1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // These classes wrap the information about a call or function 10 // definition used to handle ABI compliancy. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "TargetInfo.h" 15 #include "ABIInfo.h" 16 #include "CGBlocks.h" 17 #include "CGCXXABI.h" 18 #include "CGValue.h" 19 #include "CodeGenFunction.h" 20 #include "clang/AST/RecordLayout.h" 21 #include "clang/Basic/CodeGenOptions.h" 22 #include "clang/CodeGen/CGFunctionInfo.h" 23 #include "clang/CodeGen/SwiftCallingConv.h" 24 #include "llvm/ADT/StringExtras.h" 25 #include "llvm/ADT/StringSwitch.h" 26 #include "llvm/ADT/Triple.h" 27 #include "llvm/ADT/Twine.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/Type.h" 30 #include "llvm/Support/raw_ostream.h" 31 #include <algorithm> // std::sort 32 33 using namespace clang; 34 using namespace CodeGen; 35 36 // Helper for coercing an aggregate argument or return value into an integer 37 // array of the same size (including padding) and alignment. This alternate 38 // coercion happens only for the RenderScript ABI and can be removed after 39 // runtimes that rely on it are no longer supported. 40 // 41 // RenderScript assumes that the size of the argument / return value in the IR 42 // is the same as the size of the corresponding qualified type. This helper 43 // coerces the aggregate type into an array of the same size (including 44 // padding). This coercion is used in lieu of expansion of struct members or 45 // other canonical coercions that return a coerced-type of larger size. 46 // 47 // Ty - The argument / return value type 48 // Context - The associated ASTContext 49 // LLVMContext - The associated LLVMContext 50 static ABIArgInfo coerceToIntArray(QualType Ty, 51 ASTContext &Context, 52 llvm::LLVMContext &LLVMContext) { 53 // Alignment and Size are measured in bits. 54 const uint64_t Size = Context.getTypeSize(Ty); 55 const uint64_t Alignment = Context.getTypeAlign(Ty); 56 llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment); 57 const uint64_t NumElements = (Size + Alignment - 1) / Alignment; 58 return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements)); 59 } 60 61 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder, 62 llvm::Value *Array, 63 llvm::Value *Value, 64 unsigned FirstIndex, 65 unsigned LastIndex) { 66 // Alternatively, we could emit this as a loop in the source. 67 for (unsigned I = FirstIndex; I <= LastIndex; ++I) { 68 llvm::Value *Cell = 69 Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I); 70 Builder.CreateAlignedStore(Value, Cell, CharUnits::One()); 71 } 72 } 73 74 static bool isAggregateTypeForABI(QualType T) { 75 return !CodeGenFunction::hasScalarEvaluationKind(T) || 76 T->isMemberFunctionPointerType(); 77 } 78 79 ABIArgInfo 80 ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByRef, bool Realign, 81 llvm::Type *Padding) const { 82 return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty), 83 ByRef, Realign, Padding); 84 } 85 86 ABIArgInfo 87 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const { 88 return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty), 89 /*ByRef*/ false, Realign); 90 } 91 92 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 93 QualType Ty) const { 94 return Address::invalid(); 95 } 96 97 ABIInfo::~ABIInfo() {} 98 99 /// Does the given lowering require more than the given number of 100 /// registers when expanded? 101 /// 102 /// This is intended to be the basis of a reasonable basic implementation 103 /// of should{Pass,Return}IndirectlyForSwift. 104 /// 105 /// For most targets, a limit of four total registers is reasonable; this 106 /// limits the amount of code required in order to move around the value 107 /// in case it wasn't produced immediately prior to the call by the caller 108 /// (or wasn't produced in exactly the right registers) or isn't used 109 /// immediately within the callee. But some targets may need to further 110 /// limit the register count due to an inability to support that many 111 /// return registers. 112 static bool occupiesMoreThan(CodeGenTypes &cgt, 113 ArrayRef<llvm::Type*> scalarTypes, 114 unsigned maxAllRegisters) { 115 unsigned intCount = 0, fpCount = 0; 116 for (llvm::Type *type : scalarTypes) { 117 if (type->isPointerTy()) { 118 intCount++; 119 } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) { 120 auto ptrWidth = cgt.getTarget().getPointerWidth(0); 121 intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth; 122 } else { 123 assert(type->isVectorTy() || type->isFloatingPointTy()); 124 fpCount++; 125 } 126 } 127 128 return (intCount + fpCount > maxAllRegisters); 129 } 130 131 bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, 132 llvm::Type *eltTy, 133 unsigned numElts) const { 134 // The default implementation of this assumes that the target guarantees 135 // 128-bit SIMD support but nothing more. 136 return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16); 137 } 138 139 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT, 140 CGCXXABI &CXXABI) { 141 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); 142 if (!RD) { 143 if (!RT->getDecl()->canPassInRegisters()) 144 return CGCXXABI::RAA_Indirect; 145 return CGCXXABI::RAA_Default; 146 } 147 return CXXABI.getRecordArgABI(RD); 148 } 149 150 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T, 151 CGCXXABI &CXXABI) { 152 const RecordType *RT = T->getAs<RecordType>(); 153 if (!RT) 154 return CGCXXABI::RAA_Default; 155 return getRecordArgABI(RT, CXXABI); 156 } 157 158 static bool classifyReturnType(const CGCXXABI &CXXABI, CGFunctionInfo &FI, 159 const ABIInfo &Info) { 160 QualType Ty = FI.getReturnType(); 161 162 if (const auto *RT = Ty->getAs<RecordType>()) 163 if (!isa<CXXRecordDecl>(RT->getDecl()) && 164 !RT->getDecl()->canPassInRegisters()) { 165 FI.getReturnInfo() = Info.getNaturalAlignIndirect(Ty); 166 return true; 167 } 168 169 return CXXABI.classifyReturnType(FI); 170 } 171 172 /// Pass transparent unions as if they were the type of the first element. Sema 173 /// should ensure that all elements of the union have the same "machine type". 174 static QualType useFirstFieldIfTransparentUnion(QualType Ty) { 175 if (const RecordType *UT = Ty->getAsUnionType()) { 176 const RecordDecl *UD = UT->getDecl(); 177 if (UD->hasAttr<TransparentUnionAttr>()) { 178 assert(!UD->field_empty() && "sema created an empty transparent union"); 179 return UD->field_begin()->getType(); 180 } 181 } 182 return Ty; 183 } 184 185 CGCXXABI &ABIInfo::getCXXABI() const { 186 return CGT.getCXXABI(); 187 } 188 189 ASTContext &ABIInfo::getContext() const { 190 return CGT.getContext(); 191 } 192 193 llvm::LLVMContext &ABIInfo::getVMContext() const { 194 return CGT.getLLVMContext(); 195 } 196 197 const llvm::DataLayout &ABIInfo::getDataLayout() const { 198 return CGT.getDataLayout(); 199 } 200 201 const TargetInfo &ABIInfo::getTarget() const { 202 return CGT.getTarget(); 203 } 204 205 const CodeGenOptions &ABIInfo::getCodeGenOpts() const { 206 return CGT.getCodeGenOpts(); 207 } 208 209 bool ABIInfo::isAndroid() const { return getTarget().getTriple().isAndroid(); } 210 211 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 212 return false; 213 } 214 215 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 216 uint64_t Members) const { 217 return false; 218 } 219 220 LLVM_DUMP_METHOD void ABIArgInfo::dump() const { 221 raw_ostream &OS = llvm::errs(); 222 OS << "(ABIArgInfo Kind="; 223 switch (TheKind) { 224 case Direct: 225 OS << "Direct Type="; 226 if (llvm::Type *Ty = getCoerceToType()) 227 Ty->print(OS); 228 else 229 OS << "null"; 230 break; 231 case Extend: 232 OS << "Extend"; 233 break; 234 case Ignore: 235 OS << "Ignore"; 236 break; 237 case InAlloca: 238 OS << "InAlloca Offset=" << getInAllocaFieldIndex(); 239 break; 240 case Indirect: 241 OS << "Indirect Align=" << getIndirectAlign().getQuantity() 242 << " ByVal=" << getIndirectByVal() 243 << " Realign=" << getIndirectRealign(); 244 break; 245 case Expand: 246 OS << "Expand"; 247 break; 248 case CoerceAndExpand: 249 OS << "CoerceAndExpand Type="; 250 getCoerceAndExpandType()->print(OS); 251 break; 252 } 253 OS << ")\n"; 254 } 255 256 // Dynamically round a pointer up to a multiple of the given alignment. 257 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF, 258 llvm::Value *Ptr, 259 CharUnits Align) { 260 llvm::Value *PtrAsInt = Ptr; 261 // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align; 262 PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy); 263 PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt, 264 llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1)); 265 PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt, 266 llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity())); 267 PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt, 268 Ptr->getType(), 269 Ptr->getName() + ".aligned"); 270 return PtrAsInt; 271 } 272 273 /// Emit va_arg for a platform using the common void* representation, 274 /// where arguments are simply emitted in an array of slots on the stack. 275 /// 276 /// This version implements the core direct-value passing rules. 277 /// 278 /// \param SlotSize - The size and alignment of a stack slot. 279 /// Each argument will be allocated to a multiple of this number of 280 /// slots, and all the slots will be aligned to this value. 281 /// \param AllowHigherAlign - The slot alignment is not a cap; 282 /// an argument type with an alignment greater than the slot size 283 /// will be emitted on a higher-alignment address, potentially 284 /// leaving one or more empty slots behind as padding. If this 285 /// is false, the returned address might be less-aligned than 286 /// DirectAlign. 287 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF, 288 Address VAListAddr, 289 llvm::Type *DirectTy, 290 CharUnits DirectSize, 291 CharUnits DirectAlign, 292 CharUnits SlotSize, 293 bool AllowHigherAlign) { 294 // Cast the element type to i8* if necessary. Some platforms define 295 // va_list as a struct containing an i8* instead of just an i8*. 296 if (VAListAddr.getElementType() != CGF.Int8PtrTy) 297 VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy); 298 299 llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur"); 300 301 // If the CC aligns values higher than the slot size, do so if needed. 302 Address Addr = Address::invalid(); 303 if (AllowHigherAlign && DirectAlign > SlotSize) { 304 Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign), 305 DirectAlign); 306 } else { 307 Addr = Address(Ptr, SlotSize); 308 } 309 310 // Advance the pointer past the argument, then store that back. 311 CharUnits FullDirectSize = DirectSize.alignTo(SlotSize); 312 Address NextPtr = 313 CGF.Builder.CreateConstInBoundsByteGEP(Addr, FullDirectSize, "argp.next"); 314 CGF.Builder.CreateStore(NextPtr.getPointer(), VAListAddr); 315 316 // If the argument is smaller than a slot, and this is a big-endian 317 // target, the argument will be right-adjusted in its slot. 318 if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() && 319 !DirectTy->isStructTy()) { 320 Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize); 321 } 322 323 Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy); 324 return Addr; 325 } 326 327 /// Emit va_arg for a platform using the common void* representation, 328 /// where arguments are simply emitted in an array of slots on the stack. 329 /// 330 /// \param IsIndirect - Values of this type are passed indirectly. 331 /// \param ValueInfo - The size and alignment of this type, generally 332 /// computed with getContext().getTypeInfoInChars(ValueTy). 333 /// \param SlotSizeAndAlign - The size and alignment of a stack slot. 334 /// Each argument will be allocated to a multiple of this number of 335 /// slots, and all the slots will be aligned to this value. 336 /// \param AllowHigherAlign - The slot alignment is not a cap; 337 /// an argument type with an alignment greater than the slot size 338 /// will be emitted on a higher-alignment address, potentially 339 /// leaving one or more empty slots behind as padding. 340 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr, 341 QualType ValueTy, bool IsIndirect, 342 std::pair<CharUnits, CharUnits> ValueInfo, 343 CharUnits SlotSizeAndAlign, 344 bool AllowHigherAlign) { 345 // The size and alignment of the value that was passed directly. 346 CharUnits DirectSize, DirectAlign; 347 if (IsIndirect) { 348 DirectSize = CGF.getPointerSize(); 349 DirectAlign = CGF.getPointerAlign(); 350 } else { 351 DirectSize = ValueInfo.first; 352 DirectAlign = ValueInfo.second; 353 } 354 355 // Cast the address we've calculated to the right type. 356 llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy); 357 if (IsIndirect) 358 DirectTy = DirectTy->getPointerTo(0); 359 360 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy, 361 DirectSize, DirectAlign, 362 SlotSizeAndAlign, 363 AllowHigherAlign); 364 365 if (IsIndirect) { 366 Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.second); 367 } 368 369 return Addr; 370 371 } 372 373 static Address emitMergePHI(CodeGenFunction &CGF, 374 Address Addr1, llvm::BasicBlock *Block1, 375 Address Addr2, llvm::BasicBlock *Block2, 376 const llvm::Twine &Name = "") { 377 assert(Addr1.getType() == Addr2.getType()); 378 llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name); 379 PHI->addIncoming(Addr1.getPointer(), Block1); 380 PHI->addIncoming(Addr2.getPointer(), Block2); 381 CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment()); 382 return Address(PHI, Align); 383 } 384 385 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; } 386 387 // If someone can figure out a general rule for this, that would be great. 388 // It's probably just doomed to be platform-dependent, though. 389 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const { 390 // Verified for: 391 // x86-64 FreeBSD, Linux, Darwin 392 // x86-32 FreeBSD, Linux, Darwin 393 // PowerPC Linux, Darwin 394 // ARM Darwin (*not* EABI) 395 // AArch64 Linux 396 return 32; 397 } 398 399 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args, 400 const FunctionNoProtoType *fnType) const { 401 // The following conventions are known to require this to be false: 402 // x86_stdcall 403 // MIPS 404 // For everything else, we just prefer false unless we opt out. 405 return false; 406 } 407 408 void 409 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib, 410 llvm::SmallString<24> &Opt) const { 411 // This assumes the user is passing a library name like "rt" instead of a 412 // filename like "librt.a/so", and that they don't care whether it's static or 413 // dynamic. 414 Opt = "-l"; 415 Opt += Lib; 416 } 417 418 unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const { 419 // OpenCL kernels are called via an explicit runtime API with arguments 420 // set with clSetKernelArg(), not as normal sub-functions. 421 // Return SPIR_KERNEL by default as the kernel calling convention to 422 // ensure the fingerprint is fixed such way that each OpenCL argument 423 // gets one matching argument in the produced kernel function argument 424 // list to enable feasible implementation of clSetKernelArg() with 425 // aggregates etc. In case we would use the default C calling conv here, 426 // clSetKernelArg() might break depending on the target-specific 427 // conventions; different targets might split structs passed as values 428 // to multiple function arguments etc. 429 return llvm::CallingConv::SPIR_KERNEL; 430 } 431 432 llvm::Constant *TargetCodeGenInfo::getNullPointer(const CodeGen::CodeGenModule &CGM, 433 llvm::PointerType *T, QualType QT) const { 434 return llvm::ConstantPointerNull::get(T); 435 } 436 437 LangAS TargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM, 438 const VarDecl *D) const { 439 assert(!CGM.getLangOpts().OpenCL && 440 !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && 441 "Address space agnostic languages only"); 442 return D ? D->getType().getAddressSpace() : LangAS::Default; 443 } 444 445 llvm::Value *TargetCodeGenInfo::performAddrSpaceCast( 446 CodeGen::CodeGenFunction &CGF, llvm::Value *Src, LangAS SrcAddr, 447 LangAS DestAddr, llvm::Type *DestTy, bool isNonNull) const { 448 // Since target may map different address spaces in AST to the same address 449 // space, an address space conversion may end up as a bitcast. 450 if (auto *C = dyn_cast<llvm::Constant>(Src)) 451 return performAddrSpaceCast(CGF.CGM, C, SrcAddr, DestAddr, DestTy); 452 return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DestTy); 453 } 454 455 llvm::Constant * 456 TargetCodeGenInfo::performAddrSpaceCast(CodeGenModule &CGM, llvm::Constant *Src, 457 LangAS SrcAddr, LangAS DestAddr, 458 llvm::Type *DestTy) const { 459 // Since target may map different address spaces in AST to the same address 460 // space, an address space conversion may end up as a bitcast. 461 return llvm::ConstantExpr::getPointerCast(Src, DestTy); 462 } 463 464 llvm::SyncScope::ID 465 TargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts, 466 SyncScope Scope, 467 llvm::AtomicOrdering Ordering, 468 llvm::LLVMContext &Ctx) const { 469 return Ctx.getOrInsertSyncScopeID(""); /* default sync scope */ 470 } 471 472 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays); 473 474 /// isEmptyField - Return true iff a the field is "empty", that is it 475 /// is an unnamed bit-field or an (array of) empty record(s). 476 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD, 477 bool AllowArrays) { 478 if (FD->isUnnamedBitfield()) 479 return true; 480 481 QualType FT = FD->getType(); 482 483 // Constant arrays of empty records count as empty, strip them off. 484 // Constant arrays of zero length always count as empty. 485 if (AllowArrays) 486 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 487 if (AT->getSize() == 0) 488 return true; 489 FT = AT->getElementType(); 490 } 491 492 const RecordType *RT = FT->getAs<RecordType>(); 493 if (!RT) 494 return false; 495 496 // C++ record fields are never empty, at least in the Itanium ABI. 497 // 498 // FIXME: We should use a predicate for whether this behavior is true in the 499 // current ABI. 500 if (isa<CXXRecordDecl>(RT->getDecl())) 501 return false; 502 503 return isEmptyRecord(Context, FT, AllowArrays); 504 } 505 506 /// isEmptyRecord - Return true iff a structure contains only empty 507 /// fields. Note that a structure with a flexible array member is not 508 /// considered empty. 509 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) { 510 const RecordType *RT = T->getAs<RecordType>(); 511 if (!RT) 512 return false; 513 const RecordDecl *RD = RT->getDecl(); 514 if (RD->hasFlexibleArrayMember()) 515 return false; 516 517 // If this is a C++ record, check the bases first. 518 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 519 for (const auto &I : CXXRD->bases()) 520 if (!isEmptyRecord(Context, I.getType(), true)) 521 return false; 522 523 for (const auto *I : RD->fields()) 524 if (!isEmptyField(Context, I, AllowArrays)) 525 return false; 526 return true; 527 } 528 529 /// isSingleElementStruct - Determine if a structure is a "single 530 /// element struct", i.e. it has exactly one non-empty field or 531 /// exactly one field which is itself a single element 532 /// struct. Structures with flexible array members are never 533 /// considered single element structs. 534 /// 535 /// \return The field declaration for the single non-empty field, if 536 /// it exists. 537 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) { 538 const RecordType *RT = T->getAs<RecordType>(); 539 if (!RT) 540 return nullptr; 541 542 const RecordDecl *RD = RT->getDecl(); 543 if (RD->hasFlexibleArrayMember()) 544 return nullptr; 545 546 const Type *Found = nullptr; 547 548 // If this is a C++ record, check the bases first. 549 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 550 for (const auto &I : CXXRD->bases()) { 551 // Ignore empty records. 552 if (isEmptyRecord(Context, I.getType(), true)) 553 continue; 554 555 // If we already found an element then this isn't a single-element struct. 556 if (Found) 557 return nullptr; 558 559 // If this is non-empty and not a single element struct, the composite 560 // cannot be a single element struct. 561 Found = isSingleElementStruct(I.getType(), Context); 562 if (!Found) 563 return nullptr; 564 } 565 } 566 567 // Check for single element. 568 for (const auto *FD : RD->fields()) { 569 QualType FT = FD->getType(); 570 571 // Ignore empty fields. 572 if (isEmptyField(Context, FD, true)) 573 continue; 574 575 // If we already found an element then this isn't a single-element 576 // struct. 577 if (Found) 578 return nullptr; 579 580 // Treat single element arrays as the element. 581 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 582 if (AT->getSize().getZExtValue() != 1) 583 break; 584 FT = AT->getElementType(); 585 } 586 587 if (!isAggregateTypeForABI(FT)) { 588 Found = FT.getTypePtr(); 589 } else { 590 Found = isSingleElementStruct(FT, Context); 591 if (!Found) 592 return nullptr; 593 } 594 } 595 596 // We don't consider a struct a single-element struct if it has 597 // padding beyond the element type. 598 if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T)) 599 return nullptr; 600 601 return Found; 602 } 603 604 namespace { 605 Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty, 606 const ABIArgInfo &AI) { 607 // This default implementation defers to the llvm backend's va_arg 608 // instruction. It can handle only passing arguments directly 609 // (typically only handled in the backend for primitive types), or 610 // aggregates passed indirectly by pointer (NOTE: if the "byval" 611 // flag has ABI impact in the callee, this implementation cannot 612 // work.) 613 614 // Only a few cases are covered here at the moment -- those needed 615 // by the default abi. 616 llvm::Value *Val; 617 618 if (AI.isIndirect()) { 619 assert(!AI.getPaddingType() && 620 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 621 assert( 622 !AI.getIndirectRealign() && 623 "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!"); 624 625 auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty); 626 CharUnits TyAlignForABI = TyInfo.second; 627 628 llvm::Type *BaseTy = 629 llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); 630 llvm::Value *Addr = 631 CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy); 632 return Address(Addr, TyAlignForABI); 633 } else { 634 assert((AI.isDirect() || AI.isExtend()) && 635 "Unexpected ArgInfo Kind in generic VAArg emitter!"); 636 637 assert(!AI.getInReg() && 638 "Unexpected InReg seen in arginfo in generic VAArg emitter!"); 639 assert(!AI.getPaddingType() && 640 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 641 assert(!AI.getDirectOffset() && 642 "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!"); 643 assert(!AI.getCoerceToType() && 644 "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!"); 645 646 Address Temp = CGF.CreateMemTemp(Ty, "varet"); 647 Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), CGF.ConvertType(Ty)); 648 CGF.Builder.CreateStore(Val, Temp); 649 return Temp; 650 } 651 } 652 653 /// DefaultABIInfo - The default implementation for ABI specific 654 /// details. This implementation provides information which results in 655 /// self-consistent and sensible LLVM IR generation, but does not 656 /// conform to any particular ABI. 657 class DefaultABIInfo : public ABIInfo { 658 public: 659 DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 660 661 ABIArgInfo classifyReturnType(QualType RetTy) const; 662 ABIArgInfo classifyArgumentType(QualType RetTy) const; 663 664 void computeInfo(CGFunctionInfo &FI) const override { 665 if (!getCXXABI().classifyReturnType(FI)) 666 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 667 for (auto &I : FI.arguments()) 668 I.info = classifyArgumentType(I.type); 669 } 670 671 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 672 QualType Ty) const override { 673 return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty)); 674 } 675 }; 676 677 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo { 678 public: 679 DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 680 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 681 }; 682 683 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const { 684 Ty = useFirstFieldIfTransparentUnion(Ty); 685 686 if (isAggregateTypeForABI(Ty)) { 687 // Records with non-trivial destructors/copy-constructors should not be 688 // passed by value. 689 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 690 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 691 692 return getNaturalAlignIndirect(Ty); 693 } 694 695 // Treat an enum type as its underlying type. 696 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 697 Ty = EnumTy->getDecl()->getIntegerType(); 698 699 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 700 : ABIArgInfo::getDirect()); 701 } 702 703 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const { 704 if (RetTy->isVoidType()) 705 return ABIArgInfo::getIgnore(); 706 707 if (isAggregateTypeForABI(RetTy)) 708 return getNaturalAlignIndirect(RetTy); 709 710 // Treat an enum type as its underlying type. 711 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 712 RetTy = EnumTy->getDecl()->getIntegerType(); 713 714 return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 715 : ABIArgInfo::getDirect()); 716 } 717 718 //===----------------------------------------------------------------------===// 719 // WebAssembly ABI Implementation 720 // 721 // This is a very simple ABI that relies a lot on DefaultABIInfo. 722 //===----------------------------------------------------------------------===// 723 724 class WebAssemblyABIInfo final : public SwiftABIInfo { 725 DefaultABIInfo defaultInfo; 726 727 public: 728 explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT) 729 : SwiftABIInfo(CGT), defaultInfo(CGT) {} 730 731 private: 732 ABIArgInfo classifyReturnType(QualType RetTy) const; 733 ABIArgInfo classifyArgumentType(QualType Ty) const; 734 735 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 736 // non-virtual, but computeInfo and EmitVAArg are virtual, so we 737 // overload them. 738 void computeInfo(CGFunctionInfo &FI) const override { 739 if (!getCXXABI().classifyReturnType(FI)) 740 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 741 for (auto &Arg : FI.arguments()) 742 Arg.info = classifyArgumentType(Arg.type); 743 } 744 745 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 746 QualType Ty) const override; 747 748 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 749 bool asReturnValue) const override { 750 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 751 } 752 753 bool isSwiftErrorInRegister() const override { 754 return false; 755 } 756 }; 757 758 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo { 759 public: 760 explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 761 : TargetCodeGenInfo(new WebAssemblyABIInfo(CGT)) {} 762 763 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 764 CodeGen::CodeGenModule &CGM) const override { 765 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 766 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 767 if (const auto *Attr = FD->getAttr<WebAssemblyImportModuleAttr>()) { 768 llvm::Function *Fn = cast<llvm::Function>(GV); 769 llvm::AttrBuilder B; 770 B.addAttribute("wasm-import-module", Attr->getImportModule()); 771 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 772 } 773 if (const auto *Attr = FD->getAttr<WebAssemblyImportNameAttr>()) { 774 llvm::Function *Fn = cast<llvm::Function>(GV); 775 llvm::AttrBuilder B; 776 B.addAttribute("wasm-import-name", Attr->getImportName()); 777 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 778 } 779 } 780 781 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 782 llvm::Function *Fn = cast<llvm::Function>(GV); 783 if (!FD->doesThisDeclarationHaveABody() && !FD->hasPrototype()) 784 Fn->addFnAttr("no-prototype"); 785 } 786 } 787 }; 788 789 /// Classify argument of given type \p Ty. 790 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const { 791 Ty = useFirstFieldIfTransparentUnion(Ty); 792 793 if (isAggregateTypeForABI(Ty)) { 794 // Records with non-trivial destructors/copy-constructors should not be 795 // passed by value. 796 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 797 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 798 // Ignore empty structs/unions. 799 if (isEmptyRecord(getContext(), Ty, true)) 800 return ABIArgInfo::getIgnore(); 801 // Lower single-element structs to just pass a regular value. TODO: We 802 // could do reasonable-size multiple-element structs too, using getExpand(), 803 // though watch out for things like bitfields. 804 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 805 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 806 } 807 808 // Otherwise just do the default thing. 809 return defaultInfo.classifyArgumentType(Ty); 810 } 811 812 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const { 813 if (isAggregateTypeForABI(RetTy)) { 814 // Records with non-trivial destructors/copy-constructors should not be 815 // returned by value. 816 if (!getRecordArgABI(RetTy, getCXXABI())) { 817 // Ignore empty structs/unions. 818 if (isEmptyRecord(getContext(), RetTy, true)) 819 return ABIArgInfo::getIgnore(); 820 // Lower single-element structs to just return a regular value. TODO: We 821 // could do reasonable-size multiple-element structs too, using 822 // ABIArgInfo::getDirect(). 823 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 824 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 825 } 826 } 827 828 // Otherwise just do the default thing. 829 return defaultInfo.classifyReturnType(RetTy); 830 } 831 832 Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 833 QualType Ty) const { 834 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect=*/ false, 835 getContext().getTypeInfoInChars(Ty), 836 CharUnits::fromQuantity(4), 837 /*AllowHigherAlign=*/ true); 838 } 839 840 //===----------------------------------------------------------------------===// 841 // le32/PNaCl bitcode ABI Implementation 842 // 843 // This is a simplified version of the x86_32 ABI. Arguments and return values 844 // are always passed on the stack. 845 //===----------------------------------------------------------------------===// 846 847 class PNaClABIInfo : public ABIInfo { 848 public: 849 PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 850 851 ABIArgInfo classifyReturnType(QualType RetTy) const; 852 ABIArgInfo classifyArgumentType(QualType RetTy) const; 853 854 void computeInfo(CGFunctionInfo &FI) const override; 855 Address EmitVAArg(CodeGenFunction &CGF, 856 Address VAListAddr, QualType Ty) const override; 857 }; 858 859 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo { 860 public: 861 PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 862 : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {} 863 }; 864 865 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const { 866 if (!getCXXABI().classifyReturnType(FI)) 867 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 868 869 for (auto &I : FI.arguments()) 870 I.info = classifyArgumentType(I.type); 871 } 872 873 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 874 QualType Ty) const { 875 // The PNaCL ABI is a bit odd, in that varargs don't use normal 876 // function classification. Structs get passed directly for varargs 877 // functions, through a rewriting transform in 878 // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows 879 // this target to actually support a va_arg instructions with an 880 // aggregate type, unlike other targets. 881 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 882 } 883 884 /// Classify argument of given type \p Ty. 885 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const { 886 if (isAggregateTypeForABI(Ty)) { 887 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 888 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 889 return getNaturalAlignIndirect(Ty); 890 } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 891 // Treat an enum type as its underlying type. 892 Ty = EnumTy->getDecl()->getIntegerType(); 893 } else if (Ty->isFloatingType()) { 894 // Floating-point types don't go inreg. 895 return ABIArgInfo::getDirect(); 896 } 897 898 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 899 : ABIArgInfo::getDirect()); 900 } 901 902 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const { 903 if (RetTy->isVoidType()) 904 return ABIArgInfo::getIgnore(); 905 906 // In the PNaCl ABI we always return records/structures on the stack. 907 if (isAggregateTypeForABI(RetTy)) 908 return getNaturalAlignIndirect(RetTy); 909 910 // Treat an enum type as its underlying type. 911 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 912 RetTy = EnumTy->getDecl()->getIntegerType(); 913 914 return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 915 : ABIArgInfo::getDirect()); 916 } 917 918 /// IsX86_MMXType - Return true if this is an MMX type. 919 bool IsX86_MMXType(llvm::Type *IRType) { 920 // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>. 921 return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 && 922 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() && 923 IRType->getScalarSizeInBits() != 64; 924 } 925 926 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 927 StringRef Constraint, 928 llvm::Type* Ty) { 929 bool IsMMXCons = llvm::StringSwitch<bool>(Constraint) 930 .Cases("y", "&y", "^Ym", true) 931 .Default(false); 932 if (IsMMXCons && Ty->isVectorTy()) { 933 if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) { 934 // Invalid MMX constraint 935 return nullptr; 936 } 937 938 return llvm::Type::getX86_MMXTy(CGF.getLLVMContext()); 939 } 940 941 // No operation needed 942 return Ty; 943 } 944 945 /// Returns true if this type can be passed in SSE registers with the 946 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64. 947 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) { 948 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 949 if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) { 950 if (BT->getKind() == BuiltinType::LongDouble) { 951 if (&Context.getTargetInfo().getLongDoubleFormat() == 952 &llvm::APFloat::x87DoubleExtended()) 953 return false; 954 } 955 return true; 956 } 957 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 958 // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX 959 // registers specially. 960 unsigned VecSize = Context.getTypeSize(VT); 961 if (VecSize == 128 || VecSize == 256 || VecSize == 512) 962 return true; 963 } 964 return false; 965 } 966 967 /// Returns true if this aggregate is small enough to be passed in SSE registers 968 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64. 969 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) { 970 return NumMembers <= 4; 971 } 972 973 /// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86. 974 static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) { 975 auto AI = ABIArgInfo::getDirect(T); 976 AI.setInReg(true); 977 AI.setCanBeFlattened(false); 978 return AI; 979 } 980 981 //===----------------------------------------------------------------------===// 982 // X86-32 ABI Implementation 983 //===----------------------------------------------------------------------===// 984 985 /// Similar to llvm::CCState, but for Clang. 986 struct CCState { 987 CCState(unsigned CC) : CC(CC), FreeRegs(0), FreeSSERegs(0) {} 988 989 unsigned CC; 990 unsigned FreeRegs; 991 unsigned FreeSSERegs; 992 }; 993 994 enum { 995 // Vectorcall only allows the first 6 parameters to be passed in registers. 996 VectorcallMaxParamNumAsReg = 6 997 }; 998 999 /// X86_32ABIInfo - The X86-32 ABI information. 1000 class X86_32ABIInfo : public SwiftABIInfo { 1001 enum Class { 1002 Integer, 1003 Float 1004 }; 1005 1006 static const unsigned MinABIStackAlignInBytes = 4; 1007 1008 bool IsDarwinVectorABI; 1009 bool IsRetSmallStructInRegABI; 1010 bool IsWin32StructABI; 1011 bool IsSoftFloatABI; 1012 bool IsMCUABI; 1013 unsigned DefaultNumRegisterParameters; 1014 1015 static bool isRegisterSize(unsigned Size) { 1016 return (Size == 8 || Size == 16 || Size == 32 || Size == 64); 1017 } 1018 1019 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 1020 // FIXME: Assumes vectorcall is in use. 1021 return isX86VectorTypeForVectorCall(getContext(), Ty); 1022 } 1023 1024 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 1025 uint64_t NumMembers) const override { 1026 // FIXME: Assumes vectorcall is in use. 1027 return isX86VectorCallAggregateSmallEnough(NumMembers); 1028 } 1029 1030 bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const; 1031 1032 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 1033 /// such that the argument will be passed in memory. 1034 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 1035 1036 ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const; 1037 1038 /// Return the alignment to use for the given type on the stack. 1039 unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const; 1040 1041 Class classify(QualType Ty) const; 1042 ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const; 1043 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 1044 1045 /// Updates the number of available free registers, returns 1046 /// true if any registers were allocated. 1047 bool updateFreeRegs(QualType Ty, CCState &State) const; 1048 1049 bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg, 1050 bool &NeedsPadding) const; 1051 bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const; 1052 1053 bool canExpandIndirectArgument(QualType Ty) const; 1054 1055 /// Rewrite the function info so that all memory arguments use 1056 /// inalloca. 1057 void rewriteWithInAlloca(CGFunctionInfo &FI) const; 1058 1059 void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1060 CharUnits &StackOffset, ABIArgInfo &Info, 1061 QualType Type) const; 1062 void computeVectorCallArgs(CGFunctionInfo &FI, CCState &State, 1063 bool &UsedInAlloca) const; 1064 1065 public: 1066 1067 void computeInfo(CGFunctionInfo &FI) const override; 1068 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 1069 QualType Ty) const override; 1070 1071 X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 1072 bool RetSmallStructInRegABI, bool Win32StructABI, 1073 unsigned NumRegisterParameters, bool SoftFloatABI) 1074 : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI), 1075 IsRetSmallStructInRegABI(RetSmallStructInRegABI), 1076 IsWin32StructABI(Win32StructABI), 1077 IsSoftFloatABI(SoftFloatABI), 1078 IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()), 1079 DefaultNumRegisterParameters(NumRegisterParameters) {} 1080 1081 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 1082 bool asReturnValue) const override { 1083 // LLVM's x86-32 lowering currently only assigns up to three 1084 // integer registers and three fp registers. Oddly, it'll use up to 1085 // four vector registers for vectors, but those can overlap with the 1086 // scalar registers. 1087 return occupiesMoreThan(CGT, scalars, /*total*/ 3); 1088 } 1089 1090 bool isSwiftErrorInRegister() const override { 1091 // x86-32 lowering does not support passing swifterror in a register. 1092 return false; 1093 } 1094 }; 1095 1096 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo { 1097 public: 1098 X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 1099 bool RetSmallStructInRegABI, bool Win32StructABI, 1100 unsigned NumRegisterParameters, bool SoftFloatABI) 1101 : TargetCodeGenInfo(new X86_32ABIInfo( 1102 CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI, 1103 NumRegisterParameters, SoftFloatABI)) {} 1104 1105 static bool isStructReturnInRegABI( 1106 const llvm::Triple &Triple, const CodeGenOptions &Opts); 1107 1108 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 1109 CodeGen::CodeGenModule &CGM) const override; 1110 1111 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 1112 // Darwin uses different dwarf register numbers for EH. 1113 if (CGM.getTarget().getTriple().isOSDarwin()) return 5; 1114 return 4; 1115 } 1116 1117 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 1118 llvm::Value *Address) const override; 1119 1120 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 1121 StringRef Constraint, 1122 llvm::Type* Ty) const override { 1123 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 1124 } 1125 1126 void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue, 1127 std::string &Constraints, 1128 std::vector<llvm::Type *> &ResultRegTypes, 1129 std::vector<llvm::Type *> &ResultTruncRegTypes, 1130 std::vector<LValue> &ResultRegDests, 1131 std::string &AsmString, 1132 unsigned NumOutputs) const override; 1133 1134 llvm::Constant * 1135 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 1136 unsigned Sig = (0xeb << 0) | // jmp rel8 1137 (0x06 << 8) | // .+0x08 1138 ('v' << 16) | 1139 ('2' << 24); 1140 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 1141 } 1142 1143 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 1144 return "movl\t%ebp, %ebp" 1145 "\t\t// marker for objc_retainAutoreleaseReturnValue"; 1146 } 1147 }; 1148 1149 } 1150 1151 /// Rewrite input constraint references after adding some output constraints. 1152 /// In the case where there is one output and one input and we add one output, 1153 /// we need to replace all operand references greater than or equal to 1: 1154 /// mov $0, $1 1155 /// mov eax, $1 1156 /// The result will be: 1157 /// mov $0, $2 1158 /// mov eax, $2 1159 static void rewriteInputConstraintReferences(unsigned FirstIn, 1160 unsigned NumNewOuts, 1161 std::string &AsmString) { 1162 std::string Buf; 1163 llvm::raw_string_ostream OS(Buf); 1164 size_t Pos = 0; 1165 while (Pos < AsmString.size()) { 1166 size_t DollarStart = AsmString.find('$', Pos); 1167 if (DollarStart == std::string::npos) 1168 DollarStart = AsmString.size(); 1169 size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart); 1170 if (DollarEnd == std::string::npos) 1171 DollarEnd = AsmString.size(); 1172 OS << StringRef(&AsmString[Pos], DollarEnd - Pos); 1173 Pos = DollarEnd; 1174 size_t NumDollars = DollarEnd - DollarStart; 1175 if (NumDollars % 2 != 0 && Pos < AsmString.size()) { 1176 // We have an operand reference. 1177 size_t DigitStart = Pos; 1178 size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart); 1179 if (DigitEnd == std::string::npos) 1180 DigitEnd = AsmString.size(); 1181 StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart); 1182 unsigned OperandIndex; 1183 if (!OperandStr.getAsInteger(10, OperandIndex)) { 1184 if (OperandIndex >= FirstIn) 1185 OperandIndex += NumNewOuts; 1186 OS << OperandIndex; 1187 } else { 1188 OS << OperandStr; 1189 } 1190 Pos = DigitEnd; 1191 } 1192 } 1193 AsmString = std::move(OS.str()); 1194 } 1195 1196 /// Add output constraints for EAX:EDX because they are return registers. 1197 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs( 1198 CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints, 1199 std::vector<llvm::Type *> &ResultRegTypes, 1200 std::vector<llvm::Type *> &ResultTruncRegTypes, 1201 std::vector<LValue> &ResultRegDests, std::string &AsmString, 1202 unsigned NumOutputs) const { 1203 uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType()); 1204 1205 // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is 1206 // larger. 1207 if (!Constraints.empty()) 1208 Constraints += ','; 1209 if (RetWidth <= 32) { 1210 Constraints += "={eax}"; 1211 ResultRegTypes.push_back(CGF.Int32Ty); 1212 } else { 1213 // Use the 'A' constraint for EAX:EDX. 1214 Constraints += "=A"; 1215 ResultRegTypes.push_back(CGF.Int64Ty); 1216 } 1217 1218 // Truncate EAX or EAX:EDX to an integer of the appropriate size. 1219 llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth); 1220 ResultTruncRegTypes.push_back(CoerceTy); 1221 1222 // Coerce the integer by bitcasting the return slot pointer. 1223 ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(), 1224 CoerceTy->getPointerTo())); 1225 ResultRegDests.push_back(ReturnSlot); 1226 1227 rewriteInputConstraintReferences(NumOutputs, 1, AsmString); 1228 } 1229 1230 /// shouldReturnTypeInRegister - Determine if the given type should be 1231 /// returned in a register (for the Darwin and MCU ABI). 1232 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty, 1233 ASTContext &Context) const { 1234 uint64_t Size = Context.getTypeSize(Ty); 1235 1236 // For i386, type must be register sized. 1237 // For the MCU ABI, it only needs to be <= 8-byte 1238 if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size))) 1239 return false; 1240 1241 if (Ty->isVectorType()) { 1242 // 64- and 128- bit vectors inside structures are not returned in 1243 // registers. 1244 if (Size == 64 || Size == 128) 1245 return false; 1246 1247 return true; 1248 } 1249 1250 // If this is a builtin, pointer, enum, complex type, member pointer, or 1251 // member function pointer it is ok. 1252 if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() || 1253 Ty->isAnyComplexType() || Ty->isEnumeralType() || 1254 Ty->isBlockPointerType() || Ty->isMemberPointerType()) 1255 return true; 1256 1257 // Arrays are treated like records. 1258 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) 1259 return shouldReturnTypeInRegister(AT->getElementType(), Context); 1260 1261 // Otherwise, it must be a record type. 1262 const RecordType *RT = Ty->getAs<RecordType>(); 1263 if (!RT) return false; 1264 1265 // FIXME: Traverse bases here too. 1266 1267 // Structure types are passed in register if all fields would be 1268 // passed in a register. 1269 for (const auto *FD : RT->getDecl()->fields()) { 1270 // Empty fields are ignored. 1271 if (isEmptyField(Context, FD, true)) 1272 continue; 1273 1274 // Check fields recursively. 1275 if (!shouldReturnTypeInRegister(FD->getType(), Context)) 1276 return false; 1277 } 1278 return true; 1279 } 1280 1281 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) { 1282 // Treat complex types as the element type. 1283 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 1284 Ty = CTy->getElementType(); 1285 1286 // Check for a type which we know has a simple scalar argument-passing 1287 // convention without any padding. (We're specifically looking for 32 1288 // and 64-bit integer and integer-equivalents, float, and double.) 1289 if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() && 1290 !Ty->isEnumeralType() && !Ty->isBlockPointerType()) 1291 return false; 1292 1293 uint64_t Size = Context.getTypeSize(Ty); 1294 return Size == 32 || Size == 64; 1295 } 1296 1297 static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD, 1298 uint64_t &Size) { 1299 for (const auto *FD : RD->fields()) { 1300 // Scalar arguments on the stack get 4 byte alignment on x86. If the 1301 // argument is smaller than 32-bits, expanding the struct will create 1302 // alignment padding. 1303 if (!is32Or64BitBasicType(FD->getType(), Context)) 1304 return false; 1305 1306 // FIXME: Reject bit-fields wholesale; there are two problems, we don't know 1307 // how to expand them yet, and the predicate for telling if a bitfield still 1308 // counts as "basic" is more complicated than what we were doing previously. 1309 if (FD->isBitField()) 1310 return false; 1311 1312 Size += Context.getTypeSize(FD->getType()); 1313 } 1314 return true; 1315 } 1316 1317 static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD, 1318 uint64_t &Size) { 1319 // Don't do this if there are any non-empty bases. 1320 for (const CXXBaseSpecifier &Base : RD->bases()) { 1321 if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(), 1322 Size)) 1323 return false; 1324 } 1325 if (!addFieldSizes(Context, RD, Size)) 1326 return false; 1327 return true; 1328 } 1329 1330 /// Test whether an argument type which is to be passed indirectly (on the 1331 /// stack) would have the equivalent layout if it was expanded into separate 1332 /// arguments. If so, we prefer to do the latter to avoid inhibiting 1333 /// optimizations. 1334 bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const { 1335 // We can only expand structure types. 1336 const RecordType *RT = Ty->getAs<RecordType>(); 1337 if (!RT) 1338 return false; 1339 const RecordDecl *RD = RT->getDecl(); 1340 uint64_t Size = 0; 1341 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 1342 if (!IsWin32StructABI) { 1343 // On non-Windows, we have to conservatively match our old bitcode 1344 // prototypes in order to be ABI-compatible at the bitcode level. 1345 if (!CXXRD->isCLike()) 1346 return false; 1347 } else { 1348 // Don't do this for dynamic classes. 1349 if (CXXRD->isDynamicClass()) 1350 return false; 1351 } 1352 if (!addBaseAndFieldSizes(getContext(), CXXRD, Size)) 1353 return false; 1354 } else { 1355 if (!addFieldSizes(getContext(), RD, Size)) 1356 return false; 1357 } 1358 1359 // We can do this if there was no alignment padding. 1360 return Size == getContext().getTypeSize(Ty); 1361 } 1362 1363 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const { 1364 // If the return value is indirect, then the hidden argument is consuming one 1365 // integer register. 1366 if (State.FreeRegs) { 1367 --State.FreeRegs; 1368 if (!IsMCUABI) 1369 return getNaturalAlignIndirectInReg(RetTy); 1370 } 1371 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 1372 } 1373 1374 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, 1375 CCState &State) const { 1376 if (RetTy->isVoidType()) 1377 return ABIArgInfo::getIgnore(); 1378 1379 const Type *Base = nullptr; 1380 uint64_t NumElts = 0; 1381 if ((State.CC == llvm::CallingConv::X86_VectorCall || 1382 State.CC == llvm::CallingConv::X86_RegCall) && 1383 isHomogeneousAggregate(RetTy, Base, NumElts)) { 1384 // The LLVM struct type for such an aggregate should lower properly. 1385 return ABIArgInfo::getDirect(); 1386 } 1387 1388 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 1389 // On Darwin, some vectors are returned in registers. 1390 if (IsDarwinVectorABI) { 1391 uint64_t Size = getContext().getTypeSize(RetTy); 1392 1393 // 128-bit vectors are a special case; they are returned in 1394 // registers and we need to make sure to pick a type the LLVM 1395 // backend will like. 1396 if (Size == 128) 1397 return ABIArgInfo::getDirect(llvm::VectorType::get( 1398 llvm::Type::getInt64Ty(getVMContext()), 2)); 1399 1400 // Always return in register if it fits in a general purpose 1401 // register, or if it is 64 bits and has a single element. 1402 if ((Size == 8 || Size == 16 || Size == 32) || 1403 (Size == 64 && VT->getNumElements() == 1)) 1404 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1405 Size)); 1406 1407 return getIndirectReturnResult(RetTy, State); 1408 } 1409 1410 return ABIArgInfo::getDirect(); 1411 } 1412 1413 if (isAggregateTypeForABI(RetTy)) { 1414 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 1415 // Structures with flexible arrays are always indirect. 1416 if (RT->getDecl()->hasFlexibleArrayMember()) 1417 return getIndirectReturnResult(RetTy, State); 1418 } 1419 1420 // If specified, structs and unions are always indirect. 1421 if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType()) 1422 return getIndirectReturnResult(RetTy, State); 1423 1424 // Ignore empty structs/unions. 1425 if (isEmptyRecord(getContext(), RetTy, true)) 1426 return ABIArgInfo::getIgnore(); 1427 1428 // Small structures which are register sized are generally returned 1429 // in a register. 1430 if (shouldReturnTypeInRegister(RetTy, getContext())) { 1431 uint64_t Size = getContext().getTypeSize(RetTy); 1432 1433 // As a special-case, if the struct is a "single-element" struct, and 1434 // the field is of type "float" or "double", return it in a 1435 // floating-point register. (MSVC does not apply this special case.) 1436 // We apply a similar transformation for pointer types to improve the 1437 // quality of the generated IR. 1438 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 1439 if ((!IsWin32StructABI && SeltTy->isRealFloatingType()) 1440 || SeltTy->hasPointerRepresentation()) 1441 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 1442 1443 // FIXME: We should be able to narrow this integer in cases with dead 1444 // padding. 1445 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size)); 1446 } 1447 1448 return getIndirectReturnResult(RetTy, State); 1449 } 1450 1451 // Treat an enum type as its underlying type. 1452 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 1453 RetTy = EnumTy->getDecl()->getIntegerType(); 1454 1455 return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 1456 : ABIArgInfo::getDirect()); 1457 } 1458 1459 static bool isSSEVectorType(ASTContext &Context, QualType Ty) { 1460 return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128; 1461 } 1462 1463 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) { 1464 const RecordType *RT = Ty->getAs<RecordType>(); 1465 if (!RT) 1466 return 0; 1467 const RecordDecl *RD = RT->getDecl(); 1468 1469 // If this is a C++ record, check the bases first. 1470 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 1471 for (const auto &I : CXXRD->bases()) 1472 if (!isRecordWithSSEVectorType(Context, I.getType())) 1473 return false; 1474 1475 for (const auto *i : RD->fields()) { 1476 QualType FT = i->getType(); 1477 1478 if (isSSEVectorType(Context, FT)) 1479 return true; 1480 1481 if (isRecordWithSSEVectorType(Context, FT)) 1482 return true; 1483 } 1484 1485 return false; 1486 } 1487 1488 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty, 1489 unsigned Align) const { 1490 // Otherwise, if the alignment is less than or equal to the minimum ABI 1491 // alignment, just use the default; the backend will handle this. 1492 if (Align <= MinABIStackAlignInBytes) 1493 return 0; // Use default alignment. 1494 1495 // On non-Darwin, the stack type alignment is always 4. 1496 if (!IsDarwinVectorABI) { 1497 // Set explicit alignment, since we may need to realign the top. 1498 return MinABIStackAlignInBytes; 1499 } 1500 1501 // Otherwise, if the type contains an SSE vector type, the alignment is 16. 1502 if (Align >= 16 && (isSSEVectorType(getContext(), Ty) || 1503 isRecordWithSSEVectorType(getContext(), Ty))) 1504 return 16; 1505 1506 return MinABIStackAlignInBytes; 1507 } 1508 1509 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal, 1510 CCState &State) const { 1511 if (!ByVal) { 1512 if (State.FreeRegs) { 1513 --State.FreeRegs; // Non-byval indirects just use one pointer. 1514 if (!IsMCUABI) 1515 return getNaturalAlignIndirectInReg(Ty); 1516 } 1517 return getNaturalAlignIndirect(Ty, false); 1518 } 1519 1520 // Compute the byval alignment. 1521 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 1522 unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign); 1523 if (StackAlign == 0) 1524 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true); 1525 1526 // If the stack alignment is less than the type alignment, realign the 1527 // argument. 1528 bool Realign = TypeAlign > StackAlign; 1529 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign), 1530 /*ByVal=*/true, Realign); 1531 } 1532 1533 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const { 1534 const Type *T = isSingleElementStruct(Ty, getContext()); 1535 if (!T) 1536 T = Ty.getTypePtr(); 1537 1538 if (const BuiltinType *BT = T->getAs<BuiltinType>()) { 1539 BuiltinType::Kind K = BT->getKind(); 1540 if (K == BuiltinType::Float || K == BuiltinType::Double) 1541 return Float; 1542 } 1543 return Integer; 1544 } 1545 1546 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const { 1547 if (!IsSoftFloatABI) { 1548 Class C = classify(Ty); 1549 if (C == Float) 1550 return false; 1551 } 1552 1553 unsigned Size = getContext().getTypeSize(Ty); 1554 unsigned SizeInRegs = (Size + 31) / 32; 1555 1556 if (SizeInRegs == 0) 1557 return false; 1558 1559 if (!IsMCUABI) { 1560 if (SizeInRegs > State.FreeRegs) { 1561 State.FreeRegs = 0; 1562 return false; 1563 } 1564 } else { 1565 // The MCU psABI allows passing parameters in-reg even if there are 1566 // earlier parameters that are passed on the stack. Also, 1567 // it does not allow passing >8-byte structs in-register, 1568 // even if there are 3 free registers available. 1569 if (SizeInRegs > State.FreeRegs || SizeInRegs > 2) 1570 return false; 1571 } 1572 1573 State.FreeRegs -= SizeInRegs; 1574 return true; 1575 } 1576 1577 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State, 1578 bool &InReg, 1579 bool &NeedsPadding) const { 1580 // On Windows, aggregates other than HFAs are never passed in registers, and 1581 // they do not consume register slots. Homogenous floating-point aggregates 1582 // (HFAs) have already been dealt with at this point. 1583 if (IsWin32StructABI && isAggregateTypeForABI(Ty)) 1584 return false; 1585 1586 NeedsPadding = false; 1587 InReg = !IsMCUABI; 1588 1589 if (!updateFreeRegs(Ty, State)) 1590 return false; 1591 1592 if (IsMCUABI) 1593 return true; 1594 1595 if (State.CC == llvm::CallingConv::X86_FastCall || 1596 State.CC == llvm::CallingConv::X86_VectorCall || 1597 State.CC == llvm::CallingConv::X86_RegCall) { 1598 if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs) 1599 NeedsPadding = true; 1600 1601 return false; 1602 } 1603 1604 return true; 1605 } 1606 1607 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const { 1608 if (!updateFreeRegs(Ty, State)) 1609 return false; 1610 1611 if (IsMCUABI) 1612 return false; 1613 1614 if (State.CC == llvm::CallingConv::X86_FastCall || 1615 State.CC == llvm::CallingConv::X86_VectorCall || 1616 State.CC == llvm::CallingConv::X86_RegCall) { 1617 if (getContext().getTypeSize(Ty) > 32) 1618 return false; 1619 1620 return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() || 1621 Ty->isReferenceType()); 1622 } 1623 1624 return true; 1625 } 1626 1627 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, 1628 CCState &State) const { 1629 // FIXME: Set alignment on indirect arguments. 1630 1631 Ty = useFirstFieldIfTransparentUnion(Ty); 1632 1633 // Check with the C++ ABI first. 1634 const RecordType *RT = Ty->getAs<RecordType>(); 1635 if (RT) { 1636 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 1637 if (RAA == CGCXXABI::RAA_Indirect) { 1638 return getIndirectResult(Ty, false, State); 1639 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 1640 // The field index doesn't matter, we'll fix it up later. 1641 return ABIArgInfo::getInAlloca(/*FieldIndex=*/0); 1642 } 1643 } 1644 1645 // Regcall uses the concept of a homogenous vector aggregate, similar 1646 // to other targets. 1647 const Type *Base = nullptr; 1648 uint64_t NumElts = 0; 1649 if (State.CC == llvm::CallingConv::X86_RegCall && 1650 isHomogeneousAggregate(Ty, Base, NumElts)) { 1651 1652 if (State.FreeSSERegs >= NumElts) { 1653 State.FreeSSERegs -= NumElts; 1654 if (Ty->isBuiltinType() || Ty->isVectorType()) 1655 return ABIArgInfo::getDirect(); 1656 return ABIArgInfo::getExpand(); 1657 } 1658 return getIndirectResult(Ty, /*ByVal=*/false, State); 1659 } 1660 1661 if (isAggregateTypeForABI(Ty)) { 1662 // Structures with flexible arrays are always indirect. 1663 // FIXME: This should not be byval! 1664 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 1665 return getIndirectResult(Ty, true, State); 1666 1667 // Ignore empty structs/unions on non-Windows. 1668 if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true)) 1669 return ABIArgInfo::getIgnore(); 1670 1671 llvm::LLVMContext &LLVMContext = getVMContext(); 1672 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 1673 bool NeedsPadding = false; 1674 bool InReg; 1675 if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) { 1676 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; 1677 SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32); 1678 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 1679 if (InReg) 1680 return ABIArgInfo::getDirectInReg(Result); 1681 else 1682 return ABIArgInfo::getDirect(Result); 1683 } 1684 llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr; 1685 1686 // Expand small (<= 128-bit) record types when we know that the stack layout 1687 // of those arguments will match the struct. This is important because the 1688 // LLVM backend isn't smart enough to remove byval, which inhibits many 1689 // optimizations. 1690 // Don't do this for the MCU if there are still free integer registers 1691 // (see X86_64 ABI for full explanation). 1692 if (getContext().getTypeSize(Ty) <= 4 * 32 && 1693 (!IsMCUABI || State.FreeRegs == 0) && canExpandIndirectArgument(Ty)) 1694 return ABIArgInfo::getExpandWithPadding( 1695 State.CC == llvm::CallingConv::X86_FastCall || 1696 State.CC == llvm::CallingConv::X86_VectorCall || 1697 State.CC == llvm::CallingConv::X86_RegCall, 1698 PaddingType); 1699 1700 return getIndirectResult(Ty, true, State); 1701 } 1702 1703 if (const VectorType *VT = Ty->getAs<VectorType>()) { 1704 // On Darwin, some vectors are passed in memory, we handle this by passing 1705 // it as an i8/i16/i32/i64. 1706 if (IsDarwinVectorABI) { 1707 uint64_t Size = getContext().getTypeSize(Ty); 1708 if ((Size == 8 || Size == 16 || Size == 32) || 1709 (Size == 64 && VT->getNumElements() == 1)) 1710 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1711 Size)); 1712 } 1713 1714 if (IsX86_MMXType(CGT.ConvertType(Ty))) 1715 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64)); 1716 1717 return ABIArgInfo::getDirect(); 1718 } 1719 1720 1721 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 1722 Ty = EnumTy->getDecl()->getIntegerType(); 1723 1724 bool InReg = shouldPrimitiveUseInReg(Ty, State); 1725 1726 if (Ty->isPromotableIntegerType()) { 1727 if (InReg) 1728 return ABIArgInfo::getExtendInReg(Ty); 1729 return ABIArgInfo::getExtend(Ty); 1730 } 1731 1732 if (InReg) 1733 return ABIArgInfo::getDirectInReg(); 1734 return ABIArgInfo::getDirect(); 1735 } 1736 1737 void X86_32ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI, CCState &State, 1738 bool &UsedInAlloca) const { 1739 // Vectorcall x86 works subtly different than in x64, so the format is 1740 // a bit different than the x64 version. First, all vector types (not HVAs) 1741 // are assigned, with the first 6 ending up in the YMM0-5 or XMM0-5 registers. 1742 // This differs from the x64 implementation, where the first 6 by INDEX get 1743 // registers. 1744 // After that, integers AND HVAs are assigned Left to Right in the same pass. 1745 // Integers are passed as ECX/EDX if one is available (in order). HVAs will 1746 // first take up the remaining YMM/XMM registers. If insufficient registers 1747 // remain but an integer register (ECX/EDX) is available, it will be passed 1748 // in that, else, on the stack. 1749 for (auto &I : FI.arguments()) { 1750 // First pass do all the vector types. 1751 const Type *Base = nullptr; 1752 uint64_t NumElts = 0; 1753 const QualType& Ty = I.type; 1754 if ((Ty->isVectorType() || Ty->isBuiltinType()) && 1755 isHomogeneousAggregate(Ty, Base, NumElts)) { 1756 if (State.FreeSSERegs >= NumElts) { 1757 State.FreeSSERegs -= NumElts; 1758 I.info = ABIArgInfo::getDirect(); 1759 } else { 1760 I.info = classifyArgumentType(Ty, State); 1761 } 1762 UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca); 1763 } 1764 } 1765 1766 for (auto &I : FI.arguments()) { 1767 // Second pass, do the rest! 1768 const Type *Base = nullptr; 1769 uint64_t NumElts = 0; 1770 const QualType& Ty = I.type; 1771 bool IsHva = isHomogeneousAggregate(Ty, Base, NumElts); 1772 1773 if (IsHva && !Ty->isVectorType() && !Ty->isBuiltinType()) { 1774 // Assign true HVAs (non vector/native FP types). 1775 if (State.FreeSSERegs >= NumElts) { 1776 State.FreeSSERegs -= NumElts; 1777 I.info = getDirectX86Hva(); 1778 } else { 1779 I.info = getIndirectResult(Ty, /*ByVal=*/false, State); 1780 } 1781 } else if (!IsHva) { 1782 // Assign all Non-HVAs, so this will exclude Vector/FP args. 1783 I.info = classifyArgumentType(Ty, State); 1784 UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca); 1785 } 1786 } 1787 } 1788 1789 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const { 1790 CCState State(FI.getCallingConvention()); 1791 if (IsMCUABI) 1792 State.FreeRegs = 3; 1793 else if (State.CC == llvm::CallingConv::X86_FastCall) 1794 State.FreeRegs = 2; 1795 else if (State.CC == llvm::CallingConv::X86_VectorCall) { 1796 State.FreeRegs = 2; 1797 State.FreeSSERegs = 6; 1798 } else if (FI.getHasRegParm()) 1799 State.FreeRegs = FI.getRegParm(); 1800 else if (State.CC == llvm::CallingConv::X86_RegCall) { 1801 State.FreeRegs = 5; 1802 State.FreeSSERegs = 8; 1803 } else 1804 State.FreeRegs = DefaultNumRegisterParameters; 1805 1806 if (!::classifyReturnType(getCXXABI(), FI, *this)) { 1807 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State); 1808 } else if (FI.getReturnInfo().isIndirect()) { 1809 // The C++ ABI is not aware of register usage, so we have to check if the 1810 // return value was sret and put it in a register ourselves if appropriate. 1811 if (State.FreeRegs) { 1812 --State.FreeRegs; // The sret parameter consumes a register. 1813 if (!IsMCUABI) 1814 FI.getReturnInfo().setInReg(true); 1815 } 1816 } 1817 1818 // The chain argument effectively gives us another free register. 1819 if (FI.isChainCall()) 1820 ++State.FreeRegs; 1821 1822 bool UsedInAlloca = false; 1823 if (State.CC == llvm::CallingConv::X86_VectorCall) { 1824 computeVectorCallArgs(FI, State, UsedInAlloca); 1825 } else { 1826 // If not vectorcall, revert to normal behavior. 1827 for (auto &I : FI.arguments()) { 1828 I.info = classifyArgumentType(I.type, State); 1829 UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca); 1830 } 1831 } 1832 1833 // If we needed to use inalloca for any argument, do a second pass and rewrite 1834 // all the memory arguments to use inalloca. 1835 if (UsedInAlloca) 1836 rewriteWithInAlloca(FI); 1837 } 1838 1839 void 1840 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1841 CharUnits &StackOffset, ABIArgInfo &Info, 1842 QualType Type) const { 1843 // Arguments are always 4-byte-aligned. 1844 CharUnits FieldAlign = CharUnits::fromQuantity(4); 1845 1846 assert(StackOffset.isMultipleOf(FieldAlign) && "unaligned inalloca struct"); 1847 Info = ABIArgInfo::getInAlloca(FrameFields.size()); 1848 FrameFields.push_back(CGT.ConvertTypeForMem(Type)); 1849 StackOffset += getContext().getTypeSizeInChars(Type); 1850 1851 // Insert padding bytes to respect alignment. 1852 CharUnits FieldEnd = StackOffset; 1853 StackOffset = FieldEnd.alignTo(FieldAlign); 1854 if (StackOffset != FieldEnd) { 1855 CharUnits NumBytes = StackOffset - FieldEnd; 1856 llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext()); 1857 Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity()); 1858 FrameFields.push_back(Ty); 1859 } 1860 } 1861 1862 static bool isArgInAlloca(const ABIArgInfo &Info) { 1863 // Leave ignored and inreg arguments alone. 1864 switch (Info.getKind()) { 1865 case ABIArgInfo::InAlloca: 1866 return true; 1867 case ABIArgInfo::Indirect: 1868 assert(Info.getIndirectByVal()); 1869 return true; 1870 case ABIArgInfo::Ignore: 1871 return false; 1872 case ABIArgInfo::Direct: 1873 case ABIArgInfo::Extend: 1874 if (Info.getInReg()) 1875 return false; 1876 return true; 1877 case ABIArgInfo::Expand: 1878 case ABIArgInfo::CoerceAndExpand: 1879 // These are aggregate types which are never passed in registers when 1880 // inalloca is involved. 1881 return true; 1882 } 1883 llvm_unreachable("invalid enum"); 1884 } 1885 1886 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const { 1887 assert(IsWin32StructABI && "inalloca only supported on win32"); 1888 1889 // Build a packed struct type for all of the arguments in memory. 1890 SmallVector<llvm::Type *, 6> FrameFields; 1891 1892 // The stack alignment is always 4. 1893 CharUnits StackAlign = CharUnits::fromQuantity(4); 1894 1895 CharUnits StackOffset; 1896 CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end(); 1897 1898 // Put 'this' into the struct before 'sret', if necessary. 1899 bool IsThisCall = 1900 FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall; 1901 ABIArgInfo &Ret = FI.getReturnInfo(); 1902 if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall && 1903 isArgInAlloca(I->info)) { 1904 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 1905 ++I; 1906 } 1907 1908 // Put the sret parameter into the inalloca struct if it's in memory. 1909 if (Ret.isIndirect() && !Ret.getInReg()) { 1910 CanQualType PtrTy = getContext().getPointerType(FI.getReturnType()); 1911 addFieldToArgStruct(FrameFields, StackOffset, Ret, PtrTy); 1912 // On Windows, the hidden sret parameter is always returned in eax. 1913 Ret.setInAllocaSRet(IsWin32StructABI); 1914 } 1915 1916 // Skip the 'this' parameter in ecx. 1917 if (IsThisCall) 1918 ++I; 1919 1920 // Put arguments passed in memory into the struct. 1921 for (; I != E; ++I) { 1922 if (isArgInAlloca(I->info)) 1923 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 1924 } 1925 1926 FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields, 1927 /*isPacked=*/true), 1928 StackAlign); 1929 } 1930 1931 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF, 1932 Address VAListAddr, QualType Ty) const { 1933 1934 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 1935 1936 // x86-32 changes the alignment of certain arguments on the stack. 1937 // 1938 // Just messing with TypeInfo like this works because we never pass 1939 // anything indirectly. 1940 TypeInfo.second = CharUnits::fromQuantity( 1941 getTypeStackAlignInBytes(Ty, TypeInfo.second.getQuantity())); 1942 1943 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 1944 TypeInfo, CharUnits::fromQuantity(4), 1945 /*AllowHigherAlign*/ true); 1946 } 1947 1948 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI( 1949 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 1950 assert(Triple.getArch() == llvm::Triple::x86); 1951 1952 switch (Opts.getStructReturnConvention()) { 1953 case CodeGenOptions::SRCK_Default: 1954 break; 1955 case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return 1956 return false; 1957 case CodeGenOptions::SRCK_InRegs: // -freg-struct-return 1958 return true; 1959 } 1960 1961 if (Triple.isOSDarwin() || Triple.isOSIAMCU()) 1962 return true; 1963 1964 switch (Triple.getOS()) { 1965 case llvm::Triple::DragonFly: 1966 case llvm::Triple::FreeBSD: 1967 case llvm::Triple::OpenBSD: 1968 case llvm::Triple::Win32: 1969 return true; 1970 default: 1971 return false; 1972 } 1973 } 1974 1975 void X86_32TargetCodeGenInfo::setTargetAttributes( 1976 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 1977 if (GV->isDeclaration()) 1978 return; 1979 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 1980 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 1981 llvm::Function *Fn = cast<llvm::Function>(GV); 1982 Fn->addFnAttr("stackrealign"); 1983 } 1984 if (FD->hasAttr<AnyX86InterruptAttr>()) { 1985 llvm::Function *Fn = cast<llvm::Function>(GV); 1986 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 1987 } 1988 } 1989 } 1990 1991 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable( 1992 CodeGen::CodeGenFunction &CGF, 1993 llvm::Value *Address) const { 1994 CodeGen::CGBuilderTy &Builder = CGF.Builder; 1995 1996 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 1997 1998 // 0-7 are the eight integer registers; the order is different 1999 // on Darwin (for EH), but the range is the same. 2000 // 8 is %eip. 2001 AssignToArrayRange(Builder, Address, Four8, 0, 8); 2002 2003 if (CGF.CGM.getTarget().getTriple().isOSDarwin()) { 2004 // 12-16 are st(0..4). Not sure why we stop at 4. 2005 // These have size 16, which is sizeof(long double) on 2006 // platforms with 8-byte alignment for that type. 2007 llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16); 2008 AssignToArrayRange(Builder, Address, Sixteen8, 12, 16); 2009 2010 } else { 2011 // 9 is %eflags, which doesn't get a size on Darwin for some 2012 // reason. 2013 Builder.CreateAlignedStore( 2014 Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9), 2015 CharUnits::One()); 2016 2017 // 11-16 are st(0..5). Not sure why we stop at 5. 2018 // These have size 12, which is sizeof(long double) on 2019 // platforms with 4-byte alignment for that type. 2020 llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12); 2021 AssignToArrayRange(Builder, Address, Twelve8, 11, 16); 2022 } 2023 2024 return false; 2025 } 2026 2027 //===----------------------------------------------------------------------===// 2028 // X86-64 ABI Implementation 2029 //===----------------------------------------------------------------------===// 2030 2031 2032 namespace { 2033 /// The AVX ABI level for X86 targets. 2034 enum class X86AVXABILevel { 2035 None, 2036 AVX, 2037 AVX512 2038 }; 2039 2040 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel. 2041 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) { 2042 switch (AVXLevel) { 2043 case X86AVXABILevel::AVX512: 2044 return 512; 2045 case X86AVXABILevel::AVX: 2046 return 256; 2047 case X86AVXABILevel::None: 2048 return 128; 2049 } 2050 llvm_unreachable("Unknown AVXLevel"); 2051 } 2052 2053 /// X86_64ABIInfo - The X86_64 ABI information. 2054 class X86_64ABIInfo : public SwiftABIInfo { 2055 enum Class { 2056 Integer = 0, 2057 SSE, 2058 SSEUp, 2059 X87, 2060 X87Up, 2061 ComplexX87, 2062 NoClass, 2063 Memory 2064 }; 2065 2066 /// merge - Implement the X86_64 ABI merging algorithm. 2067 /// 2068 /// Merge an accumulating classification \arg Accum with a field 2069 /// classification \arg Field. 2070 /// 2071 /// \param Accum - The accumulating classification. This should 2072 /// always be either NoClass or the result of a previous merge 2073 /// call. In addition, this should never be Memory (the caller 2074 /// should just return Memory for the aggregate). 2075 static Class merge(Class Accum, Class Field); 2076 2077 /// postMerge - Implement the X86_64 ABI post merging algorithm. 2078 /// 2079 /// Post merger cleanup, reduces a malformed Hi and Lo pair to 2080 /// final MEMORY or SSE classes when necessary. 2081 /// 2082 /// \param AggregateSize - The size of the current aggregate in 2083 /// the classification process. 2084 /// 2085 /// \param Lo - The classification for the parts of the type 2086 /// residing in the low word of the containing object. 2087 /// 2088 /// \param Hi - The classification for the parts of the type 2089 /// residing in the higher words of the containing object. 2090 /// 2091 void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const; 2092 2093 /// classify - Determine the x86_64 register classes in which the 2094 /// given type T should be passed. 2095 /// 2096 /// \param Lo - The classification for the parts of the type 2097 /// residing in the low word of the containing object. 2098 /// 2099 /// \param Hi - The classification for the parts of the type 2100 /// residing in the high word of the containing object. 2101 /// 2102 /// \param OffsetBase - The bit offset of this type in the 2103 /// containing object. Some parameters are classified different 2104 /// depending on whether they straddle an eightbyte boundary. 2105 /// 2106 /// \param isNamedArg - Whether the argument in question is a "named" 2107 /// argument, as used in AMD64-ABI 3.5.7. 2108 /// 2109 /// If a word is unused its result will be NoClass; if a type should 2110 /// be passed in Memory then at least the classification of \arg Lo 2111 /// will be Memory. 2112 /// 2113 /// The \arg Lo class will be NoClass iff the argument is ignored. 2114 /// 2115 /// If the \arg Lo class is ComplexX87, then the \arg Hi class will 2116 /// also be ComplexX87. 2117 void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi, 2118 bool isNamedArg) const; 2119 2120 llvm::Type *GetByteVectorType(QualType Ty) const; 2121 llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType, 2122 unsigned IROffset, QualType SourceTy, 2123 unsigned SourceOffset) const; 2124 llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType, 2125 unsigned IROffset, QualType SourceTy, 2126 unsigned SourceOffset) const; 2127 2128 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 2129 /// such that the argument will be returned in memory. 2130 ABIArgInfo getIndirectReturnResult(QualType Ty) const; 2131 2132 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 2133 /// such that the argument will be passed in memory. 2134 /// 2135 /// \param freeIntRegs - The number of free integer registers remaining 2136 /// available. 2137 ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const; 2138 2139 ABIArgInfo classifyReturnType(QualType RetTy) const; 2140 2141 ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs, 2142 unsigned &neededInt, unsigned &neededSSE, 2143 bool isNamedArg) const; 2144 2145 ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt, 2146 unsigned &NeededSSE) const; 2147 2148 ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 2149 unsigned &NeededSSE) const; 2150 2151 bool IsIllegalVectorType(QualType Ty) const; 2152 2153 /// The 0.98 ABI revision clarified a lot of ambiguities, 2154 /// unfortunately in ways that were not always consistent with 2155 /// certain previous compilers. In particular, platforms which 2156 /// required strict binary compatibility with older versions of GCC 2157 /// may need to exempt themselves. 2158 bool honorsRevision0_98() const { 2159 return !getTarget().getTriple().isOSDarwin(); 2160 } 2161 2162 /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to 2163 /// classify it as INTEGER (for compatibility with older clang compilers). 2164 bool classifyIntegerMMXAsSSE() const { 2165 // Clang <= 3.8 did not do this. 2166 if (getContext().getLangOpts().getClangABICompat() <= 2167 LangOptions::ClangABI::Ver3_8) 2168 return false; 2169 2170 const llvm::Triple &Triple = getTarget().getTriple(); 2171 if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::PS4) 2172 return false; 2173 if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10) 2174 return false; 2175 return true; 2176 } 2177 2178 X86AVXABILevel AVXLevel; 2179 // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on 2180 // 64-bit hardware. 2181 bool Has64BitPointers; 2182 2183 public: 2184 X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) : 2185 SwiftABIInfo(CGT), AVXLevel(AVXLevel), 2186 Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) { 2187 } 2188 2189 bool isPassedUsingAVXType(QualType type) const { 2190 unsigned neededInt, neededSSE; 2191 // The freeIntRegs argument doesn't matter here. 2192 ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE, 2193 /*isNamedArg*/true); 2194 if (info.isDirect()) { 2195 llvm::Type *ty = info.getCoerceToType(); 2196 if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty)) 2197 return (vectorTy->getBitWidth() > 128); 2198 } 2199 return false; 2200 } 2201 2202 void computeInfo(CGFunctionInfo &FI) const override; 2203 2204 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2205 QualType Ty) const override; 2206 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 2207 QualType Ty) const override; 2208 2209 bool has64BitPointers() const { 2210 return Has64BitPointers; 2211 } 2212 2213 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 2214 bool asReturnValue) const override { 2215 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2216 } 2217 bool isSwiftErrorInRegister() const override { 2218 return true; 2219 } 2220 }; 2221 2222 /// WinX86_64ABIInfo - The Windows X86_64 ABI information. 2223 class WinX86_64ABIInfo : public SwiftABIInfo { 2224 public: 2225 WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2226 : SwiftABIInfo(CGT), AVXLevel(AVXLevel), 2227 IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {} 2228 2229 void computeInfo(CGFunctionInfo &FI) const override; 2230 2231 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2232 QualType Ty) const override; 2233 2234 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 2235 // FIXME: Assumes vectorcall is in use. 2236 return isX86VectorTypeForVectorCall(getContext(), Ty); 2237 } 2238 2239 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 2240 uint64_t NumMembers) const override { 2241 // FIXME: Assumes vectorcall is in use. 2242 return isX86VectorCallAggregateSmallEnough(NumMembers); 2243 } 2244 2245 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type *> scalars, 2246 bool asReturnValue) const override { 2247 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2248 } 2249 2250 bool isSwiftErrorInRegister() const override { 2251 return true; 2252 } 2253 2254 private: 2255 ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType, 2256 bool IsVectorCall, bool IsRegCall) const; 2257 ABIArgInfo reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs, 2258 const ABIArgInfo ¤t) const; 2259 void computeVectorCallArgs(CGFunctionInfo &FI, unsigned FreeSSERegs, 2260 bool IsVectorCall, bool IsRegCall) const; 2261 2262 X86AVXABILevel AVXLevel; 2263 2264 bool IsMingw64; 2265 }; 2266 2267 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2268 public: 2269 X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2270 : TargetCodeGenInfo(new X86_64ABIInfo(CGT, AVXLevel)) {} 2271 2272 const X86_64ABIInfo &getABIInfo() const { 2273 return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo()); 2274 } 2275 2276 /// Disable tail call on x86-64. The epilogue code before the tail jump blocks 2277 /// the autoreleaseRV/retainRV optimization. 2278 bool shouldSuppressTailCallsOfRetainAutoreleasedReturnValue() const override { 2279 return true; 2280 } 2281 2282 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2283 return 7; 2284 } 2285 2286 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2287 llvm::Value *Address) const override { 2288 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2289 2290 // 0-15 are the 16 integer registers. 2291 // 16 is %rip. 2292 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2293 return false; 2294 } 2295 2296 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 2297 StringRef Constraint, 2298 llvm::Type* Ty) const override { 2299 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 2300 } 2301 2302 bool isNoProtoCallVariadic(const CallArgList &args, 2303 const FunctionNoProtoType *fnType) const override { 2304 // The default CC on x86-64 sets %al to the number of SSA 2305 // registers used, and GCC sets this when calling an unprototyped 2306 // function, so we override the default behavior. However, don't do 2307 // that when AVX types are involved: the ABI explicitly states it is 2308 // undefined, and it doesn't work in practice because of how the ABI 2309 // defines varargs anyway. 2310 if (fnType->getCallConv() == CC_C) { 2311 bool HasAVXType = false; 2312 for (CallArgList::const_iterator 2313 it = args.begin(), ie = args.end(); it != ie; ++it) { 2314 if (getABIInfo().isPassedUsingAVXType(it->Ty)) { 2315 HasAVXType = true; 2316 break; 2317 } 2318 } 2319 2320 if (!HasAVXType) 2321 return true; 2322 } 2323 2324 return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType); 2325 } 2326 2327 llvm::Constant * 2328 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 2329 unsigned Sig = (0xeb << 0) | // jmp rel8 2330 (0x06 << 8) | // .+0x08 2331 ('v' << 16) | 2332 ('2' << 24); 2333 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 2334 } 2335 2336 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2337 CodeGen::CodeGenModule &CGM) const override { 2338 if (GV->isDeclaration()) 2339 return; 2340 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2341 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2342 llvm::Function *Fn = cast<llvm::Function>(GV); 2343 Fn->addFnAttr("stackrealign"); 2344 } 2345 if (FD->hasAttr<AnyX86InterruptAttr>()) { 2346 llvm::Function *Fn = cast<llvm::Function>(GV); 2347 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2348 } 2349 } 2350 } 2351 }; 2352 2353 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) { 2354 // If the argument does not end in .lib, automatically add the suffix. 2355 // If the argument contains a space, enclose it in quotes. 2356 // This matches the behavior of MSVC. 2357 bool Quote = (Lib.find(" ") != StringRef::npos); 2358 std::string ArgStr = Quote ? "\"" : ""; 2359 ArgStr += Lib; 2360 if (!Lib.endswith_lower(".lib") && !Lib.endswith_lower(".a")) 2361 ArgStr += ".lib"; 2362 ArgStr += Quote ? "\"" : ""; 2363 return ArgStr; 2364 } 2365 2366 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo { 2367 public: 2368 WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2369 bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI, 2370 unsigned NumRegisterParameters) 2371 : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI, 2372 Win32StructABI, NumRegisterParameters, false) {} 2373 2374 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2375 CodeGen::CodeGenModule &CGM) const override; 2376 2377 void getDependentLibraryOption(llvm::StringRef Lib, 2378 llvm::SmallString<24> &Opt) const override { 2379 Opt = "/DEFAULTLIB:"; 2380 Opt += qualifyWindowsLibrary(Lib); 2381 } 2382 2383 void getDetectMismatchOption(llvm::StringRef Name, 2384 llvm::StringRef Value, 2385 llvm::SmallString<32> &Opt) const override { 2386 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2387 } 2388 }; 2389 2390 static void addStackProbeTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2391 CodeGen::CodeGenModule &CGM) { 2392 if (llvm::Function *Fn = dyn_cast_or_null<llvm::Function>(GV)) { 2393 2394 if (CGM.getCodeGenOpts().StackProbeSize != 4096) 2395 Fn->addFnAttr("stack-probe-size", 2396 llvm::utostr(CGM.getCodeGenOpts().StackProbeSize)); 2397 if (CGM.getCodeGenOpts().NoStackArgProbe) 2398 Fn->addFnAttr("no-stack-arg-probe"); 2399 } 2400 } 2401 2402 void WinX86_32TargetCodeGenInfo::setTargetAttributes( 2403 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2404 X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2405 if (GV->isDeclaration()) 2406 return; 2407 addStackProbeTargetAttributes(D, GV, CGM); 2408 } 2409 2410 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2411 public: 2412 WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2413 X86AVXABILevel AVXLevel) 2414 : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT, AVXLevel)) {} 2415 2416 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2417 CodeGen::CodeGenModule &CGM) const override; 2418 2419 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2420 return 7; 2421 } 2422 2423 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2424 llvm::Value *Address) const override { 2425 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2426 2427 // 0-15 are the 16 integer registers. 2428 // 16 is %rip. 2429 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2430 return false; 2431 } 2432 2433 void getDependentLibraryOption(llvm::StringRef Lib, 2434 llvm::SmallString<24> &Opt) const override { 2435 Opt = "/DEFAULTLIB:"; 2436 Opt += qualifyWindowsLibrary(Lib); 2437 } 2438 2439 void getDetectMismatchOption(llvm::StringRef Name, 2440 llvm::StringRef Value, 2441 llvm::SmallString<32> &Opt) const override { 2442 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2443 } 2444 }; 2445 2446 void WinX86_64TargetCodeGenInfo::setTargetAttributes( 2447 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2448 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2449 if (GV->isDeclaration()) 2450 return; 2451 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2452 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2453 llvm::Function *Fn = cast<llvm::Function>(GV); 2454 Fn->addFnAttr("stackrealign"); 2455 } 2456 if (FD->hasAttr<AnyX86InterruptAttr>()) { 2457 llvm::Function *Fn = cast<llvm::Function>(GV); 2458 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2459 } 2460 } 2461 2462 addStackProbeTargetAttributes(D, GV, CGM); 2463 } 2464 } 2465 2466 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo, 2467 Class &Hi) const { 2468 // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done: 2469 // 2470 // (a) If one of the classes is Memory, the whole argument is passed in 2471 // memory. 2472 // 2473 // (b) If X87UP is not preceded by X87, the whole argument is passed in 2474 // memory. 2475 // 2476 // (c) If the size of the aggregate exceeds two eightbytes and the first 2477 // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole 2478 // argument is passed in memory. NOTE: This is necessary to keep the 2479 // ABI working for processors that don't support the __m256 type. 2480 // 2481 // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE. 2482 // 2483 // Some of these are enforced by the merging logic. Others can arise 2484 // only with unions; for example: 2485 // union { _Complex double; unsigned; } 2486 // 2487 // Note that clauses (b) and (c) were added in 0.98. 2488 // 2489 if (Hi == Memory) 2490 Lo = Memory; 2491 if (Hi == X87Up && Lo != X87 && honorsRevision0_98()) 2492 Lo = Memory; 2493 if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp)) 2494 Lo = Memory; 2495 if (Hi == SSEUp && Lo != SSE) 2496 Hi = SSE; 2497 } 2498 2499 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) { 2500 // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is 2501 // classified recursively so that always two fields are 2502 // considered. The resulting class is calculated according to 2503 // the classes of the fields in the eightbyte: 2504 // 2505 // (a) If both classes are equal, this is the resulting class. 2506 // 2507 // (b) If one of the classes is NO_CLASS, the resulting class is 2508 // the other class. 2509 // 2510 // (c) If one of the classes is MEMORY, the result is the MEMORY 2511 // class. 2512 // 2513 // (d) If one of the classes is INTEGER, the result is the 2514 // INTEGER. 2515 // 2516 // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class, 2517 // MEMORY is used as class. 2518 // 2519 // (f) Otherwise class SSE is used. 2520 2521 // Accum should never be memory (we should have returned) or 2522 // ComplexX87 (because this cannot be passed in a structure). 2523 assert((Accum != Memory && Accum != ComplexX87) && 2524 "Invalid accumulated classification during merge."); 2525 if (Accum == Field || Field == NoClass) 2526 return Accum; 2527 if (Field == Memory) 2528 return Memory; 2529 if (Accum == NoClass) 2530 return Field; 2531 if (Accum == Integer || Field == Integer) 2532 return Integer; 2533 if (Field == X87 || Field == X87Up || Field == ComplexX87 || 2534 Accum == X87 || Accum == X87Up) 2535 return Memory; 2536 return SSE; 2537 } 2538 2539 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, 2540 Class &Lo, Class &Hi, bool isNamedArg) const { 2541 // FIXME: This code can be simplified by introducing a simple value class for 2542 // Class pairs with appropriate constructor methods for the various 2543 // situations. 2544 2545 // FIXME: Some of the split computations are wrong; unaligned vectors 2546 // shouldn't be passed in registers for example, so there is no chance they 2547 // can straddle an eightbyte. Verify & simplify. 2548 2549 Lo = Hi = NoClass; 2550 2551 Class &Current = OffsetBase < 64 ? Lo : Hi; 2552 Current = Memory; 2553 2554 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 2555 BuiltinType::Kind k = BT->getKind(); 2556 2557 if (k == BuiltinType::Void) { 2558 Current = NoClass; 2559 } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) { 2560 Lo = Integer; 2561 Hi = Integer; 2562 } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) { 2563 Current = Integer; 2564 } else if (k == BuiltinType::Float || k == BuiltinType::Double) { 2565 Current = SSE; 2566 } else if (k == BuiltinType::LongDouble) { 2567 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2568 if (LDF == &llvm::APFloat::IEEEquad()) { 2569 Lo = SSE; 2570 Hi = SSEUp; 2571 } else if (LDF == &llvm::APFloat::x87DoubleExtended()) { 2572 Lo = X87; 2573 Hi = X87Up; 2574 } else if (LDF == &llvm::APFloat::IEEEdouble()) { 2575 Current = SSE; 2576 } else 2577 llvm_unreachable("unexpected long double representation!"); 2578 } 2579 // FIXME: _Decimal32 and _Decimal64 are SSE. 2580 // FIXME: _float128 and _Decimal128 are (SSE, SSEUp). 2581 return; 2582 } 2583 2584 if (const EnumType *ET = Ty->getAs<EnumType>()) { 2585 // Classify the underlying integer type. 2586 classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg); 2587 return; 2588 } 2589 2590 if (Ty->hasPointerRepresentation()) { 2591 Current = Integer; 2592 return; 2593 } 2594 2595 if (Ty->isMemberPointerType()) { 2596 if (Ty->isMemberFunctionPointerType()) { 2597 if (Has64BitPointers) { 2598 // If Has64BitPointers, this is an {i64, i64}, so classify both 2599 // Lo and Hi now. 2600 Lo = Hi = Integer; 2601 } else { 2602 // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that 2603 // straddles an eightbyte boundary, Hi should be classified as well. 2604 uint64_t EB_FuncPtr = (OffsetBase) / 64; 2605 uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64; 2606 if (EB_FuncPtr != EB_ThisAdj) { 2607 Lo = Hi = Integer; 2608 } else { 2609 Current = Integer; 2610 } 2611 } 2612 } else { 2613 Current = Integer; 2614 } 2615 return; 2616 } 2617 2618 if (const VectorType *VT = Ty->getAs<VectorType>()) { 2619 uint64_t Size = getContext().getTypeSize(VT); 2620 if (Size == 1 || Size == 8 || Size == 16 || Size == 32) { 2621 // gcc passes the following as integer: 2622 // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float> 2623 // 2 bytes - <2 x char>, <1 x short> 2624 // 1 byte - <1 x char> 2625 Current = Integer; 2626 2627 // If this type crosses an eightbyte boundary, it should be 2628 // split. 2629 uint64_t EB_Lo = (OffsetBase) / 64; 2630 uint64_t EB_Hi = (OffsetBase + Size - 1) / 64; 2631 if (EB_Lo != EB_Hi) 2632 Hi = Lo; 2633 } else if (Size == 64) { 2634 QualType ElementType = VT->getElementType(); 2635 2636 // gcc passes <1 x double> in memory. :( 2637 if (ElementType->isSpecificBuiltinType(BuiltinType::Double)) 2638 return; 2639 2640 // gcc passes <1 x long long> as SSE but clang used to unconditionally 2641 // pass them as integer. For platforms where clang is the de facto 2642 // platform compiler, we must continue to use integer. 2643 if (!classifyIntegerMMXAsSSE() && 2644 (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) || 2645 ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) || 2646 ElementType->isSpecificBuiltinType(BuiltinType::Long) || 2647 ElementType->isSpecificBuiltinType(BuiltinType::ULong))) 2648 Current = Integer; 2649 else 2650 Current = SSE; 2651 2652 // If this type crosses an eightbyte boundary, it should be 2653 // split. 2654 if (OffsetBase && OffsetBase != 64) 2655 Hi = Lo; 2656 } else if (Size == 128 || 2657 (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) { 2658 // Arguments of 256-bits are split into four eightbyte chunks. The 2659 // least significant one belongs to class SSE and all the others to class 2660 // SSEUP. The original Lo and Hi design considers that types can't be 2661 // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense. 2662 // This design isn't correct for 256-bits, but since there're no cases 2663 // where the upper parts would need to be inspected, avoid adding 2664 // complexity and just consider Hi to match the 64-256 part. 2665 // 2666 // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in 2667 // registers if they are "named", i.e. not part of the "..." of a 2668 // variadic function. 2669 // 2670 // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are 2671 // split into eight eightbyte chunks, one SSE and seven SSEUP. 2672 Lo = SSE; 2673 Hi = SSEUp; 2674 } 2675 return; 2676 } 2677 2678 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 2679 QualType ET = getContext().getCanonicalType(CT->getElementType()); 2680 2681 uint64_t Size = getContext().getTypeSize(Ty); 2682 if (ET->isIntegralOrEnumerationType()) { 2683 if (Size <= 64) 2684 Current = Integer; 2685 else if (Size <= 128) 2686 Lo = Hi = Integer; 2687 } else if (ET == getContext().FloatTy) { 2688 Current = SSE; 2689 } else if (ET == getContext().DoubleTy) { 2690 Lo = Hi = SSE; 2691 } else if (ET == getContext().LongDoubleTy) { 2692 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2693 if (LDF == &llvm::APFloat::IEEEquad()) 2694 Current = Memory; 2695 else if (LDF == &llvm::APFloat::x87DoubleExtended()) 2696 Current = ComplexX87; 2697 else if (LDF == &llvm::APFloat::IEEEdouble()) 2698 Lo = Hi = SSE; 2699 else 2700 llvm_unreachable("unexpected long double representation!"); 2701 } 2702 2703 // If this complex type crosses an eightbyte boundary then it 2704 // should be split. 2705 uint64_t EB_Real = (OffsetBase) / 64; 2706 uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64; 2707 if (Hi == NoClass && EB_Real != EB_Imag) 2708 Hi = Lo; 2709 2710 return; 2711 } 2712 2713 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 2714 // Arrays are treated like structures. 2715 2716 uint64_t Size = getContext().getTypeSize(Ty); 2717 2718 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 2719 // than eight eightbytes, ..., it has class MEMORY. 2720 if (Size > 512) 2721 return; 2722 2723 // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned 2724 // fields, it has class MEMORY. 2725 // 2726 // Only need to check alignment of array base. 2727 if (OffsetBase % getContext().getTypeAlign(AT->getElementType())) 2728 return; 2729 2730 // Otherwise implement simplified merge. We could be smarter about 2731 // this, but it isn't worth it and would be harder to verify. 2732 Current = NoClass; 2733 uint64_t EltSize = getContext().getTypeSize(AT->getElementType()); 2734 uint64_t ArraySize = AT->getSize().getZExtValue(); 2735 2736 // The only case a 256-bit wide vector could be used is when the array 2737 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 2738 // to work for sizes wider than 128, early check and fallback to memory. 2739 // 2740 if (Size > 128 && 2741 (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel))) 2742 return; 2743 2744 for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) { 2745 Class FieldLo, FieldHi; 2746 classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg); 2747 Lo = merge(Lo, FieldLo); 2748 Hi = merge(Hi, FieldHi); 2749 if (Lo == Memory || Hi == Memory) 2750 break; 2751 } 2752 2753 postMerge(Size, Lo, Hi); 2754 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification."); 2755 return; 2756 } 2757 2758 if (const RecordType *RT = Ty->getAs<RecordType>()) { 2759 uint64_t Size = getContext().getTypeSize(Ty); 2760 2761 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 2762 // than eight eightbytes, ..., it has class MEMORY. 2763 if (Size > 512) 2764 return; 2765 2766 // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial 2767 // copy constructor or a non-trivial destructor, it is passed by invisible 2768 // reference. 2769 if (getRecordArgABI(RT, getCXXABI())) 2770 return; 2771 2772 const RecordDecl *RD = RT->getDecl(); 2773 2774 // Assume variable sized types are passed in memory. 2775 if (RD->hasFlexibleArrayMember()) 2776 return; 2777 2778 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 2779 2780 // Reset Lo class, this will be recomputed. 2781 Current = NoClass; 2782 2783 // If this is a C++ record, classify the bases first. 2784 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 2785 for (const auto &I : CXXRD->bases()) { 2786 assert(!I.isVirtual() && !I.getType()->isDependentType() && 2787 "Unexpected base class!"); 2788 const CXXRecordDecl *Base = 2789 cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); 2790 2791 // Classify this field. 2792 // 2793 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a 2794 // single eightbyte, each is classified separately. Each eightbyte gets 2795 // initialized to class NO_CLASS. 2796 Class FieldLo, FieldHi; 2797 uint64_t Offset = 2798 OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base)); 2799 classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg); 2800 Lo = merge(Lo, FieldLo); 2801 Hi = merge(Hi, FieldHi); 2802 if (Lo == Memory || Hi == Memory) { 2803 postMerge(Size, Lo, Hi); 2804 return; 2805 } 2806 } 2807 } 2808 2809 // Classify the fields one at a time, merging the results. 2810 unsigned idx = 0; 2811 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 2812 i != e; ++i, ++idx) { 2813 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 2814 bool BitField = i->isBitField(); 2815 2816 // Ignore padding bit-fields. 2817 if (BitField && i->isUnnamedBitfield()) 2818 continue; 2819 2820 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than 2821 // four eightbytes, or it contains unaligned fields, it has class MEMORY. 2822 // 2823 // The only case a 256-bit wide vector could be used is when the struct 2824 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 2825 // to work for sizes wider than 128, early check and fallback to memory. 2826 // 2827 if (Size > 128 && (Size != getContext().getTypeSize(i->getType()) || 2828 Size > getNativeVectorSizeForAVXABI(AVXLevel))) { 2829 Lo = Memory; 2830 postMerge(Size, Lo, Hi); 2831 return; 2832 } 2833 // Note, skip this test for bit-fields, see below. 2834 if (!BitField && Offset % getContext().getTypeAlign(i->getType())) { 2835 Lo = Memory; 2836 postMerge(Size, Lo, Hi); 2837 return; 2838 } 2839 2840 // Classify this field. 2841 // 2842 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate 2843 // exceeds a single eightbyte, each is classified 2844 // separately. Each eightbyte gets initialized to class 2845 // NO_CLASS. 2846 Class FieldLo, FieldHi; 2847 2848 // Bit-fields require special handling, they do not force the 2849 // structure to be passed in memory even if unaligned, and 2850 // therefore they can straddle an eightbyte. 2851 if (BitField) { 2852 assert(!i->isUnnamedBitfield()); 2853 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 2854 uint64_t Size = i->getBitWidthValue(getContext()); 2855 2856 uint64_t EB_Lo = Offset / 64; 2857 uint64_t EB_Hi = (Offset + Size - 1) / 64; 2858 2859 if (EB_Lo) { 2860 assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes."); 2861 FieldLo = NoClass; 2862 FieldHi = Integer; 2863 } else { 2864 FieldLo = Integer; 2865 FieldHi = EB_Hi ? Integer : NoClass; 2866 } 2867 } else 2868 classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg); 2869 Lo = merge(Lo, FieldLo); 2870 Hi = merge(Hi, FieldHi); 2871 if (Lo == Memory || Hi == Memory) 2872 break; 2873 } 2874 2875 postMerge(Size, Lo, Hi); 2876 } 2877 } 2878 2879 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const { 2880 // If this is a scalar LLVM value then assume LLVM will pass it in the right 2881 // place naturally. 2882 if (!isAggregateTypeForABI(Ty)) { 2883 // Treat an enum type as its underlying type. 2884 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2885 Ty = EnumTy->getDecl()->getIntegerType(); 2886 2887 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 2888 : ABIArgInfo::getDirect()); 2889 } 2890 2891 return getNaturalAlignIndirect(Ty); 2892 } 2893 2894 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const { 2895 if (const VectorType *VecTy = Ty->getAs<VectorType>()) { 2896 uint64_t Size = getContext().getTypeSize(VecTy); 2897 unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel); 2898 if (Size <= 64 || Size > LargestVector) 2899 return true; 2900 } 2901 2902 return false; 2903 } 2904 2905 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty, 2906 unsigned freeIntRegs) const { 2907 // If this is a scalar LLVM value then assume LLVM will pass it in the right 2908 // place naturally. 2909 // 2910 // This assumption is optimistic, as there could be free registers available 2911 // when we need to pass this argument in memory, and LLVM could try to pass 2912 // the argument in the free register. This does not seem to happen currently, 2913 // but this code would be much safer if we could mark the argument with 2914 // 'onstack'. See PR12193. 2915 if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) { 2916 // Treat an enum type as its underlying type. 2917 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2918 Ty = EnumTy->getDecl()->getIntegerType(); 2919 2920 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 2921 : ABIArgInfo::getDirect()); 2922 } 2923 2924 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 2925 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 2926 2927 // Compute the byval alignment. We specify the alignment of the byval in all 2928 // cases so that the mid-level optimizer knows the alignment of the byval. 2929 unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U); 2930 2931 // Attempt to avoid passing indirect results using byval when possible. This 2932 // is important for good codegen. 2933 // 2934 // We do this by coercing the value into a scalar type which the backend can 2935 // handle naturally (i.e., without using byval). 2936 // 2937 // For simplicity, we currently only do this when we have exhausted all of the 2938 // free integer registers. Doing this when there are free integer registers 2939 // would require more care, as we would have to ensure that the coerced value 2940 // did not claim the unused register. That would require either reording the 2941 // arguments to the function (so that any subsequent inreg values came first), 2942 // or only doing this optimization when there were no following arguments that 2943 // might be inreg. 2944 // 2945 // We currently expect it to be rare (particularly in well written code) for 2946 // arguments to be passed on the stack when there are still free integer 2947 // registers available (this would typically imply large structs being passed 2948 // by value), so this seems like a fair tradeoff for now. 2949 // 2950 // We can revisit this if the backend grows support for 'onstack' parameter 2951 // attributes. See PR12193. 2952 if (freeIntRegs == 0) { 2953 uint64_t Size = getContext().getTypeSize(Ty); 2954 2955 // If this type fits in an eightbyte, coerce it into the matching integral 2956 // type, which will end up on the stack (with alignment 8). 2957 if (Align == 8 && Size <= 64) 2958 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 2959 Size)); 2960 } 2961 2962 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align)); 2963 } 2964 2965 /// The ABI specifies that a value should be passed in a full vector XMM/YMM 2966 /// register. Pick an LLVM IR type that will be passed as a vector register. 2967 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const { 2968 // Wrapper structs/arrays that only contain vectors are passed just like 2969 // vectors; strip them off if present. 2970 if (const Type *InnerTy = isSingleElementStruct(Ty, getContext())) 2971 Ty = QualType(InnerTy, 0); 2972 2973 llvm::Type *IRType = CGT.ConvertType(Ty); 2974 if (isa<llvm::VectorType>(IRType) || 2975 IRType->getTypeID() == llvm::Type::FP128TyID) 2976 return IRType; 2977 2978 // We couldn't find the preferred IR vector type for 'Ty'. 2979 uint64_t Size = getContext().getTypeSize(Ty); 2980 assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!"); 2981 2982 // Return a LLVM IR vector type based on the size of 'Ty'. 2983 return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 2984 Size / 64); 2985 } 2986 2987 /// BitsContainNoUserData - Return true if the specified [start,end) bit range 2988 /// is known to either be off the end of the specified type or being in 2989 /// alignment padding. The user type specified is known to be at most 128 bits 2990 /// in size, and have passed through X86_64ABIInfo::classify with a successful 2991 /// classification that put one of the two halves in the INTEGER class. 2992 /// 2993 /// It is conservatively correct to return false. 2994 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit, 2995 unsigned EndBit, ASTContext &Context) { 2996 // If the bytes being queried are off the end of the type, there is no user 2997 // data hiding here. This handles analysis of builtins, vectors and other 2998 // types that don't contain interesting padding. 2999 unsigned TySize = (unsigned)Context.getTypeSize(Ty); 3000 if (TySize <= StartBit) 3001 return true; 3002 3003 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 3004 unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType()); 3005 unsigned NumElts = (unsigned)AT->getSize().getZExtValue(); 3006 3007 // Check each element to see if the element overlaps with the queried range. 3008 for (unsigned i = 0; i != NumElts; ++i) { 3009 // If the element is after the span we care about, then we're done.. 3010 unsigned EltOffset = i*EltSize; 3011 if (EltOffset >= EndBit) break; 3012 3013 unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0; 3014 if (!BitsContainNoUserData(AT->getElementType(), EltStart, 3015 EndBit-EltOffset, Context)) 3016 return false; 3017 } 3018 // If it overlaps no elements, then it is safe to process as padding. 3019 return true; 3020 } 3021 3022 if (const RecordType *RT = Ty->getAs<RecordType>()) { 3023 const RecordDecl *RD = RT->getDecl(); 3024 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 3025 3026 // If this is a C++ record, check the bases first. 3027 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 3028 for (const auto &I : CXXRD->bases()) { 3029 assert(!I.isVirtual() && !I.getType()->isDependentType() && 3030 "Unexpected base class!"); 3031 const CXXRecordDecl *Base = 3032 cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); 3033 3034 // If the base is after the span we care about, ignore it. 3035 unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base)); 3036 if (BaseOffset >= EndBit) continue; 3037 3038 unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0; 3039 if (!BitsContainNoUserData(I.getType(), BaseStart, 3040 EndBit-BaseOffset, Context)) 3041 return false; 3042 } 3043 } 3044 3045 // Verify that no field has data that overlaps the region of interest. Yes 3046 // this could be sped up a lot by being smarter about queried fields, 3047 // however we're only looking at structs up to 16 bytes, so we don't care 3048 // much. 3049 unsigned idx = 0; 3050 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 3051 i != e; ++i, ++idx) { 3052 unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx); 3053 3054 // If we found a field after the region we care about, then we're done. 3055 if (FieldOffset >= EndBit) break; 3056 3057 unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0; 3058 if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset, 3059 Context)) 3060 return false; 3061 } 3062 3063 // If nothing in this record overlapped the area of interest, then we're 3064 // clean. 3065 return true; 3066 } 3067 3068 return false; 3069 } 3070 3071 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a 3072 /// float member at the specified offset. For example, {int,{float}} has a 3073 /// float at offset 4. It is conservatively correct for this routine to return 3074 /// false. 3075 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset, 3076 const llvm::DataLayout &TD) { 3077 // Base case if we find a float. 3078 if (IROffset == 0 && IRType->isFloatTy()) 3079 return true; 3080 3081 // If this is a struct, recurse into the field at the specified offset. 3082 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 3083 const llvm::StructLayout *SL = TD.getStructLayout(STy); 3084 unsigned Elt = SL->getElementContainingOffset(IROffset); 3085 IROffset -= SL->getElementOffset(Elt); 3086 return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD); 3087 } 3088 3089 // If this is an array, recurse into the field at the specified offset. 3090 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 3091 llvm::Type *EltTy = ATy->getElementType(); 3092 unsigned EltSize = TD.getTypeAllocSize(EltTy); 3093 IROffset -= IROffset/EltSize*EltSize; 3094 return ContainsFloatAtOffset(EltTy, IROffset, TD); 3095 } 3096 3097 return false; 3098 } 3099 3100 3101 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the 3102 /// low 8 bytes of an XMM register, corresponding to the SSE class. 3103 llvm::Type *X86_64ABIInfo:: 3104 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3105 QualType SourceTy, unsigned SourceOffset) const { 3106 // The only three choices we have are either double, <2 x float>, or float. We 3107 // pass as float if the last 4 bytes is just padding. This happens for 3108 // structs that contain 3 floats. 3109 if (BitsContainNoUserData(SourceTy, SourceOffset*8+32, 3110 SourceOffset*8+64, getContext())) 3111 return llvm::Type::getFloatTy(getVMContext()); 3112 3113 // We want to pass as <2 x float> if the LLVM IR type contains a float at 3114 // offset+0 and offset+4. Walk the LLVM IR type to find out if this is the 3115 // case. 3116 if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) && 3117 ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout())) 3118 return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2); 3119 3120 return llvm::Type::getDoubleTy(getVMContext()); 3121 } 3122 3123 3124 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in 3125 /// an 8-byte GPR. This means that we either have a scalar or we are talking 3126 /// about the high or low part of an up-to-16-byte struct. This routine picks 3127 /// the best LLVM IR type to represent this, which may be i64 or may be anything 3128 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*, 3129 /// etc). 3130 /// 3131 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for 3132 /// the source type. IROffset is an offset in bytes into the LLVM IR type that 3133 /// the 8-byte value references. PrefType may be null. 3134 /// 3135 /// SourceTy is the source-level type for the entire argument. SourceOffset is 3136 /// an offset into this that we're processing (which is always either 0 or 8). 3137 /// 3138 llvm::Type *X86_64ABIInfo:: 3139 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3140 QualType SourceTy, unsigned SourceOffset) const { 3141 // If we're dealing with an un-offset LLVM IR type, then it means that we're 3142 // returning an 8-byte unit starting with it. See if we can safely use it. 3143 if (IROffset == 0) { 3144 // Pointers and int64's always fill the 8-byte unit. 3145 if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) || 3146 IRType->isIntegerTy(64)) 3147 return IRType; 3148 3149 // If we have a 1/2/4-byte integer, we can use it only if the rest of the 3150 // goodness in the source type is just tail padding. This is allowed to 3151 // kick in for struct {double,int} on the int, but not on 3152 // struct{double,int,int} because we wouldn't return the second int. We 3153 // have to do this analysis on the source type because we can't depend on 3154 // unions being lowered a specific way etc. 3155 if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) || 3156 IRType->isIntegerTy(32) || 3157 (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) { 3158 unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 : 3159 cast<llvm::IntegerType>(IRType)->getBitWidth(); 3160 3161 if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth, 3162 SourceOffset*8+64, getContext())) 3163 return IRType; 3164 } 3165 } 3166 3167 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 3168 // If this is a struct, recurse into the field at the specified offset. 3169 const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy); 3170 if (IROffset < SL->getSizeInBytes()) { 3171 unsigned FieldIdx = SL->getElementContainingOffset(IROffset); 3172 IROffset -= SL->getElementOffset(FieldIdx); 3173 3174 return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset, 3175 SourceTy, SourceOffset); 3176 } 3177 } 3178 3179 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 3180 llvm::Type *EltTy = ATy->getElementType(); 3181 unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy); 3182 unsigned EltOffset = IROffset/EltSize*EltSize; 3183 return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy, 3184 SourceOffset); 3185 } 3186 3187 // Okay, we don't have any better idea of what to pass, so we pass this in an 3188 // integer register that isn't too big to fit the rest of the struct. 3189 unsigned TySizeInBytes = 3190 (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity(); 3191 3192 assert(TySizeInBytes != SourceOffset && "Empty field?"); 3193 3194 // It is always safe to classify this as an integer type up to i64 that 3195 // isn't larger than the structure. 3196 return llvm::IntegerType::get(getVMContext(), 3197 std::min(TySizeInBytes-SourceOffset, 8U)*8); 3198 } 3199 3200 3201 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally 3202 /// be used as elements of a two register pair to pass or return, return a 3203 /// first class aggregate to represent them. For example, if the low part of 3204 /// a by-value argument should be passed as i32* and the high part as float, 3205 /// return {i32*, float}. 3206 static llvm::Type * 3207 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi, 3208 const llvm::DataLayout &TD) { 3209 // In order to correctly satisfy the ABI, we need to the high part to start 3210 // at offset 8. If the high and low parts we inferred are both 4-byte types 3211 // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have 3212 // the second element at offset 8. Check for this: 3213 unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo); 3214 unsigned HiAlign = TD.getABITypeAlignment(Hi); 3215 unsigned HiStart = llvm::alignTo(LoSize, HiAlign); 3216 assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!"); 3217 3218 // To handle this, we have to increase the size of the low part so that the 3219 // second element will start at an 8 byte offset. We can't increase the size 3220 // of the second element because it might make us access off the end of the 3221 // struct. 3222 if (HiStart != 8) { 3223 // There are usually two sorts of types the ABI generation code can produce 3224 // for the low part of a pair that aren't 8 bytes in size: float or 3225 // i8/i16/i32. This can also include pointers when they are 32-bit (X32 and 3226 // NaCl). 3227 // Promote these to a larger type. 3228 if (Lo->isFloatTy()) 3229 Lo = llvm::Type::getDoubleTy(Lo->getContext()); 3230 else { 3231 assert((Lo->isIntegerTy() || Lo->isPointerTy()) 3232 && "Invalid/unknown lo type"); 3233 Lo = llvm::Type::getInt64Ty(Lo->getContext()); 3234 } 3235 } 3236 3237 llvm::StructType *Result = llvm::StructType::get(Lo, Hi); 3238 3239 // Verify that the second element is at an 8-byte offset. 3240 assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 && 3241 "Invalid x86-64 argument pair!"); 3242 return Result; 3243 } 3244 3245 ABIArgInfo X86_64ABIInfo:: 3246 classifyReturnType(QualType RetTy) const { 3247 // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the 3248 // classification algorithm. 3249 X86_64ABIInfo::Class Lo, Hi; 3250 classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true); 3251 3252 // Check some invariants. 3253 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3254 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3255 3256 llvm::Type *ResType = nullptr; 3257 switch (Lo) { 3258 case NoClass: 3259 if (Hi == NoClass) 3260 return ABIArgInfo::getIgnore(); 3261 // If the low part is just padding, it takes no register, leave ResType 3262 // null. 3263 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3264 "Unknown missing lo part"); 3265 break; 3266 3267 case SSEUp: 3268 case X87Up: 3269 llvm_unreachable("Invalid classification for lo word."); 3270 3271 // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via 3272 // hidden argument. 3273 case Memory: 3274 return getIndirectReturnResult(RetTy); 3275 3276 // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next 3277 // available register of the sequence %rax, %rdx is used. 3278 case Integer: 3279 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3280 3281 // If we have a sign or zero extended integer, make sure to return Extend 3282 // so that the parameter gets the right LLVM IR attributes. 3283 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3284 // Treat an enum type as its underlying type. 3285 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 3286 RetTy = EnumTy->getDecl()->getIntegerType(); 3287 3288 if (RetTy->isIntegralOrEnumerationType() && 3289 RetTy->isPromotableIntegerType()) 3290 return ABIArgInfo::getExtend(RetTy); 3291 } 3292 break; 3293 3294 // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next 3295 // available SSE register of the sequence %xmm0, %xmm1 is used. 3296 case SSE: 3297 ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3298 break; 3299 3300 // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is 3301 // returned on the X87 stack in %st0 as 80-bit x87 number. 3302 case X87: 3303 ResType = llvm::Type::getX86_FP80Ty(getVMContext()); 3304 break; 3305 3306 // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real 3307 // part of the value is returned in %st0 and the imaginary part in 3308 // %st1. 3309 case ComplexX87: 3310 assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification."); 3311 ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()), 3312 llvm::Type::getX86_FP80Ty(getVMContext())); 3313 break; 3314 } 3315 3316 llvm::Type *HighPart = nullptr; 3317 switch (Hi) { 3318 // Memory was handled previously and X87 should 3319 // never occur as a hi class. 3320 case Memory: 3321 case X87: 3322 llvm_unreachable("Invalid classification for hi word."); 3323 3324 case ComplexX87: // Previously handled. 3325 case NoClass: 3326 break; 3327 3328 case Integer: 3329 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3330 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3331 return ABIArgInfo::getDirect(HighPart, 8); 3332 break; 3333 case SSE: 3334 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3335 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3336 return ABIArgInfo::getDirect(HighPart, 8); 3337 break; 3338 3339 // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte 3340 // is passed in the next available eightbyte chunk if the last used 3341 // vector register. 3342 // 3343 // SSEUP should always be preceded by SSE, just widen. 3344 case SSEUp: 3345 assert(Lo == SSE && "Unexpected SSEUp classification."); 3346 ResType = GetByteVectorType(RetTy); 3347 break; 3348 3349 // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is 3350 // returned together with the previous X87 value in %st0. 3351 case X87Up: 3352 // If X87Up is preceded by X87, we don't need to do 3353 // anything. However, in some cases with unions it may not be 3354 // preceded by X87. In such situations we follow gcc and pass the 3355 // extra bits in an SSE reg. 3356 if (Lo != X87) { 3357 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3358 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3359 return ABIArgInfo::getDirect(HighPart, 8); 3360 } 3361 break; 3362 } 3363 3364 // If a high part was specified, merge it together with the low part. It is 3365 // known to pass in the high eightbyte of the result. We do this by forming a 3366 // first class struct aggregate with the high and low part: {low, high} 3367 if (HighPart) 3368 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3369 3370 return ABIArgInfo::getDirect(ResType); 3371 } 3372 3373 ABIArgInfo X86_64ABIInfo::classifyArgumentType( 3374 QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE, 3375 bool isNamedArg) 3376 const 3377 { 3378 Ty = useFirstFieldIfTransparentUnion(Ty); 3379 3380 X86_64ABIInfo::Class Lo, Hi; 3381 classify(Ty, 0, Lo, Hi, isNamedArg); 3382 3383 // Check some invariants. 3384 // FIXME: Enforce these by construction. 3385 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3386 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3387 3388 neededInt = 0; 3389 neededSSE = 0; 3390 llvm::Type *ResType = nullptr; 3391 switch (Lo) { 3392 case NoClass: 3393 if (Hi == NoClass) 3394 return ABIArgInfo::getIgnore(); 3395 // If the low part is just padding, it takes no register, leave ResType 3396 // null. 3397 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3398 "Unknown missing lo part"); 3399 break; 3400 3401 // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument 3402 // on the stack. 3403 case Memory: 3404 3405 // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or 3406 // COMPLEX_X87, it is passed in memory. 3407 case X87: 3408 case ComplexX87: 3409 if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect) 3410 ++neededInt; 3411 return getIndirectResult(Ty, freeIntRegs); 3412 3413 case SSEUp: 3414 case X87Up: 3415 llvm_unreachable("Invalid classification for lo word."); 3416 3417 // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next 3418 // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8 3419 // and %r9 is used. 3420 case Integer: 3421 ++neededInt; 3422 3423 // Pick an 8-byte type based on the preferred type. 3424 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0); 3425 3426 // If we have a sign or zero extended integer, make sure to return Extend 3427 // so that the parameter gets the right LLVM IR attributes. 3428 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3429 // Treat an enum type as its underlying type. 3430 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3431 Ty = EnumTy->getDecl()->getIntegerType(); 3432 3433 if (Ty->isIntegralOrEnumerationType() && 3434 Ty->isPromotableIntegerType()) 3435 return ABIArgInfo::getExtend(Ty); 3436 } 3437 3438 break; 3439 3440 // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next 3441 // available SSE register is used, the registers are taken in the 3442 // order from %xmm0 to %xmm7. 3443 case SSE: { 3444 llvm::Type *IRType = CGT.ConvertType(Ty); 3445 ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0); 3446 ++neededSSE; 3447 break; 3448 } 3449 } 3450 3451 llvm::Type *HighPart = nullptr; 3452 switch (Hi) { 3453 // Memory was handled previously, ComplexX87 and X87 should 3454 // never occur as hi classes, and X87Up must be preceded by X87, 3455 // which is passed in memory. 3456 case Memory: 3457 case X87: 3458 case ComplexX87: 3459 llvm_unreachable("Invalid classification for hi word."); 3460 3461 case NoClass: break; 3462 3463 case Integer: 3464 ++neededInt; 3465 // Pick an 8-byte type based on the preferred type. 3466 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3467 3468 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3469 return ABIArgInfo::getDirect(HighPart, 8); 3470 break; 3471 3472 // X87Up generally doesn't occur here (long double is passed in 3473 // memory), except in situations involving unions. 3474 case X87Up: 3475 case SSE: 3476 HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3477 3478 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3479 return ABIArgInfo::getDirect(HighPart, 8); 3480 3481 ++neededSSE; 3482 break; 3483 3484 // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the 3485 // eightbyte is passed in the upper half of the last used SSE 3486 // register. This only happens when 128-bit vectors are passed. 3487 case SSEUp: 3488 assert(Lo == SSE && "Unexpected SSEUp classification"); 3489 ResType = GetByteVectorType(Ty); 3490 break; 3491 } 3492 3493 // If a high part was specified, merge it together with the low part. It is 3494 // known to pass in the high eightbyte of the result. We do this by forming a 3495 // first class struct aggregate with the high and low part: {low, high} 3496 if (HighPart) 3497 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3498 3499 return ABIArgInfo::getDirect(ResType); 3500 } 3501 3502 ABIArgInfo 3503 X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 3504 unsigned &NeededSSE) const { 3505 auto RT = Ty->getAs<RecordType>(); 3506 assert(RT && "classifyRegCallStructType only valid with struct types"); 3507 3508 if (RT->getDecl()->hasFlexibleArrayMember()) 3509 return getIndirectReturnResult(Ty); 3510 3511 // Sum up bases 3512 if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 3513 if (CXXRD->isDynamicClass()) { 3514 NeededInt = NeededSSE = 0; 3515 return getIndirectReturnResult(Ty); 3516 } 3517 3518 for (const auto &I : CXXRD->bases()) 3519 if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE) 3520 .isIndirect()) { 3521 NeededInt = NeededSSE = 0; 3522 return getIndirectReturnResult(Ty); 3523 } 3524 } 3525 3526 // Sum up members 3527 for (const auto *FD : RT->getDecl()->fields()) { 3528 if (FD->getType()->isRecordType() && !FD->getType()->isUnionType()) { 3529 if (classifyRegCallStructTypeImpl(FD->getType(), NeededInt, NeededSSE) 3530 .isIndirect()) { 3531 NeededInt = NeededSSE = 0; 3532 return getIndirectReturnResult(Ty); 3533 } 3534 } else { 3535 unsigned LocalNeededInt, LocalNeededSSE; 3536 if (classifyArgumentType(FD->getType(), UINT_MAX, LocalNeededInt, 3537 LocalNeededSSE, true) 3538 .isIndirect()) { 3539 NeededInt = NeededSSE = 0; 3540 return getIndirectReturnResult(Ty); 3541 } 3542 NeededInt += LocalNeededInt; 3543 NeededSSE += LocalNeededSSE; 3544 } 3545 } 3546 3547 return ABIArgInfo::getDirect(); 3548 } 3549 3550 ABIArgInfo X86_64ABIInfo::classifyRegCallStructType(QualType Ty, 3551 unsigned &NeededInt, 3552 unsigned &NeededSSE) const { 3553 3554 NeededInt = 0; 3555 NeededSSE = 0; 3556 3557 return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE); 3558 } 3559 3560 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 3561 3562 const unsigned CallingConv = FI.getCallingConvention(); 3563 // It is possible to force Win64 calling convention on any x86_64 target by 3564 // using __attribute__((ms_abi)). In such case to correctly emit Win64 3565 // compatible code delegate this call to WinX86_64ABIInfo::computeInfo. 3566 if (CallingConv == llvm::CallingConv::Win64) { 3567 WinX86_64ABIInfo Win64ABIInfo(CGT, AVXLevel); 3568 Win64ABIInfo.computeInfo(FI); 3569 return; 3570 } 3571 3572 bool IsRegCall = CallingConv == llvm::CallingConv::X86_RegCall; 3573 3574 // Keep track of the number of assigned registers. 3575 unsigned FreeIntRegs = IsRegCall ? 11 : 6; 3576 unsigned FreeSSERegs = IsRegCall ? 16 : 8; 3577 unsigned NeededInt, NeededSSE; 3578 3579 if (!::classifyReturnType(getCXXABI(), FI, *this)) { 3580 if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() && 3581 !FI.getReturnType()->getTypePtr()->isUnionType()) { 3582 FI.getReturnInfo() = 3583 classifyRegCallStructType(FI.getReturnType(), NeededInt, NeededSSE); 3584 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 3585 FreeIntRegs -= NeededInt; 3586 FreeSSERegs -= NeededSSE; 3587 } else { 3588 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 3589 } 3590 } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>()) { 3591 // Complex Long Double Type is passed in Memory when Regcall 3592 // calling convention is used. 3593 const ComplexType *CT = FI.getReturnType()->getAs<ComplexType>(); 3594 if (getContext().getCanonicalType(CT->getElementType()) == 3595 getContext().LongDoubleTy) 3596 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 3597 } else 3598 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 3599 } 3600 3601 // If the return value is indirect, then the hidden argument is consuming one 3602 // integer register. 3603 if (FI.getReturnInfo().isIndirect()) 3604 --FreeIntRegs; 3605 3606 // The chain argument effectively gives us another free register. 3607 if (FI.isChainCall()) 3608 ++FreeIntRegs; 3609 3610 unsigned NumRequiredArgs = FI.getNumRequiredArgs(); 3611 // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers 3612 // get assigned (in left-to-right order) for passing as follows... 3613 unsigned ArgNo = 0; 3614 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 3615 it != ie; ++it, ++ArgNo) { 3616 bool IsNamedArg = ArgNo < NumRequiredArgs; 3617 3618 if (IsRegCall && it->type->isStructureOrClassType()) 3619 it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE); 3620 else 3621 it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt, 3622 NeededSSE, IsNamedArg); 3623 3624 // AMD64-ABI 3.2.3p3: If there are no registers available for any 3625 // eightbyte of an argument, the whole argument is passed on the 3626 // stack. If registers have already been assigned for some 3627 // eightbytes of such an argument, the assignments get reverted. 3628 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 3629 FreeIntRegs -= NeededInt; 3630 FreeSSERegs -= NeededSSE; 3631 } else { 3632 it->info = getIndirectResult(it->type, FreeIntRegs); 3633 } 3634 } 3635 } 3636 3637 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF, 3638 Address VAListAddr, QualType Ty) { 3639 Address overflow_arg_area_p = 3640 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p"); 3641 llvm::Value *overflow_arg_area = 3642 CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area"); 3643 3644 // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16 3645 // byte boundary if alignment needed by type exceeds 8 byte boundary. 3646 // It isn't stated explicitly in the standard, but in practice we use 3647 // alignment greater than 16 where necessary. 3648 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 3649 if (Align > CharUnits::fromQuantity(8)) { 3650 overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area, 3651 Align); 3652 } 3653 3654 // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area. 3655 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 3656 llvm::Value *Res = 3657 CGF.Builder.CreateBitCast(overflow_arg_area, 3658 llvm::PointerType::getUnqual(LTy)); 3659 3660 // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to: 3661 // l->overflow_arg_area + sizeof(type). 3662 // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to 3663 // an 8 byte boundary. 3664 3665 uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8; 3666 llvm::Value *Offset = 3667 llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7); 3668 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset, 3669 "overflow_arg_area.next"); 3670 CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p); 3671 3672 // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type. 3673 return Address(Res, Align); 3674 } 3675 3676 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 3677 QualType Ty) const { 3678 // Assume that va_list type is correct; should be pointer to LLVM type: 3679 // struct { 3680 // i32 gp_offset; 3681 // i32 fp_offset; 3682 // i8* overflow_arg_area; 3683 // i8* reg_save_area; 3684 // }; 3685 unsigned neededInt, neededSSE; 3686 3687 Ty = getContext().getCanonicalType(Ty); 3688 ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE, 3689 /*isNamedArg*/false); 3690 3691 // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed 3692 // in the registers. If not go to step 7. 3693 if (!neededInt && !neededSSE) 3694 return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 3695 3696 // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of 3697 // general purpose registers needed to pass type and num_fp to hold 3698 // the number of floating point registers needed. 3699 3700 // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into 3701 // registers. In the case: l->gp_offset > 48 - num_gp * 8 or 3702 // l->fp_offset > 304 - num_fp * 16 go to step 7. 3703 // 3704 // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of 3705 // register save space). 3706 3707 llvm::Value *InRegs = nullptr; 3708 Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid(); 3709 llvm::Value *gp_offset = nullptr, *fp_offset = nullptr; 3710 if (neededInt) { 3711 gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p"); 3712 gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset"); 3713 InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8); 3714 InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp"); 3715 } 3716 3717 if (neededSSE) { 3718 fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p"); 3719 fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset"); 3720 llvm::Value *FitsInFP = 3721 llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16); 3722 FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp"); 3723 InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP; 3724 } 3725 3726 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 3727 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 3728 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 3729 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 3730 3731 // Emit code to load the value if it was passed in registers. 3732 3733 CGF.EmitBlock(InRegBlock); 3734 3735 // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with 3736 // an offset of l->gp_offset and/or l->fp_offset. This may require 3737 // copying to a temporary location in case the parameter is passed 3738 // in different register classes or requires an alignment greater 3739 // than 8 for general purpose registers and 16 for XMM registers. 3740 // 3741 // FIXME: This really results in shameful code when we end up needing to 3742 // collect arguments from different places; often what should result in a 3743 // simple assembling of a structure from scattered addresses has many more 3744 // loads than necessary. Can we clean this up? 3745 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 3746 llvm::Value *RegSaveArea = CGF.Builder.CreateLoad( 3747 CGF.Builder.CreateStructGEP(VAListAddr, 3), "reg_save_area"); 3748 3749 Address RegAddr = Address::invalid(); 3750 if (neededInt && neededSSE) { 3751 // FIXME: Cleanup. 3752 assert(AI.isDirect() && "Unexpected ABI info for mixed regs"); 3753 llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType()); 3754 Address Tmp = CGF.CreateMemTemp(Ty); 3755 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 3756 assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs"); 3757 llvm::Type *TyLo = ST->getElementType(0); 3758 llvm::Type *TyHi = ST->getElementType(1); 3759 assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) && 3760 "Unexpected ABI info for mixed regs"); 3761 llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo); 3762 llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi); 3763 llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegSaveArea, gp_offset); 3764 llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegSaveArea, fp_offset); 3765 llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr; 3766 llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr; 3767 3768 // Copy the first element. 3769 // FIXME: Our choice of alignment here and below is probably pessimistic. 3770 llvm::Value *V = CGF.Builder.CreateAlignedLoad( 3771 TyLo, CGF.Builder.CreateBitCast(RegLoAddr, PTyLo), 3772 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyLo))); 3773 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 3774 3775 // Copy the second element. 3776 V = CGF.Builder.CreateAlignedLoad( 3777 TyHi, CGF.Builder.CreateBitCast(RegHiAddr, PTyHi), 3778 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyHi))); 3779 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 3780 3781 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 3782 } else if (neededInt) { 3783 RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, gp_offset), 3784 CharUnits::fromQuantity(8)); 3785 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 3786 3787 // Copy to a temporary if necessary to ensure the appropriate alignment. 3788 std::pair<CharUnits, CharUnits> SizeAlign = 3789 getContext().getTypeInfoInChars(Ty); 3790 uint64_t TySize = SizeAlign.first.getQuantity(); 3791 CharUnits TyAlign = SizeAlign.second; 3792 3793 // Copy into a temporary if the type is more aligned than the 3794 // register save area. 3795 if (TyAlign.getQuantity() > 8) { 3796 Address Tmp = CGF.CreateMemTemp(Ty); 3797 CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false); 3798 RegAddr = Tmp; 3799 } 3800 3801 } else if (neededSSE == 1) { 3802 RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset), 3803 CharUnits::fromQuantity(16)); 3804 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 3805 } else { 3806 assert(neededSSE == 2 && "Invalid number of needed registers!"); 3807 // SSE registers are spaced 16 bytes apart in the register save 3808 // area, we need to collect the two eightbytes together. 3809 // The ABI isn't explicit about this, but it seems reasonable 3810 // to assume that the slots are 16-byte aligned, since the stack is 3811 // naturally 16-byte aligned and the prologue is expected to store 3812 // all the SSE registers to the RSA. 3813 Address RegAddrLo = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset), 3814 CharUnits::fromQuantity(16)); 3815 Address RegAddrHi = 3816 CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo, 3817 CharUnits::fromQuantity(16)); 3818 llvm::Type *ST = AI.canHaveCoerceToType() 3819 ? AI.getCoerceToType() 3820 : llvm::StructType::get(CGF.DoubleTy, CGF.DoubleTy); 3821 llvm::Value *V; 3822 Address Tmp = CGF.CreateMemTemp(Ty); 3823 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 3824 V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast( 3825 RegAddrLo, ST->getStructElementType(0))); 3826 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 3827 V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast( 3828 RegAddrHi, ST->getStructElementType(1))); 3829 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 3830 3831 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 3832 } 3833 3834 // AMD64-ABI 3.5.7p5: Step 5. Set: 3835 // l->gp_offset = l->gp_offset + num_gp * 8 3836 // l->fp_offset = l->fp_offset + num_fp * 16. 3837 if (neededInt) { 3838 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8); 3839 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset), 3840 gp_offset_p); 3841 } 3842 if (neededSSE) { 3843 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16); 3844 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset), 3845 fp_offset_p); 3846 } 3847 CGF.EmitBranch(ContBlock); 3848 3849 // Emit code to load the value if it was passed in memory. 3850 3851 CGF.EmitBlock(InMemBlock); 3852 Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 3853 3854 // Return the appropriate result. 3855 3856 CGF.EmitBlock(ContBlock); 3857 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock, 3858 "vaarg.addr"); 3859 return ResAddr; 3860 } 3861 3862 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 3863 QualType Ty) const { 3864 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 3865 CGF.getContext().getTypeInfoInChars(Ty), 3866 CharUnits::fromQuantity(8), 3867 /*allowHigherAlign*/ false); 3868 } 3869 3870 ABIArgInfo 3871 WinX86_64ABIInfo::reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs, 3872 const ABIArgInfo ¤t) const { 3873 // Assumes vectorCall calling convention. 3874 const Type *Base = nullptr; 3875 uint64_t NumElts = 0; 3876 3877 if (!Ty->isBuiltinType() && !Ty->isVectorType() && 3878 isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) { 3879 FreeSSERegs -= NumElts; 3880 return getDirectX86Hva(); 3881 } 3882 return current; 3883 } 3884 3885 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs, 3886 bool IsReturnType, bool IsVectorCall, 3887 bool IsRegCall) const { 3888 3889 if (Ty->isVoidType()) 3890 return ABIArgInfo::getIgnore(); 3891 3892 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3893 Ty = EnumTy->getDecl()->getIntegerType(); 3894 3895 TypeInfo Info = getContext().getTypeInfo(Ty); 3896 uint64_t Width = Info.Width; 3897 CharUnits Align = getContext().toCharUnitsFromBits(Info.Align); 3898 3899 const RecordType *RT = Ty->getAs<RecordType>(); 3900 if (RT) { 3901 if (!IsReturnType) { 3902 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI())) 3903 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 3904 } 3905 3906 if (RT->getDecl()->hasFlexibleArrayMember()) 3907 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 3908 3909 } 3910 3911 const Type *Base = nullptr; 3912 uint64_t NumElts = 0; 3913 // vectorcall adds the concept of a homogenous vector aggregate, similar to 3914 // other targets. 3915 if ((IsVectorCall || IsRegCall) && 3916 isHomogeneousAggregate(Ty, Base, NumElts)) { 3917 if (IsRegCall) { 3918 if (FreeSSERegs >= NumElts) { 3919 FreeSSERegs -= NumElts; 3920 if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType()) 3921 return ABIArgInfo::getDirect(); 3922 return ABIArgInfo::getExpand(); 3923 } 3924 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3925 } else if (IsVectorCall) { 3926 if (FreeSSERegs >= NumElts && 3927 (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) { 3928 FreeSSERegs -= NumElts; 3929 return ABIArgInfo::getDirect(); 3930 } else if (IsReturnType) { 3931 return ABIArgInfo::getExpand(); 3932 } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) { 3933 // HVAs are delayed and reclassified in the 2nd step. 3934 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3935 } 3936 } 3937 } 3938 3939 if (Ty->isMemberPointerType()) { 3940 // If the member pointer is represented by an LLVM int or ptr, pass it 3941 // directly. 3942 llvm::Type *LLTy = CGT.ConvertType(Ty); 3943 if (LLTy->isPointerTy() || LLTy->isIntegerTy()) 3944 return ABIArgInfo::getDirect(); 3945 } 3946 3947 if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) { 3948 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 3949 // not 1, 2, 4, or 8 bytes, must be passed by reference." 3950 if (Width > 64 || !llvm::isPowerOf2_64(Width)) 3951 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 3952 3953 // Otherwise, coerce it to a small integer. 3954 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width)); 3955 } 3956 3957 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 3958 switch (BT->getKind()) { 3959 case BuiltinType::Bool: 3960 // Bool type is always extended to the ABI, other builtin types are not 3961 // extended. 3962 return ABIArgInfo::getExtend(Ty); 3963 3964 case BuiltinType::LongDouble: 3965 // Mingw64 GCC uses the old 80 bit extended precision floating point 3966 // unit. It passes them indirectly through memory. 3967 if (IsMingw64) { 3968 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 3969 if (LDF == &llvm::APFloat::x87DoubleExtended()) 3970 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3971 } 3972 break; 3973 3974 case BuiltinType::Int128: 3975 case BuiltinType::UInt128: 3976 // If it's a parameter type, the normal ABI rule is that arguments larger 3977 // than 8 bytes are passed indirectly. GCC follows it. We follow it too, 3978 // even though it isn't particularly efficient. 3979 if (!IsReturnType) 3980 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3981 3982 // Mingw64 GCC returns i128 in XMM0. Coerce to v2i64 to handle that. 3983 // Clang matches them for compatibility. 3984 return ABIArgInfo::getDirect( 3985 llvm::VectorType::get(llvm::Type::getInt64Ty(getVMContext()), 2)); 3986 3987 default: 3988 break; 3989 } 3990 } 3991 3992 return ABIArgInfo::getDirect(); 3993 } 3994 3995 void WinX86_64ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI, 3996 unsigned FreeSSERegs, 3997 bool IsVectorCall, 3998 bool IsRegCall) const { 3999 unsigned Count = 0; 4000 for (auto &I : FI.arguments()) { 4001 // Vectorcall in x64 only permits the first 6 arguments to be passed 4002 // as XMM/YMM registers. 4003 if (Count < VectorcallMaxParamNumAsReg) 4004 I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall); 4005 else { 4006 // Since these cannot be passed in registers, pretend no registers 4007 // are left. 4008 unsigned ZeroSSERegsAvail = 0; 4009 I.info = classify(I.type, /*FreeSSERegs=*/ZeroSSERegsAvail, false, 4010 IsVectorCall, IsRegCall); 4011 } 4012 ++Count; 4013 } 4014 4015 for (auto &I : FI.arguments()) { 4016 I.info = reclassifyHvaArgType(I.type, FreeSSERegs, I.info); 4017 } 4018 } 4019 4020 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 4021 const unsigned CC = FI.getCallingConvention(); 4022 bool IsVectorCall = CC == llvm::CallingConv::X86_VectorCall; 4023 bool IsRegCall = CC == llvm::CallingConv::X86_RegCall; 4024 4025 // If __attribute__((sysv_abi)) is in use, use the SysV argument 4026 // classification rules. 4027 if (CC == llvm::CallingConv::X86_64_SysV) { 4028 X86_64ABIInfo SysVABIInfo(CGT, AVXLevel); 4029 SysVABIInfo.computeInfo(FI); 4030 return; 4031 } 4032 4033 unsigned FreeSSERegs = 0; 4034 if (IsVectorCall) { 4035 // We can use up to 4 SSE return registers with vectorcall. 4036 FreeSSERegs = 4; 4037 } else if (IsRegCall) { 4038 // RegCall gives us 16 SSE registers. 4039 FreeSSERegs = 16; 4040 } 4041 4042 if (!getCXXABI().classifyReturnType(FI)) 4043 FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true, 4044 IsVectorCall, IsRegCall); 4045 4046 if (IsVectorCall) { 4047 // We can use up to 6 SSE register parameters with vectorcall. 4048 FreeSSERegs = 6; 4049 } else if (IsRegCall) { 4050 // RegCall gives us 16 SSE registers, we can reuse the return registers. 4051 FreeSSERegs = 16; 4052 } 4053 4054 if (IsVectorCall) { 4055 computeVectorCallArgs(FI, FreeSSERegs, IsVectorCall, IsRegCall); 4056 } else { 4057 for (auto &I : FI.arguments()) 4058 I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall); 4059 } 4060 4061 } 4062 4063 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4064 QualType Ty) const { 4065 4066 bool IsIndirect = false; 4067 4068 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4069 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4070 if (isAggregateTypeForABI(Ty) || Ty->isMemberPointerType()) { 4071 uint64_t Width = getContext().getTypeSize(Ty); 4072 IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width); 4073 } 4074 4075 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 4076 CGF.getContext().getTypeInfoInChars(Ty), 4077 CharUnits::fromQuantity(8), 4078 /*allowHigherAlign*/ false); 4079 } 4080 4081 // PowerPC-32 4082 namespace { 4083 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information. 4084 class PPC32_SVR4_ABIInfo : public DefaultABIInfo { 4085 bool IsSoftFloatABI; 4086 4087 CharUnits getParamTypeAlignment(QualType Ty) const; 4088 4089 public: 4090 PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI) 4091 : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI) {} 4092 4093 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4094 QualType Ty) const override; 4095 }; 4096 4097 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo { 4098 public: 4099 PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI) 4100 : TargetCodeGenInfo(new PPC32_SVR4_ABIInfo(CGT, SoftFloatABI)) {} 4101 4102 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4103 // This is recovered from gcc output. 4104 return 1; // r1 is the dedicated stack pointer 4105 } 4106 4107 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4108 llvm::Value *Address) const override; 4109 }; 4110 } 4111 4112 CharUnits PPC32_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 4113 // Complex types are passed just like their elements 4114 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 4115 Ty = CTy->getElementType(); 4116 4117 if (Ty->isVectorType()) 4118 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 4119 : 4); 4120 4121 // For single-element float/vector structs, we consider the whole type 4122 // to have the same alignment requirements as its single element. 4123 const Type *AlignTy = nullptr; 4124 if (const Type *EltType = isSingleElementStruct(Ty, getContext())) { 4125 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 4126 if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) || 4127 (BT && BT->isFloatingPoint())) 4128 AlignTy = EltType; 4129 } 4130 4131 if (AlignTy) 4132 return CharUnits::fromQuantity(AlignTy->isVectorType() ? 16 : 4); 4133 return CharUnits::fromQuantity(4); 4134 } 4135 4136 // TODO: this implementation is now likely redundant with 4137 // DefaultABIInfo::EmitVAArg. 4138 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList, 4139 QualType Ty) const { 4140 if (getTarget().getTriple().isOSDarwin()) { 4141 auto TI = getContext().getTypeInfoInChars(Ty); 4142 TI.second = getParamTypeAlignment(Ty); 4143 4144 CharUnits SlotSize = CharUnits::fromQuantity(4); 4145 return emitVoidPtrVAArg(CGF, VAList, Ty, 4146 classifyArgumentType(Ty).isIndirect(), TI, SlotSize, 4147 /*AllowHigherAlign=*/true); 4148 } 4149 4150 const unsigned OverflowLimit = 8; 4151 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 4152 // TODO: Implement this. For now ignore. 4153 (void)CTy; 4154 return Address::invalid(); // FIXME? 4155 } 4156 4157 // struct __va_list_tag { 4158 // unsigned char gpr; 4159 // unsigned char fpr; 4160 // unsigned short reserved; 4161 // void *overflow_arg_area; 4162 // void *reg_save_area; 4163 // }; 4164 4165 bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64; 4166 bool isInt = 4167 Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType(); 4168 bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64; 4169 4170 // All aggregates are passed indirectly? That doesn't seem consistent 4171 // with the argument-lowering code. 4172 bool isIndirect = Ty->isAggregateType(); 4173 4174 CGBuilderTy &Builder = CGF.Builder; 4175 4176 // The calling convention either uses 1-2 GPRs or 1 FPR. 4177 Address NumRegsAddr = Address::invalid(); 4178 if (isInt || IsSoftFloatABI) { 4179 NumRegsAddr = Builder.CreateStructGEP(VAList, 0, "gpr"); 4180 } else { 4181 NumRegsAddr = Builder.CreateStructGEP(VAList, 1, "fpr"); 4182 } 4183 4184 llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs"); 4185 4186 // "Align" the register count when TY is i64. 4187 if (isI64 || (isF64 && IsSoftFloatABI)) { 4188 NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1)); 4189 NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U)); 4190 } 4191 4192 llvm::Value *CC = 4193 Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond"); 4194 4195 llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs"); 4196 llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow"); 4197 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 4198 4199 Builder.CreateCondBr(CC, UsingRegs, UsingOverflow); 4200 4201 llvm::Type *DirectTy = CGF.ConvertType(Ty); 4202 if (isIndirect) DirectTy = DirectTy->getPointerTo(0); 4203 4204 // Case 1: consume registers. 4205 Address RegAddr = Address::invalid(); 4206 { 4207 CGF.EmitBlock(UsingRegs); 4208 4209 Address RegSaveAreaPtr = Builder.CreateStructGEP(VAList, 4); 4210 RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr), 4211 CharUnits::fromQuantity(8)); 4212 assert(RegAddr.getElementType() == CGF.Int8Ty); 4213 4214 // Floating-point registers start after the general-purpose registers. 4215 if (!(isInt || IsSoftFloatABI)) { 4216 RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr, 4217 CharUnits::fromQuantity(32)); 4218 } 4219 4220 // Get the address of the saved value by scaling the number of 4221 // registers we've used by the number of 4222 CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8); 4223 llvm::Value *RegOffset = 4224 Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity())); 4225 RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty, 4226 RegAddr.getPointer(), RegOffset), 4227 RegAddr.getAlignment().alignmentOfArrayElement(RegSize)); 4228 RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy); 4229 4230 // Increase the used-register count. 4231 NumRegs = 4232 Builder.CreateAdd(NumRegs, 4233 Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1)); 4234 Builder.CreateStore(NumRegs, NumRegsAddr); 4235 4236 CGF.EmitBranch(Cont); 4237 } 4238 4239 // Case 2: consume space in the overflow area. 4240 Address MemAddr = Address::invalid(); 4241 { 4242 CGF.EmitBlock(UsingOverflow); 4243 4244 Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr); 4245 4246 // Everything in the overflow area is rounded up to a size of at least 4. 4247 CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4); 4248 4249 CharUnits Size; 4250 if (!isIndirect) { 4251 auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty); 4252 Size = TypeInfo.first.alignTo(OverflowAreaAlign); 4253 } else { 4254 Size = CGF.getPointerSize(); 4255 } 4256 4257 Address OverflowAreaAddr = Builder.CreateStructGEP(VAList, 3); 4258 Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"), 4259 OverflowAreaAlign); 4260 // Round up address of argument to alignment 4261 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 4262 if (Align > OverflowAreaAlign) { 4263 llvm::Value *Ptr = OverflowArea.getPointer(); 4264 OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align), 4265 Align); 4266 } 4267 4268 MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy); 4269 4270 // Increase the overflow area. 4271 OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size); 4272 Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr); 4273 CGF.EmitBranch(Cont); 4274 } 4275 4276 CGF.EmitBlock(Cont); 4277 4278 // Merge the cases with a phi. 4279 Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow, 4280 "vaarg.addr"); 4281 4282 // Load the pointer if the argument was passed indirectly. 4283 if (isIndirect) { 4284 Result = Address(Builder.CreateLoad(Result, "aggr"), 4285 getContext().getTypeAlignInChars(Ty)); 4286 } 4287 4288 return Result; 4289 } 4290 4291 bool 4292 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4293 llvm::Value *Address) const { 4294 // This is calculated from the LLVM and GCC tables and verified 4295 // against gcc output. AFAIK all ABIs use the same encoding. 4296 4297 CodeGen::CGBuilderTy &Builder = CGF.Builder; 4298 4299 llvm::IntegerType *i8 = CGF.Int8Ty; 4300 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 4301 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 4302 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 4303 4304 // 0-31: r0-31, the 4-byte general-purpose registers 4305 AssignToArrayRange(Builder, Address, Four8, 0, 31); 4306 4307 // 32-63: fp0-31, the 8-byte floating-point registers 4308 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 4309 4310 // 64-76 are various 4-byte special-purpose registers: 4311 // 64: mq 4312 // 65: lr 4313 // 66: ctr 4314 // 67: ap 4315 // 68-75 cr0-7 4316 // 76: xer 4317 AssignToArrayRange(Builder, Address, Four8, 64, 76); 4318 4319 // 77-108: v0-31, the 16-byte vector registers 4320 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 4321 4322 // 109: vrsave 4323 // 110: vscr 4324 // 111: spe_acc 4325 // 112: spefscr 4326 // 113: sfp 4327 AssignToArrayRange(Builder, Address, Four8, 109, 113); 4328 4329 return false; 4330 } 4331 4332 // PowerPC-64 4333 4334 namespace { 4335 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information. 4336 class PPC64_SVR4_ABIInfo : public SwiftABIInfo { 4337 public: 4338 enum ABIKind { 4339 ELFv1 = 0, 4340 ELFv2 4341 }; 4342 4343 private: 4344 static const unsigned GPRBits = 64; 4345 ABIKind Kind; 4346 bool HasQPX; 4347 bool IsSoftFloatABI; 4348 4349 // A vector of float or double will be promoted to <4 x f32> or <4 x f64> and 4350 // will be passed in a QPX register. 4351 bool IsQPXVectorTy(const Type *Ty) const { 4352 if (!HasQPX) 4353 return false; 4354 4355 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4356 unsigned NumElements = VT->getNumElements(); 4357 if (NumElements == 1) 4358 return false; 4359 4360 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) { 4361 if (getContext().getTypeSize(Ty) <= 256) 4362 return true; 4363 } else if (VT->getElementType()-> 4364 isSpecificBuiltinType(BuiltinType::Float)) { 4365 if (getContext().getTypeSize(Ty) <= 128) 4366 return true; 4367 } 4368 } 4369 4370 return false; 4371 } 4372 4373 bool IsQPXVectorTy(QualType Ty) const { 4374 return IsQPXVectorTy(Ty.getTypePtr()); 4375 } 4376 4377 public: 4378 PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, bool HasQPX, 4379 bool SoftFloatABI) 4380 : SwiftABIInfo(CGT), Kind(Kind), HasQPX(HasQPX), 4381 IsSoftFloatABI(SoftFloatABI) {} 4382 4383 bool isPromotableTypeForABI(QualType Ty) const; 4384 CharUnits getParamTypeAlignment(QualType Ty) const; 4385 4386 ABIArgInfo classifyReturnType(QualType RetTy) const; 4387 ABIArgInfo classifyArgumentType(QualType Ty) const; 4388 4389 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 4390 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 4391 uint64_t Members) const override; 4392 4393 // TODO: We can add more logic to computeInfo to improve performance. 4394 // Example: For aggregate arguments that fit in a register, we could 4395 // use getDirectInReg (as is done below for structs containing a single 4396 // floating-point value) to avoid pushing them to memory on function 4397 // entry. This would require changing the logic in PPCISelLowering 4398 // when lowering the parameters in the caller and args in the callee. 4399 void computeInfo(CGFunctionInfo &FI) const override { 4400 if (!getCXXABI().classifyReturnType(FI)) 4401 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4402 for (auto &I : FI.arguments()) { 4403 // We rely on the default argument classification for the most part. 4404 // One exception: An aggregate containing a single floating-point 4405 // or vector item must be passed in a register if one is available. 4406 const Type *T = isSingleElementStruct(I.type, getContext()); 4407 if (T) { 4408 const BuiltinType *BT = T->getAs<BuiltinType>(); 4409 if (IsQPXVectorTy(T) || 4410 (T->isVectorType() && getContext().getTypeSize(T) == 128) || 4411 (BT && BT->isFloatingPoint())) { 4412 QualType QT(T, 0); 4413 I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT)); 4414 continue; 4415 } 4416 } 4417 I.info = classifyArgumentType(I.type); 4418 } 4419 } 4420 4421 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4422 QualType Ty) const override; 4423 4424 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 4425 bool asReturnValue) const override { 4426 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 4427 } 4428 4429 bool isSwiftErrorInRegister() const override { 4430 return false; 4431 } 4432 }; 4433 4434 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo { 4435 4436 public: 4437 PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT, 4438 PPC64_SVR4_ABIInfo::ABIKind Kind, bool HasQPX, 4439 bool SoftFloatABI) 4440 : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT, Kind, HasQPX, 4441 SoftFloatABI)) {} 4442 4443 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4444 // This is recovered from gcc output. 4445 return 1; // r1 is the dedicated stack pointer 4446 } 4447 4448 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4449 llvm::Value *Address) const override; 4450 }; 4451 4452 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo { 4453 public: 4454 PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {} 4455 4456 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4457 // This is recovered from gcc output. 4458 return 1; // r1 is the dedicated stack pointer 4459 } 4460 4461 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4462 llvm::Value *Address) const override; 4463 }; 4464 4465 } 4466 4467 // Return true if the ABI requires Ty to be passed sign- or zero- 4468 // extended to 64 bits. 4469 bool 4470 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const { 4471 // Treat an enum type as its underlying type. 4472 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4473 Ty = EnumTy->getDecl()->getIntegerType(); 4474 4475 // Promotable integer types are required to be promoted by the ABI. 4476 if (Ty->isPromotableIntegerType()) 4477 return true; 4478 4479 // In addition to the usual promotable integer types, we also need to 4480 // extend all 32-bit types, since the ABI requires promotion to 64 bits. 4481 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 4482 switch (BT->getKind()) { 4483 case BuiltinType::Int: 4484 case BuiltinType::UInt: 4485 return true; 4486 default: 4487 break; 4488 } 4489 4490 return false; 4491 } 4492 4493 /// isAlignedParamType - Determine whether a type requires 16-byte or 4494 /// higher alignment in the parameter area. Always returns at least 8. 4495 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 4496 // Complex types are passed just like their elements. 4497 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 4498 Ty = CTy->getElementType(); 4499 4500 // Only vector types of size 16 bytes need alignment (larger types are 4501 // passed via reference, smaller types are not aligned). 4502 if (IsQPXVectorTy(Ty)) { 4503 if (getContext().getTypeSize(Ty) > 128) 4504 return CharUnits::fromQuantity(32); 4505 4506 return CharUnits::fromQuantity(16); 4507 } else if (Ty->isVectorType()) { 4508 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8); 4509 } 4510 4511 // For single-element float/vector structs, we consider the whole type 4512 // to have the same alignment requirements as its single element. 4513 const Type *AlignAsType = nullptr; 4514 const Type *EltType = isSingleElementStruct(Ty, getContext()); 4515 if (EltType) { 4516 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 4517 if (IsQPXVectorTy(EltType) || (EltType->isVectorType() && 4518 getContext().getTypeSize(EltType) == 128) || 4519 (BT && BT->isFloatingPoint())) 4520 AlignAsType = EltType; 4521 } 4522 4523 // Likewise for ELFv2 homogeneous aggregates. 4524 const Type *Base = nullptr; 4525 uint64_t Members = 0; 4526 if (!AlignAsType && Kind == ELFv2 && 4527 isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members)) 4528 AlignAsType = Base; 4529 4530 // With special case aggregates, only vector base types need alignment. 4531 if (AlignAsType && IsQPXVectorTy(AlignAsType)) { 4532 if (getContext().getTypeSize(AlignAsType) > 128) 4533 return CharUnits::fromQuantity(32); 4534 4535 return CharUnits::fromQuantity(16); 4536 } else if (AlignAsType) { 4537 return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8); 4538 } 4539 4540 // Otherwise, we only need alignment for any aggregate type that 4541 // has an alignment requirement of >= 16 bytes. 4542 if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) { 4543 if (HasQPX && getContext().getTypeAlign(Ty) >= 256) 4544 return CharUnits::fromQuantity(32); 4545 return CharUnits::fromQuantity(16); 4546 } 4547 4548 return CharUnits::fromQuantity(8); 4549 } 4550 4551 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous 4552 /// aggregate. Base is set to the base element type, and Members is set 4553 /// to the number of base elements. 4554 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base, 4555 uint64_t &Members) const { 4556 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 4557 uint64_t NElements = AT->getSize().getZExtValue(); 4558 if (NElements == 0) 4559 return false; 4560 if (!isHomogeneousAggregate(AT->getElementType(), Base, Members)) 4561 return false; 4562 Members *= NElements; 4563 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 4564 const RecordDecl *RD = RT->getDecl(); 4565 if (RD->hasFlexibleArrayMember()) 4566 return false; 4567 4568 Members = 0; 4569 4570 // If this is a C++ record, check the bases first. 4571 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 4572 for (const auto &I : CXXRD->bases()) { 4573 // Ignore empty records. 4574 if (isEmptyRecord(getContext(), I.getType(), true)) 4575 continue; 4576 4577 uint64_t FldMembers; 4578 if (!isHomogeneousAggregate(I.getType(), Base, FldMembers)) 4579 return false; 4580 4581 Members += FldMembers; 4582 } 4583 } 4584 4585 for (const auto *FD : RD->fields()) { 4586 // Ignore (non-zero arrays of) empty records. 4587 QualType FT = FD->getType(); 4588 while (const ConstantArrayType *AT = 4589 getContext().getAsConstantArrayType(FT)) { 4590 if (AT->getSize().getZExtValue() == 0) 4591 return false; 4592 FT = AT->getElementType(); 4593 } 4594 if (isEmptyRecord(getContext(), FT, true)) 4595 continue; 4596 4597 // For compatibility with GCC, ignore empty bitfields in C++ mode. 4598 if (getContext().getLangOpts().CPlusPlus && 4599 FD->isZeroLengthBitField(getContext())) 4600 continue; 4601 4602 uint64_t FldMembers; 4603 if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers)) 4604 return false; 4605 4606 Members = (RD->isUnion() ? 4607 std::max(Members, FldMembers) : Members + FldMembers); 4608 } 4609 4610 if (!Base) 4611 return false; 4612 4613 // Ensure there is no padding. 4614 if (getContext().getTypeSize(Base) * Members != 4615 getContext().getTypeSize(Ty)) 4616 return false; 4617 } else { 4618 Members = 1; 4619 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 4620 Members = 2; 4621 Ty = CT->getElementType(); 4622 } 4623 4624 // Most ABIs only support float, double, and some vector type widths. 4625 if (!isHomogeneousAggregateBaseType(Ty)) 4626 return false; 4627 4628 // The base type must be the same for all members. Types that 4629 // agree in both total size and mode (float vs. vector) are 4630 // treated as being equivalent here. 4631 const Type *TyPtr = Ty.getTypePtr(); 4632 if (!Base) { 4633 Base = TyPtr; 4634 // If it's a non-power-of-2 vector, its size is already a power-of-2, 4635 // so make sure to widen it explicitly. 4636 if (const VectorType *VT = Base->getAs<VectorType>()) { 4637 QualType EltTy = VT->getElementType(); 4638 unsigned NumElements = 4639 getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy); 4640 Base = getContext() 4641 .getVectorType(EltTy, NumElements, VT->getVectorKind()) 4642 .getTypePtr(); 4643 } 4644 } 4645 4646 if (Base->isVectorType() != TyPtr->isVectorType() || 4647 getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr)) 4648 return false; 4649 } 4650 return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members); 4651 } 4652 4653 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 4654 // Homogeneous aggregates for ELFv2 must have base types of float, 4655 // double, long double, or 128-bit vectors. 4656 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 4657 if (BT->getKind() == BuiltinType::Float || 4658 BT->getKind() == BuiltinType::Double || 4659 BT->getKind() == BuiltinType::LongDouble || 4660 (getContext().getTargetInfo().hasFloat128Type() && 4661 (BT->getKind() == BuiltinType::Float128))) { 4662 if (IsSoftFloatABI) 4663 return false; 4664 return true; 4665 } 4666 } 4667 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4668 if (getContext().getTypeSize(VT) == 128 || IsQPXVectorTy(Ty)) 4669 return true; 4670 } 4671 return false; 4672 } 4673 4674 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough( 4675 const Type *Base, uint64_t Members) const { 4676 // Vector and fp128 types require one register, other floating point types 4677 // require one or two registers depending on their size. 4678 uint32_t NumRegs = 4679 ((getContext().getTargetInfo().hasFloat128Type() && 4680 Base->isFloat128Type()) || 4681 Base->isVectorType()) ? 1 4682 : (getContext().getTypeSize(Base) + 63) / 64; 4683 4684 // Homogeneous Aggregates may occupy at most 8 registers. 4685 return Members * NumRegs <= 8; 4686 } 4687 4688 ABIArgInfo 4689 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const { 4690 Ty = useFirstFieldIfTransparentUnion(Ty); 4691 4692 if (Ty->isAnyComplexType()) 4693 return ABIArgInfo::getDirect(); 4694 4695 // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes) 4696 // or via reference (larger than 16 bytes). 4697 if (Ty->isVectorType() && !IsQPXVectorTy(Ty)) { 4698 uint64_t Size = getContext().getTypeSize(Ty); 4699 if (Size > 128) 4700 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4701 else if (Size < 128) { 4702 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 4703 return ABIArgInfo::getDirect(CoerceTy); 4704 } 4705 } 4706 4707 if (isAggregateTypeForABI(Ty)) { 4708 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 4709 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 4710 4711 uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity(); 4712 uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); 4713 4714 // ELFv2 homogeneous aggregates are passed as array types. 4715 const Type *Base = nullptr; 4716 uint64_t Members = 0; 4717 if (Kind == ELFv2 && 4718 isHomogeneousAggregate(Ty, Base, Members)) { 4719 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 4720 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 4721 return ABIArgInfo::getDirect(CoerceTy); 4722 } 4723 4724 // If an aggregate may end up fully in registers, we do not 4725 // use the ByVal method, but pass the aggregate as array. 4726 // This is usually beneficial since we avoid forcing the 4727 // back-end to store the argument to memory. 4728 uint64_t Bits = getContext().getTypeSize(Ty); 4729 if (Bits > 0 && Bits <= 8 * GPRBits) { 4730 llvm::Type *CoerceTy; 4731 4732 // Types up to 8 bytes are passed as integer type (which will be 4733 // properly aligned in the argument save area doubleword). 4734 if (Bits <= GPRBits) 4735 CoerceTy = 4736 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 4737 // Larger types are passed as arrays, with the base type selected 4738 // according to the required alignment in the save area. 4739 else { 4740 uint64_t RegBits = ABIAlign * 8; 4741 uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits; 4742 llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits); 4743 CoerceTy = llvm::ArrayType::get(RegTy, NumRegs); 4744 } 4745 4746 return ABIArgInfo::getDirect(CoerceTy); 4747 } 4748 4749 // All other aggregates are passed ByVal. 4750 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 4751 /*ByVal=*/true, 4752 /*Realign=*/TyAlign > ABIAlign); 4753 } 4754 4755 return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 4756 : ABIArgInfo::getDirect()); 4757 } 4758 4759 ABIArgInfo 4760 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { 4761 if (RetTy->isVoidType()) 4762 return ABIArgInfo::getIgnore(); 4763 4764 if (RetTy->isAnyComplexType()) 4765 return ABIArgInfo::getDirect(); 4766 4767 // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes) 4768 // or via reference (larger than 16 bytes). 4769 if (RetTy->isVectorType() && !IsQPXVectorTy(RetTy)) { 4770 uint64_t Size = getContext().getTypeSize(RetTy); 4771 if (Size > 128) 4772 return getNaturalAlignIndirect(RetTy); 4773 else if (Size < 128) { 4774 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 4775 return ABIArgInfo::getDirect(CoerceTy); 4776 } 4777 } 4778 4779 if (isAggregateTypeForABI(RetTy)) { 4780 // ELFv2 homogeneous aggregates are returned as array types. 4781 const Type *Base = nullptr; 4782 uint64_t Members = 0; 4783 if (Kind == ELFv2 && 4784 isHomogeneousAggregate(RetTy, Base, Members)) { 4785 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 4786 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 4787 return ABIArgInfo::getDirect(CoerceTy); 4788 } 4789 4790 // ELFv2 small aggregates are returned in up to two registers. 4791 uint64_t Bits = getContext().getTypeSize(RetTy); 4792 if (Kind == ELFv2 && Bits <= 2 * GPRBits) { 4793 if (Bits == 0) 4794 return ABIArgInfo::getIgnore(); 4795 4796 llvm::Type *CoerceTy; 4797 if (Bits > GPRBits) { 4798 CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits); 4799 CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy); 4800 } else 4801 CoerceTy = 4802 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 4803 return ABIArgInfo::getDirect(CoerceTy); 4804 } 4805 4806 // All other aggregates are returned indirectly. 4807 return getNaturalAlignIndirect(RetTy); 4808 } 4809 4810 return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 4811 : ABIArgInfo::getDirect()); 4812 } 4813 4814 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine. 4815 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4816 QualType Ty) const { 4817 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 4818 TypeInfo.second = getParamTypeAlignment(Ty); 4819 4820 CharUnits SlotSize = CharUnits::fromQuantity(8); 4821 4822 // If we have a complex type and the base type is smaller than 8 bytes, 4823 // the ABI calls for the real and imaginary parts to be right-adjusted 4824 // in separate doublewords. However, Clang expects us to produce a 4825 // pointer to a structure with the two parts packed tightly. So generate 4826 // loads of the real and imaginary parts relative to the va_list pointer, 4827 // and store them to a temporary structure. 4828 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 4829 CharUnits EltSize = TypeInfo.first / 2; 4830 if (EltSize < SlotSize) { 4831 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty, 4832 SlotSize * 2, SlotSize, 4833 SlotSize, /*AllowHigher*/ true); 4834 4835 Address RealAddr = Addr; 4836 Address ImagAddr = RealAddr; 4837 if (CGF.CGM.getDataLayout().isBigEndian()) { 4838 RealAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, 4839 SlotSize - EltSize); 4840 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr, 4841 2 * SlotSize - EltSize); 4842 } else { 4843 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize); 4844 } 4845 4846 llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType()); 4847 RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy); 4848 ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy); 4849 llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal"); 4850 llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag"); 4851 4852 Address Temp = CGF.CreateMemTemp(Ty, "vacplx"); 4853 CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty), 4854 /*init*/ true); 4855 return Temp; 4856 } 4857 } 4858 4859 // Otherwise, just use the general rule. 4860 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 4861 TypeInfo, SlotSize, /*AllowHigher*/ true); 4862 } 4863 4864 static bool 4865 PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4866 llvm::Value *Address) { 4867 // This is calculated from the LLVM and GCC tables and verified 4868 // against gcc output. AFAIK all ABIs use the same encoding. 4869 4870 CodeGen::CGBuilderTy &Builder = CGF.Builder; 4871 4872 llvm::IntegerType *i8 = CGF.Int8Ty; 4873 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 4874 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 4875 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 4876 4877 // 0-31: r0-31, the 8-byte general-purpose registers 4878 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 4879 4880 // 32-63: fp0-31, the 8-byte floating-point registers 4881 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 4882 4883 // 64-67 are various 8-byte special-purpose registers: 4884 // 64: mq 4885 // 65: lr 4886 // 66: ctr 4887 // 67: ap 4888 AssignToArrayRange(Builder, Address, Eight8, 64, 67); 4889 4890 // 68-76 are various 4-byte special-purpose registers: 4891 // 68-75 cr0-7 4892 // 76: xer 4893 AssignToArrayRange(Builder, Address, Four8, 68, 76); 4894 4895 // 77-108: v0-31, the 16-byte vector registers 4896 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 4897 4898 // 109: vrsave 4899 // 110: vscr 4900 // 111: spe_acc 4901 // 112: spefscr 4902 // 113: sfp 4903 // 114: tfhar 4904 // 115: tfiar 4905 // 116: texasr 4906 AssignToArrayRange(Builder, Address, Eight8, 109, 116); 4907 4908 return false; 4909 } 4910 4911 bool 4912 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable( 4913 CodeGen::CodeGenFunction &CGF, 4914 llvm::Value *Address) const { 4915 4916 return PPC64_initDwarfEHRegSizeTable(CGF, Address); 4917 } 4918 4919 bool 4920 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4921 llvm::Value *Address) const { 4922 4923 return PPC64_initDwarfEHRegSizeTable(CGF, Address); 4924 } 4925 4926 //===----------------------------------------------------------------------===// 4927 // AArch64 ABI Implementation 4928 //===----------------------------------------------------------------------===// 4929 4930 namespace { 4931 4932 class AArch64ABIInfo : public SwiftABIInfo { 4933 public: 4934 enum ABIKind { 4935 AAPCS = 0, 4936 DarwinPCS, 4937 Win64 4938 }; 4939 4940 private: 4941 ABIKind Kind; 4942 4943 public: 4944 AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind) 4945 : SwiftABIInfo(CGT), Kind(Kind) {} 4946 4947 private: 4948 ABIKind getABIKind() const { return Kind; } 4949 bool isDarwinPCS() const { return Kind == DarwinPCS; } 4950 4951 ABIArgInfo classifyReturnType(QualType RetTy) const; 4952 ABIArgInfo classifyArgumentType(QualType RetTy) const; 4953 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 4954 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 4955 uint64_t Members) const override; 4956 4957 bool isIllegalVectorType(QualType Ty) const; 4958 4959 void computeInfo(CGFunctionInfo &FI) const override { 4960 if (!::classifyReturnType(getCXXABI(), FI, *this)) 4961 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4962 4963 for (auto &it : FI.arguments()) 4964 it.info = classifyArgumentType(it.type); 4965 } 4966 4967 Address EmitDarwinVAArg(Address VAListAddr, QualType Ty, 4968 CodeGenFunction &CGF) const; 4969 4970 Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty, 4971 CodeGenFunction &CGF) const; 4972 4973 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4974 QualType Ty) const override { 4975 return Kind == Win64 ? EmitMSVAArg(CGF, VAListAddr, Ty) 4976 : isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF) 4977 : EmitAAPCSVAArg(VAListAddr, Ty, CGF); 4978 } 4979 4980 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 4981 QualType Ty) const override; 4982 4983 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 4984 bool asReturnValue) const override { 4985 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 4986 } 4987 bool isSwiftErrorInRegister() const override { 4988 return true; 4989 } 4990 4991 bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy, 4992 unsigned elts) const override; 4993 }; 4994 4995 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo { 4996 public: 4997 AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind) 4998 : TargetCodeGenInfo(new AArch64ABIInfo(CGT, Kind)) {} 4999 5000 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 5001 return "mov\tfp, fp\t\t// marker for objc_retainAutoreleaseReturnValue"; 5002 } 5003 5004 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 5005 return 31; 5006 } 5007 5008 bool doesReturnSlotInterfereWithArgs() const override { return false; } 5009 5010 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5011 CodeGen::CodeGenModule &CGM) const override { 5012 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 5013 if (!FD) 5014 return; 5015 llvm::Function *Fn = cast<llvm::Function>(GV); 5016 5017 auto Kind = CGM.getCodeGenOpts().getSignReturnAddress(); 5018 if (Kind != CodeGenOptions::SignReturnAddressScope::None) { 5019 Fn->addFnAttr("sign-return-address", 5020 Kind == CodeGenOptions::SignReturnAddressScope::All 5021 ? "all" 5022 : "non-leaf"); 5023 5024 auto Key = CGM.getCodeGenOpts().getSignReturnAddressKey(); 5025 Fn->addFnAttr("sign-return-address-key", 5026 Key == CodeGenOptions::SignReturnAddressKeyValue::AKey 5027 ? "a_key" 5028 : "b_key"); 5029 } 5030 5031 if (CGM.getCodeGenOpts().BranchTargetEnforcement) 5032 Fn->addFnAttr("branch-target-enforcement"); 5033 } 5034 }; 5035 5036 class WindowsAArch64TargetCodeGenInfo : public AArch64TargetCodeGenInfo { 5037 public: 5038 WindowsAArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind K) 5039 : AArch64TargetCodeGenInfo(CGT, K) {} 5040 5041 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5042 CodeGen::CodeGenModule &CGM) const override; 5043 5044 void getDependentLibraryOption(llvm::StringRef Lib, 5045 llvm::SmallString<24> &Opt) const override { 5046 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); 5047 } 5048 5049 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, 5050 llvm::SmallString<32> &Opt) const override { 5051 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 5052 } 5053 }; 5054 5055 void WindowsAArch64TargetCodeGenInfo::setTargetAttributes( 5056 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 5057 AArch64TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 5058 if (GV->isDeclaration()) 5059 return; 5060 addStackProbeTargetAttributes(D, GV, CGM); 5061 } 5062 } 5063 5064 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const { 5065 Ty = useFirstFieldIfTransparentUnion(Ty); 5066 5067 // Handle illegal vector types here. 5068 if (isIllegalVectorType(Ty)) { 5069 uint64_t Size = getContext().getTypeSize(Ty); 5070 // Android promotes <2 x i8> to i16, not i32 5071 if (isAndroid() && (Size <= 16)) { 5072 llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext()); 5073 return ABIArgInfo::getDirect(ResType); 5074 } 5075 if (Size <= 32) { 5076 llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext()); 5077 return ABIArgInfo::getDirect(ResType); 5078 } 5079 if (Size == 64) { 5080 llvm::Type *ResType = 5081 llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2); 5082 return ABIArgInfo::getDirect(ResType); 5083 } 5084 if (Size == 128) { 5085 llvm::Type *ResType = 5086 llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4); 5087 return ABIArgInfo::getDirect(ResType); 5088 } 5089 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5090 } 5091 5092 if (!isAggregateTypeForABI(Ty)) { 5093 // Treat an enum type as its underlying type. 5094 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5095 Ty = EnumTy->getDecl()->getIntegerType(); 5096 5097 return (Ty->isPromotableIntegerType() && isDarwinPCS() 5098 ? ABIArgInfo::getExtend(Ty) 5099 : ABIArgInfo::getDirect()); 5100 } 5101 5102 // Structures with either a non-trivial destructor or a non-trivial 5103 // copy constructor are always indirect. 5104 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 5105 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 5106 CGCXXABI::RAA_DirectInMemory); 5107 } 5108 5109 // Empty records are always ignored on Darwin, but actually passed in C++ mode 5110 // elsewhere for GNU compatibility. 5111 uint64_t Size = getContext().getTypeSize(Ty); 5112 bool IsEmpty = isEmptyRecord(getContext(), Ty, true); 5113 if (IsEmpty || Size == 0) { 5114 if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS()) 5115 return ABIArgInfo::getIgnore(); 5116 5117 // GNU C mode. The only argument that gets ignored is an empty one with size 5118 // 0. 5119 if (IsEmpty && Size == 0) 5120 return ABIArgInfo::getIgnore(); 5121 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 5122 } 5123 5124 // Homogeneous Floating-point Aggregates (HFAs) need to be expanded. 5125 const Type *Base = nullptr; 5126 uint64_t Members = 0; 5127 if (isHomogeneousAggregate(Ty, Base, Members)) { 5128 return ABIArgInfo::getDirect( 5129 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members)); 5130 } 5131 5132 // Aggregates <= 16 bytes are passed directly in registers or on the stack. 5133 if (Size <= 128) { 5134 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 5135 // same size and alignment. 5136 if (getTarget().isRenderScriptTarget()) { 5137 return coerceToIntArray(Ty, getContext(), getVMContext()); 5138 } 5139 unsigned Alignment; 5140 if (Kind == AArch64ABIInfo::AAPCS) { 5141 Alignment = getContext().getTypeUnadjustedAlign(Ty); 5142 Alignment = Alignment < 128 ? 64 : 128; 5143 } else { 5144 Alignment = getContext().getTypeAlign(Ty); 5145 } 5146 Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes 5147 5148 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 5149 // For aggregates with 16-byte alignment, we use i128. 5150 if (Alignment < 128 && Size == 128) { 5151 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); 5152 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 5153 } 5154 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 5155 } 5156 5157 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5158 } 5159 5160 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy) const { 5161 if (RetTy->isVoidType()) 5162 return ABIArgInfo::getIgnore(); 5163 5164 // Large vector types should be returned via memory. 5165 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) 5166 return getNaturalAlignIndirect(RetTy); 5167 5168 if (!isAggregateTypeForABI(RetTy)) { 5169 // Treat an enum type as its underlying type. 5170 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5171 RetTy = EnumTy->getDecl()->getIntegerType(); 5172 5173 return (RetTy->isPromotableIntegerType() && isDarwinPCS() 5174 ? ABIArgInfo::getExtend(RetTy) 5175 : ABIArgInfo::getDirect()); 5176 } 5177 5178 uint64_t Size = getContext().getTypeSize(RetTy); 5179 if (isEmptyRecord(getContext(), RetTy, true) || Size == 0) 5180 return ABIArgInfo::getIgnore(); 5181 5182 const Type *Base = nullptr; 5183 uint64_t Members = 0; 5184 if (isHomogeneousAggregate(RetTy, Base, Members)) 5185 // Homogeneous Floating-point Aggregates (HFAs) are returned directly. 5186 return ABIArgInfo::getDirect(); 5187 5188 // Aggregates <= 16 bytes are returned directly in registers or on the stack. 5189 if (Size <= 128) { 5190 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 5191 // same size and alignment. 5192 if (getTarget().isRenderScriptTarget()) { 5193 return coerceToIntArray(RetTy, getContext(), getVMContext()); 5194 } 5195 unsigned Alignment = getContext().getTypeAlign(RetTy); 5196 Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes 5197 5198 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 5199 // For aggregates with 16-byte alignment, we use i128. 5200 if (Alignment < 128 && Size == 128) { 5201 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); 5202 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 5203 } 5204 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 5205 } 5206 5207 return getNaturalAlignIndirect(RetTy); 5208 } 5209 5210 /// isIllegalVectorType - check whether the vector type is legal for AArch64. 5211 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const { 5212 if (const VectorType *VT = Ty->getAs<VectorType>()) { 5213 // Check whether VT is legal. 5214 unsigned NumElements = VT->getNumElements(); 5215 uint64_t Size = getContext().getTypeSize(VT); 5216 // NumElements should be power of 2. 5217 if (!llvm::isPowerOf2_32(NumElements)) 5218 return true; 5219 return Size != 64 && (Size != 128 || NumElements == 1); 5220 } 5221 return false; 5222 } 5223 5224 bool AArch64ABIInfo::isLegalVectorTypeForSwift(CharUnits totalSize, 5225 llvm::Type *eltTy, 5226 unsigned elts) const { 5227 if (!llvm::isPowerOf2_32(elts)) 5228 return false; 5229 if (totalSize.getQuantity() != 8 && 5230 (totalSize.getQuantity() != 16 || elts == 1)) 5231 return false; 5232 return true; 5233 } 5234 5235 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 5236 // Homogeneous aggregates for AAPCS64 must have base types of a floating 5237 // point type or a short-vector type. This is the same as the 32-bit ABI, 5238 // but with the difference that any floating-point type is allowed, 5239 // including __fp16. 5240 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 5241 if (BT->isFloatingPoint()) 5242 return true; 5243 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 5244 unsigned VecSize = getContext().getTypeSize(VT); 5245 if (VecSize == 64 || VecSize == 128) 5246 return true; 5247 } 5248 return false; 5249 } 5250 5251 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 5252 uint64_t Members) const { 5253 return Members <= 4; 5254 } 5255 5256 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr, 5257 QualType Ty, 5258 CodeGenFunction &CGF) const { 5259 ABIArgInfo AI = classifyArgumentType(Ty); 5260 bool IsIndirect = AI.isIndirect(); 5261 5262 llvm::Type *BaseTy = CGF.ConvertType(Ty); 5263 if (IsIndirect) 5264 BaseTy = llvm::PointerType::getUnqual(BaseTy); 5265 else if (AI.getCoerceToType()) 5266 BaseTy = AI.getCoerceToType(); 5267 5268 unsigned NumRegs = 1; 5269 if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) { 5270 BaseTy = ArrTy->getElementType(); 5271 NumRegs = ArrTy->getNumElements(); 5272 } 5273 bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy(); 5274 5275 // The AArch64 va_list type and handling is specified in the Procedure Call 5276 // Standard, section B.4: 5277 // 5278 // struct { 5279 // void *__stack; 5280 // void *__gr_top; 5281 // void *__vr_top; 5282 // int __gr_offs; 5283 // int __vr_offs; 5284 // }; 5285 5286 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); 5287 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 5288 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); 5289 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 5290 5291 CharUnits TySize = getContext().getTypeSizeInChars(Ty); 5292 CharUnits TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty); 5293 5294 Address reg_offs_p = Address::invalid(); 5295 llvm::Value *reg_offs = nullptr; 5296 int reg_top_index; 5297 int RegSize = IsIndirect ? 8 : TySize.getQuantity(); 5298 if (!IsFPR) { 5299 // 3 is the field number of __gr_offs 5300 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p"); 5301 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs"); 5302 reg_top_index = 1; // field number for __gr_top 5303 RegSize = llvm::alignTo(RegSize, 8); 5304 } else { 5305 // 4 is the field number of __vr_offs. 5306 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p"); 5307 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs"); 5308 reg_top_index = 2; // field number for __vr_top 5309 RegSize = 16 * NumRegs; 5310 } 5311 5312 //======================================= 5313 // Find out where argument was passed 5314 //======================================= 5315 5316 // If reg_offs >= 0 we're already using the stack for this type of 5317 // argument. We don't want to keep updating reg_offs (in case it overflows, 5318 // though anyone passing 2GB of arguments, each at most 16 bytes, deserves 5319 // whatever they get). 5320 llvm::Value *UsingStack = nullptr; 5321 UsingStack = CGF.Builder.CreateICmpSGE( 5322 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0)); 5323 5324 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock); 5325 5326 // Otherwise, at least some kind of argument could go in these registers, the 5327 // question is whether this particular type is too big. 5328 CGF.EmitBlock(MaybeRegBlock); 5329 5330 // Integer arguments may need to correct register alignment (for example a 5331 // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we 5332 // align __gr_offs to calculate the potential address. 5333 if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) { 5334 int Align = TyAlign.getQuantity(); 5335 5336 reg_offs = CGF.Builder.CreateAdd( 5337 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1), 5338 "align_regoffs"); 5339 reg_offs = CGF.Builder.CreateAnd( 5340 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align), 5341 "aligned_regoffs"); 5342 } 5343 5344 // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list. 5345 // The fact that this is done unconditionally reflects the fact that 5346 // allocating an argument to the stack also uses up all the remaining 5347 // registers of the appropriate kind. 5348 llvm::Value *NewOffset = nullptr; 5349 NewOffset = CGF.Builder.CreateAdd( 5350 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs"); 5351 CGF.Builder.CreateStore(NewOffset, reg_offs_p); 5352 5353 // Now we're in a position to decide whether this argument really was in 5354 // registers or not. 5355 llvm::Value *InRegs = nullptr; 5356 InRegs = CGF.Builder.CreateICmpSLE( 5357 NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg"); 5358 5359 CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock); 5360 5361 //======================================= 5362 // Argument was in registers 5363 //======================================= 5364 5365 // Now we emit the code for if the argument was originally passed in 5366 // registers. First start the appropriate block: 5367 CGF.EmitBlock(InRegBlock); 5368 5369 llvm::Value *reg_top = nullptr; 5370 Address reg_top_p = 5371 CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p"); 5372 reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top"); 5373 Address BaseAddr(CGF.Builder.CreateInBoundsGEP(reg_top, reg_offs), 5374 CharUnits::fromQuantity(IsFPR ? 16 : 8)); 5375 Address RegAddr = Address::invalid(); 5376 llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty); 5377 5378 if (IsIndirect) { 5379 // If it's been passed indirectly (actually a struct), whatever we find from 5380 // stored registers or on the stack will actually be a struct **. 5381 MemTy = llvm::PointerType::getUnqual(MemTy); 5382 } 5383 5384 const Type *Base = nullptr; 5385 uint64_t NumMembers = 0; 5386 bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers); 5387 if (IsHFA && NumMembers > 1) { 5388 // Homogeneous aggregates passed in registers will have their elements split 5389 // and stored 16-bytes apart regardless of size (they're notionally in qN, 5390 // qN+1, ...). We reload and store into a temporary local variable 5391 // contiguously. 5392 assert(!IsIndirect && "Homogeneous aggregates should be passed directly"); 5393 auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0)); 5394 llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0)); 5395 llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers); 5396 Address Tmp = CGF.CreateTempAlloca(HFATy, 5397 std::max(TyAlign, BaseTyInfo.second)); 5398 5399 // On big-endian platforms, the value will be right-aligned in its slot. 5400 int Offset = 0; 5401 if (CGF.CGM.getDataLayout().isBigEndian() && 5402 BaseTyInfo.first.getQuantity() < 16) 5403 Offset = 16 - BaseTyInfo.first.getQuantity(); 5404 5405 for (unsigned i = 0; i < NumMembers; ++i) { 5406 CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset); 5407 Address LoadAddr = 5408 CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset); 5409 LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy); 5410 5411 Address StoreAddr = CGF.Builder.CreateConstArrayGEP(Tmp, i); 5412 5413 llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr); 5414 CGF.Builder.CreateStore(Elem, StoreAddr); 5415 } 5416 5417 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy); 5418 } else { 5419 // Otherwise the object is contiguous in memory. 5420 5421 // It might be right-aligned in its slot. 5422 CharUnits SlotSize = BaseAddr.getAlignment(); 5423 if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect && 5424 (IsHFA || !isAggregateTypeForABI(Ty)) && 5425 TySize < SlotSize) { 5426 CharUnits Offset = SlotSize - TySize; 5427 BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset); 5428 } 5429 5430 RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy); 5431 } 5432 5433 CGF.EmitBranch(ContBlock); 5434 5435 //======================================= 5436 // Argument was on the stack 5437 //======================================= 5438 CGF.EmitBlock(OnStackBlock); 5439 5440 Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p"); 5441 llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack"); 5442 5443 // Again, stack arguments may need realignment. In this case both integer and 5444 // floating-point ones might be affected. 5445 if (!IsIndirect && TyAlign.getQuantity() > 8) { 5446 int Align = TyAlign.getQuantity(); 5447 5448 OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty); 5449 5450 OnStackPtr = CGF.Builder.CreateAdd( 5451 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1), 5452 "align_stack"); 5453 OnStackPtr = CGF.Builder.CreateAnd( 5454 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align), 5455 "align_stack"); 5456 5457 OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy); 5458 } 5459 Address OnStackAddr(OnStackPtr, 5460 std::max(CharUnits::fromQuantity(8), TyAlign)); 5461 5462 // All stack slots are multiples of 8 bytes. 5463 CharUnits StackSlotSize = CharUnits::fromQuantity(8); 5464 CharUnits StackSize; 5465 if (IsIndirect) 5466 StackSize = StackSlotSize; 5467 else 5468 StackSize = TySize.alignTo(StackSlotSize); 5469 5470 llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize); 5471 llvm::Value *NewStack = 5472 CGF.Builder.CreateInBoundsGEP(OnStackPtr, StackSizeC, "new_stack"); 5473 5474 // Write the new value of __stack for the next call to va_arg 5475 CGF.Builder.CreateStore(NewStack, stack_p); 5476 5477 if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) && 5478 TySize < StackSlotSize) { 5479 CharUnits Offset = StackSlotSize - TySize; 5480 OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset); 5481 } 5482 5483 OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy); 5484 5485 CGF.EmitBranch(ContBlock); 5486 5487 //======================================= 5488 // Tidy up 5489 //======================================= 5490 CGF.EmitBlock(ContBlock); 5491 5492 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 5493 OnStackAddr, OnStackBlock, "vaargs.addr"); 5494 5495 if (IsIndirect) 5496 return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"), 5497 TyAlign); 5498 5499 return ResAddr; 5500 } 5501 5502 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty, 5503 CodeGenFunction &CGF) const { 5504 // The backend's lowering doesn't support va_arg for aggregates or 5505 // illegal vector types. Lower VAArg here for these cases and use 5506 // the LLVM va_arg instruction for everything else. 5507 if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty)) 5508 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 5509 5510 CharUnits SlotSize = CharUnits::fromQuantity(8); 5511 5512 // Empty records are ignored for parameter passing purposes. 5513 if (isEmptyRecord(getContext(), Ty, true)) { 5514 Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 5515 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 5516 return Addr; 5517 } 5518 5519 // The size of the actual thing passed, which might end up just 5520 // being a pointer for indirect types. 5521 auto TyInfo = getContext().getTypeInfoInChars(Ty); 5522 5523 // Arguments bigger than 16 bytes which aren't homogeneous 5524 // aggregates should be passed indirectly. 5525 bool IsIndirect = false; 5526 if (TyInfo.first.getQuantity() > 16) { 5527 const Type *Base = nullptr; 5528 uint64_t Members = 0; 5529 IsIndirect = !isHomogeneousAggregate(Ty, Base, Members); 5530 } 5531 5532 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 5533 TyInfo, SlotSize, /*AllowHigherAlign*/ true); 5534 } 5535 5536 Address AArch64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 5537 QualType Ty) const { 5538 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 5539 CGF.getContext().getTypeInfoInChars(Ty), 5540 CharUnits::fromQuantity(8), 5541 /*allowHigherAlign*/ false); 5542 } 5543 5544 //===----------------------------------------------------------------------===// 5545 // ARM ABI Implementation 5546 //===----------------------------------------------------------------------===// 5547 5548 namespace { 5549 5550 class ARMABIInfo : public SwiftABIInfo { 5551 public: 5552 enum ABIKind { 5553 APCS = 0, 5554 AAPCS = 1, 5555 AAPCS_VFP = 2, 5556 AAPCS16_VFP = 3, 5557 }; 5558 5559 private: 5560 ABIKind Kind; 5561 5562 public: 5563 ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) 5564 : SwiftABIInfo(CGT), Kind(_Kind) { 5565 setCCs(); 5566 } 5567 5568 bool isEABI() const { 5569 switch (getTarget().getTriple().getEnvironment()) { 5570 case llvm::Triple::Android: 5571 case llvm::Triple::EABI: 5572 case llvm::Triple::EABIHF: 5573 case llvm::Triple::GNUEABI: 5574 case llvm::Triple::GNUEABIHF: 5575 case llvm::Triple::MuslEABI: 5576 case llvm::Triple::MuslEABIHF: 5577 return true; 5578 default: 5579 return false; 5580 } 5581 } 5582 5583 bool isEABIHF() const { 5584 switch (getTarget().getTriple().getEnvironment()) { 5585 case llvm::Triple::EABIHF: 5586 case llvm::Triple::GNUEABIHF: 5587 case llvm::Triple::MuslEABIHF: 5588 return true; 5589 default: 5590 return false; 5591 } 5592 } 5593 5594 ABIKind getABIKind() const { return Kind; } 5595 5596 private: 5597 ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic, 5598 unsigned functionCallConv) const; 5599 ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic, 5600 unsigned functionCallConv) const; 5601 ABIArgInfo classifyHomogeneousAggregate(QualType Ty, const Type *Base, 5602 uint64_t Members) const; 5603 ABIArgInfo coerceIllegalVector(QualType Ty) const; 5604 bool isIllegalVectorType(QualType Ty) const; 5605 bool containsAnyFP16Vectors(QualType Ty) const; 5606 5607 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 5608 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 5609 uint64_t Members) const override; 5610 5611 bool isEffectivelyAAPCS_VFP(unsigned callConvention, bool acceptHalf) const; 5612 5613 void computeInfo(CGFunctionInfo &FI) const override; 5614 5615 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5616 QualType Ty) const override; 5617 5618 llvm::CallingConv::ID getLLVMDefaultCC() const; 5619 llvm::CallingConv::ID getABIDefaultCC() const; 5620 void setCCs(); 5621 5622 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 5623 bool asReturnValue) const override { 5624 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 5625 } 5626 bool isSwiftErrorInRegister() const override { 5627 return true; 5628 } 5629 bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy, 5630 unsigned elts) const override; 5631 }; 5632 5633 class ARMTargetCodeGenInfo : public TargetCodeGenInfo { 5634 public: 5635 ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 5636 :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {} 5637 5638 const ARMABIInfo &getABIInfo() const { 5639 return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo()); 5640 } 5641 5642 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 5643 return 13; 5644 } 5645 5646 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 5647 return "mov\tr7, r7\t\t// marker for objc_retainAutoreleaseReturnValue"; 5648 } 5649 5650 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5651 llvm::Value *Address) const override { 5652 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 5653 5654 // 0-15 are the 16 integer registers. 5655 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15); 5656 return false; 5657 } 5658 5659 unsigned getSizeOfUnwindException() const override { 5660 if (getABIInfo().isEABI()) return 88; 5661 return TargetCodeGenInfo::getSizeOfUnwindException(); 5662 } 5663 5664 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5665 CodeGen::CodeGenModule &CGM) const override { 5666 if (GV->isDeclaration()) 5667 return; 5668 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 5669 if (!FD) 5670 return; 5671 5672 const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>(); 5673 if (!Attr) 5674 return; 5675 5676 const char *Kind; 5677 switch (Attr->getInterrupt()) { 5678 case ARMInterruptAttr::Generic: Kind = ""; break; 5679 case ARMInterruptAttr::IRQ: Kind = "IRQ"; break; 5680 case ARMInterruptAttr::FIQ: Kind = "FIQ"; break; 5681 case ARMInterruptAttr::SWI: Kind = "SWI"; break; 5682 case ARMInterruptAttr::ABORT: Kind = "ABORT"; break; 5683 case ARMInterruptAttr::UNDEF: Kind = "UNDEF"; break; 5684 } 5685 5686 llvm::Function *Fn = cast<llvm::Function>(GV); 5687 5688 Fn->addFnAttr("interrupt", Kind); 5689 5690 ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind(); 5691 if (ABI == ARMABIInfo::APCS) 5692 return; 5693 5694 // AAPCS guarantees that sp will be 8-byte aligned on any public interface, 5695 // however this is not necessarily true on taking any interrupt. Instruct 5696 // the backend to perform a realignment as part of the function prologue. 5697 llvm::AttrBuilder B; 5698 B.addStackAlignmentAttr(8); 5699 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 5700 } 5701 }; 5702 5703 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo { 5704 public: 5705 WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 5706 : ARMTargetCodeGenInfo(CGT, K) {} 5707 5708 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5709 CodeGen::CodeGenModule &CGM) const override; 5710 5711 void getDependentLibraryOption(llvm::StringRef Lib, 5712 llvm::SmallString<24> &Opt) const override { 5713 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); 5714 } 5715 5716 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, 5717 llvm::SmallString<32> &Opt) const override { 5718 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 5719 } 5720 }; 5721 5722 void WindowsARMTargetCodeGenInfo::setTargetAttributes( 5723 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 5724 ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 5725 if (GV->isDeclaration()) 5726 return; 5727 addStackProbeTargetAttributes(D, GV, CGM); 5728 } 5729 } 5730 5731 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const { 5732 if (!::classifyReturnType(getCXXABI(), FI, *this)) 5733 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), FI.isVariadic(), 5734 FI.getCallingConvention()); 5735 5736 for (auto &I : FI.arguments()) 5737 I.info = classifyArgumentType(I.type, FI.isVariadic(), 5738 FI.getCallingConvention()); 5739 5740 5741 // Always honor user-specified calling convention. 5742 if (FI.getCallingConvention() != llvm::CallingConv::C) 5743 return; 5744 5745 llvm::CallingConv::ID cc = getRuntimeCC(); 5746 if (cc != llvm::CallingConv::C) 5747 FI.setEffectiveCallingConvention(cc); 5748 } 5749 5750 /// Return the default calling convention that LLVM will use. 5751 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const { 5752 // The default calling convention that LLVM will infer. 5753 if (isEABIHF() || getTarget().getTriple().isWatchABI()) 5754 return llvm::CallingConv::ARM_AAPCS_VFP; 5755 else if (isEABI()) 5756 return llvm::CallingConv::ARM_AAPCS; 5757 else 5758 return llvm::CallingConv::ARM_APCS; 5759 } 5760 5761 /// Return the calling convention that our ABI would like us to use 5762 /// as the C calling convention. 5763 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const { 5764 switch (getABIKind()) { 5765 case APCS: return llvm::CallingConv::ARM_APCS; 5766 case AAPCS: return llvm::CallingConv::ARM_AAPCS; 5767 case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 5768 case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 5769 } 5770 llvm_unreachable("bad ABI kind"); 5771 } 5772 5773 void ARMABIInfo::setCCs() { 5774 assert(getRuntimeCC() == llvm::CallingConv::C); 5775 5776 // Don't muddy up the IR with a ton of explicit annotations if 5777 // they'd just match what LLVM will infer from the triple. 5778 llvm::CallingConv::ID abiCC = getABIDefaultCC(); 5779 if (abiCC != getLLVMDefaultCC()) 5780 RuntimeCC = abiCC; 5781 } 5782 5783 ABIArgInfo ARMABIInfo::coerceIllegalVector(QualType Ty) const { 5784 uint64_t Size = getContext().getTypeSize(Ty); 5785 if (Size <= 32) { 5786 llvm::Type *ResType = 5787 llvm::Type::getInt32Ty(getVMContext()); 5788 return ABIArgInfo::getDirect(ResType); 5789 } 5790 if (Size == 64 || Size == 128) { 5791 llvm::Type *ResType = llvm::VectorType::get( 5792 llvm::Type::getInt32Ty(getVMContext()), Size / 32); 5793 return ABIArgInfo::getDirect(ResType); 5794 } 5795 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5796 } 5797 5798 ABIArgInfo ARMABIInfo::classifyHomogeneousAggregate(QualType Ty, 5799 const Type *Base, 5800 uint64_t Members) const { 5801 assert(Base && "Base class should be set for homogeneous aggregate"); 5802 // Base can be a floating-point or a vector. 5803 if (const VectorType *VT = Base->getAs<VectorType>()) { 5804 // FP16 vectors should be converted to integer vectors 5805 if (!getTarget().hasLegalHalfType() && containsAnyFP16Vectors(Ty)) { 5806 uint64_t Size = getContext().getTypeSize(VT); 5807 llvm::Type *NewVecTy = llvm::VectorType::get( 5808 llvm::Type::getInt32Ty(getVMContext()), Size / 32); 5809 llvm::Type *Ty = llvm::ArrayType::get(NewVecTy, Members); 5810 return ABIArgInfo::getDirect(Ty, 0, nullptr, false); 5811 } 5812 } 5813 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); 5814 } 5815 5816 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, bool isVariadic, 5817 unsigned functionCallConv) const { 5818 // 6.1.2.1 The following argument types are VFP CPRCs: 5819 // A single-precision floating-point type (including promoted 5820 // half-precision types); A double-precision floating-point type; 5821 // A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate 5822 // with a Base Type of a single- or double-precision floating-point type, 5823 // 64-bit containerized vectors or 128-bit containerized vectors with one 5824 // to four Elements. 5825 // Variadic functions should always marshal to the base standard. 5826 bool IsAAPCS_VFP = 5827 !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ false); 5828 5829 Ty = useFirstFieldIfTransparentUnion(Ty); 5830 5831 // Handle illegal vector types here. 5832 if (isIllegalVectorType(Ty)) 5833 return coerceIllegalVector(Ty); 5834 5835 // _Float16 and __fp16 get passed as if it were an int or float, but with 5836 // the top 16 bits unspecified. This is not done for OpenCL as it handles the 5837 // half type natively, and does not need to interwork with AAPCS code. 5838 if ((Ty->isFloat16Type() || Ty->isHalfType()) && 5839 !getContext().getLangOpts().NativeHalfArgsAndReturns) { 5840 llvm::Type *ResType = IsAAPCS_VFP ? 5841 llvm::Type::getFloatTy(getVMContext()) : 5842 llvm::Type::getInt32Ty(getVMContext()); 5843 return ABIArgInfo::getDirect(ResType); 5844 } 5845 5846 if (!isAggregateTypeForABI(Ty)) { 5847 // Treat an enum type as its underlying type. 5848 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 5849 Ty = EnumTy->getDecl()->getIntegerType(); 5850 } 5851 5852 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 5853 : ABIArgInfo::getDirect()); 5854 } 5855 5856 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 5857 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 5858 } 5859 5860 // Ignore empty records. 5861 if (isEmptyRecord(getContext(), Ty, true)) 5862 return ABIArgInfo::getIgnore(); 5863 5864 if (IsAAPCS_VFP) { 5865 // Homogeneous Aggregates need to be expanded when we can fit the aggregate 5866 // into VFP registers. 5867 const Type *Base = nullptr; 5868 uint64_t Members = 0; 5869 if (isHomogeneousAggregate(Ty, Base, Members)) 5870 return classifyHomogeneousAggregate(Ty, Base, Members); 5871 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 5872 // WatchOS does have homogeneous aggregates. Note that we intentionally use 5873 // this convention even for a variadic function: the backend will use GPRs 5874 // if needed. 5875 const Type *Base = nullptr; 5876 uint64_t Members = 0; 5877 if (isHomogeneousAggregate(Ty, Base, Members)) { 5878 assert(Base && Members <= 4 && "unexpected homogeneous aggregate"); 5879 llvm::Type *Ty = 5880 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members); 5881 return ABIArgInfo::getDirect(Ty, 0, nullptr, false); 5882 } 5883 } 5884 5885 if (getABIKind() == ARMABIInfo::AAPCS16_VFP && 5886 getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) { 5887 // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're 5888 // bigger than 128-bits, they get placed in space allocated by the caller, 5889 // and a pointer is passed. 5890 return ABIArgInfo::getIndirect( 5891 CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false); 5892 } 5893 5894 // Support byval for ARM. 5895 // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at 5896 // most 8-byte. We realign the indirect argument if type alignment is bigger 5897 // than ABI alignment. 5898 uint64_t ABIAlign = 4; 5899 uint64_t TyAlign; 5900 if (getABIKind() == ARMABIInfo::AAPCS_VFP || 5901 getABIKind() == ARMABIInfo::AAPCS) { 5902 TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity(); 5903 ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8); 5904 } else { 5905 TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); 5906 } 5907 if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) { 5908 assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval"); 5909 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 5910 /*ByVal=*/true, 5911 /*Realign=*/TyAlign > ABIAlign); 5912 } 5913 5914 // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of 5915 // same size and alignment. 5916 if (getTarget().isRenderScriptTarget()) { 5917 return coerceToIntArray(Ty, getContext(), getVMContext()); 5918 } 5919 5920 // Otherwise, pass by coercing to a structure of the appropriate size. 5921 llvm::Type* ElemTy; 5922 unsigned SizeRegs; 5923 // FIXME: Try to match the types of the arguments more accurately where 5924 // we can. 5925 if (TyAlign <= 4) { 5926 ElemTy = llvm::Type::getInt32Ty(getVMContext()); 5927 SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32; 5928 } else { 5929 ElemTy = llvm::Type::getInt64Ty(getVMContext()); 5930 SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64; 5931 } 5932 5933 return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs)); 5934 } 5935 5936 static bool isIntegerLikeType(QualType Ty, ASTContext &Context, 5937 llvm::LLVMContext &VMContext) { 5938 // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure 5939 // is called integer-like if its size is less than or equal to one word, and 5940 // the offset of each of its addressable sub-fields is zero. 5941 5942 uint64_t Size = Context.getTypeSize(Ty); 5943 5944 // Check that the type fits in a word. 5945 if (Size > 32) 5946 return false; 5947 5948 // FIXME: Handle vector types! 5949 if (Ty->isVectorType()) 5950 return false; 5951 5952 // Float types are never treated as "integer like". 5953 if (Ty->isRealFloatingType()) 5954 return false; 5955 5956 // If this is a builtin or pointer type then it is ok. 5957 if (Ty->getAs<BuiltinType>() || Ty->isPointerType()) 5958 return true; 5959 5960 // Small complex integer types are "integer like". 5961 if (const ComplexType *CT = Ty->getAs<ComplexType>()) 5962 return isIntegerLikeType(CT->getElementType(), Context, VMContext); 5963 5964 // Single element and zero sized arrays should be allowed, by the definition 5965 // above, but they are not. 5966 5967 // Otherwise, it must be a record type. 5968 const RecordType *RT = Ty->getAs<RecordType>(); 5969 if (!RT) return false; 5970 5971 // Ignore records with flexible arrays. 5972 const RecordDecl *RD = RT->getDecl(); 5973 if (RD->hasFlexibleArrayMember()) 5974 return false; 5975 5976 // Check that all sub-fields are at offset 0, and are themselves "integer 5977 // like". 5978 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 5979 5980 bool HadField = false; 5981 unsigned idx = 0; 5982 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 5983 i != e; ++i, ++idx) { 5984 const FieldDecl *FD = *i; 5985 5986 // Bit-fields are not addressable, we only need to verify they are "integer 5987 // like". We still have to disallow a subsequent non-bitfield, for example: 5988 // struct { int : 0; int x } 5989 // is non-integer like according to gcc. 5990 if (FD->isBitField()) { 5991 if (!RD->isUnion()) 5992 HadField = true; 5993 5994 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 5995 return false; 5996 5997 continue; 5998 } 5999 6000 // Check if this field is at offset 0. 6001 if (Layout.getFieldOffset(idx) != 0) 6002 return false; 6003 6004 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 6005 return false; 6006 6007 // Only allow at most one field in a structure. This doesn't match the 6008 // wording above, but follows gcc in situations with a field following an 6009 // empty structure. 6010 if (!RD->isUnion()) { 6011 if (HadField) 6012 return false; 6013 6014 HadField = true; 6015 } 6016 } 6017 6018 return true; 6019 } 6020 6021 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, bool isVariadic, 6022 unsigned functionCallConv) const { 6023 6024 // Variadic functions should always marshal to the base standard. 6025 bool IsAAPCS_VFP = 6026 !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ true); 6027 6028 if (RetTy->isVoidType()) 6029 return ABIArgInfo::getIgnore(); 6030 6031 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 6032 // Large vector types should be returned via memory. 6033 if (getContext().getTypeSize(RetTy) > 128) 6034 return getNaturalAlignIndirect(RetTy); 6035 // FP16 vectors should be converted to integer vectors 6036 if (!getTarget().hasLegalHalfType() && 6037 (VT->getElementType()->isFloat16Type() || 6038 VT->getElementType()->isHalfType())) 6039 return coerceIllegalVector(RetTy); 6040 } 6041 6042 // _Float16 and __fp16 get returned as if it were an int or float, but with 6043 // the top 16 bits unspecified. This is not done for OpenCL as it handles the 6044 // half type natively, and does not need to interwork with AAPCS code. 6045 if ((RetTy->isFloat16Type() || RetTy->isHalfType()) && 6046 !getContext().getLangOpts().NativeHalfArgsAndReturns) { 6047 llvm::Type *ResType = IsAAPCS_VFP ? 6048 llvm::Type::getFloatTy(getVMContext()) : 6049 llvm::Type::getInt32Ty(getVMContext()); 6050 return ABIArgInfo::getDirect(ResType); 6051 } 6052 6053 if (!isAggregateTypeForABI(RetTy)) { 6054 // Treat an enum type as its underlying type. 6055 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 6056 RetTy = EnumTy->getDecl()->getIntegerType(); 6057 6058 return RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 6059 : ABIArgInfo::getDirect(); 6060 } 6061 6062 // Are we following APCS? 6063 if (getABIKind() == APCS) { 6064 if (isEmptyRecord(getContext(), RetTy, false)) 6065 return ABIArgInfo::getIgnore(); 6066 6067 // Complex types are all returned as packed integers. 6068 // 6069 // FIXME: Consider using 2 x vector types if the back end handles them 6070 // correctly. 6071 if (RetTy->isAnyComplexType()) 6072 return ABIArgInfo::getDirect(llvm::IntegerType::get( 6073 getVMContext(), getContext().getTypeSize(RetTy))); 6074 6075 // Integer like structures are returned in r0. 6076 if (isIntegerLikeType(RetTy, getContext(), getVMContext())) { 6077 // Return in the smallest viable integer type. 6078 uint64_t Size = getContext().getTypeSize(RetTy); 6079 if (Size <= 8) 6080 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6081 if (Size <= 16) 6082 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6083 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6084 } 6085 6086 // Otherwise return in memory. 6087 return getNaturalAlignIndirect(RetTy); 6088 } 6089 6090 // Otherwise this is an AAPCS variant. 6091 6092 if (isEmptyRecord(getContext(), RetTy, true)) 6093 return ABIArgInfo::getIgnore(); 6094 6095 // Check for homogeneous aggregates with AAPCS-VFP. 6096 if (IsAAPCS_VFP) { 6097 const Type *Base = nullptr; 6098 uint64_t Members = 0; 6099 if (isHomogeneousAggregate(RetTy, Base, Members)) 6100 return classifyHomogeneousAggregate(RetTy, Base, Members); 6101 } 6102 6103 // Aggregates <= 4 bytes are returned in r0; other aggregates 6104 // are returned indirectly. 6105 uint64_t Size = getContext().getTypeSize(RetTy); 6106 if (Size <= 32) { 6107 // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of 6108 // same size and alignment. 6109 if (getTarget().isRenderScriptTarget()) { 6110 return coerceToIntArray(RetTy, getContext(), getVMContext()); 6111 } 6112 if (getDataLayout().isBigEndian()) 6113 // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4) 6114 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6115 6116 // Return in the smallest viable integer type. 6117 if (Size <= 8) 6118 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6119 if (Size <= 16) 6120 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6121 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6122 } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) { 6123 llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext()); 6124 llvm::Type *CoerceTy = 6125 llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32); 6126 return ABIArgInfo::getDirect(CoerceTy); 6127 } 6128 6129 return getNaturalAlignIndirect(RetTy); 6130 } 6131 6132 /// isIllegalVector - check whether Ty is an illegal vector type. 6133 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const { 6134 if (const VectorType *VT = Ty->getAs<VectorType> ()) { 6135 // On targets that don't support FP16, FP16 is expanded into float, and we 6136 // don't want the ABI to depend on whether or not FP16 is supported in 6137 // hardware. Thus return false to coerce FP16 vectors into integer vectors. 6138 if (!getTarget().hasLegalHalfType() && 6139 (VT->getElementType()->isFloat16Type() || 6140 VT->getElementType()->isHalfType())) 6141 return true; 6142 if (isAndroid()) { 6143 // Android shipped using Clang 3.1, which supported a slightly different 6144 // vector ABI. The primary differences were that 3-element vector types 6145 // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path 6146 // accepts that legacy behavior for Android only. 6147 // Check whether VT is legal. 6148 unsigned NumElements = VT->getNumElements(); 6149 // NumElements should be power of 2 or equal to 3. 6150 if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3) 6151 return true; 6152 } else { 6153 // Check whether VT is legal. 6154 unsigned NumElements = VT->getNumElements(); 6155 uint64_t Size = getContext().getTypeSize(VT); 6156 // NumElements should be power of 2. 6157 if (!llvm::isPowerOf2_32(NumElements)) 6158 return true; 6159 // Size should be greater than 32 bits. 6160 return Size <= 32; 6161 } 6162 } 6163 return false; 6164 } 6165 6166 /// Return true if a type contains any 16-bit floating point vectors 6167 bool ARMABIInfo::containsAnyFP16Vectors(QualType Ty) const { 6168 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 6169 uint64_t NElements = AT->getSize().getZExtValue(); 6170 if (NElements == 0) 6171 return false; 6172 return containsAnyFP16Vectors(AT->getElementType()); 6173 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 6174 const RecordDecl *RD = RT->getDecl(); 6175 6176 // If this is a C++ record, check the bases first. 6177 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 6178 if (llvm::any_of(CXXRD->bases(), [this](const CXXBaseSpecifier &B) { 6179 return containsAnyFP16Vectors(B.getType()); 6180 })) 6181 return true; 6182 6183 if (llvm::any_of(RD->fields(), [this](FieldDecl *FD) { 6184 return FD && containsAnyFP16Vectors(FD->getType()); 6185 })) 6186 return true; 6187 6188 return false; 6189 } else { 6190 if (const VectorType *VT = Ty->getAs<VectorType>()) 6191 return (VT->getElementType()->isFloat16Type() || 6192 VT->getElementType()->isHalfType()); 6193 return false; 6194 } 6195 } 6196 6197 bool ARMABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, 6198 llvm::Type *eltTy, 6199 unsigned numElts) const { 6200 if (!llvm::isPowerOf2_32(numElts)) 6201 return false; 6202 unsigned size = getDataLayout().getTypeStoreSizeInBits(eltTy); 6203 if (size > 64) 6204 return false; 6205 if (vectorSize.getQuantity() != 8 && 6206 (vectorSize.getQuantity() != 16 || numElts == 1)) 6207 return false; 6208 return true; 6209 } 6210 6211 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 6212 // Homogeneous aggregates for AAPCS-VFP must have base types of float, 6213 // double, or 64-bit or 128-bit vectors. 6214 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 6215 if (BT->getKind() == BuiltinType::Float || 6216 BT->getKind() == BuiltinType::Double || 6217 BT->getKind() == BuiltinType::LongDouble) 6218 return true; 6219 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 6220 unsigned VecSize = getContext().getTypeSize(VT); 6221 if (VecSize == 64 || VecSize == 128) 6222 return true; 6223 } 6224 return false; 6225 } 6226 6227 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 6228 uint64_t Members) const { 6229 return Members <= 4; 6230 } 6231 6232 bool ARMABIInfo::isEffectivelyAAPCS_VFP(unsigned callConvention, 6233 bool acceptHalf) const { 6234 // Give precedence to user-specified calling conventions. 6235 if (callConvention != llvm::CallingConv::C) 6236 return (callConvention == llvm::CallingConv::ARM_AAPCS_VFP); 6237 else 6238 return (getABIKind() == AAPCS_VFP) || 6239 (acceptHalf && (getABIKind() == AAPCS16_VFP)); 6240 } 6241 6242 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6243 QualType Ty) const { 6244 CharUnits SlotSize = CharUnits::fromQuantity(4); 6245 6246 // Empty records are ignored for parameter passing purposes. 6247 if (isEmptyRecord(getContext(), Ty, true)) { 6248 Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize); 6249 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 6250 return Addr; 6251 } 6252 6253 CharUnits TySize = getContext().getTypeSizeInChars(Ty); 6254 CharUnits TyAlignForABI = getContext().getTypeUnadjustedAlignInChars(Ty); 6255 6256 // Use indirect if size of the illegal vector is bigger than 16 bytes. 6257 bool IsIndirect = false; 6258 const Type *Base = nullptr; 6259 uint64_t Members = 0; 6260 if (TySize > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) { 6261 IsIndirect = true; 6262 6263 // ARMv7k passes structs bigger than 16 bytes indirectly, in space 6264 // allocated by the caller. 6265 } else if (TySize > CharUnits::fromQuantity(16) && 6266 getABIKind() == ARMABIInfo::AAPCS16_VFP && 6267 !isHomogeneousAggregate(Ty, Base, Members)) { 6268 IsIndirect = true; 6269 6270 // Otherwise, bound the type's ABI alignment. 6271 // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for 6272 // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte. 6273 // Our callers should be prepared to handle an under-aligned address. 6274 } else if (getABIKind() == ARMABIInfo::AAPCS_VFP || 6275 getABIKind() == ARMABIInfo::AAPCS) { 6276 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 6277 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8)); 6278 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 6279 // ARMv7k allows type alignment up to 16 bytes. 6280 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 6281 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16)); 6282 } else { 6283 TyAlignForABI = CharUnits::fromQuantity(4); 6284 } 6285 6286 std::pair<CharUnits, CharUnits> TyInfo = { TySize, TyAlignForABI }; 6287 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo, 6288 SlotSize, /*AllowHigherAlign*/ true); 6289 } 6290 6291 //===----------------------------------------------------------------------===// 6292 // NVPTX ABI Implementation 6293 //===----------------------------------------------------------------------===// 6294 6295 namespace { 6296 6297 class NVPTXABIInfo : public ABIInfo { 6298 public: 6299 NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 6300 6301 ABIArgInfo classifyReturnType(QualType RetTy) const; 6302 ABIArgInfo classifyArgumentType(QualType Ty) const; 6303 6304 void computeInfo(CGFunctionInfo &FI) const override; 6305 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6306 QualType Ty) const override; 6307 }; 6308 6309 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo { 6310 public: 6311 NVPTXTargetCodeGenInfo(CodeGenTypes &CGT) 6312 : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {} 6313 6314 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6315 CodeGen::CodeGenModule &M) const override; 6316 bool shouldEmitStaticExternCAliases() const override; 6317 6318 private: 6319 // Adds a NamedMDNode with F, Name, and Operand as operands, and adds the 6320 // resulting MDNode to the nvvm.annotations MDNode. 6321 static void addNVVMMetadata(llvm::Function *F, StringRef Name, int Operand); 6322 }; 6323 6324 /// Checks if the type is unsupported directly by the current target. 6325 static bool isUnsupportedType(ASTContext &Context, QualType T) { 6326 if (!Context.getTargetInfo().hasFloat16Type() && T->isFloat16Type()) 6327 return true; 6328 if (!Context.getTargetInfo().hasFloat128Type() && 6329 (T->isFloat128Type() || 6330 (T->isRealFloatingType() && Context.getTypeSize(T) == 128))) 6331 return true; 6332 if (!Context.getTargetInfo().hasInt128Type() && T->isIntegerType() && 6333 Context.getTypeSize(T) > 64) 6334 return true; 6335 if (const auto *AT = T->getAsArrayTypeUnsafe()) 6336 return isUnsupportedType(Context, AT->getElementType()); 6337 const auto *RT = T->getAs<RecordType>(); 6338 if (!RT) 6339 return false; 6340 const RecordDecl *RD = RT->getDecl(); 6341 6342 // If this is a C++ record, check the bases first. 6343 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 6344 for (const CXXBaseSpecifier &I : CXXRD->bases()) 6345 if (isUnsupportedType(Context, I.getType())) 6346 return true; 6347 6348 for (const FieldDecl *I : RD->fields()) 6349 if (isUnsupportedType(Context, I->getType())) 6350 return true; 6351 return false; 6352 } 6353 6354 /// Coerce the given type into an array with maximum allowed size of elements. 6355 static ABIArgInfo coerceToIntArrayWithLimit(QualType Ty, ASTContext &Context, 6356 llvm::LLVMContext &LLVMContext, 6357 unsigned MaxSize) { 6358 // Alignment and Size are measured in bits. 6359 const uint64_t Size = Context.getTypeSize(Ty); 6360 const uint64_t Alignment = Context.getTypeAlign(Ty); 6361 const unsigned Div = std::min<unsigned>(MaxSize, Alignment); 6362 llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Div); 6363 const uint64_t NumElements = (Size + Div - 1) / Div; 6364 return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements)); 6365 } 6366 6367 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const { 6368 if (RetTy->isVoidType()) 6369 return ABIArgInfo::getIgnore(); 6370 6371 if (getContext().getLangOpts().OpenMP && 6372 getContext().getLangOpts().OpenMPIsDevice && 6373 isUnsupportedType(getContext(), RetTy)) 6374 return coerceToIntArrayWithLimit(RetTy, getContext(), getVMContext(), 64); 6375 6376 // note: this is different from default ABI 6377 if (!RetTy->isScalarType()) 6378 return ABIArgInfo::getDirect(); 6379 6380 // Treat an enum type as its underlying type. 6381 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 6382 RetTy = EnumTy->getDecl()->getIntegerType(); 6383 6384 return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 6385 : ABIArgInfo::getDirect()); 6386 } 6387 6388 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const { 6389 // Treat an enum type as its underlying type. 6390 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 6391 Ty = EnumTy->getDecl()->getIntegerType(); 6392 6393 // Return aggregates type as indirect by value 6394 if (isAggregateTypeForABI(Ty)) 6395 return getNaturalAlignIndirect(Ty, /* byval */ true); 6396 6397 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 6398 : ABIArgInfo::getDirect()); 6399 } 6400 6401 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const { 6402 if (!getCXXABI().classifyReturnType(FI)) 6403 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 6404 for (auto &I : FI.arguments()) 6405 I.info = classifyArgumentType(I.type); 6406 6407 // Always honor user-specified calling convention. 6408 if (FI.getCallingConvention() != llvm::CallingConv::C) 6409 return; 6410 6411 FI.setEffectiveCallingConvention(getRuntimeCC()); 6412 } 6413 6414 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6415 QualType Ty) const { 6416 llvm_unreachable("NVPTX does not support varargs"); 6417 } 6418 6419 void NVPTXTargetCodeGenInfo::setTargetAttributes( 6420 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 6421 if (GV->isDeclaration()) 6422 return; 6423 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 6424 if (!FD) return; 6425 6426 llvm::Function *F = cast<llvm::Function>(GV); 6427 6428 // Perform special handling in OpenCL mode 6429 if (M.getLangOpts().OpenCL) { 6430 // Use OpenCL function attributes to check for kernel functions 6431 // By default, all functions are device functions 6432 if (FD->hasAttr<OpenCLKernelAttr>()) { 6433 // OpenCL __kernel functions get kernel metadata 6434 // Create !{<func-ref>, metadata !"kernel", i32 1} node 6435 addNVVMMetadata(F, "kernel", 1); 6436 // And kernel functions are not subject to inlining 6437 F->addFnAttr(llvm::Attribute::NoInline); 6438 } 6439 } 6440 6441 // Perform special handling in CUDA mode. 6442 if (M.getLangOpts().CUDA) { 6443 // CUDA __global__ functions get a kernel metadata entry. Since 6444 // __global__ functions cannot be called from the device, we do not 6445 // need to set the noinline attribute. 6446 if (FD->hasAttr<CUDAGlobalAttr>()) { 6447 // Create !{<func-ref>, metadata !"kernel", i32 1} node 6448 addNVVMMetadata(F, "kernel", 1); 6449 } 6450 if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) { 6451 // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node 6452 llvm::APSInt MaxThreads(32); 6453 MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext()); 6454 if (MaxThreads > 0) 6455 addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue()); 6456 6457 // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was 6458 // not specified in __launch_bounds__ or if the user specified a 0 value, 6459 // we don't have to add a PTX directive. 6460 if (Attr->getMinBlocks()) { 6461 llvm::APSInt MinBlocks(32); 6462 MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext()); 6463 if (MinBlocks > 0) 6464 // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node 6465 addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue()); 6466 } 6467 } 6468 } 6469 } 6470 6471 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::Function *F, StringRef Name, 6472 int Operand) { 6473 llvm::Module *M = F->getParent(); 6474 llvm::LLVMContext &Ctx = M->getContext(); 6475 6476 // Get "nvvm.annotations" metadata node 6477 llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations"); 6478 6479 llvm::Metadata *MDVals[] = { 6480 llvm::ConstantAsMetadata::get(F), llvm::MDString::get(Ctx, Name), 6481 llvm::ConstantAsMetadata::get( 6482 llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))}; 6483 // Append metadata to nvvm.annotations 6484 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 6485 } 6486 6487 bool NVPTXTargetCodeGenInfo::shouldEmitStaticExternCAliases() const { 6488 return false; 6489 } 6490 } 6491 6492 //===----------------------------------------------------------------------===// 6493 // SystemZ ABI Implementation 6494 //===----------------------------------------------------------------------===// 6495 6496 namespace { 6497 6498 class SystemZABIInfo : public SwiftABIInfo { 6499 bool HasVector; 6500 6501 public: 6502 SystemZABIInfo(CodeGenTypes &CGT, bool HV) 6503 : SwiftABIInfo(CGT), HasVector(HV) {} 6504 6505 bool isPromotableIntegerType(QualType Ty) const; 6506 bool isCompoundType(QualType Ty) const; 6507 bool isVectorArgumentType(QualType Ty) const; 6508 bool isFPArgumentType(QualType Ty) const; 6509 QualType GetSingleElementType(QualType Ty) const; 6510 6511 ABIArgInfo classifyReturnType(QualType RetTy) const; 6512 ABIArgInfo classifyArgumentType(QualType ArgTy) const; 6513 6514 void computeInfo(CGFunctionInfo &FI) const override { 6515 if (!getCXXABI().classifyReturnType(FI)) 6516 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 6517 for (auto &I : FI.arguments()) 6518 I.info = classifyArgumentType(I.type); 6519 } 6520 6521 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6522 QualType Ty) const override; 6523 6524 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 6525 bool asReturnValue) const override { 6526 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 6527 } 6528 bool isSwiftErrorInRegister() const override { 6529 return false; 6530 } 6531 }; 6532 6533 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo { 6534 public: 6535 SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector) 6536 : TargetCodeGenInfo(new SystemZABIInfo(CGT, HasVector)) {} 6537 }; 6538 6539 } 6540 6541 bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const { 6542 // Treat an enum type as its underlying type. 6543 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 6544 Ty = EnumTy->getDecl()->getIntegerType(); 6545 6546 // Promotable integer types are required to be promoted by the ABI. 6547 if (Ty->isPromotableIntegerType()) 6548 return true; 6549 6550 // 32-bit values must also be promoted. 6551 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 6552 switch (BT->getKind()) { 6553 case BuiltinType::Int: 6554 case BuiltinType::UInt: 6555 return true; 6556 default: 6557 return false; 6558 } 6559 return false; 6560 } 6561 6562 bool SystemZABIInfo::isCompoundType(QualType Ty) const { 6563 return (Ty->isAnyComplexType() || 6564 Ty->isVectorType() || 6565 isAggregateTypeForABI(Ty)); 6566 } 6567 6568 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const { 6569 return (HasVector && 6570 Ty->isVectorType() && 6571 getContext().getTypeSize(Ty) <= 128); 6572 } 6573 6574 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const { 6575 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 6576 switch (BT->getKind()) { 6577 case BuiltinType::Float: 6578 case BuiltinType::Double: 6579 return true; 6580 default: 6581 return false; 6582 } 6583 6584 return false; 6585 } 6586 6587 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const { 6588 if (const RecordType *RT = Ty->getAsStructureType()) { 6589 const RecordDecl *RD = RT->getDecl(); 6590 QualType Found; 6591 6592 // If this is a C++ record, check the bases first. 6593 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 6594 for (const auto &I : CXXRD->bases()) { 6595 QualType Base = I.getType(); 6596 6597 // Empty bases don't affect things either way. 6598 if (isEmptyRecord(getContext(), Base, true)) 6599 continue; 6600 6601 if (!Found.isNull()) 6602 return Ty; 6603 Found = GetSingleElementType(Base); 6604 } 6605 6606 // Check the fields. 6607 for (const auto *FD : RD->fields()) { 6608 // For compatibility with GCC, ignore empty bitfields in C++ mode. 6609 // Unlike isSingleElementStruct(), empty structure and array fields 6610 // do count. So do anonymous bitfields that aren't zero-sized. 6611 if (getContext().getLangOpts().CPlusPlus && 6612 FD->isZeroLengthBitField(getContext())) 6613 continue; 6614 6615 // Unlike isSingleElementStruct(), arrays do not count. 6616 // Nested structures still do though. 6617 if (!Found.isNull()) 6618 return Ty; 6619 Found = GetSingleElementType(FD->getType()); 6620 } 6621 6622 // Unlike isSingleElementStruct(), trailing padding is allowed. 6623 // An 8-byte aligned struct s { float f; } is passed as a double. 6624 if (!Found.isNull()) 6625 return Found; 6626 } 6627 6628 return Ty; 6629 } 6630 6631 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6632 QualType Ty) const { 6633 // Assume that va_list type is correct; should be pointer to LLVM type: 6634 // struct { 6635 // i64 __gpr; 6636 // i64 __fpr; 6637 // i8 *__overflow_arg_area; 6638 // i8 *__reg_save_area; 6639 // }; 6640 6641 // Every non-vector argument occupies 8 bytes and is passed by preference 6642 // in either GPRs or FPRs. Vector arguments occupy 8 or 16 bytes and are 6643 // always passed on the stack. 6644 Ty = getContext().getCanonicalType(Ty); 6645 auto TyInfo = getContext().getTypeInfoInChars(Ty); 6646 llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty); 6647 llvm::Type *DirectTy = ArgTy; 6648 ABIArgInfo AI = classifyArgumentType(Ty); 6649 bool IsIndirect = AI.isIndirect(); 6650 bool InFPRs = false; 6651 bool IsVector = false; 6652 CharUnits UnpaddedSize; 6653 CharUnits DirectAlign; 6654 if (IsIndirect) { 6655 DirectTy = llvm::PointerType::getUnqual(DirectTy); 6656 UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8); 6657 } else { 6658 if (AI.getCoerceToType()) 6659 ArgTy = AI.getCoerceToType(); 6660 InFPRs = ArgTy->isFloatTy() || ArgTy->isDoubleTy(); 6661 IsVector = ArgTy->isVectorTy(); 6662 UnpaddedSize = TyInfo.first; 6663 DirectAlign = TyInfo.second; 6664 } 6665 CharUnits PaddedSize = CharUnits::fromQuantity(8); 6666 if (IsVector && UnpaddedSize > PaddedSize) 6667 PaddedSize = CharUnits::fromQuantity(16); 6668 assert((UnpaddedSize <= PaddedSize) && "Invalid argument size."); 6669 6670 CharUnits Padding = (PaddedSize - UnpaddedSize); 6671 6672 llvm::Type *IndexTy = CGF.Int64Ty; 6673 llvm::Value *PaddedSizeV = 6674 llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity()); 6675 6676 if (IsVector) { 6677 // Work out the address of a vector argument on the stack. 6678 // Vector arguments are always passed in the high bits of a 6679 // single (8 byte) or double (16 byte) stack slot. 6680 Address OverflowArgAreaPtr = 6681 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr"); 6682 Address OverflowArgArea = 6683 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 6684 TyInfo.second); 6685 Address MemAddr = 6686 CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr"); 6687 6688 // Update overflow_arg_area_ptr pointer 6689 llvm::Value *NewOverflowArgArea = 6690 CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV, 6691 "overflow_arg_area"); 6692 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 6693 6694 return MemAddr; 6695 } 6696 6697 assert(PaddedSize.getQuantity() == 8); 6698 6699 unsigned MaxRegs, RegCountField, RegSaveIndex; 6700 CharUnits RegPadding; 6701 if (InFPRs) { 6702 MaxRegs = 4; // Maximum of 4 FPR arguments 6703 RegCountField = 1; // __fpr 6704 RegSaveIndex = 16; // save offset for f0 6705 RegPadding = CharUnits(); // floats are passed in the high bits of an FPR 6706 } else { 6707 MaxRegs = 5; // Maximum of 5 GPR arguments 6708 RegCountField = 0; // __gpr 6709 RegSaveIndex = 2; // save offset for r2 6710 RegPadding = Padding; // values are passed in the low bits of a GPR 6711 } 6712 6713 Address RegCountPtr = 6714 CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr"); 6715 llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count"); 6716 llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs); 6717 llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV, 6718 "fits_in_regs"); 6719 6720 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 6721 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 6722 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 6723 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 6724 6725 // Emit code to load the value if it was passed in registers. 6726 CGF.EmitBlock(InRegBlock); 6727 6728 // Work out the address of an argument register. 6729 llvm::Value *ScaledRegCount = 6730 CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count"); 6731 llvm::Value *RegBase = 6732 llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity() 6733 + RegPadding.getQuantity()); 6734 llvm::Value *RegOffset = 6735 CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset"); 6736 Address RegSaveAreaPtr = 6737 CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr"); 6738 llvm::Value *RegSaveArea = 6739 CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area"); 6740 Address RawRegAddr(CGF.Builder.CreateGEP(RegSaveArea, RegOffset, 6741 "raw_reg_addr"), 6742 PaddedSize); 6743 Address RegAddr = 6744 CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr"); 6745 6746 // Update the register count 6747 llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1); 6748 llvm::Value *NewRegCount = 6749 CGF.Builder.CreateAdd(RegCount, One, "reg_count"); 6750 CGF.Builder.CreateStore(NewRegCount, RegCountPtr); 6751 CGF.EmitBranch(ContBlock); 6752 6753 // Emit code to load the value if it was passed in memory. 6754 CGF.EmitBlock(InMemBlock); 6755 6756 // Work out the address of a stack argument. 6757 Address OverflowArgAreaPtr = 6758 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr"); 6759 Address OverflowArgArea = 6760 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 6761 PaddedSize); 6762 Address RawMemAddr = 6763 CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr"); 6764 Address MemAddr = 6765 CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr"); 6766 6767 // Update overflow_arg_area_ptr pointer 6768 llvm::Value *NewOverflowArgArea = 6769 CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV, 6770 "overflow_arg_area"); 6771 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 6772 CGF.EmitBranch(ContBlock); 6773 6774 // Return the appropriate result. 6775 CGF.EmitBlock(ContBlock); 6776 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 6777 MemAddr, InMemBlock, "va_arg.addr"); 6778 6779 if (IsIndirect) 6780 ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"), 6781 TyInfo.second); 6782 6783 return ResAddr; 6784 } 6785 6786 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const { 6787 if (RetTy->isVoidType()) 6788 return ABIArgInfo::getIgnore(); 6789 if (isVectorArgumentType(RetTy)) 6790 return ABIArgInfo::getDirect(); 6791 if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64) 6792 return getNaturalAlignIndirect(RetTy); 6793 return (isPromotableIntegerType(RetTy) ? ABIArgInfo::getExtend(RetTy) 6794 : ABIArgInfo::getDirect()); 6795 } 6796 6797 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const { 6798 // Handle the generic C++ ABI. 6799 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 6800 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 6801 6802 // Integers and enums are extended to full register width. 6803 if (isPromotableIntegerType(Ty)) 6804 return ABIArgInfo::getExtend(Ty); 6805 6806 // Handle vector types and vector-like structure types. Note that 6807 // as opposed to float-like structure types, we do not allow any 6808 // padding for vector-like structures, so verify the sizes match. 6809 uint64_t Size = getContext().getTypeSize(Ty); 6810 QualType SingleElementTy = GetSingleElementType(Ty); 6811 if (isVectorArgumentType(SingleElementTy) && 6812 getContext().getTypeSize(SingleElementTy) == Size) 6813 return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy)); 6814 6815 // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly. 6816 if (Size != 8 && Size != 16 && Size != 32 && Size != 64) 6817 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6818 6819 // Handle small structures. 6820 if (const RecordType *RT = Ty->getAs<RecordType>()) { 6821 // Structures with flexible arrays have variable length, so really 6822 // fail the size test above. 6823 const RecordDecl *RD = RT->getDecl(); 6824 if (RD->hasFlexibleArrayMember()) 6825 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6826 6827 // The structure is passed as an unextended integer, a float, or a double. 6828 llvm::Type *PassTy; 6829 if (isFPArgumentType(SingleElementTy)) { 6830 assert(Size == 32 || Size == 64); 6831 if (Size == 32) 6832 PassTy = llvm::Type::getFloatTy(getVMContext()); 6833 else 6834 PassTy = llvm::Type::getDoubleTy(getVMContext()); 6835 } else 6836 PassTy = llvm::IntegerType::get(getVMContext(), Size); 6837 return ABIArgInfo::getDirect(PassTy); 6838 } 6839 6840 // Non-structure compounds are passed indirectly. 6841 if (isCompoundType(Ty)) 6842 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6843 6844 return ABIArgInfo::getDirect(nullptr); 6845 } 6846 6847 //===----------------------------------------------------------------------===// 6848 // MSP430 ABI Implementation 6849 //===----------------------------------------------------------------------===// 6850 6851 namespace { 6852 6853 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo { 6854 public: 6855 MSP430TargetCodeGenInfo(CodeGenTypes &CGT) 6856 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 6857 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6858 CodeGen::CodeGenModule &M) const override; 6859 }; 6860 6861 } 6862 6863 void MSP430TargetCodeGenInfo::setTargetAttributes( 6864 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 6865 if (GV->isDeclaration()) 6866 return; 6867 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 6868 const auto *InterruptAttr = FD->getAttr<MSP430InterruptAttr>(); 6869 if (!InterruptAttr) 6870 return; 6871 6872 // Handle 'interrupt' attribute: 6873 llvm::Function *F = cast<llvm::Function>(GV); 6874 6875 // Step 1: Set ISR calling convention. 6876 F->setCallingConv(llvm::CallingConv::MSP430_INTR); 6877 6878 // Step 2: Add attributes goodness. 6879 F->addFnAttr(llvm::Attribute::NoInline); 6880 F->addFnAttr("interrupt", llvm::utostr(InterruptAttr->getNumber())); 6881 } 6882 } 6883 6884 //===----------------------------------------------------------------------===// 6885 // MIPS ABI Implementation. This works for both little-endian and 6886 // big-endian variants. 6887 //===----------------------------------------------------------------------===// 6888 6889 namespace { 6890 class MipsABIInfo : public ABIInfo { 6891 bool IsO32; 6892 unsigned MinABIStackAlignInBytes, StackAlignInBytes; 6893 void CoerceToIntArgs(uint64_t TySize, 6894 SmallVectorImpl<llvm::Type *> &ArgList) const; 6895 llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const; 6896 llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const; 6897 llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const; 6898 public: 6899 MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) : 6900 ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8), 6901 StackAlignInBytes(IsO32 ? 8 : 16) {} 6902 6903 ABIArgInfo classifyReturnType(QualType RetTy) const; 6904 ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const; 6905 void computeInfo(CGFunctionInfo &FI) const override; 6906 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6907 QualType Ty) const override; 6908 ABIArgInfo extendType(QualType Ty) const; 6909 }; 6910 6911 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo { 6912 unsigned SizeOfUnwindException; 6913 public: 6914 MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32) 6915 : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)), 6916 SizeOfUnwindException(IsO32 ? 24 : 32) {} 6917 6918 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 6919 return 29; 6920 } 6921 6922 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6923 CodeGen::CodeGenModule &CGM) const override { 6924 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 6925 if (!FD) return; 6926 llvm::Function *Fn = cast<llvm::Function>(GV); 6927 6928 if (FD->hasAttr<MipsLongCallAttr>()) 6929 Fn->addFnAttr("long-call"); 6930 else if (FD->hasAttr<MipsShortCallAttr>()) 6931 Fn->addFnAttr("short-call"); 6932 6933 // Other attributes do not have a meaning for declarations. 6934 if (GV->isDeclaration()) 6935 return; 6936 6937 if (FD->hasAttr<Mips16Attr>()) { 6938 Fn->addFnAttr("mips16"); 6939 } 6940 else if (FD->hasAttr<NoMips16Attr>()) { 6941 Fn->addFnAttr("nomips16"); 6942 } 6943 6944 if (FD->hasAttr<MicroMipsAttr>()) 6945 Fn->addFnAttr("micromips"); 6946 else if (FD->hasAttr<NoMicroMipsAttr>()) 6947 Fn->addFnAttr("nomicromips"); 6948 6949 const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>(); 6950 if (!Attr) 6951 return; 6952 6953 const char *Kind; 6954 switch (Attr->getInterrupt()) { 6955 case MipsInterruptAttr::eic: Kind = "eic"; break; 6956 case MipsInterruptAttr::sw0: Kind = "sw0"; break; 6957 case MipsInterruptAttr::sw1: Kind = "sw1"; break; 6958 case MipsInterruptAttr::hw0: Kind = "hw0"; break; 6959 case MipsInterruptAttr::hw1: Kind = "hw1"; break; 6960 case MipsInterruptAttr::hw2: Kind = "hw2"; break; 6961 case MipsInterruptAttr::hw3: Kind = "hw3"; break; 6962 case MipsInterruptAttr::hw4: Kind = "hw4"; break; 6963 case MipsInterruptAttr::hw5: Kind = "hw5"; break; 6964 } 6965 6966 Fn->addFnAttr("interrupt", Kind); 6967 6968 } 6969 6970 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 6971 llvm::Value *Address) const override; 6972 6973 unsigned getSizeOfUnwindException() const override { 6974 return SizeOfUnwindException; 6975 } 6976 }; 6977 } 6978 6979 void MipsABIInfo::CoerceToIntArgs( 6980 uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const { 6981 llvm::IntegerType *IntTy = 6982 llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8); 6983 6984 // Add (TySize / MinABIStackAlignInBytes) args of IntTy. 6985 for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N) 6986 ArgList.push_back(IntTy); 6987 6988 // If necessary, add one more integer type to ArgList. 6989 unsigned R = TySize % (MinABIStackAlignInBytes * 8); 6990 6991 if (R) 6992 ArgList.push_back(llvm::IntegerType::get(getVMContext(), R)); 6993 } 6994 6995 // In N32/64, an aligned double precision floating point field is passed in 6996 // a register. 6997 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const { 6998 SmallVector<llvm::Type*, 8> ArgList, IntArgList; 6999 7000 if (IsO32) { 7001 CoerceToIntArgs(TySize, ArgList); 7002 return llvm::StructType::get(getVMContext(), ArgList); 7003 } 7004 7005 if (Ty->isComplexType()) 7006 return CGT.ConvertType(Ty); 7007 7008 const RecordType *RT = Ty->getAs<RecordType>(); 7009 7010 // Unions/vectors are passed in integer registers. 7011 if (!RT || !RT->isStructureOrClassType()) { 7012 CoerceToIntArgs(TySize, ArgList); 7013 return llvm::StructType::get(getVMContext(), ArgList); 7014 } 7015 7016 const RecordDecl *RD = RT->getDecl(); 7017 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 7018 assert(!(TySize % 8) && "Size of structure must be multiple of 8."); 7019 7020 uint64_t LastOffset = 0; 7021 unsigned idx = 0; 7022 llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64); 7023 7024 // Iterate over fields in the struct/class and check if there are any aligned 7025 // double fields. 7026 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 7027 i != e; ++i, ++idx) { 7028 const QualType Ty = i->getType(); 7029 const BuiltinType *BT = Ty->getAs<BuiltinType>(); 7030 7031 if (!BT || BT->getKind() != BuiltinType::Double) 7032 continue; 7033 7034 uint64_t Offset = Layout.getFieldOffset(idx); 7035 if (Offset % 64) // Ignore doubles that are not aligned. 7036 continue; 7037 7038 // Add ((Offset - LastOffset) / 64) args of type i64. 7039 for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j) 7040 ArgList.push_back(I64); 7041 7042 // Add double type. 7043 ArgList.push_back(llvm::Type::getDoubleTy(getVMContext())); 7044 LastOffset = Offset + 64; 7045 } 7046 7047 CoerceToIntArgs(TySize - LastOffset, IntArgList); 7048 ArgList.append(IntArgList.begin(), IntArgList.end()); 7049 7050 return llvm::StructType::get(getVMContext(), ArgList); 7051 } 7052 7053 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset, 7054 uint64_t Offset) const { 7055 if (OrigOffset + MinABIStackAlignInBytes > Offset) 7056 return nullptr; 7057 7058 return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8); 7059 } 7060 7061 ABIArgInfo 7062 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const { 7063 Ty = useFirstFieldIfTransparentUnion(Ty); 7064 7065 uint64_t OrigOffset = Offset; 7066 uint64_t TySize = getContext().getTypeSize(Ty); 7067 uint64_t Align = getContext().getTypeAlign(Ty) / 8; 7068 7069 Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes), 7070 (uint64_t)StackAlignInBytes); 7071 unsigned CurrOffset = llvm::alignTo(Offset, Align); 7072 Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8; 7073 7074 if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) { 7075 // Ignore empty aggregates. 7076 if (TySize == 0) 7077 return ABIArgInfo::getIgnore(); 7078 7079 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 7080 Offset = OrigOffset + MinABIStackAlignInBytes; 7081 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7082 } 7083 7084 // If we have reached here, aggregates are passed directly by coercing to 7085 // another structure type. Padding is inserted if the offset of the 7086 // aggregate is unaligned. 7087 ABIArgInfo ArgInfo = 7088 ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0, 7089 getPaddingType(OrigOffset, CurrOffset)); 7090 ArgInfo.setInReg(true); 7091 return ArgInfo; 7092 } 7093 7094 // Treat an enum type as its underlying type. 7095 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7096 Ty = EnumTy->getDecl()->getIntegerType(); 7097 7098 // All integral types are promoted to the GPR width. 7099 if (Ty->isIntegralOrEnumerationType()) 7100 return extendType(Ty); 7101 7102 return ABIArgInfo::getDirect( 7103 nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset)); 7104 } 7105 7106 llvm::Type* 7107 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const { 7108 const RecordType *RT = RetTy->getAs<RecordType>(); 7109 SmallVector<llvm::Type*, 8> RTList; 7110 7111 if (RT && RT->isStructureOrClassType()) { 7112 const RecordDecl *RD = RT->getDecl(); 7113 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 7114 unsigned FieldCnt = Layout.getFieldCount(); 7115 7116 // N32/64 returns struct/classes in floating point registers if the 7117 // following conditions are met: 7118 // 1. The size of the struct/class is no larger than 128-bit. 7119 // 2. The struct/class has one or two fields all of which are floating 7120 // point types. 7121 // 3. The offset of the first field is zero (this follows what gcc does). 7122 // 7123 // Any other composite results are returned in integer registers. 7124 // 7125 if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) { 7126 RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end(); 7127 for (; b != e; ++b) { 7128 const BuiltinType *BT = b->getType()->getAs<BuiltinType>(); 7129 7130 if (!BT || !BT->isFloatingPoint()) 7131 break; 7132 7133 RTList.push_back(CGT.ConvertType(b->getType())); 7134 } 7135 7136 if (b == e) 7137 return llvm::StructType::get(getVMContext(), RTList, 7138 RD->hasAttr<PackedAttr>()); 7139 7140 RTList.clear(); 7141 } 7142 } 7143 7144 CoerceToIntArgs(Size, RTList); 7145 return llvm::StructType::get(getVMContext(), RTList); 7146 } 7147 7148 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const { 7149 uint64_t Size = getContext().getTypeSize(RetTy); 7150 7151 if (RetTy->isVoidType()) 7152 return ABIArgInfo::getIgnore(); 7153 7154 // O32 doesn't treat zero-sized structs differently from other structs. 7155 // However, N32/N64 ignores zero sized return values. 7156 if (!IsO32 && Size == 0) 7157 return ABIArgInfo::getIgnore(); 7158 7159 if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) { 7160 if (Size <= 128) { 7161 if (RetTy->isAnyComplexType()) 7162 return ABIArgInfo::getDirect(); 7163 7164 // O32 returns integer vectors in registers and N32/N64 returns all small 7165 // aggregates in registers. 7166 if (!IsO32 || 7167 (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) { 7168 ABIArgInfo ArgInfo = 7169 ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size)); 7170 ArgInfo.setInReg(true); 7171 return ArgInfo; 7172 } 7173 } 7174 7175 return getNaturalAlignIndirect(RetTy); 7176 } 7177 7178 // Treat an enum type as its underlying type. 7179 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 7180 RetTy = EnumTy->getDecl()->getIntegerType(); 7181 7182 if (RetTy->isPromotableIntegerType()) 7183 return ABIArgInfo::getExtend(RetTy); 7184 7185 if ((RetTy->isUnsignedIntegerOrEnumerationType() || 7186 RetTy->isSignedIntegerOrEnumerationType()) && Size == 32 && !IsO32) 7187 return ABIArgInfo::getSignExtend(RetTy); 7188 7189 return ABIArgInfo::getDirect(); 7190 } 7191 7192 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const { 7193 ABIArgInfo &RetInfo = FI.getReturnInfo(); 7194 if (!getCXXABI().classifyReturnType(FI)) 7195 RetInfo = classifyReturnType(FI.getReturnType()); 7196 7197 // Check if a pointer to an aggregate is passed as a hidden argument. 7198 uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0; 7199 7200 for (auto &I : FI.arguments()) 7201 I.info = classifyArgumentType(I.type, Offset); 7202 } 7203 7204 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7205 QualType OrigTy) const { 7206 QualType Ty = OrigTy; 7207 7208 // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64. 7209 // Pointers are also promoted in the same way but this only matters for N32. 7210 unsigned SlotSizeInBits = IsO32 ? 32 : 64; 7211 unsigned PtrWidth = getTarget().getPointerWidth(0); 7212 bool DidPromote = false; 7213 if ((Ty->isIntegerType() && 7214 getContext().getIntWidth(Ty) < SlotSizeInBits) || 7215 (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) { 7216 DidPromote = true; 7217 Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits, 7218 Ty->isSignedIntegerType()); 7219 } 7220 7221 auto TyInfo = getContext().getTypeInfoInChars(Ty); 7222 7223 // The alignment of things in the argument area is never larger than 7224 // StackAlignInBytes. 7225 TyInfo.second = 7226 std::min(TyInfo.second, CharUnits::fromQuantity(StackAlignInBytes)); 7227 7228 // MinABIStackAlignInBytes is the size of argument slots on the stack. 7229 CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes); 7230 7231 Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 7232 TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true); 7233 7234 7235 // If there was a promotion, "unpromote" into a temporary. 7236 // TODO: can we just use a pointer into a subset of the original slot? 7237 if (DidPromote) { 7238 Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp"); 7239 llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr); 7240 7241 // Truncate down to the right width. 7242 llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType() 7243 : CGF.IntPtrTy); 7244 llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy); 7245 if (OrigTy->isPointerType()) 7246 V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType()); 7247 7248 CGF.Builder.CreateStore(V, Temp); 7249 Addr = Temp; 7250 } 7251 7252 return Addr; 7253 } 7254 7255 ABIArgInfo MipsABIInfo::extendType(QualType Ty) const { 7256 int TySize = getContext().getTypeSize(Ty); 7257 7258 // MIPS64 ABI requires unsigned 32 bit integers to be sign extended. 7259 if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 7260 return ABIArgInfo::getSignExtend(Ty); 7261 7262 return ABIArgInfo::getExtend(Ty); 7263 } 7264 7265 bool 7266 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 7267 llvm::Value *Address) const { 7268 // This information comes from gcc's implementation, which seems to 7269 // as canonical as it gets. 7270 7271 // Everything on MIPS is 4 bytes. Double-precision FP registers 7272 // are aliased to pairs of single-precision FP registers. 7273 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 7274 7275 // 0-31 are the general purpose registers, $0 - $31. 7276 // 32-63 are the floating-point registers, $f0 - $f31. 7277 // 64 and 65 are the multiply/divide registers, $hi and $lo. 7278 // 66 is the (notional, I think) register for signal-handler return. 7279 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65); 7280 7281 // 67-74 are the floating-point status registers, $fcc0 - $fcc7. 7282 // They are one bit wide and ignored here. 7283 7284 // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31. 7285 // (coprocessor 1 is the FP unit) 7286 // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31. 7287 // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31. 7288 // 176-181 are the DSP accumulator registers. 7289 AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181); 7290 return false; 7291 } 7292 7293 //===----------------------------------------------------------------------===// 7294 // AVR ABI Implementation. 7295 //===----------------------------------------------------------------------===// 7296 7297 namespace { 7298 class AVRTargetCodeGenInfo : public TargetCodeGenInfo { 7299 public: 7300 AVRTargetCodeGenInfo(CodeGenTypes &CGT) 7301 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) { } 7302 7303 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7304 CodeGen::CodeGenModule &CGM) const override { 7305 if (GV->isDeclaration()) 7306 return; 7307 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 7308 if (!FD) return; 7309 auto *Fn = cast<llvm::Function>(GV); 7310 7311 if (FD->getAttr<AVRInterruptAttr>()) 7312 Fn->addFnAttr("interrupt"); 7313 7314 if (FD->getAttr<AVRSignalAttr>()) 7315 Fn->addFnAttr("signal"); 7316 } 7317 }; 7318 } 7319 7320 //===----------------------------------------------------------------------===// 7321 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults. 7322 // Currently subclassed only to implement custom OpenCL C function attribute 7323 // handling. 7324 //===----------------------------------------------------------------------===// 7325 7326 namespace { 7327 7328 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo { 7329 public: 7330 TCETargetCodeGenInfo(CodeGenTypes &CGT) 7331 : DefaultTargetCodeGenInfo(CGT) {} 7332 7333 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7334 CodeGen::CodeGenModule &M) const override; 7335 }; 7336 7337 void TCETargetCodeGenInfo::setTargetAttributes( 7338 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 7339 if (GV->isDeclaration()) 7340 return; 7341 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 7342 if (!FD) return; 7343 7344 llvm::Function *F = cast<llvm::Function>(GV); 7345 7346 if (M.getLangOpts().OpenCL) { 7347 if (FD->hasAttr<OpenCLKernelAttr>()) { 7348 // OpenCL C Kernel functions are not subject to inlining 7349 F->addFnAttr(llvm::Attribute::NoInline); 7350 const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>(); 7351 if (Attr) { 7352 // Convert the reqd_work_group_size() attributes to metadata. 7353 llvm::LLVMContext &Context = F->getContext(); 7354 llvm::NamedMDNode *OpenCLMetadata = 7355 M.getModule().getOrInsertNamedMetadata( 7356 "opencl.kernel_wg_size_info"); 7357 7358 SmallVector<llvm::Metadata *, 5> Operands; 7359 Operands.push_back(llvm::ConstantAsMetadata::get(F)); 7360 7361 Operands.push_back( 7362 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 7363 M.Int32Ty, llvm::APInt(32, Attr->getXDim())))); 7364 Operands.push_back( 7365 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 7366 M.Int32Ty, llvm::APInt(32, Attr->getYDim())))); 7367 Operands.push_back( 7368 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 7369 M.Int32Ty, llvm::APInt(32, Attr->getZDim())))); 7370 7371 // Add a boolean constant operand for "required" (true) or "hint" 7372 // (false) for implementing the work_group_size_hint attr later. 7373 // Currently always true as the hint is not yet implemented. 7374 Operands.push_back( 7375 llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context))); 7376 OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands)); 7377 } 7378 } 7379 } 7380 } 7381 7382 } 7383 7384 //===----------------------------------------------------------------------===// 7385 // Hexagon ABI Implementation 7386 //===----------------------------------------------------------------------===// 7387 7388 namespace { 7389 7390 class HexagonABIInfo : public ABIInfo { 7391 7392 7393 public: 7394 HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 7395 7396 private: 7397 7398 ABIArgInfo classifyReturnType(QualType RetTy) const; 7399 ABIArgInfo classifyArgumentType(QualType RetTy) const; 7400 7401 void computeInfo(CGFunctionInfo &FI) const override; 7402 7403 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7404 QualType Ty) const override; 7405 }; 7406 7407 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo { 7408 public: 7409 HexagonTargetCodeGenInfo(CodeGenTypes &CGT) 7410 :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {} 7411 7412 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 7413 return 29; 7414 } 7415 }; 7416 7417 } 7418 7419 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const { 7420 if (!getCXXABI().classifyReturnType(FI)) 7421 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7422 for (auto &I : FI.arguments()) 7423 I.info = classifyArgumentType(I.type); 7424 } 7425 7426 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const { 7427 if (!isAggregateTypeForABI(Ty)) { 7428 // Treat an enum type as its underlying type. 7429 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7430 Ty = EnumTy->getDecl()->getIntegerType(); 7431 7432 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 7433 : ABIArgInfo::getDirect()); 7434 } 7435 7436 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 7437 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7438 7439 // Ignore empty records. 7440 if (isEmptyRecord(getContext(), Ty, true)) 7441 return ABIArgInfo::getIgnore(); 7442 7443 uint64_t Size = getContext().getTypeSize(Ty); 7444 if (Size > 64) 7445 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 7446 // Pass in the smallest viable integer type. 7447 else if (Size > 32) 7448 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); 7449 else if (Size > 16) 7450 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 7451 else if (Size > 8) 7452 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 7453 else 7454 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 7455 } 7456 7457 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const { 7458 if (RetTy->isVoidType()) 7459 return ABIArgInfo::getIgnore(); 7460 7461 // Large vector types should be returned via memory. 7462 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64) 7463 return getNaturalAlignIndirect(RetTy); 7464 7465 if (!isAggregateTypeForABI(RetTy)) { 7466 // Treat an enum type as its underlying type. 7467 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 7468 RetTy = EnumTy->getDecl()->getIntegerType(); 7469 7470 return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 7471 : ABIArgInfo::getDirect()); 7472 } 7473 7474 if (isEmptyRecord(getContext(), RetTy, true)) 7475 return ABIArgInfo::getIgnore(); 7476 7477 // Aggregates <= 8 bytes are returned in r0; other aggregates 7478 // are returned indirectly. 7479 uint64_t Size = getContext().getTypeSize(RetTy); 7480 if (Size <= 64) { 7481 // Return in the smallest viable integer type. 7482 if (Size <= 8) 7483 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 7484 if (Size <= 16) 7485 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 7486 if (Size <= 32) 7487 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 7488 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); 7489 } 7490 7491 return getNaturalAlignIndirect(RetTy, /*ByVal=*/true); 7492 } 7493 7494 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7495 QualType Ty) const { 7496 // FIXME: Someone needs to audit that this handle alignment correctly. 7497 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 7498 getContext().getTypeInfoInChars(Ty), 7499 CharUnits::fromQuantity(4), 7500 /*AllowHigherAlign*/ true); 7501 } 7502 7503 //===----------------------------------------------------------------------===// 7504 // Lanai ABI Implementation 7505 //===----------------------------------------------------------------------===// 7506 7507 namespace { 7508 class LanaiABIInfo : public DefaultABIInfo { 7509 public: 7510 LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 7511 7512 bool shouldUseInReg(QualType Ty, CCState &State) const; 7513 7514 void computeInfo(CGFunctionInfo &FI) const override { 7515 CCState State(FI.getCallingConvention()); 7516 // Lanai uses 4 registers to pass arguments unless the function has the 7517 // regparm attribute set. 7518 if (FI.getHasRegParm()) { 7519 State.FreeRegs = FI.getRegParm(); 7520 } else { 7521 State.FreeRegs = 4; 7522 } 7523 7524 if (!getCXXABI().classifyReturnType(FI)) 7525 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7526 for (auto &I : FI.arguments()) 7527 I.info = classifyArgumentType(I.type, State); 7528 } 7529 7530 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 7531 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 7532 }; 7533 } // end anonymous namespace 7534 7535 bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const { 7536 unsigned Size = getContext().getTypeSize(Ty); 7537 unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U; 7538 7539 if (SizeInRegs == 0) 7540 return false; 7541 7542 if (SizeInRegs > State.FreeRegs) { 7543 State.FreeRegs = 0; 7544 return false; 7545 } 7546 7547 State.FreeRegs -= SizeInRegs; 7548 7549 return true; 7550 } 7551 7552 ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal, 7553 CCState &State) const { 7554 if (!ByVal) { 7555 if (State.FreeRegs) { 7556 --State.FreeRegs; // Non-byval indirects just use one pointer. 7557 return getNaturalAlignIndirectInReg(Ty); 7558 } 7559 return getNaturalAlignIndirect(Ty, false); 7560 } 7561 7562 // Compute the byval alignment. 7563 const unsigned MinABIStackAlignInBytes = 4; 7564 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 7565 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true, 7566 /*Realign=*/TypeAlign > 7567 MinABIStackAlignInBytes); 7568 } 7569 7570 ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty, 7571 CCState &State) const { 7572 // Check with the C++ ABI first. 7573 const RecordType *RT = Ty->getAs<RecordType>(); 7574 if (RT) { 7575 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 7576 if (RAA == CGCXXABI::RAA_Indirect) { 7577 return getIndirectResult(Ty, /*ByVal=*/false, State); 7578 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 7579 return getNaturalAlignIndirect(Ty, /*ByRef=*/true); 7580 } 7581 } 7582 7583 if (isAggregateTypeForABI(Ty)) { 7584 // Structures with flexible arrays are always indirect. 7585 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 7586 return getIndirectResult(Ty, /*ByVal=*/true, State); 7587 7588 // Ignore empty structs/unions. 7589 if (isEmptyRecord(getContext(), Ty, true)) 7590 return ABIArgInfo::getIgnore(); 7591 7592 llvm::LLVMContext &LLVMContext = getVMContext(); 7593 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; 7594 if (SizeInRegs <= State.FreeRegs) { 7595 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 7596 SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32); 7597 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 7598 State.FreeRegs -= SizeInRegs; 7599 return ABIArgInfo::getDirectInReg(Result); 7600 } else { 7601 State.FreeRegs = 0; 7602 } 7603 return getIndirectResult(Ty, true, State); 7604 } 7605 7606 // Treat an enum type as its underlying type. 7607 if (const auto *EnumTy = Ty->getAs<EnumType>()) 7608 Ty = EnumTy->getDecl()->getIntegerType(); 7609 7610 bool InReg = shouldUseInReg(Ty, State); 7611 if (Ty->isPromotableIntegerType()) { 7612 if (InReg) 7613 return ABIArgInfo::getDirectInReg(); 7614 return ABIArgInfo::getExtend(Ty); 7615 } 7616 if (InReg) 7617 return ABIArgInfo::getDirectInReg(); 7618 return ABIArgInfo::getDirect(); 7619 } 7620 7621 namespace { 7622 class LanaiTargetCodeGenInfo : public TargetCodeGenInfo { 7623 public: 7624 LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 7625 : TargetCodeGenInfo(new LanaiABIInfo(CGT)) {} 7626 }; 7627 } 7628 7629 //===----------------------------------------------------------------------===// 7630 // AMDGPU ABI Implementation 7631 //===----------------------------------------------------------------------===// 7632 7633 namespace { 7634 7635 class AMDGPUABIInfo final : public DefaultABIInfo { 7636 private: 7637 static const unsigned MaxNumRegsForArgsRet = 16; 7638 7639 unsigned numRegsForType(QualType Ty) const; 7640 7641 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 7642 bool isHomogeneousAggregateSmallEnough(const Type *Base, 7643 uint64_t Members) const override; 7644 7645 public: 7646 explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) : 7647 DefaultABIInfo(CGT) {} 7648 7649 ABIArgInfo classifyReturnType(QualType RetTy) const; 7650 ABIArgInfo classifyKernelArgumentType(QualType Ty) const; 7651 ABIArgInfo classifyArgumentType(QualType Ty, unsigned &NumRegsLeft) const; 7652 7653 void computeInfo(CGFunctionInfo &FI) const override; 7654 }; 7655 7656 bool AMDGPUABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 7657 return true; 7658 } 7659 7660 bool AMDGPUABIInfo::isHomogeneousAggregateSmallEnough( 7661 const Type *Base, uint64_t Members) const { 7662 uint32_t NumRegs = (getContext().getTypeSize(Base) + 31) / 32; 7663 7664 // Homogeneous Aggregates may occupy at most 16 registers. 7665 return Members * NumRegs <= MaxNumRegsForArgsRet; 7666 } 7667 7668 /// Estimate number of registers the type will use when passed in registers. 7669 unsigned AMDGPUABIInfo::numRegsForType(QualType Ty) const { 7670 unsigned NumRegs = 0; 7671 7672 if (const VectorType *VT = Ty->getAs<VectorType>()) { 7673 // Compute from the number of elements. The reported size is based on the 7674 // in-memory size, which includes the padding 4th element for 3-vectors. 7675 QualType EltTy = VT->getElementType(); 7676 unsigned EltSize = getContext().getTypeSize(EltTy); 7677 7678 // 16-bit element vectors should be passed as packed. 7679 if (EltSize == 16) 7680 return (VT->getNumElements() + 1) / 2; 7681 7682 unsigned EltNumRegs = (EltSize + 31) / 32; 7683 return EltNumRegs * VT->getNumElements(); 7684 } 7685 7686 if (const RecordType *RT = Ty->getAs<RecordType>()) { 7687 const RecordDecl *RD = RT->getDecl(); 7688 assert(!RD->hasFlexibleArrayMember()); 7689 7690 for (const FieldDecl *Field : RD->fields()) { 7691 QualType FieldTy = Field->getType(); 7692 NumRegs += numRegsForType(FieldTy); 7693 } 7694 7695 return NumRegs; 7696 } 7697 7698 return (getContext().getTypeSize(Ty) + 31) / 32; 7699 } 7700 7701 void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const { 7702 llvm::CallingConv::ID CC = FI.getCallingConvention(); 7703 7704 if (!getCXXABI().classifyReturnType(FI)) 7705 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7706 7707 unsigned NumRegsLeft = MaxNumRegsForArgsRet; 7708 for (auto &Arg : FI.arguments()) { 7709 if (CC == llvm::CallingConv::AMDGPU_KERNEL) { 7710 Arg.info = classifyKernelArgumentType(Arg.type); 7711 } else { 7712 Arg.info = classifyArgumentType(Arg.type, NumRegsLeft); 7713 } 7714 } 7715 } 7716 7717 ABIArgInfo AMDGPUABIInfo::classifyReturnType(QualType RetTy) const { 7718 if (isAggregateTypeForABI(RetTy)) { 7719 // Records with non-trivial destructors/copy-constructors should not be 7720 // returned by value. 7721 if (!getRecordArgABI(RetTy, getCXXABI())) { 7722 // Ignore empty structs/unions. 7723 if (isEmptyRecord(getContext(), RetTy, true)) 7724 return ABIArgInfo::getIgnore(); 7725 7726 // Lower single-element structs to just return a regular value. 7727 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 7728 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 7729 7730 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 7731 const RecordDecl *RD = RT->getDecl(); 7732 if (RD->hasFlexibleArrayMember()) 7733 return DefaultABIInfo::classifyReturnType(RetTy); 7734 } 7735 7736 // Pack aggregates <= 4 bytes into single VGPR or pair. 7737 uint64_t Size = getContext().getTypeSize(RetTy); 7738 if (Size <= 16) 7739 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 7740 7741 if (Size <= 32) 7742 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 7743 7744 if (Size <= 64) { 7745 llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext()); 7746 return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2)); 7747 } 7748 7749 if (numRegsForType(RetTy) <= MaxNumRegsForArgsRet) 7750 return ABIArgInfo::getDirect(); 7751 } 7752 } 7753 7754 // Otherwise just do the default thing. 7755 return DefaultABIInfo::classifyReturnType(RetTy); 7756 } 7757 7758 /// For kernels all parameters are really passed in a special buffer. It doesn't 7759 /// make sense to pass anything byval, so everything must be direct. 7760 ABIArgInfo AMDGPUABIInfo::classifyKernelArgumentType(QualType Ty) const { 7761 Ty = useFirstFieldIfTransparentUnion(Ty); 7762 7763 // TODO: Can we omit empty structs? 7764 7765 // Coerce single element structs to its element. 7766 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 7767 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 7768 7769 // If we set CanBeFlattened to true, CodeGen will expand the struct to its 7770 // individual elements, which confuses the Clover OpenCL backend; therefore we 7771 // have to set it to false here. Other args of getDirect() are just defaults. 7772 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); 7773 } 7774 7775 ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty, 7776 unsigned &NumRegsLeft) const { 7777 assert(NumRegsLeft <= MaxNumRegsForArgsRet && "register estimate underflow"); 7778 7779 Ty = useFirstFieldIfTransparentUnion(Ty); 7780 7781 if (isAggregateTypeForABI(Ty)) { 7782 // Records with non-trivial destructors/copy-constructors should not be 7783 // passed by value. 7784 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 7785 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7786 7787 // Ignore empty structs/unions. 7788 if (isEmptyRecord(getContext(), Ty, true)) 7789 return ABIArgInfo::getIgnore(); 7790 7791 // Lower single-element structs to just pass a regular value. TODO: We 7792 // could do reasonable-size multiple-element structs too, using getExpand(), 7793 // though watch out for things like bitfields. 7794 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 7795 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 7796 7797 if (const RecordType *RT = Ty->getAs<RecordType>()) { 7798 const RecordDecl *RD = RT->getDecl(); 7799 if (RD->hasFlexibleArrayMember()) 7800 return DefaultABIInfo::classifyArgumentType(Ty); 7801 } 7802 7803 // Pack aggregates <= 8 bytes into single VGPR or pair. 7804 uint64_t Size = getContext().getTypeSize(Ty); 7805 if (Size <= 64) { 7806 unsigned NumRegs = (Size + 31) / 32; 7807 NumRegsLeft -= std::min(NumRegsLeft, NumRegs); 7808 7809 if (Size <= 16) 7810 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 7811 7812 if (Size <= 32) 7813 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 7814 7815 // XXX: Should this be i64 instead, and should the limit increase? 7816 llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext()); 7817 return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2)); 7818 } 7819 7820 if (NumRegsLeft > 0) { 7821 unsigned NumRegs = numRegsForType(Ty); 7822 if (NumRegsLeft >= NumRegs) { 7823 NumRegsLeft -= NumRegs; 7824 return ABIArgInfo::getDirect(); 7825 } 7826 } 7827 } 7828 7829 // Otherwise just do the default thing. 7830 ABIArgInfo ArgInfo = DefaultABIInfo::classifyArgumentType(Ty); 7831 if (!ArgInfo.isIndirect()) { 7832 unsigned NumRegs = numRegsForType(Ty); 7833 NumRegsLeft -= std::min(NumRegs, NumRegsLeft); 7834 } 7835 7836 return ArgInfo; 7837 } 7838 7839 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo { 7840 public: 7841 AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT) 7842 : TargetCodeGenInfo(new AMDGPUABIInfo(CGT)) {} 7843 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7844 CodeGen::CodeGenModule &M) const override; 7845 unsigned getOpenCLKernelCallingConv() const override; 7846 7847 llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM, 7848 llvm::PointerType *T, QualType QT) const override; 7849 7850 LangAS getASTAllocaAddressSpace() const override { 7851 return getLangASFromTargetAS( 7852 getABIInfo().getDataLayout().getAllocaAddrSpace()); 7853 } 7854 LangAS getGlobalVarAddressSpace(CodeGenModule &CGM, 7855 const VarDecl *D) const override; 7856 llvm::SyncScope::ID getLLVMSyncScopeID(const LangOptions &LangOpts, 7857 SyncScope Scope, 7858 llvm::AtomicOrdering Ordering, 7859 llvm::LLVMContext &Ctx) const override; 7860 llvm::Function * 7861 createEnqueuedBlockKernel(CodeGenFunction &CGF, 7862 llvm::Function *BlockInvokeFunc, 7863 llvm::Value *BlockLiteral) const override; 7864 bool shouldEmitStaticExternCAliases() const override; 7865 void setCUDAKernelCallingConvention(const FunctionType *&FT) const override; 7866 }; 7867 } 7868 7869 static bool requiresAMDGPUProtectedVisibility(const Decl *D, 7870 llvm::GlobalValue *GV) { 7871 if (GV->getVisibility() != llvm::GlobalValue::HiddenVisibility) 7872 return false; 7873 7874 return D->hasAttr<OpenCLKernelAttr>() || 7875 (isa<FunctionDecl>(D) && D->hasAttr<CUDAGlobalAttr>()) || 7876 (isa<VarDecl>(D) && 7877 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || 7878 D->hasAttr<HIPPinnedShadowAttr>())); 7879 } 7880 7881 static bool requiresAMDGPUDefaultVisibility(const Decl *D, 7882 llvm::GlobalValue *GV) { 7883 if (GV->getVisibility() != llvm::GlobalValue::HiddenVisibility) 7884 return false; 7885 7886 return isa<VarDecl>(D) && D->hasAttr<HIPPinnedShadowAttr>(); 7887 } 7888 7889 void AMDGPUTargetCodeGenInfo::setTargetAttributes( 7890 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 7891 if (requiresAMDGPUDefaultVisibility(D, GV)) { 7892 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 7893 GV->setDSOLocal(false); 7894 } else if (requiresAMDGPUProtectedVisibility(D, GV)) { 7895 GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 7896 GV->setDSOLocal(true); 7897 } 7898 7899 if (GV->isDeclaration()) 7900 return; 7901 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 7902 if (!FD) 7903 return; 7904 7905 llvm::Function *F = cast<llvm::Function>(GV); 7906 7907 const auto *ReqdWGS = M.getLangOpts().OpenCL ? 7908 FD->getAttr<ReqdWorkGroupSizeAttr>() : nullptr; 7909 7910 if (((M.getLangOpts().OpenCL && FD->hasAttr<OpenCLKernelAttr>()) || 7911 (M.getLangOpts().HIP && FD->hasAttr<CUDAGlobalAttr>())) && 7912 (M.getTriple().getOS() == llvm::Triple::AMDHSA)) 7913 F->addFnAttr("amdgpu-implicitarg-num-bytes", "48"); 7914 7915 const auto *FlatWGS = FD->getAttr<AMDGPUFlatWorkGroupSizeAttr>(); 7916 if (ReqdWGS || FlatWGS) { 7917 unsigned Min = 0; 7918 unsigned Max = 0; 7919 if (FlatWGS) { 7920 Min = FlatWGS->getMin() 7921 ->EvaluateKnownConstInt(M.getContext()) 7922 .getExtValue(); 7923 Max = FlatWGS->getMax() 7924 ->EvaluateKnownConstInt(M.getContext()) 7925 .getExtValue(); 7926 } 7927 if (ReqdWGS && Min == 0 && Max == 0) 7928 Min = Max = ReqdWGS->getXDim() * ReqdWGS->getYDim() * ReqdWGS->getZDim(); 7929 7930 if (Min != 0) { 7931 assert(Min <= Max && "Min must be less than or equal Max"); 7932 7933 std::string AttrVal = llvm::utostr(Min) + "," + llvm::utostr(Max); 7934 F->addFnAttr("amdgpu-flat-work-group-size", AttrVal); 7935 } else 7936 assert(Max == 0 && "Max must be zero"); 7937 } 7938 7939 if (const auto *Attr = FD->getAttr<AMDGPUWavesPerEUAttr>()) { 7940 unsigned Min = 7941 Attr->getMin()->EvaluateKnownConstInt(M.getContext()).getExtValue(); 7942 unsigned Max = Attr->getMax() ? Attr->getMax() 7943 ->EvaluateKnownConstInt(M.getContext()) 7944 .getExtValue() 7945 : 0; 7946 7947 if (Min != 0) { 7948 assert((Max == 0 || Min <= Max) && "Min must be less than or equal Max"); 7949 7950 std::string AttrVal = llvm::utostr(Min); 7951 if (Max != 0) 7952 AttrVal = AttrVal + "," + llvm::utostr(Max); 7953 F->addFnAttr("amdgpu-waves-per-eu", AttrVal); 7954 } else 7955 assert(Max == 0 && "Max must be zero"); 7956 } 7957 7958 if (const auto *Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) { 7959 unsigned NumSGPR = Attr->getNumSGPR(); 7960 7961 if (NumSGPR != 0) 7962 F->addFnAttr("amdgpu-num-sgpr", llvm::utostr(NumSGPR)); 7963 } 7964 7965 if (const auto *Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) { 7966 uint32_t NumVGPR = Attr->getNumVGPR(); 7967 7968 if (NumVGPR != 0) 7969 F->addFnAttr("amdgpu-num-vgpr", llvm::utostr(NumVGPR)); 7970 } 7971 } 7972 7973 unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 7974 return llvm::CallingConv::AMDGPU_KERNEL; 7975 } 7976 7977 // Currently LLVM assumes null pointers always have value 0, 7978 // which results in incorrectly transformed IR. Therefore, instead of 7979 // emitting null pointers in private and local address spaces, a null 7980 // pointer in generic address space is emitted which is casted to a 7981 // pointer in local or private address space. 7982 llvm::Constant *AMDGPUTargetCodeGenInfo::getNullPointer( 7983 const CodeGen::CodeGenModule &CGM, llvm::PointerType *PT, 7984 QualType QT) const { 7985 if (CGM.getContext().getTargetNullPointerValue(QT) == 0) 7986 return llvm::ConstantPointerNull::get(PT); 7987 7988 auto &Ctx = CGM.getContext(); 7989 auto NPT = llvm::PointerType::get(PT->getElementType(), 7990 Ctx.getTargetAddressSpace(LangAS::opencl_generic)); 7991 return llvm::ConstantExpr::getAddrSpaceCast( 7992 llvm::ConstantPointerNull::get(NPT), PT); 7993 } 7994 7995 LangAS 7996 AMDGPUTargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM, 7997 const VarDecl *D) const { 7998 assert(!CGM.getLangOpts().OpenCL && 7999 !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && 8000 "Address space agnostic languages only"); 8001 LangAS DefaultGlobalAS = getLangASFromTargetAS( 8002 CGM.getContext().getTargetAddressSpace(LangAS::opencl_global)); 8003 if (!D) 8004 return DefaultGlobalAS; 8005 8006 LangAS AddrSpace = D->getType().getAddressSpace(); 8007 assert(AddrSpace == LangAS::Default || isTargetAddressSpace(AddrSpace)); 8008 if (AddrSpace != LangAS::Default) 8009 return AddrSpace; 8010 8011 if (CGM.isTypeConstant(D->getType(), false)) { 8012 if (auto ConstAS = CGM.getTarget().getConstantAddressSpace()) 8013 return ConstAS.getValue(); 8014 } 8015 return DefaultGlobalAS; 8016 } 8017 8018 llvm::SyncScope::ID 8019 AMDGPUTargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts, 8020 SyncScope Scope, 8021 llvm::AtomicOrdering Ordering, 8022 llvm::LLVMContext &Ctx) const { 8023 std::string Name; 8024 switch (Scope) { 8025 case SyncScope::OpenCLWorkGroup: 8026 Name = "workgroup"; 8027 break; 8028 case SyncScope::OpenCLDevice: 8029 Name = "agent"; 8030 break; 8031 case SyncScope::OpenCLAllSVMDevices: 8032 Name = ""; 8033 break; 8034 case SyncScope::OpenCLSubGroup: 8035 Name = "wavefront"; 8036 } 8037 8038 if (Ordering != llvm::AtomicOrdering::SequentiallyConsistent) { 8039 if (!Name.empty()) 8040 Name = Twine(Twine(Name) + Twine("-")).str(); 8041 8042 Name = Twine(Twine(Name) + Twine("one-as")).str(); 8043 } 8044 8045 return Ctx.getOrInsertSyncScopeID(Name); 8046 } 8047 8048 bool AMDGPUTargetCodeGenInfo::shouldEmitStaticExternCAliases() const { 8049 return false; 8050 } 8051 8052 void AMDGPUTargetCodeGenInfo::setCUDAKernelCallingConvention( 8053 const FunctionType *&FT) const { 8054 FT = getABIInfo().getContext().adjustFunctionType( 8055 FT, FT->getExtInfo().withCallingConv(CC_OpenCLKernel)); 8056 } 8057 8058 //===----------------------------------------------------------------------===// 8059 // SPARC v8 ABI Implementation. 8060 // Based on the SPARC Compliance Definition version 2.4.1. 8061 // 8062 // Ensures that complex values are passed in registers. 8063 // 8064 namespace { 8065 class SparcV8ABIInfo : public DefaultABIInfo { 8066 public: 8067 SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 8068 8069 private: 8070 ABIArgInfo classifyReturnType(QualType RetTy) const; 8071 void computeInfo(CGFunctionInfo &FI) const override; 8072 }; 8073 } // end anonymous namespace 8074 8075 8076 ABIArgInfo 8077 SparcV8ABIInfo::classifyReturnType(QualType Ty) const { 8078 if (Ty->isAnyComplexType()) { 8079 return ABIArgInfo::getDirect(); 8080 } 8081 else { 8082 return DefaultABIInfo::classifyReturnType(Ty); 8083 } 8084 } 8085 8086 void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const { 8087 8088 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 8089 for (auto &Arg : FI.arguments()) 8090 Arg.info = classifyArgumentType(Arg.type); 8091 } 8092 8093 namespace { 8094 class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo { 8095 public: 8096 SparcV8TargetCodeGenInfo(CodeGenTypes &CGT) 8097 : TargetCodeGenInfo(new SparcV8ABIInfo(CGT)) {} 8098 }; 8099 } // end anonymous namespace 8100 8101 //===----------------------------------------------------------------------===// 8102 // SPARC v9 ABI Implementation. 8103 // Based on the SPARC Compliance Definition version 2.4.1. 8104 // 8105 // Function arguments a mapped to a nominal "parameter array" and promoted to 8106 // registers depending on their type. Each argument occupies 8 or 16 bytes in 8107 // the array, structs larger than 16 bytes are passed indirectly. 8108 // 8109 // One case requires special care: 8110 // 8111 // struct mixed { 8112 // int i; 8113 // float f; 8114 // }; 8115 // 8116 // When a struct mixed is passed by value, it only occupies 8 bytes in the 8117 // parameter array, but the int is passed in an integer register, and the float 8118 // is passed in a floating point register. This is represented as two arguments 8119 // with the LLVM IR inreg attribute: 8120 // 8121 // declare void f(i32 inreg %i, float inreg %f) 8122 // 8123 // The code generator will only allocate 4 bytes from the parameter array for 8124 // the inreg arguments. All other arguments are allocated a multiple of 8 8125 // bytes. 8126 // 8127 namespace { 8128 class SparcV9ABIInfo : public ABIInfo { 8129 public: 8130 SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 8131 8132 private: 8133 ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const; 8134 void computeInfo(CGFunctionInfo &FI) const override; 8135 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8136 QualType Ty) const override; 8137 8138 // Coercion type builder for structs passed in registers. The coercion type 8139 // serves two purposes: 8140 // 8141 // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned' 8142 // in registers. 8143 // 2. Expose aligned floating point elements as first-level elements, so the 8144 // code generator knows to pass them in floating point registers. 8145 // 8146 // We also compute the InReg flag which indicates that the struct contains 8147 // aligned 32-bit floats. 8148 // 8149 struct CoerceBuilder { 8150 llvm::LLVMContext &Context; 8151 const llvm::DataLayout &DL; 8152 SmallVector<llvm::Type*, 8> Elems; 8153 uint64_t Size; 8154 bool InReg; 8155 8156 CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl) 8157 : Context(c), DL(dl), Size(0), InReg(false) {} 8158 8159 // Pad Elems with integers until Size is ToSize. 8160 void pad(uint64_t ToSize) { 8161 assert(ToSize >= Size && "Cannot remove elements"); 8162 if (ToSize == Size) 8163 return; 8164 8165 // Finish the current 64-bit word. 8166 uint64_t Aligned = llvm::alignTo(Size, 64); 8167 if (Aligned > Size && Aligned <= ToSize) { 8168 Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size)); 8169 Size = Aligned; 8170 } 8171 8172 // Add whole 64-bit words. 8173 while (Size + 64 <= ToSize) { 8174 Elems.push_back(llvm::Type::getInt64Ty(Context)); 8175 Size += 64; 8176 } 8177 8178 // Final in-word padding. 8179 if (Size < ToSize) { 8180 Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size)); 8181 Size = ToSize; 8182 } 8183 } 8184 8185 // Add a floating point element at Offset. 8186 void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) { 8187 // Unaligned floats are treated as integers. 8188 if (Offset % Bits) 8189 return; 8190 // The InReg flag is only required if there are any floats < 64 bits. 8191 if (Bits < 64) 8192 InReg = true; 8193 pad(Offset); 8194 Elems.push_back(Ty); 8195 Size = Offset + Bits; 8196 } 8197 8198 // Add a struct type to the coercion type, starting at Offset (in bits). 8199 void addStruct(uint64_t Offset, llvm::StructType *StrTy) { 8200 const llvm::StructLayout *Layout = DL.getStructLayout(StrTy); 8201 for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) { 8202 llvm::Type *ElemTy = StrTy->getElementType(i); 8203 uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i); 8204 switch (ElemTy->getTypeID()) { 8205 case llvm::Type::StructTyID: 8206 addStruct(ElemOffset, cast<llvm::StructType>(ElemTy)); 8207 break; 8208 case llvm::Type::FloatTyID: 8209 addFloat(ElemOffset, ElemTy, 32); 8210 break; 8211 case llvm::Type::DoubleTyID: 8212 addFloat(ElemOffset, ElemTy, 64); 8213 break; 8214 case llvm::Type::FP128TyID: 8215 addFloat(ElemOffset, ElemTy, 128); 8216 break; 8217 case llvm::Type::PointerTyID: 8218 if (ElemOffset % 64 == 0) { 8219 pad(ElemOffset); 8220 Elems.push_back(ElemTy); 8221 Size += 64; 8222 } 8223 break; 8224 default: 8225 break; 8226 } 8227 } 8228 } 8229 8230 // Check if Ty is a usable substitute for the coercion type. 8231 bool isUsableType(llvm::StructType *Ty) const { 8232 return llvm::makeArrayRef(Elems) == Ty->elements(); 8233 } 8234 8235 // Get the coercion type as a literal struct type. 8236 llvm::Type *getType() const { 8237 if (Elems.size() == 1) 8238 return Elems.front(); 8239 else 8240 return llvm::StructType::get(Context, Elems); 8241 } 8242 }; 8243 }; 8244 } // end anonymous namespace 8245 8246 ABIArgInfo 8247 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const { 8248 if (Ty->isVoidType()) 8249 return ABIArgInfo::getIgnore(); 8250 8251 uint64_t Size = getContext().getTypeSize(Ty); 8252 8253 // Anything too big to fit in registers is passed with an explicit indirect 8254 // pointer / sret pointer. 8255 if (Size > SizeLimit) 8256 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 8257 8258 // Treat an enum type as its underlying type. 8259 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 8260 Ty = EnumTy->getDecl()->getIntegerType(); 8261 8262 // Integer types smaller than a register are extended. 8263 if (Size < 64 && Ty->isIntegerType()) 8264 return ABIArgInfo::getExtend(Ty); 8265 8266 // Other non-aggregates go in registers. 8267 if (!isAggregateTypeForABI(Ty)) 8268 return ABIArgInfo::getDirect(); 8269 8270 // If a C++ object has either a non-trivial copy constructor or a non-trivial 8271 // destructor, it is passed with an explicit indirect pointer / sret pointer. 8272 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 8273 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 8274 8275 // This is a small aggregate type that should be passed in registers. 8276 // Build a coercion type from the LLVM struct type. 8277 llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty)); 8278 if (!StrTy) 8279 return ABIArgInfo::getDirect(); 8280 8281 CoerceBuilder CB(getVMContext(), getDataLayout()); 8282 CB.addStruct(0, StrTy); 8283 CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64)); 8284 8285 // Try to use the original type for coercion. 8286 llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType(); 8287 8288 if (CB.InReg) 8289 return ABIArgInfo::getDirectInReg(CoerceTy); 8290 else 8291 return ABIArgInfo::getDirect(CoerceTy); 8292 } 8293 8294 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8295 QualType Ty) const { 8296 ABIArgInfo AI = classifyType(Ty, 16 * 8); 8297 llvm::Type *ArgTy = CGT.ConvertType(Ty); 8298 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 8299 AI.setCoerceToType(ArgTy); 8300 8301 CharUnits SlotSize = CharUnits::fromQuantity(8); 8302 8303 CGBuilderTy &Builder = CGF.Builder; 8304 Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 8305 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 8306 8307 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 8308 8309 Address ArgAddr = Address::invalid(); 8310 CharUnits Stride; 8311 switch (AI.getKind()) { 8312 case ABIArgInfo::Expand: 8313 case ABIArgInfo::CoerceAndExpand: 8314 case ABIArgInfo::InAlloca: 8315 llvm_unreachable("Unsupported ABI kind for va_arg"); 8316 8317 case ABIArgInfo::Extend: { 8318 Stride = SlotSize; 8319 CharUnits Offset = SlotSize - TypeInfo.first; 8320 ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend"); 8321 break; 8322 } 8323 8324 case ABIArgInfo::Direct: { 8325 auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType()); 8326 Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize); 8327 ArgAddr = Addr; 8328 break; 8329 } 8330 8331 case ABIArgInfo::Indirect: 8332 Stride = SlotSize; 8333 ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect"); 8334 ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"), 8335 TypeInfo.second); 8336 break; 8337 8338 case ABIArgInfo::Ignore: 8339 return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.second); 8340 } 8341 8342 // Update VAList. 8343 Address NextPtr = Builder.CreateConstInBoundsByteGEP(Addr, Stride, "ap.next"); 8344 Builder.CreateStore(NextPtr.getPointer(), VAListAddr); 8345 8346 return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr"); 8347 } 8348 8349 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const { 8350 FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8); 8351 for (auto &I : FI.arguments()) 8352 I.info = classifyType(I.type, 16 * 8); 8353 } 8354 8355 namespace { 8356 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo { 8357 public: 8358 SparcV9TargetCodeGenInfo(CodeGenTypes &CGT) 8359 : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {} 8360 8361 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 8362 return 14; 8363 } 8364 8365 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 8366 llvm::Value *Address) const override; 8367 }; 8368 } // end anonymous namespace 8369 8370 bool 8371 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 8372 llvm::Value *Address) const { 8373 // This is calculated from the LLVM and GCC tables and verified 8374 // against gcc output. AFAIK all ABIs use the same encoding. 8375 8376 CodeGen::CGBuilderTy &Builder = CGF.Builder; 8377 8378 llvm::IntegerType *i8 = CGF.Int8Ty; 8379 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 8380 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 8381 8382 // 0-31: the 8-byte general-purpose registers 8383 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 8384 8385 // 32-63: f0-31, the 4-byte floating-point registers 8386 AssignToArrayRange(Builder, Address, Four8, 32, 63); 8387 8388 // Y = 64 8389 // PSR = 65 8390 // WIM = 66 8391 // TBR = 67 8392 // PC = 68 8393 // NPC = 69 8394 // FSR = 70 8395 // CSR = 71 8396 AssignToArrayRange(Builder, Address, Eight8, 64, 71); 8397 8398 // 72-87: d0-15, the 8-byte floating-point registers 8399 AssignToArrayRange(Builder, Address, Eight8, 72, 87); 8400 8401 return false; 8402 } 8403 8404 // ARC ABI implementation. 8405 namespace { 8406 8407 class ARCABIInfo : public DefaultABIInfo { 8408 public: 8409 using DefaultABIInfo::DefaultABIInfo; 8410 8411 private: 8412 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8413 QualType Ty) const override; 8414 8415 void updateState(const ABIArgInfo &Info, QualType Ty, CCState &State) const { 8416 if (!State.FreeRegs) 8417 return; 8418 if (Info.isIndirect() && Info.getInReg()) 8419 State.FreeRegs--; 8420 else if (Info.isDirect() && Info.getInReg()) { 8421 unsigned sz = (getContext().getTypeSize(Ty) + 31) / 32; 8422 if (sz < State.FreeRegs) 8423 State.FreeRegs -= sz; 8424 else 8425 State.FreeRegs = 0; 8426 } 8427 } 8428 8429 void computeInfo(CGFunctionInfo &FI) const override { 8430 CCState State(FI.getCallingConvention()); 8431 // ARC uses 8 registers to pass arguments. 8432 State.FreeRegs = 8; 8433 8434 if (!getCXXABI().classifyReturnType(FI)) 8435 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 8436 updateState(FI.getReturnInfo(), FI.getReturnType(), State); 8437 for (auto &I : FI.arguments()) { 8438 I.info = classifyArgumentType(I.type, State.FreeRegs); 8439 updateState(I.info, I.type, State); 8440 } 8441 } 8442 8443 ABIArgInfo getIndirectByRef(QualType Ty, bool HasFreeRegs) const; 8444 ABIArgInfo getIndirectByValue(QualType Ty) const; 8445 ABIArgInfo classifyArgumentType(QualType Ty, uint8_t FreeRegs) const; 8446 ABIArgInfo classifyReturnType(QualType RetTy) const; 8447 }; 8448 8449 class ARCTargetCodeGenInfo : public TargetCodeGenInfo { 8450 public: 8451 ARCTargetCodeGenInfo(CodeGenTypes &CGT) 8452 : TargetCodeGenInfo(new ARCABIInfo(CGT)) {} 8453 }; 8454 8455 8456 ABIArgInfo ARCABIInfo::getIndirectByRef(QualType Ty, bool HasFreeRegs) const { 8457 return HasFreeRegs ? getNaturalAlignIndirectInReg(Ty) : 8458 getNaturalAlignIndirect(Ty, false); 8459 } 8460 8461 ABIArgInfo ARCABIInfo::getIndirectByValue(QualType Ty) const { 8462 // Compute the byval alignment. 8463 const unsigned MinABIStackAlignInBytes = 4; 8464 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 8465 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true, 8466 TypeAlign > MinABIStackAlignInBytes); 8467 } 8468 8469 Address ARCABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8470 QualType Ty) const { 8471 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 8472 getContext().getTypeInfoInChars(Ty), 8473 CharUnits::fromQuantity(4), true); 8474 } 8475 8476 ABIArgInfo ARCABIInfo::classifyArgumentType(QualType Ty, 8477 uint8_t FreeRegs) const { 8478 // Handle the generic C++ ABI. 8479 const RecordType *RT = Ty->getAs<RecordType>(); 8480 if (RT) { 8481 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 8482 if (RAA == CGCXXABI::RAA_Indirect) 8483 return getIndirectByRef(Ty, FreeRegs > 0); 8484 8485 if (RAA == CGCXXABI::RAA_DirectInMemory) 8486 return getIndirectByValue(Ty); 8487 } 8488 8489 // Treat an enum type as its underlying type. 8490 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 8491 Ty = EnumTy->getDecl()->getIntegerType(); 8492 8493 auto SizeInRegs = llvm::alignTo(getContext().getTypeSize(Ty), 32) / 32; 8494 8495 if (isAggregateTypeForABI(Ty)) { 8496 // Structures with flexible arrays are always indirect. 8497 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 8498 return getIndirectByValue(Ty); 8499 8500 // Ignore empty structs/unions. 8501 if (isEmptyRecord(getContext(), Ty, true)) 8502 return ABIArgInfo::getIgnore(); 8503 8504 llvm::LLVMContext &LLVMContext = getVMContext(); 8505 8506 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 8507 SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32); 8508 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 8509 8510 return FreeRegs >= SizeInRegs ? 8511 ABIArgInfo::getDirectInReg(Result) : 8512 ABIArgInfo::getDirect(Result, 0, nullptr, false); 8513 } 8514 8515 return Ty->isPromotableIntegerType() ? 8516 (FreeRegs >= SizeInRegs ? ABIArgInfo::getExtendInReg(Ty) : 8517 ABIArgInfo::getExtend(Ty)) : 8518 (FreeRegs >= SizeInRegs ? ABIArgInfo::getDirectInReg() : 8519 ABIArgInfo::getDirect()); 8520 } 8521 8522 ABIArgInfo ARCABIInfo::classifyReturnType(QualType RetTy) const { 8523 if (RetTy->isAnyComplexType()) 8524 return ABIArgInfo::getDirectInReg(); 8525 8526 // Arguments of size > 4 registers are indirect. 8527 auto RetSize = llvm::alignTo(getContext().getTypeSize(RetTy), 32) / 32; 8528 if (RetSize > 4) 8529 return getIndirectByRef(RetTy, /*HasFreeRegs*/ true); 8530 8531 return DefaultABIInfo::classifyReturnType(RetTy); 8532 } 8533 8534 } // End anonymous namespace. 8535 8536 //===----------------------------------------------------------------------===// 8537 // XCore ABI Implementation 8538 //===----------------------------------------------------------------------===// 8539 8540 namespace { 8541 8542 /// A SmallStringEnc instance is used to build up the TypeString by passing 8543 /// it by reference between functions that append to it. 8544 typedef llvm::SmallString<128> SmallStringEnc; 8545 8546 /// TypeStringCache caches the meta encodings of Types. 8547 /// 8548 /// The reason for caching TypeStrings is two fold: 8549 /// 1. To cache a type's encoding for later uses; 8550 /// 2. As a means to break recursive member type inclusion. 8551 /// 8552 /// A cache Entry can have a Status of: 8553 /// NonRecursive: The type encoding is not recursive; 8554 /// Recursive: The type encoding is recursive; 8555 /// Incomplete: An incomplete TypeString; 8556 /// IncompleteUsed: An incomplete TypeString that has been used in a 8557 /// Recursive type encoding. 8558 /// 8559 /// A NonRecursive entry will have all of its sub-members expanded as fully 8560 /// as possible. Whilst it may contain types which are recursive, the type 8561 /// itself is not recursive and thus its encoding may be safely used whenever 8562 /// the type is encountered. 8563 /// 8564 /// A Recursive entry will have all of its sub-members expanded as fully as 8565 /// possible. The type itself is recursive and it may contain other types which 8566 /// are recursive. The Recursive encoding must not be used during the expansion 8567 /// of a recursive type's recursive branch. For simplicity the code uses 8568 /// IncompleteCount to reject all usage of Recursive encodings for member types. 8569 /// 8570 /// An Incomplete entry is always a RecordType and only encodes its 8571 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and 8572 /// are placed into the cache during type expansion as a means to identify and 8573 /// handle recursive inclusion of types as sub-members. If there is recursion 8574 /// the entry becomes IncompleteUsed. 8575 /// 8576 /// During the expansion of a RecordType's members: 8577 /// 8578 /// If the cache contains a NonRecursive encoding for the member type, the 8579 /// cached encoding is used; 8580 /// 8581 /// If the cache contains a Recursive encoding for the member type, the 8582 /// cached encoding is 'Swapped' out, as it may be incorrect, and... 8583 /// 8584 /// If the member is a RecordType, an Incomplete encoding is placed into the 8585 /// cache to break potential recursive inclusion of itself as a sub-member; 8586 /// 8587 /// Once a member RecordType has been expanded, its temporary incomplete 8588 /// entry is removed from the cache. If a Recursive encoding was swapped out 8589 /// it is swapped back in; 8590 /// 8591 /// If an incomplete entry is used to expand a sub-member, the incomplete 8592 /// entry is marked as IncompleteUsed. The cache keeps count of how many 8593 /// IncompleteUsed entries it currently contains in IncompleteUsedCount; 8594 /// 8595 /// If a member's encoding is found to be a NonRecursive or Recursive viz: 8596 /// IncompleteUsedCount==0, the member's encoding is added to the cache. 8597 /// Else the member is part of a recursive type and thus the recursion has 8598 /// been exited too soon for the encoding to be correct for the member. 8599 /// 8600 class TypeStringCache { 8601 enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed}; 8602 struct Entry { 8603 std::string Str; // The encoded TypeString for the type. 8604 enum Status State; // Information about the encoding in 'Str'. 8605 std::string Swapped; // A temporary place holder for a Recursive encoding 8606 // during the expansion of RecordType's members. 8607 }; 8608 std::map<const IdentifierInfo *, struct Entry> Map; 8609 unsigned IncompleteCount; // Number of Incomplete entries in the Map. 8610 unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map. 8611 public: 8612 TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {} 8613 void addIncomplete(const IdentifierInfo *ID, std::string StubEnc); 8614 bool removeIncomplete(const IdentifierInfo *ID); 8615 void addIfComplete(const IdentifierInfo *ID, StringRef Str, 8616 bool IsRecursive); 8617 StringRef lookupStr(const IdentifierInfo *ID); 8618 }; 8619 8620 /// TypeString encodings for enum & union fields must be order. 8621 /// FieldEncoding is a helper for this ordering process. 8622 class FieldEncoding { 8623 bool HasName; 8624 std::string Enc; 8625 public: 8626 FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {} 8627 StringRef str() { return Enc; } 8628 bool operator<(const FieldEncoding &rhs) const { 8629 if (HasName != rhs.HasName) return HasName; 8630 return Enc < rhs.Enc; 8631 } 8632 }; 8633 8634 class XCoreABIInfo : public DefaultABIInfo { 8635 public: 8636 XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 8637 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8638 QualType Ty) const override; 8639 }; 8640 8641 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo { 8642 mutable TypeStringCache TSC; 8643 public: 8644 XCoreTargetCodeGenInfo(CodeGenTypes &CGT) 8645 :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {} 8646 void emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 8647 CodeGen::CodeGenModule &M) const override; 8648 }; 8649 8650 } // End anonymous namespace. 8651 8652 // TODO: this implementation is likely now redundant with the default 8653 // EmitVAArg. 8654 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8655 QualType Ty) const { 8656 CGBuilderTy &Builder = CGF.Builder; 8657 8658 // Get the VAList. 8659 CharUnits SlotSize = CharUnits::fromQuantity(4); 8660 Address AP(Builder.CreateLoad(VAListAddr), SlotSize); 8661 8662 // Handle the argument. 8663 ABIArgInfo AI = classifyArgumentType(Ty); 8664 CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty); 8665 llvm::Type *ArgTy = CGT.ConvertType(Ty); 8666 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 8667 AI.setCoerceToType(ArgTy); 8668 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 8669 8670 Address Val = Address::invalid(); 8671 CharUnits ArgSize = CharUnits::Zero(); 8672 switch (AI.getKind()) { 8673 case ABIArgInfo::Expand: 8674 case ABIArgInfo::CoerceAndExpand: 8675 case ABIArgInfo::InAlloca: 8676 llvm_unreachable("Unsupported ABI kind for va_arg"); 8677 case ABIArgInfo::Ignore: 8678 Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign); 8679 ArgSize = CharUnits::Zero(); 8680 break; 8681 case ABIArgInfo::Extend: 8682 case ABIArgInfo::Direct: 8683 Val = Builder.CreateBitCast(AP, ArgPtrTy); 8684 ArgSize = CharUnits::fromQuantity( 8685 getDataLayout().getTypeAllocSize(AI.getCoerceToType())); 8686 ArgSize = ArgSize.alignTo(SlotSize); 8687 break; 8688 case ABIArgInfo::Indirect: 8689 Val = Builder.CreateElementBitCast(AP, ArgPtrTy); 8690 Val = Address(Builder.CreateLoad(Val), TypeAlign); 8691 ArgSize = SlotSize; 8692 break; 8693 } 8694 8695 // Increment the VAList. 8696 if (!ArgSize.isZero()) { 8697 Address APN = Builder.CreateConstInBoundsByteGEP(AP, ArgSize); 8698 Builder.CreateStore(APN.getPointer(), VAListAddr); 8699 } 8700 8701 return Val; 8702 } 8703 8704 /// During the expansion of a RecordType, an incomplete TypeString is placed 8705 /// into the cache as a means to identify and break recursion. 8706 /// If there is a Recursive encoding in the cache, it is swapped out and will 8707 /// be reinserted by removeIncomplete(). 8708 /// All other types of encoding should have been used rather than arriving here. 8709 void TypeStringCache::addIncomplete(const IdentifierInfo *ID, 8710 std::string StubEnc) { 8711 if (!ID) 8712 return; 8713 Entry &E = Map[ID]; 8714 assert( (E.Str.empty() || E.State == Recursive) && 8715 "Incorrectly use of addIncomplete"); 8716 assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()"); 8717 E.Swapped.swap(E.Str); // swap out the Recursive 8718 E.Str.swap(StubEnc); 8719 E.State = Incomplete; 8720 ++IncompleteCount; 8721 } 8722 8723 /// Once the RecordType has been expanded, the temporary incomplete TypeString 8724 /// must be removed from the cache. 8725 /// If a Recursive was swapped out by addIncomplete(), it will be replaced. 8726 /// Returns true if the RecordType was defined recursively. 8727 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) { 8728 if (!ID) 8729 return false; 8730 auto I = Map.find(ID); 8731 assert(I != Map.end() && "Entry not present"); 8732 Entry &E = I->second; 8733 assert( (E.State == Incomplete || 8734 E.State == IncompleteUsed) && 8735 "Entry must be an incomplete type"); 8736 bool IsRecursive = false; 8737 if (E.State == IncompleteUsed) { 8738 // We made use of our Incomplete encoding, thus we are recursive. 8739 IsRecursive = true; 8740 --IncompleteUsedCount; 8741 } 8742 if (E.Swapped.empty()) 8743 Map.erase(I); 8744 else { 8745 // Swap the Recursive back. 8746 E.Swapped.swap(E.Str); 8747 E.Swapped.clear(); 8748 E.State = Recursive; 8749 } 8750 --IncompleteCount; 8751 return IsRecursive; 8752 } 8753 8754 /// Add the encoded TypeString to the cache only if it is NonRecursive or 8755 /// Recursive (viz: all sub-members were expanded as fully as possible). 8756 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str, 8757 bool IsRecursive) { 8758 if (!ID || IncompleteUsedCount) 8759 return; // No key or it is is an incomplete sub-type so don't add. 8760 Entry &E = Map[ID]; 8761 if (IsRecursive && !E.Str.empty()) { 8762 assert(E.State==Recursive && E.Str.size() == Str.size() && 8763 "This is not the same Recursive entry"); 8764 // The parent container was not recursive after all, so we could have used 8765 // this Recursive sub-member entry after all, but we assumed the worse when 8766 // we started viz: IncompleteCount!=0. 8767 return; 8768 } 8769 assert(E.Str.empty() && "Entry already present"); 8770 E.Str = Str.str(); 8771 E.State = IsRecursive? Recursive : NonRecursive; 8772 } 8773 8774 /// Return a cached TypeString encoding for the ID. If there isn't one, or we 8775 /// are recursively expanding a type (IncompleteCount != 0) and the cached 8776 /// encoding is Recursive, return an empty StringRef. 8777 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) { 8778 if (!ID) 8779 return StringRef(); // We have no key. 8780 auto I = Map.find(ID); 8781 if (I == Map.end()) 8782 return StringRef(); // We have no encoding. 8783 Entry &E = I->second; 8784 if (E.State == Recursive && IncompleteCount) 8785 return StringRef(); // We don't use Recursive encodings for member types. 8786 8787 if (E.State == Incomplete) { 8788 // The incomplete type is being used to break out of recursion. 8789 E.State = IncompleteUsed; 8790 ++IncompleteUsedCount; 8791 } 8792 return E.Str; 8793 } 8794 8795 /// The XCore ABI includes a type information section that communicates symbol 8796 /// type information to the linker. The linker uses this information to verify 8797 /// safety/correctness of things such as array bound and pointers et al. 8798 /// The ABI only requires C (and XC) language modules to emit TypeStrings. 8799 /// This type information (TypeString) is emitted into meta data for all global 8800 /// symbols: definitions, declarations, functions & variables. 8801 /// 8802 /// The TypeString carries type, qualifier, name, size & value details. 8803 /// Please see 'Tools Development Guide' section 2.16.2 for format details: 8804 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf 8805 /// The output is tested by test/CodeGen/xcore-stringtype.c. 8806 /// 8807 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 8808 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC); 8809 8810 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols. 8811 void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 8812 CodeGen::CodeGenModule &CGM) const { 8813 SmallStringEnc Enc; 8814 if (getTypeString(Enc, D, CGM, TSC)) { 8815 llvm::LLVMContext &Ctx = CGM.getModule().getContext(); 8816 llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV), 8817 llvm::MDString::get(Ctx, Enc.str())}; 8818 llvm::NamedMDNode *MD = 8819 CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings"); 8820 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 8821 } 8822 } 8823 8824 //===----------------------------------------------------------------------===// 8825 // SPIR ABI Implementation 8826 //===----------------------------------------------------------------------===// 8827 8828 namespace { 8829 class SPIRTargetCodeGenInfo : public TargetCodeGenInfo { 8830 public: 8831 SPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 8832 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 8833 unsigned getOpenCLKernelCallingConv() const override; 8834 }; 8835 8836 } // End anonymous namespace. 8837 8838 namespace clang { 8839 namespace CodeGen { 8840 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) { 8841 DefaultABIInfo SPIRABI(CGM.getTypes()); 8842 SPIRABI.computeInfo(FI); 8843 } 8844 } 8845 } 8846 8847 unsigned SPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 8848 return llvm::CallingConv::SPIR_KERNEL; 8849 } 8850 8851 static bool appendType(SmallStringEnc &Enc, QualType QType, 8852 const CodeGen::CodeGenModule &CGM, 8853 TypeStringCache &TSC); 8854 8855 /// Helper function for appendRecordType(). 8856 /// Builds a SmallVector containing the encoded field types in declaration 8857 /// order. 8858 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE, 8859 const RecordDecl *RD, 8860 const CodeGen::CodeGenModule &CGM, 8861 TypeStringCache &TSC) { 8862 for (const auto *Field : RD->fields()) { 8863 SmallStringEnc Enc; 8864 Enc += "m("; 8865 Enc += Field->getName(); 8866 Enc += "){"; 8867 if (Field->isBitField()) { 8868 Enc += "b("; 8869 llvm::raw_svector_ostream OS(Enc); 8870 OS << Field->getBitWidthValue(CGM.getContext()); 8871 Enc += ':'; 8872 } 8873 if (!appendType(Enc, Field->getType(), CGM, TSC)) 8874 return false; 8875 if (Field->isBitField()) 8876 Enc += ')'; 8877 Enc += '}'; 8878 FE.emplace_back(!Field->getName().empty(), Enc); 8879 } 8880 return true; 8881 } 8882 8883 /// Appends structure and union types to Enc and adds encoding to cache. 8884 /// Recursively calls appendType (via extractFieldType) for each field. 8885 /// Union types have their fields ordered according to the ABI. 8886 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT, 8887 const CodeGen::CodeGenModule &CGM, 8888 TypeStringCache &TSC, const IdentifierInfo *ID) { 8889 // Append the cached TypeString if we have one. 8890 StringRef TypeString = TSC.lookupStr(ID); 8891 if (!TypeString.empty()) { 8892 Enc += TypeString; 8893 return true; 8894 } 8895 8896 // Start to emit an incomplete TypeString. 8897 size_t Start = Enc.size(); 8898 Enc += (RT->isUnionType()? 'u' : 's'); 8899 Enc += '('; 8900 if (ID) 8901 Enc += ID->getName(); 8902 Enc += "){"; 8903 8904 // We collect all encoded fields and order as necessary. 8905 bool IsRecursive = false; 8906 const RecordDecl *RD = RT->getDecl()->getDefinition(); 8907 if (RD && !RD->field_empty()) { 8908 // An incomplete TypeString stub is placed in the cache for this RecordType 8909 // so that recursive calls to this RecordType will use it whilst building a 8910 // complete TypeString for this RecordType. 8911 SmallVector<FieldEncoding, 16> FE; 8912 std::string StubEnc(Enc.substr(Start).str()); 8913 StubEnc += '}'; // StubEnc now holds a valid incomplete TypeString. 8914 TSC.addIncomplete(ID, std::move(StubEnc)); 8915 if (!extractFieldType(FE, RD, CGM, TSC)) { 8916 (void) TSC.removeIncomplete(ID); 8917 return false; 8918 } 8919 IsRecursive = TSC.removeIncomplete(ID); 8920 // The ABI requires unions to be sorted but not structures. 8921 // See FieldEncoding::operator< for sort algorithm. 8922 if (RT->isUnionType()) 8923 llvm::sort(FE); 8924 // We can now complete the TypeString. 8925 unsigned E = FE.size(); 8926 for (unsigned I = 0; I != E; ++I) { 8927 if (I) 8928 Enc += ','; 8929 Enc += FE[I].str(); 8930 } 8931 } 8932 Enc += '}'; 8933 TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive); 8934 return true; 8935 } 8936 8937 /// Appends enum types to Enc and adds the encoding to the cache. 8938 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET, 8939 TypeStringCache &TSC, 8940 const IdentifierInfo *ID) { 8941 // Append the cached TypeString if we have one. 8942 StringRef TypeString = TSC.lookupStr(ID); 8943 if (!TypeString.empty()) { 8944 Enc += TypeString; 8945 return true; 8946 } 8947 8948 size_t Start = Enc.size(); 8949 Enc += "e("; 8950 if (ID) 8951 Enc += ID->getName(); 8952 Enc += "){"; 8953 8954 // We collect all encoded enumerations and order them alphanumerically. 8955 if (const EnumDecl *ED = ET->getDecl()->getDefinition()) { 8956 SmallVector<FieldEncoding, 16> FE; 8957 for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E; 8958 ++I) { 8959 SmallStringEnc EnumEnc; 8960 EnumEnc += "m("; 8961 EnumEnc += I->getName(); 8962 EnumEnc += "){"; 8963 I->getInitVal().toString(EnumEnc); 8964 EnumEnc += '}'; 8965 FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc)); 8966 } 8967 llvm::sort(FE); 8968 unsigned E = FE.size(); 8969 for (unsigned I = 0; I != E; ++I) { 8970 if (I) 8971 Enc += ','; 8972 Enc += FE[I].str(); 8973 } 8974 } 8975 Enc += '}'; 8976 TSC.addIfComplete(ID, Enc.substr(Start), false); 8977 return true; 8978 } 8979 8980 /// Appends type's qualifier to Enc. 8981 /// This is done prior to appending the type's encoding. 8982 static void appendQualifier(SmallStringEnc &Enc, QualType QT) { 8983 // Qualifiers are emitted in alphabetical order. 8984 static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"}; 8985 int Lookup = 0; 8986 if (QT.isConstQualified()) 8987 Lookup += 1<<0; 8988 if (QT.isRestrictQualified()) 8989 Lookup += 1<<1; 8990 if (QT.isVolatileQualified()) 8991 Lookup += 1<<2; 8992 Enc += Table[Lookup]; 8993 } 8994 8995 /// Appends built-in types to Enc. 8996 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) { 8997 const char *EncType; 8998 switch (BT->getKind()) { 8999 case BuiltinType::Void: 9000 EncType = "0"; 9001 break; 9002 case BuiltinType::Bool: 9003 EncType = "b"; 9004 break; 9005 case BuiltinType::Char_U: 9006 EncType = "uc"; 9007 break; 9008 case BuiltinType::UChar: 9009 EncType = "uc"; 9010 break; 9011 case BuiltinType::SChar: 9012 EncType = "sc"; 9013 break; 9014 case BuiltinType::UShort: 9015 EncType = "us"; 9016 break; 9017 case BuiltinType::Short: 9018 EncType = "ss"; 9019 break; 9020 case BuiltinType::UInt: 9021 EncType = "ui"; 9022 break; 9023 case BuiltinType::Int: 9024 EncType = "si"; 9025 break; 9026 case BuiltinType::ULong: 9027 EncType = "ul"; 9028 break; 9029 case BuiltinType::Long: 9030 EncType = "sl"; 9031 break; 9032 case BuiltinType::ULongLong: 9033 EncType = "ull"; 9034 break; 9035 case BuiltinType::LongLong: 9036 EncType = "sll"; 9037 break; 9038 case BuiltinType::Float: 9039 EncType = "ft"; 9040 break; 9041 case BuiltinType::Double: 9042 EncType = "d"; 9043 break; 9044 case BuiltinType::LongDouble: 9045 EncType = "ld"; 9046 break; 9047 default: 9048 return false; 9049 } 9050 Enc += EncType; 9051 return true; 9052 } 9053 9054 /// Appends a pointer encoding to Enc before calling appendType for the pointee. 9055 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT, 9056 const CodeGen::CodeGenModule &CGM, 9057 TypeStringCache &TSC) { 9058 Enc += "p("; 9059 if (!appendType(Enc, PT->getPointeeType(), CGM, TSC)) 9060 return false; 9061 Enc += ')'; 9062 return true; 9063 } 9064 9065 /// Appends array encoding to Enc before calling appendType for the element. 9066 static bool appendArrayType(SmallStringEnc &Enc, QualType QT, 9067 const ArrayType *AT, 9068 const CodeGen::CodeGenModule &CGM, 9069 TypeStringCache &TSC, StringRef NoSizeEnc) { 9070 if (AT->getSizeModifier() != ArrayType::Normal) 9071 return false; 9072 Enc += "a("; 9073 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) 9074 CAT->getSize().toStringUnsigned(Enc); 9075 else 9076 Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "". 9077 Enc += ':'; 9078 // The Qualifiers should be attached to the type rather than the array. 9079 appendQualifier(Enc, QT); 9080 if (!appendType(Enc, AT->getElementType(), CGM, TSC)) 9081 return false; 9082 Enc += ')'; 9083 return true; 9084 } 9085 9086 /// Appends a function encoding to Enc, calling appendType for the return type 9087 /// and the arguments. 9088 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT, 9089 const CodeGen::CodeGenModule &CGM, 9090 TypeStringCache &TSC) { 9091 Enc += "f{"; 9092 if (!appendType(Enc, FT->getReturnType(), CGM, TSC)) 9093 return false; 9094 Enc += "}("; 9095 if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) { 9096 // N.B. we are only interested in the adjusted param types. 9097 auto I = FPT->param_type_begin(); 9098 auto E = FPT->param_type_end(); 9099 if (I != E) { 9100 do { 9101 if (!appendType(Enc, *I, CGM, TSC)) 9102 return false; 9103 ++I; 9104 if (I != E) 9105 Enc += ','; 9106 } while (I != E); 9107 if (FPT->isVariadic()) 9108 Enc += ",va"; 9109 } else { 9110 if (FPT->isVariadic()) 9111 Enc += "va"; 9112 else 9113 Enc += '0'; 9114 } 9115 } 9116 Enc += ')'; 9117 return true; 9118 } 9119 9120 /// Handles the type's qualifier before dispatching a call to handle specific 9121 /// type encodings. 9122 static bool appendType(SmallStringEnc &Enc, QualType QType, 9123 const CodeGen::CodeGenModule &CGM, 9124 TypeStringCache &TSC) { 9125 9126 QualType QT = QType.getCanonicalType(); 9127 9128 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) 9129 // The Qualifiers should be attached to the type rather than the array. 9130 // Thus we don't call appendQualifier() here. 9131 return appendArrayType(Enc, QT, AT, CGM, TSC, ""); 9132 9133 appendQualifier(Enc, QT); 9134 9135 if (const BuiltinType *BT = QT->getAs<BuiltinType>()) 9136 return appendBuiltinType(Enc, BT); 9137 9138 if (const PointerType *PT = QT->getAs<PointerType>()) 9139 return appendPointerType(Enc, PT, CGM, TSC); 9140 9141 if (const EnumType *ET = QT->getAs<EnumType>()) 9142 return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier()); 9143 9144 if (const RecordType *RT = QT->getAsStructureType()) 9145 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 9146 9147 if (const RecordType *RT = QT->getAsUnionType()) 9148 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 9149 9150 if (const FunctionType *FT = QT->getAs<FunctionType>()) 9151 return appendFunctionType(Enc, FT, CGM, TSC); 9152 9153 return false; 9154 } 9155 9156 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 9157 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) { 9158 if (!D) 9159 return false; 9160 9161 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 9162 if (FD->getLanguageLinkage() != CLanguageLinkage) 9163 return false; 9164 return appendType(Enc, FD->getType(), CGM, TSC); 9165 } 9166 9167 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 9168 if (VD->getLanguageLinkage() != CLanguageLinkage) 9169 return false; 9170 QualType QT = VD->getType().getCanonicalType(); 9171 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) { 9172 // Global ArrayTypes are given a size of '*' if the size is unknown. 9173 // The Qualifiers should be attached to the type rather than the array. 9174 // Thus we don't call appendQualifier() here. 9175 return appendArrayType(Enc, QT, AT, CGM, TSC, "*"); 9176 } 9177 return appendType(Enc, QT, CGM, TSC); 9178 } 9179 return false; 9180 } 9181 9182 //===----------------------------------------------------------------------===// 9183 // RISCV ABI Implementation 9184 //===----------------------------------------------------------------------===// 9185 9186 namespace { 9187 class RISCVABIInfo : public DefaultABIInfo { 9188 private: 9189 unsigned XLen; // Size of the integer ('x') registers in bits. 9190 static const int NumArgGPRs = 8; 9191 9192 public: 9193 RISCVABIInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen) 9194 : DefaultABIInfo(CGT), XLen(XLen) {} 9195 9196 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 9197 // non-virtual, but computeInfo is virtual, so we overload it. 9198 void computeInfo(CGFunctionInfo &FI) const override; 9199 9200 ABIArgInfo classifyArgumentType(QualType Ty, bool IsFixed, 9201 int &ArgGPRsLeft) const; 9202 ABIArgInfo classifyReturnType(QualType RetTy) const; 9203 9204 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9205 QualType Ty) const override; 9206 9207 ABIArgInfo extendType(QualType Ty) const; 9208 }; 9209 } // end anonymous namespace 9210 9211 void RISCVABIInfo::computeInfo(CGFunctionInfo &FI) const { 9212 QualType RetTy = FI.getReturnType(); 9213 if (!getCXXABI().classifyReturnType(FI)) 9214 FI.getReturnInfo() = classifyReturnType(RetTy); 9215 9216 // IsRetIndirect is true if classifyArgumentType indicated the value should 9217 // be passed indirect or if the type size is greater than 2*xlen. e.g. fp128 9218 // is passed direct in LLVM IR, relying on the backend lowering code to 9219 // rewrite the argument list and pass indirectly on RV32. 9220 bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect || 9221 getContext().getTypeSize(RetTy) > (2 * XLen); 9222 9223 // We must track the number of GPRs used in order to conform to the RISC-V 9224 // ABI, as integer scalars passed in registers should have signext/zeroext 9225 // when promoted, but are anyext if passed on the stack. As GPR usage is 9226 // different for variadic arguments, we must also track whether we are 9227 // examining a vararg or not. 9228 int ArgGPRsLeft = IsRetIndirect ? NumArgGPRs - 1 : NumArgGPRs; 9229 int NumFixedArgs = FI.getNumRequiredArgs(); 9230 9231 int ArgNum = 0; 9232 for (auto &ArgInfo : FI.arguments()) { 9233 bool IsFixed = ArgNum < NumFixedArgs; 9234 ArgInfo.info = classifyArgumentType(ArgInfo.type, IsFixed, ArgGPRsLeft); 9235 ArgNum++; 9236 } 9237 } 9238 9239 ABIArgInfo RISCVABIInfo::classifyArgumentType(QualType Ty, bool IsFixed, 9240 int &ArgGPRsLeft) const { 9241 assert(ArgGPRsLeft <= NumArgGPRs && "Arg GPR tracking underflow"); 9242 Ty = useFirstFieldIfTransparentUnion(Ty); 9243 9244 // Structures with either a non-trivial destructor or a non-trivial 9245 // copy constructor are always passed indirectly. 9246 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 9247 if (ArgGPRsLeft) 9248 ArgGPRsLeft -= 1; 9249 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 9250 CGCXXABI::RAA_DirectInMemory); 9251 } 9252 9253 // Ignore empty structs/unions. 9254 if (isEmptyRecord(getContext(), Ty, true)) 9255 return ABIArgInfo::getIgnore(); 9256 9257 uint64_t Size = getContext().getTypeSize(Ty); 9258 uint64_t NeededAlign = getContext().getTypeAlign(Ty); 9259 bool MustUseStack = false; 9260 // Determine the number of GPRs needed to pass the current argument 9261 // according to the ABI. 2*XLen-aligned varargs are passed in "aligned" 9262 // register pairs, so may consume 3 registers. 9263 int NeededArgGPRs = 1; 9264 if (!IsFixed && NeededAlign == 2 * XLen) 9265 NeededArgGPRs = 2 + (ArgGPRsLeft % 2); 9266 else if (Size > XLen && Size <= 2 * XLen) 9267 NeededArgGPRs = 2; 9268 9269 if (NeededArgGPRs > ArgGPRsLeft) { 9270 MustUseStack = true; 9271 NeededArgGPRs = ArgGPRsLeft; 9272 } 9273 9274 ArgGPRsLeft -= NeededArgGPRs; 9275 9276 if (!isAggregateTypeForABI(Ty) && !Ty->isVectorType()) { 9277 // Treat an enum type as its underlying type. 9278 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 9279 Ty = EnumTy->getDecl()->getIntegerType(); 9280 9281 // All integral types are promoted to XLen width, unless passed on the 9282 // stack. 9283 if (Size < XLen && Ty->isIntegralOrEnumerationType() && !MustUseStack) { 9284 return extendType(Ty); 9285 } 9286 9287 return ABIArgInfo::getDirect(); 9288 } 9289 9290 // Aggregates which are <= 2*XLen will be passed in registers if possible, 9291 // so coerce to integers. 9292 if (Size <= 2 * XLen) { 9293 unsigned Alignment = getContext().getTypeAlign(Ty); 9294 9295 // Use a single XLen int if possible, 2*XLen if 2*XLen alignment is 9296 // required, and a 2-element XLen array if only XLen alignment is required. 9297 if (Size <= XLen) { 9298 return ABIArgInfo::getDirect( 9299 llvm::IntegerType::get(getVMContext(), XLen)); 9300 } else if (Alignment == 2 * XLen) { 9301 return ABIArgInfo::getDirect( 9302 llvm::IntegerType::get(getVMContext(), 2 * XLen)); 9303 } else { 9304 return ABIArgInfo::getDirect(llvm::ArrayType::get( 9305 llvm::IntegerType::get(getVMContext(), XLen), 2)); 9306 } 9307 } 9308 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 9309 } 9310 9311 ABIArgInfo RISCVABIInfo::classifyReturnType(QualType RetTy) const { 9312 if (RetTy->isVoidType()) 9313 return ABIArgInfo::getIgnore(); 9314 9315 int ArgGPRsLeft = 2; 9316 9317 // The rules for return and argument types are the same, so defer to 9318 // classifyArgumentType. 9319 return classifyArgumentType(RetTy, /*IsFixed=*/true, ArgGPRsLeft); 9320 } 9321 9322 Address RISCVABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9323 QualType Ty) const { 9324 CharUnits SlotSize = CharUnits::fromQuantity(XLen / 8); 9325 9326 // Empty records are ignored for parameter passing purposes. 9327 if (isEmptyRecord(getContext(), Ty, true)) { 9328 Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize); 9329 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 9330 return Addr; 9331 } 9332 9333 std::pair<CharUnits, CharUnits> SizeAndAlign = 9334 getContext().getTypeInfoInChars(Ty); 9335 9336 // Arguments bigger than 2*Xlen bytes are passed indirectly. 9337 bool IsIndirect = SizeAndAlign.first > 2 * SlotSize; 9338 9339 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, SizeAndAlign, 9340 SlotSize, /*AllowHigherAlign=*/true); 9341 } 9342 9343 ABIArgInfo RISCVABIInfo::extendType(QualType Ty) const { 9344 int TySize = getContext().getTypeSize(Ty); 9345 // RV64 ABI requires unsigned 32 bit integers to be sign extended. 9346 if (XLen == 64 && Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 9347 return ABIArgInfo::getSignExtend(Ty); 9348 return ABIArgInfo::getExtend(Ty); 9349 } 9350 9351 namespace { 9352 class RISCVTargetCodeGenInfo : public TargetCodeGenInfo { 9353 public: 9354 RISCVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen) 9355 : TargetCodeGenInfo(new RISCVABIInfo(CGT, XLen)) {} 9356 9357 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 9358 CodeGen::CodeGenModule &CGM) const override { 9359 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 9360 if (!FD) return; 9361 9362 const auto *Attr = FD->getAttr<RISCVInterruptAttr>(); 9363 if (!Attr) 9364 return; 9365 9366 const char *Kind; 9367 switch (Attr->getInterrupt()) { 9368 case RISCVInterruptAttr::user: Kind = "user"; break; 9369 case RISCVInterruptAttr::supervisor: Kind = "supervisor"; break; 9370 case RISCVInterruptAttr::machine: Kind = "machine"; break; 9371 } 9372 9373 auto *Fn = cast<llvm::Function>(GV); 9374 9375 Fn->addFnAttr("interrupt", Kind); 9376 } 9377 }; 9378 } // namespace 9379 9380 //===----------------------------------------------------------------------===// 9381 // Driver code 9382 //===----------------------------------------------------------------------===// 9383 9384 bool CodeGenModule::supportsCOMDAT() const { 9385 return getTriple().supportsCOMDAT(); 9386 } 9387 9388 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { 9389 if (TheTargetCodeGenInfo) 9390 return *TheTargetCodeGenInfo; 9391 9392 // Helper to set the unique_ptr while still keeping the return value. 9393 auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & { 9394 this->TheTargetCodeGenInfo.reset(P); 9395 return *P; 9396 }; 9397 9398 const llvm::Triple &Triple = getTarget().getTriple(); 9399 switch (Triple.getArch()) { 9400 default: 9401 return SetCGInfo(new DefaultTargetCodeGenInfo(Types)); 9402 9403 case llvm::Triple::le32: 9404 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 9405 case llvm::Triple::mips: 9406 case llvm::Triple::mipsel: 9407 if (Triple.getOS() == llvm::Triple::NaCl) 9408 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 9409 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true)); 9410 9411 case llvm::Triple::mips64: 9412 case llvm::Triple::mips64el: 9413 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false)); 9414 9415 case llvm::Triple::avr: 9416 return SetCGInfo(new AVRTargetCodeGenInfo(Types)); 9417 9418 case llvm::Triple::aarch64: 9419 case llvm::Triple::aarch64_be: { 9420 AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS; 9421 if (getTarget().getABI() == "darwinpcs") 9422 Kind = AArch64ABIInfo::DarwinPCS; 9423 else if (Triple.isOSWindows()) 9424 return SetCGInfo( 9425 new WindowsAArch64TargetCodeGenInfo(Types, AArch64ABIInfo::Win64)); 9426 9427 return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind)); 9428 } 9429 9430 case llvm::Triple::wasm32: 9431 case llvm::Triple::wasm64: 9432 return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types)); 9433 9434 case llvm::Triple::arm: 9435 case llvm::Triple::armeb: 9436 case llvm::Triple::thumb: 9437 case llvm::Triple::thumbeb: { 9438 if (Triple.getOS() == llvm::Triple::Win32) { 9439 return SetCGInfo( 9440 new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP)); 9441 } 9442 9443 ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS; 9444 StringRef ABIStr = getTarget().getABI(); 9445 if (ABIStr == "apcs-gnu") 9446 Kind = ARMABIInfo::APCS; 9447 else if (ABIStr == "aapcs16") 9448 Kind = ARMABIInfo::AAPCS16_VFP; 9449 else if (CodeGenOpts.FloatABI == "hard" || 9450 (CodeGenOpts.FloatABI != "soft" && 9451 (Triple.getEnvironment() == llvm::Triple::GNUEABIHF || 9452 Triple.getEnvironment() == llvm::Triple::MuslEABIHF || 9453 Triple.getEnvironment() == llvm::Triple::EABIHF))) 9454 Kind = ARMABIInfo::AAPCS_VFP; 9455 9456 return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind)); 9457 } 9458 9459 case llvm::Triple::ppc: 9460 return SetCGInfo( 9461 new PPC32TargetCodeGenInfo(Types, CodeGenOpts.FloatABI == "soft")); 9462 case llvm::Triple::ppc64: 9463 if (Triple.isOSBinFormatELF()) { 9464 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1; 9465 if (getTarget().getABI() == "elfv2") 9466 Kind = PPC64_SVR4_ABIInfo::ELFv2; 9467 bool HasQPX = getTarget().getABI() == "elfv1-qpx"; 9468 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 9469 9470 return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX, 9471 IsSoftFloat)); 9472 } else 9473 return SetCGInfo(new PPC64TargetCodeGenInfo(Types)); 9474 case llvm::Triple::ppc64le: { 9475 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); 9476 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2; 9477 if (getTarget().getABI() == "elfv1" || getTarget().getABI() == "elfv1-qpx") 9478 Kind = PPC64_SVR4_ABIInfo::ELFv1; 9479 bool HasQPX = getTarget().getABI() == "elfv1-qpx"; 9480 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 9481 9482 return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX, 9483 IsSoftFloat)); 9484 } 9485 9486 case llvm::Triple::nvptx: 9487 case llvm::Triple::nvptx64: 9488 return SetCGInfo(new NVPTXTargetCodeGenInfo(Types)); 9489 9490 case llvm::Triple::msp430: 9491 return SetCGInfo(new MSP430TargetCodeGenInfo(Types)); 9492 9493 case llvm::Triple::riscv32: 9494 return SetCGInfo(new RISCVTargetCodeGenInfo(Types, 32)); 9495 case llvm::Triple::riscv64: 9496 return SetCGInfo(new RISCVTargetCodeGenInfo(Types, 64)); 9497 9498 case llvm::Triple::systemz: { 9499 bool HasVector = getTarget().getABI() == "vector"; 9500 return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector)); 9501 } 9502 9503 case llvm::Triple::tce: 9504 case llvm::Triple::tcele: 9505 return SetCGInfo(new TCETargetCodeGenInfo(Types)); 9506 9507 case llvm::Triple::x86: { 9508 bool IsDarwinVectorABI = Triple.isOSDarwin(); 9509 bool RetSmallStructInRegABI = 9510 X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 9511 bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing(); 9512 9513 if (Triple.getOS() == llvm::Triple::Win32) { 9514 return SetCGInfo(new WinX86_32TargetCodeGenInfo( 9515 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 9516 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters)); 9517 } else { 9518 return SetCGInfo(new X86_32TargetCodeGenInfo( 9519 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 9520 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters, 9521 CodeGenOpts.FloatABI == "soft")); 9522 } 9523 } 9524 9525 case llvm::Triple::x86_64: { 9526 StringRef ABI = getTarget().getABI(); 9527 X86AVXABILevel AVXLevel = 9528 (ABI == "avx512" 9529 ? X86AVXABILevel::AVX512 9530 : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None); 9531 9532 switch (Triple.getOS()) { 9533 case llvm::Triple::Win32: 9534 return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel)); 9535 default: 9536 return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel)); 9537 } 9538 } 9539 case llvm::Triple::hexagon: 9540 return SetCGInfo(new HexagonTargetCodeGenInfo(Types)); 9541 case llvm::Triple::lanai: 9542 return SetCGInfo(new LanaiTargetCodeGenInfo(Types)); 9543 case llvm::Triple::r600: 9544 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 9545 case llvm::Triple::amdgcn: 9546 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 9547 case llvm::Triple::sparc: 9548 return SetCGInfo(new SparcV8TargetCodeGenInfo(Types)); 9549 case llvm::Triple::sparcv9: 9550 return SetCGInfo(new SparcV9TargetCodeGenInfo(Types)); 9551 case llvm::Triple::xcore: 9552 return SetCGInfo(new XCoreTargetCodeGenInfo(Types)); 9553 case llvm::Triple::arc: 9554 return SetCGInfo(new ARCTargetCodeGenInfo(Types)); 9555 case llvm::Triple::spir: 9556 case llvm::Triple::spir64: 9557 return SetCGInfo(new SPIRTargetCodeGenInfo(Types)); 9558 } 9559 } 9560 9561 /// Create an OpenCL kernel for an enqueued block. 9562 /// 9563 /// The kernel has the same function type as the block invoke function. Its 9564 /// name is the name of the block invoke function postfixed with "_kernel". 9565 /// It simply calls the block invoke function then returns. 9566 llvm::Function * 9567 TargetCodeGenInfo::createEnqueuedBlockKernel(CodeGenFunction &CGF, 9568 llvm::Function *Invoke, 9569 llvm::Value *BlockLiteral) const { 9570 auto *InvokeFT = Invoke->getFunctionType(); 9571 llvm::SmallVector<llvm::Type *, 2> ArgTys; 9572 for (auto &P : InvokeFT->params()) 9573 ArgTys.push_back(P); 9574 auto &C = CGF.getLLVMContext(); 9575 std::string Name = Invoke->getName().str() + "_kernel"; 9576 auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false); 9577 auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name, 9578 &CGF.CGM.getModule()); 9579 auto IP = CGF.Builder.saveIP(); 9580 auto *BB = llvm::BasicBlock::Create(C, "entry", F); 9581 auto &Builder = CGF.Builder; 9582 Builder.SetInsertPoint(BB); 9583 llvm::SmallVector<llvm::Value *, 2> Args; 9584 for (auto &A : F->args()) 9585 Args.push_back(&A); 9586 Builder.CreateCall(Invoke, Args); 9587 Builder.CreateRetVoid(); 9588 Builder.restoreIP(IP); 9589 return F; 9590 } 9591 9592 /// Create an OpenCL kernel for an enqueued block. 9593 /// 9594 /// The type of the first argument (the block literal) is the struct type 9595 /// of the block literal instead of a pointer type. The first argument 9596 /// (block literal) is passed directly by value to the kernel. The kernel 9597 /// allocates the same type of struct on stack and stores the block literal 9598 /// to it and passes its pointer to the block invoke function. The kernel 9599 /// has "enqueued-block" function attribute and kernel argument metadata. 9600 llvm::Function *AMDGPUTargetCodeGenInfo::createEnqueuedBlockKernel( 9601 CodeGenFunction &CGF, llvm::Function *Invoke, 9602 llvm::Value *BlockLiteral) const { 9603 auto &Builder = CGF.Builder; 9604 auto &C = CGF.getLLVMContext(); 9605 9606 auto *BlockTy = BlockLiteral->getType()->getPointerElementType(); 9607 auto *InvokeFT = Invoke->getFunctionType(); 9608 llvm::SmallVector<llvm::Type *, 2> ArgTys; 9609 llvm::SmallVector<llvm::Metadata *, 8> AddressQuals; 9610 llvm::SmallVector<llvm::Metadata *, 8> AccessQuals; 9611 llvm::SmallVector<llvm::Metadata *, 8> ArgTypeNames; 9612 llvm::SmallVector<llvm::Metadata *, 8> ArgBaseTypeNames; 9613 llvm::SmallVector<llvm::Metadata *, 8> ArgTypeQuals; 9614 llvm::SmallVector<llvm::Metadata *, 8> ArgNames; 9615 9616 ArgTys.push_back(BlockTy); 9617 ArgTypeNames.push_back(llvm::MDString::get(C, "__block_literal")); 9618 AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(0))); 9619 ArgBaseTypeNames.push_back(llvm::MDString::get(C, "__block_literal")); 9620 ArgTypeQuals.push_back(llvm::MDString::get(C, "")); 9621 AccessQuals.push_back(llvm::MDString::get(C, "none")); 9622 ArgNames.push_back(llvm::MDString::get(C, "block_literal")); 9623 for (unsigned I = 1, E = InvokeFT->getNumParams(); I < E; ++I) { 9624 ArgTys.push_back(InvokeFT->getParamType(I)); 9625 ArgTypeNames.push_back(llvm::MDString::get(C, "void*")); 9626 AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(3))); 9627 AccessQuals.push_back(llvm::MDString::get(C, "none")); 9628 ArgBaseTypeNames.push_back(llvm::MDString::get(C, "void*")); 9629 ArgTypeQuals.push_back(llvm::MDString::get(C, "")); 9630 ArgNames.push_back( 9631 llvm::MDString::get(C, (Twine("local_arg") + Twine(I)).str())); 9632 } 9633 std::string Name = Invoke->getName().str() + "_kernel"; 9634 auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false); 9635 auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name, 9636 &CGF.CGM.getModule()); 9637 F->addFnAttr("enqueued-block"); 9638 auto IP = CGF.Builder.saveIP(); 9639 auto *BB = llvm::BasicBlock::Create(C, "entry", F); 9640 Builder.SetInsertPoint(BB); 9641 unsigned BlockAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(BlockTy); 9642 auto *BlockPtr = Builder.CreateAlloca(BlockTy, nullptr); 9643 BlockPtr->setAlignment(BlockAlign); 9644 Builder.CreateAlignedStore(F->arg_begin(), BlockPtr, BlockAlign); 9645 auto *Cast = Builder.CreatePointerCast(BlockPtr, InvokeFT->getParamType(0)); 9646 llvm::SmallVector<llvm::Value *, 2> Args; 9647 Args.push_back(Cast); 9648 for (auto I = F->arg_begin() + 1, E = F->arg_end(); I != E; ++I) 9649 Args.push_back(I); 9650 Builder.CreateCall(Invoke, Args); 9651 Builder.CreateRetVoid(); 9652 Builder.restoreIP(IP); 9653 9654 F->setMetadata("kernel_arg_addr_space", llvm::MDNode::get(C, AddressQuals)); 9655 F->setMetadata("kernel_arg_access_qual", llvm::MDNode::get(C, AccessQuals)); 9656 F->setMetadata("kernel_arg_type", llvm::MDNode::get(C, ArgTypeNames)); 9657 F->setMetadata("kernel_arg_base_type", 9658 llvm::MDNode::get(C, ArgBaseTypeNames)); 9659 F->setMetadata("kernel_arg_type_qual", llvm::MDNode::get(C, ArgTypeQuals)); 9660 if (CGF.CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 9661 F->setMetadata("kernel_arg_name", llvm::MDNode::get(C, ArgNames)); 9662 9663 return F; 9664 } 9665