgNames)); 11520 11521 return F; 11522 } 11523