1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // These classes wrap the information about a call or function 10 // definition used to handle ABI compliancy. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "TargetInfo.h" 15 #include "ABIInfo.h" 16 #include "CGBlocks.h" 17 #include "CGCXXABI.h" 18 #include "CGValue.h" 19 #include "CodeGenFunction.h" 20 #include "clang/AST/Attr.h" 21 #include "clang/AST/RecordLayout.h" 22 #include "clang/Basic/CodeGenOptions.h" 23 #include "clang/Basic/DiagnosticFrontend.h" 24 #include "clang/Basic/Builtins.h" 25 #include "clang/CodeGen/CGFunctionInfo.h" 26 #include "clang/CodeGen/SwiftCallingConv.h" 27 #include "llvm/ADT/SmallBitVector.h" 28 #include "llvm/ADT/StringExtras.h" 29 #include "llvm/ADT/StringSwitch.h" 30 #include "llvm/ADT/Triple.h" 31 #include "llvm/ADT/Twine.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/IntrinsicsNVPTX.h" 34 #include "llvm/IR/IntrinsicsS390.h" 35 #include "llvm/IR/Type.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include <algorithm> // std::sort 38 39 using namespace clang; 40 using namespace CodeGen; 41 42 // Helper for coercing an aggregate argument or return value into an integer 43 // array of the same size (including padding) and alignment. This alternate 44 // coercion happens only for the RenderScript ABI and can be removed after 45 // runtimes that rely on it are no longer supported. 46 // 47 // RenderScript assumes that the size of the argument / return value in the IR 48 // is the same as the size of the corresponding qualified type. This helper 49 // coerces the aggregate type into an array of the same size (including 50 // padding). This coercion is used in lieu of expansion of struct members or 51 // other canonical coercions that return a coerced-type of larger size. 52 // 53 // Ty - The argument / return value type 54 // Context - The associated ASTContext 55 // LLVMContext - The associated LLVMContext 56 static ABIArgInfo coerceToIntArray(QualType Ty, 57 ASTContext &Context, 58 llvm::LLVMContext &LLVMContext) { 59 // Alignment and Size are measured in bits. 60 const uint64_t Size = Context.getTypeSize(Ty); 61 const uint64_t Alignment = Context.getTypeAlign(Ty); 62 llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment); 63 const uint64_t NumElements = (Size + Alignment - 1) / Alignment; 64 return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements)); 65 } 66 67 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder, 68 llvm::Value *Array, 69 llvm::Value *Value, 70 unsigned FirstIndex, 71 unsigned LastIndex) { 72 // Alternatively, we could emit this as a loop in the source. 73 for (unsigned I = FirstIndex; I <= LastIndex; ++I) { 74 llvm::Value *Cell = 75 Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I); 76 Builder.CreateAlignedStore(Value, Cell, CharUnits::One()); 77 } 78 } 79 80 static bool isAggregateTypeForABI(QualType T) { 81 return !CodeGenFunction::hasScalarEvaluationKind(T) || 82 T->isMemberFunctionPointerType(); 83 } 84 85 ABIArgInfo ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByVal, 86 bool Realign, 87 llvm::Type *Padding) const { 88 return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty), ByVal, 89 Realign, Padding); 90 } 91 92 ABIArgInfo 93 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const { 94 return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty), 95 /*ByVal*/ false, Realign); 96 } 97 98 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 99 QualType Ty) const { 100 return Address::invalid(); 101 } 102 103 static llvm::Type *getVAListElementType(CodeGenFunction &CGF) { 104 return CGF.ConvertTypeForMem( 105 CGF.getContext().getBuiltinVaListType()->getPointeeType()); 106 } 107 108 bool ABIInfo::isPromotableIntegerTypeForABI(QualType Ty) const { 109 if (Ty->isPromotableIntegerType()) 110 return true; 111 112 if (const auto *EIT = Ty->getAs<BitIntType>()) 113 if (EIT->getNumBits() < getContext().getTypeSize(getContext().IntTy)) 114 return true; 115 116 return false; 117 } 118 119 ABIInfo::~ABIInfo() {} 120 121 /// Does the given lowering require more than the given number of 122 /// registers when expanded? 123 /// 124 /// This is intended to be the basis of a reasonable basic implementation 125 /// of should{Pass,Return}IndirectlyForSwift. 126 /// 127 /// For most targets, a limit of four total registers is reasonable; this 128 /// limits the amount of code required in order to move around the value 129 /// in case it wasn't produced immediately prior to the call by the caller 130 /// (or wasn't produced in exactly the right registers) or isn't used 131 /// immediately within the callee. But some targets may need to further 132 /// limit the register count due to an inability to support that many 133 /// return registers. 134 static bool occupiesMoreThan(CodeGenTypes &cgt, 135 ArrayRef<llvm::Type*> scalarTypes, 136 unsigned maxAllRegisters) { 137 unsigned intCount = 0, fpCount = 0; 138 for (llvm::Type *type : scalarTypes) { 139 if (type->isPointerTy()) { 140 intCount++; 141 } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) { 142 auto ptrWidth = cgt.getTarget().getPointerWidth(0); 143 intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth; 144 } else { 145 assert(type->isVectorTy() || type->isFloatingPointTy()); 146 fpCount++; 147 } 148 } 149 150 return (intCount + fpCount > maxAllRegisters); 151 } 152 153 bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, 154 llvm::Type *eltTy, 155 unsigned numElts) const { 156 // The default implementation of this assumes that the target guarantees 157 // 128-bit SIMD support but nothing more. 158 return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16); 159 } 160 161 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT, 162 CGCXXABI &CXXABI) { 163 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); 164 if (!RD) { 165 if (!RT->getDecl()->canPassInRegisters()) 166 return CGCXXABI::RAA_Indirect; 167 return CGCXXABI::RAA_Default; 168 } 169 return CXXABI.getRecordArgABI(RD); 170 } 171 172 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T, 173 CGCXXABI &CXXABI) { 174 const RecordType *RT = T->getAs<RecordType>(); 175 if (!RT) 176 return CGCXXABI::RAA_Default; 177 return getRecordArgABI(RT, CXXABI); 178 } 179 180 static bool classifyReturnType(const CGCXXABI &CXXABI, CGFunctionInfo &FI, 181 const ABIInfo &Info) { 182 QualType Ty = FI.getReturnType(); 183 184 if (const auto *RT = Ty->getAs<RecordType>()) 185 if (!isa<CXXRecordDecl>(RT->getDecl()) && 186 !RT->getDecl()->canPassInRegisters()) { 187 FI.getReturnInfo() = Info.getNaturalAlignIndirect(Ty); 188 return true; 189 } 190 191 return CXXABI.classifyReturnType(FI); 192 } 193 194 /// Pass transparent unions as if they were the type of the first element. Sema 195 /// should ensure that all elements of the union have the same "machine type". 196 static QualType useFirstFieldIfTransparentUnion(QualType Ty) { 197 if (const RecordType *UT = Ty->getAsUnionType()) { 198 const RecordDecl *UD = UT->getDecl(); 199 if (UD->hasAttr<TransparentUnionAttr>()) { 200 assert(!UD->field_empty() && "sema created an empty transparent union"); 201 return UD->field_begin()->getType(); 202 } 203 } 204 return Ty; 205 } 206 207 CGCXXABI &ABIInfo::getCXXABI() const { 208 return CGT.getCXXABI(); 209 } 210 211 ASTContext &ABIInfo::getContext() const { 212 return CGT.getContext(); 213 } 214 215 llvm::LLVMContext &ABIInfo::getVMContext() const { 216 return CGT.getLLVMContext(); 217 } 218 219 const llvm::DataLayout &ABIInfo::getDataLayout() const { 220 return CGT.getDataLayout(); 221 } 222 223 const TargetInfo &ABIInfo::getTarget() const { 224 return CGT.getTarget(); 225 } 226 227 const CodeGenOptions &ABIInfo::getCodeGenOpts() const { 228 return CGT.getCodeGenOpts(); 229 } 230 231 bool ABIInfo::isAndroid() const { return getTarget().getTriple().isAndroid(); } 232 233 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 234 return false; 235 } 236 237 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 238 uint64_t Members) const { 239 return false; 240 } 241 242 LLVM_DUMP_METHOD void ABIArgInfo::dump() const { 243 raw_ostream &OS = llvm::errs(); 244 OS << "(ABIArgInfo Kind="; 245 switch (TheKind) { 246 case Direct: 247 OS << "Direct Type="; 248 if (llvm::Type *Ty = getCoerceToType()) 249 Ty->print(OS); 250 else 251 OS << "null"; 252 break; 253 case Extend: 254 OS << "Extend"; 255 break; 256 case Ignore: 257 OS << "Ignore"; 258 break; 259 case InAlloca: 260 OS << "InAlloca Offset=" << getInAllocaFieldIndex(); 261 break; 262 case Indirect: 263 OS << "Indirect Align=" << getIndirectAlign().getQuantity() 264 << " ByVal=" << getIndirectByVal() 265 << " Realign=" << getIndirectRealign(); 266 break; 267 case IndirectAliased: 268 OS << "Indirect Align=" << getIndirectAlign().getQuantity() 269 << " AadrSpace=" << getIndirectAddrSpace() 270 << " Realign=" << getIndirectRealign(); 271 break; 272 case Expand: 273 OS << "Expand"; 274 break; 275 case CoerceAndExpand: 276 OS << "CoerceAndExpand Type="; 277 getCoerceAndExpandType()->print(OS); 278 break; 279 } 280 OS << ")\n"; 281 } 282 283 // Dynamically round a pointer up to a multiple of the given alignment. 284 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF, 285 llvm::Value *Ptr, 286 CharUnits Align) { 287 llvm::Value *PtrAsInt = Ptr; 288 // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align; 289 PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy); 290 PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt, 291 llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1)); 292 PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt, 293 llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity())); 294 PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt, 295 Ptr->getType(), 296 Ptr->getName() + ".aligned"); 297 return PtrAsInt; 298 } 299 300 /// Emit va_arg for a platform using the common void* representation, 301 /// where arguments are simply emitted in an array of slots on the stack. 302 /// 303 /// This version implements the core direct-value passing rules. 304 /// 305 /// \param SlotSize - The size and alignment of a stack slot. 306 /// Each argument will be allocated to a multiple of this number of 307 /// slots, and all the slots will be aligned to this value. 308 /// \param AllowHigherAlign - The slot alignment is not a cap; 309 /// an argument type with an alignment greater than the slot size 310 /// will be emitted on a higher-alignment address, potentially 311 /// leaving one or more empty slots behind as padding. If this 312 /// is false, the returned address might be less-aligned than 313 /// DirectAlign. 314 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF, 315 Address VAListAddr, 316 llvm::Type *DirectTy, 317 CharUnits DirectSize, 318 CharUnits DirectAlign, 319 CharUnits SlotSize, 320 bool AllowHigherAlign) { 321 // Cast the element type to i8* if necessary. Some platforms define 322 // va_list as a struct containing an i8* instead of just an i8*. 323 if (VAListAddr.getElementType() != CGF.Int8PtrTy) 324 VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy); 325 326 llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur"); 327 328 // If the CC aligns values higher than the slot size, do so if needed. 329 Address Addr = Address::invalid(); 330 if (AllowHigherAlign && DirectAlign > SlotSize) { 331 Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign), 332 CGF.Int8Ty, DirectAlign); 333 } else { 334 Addr = Address(Ptr, CGF.Int8Ty, SlotSize); 335 } 336 337 // Advance the pointer past the argument, then store that back. 338 CharUnits FullDirectSize = DirectSize.alignTo(SlotSize); 339 Address NextPtr = 340 CGF.Builder.CreateConstInBoundsByteGEP(Addr, FullDirectSize, "argp.next"); 341 CGF.Builder.CreateStore(NextPtr.getPointer(), VAListAddr); 342 343 // If the argument is smaller than a slot, and this is a big-endian 344 // target, the argument will be right-adjusted in its slot. 345 if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() && 346 !DirectTy->isStructTy()) { 347 Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize); 348 } 349 350 Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy); 351 return Addr; 352 } 353 354 /// Emit va_arg for a platform using the common void* representation, 355 /// where arguments are simply emitted in an array of slots on the stack. 356 /// 357 /// \param IsIndirect - Values of this type are passed indirectly. 358 /// \param ValueInfo - The size and alignment of this type, generally 359 /// computed with getContext().getTypeInfoInChars(ValueTy). 360 /// \param SlotSizeAndAlign - The size and alignment of a stack slot. 361 /// Each argument will be allocated to a multiple of this number of 362 /// slots, and all the slots will be aligned to this value. 363 /// \param AllowHigherAlign - The slot alignment is not a cap; 364 /// an argument type with an alignment greater than the slot size 365 /// will be emitted on a higher-alignment address, potentially 366 /// leaving one or more empty slots behind as padding. 367 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr, 368 QualType ValueTy, bool IsIndirect, 369 TypeInfoChars ValueInfo, 370 CharUnits SlotSizeAndAlign, 371 bool AllowHigherAlign) { 372 // The size and alignment of the value that was passed directly. 373 CharUnits DirectSize, DirectAlign; 374 if (IsIndirect) { 375 DirectSize = CGF.getPointerSize(); 376 DirectAlign = CGF.getPointerAlign(); 377 } else { 378 DirectSize = ValueInfo.Width; 379 DirectAlign = ValueInfo.Align; 380 } 381 382 // Cast the address we've calculated to the right type. 383 llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy), *ElementTy = DirectTy; 384 if (IsIndirect) 385 DirectTy = DirectTy->getPointerTo(0); 386 387 Address Addr = 388 emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy, DirectSize, DirectAlign, 389 SlotSizeAndAlign, AllowHigherAlign); 390 391 if (IsIndirect) { 392 Addr = Address(CGF.Builder.CreateLoad(Addr), ElementTy, ValueInfo.Align); 393 } 394 395 return Addr; 396 } 397 398 static Address complexTempStructure(CodeGenFunction &CGF, Address VAListAddr, 399 QualType Ty, CharUnits SlotSize, 400 CharUnits EltSize, const ComplexType *CTy) { 401 Address Addr = 402 emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty, SlotSize * 2, 403 SlotSize, SlotSize, /*AllowHigher*/ true); 404 405 Address RealAddr = Addr; 406 Address ImagAddr = RealAddr; 407 if (CGF.CGM.getDataLayout().isBigEndian()) { 408 RealAddr = 409 CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize - EltSize); 410 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr, 411 2 * SlotSize - EltSize); 412 } else { 413 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize); 414 } 415 416 llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType()); 417 RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy); 418 ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy); 419 llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal"); 420 llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag"); 421 422 Address Temp = CGF.CreateMemTemp(Ty, "vacplx"); 423 CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty), 424 /*init*/ true); 425 return Temp; 426 } 427 428 static Address emitMergePHI(CodeGenFunction &CGF, 429 Address Addr1, llvm::BasicBlock *Block1, 430 Address Addr2, llvm::BasicBlock *Block2, 431 const llvm::Twine &Name = "") { 432 assert(Addr1.getType() == Addr2.getType()); 433 llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name); 434 PHI->addIncoming(Addr1.getPointer(), Block1); 435 PHI->addIncoming(Addr2.getPointer(), Block2); 436 CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment()); 437 return Address(PHI, Addr1.getElementType(), Align); 438 } 439 440 TargetCodeGenInfo::~TargetCodeGenInfo() = default; 441 442 // If someone can figure out a general rule for this, that would be great. 443 // It's probably just doomed to be platform-dependent, though. 444 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const { 445 // Verified for: 446 // x86-64 FreeBSD, Linux, Darwin 447 // x86-32 FreeBSD, Linux, Darwin 448 // PowerPC Linux, Darwin 449 // ARM Darwin (*not* EABI) 450 // AArch64 Linux 451 return 32; 452 } 453 454 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args, 455 const FunctionNoProtoType *fnType) const { 456 // The following conventions are known to require this to be false: 457 // x86_stdcall 458 // MIPS 459 // For everything else, we just prefer false unless we opt out. 460 return false; 461 } 462 463 void 464 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib, 465 llvm::SmallString<24> &Opt) const { 466 // This assumes the user is passing a library name like "rt" instead of a 467 // filename like "librt.a/so", and that they don't care whether it's static or 468 // dynamic. 469 Opt = "-l"; 470 Opt += Lib; 471 } 472 473 unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const { 474 // OpenCL kernels are called via an explicit runtime API with arguments 475 // set with clSetKernelArg(), not as normal sub-functions. 476 // Return SPIR_KERNEL by default as the kernel calling convention to 477 // ensure the fingerprint is fixed such way that each OpenCL argument 478 // gets one matching argument in the produced kernel function argument 479 // list to enable feasible implementation of clSetKernelArg() with 480 // aggregates etc. In case we would use the default C calling conv here, 481 // clSetKernelArg() might break depending on the target-specific 482 // conventions; different targets might split structs passed as values 483 // to multiple function arguments etc. 484 return llvm::CallingConv::SPIR_KERNEL; 485 } 486 487 llvm::Constant *TargetCodeGenInfo::getNullPointer(const CodeGen::CodeGenModule &CGM, 488 llvm::PointerType *T, QualType QT) const { 489 return llvm::ConstantPointerNull::get(T); 490 } 491 492 LangAS TargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM, 493 const VarDecl *D) const { 494 assert(!CGM.getLangOpts().OpenCL && 495 !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && 496 "Address space agnostic languages only"); 497 return D ? D->getType().getAddressSpace() : LangAS::Default; 498 } 499 500 llvm::Value *TargetCodeGenInfo::performAddrSpaceCast( 501 CodeGen::CodeGenFunction &CGF, llvm::Value *Src, LangAS SrcAddr, 502 LangAS DestAddr, llvm::Type *DestTy, bool isNonNull) const { 503 // Since target may map different address spaces in AST to the same address 504 // space, an address space conversion may end up as a bitcast. 505 if (auto *C = dyn_cast<llvm::Constant>(Src)) 506 return performAddrSpaceCast(CGF.CGM, C, SrcAddr, DestAddr, DestTy); 507 // Try to preserve the source's name to make IR more readable. 508 return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 509 Src, DestTy, Src->hasName() ? Src->getName() + ".ascast" : ""); 510 } 511 512 llvm::Constant * 513 TargetCodeGenInfo::performAddrSpaceCast(CodeGenModule &CGM, llvm::Constant *Src, 514 LangAS SrcAddr, LangAS DestAddr, 515 llvm::Type *DestTy) const { 516 // Since target may map different address spaces in AST to the same address 517 // space, an address space conversion may end up as a bitcast. 518 return llvm::ConstantExpr::getPointerCast(Src, DestTy); 519 } 520 521 llvm::SyncScope::ID 522 TargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts, 523 SyncScope Scope, 524 llvm::AtomicOrdering Ordering, 525 llvm::LLVMContext &Ctx) const { 526 return Ctx.getOrInsertSyncScopeID(""); /* default sync scope */ 527 } 528 529 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays); 530 531 /// isEmptyField - Return true iff a the field is "empty", that is it 532 /// is an unnamed bit-field or an (array of) empty record(s). 533 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD, 534 bool AllowArrays) { 535 if (FD->isUnnamedBitfield()) 536 return true; 537 538 QualType FT = FD->getType(); 539 540 // Constant arrays of empty records count as empty, strip them off. 541 // Constant arrays of zero length always count as empty. 542 bool WasArray = false; 543 if (AllowArrays) 544 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 545 if (AT->getSize() == 0) 546 return true; 547 FT = AT->getElementType(); 548 // The [[no_unique_address]] special case below does not apply to 549 // arrays of C++ empty records, so we need to remember this fact. 550 WasArray = true; 551 } 552 553 const RecordType *RT = FT->getAs<RecordType>(); 554 if (!RT) 555 return false; 556 557 // C++ record fields are never empty, at least in the Itanium ABI. 558 // 559 // FIXME: We should use a predicate for whether this behavior is true in the 560 // current ABI. 561 // 562 // The exception to the above rule are fields marked with the 563 // [[no_unique_address]] attribute (since C++20). Those do count as empty 564 // according to the Itanium ABI. The exception applies only to records, 565 // not arrays of records, so we must also check whether we stripped off an 566 // array type above. 567 if (isa<CXXRecordDecl>(RT->getDecl()) && 568 (WasArray || !FD->hasAttr<NoUniqueAddressAttr>())) 569 return false; 570 571 return isEmptyRecord(Context, FT, AllowArrays); 572 } 573 574 /// isEmptyRecord - Return true iff a structure contains only empty 575 /// fields. Note that a structure with a flexible array member is not 576 /// considered empty. 577 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) { 578 const RecordType *RT = T->getAs<RecordType>(); 579 if (!RT) 580 return false; 581 const RecordDecl *RD = RT->getDecl(); 582 if (RD->hasFlexibleArrayMember()) 583 return false; 584 585 // If this is a C++ record, check the bases first. 586 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 587 for (const auto &I : CXXRD->bases()) 588 if (!isEmptyRecord(Context, I.getType(), true)) 589 return false; 590 591 for (const auto *I : RD->fields()) 592 if (!isEmptyField(Context, I, AllowArrays)) 593 return false; 594 return true; 595 } 596 597 /// isSingleElementStruct - Determine if a structure is a "single 598 /// element struct", i.e. it has exactly one non-empty field or 599 /// exactly one field which is itself a single element 600 /// struct. Structures with flexible array members are never 601 /// considered single element structs. 602 /// 603 /// \return The field declaration for the single non-empty field, if 604 /// it exists. 605 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) { 606 const RecordType *RT = T->getAs<RecordType>(); 607 if (!RT) 608 return nullptr; 609 610 const RecordDecl *RD = RT->getDecl(); 611 if (RD->hasFlexibleArrayMember()) 612 return nullptr; 613 614 const Type *Found = nullptr; 615 616 // If this is a C++ record, check the bases first. 617 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 618 for (const auto &I : CXXRD->bases()) { 619 // Ignore empty records. 620 if (isEmptyRecord(Context, I.getType(), true)) 621 continue; 622 623 // If we already found an element then this isn't a single-element struct. 624 if (Found) 625 return nullptr; 626 627 // If this is non-empty and not a single element struct, the composite 628 // cannot be a single element struct. 629 Found = isSingleElementStruct(I.getType(), Context); 630 if (!Found) 631 return nullptr; 632 } 633 } 634 635 // Check for single element. 636 for (const auto *FD : RD->fields()) { 637 QualType FT = FD->getType(); 638 639 // Ignore empty fields. 640 if (isEmptyField(Context, FD, true)) 641 continue; 642 643 // If we already found an element then this isn't a single-element 644 // struct. 645 if (Found) 646 return nullptr; 647 648 // Treat single element arrays as the element. 649 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 650 if (AT->getSize().getZExtValue() != 1) 651 break; 652 FT = AT->getElementType(); 653 } 654 655 if (!isAggregateTypeForABI(FT)) { 656 Found = FT.getTypePtr(); 657 } else { 658 Found = isSingleElementStruct(FT, Context); 659 if (!Found) 660 return nullptr; 661 } 662 } 663 664 // We don't consider a struct a single-element struct if it has 665 // padding beyond the element type. 666 if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T)) 667 return nullptr; 668 669 return Found; 670 } 671 672 namespace { 673 Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty, 674 const ABIArgInfo &AI) { 675 // This default implementation defers to the llvm backend's va_arg 676 // instruction. It can handle only passing arguments directly 677 // (typically only handled in the backend for primitive types), or 678 // aggregates passed indirectly by pointer (NOTE: if the "byval" 679 // flag has ABI impact in the callee, this implementation cannot 680 // work.) 681 682 // Only a few cases are covered here at the moment -- those needed 683 // by the default abi. 684 llvm::Value *Val; 685 686 if (AI.isIndirect()) { 687 assert(!AI.getPaddingType() && 688 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 689 assert( 690 !AI.getIndirectRealign() && 691 "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!"); 692 693 auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty); 694 CharUnits TyAlignForABI = TyInfo.Align; 695 696 llvm::Type *ElementTy = CGF.ConvertTypeForMem(Ty); 697 llvm::Type *BaseTy = llvm::PointerType::getUnqual(ElementTy); 698 llvm::Value *Addr = 699 CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy); 700 return Address(Addr, ElementTy, TyAlignForABI); 701 } else { 702 assert((AI.isDirect() || AI.isExtend()) && 703 "Unexpected ArgInfo Kind in generic VAArg emitter!"); 704 705 assert(!AI.getInReg() && 706 "Unexpected InReg seen in arginfo in generic VAArg emitter!"); 707 assert(!AI.getPaddingType() && 708 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 709 assert(!AI.getDirectOffset() && 710 "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!"); 711 assert(!AI.getCoerceToType() && 712 "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!"); 713 714 Address Temp = CGF.CreateMemTemp(Ty, "varet"); 715 Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), 716 CGF.ConvertTypeForMem(Ty)); 717 CGF.Builder.CreateStore(Val, Temp); 718 return Temp; 719 } 720 } 721 722 /// DefaultABIInfo - The default implementation for ABI specific 723 /// details. This implementation provides information which results in 724 /// self-consistent and sensible LLVM IR generation, but does not 725 /// conform to any particular ABI. 726 class DefaultABIInfo : public ABIInfo { 727 public: 728 DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 729 730 ABIArgInfo classifyReturnType(QualType RetTy) const; 731 ABIArgInfo classifyArgumentType(QualType RetTy) const; 732 733 void computeInfo(CGFunctionInfo &FI) const override { 734 if (!getCXXABI().classifyReturnType(FI)) 735 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 736 for (auto &I : FI.arguments()) 737 I.info = classifyArgumentType(I.type); 738 } 739 740 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 741 QualType Ty) const override { 742 return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty)); 743 } 744 }; 745 746 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo { 747 public: 748 DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 749 : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {} 750 }; 751 752 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const { 753 Ty = useFirstFieldIfTransparentUnion(Ty); 754 755 if (isAggregateTypeForABI(Ty)) { 756 // Records with non-trivial destructors/copy-constructors should not be 757 // passed by value. 758 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 759 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 760 761 return getNaturalAlignIndirect(Ty); 762 } 763 764 // Treat an enum type as its underlying type. 765 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 766 Ty = EnumTy->getDecl()->getIntegerType(); 767 768 ASTContext &Context = getContext(); 769 if (const auto *EIT = Ty->getAs<BitIntType>()) 770 if (EIT->getNumBits() > 771 Context.getTypeSize(Context.getTargetInfo().hasInt128Type() 772 ? Context.Int128Ty 773 : Context.LongLongTy)) 774 return getNaturalAlignIndirect(Ty); 775 776 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 777 : ABIArgInfo::getDirect()); 778 } 779 780 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const { 781 if (RetTy->isVoidType()) 782 return ABIArgInfo::getIgnore(); 783 784 if (isAggregateTypeForABI(RetTy)) 785 return getNaturalAlignIndirect(RetTy); 786 787 // Treat an enum type as its underlying type. 788 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 789 RetTy = EnumTy->getDecl()->getIntegerType(); 790 791 if (const auto *EIT = RetTy->getAs<BitIntType>()) 792 if (EIT->getNumBits() > 793 getContext().getTypeSize(getContext().getTargetInfo().hasInt128Type() 794 ? getContext().Int128Ty 795 : getContext().LongLongTy)) 796 return getNaturalAlignIndirect(RetTy); 797 798 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 799 : ABIArgInfo::getDirect()); 800 } 801 802 //===----------------------------------------------------------------------===// 803 // WebAssembly ABI Implementation 804 // 805 // This is a very simple ABI that relies a lot on DefaultABIInfo. 806 //===----------------------------------------------------------------------===// 807 808 class WebAssemblyABIInfo final : public SwiftABIInfo { 809 public: 810 enum ABIKind { 811 MVP = 0, 812 ExperimentalMV = 1, 813 }; 814 815 private: 816 DefaultABIInfo defaultInfo; 817 ABIKind Kind; 818 819 public: 820 explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind) 821 : SwiftABIInfo(CGT), defaultInfo(CGT), Kind(Kind) {} 822 823 private: 824 ABIArgInfo classifyReturnType(QualType RetTy) const; 825 ABIArgInfo classifyArgumentType(QualType Ty) const; 826 827 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 828 // non-virtual, but computeInfo and EmitVAArg are virtual, so we 829 // overload them. 830 void computeInfo(CGFunctionInfo &FI) const override { 831 if (!getCXXABI().classifyReturnType(FI)) 832 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 833 for (auto &Arg : FI.arguments()) 834 Arg.info = classifyArgumentType(Arg.type); 835 } 836 837 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 838 QualType Ty) const override; 839 840 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 841 bool asReturnValue) const override { 842 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 843 } 844 845 bool isSwiftErrorInRegister() const override { 846 return false; 847 } 848 }; 849 850 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo { 851 public: 852 explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 853 WebAssemblyABIInfo::ABIKind K) 854 : TargetCodeGenInfo(std::make_unique<WebAssemblyABIInfo>(CGT, K)) {} 855 856 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 857 CodeGen::CodeGenModule &CGM) const override { 858 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 859 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 860 if (const auto *Attr = FD->getAttr<WebAssemblyImportModuleAttr>()) { 861 llvm::Function *Fn = cast<llvm::Function>(GV); 862 llvm::AttrBuilder B(GV->getContext()); 863 B.addAttribute("wasm-import-module", Attr->getImportModule()); 864 Fn->addFnAttrs(B); 865 } 866 if (const auto *Attr = FD->getAttr<WebAssemblyImportNameAttr>()) { 867 llvm::Function *Fn = cast<llvm::Function>(GV); 868 llvm::AttrBuilder B(GV->getContext()); 869 B.addAttribute("wasm-import-name", Attr->getImportName()); 870 Fn->addFnAttrs(B); 871 } 872 if (const auto *Attr = FD->getAttr<WebAssemblyExportNameAttr>()) { 873 llvm::Function *Fn = cast<llvm::Function>(GV); 874 llvm::AttrBuilder B(GV->getContext()); 875 B.addAttribute("wasm-export-name", Attr->getExportName()); 876 Fn->addFnAttrs(B); 877 } 878 } 879 880 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 881 llvm::Function *Fn = cast<llvm::Function>(GV); 882 if (!FD->doesThisDeclarationHaveABody() && !FD->hasPrototype()) 883 Fn->addFnAttr("no-prototype"); 884 } 885 } 886 }; 887 888 /// Classify argument of given type \p Ty. 889 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const { 890 Ty = useFirstFieldIfTransparentUnion(Ty); 891 892 if (isAggregateTypeForABI(Ty)) { 893 // Records with non-trivial destructors/copy-constructors should not be 894 // passed by value. 895 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 896 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 897 // Ignore empty structs/unions. 898 if (isEmptyRecord(getContext(), Ty, true)) 899 return ABIArgInfo::getIgnore(); 900 // Lower single-element structs to just pass a regular value. TODO: We 901 // could do reasonable-size multiple-element structs too, using getExpand(), 902 // though watch out for things like bitfields. 903 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 904 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 905 // For the experimental multivalue ABI, fully expand all other aggregates 906 if (Kind == ABIKind::ExperimentalMV) { 907 const RecordType *RT = Ty->getAs<RecordType>(); 908 assert(RT); 909 bool HasBitField = false; 910 for (auto *Field : RT->getDecl()->fields()) { 911 if (Field->isBitField()) { 912 HasBitField = true; 913 break; 914 } 915 } 916 if (!HasBitField) 917 return ABIArgInfo::getExpand(); 918 } 919 } 920 921 // Otherwise just do the default thing. 922 return defaultInfo.classifyArgumentType(Ty); 923 } 924 925 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const { 926 if (isAggregateTypeForABI(RetTy)) { 927 // Records with non-trivial destructors/copy-constructors should not be 928 // returned by value. 929 if (!getRecordArgABI(RetTy, getCXXABI())) { 930 // Ignore empty structs/unions. 931 if (isEmptyRecord(getContext(), RetTy, true)) 932 return ABIArgInfo::getIgnore(); 933 // Lower single-element structs to just return a regular value. TODO: We 934 // could do reasonable-size multiple-element structs too, using 935 // ABIArgInfo::getDirect(). 936 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 937 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 938 // For the experimental multivalue ABI, return all other aggregates 939 if (Kind == ABIKind::ExperimentalMV) 940 return ABIArgInfo::getDirect(); 941 } 942 } 943 944 // Otherwise just do the default thing. 945 return defaultInfo.classifyReturnType(RetTy); 946 } 947 948 Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 949 QualType Ty) const { 950 bool IsIndirect = isAggregateTypeForABI(Ty) && 951 !isEmptyRecord(getContext(), Ty, true) && 952 !isSingleElementStruct(Ty, getContext()); 953 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 954 getContext().getTypeInfoInChars(Ty), 955 CharUnits::fromQuantity(4), 956 /*AllowHigherAlign=*/true); 957 } 958 959 //===----------------------------------------------------------------------===// 960 // le32/PNaCl bitcode ABI Implementation 961 // 962 // This is a simplified version of the x86_32 ABI. Arguments and return values 963 // are always passed on the stack. 964 //===----------------------------------------------------------------------===// 965 966 class PNaClABIInfo : public ABIInfo { 967 public: 968 PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 969 970 ABIArgInfo classifyReturnType(QualType RetTy) const; 971 ABIArgInfo classifyArgumentType(QualType RetTy) const; 972 973 void computeInfo(CGFunctionInfo &FI) const override; 974 Address EmitVAArg(CodeGenFunction &CGF, 975 Address VAListAddr, QualType Ty) const override; 976 }; 977 978 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo { 979 public: 980 PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 981 : TargetCodeGenInfo(std::make_unique<PNaClABIInfo>(CGT)) {} 982 }; 983 984 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const { 985 if (!getCXXABI().classifyReturnType(FI)) 986 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 987 988 for (auto &I : FI.arguments()) 989 I.info = classifyArgumentType(I.type); 990 } 991 992 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 993 QualType Ty) const { 994 // The PNaCL ABI is a bit odd, in that varargs don't use normal 995 // function classification. Structs get passed directly for varargs 996 // functions, through a rewriting transform in 997 // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows 998 // this target to actually support a va_arg instructions with an 999 // aggregate type, unlike other targets. 1000 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 1001 } 1002 1003 /// Classify argument of given type \p Ty. 1004 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const { 1005 if (isAggregateTypeForABI(Ty)) { 1006 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 1007 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 1008 return getNaturalAlignIndirect(Ty); 1009 } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 1010 // Treat an enum type as its underlying type. 1011 Ty = EnumTy->getDecl()->getIntegerType(); 1012 } else if (Ty->isFloatingType()) { 1013 // Floating-point types don't go inreg. 1014 return ABIArgInfo::getDirect(); 1015 } else if (const auto *EIT = Ty->getAs<BitIntType>()) { 1016 // Treat bit-precise integers as integers if <= 64, otherwise pass 1017 // indirectly. 1018 if (EIT->getNumBits() > 64) 1019 return getNaturalAlignIndirect(Ty); 1020 return ABIArgInfo::getDirect(); 1021 } 1022 1023 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 1024 : ABIArgInfo::getDirect()); 1025 } 1026 1027 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const { 1028 if (RetTy->isVoidType()) 1029 return ABIArgInfo::getIgnore(); 1030 1031 // In the PNaCl ABI we always return records/structures on the stack. 1032 if (isAggregateTypeForABI(RetTy)) 1033 return getNaturalAlignIndirect(RetTy); 1034 1035 // Treat bit-precise integers as integers if <= 64, otherwise pass indirectly. 1036 if (const auto *EIT = RetTy->getAs<BitIntType>()) { 1037 if (EIT->getNumBits() > 64) 1038 return getNaturalAlignIndirect(RetTy); 1039 return ABIArgInfo::getDirect(); 1040 } 1041 1042 // Treat an enum type as its underlying type. 1043 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 1044 RetTy = EnumTy->getDecl()->getIntegerType(); 1045 1046 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 1047 : ABIArgInfo::getDirect()); 1048 } 1049 1050 /// IsX86_MMXType - Return true if this is an MMX type. 1051 bool IsX86_MMXType(llvm::Type *IRType) { 1052 // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>. 1053 return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 && 1054 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() && 1055 IRType->getScalarSizeInBits() != 64; 1056 } 1057 1058 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 1059 StringRef Constraint, 1060 llvm::Type* Ty) { 1061 bool IsMMXCons = llvm::StringSwitch<bool>(Constraint) 1062 .Cases("y", "&y", "^Ym", true) 1063 .Default(false); 1064 if (IsMMXCons && Ty->isVectorTy()) { 1065 if (cast<llvm::VectorType>(Ty)->getPrimitiveSizeInBits().getFixedSize() != 1066 64) { 1067 // Invalid MMX constraint 1068 return nullptr; 1069 } 1070 1071 return llvm::Type::getX86_MMXTy(CGF.getLLVMContext()); 1072 } 1073 1074 // No operation needed 1075 return Ty; 1076 } 1077 1078 /// Returns true if this type can be passed in SSE registers with the 1079 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64. 1080 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) { 1081 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 1082 if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) { 1083 if (BT->getKind() == BuiltinType::LongDouble) { 1084 if (&Context.getTargetInfo().getLongDoubleFormat() == 1085 &llvm::APFloat::x87DoubleExtended()) 1086 return false; 1087 } 1088 return true; 1089 } 1090 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 1091 // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX 1092 // registers specially. 1093 unsigned VecSize = Context.getTypeSize(VT); 1094 if (VecSize == 128 || VecSize == 256 || VecSize == 512) 1095 return true; 1096 } 1097 return false; 1098 } 1099 1100 /// Returns true if this aggregate is small enough to be passed in SSE registers 1101 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64. 1102 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) { 1103 return NumMembers <= 4; 1104 } 1105 1106 /// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86. 1107 static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) { 1108 auto AI = ABIArgInfo::getDirect(T); 1109 AI.setInReg(true); 1110 AI.setCanBeFlattened(false); 1111 return AI; 1112 } 1113 1114 //===----------------------------------------------------------------------===// 1115 // X86-32 ABI Implementation 1116 //===----------------------------------------------------------------------===// 1117 1118 /// Similar to llvm::CCState, but for Clang. 1119 struct CCState { 1120 CCState(CGFunctionInfo &FI) 1121 : IsPreassigned(FI.arg_size()), CC(FI.getCallingConvention()) {} 1122 1123 llvm::SmallBitVector IsPreassigned; 1124 unsigned CC = CallingConv::CC_C; 1125 unsigned FreeRegs = 0; 1126 unsigned FreeSSERegs = 0; 1127 }; 1128 1129 /// X86_32ABIInfo - The X86-32 ABI information. 1130 class X86_32ABIInfo : public SwiftABIInfo { 1131 enum Class { 1132 Integer, 1133 Float 1134 }; 1135 1136 static const unsigned MinABIStackAlignInBytes = 4; 1137 1138 bool IsDarwinVectorABI; 1139 bool IsRetSmallStructInRegABI; 1140 bool IsWin32StructABI; 1141 bool IsSoftFloatABI; 1142 bool IsMCUABI; 1143 bool IsLinuxABI; 1144 unsigned DefaultNumRegisterParameters; 1145 1146 static bool isRegisterSize(unsigned Size) { 1147 return (Size == 8 || Size == 16 || Size == 32 || Size == 64); 1148 } 1149 1150 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 1151 // FIXME: Assumes vectorcall is in use. 1152 return isX86VectorTypeForVectorCall(getContext(), Ty); 1153 } 1154 1155 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 1156 uint64_t NumMembers) const override { 1157 // FIXME: Assumes vectorcall is in use. 1158 return isX86VectorCallAggregateSmallEnough(NumMembers); 1159 } 1160 1161 bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const; 1162 1163 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 1164 /// such that the argument will be passed in memory. 1165 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 1166 1167 ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const; 1168 1169 /// Return the alignment to use for the given type on the stack. 1170 unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const; 1171 1172 Class classify(QualType Ty) const; 1173 ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const; 1174 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 1175 1176 /// Updates the number of available free registers, returns 1177 /// true if any registers were allocated. 1178 bool updateFreeRegs(QualType Ty, CCState &State) const; 1179 1180 bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg, 1181 bool &NeedsPadding) const; 1182 bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const; 1183 1184 bool canExpandIndirectArgument(QualType Ty) const; 1185 1186 /// Rewrite the function info so that all memory arguments use 1187 /// inalloca. 1188 void rewriteWithInAlloca(CGFunctionInfo &FI) const; 1189 1190 void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1191 CharUnits &StackOffset, ABIArgInfo &Info, 1192 QualType Type) const; 1193 void runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const; 1194 1195 public: 1196 1197 void computeInfo(CGFunctionInfo &FI) const override; 1198 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 1199 QualType Ty) const override; 1200 1201 X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 1202 bool RetSmallStructInRegABI, bool Win32StructABI, 1203 unsigned NumRegisterParameters, bool SoftFloatABI) 1204 : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI), 1205 IsRetSmallStructInRegABI(RetSmallStructInRegABI), 1206 IsWin32StructABI(Win32StructABI), IsSoftFloatABI(SoftFloatABI), 1207 IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()), 1208 IsLinuxABI(CGT.getTarget().getTriple().isOSLinux() || 1209 CGT.getTarget().getTriple().isOSCygMing()), 1210 DefaultNumRegisterParameters(NumRegisterParameters) {} 1211 1212 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 1213 bool asReturnValue) const override { 1214 // LLVM's x86-32 lowering currently only assigns up to three 1215 // integer registers and three fp registers. Oddly, it'll use up to 1216 // four vector registers for vectors, but those can overlap with the 1217 // scalar registers. 1218 return occupiesMoreThan(CGT, scalars, /*total*/ 3); 1219 } 1220 1221 bool isSwiftErrorInRegister() const override { 1222 // x86-32 lowering does not support passing swifterror in a register. 1223 return false; 1224 } 1225 }; 1226 1227 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo { 1228 public: 1229 X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 1230 bool RetSmallStructInRegABI, bool Win32StructABI, 1231 unsigned NumRegisterParameters, bool SoftFloatABI) 1232 : TargetCodeGenInfo(std::make_unique<X86_32ABIInfo>( 1233 CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI, 1234 NumRegisterParameters, SoftFloatABI)) {} 1235 1236 static bool isStructReturnInRegABI( 1237 const llvm::Triple &Triple, const CodeGenOptions &Opts); 1238 1239 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 1240 CodeGen::CodeGenModule &CGM) const override; 1241 1242 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 1243 // Darwin uses different dwarf register numbers for EH. 1244 if (CGM.getTarget().getTriple().isOSDarwin()) return 5; 1245 return 4; 1246 } 1247 1248 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 1249 llvm::Value *Address) const override; 1250 1251 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 1252 StringRef Constraint, 1253 llvm::Type* Ty) const override { 1254 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 1255 } 1256 1257 void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue, 1258 std::string &Constraints, 1259 std::vector<llvm::Type *> &ResultRegTypes, 1260 std::vector<llvm::Type *> &ResultTruncRegTypes, 1261 std::vector<LValue> &ResultRegDests, 1262 std::string &AsmString, 1263 unsigned NumOutputs) const override; 1264 1265 llvm::Constant * 1266 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 1267 unsigned Sig = (0xeb << 0) | // jmp rel8 1268 (0x06 << 8) | // .+0x08 1269 ('v' << 16) | 1270 ('2' << 24); 1271 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 1272 } 1273 1274 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 1275 return "movl\t%ebp, %ebp" 1276 "\t\t// marker for objc_retainAutoreleaseReturnValue"; 1277 } 1278 }; 1279 1280 } 1281 1282 /// Rewrite input constraint references after adding some output constraints. 1283 /// In the case where there is one output and one input and we add one output, 1284 /// we need to replace all operand references greater than or equal to 1: 1285 /// mov $0, $1 1286 /// mov eax, $1 1287 /// The result will be: 1288 /// mov $0, $2 1289 /// mov eax, $2 1290 static void rewriteInputConstraintReferences(unsigned FirstIn, 1291 unsigned NumNewOuts, 1292 std::string &AsmString) { 1293 std::string Buf; 1294 llvm::raw_string_ostream OS(Buf); 1295 size_t Pos = 0; 1296 while (Pos < AsmString.size()) { 1297 size_t DollarStart = AsmString.find('$', Pos); 1298 if (DollarStart == std::string::npos) 1299 DollarStart = AsmString.size(); 1300 size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart); 1301 if (DollarEnd == std::string::npos) 1302 DollarEnd = AsmString.size(); 1303 OS << StringRef(&AsmString[Pos], DollarEnd - Pos); 1304 Pos = DollarEnd; 1305 size_t NumDollars = DollarEnd - DollarStart; 1306 if (NumDollars % 2 != 0 && Pos < AsmString.size()) { 1307 // We have an operand reference. 1308 size_t DigitStart = Pos; 1309 if (AsmString[DigitStart] == '{') { 1310 OS << '{'; 1311 ++DigitStart; 1312 } 1313 size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart); 1314 if (DigitEnd == std::string::npos) 1315 DigitEnd = AsmString.size(); 1316 StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart); 1317 unsigned OperandIndex; 1318 if (!OperandStr.getAsInteger(10, OperandIndex)) { 1319 if (OperandIndex >= FirstIn) 1320 OperandIndex += NumNewOuts; 1321 OS << OperandIndex; 1322 } else { 1323 OS << OperandStr; 1324 } 1325 Pos = DigitEnd; 1326 } 1327 } 1328 AsmString = std::move(OS.str()); 1329 } 1330 1331 /// Add output constraints for EAX:EDX because they are return registers. 1332 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs( 1333 CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints, 1334 std::vector<llvm::Type *> &ResultRegTypes, 1335 std::vector<llvm::Type *> &ResultTruncRegTypes, 1336 std::vector<LValue> &ResultRegDests, std::string &AsmString, 1337 unsigned NumOutputs) const { 1338 uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType()); 1339 1340 // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is 1341 // larger. 1342 if (!Constraints.empty()) 1343 Constraints += ','; 1344 if (RetWidth <= 32) { 1345 Constraints += "={eax}"; 1346 ResultRegTypes.push_back(CGF.Int32Ty); 1347 } else { 1348 // Use the 'A' constraint for EAX:EDX. 1349 Constraints += "=A"; 1350 ResultRegTypes.push_back(CGF.Int64Ty); 1351 } 1352 1353 // Truncate EAX or EAX:EDX to an integer of the appropriate size. 1354 llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth); 1355 ResultTruncRegTypes.push_back(CoerceTy); 1356 1357 // Coerce the integer by bitcasting the return slot pointer. 1358 ReturnSlot.setAddress( 1359 CGF.Builder.CreateElementBitCast(ReturnSlot.getAddress(CGF), CoerceTy)); 1360 ResultRegDests.push_back(ReturnSlot); 1361 1362 rewriteInputConstraintReferences(NumOutputs, 1, AsmString); 1363 } 1364 1365 /// shouldReturnTypeInRegister - Determine if the given type should be 1366 /// returned in a register (for the Darwin and MCU ABI). 1367 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty, 1368 ASTContext &Context) const { 1369 uint64_t Size = Context.getTypeSize(Ty); 1370 1371 // For i386, type must be register sized. 1372 // For the MCU ABI, it only needs to be <= 8-byte 1373 if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size))) 1374 return false; 1375 1376 if (Ty->isVectorType()) { 1377 // 64- and 128- bit vectors inside structures are not returned in 1378 // registers. 1379 if (Size == 64 || Size == 128) 1380 return false; 1381 1382 return true; 1383 } 1384 1385 // If this is a builtin, pointer, enum, complex type, member pointer, or 1386 // member function pointer it is ok. 1387 if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() || 1388 Ty->isAnyComplexType() || Ty->isEnumeralType() || 1389 Ty->isBlockPointerType() || Ty->isMemberPointerType()) 1390 return true; 1391 1392 // Arrays are treated like records. 1393 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) 1394 return shouldReturnTypeInRegister(AT->getElementType(), Context); 1395 1396 // Otherwise, it must be a record type. 1397 const RecordType *RT = Ty->getAs<RecordType>(); 1398 if (!RT) return false; 1399 1400 // FIXME: Traverse bases here too. 1401 1402 // Structure types are passed in register if all fields would be 1403 // passed in a register. 1404 for (const auto *FD : RT->getDecl()->fields()) { 1405 // Empty fields are ignored. 1406 if (isEmptyField(Context, FD, true)) 1407 continue; 1408 1409 // Check fields recursively. 1410 if (!shouldReturnTypeInRegister(FD->getType(), Context)) 1411 return false; 1412 } 1413 return true; 1414 } 1415 1416 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) { 1417 // Treat complex types as the element type. 1418 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 1419 Ty = CTy->getElementType(); 1420 1421 // Check for a type which we know has a simple scalar argument-passing 1422 // convention without any padding. (We're specifically looking for 32 1423 // and 64-bit integer and integer-equivalents, float, and double.) 1424 if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() && 1425 !Ty->isEnumeralType() && !Ty->isBlockPointerType()) 1426 return false; 1427 1428 uint64_t Size = Context.getTypeSize(Ty); 1429 return Size == 32 || Size == 64; 1430 } 1431 1432 static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD, 1433 uint64_t &Size) { 1434 for (const auto *FD : RD->fields()) { 1435 // Scalar arguments on the stack get 4 byte alignment on x86. If the 1436 // argument is smaller than 32-bits, expanding the struct will create 1437 // alignment padding. 1438 if (!is32Or64BitBasicType(FD->getType(), Context)) 1439 return false; 1440 1441 // FIXME: Reject bit-fields wholesale; there are two problems, we don't know 1442 // how to expand them yet, and the predicate for telling if a bitfield still 1443 // counts as "basic" is more complicated than what we were doing previously. 1444 if (FD->isBitField()) 1445 return false; 1446 1447 Size += Context.getTypeSize(FD->getType()); 1448 } 1449 return true; 1450 } 1451 1452 static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD, 1453 uint64_t &Size) { 1454 // Don't do this if there are any non-empty bases. 1455 for (const CXXBaseSpecifier &Base : RD->bases()) { 1456 if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(), 1457 Size)) 1458 return false; 1459 } 1460 if (!addFieldSizes(Context, RD, Size)) 1461 return false; 1462 return true; 1463 } 1464 1465 /// Test whether an argument type which is to be passed indirectly (on the 1466 /// stack) would have the equivalent layout if it was expanded into separate 1467 /// arguments. If so, we prefer to do the latter to avoid inhibiting 1468 /// optimizations. 1469 bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const { 1470 // We can only expand structure types. 1471 const RecordType *RT = Ty->getAs<RecordType>(); 1472 if (!RT) 1473 return false; 1474 const RecordDecl *RD = RT->getDecl(); 1475 uint64_t Size = 0; 1476 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 1477 if (!IsWin32StructABI) { 1478 // On non-Windows, we have to conservatively match our old bitcode 1479 // prototypes in order to be ABI-compatible at the bitcode level. 1480 if (!CXXRD->isCLike()) 1481 return false; 1482 } else { 1483 // Don't do this for dynamic classes. 1484 if (CXXRD->isDynamicClass()) 1485 return false; 1486 } 1487 if (!addBaseAndFieldSizes(getContext(), CXXRD, Size)) 1488 return false; 1489 } else { 1490 if (!addFieldSizes(getContext(), RD, Size)) 1491 return false; 1492 } 1493 1494 // We can do this if there was no alignment padding. 1495 return Size == getContext().getTypeSize(Ty); 1496 } 1497 1498 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const { 1499 // If the return value is indirect, then the hidden argument is consuming one 1500 // integer register. 1501 if (State.FreeRegs) { 1502 --State.FreeRegs; 1503 if (!IsMCUABI) 1504 return getNaturalAlignIndirectInReg(RetTy); 1505 } 1506 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 1507 } 1508 1509 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, 1510 CCState &State) const { 1511 if (RetTy->isVoidType()) 1512 return ABIArgInfo::getIgnore(); 1513 1514 const Type *Base = nullptr; 1515 uint64_t NumElts = 0; 1516 if ((State.CC == llvm::CallingConv::X86_VectorCall || 1517 State.CC == llvm::CallingConv::X86_RegCall) && 1518 isHomogeneousAggregate(RetTy, Base, NumElts)) { 1519 // The LLVM struct type for such an aggregate should lower properly. 1520 return ABIArgInfo::getDirect(); 1521 } 1522 1523 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 1524 // On Darwin, some vectors are returned in registers. 1525 if (IsDarwinVectorABI) { 1526 uint64_t Size = getContext().getTypeSize(RetTy); 1527 1528 // 128-bit vectors are a special case; they are returned in 1529 // registers and we need to make sure to pick a type the LLVM 1530 // backend will like. 1531 if (Size == 128) 1532 return ABIArgInfo::getDirect(llvm::FixedVectorType::get( 1533 llvm::Type::getInt64Ty(getVMContext()), 2)); 1534 1535 // Always return in register if it fits in a general purpose 1536 // register, or if it is 64 bits and has a single element. 1537 if ((Size == 8 || Size == 16 || Size == 32) || 1538 (Size == 64 && VT->getNumElements() == 1)) 1539 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1540 Size)); 1541 1542 return getIndirectReturnResult(RetTy, State); 1543 } 1544 1545 return ABIArgInfo::getDirect(); 1546 } 1547 1548 if (isAggregateTypeForABI(RetTy)) { 1549 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 1550 // Structures with flexible arrays are always indirect. 1551 if (RT->getDecl()->hasFlexibleArrayMember()) 1552 return getIndirectReturnResult(RetTy, State); 1553 } 1554 1555 // If specified, structs and unions are always indirect. 1556 if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType()) 1557 return getIndirectReturnResult(RetTy, State); 1558 1559 // Ignore empty structs/unions. 1560 if (isEmptyRecord(getContext(), RetTy, true)) 1561 return ABIArgInfo::getIgnore(); 1562 1563 // Return complex of _Float16 as <2 x half> so the backend will use xmm0. 1564 if (const ComplexType *CT = RetTy->getAs<ComplexType>()) { 1565 QualType ET = getContext().getCanonicalType(CT->getElementType()); 1566 if (ET->isFloat16Type()) 1567 return ABIArgInfo::getDirect(llvm::FixedVectorType::get( 1568 llvm::Type::getHalfTy(getVMContext()), 2)); 1569 } 1570 1571 // Small structures which are register sized are generally returned 1572 // in a register. 1573 if (shouldReturnTypeInRegister(RetTy, getContext())) { 1574 uint64_t Size = getContext().getTypeSize(RetTy); 1575 1576 // As a special-case, if the struct is a "single-element" struct, and 1577 // the field is of type "float" or "double", return it in a 1578 // floating-point register. (MSVC does not apply this special case.) 1579 // We apply a similar transformation for pointer types to improve the 1580 // quality of the generated IR. 1581 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 1582 if ((!IsWin32StructABI && SeltTy->isRealFloatingType()) 1583 || SeltTy->hasPointerRepresentation()) 1584 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 1585 1586 // FIXME: We should be able to narrow this integer in cases with dead 1587 // padding. 1588 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size)); 1589 } 1590 1591 return getIndirectReturnResult(RetTy, State); 1592 } 1593 1594 // Treat an enum type as its underlying type. 1595 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 1596 RetTy = EnumTy->getDecl()->getIntegerType(); 1597 1598 if (const auto *EIT = RetTy->getAs<BitIntType>()) 1599 if (EIT->getNumBits() > 64) 1600 return getIndirectReturnResult(RetTy, State); 1601 1602 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 1603 : ABIArgInfo::getDirect()); 1604 } 1605 1606 static bool isSIMDVectorType(ASTContext &Context, QualType Ty) { 1607 return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128; 1608 } 1609 1610 static bool isRecordWithSIMDVectorType(ASTContext &Context, QualType Ty) { 1611 const RecordType *RT = Ty->getAs<RecordType>(); 1612 if (!RT) 1613 return false; 1614 const RecordDecl *RD = RT->getDecl(); 1615 1616 // If this is a C++ record, check the bases first. 1617 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 1618 for (const auto &I : CXXRD->bases()) 1619 if (!isRecordWithSIMDVectorType(Context, I.getType())) 1620 return false; 1621 1622 for (const auto *i : RD->fields()) { 1623 QualType FT = i->getType(); 1624 1625 if (isSIMDVectorType(Context, FT)) 1626 return true; 1627 1628 if (isRecordWithSIMDVectorType(Context, FT)) 1629 return true; 1630 } 1631 1632 return false; 1633 } 1634 1635 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty, 1636 unsigned Align) const { 1637 // Otherwise, if the alignment is less than or equal to the minimum ABI 1638 // alignment, just use the default; the backend will handle this. 1639 if (Align <= MinABIStackAlignInBytes) 1640 return 0; // Use default alignment. 1641 1642 if (IsLinuxABI) { 1643 // Exclude other System V OS (e.g Darwin, PS4 and FreeBSD) since we don't 1644 // want to spend any effort dealing with the ramifications of ABI breaks. 1645 // 1646 // If the vector type is __m128/__m256/__m512, return the default alignment. 1647 if (Ty->isVectorType() && (Align == 16 || Align == 32 || Align == 64)) 1648 return Align; 1649 } 1650 // On non-Darwin, the stack type alignment is always 4. 1651 if (!IsDarwinVectorABI) { 1652 // Set explicit alignment, since we may need to realign the top. 1653 return MinABIStackAlignInBytes; 1654 } 1655 1656 // Otherwise, if the type contains an SSE vector type, the alignment is 16. 1657 if (Align >= 16 && (isSIMDVectorType(getContext(), Ty) || 1658 isRecordWithSIMDVectorType(getContext(), Ty))) 1659 return 16; 1660 1661 return MinABIStackAlignInBytes; 1662 } 1663 1664 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal, 1665 CCState &State) const { 1666 if (!ByVal) { 1667 if (State.FreeRegs) { 1668 --State.FreeRegs; // Non-byval indirects just use one pointer. 1669 if (!IsMCUABI) 1670 return getNaturalAlignIndirectInReg(Ty); 1671 } 1672 return getNaturalAlignIndirect(Ty, false); 1673 } 1674 1675 // Compute the byval alignment. 1676 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 1677 unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign); 1678 if (StackAlign == 0) 1679 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true); 1680 1681 // If the stack alignment is less than the type alignment, realign the 1682 // argument. 1683 bool Realign = TypeAlign > StackAlign; 1684 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign), 1685 /*ByVal=*/true, Realign); 1686 } 1687 1688 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const { 1689 const Type *T = isSingleElementStruct(Ty, getContext()); 1690 if (!T) 1691 T = Ty.getTypePtr(); 1692 1693 if (const BuiltinType *BT = T->getAs<BuiltinType>()) { 1694 BuiltinType::Kind K = BT->getKind(); 1695 if (K == BuiltinType::Float || K == BuiltinType::Double) 1696 return Float; 1697 } 1698 return Integer; 1699 } 1700 1701 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const { 1702 if (!IsSoftFloatABI) { 1703 Class C = classify(Ty); 1704 if (C == Float) 1705 return false; 1706 } 1707 1708 unsigned Size = getContext().getTypeSize(Ty); 1709 unsigned SizeInRegs = (Size + 31) / 32; 1710 1711 if (SizeInRegs == 0) 1712 return false; 1713 1714 if (!IsMCUABI) { 1715 if (SizeInRegs > State.FreeRegs) { 1716 State.FreeRegs = 0; 1717 return false; 1718 } 1719 } else { 1720 // The MCU psABI allows passing parameters in-reg even if there are 1721 // earlier parameters that are passed on the stack. Also, 1722 // it does not allow passing >8-byte structs in-register, 1723 // even if there are 3 free registers available. 1724 if (SizeInRegs > State.FreeRegs || SizeInRegs > 2) 1725 return false; 1726 } 1727 1728 State.FreeRegs -= SizeInRegs; 1729 return true; 1730 } 1731 1732 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State, 1733 bool &InReg, 1734 bool &NeedsPadding) const { 1735 // On Windows, aggregates other than HFAs are never passed in registers, and 1736 // they do not consume register slots. Homogenous floating-point aggregates 1737 // (HFAs) have already been dealt with at this point. 1738 if (IsWin32StructABI && isAggregateTypeForABI(Ty)) 1739 return false; 1740 1741 NeedsPadding = false; 1742 InReg = !IsMCUABI; 1743 1744 if (!updateFreeRegs(Ty, State)) 1745 return false; 1746 1747 if (IsMCUABI) 1748 return true; 1749 1750 if (State.CC == llvm::CallingConv::X86_FastCall || 1751 State.CC == llvm::CallingConv::X86_VectorCall || 1752 State.CC == llvm::CallingConv::X86_RegCall) { 1753 if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs) 1754 NeedsPadding = true; 1755 1756 return false; 1757 } 1758 1759 return true; 1760 } 1761 1762 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const { 1763 if (!updateFreeRegs(Ty, State)) 1764 return false; 1765 1766 if (IsMCUABI) 1767 return false; 1768 1769 if (State.CC == llvm::CallingConv::X86_FastCall || 1770 State.CC == llvm::CallingConv::X86_VectorCall || 1771 State.CC == llvm::CallingConv::X86_RegCall) { 1772 if (getContext().getTypeSize(Ty) > 32) 1773 return false; 1774 1775 return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() || 1776 Ty->isReferenceType()); 1777 } 1778 1779 return true; 1780 } 1781 1782 void X86_32ABIInfo::runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const { 1783 // Vectorcall x86 works subtly different than in x64, so the format is 1784 // a bit different than the x64 version. First, all vector types (not HVAs) 1785 // are assigned, with the first 6 ending up in the [XYZ]MM0-5 registers. 1786 // This differs from the x64 implementation, where the first 6 by INDEX get 1787 // registers. 1788 // In the second pass over the arguments, HVAs are passed in the remaining 1789 // vector registers if possible, or indirectly by address. The address will be 1790 // passed in ECX/EDX if available. Any other arguments are passed according to 1791 // the usual fastcall rules. 1792 MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments(); 1793 for (int I = 0, E = Args.size(); I < E; ++I) { 1794 const Type *Base = nullptr; 1795 uint64_t NumElts = 0; 1796 const QualType &Ty = Args[I].type; 1797 if ((Ty->isVectorType() || Ty->isBuiltinType()) && 1798 isHomogeneousAggregate(Ty, Base, NumElts)) { 1799 if (State.FreeSSERegs >= NumElts) { 1800 State.FreeSSERegs -= NumElts; 1801 Args[I].info = ABIArgInfo::getDirectInReg(); 1802 State.IsPreassigned.set(I); 1803 } 1804 } 1805 } 1806 } 1807 1808 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, 1809 CCState &State) const { 1810 // FIXME: Set alignment on indirect arguments. 1811 bool IsFastCall = State.CC == llvm::CallingConv::X86_FastCall; 1812 bool IsRegCall = State.CC == llvm::CallingConv::X86_RegCall; 1813 bool IsVectorCall = State.CC == llvm::CallingConv::X86_VectorCall; 1814 1815 Ty = useFirstFieldIfTransparentUnion(Ty); 1816 TypeInfo TI = getContext().getTypeInfo(Ty); 1817 1818 // Check with the C++ ABI first. 1819 const RecordType *RT = Ty->getAs<RecordType>(); 1820 if (RT) { 1821 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 1822 if (RAA == CGCXXABI::RAA_Indirect) { 1823 return getIndirectResult(Ty, false, State); 1824 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 1825 // The field index doesn't matter, we'll fix it up later. 1826 return ABIArgInfo::getInAlloca(/*FieldIndex=*/0); 1827 } 1828 } 1829 1830 // Regcall uses the concept of a homogenous vector aggregate, similar 1831 // to other targets. 1832 const Type *Base = nullptr; 1833 uint64_t NumElts = 0; 1834 if ((IsRegCall || IsVectorCall) && 1835 isHomogeneousAggregate(Ty, Base, NumElts)) { 1836 if (State.FreeSSERegs >= NumElts) { 1837 State.FreeSSERegs -= NumElts; 1838 1839 // Vectorcall passes HVAs directly and does not flatten them, but regcall 1840 // does. 1841 if (IsVectorCall) 1842 return getDirectX86Hva(); 1843 1844 if (Ty->isBuiltinType() || Ty->isVectorType()) 1845 return ABIArgInfo::getDirect(); 1846 return ABIArgInfo::getExpand(); 1847 } 1848 return getIndirectResult(Ty, /*ByVal=*/false, State); 1849 } 1850 1851 if (isAggregateTypeForABI(Ty)) { 1852 // Structures with flexible arrays are always indirect. 1853 // FIXME: This should not be byval! 1854 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 1855 return getIndirectResult(Ty, true, State); 1856 1857 // Ignore empty structs/unions on non-Windows. 1858 if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true)) 1859 return ABIArgInfo::getIgnore(); 1860 1861 llvm::LLVMContext &LLVMContext = getVMContext(); 1862 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 1863 bool NeedsPadding = false; 1864 bool InReg; 1865 if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) { 1866 unsigned SizeInRegs = (TI.Width + 31) / 32; 1867 SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32); 1868 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 1869 if (InReg) 1870 return ABIArgInfo::getDirectInReg(Result); 1871 else 1872 return ABIArgInfo::getDirect(Result); 1873 } 1874 llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr; 1875 1876 // Pass over-aligned aggregates on Windows indirectly. This behavior was 1877 // added in MSVC 2015. 1878 if (IsWin32StructABI && TI.isAlignRequired() && TI.Align > 32) 1879 return getIndirectResult(Ty, /*ByVal=*/false, State); 1880 1881 // Expand small (<= 128-bit) record types when we know that the stack layout 1882 // of those arguments will match the struct. This is important because the 1883 // LLVM backend isn't smart enough to remove byval, which inhibits many 1884 // optimizations. 1885 // Don't do this for the MCU if there are still free integer registers 1886 // (see X86_64 ABI for full explanation). 1887 if (TI.Width <= 4 * 32 && (!IsMCUABI || State.FreeRegs == 0) && 1888 canExpandIndirectArgument(Ty)) 1889 return ABIArgInfo::getExpandWithPadding( 1890 IsFastCall || IsVectorCall || IsRegCall, PaddingType); 1891 1892 return getIndirectResult(Ty, true, State); 1893 } 1894 1895 if (const VectorType *VT = Ty->getAs<VectorType>()) { 1896 // On Windows, vectors are passed directly if registers are available, or 1897 // indirectly if not. This avoids the need to align argument memory. Pass 1898 // user-defined vector types larger than 512 bits indirectly for simplicity. 1899 if (IsWin32StructABI) { 1900 if (TI.Width <= 512 && State.FreeSSERegs > 0) { 1901 --State.FreeSSERegs; 1902 return ABIArgInfo::getDirectInReg(); 1903 } 1904 return getIndirectResult(Ty, /*ByVal=*/false, State); 1905 } 1906 1907 // On Darwin, some vectors are passed in memory, we handle this by passing 1908 // it as an i8/i16/i32/i64. 1909 if (IsDarwinVectorABI) { 1910 if ((TI.Width == 8 || TI.Width == 16 || TI.Width == 32) || 1911 (TI.Width == 64 && VT->getNumElements() == 1)) 1912 return ABIArgInfo::getDirect( 1913 llvm::IntegerType::get(getVMContext(), TI.Width)); 1914 } 1915 1916 if (IsX86_MMXType(CGT.ConvertType(Ty))) 1917 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64)); 1918 1919 return ABIArgInfo::getDirect(); 1920 } 1921 1922 1923 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 1924 Ty = EnumTy->getDecl()->getIntegerType(); 1925 1926 bool InReg = shouldPrimitiveUseInReg(Ty, State); 1927 1928 if (isPromotableIntegerTypeForABI(Ty)) { 1929 if (InReg) 1930 return ABIArgInfo::getExtendInReg(Ty); 1931 return ABIArgInfo::getExtend(Ty); 1932 } 1933 1934 if (const auto *EIT = Ty->getAs<BitIntType>()) { 1935 if (EIT->getNumBits() <= 64) { 1936 if (InReg) 1937 return ABIArgInfo::getDirectInReg(); 1938 return ABIArgInfo::getDirect(); 1939 } 1940 return getIndirectResult(Ty, /*ByVal=*/false, State); 1941 } 1942 1943 if (InReg) 1944 return ABIArgInfo::getDirectInReg(); 1945 return ABIArgInfo::getDirect(); 1946 } 1947 1948 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const { 1949 CCState State(FI); 1950 if (IsMCUABI) 1951 State.FreeRegs = 3; 1952 else if (State.CC == llvm::CallingConv::X86_FastCall) { 1953 State.FreeRegs = 2; 1954 State.FreeSSERegs = 3; 1955 } else if (State.CC == llvm::CallingConv::X86_VectorCall) { 1956 State.FreeRegs = 2; 1957 State.FreeSSERegs = 6; 1958 } else if (FI.getHasRegParm()) 1959 State.FreeRegs = FI.getRegParm(); 1960 else if (State.CC == llvm::CallingConv::X86_RegCall) { 1961 State.FreeRegs = 5; 1962 State.FreeSSERegs = 8; 1963 } else if (IsWin32StructABI) { 1964 // Since MSVC 2015, the first three SSE vectors have been passed in 1965 // registers. The rest are passed indirectly. 1966 State.FreeRegs = DefaultNumRegisterParameters; 1967 State.FreeSSERegs = 3; 1968 } else 1969 State.FreeRegs = DefaultNumRegisterParameters; 1970 1971 if (!::classifyReturnType(getCXXABI(), FI, *this)) { 1972 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State); 1973 } else if (FI.getReturnInfo().isIndirect()) { 1974 // The C++ ABI is not aware of register usage, so we have to check if the 1975 // return value was sret and put it in a register ourselves if appropriate. 1976 if (State.FreeRegs) { 1977 --State.FreeRegs; // The sret parameter consumes a register. 1978 if (!IsMCUABI) 1979 FI.getReturnInfo().setInReg(true); 1980 } 1981 } 1982 1983 // The chain argument effectively gives us another free register. 1984 if (FI.isChainCall()) 1985 ++State.FreeRegs; 1986 1987 // For vectorcall, do a first pass over the arguments, assigning FP and vector 1988 // arguments to XMM registers as available. 1989 if (State.CC == llvm::CallingConv::X86_VectorCall) 1990 runVectorCallFirstPass(FI, State); 1991 1992 bool UsedInAlloca = false; 1993 MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments(); 1994 for (int I = 0, E = Args.size(); I < E; ++I) { 1995 // Skip arguments that have already been assigned. 1996 if (State.IsPreassigned.test(I)) 1997 continue; 1998 1999 Args[I].info = classifyArgumentType(Args[I].type, State); 2000 UsedInAlloca |= (Args[I].info.getKind() == ABIArgInfo::InAlloca); 2001 } 2002 2003 // If we needed to use inalloca for any argument, do a second pass and rewrite 2004 // all the memory arguments to use inalloca. 2005 if (UsedInAlloca) 2006 rewriteWithInAlloca(FI); 2007 } 2008 2009 void 2010 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 2011 CharUnits &StackOffset, ABIArgInfo &Info, 2012 QualType Type) const { 2013 // Arguments are always 4-byte-aligned. 2014 CharUnits WordSize = CharUnits::fromQuantity(4); 2015 assert(StackOffset.isMultipleOf(WordSize) && "unaligned inalloca struct"); 2016 2017 // sret pointers and indirect things will require an extra pointer 2018 // indirection, unless they are byval. Most things are byval, and will not 2019 // require this indirection. 2020 bool IsIndirect = false; 2021 if (Info.isIndirect() && !Info.getIndirectByVal()) 2022 IsIndirect = true; 2023 Info = ABIArgInfo::getInAlloca(FrameFields.size(), IsIndirect); 2024 llvm::Type *LLTy = CGT.ConvertTypeForMem(Type); 2025 if (IsIndirect) 2026 LLTy = LLTy->getPointerTo(0); 2027 FrameFields.push_back(LLTy); 2028 StackOffset += IsIndirect ? WordSize : getContext().getTypeSizeInChars(Type); 2029 2030 // Insert padding bytes to respect alignment. 2031 CharUnits FieldEnd = StackOffset; 2032 StackOffset = FieldEnd.alignTo(WordSize); 2033 if (StackOffset != FieldEnd) { 2034 CharUnits NumBytes = StackOffset - FieldEnd; 2035 llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext()); 2036 Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity()); 2037 FrameFields.push_back(Ty); 2038 } 2039 } 2040 2041 static bool isArgInAlloca(const ABIArgInfo &Info) { 2042 // Leave ignored and inreg arguments alone. 2043 switch (Info.getKind()) { 2044 case ABIArgInfo::InAlloca: 2045 return true; 2046 case ABIArgInfo::Ignore: 2047 case ABIArgInfo::IndirectAliased: 2048 return false; 2049 case ABIArgInfo::Indirect: 2050 case ABIArgInfo::Direct: 2051 case ABIArgInfo::Extend: 2052 return !Info.getInReg(); 2053 case ABIArgInfo::Expand: 2054 case ABIArgInfo::CoerceAndExpand: 2055 // These are aggregate types which are never passed in registers when 2056 // inalloca is involved. 2057 return true; 2058 } 2059 llvm_unreachable("invalid enum"); 2060 } 2061 2062 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const { 2063 assert(IsWin32StructABI && "inalloca only supported on win32"); 2064 2065 // Build a packed struct type for all of the arguments in memory. 2066 SmallVector<llvm::Type *, 6> FrameFields; 2067 2068 // The stack alignment is always 4. 2069 CharUnits StackAlign = CharUnits::fromQuantity(4); 2070 2071 CharUnits StackOffset; 2072 CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end(); 2073 2074 // Put 'this' into the struct before 'sret', if necessary. 2075 bool IsThisCall = 2076 FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall; 2077 ABIArgInfo &Ret = FI.getReturnInfo(); 2078 if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall && 2079 isArgInAlloca(I->info)) { 2080 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 2081 ++I; 2082 } 2083 2084 // Put the sret parameter into the inalloca struct if it's in memory. 2085 if (Ret.isIndirect() && !Ret.getInReg()) { 2086 addFieldToArgStruct(FrameFields, StackOffset, Ret, FI.getReturnType()); 2087 // On Windows, the hidden sret parameter is always returned in eax. 2088 Ret.setInAllocaSRet(IsWin32StructABI); 2089 } 2090 2091 // Skip the 'this' parameter in ecx. 2092 if (IsThisCall) 2093 ++I; 2094 2095 // Put arguments passed in memory into the struct. 2096 for (; I != E; ++I) { 2097 if (isArgInAlloca(I->info)) 2098 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 2099 } 2100 2101 FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields, 2102 /*isPacked=*/true), 2103 StackAlign); 2104 } 2105 2106 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF, 2107 Address VAListAddr, QualType Ty) const { 2108 2109 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 2110 2111 // x86-32 changes the alignment of certain arguments on the stack. 2112 // 2113 // Just messing with TypeInfo like this works because we never pass 2114 // anything indirectly. 2115 TypeInfo.Align = CharUnits::fromQuantity( 2116 getTypeStackAlignInBytes(Ty, TypeInfo.Align.getQuantity())); 2117 2118 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 2119 TypeInfo, CharUnits::fromQuantity(4), 2120 /*AllowHigherAlign*/ true); 2121 } 2122 2123 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI( 2124 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 2125 assert(Triple.getArch() == llvm::Triple::x86); 2126 2127 switch (Opts.getStructReturnConvention()) { 2128 case CodeGenOptions::SRCK_Default: 2129 break; 2130 case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return 2131 return false; 2132 case CodeGenOptions::SRCK_InRegs: // -freg-struct-return 2133 return true; 2134 } 2135 2136 if (Triple.isOSDarwin() || Triple.isOSIAMCU()) 2137 return true; 2138 2139 switch (Triple.getOS()) { 2140 case llvm::Triple::DragonFly: 2141 case llvm::Triple::FreeBSD: 2142 case llvm::Triple::OpenBSD: 2143 case llvm::Triple::Win32: 2144 return true; 2145 default: 2146 return false; 2147 } 2148 } 2149 2150 static void addX86InterruptAttrs(const FunctionDecl *FD, llvm::GlobalValue *GV, 2151 CodeGen::CodeGenModule &CGM) { 2152 if (!FD->hasAttr<AnyX86InterruptAttr>()) 2153 return; 2154 2155 llvm::Function *Fn = cast<llvm::Function>(GV); 2156 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2157 if (FD->getNumParams() == 0) 2158 return; 2159 2160 auto PtrTy = cast<PointerType>(FD->getParamDecl(0)->getType()); 2161 llvm::Type *ByValTy = CGM.getTypes().ConvertType(PtrTy->getPointeeType()); 2162 llvm::Attribute NewAttr = llvm::Attribute::getWithByValType( 2163 Fn->getContext(), ByValTy); 2164 Fn->addParamAttr(0, NewAttr); 2165 } 2166 2167 void X86_32TargetCodeGenInfo::setTargetAttributes( 2168 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2169 if (GV->isDeclaration()) 2170 return; 2171 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2172 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2173 llvm::Function *Fn = cast<llvm::Function>(GV); 2174 Fn->addFnAttr("stackrealign"); 2175 } 2176 2177 addX86InterruptAttrs(FD, GV, CGM); 2178 } 2179 } 2180 2181 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable( 2182 CodeGen::CodeGenFunction &CGF, 2183 llvm::Value *Address) const { 2184 CodeGen::CGBuilderTy &Builder = CGF.Builder; 2185 2186 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 2187 2188 // 0-7 are the eight integer registers; the order is different 2189 // on Darwin (for EH), but the range is the same. 2190 // 8 is %eip. 2191 AssignToArrayRange(Builder, Address, Four8, 0, 8); 2192 2193 if (CGF.CGM.getTarget().getTriple().isOSDarwin()) { 2194 // 12-16 are st(0..4). Not sure why we stop at 4. 2195 // These have size 16, which is sizeof(long double) on 2196 // platforms with 8-byte alignment for that type. 2197 llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16); 2198 AssignToArrayRange(Builder, Address, Sixteen8, 12, 16); 2199 2200 } else { 2201 // 9 is %eflags, which doesn't get a size on Darwin for some 2202 // reason. 2203 Builder.CreateAlignedStore( 2204 Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9), 2205 CharUnits::One()); 2206 2207 // 11-16 are st(0..5). Not sure why we stop at 5. 2208 // These have size 12, which is sizeof(long double) on 2209 // platforms with 4-byte alignment for that type. 2210 llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12); 2211 AssignToArrayRange(Builder, Address, Twelve8, 11, 16); 2212 } 2213 2214 return false; 2215 } 2216 2217 //===----------------------------------------------------------------------===// 2218 // X86-64 ABI Implementation 2219 //===----------------------------------------------------------------------===// 2220 2221 2222 namespace { 2223 /// The AVX ABI level for X86 targets. 2224 enum class X86AVXABILevel { 2225 None, 2226 AVX, 2227 AVX512 2228 }; 2229 2230 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel. 2231 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) { 2232 switch (AVXLevel) { 2233 case X86AVXABILevel::AVX512: 2234 return 512; 2235 case X86AVXABILevel::AVX: 2236 return 256; 2237 case X86AVXABILevel::None: 2238 return 128; 2239 } 2240 llvm_unreachable("Unknown AVXLevel"); 2241 } 2242 2243 /// X86_64ABIInfo - The X86_64 ABI information. 2244 class X86_64ABIInfo : public SwiftABIInfo { 2245 enum Class { 2246 Integer = 0, 2247 SSE, 2248 SSEUp, 2249 X87, 2250 X87Up, 2251 ComplexX87, 2252 NoClass, 2253 Memory 2254 }; 2255 2256 /// merge - Implement the X86_64 ABI merging algorithm. 2257 /// 2258 /// Merge an accumulating classification \arg Accum with a field 2259 /// classification \arg Field. 2260 /// 2261 /// \param Accum - The accumulating classification. This should 2262 /// always be either NoClass or the result of a previous merge 2263 /// call. In addition, this should never be Memory (the caller 2264 /// should just return Memory for the aggregate). 2265 static Class merge(Class Accum, Class Field); 2266 2267 /// postMerge - Implement the X86_64 ABI post merging algorithm. 2268 /// 2269 /// Post merger cleanup, reduces a malformed Hi and Lo pair to 2270 /// final MEMORY or SSE classes when necessary. 2271 /// 2272 /// \param AggregateSize - The size of the current aggregate in 2273 /// the classification process. 2274 /// 2275 /// \param Lo - The classification for the parts of the type 2276 /// residing in the low word of the containing object. 2277 /// 2278 /// \param Hi - The classification for the parts of the type 2279 /// residing in the higher words of the containing object. 2280 /// 2281 void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const; 2282 2283 /// classify - Determine the x86_64 register classes in which the 2284 /// given type T should be passed. 2285 /// 2286 /// \param Lo - The classification for the parts of the type 2287 /// residing in the low word of the containing object. 2288 /// 2289 /// \param Hi - The classification for the parts of the type 2290 /// residing in the high word of the containing object. 2291 /// 2292 /// \param OffsetBase - The bit offset of this type in the 2293 /// containing object. Some parameters are classified different 2294 /// depending on whether they straddle an eightbyte boundary. 2295 /// 2296 /// \param isNamedArg - Whether the argument in question is a "named" 2297 /// argument, as used in AMD64-ABI 3.5.7. 2298 /// 2299 /// If a word is unused its result will be NoClass; if a type should 2300 /// be passed in Memory then at least the classification of \arg Lo 2301 /// will be Memory. 2302 /// 2303 /// The \arg Lo class will be NoClass iff the argument is ignored. 2304 /// 2305 /// If the \arg Lo class is ComplexX87, then the \arg Hi class will 2306 /// also be ComplexX87. 2307 void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi, 2308 bool isNamedArg) const; 2309 2310 llvm::Type *GetByteVectorType(QualType Ty) const; 2311 llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType, 2312 unsigned IROffset, QualType SourceTy, 2313 unsigned SourceOffset) const; 2314 llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType, 2315 unsigned IROffset, QualType SourceTy, 2316 unsigned SourceOffset) const; 2317 2318 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 2319 /// such that the argument will be returned in memory. 2320 ABIArgInfo getIndirectReturnResult(QualType Ty) const; 2321 2322 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 2323 /// such that the argument will be passed in memory. 2324 /// 2325 /// \param freeIntRegs - The number of free integer registers remaining 2326 /// available. 2327 ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const; 2328 2329 ABIArgInfo classifyReturnType(QualType RetTy) const; 2330 2331 ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs, 2332 unsigned &neededInt, unsigned &neededSSE, 2333 bool isNamedArg) const; 2334 2335 ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt, 2336 unsigned &NeededSSE) const; 2337 2338 ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 2339 unsigned &NeededSSE) const; 2340 2341 bool IsIllegalVectorType(QualType Ty) const; 2342 2343 /// The 0.98 ABI revision clarified a lot of ambiguities, 2344 /// unfortunately in ways that were not always consistent with 2345 /// certain previous compilers. In particular, platforms which 2346 /// required strict binary compatibility with older versions of GCC 2347 /// may need to exempt themselves. 2348 bool honorsRevision0_98() const { 2349 return !getTarget().getTriple().isOSDarwin(); 2350 } 2351 2352 /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to 2353 /// classify it as INTEGER (for compatibility with older clang compilers). 2354 bool classifyIntegerMMXAsSSE() const { 2355 // Clang <= 3.8 did not do this. 2356 if (getContext().getLangOpts().getClangABICompat() <= 2357 LangOptions::ClangABI::Ver3_8) 2358 return false; 2359 2360 const llvm::Triple &Triple = getTarget().getTriple(); 2361 if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::PS4) 2362 return false; 2363 if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10) 2364 return false; 2365 return true; 2366 } 2367 2368 // GCC classifies vectors of __int128 as memory. 2369 bool passInt128VectorsInMem() const { 2370 // Clang <= 9.0 did not do this. 2371 if (getContext().getLangOpts().getClangABICompat() <= 2372 LangOptions::ClangABI::Ver9) 2373 return false; 2374 2375 const llvm::Triple &T = getTarget().getTriple(); 2376 return T.isOSLinux() || T.isOSNetBSD(); 2377 } 2378 2379 X86AVXABILevel AVXLevel; 2380 // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on 2381 // 64-bit hardware. 2382 bool Has64BitPointers; 2383 2384 public: 2385 X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) : 2386 SwiftABIInfo(CGT), AVXLevel(AVXLevel), 2387 Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) { 2388 } 2389 2390 bool isPassedUsingAVXType(QualType type) const { 2391 unsigned neededInt, neededSSE; 2392 // The freeIntRegs argument doesn't matter here. 2393 ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE, 2394 /*isNamedArg*/true); 2395 if (info.isDirect()) { 2396 llvm::Type *ty = info.getCoerceToType(); 2397 if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty)) 2398 return vectorTy->getPrimitiveSizeInBits().getFixedSize() > 128; 2399 } 2400 return false; 2401 } 2402 2403 void computeInfo(CGFunctionInfo &FI) const override; 2404 2405 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2406 QualType Ty) const override; 2407 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 2408 QualType Ty) const override; 2409 2410 bool has64BitPointers() const { 2411 return Has64BitPointers; 2412 } 2413 2414 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 2415 bool asReturnValue) const override { 2416 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2417 } 2418 bool isSwiftErrorInRegister() const override { 2419 return true; 2420 } 2421 }; 2422 2423 /// WinX86_64ABIInfo - The Windows X86_64 ABI information. 2424 class WinX86_64ABIInfo : public SwiftABIInfo { 2425 public: 2426 WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2427 : SwiftABIInfo(CGT), AVXLevel(AVXLevel), 2428 IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {} 2429 2430 void computeInfo(CGFunctionInfo &FI) const override; 2431 2432 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2433 QualType Ty) const override; 2434 2435 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 2436 // FIXME: Assumes vectorcall is in use. 2437 return isX86VectorTypeForVectorCall(getContext(), Ty); 2438 } 2439 2440 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 2441 uint64_t NumMembers) const override { 2442 // FIXME: Assumes vectorcall is in use. 2443 return isX86VectorCallAggregateSmallEnough(NumMembers); 2444 } 2445 2446 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type *> scalars, 2447 bool asReturnValue) const override { 2448 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2449 } 2450 2451 bool isSwiftErrorInRegister() const override { 2452 return true; 2453 } 2454 2455 private: 2456 ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType, 2457 bool IsVectorCall, bool IsRegCall) const; 2458 ABIArgInfo reclassifyHvaArgForVectorCall(QualType Ty, unsigned &FreeSSERegs, 2459 const ABIArgInfo ¤t) const; 2460 2461 X86AVXABILevel AVXLevel; 2462 2463 bool IsMingw64; 2464 }; 2465 2466 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2467 public: 2468 X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2469 : TargetCodeGenInfo(std::make_unique<X86_64ABIInfo>(CGT, AVXLevel)) {} 2470 2471 const X86_64ABIInfo &getABIInfo() const { 2472 return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo()); 2473 } 2474 2475 /// Disable tail call on x86-64. The epilogue code before the tail jump blocks 2476 /// autoreleaseRV/retainRV and autoreleaseRV/unsafeClaimRV optimizations. 2477 bool markARCOptimizedReturnCallsAsNoTail() const override { return true; } 2478 2479 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2480 return 7; 2481 } 2482 2483 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2484 llvm::Value *Address) const override { 2485 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2486 2487 // 0-15 are the 16 integer registers. 2488 // 16 is %rip. 2489 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2490 return false; 2491 } 2492 2493 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 2494 StringRef Constraint, 2495 llvm::Type* Ty) const override { 2496 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 2497 } 2498 2499 bool isNoProtoCallVariadic(const CallArgList &args, 2500 const FunctionNoProtoType *fnType) const override { 2501 // The default CC on x86-64 sets %al to the number of SSA 2502 // registers used, and GCC sets this when calling an unprototyped 2503 // function, so we override the default behavior. However, don't do 2504 // that when AVX types are involved: the ABI explicitly states it is 2505 // undefined, and it doesn't work in practice because of how the ABI 2506 // defines varargs anyway. 2507 if (fnType->getCallConv() == CC_C) { 2508 bool HasAVXType = false; 2509 for (CallArgList::const_iterator 2510 it = args.begin(), ie = args.end(); it != ie; ++it) { 2511 if (getABIInfo().isPassedUsingAVXType(it->Ty)) { 2512 HasAVXType = true; 2513 break; 2514 } 2515 } 2516 2517 if (!HasAVXType) 2518 return true; 2519 } 2520 2521 return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType); 2522 } 2523 2524 llvm::Constant * 2525 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 2526 unsigned Sig = (0xeb << 0) | // jmp rel8 2527 (0x06 << 8) | // .+0x08 2528 ('v' << 16) | 2529 ('2' << 24); 2530 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 2531 } 2532 2533 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2534 CodeGen::CodeGenModule &CGM) const override { 2535 if (GV->isDeclaration()) 2536 return; 2537 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2538 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2539 llvm::Function *Fn = cast<llvm::Function>(GV); 2540 Fn->addFnAttr("stackrealign"); 2541 } 2542 2543 addX86InterruptAttrs(FD, GV, CGM); 2544 } 2545 } 2546 2547 void checkFunctionCallABI(CodeGenModule &CGM, SourceLocation CallLoc, 2548 const FunctionDecl *Caller, 2549 const FunctionDecl *Callee, 2550 const CallArgList &Args) const override; 2551 }; 2552 2553 static void initFeatureMaps(const ASTContext &Ctx, 2554 llvm::StringMap<bool> &CallerMap, 2555 const FunctionDecl *Caller, 2556 llvm::StringMap<bool> &CalleeMap, 2557 const FunctionDecl *Callee) { 2558 if (CalleeMap.empty() && CallerMap.empty()) { 2559 // The caller is potentially nullptr in the case where the call isn't in a 2560 // function. In this case, the getFunctionFeatureMap ensures we just get 2561 // the TU level setting (since it cannot be modified by 'target'.. 2562 Ctx.getFunctionFeatureMap(CallerMap, Caller); 2563 Ctx.getFunctionFeatureMap(CalleeMap, Callee); 2564 } 2565 } 2566 2567 static bool checkAVXParamFeature(DiagnosticsEngine &Diag, 2568 SourceLocation CallLoc, 2569 const llvm::StringMap<bool> &CallerMap, 2570 const llvm::StringMap<bool> &CalleeMap, 2571 QualType Ty, StringRef Feature, 2572 bool IsArgument) { 2573 bool CallerHasFeat = CallerMap.lookup(Feature); 2574 bool CalleeHasFeat = CalleeMap.lookup(Feature); 2575 if (!CallerHasFeat && !CalleeHasFeat) 2576 return Diag.Report(CallLoc, diag::warn_avx_calling_convention) 2577 << IsArgument << Ty << Feature; 2578 2579 // Mixing calling conventions here is very clearly an error. 2580 if (!CallerHasFeat || !CalleeHasFeat) 2581 return Diag.Report(CallLoc, diag::err_avx_calling_convention) 2582 << IsArgument << Ty << Feature; 2583 2584 // Else, both caller and callee have the required feature, so there is no need 2585 // to diagnose. 2586 return false; 2587 } 2588 2589 static bool checkAVXParam(DiagnosticsEngine &Diag, ASTContext &Ctx, 2590 SourceLocation CallLoc, 2591 const llvm::StringMap<bool> &CallerMap, 2592 const llvm::StringMap<bool> &CalleeMap, QualType Ty, 2593 bool IsArgument) { 2594 uint64_t Size = Ctx.getTypeSize(Ty); 2595 if (Size > 256) 2596 return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty, 2597 "avx512f", IsArgument); 2598 2599 if (Size > 128) 2600 return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty, "avx", 2601 IsArgument); 2602 2603 return false; 2604 } 2605 2606 void X86_64TargetCodeGenInfo::checkFunctionCallABI( 2607 CodeGenModule &CGM, SourceLocation CallLoc, const FunctionDecl *Caller, 2608 const FunctionDecl *Callee, const CallArgList &Args) const { 2609 llvm::StringMap<bool> CallerMap; 2610 llvm::StringMap<bool> CalleeMap; 2611 unsigned ArgIndex = 0; 2612 2613 // We need to loop through the actual call arguments rather than the the 2614 // function's parameters, in case this variadic. 2615 for (const CallArg &Arg : Args) { 2616 // The "avx" feature changes how vectors >128 in size are passed. "avx512f" 2617 // additionally changes how vectors >256 in size are passed. Like GCC, we 2618 // warn when a function is called with an argument where this will change. 2619 // Unlike GCC, we also error when it is an obvious ABI mismatch, that is, 2620 // the caller and callee features are mismatched. 2621 // Unfortunately, we cannot do this diagnostic in SEMA, since the callee can 2622 // change its ABI with attribute-target after this call. 2623 if (Arg.getType()->isVectorType() && 2624 CGM.getContext().getTypeSize(Arg.getType()) > 128) { 2625 initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee); 2626 QualType Ty = Arg.getType(); 2627 // The CallArg seems to have desugared the type already, so for clearer 2628 // diagnostics, replace it with the type in the FunctionDecl if possible. 2629 if (ArgIndex < Callee->getNumParams()) 2630 Ty = Callee->getParamDecl(ArgIndex)->getType(); 2631 2632 if (checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap, 2633 CalleeMap, Ty, /*IsArgument*/ true)) 2634 return; 2635 } 2636 ++ArgIndex; 2637 } 2638 2639 // Check return always, as we don't have a good way of knowing in codegen 2640 // whether this value is used, tail-called, etc. 2641 if (Callee->getReturnType()->isVectorType() && 2642 CGM.getContext().getTypeSize(Callee->getReturnType()) > 128) { 2643 initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee); 2644 checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap, 2645 CalleeMap, Callee->getReturnType(), 2646 /*IsArgument*/ false); 2647 } 2648 } 2649 2650 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) { 2651 // If the argument does not end in .lib, automatically add the suffix. 2652 // If the argument contains a space, enclose it in quotes. 2653 // This matches the behavior of MSVC. 2654 bool Quote = Lib.contains(' '); 2655 std::string ArgStr = Quote ? "\"" : ""; 2656 ArgStr += Lib; 2657 if (!Lib.endswith_insensitive(".lib") && !Lib.endswith_insensitive(".a")) 2658 ArgStr += ".lib"; 2659 ArgStr += Quote ? "\"" : ""; 2660 return ArgStr; 2661 } 2662 2663 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo { 2664 public: 2665 WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2666 bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI, 2667 unsigned NumRegisterParameters) 2668 : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI, 2669 Win32StructABI, NumRegisterParameters, false) {} 2670 2671 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2672 CodeGen::CodeGenModule &CGM) const override; 2673 2674 void getDependentLibraryOption(llvm::StringRef Lib, 2675 llvm::SmallString<24> &Opt) const override { 2676 Opt = "/DEFAULTLIB:"; 2677 Opt += qualifyWindowsLibrary(Lib); 2678 } 2679 2680 void getDetectMismatchOption(llvm::StringRef Name, 2681 llvm::StringRef Value, 2682 llvm::SmallString<32> &Opt) const override { 2683 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2684 } 2685 }; 2686 2687 static void addStackProbeTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2688 CodeGen::CodeGenModule &CGM) { 2689 if (llvm::Function *Fn = dyn_cast_or_null<llvm::Function>(GV)) { 2690 2691 if (CGM.getCodeGenOpts().StackProbeSize != 4096) 2692 Fn->addFnAttr("stack-probe-size", 2693 llvm::utostr(CGM.getCodeGenOpts().StackProbeSize)); 2694 if (CGM.getCodeGenOpts().NoStackArgProbe) 2695 Fn->addFnAttr("no-stack-arg-probe"); 2696 } 2697 } 2698 2699 void WinX86_32TargetCodeGenInfo::setTargetAttributes( 2700 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2701 X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2702 if (GV->isDeclaration()) 2703 return; 2704 addStackProbeTargetAttributes(D, GV, CGM); 2705 } 2706 2707 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2708 public: 2709 WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2710 X86AVXABILevel AVXLevel) 2711 : TargetCodeGenInfo(std::make_unique<WinX86_64ABIInfo>(CGT, AVXLevel)) {} 2712 2713 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2714 CodeGen::CodeGenModule &CGM) const override; 2715 2716 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2717 return 7; 2718 } 2719 2720 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2721 llvm::Value *Address) const override { 2722 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2723 2724 // 0-15 are the 16 integer registers. 2725 // 16 is %rip. 2726 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2727 return false; 2728 } 2729 2730 void getDependentLibraryOption(llvm::StringRef Lib, 2731 llvm::SmallString<24> &Opt) const override { 2732 Opt = "/DEFAULTLIB:"; 2733 Opt += qualifyWindowsLibrary(Lib); 2734 } 2735 2736 void getDetectMismatchOption(llvm::StringRef Name, 2737 llvm::StringRef Value, 2738 llvm::SmallString<32> &Opt) const override { 2739 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2740 } 2741 }; 2742 2743 void WinX86_64TargetCodeGenInfo::setTargetAttributes( 2744 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2745 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2746 if (GV->isDeclaration()) 2747 return; 2748 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2749 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2750 llvm::Function *Fn = cast<llvm::Function>(GV); 2751 Fn->addFnAttr("stackrealign"); 2752 } 2753 2754 addX86InterruptAttrs(FD, GV, CGM); 2755 } 2756 2757 addStackProbeTargetAttributes(D, GV, CGM); 2758 } 2759 } 2760 2761 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo, 2762 Class &Hi) const { 2763 // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done: 2764 // 2765 // (a) If one of the classes is Memory, the whole argument is passed in 2766 // memory. 2767 // 2768 // (b) If X87UP is not preceded by X87, the whole argument is passed in 2769 // memory. 2770 // 2771 // (c) If the size of the aggregate exceeds two eightbytes and the first 2772 // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole 2773 // argument is passed in memory. NOTE: This is necessary to keep the 2774 // ABI working for processors that don't support the __m256 type. 2775 // 2776 // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE. 2777 // 2778 // Some of these are enforced by the merging logic. Others can arise 2779 // only with unions; for example: 2780 // union { _Complex double; unsigned; } 2781 // 2782 // Note that clauses (b) and (c) were added in 0.98. 2783 // 2784 if (Hi == Memory) 2785 Lo = Memory; 2786 if (Hi == X87Up && Lo != X87 && honorsRevision0_98()) 2787 Lo = Memory; 2788 if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp)) 2789 Lo = Memory; 2790 if (Hi == SSEUp && Lo != SSE) 2791 Hi = SSE; 2792 } 2793 2794 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) { 2795 // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is 2796 // classified recursively so that always two fields are 2797 // considered. The resulting class is calculated according to 2798 // the classes of the fields in the eightbyte: 2799 // 2800 // (a) If both classes are equal, this is the resulting class. 2801 // 2802 // (b) If one of the classes is NO_CLASS, the resulting class is 2803 // the other class. 2804 // 2805 // (c) If one of the classes is MEMORY, the result is the MEMORY 2806 // class. 2807 // 2808 // (d) If one of the classes is INTEGER, the result is the 2809 // INTEGER. 2810 // 2811 // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class, 2812 // MEMORY is used as class. 2813 // 2814 // (f) Otherwise class SSE is used. 2815 2816 // Accum should never be memory (we should have returned) or 2817 // ComplexX87 (because this cannot be passed in a structure). 2818 assert((Accum != Memory && Accum != ComplexX87) && 2819 "Invalid accumulated classification during merge."); 2820 if (Accum == Field || Field == NoClass) 2821 return Accum; 2822 if (Field == Memory) 2823 return Memory; 2824 if (Accum == NoClass) 2825 return Field; 2826 if (Accum == Integer || Field == Integer) 2827 return Integer; 2828 if (Field == X87 || Field == X87Up || Field == ComplexX87 || 2829 Accum == X87 || Accum == X87Up) 2830 return Memory; 2831 return SSE; 2832 } 2833 2834 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, 2835 Class &Lo, Class &Hi, bool isNamedArg) const { 2836 // FIXME: This code can be simplified by introducing a simple value class for 2837 // Class pairs with appropriate constructor methods for the various 2838 // situations. 2839 2840 // FIXME: Some of the split computations are wrong; unaligned vectors 2841 // shouldn't be passed in registers for example, so there is no chance they 2842 // can straddle an eightbyte. Verify & simplify. 2843 2844 Lo = Hi = NoClass; 2845 2846 Class &Current = OffsetBase < 64 ? Lo : Hi; 2847 Current = Memory; 2848 2849 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 2850 BuiltinType::Kind k = BT->getKind(); 2851 2852 if (k == BuiltinType::Void) { 2853 Current = NoClass; 2854 } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) { 2855 Lo = Integer; 2856 Hi = Integer; 2857 } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) { 2858 Current = Integer; 2859 } else if (k == BuiltinType::Float || k == BuiltinType::Double || 2860 k == BuiltinType::Float16) { 2861 Current = SSE; 2862 } else if (k == BuiltinType::LongDouble) { 2863 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2864 if (LDF == &llvm::APFloat::IEEEquad()) { 2865 Lo = SSE; 2866 Hi = SSEUp; 2867 } else if (LDF == &llvm::APFloat::x87DoubleExtended()) { 2868 Lo = X87; 2869 Hi = X87Up; 2870 } else if (LDF == &llvm::APFloat::IEEEdouble()) { 2871 Current = SSE; 2872 } else 2873 llvm_unreachable("unexpected long double representation!"); 2874 } 2875 // FIXME: _Decimal32 and _Decimal64 are SSE. 2876 // FIXME: _float128 and _Decimal128 are (SSE, SSEUp). 2877 return; 2878 } 2879 2880 if (const EnumType *ET = Ty->getAs<EnumType>()) { 2881 // Classify the underlying integer type. 2882 classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg); 2883 return; 2884 } 2885 2886 if (Ty->hasPointerRepresentation()) { 2887 Current = Integer; 2888 return; 2889 } 2890 2891 if (Ty->isMemberPointerType()) { 2892 if (Ty->isMemberFunctionPointerType()) { 2893 if (Has64BitPointers) { 2894 // If Has64BitPointers, this is an {i64, i64}, so classify both 2895 // Lo and Hi now. 2896 Lo = Hi = Integer; 2897 } else { 2898 // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that 2899 // straddles an eightbyte boundary, Hi should be classified as well. 2900 uint64_t EB_FuncPtr = (OffsetBase) / 64; 2901 uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64; 2902 if (EB_FuncPtr != EB_ThisAdj) { 2903 Lo = Hi = Integer; 2904 } else { 2905 Current = Integer; 2906 } 2907 } 2908 } else { 2909 Current = Integer; 2910 } 2911 return; 2912 } 2913 2914 if (const VectorType *VT = Ty->getAs<VectorType>()) { 2915 uint64_t Size = getContext().getTypeSize(VT); 2916 if (Size == 1 || Size == 8 || Size == 16 || Size == 32) { 2917 // gcc passes the following as integer: 2918 // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float> 2919 // 2 bytes - <2 x char>, <1 x short> 2920 // 1 byte - <1 x char> 2921 Current = Integer; 2922 2923 // If this type crosses an eightbyte boundary, it should be 2924 // split. 2925 uint64_t EB_Lo = (OffsetBase) / 64; 2926 uint64_t EB_Hi = (OffsetBase + Size - 1) / 64; 2927 if (EB_Lo != EB_Hi) 2928 Hi = Lo; 2929 } else if (Size == 64) { 2930 QualType ElementType = VT->getElementType(); 2931 2932 // gcc passes <1 x double> in memory. :( 2933 if (ElementType->isSpecificBuiltinType(BuiltinType::Double)) 2934 return; 2935 2936 // gcc passes <1 x long long> as SSE but clang used to unconditionally 2937 // pass them as integer. For platforms where clang is the de facto 2938 // platform compiler, we must continue to use integer. 2939 if (!classifyIntegerMMXAsSSE() && 2940 (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) || 2941 ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) || 2942 ElementType->isSpecificBuiltinType(BuiltinType::Long) || 2943 ElementType->isSpecificBuiltinType(BuiltinType::ULong))) 2944 Current = Integer; 2945 else 2946 Current = SSE; 2947 2948 // If this type crosses an eightbyte boundary, it should be 2949 // split. 2950 if (OffsetBase && OffsetBase != 64) 2951 Hi = Lo; 2952 } else if (Size == 128 || 2953 (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) { 2954 QualType ElementType = VT->getElementType(); 2955 2956 // gcc passes 256 and 512 bit <X x __int128> vectors in memory. :( 2957 if (passInt128VectorsInMem() && Size != 128 && 2958 (ElementType->isSpecificBuiltinType(BuiltinType::Int128) || 2959 ElementType->isSpecificBuiltinType(BuiltinType::UInt128))) 2960 return; 2961 2962 // Arguments of 256-bits are split into four eightbyte chunks. The 2963 // least significant one belongs to class SSE and all the others to class 2964 // SSEUP. The original Lo and Hi design considers that types can't be 2965 // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense. 2966 // This design isn't correct for 256-bits, but since there're no cases 2967 // where the upper parts would need to be inspected, avoid adding 2968 // complexity and just consider Hi to match the 64-256 part. 2969 // 2970 // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in 2971 // registers if they are "named", i.e. not part of the "..." of a 2972 // variadic function. 2973 // 2974 // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are 2975 // split into eight eightbyte chunks, one SSE and seven SSEUP. 2976 Lo = SSE; 2977 Hi = SSEUp; 2978 } 2979 return; 2980 } 2981 2982 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 2983 QualType ET = getContext().getCanonicalType(CT->getElementType()); 2984 2985 uint64_t Size = getContext().getTypeSize(Ty); 2986 if (ET->isIntegralOrEnumerationType()) { 2987 if (Size <= 64) 2988 Current = Integer; 2989 else if (Size <= 128) 2990 Lo = Hi = Integer; 2991 } else if (ET->isFloat16Type() || ET == getContext().FloatTy) { 2992 Current = SSE; 2993 } else if (ET == getContext().DoubleTy) { 2994 Lo = Hi = SSE; 2995 } else if (ET == getContext().LongDoubleTy) { 2996 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2997 if (LDF == &llvm::APFloat::IEEEquad()) 2998 Current = Memory; 2999 else if (LDF == &llvm::APFloat::x87DoubleExtended()) 3000 Current = ComplexX87; 3001 else if (LDF == &llvm::APFloat::IEEEdouble()) 3002 Lo = Hi = SSE; 3003 else 3004 llvm_unreachable("unexpected long double representation!"); 3005 } 3006 3007 // If this complex type crosses an eightbyte boundary then it 3008 // should be split. 3009 uint64_t EB_Real = (OffsetBase) / 64; 3010 uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64; 3011 if (Hi == NoClass && EB_Real != EB_Imag) 3012 Hi = Lo; 3013 3014 return; 3015 } 3016 3017 if (const auto *EITy = Ty->getAs<BitIntType>()) { 3018 if (EITy->getNumBits() <= 64) 3019 Current = Integer; 3020 else if (EITy->getNumBits() <= 128) 3021 Lo = Hi = Integer; 3022 // Larger values need to get passed in memory. 3023 return; 3024 } 3025 3026 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 3027 // Arrays are treated like structures. 3028 3029 uint64_t Size = getContext().getTypeSize(Ty); 3030 3031 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 3032 // than eight eightbytes, ..., it has class MEMORY. 3033 if (Size > 512) 3034 return; 3035 3036 // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned 3037 // fields, it has class MEMORY. 3038 // 3039 // Only need to check alignment of array base. 3040 if (OffsetBase % getContext().getTypeAlign(AT->getElementType())) 3041 return; 3042 3043 // Otherwise implement simplified merge. We could be smarter about 3044 // this, but it isn't worth it and would be harder to verify. 3045 Current = NoClass; 3046 uint64_t EltSize = getContext().getTypeSize(AT->getElementType()); 3047 uint64_t ArraySize = AT->getSize().getZExtValue(); 3048 3049 // The only case a 256-bit wide vector could be used is when the array 3050 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 3051 // to work for sizes wider than 128, early check and fallback to memory. 3052 // 3053 if (Size > 128 && 3054 (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel))) 3055 return; 3056 3057 for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) { 3058 Class FieldLo, FieldHi; 3059 classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg); 3060 Lo = merge(Lo, FieldLo); 3061 Hi = merge(Hi, FieldHi); 3062 if (Lo == Memory || Hi == Memory) 3063 break; 3064 } 3065 3066 postMerge(Size, Lo, Hi); 3067 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification."); 3068 return; 3069 } 3070 3071 if (const RecordType *RT = Ty->getAs<RecordType>()) { 3072 uint64_t Size = getContext().getTypeSize(Ty); 3073 3074 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 3075 // than eight eightbytes, ..., it has class MEMORY. 3076 if (Size > 512) 3077 return; 3078 3079 // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial 3080 // copy constructor or a non-trivial destructor, it is passed by invisible 3081 // reference. 3082 if (getRecordArgABI(RT, getCXXABI())) 3083 return; 3084 3085 const RecordDecl *RD = RT->getDecl(); 3086 3087 // Assume variable sized types are passed in memory. 3088 if (RD->hasFlexibleArrayMember()) 3089 return; 3090 3091 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 3092 3093 // Reset Lo class, this will be recomputed. 3094 Current = NoClass; 3095 3096 // If this is a C++ record, classify the bases first. 3097 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 3098 for (const auto &I : CXXRD->bases()) { 3099 assert(!I.isVirtual() && !I.getType()->isDependentType() && 3100 "Unexpected base class!"); 3101 const auto *Base = 3102 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 3103 3104 // Classify this field. 3105 // 3106 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a 3107 // single eightbyte, each is classified separately. Each eightbyte gets 3108 // initialized to class NO_CLASS. 3109 Class FieldLo, FieldHi; 3110 uint64_t Offset = 3111 OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base)); 3112 classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg); 3113 Lo = merge(Lo, FieldLo); 3114 Hi = merge(Hi, FieldHi); 3115 if (Lo == Memory || Hi == Memory) { 3116 postMerge(Size, Lo, Hi); 3117 return; 3118 } 3119 } 3120 } 3121 3122 // Classify the fields one at a time, merging the results. 3123 unsigned idx = 0; 3124 bool UseClang11Compat = getContext().getLangOpts().getClangABICompat() <= 3125 LangOptions::ClangABI::Ver11 || 3126 getContext().getTargetInfo().getTriple().isPS4(); 3127 bool IsUnion = RT->isUnionType() && !UseClang11Compat; 3128 3129 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 3130 i != e; ++i, ++idx) { 3131 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 3132 bool BitField = i->isBitField(); 3133 3134 // Ignore padding bit-fields. 3135 if (BitField && i->isUnnamedBitfield()) 3136 continue; 3137 3138 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than 3139 // eight eightbytes, or it contains unaligned fields, it has class MEMORY. 3140 // 3141 // The only case a 256-bit or a 512-bit wide vector could be used is when 3142 // the struct contains a single 256-bit or 512-bit element. Early check 3143 // and fallback to memory. 3144 // 3145 // FIXME: Extended the Lo and Hi logic properly to work for size wider 3146 // than 128. 3147 if (Size > 128 && 3148 ((!IsUnion && Size != getContext().getTypeSize(i->getType())) || 3149 Size > getNativeVectorSizeForAVXABI(AVXLevel))) { 3150 Lo = Memory; 3151 postMerge(Size, Lo, Hi); 3152 return; 3153 } 3154 // Note, skip this test for bit-fields, see below. 3155 if (!BitField && Offset % getContext().getTypeAlign(i->getType())) { 3156 Lo = Memory; 3157 postMerge(Size, Lo, Hi); 3158 return; 3159 } 3160 3161 // Classify this field. 3162 // 3163 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate 3164 // exceeds a single eightbyte, each is classified 3165 // separately. Each eightbyte gets initialized to class 3166 // NO_CLASS. 3167 Class FieldLo, FieldHi; 3168 3169 // Bit-fields require special handling, they do not force the 3170 // structure to be passed in memory even if unaligned, and 3171 // therefore they can straddle an eightbyte. 3172 if (BitField) { 3173 assert(!i->isUnnamedBitfield()); 3174 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 3175 uint64_t Size = i->getBitWidthValue(getContext()); 3176 3177 uint64_t EB_Lo = Offset / 64; 3178 uint64_t EB_Hi = (Offset + Size - 1) / 64; 3179 3180 if (EB_Lo) { 3181 assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes."); 3182 FieldLo = NoClass; 3183 FieldHi = Integer; 3184 } else { 3185 FieldLo = Integer; 3186 FieldHi = EB_Hi ? Integer : NoClass; 3187 } 3188 } else 3189 classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg); 3190 Lo = merge(Lo, FieldLo); 3191 Hi = merge(Hi, FieldHi); 3192 if (Lo == Memory || Hi == Memory) 3193 break; 3194 } 3195 3196 postMerge(Size, Lo, Hi); 3197 } 3198 } 3199 3200 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const { 3201 // If this is a scalar LLVM value then assume LLVM will pass it in the right 3202 // place naturally. 3203 if (!isAggregateTypeForABI(Ty)) { 3204 // Treat an enum type as its underlying type. 3205 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3206 Ty = EnumTy->getDecl()->getIntegerType(); 3207 3208 if (Ty->isBitIntType()) 3209 return getNaturalAlignIndirect(Ty); 3210 3211 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 3212 : ABIArgInfo::getDirect()); 3213 } 3214 3215 return getNaturalAlignIndirect(Ty); 3216 } 3217 3218 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const { 3219 if (const VectorType *VecTy = Ty->getAs<VectorType>()) { 3220 uint64_t Size = getContext().getTypeSize(VecTy); 3221 unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel); 3222 if (Size <= 64 || Size > LargestVector) 3223 return true; 3224 QualType EltTy = VecTy->getElementType(); 3225 if (passInt128VectorsInMem() && 3226 (EltTy->isSpecificBuiltinType(BuiltinType::Int128) || 3227 EltTy->isSpecificBuiltinType(BuiltinType::UInt128))) 3228 return true; 3229 } 3230 3231 return false; 3232 } 3233 3234 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty, 3235 unsigned freeIntRegs) const { 3236 // If this is a scalar LLVM value then assume LLVM will pass it in the right 3237 // place naturally. 3238 // 3239 // This assumption is optimistic, as there could be free registers available 3240 // when we need to pass this argument in memory, and LLVM could try to pass 3241 // the argument in the free register. This does not seem to happen currently, 3242 // but this code would be much safer if we could mark the argument with 3243 // 'onstack'. See PR12193. 3244 if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty) && 3245 !Ty->isBitIntType()) { 3246 // Treat an enum type as its underlying type. 3247 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3248 Ty = EnumTy->getDecl()->getIntegerType(); 3249 3250 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 3251 : ABIArgInfo::getDirect()); 3252 } 3253 3254 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 3255 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 3256 3257 // Compute the byval alignment. We specify the alignment of the byval in all 3258 // cases so that the mid-level optimizer knows the alignment of the byval. 3259 unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U); 3260 3261 // Attempt to avoid passing indirect results using byval when possible. This 3262 // is important for good codegen. 3263 // 3264 // We do this by coercing the value into a scalar type which the backend can 3265 // handle naturally (i.e., without using byval). 3266 // 3267 // For simplicity, we currently only do this when we have exhausted all of the 3268 // free integer registers. Doing this when there are free integer registers 3269 // would require more care, as we would have to ensure that the coerced value 3270 // did not claim the unused register. That would require either reording the 3271 // arguments to the function (so that any subsequent inreg values came first), 3272 // or only doing this optimization when there were no following arguments that 3273 // might be inreg. 3274 // 3275 // We currently expect it to be rare (particularly in well written code) for 3276 // arguments to be passed on the stack when there are still free integer 3277 // registers available (this would typically imply large structs being passed 3278 // by value), so this seems like a fair tradeoff for now. 3279 // 3280 // We can revisit this if the backend grows support for 'onstack' parameter 3281 // attributes. See PR12193. 3282 if (freeIntRegs == 0) { 3283 uint64_t Size = getContext().getTypeSize(Ty); 3284 3285 // If this type fits in an eightbyte, coerce it into the matching integral 3286 // type, which will end up on the stack (with alignment 8). 3287 if (Align == 8 && Size <= 64) 3288 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 3289 Size)); 3290 } 3291 3292 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align)); 3293 } 3294 3295 /// The ABI specifies that a value should be passed in a full vector XMM/YMM 3296 /// register. Pick an LLVM IR type that will be passed as a vector register. 3297 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const { 3298 // Wrapper structs/arrays that only contain vectors are passed just like 3299 // vectors; strip them off if present. 3300 if (const Type *InnerTy = isSingleElementStruct(Ty, getContext())) 3301 Ty = QualType(InnerTy, 0); 3302 3303 llvm::Type *IRType = CGT.ConvertType(Ty); 3304 if (isa<llvm::VectorType>(IRType)) { 3305 // Don't pass vXi128 vectors in their native type, the backend can't 3306 // legalize them. 3307 if (passInt128VectorsInMem() && 3308 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy(128)) { 3309 // Use a vXi64 vector. 3310 uint64_t Size = getContext().getTypeSize(Ty); 3311 return llvm::FixedVectorType::get(llvm::Type::getInt64Ty(getVMContext()), 3312 Size / 64); 3313 } 3314 3315 return IRType; 3316 } 3317 3318 if (IRType->getTypeID() == llvm::Type::FP128TyID) 3319 return IRType; 3320 3321 // We couldn't find the preferred IR vector type for 'Ty'. 3322 uint64_t Size = getContext().getTypeSize(Ty); 3323 assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!"); 3324 3325 3326 // Return a LLVM IR vector type based on the size of 'Ty'. 3327 return llvm::FixedVectorType::get(llvm::Type::getDoubleTy(getVMContext()), 3328 Size / 64); 3329 } 3330 3331 /// BitsContainNoUserData - Return true if the specified [start,end) bit range 3332 /// is known to either be off the end of the specified type or being in 3333 /// alignment padding. The user type specified is known to be at most 128 bits 3334 /// in size, and have passed through X86_64ABIInfo::classify with a successful 3335 /// classification that put one of the two halves in the INTEGER class. 3336 /// 3337 /// It is conservatively correct to return false. 3338 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit, 3339 unsigned EndBit, ASTContext &Context) { 3340 // If the bytes being queried are off the end of the type, there is no user 3341 // data hiding here. This handles analysis of builtins, vectors and other 3342 // types that don't contain interesting padding. 3343 unsigned TySize = (unsigned)Context.getTypeSize(Ty); 3344 if (TySize <= StartBit) 3345 return true; 3346 3347 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 3348 unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType()); 3349 unsigned NumElts = (unsigned)AT->getSize().getZExtValue(); 3350 3351 // Check each element to see if the element overlaps with the queried range. 3352 for (unsigned i = 0; i != NumElts; ++i) { 3353 // If the element is after the span we care about, then we're done.. 3354 unsigned EltOffset = i*EltSize; 3355 if (EltOffset >= EndBit) break; 3356 3357 unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0; 3358 if (!BitsContainNoUserData(AT->getElementType(), EltStart, 3359 EndBit-EltOffset, Context)) 3360 return false; 3361 } 3362 // If it overlaps no elements, then it is safe to process as padding. 3363 return true; 3364 } 3365 3366 if (const RecordType *RT = Ty->getAs<RecordType>()) { 3367 const RecordDecl *RD = RT->getDecl(); 3368 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 3369 3370 // If this is a C++ record, check the bases first. 3371 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 3372 for (const auto &I : CXXRD->bases()) { 3373 assert(!I.isVirtual() && !I.getType()->isDependentType() && 3374 "Unexpected base class!"); 3375 const auto *Base = 3376 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 3377 3378 // If the base is after the span we care about, ignore it. 3379 unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base)); 3380 if (BaseOffset >= EndBit) continue; 3381 3382 unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0; 3383 if (!BitsContainNoUserData(I.getType(), BaseStart, 3384 EndBit-BaseOffset, Context)) 3385 return false; 3386 } 3387 } 3388 3389 // Verify that no field has data that overlaps the region of interest. Yes 3390 // this could be sped up a lot by being smarter about queried fields, 3391 // however we're only looking at structs up to 16 bytes, so we don't care 3392 // much. 3393 unsigned idx = 0; 3394 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 3395 i != e; ++i, ++idx) { 3396 unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx); 3397 3398 // If we found a field after the region we care about, then we're done. 3399 if (FieldOffset >= EndBit) break; 3400 3401 unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0; 3402 if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset, 3403 Context)) 3404 return false; 3405 } 3406 3407 // If nothing in this record overlapped the area of interest, then we're 3408 // clean. 3409 return true; 3410 } 3411 3412 return false; 3413 } 3414 3415 /// getFPTypeAtOffset - Return a floating point type at the specified offset. 3416 static llvm::Type *getFPTypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3417 const llvm::DataLayout &TD) { 3418 if (IROffset == 0 && IRType->isFloatingPointTy()) 3419 return IRType; 3420 3421 // If this is a struct, recurse into the field at the specified offset. 3422 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 3423 if (!STy->getNumContainedTypes()) 3424 return nullptr; 3425 3426 const llvm::StructLayout *SL = TD.getStructLayout(STy); 3427 unsigned Elt = SL->getElementContainingOffset(IROffset); 3428 IROffset -= SL->getElementOffset(Elt); 3429 return getFPTypeAtOffset(STy->getElementType(Elt), IROffset, TD); 3430 } 3431 3432 // If this is an array, recurse into the field at the specified offset. 3433 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 3434 llvm::Type *EltTy = ATy->getElementType(); 3435 unsigned EltSize = TD.getTypeAllocSize(EltTy); 3436 IROffset -= IROffset / EltSize * EltSize; 3437 return getFPTypeAtOffset(EltTy, IROffset, TD); 3438 } 3439 3440 return nullptr; 3441 } 3442 3443 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the 3444 /// low 8 bytes of an XMM register, corresponding to the SSE class. 3445 llvm::Type *X86_64ABIInfo:: 3446 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3447 QualType SourceTy, unsigned SourceOffset) const { 3448 const llvm::DataLayout &TD = getDataLayout(); 3449 unsigned SourceSize = 3450 (unsigned)getContext().getTypeSize(SourceTy) / 8 - SourceOffset; 3451 llvm::Type *T0 = getFPTypeAtOffset(IRType, IROffset, TD); 3452 if (!T0 || T0->isDoubleTy()) 3453 return llvm::Type::getDoubleTy(getVMContext()); 3454 3455 // Get the adjacent FP type. 3456 llvm::Type *T1 = nullptr; 3457 unsigned T0Size = TD.getTypeAllocSize(T0); 3458 if (SourceSize > T0Size) 3459 T1 = getFPTypeAtOffset(IRType, IROffset + T0Size, TD); 3460 if (T1 == nullptr) { 3461 // Check if IRType is a half + float. float type will be in IROffset+4 due 3462 // to its alignment. 3463 if (T0->isHalfTy() && SourceSize > 4) 3464 T1 = getFPTypeAtOffset(IRType, IROffset + 4, TD); 3465 // If we can't get a second FP type, return a simple half or float. 3466 // avx512fp16-abi.c:pr51813_2 shows it works to return float for 3467 // {float, i8} too. 3468 if (T1 == nullptr) 3469 return T0; 3470 } 3471 3472 if (T0->isFloatTy() && T1->isFloatTy()) 3473 return llvm::FixedVectorType::get(T0, 2); 3474 3475 if (T0->isHalfTy() && T1->isHalfTy()) { 3476 llvm::Type *T2 = nullptr; 3477 if (SourceSize > 4) 3478 T2 = getFPTypeAtOffset(IRType, IROffset + 4, TD); 3479 if (T2 == nullptr) 3480 return llvm::FixedVectorType::get(T0, 2); 3481 return llvm::FixedVectorType::get(T0, 4); 3482 } 3483 3484 if (T0->isHalfTy() || T1->isHalfTy()) 3485 return llvm::FixedVectorType::get(llvm::Type::getHalfTy(getVMContext()), 4); 3486 3487 return llvm::Type::getDoubleTy(getVMContext()); 3488 } 3489 3490 3491 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in 3492 /// an 8-byte GPR. This means that we either have a scalar or we are talking 3493 /// about the high or low part of an up-to-16-byte struct. This routine picks 3494 /// the best LLVM IR type to represent this, which may be i64 or may be anything 3495 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*, 3496 /// etc). 3497 /// 3498 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for 3499 /// the source type. IROffset is an offset in bytes into the LLVM IR type that 3500 /// the 8-byte value references. PrefType may be null. 3501 /// 3502 /// SourceTy is the source-level type for the entire argument. SourceOffset is 3503 /// an offset into this that we're processing (which is always either 0 or 8). 3504 /// 3505 llvm::Type *X86_64ABIInfo:: 3506 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3507 QualType SourceTy, unsigned SourceOffset) const { 3508 // If we're dealing with an un-offset LLVM IR type, then it means that we're 3509 // returning an 8-byte unit starting with it. See if we can safely use it. 3510 if (IROffset == 0) { 3511 // Pointers and int64's always fill the 8-byte unit. 3512 if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) || 3513 IRType->isIntegerTy(64)) 3514 return IRType; 3515 3516 // If we have a 1/2/4-byte integer, we can use it only if the rest of the 3517 // goodness in the source type is just tail padding. This is allowed to 3518 // kick in for struct {double,int} on the int, but not on 3519 // struct{double,int,int} because we wouldn't return the second int. We 3520 // have to do this analysis on the source type because we can't depend on 3521 // unions being lowered a specific way etc. 3522 if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) || 3523 IRType->isIntegerTy(32) || 3524 (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) { 3525 unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 : 3526 cast<llvm::IntegerType>(IRType)->getBitWidth(); 3527 3528 if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth, 3529 SourceOffset*8+64, getContext())) 3530 return IRType; 3531 } 3532 } 3533 3534 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 3535 // If this is a struct, recurse into the field at the specified offset. 3536 const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy); 3537 if (IROffset < SL->getSizeInBytes()) { 3538 unsigned FieldIdx = SL->getElementContainingOffset(IROffset); 3539 IROffset -= SL->getElementOffset(FieldIdx); 3540 3541 return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset, 3542 SourceTy, SourceOffset); 3543 } 3544 } 3545 3546 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 3547 llvm::Type *EltTy = ATy->getElementType(); 3548 unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy); 3549 unsigned EltOffset = IROffset/EltSize*EltSize; 3550 return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy, 3551 SourceOffset); 3552 } 3553 3554 // Okay, we don't have any better idea of what to pass, so we pass this in an 3555 // integer register that isn't too big to fit the rest of the struct. 3556 unsigned TySizeInBytes = 3557 (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity(); 3558 3559 assert(TySizeInBytes != SourceOffset && "Empty field?"); 3560 3561 // It is always safe to classify this as an integer type up to i64 that 3562 // isn't larger than the structure. 3563 return llvm::IntegerType::get(getVMContext(), 3564 std::min(TySizeInBytes-SourceOffset, 8U)*8); 3565 } 3566 3567 3568 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally 3569 /// be used as elements of a two register pair to pass or return, return a 3570 /// first class aggregate to represent them. For example, if the low part of 3571 /// a by-value argument should be passed as i32* and the high part as float, 3572 /// return {i32*, float}. 3573 static llvm::Type * 3574 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi, 3575 const llvm::DataLayout &TD) { 3576 // In order to correctly satisfy the ABI, we need to the high part to start 3577 // at offset 8. If the high and low parts we inferred are both 4-byte types 3578 // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have 3579 // the second element at offset 8. Check for this: 3580 unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo); 3581 unsigned HiAlign = TD.getABITypeAlignment(Hi); 3582 unsigned HiStart = llvm::alignTo(LoSize, HiAlign); 3583 assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!"); 3584 3585 // To handle this, we have to increase the size of the low part so that the 3586 // second element will start at an 8 byte offset. We can't increase the size 3587 // of the second element because it might make us access off the end of the 3588 // struct. 3589 if (HiStart != 8) { 3590 // There are usually two sorts of types the ABI generation code can produce 3591 // for the low part of a pair that aren't 8 bytes in size: half, float or 3592 // i8/i16/i32. This can also include pointers when they are 32-bit (X32 and 3593 // NaCl). 3594 // Promote these to a larger type. 3595 if (Lo->isHalfTy() || Lo->isFloatTy()) 3596 Lo = llvm::Type::getDoubleTy(Lo->getContext()); 3597 else { 3598 assert((Lo->isIntegerTy() || Lo->isPointerTy()) 3599 && "Invalid/unknown lo type"); 3600 Lo = llvm::Type::getInt64Ty(Lo->getContext()); 3601 } 3602 } 3603 3604 llvm::StructType *Result = llvm::StructType::get(Lo, Hi); 3605 3606 // Verify that the second element is at an 8-byte offset. 3607 assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 && 3608 "Invalid x86-64 argument pair!"); 3609 return Result; 3610 } 3611 3612 ABIArgInfo X86_64ABIInfo:: 3613 classifyReturnType(QualType RetTy) const { 3614 // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the 3615 // classification algorithm. 3616 X86_64ABIInfo::Class Lo, Hi; 3617 classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true); 3618 3619 // Check some invariants. 3620 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3621 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3622 3623 llvm::Type *ResType = nullptr; 3624 switch (Lo) { 3625 case NoClass: 3626 if (Hi == NoClass) 3627 return ABIArgInfo::getIgnore(); 3628 // If the low part is just padding, it takes no register, leave ResType 3629 // null. 3630 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3631 "Unknown missing lo part"); 3632 break; 3633 3634 case SSEUp: 3635 case X87Up: 3636 llvm_unreachable("Invalid classification for lo word."); 3637 3638 // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via 3639 // hidden argument. 3640 case Memory: 3641 return getIndirectReturnResult(RetTy); 3642 3643 // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next 3644 // available register of the sequence %rax, %rdx is used. 3645 case Integer: 3646 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3647 3648 // If we have a sign or zero extended integer, make sure to return Extend 3649 // so that the parameter gets the right LLVM IR attributes. 3650 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3651 // Treat an enum type as its underlying type. 3652 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 3653 RetTy = EnumTy->getDecl()->getIntegerType(); 3654 3655 if (RetTy->isIntegralOrEnumerationType() && 3656 isPromotableIntegerTypeForABI(RetTy)) 3657 return ABIArgInfo::getExtend(RetTy); 3658 } 3659 break; 3660 3661 // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next 3662 // available SSE register of the sequence %xmm0, %xmm1 is used. 3663 case SSE: 3664 ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3665 break; 3666 3667 // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is 3668 // returned on the X87 stack in %st0 as 80-bit x87 number. 3669 case X87: 3670 ResType = llvm::Type::getX86_FP80Ty(getVMContext()); 3671 break; 3672 3673 // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real 3674 // part of the value is returned in %st0 and the imaginary part in 3675 // %st1. 3676 case ComplexX87: 3677 assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification."); 3678 ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()), 3679 llvm::Type::getX86_FP80Ty(getVMContext())); 3680 break; 3681 } 3682 3683 llvm::Type *HighPart = nullptr; 3684 switch (Hi) { 3685 // Memory was handled previously and X87 should 3686 // never occur as a hi class. 3687 case Memory: 3688 case X87: 3689 llvm_unreachable("Invalid classification for hi word."); 3690 3691 case ComplexX87: // Previously handled. 3692 case NoClass: 3693 break; 3694 3695 case Integer: 3696 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3697 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3698 return ABIArgInfo::getDirect(HighPart, 8); 3699 break; 3700 case SSE: 3701 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3702 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3703 return ABIArgInfo::getDirect(HighPart, 8); 3704 break; 3705 3706 // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte 3707 // is passed in the next available eightbyte chunk if the last used 3708 // vector register. 3709 // 3710 // SSEUP should always be preceded by SSE, just widen. 3711 case SSEUp: 3712 assert(Lo == SSE && "Unexpected SSEUp classification."); 3713 ResType = GetByteVectorType(RetTy); 3714 break; 3715 3716 // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is 3717 // returned together with the previous X87 value in %st0. 3718 case X87Up: 3719 // If X87Up is preceded by X87, we don't need to do 3720 // anything. However, in some cases with unions it may not be 3721 // preceded by X87. In such situations we follow gcc and pass the 3722 // extra bits in an SSE reg. 3723 if (Lo != X87) { 3724 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3725 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3726 return ABIArgInfo::getDirect(HighPart, 8); 3727 } 3728 break; 3729 } 3730 3731 // If a high part was specified, merge it together with the low part. It is 3732 // known to pass in the high eightbyte of the result. We do this by forming a 3733 // first class struct aggregate with the high and low part: {low, high} 3734 if (HighPart) 3735 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3736 3737 return ABIArgInfo::getDirect(ResType); 3738 } 3739 3740 ABIArgInfo X86_64ABIInfo::classifyArgumentType( 3741 QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE, 3742 bool isNamedArg) 3743 const 3744 { 3745 Ty = useFirstFieldIfTransparentUnion(Ty); 3746 3747 X86_64ABIInfo::Class Lo, Hi; 3748 classify(Ty, 0, Lo, Hi, isNamedArg); 3749 3750 // Check some invariants. 3751 // FIXME: Enforce these by construction. 3752 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3753 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3754 3755 neededInt = 0; 3756 neededSSE = 0; 3757 llvm::Type *ResType = nullptr; 3758 switch (Lo) { 3759 case NoClass: 3760 if (Hi == NoClass) 3761 return ABIArgInfo::getIgnore(); 3762 // If the low part is just padding, it takes no register, leave ResType 3763 // null. 3764 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3765 "Unknown missing lo part"); 3766 break; 3767 3768 // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument 3769 // on the stack. 3770 case Memory: 3771 3772 // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or 3773 // COMPLEX_X87, it is passed in memory. 3774 case X87: 3775 case ComplexX87: 3776 if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect) 3777 ++neededInt; 3778 return getIndirectResult(Ty, freeIntRegs); 3779 3780 case SSEUp: 3781 case X87Up: 3782 llvm_unreachable("Invalid classification for lo word."); 3783 3784 // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next 3785 // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8 3786 // and %r9 is used. 3787 case Integer: 3788 ++neededInt; 3789 3790 // Pick an 8-byte type based on the preferred type. 3791 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0); 3792 3793 // If we have a sign or zero extended integer, make sure to return Extend 3794 // so that the parameter gets the right LLVM IR attributes. 3795 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3796 // Treat an enum type as its underlying type. 3797 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3798 Ty = EnumTy->getDecl()->getIntegerType(); 3799 3800 if (Ty->isIntegralOrEnumerationType() && 3801 isPromotableIntegerTypeForABI(Ty)) 3802 return ABIArgInfo::getExtend(Ty); 3803 } 3804 3805 break; 3806 3807 // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next 3808 // available SSE register is used, the registers are taken in the 3809 // order from %xmm0 to %xmm7. 3810 case SSE: { 3811 llvm::Type *IRType = CGT.ConvertType(Ty); 3812 ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0); 3813 ++neededSSE; 3814 break; 3815 } 3816 } 3817 3818 llvm::Type *HighPart = nullptr; 3819 switch (Hi) { 3820 // Memory was handled previously, ComplexX87 and X87 should 3821 // never occur as hi classes, and X87Up must be preceded by X87, 3822 // which is passed in memory. 3823 case Memory: 3824 case X87: 3825 case ComplexX87: 3826 llvm_unreachable("Invalid classification for hi word."); 3827 3828 case NoClass: break; 3829 3830 case Integer: 3831 ++neededInt; 3832 // Pick an 8-byte type based on the preferred type. 3833 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3834 3835 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3836 return ABIArgInfo::getDirect(HighPart, 8); 3837 break; 3838 3839 // X87Up generally doesn't occur here (long double is passed in 3840 // memory), except in situations involving unions. 3841 case X87Up: 3842 case SSE: 3843 HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3844 3845 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3846 return ABIArgInfo::getDirect(HighPart, 8); 3847 3848 ++neededSSE; 3849 break; 3850 3851 // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the 3852 // eightbyte is passed in the upper half of the last used SSE 3853 // register. This only happens when 128-bit vectors are passed. 3854 case SSEUp: 3855 assert(Lo == SSE && "Unexpected SSEUp classification"); 3856 ResType = GetByteVectorType(Ty); 3857 break; 3858 } 3859 3860 // If a high part was specified, merge it together with the low part. It is 3861 // known to pass in the high eightbyte of the result. We do this by forming a 3862 // first class struct aggregate with the high and low part: {low, high} 3863 if (HighPart) 3864 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3865 3866 return ABIArgInfo::getDirect(ResType); 3867 } 3868 3869 ABIArgInfo 3870 X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 3871 unsigned &NeededSSE) const { 3872 auto RT = Ty->getAs<RecordType>(); 3873 assert(RT && "classifyRegCallStructType only valid with struct types"); 3874 3875 if (RT->getDecl()->hasFlexibleArrayMember()) 3876 return getIndirectReturnResult(Ty); 3877 3878 // Sum up bases 3879 if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 3880 if (CXXRD->isDynamicClass()) { 3881 NeededInt = NeededSSE = 0; 3882 return getIndirectReturnResult(Ty); 3883 } 3884 3885 for (const auto &I : CXXRD->bases()) 3886 if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE) 3887 .isIndirect()) { 3888 NeededInt = NeededSSE = 0; 3889 return getIndirectReturnResult(Ty); 3890 } 3891 } 3892 3893 // Sum up members 3894 for (const auto *FD : RT->getDecl()->fields()) { 3895 if (FD->getType()->isRecordType() && !FD->getType()->isUnionType()) { 3896 if (classifyRegCallStructTypeImpl(FD->getType(), NeededInt, NeededSSE) 3897 .isIndirect()) { 3898 NeededInt = NeededSSE = 0; 3899 return getIndirectReturnResult(Ty); 3900 } 3901 } else { 3902 unsigned LocalNeededInt, LocalNeededSSE; 3903 if (classifyArgumentType(FD->getType(), UINT_MAX, LocalNeededInt, 3904 LocalNeededSSE, true) 3905 .isIndirect()) { 3906 NeededInt = NeededSSE = 0; 3907 return getIndirectReturnResult(Ty); 3908 } 3909 NeededInt += LocalNeededInt; 3910 NeededSSE += LocalNeededSSE; 3911 } 3912 } 3913 3914 return ABIArgInfo::getDirect(); 3915 } 3916 3917 ABIArgInfo X86_64ABIInfo::classifyRegCallStructType(QualType Ty, 3918 unsigned &NeededInt, 3919 unsigned &NeededSSE) const { 3920 3921 NeededInt = 0; 3922 NeededSSE = 0; 3923 3924 return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE); 3925 } 3926 3927 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 3928 3929 const unsigned CallingConv = FI.getCallingConvention(); 3930 // It is possible to force Win64 calling convention on any x86_64 target by 3931 // using __attribute__((ms_abi)). In such case to correctly emit Win64 3932 // compatible code delegate this call to WinX86_64ABIInfo::computeInfo. 3933 if (CallingConv == llvm::CallingConv::Win64) { 3934 WinX86_64ABIInfo Win64ABIInfo(CGT, AVXLevel); 3935 Win64ABIInfo.computeInfo(FI); 3936 return; 3937 } 3938 3939 bool IsRegCall = CallingConv == llvm::CallingConv::X86_RegCall; 3940 3941 // Keep track of the number of assigned registers. 3942 unsigned FreeIntRegs = IsRegCall ? 11 : 6; 3943 unsigned FreeSSERegs = IsRegCall ? 16 : 8; 3944 unsigned NeededInt, NeededSSE; 3945 3946 if (!::classifyReturnType(getCXXABI(), FI, *this)) { 3947 if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() && 3948 !FI.getReturnType()->getTypePtr()->isUnionType()) { 3949 FI.getReturnInfo() = 3950 classifyRegCallStructType(FI.getReturnType(), NeededInt, NeededSSE); 3951 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 3952 FreeIntRegs -= NeededInt; 3953 FreeSSERegs -= NeededSSE; 3954 } else { 3955 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 3956 } 3957 } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>() && 3958 getContext().getCanonicalType(FI.getReturnType() 3959 ->getAs<ComplexType>() 3960 ->getElementType()) == 3961 getContext().LongDoubleTy) 3962 // Complex Long Double Type is passed in Memory when Regcall 3963 // calling convention is used. 3964 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 3965 else 3966 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 3967 } 3968 3969 // If the return value is indirect, then the hidden argument is consuming one 3970 // integer register. 3971 if (FI.getReturnInfo().isIndirect()) 3972 --FreeIntRegs; 3973 3974 // The chain argument effectively gives us another free register. 3975 if (FI.isChainCall()) 3976 ++FreeIntRegs; 3977 3978 unsigned NumRequiredArgs = FI.getNumRequiredArgs(); 3979 // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers 3980 // get assigned (in left-to-right order) for passing as follows... 3981 unsigned ArgNo = 0; 3982 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 3983 it != ie; ++it, ++ArgNo) { 3984 bool IsNamedArg = ArgNo < NumRequiredArgs; 3985 3986 if (IsRegCall && it->type->isStructureOrClassType()) 3987 it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE); 3988 else 3989 it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt, 3990 NeededSSE, IsNamedArg); 3991 3992 // AMD64-ABI 3.2.3p3: If there are no registers available for any 3993 // eightbyte of an argument, the whole argument is passed on the 3994 // stack. If registers have already been assigned for some 3995 // eightbytes of such an argument, the assignments get reverted. 3996 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 3997 FreeIntRegs -= NeededInt; 3998 FreeSSERegs -= NeededSSE; 3999 } else { 4000 it->info = getIndirectResult(it->type, FreeIntRegs); 4001 } 4002 } 4003 } 4004 4005 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF, 4006 Address VAListAddr, QualType Ty) { 4007 Address overflow_arg_area_p = 4008 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p"); 4009 llvm::Value *overflow_arg_area = 4010 CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area"); 4011 4012 // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16 4013 // byte boundary if alignment needed by type exceeds 8 byte boundary. 4014 // It isn't stated explicitly in the standard, but in practice we use 4015 // alignment greater than 16 where necessary. 4016 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 4017 if (Align > CharUnits::fromQuantity(8)) { 4018 overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area, 4019 Align); 4020 } 4021 4022 // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area. 4023 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 4024 llvm::Value *Res = 4025 CGF.Builder.CreateBitCast(overflow_arg_area, 4026 llvm::PointerType::getUnqual(LTy)); 4027 4028 // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to: 4029 // l->overflow_arg_area + sizeof(type). 4030 // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to 4031 // an 8 byte boundary. 4032 4033 uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8; 4034 llvm::Value *Offset = 4035 llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7); 4036 overflow_arg_area = CGF.Builder.CreateGEP(CGF.Int8Ty, overflow_arg_area, 4037 Offset, "overflow_arg_area.next"); 4038 CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p); 4039 4040 // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type. 4041 return Address(Res, LTy, Align); 4042 } 4043 4044 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4045 QualType Ty) const { 4046 // Assume that va_list type is correct; should be pointer to LLVM type: 4047 // struct { 4048 // i32 gp_offset; 4049 // i32 fp_offset; 4050 // i8* overflow_arg_area; 4051 // i8* reg_save_area; 4052 // }; 4053 unsigned neededInt, neededSSE; 4054 4055 Ty = getContext().getCanonicalType(Ty); 4056 ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE, 4057 /*isNamedArg*/false); 4058 4059 // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed 4060 // in the registers. If not go to step 7. 4061 if (!neededInt && !neededSSE) 4062 return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 4063 4064 // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of 4065 // general purpose registers needed to pass type and num_fp to hold 4066 // the number of floating point registers needed. 4067 4068 // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into 4069 // registers. In the case: l->gp_offset > 48 - num_gp * 8 or 4070 // l->fp_offset > 304 - num_fp * 16 go to step 7. 4071 // 4072 // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of 4073 // register save space). 4074 4075 llvm::Value *InRegs = nullptr; 4076 Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid(); 4077 llvm::Value *gp_offset = nullptr, *fp_offset = nullptr; 4078 if (neededInt) { 4079 gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p"); 4080 gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset"); 4081 InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8); 4082 InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp"); 4083 } 4084 4085 if (neededSSE) { 4086 fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p"); 4087 fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset"); 4088 llvm::Value *FitsInFP = 4089 llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16); 4090 FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp"); 4091 InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP; 4092 } 4093 4094 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 4095 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 4096 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 4097 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 4098 4099 // Emit code to load the value if it was passed in registers. 4100 4101 CGF.EmitBlock(InRegBlock); 4102 4103 // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with 4104 // an offset of l->gp_offset and/or l->fp_offset. This may require 4105 // copying to a temporary location in case the parameter is passed 4106 // in different register classes or requires an alignment greater 4107 // than 8 for general purpose registers and 16 for XMM registers. 4108 // 4109 // FIXME: This really results in shameful code when we end up needing to 4110 // collect arguments from different places; often what should result in a 4111 // simple assembling of a structure from scattered addresses has many more 4112 // loads than necessary. Can we clean this up? 4113 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 4114 llvm::Value *RegSaveArea = CGF.Builder.CreateLoad( 4115 CGF.Builder.CreateStructGEP(VAListAddr, 3), "reg_save_area"); 4116 4117 Address RegAddr = Address::invalid(); 4118 if (neededInt && neededSSE) { 4119 // FIXME: Cleanup. 4120 assert(AI.isDirect() && "Unexpected ABI info for mixed regs"); 4121 llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType()); 4122 Address Tmp = CGF.CreateMemTemp(Ty); 4123 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 4124 assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs"); 4125 llvm::Type *TyLo = ST->getElementType(0); 4126 llvm::Type *TyHi = ST->getElementType(1); 4127 assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) && 4128 "Unexpected ABI info for mixed regs"); 4129 llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo); 4130 llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi); 4131 llvm::Value *GPAddr = 4132 CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, gp_offset); 4133 llvm::Value *FPAddr = 4134 CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, fp_offset); 4135 llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr; 4136 llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr; 4137 4138 // Copy the first element. 4139 // FIXME: Our choice of alignment here and below is probably pessimistic. 4140 llvm::Value *V = CGF.Builder.CreateAlignedLoad( 4141 TyLo, CGF.Builder.CreateBitCast(RegLoAddr, PTyLo), 4142 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyLo))); 4143 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 4144 4145 // Copy the second element. 4146 V = CGF.Builder.CreateAlignedLoad( 4147 TyHi, CGF.Builder.CreateBitCast(RegHiAddr, PTyHi), 4148 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyHi))); 4149 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 4150 4151 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 4152 } else if (neededInt) { 4153 RegAddr = Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, gp_offset), 4154 CGF.Int8Ty, CharUnits::fromQuantity(8)); 4155 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 4156 4157 // Copy to a temporary if necessary to ensure the appropriate alignment. 4158 auto TInfo = getContext().getTypeInfoInChars(Ty); 4159 uint64_t TySize = TInfo.Width.getQuantity(); 4160 CharUnits TyAlign = TInfo.Align; 4161 4162 // Copy into a temporary if the type is more aligned than the 4163 // register save area. 4164 if (TyAlign.getQuantity() > 8) { 4165 Address Tmp = CGF.CreateMemTemp(Ty); 4166 CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false); 4167 RegAddr = Tmp; 4168 } 4169 4170 } else if (neededSSE == 1) { 4171 RegAddr = Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, fp_offset), 4172 CGF.Int8Ty, CharUnits::fromQuantity(16)); 4173 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 4174 } else { 4175 assert(neededSSE == 2 && "Invalid number of needed registers!"); 4176 // SSE registers are spaced 16 bytes apart in the register save 4177 // area, we need to collect the two eightbytes together. 4178 // The ABI isn't explicit about this, but it seems reasonable 4179 // to assume that the slots are 16-byte aligned, since the stack is 4180 // naturally 16-byte aligned and the prologue is expected to store 4181 // all the SSE registers to the RSA. 4182 Address RegAddrLo = Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, 4183 fp_offset), 4184 CGF.Int8Ty, CharUnits::fromQuantity(16)); 4185 Address RegAddrHi = 4186 CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo, 4187 CharUnits::fromQuantity(16)); 4188 llvm::Type *ST = AI.canHaveCoerceToType() 4189 ? AI.getCoerceToType() 4190 : llvm::StructType::get(CGF.DoubleTy, CGF.DoubleTy); 4191 llvm::Value *V; 4192 Address Tmp = CGF.CreateMemTemp(Ty); 4193 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 4194 V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast( 4195 RegAddrLo, ST->getStructElementType(0))); 4196 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 4197 V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast( 4198 RegAddrHi, ST->getStructElementType(1))); 4199 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 4200 4201 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 4202 } 4203 4204 // AMD64-ABI 3.5.7p5: Step 5. Set: 4205 // l->gp_offset = l->gp_offset + num_gp * 8 4206 // l->fp_offset = l->fp_offset + num_fp * 16. 4207 if (neededInt) { 4208 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8); 4209 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset), 4210 gp_offset_p); 4211 } 4212 if (neededSSE) { 4213 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16); 4214 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset), 4215 fp_offset_p); 4216 } 4217 CGF.EmitBranch(ContBlock); 4218 4219 // Emit code to load the value if it was passed in memory. 4220 4221 CGF.EmitBlock(InMemBlock); 4222 Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 4223 4224 // Return the appropriate result. 4225 4226 CGF.EmitBlock(ContBlock); 4227 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock, 4228 "vaarg.addr"); 4229 return ResAddr; 4230 } 4231 4232 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 4233 QualType Ty) const { 4234 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4235 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4236 uint64_t Width = getContext().getTypeSize(Ty); 4237 bool IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width); 4238 4239 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 4240 CGF.getContext().getTypeInfoInChars(Ty), 4241 CharUnits::fromQuantity(8), 4242 /*allowHigherAlign*/ false); 4243 } 4244 4245 ABIArgInfo WinX86_64ABIInfo::reclassifyHvaArgForVectorCall( 4246 QualType Ty, unsigned &FreeSSERegs, const ABIArgInfo ¤t) const { 4247 const Type *Base = nullptr; 4248 uint64_t NumElts = 0; 4249 4250 if (!Ty->isBuiltinType() && !Ty->isVectorType() && 4251 isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) { 4252 FreeSSERegs -= NumElts; 4253 return getDirectX86Hva(); 4254 } 4255 return current; 4256 } 4257 4258 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs, 4259 bool IsReturnType, bool IsVectorCall, 4260 bool IsRegCall) const { 4261 4262 if (Ty->isVoidType()) 4263 return ABIArgInfo::getIgnore(); 4264 4265 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4266 Ty = EnumTy->getDecl()->getIntegerType(); 4267 4268 TypeInfo Info = getContext().getTypeInfo(Ty); 4269 uint64_t Width = Info.Width; 4270 CharUnits Align = getContext().toCharUnitsFromBits(Info.Align); 4271 4272 const RecordType *RT = Ty->getAs<RecordType>(); 4273 if (RT) { 4274 if (!IsReturnType) { 4275 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI())) 4276 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 4277 } 4278 4279 if (RT->getDecl()->hasFlexibleArrayMember()) 4280 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4281 4282 } 4283 4284 const Type *Base = nullptr; 4285 uint64_t NumElts = 0; 4286 // vectorcall adds the concept of a homogenous vector aggregate, similar to 4287 // other targets. 4288 if ((IsVectorCall || IsRegCall) && 4289 isHomogeneousAggregate(Ty, Base, NumElts)) { 4290 if (IsRegCall) { 4291 if (FreeSSERegs >= NumElts) { 4292 FreeSSERegs -= NumElts; 4293 if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType()) 4294 return ABIArgInfo::getDirect(); 4295 return ABIArgInfo::getExpand(); 4296 } 4297 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4298 } else if (IsVectorCall) { 4299 if (FreeSSERegs >= NumElts && 4300 (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) { 4301 FreeSSERegs -= NumElts; 4302 return ABIArgInfo::getDirect(); 4303 } else if (IsReturnType) { 4304 return ABIArgInfo::getExpand(); 4305 } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) { 4306 // HVAs are delayed and reclassified in the 2nd step. 4307 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4308 } 4309 } 4310 } 4311 4312 if (Ty->isMemberPointerType()) { 4313 // If the member pointer is represented by an LLVM int or ptr, pass it 4314 // directly. 4315 llvm::Type *LLTy = CGT.ConvertType(Ty); 4316 if (LLTy->isPointerTy() || LLTy->isIntegerTy()) 4317 return ABIArgInfo::getDirect(); 4318 } 4319 4320 if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) { 4321 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4322 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4323 if (Width > 64 || !llvm::isPowerOf2_64(Width)) 4324 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4325 4326 // Otherwise, coerce it to a small integer. 4327 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width)); 4328 } 4329 4330 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 4331 switch (BT->getKind()) { 4332 case BuiltinType::Bool: 4333 // Bool type is always extended to the ABI, other builtin types are not 4334 // extended. 4335 return ABIArgInfo::getExtend(Ty); 4336 4337 case BuiltinType::LongDouble: 4338 // Mingw64 GCC uses the old 80 bit extended precision floating point 4339 // unit. It passes them indirectly through memory. 4340 if (IsMingw64) { 4341 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 4342 if (LDF == &llvm::APFloat::x87DoubleExtended()) 4343 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4344 } 4345 break; 4346 4347 case BuiltinType::Int128: 4348 case BuiltinType::UInt128: 4349 // If it's a parameter type, the normal ABI rule is that arguments larger 4350 // than 8 bytes are passed indirectly. GCC follows it. We follow it too, 4351 // even though it isn't particularly efficient. 4352 if (!IsReturnType) 4353 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4354 4355 // Mingw64 GCC returns i128 in XMM0. Coerce to v2i64 to handle that. 4356 // Clang matches them for compatibility. 4357 return ABIArgInfo::getDirect(llvm::FixedVectorType::get( 4358 llvm::Type::getInt64Ty(getVMContext()), 2)); 4359 4360 default: 4361 break; 4362 } 4363 } 4364 4365 if (Ty->isBitIntType()) { 4366 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4367 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4368 // However, non-power-of-two bit-precise integers will be passed as 1, 2, 4, 4369 // or 8 bytes anyway as long is it fits in them, so we don't have to check 4370 // the power of 2. 4371 if (Width <= 64) 4372 return ABIArgInfo::getDirect(); 4373 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4374 } 4375 4376 return ABIArgInfo::getDirect(); 4377 } 4378 4379 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 4380 const unsigned CC = FI.getCallingConvention(); 4381 bool IsVectorCall = CC == llvm::CallingConv::X86_VectorCall; 4382 bool IsRegCall = CC == llvm::CallingConv::X86_RegCall; 4383 4384 // If __attribute__((sysv_abi)) is in use, use the SysV argument 4385 // classification rules. 4386 if (CC == llvm::CallingConv::X86_64_SysV) { 4387 X86_64ABIInfo SysVABIInfo(CGT, AVXLevel); 4388 SysVABIInfo.computeInfo(FI); 4389 return; 4390 } 4391 4392 unsigned FreeSSERegs = 0; 4393 if (IsVectorCall) { 4394 // We can use up to 4 SSE return registers with vectorcall. 4395 FreeSSERegs = 4; 4396 } else if (IsRegCall) { 4397 // RegCall gives us 16 SSE registers. 4398 FreeSSERegs = 16; 4399 } 4400 4401 if (!getCXXABI().classifyReturnType(FI)) 4402 FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true, 4403 IsVectorCall, IsRegCall); 4404 4405 if (IsVectorCall) { 4406 // We can use up to 6 SSE register parameters with vectorcall. 4407 FreeSSERegs = 6; 4408 } else if (IsRegCall) { 4409 // RegCall gives us 16 SSE registers, we can reuse the return registers. 4410 FreeSSERegs = 16; 4411 } 4412 4413 unsigned ArgNum = 0; 4414 unsigned ZeroSSERegs = 0; 4415 for (auto &I : FI.arguments()) { 4416 // Vectorcall in x64 only permits the first 6 arguments to be passed as 4417 // XMM/YMM registers. After the sixth argument, pretend no vector 4418 // registers are left. 4419 unsigned *MaybeFreeSSERegs = 4420 (IsVectorCall && ArgNum >= 6) ? &ZeroSSERegs : &FreeSSERegs; 4421 I.info = 4422 classify(I.type, *MaybeFreeSSERegs, false, IsVectorCall, IsRegCall); 4423 ++ArgNum; 4424 } 4425 4426 if (IsVectorCall) { 4427 // For vectorcall, assign aggregate HVAs to any free vector registers in a 4428 // second pass. 4429 for (auto &I : FI.arguments()) 4430 I.info = reclassifyHvaArgForVectorCall(I.type, FreeSSERegs, I.info); 4431 } 4432 } 4433 4434 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4435 QualType Ty) const { 4436 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4437 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4438 uint64_t Width = getContext().getTypeSize(Ty); 4439 bool IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width); 4440 4441 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 4442 CGF.getContext().getTypeInfoInChars(Ty), 4443 CharUnits::fromQuantity(8), 4444 /*allowHigherAlign*/ false); 4445 } 4446 4447 static bool PPC_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4448 llvm::Value *Address, bool Is64Bit, 4449 bool IsAIX) { 4450 // This is calculated from the LLVM and GCC tables and verified 4451 // against gcc output. AFAIK all PPC ABIs use the same encoding. 4452 4453 CodeGen::CGBuilderTy &Builder = CGF.Builder; 4454 4455 llvm::IntegerType *i8 = CGF.Int8Ty; 4456 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 4457 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 4458 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 4459 4460 // 0-31: r0-31, the 4-byte or 8-byte general-purpose registers 4461 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 0, 31); 4462 4463 // 32-63: fp0-31, the 8-byte floating-point registers 4464 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 4465 4466 // 64-67 are various 4-byte or 8-byte special-purpose registers: 4467 // 64: mq 4468 // 65: lr 4469 // 66: ctr 4470 // 67: ap 4471 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 64, 67); 4472 4473 // 68-76 are various 4-byte special-purpose registers: 4474 // 68-75 cr0-7 4475 // 76: xer 4476 AssignToArrayRange(Builder, Address, Four8, 68, 76); 4477 4478 // 77-108: v0-31, the 16-byte vector registers 4479 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 4480 4481 // 109: vrsave 4482 // 110: vscr 4483 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 109, 110); 4484 4485 // AIX does not utilize the rest of the registers. 4486 if (IsAIX) 4487 return false; 4488 4489 // 111: spe_acc 4490 // 112: spefscr 4491 // 113: sfp 4492 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 111, 113); 4493 4494 if (!Is64Bit) 4495 return false; 4496 4497 // TODO: Need to verify if these registers are used on 64 bit AIX with Power8 4498 // or above CPU. 4499 // 64-bit only registers: 4500 // 114: tfhar 4501 // 115: tfiar 4502 // 116: texasr 4503 AssignToArrayRange(Builder, Address, Eight8, 114, 116); 4504 4505 return false; 4506 } 4507 4508 // AIX 4509 namespace { 4510 /// AIXABIInfo - The AIX XCOFF ABI information. 4511 class AIXABIInfo : public ABIInfo { 4512 const bool Is64Bit; 4513 const unsigned PtrByteSize; 4514 CharUnits getParamTypeAlignment(QualType Ty) const; 4515 4516 public: 4517 AIXABIInfo(CodeGen::CodeGenTypes &CGT, bool Is64Bit) 4518 : ABIInfo(CGT), Is64Bit(Is64Bit), PtrByteSize(Is64Bit ? 8 : 4) {} 4519 4520 bool isPromotableTypeForABI(QualType Ty) const; 4521 4522 ABIArgInfo classifyReturnType(QualType RetTy) const; 4523 ABIArgInfo classifyArgumentType(QualType Ty) const; 4524 4525 void computeInfo(CGFunctionInfo &FI) const override { 4526 if (!getCXXABI().classifyReturnType(FI)) 4527 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4528 4529 for (auto &I : FI.arguments()) 4530 I.info = classifyArgumentType(I.type); 4531 } 4532 4533 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4534 QualType Ty) const override; 4535 }; 4536 4537 class AIXTargetCodeGenInfo : public TargetCodeGenInfo { 4538 const bool Is64Bit; 4539 4540 public: 4541 AIXTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool Is64Bit) 4542 : TargetCodeGenInfo(std::make_unique<AIXABIInfo>(CGT, Is64Bit)), 4543 Is64Bit(Is64Bit) {} 4544 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4545 return 1; // r1 is the dedicated stack pointer 4546 } 4547 4548 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4549 llvm::Value *Address) const override; 4550 }; 4551 } // namespace 4552 4553 // Return true if the ABI requires Ty to be passed sign- or zero- 4554 // extended to 32/64 bits. 4555 bool AIXABIInfo::isPromotableTypeForABI(QualType Ty) const { 4556 // Treat an enum type as its underlying type. 4557 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4558 Ty = EnumTy->getDecl()->getIntegerType(); 4559 4560 // Promotable integer types are required to be promoted by the ABI. 4561 if (Ty->isPromotableIntegerType()) 4562 return true; 4563 4564 if (!Is64Bit) 4565 return false; 4566 4567 // For 64 bit mode, in addition to the usual promotable integer types, we also 4568 // need to extend all 32-bit types, since the ABI requires promotion to 64 4569 // bits. 4570 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 4571 switch (BT->getKind()) { 4572 case BuiltinType::Int: 4573 case BuiltinType::UInt: 4574 return true; 4575 default: 4576 break; 4577 } 4578 4579 return false; 4580 } 4581 4582 ABIArgInfo AIXABIInfo::classifyReturnType(QualType RetTy) const { 4583 if (RetTy->isAnyComplexType()) 4584 return ABIArgInfo::getDirect(); 4585 4586 if (RetTy->isVectorType()) 4587 return ABIArgInfo::getDirect(); 4588 4589 if (RetTy->isVoidType()) 4590 return ABIArgInfo::getIgnore(); 4591 4592 if (isAggregateTypeForABI(RetTy)) 4593 return getNaturalAlignIndirect(RetTy); 4594 4595 return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 4596 : ABIArgInfo::getDirect()); 4597 } 4598 4599 ABIArgInfo AIXABIInfo::classifyArgumentType(QualType Ty) const { 4600 Ty = useFirstFieldIfTransparentUnion(Ty); 4601 4602 if (Ty->isAnyComplexType()) 4603 return ABIArgInfo::getDirect(); 4604 4605 if (Ty->isVectorType()) 4606 return ABIArgInfo::getDirect(); 4607 4608 if (isAggregateTypeForABI(Ty)) { 4609 // Records with non-trivial destructors/copy-constructors should not be 4610 // passed by value. 4611 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 4612 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 4613 4614 CharUnits CCAlign = getParamTypeAlignment(Ty); 4615 CharUnits TyAlign = getContext().getTypeAlignInChars(Ty); 4616 4617 return ABIArgInfo::getIndirect(CCAlign, /*ByVal*/ true, 4618 /*Realign*/ TyAlign > CCAlign); 4619 } 4620 4621 return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 4622 : ABIArgInfo::getDirect()); 4623 } 4624 4625 CharUnits AIXABIInfo::getParamTypeAlignment(QualType Ty) const { 4626 // Complex types are passed just like their elements. 4627 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 4628 Ty = CTy->getElementType(); 4629 4630 if (Ty->isVectorType()) 4631 return CharUnits::fromQuantity(16); 4632 4633 // If the structure contains a vector type, the alignment is 16. 4634 if (isRecordWithSIMDVectorType(getContext(), Ty)) 4635 return CharUnits::fromQuantity(16); 4636 4637 return CharUnits::fromQuantity(PtrByteSize); 4638 } 4639 4640 Address AIXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4641 QualType Ty) const { 4642 4643 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 4644 TypeInfo.Align = getParamTypeAlignment(Ty); 4645 4646 CharUnits SlotSize = CharUnits::fromQuantity(PtrByteSize); 4647 4648 // If we have a complex type and the base type is smaller than the register 4649 // size, the ABI calls for the real and imaginary parts to be right-adjusted 4650 // in separate words in 32bit mode or doublewords in 64bit mode. However, 4651 // Clang expects us to produce a pointer to a structure with the two parts 4652 // packed tightly. So generate loads of the real and imaginary parts relative 4653 // to the va_list pointer, and store them to a temporary structure. We do the 4654 // same as the PPC64ABI here. 4655 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 4656 CharUnits EltSize = TypeInfo.Width / 2; 4657 if (EltSize < SlotSize) 4658 return complexTempStructure(CGF, VAListAddr, Ty, SlotSize, EltSize, CTy); 4659 } 4660 4661 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, TypeInfo, 4662 SlotSize, /*AllowHigher*/ true); 4663 } 4664 4665 bool AIXTargetCodeGenInfo::initDwarfEHRegSizeTable( 4666 CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const { 4667 return PPC_initDwarfEHRegSizeTable(CGF, Address, Is64Bit, /*IsAIX*/ true); 4668 } 4669 4670 // PowerPC-32 4671 namespace { 4672 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information. 4673 class PPC32_SVR4_ABIInfo : public DefaultABIInfo { 4674 bool IsSoftFloatABI; 4675 bool IsRetSmallStructInRegABI; 4676 4677 CharUnits getParamTypeAlignment(QualType Ty) const; 4678 4679 public: 4680 PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI, 4681 bool RetSmallStructInRegABI) 4682 : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI), 4683 IsRetSmallStructInRegABI(RetSmallStructInRegABI) {} 4684 4685 ABIArgInfo classifyReturnType(QualType RetTy) const; 4686 4687 void computeInfo(CGFunctionInfo &FI) const override { 4688 if (!getCXXABI().classifyReturnType(FI)) 4689 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4690 for (auto &I : FI.arguments()) 4691 I.info = classifyArgumentType(I.type); 4692 } 4693 4694 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4695 QualType Ty) const override; 4696 }; 4697 4698 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo { 4699 public: 4700 PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI, 4701 bool RetSmallStructInRegABI) 4702 : TargetCodeGenInfo(std::make_unique<PPC32_SVR4_ABIInfo>( 4703 CGT, SoftFloatABI, RetSmallStructInRegABI)) {} 4704 4705 static bool isStructReturnInRegABI(const llvm::Triple &Triple, 4706 const CodeGenOptions &Opts); 4707 4708 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4709 // This is recovered from gcc output. 4710 return 1; // r1 is the dedicated stack pointer 4711 } 4712 4713 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4714 llvm::Value *Address) const override; 4715 }; 4716 } 4717 4718 CharUnits PPC32_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 4719 // Complex types are passed just like their elements. 4720 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 4721 Ty = CTy->getElementType(); 4722 4723 if (Ty->isVectorType()) 4724 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 4725 : 4); 4726 4727 // For single-element float/vector structs, we consider the whole type 4728 // to have the same alignment requirements as its single element. 4729 const Type *AlignTy = nullptr; 4730 if (const Type *EltType = isSingleElementStruct(Ty, getContext())) { 4731 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 4732 if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) || 4733 (BT && BT->isFloatingPoint())) 4734 AlignTy = EltType; 4735 } 4736 4737 if (AlignTy) 4738 return CharUnits::fromQuantity(AlignTy->isVectorType() ? 16 : 4); 4739 return CharUnits::fromQuantity(4); 4740 } 4741 4742 ABIArgInfo PPC32_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { 4743 uint64_t Size; 4744 4745 // -msvr4-struct-return puts small aggregates in GPR3 and GPR4. 4746 if (isAggregateTypeForABI(RetTy) && IsRetSmallStructInRegABI && 4747 (Size = getContext().getTypeSize(RetTy)) <= 64) { 4748 // System V ABI (1995), page 3-22, specified: 4749 // > A structure or union whose size is less than or equal to 8 bytes 4750 // > shall be returned in r3 and r4, as if it were first stored in the 4751 // > 8-byte aligned memory area and then the low addressed word were 4752 // > loaded into r3 and the high-addressed word into r4. Bits beyond 4753 // > the last member of the structure or union are not defined. 4754 // 4755 // GCC for big-endian PPC32 inserts the pad before the first member, 4756 // not "beyond the last member" of the struct. To stay compatible 4757 // with GCC, we coerce the struct to an integer of the same size. 4758 // LLVM will extend it and return i32 in r3, or i64 in r3:r4. 4759 if (Size == 0) 4760 return ABIArgInfo::getIgnore(); 4761 else { 4762 llvm::Type *CoerceTy = llvm::Type::getIntNTy(getVMContext(), Size); 4763 return ABIArgInfo::getDirect(CoerceTy); 4764 } 4765 } 4766 4767 return DefaultABIInfo::classifyReturnType(RetTy); 4768 } 4769 4770 // TODO: this implementation is now likely redundant with 4771 // DefaultABIInfo::EmitVAArg. 4772 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList, 4773 QualType Ty) const { 4774 if (getTarget().getTriple().isOSDarwin()) { 4775 auto TI = getContext().getTypeInfoInChars(Ty); 4776 TI.Align = getParamTypeAlignment(Ty); 4777 4778 CharUnits SlotSize = CharUnits::fromQuantity(4); 4779 return emitVoidPtrVAArg(CGF, VAList, Ty, 4780 classifyArgumentType(Ty).isIndirect(), TI, SlotSize, 4781 /*AllowHigherAlign=*/true); 4782 } 4783 4784 const unsigned OverflowLimit = 8; 4785 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 4786 // TODO: Implement this. For now ignore. 4787 (void)CTy; 4788 return Address::invalid(); // FIXME? 4789 } 4790 4791 // struct __va_list_tag { 4792 // unsigned char gpr; 4793 // unsigned char fpr; 4794 // unsigned short reserved; 4795 // void *overflow_arg_area; 4796 // void *reg_save_area; 4797 // }; 4798 4799 bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64; 4800 bool isInt = !Ty->isFloatingType(); 4801 bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64; 4802 4803 // All aggregates are passed indirectly? That doesn't seem consistent 4804 // with the argument-lowering code. 4805 bool isIndirect = isAggregateTypeForABI(Ty); 4806 4807 CGBuilderTy &Builder = CGF.Builder; 4808 4809 // The calling convention either uses 1-2 GPRs or 1 FPR. 4810 Address NumRegsAddr = Address::invalid(); 4811 if (isInt || IsSoftFloatABI) { 4812 NumRegsAddr = Builder.CreateStructGEP(VAList, 0, "gpr"); 4813 } else { 4814 NumRegsAddr = Builder.CreateStructGEP(VAList, 1, "fpr"); 4815 } 4816 4817 llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs"); 4818 4819 // "Align" the register count when TY is i64. 4820 if (isI64 || (isF64 && IsSoftFloatABI)) { 4821 NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1)); 4822 NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U)); 4823 } 4824 4825 llvm::Value *CC = 4826 Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond"); 4827 4828 llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs"); 4829 llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow"); 4830 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 4831 4832 Builder.CreateCondBr(CC, UsingRegs, UsingOverflow); 4833 4834 llvm::Type *DirectTy = CGF.ConvertType(Ty), *ElementTy = DirectTy; 4835 if (isIndirect) DirectTy = DirectTy->getPointerTo(0); 4836 4837 // Case 1: consume registers. 4838 Address RegAddr = Address::invalid(); 4839 { 4840 CGF.EmitBlock(UsingRegs); 4841 4842 Address RegSaveAreaPtr = Builder.CreateStructGEP(VAList, 4); 4843 RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr), CGF.Int8Ty, 4844 CharUnits::fromQuantity(8)); 4845 assert(RegAddr.getElementType() == CGF.Int8Ty); 4846 4847 // Floating-point registers start after the general-purpose registers. 4848 if (!(isInt || IsSoftFloatABI)) { 4849 RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr, 4850 CharUnits::fromQuantity(32)); 4851 } 4852 4853 // Get the address of the saved value by scaling the number of 4854 // registers we've used by the number of 4855 CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8); 4856 llvm::Value *RegOffset = 4857 Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity())); 4858 RegAddr = Address( 4859 Builder.CreateInBoundsGEP(CGF.Int8Ty, RegAddr.getPointer(), RegOffset), 4860 CGF.Int8Ty, RegAddr.getAlignment().alignmentOfArrayElement(RegSize)); 4861 RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy); 4862 4863 // Increase the used-register count. 4864 NumRegs = 4865 Builder.CreateAdd(NumRegs, 4866 Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1)); 4867 Builder.CreateStore(NumRegs, NumRegsAddr); 4868 4869 CGF.EmitBranch(Cont); 4870 } 4871 4872 // Case 2: consume space in the overflow area. 4873 Address MemAddr = Address::invalid(); 4874 { 4875 CGF.EmitBlock(UsingOverflow); 4876 4877 Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr); 4878 4879 // Everything in the overflow area is rounded up to a size of at least 4. 4880 CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4); 4881 4882 CharUnits Size; 4883 if (!isIndirect) { 4884 auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty); 4885 Size = TypeInfo.Width.alignTo(OverflowAreaAlign); 4886 } else { 4887 Size = CGF.getPointerSize(); 4888 } 4889 4890 Address OverflowAreaAddr = Builder.CreateStructGEP(VAList, 3); 4891 Address OverflowArea = 4892 Address(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"), CGF.Int8Ty, 4893 OverflowAreaAlign); 4894 // Round up address of argument to alignment 4895 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 4896 if (Align > OverflowAreaAlign) { 4897 llvm::Value *Ptr = OverflowArea.getPointer(); 4898 OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align), 4899 OverflowArea.getElementType(), Align); 4900 } 4901 4902 MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy); 4903 4904 // Increase the overflow area. 4905 OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size); 4906 Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr); 4907 CGF.EmitBranch(Cont); 4908 } 4909 4910 CGF.EmitBlock(Cont); 4911 4912 // Merge the cases with a phi. 4913 Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow, 4914 "vaarg.addr"); 4915 4916 // Load the pointer if the argument was passed indirectly. 4917 if (isIndirect) { 4918 Result = Address(Builder.CreateLoad(Result, "aggr"), ElementTy, 4919 getContext().getTypeAlignInChars(Ty)); 4920 } 4921 4922 return Result; 4923 } 4924 4925 bool PPC32TargetCodeGenInfo::isStructReturnInRegABI( 4926 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 4927 assert(Triple.isPPC32()); 4928 4929 switch (Opts.getStructReturnConvention()) { 4930 case CodeGenOptions::SRCK_Default: 4931 break; 4932 case CodeGenOptions::SRCK_OnStack: // -maix-struct-return 4933 return false; 4934 case CodeGenOptions::SRCK_InRegs: // -msvr4-struct-return 4935 return true; 4936 } 4937 4938 if (Triple.isOSBinFormatELF() && !Triple.isOSLinux()) 4939 return true; 4940 4941 return false; 4942 } 4943 4944 bool 4945 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4946 llvm::Value *Address) const { 4947 return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ false, 4948 /*IsAIX*/ false); 4949 } 4950 4951 // PowerPC-64 4952 4953 namespace { 4954 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information. 4955 class PPC64_SVR4_ABIInfo : public SwiftABIInfo { 4956 public: 4957 enum ABIKind { 4958 ELFv1 = 0, 4959 ELFv2 4960 }; 4961 4962 private: 4963 static const unsigned GPRBits = 64; 4964 ABIKind Kind; 4965 bool IsSoftFloatABI; 4966 4967 public: 4968 PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, 4969 bool SoftFloatABI) 4970 : SwiftABIInfo(CGT), Kind(Kind), IsSoftFloatABI(SoftFloatABI) {} 4971 4972 bool isPromotableTypeForABI(QualType Ty) const; 4973 CharUnits getParamTypeAlignment(QualType Ty) const; 4974 4975 ABIArgInfo classifyReturnType(QualType RetTy) const; 4976 ABIArgInfo classifyArgumentType(QualType Ty) const; 4977 4978 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 4979 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 4980 uint64_t Members) const override; 4981 4982 // TODO: We can add more logic to computeInfo to improve performance. 4983 // Example: For aggregate arguments that fit in a register, we could 4984 // use getDirectInReg (as is done below for structs containing a single 4985 // floating-point value) to avoid pushing them to memory on function 4986 // entry. This would require changing the logic in PPCISelLowering 4987 // when lowering the parameters in the caller and args in the callee. 4988 void computeInfo(CGFunctionInfo &FI) const override { 4989 if (!getCXXABI().classifyReturnType(FI)) 4990 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4991 for (auto &I : FI.arguments()) { 4992 // We rely on the default argument classification for the most part. 4993 // One exception: An aggregate containing a single floating-point 4994 // or vector item must be passed in a register if one is available. 4995 const Type *T = isSingleElementStruct(I.type, getContext()); 4996 if (T) { 4997 const BuiltinType *BT = T->getAs<BuiltinType>(); 4998 if ((T->isVectorType() && getContext().getTypeSize(T) == 128) || 4999 (BT && BT->isFloatingPoint())) { 5000 QualType QT(T, 0); 5001 I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT)); 5002 continue; 5003 } 5004 } 5005 I.info = classifyArgumentType(I.type); 5006 } 5007 } 5008 5009 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5010 QualType Ty) const override; 5011 5012 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 5013 bool asReturnValue) const override { 5014 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 5015 } 5016 5017 bool isSwiftErrorInRegister() const override { 5018 return false; 5019 } 5020 }; 5021 5022 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo { 5023 5024 public: 5025 PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT, 5026 PPC64_SVR4_ABIInfo::ABIKind Kind, 5027 bool SoftFloatABI) 5028 : TargetCodeGenInfo( 5029 std::make_unique<PPC64_SVR4_ABIInfo>(CGT, Kind, SoftFloatABI)) {} 5030 5031 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 5032 // This is recovered from gcc output. 5033 return 1; // r1 is the dedicated stack pointer 5034 } 5035 5036 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5037 llvm::Value *Address) const override; 5038 }; 5039 5040 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo { 5041 public: 5042 PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {} 5043 5044 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 5045 // This is recovered from gcc output. 5046 return 1; // r1 is the dedicated stack pointer 5047 } 5048 5049 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5050 llvm::Value *Address) const override; 5051 }; 5052 5053 } 5054 5055 // Return true if the ABI requires Ty to be passed sign- or zero- 5056 // extended to 64 bits. 5057 bool 5058 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const { 5059 // Treat an enum type as its underlying type. 5060 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5061 Ty = EnumTy->getDecl()->getIntegerType(); 5062 5063 // Promotable integer types are required to be promoted by the ABI. 5064 if (isPromotableIntegerTypeForABI(Ty)) 5065 return true; 5066 5067 // In addition to the usual promotable integer types, we also need to 5068 // extend all 32-bit types, since the ABI requires promotion to 64 bits. 5069 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 5070 switch (BT->getKind()) { 5071 case BuiltinType::Int: 5072 case BuiltinType::UInt: 5073 return true; 5074 default: 5075 break; 5076 } 5077 5078 if (const auto *EIT = Ty->getAs<BitIntType>()) 5079 if (EIT->getNumBits() < 64) 5080 return true; 5081 5082 return false; 5083 } 5084 5085 /// isAlignedParamType - Determine whether a type requires 16-byte or 5086 /// higher alignment in the parameter area. Always returns at least 8. 5087 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 5088 // Complex types are passed just like their elements. 5089 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 5090 Ty = CTy->getElementType(); 5091 5092 auto FloatUsesVector = [this](QualType Ty){ 5093 return Ty->isRealFloatingType() && &getContext().getFloatTypeSemantics( 5094 Ty) == &llvm::APFloat::IEEEquad(); 5095 }; 5096 5097 // Only vector types of size 16 bytes need alignment (larger types are 5098 // passed via reference, smaller types are not aligned). 5099 if (Ty->isVectorType()) { 5100 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8); 5101 } else if (FloatUsesVector(Ty)) { 5102 // According to ABI document section 'Optional Save Areas': If extended 5103 // precision floating-point values in IEEE BINARY 128 QUADRUPLE PRECISION 5104 // format are supported, map them to a single quadword, quadword aligned. 5105 return CharUnits::fromQuantity(16); 5106 } 5107 5108 // For single-element float/vector structs, we consider the whole type 5109 // to have the same alignment requirements as its single element. 5110 const Type *AlignAsType = nullptr; 5111 const Type *EltType = isSingleElementStruct(Ty, getContext()); 5112 if (EltType) { 5113 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 5114 if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) || 5115 (BT && BT->isFloatingPoint())) 5116 AlignAsType = EltType; 5117 } 5118 5119 // Likewise for ELFv2 homogeneous aggregates. 5120 const Type *Base = nullptr; 5121 uint64_t Members = 0; 5122 if (!AlignAsType && Kind == ELFv2 && 5123 isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members)) 5124 AlignAsType = Base; 5125 5126 // With special case aggregates, only vector base types need alignment. 5127 if (AlignAsType) { 5128 bool UsesVector = AlignAsType->isVectorType() || 5129 FloatUsesVector(QualType(AlignAsType, 0)); 5130 return CharUnits::fromQuantity(UsesVector ? 16 : 8); 5131 } 5132 5133 // Otherwise, we only need alignment for any aggregate type that 5134 // has an alignment requirement of >= 16 bytes. 5135 if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) { 5136 return CharUnits::fromQuantity(16); 5137 } 5138 5139 return CharUnits::fromQuantity(8); 5140 } 5141 5142 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous 5143 /// aggregate. Base is set to the base element type, and Members is set 5144 /// to the number of base elements. 5145 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base, 5146 uint64_t &Members) const { 5147 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 5148 uint64_t NElements = AT->getSize().getZExtValue(); 5149 if (NElements == 0) 5150 return false; 5151 if (!isHomogeneousAggregate(AT->getElementType(), Base, Members)) 5152 return false; 5153 Members *= NElements; 5154 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 5155 const RecordDecl *RD = RT->getDecl(); 5156 if (RD->hasFlexibleArrayMember()) 5157 return false; 5158 5159 Members = 0; 5160 5161 // If this is a C++ record, check the properties of the record such as 5162 // bases and ABI specific restrictions 5163 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 5164 if (!getCXXABI().isPermittedToBeHomogeneousAggregate(CXXRD)) 5165 return false; 5166 5167 for (const auto &I : CXXRD->bases()) { 5168 // Ignore empty records. 5169 if (isEmptyRecord(getContext(), I.getType(), true)) 5170 continue; 5171 5172 uint64_t FldMembers; 5173 if (!isHomogeneousAggregate(I.getType(), Base, FldMembers)) 5174 return false; 5175 5176 Members += FldMembers; 5177 } 5178 } 5179 5180 for (const auto *FD : RD->fields()) { 5181 // Ignore (non-zero arrays of) empty records. 5182 QualType FT = FD->getType(); 5183 while (const ConstantArrayType *AT = 5184 getContext().getAsConstantArrayType(FT)) { 5185 if (AT->getSize().getZExtValue() == 0) 5186 return false; 5187 FT = AT->getElementType(); 5188 } 5189 if (isEmptyRecord(getContext(), FT, true)) 5190 continue; 5191 5192 // For compatibility with GCC, ignore empty bitfields in C++ mode. 5193 if (getContext().getLangOpts().CPlusPlus && 5194 FD->isZeroLengthBitField(getContext())) 5195 continue; 5196 5197 uint64_t FldMembers; 5198 if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers)) 5199 return false; 5200 5201 Members = (RD->isUnion() ? 5202 std::max(Members, FldMembers) : Members + FldMembers); 5203 } 5204 5205 if (!Base) 5206 return false; 5207 5208 // Ensure there is no padding. 5209 if (getContext().getTypeSize(Base) * Members != 5210 getContext().getTypeSize(Ty)) 5211 return false; 5212 } else { 5213 Members = 1; 5214 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 5215 Members = 2; 5216 Ty = CT->getElementType(); 5217 } 5218 5219 // Most ABIs only support float, double, and some vector type widths. 5220 if (!isHomogeneousAggregateBaseType(Ty)) 5221 return false; 5222 5223 // The base type must be the same for all members. Types that 5224 // agree in both total size and mode (float vs. vector) are 5225 // treated as being equivalent here. 5226 const Type *TyPtr = Ty.getTypePtr(); 5227 if (!Base) { 5228 Base = TyPtr; 5229 // If it's a non-power-of-2 vector, its size is already a power-of-2, 5230 // so make sure to widen it explicitly. 5231 if (const VectorType *VT = Base->getAs<VectorType>()) { 5232 QualType EltTy = VT->getElementType(); 5233 unsigned NumElements = 5234 getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy); 5235 Base = getContext() 5236 .getVectorType(EltTy, NumElements, VT->getVectorKind()) 5237 .getTypePtr(); 5238 } 5239 } 5240 5241 if (Base->isVectorType() != TyPtr->isVectorType() || 5242 getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr)) 5243 return false; 5244 } 5245 return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members); 5246 } 5247 5248 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 5249 // Homogeneous aggregates for ELFv2 must have base types of float, 5250 // double, long double, or 128-bit vectors. 5251 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 5252 if (BT->getKind() == BuiltinType::Float || 5253 BT->getKind() == BuiltinType::Double || 5254 BT->getKind() == BuiltinType::LongDouble || 5255 BT->getKind() == BuiltinType::Ibm128 || 5256 (getContext().getTargetInfo().hasFloat128Type() && 5257 (BT->getKind() == BuiltinType::Float128))) { 5258 if (IsSoftFloatABI) 5259 return false; 5260 return true; 5261 } 5262 } 5263 if (const VectorType *VT = Ty->getAs<VectorType>()) { 5264 if (getContext().getTypeSize(VT) == 128) 5265 return true; 5266 } 5267 return false; 5268 } 5269 5270 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough( 5271 const Type *Base, uint64_t Members) const { 5272 // Vector and fp128 types require one register, other floating point types 5273 // require one or two registers depending on their size. 5274 uint32_t NumRegs = 5275 ((getContext().getTargetInfo().hasFloat128Type() && 5276 Base->isFloat128Type()) || 5277 Base->isVectorType()) ? 1 5278 : (getContext().getTypeSize(Base) + 63) / 64; 5279 5280 // Homogeneous Aggregates may occupy at most 8 registers. 5281 return Members * NumRegs <= 8; 5282 } 5283 5284 ABIArgInfo 5285 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const { 5286 Ty = useFirstFieldIfTransparentUnion(Ty); 5287 5288 if (Ty->isAnyComplexType()) 5289 return ABIArgInfo::getDirect(); 5290 5291 // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes) 5292 // or via reference (larger than 16 bytes). 5293 if (Ty->isVectorType()) { 5294 uint64_t Size = getContext().getTypeSize(Ty); 5295 if (Size > 128) 5296 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5297 else if (Size < 128) { 5298 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 5299 return ABIArgInfo::getDirect(CoerceTy); 5300 } 5301 } 5302 5303 if (const auto *EIT = Ty->getAs<BitIntType>()) 5304 if (EIT->getNumBits() > 128) 5305 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 5306 5307 if (isAggregateTypeForABI(Ty)) { 5308 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 5309 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 5310 5311 uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity(); 5312 uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); 5313 5314 // ELFv2 homogeneous aggregates are passed as array types. 5315 const Type *Base = nullptr; 5316 uint64_t Members = 0; 5317 if (Kind == ELFv2 && 5318 isHomogeneousAggregate(Ty, Base, Members)) { 5319 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 5320 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 5321 return ABIArgInfo::getDirect(CoerceTy); 5322 } 5323 5324 // If an aggregate may end up fully in registers, we do not 5325 // use the ByVal method, but pass the aggregate as array. 5326 // This is usually beneficial since we avoid forcing the 5327 // back-end to store the argument to memory. 5328 uint64_t Bits = getContext().getTypeSize(Ty); 5329 if (Bits > 0 && Bits <= 8 * GPRBits) { 5330 llvm::Type *CoerceTy; 5331 5332 // Types up to 8 bytes are passed as integer type (which will be 5333 // properly aligned in the argument save area doubleword). 5334 if (Bits <= GPRBits) 5335 CoerceTy = 5336 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 5337 // Larger types are passed as arrays, with the base type selected 5338 // according to the required alignment in the save area. 5339 else { 5340 uint64_t RegBits = ABIAlign * 8; 5341 uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits; 5342 llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits); 5343 CoerceTy = llvm::ArrayType::get(RegTy, NumRegs); 5344 } 5345 5346 return ABIArgInfo::getDirect(CoerceTy); 5347 } 5348 5349 // All other aggregates are passed ByVal. 5350 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 5351 /*ByVal=*/true, 5352 /*Realign=*/TyAlign > ABIAlign); 5353 } 5354 5355 return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 5356 : ABIArgInfo::getDirect()); 5357 } 5358 5359 ABIArgInfo 5360 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { 5361 if (RetTy->isVoidType()) 5362 return ABIArgInfo::getIgnore(); 5363 5364 if (RetTy->isAnyComplexType()) 5365 return ABIArgInfo::getDirect(); 5366 5367 // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes) 5368 // or via reference (larger than 16 bytes). 5369 if (RetTy->isVectorType()) { 5370 uint64_t Size = getContext().getTypeSize(RetTy); 5371 if (Size > 128) 5372 return getNaturalAlignIndirect(RetTy); 5373 else if (Size < 128) { 5374 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 5375 return ABIArgInfo::getDirect(CoerceTy); 5376 } 5377 } 5378 5379 if (const auto *EIT = RetTy->getAs<BitIntType>()) 5380 if (EIT->getNumBits() > 128) 5381 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 5382 5383 if (isAggregateTypeForABI(RetTy)) { 5384 // ELFv2 homogeneous aggregates are returned as array types. 5385 const Type *Base = nullptr; 5386 uint64_t Members = 0; 5387 if (Kind == ELFv2 && 5388 isHomogeneousAggregate(RetTy, Base, Members)) { 5389 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 5390 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 5391 return ABIArgInfo::getDirect(CoerceTy); 5392 } 5393 5394 // ELFv2 small aggregates are returned in up to two registers. 5395 uint64_t Bits = getContext().getTypeSize(RetTy); 5396 if (Kind == ELFv2 && Bits <= 2 * GPRBits) { 5397 if (Bits == 0) 5398 return ABIArgInfo::getIgnore(); 5399 5400 llvm::Type *CoerceTy; 5401 if (Bits > GPRBits) { 5402 CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits); 5403 CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy); 5404 } else 5405 CoerceTy = 5406 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 5407 return ABIArgInfo::getDirect(CoerceTy); 5408 } 5409 5410 // All other aggregates are returned indirectly. 5411 return getNaturalAlignIndirect(RetTy); 5412 } 5413 5414 return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 5415 : ABIArgInfo::getDirect()); 5416 } 5417 5418 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine. 5419 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5420 QualType Ty) const { 5421 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 5422 TypeInfo.Align = getParamTypeAlignment(Ty); 5423 5424 CharUnits SlotSize = CharUnits::fromQuantity(8); 5425 5426 // If we have a complex type and the base type is smaller than 8 bytes, 5427 // the ABI calls for the real and imaginary parts to be right-adjusted 5428 // in separate doublewords. However, Clang expects us to produce a 5429 // pointer to a structure with the two parts packed tightly. So generate 5430 // loads of the real and imaginary parts relative to the va_list pointer, 5431 // and store them to a temporary structure. 5432 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 5433 CharUnits EltSize = TypeInfo.Width / 2; 5434 if (EltSize < SlotSize) 5435 return complexTempStructure(CGF, VAListAddr, Ty, SlotSize, EltSize, CTy); 5436 } 5437 5438 // Otherwise, just use the general rule. 5439 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 5440 TypeInfo, SlotSize, /*AllowHigher*/ true); 5441 } 5442 5443 bool 5444 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable( 5445 CodeGen::CodeGenFunction &CGF, 5446 llvm::Value *Address) const { 5447 return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ true, 5448 /*IsAIX*/ false); 5449 } 5450 5451 bool 5452 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5453 llvm::Value *Address) const { 5454 return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ true, 5455 /*IsAIX*/ false); 5456 } 5457 5458 //===----------------------------------------------------------------------===// 5459 // AArch64 ABI Implementation 5460 //===----------------------------------------------------------------------===// 5461 5462 namespace { 5463 5464 class AArch64ABIInfo : public SwiftABIInfo { 5465 public: 5466 enum ABIKind { 5467 AAPCS = 0, 5468 DarwinPCS, 5469 Win64 5470 }; 5471 5472 private: 5473 ABIKind Kind; 5474 5475 public: 5476 AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind) 5477 : SwiftABIInfo(CGT), Kind(Kind) {} 5478 5479 private: 5480 ABIKind getABIKind() const { return Kind; } 5481 bool isDarwinPCS() const { return Kind == DarwinPCS; } 5482 5483 ABIArgInfo classifyReturnType(QualType RetTy, bool IsVariadic) const; 5484 ABIArgInfo classifyArgumentType(QualType RetTy, bool IsVariadic, 5485 unsigned CallingConvention) const; 5486 ABIArgInfo coerceIllegalVector(QualType Ty) const; 5487 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 5488 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 5489 uint64_t Members) const override; 5490 5491 bool isIllegalVectorType(QualType Ty) const; 5492 5493 void computeInfo(CGFunctionInfo &FI) const override { 5494 if (!::classifyReturnType(getCXXABI(), FI, *this)) 5495 FI.getReturnInfo() = 5496 classifyReturnType(FI.getReturnType(), FI.isVariadic()); 5497 5498 for (auto &it : FI.arguments()) 5499 it.info = classifyArgumentType(it.type, FI.isVariadic(), 5500 FI.getCallingConvention()); 5501 } 5502 5503 Address EmitDarwinVAArg(Address VAListAddr, QualType Ty, 5504 CodeGenFunction &CGF) const; 5505 5506 Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty, 5507 CodeGenFunction &CGF) const; 5508 5509 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5510 QualType Ty) const override { 5511 llvm::Type *BaseTy = CGF.ConvertType(Ty); 5512 if (isa<llvm::ScalableVectorType>(BaseTy)) 5513 llvm::report_fatal_error("Passing SVE types to variadic functions is " 5514 "currently not supported"); 5515 5516 return Kind == Win64 ? EmitMSVAArg(CGF, VAListAddr, Ty) 5517 : isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF) 5518 : EmitAAPCSVAArg(VAListAddr, Ty, CGF); 5519 } 5520 5521 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 5522 QualType Ty) const override; 5523 5524 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 5525 bool asReturnValue) const override { 5526 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 5527 } 5528 bool isSwiftErrorInRegister() const override { 5529 return true; 5530 } 5531 5532 bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy, 5533 unsigned elts) const override; 5534 5535 bool allowBFloatArgsAndRet() const override { 5536 return getTarget().hasBFloat16Type(); 5537 } 5538 }; 5539 5540 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo { 5541 public: 5542 AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind) 5543 : TargetCodeGenInfo(std::make_unique<AArch64ABIInfo>(CGT, Kind)) {} 5544 5545 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 5546 return "mov\tfp, fp\t\t// marker for objc_retainAutoreleaseReturnValue"; 5547 } 5548 5549 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 5550 return 31; 5551 } 5552 5553 bool doesReturnSlotInterfereWithArgs() const override { return false; } 5554 5555 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5556 CodeGen::CodeGenModule &CGM) const override { 5557 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 5558 if (!FD) 5559 return; 5560 5561 const auto *TA = FD->getAttr<TargetAttr>(); 5562 if (TA == nullptr) 5563 return; 5564 5565 ParsedTargetAttr Attr = TA->parse(); 5566 if (Attr.BranchProtection.empty()) 5567 return; 5568 5569 TargetInfo::BranchProtectionInfo BPI; 5570 StringRef Error; 5571 (void)CGM.getTarget().validateBranchProtection( 5572 Attr.BranchProtection, Attr.Architecture, BPI, Error); 5573 assert(Error.empty()); 5574 5575 auto *Fn = cast<llvm::Function>(GV); 5576 static const char *SignReturnAddrStr[] = {"none", "non-leaf", "all"}; 5577 Fn->addFnAttr("sign-return-address", SignReturnAddrStr[static_cast<int>(BPI.SignReturnAddr)]); 5578 5579 if (BPI.SignReturnAddr != LangOptions::SignReturnAddressScopeKind::None) { 5580 Fn->addFnAttr("sign-return-address-key", 5581 BPI.SignKey == LangOptions::SignReturnAddressKeyKind::AKey 5582 ? "a_key" 5583 : "b_key"); 5584 } 5585 5586 Fn->addFnAttr("branch-target-enforcement", 5587 BPI.BranchTargetEnforcement ? "true" : "false"); 5588 } 5589 5590 bool isScalarizableAsmOperand(CodeGen::CodeGenFunction &CGF, 5591 llvm::Type *Ty) const override { 5592 if (CGF.getTarget().hasFeature("ls64")) { 5593 auto *ST = dyn_cast<llvm::StructType>(Ty); 5594 if (ST && ST->getNumElements() == 1) { 5595 auto *AT = dyn_cast<llvm::ArrayType>(ST->getElementType(0)); 5596 if (AT && AT->getNumElements() == 8 && 5597 AT->getElementType()->isIntegerTy(64)) 5598 return true; 5599 } 5600 } 5601 return TargetCodeGenInfo::isScalarizableAsmOperand(CGF, Ty); 5602 } 5603 }; 5604 5605 class WindowsAArch64TargetCodeGenInfo : public AArch64TargetCodeGenInfo { 5606 public: 5607 WindowsAArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind K) 5608 : AArch64TargetCodeGenInfo(CGT, K) {} 5609 5610 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5611 CodeGen::CodeGenModule &CGM) const override; 5612 5613 void getDependentLibraryOption(llvm::StringRef Lib, 5614 llvm::SmallString<24> &Opt) const override { 5615 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); 5616 } 5617 5618 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, 5619 llvm::SmallString<32> &Opt) const override { 5620 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 5621 } 5622 }; 5623 5624 void WindowsAArch64TargetCodeGenInfo::setTargetAttributes( 5625 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 5626 AArch64TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 5627 if (GV->isDeclaration()) 5628 return; 5629 addStackProbeTargetAttributes(D, GV, CGM); 5630 } 5631 } 5632 5633 ABIArgInfo AArch64ABIInfo::coerceIllegalVector(QualType Ty) const { 5634 assert(Ty->isVectorType() && "expected vector type!"); 5635 5636 const auto *VT = Ty->castAs<VectorType>(); 5637 if (VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector) { 5638 assert(VT->getElementType()->isBuiltinType() && "expected builtin type!"); 5639 assert(VT->getElementType()->castAs<BuiltinType>()->getKind() == 5640 BuiltinType::UChar && 5641 "unexpected builtin type for SVE predicate!"); 5642 return ABIArgInfo::getDirect(llvm::ScalableVectorType::get( 5643 llvm::Type::getInt1Ty(getVMContext()), 16)); 5644 } 5645 5646 if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector) { 5647 assert(VT->getElementType()->isBuiltinType() && "expected builtin type!"); 5648 5649 const auto *BT = VT->getElementType()->castAs<BuiltinType>(); 5650 llvm::ScalableVectorType *ResType = nullptr; 5651 switch (BT->getKind()) { 5652 default: 5653 llvm_unreachable("unexpected builtin type for SVE vector!"); 5654 case BuiltinType::SChar: 5655 case BuiltinType::UChar: 5656 ResType = llvm::ScalableVectorType::get( 5657 llvm::Type::getInt8Ty(getVMContext()), 16); 5658 break; 5659 case BuiltinType::Short: 5660 case BuiltinType::UShort: 5661 ResType = llvm::ScalableVectorType::get( 5662 llvm::Type::getInt16Ty(getVMContext()), 8); 5663 break; 5664 case BuiltinType::Int: 5665 case BuiltinType::UInt: 5666 ResType = llvm::ScalableVectorType::get( 5667 llvm::Type::getInt32Ty(getVMContext()), 4); 5668 break; 5669 case BuiltinType::Long: 5670 case BuiltinType::ULong: 5671 ResType = llvm::ScalableVectorType::get( 5672 llvm::Type::getInt64Ty(getVMContext()), 2); 5673 break; 5674 case BuiltinType::Half: 5675 ResType = llvm::ScalableVectorType::get( 5676 llvm::Type::getHalfTy(getVMContext()), 8); 5677 break; 5678 case BuiltinType::Float: 5679 ResType = llvm::ScalableVectorType::get( 5680 llvm::Type::getFloatTy(getVMContext()), 4); 5681 break; 5682 case BuiltinType::Double: 5683 ResType = llvm::ScalableVectorType::get( 5684 llvm::Type::getDoubleTy(getVMContext()), 2); 5685 break; 5686 case BuiltinType::BFloat16: 5687 ResType = llvm::ScalableVectorType::get( 5688 llvm::Type::getBFloatTy(getVMContext()), 8); 5689 break; 5690 } 5691 return ABIArgInfo::getDirect(ResType); 5692 } 5693 5694 uint64_t Size = getContext().getTypeSize(Ty); 5695 // Android promotes <2 x i8> to i16, not i32 5696 if (isAndroid() && (Size <= 16)) { 5697 llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext()); 5698 return ABIArgInfo::getDirect(ResType); 5699 } 5700 if (Size <= 32) { 5701 llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext()); 5702 return ABIArgInfo::getDirect(ResType); 5703 } 5704 if (Size == 64) { 5705 auto *ResType = 5706 llvm::FixedVectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2); 5707 return ABIArgInfo::getDirect(ResType); 5708 } 5709 if (Size == 128) { 5710 auto *ResType = 5711 llvm::FixedVectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4); 5712 return ABIArgInfo::getDirect(ResType); 5713 } 5714 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5715 } 5716 5717 ABIArgInfo 5718 AArch64ABIInfo::classifyArgumentType(QualType Ty, bool IsVariadic, 5719 unsigned CallingConvention) const { 5720 Ty = useFirstFieldIfTransparentUnion(Ty); 5721 5722 // Handle illegal vector types here. 5723 if (isIllegalVectorType(Ty)) 5724 return coerceIllegalVector(Ty); 5725 5726 if (!isAggregateTypeForABI(Ty)) { 5727 // Treat an enum type as its underlying type. 5728 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5729 Ty = EnumTy->getDecl()->getIntegerType(); 5730 5731 if (const auto *EIT = Ty->getAs<BitIntType>()) 5732 if (EIT->getNumBits() > 128) 5733 return getNaturalAlignIndirect(Ty); 5734 5735 return (isPromotableIntegerTypeForABI(Ty) && isDarwinPCS() 5736 ? ABIArgInfo::getExtend(Ty) 5737 : ABIArgInfo::getDirect()); 5738 } 5739 5740 // Structures with either a non-trivial destructor or a non-trivial 5741 // copy constructor are always indirect. 5742 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 5743 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 5744 CGCXXABI::RAA_DirectInMemory); 5745 } 5746 5747 // Empty records are always ignored on Darwin, but actually passed in C++ mode 5748 // elsewhere for GNU compatibility. 5749 uint64_t Size = getContext().getTypeSize(Ty); 5750 bool IsEmpty = isEmptyRecord(getContext(), Ty, true); 5751 if (IsEmpty || Size == 0) { 5752 if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS()) 5753 return ABIArgInfo::getIgnore(); 5754 5755 // GNU C mode. The only argument that gets ignored is an empty one with size 5756 // 0. 5757 if (IsEmpty && Size == 0) 5758 return ABIArgInfo::getIgnore(); 5759 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 5760 } 5761 5762 // Homogeneous Floating-point Aggregates (HFAs) need to be expanded. 5763 const Type *Base = nullptr; 5764 uint64_t Members = 0; 5765 bool IsWin64 = Kind == Win64 || CallingConvention == llvm::CallingConv::Win64; 5766 bool IsWinVariadic = IsWin64 && IsVariadic; 5767 // In variadic functions on Windows, all composite types are treated alike, 5768 // no special handling of HFAs/HVAs. 5769 if (!IsWinVariadic && isHomogeneousAggregate(Ty, Base, Members)) { 5770 if (Kind != AArch64ABIInfo::AAPCS) 5771 return ABIArgInfo::getDirect( 5772 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members)); 5773 5774 // For alignment adjusted HFAs, cap the argument alignment to 16, leave it 5775 // default otherwise. 5776 unsigned Align = 5777 getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity(); 5778 unsigned BaseAlign = getContext().getTypeAlignInChars(Base).getQuantity(); 5779 Align = (Align > BaseAlign && Align >= 16) ? 16 : 0; 5780 return ABIArgInfo::getDirect( 5781 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members), 0, 5782 nullptr, true, Align); 5783 } 5784 5785 // Aggregates <= 16 bytes are passed directly in registers or on the stack. 5786 if (Size <= 128) { 5787 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 5788 // same size and alignment. 5789 if (getTarget().isRenderScriptTarget()) { 5790 return coerceToIntArray(Ty, getContext(), getVMContext()); 5791 } 5792 unsigned Alignment; 5793 if (Kind == AArch64ABIInfo::AAPCS) { 5794 Alignment = getContext().getTypeUnadjustedAlign(Ty); 5795 Alignment = Alignment < 128 ? 64 : 128; 5796 } else { 5797 Alignment = std::max(getContext().getTypeAlign(Ty), 5798 (unsigned)getTarget().getPointerWidth(0)); 5799 } 5800 Size = llvm::alignTo(Size, Alignment); 5801 5802 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 5803 // For aggregates with 16-byte alignment, we use i128. 5804 llvm::Type *BaseTy = llvm::Type::getIntNTy(getVMContext(), Alignment); 5805 return ABIArgInfo::getDirect( 5806 Size == Alignment ? BaseTy 5807 : llvm::ArrayType::get(BaseTy, Size / Alignment)); 5808 } 5809 5810 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5811 } 5812 5813 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy, 5814 bool IsVariadic) const { 5815 if (RetTy->isVoidType()) 5816 return ABIArgInfo::getIgnore(); 5817 5818 if (const auto *VT = RetTy->getAs<VectorType>()) { 5819 if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector || 5820 VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector) 5821 return coerceIllegalVector(RetTy); 5822 } 5823 5824 // Large vector types should be returned via memory. 5825 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) 5826 return getNaturalAlignIndirect(RetTy); 5827 5828 if (!isAggregateTypeForABI(RetTy)) { 5829 // Treat an enum type as its underlying type. 5830 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5831 RetTy = EnumTy->getDecl()->getIntegerType(); 5832 5833 if (const auto *EIT = RetTy->getAs<BitIntType>()) 5834 if (EIT->getNumBits() > 128) 5835 return getNaturalAlignIndirect(RetTy); 5836 5837 return (isPromotableIntegerTypeForABI(RetTy) && isDarwinPCS() 5838 ? ABIArgInfo::getExtend(RetTy) 5839 : ABIArgInfo::getDirect()); 5840 } 5841 5842 uint64_t Size = getContext().getTypeSize(RetTy); 5843 if (isEmptyRecord(getContext(), RetTy, true) || Size == 0) 5844 return ABIArgInfo::getIgnore(); 5845 5846 const Type *Base = nullptr; 5847 uint64_t Members = 0; 5848 if (isHomogeneousAggregate(RetTy, Base, Members) && 5849 !(getTarget().getTriple().getArch() == llvm::Triple::aarch64_32 && 5850 IsVariadic)) 5851 // Homogeneous Floating-point Aggregates (HFAs) are returned directly. 5852 return ABIArgInfo::getDirect(); 5853 5854 // Aggregates <= 16 bytes are returned directly in registers or on the stack. 5855 if (Size <= 128) { 5856 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 5857 // same size and alignment. 5858 if (getTarget().isRenderScriptTarget()) { 5859 return coerceToIntArray(RetTy, getContext(), getVMContext()); 5860 } 5861 5862 if (Size <= 64 && getDataLayout().isLittleEndian()) { 5863 // Composite types are returned in lower bits of a 64-bit register for LE, 5864 // and in higher bits for BE. However, integer types are always returned 5865 // in lower bits for both LE and BE, and they are not rounded up to 5866 // 64-bits. We can skip rounding up of composite types for LE, but not for 5867 // BE, otherwise composite types will be indistinguishable from integer 5868 // types. 5869 return ABIArgInfo::getDirect( 5870 llvm::IntegerType::get(getVMContext(), Size)); 5871 } 5872 5873 unsigned Alignment = getContext().getTypeAlign(RetTy); 5874 Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes 5875 5876 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 5877 // For aggregates with 16-byte alignment, we use i128. 5878 if (Alignment < 128 && Size == 128) { 5879 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); 5880 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 5881 } 5882 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 5883 } 5884 5885 return getNaturalAlignIndirect(RetTy); 5886 } 5887 5888 /// isIllegalVectorType - check whether the vector type is legal for AArch64. 5889 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const { 5890 if (const VectorType *VT = Ty->getAs<VectorType>()) { 5891 // Check whether VT is a fixed-length SVE vector. These types are 5892 // represented as scalable vectors in function args/return and must be 5893 // coerced from fixed vectors. 5894 if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector || 5895 VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector) 5896 return true; 5897 5898 // Check whether VT is legal. 5899 unsigned NumElements = VT->getNumElements(); 5900 uint64_t Size = getContext().getTypeSize(VT); 5901 // NumElements should be power of 2. 5902 if (!llvm::isPowerOf2_32(NumElements)) 5903 return true; 5904 5905 // arm64_32 has to be compatible with the ARM logic here, which allows huge 5906 // vectors for some reason. 5907 llvm::Triple Triple = getTarget().getTriple(); 5908 if (Triple.getArch() == llvm::Triple::aarch64_32 && 5909 Triple.isOSBinFormatMachO()) 5910 return Size <= 32; 5911 5912 return Size != 64 && (Size != 128 || NumElements == 1); 5913 } 5914 return false; 5915 } 5916 5917 bool AArch64ABIInfo::isLegalVectorTypeForSwift(CharUnits totalSize, 5918 llvm::Type *eltTy, 5919 unsigned elts) const { 5920 if (!llvm::isPowerOf2_32(elts)) 5921 return false; 5922 if (totalSize.getQuantity() != 8 && 5923 (totalSize.getQuantity() != 16 || elts == 1)) 5924 return false; 5925 return true; 5926 } 5927 5928 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 5929 // Homogeneous aggregates for AAPCS64 must have base types of a floating 5930 // point type or a short-vector type. This is the same as the 32-bit ABI, 5931 // but with the difference that any floating-point type is allowed, 5932 // including __fp16. 5933 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 5934 if (BT->isFloatingPoint()) 5935 return true; 5936 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 5937 unsigned VecSize = getContext().getTypeSize(VT); 5938 if (VecSize == 64 || VecSize == 128) 5939 return true; 5940 } 5941 return false; 5942 } 5943 5944 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 5945 uint64_t Members) const { 5946 return Members <= 4; 5947 } 5948 5949 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr, QualType Ty, 5950 CodeGenFunction &CGF) const { 5951 ABIArgInfo AI = classifyArgumentType(Ty, /*IsVariadic=*/true, 5952 CGF.CurFnInfo->getCallingConvention()); 5953 bool IsIndirect = AI.isIndirect(); 5954 5955 llvm::Type *BaseTy = CGF.ConvertType(Ty); 5956 if (IsIndirect) 5957 BaseTy = llvm::PointerType::getUnqual(BaseTy); 5958 else if (AI.getCoerceToType()) 5959 BaseTy = AI.getCoerceToType(); 5960 5961 unsigned NumRegs = 1; 5962 if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) { 5963 BaseTy = ArrTy->getElementType(); 5964 NumRegs = ArrTy->getNumElements(); 5965 } 5966 bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy(); 5967 5968 // The AArch64 va_list type and handling is specified in the Procedure Call 5969 // Standard, section B.4: 5970 // 5971 // struct { 5972 // void *__stack; 5973 // void *__gr_top; 5974 // void *__vr_top; 5975 // int __gr_offs; 5976 // int __vr_offs; 5977 // }; 5978 5979 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); 5980 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 5981 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); 5982 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 5983 5984 CharUnits TySize = getContext().getTypeSizeInChars(Ty); 5985 CharUnits TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty); 5986 5987 Address reg_offs_p = Address::invalid(); 5988 llvm::Value *reg_offs = nullptr; 5989 int reg_top_index; 5990 int RegSize = IsIndirect ? 8 : TySize.getQuantity(); 5991 if (!IsFPR) { 5992 // 3 is the field number of __gr_offs 5993 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p"); 5994 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs"); 5995 reg_top_index = 1; // field number for __gr_top 5996 RegSize = llvm::alignTo(RegSize, 8); 5997 } else { 5998 // 4 is the field number of __vr_offs. 5999 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p"); 6000 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs"); 6001 reg_top_index = 2; // field number for __vr_top 6002 RegSize = 16 * NumRegs; 6003 } 6004 6005 //======================================= 6006 // Find out where argument was passed 6007 //======================================= 6008 6009 // If reg_offs >= 0 we're already using the stack for this type of 6010 // argument. We don't want to keep updating reg_offs (in case it overflows, 6011 // though anyone passing 2GB of arguments, each at most 16 bytes, deserves 6012 // whatever they get). 6013 llvm::Value *UsingStack = nullptr; 6014 UsingStack = CGF.Builder.CreateICmpSGE( 6015 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0)); 6016 6017 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock); 6018 6019 // Otherwise, at least some kind of argument could go in these registers, the 6020 // question is whether this particular type is too big. 6021 CGF.EmitBlock(MaybeRegBlock); 6022 6023 // Integer arguments may need to correct register alignment (for example a 6024 // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we 6025 // align __gr_offs to calculate the potential address. 6026 if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) { 6027 int Align = TyAlign.getQuantity(); 6028 6029 reg_offs = CGF.Builder.CreateAdd( 6030 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1), 6031 "align_regoffs"); 6032 reg_offs = CGF.Builder.CreateAnd( 6033 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align), 6034 "aligned_regoffs"); 6035 } 6036 6037 // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list. 6038 // The fact that this is done unconditionally reflects the fact that 6039 // allocating an argument to the stack also uses up all the remaining 6040 // registers of the appropriate kind. 6041 llvm::Value *NewOffset = nullptr; 6042 NewOffset = CGF.Builder.CreateAdd( 6043 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs"); 6044 CGF.Builder.CreateStore(NewOffset, reg_offs_p); 6045 6046 // Now we're in a position to decide whether this argument really was in 6047 // registers or not. 6048 llvm::Value *InRegs = nullptr; 6049 InRegs = CGF.Builder.CreateICmpSLE( 6050 NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg"); 6051 6052 CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock); 6053 6054 //======================================= 6055 // Argument was in registers 6056 //======================================= 6057 6058 // Now we emit the code for if the argument was originally passed in 6059 // registers. First start the appropriate block: 6060 CGF.EmitBlock(InRegBlock); 6061 6062 llvm::Value *reg_top = nullptr; 6063 Address reg_top_p = 6064 CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p"); 6065 reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top"); 6066 Address BaseAddr(CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, reg_top, reg_offs), 6067 CGF.Int8Ty, CharUnits::fromQuantity(IsFPR ? 16 : 8)); 6068 Address RegAddr = Address::invalid(); 6069 llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty), *ElementTy = MemTy; 6070 6071 if (IsIndirect) { 6072 // If it's been passed indirectly (actually a struct), whatever we find from 6073 // stored registers or on the stack will actually be a struct **. 6074 MemTy = llvm::PointerType::getUnqual(MemTy); 6075 } 6076 6077 const Type *Base = nullptr; 6078 uint64_t NumMembers = 0; 6079 bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers); 6080 if (IsHFA && NumMembers > 1) { 6081 // Homogeneous aggregates passed in registers will have their elements split 6082 // and stored 16-bytes apart regardless of size (they're notionally in qN, 6083 // qN+1, ...). We reload and store into a temporary local variable 6084 // contiguously. 6085 assert(!IsIndirect && "Homogeneous aggregates should be passed directly"); 6086 auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0)); 6087 llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0)); 6088 llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers); 6089 Address Tmp = CGF.CreateTempAlloca(HFATy, 6090 std::max(TyAlign, BaseTyInfo.Align)); 6091 6092 // On big-endian platforms, the value will be right-aligned in its slot. 6093 int Offset = 0; 6094 if (CGF.CGM.getDataLayout().isBigEndian() && 6095 BaseTyInfo.Width.getQuantity() < 16) 6096 Offset = 16 - BaseTyInfo.Width.getQuantity(); 6097 6098 for (unsigned i = 0; i < NumMembers; ++i) { 6099 CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset); 6100 Address LoadAddr = 6101 CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset); 6102 LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy); 6103 6104 Address StoreAddr = CGF.Builder.CreateConstArrayGEP(Tmp, i); 6105 6106 llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr); 6107 CGF.Builder.CreateStore(Elem, StoreAddr); 6108 } 6109 6110 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy); 6111 } else { 6112 // Otherwise the object is contiguous in memory. 6113 6114 // It might be right-aligned in its slot. 6115 CharUnits SlotSize = BaseAddr.getAlignment(); 6116 if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect && 6117 (IsHFA || !isAggregateTypeForABI(Ty)) && 6118 TySize < SlotSize) { 6119 CharUnits Offset = SlotSize - TySize; 6120 BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset); 6121 } 6122 6123 RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy); 6124 } 6125 6126 CGF.EmitBranch(ContBlock); 6127 6128 //======================================= 6129 // Argument was on the stack 6130 //======================================= 6131 CGF.EmitBlock(OnStackBlock); 6132 6133 Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p"); 6134 llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack"); 6135 6136 // Again, stack arguments may need realignment. In this case both integer and 6137 // floating-point ones might be affected. 6138 if (!IsIndirect && TyAlign.getQuantity() > 8) { 6139 int Align = TyAlign.getQuantity(); 6140 6141 OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty); 6142 6143 OnStackPtr = CGF.Builder.CreateAdd( 6144 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1), 6145 "align_stack"); 6146 OnStackPtr = CGF.Builder.CreateAnd( 6147 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align), 6148 "align_stack"); 6149 6150 OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy); 6151 } 6152 Address OnStackAddr = Address(OnStackPtr, CGF.Int8Ty, 6153 std::max(CharUnits::fromQuantity(8), TyAlign)); 6154 6155 // All stack slots are multiples of 8 bytes. 6156 CharUnits StackSlotSize = CharUnits::fromQuantity(8); 6157 CharUnits StackSize; 6158 if (IsIndirect) 6159 StackSize = StackSlotSize; 6160 else 6161 StackSize = TySize.alignTo(StackSlotSize); 6162 6163 llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize); 6164 llvm::Value *NewStack = CGF.Builder.CreateInBoundsGEP( 6165 CGF.Int8Ty, OnStackPtr, StackSizeC, "new_stack"); 6166 6167 // Write the new value of __stack for the next call to va_arg 6168 CGF.Builder.CreateStore(NewStack, stack_p); 6169 6170 if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) && 6171 TySize < StackSlotSize) { 6172 CharUnits Offset = StackSlotSize - TySize; 6173 OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset); 6174 } 6175 6176 OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy); 6177 6178 CGF.EmitBranch(ContBlock); 6179 6180 //======================================= 6181 // Tidy up 6182 //======================================= 6183 CGF.EmitBlock(ContBlock); 6184 6185 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, OnStackAddr, 6186 OnStackBlock, "vaargs.addr"); 6187 6188 if (IsIndirect) 6189 return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"), ElementTy, 6190 TyAlign); 6191 6192 return ResAddr; 6193 } 6194 6195 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty, 6196 CodeGenFunction &CGF) const { 6197 // The backend's lowering doesn't support va_arg for aggregates or 6198 // illegal vector types. Lower VAArg here for these cases and use 6199 // the LLVM va_arg instruction for everything else. 6200 if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty)) 6201 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 6202 6203 uint64_t PointerSize = getTarget().getPointerWidth(0) / 8; 6204 CharUnits SlotSize = CharUnits::fromQuantity(PointerSize); 6205 6206 // Empty records are ignored for parameter passing purposes. 6207 if (isEmptyRecord(getContext(), Ty, true)) { 6208 Address Addr = Address(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), 6209 getVAListElementType(CGF), SlotSize); 6210 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 6211 return Addr; 6212 } 6213 6214 // The size of the actual thing passed, which might end up just 6215 // being a pointer for indirect types. 6216 auto TyInfo = getContext().getTypeInfoInChars(Ty); 6217 6218 // Arguments bigger than 16 bytes which aren't homogeneous 6219 // aggregates should be passed indirectly. 6220 bool IsIndirect = false; 6221 if (TyInfo.Width.getQuantity() > 16) { 6222 const Type *Base = nullptr; 6223 uint64_t Members = 0; 6224 IsIndirect = !isHomogeneousAggregate(Ty, Base, Members); 6225 } 6226 6227 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 6228 TyInfo, SlotSize, /*AllowHigherAlign*/ true); 6229 } 6230 6231 Address AArch64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 6232 QualType Ty) const { 6233 bool IsIndirect = false; 6234 6235 // Composites larger than 16 bytes are passed by reference. 6236 if (isAggregateTypeForABI(Ty) && getContext().getTypeSize(Ty) > 128) 6237 IsIndirect = true; 6238 6239 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 6240 CGF.getContext().getTypeInfoInChars(Ty), 6241 CharUnits::fromQuantity(8), 6242 /*allowHigherAlign*/ false); 6243 } 6244 6245 //===----------------------------------------------------------------------===// 6246 // ARM ABI Implementation 6247 //===----------------------------------------------------------------------===// 6248 6249 namespace { 6250 6251 class ARMABIInfo : public SwiftABIInfo { 6252 public: 6253 enum ABIKind { 6254 APCS = 0, 6255 AAPCS = 1, 6256 AAPCS_VFP = 2, 6257 AAPCS16_VFP = 3, 6258 }; 6259 6260 private: 6261 ABIKind Kind; 6262 bool IsFloatABISoftFP; 6263 6264 public: 6265 ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) 6266 : SwiftABIInfo(CGT), Kind(_Kind) { 6267 setCCs(); 6268 IsFloatABISoftFP = CGT.getCodeGenOpts().FloatABI == "softfp" || 6269 CGT.getCodeGenOpts().FloatABI == ""; // default 6270 } 6271 6272 bool isEABI() const { 6273 switch (getTarget().getTriple().getEnvironment()) { 6274 case llvm::Triple::Android: 6275 case llvm::Triple::EABI: 6276 case llvm::Triple::EABIHF: 6277 case llvm::Triple::GNUEABI: 6278 case llvm::Triple::GNUEABIHF: 6279 case llvm::Triple::MuslEABI: 6280 case llvm::Triple::MuslEABIHF: 6281 return true; 6282 default: 6283 return false; 6284 } 6285 } 6286 6287 bool isEABIHF() const { 6288 switch (getTarget().getTriple().getEnvironment()) { 6289 case llvm::Triple::EABIHF: 6290 case llvm::Triple::GNUEABIHF: 6291 case llvm::Triple::MuslEABIHF: 6292 return true; 6293 default: 6294 return false; 6295 } 6296 } 6297 6298 ABIKind getABIKind() const { return Kind; } 6299 6300 bool allowBFloatArgsAndRet() const override { 6301 return !IsFloatABISoftFP && getTarget().hasBFloat16Type(); 6302 } 6303 6304 private: 6305 ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic, 6306 unsigned functionCallConv) const; 6307 ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic, 6308 unsigned functionCallConv) const; 6309 ABIArgInfo classifyHomogeneousAggregate(QualType Ty, const Type *Base, 6310 uint64_t Members) const; 6311 ABIArgInfo coerceIllegalVector(QualType Ty) const; 6312 bool isIllegalVectorType(QualType Ty) const; 6313 bool containsAnyFP16Vectors(QualType Ty) const; 6314 6315 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 6316 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 6317 uint64_t Members) const override; 6318 6319 bool isEffectivelyAAPCS_VFP(unsigned callConvention, bool acceptHalf) const; 6320 6321 void computeInfo(CGFunctionInfo &FI) const override; 6322 6323 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6324 QualType Ty) const override; 6325 6326 llvm::CallingConv::ID getLLVMDefaultCC() const; 6327 llvm::CallingConv::ID getABIDefaultCC() const; 6328 void setCCs(); 6329 6330 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 6331 bool asReturnValue) const override { 6332 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 6333 } 6334 bool isSwiftErrorInRegister() const override { 6335 return true; 6336 } 6337 bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy, 6338 unsigned elts) const override; 6339 }; 6340 6341 class ARMTargetCodeGenInfo : public TargetCodeGenInfo { 6342 public: 6343 ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 6344 : TargetCodeGenInfo(std::make_unique<ARMABIInfo>(CGT, K)) {} 6345 6346 const ARMABIInfo &getABIInfo() const { 6347 return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo()); 6348 } 6349 6350 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 6351 return 13; 6352 } 6353 6354 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 6355 return "mov\tr7, r7\t\t// marker for objc_retainAutoreleaseReturnValue"; 6356 } 6357 6358 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 6359 llvm::Value *Address) const override { 6360 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 6361 6362 // 0-15 are the 16 integer registers. 6363 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15); 6364 return false; 6365 } 6366 6367 unsigned getSizeOfUnwindException() const override { 6368 if (getABIInfo().isEABI()) return 88; 6369 return TargetCodeGenInfo::getSizeOfUnwindException(); 6370 } 6371 6372 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6373 CodeGen::CodeGenModule &CGM) const override { 6374 if (GV->isDeclaration()) 6375 return; 6376 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 6377 if (!FD) 6378 return; 6379 auto *Fn = cast<llvm::Function>(GV); 6380 6381 if (const auto *TA = FD->getAttr<TargetAttr>()) { 6382 ParsedTargetAttr Attr = TA->parse(); 6383 if (!Attr.BranchProtection.empty()) { 6384 TargetInfo::BranchProtectionInfo BPI; 6385 StringRef DiagMsg; 6386 StringRef Arch = Attr.Architecture.empty() 6387 ? CGM.getTarget().getTargetOpts().CPU 6388 : Attr.Architecture; 6389 if (!CGM.getTarget().validateBranchProtection(Attr.BranchProtection, 6390 Arch, BPI, DiagMsg)) { 6391 CGM.getDiags().Report( 6392 D->getLocation(), 6393 diag::warn_target_unsupported_branch_protection_attribute) 6394 << Arch; 6395 } else { 6396 static const char *SignReturnAddrStr[] = {"none", "non-leaf", "all"}; 6397 assert(static_cast<unsigned>(BPI.SignReturnAddr) <= 2 && 6398 "Unexpected SignReturnAddressScopeKind"); 6399 Fn->addFnAttr( 6400 "sign-return-address", 6401 SignReturnAddrStr[static_cast<int>(BPI.SignReturnAddr)]); 6402 6403 Fn->addFnAttr("branch-target-enforcement", 6404 BPI.BranchTargetEnforcement ? "true" : "false"); 6405 } 6406 } else if (CGM.getLangOpts().BranchTargetEnforcement || 6407 CGM.getLangOpts().hasSignReturnAddress()) { 6408 // If the Branch Protection attribute is missing, validate the target 6409 // Architecture attribute against Branch Protection command line 6410 // settings. 6411 if (!CGM.getTarget().isBranchProtectionSupportedArch(Attr.Architecture)) 6412 CGM.getDiags().Report( 6413 D->getLocation(), 6414 diag::warn_target_unsupported_branch_protection_attribute) 6415 << Attr.Architecture; 6416 } 6417 } 6418 6419 const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>(); 6420 if (!Attr) 6421 return; 6422 6423 const char *Kind; 6424 switch (Attr->getInterrupt()) { 6425 case ARMInterruptAttr::Generic: Kind = ""; break; 6426 case ARMInterruptAttr::IRQ: Kind = "IRQ"; break; 6427 case ARMInterruptAttr::FIQ: Kind = "FIQ"; break; 6428 case ARMInterruptAttr::SWI: Kind = "SWI"; break; 6429 case ARMInterruptAttr::ABORT: Kind = "ABORT"; break; 6430 case ARMInterruptAttr::UNDEF: Kind = "UNDEF"; break; 6431 } 6432 6433 Fn->addFnAttr("interrupt", Kind); 6434 6435 ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind(); 6436 if (ABI == ARMABIInfo::APCS) 6437 return; 6438 6439 // AAPCS guarantees that sp will be 8-byte aligned on any public interface, 6440 // however this is not necessarily true on taking any interrupt. Instruct 6441 // the backend to perform a realignment as part of the function prologue. 6442 llvm::AttrBuilder B(Fn->getContext()); 6443 B.addStackAlignmentAttr(8); 6444 Fn->addFnAttrs(B); 6445 } 6446 }; 6447 6448 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo { 6449 public: 6450 WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 6451 : ARMTargetCodeGenInfo(CGT, K) {} 6452 6453 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6454 CodeGen::CodeGenModule &CGM) const override; 6455 6456 void getDependentLibraryOption(llvm::StringRef Lib, 6457 llvm::SmallString<24> &Opt) const override { 6458 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); 6459 } 6460 6461 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, 6462 llvm::SmallString<32> &Opt) const override { 6463 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 6464 } 6465 }; 6466 6467 void WindowsARMTargetCodeGenInfo::setTargetAttributes( 6468 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 6469 ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 6470 if (GV->isDeclaration()) 6471 return; 6472 addStackProbeTargetAttributes(D, GV, CGM); 6473 } 6474 } 6475 6476 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const { 6477 if (!::classifyReturnType(getCXXABI(), FI, *this)) 6478 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), FI.isVariadic(), 6479 FI.getCallingConvention()); 6480 6481 for (auto &I : FI.arguments()) 6482 I.info = classifyArgumentType(I.type, FI.isVariadic(), 6483 FI.getCallingConvention()); 6484 6485 6486 // Always honor user-specified calling convention. 6487 if (FI.getCallingConvention() != llvm::CallingConv::C) 6488 return; 6489 6490 llvm::CallingConv::ID cc = getRuntimeCC(); 6491 if (cc != llvm::CallingConv::C) 6492 FI.setEffectiveCallingConvention(cc); 6493 } 6494 6495 /// Return the default calling convention that LLVM will use. 6496 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const { 6497 // The default calling convention that LLVM will infer. 6498 if (isEABIHF() || getTarget().getTriple().isWatchABI()) 6499 return llvm::CallingConv::ARM_AAPCS_VFP; 6500 else if (isEABI()) 6501 return llvm::CallingConv::ARM_AAPCS; 6502 else 6503 return llvm::CallingConv::ARM_APCS; 6504 } 6505 6506 /// Return the calling convention that our ABI would like us to use 6507 /// as the C calling convention. 6508 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const { 6509 switch (getABIKind()) { 6510 case APCS: return llvm::CallingConv::ARM_APCS; 6511 case AAPCS: return llvm::CallingConv::ARM_AAPCS; 6512 case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 6513 case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 6514 } 6515 llvm_unreachable("bad ABI kind"); 6516 } 6517 6518 void ARMABIInfo::setCCs() { 6519 assert(getRuntimeCC() == llvm::CallingConv::C); 6520 6521 // Don't muddy up the IR with a ton of explicit annotations if 6522 // they'd just match what LLVM will infer from the triple. 6523 llvm::CallingConv::ID abiCC = getABIDefaultCC(); 6524 if (abiCC != getLLVMDefaultCC()) 6525 RuntimeCC = abiCC; 6526 } 6527 6528 ABIArgInfo ARMABIInfo::coerceIllegalVector(QualType Ty) const { 6529 uint64_t Size = getContext().getTypeSize(Ty); 6530 if (Size <= 32) { 6531 llvm::Type *ResType = 6532 llvm::Type::getInt32Ty(getVMContext()); 6533 return ABIArgInfo::getDirect(ResType); 6534 } 6535 if (Size == 64 || Size == 128) { 6536 auto *ResType = llvm::FixedVectorType::get( 6537 llvm::Type::getInt32Ty(getVMContext()), Size / 32); 6538 return ABIArgInfo::getDirect(ResType); 6539 } 6540 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6541 } 6542 6543 ABIArgInfo ARMABIInfo::classifyHomogeneousAggregate(QualType Ty, 6544 const Type *Base, 6545 uint64_t Members) const { 6546 assert(Base && "Base class should be set for homogeneous aggregate"); 6547 // Base can be a floating-point or a vector. 6548 if (const VectorType *VT = Base->getAs<VectorType>()) { 6549 // FP16 vectors should be converted to integer vectors 6550 if (!getTarget().hasLegalHalfType() && containsAnyFP16Vectors(Ty)) { 6551 uint64_t Size = getContext().getTypeSize(VT); 6552 auto *NewVecTy = llvm::FixedVectorType::get( 6553 llvm::Type::getInt32Ty(getVMContext()), Size / 32); 6554 llvm::Type *Ty = llvm::ArrayType::get(NewVecTy, Members); 6555 return ABIArgInfo::getDirect(Ty, 0, nullptr, false); 6556 } 6557 } 6558 unsigned Align = 0; 6559 if (getABIKind() == ARMABIInfo::AAPCS || 6560 getABIKind() == ARMABIInfo::AAPCS_VFP) { 6561 // For alignment adjusted HFAs, cap the argument alignment to 8, leave it 6562 // default otherwise. 6563 Align = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity(); 6564 unsigned BaseAlign = getContext().getTypeAlignInChars(Base).getQuantity(); 6565 Align = (Align > BaseAlign && Align >= 8) ? 8 : 0; 6566 } 6567 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false, Align); 6568 } 6569 6570 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, bool isVariadic, 6571 unsigned functionCallConv) const { 6572 // 6.1.2.1 The following argument types are VFP CPRCs: 6573 // A single-precision floating-point type (including promoted 6574 // half-precision types); A double-precision floating-point type; 6575 // A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate 6576 // with a Base Type of a single- or double-precision floating-point type, 6577 // 64-bit containerized vectors or 128-bit containerized vectors with one 6578 // to four Elements. 6579 // Variadic functions should always marshal to the base standard. 6580 bool IsAAPCS_VFP = 6581 !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ false); 6582 6583 Ty = useFirstFieldIfTransparentUnion(Ty); 6584 6585 // Handle illegal vector types here. 6586 if (isIllegalVectorType(Ty)) 6587 return coerceIllegalVector(Ty); 6588 6589 if (!isAggregateTypeForABI(Ty)) { 6590 // Treat an enum type as its underlying type. 6591 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 6592 Ty = EnumTy->getDecl()->getIntegerType(); 6593 } 6594 6595 if (const auto *EIT = Ty->getAs<BitIntType>()) 6596 if (EIT->getNumBits() > 64) 6597 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 6598 6599 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 6600 : ABIArgInfo::getDirect()); 6601 } 6602 6603 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 6604 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 6605 } 6606 6607 // Ignore empty records. 6608 if (isEmptyRecord(getContext(), Ty, true)) 6609 return ABIArgInfo::getIgnore(); 6610 6611 if (IsAAPCS_VFP) { 6612 // Homogeneous Aggregates need to be expanded when we can fit the aggregate 6613 // into VFP registers. 6614 const Type *Base = nullptr; 6615 uint64_t Members = 0; 6616 if (isHomogeneousAggregate(Ty, Base, Members)) 6617 return classifyHomogeneousAggregate(Ty, Base, Members); 6618 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 6619 // WatchOS does have homogeneous aggregates. Note that we intentionally use 6620 // this convention even for a variadic function: the backend will use GPRs 6621 // if needed. 6622 const Type *Base = nullptr; 6623 uint64_t Members = 0; 6624 if (isHomogeneousAggregate(Ty, Base, Members)) { 6625 assert(Base && Members <= 4 && "unexpected homogeneous aggregate"); 6626 llvm::Type *Ty = 6627 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members); 6628 return ABIArgInfo::getDirect(Ty, 0, nullptr, false); 6629 } 6630 } 6631 6632 if (getABIKind() == ARMABIInfo::AAPCS16_VFP && 6633 getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) { 6634 // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're 6635 // bigger than 128-bits, they get placed in space allocated by the caller, 6636 // and a pointer is passed. 6637 return ABIArgInfo::getIndirect( 6638 CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false); 6639 } 6640 6641 // Support byval for ARM. 6642 // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at 6643 // most 8-byte. We realign the indirect argument if type alignment is bigger 6644 // than ABI alignment. 6645 uint64_t ABIAlign = 4; 6646 uint64_t TyAlign; 6647 if (getABIKind() == ARMABIInfo::AAPCS_VFP || 6648 getABIKind() == ARMABIInfo::AAPCS) { 6649 TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity(); 6650 ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8); 6651 } else { 6652 TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); 6653 } 6654 if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) { 6655 assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval"); 6656 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 6657 /*ByVal=*/true, 6658 /*Realign=*/TyAlign > ABIAlign); 6659 } 6660 6661 // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of 6662 // same size and alignment. 6663 if (getTarget().isRenderScriptTarget()) { 6664 return coerceToIntArray(Ty, getContext(), getVMContext()); 6665 } 6666 6667 // Otherwise, pass by coercing to a structure of the appropriate size. 6668 llvm::Type* ElemTy; 6669 unsigned SizeRegs; 6670 // FIXME: Try to match the types of the arguments more accurately where 6671 // we can. 6672 if (TyAlign <= 4) { 6673 ElemTy = llvm::Type::getInt32Ty(getVMContext()); 6674 SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32; 6675 } else { 6676 ElemTy = llvm::Type::getInt64Ty(getVMContext()); 6677 SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64; 6678 } 6679 6680 return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs)); 6681 } 6682 6683 static bool isIntegerLikeType(QualType Ty, ASTContext &Context, 6684 llvm::LLVMContext &VMContext) { 6685 // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure 6686 // is called integer-like if its size is less than or equal to one word, and 6687 // the offset of each of its addressable sub-fields is zero. 6688 6689 uint64_t Size = Context.getTypeSize(Ty); 6690 6691 // Check that the type fits in a word. 6692 if (Size > 32) 6693 return false; 6694 6695 // FIXME: Handle vector types! 6696 if (Ty->isVectorType()) 6697 return false; 6698 6699 // Float types are never treated as "integer like". 6700 if (Ty->isRealFloatingType()) 6701 return false; 6702 6703 // If this is a builtin or pointer type then it is ok. 6704 if (Ty->getAs<BuiltinType>() || Ty->isPointerType()) 6705 return true; 6706 6707 // Small complex integer types are "integer like". 6708 if (const ComplexType *CT = Ty->getAs<ComplexType>()) 6709 return isIntegerLikeType(CT->getElementType(), Context, VMContext); 6710 6711 // Single element and zero sized arrays should be allowed, by the definition 6712 // above, but they are not. 6713 6714 // Otherwise, it must be a record type. 6715 const RecordType *RT = Ty->getAs<RecordType>(); 6716 if (!RT) return false; 6717 6718 // Ignore records with flexible arrays. 6719 const RecordDecl *RD = RT->getDecl(); 6720 if (RD->hasFlexibleArrayMember()) 6721 return false; 6722 6723 // Check that all sub-fields are at offset 0, and are themselves "integer 6724 // like". 6725 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 6726 6727 bool HadField = false; 6728 unsigned idx = 0; 6729 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 6730 i != e; ++i, ++idx) { 6731 const FieldDecl *FD = *i; 6732 6733 // Bit-fields are not addressable, we only need to verify they are "integer 6734 // like". We still have to disallow a subsequent non-bitfield, for example: 6735 // struct { int : 0; int x } 6736 // is non-integer like according to gcc. 6737 if (FD->isBitField()) { 6738 if (!RD->isUnion()) 6739 HadField = true; 6740 6741 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 6742 return false; 6743 6744 continue; 6745 } 6746 6747 // Check if this field is at offset 0. 6748 if (Layout.getFieldOffset(idx) != 0) 6749 return false; 6750 6751 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 6752 return false; 6753 6754 // Only allow at most one field in a structure. This doesn't match the 6755 // wording above, but follows gcc in situations with a field following an 6756 // empty structure. 6757 if (!RD->isUnion()) { 6758 if (HadField) 6759 return false; 6760 6761 HadField = true; 6762 } 6763 } 6764 6765 return true; 6766 } 6767 6768 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, bool isVariadic, 6769 unsigned functionCallConv) const { 6770 6771 // Variadic functions should always marshal to the base standard. 6772 bool IsAAPCS_VFP = 6773 !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ true); 6774 6775 if (RetTy->isVoidType()) 6776 return ABIArgInfo::getIgnore(); 6777 6778 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 6779 // Large vector types should be returned via memory. 6780 if (getContext().getTypeSize(RetTy) > 128) 6781 return getNaturalAlignIndirect(RetTy); 6782 // TODO: FP16/BF16 vectors should be converted to integer vectors 6783 // This check is similar to isIllegalVectorType - refactor? 6784 if ((!getTarget().hasLegalHalfType() && 6785 (VT->getElementType()->isFloat16Type() || 6786 VT->getElementType()->isHalfType())) || 6787 (IsFloatABISoftFP && 6788 VT->getElementType()->isBFloat16Type())) 6789 return coerceIllegalVector(RetTy); 6790 } 6791 6792 if (!isAggregateTypeForABI(RetTy)) { 6793 // Treat an enum type as its underlying type. 6794 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 6795 RetTy = EnumTy->getDecl()->getIntegerType(); 6796 6797 if (const auto *EIT = RetTy->getAs<BitIntType>()) 6798 if (EIT->getNumBits() > 64) 6799 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 6800 6801 return isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 6802 : ABIArgInfo::getDirect(); 6803 } 6804 6805 // Are we following APCS? 6806 if (getABIKind() == APCS) { 6807 if (isEmptyRecord(getContext(), RetTy, false)) 6808 return ABIArgInfo::getIgnore(); 6809 6810 // Complex types are all returned as packed integers. 6811 // 6812 // FIXME: Consider using 2 x vector types if the back end handles them 6813 // correctly. 6814 if (RetTy->isAnyComplexType()) 6815 return ABIArgInfo::getDirect(llvm::IntegerType::get( 6816 getVMContext(), getContext().getTypeSize(RetTy))); 6817 6818 // Integer like structures are returned in r0. 6819 if (isIntegerLikeType(RetTy, getContext(), getVMContext())) { 6820 // Return in the smallest viable integer type. 6821 uint64_t Size = getContext().getTypeSize(RetTy); 6822 if (Size <= 8) 6823 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6824 if (Size <= 16) 6825 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6826 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6827 } 6828 6829 // Otherwise return in memory. 6830 return getNaturalAlignIndirect(RetTy); 6831 } 6832 6833 // Otherwise this is an AAPCS variant. 6834 6835 if (isEmptyRecord(getContext(), RetTy, true)) 6836 return ABIArgInfo::getIgnore(); 6837 6838 // Check for homogeneous aggregates with AAPCS-VFP. 6839 if (IsAAPCS_VFP) { 6840 const Type *Base = nullptr; 6841 uint64_t Members = 0; 6842 if (isHomogeneousAggregate(RetTy, Base, Members)) 6843 return classifyHomogeneousAggregate(RetTy, Base, Members); 6844 } 6845 6846 // Aggregates <= 4 bytes are returned in r0; other aggregates 6847 // are returned indirectly. 6848 uint64_t Size = getContext().getTypeSize(RetTy); 6849 if (Size <= 32) { 6850 // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of 6851 // same size and alignment. 6852 if (getTarget().isRenderScriptTarget()) { 6853 return coerceToIntArray(RetTy, getContext(), getVMContext()); 6854 } 6855 if (getDataLayout().isBigEndian()) 6856 // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4) 6857 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6858 6859 // Return in the smallest viable integer type. 6860 if (Size <= 8) 6861 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6862 if (Size <= 16) 6863 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6864 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6865 } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) { 6866 llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext()); 6867 llvm::Type *CoerceTy = 6868 llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32); 6869 return ABIArgInfo::getDirect(CoerceTy); 6870 } 6871 6872 return getNaturalAlignIndirect(RetTy); 6873 } 6874 6875 /// isIllegalVector - check whether Ty is an illegal vector type. 6876 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const { 6877 if (const VectorType *VT = Ty->getAs<VectorType> ()) { 6878 // On targets that don't support half, fp16 or bfloat, they are expanded 6879 // into float, and we don't want the ABI to depend on whether or not they 6880 // are supported in hardware. Thus return false to coerce vectors of these 6881 // types into integer vectors. 6882 // We do not depend on hasLegalHalfType for bfloat as it is a 6883 // separate IR type. 6884 if ((!getTarget().hasLegalHalfType() && 6885 (VT->getElementType()->isFloat16Type() || 6886 VT->getElementType()->isHalfType())) || 6887 (IsFloatABISoftFP && 6888 VT->getElementType()->isBFloat16Type())) 6889 return true; 6890 if (isAndroid()) { 6891 // Android shipped using Clang 3.1, which supported a slightly different 6892 // vector ABI. The primary differences were that 3-element vector types 6893 // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path 6894 // accepts that legacy behavior for Android only. 6895 // Check whether VT is legal. 6896 unsigned NumElements = VT->getNumElements(); 6897 // NumElements should be power of 2 or equal to 3. 6898 if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3) 6899 return true; 6900 } else { 6901 // Check whether VT is legal. 6902 unsigned NumElements = VT->getNumElements(); 6903 uint64_t Size = getContext().getTypeSize(VT); 6904 // NumElements should be power of 2. 6905 if (!llvm::isPowerOf2_32(NumElements)) 6906 return true; 6907 // Size should be greater than 32 bits. 6908 return Size <= 32; 6909 } 6910 } 6911 return false; 6912 } 6913 6914 /// Return true if a type contains any 16-bit floating point vectors 6915 bool ARMABIInfo::containsAnyFP16Vectors(QualType Ty) const { 6916 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 6917 uint64_t NElements = AT->getSize().getZExtValue(); 6918 if (NElements == 0) 6919 return false; 6920 return containsAnyFP16Vectors(AT->getElementType()); 6921 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 6922 const RecordDecl *RD = RT->getDecl(); 6923 6924 // If this is a C++ record, check the bases first. 6925 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 6926 if (llvm::any_of(CXXRD->bases(), [this](const CXXBaseSpecifier &B) { 6927 return containsAnyFP16Vectors(B.getType()); 6928 })) 6929 return true; 6930 6931 if (llvm::any_of(RD->fields(), [this](FieldDecl *FD) { 6932 return FD && containsAnyFP16Vectors(FD->getType()); 6933 })) 6934 return true; 6935 6936 return false; 6937 } else { 6938 if (const VectorType *VT = Ty->getAs<VectorType>()) 6939 return (VT->getElementType()->isFloat16Type() || 6940 VT->getElementType()->isBFloat16Type() || 6941 VT->getElementType()->isHalfType()); 6942 return false; 6943 } 6944 } 6945 6946 bool ARMABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, 6947 llvm::Type *eltTy, 6948 unsigned numElts) const { 6949 if (!llvm::isPowerOf2_32(numElts)) 6950 return false; 6951 unsigned size = getDataLayout().getTypeStoreSizeInBits(eltTy); 6952 if (size > 64) 6953 return false; 6954 if (vectorSize.getQuantity() != 8 && 6955 (vectorSize.getQuantity() != 16 || numElts == 1)) 6956 return false; 6957 return true; 6958 } 6959 6960 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 6961 // Homogeneous aggregates for AAPCS-VFP must have base types of float, 6962 // double, or 64-bit or 128-bit vectors. 6963 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 6964 if (BT->getKind() == BuiltinType::Float || 6965 BT->getKind() == BuiltinType::Double || 6966 BT->getKind() == BuiltinType::LongDouble) 6967 return true; 6968 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 6969 unsigned VecSize = getContext().getTypeSize(VT); 6970 if (VecSize == 64 || VecSize == 128) 6971 return true; 6972 } 6973 return false; 6974 } 6975 6976 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 6977 uint64_t Members) const { 6978 return Members <= 4; 6979 } 6980 6981 bool ARMABIInfo::isEffectivelyAAPCS_VFP(unsigned callConvention, 6982 bool acceptHalf) const { 6983 // Give precedence to user-specified calling conventions. 6984 if (callConvention != llvm::CallingConv::C) 6985 return (callConvention == llvm::CallingConv::ARM_AAPCS_VFP); 6986 else 6987 return (getABIKind() == AAPCS_VFP) || 6988 (acceptHalf && (getABIKind() == AAPCS16_VFP)); 6989 } 6990 6991 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6992 QualType Ty) const { 6993 CharUnits SlotSize = CharUnits::fromQuantity(4); 6994 6995 // Empty records are ignored for parameter passing purposes. 6996 if (isEmptyRecord(getContext(), Ty, true)) { 6997 Address Addr = Address(CGF.Builder.CreateLoad(VAListAddr), 6998 getVAListElementType(CGF), SlotSize); 6999 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 7000 return Addr; 7001 } 7002 7003 CharUnits TySize = getContext().getTypeSizeInChars(Ty); 7004 CharUnits TyAlignForABI = getContext().getTypeUnadjustedAlignInChars(Ty); 7005 7006 // Use indirect if size of the illegal vector is bigger than 16 bytes. 7007 bool IsIndirect = false; 7008 const Type *Base = nullptr; 7009 uint64_t Members = 0; 7010 if (TySize > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) { 7011 IsIndirect = true; 7012 7013 // ARMv7k passes structs bigger than 16 bytes indirectly, in space 7014 // allocated by the caller. 7015 } else if (TySize > CharUnits::fromQuantity(16) && 7016 getABIKind() == ARMABIInfo::AAPCS16_VFP && 7017 !isHomogeneousAggregate(Ty, Base, Members)) { 7018 IsIndirect = true; 7019 7020 // Otherwise, bound the type's ABI alignment. 7021 // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for 7022 // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte. 7023 // Our callers should be prepared to handle an under-aligned address. 7024 } else if (getABIKind() == ARMABIInfo::AAPCS_VFP || 7025 getABIKind() == ARMABIInfo::AAPCS) { 7026 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 7027 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8)); 7028 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 7029 // ARMv7k allows type alignment up to 16 bytes. 7030 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 7031 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16)); 7032 } else { 7033 TyAlignForABI = CharUnits::fromQuantity(4); 7034 } 7035 7036 TypeInfoChars TyInfo(TySize, TyAlignForABI, AlignRequirementKind::None); 7037 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo, 7038 SlotSize, /*AllowHigherAlign*/ true); 7039 } 7040 7041 //===----------------------------------------------------------------------===// 7042 // NVPTX ABI Implementation 7043 //===----------------------------------------------------------------------===// 7044 7045 namespace { 7046 7047 class NVPTXTargetCodeGenInfo; 7048 7049 class NVPTXABIInfo : public ABIInfo { 7050 NVPTXTargetCodeGenInfo &CGInfo; 7051 7052 public: 7053 NVPTXABIInfo(CodeGenTypes &CGT, NVPTXTargetCodeGenInfo &Info) 7054 : ABIInfo(CGT), CGInfo(Info) {} 7055 7056 ABIArgInfo classifyReturnType(QualType RetTy) const; 7057 ABIArgInfo classifyArgumentType(QualType Ty) const; 7058 7059 void computeInfo(CGFunctionInfo &FI) const override; 7060 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7061 QualType Ty) const override; 7062 bool isUnsupportedType(QualType T) const; 7063 ABIArgInfo coerceToIntArrayWithLimit(QualType Ty, unsigned MaxSize) const; 7064 }; 7065 7066 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo { 7067 public: 7068 NVPTXTargetCodeGenInfo(CodeGenTypes &CGT) 7069 : TargetCodeGenInfo(std::make_unique<NVPTXABIInfo>(CGT, *this)) {} 7070 7071 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7072 CodeGen::CodeGenModule &M) const override; 7073 bool shouldEmitStaticExternCAliases() const override; 7074 7075 llvm::Type *getCUDADeviceBuiltinSurfaceDeviceType() const override { 7076 // On the device side, surface reference is represented as an object handle 7077 // in 64-bit integer. 7078 return llvm::Type::getInt64Ty(getABIInfo().getVMContext()); 7079 } 7080 7081 llvm::Type *getCUDADeviceBuiltinTextureDeviceType() const override { 7082 // On the device side, texture reference is represented as an object handle 7083 // in 64-bit integer. 7084 return llvm::Type::getInt64Ty(getABIInfo().getVMContext()); 7085 } 7086 7087 bool emitCUDADeviceBuiltinSurfaceDeviceCopy(CodeGenFunction &CGF, LValue Dst, 7088 LValue Src) const override { 7089 emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src); 7090 return true; 7091 } 7092 7093 bool emitCUDADeviceBuiltinTextureDeviceCopy(CodeGenFunction &CGF, LValue Dst, 7094 LValue Src) const override { 7095 emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src); 7096 return true; 7097 } 7098 7099 private: 7100 // Adds a NamedMDNode with GV, Name, and Operand as operands, and adds the 7101 // resulting MDNode to the nvvm.annotations MDNode. 7102 static void addNVVMMetadata(llvm::GlobalValue *GV, StringRef Name, 7103 int Operand); 7104 7105 static void emitBuiltinSurfTexDeviceCopy(CodeGenFunction &CGF, LValue Dst, 7106 LValue Src) { 7107 llvm::Value *Handle = nullptr; 7108 llvm::Constant *C = 7109 llvm::dyn_cast<llvm::Constant>(Src.getAddress(CGF).getPointer()); 7110 // Lookup `addrspacecast` through the constant pointer if any. 7111 if (auto *ASC = llvm::dyn_cast_or_null<llvm::AddrSpaceCastOperator>(C)) 7112 C = llvm::cast<llvm::Constant>(ASC->getPointerOperand()); 7113 if (auto *GV = llvm::dyn_cast_or_null<llvm::GlobalVariable>(C)) { 7114 // Load the handle from the specific global variable using 7115 // `nvvm.texsurf.handle.internal` intrinsic. 7116 Handle = CGF.EmitRuntimeCall( 7117 CGF.CGM.getIntrinsic(llvm::Intrinsic::nvvm_texsurf_handle_internal, 7118 {GV->getType()}), 7119 {GV}, "texsurf_handle"); 7120 } else 7121 Handle = CGF.EmitLoadOfScalar(Src, SourceLocation()); 7122 CGF.EmitStoreOfScalar(Handle, Dst); 7123 } 7124 }; 7125 7126 /// Checks if the type is unsupported directly by the current target. 7127 bool NVPTXABIInfo::isUnsupportedType(QualType T) const { 7128 ASTContext &Context = getContext(); 7129 if (!Context.getTargetInfo().hasFloat16Type() && T->isFloat16Type()) 7130 return true; 7131 if (!Context.getTargetInfo().hasFloat128Type() && 7132 (T->isFloat128Type() || 7133 (T->isRealFloatingType() && Context.getTypeSize(T) == 128))) 7134 return true; 7135 if (const auto *EIT = T->getAs<BitIntType>()) 7136 return EIT->getNumBits() > 7137 (Context.getTargetInfo().hasInt128Type() ? 128U : 64U); 7138 if (!Context.getTargetInfo().hasInt128Type() && T->isIntegerType() && 7139 Context.getTypeSize(T) > 64U) 7140 return true; 7141 if (const auto *AT = T->getAsArrayTypeUnsafe()) 7142 return isUnsupportedType(AT->getElementType()); 7143 const auto *RT = T->getAs<RecordType>(); 7144 if (!RT) 7145 return false; 7146 const RecordDecl *RD = RT->getDecl(); 7147 7148 // If this is a C++ record, check the bases first. 7149 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 7150 for (const CXXBaseSpecifier &I : CXXRD->bases()) 7151 if (isUnsupportedType(I.getType())) 7152 return true; 7153 7154 for (const FieldDecl *I : RD->fields()) 7155 if (isUnsupportedType(I->getType())) 7156 return true; 7157 return false; 7158 } 7159 7160 /// Coerce the given type into an array with maximum allowed size of elements. 7161 ABIArgInfo NVPTXABIInfo::coerceToIntArrayWithLimit(QualType Ty, 7162 unsigned MaxSize) const { 7163 // Alignment and Size are measured in bits. 7164 const uint64_t Size = getContext().getTypeSize(Ty); 7165 const uint64_t Alignment = getContext().getTypeAlign(Ty); 7166 const unsigned Div = std::min<unsigned>(MaxSize, Alignment); 7167 llvm::Type *IntType = llvm::Type::getIntNTy(getVMContext(), Div); 7168 const uint64_t NumElements = (Size + Div - 1) / Div; 7169 return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements)); 7170 } 7171 7172 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const { 7173 if (RetTy->isVoidType()) 7174 return ABIArgInfo::getIgnore(); 7175 7176 if (getContext().getLangOpts().OpenMP && 7177 getContext().getLangOpts().OpenMPIsDevice && isUnsupportedType(RetTy)) 7178 return coerceToIntArrayWithLimit(RetTy, 64); 7179 7180 // note: this is different from default ABI 7181 if (!RetTy->isScalarType()) 7182 return ABIArgInfo::getDirect(); 7183 7184 // Treat an enum type as its underlying type. 7185 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 7186 RetTy = EnumTy->getDecl()->getIntegerType(); 7187 7188 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 7189 : ABIArgInfo::getDirect()); 7190 } 7191 7192 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const { 7193 // Treat an enum type as its underlying type. 7194 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7195 Ty = EnumTy->getDecl()->getIntegerType(); 7196 7197 // Return aggregates type as indirect by value 7198 if (isAggregateTypeForABI(Ty)) { 7199 // Under CUDA device compilation, tex/surf builtin types are replaced with 7200 // object types and passed directly. 7201 if (getContext().getLangOpts().CUDAIsDevice) { 7202 if (Ty->isCUDADeviceBuiltinSurfaceType()) 7203 return ABIArgInfo::getDirect( 7204 CGInfo.getCUDADeviceBuiltinSurfaceDeviceType()); 7205 if (Ty->isCUDADeviceBuiltinTextureType()) 7206 return ABIArgInfo::getDirect( 7207 CGInfo.getCUDADeviceBuiltinTextureDeviceType()); 7208 } 7209 return getNaturalAlignIndirect(Ty, /* byval */ true); 7210 } 7211 7212 if (const auto *EIT = Ty->getAs<BitIntType>()) { 7213 if ((EIT->getNumBits() > 128) || 7214 (!getContext().getTargetInfo().hasInt128Type() && 7215 EIT->getNumBits() > 64)) 7216 return getNaturalAlignIndirect(Ty, /* byval */ true); 7217 } 7218 7219 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 7220 : ABIArgInfo::getDirect()); 7221 } 7222 7223 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const { 7224 if (!getCXXABI().classifyReturnType(FI)) 7225 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7226 for (auto &I : FI.arguments()) 7227 I.info = classifyArgumentType(I.type); 7228 7229 // Always honor user-specified calling convention. 7230 if (FI.getCallingConvention() != llvm::CallingConv::C) 7231 return; 7232 7233 FI.setEffectiveCallingConvention(getRuntimeCC()); 7234 } 7235 7236 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7237 QualType Ty) const { 7238 llvm_unreachable("NVPTX does not support varargs"); 7239 } 7240 7241 void NVPTXTargetCodeGenInfo::setTargetAttributes( 7242 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 7243 if (GV->isDeclaration()) 7244 return; 7245 const VarDecl *VD = dyn_cast_or_null<VarDecl>(D); 7246 if (VD) { 7247 if (M.getLangOpts().CUDA) { 7248 if (VD->getType()->isCUDADeviceBuiltinSurfaceType()) 7249 addNVVMMetadata(GV, "surface", 1); 7250 else if (VD->getType()->isCUDADeviceBuiltinTextureType()) 7251 addNVVMMetadata(GV, "texture", 1); 7252 return; 7253 } 7254 } 7255 7256 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 7257 if (!FD) return; 7258 7259 llvm::Function *F = cast<llvm::Function>(GV); 7260 7261 // Perform special handling in OpenCL mode 7262 if (M.getLangOpts().OpenCL) { 7263 // Use OpenCL function attributes to check for kernel functions 7264 // By default, all functions are device functions 7265 if (FD->hasAttr<OpenCLKernelAttr>()) { 7266 // OpenCL __kernel functions get kernel metadata 7267 // Create !{<func-ref>, metadata !"kernel", i32 1} node 7268 addNVVMMetadata(F, "kernel", 1); 7269 // And kernel functions are not subject to inlining 7270 F->addFnAttr(llvm::Attribute::NoInline); 7271 } 7272 } 7273 7274 // Perform special handling in CUDA mode. 7275 if (M.getLangOpts().CUDA) { 7276 // CUDA __global__ functions get a kernel metadata entry. Since 7277 // __global__ functions cannot be called from the device, we do not 7278 // need to set the noinline attribute. 7279 if (FD->hasAttr<CUDAGlobalAttr>()) { 7280 // Create !{<func-ref>, metadata !"kernel", i32 1} node 7281 addNVVMMetadata(F, "kernel", 1); 7282 } 7283 if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) { 7284 // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node 7285 llvm::APSInt MaxThreads(32); 7286 MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext()); 7287 if (MaxThreads > 0) 7288 addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue()); 7289 7290 // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was 7291 // not specified in __launch_bounds__ or if the user specified a 0 value, 7292 // we don't have to add a PTX directive. 7293 if (Attr->getMinBlocks()) { 7294 llvm::APSInt MinBlocks(32); 7295 MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext()); 7296 if (MinBlocks > 0) 7297 // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node 7298 addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue()); 7299 } 7300 } 7301 } 7302 } 7303 7304 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::GlobalValue *GV, 7305 StringRef Name, int Operand) { 7306 llvm::Module *M = GV->getParent(); 7307 llvm::LLVMContext &Ctx = M->getContext(); 7308 7309 // Get "nvvm.annotations" metadata node 7310 llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations"); 7311 7312 llvm::Metadata *MDVals[] = { 7313 llvm::ConstantAsMetadata::get(GV), llvm::MDString::get(Ctx, Name), 7314 llvm::ConstantAsMetadata::get( 7315 llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))}; 7316 // Append metadata to nvvm.annotations 7317 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 7318 } 7319 7320 bool NVPTXTargetCodeGenInfo::shouldEmitStaticExternCAliases() const { 7321 return false; 7322 } 7323 } 7324 7325 //===----------------------------------------------------------------------===// 7326 // SystemZ ABI Implementation 7327 //===----------------------------------------------------------------------===// 7328 7329 namespace { 7330 7331 class SystemZABIInfo : public SwiftABIInfo { 7332 bool HasVector; 7333 bool IsSoftFloatABI; 7334 7335 public: 7336 SystemZABIInfo(CodeGenTypes &CGT, bool HV, bool SF) 7337 : SwiftABIInfo(CGT), HasVector(HV), IsSoftFloatABI(SF) {} 7338 7339 bool isPromotableIntegerTypeForABI(QualType Ty) const; 7340 bool isCompoundType(QualType Ty) const; 7341 bool isVectorArgumentType(QualType Ty) const; 7342 bool isFPArgumentType(QualType Ty) const; 7343 QualType GetSingleElementType(QualType Ty) const; 7344 7345 ABIArgInfo classifyReturnType(QualType RetTy) const; 7346 ABIArgInfo classifyArgumentType(QualType ArgTy) const; 7347 7348 void computeInfo(CGFunctionInfo &FI) const override { 7349 if (!getCXXABI().classifyReturnType(FI)) 7350 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7351 for (auto &I : FI.arguments()) 7352 I.info = classifyArgumentType(I.type); 7353 } 7354 7355 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7356 QualType Ty) const override; 7357 7358 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 7359 bool asReturnValue) const override { 7360 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 7361 } 7362 bool isSwiftErrorInRegister() const override { 7363 return false; 7364 } 7365 }; 7366 7367 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo { 7368 public: 7369 SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector, bool SoftFloatABI) 7370 : TargetCodeGenInfo( 7371 std::make_unique<SystemZABIInfo>(CGT, HasVector, SoftFloatABI)) {} 7372 7373 llvm::Value *testFPKind(llvm::Value *V, unsigned BuiltinID, 7374 CGBuilderTy &Builder, 7375 CodeGenModule &CGM) const override { 7376 assert(V->getType()->isFloatingPointTy() && "V should have an FP type."); 7377 // Only use TDC in constrained FP mode. 7378 if (!Builder.getIsFPConstrained()) 7379 return nullptr; 7380 7381 llvm::Type *Ty = V->getType(); 7382 if (Ty->isFloatTy() || Ty->isDoubleTy() || Ty->isFP128Ty()) { 7383 llvm::Module &M = CGM.getModule(); 7384 auto &Ctx = M.getContext(); 7385 llvm::Function *TDCFunc = 7386 llvm::Intrinsic::getDeclaration(&M, llvm::Intrinsic::s390_tdc, Ty); 7387 unsigned TDCBits = 0; 7388 switch (BuiltinID) { 7389 case Builtin::BI__builtin_isnan: 7390 TDCBits = 0xf; 7391 break; 7392 case Builtin::BIfinite: 7393 case Builtin::BI__finite: 7394 case Builtin::BIfinitef: 7395 case Builtin::BI__finitef: 7396 case Builtin::BIfinitel: 7397 case Builtin::BI__finitel: 7398 case Builtin::BI__builtin_isfinite: 7399 TDCBits = 0xfc0; 7400 break; 7401 case Builtin::BI__builtin_isinf: 7402 TDCBits = 0x30; 7403 break; 7404 default: 7405 break; 7406 } 7407 if (TDCBits) 7408 return Builder.CreateCall( 7409 TDCFunc, 7410 {V, llvm::ConstantInt::get(llvm::Type::getInt64Ty(Ctx), TDCBits)}); 7411 } 7412 return nullptr; 7413 } 7414 }; 7415 } 7416 7417 bool SystemZABIInfo::isPromotableIntegerTypeForABI(QualType Ty) const { 7418 // Treat an enum type as its underlying type. 7419 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7420 Ty = EnumTy->getDecl()->getIntegerType(); 7421 7422 // Promotable integer types are required to be promoted by the ABI. 7423 if (ABIInfo::isPromotableIntegerTypeForABI(Ty)) 7424 return true; 7425 7426 if (const auto *EIT = Ty->getAs<BitIntType>()) 7427 if (EIT->getNumBits() < 64) 7428 return true; 7429 7430 // 32-bit values must also be promoted. 7431 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 7432 switch (BT->getKind()) { 7433 case BuiltinType::Int: 7434 case BuiltinType::UInt: 7435 return true; 7436 default: 7437 return false; 7438 } 7439 return false; 7440 } 7441 7442 bool SystemZABIInfo::isCompoundType(QualType Ty) const { 7443 return (Ty->isAnyComplexType() || 7444 Ty->isVectorType() || 7445 isAggregateTypeForABI(Ty)); 7446 } 7447 7448 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const { 7449 return (HasVector && 7450 Ty->isVectorType() && 7451 getContext().getTypeSize(Ty) <= 128); 7452 } 7453 7454 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const { 7455 if (IsSoftFloatABI) 7456 return false; 7457 7458 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 7459 switch (BT->getKind()) { 7460 case BuiltinType::Float: 7461 case BuiltinType::Double: 7462 return true; 7463 default: 7464 return false; 7465 } 7466 7467 return false; 7468 } 7469 7470 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const { 7471 const RecordType *RT = Ty->getAs<RecordType>(); 7472 7473 if (RT && RT->isStructureOrClassType()) { 7474 const RecordDecl *RD = RT->getDecl(); 7475 QualType Found; 7476 7477 // If this is a C++ record, check the bases first. 7478 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 7479 for (const auto &I : CXXRD->bases()) { 7480 QualType Base = I.getType(); 7481 7482 // Empty bases don't affect things either way. 7483 if (isEmptyRecord(getContext(), Base, true)) 7484 continue; 7485 7486 if (!Found.isNull()) 7487 return Ty; 7488 Found = GetSingleElementType(Base); 7489 } 7490 7491 // Check the fields. 7492 for (const auto *FD : RD->fields()) { 7493 // For compatibility with GCC, ignore empty bitfields in C++ mode. 7494 // Unlike isSingleElementStruct(), empty structure and array fields 7495 // do count. So do anonymous bitfields that aren't zero-sized. 7496 if (getContext().getLangOpts().CPlusPlus && 7497 FD->isZeroLengthBitField(getContext())) 7498 continue; 7499 // Like isSingleElementStruct(), ignore C++20 empty data members. 7500 if (FD->hasAttr<NoUniqueAddressAttr>() && 7501 isEmptyRecord(getContext(), FD->getType(), true)) 7502 continue; 7503 7504 // Unlike isSingleElementStruct(), arrays do not count. 7505 // Nested structures still do though. 7506 if (!Found.isNull()) 7507 return Ty; 7508 Found = GetSingleElementType(FD->getType()); 7509 } 7510 7511 // Unlike isSingleElementStruct(), trailing padding is allowed. 7512 // An 8-byte aligned struct s { float f; } is passed as a double. 7513 if (!Found.isNull()) 7514 return Found; 7515 } 7516 7517 return Ty; 7518 } 7519 7520 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7521 QualType Ty) const { 7522 // Assume that va_list type is correct; should be pointer to LLVM type: 7523 // struct { 7524 // i64 __gpr; 7525 // i64 __fpr; 7526 // i8 *__overflow_arg_area; 7527 // i8 *__reg_save_area; 7528 // }; 7529 7530 // Every non-vector argument occupies 8 bytes and is passed by preference 7531 // in either GPRs or FPRs. Vector arguments occupy 8 or 16 bytes and are 7532 // always passed on the stack. 7533 Ty = getContext().getCanonicalType(Ty); 7534 auto TyInfo = getContext().getTypeInfoInChars(Ty); 7535 llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty); 7536 llvm::Type *DirectTy = ArgTy; 7537 ABIArgInfo AI = classifyArgumentType(Ty); 7538 bool IsIndirect = AI.isIndirect(); 7539 bool InFPRs = false; 7540 bool IsVector = false; 7541 CharUnits UnpaddedSize; 7542 CharUnits DirectAlign; 7543 if (IsIndirect) { 7544 DirectTy = llvm::PointerType::getUnqual(DirectTy); 7545 UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8); 7546 } else { 7547 if (AI.getCoerceToType()) 7548 ArgTy = AI.getCoerceToType(); 7549 InFPRs = (!IsSoftFloatABI && (ArgTy->isFloatTy() || ArgTy->isDoubleTy())); 7550 IsVector = ArgTy->isVectorTy(); 7551 UnpaddedSize = TyInfo.Width; 7552 DirectAlign = TyInfo.Align; 7553 } 7554 CharUnits PaddedSize = CharUnits::fromQuantity(8); 7555 if (IsVector && UnpaddedSize > PaddedSize) 7556 PaddedSize = CharUnits::fromQuantity(16); 7557 assert((UnpaddedSize <= PaddedSize) && "Invalid argument size."); 7558 7559 CharUnits Padding = (PaddedSize - UnpaddedSize); 7560 7561 llvm::Type *IndexTy = CGF.Int64Ty; 7562 llvm::Value *PaddedSizeV = 7563 llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity()); 7564 7565 if (IsVector) { 7566 // Work out the address of a vector argument on the stack. 7567 // Vector arguments are always passed in the high bits of a 7568 // single (8 byte) or double (16 byte) stack slot. 7569 Address OverflowArgAreaPtr = 7570 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr"); 7571 Address OverflowArgArea = 7572 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 7573 CGF.Int8Ty, TyInfo.Align); 7574 Address MemAddr = 7575 CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr"); 7576 7577 // Update overflow_arg_area_ptr pointer 7578 llvm::Value *NewOverflowArgArea = CGF.Builder.CreateGEP( 7579 OverflowArgArea.getElementType(), OverflowArgArea.getPointer(), 7580 PaddedSizeV, "overflow_arg_area"); 7581 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 7582 7583 return MemAddr; 7584 } 7585 7586 assert(PaddedSize.getQuantity() == 8); 7587 7588 unsigned MaxRegs, RegCountField, RegSaveIndex; 7589 CharUnits RegPadding; 7590 if (InFPRs) { 7591 MaxRegs = 4; // Maximum of 4 FPR arguments 7592 RegCountField = 1; // __fpr 7593 RegSaveIndex = 16; // save offset for f0 7594 RegPadding = CharUnits(); // floats are passed in the high bits of an FPR 7595 } else { 7596 MaxRegs = 5; // Maximum of 5 GPR arguments 7597 RegCountField = 0; // __gpr 7598 RegSaveIndex = 2; // save offset for r2 7599 RegPadding = Padding; // values are passed in the low bits of a GPR 7600 } 7601 7602 Address RegCountPtr = 7603 CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr"); 7604 llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count"); 7605 llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs); 7606 llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV, 7607 "fits_in_regs"); 7608 7609 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 7610 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 7611 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 7612 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 7613 7614 // Emit code to load the value if it was passed in registers. 7615 CGF.EmitBlock(InRegBlock); 7616 7617 // Work out the address of an argument register. 7618 llvm::Value *ScaledRegCount = 7619 CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count"); 7620 llvm::Value *RegBase = 7621 llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity() 7622 + RegPadding.getQuantity()); 7623 llvm::Value *RegOffset = 7624 CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset"); 7625 Address RegSaveAreaPtr = 7626 CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr"); 7627 llvm::Value *RegSaveArea = 7628 CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area"); 7629 Address RawRegAddr( 7630 CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, RegOffset, "raw_reg_addr"), 7631 CGF.Int8Ty, PaddedSize); 7632 Address RegAddr = 7633 CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr"); 7634 7635 // Update the register count 7636 llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1); 7637 llvm::Value *NewRegCount = 7638 CGF.Builder.CreateAdd(RegCount, One, "reg_count"); 7639 CGF.Builder.CreateStore(NewRegCount, RegCountPtr); 7640 CGF.EmitBranch(ContBlock); 7641 7642 // Emit code to load the value if it was passed in memory. 7643 CGF.EmitBlock(InMemBlock); 7644 7645 // Work out the address of a stack argument. 7646 Address OverflowArgAreaPtr = 7647 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr"); 7648 Address OverflowArgArea = 7649 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 7650 CGF.Int8Ty, PaddedSize); 7651 Address RawMemAddr = 7652 CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr"); 7653 Address MemAddr = 7654 CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr"); 7655 7656 // Update overflow_arg_area_ptr pointer 7657 llvm::Value *NewOverflowArgArea = 7658 CGF.Builder.CreateGEP(OverflowArgArea.getElementType(), 7659 OverflowArgArea.getPointer(), PaddedSizeV, 7660 "overflow_arg_area"); 7661 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 7662 CGF.EmitBranch(ContBlock); 7663 7664 // Return the appropriate result. 7665 CGF.EmitBlock(ContBlock); 7666 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock, 7667 "va_arg.addr"); 7668 7669 if (IsIndirect) 7670 ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"), ArgTy, 7671 TyInfo.Align); 7672 7673 return ResAddr; 7674 } 7675 7676 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const { 7677 if (RetTy->isVoidType()) 7678 return ABIArgInfo::getIgnore(); 7679 if (isVectorArgumentType(RetTy)) 7680 return ABIArgInfo::getDirect(); 7681 if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64) 7682 return getNaturalAlignIndirect(RetTy); 7683 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 7684 : ABIArgInfo::getDirect()); 7685 } 7686 7687 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const { 7688 // Handle the generic C++ ABI. 7689 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 7690 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7691 7692 // Integers and enums are extended to full register width. 7693 if (isPromotableIntegerTypeForABI(Ty)) 7694 return ABIArgInfo::getExtend(Ty); 7695 7696 // Handle vector types and vector-like structure types. Note that 7697 // as opposed to float-like structure types, we do not allow any 7698 // padding for vector-like structures, so verify the sizes match. 7699 uint64_t Size = getContext().getTypeSize(Ty); 7700 QualType SingleElementTy = GetSingleElementType(Ty); 7701 if (isVectorArgumentType(SingleElementTy) && 7702 getContext().getTypeSize(SingleElementTy) == Size) 7703 return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy)); 7704 7705 // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly. 7706 if (Size != 8 && Size != 16 && Size != 32 && Size != 64) 7707 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 7708 7709 // Handle small structures. 7710 if (const RecordType *RT = Ty->getAs<RecordType>()) { 7711 // Structures with flexible arrays have variable length, so really 7712 // fail the size test above. 7713 const RecordDecl *RD = RT->getDecl(); 7714 if (RD->hasFlexibleArrayMember()) 7715 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 7716 7717 // The structure is passed as an unextended integer, a float, or a double. 7718 llvm::Type *PassTy; 7719 if (isFPArgumentType(SingleElementTy)) { 7720 assert(Size == 32 || Size == 64); 7721 if (Size == 32) 7722 PassTy = llvm::Type::getFloatTy(getVMContext()); 7723 else 7724 PassTy = llvm::Type::getDoubleTy(getVMContext()); 7725 } else 7726 PassTy = llvm::IntegerType::get(getVMContext(), Size); 7727 return ABIArgInfo::getDirect(PassTy); 7728 } 7729 7730 // Non-structure compounds are passed indirectly. 7731 if (isCompoundType(Ty)) 7732 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 7733 7734 return ABIArgInfo::getDirect(nullptr); 7735 } 7736 7737 //===----------------------------------------------------------------------===// 7738 // MSP430 ABI Implementation 7739 //===----------------------------------------------------------------------===// 7740 7741 namespace { 7742 7743 class MSP430ABIInfo : public DefaultABIInfo { 7744 static ABIArgInfo complexArgInfo() { 7745 ABIArgInfo Info = ABIArgInfo::getDirect(); 7746 Info.setCanBeFlattened(false); 7747 return Info; 7748 } 7749 7750 public: 7751 MSP430ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 7752 7753 ABIArgInfo classifyReturnType(QualType RetTy) const { 7754 if (RetTy->isAnyComplexType()) 7755 return complexArgInfo(); 7756 7757 return DefaultABIInfo::classifyReturnType(RetTy); 7758 } 7759 7760 ABIArgInfo classifyArgumentType(QualType RetTy) const { 7761 if (RetTy->isAnyComplexType()) 7762 return complexArgInfo(); 7763 7764 return DefaultABIInfo::classifyArgumentType(RetTy); 7765 } 7766 7767 // Just copy the original implementations because 7768 // DefaultABIInfo::classify{Return,Argument}Type() are not virtual 7769 void computeInfo(CGFunctionInfo &FI) const override { 7770 if (!getCXXABI().classifyReturnType(FI)) 7771 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7772 for (auto &I : FI.arguments()) 7773 I.info = classifyArgumentType(I.type); 7774 } 7775 7776 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7777 QualType Ty) const override { 7778 return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty)); 7779 } 7780 }; 7781 7782 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo { 7783 public: 7784 MSP430TargetCodeGenInfo(CodeGenTypes &CGT) 7785 : TargetCodeGenInfo(std::make_unique<MSP430ABIInfo>(CGT)) {} 7786 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7787 CodeGen::CodeGenModule &M) const override; 7788 }; 7789 7790 } 7791 7792 void MSP430TargetCodeGenInfo::setTargetAttributes( 7793 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 7794 if (GV->isDeclaration()) 7795 return; 7796 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 7797 const auto *InterruptAttr = FD->getAttr<MSP430InterruptAttr>(); 7798 if (!InterruptAttr) 7799 return; 7800 7801 // Handle 'interrupt' attribute: 7802 llvm::Function *F = cast<llvm::Function>(GV); 7803 7804 // Step 1: Set ISR calling convention. 7805 F->setCallingConv(llvm::CallingConv::MSP430_INTR); 7806 7807 // Step 2: Add attributes goodness. 7808 F->addFnAttr(llvm::Attribute::NoInline); 7809 F->addFnAttr("interrupt", llvm::utostr(InterruptAttr->getNumber())); 7810 } 7811 } 7812 7813 //===----------------------------------------------------------------------===// 7814 // MIPS ABI Implementation. This works for both little-endian and 7815 // big-endian variants. 7816 //===----------------------------------------------------------------------===// 7817 7818 namespace { 7819 class MipsABIInfo : public ABIInfo { 7820 bool IsO32; 7821 unsigned MinABIStackAlignInBytes, StackAlignInBytes; 7822 void CoerceToIntArgs(uint64_t TySize, 7823 SmallVectorImpl<llvm::Type *> &ArgList) const; 7824 llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const; 7825 llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const; 7826 llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const; 7827 public: 7828 MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) : 7829 ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8), 7830 StackAlignInBytes(IsO32 ? 8 : 16) {} 7831 7832 ABIArgInfo classifyReturnType(QualType RetTy) const; 7833 ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const; 7834 void computeInfo(CGFunctionInfo &FI) const override; 7835 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7836 QualType Ty) const override; 7837 ABIArgInfo extendType(QualType Ty) const; 7838 }; 7839 7840 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo { 7841 unsigned SizeOfUnwindException; 7842 public: 7843 MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32) 7844 : TargetCodeGenInfo(std::make_unique<MipsABIInfo>(CGT, IsO32)), 7845 SizeOfUnwindException(IsO32 ? 24 : 32) {} 7846 7847 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 7848 return 29; 7849 } 7850 7851 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7852 CodeGen::CodeGenModule &CGM) const override { 7853 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 7854 if (!FD) return; 7855 llvm::Function *Fn = cast<llvm::Function>(GV); 7856 7857 if (FD->hasAttr<MipsLongCallAttr>()) 7858 Fn->addFnAttr("long-call"); 7859 else if (FD->hasAttr<MipsShortCallAttr>()) 7860 Fn->addFnAttr("short-call"); 7861 7862 // Other attributes do not have a meaning for declarations. 7863 if (GV->isDeclaration()) 7864 return; 7865 7866 if (FD->hasAttr<Mips16Attr>()) { 7867 Fn->addFnAttr("mips16"); 7868 } 7869 else if (FD->hasAttr<NoMips16Attr>()) { 7870 Fn->addFnAttr("nomips16"); 7871 } 7872 7873 if (FD->hasAttr<MicroMipsAttr>()) 7874 Fn->addFnAttr("micromips"); 7875 else if (FD->hasAttr<NoMicroMipsAttr>()) 7876 Fn->addFnAttr("nomicromips"); 7877 7878 const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>(); 7879 if (!Attr) 7880 return; 7881 7882 const char *Kind; 7883 switch (Attr->getInterrupt()) { 7884 case MipsInterruptAttr::eic: Kind = "eic"; break; 7885 case MipsInterruptAttr::sw0: Kind = "sw0"; break; 7886 case MipsInterruptAttr::sw1: Kind = "sw1"; break; 7887 case MipsInterruptAttr::hw0: Kind = "hw0"; break; 7888 case MipsInterruptAttr::hw1: Kind = "hw1"; break; 7889 case MipsInterruptAttr::hw2: Kind = "hw2"; break; 7890 case MipsInterruptAttr::hw3: Kind = "hw3"; break; 7891 case MipsInterruptAttr::hw4: Kind = "hw4"; break; 7892 case MipsInterruptAttr::hw5: Kind = "hw5"; break; 7893 } 7894 7895 Fn->addFnAttr("interrupt", Kind); 7896 7897 } 7898 7899 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 7900 llvm::Value *Address) const override; 7901 7902 unsigned getSizeOfUnwindException() const override { 7903 return SizeOfUnwindException; 7904 } 7905 }; 7906 } 7907 7908 void MipsABIInfo::CoerceToIntArgs( 7909 uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const { 7910 llvm::IntegerType *IntTy = 7911 llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8); 7912 7913 // Add (TySize / MinABIStackAlignInBytes) args of IntTy. 7914 for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N) 7915 ArgList.push_back(IntTy); 7916 7917 // If necessary, add one more integer type to ArgList. 7918 unsigned R = TySize % (MinABIStackAlignInBytes * 8); 7919 7920 if (R) 7921 ArgList.push_back(llvm::IntegerType::get(getVMContext(), R)); 7922 } 7923 7924 // In N32/64, an aligned double precision floating point field is passed in 7925 // a register. 7926 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const { 7927 SmallVector<llvm::Type*, 8> ArgList, IntArgList; 7928 7929 if (IsO32) { 7930 CoerceToIntArgs(TySize, ArgList); 7931 return llvm::StructType::get(getVMContext(), ArgList); 7932 } 7933 7934 if (Ty->isComplexType()) 7935 return CGT.ConvertType(Ty); 7936 7937 const RecordType *RT = Ty->getAs<RecordType>(); 7938 7939 // Unions/vectors are passed in integer registers. 7940 if (!RT || !RT->isStructureOrClassType()) { 7941 CoerceToIntArgs(TySize, ArgList); 7942 return llvm::StructType::get(getVMContext(), ArgList); 7943 } 7944 7945 const RecordDecl *RD = RT->getDecl(); 7946 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 7947 assert(!(TySize % 8) && "Size of structure must be multiple of 8."); 7948 7949 uint64_t LastOffset = 0; 7950 unsigned idx = 0; 7951 llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64); 7952 7953 // Iterate over fields in the struct/class and check if there are any aligned 7954 // double fields. 7955 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 7956 i != e; ++i, ++idx) { 7957 const QualType Ty = i->getType(); 7958 const BuiltinType *BT = Ty->getAs<BuiltinType>(); 7959 7960 if (!BT || BT->getKind() != BuiltinType::Double) 7961 continue; 7962 7963 uint64_t Offset = Layout.getFieldOffset(idx); 7964 if (Offset % 64) // Ignore doubles that are not aligned. 7965 continue; 7966 7967 // Add ((Offset - LastOffset) / 64) args of type i64. 7968 for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j) 7969 ArgList.push_back(I64); 7970 7971 // Add double type. 7972 ArgList.push_back(llvm::Type::getDoubleTy(getVMContext())); 7973 LastOffset = Offset + 64; 7974 } 7975 7976 CoerceToIntArgs(TySize - LastOffset, IntArgList); 7977 ArgList.append(IntArgList.begin(), IntArgList.end()); 7978 7979 return llvm::StructType::get(getVMContext(), ArgList); 7980 } 7981 7982 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset, 7983 uint64_t Offset) const { 7984 if (OrigOffset + MinABIStackAlignInBytes > Offset) 7985 return nullptr; 7986 7987 return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8); 7988 } 7989 7990 ABIArgInfo 7991 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const { 7992 Ty = useFirstFieldIfTransparentUnion(Ty); 7993 7994 uint64_t OrigOffset = Offset; 7995 uint64_t TySize = getContext().getTypeSize(Ty); 7996 uint64_t Align = getContext().getTypeAlign(Ty) / 8; 7997 7998 Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes), 7999 (uint64_t)StackAlignInBytes); 8000 unsigned CurrOffset = llvm::alignTo(Offset, Align); 8001 Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8; 8002 8003 if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) { 8004 // Ignore empty aggregates. 8005 if (TySize == 0) 8006 return ABIArgInfo::getIgnore(); 8007 8008 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 8009 Offset = OrigOffset + MinABIStackAlignInBytes; 8010 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 8011 } 8012 8013 // If we have reached here, aggregates are passed directly by coercing to 8014 // another structure type. Padding is inserted if the offset of the 8015 // aggregate is unaligned. 8016 ABIArgInfo ArgInfo = 8017 ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0, 8018 getPaddingType(OrigOffset, CurrOffset)); 8019 ArgInfo.setInReg(true); 8020 return ArgInfo; 8021 } 8022 8023 // Treat an enum type as its underlying type. 8024 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 8025 Ty = EnumTy->getDecl()->getIntegerType(); 8026 8027 // Make sure we pass indirectly things that are too large. 8028 if (const auto *EIT = Ty->getAs<BitIntType>()) 8029 if (EIT->getNumBits() > 128 || 8030 (EIT->getNumBits() > 64 && 8031 !getContext().getTargetInfo().hasInt128Type())) 8032 return getNaturalAlignIndirect(Ty); 8033 8034 // All integral types are promoted to the GPR width. 8035 if (Ty->isIntegralOrEnumerationType()) 8036 return extendType(Ty); 8037 8038 return ABIArgInfo::getDirect( 8039 nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset)); 8040 } 8041 8042 llvm::Type* 8043 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const { 8044 const RecordType *RT = RetTy->getAs<RecordType>(); 8045 SmallVector<llvm::Type*, 8> RTList; 8046 8047 if (RT && RT->isStructureOrClassType()) { 8048 const RecordDecl *RD = RT->getDecl(); 8049 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 8050 unsigned FieldCnt = Layout.getFieldCount(); 8051 8052 // N32/64 returns struct/classes in floating point registers if the 8053 // following conditions are met: 8054 // 1. The size of the struct/class is no larger than 128-bit. 8055 // 2. The struct/class has one or two fields all of which are floating 8056 // point types. 8057 // 3. The offset of the first field is zero (this follows what gcc does). 8058 // 8059 // Any other composite results are returned in integer registers. 8060 // 8061 if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) { 8062 RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end(); 8063 for (; b != e; ++b) { 8064 const BuiltinType *BT = b->getType()->getAs<BuiltinType>(); 8065 8066 if (!BT || !BT->isFloatingPoint()) 8067 break; 8068 8069 RTList.push_back(CGT.ConvertType(b->getType())); 8070 } 8071 8072 if (b == e) 8073 return llvm::StructType::get(getVMContext(), RTList, 8074 RD->hasAttr<PackedAttr>()); 8075 8076 RTList.clear(); 8077 } 8078 } 8079 8080 CoerceToIntArgs(Size, RTList); 8081 return llvm::StructType::get(getVMContext(), RTList); 8082 } 8083 8084 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const { 8085 uint64_t Size = getContext().getTypeSize(RetTy); 8086 8087 if (RetTy->isVoidType()) 8088 return ABIArgInfo::getIgnore(); 8089 8090 // O32 doesn't treat zero-sized structs differently from other structs. 8091 // However, N32/N64 ignores zero sized return values. 8092 if (!IsO32 && Size == 0) 8093 return ABIArgInfo::getIgnore(); 8094 8095 if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) { 8096 if (Size <= 128) { 8097 if (RetTy->isAnyComplexType()) 8098 return ABIArgInfo::getDirect(); 8099 8100 // O32 returns integer vectors in registers and N32/N64 returns all small 8101 // aggregates in registers. 8102 if (!IsO32 || 8103 (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) { 8104 ABIArgInfo ArgInfo = 8105 ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size)); 8106 ArgInfo.setInReg(true); 8107 return ArgInfo; 8108 } 8109 } 8110 8111 return getNaturalAlignIndirect(RetTy); 8112 } 8113 8114 // Treat an enum type as its underlying type. 8115 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 8116 RetTy = EnumTy->getDecl()->getIntegerType(); 8117 8118 // Make sure we pass indirectly things that are too large. 8119 if (const auto *EIT = RetTy->getAs<BitIntType>()) 8120 if (EIT->getNumBits() > 128 || 8121 (EIT->getNumBits() > 64 && 8122 !getContext().getTargetInfo().hasInt128Type())) 8123 return getNaturalAlignIndirect(RetTy); 8124 8125 if (isPromotableIntegerTypeForABI(RetTy)) 8126 return ABIArgInfo::getExtend(RetTy); 8127 8128 if ((RetTy->isUnsignedIntegerOrEnumerationType() || 8129 RetTy->isSignedIntegerOrEnumerationType()) && Size == 32 && !IsO32) 8130 return ABIArgInfo::getSignExtend(RetTy); 8131 8132 return ABIArgInfo::getDirect(); 8133 } 8134 8135 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const { 8136 ABIArgInfo &RetInfo = FI.getReturnInfo(); 8137 if (!getCXXABI().classifyReturnType(FI)) 8138 RetInfo = classifyReturnType(FI.getReturnType()); 8139 8140 // Check if a pointer to an aggregate is passed as a hidden argument. 8141 uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0; 8142 8143 for (auto &I : FI.arguments()) 8144 I.info = classifyArgumentType(I.type, Offset); 8145 } 8146 8147 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8148 QualType OrigTy) const { 8149 QualType Ty = OrigTy; 8150 8151 // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64. 8152 // Pointers are also promoted in the same way but this only matters for N32. 8153 unsigned SlotSizeInBits = IsO32 ? 32 : 64; 8154 unsigned PtrWidth = getTarget().getPointerWidth(0); 8155 bool DidPromote = false; 8156 if ((Ty->isIntegerType() && 8157 getContext().getIntWidth(Ty) < SlotSizeInBits) || 8158 (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) { 8159 DidPromote = true; 8160 Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits, 8161 Ty->isSignedIntegerType()); 8162 } 8163 8164 auto TyInfo = getContext().getTypeInfoInChars(Ty); 8165 8166 // The alignment of things in the argument area is never larger than 8167 // StackAlignInBytes. 8168 TyInfo.Align = 8169 std::min(TyInfo.Align, CharUnits::fromQuantity(StackAlignInBytes)); 8170 8171 // MinABIStackAlignInBytes is the size of argument slots on the stack. 8172 CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes); 8173 8174 Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 8175 TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true); 8176 8177 8178 // If there was a promotion, "unpromote" into a temporary. 8179 // TODO: can we just use a pointer into a subset of the original slot? 8180 if (DidPromote) { 8181 Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp"); 8182 llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr); 8183 8184 // Truncate down to the right width. 8185 llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType() 8186 : CGF.IntPtrTy); 8187 llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy); 8188 if (OrigTy->isPointerType()) 8189 V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType()); 8190 8191 CGF.Builder.CreateStore(V, Temp); 8192 Addr = Temp; 8193 } 8194 8195 return Addr; 8196 } 8197 8198 ABIArgInfo MipsABIInfo::extendType(QualType Ty) const { 8199 int TySize = getContext().getTypeSize(Ty); 8200 8201 // MIPS64 ABI requires unsigned 32 bit integers to be sign extended. 8202 if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 8203 return ABIArgInfo::getSignExtend(Ty); 8204 8205 return ABIArgInfo::getExtend(Ty); 8206 } 8207 8208 bool 8209 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 8210 llvm::Value *Address) const { 8211 // This information comes from gcc's implementation, which seems to 8212 // as canonical as it gets. 8213 8214 // Everything on MIPS is 4 bytes. Double-precision FP registers 8215 // are aliased to pairs of single-precision FP registers. 8216 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 8217 8218 // 0-31 are the general purpose registers, $0 - $31. 8219 // 32-63 are the floating-point registers, $f0 - $f31. 8220 // 64 and 65 are the multiply/divide registers, $hi and $lo. 8221 // 66 is the (notional, I think) register for signal-handler return. 8222 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65); 8223 8224 // 67-74 are the floating-point status registers, $fcc0 - $fcc7. 8225 // They are one bit wide and ignored here. 8226 8227 // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31. 8228 // (coprocessor 1 is the FP unit) 8229 // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31. 8230 // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31. 8231 // 176-181 are the DSP accumulator registers. 8232 AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181); 8233 return false; 8234 } 8235 8236 //===----------------------------------------------------------------------===// 8237 // M68k ABI Implementation 8238 //===----------------------------------------------------------------------===// 8239 8240 namespace { 8241 8242 class M68kTargetCodeGenInfo : public TargetCodeGenInfo { 8243 public: 8244 M68kTargetCodeGenInfo(CodeGenTypes &CGT) 8245 : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {} 8246 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 8247 CodeGen::CodeGenModule &M) const override; 8248 }; 8249 8250 } // namespace 8251 8252 void M68kTargetCodeGenInfo::setTargetAttributes( 8253 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 8254 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 8255 if (const auto *attr = FD->getAttr<M68kInterruptAttr>()) { 8256 // Handle 'interrupt' attribute: 8257 llvm::Function *F = cast<llvm::Function>(GV); 8258 8259 // Step 1: Set ISR calling convention. 8260 F->setCallingConv(llvm::CallingConv::M68k_INTR); 8261 8262 // Step 2: Add attributes goodness. 8263 F->addFnAttr(llvm::Attribute::NoInline); 8264 8265 // Step 3: Emit ISR vector alias. 8266 unsigned Num = attr->getNumber() / 2; 8267 llvm::GlobalAlias::create(llvm::Function::ExternalLinkage, 8268 "__isr_" + Twine(Num), F); 8269 } 8270 } 8271 } 8272 8273 //===----------------------------------------------------------------------===// 8274 // AVR ABI Implementation. Documented at 8275 // https://gcc.gnu.org/wiki/avr-gcc#Calling_Convention 8276 // https://gcc.gnu.org/wiki/avr-gcc#Reduced_Tiny 8277 //===----------------------------------------------------------------------===// 8278 8279 namespace { 8280 class AVRABIInfo : public DefaultABIInfo { 8281 public: 8282 AVRABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 8283 8284 ABIArgInfo classifyReturnType(QualType Ty) const { 8285 // A return struct with size less than or equal to 8 bytes is returned 8286 // directly via registers R18-R25. 8287 if (isAggregateTypeForABI(Ty) && getContext().getTypeSize(Ty) <= 64) 8288 return ABIArgInfo::getDirect(); 8289 else 8290 return DefaultABIInfo::classifyReturnType(Ty); 8291 } 8292 8293 // Just copy the original implementation of DefaultABIInfo::computeInfo(), 8294 // since DefaultABIInfo::classify{Return,Argument}Type() are not virtual. 8295 void computeInfo(CGFunctionInfo &FI) const override { 8296 if (!getCXXABI().classifyReturnType(FI)) 8297 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 8298 for (auto &I : FI.arguments()) 8299 I.info = classifyArgumentType(I.type); 8300 } 8301 }; 8302 8303 class AVRTargetCodeGenInfo : public TargetCodeGenInfo { 8304 public: 8305 AVRTargetCodeGenInfo(CodeGenTypes &CGT) 8306 : TargetCodeGenInfo(std::make_unique<AVRABIInfo>(CGT)) {} 8307 8308 LangAS getGlobalVarAddressSpace(CodeGenModule &CGM, 8309 const VarDecl *D) const override { 8310 // Check if global/static variable is defined in address space 8311 // 1~6 (__flash, __flash1, __flash2, __flash3, __flash4, __flash5) 8312 // but not constant. 8313 if (D) { 8314 LangAS AS = D->getType().getAddressSpace(); 8315 if (isTargetAddressSpace(AS) && 1 <= toTargetAddressSpace(AS) && 8316 toTargetAddressSpace(AS) <= 6 && !D->getType().isConstQualified()) 8317 CGM.getDiags().Report(D->getLocation(), 8318 diag::err_verify_nonconst_addrspace) 8319 << "__flash*"; 8320 } 8321 return TargetCodeGenInfo::getGlobalVarAddressSpace(CGM, D); 8322 } 8323 8324 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 8325 CodeGen::CodeGenModule &CGM) const override { 8326 if (GV->isDeclaration()) 8327 return; 8328 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 8329 if (!FD) return; 8330 auto *Fn = cast<llvm::Function>(GV); 8331 8332 if (FD->getAttr<AVRInterruptAttr>()) 8333 Fn->addFnAttr("interrupt"); 8334 8335 if (FD->getAttr<AVRSignalAttr>()) 8336 Fn->addFnAttr("signal"); 8337 } 8338 }; 8339 } 8340 8341 //===----------------------------------------------------------------------===// 8342 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults. 8343 // Currently subclassed only to implement custom OpenCL C function attribute 8344 // handling. 8345 //===----------------------------------------------------------------------===// 8346 8347 namespace { 8348 8349 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo { 8350 public: 8351 TCETargetCodeGenInfo(CodeGenTypes &CGT) 8352 : DefaultTargetCodeGenInfo(CGT) {} 8353 8354 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 8355 CodeGen::CodeGenModule &M) const override; 8356 }; 8357 8358 void TCETargetCodeGenInfo::setTargetAttributes( 8359 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 8360 if (GV->isDeclaration()) 8361 return; 8362 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 8363 if (!FD) return; 8364 8365 llvm::Function *F = cast<llvm::Function>(GV); 8366 8367 if (M.getLangOpts().OpenCL) { 8368 if (FD->hasAttr<OpenCLKernelAttr>()) { 8369 // OpenCL C Kernel functions are not subject to inlining 8370 F->addFnAttr(llvm::Attribute::NoInline); 8371 const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>(); 8372 if (Attr) { 8373 // Convert the reqd_work_group_size() attributes to metadata. 8374 llvm::LLVMContext &Context = F->getContext(); 8375 llvm::NamedMDNode *OpenCLMetadata = 8376 M.getModule().getOrInsertNamedMetadata( 8377 "opencl.kernel_wg_size_info"); 8378 8379 SmallVector<llvm::Metadata *, 5> Operands; 8380 Operands.push_back(llvm::ConstantAsMetadata::get(F)); 8381 8382 Operands.push_back( 8383 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 8384 M.Int32Ty, llvm::APInt(32, Attr->getXDim())))); 8385 Operands.push_back( 8386 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 8387 M.Int32Ty, llvm::APInt(32, Attr->getYDim())))); 8388 Operands.push_back( 8389 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 8390 M.Int32Ty, llvm::APInt(32, Attr->getZDim())))); 8391 8392 // Add a boolean constant operand for "required" (true) or "hint" 8393 // (false) for implementing the work_group_size_hint attr later. 8394 // Currently always true as the hint is not yet implemented. 8395 Operands.push_back( 8396 llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context))); 8397 OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands)); 8398 } 8399 } 8400 } 8401 } 8402 8403 } 8404 8405 //===----------------------------------------------------------------------===// 8406 // Hexagon ABI Implementation 8407 //===----------------------------------------------------------------------===// 8408 8409 namespace { 8410 8411 class HexagonABIInfo : public DefaultABIInfo { 8412 public: 8413 HexagonABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 8414 8415 private: 8416 ABIArgInfo classifyReturnType(QualType RetTy) const; 8417 ABIArgInfo classifyArgumentType(QualType RetTy) const; 8418 ABIArgInfo classifyArgumentType(QualType RetTy, unsigned *RegsLeft) const; 8419 8420 void computeInfo(CGFunctionInfo &FI) const override; 8421 8422 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8423 QualType Ty) const override; 8424 Address EmitVAArgFromMemory(CodeGenFunction &CFG, Address VAListAddr, 8425 QualType Ty) const; 8426 Address EmitVAArgForHexagon(CodeGenFunction &CFG, Address VAListAddr, 8427 QualType Ty) const; 8428 Address EmitVAArgForHexagonLinux(CodeGenFunction &CFG, Address VAListAddr, 8429 QualType Ty) const; 8430 }; 8431 8432 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo { 8433 public: 8434 HexagonTargetCodeGenInfo(CodeGenTypes &CGT) 8435 : TargetCodeGenInfo(std::make_unique<HexagonABIInfo>(CGT)) {} 8436 8437 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 8438 return 29; 8439 } 8440 8441 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 8442 CodeGen::CodeGenModule &GCM) const override { 8443 if (GV->isDeclaration()) 8444 return; 8445 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 8446 if (!FD) 8447 return; 8448 } 8449 }; 8450 8451 } // namespace 8452 8453 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const { 8454 unsigned RegsLeft = 6; 8455 if (!getCXXABI().classifyReturnType(FI)) 8456 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 8457 for (auto &I : FI.arguments()) 8458 I.info = classifyArgumentType(I.type, &RegsLeft); 8459 } 8460 8461 static bool HexagonAdjustRegsLeft(uint64_t Size, unsigned *RegsLeft) { 8462 assert(Size <= 64 && "Not expecting to pass arguments larger than 64 bits" 8463 " through registers"); 8464 8465 if (*RegsLeft == 0) 8466 return false; 8467 8468 if (Size <= 32) { 8469 (*RegsLeft)--; 8470 return true; 8471 } 8472 8473 if (2 <= (*RegsLeft & (~1U))) { 8474 *RegsLeft = (*RegsLeft & (~1U)) - 2; 8475 return true; 8476 } 8477 8478 // Next available register was r5 but candidate was greater than 32-bits so it 8479 // has to go on the stack. However we still consume r5 8480 if (*RegsLeft == 1) 8481 *RegsLeft = 0; 8482 8483 return false; 8484 } 8485 8486 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty, 8487 unsigned *RegsLeft) const { 8488 if (!isAggregateTypeForABI(Ty)) { 8489 // Treat an enum type as its underlying type. 8490 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 8491 Ty = EnumTy->getDecl()->getIntegerType(); 8492 8493 uint64_t Size = getContext().getTypeSize(Ty); 8494 if (Size <= 64) 8495 HexagonAdjustRegsLeft(Size, RegsLeft); 8496 8497 if (Size > 64 && Ty->isBitIntType()) 8498 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 8499 8500 return isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 8501 : ABIArgInfo::getDirect(); 8502 } 8503 8504 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 8505 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 8506 8507 // Ignore empty records. 8508 if (isEmptyRecord(getContext(), Ty, true)) 8509 return ABIArgInfo::getIgnore(); 8510 8511 uint64_t Size = getContext().getTypeSize(Ty); 8512 unsigned Align = getContext().getTypeAlign(Ty); 8513 8514 if (Size > 64) 8515 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 8516 8517 if (HexagonAdjustRegsLeft(Size, RegsLeft)) 8518 Align = Size <= 32 ? 32 : 64; 8519 if (Size <= Align) { 8520 // Pass in the smallest viable integer type. 8521 if (!llvm::isPowerOf2_64(Size)) 8522 Size = llvm::NextPowerOf2(Size); 8523 return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size)); 8524 } 8525 return DefaultABIInfo::classifyArgumentType(Ty); 8526 } 8527 8528 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const { 8529 if (RetTy->isVoidType()) 8530 return ABIArgInfo::getIgnore(); 8531 8532 const TargetInfo &T = CGT.getTarget(); 8533 uint64_t Size = getContext().getTypeSize(RetTy); 8534 8535 if (RetTy->getAs<VectorType>()) { 8536 // HVX vectors are returned in vector registers or register pairs. 8537 if (T.hasFeature("hvx")) { 8538 assert(T.hasFeature("hvx-length64b") || T.hasFeature("hvx-length128b")); 8539 uint64_t VecSize = T.hasFeature("hvx-length64b") ? 64*8 : 128*8; 8540 if (Size == VecSize || Size == 2*VecSize) 8541 return ABIArgInfo::getDirectInReg(); 8542 } 8543 // Large vector types should be returned via memory. 8544 if (Size > 64) 8545 return getNaturalAlignIndirect(RetTy); 8546 } 8547 8548 if (!isAggregateTypeForABI(RetTy)) { 8549 // Treat an enum type as its underlying type. 8550 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 8551 RetTy = EnumTy->getDecl()->getIntegerType(); 8552 8553 if (Size > 64 && RetTy->isBitIntType()) 8554 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 8555 8556 return isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 8557 : ABIArgInfo::getDirect(); 8558 } 8559 8560 if (isEmptyRecord(getContext(), RetTy, true)) 8561 return ABIArgInfo::getIgnore(); 8562 8563 // Aggregates <= 8 bytes are returned in registers, other aggregates 8564 // are returned indirectly. 8565 if (Size <= 64) { 8566 // Return in the smallest viable integer type. 8567 if (!llvm::isPowerOf2_64(Size)) 8568 Size = llvm::NextPowerOf2(Size); 8569 return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size)); 8570 } 8571 return getNaturalAlignIndirect(RetTy, /*ByVal=*/true); 8572 } 8573 8574 Address HexagonABIInfo::EmitVAArgFromMemory(CodeGenFunction &CGF, 8575 Address VAListAddr, 8576 QualType Ty) const { 8577 // Load the overflow area pointer. 8578 Address __overflow_area_pointer_p = 8579 CGF.Builder.CreateStructGEP(VAListAddr, 2, "__overflow_area_pointer_p"); 8580 llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad( 8581 __overflow_area_pointer_p, "__overflow_area_pointer"); 8582 8583 uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8; 8584 if (Align > 4) { 8585 // Alignment should be a power of 2. 8586 assert((Align & (Align - 1)) == 0 && "Alignment is not power of 2!"); 8587 8588 // overflow_arg_area = (overflow_arg_area + align - 1) & -align; 8589 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int64Ty, Align - 1); 8590 8591 // Add offset to the current pointer to access the argument. 8592 __overflow_area_pointer = 8593 CGF.Builder.CreateGEP(CGF.Int8Ty, __overflow_area_pointer, Offset); 8594 llvm::Value *AsInt = 8595 CGF.Builder.CreatePtrToInt(__overflow_area_pointer, CGF.Int32Ty); 8596 8597 // Create a mask which should be "AND"ed 8598 // with (overflow_arg_area + align - 1) 8599 llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -(int)Align); 8600 __overflow_area_pointer = CGF.Builder.CreateIntToPtr( 8601 CGF.Builder.CreateAnd(AsInt, Mask), __overflow_area_pointer->getType(), 8602 "__overflow_area_pointer.align"); 8603 } 8604 8605 // Get the type of the argument from memory and bitcast 8606 // overflow area pointer to the argument type. 8607 llvm::Type *PTy = CGF.ConvertTypeForMem(Ty); 8608 Address AddrTyped = CGF.Builder.CreateElementBitCast( 8609 Address(__overflow_area_pointer, CGF.Int8Ty, 8610 CharUnits::fromQuantity(Align)), 8611 PTy); 8612 8613 // Round up to the minimum stack alignment for varargs which is 4 bytes. 8614 uint64_t Offset = llvm::alignTo(CGF.getContext().getTypeSize(Ty) / 8, 4); 8615 8616 __overflow_area_pointer = CGF.Builder.CreateGEP( 8617 CGF.Int8Ty, __overflow_area_pointer, 8618 llvm::ConstantInt::get(CGF.Int32Ty, Offset), 8619 "__overflow_area_pointer.next"); 8620 CGF.Builder.CreateStore(__overflow_area_pointer, __overflow_area_pointer_p); 8621 8622 return AddrTyped; 8623 } 8624 8625 Address HexagonABIInfo::EmitVAArgForHexagon(CodeGenFunction &CGF, 8626 Address VAListAddr, 8627 QualType Ty) const { 8628 // FIXME: Need to handle alignment 8629 llvm::Type *BP = CGF.Int8PtrTy; 8630 CGBuilderTy &Builder = CGF.Builder; 8631 Address VAListAddrAsBPP = Builder.CreateElementBitCast(VAListAddr, BP, "ap"); 8632 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 8633 // Handle address alignment for type alignment > 32 bits 8634 uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8; 8635 if (TyAlign > 4) { 8636 assert((TyAlign & (TyAlign - 1)) == 0 && "Alignment is not power of 2!"); 8637 llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty); 8638 AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1)); 8639 AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1))); 8640 Addr = Builder.CreateIntToPtr(AddrAsInt, BP); 8641 } 8642 Address AddrTyped = Builder.CreateElementBitCast( 8643 Address(Addr, CGF.Int8Ty, CharUnits::fromQuantity(TyAlign)), 8644 CGF.ConvertType(Ty)); 8645 8646 uint64_t Offset = llvm::alignTo(CGF.getContext().getTypeSize(Ty) / 8, 4); 8647 llvm::Value *NextAddr = Builder.CreateGEP( 8648 CGF.Int8Ty, Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), "ap.next"); 8649 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 8650 8651 return AddrTyped; 8652 } 8653 8654 Address HexagonABIInfo::EmitVAArgForHexagonLinux(CodeGenFunction &CGF, 8655 Address VAListAddr, 8656 QualType Ty) const { 8657 int ArgSize = CGF.getContext().getTypeSize(Ty) / 8; 8658 8659 if (ArgSize > 8) 8660 return EmitVAArgFromMemory(CGF, VAListAddr, Ty); 8661 8662 // Here we have check if the argument is in register area or 8663 // in overflow area. 8664 // If the saved register area pointer + argsize rounded up to alignment > 8665 // saved register area end pointer, argument is in overflow area. 8666 unsigned RegsLeft = 6; 8667 Ty = CGF.getContext().getCanonicalType(Ty); 8668 (void)classifyArgumentType(Ty, &RegsLeft); 8669 8670 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); 8671 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 8672 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); 8673 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 8674 8675 // Get rounded size of the argument.GCC does not allow vararg of 8676 // size < 4 bytes. We follow the same logic here. 8677 ArgSize = (CGF.getContext().getTypeSize(Ty) <= 32) ? 4 : 8; 8678 int ArgAlign = (CGF.getContext().getTypeSize(Ty) <= 32) ? 4 : 8; 8679 8680 // Argument may be in saved register area 8681 CGF.EmitBlock(MaybeRegBlock); 8682 8683 // Load the current saved register area pointer. 8684 Address __current_saved_reg_area_pointer_p = CGF.Builder.CreateStructGEP( 8685 VAListAddr, 0, "__current_saved_reg_area_pointer_p"); 8686 llvm::Value *__current_saved_reg_area_pointer = CGF.Builder.CreateLoad( 8687 __current_saved_reg_area_pointer_p, "__current_saved_reg_area_pointer"); 8688 8689 // Load the saved register area end pointer. 8690 Address __saved_reg_area_end_pointer_p = CGF.Builder.CreateStructGEP( 8691 VAListAddr, 1, "__saved_reg_area_end_pointer_p"); 8692 llvm::Value *__saved_reg_area_end_pointer = CGF.Builder.CreateLoad( 8693 __saved_reg_area_end_pointer_p, "__saved_reg_area_end_pointer"); 8694 8695 // If the size of argument is > 4 bytes, check if the stack 8696 // location is aligned to 8 bytes 8697 if (ArgAlign > 4) { 8698 8699 llvm::Value *__current_saved_reg_area_pointer_int = 8700 CGF.Builder.CreatePtrToInt(__current_saved_reg_area_pointer, 8701 CGF.Int32Ty); 8702 8703 __current_saved_reg_area_pointer_int = CGF.Builder.CreateAdd( 8704 __current_saved_reg_area_pointer_int, 8705 llvm::ConstantInt::get(CGF.Int32Ty, (ArgAlign - 1)), 8706 "align_current_saved_reg_area_pointer"); 8707 8708 __current_saved_reg_area_pointer_int = 8709 CGF.Builder.CreateAnd(__current_saved_reg_area_pointer_int, 8710 llvm::ConstantInt::get(CGF.Int32Ty, -ArgAlign), 8711 "align_current_saved_reg_area_pointer"); 8712 8713 __current_saved_reg_area_pointer = 8714 CGF.Builder.CreateIntToPtr(__current_saved_reg_area_pointer_int, 8715 __current_saved_reg_area_pointer->getType(), 8716 "align_current_saved_reg_area_pointer"); 8717 } 8718 8719 llvm::Value *__new_saved_reg_area_pointer = 8720 CGF.Builder.CreateGEP(CGF.Int8Ty, __current_saved_reg_area_pointer, 8721 llvm::ConstantInt::get(CGF.Int32Ty, ArgSize), 8722 "__new_saved_reg_area_pointer"); 8723 8724 llvm::Value *UsingStack = nullptr; 8725 UsingStack = CGF.Builder.CreateICmpSGT(__new_saved_reg_area_pointer, 8726 __saved_reg_area_end_pointer); 8727 8728 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, InRegBlock); 8729 8730 // Argument in saved register area 8731 // Implement the block where argument is in register saved area 8732 CGF.EmitBlock(InRegBlock); 8733 8734 llvm::Type *PTy = CGF.ConvertType(Ty); 8735 llvm::Value *__saved_reg_area_p = CGF.Builder.CreateBitCast( 8736 __current_saved_reg_area_pointer, llvm::PointerType::getUnqual(PTy)); 8737 8738 CGF.Builder.CreateStore(__new_saved_reg_area_pointer, 8739 __current_saved_reg_area_pointer_p); 8740 8741 CGF.EmitBranch(ContBlock); 8742 8743 // Argument in overflow area 8744 // Implement the block where the argument is in overflow area. 8745 CGF.EmitBlock(OnStackBlock); 8746 8747 // Load the overflow area pointer 8748 Address __overflow_area_pointer_p = 8749 CGF.Builder.CreateStructGEP(VAListAddr, 2, "__overflow_area_pointer_p"); 8750 llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad( 8751 __overflow_area_pointer_p, "__overflow_area_pointer"); 8752 8753 // Align the overflow area pointer according to the alignment of the argument 8754 if (ArgAlign > 4) { 8755 llvm::Value *__overflow_area_pointer_int = 8756 CGF.Builder.CreatePtrToInt(__overflow_area_pointer, CGF.Int32Ty); 8757 8758 __overflow_area_pointer_int = 8759 CGF.Builder.CreateAdd(__overflow_area_pointer_int, 8760 llvm::ConstantInt::get(CGF.Int32Ty, ArgAlign - 1), 8761 "align_overflow_area_pointer"); 8762 8763 __overflow_area_pointer_int = 8764 CGF.Builder.CreateAnd(__overflow_area_pointer_int, 8765 llvm::ConstantInt::get(CGF.Int32Ty, -ArgAlign), 8766 "align_overflow_area_pointer"); 8767 8768 __overflow_area_pointer = CGF.Builder.CreateIntToPtr( 8769 __overflow_area_pointer_int, __overflow_area_pointer->getType(), 8770 "align_overflow_area_pointer"); 8771 } 8772 8773 // Get the pointer for next argument in overflow area and store it 8774 // to overflow area pointer. 8775 llvm::Value *__new_overflow_area_pointer = CGF.Builder.CreateGEP( 8776 CGF.Int8Ty, __overflow_area_pointer, 8777 llvm::ConstantInt::get(CGF.Int32Ty, ArgSize), 8778 "__overflow_area_pointer.next"); 8779 8780 CGF.Builder.CreateStore(__new_overflow_area_pointer, 8781 __overflow_area_pointer_p); 8782 8783 CGF.Builder.CreateStore(__new_overflow_area_pointer, 8784 __current_saved_reg_area_pointer_p); 8785 8786 // Bitcast the overflow area pointer to the type of argument. 8787 llvm::Type *OverflowPTy = CGF.ConvertTypeForMem(Ty); 8788 llvm::Value *__overflow_area_p = CGF.Builder.CreateBitCast( 8789 __overflow_area_pointer, llvm::PointerType::getUnqual(OverflowPTy)); 8790 8791 CGF.EmitBranch(ContBlock); 8792 8793 // Get the correct pointer to load the variable argument 8794 // Implement the ContBlock 8795 CGF.EmitBlock(ContBlock); 8796 8797 llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty); 8798 llvm::Type *MemPTy = llvm::PointerType::getUnqual(MemTy); 8799 llvm::PHINode *ArgAddr = CGF.Builder.CreatePHI(MemPTy, 2, "vaarg.addr"); 8800 ArgAddr->addIncoming(__saved_reg_area_p, InRegBlock); 8801 ArgAddr->addIncoming(__overflow_area_p, OnStackBlock); 8802 8803 return Address(ArgAddr, MemTy, CharUnits::fromQuantity(ArgAlign)); 8804 } 8805 8806 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8807 QualType Ty) const { 8808 8809 if (getTarget().getTriple().isMusl()) 8810 return EmitVAArgForHexagonLinux(CGF, VAListAddr, Ty); 8811 8812 return EmitVAArgForHexagon(CGF, VAListAddr, Ty); 8813 } 8814 8815 //===----------------------------------------------------------------------===// 8816 // Lanai ABI Implementation 8817 //===----------------------------------------------------------------------===// 8818 8819 namespace { 8820 class LanaiABIInfo : public DefaultABIInfo { 8821 public: 8822 LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 8823 8824 bool shouldUseInReg(QualType Ty, CCState &State) const; 8825 8826 void computeInfo(CGFunctionInfo &FI) const override { 8827 CCState State(FI); 8828 // Lanai uses 4 registers to pass arguments unless the function has the 8829 // regparm attribute set. 8830 if (FI.getHasRegParm()) { 8831 State.FreeRegs = FI.getRegParm(); 8832 } else { 8833 State.FreeRegs = 4; 8834 } 8835 8836 if (!getCXXABI().classifyReturnType(FI)) 8837 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 8838 for (auto &I : FI.arguments()) 8839 I.info = classifyArgumentType(I.type, State); 8840 } 8841 8842 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 8843 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 8844 }; 8845 } // end anonymous namespace 8846 8847 bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const { 8848 unsigned Size = getContext().getTypeSize(Ty); 8849 unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U; 8850 8851 if (SizeInRegs == 0) 8852 return false; 8853 8854 if (SizeInRegs > State.FreeRegs) { 8855 State.FreeRegs = 0; 8856 return false; 8857 } 8858 8859 State.FreeRegs -= SizeInRegs; 8860 8861 return true; 8862 } 8863 8864 ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal, 8865 CCState &State) const { 8866 if (!ByVal) { 8867 if (State.FreeRegs) { 8868 --State.FreeRegs; // Non-byval indirects just use one pointer. 8869 return getNaturalAlignIndirectInReg(Ty); 8870 } 8871 return getNaturalAlignIndirect(Ty, false); 8872 } 8873 8874 // Compute the byval alignment. 8875 const unsigned MinABIStackAlignInBytes = 4; 8876 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 8877 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true, 8878 /*Realign=*/TypeAlign > 8879 MinABIStackAlignInBytes); 8880 } 8881 8882 ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty, 8883 CCState &State) const { 8884 // Check with the C++ ABI first. 8885 const RecordType *RT = Ty->getAs<RecordType>(); 8886 if (RT) { 8887 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 8888 if (RAA == CGCXXABI::RAA_Indirect) { 8889 return getIndirectResult(Ty, /*ByVal=*/false, State); 8890 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 8891 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 8892 } 8893 } 8894 8895 if (isAggregateTypeForABI(Ty)) { 8896 // Structures with flexible arrays are always indirect. 8897 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 8898 return getIndirectResult(Ty, /*ByVal=*/true, State); 8899 8900 // Ignore empty structs/unions. 8901 if (isEmptyRecord(getContext(), Ty, true)) 8902 return ABIArgInfo::getIgnore(); 8903 8904 llvm::LLVMContext &LLVMContext = getVMContext(); 8905 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; 8906 if (SizeInRegs <= State.FreeRegs) { 8907 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 8908 SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32); 8909 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 8910 State.FreeRegs -= SizeInRegs; 8911 return ABIArgInfo::getDirectInReg(Result); 8912 } else { 8913 State.FreeRegs = 0; 8914 } 8915 return getIndirectResult(Ty, true, State); 8916 } 8917 8918 // Treat an enum type as its underlying type. 8919 if (const auto *EnumTy = Ty->getAs<EnumType>()) 8920 Ty = EnumTy->getDecl()->getIntegerType(); 8921 8922 bool InReg = shouldUseInReg(Ty, State); 8923 8924 // Don't pass >64 bit integers in registers. 8925 if (const auto *EIT = Ty->getAs<BitIntType>()) 8926 if (EIT->getNumBits() > 64) 8927 return getIndirectResult(Ty, /*ByVal=*/true, State); 8928 8929 if (isPromotableIntegerTypeForABI(Ty)) { 8930 if (InReg) 8931 return ABIArgInfo::getDirectInReg(); 8932 return ABIArgInfo::getExtend(Ty); 8933 } 8934 if (InReg) 8935 return ABIArgInfo::getDirectInReg(); 8936 return ABIArgInfo::getDirect(); 8937 } 8938 8939 namespace { 8940 class LanaiTargetCodeGenInfo : public TargetCodeGenInfo { 8941 public: 8942 LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 8943 : TargetCodeGenInfo(std::make_unique<LanaiABIInfo>(CGT)) {} 8944 }; 8945 } 8946 8947 //===----------------------------------------------------------------------===// 8948 // AMDGPU ABI Implementation 8949 //===----------------------------------------------------------------------===// 8950 8951 namespace { 8952 8953 class AMDGPUABIInfo final : public DefaultABIInfo { 8954 private: 8955 static const unsigned MaxNumRegsForArgsRet = 16; 8956 8957 unsigned numRegsForType(QualType Ty) const; 8958 8959 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 8960 bool isHomogeneousAggregateSmallEnough(const Type *Base, 8961 uint64_t Members) const override; 8962 8963 // Coerce HIP scalar pointer arguments from generic pointers to global ones. 8964 llvm::Type *coerceKernelArgumentType(llvm::Type *Ty, unsigned FromAS, 8965 unsigned ToAS) const { 8966 // Single value types. 8967 auto *PtrTy = llvm::dyn_cast<llvm::PointerType>(Ty); 8968 if (PtrTy && PtrTy->getAddressSpace() == FromAS) 8969 return llvm::PointerType::getWithSamePointeeType(PtrTy, ToAS); 8970 return Ty; 8971 } 8972 8973 public: 8974 explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) : 8975 DefaultABIInfo(CGT) {} 8976 8977 ABIArgInfo classifyReturnType(QualType RetTy) const; 8978 ABIArgInfo classifyKernelArgumentType(QualType Ty) const; 8979 ABIArgInfo classifyArgumentType(QualType Ty, unsigned &NumRegsLeft) const; 8980 8981 void computeInfo(CGFunctionInfo &FI) const override; 8982 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8983 QualType Ty) const override; 8984 }; 8985 8986 bool AMDGPUABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 8987 return true; 8988 } 8989 8990 bool AMDGPUABIInfo::isHomogeneousAggregateSmallEnough( 8991 const Type *Base, uint64_t Members) const { 8992 uint32_t NumRegs = (getContext().getTypeSize(Base) + 31) / 32; 8993 8994 // Homogeneous Aggregates may occupy at most 16 registers. 8995 return Members * NumRegs <= MaxNumRegsForArgsRet; 8996 } 8997 8998 /// Estimate number of registers the type will use when passed in registers. 8999 unsigned AMDGPUABIInfo::numRegsForType(QualType Ty) const { 9000 unsigned NumRegs = 0; 9001 9002 if (const VectorType *VT = Ty->getAs<VectorType>()) { 9003 // Compute from the number of elements. The reported size is based on the 9004 // in-memory size, which includes the padding 4th element for 3-vectors. 9005 QualType EltTy = VT->getElementType(); 9006 unsigned EltSize = getContext().getTypeSize(EltTy); 9007 9008 // 16-bit element vectors should be passed as packed. 9009 if (EltSize == 16) 9010 return (VT->getNumElements() + 1) / 2; 9011 9012 unsigned EltNumRegs = (EltSize + 31) / 32; 9013 return EltNumRegs * VT->getNumElements(); 9014 } 9015 9016 if (const RecordType *RT = Ty->getAs<RecordType>()) { 9017 const RecordDecl *RD = RT->getDecl(); 9018 assert(!RD->hasFlexibleArrayMember()); 9019 9020 for (const FieldDecl *Field : RD->fields()) { 9021 QualType FieldTy = Field->getType(); 9022 NumRegs += numRegsForType(FieldTy); 9023 } 9024 9025 return NumRegs; 9026 } 9027 9028 return (getContext().getTypeSize(Ty) + 31) / 32; 9029 } 9030 9031 void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const { 9032 llvm::CallingConv::ID CC = FI.getCallingConvention(); 9033 9034 if (!getCXXABI().classifyReturnType(FI)) 9035 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 9036 9037 unsigned NumRegsLeft = MaxNumRegsForArgsRet; 9038 for (auto &Arg : FI.arguments()) { 9039 if (CC == llvm::CallingConv::AMDGPU_KERNEL) { 9040 Arg.info = classifyKernelArgumentType(Arg.type); 9041 } else { 9042 Arg.info = classifyArgumentType(Arg.type, NumRegsLeft); 9043 } 9044 } 9045 } 9046 9047 Address AMDGPUABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9048 QualType Ty) const { 9049 llvm_unreachable("AMDGPU does not support varargs"); 9050 } 9051 9052 ABIArgInfo AMDGPUABIInfo::classifyReturnType(QualType RetTy) const { 9053 if (isAggregateTypeForABI(RetTy)) { 9054 // Records with non-trivial destructors/copy-constructors should not be 9055 // returned by value. 9056 if (!getRecordArgABI(RetTy, getCXXABI())) { 9057 // Ignore empty structs/unions. 9058 if (isEmptyRecord(getContext(), RetTy, true)) 9059 return ABIArgInfo::getIgnore(); 9060 9061 // Lower single-element structs to just return a regular value. 9062 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 9063 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 9064 9065 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 9066 const RecordDecl *RD = RT->getDecl(); 9067 if (RD->hasFlexibleArrayMember()) 9068 return DefaultABIInfo::classifyReturnType(RetTy); 9069 } 9070 9071 // Pack aggregates <= 4 bytes into single VGPR or pair. 9072 uint64_t Size = getContext().getTypeSize(RetTy); 9073 if (Size <= 16) 9074 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 9075 9076 if (Size <= 32) 9077 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 9078 9079 if (Size <= 64) { 9080 llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext()); 9081 return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2)); 9082 } 9083 9084 if (numRegsForType(RetTy) <= MaxNumRegsForArgsRet) 9085 return ABIArgInfo::getDirect(); 9086 } 9087 } 9088 9089 // Otherwise just do the default thing. 9090 return DefaultABIInfo::classifyReturnType(RetTy); 9091 } 9092 9093 /// For kernels all parameters are really passed in a special buffer. It doesn't 9094 /// make sense to pass anything byval, so everything must be direct. 9095 ABIArgInfo AMDGPUABIInfo::classifyKernelArgumentType(QualType Ty) const { 9096 Ty = useFirstFieldIfTransparentUnion(Ty); 9097 9098 // TODO: Can we omit empty structs? 9099 9100 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 9101 Ty = QualType(SeltTy, 0); 9102 9103 llvm::Type *OrigLTy = CGT.ConvertType(Ty); 9104 llvm::Type *LTy = OrigLTy; 9105 if (getContext().getLangOpts().HIP) { 9106 LTy = coerceKernelArgumentType( 9107 OrigLTy, /*FromAS=*/getContext().getTargetAddressSpace(LangAS::Default), 9108 /*ToAS=*/getContext().getTargetAddressSpace(LangAS::cuda_device)); 9109 } 9110 9111 // FIXME: Should also use this for OpenCL, but it requires addressing the 9112 // problem of kernels being called. 9113 // 9114 // FIXME: This doesn't apply the optimization of coercing pointers in structs 9115 // to global address space when using byref. This would require implementing a 9116 // new kind of coercion of the in-memory type when for indirect arguments. 9117 if (!getContext().getLangOpts().OpenCL && LTy == OrigLTy && 9118 isAggregateTypeForABI(Ty)) { 9119 return ABIArgInfo::getIndirectAliased( 9120 getContext().getTypeAlignInChars(Ty), 9121 getContext().getTargetAddressSpace(LangAS::opencl_constant), 9122 false /*Realign*/, nullptr /*Padding*/); 9123 } 9124 9125 // If we set CanBeFlattened to true, CodeGen will expand the struct to its 9126 // individual elements, which confuses the Clover OpenCL backend; therefore we 9127 // have to set it to false here. Other args of getDirect() are just defaults. 9128 return ABIArgInfo::getDirect(LTy, 0, nullptr, false); 9129 } 9130 9131 ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty, 9132 unsigned &NumRegsLeft) const { 9133 assert(NumRegsLeft <= MaxNumRegsForArgsRet && "register estimate underflow"); 9134 9135 Ty = useFirstFieldIfTransparentUnion(Ty); 9136 9137 if (isAggregateTypeForABI(Ty)) { 9138 // Records with non-trivial destructors/copy-constructors should not be 9139 // passed by value. 9140 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 9141 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 9142 9143 // Ignore empty structs/unions. 9144 if (isEmptyRecord(getContext(), Ty, true)) 9145 return ABIArgInfo::getIgnore(); 9146 9147 // Lower single-element structs to just pass a regular value. TODO: We 9148 // could do reasonable-size multiple-element structs too, using getExpand(), 9149 // though watch out for things like bitfields. 9150 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 9151 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 9152 9153 if (const RecordType *RT = Ty->getAs<RecordType>()) { 9154 const RecordDecl *RD = RT->getDecl(); 9155 if (RD->hasFlexibleArrayMember()) 9156 return DefaultABIInfo::classifyArgumentType(Ty); 9157 } 9158 9159 // Pack aggregates <= 8 bytes into single VGPR or pair. 9160 uint64_t Size = getContext().getTypeSize(Ty); 9161 if (Size <= 64) { 9162 unsigned NumRegs = (Size + 31) / 32; 9163 NumRegsLeft -= std::min(NumRegsLeft, NumRegs); 9164 9165 if (Size <= 16) 9166 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 9167 9168 if (Size <= 32) 9169 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 9170 9171 // XXX: Should this be i64 instead, and should the limit increase? 9172 llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext()); 9173 return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2)); 9174 } 9175 9176 if (NumRegsLeft > 0) { 9177 unsigned NumRegs = numRegsForType(Ty); 9178 if (NumRegsLeft >= NumRegs) { 9179 NumRegsLeft -= NumRegs; 9180 return ABIArgInfo::getDirect(); 9181 } 9182 } 9183 } 9184 9185 // Otherwise just do the default thing. 9186 ABIArgInfo ArgInfo = DefaultABIInfo::classifyArgumentType(Ty); 9187 if (!ArgInfo.isIndirect()) { 9188 unsigned NumRegs = numRegsForType(Ty); 9189 NumRegsLeft -= std::min(NumRegs, NumRegsLeft); 9190 } 9191 9192 return ArgInfo; 9193 } 9194 9195 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo { 9196 public: 9197 AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT) 9198 : TargetCodeGenInfo(std::make_unique<AMDGPUABIInfo>(CGT)) {} 9199 9200 void setFunctionDeclAttributes(const FunctionDecl *FD, llvm::Function *F, 9201 CodeGenModule &CGM) const; 9202 9203 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 9204 CodeGen::CodeGenModule &M) const override; 9205 unsigned getOpenCLKernelCallingConv() const override; 9206 9207 llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM, 9208 llvm::PointerType *T, QualType QT) const override; 9209 9210 LangAS getASTAllocaAddressSpace() const override { 9211 return getLangASFromTargetAS( 9212 getABIInfo().getDataLayout().getAllocaAddrSpace()); 9213 } 9214 LangAS getGlobalVarAddressSpace(CodeGenModule &CGM, 9215 const VarDecl *D) const override; 9216 llvm::SyncScope::ID getLLVMSyncScopeID(const LangOptions &LangOpts, 9217 SyncScope Scope, 9218 llvm::AtomicOrdering Ordering, 9219 llvm::LLVMContext &Ctx) const override; 9220 llvm::Function * 9221 createEnqueuedBlockKernel(CodeGenFunction &CGF, 9222 llvm::Function *BlockInvokeFunc, 9223 llvm::Type *BlockTy) const override; 9224 bool shouldEmitStaticExternCAliases() const override; 9225 void setCUDAKernelCallingConvention(const FunctionType *&FT) const override; 9226 }; 9227 } 9228 9229 static bool requiresAMDGPUProtectedVisibility(const Decl *D, 9230 llvm::GlobalValue *GV) { 9231 if (GV->getVisibility() != llvm::GlobalValue::HiddenVisibility) 9232 return false; 9233 9234 return D->hasAttr<OpenCLKernelAttr>() || 9235 (isa<FunctionDecl>(D) && D->hasAttr<CUDAGlobalAttr>()) || 9236 (isa<VarDecl>(D) && 9237 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || 9238 cast<VarDecl>(D)->getType()->isCUDADeviceBuiltinSurfaceType() || 9239 cast<VarDecl>(D)->getType()->isCUDADeviceBuiltinTextureType())); 9240 } 9241 9242 void AMDGPUTargetCodeGenInfo::setFunctionDeclAttributes( 9243 const FunctionDecl *FD, llvm::Function *F, CodeGenModule &M) const { 9244 const auto *ReqdWGS = 9245 M.getLangOpts().OpenCL ? FD->getAttr<ReqdWorkGroupSizeAttr>() : nullptr; 9246 const bool IsOpenCLKernel = 9247 M.getLangOpts().OpenCL && FD->hasAttr<OpenCLKernelAttr>(); 9248 const bool IsHIPKernel = M.getLangOpts().HIP && FD->hasAttr<CUDAGlobalAttr>(); 9249 9250 const auto *FlatWGS = FD->getAttr<AMDGPUFlatWorkGroupSizeAttr>(); 9251 if (ReqdWGS || FlatWGS) { 9252 unsigned Min = 0; 9253 unsigned Max = 0; 9254 if (FlatWGS) { 9255 Min = FlatWGS->getMin() 9256 ->EvaluateKnownConstInt(M.getContext()) 9257 .getExtValue(); 9258 Max = FlatWGS->getMax() 9259 ->EvaluateKnownConstInt(M.getContext()) 9260 .getExtValue(); 9261 } 9262 if (ReqdWGS && Min == 0 && Max == 0) 9263 Min = Max = ReqdWGS->getXDim() * ReqdWGS->getYDim() * ReqdWGS->getZDim(); 9264 9265 if (Min != 0) { 9266 assert(Min <= Max && "Min must be less than or equal Max"); 9267 9268 std::string AttrVal = llvm::utostr(Min) + "," + llvm::utostr(Max); 9269 F->addFnAttr("amdgpu-flat-work-group-size", AttrVal); 9270 } else 9271 assert(Max == 0 && "Max must be zero"); 9272 } else if (IsOpenCLKernel || IsHIPKernel) { 9273 // By default, restrict the maximum size to a value specified by 9274 // --gpu-max-threads-per-block=n or its default value for HIP. 9275 const unsigned OpenCLDefaultMaxWorkGroupSize = 256; 9276 const unsigned DefaultMaxWorkGroupSize = 9277 IsOpenCLKernel ? OpenCLDefaultMaxWorkGroupSize 9278 : M.getLangOpts().GPUMaxThreadsPerBlock; 9279 std::string AttrVal = 9280 std::string("1,") + llvm::utostr(DefaultMaxWorkGroupSize); 9281 F->addFnAttr("amdgpu-flat-work-group-size", AttrVal); 9282 } 9283 9284 if (const auto *Attr = FD->getAttr<AMDGPUWavesPerEUAttr>()) { 9285 unsigned Min = 9286 Attr->getMin()->EvaluateKnownConstInt(M.getContext()).getExtValue(); 9287 unsigned Max = Attr->getMax() ? Attr->getMax() 9288 ->EvaluateKnownConstInt(M.getContext()) 9289 .getExtValue() 9290 : 0; 9291 9292 if (Min != 0) { 9293 assert((Max == 0 || Min <= Max) && "Min must be less than or equal Max"); 9294 9295 std::string AttrVal = llvm::utostr(Min); 9296 if (Max != 0) 9297 AttrVal = AttrVal + "," + llvm::utostr(Max); 9298 F->addFnAttr("amdgpu-waves-per-eu", AttrVal); 9299 } else 9300 assert(Max == 0 && "Max must be zero"); 9301 } 9302 9303 if (const auto *Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) { 9304 unsigned NumSGPR = Attr->getNumSGPR(); 9305 9306 if (NumSGPR != 0) 9307 F->addFnAttr("amdgpu-num-sgpr", llvm::utostr(NumSGPR)); 9308 } 9309 9310 if (const auto *Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) { 9311 uint32_t NumVGPR = Attr->getNumVGPR(); 9312 9313 if (NumVGPR != 0) 9314 F->addFnAttr("amdgpu-num-vgpr", llvm::utostr(NumVGPR)); 9315 } 9316 } 9317 9318 void AMDGPUTargetCodeGenInfo::setTargetAttributes( 9319 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 9320 if (requiresAMDGPUProtectedVisibility(D, GV)) { 9321 GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 9322 GV->setDSOLocal(true); 9323 } 9324 9325 if (GV->isDeclaration()) 9326 return; 9327 9328 llvm::Function *F = dyn_cast<llvm::Function>(GV); 9329 if (!F) 9330 return; 9331 9332 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 9333 if (FD) 9334 setFunctionDeclAttributes(FD, F, M); 9335 9336 const bool IsHIPKernel = 9337 M.getLangOpts().HIP && FD && FD->hasAttr<CUDAGlobalAttr>(); 9338 9339 if (IsHIPKernel) 9340 F->addFnAttr("uniform-work-group-size", "true"); 9341 9342 if (M.getContext().getTargetInfo().allowAMDGPUUnsafeFPAtomics()) 9343 F->addFnAttr("amdgpu-unsafe-fp-atomics", "true"); 9344 9345 if (!getABIInfo().getCodeGenOpts().EmitIEEENaNCompliantInsts) 9346 F->addFnAttr("amdgpu-ieee", "false"); 9347 } 9348 9349 unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 9350 return llvm::CallingConv::AMDGPU_KERNEL; 9351 } 9352 9353 // Currently LLVM assumes null pointers always have value 0, 9354 // which results in incorrectly transformed IR. Therefore, instead of 9355 // emitting null pointers in private and local address spaces, a null 9356 // pointer in generic address space is emitted which is casted to a 9357 // pointer in local or private address space. 9358 llvm::Constant *AMDGPUTargetCodeGenInfo::getNullPointer( 9359 const CodeGen::CodeGenModule &CGM, llvm::PointerType *PT, 9360 QualType QT) const { 9361 if (CGM.getContext().getTargetNullPointerValue(QT) == 0) 9362 return llvm::ConstantPointerNull::get(PT); 9363 9364 auto &Ctx = CGM.getContext(); 9365 auto NPT = llvm::PointerType::getWithSamePointeeType( 9366 PT, Ctx.getTargetAddressSpace(LangAS::opencl_generic)); 9367 return llvm::ConstantExpr::getAddrSpaceCast( 9368 llvm::ConstantPointerNull::get(NPT), PT); 9369 } 9370 9371 LangAS 9372 AMDGPUTargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM, 9373 const VarDecl *D) const { 9374 assert(!CGM.getLangOpts().OpenCL && 9375 !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && 9376 "Address space agnostic languages only"); 9377 LangAS DefaultGlobalAS = getLangASFromTargetAS( 9378 CGM.getContext().getTargetAddressSpace(LangAS::opencl_global)); 9379 if (!D) 9380 return DefaultGlobalAS; 9381 9382 LangAS AddrSpace = D->getType().getAddressSpace(); 9383 assert(AddrSpace == LangAS::Default || isTargetAddressSpace(AddrSpace)); 9384 if (AddrSpace != LangAS::Default) 9385 return AddrSpace; 9386 9387 // Only promote to address space 4 if VarDecl has constant initialization. 9388 if (CGM.isTypeConstant(D->getType(), false) && 9389 D->hasConstantInitialization()) { 9390 if (auto ConstAS = CGM.getTarget().getConstantAddressSpace()) 9391 return ConstAS.getValue(); 9392 } 9393 return DefaultGlobalAS; 9394 } 9395 9396 llvm::SyncScope::ID 9397 AMDGPUTargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts, 9398 SyncScope Scope, 9399 llvm::AtomicOrdering Ordering, 9400 llvm::LLVMContext &Ctx) const { 9401 std::string Name; 9402 switch (Scope) { 9403 case SyncScope::HIPSingleThread: 9404 Name = "singlethread"; 9405 break; 9406 case SyncScope::HIPWavefront: 9407 case SyncScope::OpenCLSubGroup: 9408 Name = "wavefront"; 9409 break; 9410 case SyncScope::HIPWorkgroup: 9411 case SyncScope::OpenCLWorkGroup: 9412 Name = "workgroup"; 9413 break; 9414 case SyncScope::HIPAgent: 9415 case SyncScope::OpenCLDevice: 9416 Name = "agent"; 9417 break; 9418 case SyncScope::HIPSystem: 9419 case SyncScope::OpenCLAllSVMDevices: 9420 Name = ""; 9421 break; 9422 } 9423 9424 if (Ordering != llvm::AtomicOrdering::SequentiallyConsistent) { 9425 if (!Name.empty()) 9426 Name = Twine(Twine(Name) + Twine("-")).str(); 9427 9428 Name = Twine(Twine(Name) + Twine("one-as")).str(); 9429 } 9430 9431 return Ctx.getOrInsertSyncScopeID(Name); 9432 } 9433 9434 bool AMDGPUTargetCodeGenInfo::shouldEmitStaticExternCAliases() const { 9435 return false; 9436 } 9437 9438 void AMDGPUTargetCodeGenInfo::setCUDAKernelCallingConvention( 9439 const FunctionType *&FT) const { 9440 FT = getABIInfo().getContext().adjustFunctionType( 9441 FT, FT->getExtInfo().withCallingConv(CC_OpenCLKernel)); 9442 } 9443 9444 //===----------------------------------------------------------------------===// 9445 // SPARC v8 ABI Implementation. 9446 // Based on the SPARC Compliance Definition version 2.4.1. 9447 // 9448 // Ensures that complex values are passed in registers. 9449 // 9450 namespace { 9451 class SparcV8ABIInfo : public DefaultABIInfo { 9452 public: 9453 SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 9454 9455 private: 9456 ABIArgInfo classifyReturnType(QualType RetTy) const; 9457 void computeInfo(CGFunctionInfo &FI) const override; 9458 }; 9459 } // end anonymous namespace 9460 9461 9462 ABIArgInfo 9463 SparcV8ABIInfo::classifyReturnType(QualType Ty) const { 9464 if (Ty->isAnyComplexType()) { 9465 return ABIArgInfo::getDirect(); 9466 } 9467 else { 9468 return DefaultABIInfo::classifyReturnType(Ty); 9469 } 9470 } 9471 9472 void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const { 9473 9474 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 9475 for (auto &Arg : FI.arguments()) 9476 Arg.info = classifyArgumentType(Arg.type); 9477 } 9478 9479 namespace { 9480 class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo { 9481 public: 9482 SparcV8TargetCodeGenInfo(CodeGenTypes &CGT) 9483 : TargetCodeGenInfo(std::make_unique<SparcV8ABIInfo>(CGT)) {} 9484 9485 llvm::Value *decodeReturnAddress(CodeGen::CodeGenFunction &CGF, 9486 llvm::Value *Address) const override { 9487 int Offset; 9488 if (isAggregateTypeForABI(CGF.CurFnInfo->getReturnType())) 9489 Offset = 12; 9490 else 9491 Offset = 8; 9492 return CGF.Builder.CreateGEP(CGF.Int8Ty, Address, 9493 llvm::ConstantInt::get(CGF.Int32Ty, Offset)); 9494 } 9495 9496 llvm::Value *encodeReturnAddress(CodeGen::CodeGenFunction &CGF, 9497 llvm::Value *Address) const override { 9498 int Offset; 9499 if (isAggregateTypeForABI(CGF.CurFnInfo->getReturnType())) 9500 Offset = -12; 9501 else 9502 Offset = -8; 9503 return CGF.Builder.CreateGEP(CGF.Int8Ty, Address, 9504 llvm::ConstantInt::get(CGF.Int32Ty, Offset)); 9505 } 9506 }; 9507 } // end anonymous namespace 9508 9509 //===----------------------------------------------------------------------===// 9510 // SPARC v9 ABI Implementation. 9511 // Based on the SPARC Compliance Definition version 2.4.1. 9512 // 9513 // Function arguments a mapped to a nominal "parameter array" and promoted to 9514 // registers depending on their type. Each argument occupies 8 or 16 bytes in 9515 // the array, structs larger than 16 bytes are passed indirectly. 9516 // 9517 // One case requires special care: 9518 // 9519 // struct mixed { 9520 // int i; 9521 // float f; 9522 // }; 9523 // 9524 // When a struct mixed is passed by value, it only occupies 8 bytes in the 9525 // parameter array, but the int is passed in an integer register, and the float 9526 // is passed in a floating point register. This is represented as two arguments 9527 // with the LLVM IR inreg attribute: 9528 // 9529 // declare void f(i32 inreg %i, float inreg %f) 9530 // 9531 // The code generator will only allocate 4 bytes from the parameter array for 9532 // the inreg arguments. All other arguments are allocated a multiple of 8 9533 // bytes. 9534 // 9535 namespace { 9536 class SparcV9ABIInfo : public ABIInfo { 9537 public: 9538 SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 9539 9540 private: 9541 ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const; 9542 void computeInfo(CGFunctionInfo &FI) const override; 9543 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9544 QualType Ty) const override; 9545 9546 // Coercion type builder for structs passed in registers. The coercion type 9547 // serves two purposes: 9548 // 9549 // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned' 9550 // in registers. 9551 // 2. Expose aligned floating point elements as first-level elements, so the 9552 // code generator knows to pass them in floating point registers. 9553 // 9554 // We also compute the InReg flag which indicates that the struct contains 9555 // aligned 32-bit floats. 9556 // 9557 struct CoerceBuilder { 9558 llvm::LLVMContext &Context; 9559 const llvm::DataLayout &DL; 9560 SmallVector<llvm::Type*, 8> Elems; 9561 uint64_t Size; 9562 bool InReg; 9563 9564 CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl) 9565 : Context(c), DL(dl), Size(0), InReg(false) {} 9566 9567 // Pad Elems with integers until Size is ToSize. 9568 void pad(uint64_t ToSize) { 9569 assert(ToSize >= Size && "Cannot remove elements"); 9570 if (ToSize == Size) 9571 return; 9572 9573 // Finish the current 64-bit word. 9574 uint64_t Aligned = llvm::alignTo(Size, 64); 9575 if (Aligned > Size && Aligned <= ToSize) { 9576 Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size)); 9577 Size = Aligned; 9578 } 9579 9580 // Add whole 64-bit words. 9581 while (Size + 64 <= ToSize) { 9582 Elems.push_back(llvm::Type::getInt64Ty(Context)); 9583 Size += 64; 9584 } 9585 9586 // Final in-word padding. 9587 if (Size < ToSize) { 9588 Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size)); 9589 Size = ToSize; 9590 } 9591 } 9592 9593 // Add a floating point element at Offset. 9594 void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) { 9595 // Unaligned floats are treated as integers. 9596 if (Offset % Bits) 9597 return; 9598 // The InReg flag is only required if there are any floats < 64 bits. 9599 if (Bits < 64) 9600 InReg = true; 9601 pad(Offset); 9602 Elems.push_back(Ty); 9603 Size = Offset + Bits; 9604 } 9605 9606 // Add a struct type to the coercion type, starting at Offset (in bits). 9607 void addStruct(uint64_t Offset, llvm::StructType *StrTy) { 9608 const llvm::StructLayout *Layout = DL.getStructLayout(StrTy); 9609 for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) { 9610 llvm::Type *ElemTy = StrTy->getElementType(i); 9611 uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i); 9612 switch (ElemTy->getTypeID()) { 9613 case llvm::Type::StructTyID: 9614 addStruct(ElemOffset, cast<llvm::StructType>(ElemTy)); 9615 break; 9616 case llvm::Type::FloatTyID: 9617 addFloat(ElemOffset, ElemTy, 32); 9618 break; 9619 case llvm::Type::DoubleTyID: 9620 addFloat(ElemOffset, ElemTy, 64); 9621 break; 9622 case llvm::Type::FP128TyID: 9623 addFloat(ElemOffset, ElemTy, 128); 9624 break; 9625 case llvm::Type::PointerTyID: 9626 if (ElemOffset % 64 == 0) { 9627 pad(ElemOffset); 9628 Elems.push_back(ElemTy); 9629 Size += 64; 9630 } 9631 break; 9632 default: 9633 break; 9634 } 9635 } 9636 } 9637 9638 // Check if Ty is a usable substitute for the coercion type. 9639 bool isUsableType(llvm::StructType *Ty) const { 9640 return llvm::makeArrayRef(Elems) == Ty->elements(); 9641 } 9642 9643 // Get the coercion type as a literal struct type. 9644 llvm::Type *getType() const { 9645 if (Elems.size() == 1) 9646 return Elems.front(); 9647 else 9648 return llvm::StructType::get(Context, Elems); 9649 } 9650 }; 9651 }; 9652 } // end anonymous namespace 9653 9654 ABIArgInfo 9655 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const { 9656 if (Ty->isVoidType()) 9657 return ABIArgInfo::getIgnore(); 9658 9659 uint64_t Size = getContext().getTypeSize(Ty); 9660 9661 // Anything too big to fit in registers is passed with an explicit indirect 9662 // pointer / sret pointer. 9663 if (Size > SizeLimit) 9664 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 9665 9666 // Treat an enum type as its underlying type. 9667 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 9668 Ty = EnumTy->getDecl()->getIntegerType(); 9669 9670 // Integer types smaller than a register are extended. 9671 if (Size < 64 && Ty->isIntegerType()) 9672 return ABIArgInfo::getExtend(Ty); 9673 9674 if (const auto *EIT = Ty->getAs<BitIntType>()) 9675 if (EIT->getNumBits() < 64) 9676 return ABIArgInfo::getExtend(Ty); 9677 9678 // Other non-aggregates go in registers. 9679 if (!isAggregateTypeForABI(Ty)) 9680 return ABIArgInfo::getDirect(); 9681 9682 // If a C++ object has either a non-trivial copy constructor or a non-trivial 9683 // destructor, it is passed with an explicit indirect pointer / sret pointer. 9684 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 9685 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 9686 9687 // This is a small aggregate type that should be passed in registers. 9688 // Build a coercion type from the LLVM struct type. 9689 llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty)); 9690 if (!StrTy) 9691 return ABIArgInfo::getDirect(); 9692 9693 CoerceBuilder CB(getVMContext(), getDataLayout()); 9694 CB.addStruct(0, StrTy); 9695 CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64)); 9696 9697 // Try to use the original type for coercion. 9698 llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType(); 9699 9700 if (CB.InReg) 9701 return ABIArgInfo::getDirectInReg(CoerceTy); 9702 else 9703 return ABIArgInfo::getDirect(CoerceTy); 9704 } 9705 9706 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9707 QualType Ty) const { 9708 ABIArgInfo AI = classifyType(Ty, 16 * 8); 9709 llvm::Type *ArgTy = CGT.ConvertType(Ty); 9710 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 9711 AI.setCoerceToType(ArgTy); 9712 9713 CharUnits SlotSize = CharUnits::fromQuantity(8); 9714 9715 CGBuilderTy &Builder = CGF.Builder; 9716 Address Addr = Address(Builder.CreateLoad(VAListAddr, "ap.cur"), 9717 getVAListElementType(CGF), SlotSize); 9718 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 9719 9720 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 9721 9722 Address ArgAddr = Address::invalid(); 9723 CharUnits Stride; 9724 switch (AI.getKind()) { 9725 case ABIArgInfo::Expand: 9726 case ABIArgInfo::CoerceAndExpand: 9727 case ABIArgInfo::InAlloca: 9728 llvm_unreachable("Unsupported ABI kind for va_arg"); 9729 9730 case ABIArgInfo::Extend: { 9731 Stride = SlotSize; 9732 CharUnits Offset = SlotSize - TypeInfo.Width; 9733 ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend"); 9734 break; 9735 } 9736 9737 case ABIArgInfo::Direct: { 9738 auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType()); 9739 Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize); 9740 ArgAddr = Addr; 9741 break; 9742 } 9743 9744 case ABIArgInfo::Indirect: 9745 case ABIArgInfo::IndirectAliased: 9746 Stride = SlotSize; 9747 ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect"); 9748 ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"), ArgTy, 9749 TypeInfo.Align); 9750 break; 9751 9752 case ABIArgInfo::Ignore: 9753 return Address(llvm::UndefValue::get(ArgPtrTy), ArgTy, TypeInfo.Align); 9754 } 9755 9756 // Update VAList. 9757 Address NextPtr = Builder.CreateConstInBoundsByteGEP(Addr, Stride, "ap.next"); 9758 Builder.CreateStore(NextPtr.getPointer(), VAListAddr); 9759 9760 return Builder.CreateElementBitCast(ArgAddr, ArgTy, "arg.addr"); 9761 } 9762 9763 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const { 9764 FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8); 9765 for (auto &I : FI.arguments()) 9766 I.info = classifyType(I.type, 16 * 8); 9767 } 9768 9769 namespace { 9770 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo { 9771 public: 9772 SparcV9TargetCodeGenInfo(CodeGenTypes &CGT) 9773 : TargetCodeGenInfo(std::make_unique<SparcV9ABIInfo>(CGT)) {} 9774 9775 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 9776 return 14; 9777 } 9778 9779 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 9780 llvm::Value *Address) const override; 9781 9782 llvm::Value *decodeReturnAddress(CodeGen::CodeGenFunction &CGF, 9783 llvm::Value *Address) const override { 9784 return CGF.Builder.CreateGEP(CGF.Int8Ty, Address, 9785 llvm::ConstantInt::get(CGF.Int32Ty, 8)); 9786 } 9787 9788 llvm::Value *encodeReturnAddress(CodeGen::CodeGenFunction &CGF, 9789 llvm::Value *Address) const override { 9790 return CGF.Builder.CreateGEP(CGF.Int8Ty, Address, 9791 llvm::ConstantInt::get(CGF.Int32Ty, -8)); 9792 } 9793 }; 9794 } // end anonymous namespace 9795 9796 bool 9797 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 9798 llvm::Value *Address) const { 9799 // This is calculated from the LLVM and GCC tables and verified 9800 // against gcc output. AFAIK all ABIs use the same encoding. 9801 9802 CodeGen::CGBuilderTy &Builder = CGF.Builder; 9803 9804 llvm::IntegerType *i8 = CGF.Int8Ty; 9805 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 9806 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 9807 9808 // 0-31: the 8-byte general-purpose registers 9809 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 9810 9811 // 32-63: f0-31, the 4-byte floating-point registers 9812 AssignToArrayRange(Builder, Address, Four8, 32, 63); 9813 9814 // Y = 64 9815 // PSR = 65 9816 // WIM = 66 9817 // TBR = 67 9818 // PC = 68 9819 // NPC = 69 9820 // FSR = 70 9821 // CSR = 71 9822 AssignToArrayRange(Builder, Address, Eight8, 64, 71); 9823 9824 // 72-87: d0-15, the 8-byte floating-point registers 9825 AssignToArrayRange(Builder, Address, Eight8, 72, 87); 9826 9827 return false; 9828 } 9829 9830 // ARC ABI implementation. 9831 namespace { 9832 9833 class ARCABIInfo : public DefaultABIInfo { 9834 public: 9835 using DefaultABIInfo::DefaultABIInfo; 9836 9837 private: 9838 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9839 QualType Ty) const override; 9840 9841 void updateState(const ABIArgInfo &Info, QualType Ty, CCState &State) const { 9842 if (!State.FreeRegs) 9843 return; 9844 if (Info.isIndirect() && Info.getInReg()) 9845 State.FreeRegs--; 9846 else if (Info.isDirect() && Info.getInReg()) { 9847 unsigned sz = (getContext().getTypeSize(Ty) + 31) / 32; 9848 if (sz < State.FreeRegs) 9849 State.FreeRegs -= sz; 9850 else 9851 State.FreeRegs = 0; 9852 } 9853 } 9854 9855 void computeInfo(CGFunctionInfo &FI) const override { 9856 CCState State(FI); 9857 // ARC uses 8 registers to pass arguments. 9858 State.FreeRegs = 8; 9859 9860 if (!getCXXABI().classifyReturnType(FI)) 9861 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 9862 updateState(FI.getReturnInfo(), FI.getReturnType(), State); 9863 for (auto &I : FI.arguments()) { 9864 I.info = classifyArgumentType(I.type, State.FreeRegs); 9865 updateState(I.info, I.type, State); 9866 } 9867 } 9868 9869 ABIArgInfo getIndirectByRef(QualType Ty, bool HasFreeRegs) const; 9870 ABIArgInfo getIndirectByValue(QualType Ty) const; 9871 ABIArgInfo classifyArgumentType(QualType Ty, uint8_t FreeRegs) const; 9872 ABIArgInfo classifyReturnType(QualType RetTy) const; 9873 }; 9874 9875 class ARCTargetCodeGenInfo : public TargetCodeGenInfo { 9876 public: 9877 ARCTargetCodeGenInfo(CodeGenTypes &CGT) 9878 : TargetCodeGenInfo(std::make_unique<ARCABIInfo>(CGT)) {} 9879 }; 9880 9881 9882 ABIArgInfo ARCABIInfo::getIndirectByRef(QualType Ty, bool HasFreeRegs) const { 9883 return HasFreeRegs ? getNaturalAlignIndirectInReg(Ty) : 9884 getNaturalAlignIndirect(Ty, false); 9885 } 9886 9887 ABIArgInfo ARCABIInfo::getIndirectByValue(QualType Ty) const { 9888 // Compute the byval alignment. 9889 const unsigned MinABIStackAlignInBytes = 4; 9890 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 9891 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true, 9892 TypeAlign > MinABIStackAlignInBytes); 9893 } 9894 9895 Address ARCABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9896 QualType Ty) const { 9897 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 9898 getContext().getTypeInfoInChars(Ty), 9899 CharUnits::fromQuantity(4), true); 9900 } 9901 9902 ABIArgInfo ARCABIInfo::classifyArgumentType(QualType Ty, 9903 uint8_t FreeRegs) const { 9904 // Handle the generic C++ ABI. 9905 const RecordType *RT = Ty->getAs<RecordType>(); 9906 if (RT) { 9907 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 9908 if (RAA == CGCXXABI::RAA_Indirect) 9909 return getIndirectByRef(Ty, FreeRegs > 0); 9910 9911 if (RAA == CGCXXABI::RAA_DirectInMemory) 9912 return getIndirectByValue(Ty); 9913 } 9914 9915 // Treat an enum type as its underlying type. 9916 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 9917 Ty = EnumTy->getDecl()->getIntegerType(); 9918 9919 auto SizeInRegs = llvm::alignTo(getContext().getTypeSize(Ty), 32) / 32; 9920 9921 if (isAggregateTypeForABI(Ty)) { 9922 // Structures with flexible arrays are always indirect. 9923 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 9924 return getIndirectByValue(Ty); 9925 9926 // Ignore empty structs/unions. 9927 if (isEmptyRecord(getContext(), Ty, true)) 9928 return ABIArgInfo::getIgnore(); 9929 9930 llvm::LLVMContext &LLVMContext = getVMContext(); 9931 9932 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 9933 SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32); 9934 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 9935 9936 return FreeRegs >= SizeInRegs ? 9937 ABIArgInfo::getDirectInReg(Result) : 9938 ABIArgInfo::getDirect(Result, 0, nullptr, false); 9939 } 9940 9941 if (const auto *EIT = Ty->getAs<BitIntType>()) 9942 if (EIT->getNumBits() > 64) 9943 return getIndirectByValue(Ty); 9944 9945 return isPromotableIntegerTypeForABI(Ty) 9946 ? (FreeRegs >= SizeInRegs ? ABIArgInfo::getExtendInReg(Ty) 9947 : ABIArgInfo::getExtend(Ty)) 9948 : (FreeRegs >= SizeInRegs ? ABIArgInfo::getDirectInReg() 9949 : ABIArgInfo::getDirect()); 9950 } 9951 9952 ABIArgInfo ARCABIInfo::classifyReturnType(QualType RetTy) const { 9953 if (RetTy->isAnyComplexType()) 9954 return ABIArgInfo::getDirectInReg(); 9955 9956 // Arguments of size > 4 registers are indirect. 9957 auto RetSize = llvm::alignTo(getContext().getTypeSize(RetTy), 32) / 32; 9958 if (RetSize > 4) 9959 return getIndirectByRef(RetTy, /*HasFreeRegs*/ true); 9960 9961 return DefaultABIInfo::classifyReturnType(RetTy); 9962 } 9963 9964 } // End anonymous namespace. 9965 9966 //===----------------------------------------------------------------------===// 9967 // XCore ABI Implementation 9968 //===----------------------------------------------------------------------===// 9969 9970 namespace { 9971 9972 /// A SmallStringEnc instance is used to build up the TypeString by passing 9973 /// it by reference between functions that append to it. 9974 typedef llvm::SmallString<128> SmallStringEnc; 9975 9976 /// TypeStringCache caches the meta encodings of Types. 9977 /// 9978 /// The reason for caching TypeStrings is two fold: 9979 /// 1. To cache a type's encoding for later uses; 9980 /// 2. As a means to break recursive member type inclusion. 9981 /// 9982 /// A cache Entry can have a Status of: 9983 /// NonRecursive: The type encoding is not recursive; 9984 /// Recursive: The type encoding is recursive; 9985 /// Incomplete: An incomplete TypeString; 9986 /// IncompleteUsed: An incomplete TypeString that has been used in a 9987 /// Recursive type encoding. 9988 /// 9989 /// A NonRecursive entry will have all of its sub-members expanded as fully 9990 /// as possible. Whilst it may contain types which are recursive, the type 9991 /// itself is not recursive and thus its encoding may be safely used whenever 9992 /// the type is encountered. 9993 /// 9994 /// A Recursive entry will have all of its sub-members expanded as fully as 9995 /// possible. The type itself is recursive and it may contain other types which 9996 /// are recursive. The Recursive encoding must not be used during the expansion 9997 /// of a recursive type's recursive branch. For simplicity the code uses 9998 /// IncompleteCount to reject all usage of Recursive encodings for member types. 9999 /// 10000 /// An Incomplete entry is always a RecordType and only encodes its 10001 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and 10002 /// are placed into the cache during type expansion as a means to identify and 10003 /// handle recursive inclusion of types as sub-members. If there is recursion 10004 /// the entry becomes IncompleteUsed. 10005 /// 10006 /// During the expansion of a RecordType's members: 10007 /// 10008 /// If the cache contains a NonRecursive encoding for the member type, the 10009 /// cached encoding is used; 10010 /// 10011 /// If the cache contains a Recursive encoding for the member type, the 10012 /// cached encoding is 'Swapped' out, as it may be incorrect, and... 10013 /// 10014 /// If the member is a RecordType, an Incomplete encoding is placed into the 10015 /// cache to break potential recursive inclusion of itself as a sub-member; 10016 /// 10017 /// Once a member RecordType has been expanded, its temporary incomplete 10018 /// entry is removed from the cache. If a Recursive encoding was swapped out 10019 /// it is swapped back in; 10020 /// 10021 /// If an incomplete entry is used to expand a sub-member, the incomplete 10022 /// entry is marked as IncompleteUsed. The cache keeps count of how many 10023 /// IncompleteUsed entries it currently contains in IncompleteUsedCount; 10024 /// 10025 /// If a member's encoding is found to be a NonRecursive or Recursive viz: 10026 /// IncompleteUsedCount==0, the member's encoding is added to the cache. 10027 /// Else the member is part of a recursive type and thus the recursion has 10028 /// been exited too soon for the encoding to be correct for the member. 10029 /// 10030 class TypeStringCache { 10031 enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed}; 10032 struct Entry { 10033 std::string Str; // The encoded TypeString for the type. 10034 enum Status State; // Information about the encoding in 'Str'. 10035 std::string Swapped; // A temporary place holder for a Recursive encoding 10036 // during the expansion of RecordType's members. 10037 }; 10038 std::map<const IdentifierInfo *, struct Entry> Map; 10039 unsigned IncompleteCount; // Number of Incomplete entries in the Map. 10040 unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map. 10041 public: 10042 TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {} 10043 void addIncomplete(const IdentifierInfo *ID, std::string StubEnc); 10044 bool removeIncomplete(const IdentifierInfo *ID); 10045 void addIfComplete(const IdentifierInfo *ID, StringRef Str, 10046 bool IsRecursive); 10047 StringRef lookupStr(const IdentifierInfo *ID); 10048 }; 10049 10050 /// TypeString encodings for enum & union fields must be order. 10051 /// FieldEncoding is a helper for this ordering process. 10052 class FieldEncoding { 10053 bool HasName; 10054 std::string Enc; 10055 public: 10056 FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {} 10057 StringRef str() { return Enc; } 10058 bool operator<(const FieldEncoding &rhs) const { 10059 if (HasName != rhs.HasName) return HasName; 10060 return Enc < rhs.Enc; 10061 } 10062 }; 10063 10064 class XCoreABIInfo : public DefaultABIInfo { 10065 public: 10066 XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 10067 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 10068 QualType Ty) const override; 10069 }; 10070 10071 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo { 10072 mutable TypeStringCache TSC; 10073 void emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 10074 const CodeGen::CodeGenModule &M) const; 10075 10076 public: 10077 XCoreTargetCodeGenInfo(CodeGenTypes &CGT) 10078 : TargetCodeGenInfo(std::make_unique<XCoreABIInfo>(CGT)) {} 10079 void emitTargetMetadata(CodeGen::CodeGenModule &CGM, 10080 const llvm::MapVector<GlobalDecl, StringRef> 10081 &MangledDeclNames) const override; 10082 }; 10083 10084 } // End anonymous namespace. 10085 10086 // TODO: this implementation is likely now redundant with the default 10087 // EmitVAArg. 10088 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 10089 QualType Ty) const { 10090 CGBuilderTy &Builder = CGF.Builder; 10091 10092 // Get the VAList. 10093 CharUnits SlotSize = CharUnits::fromQuantity(4); 10094 Address AP = Address(Builder.CreateLoad(VAListAddr), 10095 getVAListElementType(CGF), SlotSize); 10096 10097 // Handle the argument. 10098 ABIArgInfo AI = classifyArgumentType(Ty); 10099 CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty); 10100 llvm::Type *ArgTy = CGT.ConvertType(Ty); 10101 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 10102 AI.setCoerceToType(ArgTy); 10103 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 10104 10105 Address Val = Address::invalid(); 10106 CharUnits ArgSize = CharUnits::Zero(); 10107 switch (AI.getKind()) { 10108 case ABIArgInfo::Expand: 10109 case ABIArgInfo::CoerceAndExpand: 10110 case ABIArgInfo::InAlloca: 10111 llvm_unreachable("Unsupported ABI kind for va_arg"); 10112 case ABIArgInfo::Ignore: 10113 Val = Address(llvm::UndefValue::get(ArgPtrTy), ArgTy, TypeAlign); 10114 ArgSize = CharUnits::Zero(); 10115 break; 10116 case ABIArgInfo::Extend: 10117 case ABIArgInfo::Direct: 10118 Val = Builder.CreateElementBitCast(AP, ArgTy); 10119 ArgSize = CharUnits::fromQuantity( 10120 getDataLayout().getTypeAllocSize(AI.getCoerceToType())); 10121 ArgSize = ArgSize.alignTo(SlotSize); 10122 break; 10123 case ABIArgInfo::Indirect: 10124 case ABIArgInfo::IndirectAliased: 10125 Val = Builder.CreateElementBitCast(AP, ArgPtrTy); 10126 Val = Address(Builder.CreateLoad(Val), ArgTy, TypeAlign); 10127 ArgSize = SlotSize; 10128 break; 10129 } 10130 10131 // Increment the VAList. 10132 if (!ArgSize.isZero()) { 10133 Address APN = Builder.CreateConstInBoundsByteGEP(AP, ArgSize); 10134 Builder.CreateStore(APN.getPointer(), VAListAddr); 10135 } 10136 10137 return Val; 10138 } 10139 10140 /// During the expansion of a RecordType, an incomplete TypeString is placed 10141 /// into the cache as a means to identify and break recursion. 10142 /// If there is a Recursive encoding in the cache, it is swapped out and will 10143 /// be reinserted by removeIncomplete(). 10144 /// All other types of encoding should have been used rather than arriving here. 10145 void TypeStringCache::addIncomplete(const IdentifierInfo *ID, 10146 std::string StubEnc) { 10147 if (!ID) 10148 return; 10149 Entry &E = Map[ID]; 10150 assert( (E.Str.empty() || E.State == Recursive) && 10151 "Incorrectly use of addIncomplete"); 10152 assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()"); 10153 E.Swapped.swap(E.Str); // swap out the Recursive 10154 E.Str.swap(StubEnc); 10155 E.State = Incomplete; 10156 ++IncompleteCount; 10157 } 10158 10159 /// Once the RecordType has been expanded, the temporary incomplete TypeString 10160 /// must be removed from the cache. 10161 /// If a Recursive was swapped out by addIncomplete(), it will be replaced. 10162 /// Returns true if the RecordType was defined recursively. 10163 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) { 10164 if (!ID) 10165 return false; 10166 auto I = Map.find(ID); 10167 assert(I != Map.end() && "Entry not present"); 10168 Entry &E = I->second; 10169 assert( (E.State == Incomplete || 10170 E.State == IncompleteUsed) && 10171 "Entry must be an incomplete type"); 10172 bool IsRecursive = false; 10173 if (E.State == IncompleteUsed) { 10174 // We made use of our Incomplete encoding, thus we are recursive. 10175 IsRecursive = true; 10176 --IncompleteUsedCount; 10177 } 10178 if (E.Swapped.empty()) 10179 Map.erase(I); 10180 else { 10181 // Swap the Recursive back. 10182 E.Swapped.swap(E.Str); 10183 E.Swapped.clear(); 10184 E.State = Recursive; 10185 } 10186 --IncompleteCount; 10187 return IsRecursive; 10188 } 10189 10190 /// Add the encoded TypeString to the cache only if it is NonRecursive or 10191 /// Recursive (viz: all sub-members were expanded as fully as possible). 10192 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str, 10193 bool IsRecursive) { 10194 if (!ID || IncompleteUsedCount) 10195 return; // No key or it is is an incomplete sub-type so don't add. 10196 Entry &E = Map[ID]; 10197 if (IsRecursive && !E.Str.empty()) { 10198 assert(E.State==Recursive && E.Str.size() == Str.size() && 10199 "This is not the same Recursive entry"); 10200 // The parent container was not recursive after all, so we could have used 10201 // this Recursive sub-member entry after all, but we assumed the worse when 10202 // we started viz: IncompleteCount!=0. 10203 return; 10204 } 10205 assert(E.Str.empty() && "Entry already present"); 10206 E.Str = Str.str(); 10207 E.State = IsRecursive? Recursive : NonRecursive; 10208 } 10209 10210 /// Return a cached TypeString encoding for the ID. If there isn't one, or we 10211 /// are recursively expanding a type (IncompleteCount != 0) and the cached 10212 /// encoding is Recursive, return an empty StringRef. 10213 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) { 10214 if (!ID) 10215 return StringRef(); // We have no key. 10216 auto I = Map.find(ID); 10217 if (I == Map.end()) 10218 return StringRef(); // We have no encoding. 10219 Entry &E = I->second; 10220 if (E.State == Recursive && IncompleteCount) 10221 return StringRef(); // We don't use Recursive encodings for member types. 10222 10223 if (E.State == Incomplete) { 10224 // The incomplete type is being used to break out of recursion. 10225 E.State = IncompleteUsed; 10226 ++IncompleteUsedCount; 10227 } 10228 return E.Str; 10229 } 10230 10231 /// The XCore ABI includes a type information section that communicates symbol 10232 /// type information to the linker. The linker uses this information to verify 10233 /// safety/correctness of things such as array bound and pointers et al. 10234 /// The ABI only requires C (and XC) language modules to emit TypeStrings. 10235 /// This type information (TypeString) is emitted into meta data for all global 10236 /// symbols: definitions, declarations, functions & variables. 10237 /// 10238 /// The TypeString carries type, qualifier, name, size & value details. 10239 /// Please see 'Tools Development Guide' section 2.16.2 for format details: 10240 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf 10241 /// The output is tested by test/CodeGen/xcore-stringtype.c. 10242 /// 10243 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 10244 const CodeGen::CodeGenModule &CGM, 10245 TypeStringCache &TSC); 10246 10247 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols. 10248 void XCoreTargetCodeGenInfo::emitTargetMD( 10249 const Decl *D, llvm::GlobalValue *GV, 10250 const CodeGen::CodeGenModule &CGM) const { 10251 SmallStringEnc Enc; 10252 if (getTypeString(Enc, D, CGM, TSC)) { 10253 llvm::LLVMContext &Ctx = CGM.getModule().getContext(); 10254 llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV), 10255 llvm::MDString::get(Ctx, Enc.str())}; 10256 llvm::NamedMDNode *MD = 10257 CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings"); 10258 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 10259 } 10260 } 10261 10262 void XCoreTargetCodeGenInfo::emitTargetMetadata( 10263 CodeGen::CodeGenModule &CGM, 10264 const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames) const { 10265 // Warning, new MangledDeclNames may be appended within this loop. 10266 // We rely on MapVector insertions adding new elements to the end 10267 // of the container. 10268 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 10269 auto Val = *(MangledDeclNames.begin() + I); 10270 llvm::GlobalValue *GV = CGM.GetGlobalValue(Val.second); 10271 if (GV) { 10272 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 10273 emitTargetMD(D, GV, CGM); 10274 } 10275 } 10276 } 10277 10278 //===----------------------------------------------------------------------===// 10279 // Base ABI and target codegen info implementation common between SPIR and 10280 // SPIR-V. 10281 //===----------------------------------------------------------------------===// 10282 10283 namespace { 10284 class CommonSPIRABIInfo : public DefaultABIInfo { 10285 public: 10286 CommonSPIRABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) { setCCs(); } 10287 10288 private: 10289 void setCCs(); 10290 }; 10291 10292 class SPIRVABIInfo : public CommonSPIRABIInfo { 10293 public: 10294 SPIRVABIInfo(CodeGenTypes &CGT) : CommonSPIRABIInfo(CGT) {} 10295 void computeInfo(CGFunctionInfo &FI) const override; 10296 10297 private: 10298 ABIArgInfo classifyKernelArgumentType(QualType Ty) const; 10299 }; 10300 } // end anonymous namespace 10301 namespace { 10302 class CommonSPIRTargetCodeGenInfo : public TargetCodeGenInfo { 10303 public: 10304 CommonSPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 10305 : TargetCodeGenInfo(std::make_unique<CommonSPIRABIInfo>(CGT)) {} 10306 CommonSPIRTargetCodeGenInfo(std::unique_ptr<ABIInfo> ABIInfo) 10307 : TargetCodeGenInfo(std::move(ABIInfo)) {} 10308 10309 LangAS getASTAllocaAddressSpace() const override { 10310 return getLangASFromTargetAS( 10311 getABIInfo().getDataLayout().getAllocaAddrSpace()); 10312 } 10313 10314 unsigned getOpenCLKernelCallingConv() const override; 10315 }; 10316 class SPIRVTargetCodeGenInfo : public CommonSPIRTargetCodeGenInfo { 10317 public: 10318 SPIRVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 10319 : CommonSPIRTargetCodeGenInfo(std::make_unique<SPIRVABIInfo>(CGT)) {} 10320 void setCUDAKernelCallingConvention(const FunctionType *&FT) const override; 10321 }; 10322 } // End anonymous namespace. 10323 10324 void CommonSPIRABIInfo::setCCs() { 10325 assert(getRuntimeCC() == llvm::CallingConv::C); 10326 RuntimeCC = llvm::CallingConv::SPIR_FUNC; 10327 } 10328 10329 ABIArgInfo SPIRVABIInfo::classifyKernelArgumentType(QualType Ty) const { 10330 if (getContext().getLangOpts().CUDAIsDevice) { 10331 // Coerce pointer arguments with default address space to CrossWorkGroup 10332 // pointers for HIPSPV/CUDASPV. When the language mode is HIP/CUDA, the 10333 // SPIRTargetInfo maps cuda_device to SPIR-V's CrossWorkGroup address space. 10334 llvm::Type *LTy = CGT.ConvertType(Ty); 10335 auto DefaultAS = getContext().getTargetAddressSpace(LangAS::Default); 10336 auto GlobalAS = getContext().getTargetAddressSpace(LangAS::cuda_device); 10337 auto *PtrTy = llvm::dyn_cast<llvm::PointerType>(LTy); 10338 if (PtrTy && PtrTy->getAddressSpace() == DefaultAS) { 10339 LTy = llvm::PointerType::getWithSamePointeeType(PtrTy, GlobalAS); 10340 return ABIArgInfo::getDirect(LTy, 0, nullptr, false); 10341 } 10342 } 10343 return classifyArgumentType(Ty); 10344 } 10345 10346 void SPIRVABIInfo::computeInfo(CGFunctionInfo &FI) const { 10347 // The logic is same as in DefaultABIInfo with an exception on the kernel 10348 // arguments handling. 10349 llvm::CallingConv::ID CC = FI.getCallingConvention(); 10350 10351 if (!getCXXABI().classifyReturnType(FI)) 10352 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 10353 10354 for (auto &I : FI.arguments()) { 10355 if (CC == llvm::CallingConv::SPIR_KERNEL) { 10356 I.info = classifyKernelArgumentType(I.type); 10357 } else { 10358 I.info = classifyArgumentType(I.type); 10359 } 10360 } 10361 } 10362 10363 namespace clang { 10364 namespace CodeGen { 10365 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) { 10366 if (CGM.getTarget().getTriple().isSPIRV()) 10367 SPIRVABIInfo(CGM.getTypes()).computeInfo(FI); 10368 else 10369 CommonSPIRABIInfo(CGM.getTypes()).computeInfo(FI); 10370 } 10371 } 10372 } 10373 10374 unsigned CommonSPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 10375 return llvm::CallingConv::SPIR_KERNEL; 10376 } 10377 10378 void SPIRVTargetCodeGenInfo::setCUDAKernelCallingConvention( 10379 const FunctionType *&FT) const { 10380 // Convert HIP kernels to SPIR-V kernels. 10381 if (getABIInfo().getContext().getLangOpts().HIP) { 10382 FT = getABIInfo().getContext().adjustFunctionType( 10383 FT, FT->getExtInfo().withCallingConv(CC_OpenCLKernel)); 10384 return; 10385 } 10386 } 10387 10388 static bool appendType(SmallStringEnc &Enc, QualType QType, 10389 const CodeGen::CodeGenModule &CGM, 10390 TypeStringCache &TSC); 10391 10392 /// Helper function for appendRecordType(). 10393 /// Builds a SmallVector containing the encoded field types in declaration 10394 /// order. 10395 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE, 10396 const RecordDecl *RD, 10397 const CodeGen::CodeGenModule &CGM, 10398 TypeStringCache &TSC) { 10399 for (const auto *Field : RD->fields()) { 10400 SmallStringEnc Enc; 10401 Enc += "m("; 10402 Enc += Field->getName(); 10403 Enc += "){"; 10404 if (Field->isBitField()) { 10405 Enc += "b("; 10406 llvm::raw_svector_ostream OS(Enc); 10407 OS << Field->getBitWidthValue(CGM.getContext()); 10408 Enc += ':'; 10409 } 10410 if (!appendType(Enc, Field->getType(), CGM, TSC)) 10411 return false; 10412 if (Field->isBitField()) 10413 Enc += ')'; 10414 Enc += '}'; 10415 FE.emplace_back(!Field->getName().empty(), Enc); 10416 } 10417 return true; 10418 } 10419 10420 /// Appends structure and union types to Enc and adds encoding to cache. 10421 /// Recursively calls appendType (via extractFieldType) for each field. 10422 /// Union types have their fields ordered according to the ABI. 10423 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT, 10424 const CodeGen::CodeGenModule &CGM, 10425 TypeStringCache &TSC, const IdentifierInfo *ID) { 10426 // Append the cached TypeString if we have one. 10427 StringRef TypeString = TSC.lookupStr(ID); 10428 if (!TypeString.empty()) { 10429 Enc += TypeString; 10430 return true; 10431 } 10432 10433 // Start to emit an incomplete TypeString. 10434 size_t Start = Enc.size(); 10435 Enc += (RT->isUnionType()? 'u' : 's'); 10436 Enc += '('; 10437 if (ID) 10438 Enc += ID->getName(); 10439 Enc += "){"; 10440 10441 // We collect all encoded fields and order as necessary. 10442 bool IsRecursive = false; 10443 const RecordDecl *RD = RT->getDecl()->getDefinition(); 10444 if (RD && !RD->field_empty()) { 10445 // An incomplete TypeString stub is placed in the cache for this RecordType 10446 // so that recursive calls to this RecordType will use it whilst building a 10447 // complete TypeString for this RecordType. 10448 SmallVector<FieldEncoding, 16> FE; 10449 std::string StubEnc(Enc.substr(Start).str()); 10450 StubEnc += '}'; // StubEnc now holds a valid incomplete TypeString. 10451 TSC.addIncomplete(ID, std::move(StubEnc)); 10452 if (!extractFieldType(FE, RD, CGM, TSC)) { 10453 (void) TSC.removeIncomplete(ID); 10454 return false; 10455 } 10456 IsRecursive = TSC.removeIncomplete(ID); 10457 // The ABI requires unions to be sorted but not structures. 10458 // See FieldEncoding::operator< for sort algorithm. 10459 if (RT->isUnionType()) 10460 llvm::sort(FE); 10461 // We can now complete the TypeString. 10462 unsigned E = FE.size(); 10463 for (unsigned I = 0; I != E; ++I) { 10464 if (I) 10465 Enc += ','; 10466 Enc += FE[I].str(); 10467 } 10468 } 10469 Enc += '}'; 10470 TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive); 10471 return true; 10472 } 10473 10474 /// Appends enum types to Enc and adds the encoding to the cache. 10475 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET, 10476 TypeStringCache &TSC, 10477 const IdentifierInfo *ID) { 10478 // Append the cached TypeString if we have one. 10479 StringRef TypeString = TSC.lookupStr(ID); 10480 if (!TypeString.empty()) { 10481 Enc += TypeString; 10482 return true; 10483 } 10484 10485 size_t Start = Enc.size(); 10486 Enc += "e("; 10487 if (ID) 10488 Enc += ID->getName(); 10489 Enc += "){"; 10490 10491 // We collect all encoded enumerations and order them alphanumerically. 10492 if (const EnumDecl *ED = ET->getDecl()->getDefinition()) { 10493 SmallVector<FieldEncoding, 16> FE; 10494 for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E; 10495 ++I) { 10496 SmallStringEnc EnumEnc; 10497 EnumEnc += "m("; 10498 EnumEnc += I->getName(); 10499 EnumEnc += "){"; 10500 I->getInitVal().toString(EnumEnc); 10501 EnumEnc += '}'; 10502 FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc)); 10503 } 10504 llvm::sort(FE); 10505 unsigned E = FE.size(); 10506 for (unsigned I = 0; I != E; ++I) { 10507 if (I) 10508 Enc += ','; 10509 Enc += FE[I].str(); 10510 } 10511 } 10512 Enc += '}'; 10513 TSC.addIfComplete(ID, Enc.substr(Start), false); 10514 return true; 10515 } 10516 10517 /// Appends type's qualifier to Enc. 10518 /// This is done prior to appending the type's encoding. 10519 static void appendQualifier(SmallStringEnc &Enc, QualType QT) { 10520 // Qualifiers are emitted in alphabetical order. 10521 static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"}; 10522 int Lookup = 0; 10523 if (QT.isConstQualified()) 10524 Lookup += 1<<0; 10525 if (QT.isRestrictQualified()) 10526 Lookup += 1<<1; 10527 if (QT.isVolatileQualified()) 10528 Lookup += 1<<2; 10529 Enc += Table[Lookup]; 10530 } 10531 10532 /// Appends built-in types to Enc. 10533 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) { 10534 const char *EncType; 10535 switch (BT->getKind()) { 10536 case BuiltinType::Void: 10537 EncType = "0"; 10538 break; 10539 case BuiltinType::Bool: 10540 EncType = "b"; 10541 break; 10542 case BuiltinType::Char_U: 10543 EncType = "uc"; 10544 break; 10545 case BuiltinType::UChar: 10546 EncType = "uc"; 10547 break; 10548 case BuiltinType::SChar: 10549 EncType = "sc"; 10550 break; 10551 case BuiltinType::UShort: 10552 EncType = "us"; 10553 break; 10554 case BuiltinType::Short: 10555 EncType = "ss"; 10556 break; 10557 case BuiltinType::UInt: 10558 EncType = "ui"; 10559 break; 10560 case BuiltinType::Int: 10561 EncType = "si"; 10562 break; 10563 case BuiltinType::ULong: 10564 EncType = "ul"; 10565 break; 10566 case BuiltinType::Long: 10567 EncType = "sl"; 10568 break; 10569 case BuiltinType::ULongLong: 10570 EncType = "ull"; 10571 break; 10572 case BuiltinType::LongLong: 10573 EncType = "sll"; 10574 break; 10575 case BuiltinType::Float: 10576 EncType = "ft"; 10577 break; 10578 case BuiltinType::Double: 10579 EncType = "d"; 10580 break; 10581 case BuiltinType::LongDouble: 10582 EncType = "ld"; 10583 break; 10584 default: 10585 return false; 10586 } 10587 Enc += EncType; 10588 return true; 10589 } 10590 10591 /// Appends a pointer encoding to Enc before calling appendType for the pointee. 10592 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT, 10593 const CodeGen::CodeGenModule &CGM, 10594 TypeStringCache &TSC) { 10595 Enc += "p("; 10596 if (!appendType(Enc, PT->getPointeeType(), CGM, TSC)) 10597 return false; 10598 Enc += ')'; 10599 return true; 10600 } 10601 10602 /// Appends array encoding to Enc before calling appendType for the element. 10603 static bool appendArrayType(SmallStringEnc &Enc, QualType QT, 10604 const ArrayType *AT, 10605 const CodeGen::CodeGenModule &CGM, 10606 TypeStringCache &TSC, StringRef NoSizeEnc) { 10607 if (AT->getSizeModifier() != ArrayType::Normal) 10608 return false; 10609 Enc += "a("; 10610 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) 10611 CAT->getSize().toStringUnsigned(Enc); 10612 else 10613 Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "". 10614 Enc += ':'; 10615 // The Qualifiers should be attached to the type rather than the array. 10616 appendQualifier(Enc, QT); 10617 if (!appendType(Enc, AT->getElementType(), CGM, TSC)) 10618 return false; 10619 Enc += ')'; 10620 return true; 10621 } 10622 10623 /// Appends a function encoding to Enc, calling appendType for the return type 10624 /// and the arguments. 10625 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT, 10626 const CodeGen::CodeGenModule &CGM, 10627 TypeStringCache &TSC) { 10628 Enc += "f{"; 10629 if (!appendType(Enc, FT->getReturnType(), CGM, TSC)) 10630 return false; 10631 Enc += "}("; 10632 if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) { 10633 // N.B. we are only interested in the adjusted param types. 10634 auto I = FPT->param_type_begin(); 10635 auto E = FPT->param_type_end(); 10636 if (I != E) { 10637 do { 10638 if (!appendType(Enc, *I, CGM, TSC)) 10639 return false; 10640 ++I; 10641 if (I != E) 10642 Enc += ','; 10643 } while (I != E); 10644 if (FPT->isVariadic()) 10645 Enc += ",va"; 10646 } else { 10647 if (FPT->isVariadic()) 10648 Enc += "va"; 10649 else 10650 Enc += '0'; 10651 } 10652 } 10653 Enc += ')'; 10654 return true; 10655 } 10656 10657 /// Handles the type's qualifier before dispatching a call to handle specific 10658 /// type encodings. 10659 static bool appendType(SmallStringEnc &Enc, QualType QType, 10660 const CodeGen::CodeGenModule &CGM, 10661 TypeStringCache &TSC) { 10662 10663 QualType QT = QType.getCanonicalType(); 10664 10665 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) 10666 // The Qualifiers should be attached to the type rather than the array. 10667 // Thus we don't call appendQualifier() here. 10668 return appendArrayType(Enc, QT, AT, CGM, TSC, ""); 10669 10670 appendQualifier(Enc, QT); 10671 10672 if (const BuiltinType *BT = QT->getAs<BuiltinType>()) 10673 return appendBuiltinType(Enc, BT); 10674 10675 if (const PointerType *PT = QT->getAs<PointerType>()) 10676 return appendPointerType(Enc, PT, CGM, TSC); 10677 10678 if (const EnumType *ET = QT->getAs<EnumType>()) 10679 return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier()); 10680 10681 if (const RecordType *RT = QT->getAsStructureType()) 10682 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 10683 10684 if (const RecordType *RT = QT->getAsUnionType()) 10685 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 10686 10687 if (const FunctionType *FT = QT->getAs<FunctionType>()) 10688 return appendFunctionType(Enc, FT, CGM, TSC); 10689 10690 return false; 10691 } 10692 10693 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 10694 const CodeGen::CodeGenModule &CGM, 10695 TypeStringCache &TSC) { 10696 if (!D) 10697 return false; 10698 10699 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 10700 if (FD->getLanguageLinkage() != CLanguageLinkage) 10701 return false; 10702 return appendType(Enc, FD->getType(), CGM, TSC); 10703 } 10704 10705 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 10706 if (VD->getLanguageLinkage() != CLanguageLinkage) 10707 return false; 10708 QualType QT = VD->getType().getCanonicalType(); 10709 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) { 10710 // Global ArrayTypes are given a size of '*' if the size is unknown. 10711 // The Qualifiers should be attached to the type rather than the array. 10712 // Thus we don't call appendQualifier() here. 10713 return appendArrayType(Enc, QT, AT, CGM, TSC, "*"); 10714 } 10715 return appendType(Enc, QT, CGM, TSC); 10716 } 10717 return false; 10718 } 10719 10720 //===----------------------------------------------------------------------===// 10721 // RISCV ABI Implementation 10722 //===----------------------------------------------------------------------===// 10723 10724 namespace { 10725 class RISCVABIInfo : public DefaultABIInfo { 10726 private: 10727 // Size of the integer ('x') registers in bits. 10728 unsigned XLen; 10729 // Size of the floating point ('f') registers in bits. Note that the target 10730 // ISA might have a wider FLen than the selected ABI (e.g. an RV32IF target 10731 // with soft float ABI has FLen==0). 10732 unsigned FLen; 10733 static const int NumArgGPRs = 8; 10734 static const int NumArgFPRs = 8; 10735 bool detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff, 10736 llvm::Type *&Field1Ty, 10737 CharUnits &Field1Off, 10738 llvm::Type *&Field2Ty, 10739 CharUnits &Field2Off) const; 10740 10741 public: 10742 RISCVABIInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen, unsigned FLen) 10743 : DefaultABIInfo(CGT), XLen(XLen), FLen(FLen) {} 10744 10745 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 10746 // non-virtual, but computeInfo is virtual, so we overload it. 10747 void computeInfo(CGFunctionInfo &FI) const override; 10748 10749 ABIArgInfo classifyArgumentType(QualType Ty, bool IsFixed, int &ArgGPRsLeft, 10750 int &ArgFPRsLeft) const; 10751 ABIArgInfo classifyReturnType(QualType RetTy) const; 10752 10753 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 10754 QualType Ty) const override; 10755 10756 ABIArgInfo extendType(QualType Ty) const; 10757 10758 bool detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty, 10759 CharUnits &Field1Off, llvm::Type *&Field2Ty, 10760 CharUnits &Field2Off, int &NeededArgGPRs, 10761 int &NeededArgFPRs) const; 10762 ABIArgInfo coerceAndExpandFPCCEligibleStruct(llvm::Type *Field1Ty, 10763 CharUnits Field1Off, 10764 llvm::Type *Field2Ty, 10765 CharUnits Field2Off) const; 10766 }; 10767 } // end anonymous namespace 10768 10769 void RISCVABIInfo::computeInfo(CGFunctionInfo &FI) const { 10770 QualType RetTy = FI.getReturnType(); 10771 if (!getCXXABI().classifyReturnType(FI)) 10772 FI.getReturnInfo() = classifyReturnType(RetTy); 10773 10774 // IsRetIndirect is true if classifyArgumentType indicated the value should 10775 // be passed indirect, or if the type size is a scalar greater than 2*XLen 10776 // and not a complex type with elements <= FLen. e.g. fp128 is passed direct 10777 // in LLVM IR, relying on the backend lowering code to rewrite the argument 10778 // list and pass indirectly on RV32. 10779 bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect; 10780 if (!IsRetIndirect && RetTy->isScalarType() && 10781 getContext().getTypeSize(RetTy) > (2 * XLen)) { 10782 if (RetTy->isComplexType() && FLen) { 10783 QualType EltTy = RetTy->castAs<ComplexType>()->getElementType(); 10784 IsRetIndirect = getContext().getTypeSize(EltTy) > FLen; 10785 } else { 10786 // This is a normal scalar > 2*XLen, such as fp128 on RV32. 10787 IsRetIndirect = true; 10788 } 10789 } 10790 10791 // We must track the number of GPRs used in order to conform to the RISC-V 10792 // ABI, as integer scalars passed in registers should have signext/zeroext 10793 // when promoted, but are anyext if passed on the stack. As GPR usage is 10794 // different for variadic arguments, we must also track whether we are 10795 // examining a vararg or not. 10796 int ArgGPRsLeft = IsRetIndirect ? NumArgGPRs - 1 : NumArgGPRs; 10797 int ArgFPRsLeft = FLen ? NumArgFPRs : 0; 10798 int NumFixedArgs = FI.getNumRequiredArgs(); 10799 10800 int ArgNum = 0; 10801 for (auto &ArgInfo : FI.arguments()) { 10802 bool IsFixed = ArgNum < NumFixedArgs; 10803 ArgInfo.info = 10804 classifyArgumentType(ArgInfo.type, IsFixed, ArgGPRsLeft, ArgFPRsLeft); 10805 ArgNum++; 10806 } 10807 } 10808 10809 // Returns true if the struct is a potential candidate for the floating point 10810 // calling convention. If this function returns true, the caller is 10811 // responsible for checking that if there is only a single field then that 10812 // field is a float. 10813 bool RISCVABIInfo::detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff, 10814 llvm::Type *&Field1Ty, 10815 CharUnits &Field1Off, 10816 llvm::Type *&Field2Ty, 10817 CharUnits &Field2Off) const { 10818 bool IsInt = Ty->isIntegralOrEnumerationType(); 10819 bool IsFloat = Ty->isRealFloatingType(); 10820 10821 if (IsInt || IsFloat) { 10822 uint64_t Size = getContext().getTypeSize(Ty); 10823 if (IsInt && Size > XLen) 10824 return false; 10825 // Can't be eligible if larger than the FP registers. Half precision isn't 10826 // currently supported on RISC-V and the ABI hasn't been confirmed, so 10827 // default to the integer ABI in that case. 10828 if (IsFloat && (Size > FLen || Size < 32)) 10829 return false; 10830 // Can't be eligible if an integer type was already found (int+int pairs 10831 // are not eligible). 10832 if (IsInt && Field1Ty && Field1Ty->isIntegerTy()) 10833 return false; 10834 if (!Field1Ty) { 10835 Field1Ty = CGT.ConvertType(Ty); 10836 Field1Off = CurOff; 10837 return true; 10838 } 10839 if (!Field2Ty) { 10840 Field2Ty = CGT.ConvertType(Ty); 10841 Field2Off = CurOff; 10842 return true; 10843 } 10844 return false; 10845 } 10846 10847 if (auto CTy = Ty->getAs<ComplexType>()) { 10848 if (Field1Ty) 10849 return false; 10850 QualType EltTy = CTy->getElementType(); 10851 if (getContext().getTypeSize(EltTy) > FLen) 10852 return false; 10853 Field1Ty = CGT.ConvertType(EltTy); 10854 Field1Off = CurOff; 10855 Field2Ty = Field1Ty; 10856 Field2Off = Field1Off + getContext().getTypeSizeInChars(EltTy); 10857 return true; 10858 } 10859 10860 if (const ConstantArrayType *ATy = getContext().getAsConstantArrayType(Ty)) { 10861 uint64_t ArraySize = ATy->getSize().getZExtValue(); 10862 QualType EltTy = ATy->getElementType(); 10863 CharUnits EltSize = getContext().getTypeSizeInChars(EltTy); 10864 for (uint64_t i = 0; i < ArraySize; ++i) { 10865 bool Ret = detectFPCCEligibleStructHelper(EltTy, CurOff, Field1Ty, 10866 Field1Off, Field2Ty, Field2Off); 10867 if (!Ret) 10868 return false; 10869 CurOff += EltSize; 10870 } 10871 return true; 10872 } 10873 10874 if (const auto *RTy = Ty->getAs<RecordType>()) { 10875 // Structures with either a non-trivial destructor or a non-trivial 10876 // copy constructor are not eligible for the FP calling convention. 10877 if (getRecordArgABI(Ty, CGT.getCXXABI())) 10878 return false; 10879 if (isEmptyRecord(getContext(), Ty, true)) 10880 return true; 10881 const RecordDecl *RD = RTy->getDecl(); 10882 // Unions aren't eligible unless they're empty (which is caught above). 10883 if (RD->isUnion()) 10884 return false; 10885 int ZeroWidthBitFieldCount = 0; 10886 for (const FieldDecl *FD : RD->fields()) { 10887 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 10888 uint64_t FieldOffInBits = Layout.getFieldOffset(FD->getFieldIndex()); 10889 QualType QTy = FD->getType(); 10890 if (FD->isBitField()) { 10891 unsigned BitWidth = FD->getBitWidthValue(getContext()); 10892 // Allow a bitfield with a type greater than XLen as long as the 10893 // bitwidth is XLen or less. 10894 if (getContext().getTypeSize(QTy) > XLen && BitWidth <= XLen) 10895 QTy = getContext().getIntTypeForBitwidth(XLen, false); 10896 if (BitWidth == 0) { 10897 ZeroWidthBitFieldCount++; 10898 continue; 10899 } 10900 } 10901 10902 bool Ret = detectFPCCEligibleStructHelper( 10903 QTy, CurOff + getContext().toCharUnitsFromBits(FieldOffInBits), 10904 Field1Ty, Field1Off, Field2Ty, Field2Off); 10905 if (!Ret) 10906 return false; 10907 10908 // As a quirk of the ABI, zero-width bitfields aren't ignored for fp+fp 10909 // or int+fp structs, but are ignored for a struct with an fp field and 10910 // any number of zero-width bitfields. 10911 if (Field2Ty && ZeroWidthBitFieldCount > 0) 10912 return false; 10913 } 10914 return Field1Ty != nullptr; 10915 } 10916 10917 return false; 10918 } 10919 10920 // Determine if a struct is eligible for passing according to the floating 10921 // point calling convention (i.e., when flattened it contains a single fp 10922 // value, fp+fp, or int+fp of appropriate size). If so, NeededArgFPRs and 10923 // NeededArgGPRs are incremented appropriately. 10924 bool RISCVABIInfo::detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty, 10925 CharUnits &Field1Off, 10926 llvm::Type *&Field2Ty, 10927 CharUnits &Field2Off, 10928 int &NeededArgGPRs, 10929 int &NeededArgFPRs) const { 10930 Field1Ty = nullptr; 10931 Field2Ty = nullptr; 10932 NeededArgGPRs = 0; 10933 NeededArgFPRs = 0; 10934 bool IsCandidate = detectFPCCEligibleStructHelper( 10935 Ty, CharUnits::Zero(), Field1Ty, Field1Off, Field2Ty, Field2Off); 10936 // Not really a candidate if we have a single int but no float. 10937 if (Field1Ty && !Field2Ty && !Field1Ty->isFloatingPointTy()) 10938 return false; 10939 if (!IsCandidate) 10940 return false; 10941 if (Field1Ty && Field1Ty->isFloatingPointTy()) 10942 NeededArgFPRs++; 10943 else if (Field1Ty) 10944 NeededArgGPRs++; 10945 if (Field2Ty && Field2Ty->isFloatingPointTy()) 10946 NeededArgFPRs++; 10947 else if (Field2Ty) 10948 NeededArgGPRs++; 10949 return true; 10950 } 10951 10952 // Call getCoerceAndExpand for the two-element flattened struct described by 10953 // Field1Ty, Field1Off, Field2Ty, Field2Off. This method will create an 10954 // appropriate coerceToType and unpaddedCoerceToType. 10955 ABIArgInfo RISCVABIInfo::coerceAndExpandFPCCEligibleStruct( 10956 llvm::Type *Field1Ty, CharUnits Field1Off, llvm::Type *Field2Ty, 10957 CharUnits Field2Off) const { 10958 SmallVector<llvm::Type *, 3> CoerceElts; 10959 SmallVector<llvm::Type *, 2> UnpaddedCoerceElts; 10960 if (!Field1Off.isZero()) 10961 CoerceElts.push_back(llvm::ArrayType::get( 10962 llvm::Type::getInt8Ty(getVMContext()), Field1Off.getQuantity())); 10963 10964 CoerceElts.push_back(Field1Ty); 10965 UnpaddedCoerceElts.push_back(Field1Ty); 10966 10967 if (!Field2Ty) { 10968 return ABIArgInfo::getCoerceAndExpand( 10969 llvm::StructType::get(getVMContext(), CoerceElts, !Field1Off.isZero()), 10970 UnpaddedCoerceElts[0]); 10971 } 10972 10973 CharUnits Field2Align = 10974 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(Field2Ty)); 10975 CharUnits Field1End = Field1Off + 10976 CharUnits::fromQuantity(getDataLayout().getTypeStoreSize(Field1Ty)); 10977 CharUnits Field2OffNoPadNoPack = Field1End.alignTo(Field2Align); 10978 10979 CharUnits Padding = CharUnits::Zero(); 10980 if (Field2Off > Field2OffNoPadNoPack) 10981 Padding = Field2Off - Field2OffNoPadNoPack; 10982 else if (Field2Off != Field2Align && Field2Off > Field1End) 10983 Padding = Field2Off - Field1End; 10984 10985 bool IsPacked = !Field2Off.isMultipleOf(Field2Align); 10986 10987 if (!Padding.isZero()) 10988 CoerceElts.push_back(llvm::ArrayType::get( 10989 llvm::Type::getInt8Ty(getVMContext()), Padding.getQuantity())); 10990 10991 CoerceElts.push_back(Field2Ty); 10992 UnpaddedCoerceElts.push_back(Field2Ty); 10993 10994 auto CoerceToType = 10995 llvm::StructType::get(getVMContext(), CoerceElts, IsPacked); 10996 auto UnpaddedCoerceToType = 10997 llvm::StructType::get(getVMContext(), UnpaddedCoerceElts, IsPacked); 10998 10999 return ABIArgInfo::getCoerceAndExpand(CoerceToType, UnpaddedCoerceToType); 11000 } 11001 11002 ABIArgInfo RISCVABIInfo::classifyArgumentType(QualType Ty, bool IsFixed, 11003 int &ArgGPRsLeft, 11004 int &ArgFPRsLeft) const { 11005 assert(ArgGPRsLeft <= NumArgGPRs && "Arg GPR tracking underflow"); 11006 Ty = useFirstFieldIfTransparentUnion(Ty); 11007 11008 // Structures with either a non-trivial destructor or a non-trivial 11009 // copy constructor are always passed indirectly. 11010 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 11011 if (ArgGPRsLeft) 11012 ArgGPRsLeft -= 1; 11013 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 11014 CGCXXABI::RAA_DirectInMemory); 11015 } 11016 11017 // Ignore empty structs/unions. 11018 if (isEmptyRecord(getContext(), Ty, true)) 11019 return ABIArgInfo::getIgnore(); 11020 11021 uint64_t Size = getContext().getTypeSize(Ty); 11022 11023 // Pass floating point values via FPRs if possible. 11024 if (IsFixed && Ty->isFloatingType() && !Ty->isComplexType() && 11025 FLen >= Size && ArgFPRsLeft) { 11026 ArgFPRsLeft--; 11027 return ABIArgInfo::getDirect(); 11028 } 11029 11030 // Complex types for the hard float ABI must be passed direct rather than 11031 // using CoerceAndExpand. 11032 if (IsFixed && Ty->isComplexType() && FLen && ArgFPRsLeft >= 2) { 11033 QualType EltTy = Ty->castAs<ComplexType>()->getElementType(); 11034 if (getContext().getTypeSize(EltTy) <= FLen) { 11035 ArgFPRsLeft -= 2; 11036 return ABIArgInfo::getDirect(); 11037 } 11038 } 11039 11040 if (IsFixed && FLen && Ty->isStructureOrClassType()) { 11041 llvm::Type *Field1Ty = nullptr; 11042 llvm::Type *Field2Ty = nullptr; 11043 CharUnits Field1Off = CharUnits::Zero(); 11044 CharUnits Field2Off = CharUnits::Zero(); 11045 int NeededArgGPRs = 0; 11046 int NeededArgFPRs = 0; 11047 bool IsCandidate = 11048 detectFPCCEligibleStruct(Ty, Field1Ty, Field1Off, Field2Ty, Field2Off, 11049 NeededArgGPRs, NeededArgFPRs); 11050 if (IsCandidate && NeededArgGPRs <= ArgGPRsLeft && 11051 NeededArgFPRs <= ArgFPRsLeft) { 11052 ArgGPRsLeft -= NeededArgGPRs; 11053 ArgFPRsLeft -= NeededArgFPRs; 11054 return coerceAndExpandFPCCEligibleStruct(Field1Ty, Field1Off, Field2Ty, 11055 Field2Off); 11056 } 11057 } 11058 11059 uint64_t NeededAlign = getContext().getTypeAlign(Ty); 11060 bool MustUseStack = false; 11061 // Determine the number of GPRs needed to pass the current argument 11062 // according to the ABI. 2*XLen-aligned varargs are passed in "aligned" 11063 // register pairs, so may consume 3 registers. 11064 int NeededArgGPRs = 1; 11065 if (!IsFixed && NeededAlign == 2 * XLen) 11066 NeededArgGPRs = 2 + (ArgGPRsLeft % 2); 11067 else if (Size > XLen && Size <= 2 * XLen) 11068 NeededArgGPRs = 2; 11069 11070 if (NeededArgGPRs > ArgGPRsLeft) { 11071 MustUseStack = true; 11072 NeededArgGPRs = ArgGPRsLeft; 11073 } 11074 11075 ArgGPRsLeft -= NeededArgGPRs; 11076 11077 if (!isAggregateTypeForABI(Ty) && !Ty->isVectorType()) { 11078 // Treat an enum type as its underlying type. 11079 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 11080 Ty = EnumTy->getDecl()->getIntegerType(); 11081 11082 // All integral types are promoted to XLen width, unless passed on the 11083 // stack. 11084 if (Size < XLen && Ty->isIntegralOrEnumerationType() && !MustUseStack) { 11085 return extendType(Ty); 11086 } 11087 11088 if (const auto *EIT = Ty->getAs<BitIntType>()) { 11089 if (EIT->getNumBits() < XLen && !MustUseStack) 11090 return extendType(Ty); 11091 if (EIT->getNumBits() > 128 || 11092 (!getContext().getTargetInfo().hasInt128Type() && 11093 EIT->getNumBits() > 64)) 11094 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 11095 } 11096 11097 return ABIArgInfo::getDirect(); 11098 } 11099 11100 // Aggregates which are <= 2*XLen will be passed in registers if possible, 11101 // so coerce to integers. 11102 if (Size <= 2 * XLen) { 11103 unsigned Alignment = getContext().getTypeAlign(Ty); 11104 11105 // Use a single XLen int if possible, 2*XLen if 2*XLen alignment is 11106 // required, and a 2-element XLen array if only XLen alignment is required. 11107 if (Size <= XLen) { 11108 return ABIArgInfo::getDirect( 11109 llvm::IntegerType::get(getVMContext(), XLen)); 11110 } else if (Alignment == 2 * XLen) { 11111 return ABIArgInfo::getDirect( 11112 llvm::IntegerType::get(getVMContext(), 2 * XLen)); 11113 } else { 11114 return ABIArgInfo::getDirect(llvm::ArrayType::get( 11115 llvm::IntegerType::get(getVMContext(), XLen), 2)); 11116 } 11117 } 11118 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 11119 } 11120 11121 ABIArgInfo RISCVABIInfo::classifyReturnType(QualType RetTy) const { 11122 if (RetTy->isVoidType()) 11123 return ABIArgInfo::getIgnore(); 11124 11125 int ArgGPRsLeft = 2; 11126 int ArgFPRsLeft = FLen ? 2 : 0; 11127 11128 // The rules for return and argument types are the same, so defer to 11129 // classifyArgumentType. 11130 return classifyArgumentType(RetTy, /*IsFixed=*/true, ArgGPRsLeft, 11131 ArgFPRsLeft); 11132 } 11133 11134 Address RISCVABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 11135 QualType Ty) const { 11136 CharUnits SlotSize = CharUnits::fromQuantity(XLen / 8); 11137 11138 // Empty records are ignored for parameter passing purposes. 11139 if (isEmptyRecord(getContext(), Ty, true)) { 11140 Address Addr = Address(CGF.Builder.CreateLoad(VAListAddr), 11141 getVAListElementType(CGF), SlotSize); 11142 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 11143 return Addr; 11144 } 11145 11146 auto TInfo = getContext().getTypeInfoInChars(Ty); 11147 11148 // Arguments bigger than 2*Xlen bytes are passed indirectly. 11149 bool IsIndirect = TInfo.Width > 2 * SlotSize; 11150 11151 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TInfo, 11152 SlotSize, /*AllowHigherAlign=*/true); 11153 } 11154 11155 ABIArgInfo RISCVABIInfo::extendType(QualType Ty) const { 11156 int TySize = getContext().getTypeSize(Ty); 11157 // RV64 ABI requires unsigned 32 bit integers to be sign extended. 11158 if (XLen == 64 && Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 11159 return ABIArgInfo::getSignExtend(Ty); 11160 return ABIArgInfo::getExtend(Ty); 11161 } 11162 11163 namespace { 11164 class RISCVTargetCodeGenInfo : public TargetCodeGenInfo { 11165 public: 11166 RISCVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen, 11167 unsigned FLen) 11168 : TargetCodeGenInfo(std::make_unique<RISCVABIInfo>(CGT, XLen, FLen)) {} 11169 11170 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 11171 CodeGen::CodeGenModule &CGM) const override { 11172 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 11173 if (!FD) return; 11174 11175 const auto *Attr = FD->getAttr<RISCVInterruptAttr>(); 11176 if (!Attr) 11177 return; 11178 11179 const char *Kind; 11180 switch (Attr->getInterrupt()) { 11181 case RISCVInterruptAttr::user: Kind = "user"; break; 11182 case RISCVInterruptAttr::supervisor: Kind = "supervisor"; break; 11183 case RISCVInterruptAttr::machine: Kind = "machine"; break; 11184 } 11185 11186 auto *Fn = cast<llvm::Function>(GV); 11187 11188 Fn->addFnAttr("interrupt", Kind); 11189 } 11190 }; 11191 } // namespace 11192 11193 //===----------------------------------------------------------------------===// 11194 // VE ABI Implementation. 11195 // 11196 namespace { 11197 class VEABIInfo : public DefaultABIInfo { 11198 public: 11199 VEABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 11200 11201 private: 11202 ABIArgInfo classifyReturnType(QualType RetTy) const; 11203 ABIArgInfo classifyArgumentType(QualType RetTy) const; 11204 void computeInfo(CGFunctionInfo &FI) const override; 11205 }; 11206 } // end anonymous namespace 11207 11208 ABIArgInfo VEABIInfo::classifyReturnType(QualType Ty) const { 11209 if (Ty->isAnyComplexType()) 11210 return ABIArgInfo::getDirect(); 11211 uint64_t Size = getContext().getTypeSize(Ty); 11212 if (Size < 64 && Ty->isIntegerType()) 11213 return ABIArgInfo::getExtend(Ty); 11214 return DefaultABIInfo::classifyReturnType(Ty); 11215 } 11216 11217 ABIArgInfo VEABIInfo::classifyArgumentType(QualType Ty) const { 11218 if (Ty->isAnyComplexType()) 11219 return ABIArgInfo::getDirect(); 11220 uint64_t Size = getContext().getTypeSize(Ty); 11221 if (Size < 64 && Ty->isIntegerType()) 11222 return ABIArgInfo::getExtend(Ty); 11223 return DefaultABIInfo::classifyArgumentType(Ty); 11224 } 11225 11226 void VEABIInfo::computeInfo(CGFunctionInfo &FI) const { 11227 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 11228 for (auto &Arg : FI.arguments()) 11229 Arg.info = classifyArgumentType(Arg.type); 11230 } 11231 11232 namespace { 11233 class VETargetCodeGenInfo : public TargetCodeGenInfo { 11234 public: 11235 VETargetCodeGenInfo(CodeGenTypes &CGT) 11236 : TargetCodeGenInfo(std::make_unique<VEABIInfo>(CGT)) {} 11237 // VE ABI requires the arguments of variadic and prototype-less functions 11238 // are passed in both registers and memory. 11239 bool isNoProtoCallVariadic(const CallArgList &args, 11240 const FunctionNoProtoType *fnType) const override { 11241 return true; 11242 } 11243 }; 11244 } // end anonymous namespace 11245 11246 //===----------------------------------------------------------------------===// 11247 // Driver code 11248 //===----------------------------------------------------------------------===// 11249 11250 bool CodeGenModule::supportsCOMDAT() const { 11251 return getTriple().supportsCOMDAT(); 11252 } 11253 11254 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { 11255 if (TheTargetCodeGenInfo) 11256 return *TheTargetCodeGenInfo; 11257 11258 // Helper to set the unique_ptr while still keeping the return value. 11259 auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & { 11260 this->TheTargetCodeGenInfo.reset(P); 11261 return *P; 11262 }; 11263 11264 const llvm::Triple &Triple = getTarget().getTriple(); 11265 switch (Triple.getArch()) { 11266 default: 11267 return SetCGInfo(new DefaultTargetCodeGenInfo(Types)); 11268 11269 case llvm::Triple::le32: 11270 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 11271 case llvm::Triple::m68k: 11272 return SetCGInfo(new M68kTargetCodeGenInfo(Types)); 11273 case llvm::Triple::mips: 11274 case llvm::Triple::mipsel: 11275 if (Triple.getOS() == llvm::Triple::NaCl) 11276 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 11277 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true)); 11278 11279 case llvm::Triple::mips64: 11280 case llvm::Triple::mips64el: 11281 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false)); 11282 11283 case llvm::Triple::avr: 11284 return SetCGInfo(new AVRTargetCodeGenInfo(Types)); 11285 11286 case llvm::Triple::aarch64: 11287 case llvm::Triple::aarch64_32: 11288 case llvm::Triple::aarch64_be: { 11289 AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS; 11290 if (getTarget().getABI() == "darwinpcs") 11291 Kind = AArch64ABIInfo::DarwinPCS; 11292 else if (Triple.isOSWindows()) 11293 return SetCGInfo( 11294 new WindowsAArch64TargetCodeGenInfo(Types, AArch64ABIInfo::Win64)); 11295 11296 return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind)); 11297 } 11298 11299 case llvm::Triple::wasm32: 11300 case llvm::Triple::wasm64: { 11301 WebAssemblyABIInfo::ABIKind Kind = WebAssemblyABIInfo::MVP; 11302 if (getTarget().getABI() == "experimental-mv") 11303 Kind = WebAssemblyABIInfo::ExperimentalMV; 11304 return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types, Kind)); 11305 } 11306 11307 case llvm::Triple::arm: 11308 case llvm::Triple::armeb: 11309 case llvm::Triple::thumb: 11310 case llvm::Triple::thumbeb: { 11311 if (Triple.getOS() == llvm::Triple::Win32) { 11312 return SetCGInfo( 11313 new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP)); 11314 } 11315 11316 ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS; 11317 StringRef ABIStr = getTarget().getABI(); 11318 if (ABIStr == "apcs-gnu") 11319 Kind = ARMABIInfo::APCS; 11320 else if (ABIStr == "aapcs16") 11321 Kind = ARMABIInfo::AAPCS16_VFP; 11322 else if (CodeGenOpts.FloatABI == "hard" || 11323 (CodeGenOpts.FloatABI != "soft" && 11324 (Triple.getEnvironment() == llvm::Triple::GNUEABIHF || 11325 Triple.getEnvironment() == llvm::Triple::MuslEABIHF || 11326 Triple.getEnvironment() == llvm::Triple::EABIHF))) 11327 Kind = ARMABIInfo::AAPCS_VFP; 11328 11329 return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind)); 11330 } 11331 11332 case llvm::Triple::ppc: { 11333 if (Triple.isOSAIX()) 11334 return SetCGInfo(new AIXTargetCodeGenInfo(Types, /*Is64Bit*/ false)); 11335 11336 bool IsSoftFloat = 11337 CodeGenOpts.FloatABI == "soft" || getTarget().hasFeature("spe"); 11338 bool RetSmallStructInRegABI = 11339 PPC32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 11340 return SetCGInfo( 11341 new PPC32TargetCodeGenInfo(Types, IsSoftFloat, RetSmallStructInRegABI)); 11342 } 11343 case llvm::Triple::ppcle: { 11344 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 11345 bool RetSmallStructInRegABI = 11346 PPC32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 11347 return SetCGInfo( 11348 new PPC32TargetCodeGenInfo(Types, IsSoftFloat, RetSmallStructInRegABI)); 11349 } 11350 case llvm::Triple::ppc64: 11351 if (Triple.isOSAIX()) 11352 return SetCGInfo(new AIXTargetCodeGenInfo(Types, /*Is64Bit*/ true)); 11353 11354 if (Triple.isOSBinFormatELF()) { 11355 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1; 11356 if (getTarget().getABI() == "elfv2") 11357 Kind = PPC64_SVR4_ABIInfo::ELFv2; 11358 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 11359 11360 return SetCGInfo( 11361 new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, IsSoftFloat)); 11362 } 11363 return SetCGInfo(new PPC64TargetCodeGenInfo(Types)); 11364 case llvm::Triple::ppc64le: { 11365 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); 11366 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2; 11367 if (getTarget().getABI() == "elfv1") 11368 Kind = PPC64_SVR4_ABIInfo::ELFv1; 11369 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 11370 11371 return SetCGInfo( 11372 new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, IsSoftFloat)); 11373 } 11374 11375 case llvm::Triple::nvptx: 11376 case llvm::Triple::nvptx64: 11377 return SetCGInfo(new NVPTXTargetCodeGenInfo(Types)); 11378 11379 case llvm::Triple::msp430: 11380 return SetCGInfo(new MSP430TargetCodeGenInfo(Types)); 11381 11382 case llvm::Triple::riscv32: 11383 case llvm::Triple::riscv64: { 11384 StringRef ABIStr = getTarget().getABI(); 11385 unsigned XLen = getTarget().getPointerWidth(0); 11386 unsigned ABIFLen = 0; 11387 if (ABIStr.endswith("f")) 11388 ABIFLen = 32; 11389 else if (ABIStr.endswith("d")) 11390 ABIFLen = 64; 11391 return SetCGInfo(new RISCVTargetCodeGenInfo(Types, XLen, ABIFLen)); 11392 } 11393 11394 case llvm::Triple::systemz: { 11395 bool SoftFloat = CodeGenOpts.FloatABI == "soft"; 11396 bool HasVector = !SoftFloat && getTarget().getABI() == "vector"; 11397 return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector, SoftFloat)); 11398 } 11399 11400 case llvm::Triple::tce: 11401 case llvm::Triple::tcele: 11402 return SetCGInfo(new TCETargetCodeGenInfo(Types)); 11403 11404 case llvm::Triple::x86: { 11405 bool IsDarwinVectorABI = Triple.isOSDarwin(); 11406 bool RetSmallStructInRegABI = 11407 X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 11408 bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing(); 11409 11410 if (Triple.getOS() == llvm::Triple::Win32) { 11411 return SetCGInfo(new WinX86_32TargetCodeGenInfo( 11412 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 11413 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters)); 11414 } else { 11415 return SetCGInfo(new X86_32TargetCodeGenInfo( 11416 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 11417 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters, 11418 CodeGenOpts.FloatABI == "soft")); 11419 } 11420 } 11421 11422 case llvm::Triple::x86_64: { 11423 StringRef ABI = getTarget().getABI(); 11424 X86AVXABILevel AVXLevel = 11425 (ABI == "avx512" 11426 ? X86AVXABILevel::AVX512 11427 : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None); 11428 11429 switch (Triple.getOS()) { 11430 case llvm::Triple::Win32: 11431 return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel)); 11432 default: 11433 return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel)); 11434 } 11435 } 11436 case llvm::Triple::hexagon: 11437 return SetCGInfo(new HexagonTargetCodeGenInfo(Types)); 11438 case llvm::Triple::lanai: 11439 return SetCGInfo(new LanaiTargetCodeGenInfo(Types)); 11440 case llvm::Triple::r600: 11441 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 11442 case llvm::Triple::amdgcn: 11443 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 11444 case llvm::Triple::sparc: 11445 return SetCGInfo(new SparcV8TargetCodeGenInfo(Types)); 11446 case llvm::Triple::sparcv9: 11447 return SetCGInfo(new SparcV9TargetCodeGenInfo(Types)); 11448 case llvm::Triple::xcore: 11449 return SetCGInfo(new XCoreTargetCodeGenInfo(Types)); 11450 case llvm::Triple::arc: 11451 return SetCGInfo(new ARCTargetCodeGenInfo(Types)); 11452 case llvm::Triple::spir: 11453 case llvm::Triple::spir64: 11454 return SetCGInfo(new CommonSPIRTargetCodeGenInfo(Types)); 11455 case llvm::Triple::spirv32: 11456 case llvm::Triple::spirv64: 11457 return SetCGInfo(new SPIRVTargetCodeGenInfo(Types)); 11458 case llvm::Triple::ve: 11459 return SetCGInfo(new VETargetCodeGenInfo(Types)); 11460 } 11461 } 11462 11463 /// Create an OpenCL kernel for an enqueued block. 11464 /// 11465 /// The kernel has the same function type as the block invoke function. Its 11466 /// name is the name of the block invoke function postfixed with "_kernel". 11467 /// It simply calls the block invoke function then returns. 11468 llvm::Function * 11469 TargetCodeGenInfo::createEnqueuedBlockKernel(CodeGenFunction &CGF, 11470 llvm::Function *Invoke, 11471 llvm::Type *BlockTy) const { 11472 auto *InvokeFT = Invoke->getFunctionType(); 11473 auto &C = CGF.getLLVMContext(); 11474 std::string Name = Invoke->getName().str() + "_kernel"; 11475 auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), 11476 InvokeFT->params(), false); 11477 auto *F = llvm::Function::Create(FT, llvm::GlobalValue::ExternalLinkage, Name, 11478 &CGF.CGM.getModule()); 11479 auto IP = CGF.Builder.saveIP(); 11480 auto *BB = llvm::BasicBlock::Create(C, "entry", F); 11481 auto &Builder = CGF.Builder; 11482 Builder.SetInsertPoint(BB); 11483 llvm::SmallVector<llvm::Value *, 2> Args(llvm::make_pointer_range(F->args())); 11484 llvm::CallInst *call = Builder.CreateCall(Invoke, Args); 11485 call->setCallingConv(Invoke->getCallingConv()); 11486 Builder.CreateRetVoid(); 11487 Builder.restoreIP(IP); 11488 return F; 11489 } 11490 11491 /// Create an OpenCL kernel for an enqueued block. 11492 /// 11493 /// The type of the first argument (the block literal) is the struct type 11494 /// of the block literal instead of a pointer type. The first argument 11495 /// (block literal) is passed directly by value to the kernel. The kernel 11496 /// allocates the same type of struct on stack and stores the block literal 11497 /// to it and passes its pointer to the block invoke function. The kernel 11498 /// has "enqueued-block" function attribute and kernel argument metadata. 11499 llvm::Function *AMDGPUTargetCodeGenInfo::createEnqueuedBlockKernel( 11500 CodeGenFunction &CGF, llvm::Function *Invoke, 11501 llvm::Type *BlockTy) const { 11502 auto &Builder = CGF.Builder; 11503 auto &C = CGF.getLLVMContext(); 11504 11505 auto *InvokeFT = Invoke->getFunctionType(); 11506 llvm::SmallVector<llvm::Type *, 2> ArgTys; 11507 llvm::SmallVector<llvm::Metadata *, 8> AddressQuals; 11508 llvm::SmallVector<llvm::Metadata *, 8> AccessQuals; 11509 llvm::SmallVector<llvm::Metadata *, 8> ArgTypeNames; 11510 llvm::SmallVector<llvm::Metadata *, 8> ArgBaseTypeNames; 11511 llvm::SmallVector<llvm::Metadata *, 8> ArgTypeQuals; 11512 llvm::SmallVector<llvm::Metadata *, 8> ArgNames; 11513 11514 ArgTys.push_back(BlockTy); 11515 ArgTypeNames.push_back(llvm::MDString::get(C, "__block_literal")); 11516 AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(0))); 11517 ArgBaseTypeNames.push_back(llvm::MDString::get(C, "__block_literal")); 11518 ArgTypeQuals.push_back(llvm::MDString::get(C, "")); 11519 AccessQuals.push_back(llvm::MDString::get(C, "none")); 11520 ArgNames.push_back(llvm::MDString::get(C, "block_literal")); 11521 for (unsigned I = 1, E = InvokeFT->getNumParams(); I < E; ++I) { 11522 ArgTys.push_back(InvokeFT->getParamType(I)); 11523 ArgTypeNames.push_back(llvm::MDString::get(C, "void*")); 11524 AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(3))); 11525 AccessQuals.push_back(llvm::MDString::get(C, "none")); 11526 ArgBaseTypeNames.push_back(llvm::MDString::get(C, "void*")); 11527 ArgTypeQuals.push_back(llvm::MDString::get(C, "")); 11528 ArgNames.push_back( 11529 llvm::MDString::get(C, (Twine("local_arg") + Twine(I)).str())); 11530 } 11531 std::string Name = Invoke->getName().str() + "_kernel"; 11532 auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false); 11533 auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name, 11534 &CGF.CGM.getModule()); 11535 F->addFnAttr("enqueued-block"); 11536 auto IP = CGF.Builder.saveIP(); 11537 auto *BB = llvm::BasicBlock::Create(C, "entry", F); 11538 Builder.SetInsertPoint(BB); 11539 const auto BlockAlign = CGF.CGM.getDataLayout().getPrefTypeAlign(BlockTy); 11540 auto *BlockPtr = Builder.CreateAlloca(BlockTy, nullptr); 11541 BlockPtr->setAlignment(BlockAlign); 11542 Builder.CreateAlignedStore(F->arg_begin(), BlockPtr, BlockAlign); 11543 auto *Cast = Builder.CreatePointerCast(BlockPtr, InvokeFT->getParamType(0)); 11544 llvm::SmallVector<llvm::Value *, 2> Args; 11545 Args.push_back(Cast); 11546 for (auto I = F->arg_begin() + 1, E = F->arg_end(); I != E; ++I) 11547 Args.push_back(I); 11548 llvm::CallInst *call = Builder.CreateCall(Invoke, Args); 11549 call->setCallingConv(Invoke->getCallingConv()); 11550 Builder.CreateRetVoid(); 11551 Builder.restoreIP(IP); 11552 11553 F->setMetadata("kernel_arg_addr_space", llvm::MDNode::get(C, AddressQuals)); 11554 F->setMetadata("kernel_arg_access_qual", llvm::MDNode::get(C, AccessQuals)); 11555 F->setMetadata("kernel_arg_type", llvm::MDNode::get(C, ArgTypeNames)); 11556 F->setMetadata("kernel_arg_base_type", 11557 llvm::MDNode::get(C, ArgBaseTypeNames)); 11558 F->setMetadata("kernel_arg_type_qual", llvm::MDNode::get(C, ArgTypeQuals)); 11559 if (CGF.CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 11560 F->setMetadata("kernel_arg_name", llvm::MDNode::get(C, ArgNames)); 11561 11562 return F; 11563 } 11564