1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // These classes wrap the information about a call or function 10 // definition used to handle ABI compliancy. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "TargetInfo.h" 15 #include "ABIInfo.h" 16 #include "CGBlocks.h" 17 #include "CGCXXABI.h" 18 #include "CGValue.h" 19 #include "CodeGenFunction.h" 20 #include "clang/AST/Attr.h" 21 #include "clang/AST/RecordLayout.h" 22 #include "clang/Basic/CodeGenOptions.h" 23 #include "clang/Basic/DiagnosticFrontend.h" 24 #include "clang/Basic/Builtins.h" 25 #include "clang/CodeGen/CGFunctionInfo.h" 26 #include "clang/CodeGen/SwiftCallingConv.h" 27 #include "llvm/ADT/SmallBitVector.h" 28 #include "llvm/ADT/StringExtras.h" 29 #include "llvm/ADT/StringSwitch.h" 30 #include "llvm/ADT/Triple.h" 31 #include "llvm/ADT/Twine.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/IntrinsicsNVPTX.h" 34 #include "llvm/IR/IntrinsicsS390.h" 35 #include "llvm/IR/Type.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include <algorithm> // std::sort 38 39 using namespace clang; 40 using namespace CodeGen; 41 42 // Helper for coercing an aggregate argument or return value into an integer 43 // array of the same size (including padding) and alignment. This alternate 44 // coercion happens only for the RenderScript ABI and can be removed after 45 // runtimes that rely on it are no longer supported. 46 // 47 // RenderScript assumes that the size of the argument / return value in the IR 48 // is the same as the size of the corresponding qualified type. This helper 49 // coerces the aggregate type into an array of the same size (including 50 // padding). This coercion is used in lieu of expansion of struct members or 51 // other canonical coercions that return a coerced-type of larger size. 52 // 53 // Ty - The argument / return value type 54 // Context - The associated ASTContext 55 // LLVMContext - The associated LLVMContext 56 static ABIArgInfo coerceToIntArray(QualType Ty, 57 ASTContext &Context, 58 llvm::LLVMContext &LLVMContext) { 59 // Alignment and Size are measured in bits. 60 const uint64_t Size = Context.getTypeSize(Ty); 61 const uint64_t Alignment = Context.getTypeAlign(Ty); 62 llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment); 63 const uint64_t NumElements = (Size + Alignment - 1) / Alignment; 64 return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements)); 65 } 66 67 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder, 68 llvm::Value *Array, 69 llvm::Value *Value, 70 unsigned FirstIndex, 71 unsigned LastIndex) { 72 // Alternatively, we could emit this as a loop in the source. 73 for (unsigned I = FirstIndex; I <= LastIndex; ++I) { 74 llvm::Value *Cell = 75 Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I); 76 Builder.CreateAlignedStore(Value, Cell, CharUnits::One()); 77 } 78 } 79 80 static bool isAggregateTypeForABI(QualType T) { 81 return !CodeGenFunction::hasScalarEvaluationKind(T) || 82 T->isMemberFunctionPointerType(); 83 } 84 85 ABIArgInfo ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByVal, 86 bool Realign, 87 llvm::Type *Padding) const { 88 return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty), ByVal, 89 Realign, Padding); 90 } 91 92 ABIArgInfo 93 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const { 94 return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty), 95 /*ByVal*/ false, Realign); 96 } 97 98 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 99 QualType Ty) const { 100 return Address::invalid(); 101 } 102 103 bool ABIInfo::isPromotableIntegerTypeForABI(QualType Ty) const { 104 if (Ty->isPromotableIntegerType()) 105 return true; 106 107 if (const auto *EIT = Ty->getAs<ExtIntType>()) 108 if (EIT->getNumBits() < getContext().getTypeSize(getContext().IntTy)) 109 return true; 110 111 return false; 112 } 113 114 ABIInfo::~ABIInfo() {} 115 116 /// Does the given lowering require more than the given number of 117 /// registers when expanded? 118 /// 119 /// This is intended to be the basis of a reasonable basic implementation 120 /// of should{Pass,Return}IndirectlyForSwift. 121 /// 122 /// For most targets, a limit of four total registers is reasonable; this 123 /// limits the amount of code required in order to move around the value 124 /// in case it wasn't produced immediately prior to the call by the caller 125 /// (or wasn't produced in exactly the right registers) or isn't used 126 /// immediately within the callee. But some targets may need to further 127 /// limit the register count due to an inability to support that many 128 /// return registers. 129 static bool occupiesMoreThan(CodeGenTypes &cgt, 130 ArrayRef<llvm::Type*> scalarTypes, 131 unsigned maxAllRegisters) { 132 unsigned intCount = 0, fpCount = 0; 133 for (llvm::Type *type : scalarTypes) { 134 if (type->isPointerTy()) { 135 intCount++; 136 } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) { 137 auto ptrWidth = cgt.getTarget().getPointerWidth(0); 138 intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth; 139 } else { 140 assert(type->isVectorTy() || type->isFloatingPointTy()); 141 fpCount++; 142 } 143 } 144 145 return (intCount + fpCount > maxAllRegisters); 146 } 147 148 bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, 149 llvm::Type *eltTy, 150 unsigned numElts) const { 151 // The default implementation of this assumes that the target guarantees 152 // 128-bit SIMD support but nothing more. 153 return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16); 154 } 155 156 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT, 157 CGCXXABI &CXXABI) { 158 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); 159 if (!RD) { 160 if (!RT->getDecl()->canPassInRegisters()) 161 return CGCXXABI::RAA_Indirect; 162 return CGCXXABI::RAA_Default; 163 } 164 return CXXABI.getRecordArgABI(RD); 165 } 166 167 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T, 168 CGCXXABI &CXXABI) { 169 const RecordType *RT = T->getAs<RecordType>(); 170 if (!RT) 171 return CGCXXABI::RAA_Default; 172 return getRecordArgABI(RT, CXXABI); 173 } 174 175 static bool classifyReturnType(const CGCXXABI &CXXABI, CGFunctionInfo &FI, 176 const ABIInfo &Info) { 177 QualType Ty = FI.getReturnType(); 178 179 if (const auto *RT = Ty->getAs<RecordType>()) 180 if (!isa<CXXRecordDecl>(RT->getDecl()) && 181 !RT->getDecl()->canPassInRegisters()) { 182 FI.getReturnInfo() = Info.getNaturalAlignIndirect(Ty); 183 return true; 184 } 185 186 return CXXABI.classifyReturnType(FI); 187 } 188 189 /// Pass transparent unions as if they were the type of the first element. Sema 190 /// should ensure that all elements of the union have the same "machine type". 191 static QualType useFirstFieldIfTransparentUnion(QualType Ty) { 192 if (const RecordType *UT = Ty->getAsUnionType()) { 193 const RecordDecl *UD = UT->getDecl(); 194 if (UD->hasAttr<TransparentUnionAttr>()) { 195 assert(!UD->field_empty() && "sema created an empty transparent union"); 196 return UD->field_begin()->getType(); 197 } 198 } 199 return Ty; 200 } 201 202 CGCXXABI &ABIInfo::getCXXABI() const { 203 return CGT.getCXXABI(); 204 } 205 206 ASTContext &ABIInfo::getContext() const { 207 return CGT.getContext(); 208 } 209 210 llvm::LLVMContext &ABIInfo::getVMContext() const { 211 return CGT.getLLVMContext(); 212 } 213 214 const llvm::DataLayout &ABIInfo::getDataLayout() const { 215 return CGT.getDataLayout(); 216 } 217 218 const TargetInfo &ABIInfo::getTarget() const { 219 return CGT.getTarget(); 220 } 221 222 const CodeGenOptions &ABIInfo::getCodeGenOpts() const { 223 return CGT.getCodeGenOpts(); 224 } 225 226 bool ABIInfo::isAndroid() const { return getTarget().getTriple().isAndroid(); } 227 228 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 229 return false; 230 } 231 232 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 233 uint64_t Members) const { 234 return false; 235 } 236 237 LLVM_DUMP_METHOD void ABIArgInfo::dump() const { 238 raw_ostream &OS = llvm::errs(); 239 OS << "(ABIArgInfo Kind="; 240 switch (TheKind) { 241 case Direct: 242 OS << "Direct Type="; 243 if (llvm::Type *Ty = getCoerceToType()) 244 Ty->print(OS); 245 else 246 OS << "null"; 247 break; 248 case Extend: 249 OS << "Extend"; 250 break; 251 case Ignore: 252 OS << "Ignore"; 253 break; 254 case InAlloca: 255 OS << "InAlloca Offset=" << getInAllocaFieldIndex(); 256 break; 257 case Indirect: 258 OS << "Indirect Align=" << getIndirectAlign().getQuantity() 259 << " ByVal=" << getIndirectByVal() 260 << " Realign=" << getIndirectRealign(); 261 break; 262 case IndirectAliased: 263 OS << "Indirect Align=" << getIndirectAlign().getQuantity() 264 << " AadrSpace=" << getIndirectAddrSpace() 265 << " Realign=" << getIndirectRealign(); 266 break; 267 case Expand: 268 OS << "Expand"; 269 break; 270 case CoerceAndExpand: 271 OS << "CoerceAndExpand Type="; 272 getCoerceAndExpandType()->print(OS); 273 break; 274 } 275 OS << ")\n"; 276 } 277 278 // Dynamically round a pointer up to a multiple of the given alignment. 279 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF, 280 llvm::Value *Ptr, 281 CharUnits Align) { 282 llvm::Value *PtrAsInt = Ptr; 283 // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align; 284 PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy); 285 PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt, 286 llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1)); 287 PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt, 288 llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity())); 289 PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt, 290 Ptr->getType(), 291 Ptr->getName() + ".aligned"); 292 return PtrAsInt; 293 } 294 295 /// Emit va_arg for a platform using the common void* representation, 296 /// where arguments are simply emitted in an array of slots on the stack. 297 /// 298 /// This version implements the core direct-value passing rules. 299 /// 300 /// \param SlotSize - The size and alignment of a stack slot. 301 /// Each argument will be allocated to a multiple of this number of 302 /// slots, and all the slots will be aligned to this value. 303 /// \param AllowHigherAlign - The slot alignment is not a cap; 304 /// an argument type with an alignment greater than the slot size 305 /// will be emitted on a higher-alignment address, potentially 306 /// leaving one or more empty slots behind as padding. If this 307 /// is false, the returned address might be less-aligned than 308 /// DirectAlign. 309 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF, 310 Address VAListAddr, 311 llvm::Type *DirectTy, 312 CharUnits DirectSize, 313 CharUnits DirectAlign, 314 CharUnits SlotSize, 315 bool AllowHigherAlign) { 316 // Cast the element type to i8* if necessary. Some platforms define 317 // va_list as a struct containing an i8* instead of just an i8*. 318 if (VAListAddr.getElementType() != CGF.Int8PtrTy) 319 VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy); 320 321 llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur"); 322 323 // If the CC aligns values higher than the slot size, do so if needed. 324 Address Addr = Address::invalid(); 325 if (AllowHigherAlign && DirectAlign > SlotSize) { 326 Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign), 327 DirectAlign); 328 } else { 329 Addr = Address(Ptr, SlotSize); 330 } 331 332 // Advance the pointer past the argument, then store that back. 333 CharUnits FullDirectSize = DirectSize.alignTo(SlotSize); 334 Address NextPtr = 335 CGF.Builder.CreateConstInBoundsByteGEP(Addr, FullDirectSize, "argp.next"); 336 CGF.Builder.CreateStore(NextPtr.getPointer(), VAListAddr); 337 338 // If the argument is smaller than a slot, and this is a big-endian 339 // target, the argument will be right-adjusted in its slot. 340 if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() && 341 !DirectTy->isStructTy()) { 342 Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize); 343 } 344 345 Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy); 346 return Addr; 347 } 348 349 /// Emit va_arg for a platform using the common void* representation, 350 /// where arguments are simply emitted in an array of slots on the stack. 351 /// 352 /// \param IsIndirect - Values of this type are passed indirectly. 353 /// \param ValueInfo - The size and alignment of this type, generally 354 /// computed with getContext().getTypeInfoInChars(ValueTy). 355 /// \param SlotSizeAndAlign - The size and alignment of a stack slot. 356 /// Each argument will be allocated to a multiple of this number of 357 /// slots, and all the slots will be aligned to this value. 358 /// \param AllowHigherAlign - The slot alignment is not a cap; 359 /// an argument type with an alignment greater than the slot size 360 /// will be emitted on a higher-alignment address, potentially 361 /// leaving one or more empty slots behind as padding. 362 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr, 363 QualType ValueTy, bool IsIndirect, 364 TypeInfoChars ValueInfo, 365 CharUnits SlotSizeAndAlign, 366 bool AllowHigherAlign) { 367 // The size and alignment of the value that was passed directly. 368 CharUnits DirectSize, DirectAlign; 369 if (IsIndirect) { 370 DirectSize = CGF.getPointerSize(); 371 DirectAlign = CGF.getPointerAlign(); 372 } else { 373 DirectSize = ValueInfo.Width; 374 DirectAlign = ValueInfo.Align; 375 } 376 377 // Cast the address we've calculated to the right type. 378 llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy); 379 if (IsIndirect) 380 DirectTy = DirectTy->getPointerTo(0); 381 382 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy, 383 DirectSize, DirectAlign, 384 SlotSizeAndAlign, 385 AllowHigherAlign); 386 387 if (IsIndirect) { 388 Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.Align); 389 } 390 391 return Addr; 392 393 } 394 395 static Address emitMergePHI(CodeGenFunction &CGF, 396 Address Addr1, llvm::BasicBlock *Block1, 397 Address Addr2, llvm::BasicBlock *Block2, 398 const llvm::Twine &Name = "") { 399 assert(Addr1.getType() == Addr2.getType()); 400 llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name); 401 PHI->addIncoming(Addr1.getPointer(), Block1); 402 PHI->addIncoming(Addr2.getPointer(), Block2); 403 CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment()); 404 return Address(PHI, Align); 405 } 406 407 TargetCodeGenInfo::~TargetCodeGenInfo() = default; 408 409 // If someone can figure out a general rule for this, that would be great. 410 // It's probably just doomed to be platform-dependent, though. 411 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const { 412 // Verified for: 413 // x86-64 FreeBSD, Linux, Darwin 414 // x86-32 FreeBSD, Linux, Darwin 415 // PowerPC Linux, Darwin 416 // ARM Darwin (*not* EABI) 417 // AArch64 Linux 418 return 32; 419 } 420 421 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args, 422 const FunctionNoProtoType *fnType) const { 423 // The following conventions are known to require this to be false: 424 // x86_stdcall 425 // MIPS 426 // For everything else, we just prefer false unless we opt out. 427 return false; 428 } 429 430 void 431 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib, 432 llvm::SmallString<24> &Opt) const { 433 // This assumes the user is passing a library name like "rt" instead of a 434 // filename like "librt.a/so", and that they don't care whether it's static or 435 // dynamic. 436 Opt = "-l"; 437 Opt += Lib; 438 } 439 440 unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const { 441 // OpenCL kernels are called via an explicit runtime API with arguments 442 // set with clSetKernelArg(), not as normal sub-functions. 443 // Return SPIR_KERNEL by default as the kernel calling convention to 444 // ensure the fingerprint is fixed such way that each OpenCL argument 445 // gets one matching argument in the produced kernel function argument 446 // list to enable feasible implementation of clSetKernelArg() with 447 // aggregates etc. In case we would use the default C calling conv here, 448 // clSetKernelArg() might break depending on the target-specific 449 // conventions; different targets might split structs passed as values 450 // to multiple function arguments etc. 451 return llvm::CallingConv::SPIR_KERNEL; 452 } 453 454 llvm::Constant *TargetCodeGenInfo::getNullPointer(const CodeGen::CodeGenModule &CGM, 455 llvm::PointerType *T, QualType QT) const { 456 return llvm::ConstantPointerNull::get(T); 457 } 458 459 LangAS TargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM, 460 const VarDecl *D) const { 461 assert(!CGM.getLangOpts().OpenCL && 462 !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && 463 "Address space agnostic languages only"); 464 return D ? D->getType().getAddressSpace() : LangAS::Default; 465 } 466 467 llvm::Value *TargetCodeGenInfo::performAddrSpaceCast( 468 CodeGen::CodeGenFunction &CGF, llvm::Value *Src, LangAS SrcAddr, 469 LangAS DestAddr, llvm::Type *DestTy, bool isNonNull) const { 470 // Since target may map different address spaces in AST to the same address 471 // space, an address space conversion may end up as a bitcast. 472 if (auto *C = dyn_cast<llvm::Constant>(Src)) 473 return performAddrSpaceCast(CGF.CGM, C, SrcAddr, DestAddr, DestTy); 474 // Try to preserve the source's name to make IR more readable. 475 return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 476 Src, DestTy, Src->hasName() ? Src->getName() + ".ascast" : ""); 477 } 478 479 llvm::Constant * 480 TargetCodeGenInfo::performAddrSpaceCast(CodeGenModule &CGM, llvm::Constant *Src, 481 LangAS SrcAddr, LangAS DestAddr, 482 llvm::Type *DestTy) const { 483 // Since target may map different address spaces in AST to the same address 484 // space, an address space conversion may end up as a bitcast. 485 return llvm::ConstantExpr::getPointerCast(Src, DestTy); 486 } 487 488 llvm::SyncScope::ID 489 TargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts, 490 SyncScope Scope, 491 llvm::AtomicOrdering Ordering, 492 llvm::LLVMContext &Ctx) const { 493 return Ctx.getOrInsertSyncScopeID(""); /* default sync scope */ 494 } 495 496 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays); 497 498 /// isEmptyField - Return true iff a the field is "empty", that is it 499 /// is an unnamed bit-field or an (array of) empty record(s). 500 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD, 501 bool AllowArrays) { 502 if (FD->isUnnamedBitfield()) 503 return true; 504 505 QualType FT = FD->getType(); 506 507 // Constant arrays of empty records count as empty, strip them off. 508 // Constant arrays of zero length always count as empty. 509 bool WasArray = false; 510 if (AllowArrays) 511 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 512 if (AT->getSize() == 0) 513 return true; 514 FT = AT->getElementType(); 515 // The [[no_unique_address]] special case below does not apply to 516 // arrays of C++ empty records, so we need to remember this fact. 517 WasArray = true; 518 } 519 520 const RecordType *RT = FT->getAs<RecordType>(); 521 if (!RT) 522 return false; 523 524 // C++ record fields are never empty, at least in the Itanium ABI. 525 // 526 // FIXME: We should use a predicate for whether this behavior is true in the 527 // current ABI. 528 // 529 // The exception to the above rule are fields marked with the 530 // [[no_unique_address]] attribute (since C++20). Those do count as empty 531 // according to the Itanium ABI. The exception applies only to records, 532 // not arrays of records, so we must also check whether we stripped off an 533 // array type above. 534 if (isa<CXXRecordDecl>(RT->getDecl()) && 535 (WasArray || !FD->hasAttr<NoUniqueAddressAttr>())) 536 return false; 537 538 return isEmptyRecord(Context, FT, AllowArrays); 539 } 540 541 /// isEmptyRecord - Return true iff a structure contains only empty 542 /// fields. Note that a structure with a flexible array member is not 543 /// considered empty. 544 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) { 545 const RecordType *RT = T->getAs<RecordType>(); 546 if (!RT) 547 return false; 548 const RecordDecl *RD = RT->getDecl(); 549 if (RD->hasFlexibleArrayMember()) 550 return false; 551 552 // If this is a C++ record, check the bases first. 553 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 554 for (const auto &I : CXXRD->bases()) 555 if (!isEmptyRecord(Context, I.getType(), true)) 556 return false; 557 558 for (const auto *I : RD->fields()) 559 if (!isEmptyField(Context, I, AllowArrays)) 560 return false; 561 return true; 562 } 563 564 /// isSingleElementStruct - Determine if a structure is a "single 565 /// element struct", i.e. it has exactly one non-empty field or 566 /// exactly one field which is itself a single element 567 /// struct. Structures with flexible array members are never 568 /// considered single element structs. 569 /// 570 /// \return The field declaration for the single non-empty field, if 571 /// it exists. 572 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) { 573 const RecordType *RT = T->getAs<RecordType>(); 574 if (!RT) 575 return nullptr; 576 577 const RecordDecl *RD = RT->getDecl(); 578 if (RD->hasFlexibleArrayMember()) 579 return nullptr; 580 581 const Type *Found = nullptr; 582 583 // If this is a C++ record, check the bases first. 584 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 585 for (const auto &I : CXXRD->bases()) { 586 // Ignore empty records. 587 if (isEmptyRecord(Context, I.getType(), true)) 588 continue; 589 590 // If we already found an element then this isn't a single-element struct. 591 if (Found) 592 return nullptr; 593 594 // If this is non-empty and not a single element struct, the composite 595 // cannot be a single element struct. 596 Found = isSingleElementStruct(I.getType(), Context); 597 if (!Found) 598 return nullptr; 599 } 600 } 601 602 // Check for single element. 603 for (const auto *FD : RD->fields()) { 604 QualType FT = FD->getType(); 605 606 // Ignore empty fields. 607 if (isEmptyField(Context, FD, true)) 608 continue; 609 610 // If we already found an element then this isn't a single-element 611 // struct. 612 if (Found) 613 return nullptr; 614 615 // Treat single element arrays as the element. 616 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 617 if (AT->getSize().getZExtValue() != 1) 618 break; 619 FT = AT->getElementType(); 620 } 621 622 if (!isAggregateTypeForABI(FT)) { 623 Found = FT.getTypePtr(); 624 } else { 625 Found = isSingleElementStruct(FT, Context); 626 if (!Found) 627 return nullptr; 628 } 629 } 630 631 // We don't consider a struct a single-element struct if it has 632 // padding beyond the element type. 633 if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T)) 634 return nullptr; 635 636 return Found; 637 } 638 639 namespace { 640 Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty, 641 const ABIArgInfo &AI) { 642 // This default implementation defers to the llvm backend's va_arg 643 // instruction. It can handle only passing arguments directly 644 // (typically only handled in the backend for primitive types), or 645 // aggregates passed indirectly by pointer (NOTE: if the "byval" 646 // flag has ABI impact in the callee, this implementation cannot 647 // work.) 648 649 // Only a few cases are covered here at the moment -- those needed 650 // by the default abi. 651 llvm::Value *Val; 652 653 if (AI.isIndirect()) { 654 assert(!AI.getPaddingType() && 655 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 656 assert( 657 !AI.getIndirectRealign() && 658 "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!"); 659 660 auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty); 661 CharUnits TyAlignForABI = TyInfo.Align; 662 663 llvm::Type *BaseTy = 664 llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); 665 llvm::Value *Addr = 666 CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy); 667 return Address(Addr, TyAlignForABI); 668 } else { 669 assert((AI.isDirect() || AI.isExtend()) && 670 "Unexpected ArgInfo Kind in generic VAArg emitter!"); 671 672 assert(!AI.getInReg() && 673 "Unexpected InReg seen in arginfo in generic VAArg emitter!"); 674 assert(!AI.getPaddingType() && 675 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 676 assert(!AI.getDirectOffset() && 677 "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!"); 678 assert(!AI.getCoerceToType() && 679 "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!"); 680 681 Address Temp = CGF.CreateMemTemp(Ty, "varet"); 682 Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), CGF.ConvertType(Ty)); 683 CGF.Builder.CreateStore(Val, Temp); 684 return Temp; 685 } 686 } 687 688 /// DefaultABIInfo - The default implementation for ABI specific 689 /// details. This implementation provides information which results in 690 /// self-consistent and sensible LLVM IR generation, but does not 691 /// conform to any particular ABI. 692 class DefaultABIInfo : public ABIInfo { 693 public: 694 DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 695 696 ABIArgInfo classifyReturnType(QualType RetTy) const; 697 ABIArgInfo classifyArgumentType(QualType RetTy) const; 698 699 void computeInfo(CGFunctionInfo &FI) const override { 700 if (!getCXXABI().classifyReturnType(FI)) 701 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 702 for (auto &I : FI.arguments()) 703 I.info = classifyArgumentType(I.type); 704 } 705 706 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 707 QualType Ty) const override { 708 return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty)); 709 } 710 }; 711 712 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo { 713 public: 714 DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 715 : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {} 716 }; 717 718 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const { 719 Ty = useFirstFieldIfTransparentUnion(Ty); 720 721 if (isAggregateTypeForABI(Ty)) { 722 // Records with non-trivial destructors/copy-constructors should not be 723 // passed by value. 724 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 725 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 726 727 return getNaturalAlignIndirect(Ty); 728 } 729 730 // Treat an enum type as its underlying type. 731 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 732 Ty = EnumTy->getDecl()->getIntegerType(); 733 734 ASTContext &Context = getContext(); 735 if (const auto *EIT = Ty->getAs<ExtIntType>()) 736 if (EIT->getNumBits() > 737 Context.getTypeSize(Context.getTargetInfo().hasInt128Type() 738 ? Context.Int128Ty 739 : Context.LongLongTy)) 740 return getNaturalAlignIndirect(Ty); 741 742 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 743 : ABIArgInfo::getDirect()); 744 } 745 746 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const { 747 if (RetTy->isVoidType()) 748 return ABIArgInfo::getIgnore(); 749 750 if (isAggregateTypeForABI(RetTy)) 751 return getNaturalAlignIndirect(RetTy); 752 753 // Treat an enum type as its underlying type. 754 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 755 RetTy = EnumTy->getDecl()->getIntegerType(); 756 757 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 758 if (EIT->getNumBits() > 759 getContext().getTypeSize(getContext().getTargetInfo().hasInt128Type() 760 ? getContext().Int128Ty 761 : getContext().LongLongTy)) 762 return getNaturalAlignIndirect(RetTy); 763 764 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 765 : ABIArgInfo::getDirect()); 766 } 767 768 //===----------------------------------------------------------------------===// 769 // WebAssembly ABI Implementation 770 // 771 // This is a very simple ABI that relies a lot on DefaultABIInfo. 772 //===----------------------------------------------------------------------===// 773 774 class WebAssemblyABIInfo final : public SwiftABIInfo { 775 public: 776 enum ABIKind { 777 MVP = 0, 778 ExperimentalMV = 1, 779 }; 780 781 private: 782 DefaultABIInfo defaultInfo; 783 ABIKind Kind; 784 785 public: 786 explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind) 787 : SwiftABIInfo(CGT), defaultInfo(CGT), Kind(Kind) {} 788 789 private: 790 ABIArgInfo classifyReturnType(QualType RetTy) const; 791 ABIArgInfo classifyArgumentType(QualType Ty) const; 792 793 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 794 // non-virtual, but computeInfo and EmitVAArg are virtual, so we 795 // overload them. 796 void computeInfo(CGFunctionInfo &FI) const override { 797 if (!getCXXABI().classifyReturnType(FI)) 798 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 799 for (auto &Arg : FI.arguments()) 800 Arg.info = classifyArgumentType(Arg.type); 801 } 802 803 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 804 QualType Ty) const override; 805 806 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 807 bool asReturnValue) const override { 808 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 809 } 810 811 bool isSwiftErrorInRegister() const override { 812 return false; 813 } 814 }; 815 816 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo { 817 public: 818 explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 819 WebAssemblyABIInfo::ABIKind K) 820 : TargetCodeGenInfo(std::make_unique<WebAssemblyABIInfo>(CGT, K)) {} 821 822 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 823 CodeGen::CodeGenModule &CGM) const override { 824 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 825 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 826 if (const auto *Attr = FD->getAttr<WebAssemblyImportModuleAttr>()) { 827 llvm::Function *Fn = cast<llvm::Function>(GV); 828 llvm::AttrBuilder B; 829 B.addAttribute("wasm-import-module", Attr->getImportModule()); 830 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 831 } 832 if (const auto *Attr = FD->getAttr<WebAssemblyImportNameAttr>()) { 833 llvm::Function *Fn = cast<llvm::Function>(GV); 834 llvm::AttrBuilder B; 835 B.addAttribute("wasm-import-name", Attr->getImportName()); 836 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 837 } 838 if (const auto *Attr = FD->getAttr<WebAssemblyExportNameAttr>()) { 839 llvm::Function *Fn = cast<llvm::Function>(GV); 840 llvm::AttrBuilder B; 841 B.addAttribute("wasm-export-name", Attr->getExportName()); 842 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 843 } 844 } 845 846 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 847 llvm::Function *Fn = cast<llvm::Function>(GV); 848 if (!FD->doesThisDeclarationHaveABody() && !FD->hasPrototype()) 849 Fn->addFnAttr("no-prototype"); 850 } 851 } 852 }; 853 854 /// Classify argument of given type \p Ty. 855 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const { 856 Ty = useFirstFieldIfTransparentUnion(Ty); 857 858 if (isAggregateTypeForABI(Ty)) { 859 // Records with non-trivial destructors/copy-constructors should not be 860 // passed by value. 861 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 862 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 863 // Ignore empty structs/unions. 864 if (isEmptyRecord(getContext(), Ty, true)) 865 return ABIArgInfo::getIgnore(); 866 // Lower single-element structs to just pass a regular value. TODO: We 867 // could do reasonable-size multiple-element structs too, using getExpand(), 868 // though watch out for things like bitfields. 869 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 870 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 871 // For the experimental multivalue ABI, fully expand all other aggregates 872 if (Kind == ABIKind::ExperimentalMV) { 873 const RecordType *RT = Ty->getAs<RecordType>(); 874 assert(RT); 875 bool HasBitField = false; 876 for (auto *Field : RT->getDecl()->fields()) { 877 if (Field->isBitField()) { 878 HasBitField = true; 879 break; 880 } 881 } 882 if (!HasBitField) 883 return ABIArgInfo::getExpand(); 884 } 885 } 886 887 // Otherwise just do the default thing. 888 return defaultInfo.classifyArgumentType(Ty); 889 } 890 891 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const { 892 if (isAggregateTypeForABI(RetTy)) { 893 // Records with non-trivial destructors/copy-constructors should not be 894 // returned by value. 895 if (!getRecordArgABI(RetTy, getCXXABI())) { 896 // Ignore empty structs/unions. 897 if (isEmptyRecord(getContext(), RetTy, true)) 898 return ABIArgInfo::getIgnore(); 899 // Lower single-element structs to just return a regular value. TODO: We 900 // could do reasonable-size multiple-element structs too, using 901 // ABIArgInfo::getDirect(). 902 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 903 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 904 // For the experimental multivalue ABI, return all other aggregates 905 if (Kind == ABIKind::ExperimentalMV) 906 return ABIArgInfo::getDirect(); 907 } 908 } 909 910 // Otherwise just do the default thing. 911 return defaultInfo.classifyReturnType(RetTy); 912 } 913 914 Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 915 QualType Ty) const { 916 bool IsIndirect = isAggregateTypeForABI(Ty) && 917 !isEmptyRecord(getContext(), Ty, true) && 918 !isSingleElementStruct(Ty, getContext()); 919 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 920 getContext().getTypeInfoInChars(Ty), 921 CharUnits::fromQuantity(4), 922 /*AllowHigherAlign=*/true); 923 } 924 925 //===----------------------------------------------------------------------===// 926 // le32/PNaCl bitcode ABI Implementation 927 // 928 // This is a simplified version of the x86_32 ABI. Arguments and return values 929 // are always passed on the stack. 930 //===----------------------------------------------------------------------===// 931 932 class PNaClABIInfo : public ABIInfo { 933 public: 934 PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 935 936 ABIArgInfo classifyReturnType(QualType RetTy) const; 937 ABIArgInfo classifyArgumentType(QualType RetTy) const; 938 939 void computeInfo(CGFunctionInfo &FI) const override; 940 Address EmitVAArg(CodeGenFunction &CGF, 941 Address VAListAddr, QualType Ty) const override; 942 }; 943 944 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo { 945 public: 946 PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 947 : TargetCodeGenInfo(std::make_unique<PNaClABIInfo>(CGT)) {} 948 }; 949 950 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const { 951 if (!getCXXABI().classifyReturnType(FI)) 952 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 953 954 for (auto &I : FI.arguments()) 955 I.info = classifyArgumentType(I.type); 956 } 957 958 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 959 QualType Ty) const { 960 // The PNaCL ABI is a bit odd, in that varargs don't use normal 961 // function classification. Structs get passed directly for varargs 962 // functions, through a rewriting transform in 963 // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows 964 // this target to actually support a va_arg instructions with an 965 // aggregate type, unlike other targets. 966 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 967 } 968 969 /// Classify argument of given type \p Ty. 970 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const { 971 if (isAggregateTypeForABI(Ty)) { 972 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 973 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 974 return getNaturalAlignIndirect(Ty); 975 } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 976 // Treat an enum type as its underlying type. 977 Ty = EnumTy->getDecl()->getIntegerType(); 978 } else if (Ty->isFloatingType()) { 979 // Floating-point types don't go inreg. 980 return ABIArgInfo::getDirect(); 981 } else if (const auto *EIT = Ty->getAs<ExtIntType>()) { 982 // Treat extended integers as integers if <=64, otherwise pass indirectly. 983 if (EIT->getNumBits() > 64) 984 return getNaturalAlignIndirect(Ty); 985 return ABIArgInfo::getDirect(); 986 } 987 988 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 989 : ABIArgInfo::getDirect()); 990 } 991 992 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const { 993 if (RetTy->isVoidType()) 994 return ABIArgInfo::getIgnore(); 995 996 // In the PNaCl ABI we always return records/structures on the stack. 997 if (isAggregateTypeForABI(RetTy)) 998 return getNaturalAlignIndirect(RetTy); 999 1000 // Treat extended integers as integers if <=64, otherwise pass indirectly. 1001 if (const auto *EIT = RetTy->getAs<ExtIntType>()) { 1002 if (EIT->getNumBits() > 64) 1003 return getNaturalAlignIndirect(RetTy); 1004 return ABIArgInfo::getDirect(); 1005 } 1006 1007 // Treat an enum type as its underlying type. 1008 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 1009 RetTy = EnumTy->getDecl()->getIntegerType(); 1010 1011 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 1012 : ABIArgInfo::getDirect()); 1013 } 1014 1015 /// IsX86_MMXType - Return true if this is an MMX type. 1016 bool IsX86_MMXType(llvm::Type *IRType) { 1017 // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>. 1018 return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 && 1019 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() && 1020 IRType->getScalarSizeInBits() != 64; 1021 } 1022 1023 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 1024 StringRef Constraint, 1025 llvm::Type* Ty) { 1026 bool IsMMXCons = llvm::StringSwitch<bool>(Constraint) 1027 .Cases("y", "&y", "^Ym", true) 1028 .Default(false); 1029 if (IsMMXCons && Ty->isVectorTy()) { 1030 if (cast<llvm::VectorType>(Ty)->getPrimitiveSizeInBits().getFixedSize() != 1031 64) { 1032 // Invalid MMX constraint 1033 return nullptr; 1034 } 1035 1036 return llvm::Type::getX86_MMXTy(CGF.getLLVMContext()); 1037 } 1038 1039 // No operation needed 1040 return Ty; 1041 } 1042 1043 /// Returns true if this type can be passed in SSE registers with the 1044 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64. 1045 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) { 1046 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 1047 if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) { 1048 if (BT->getKind() == BuiltinType::LongDouble) { 1049 if (&Context.getTargetInfo().getLongDoubleFormat() == 1050 &llvm::APFloat::x87DoubleExtended()) 1051 return false; 1052 } 1053 return true; 1054 } 1055 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 1056 // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX 1057 // registers specially. 1058 unsigned VecSize = Context.getTypeSize(VT); 1059 if (VecSize == 128 || VecSize == 256 || VecSize == 512) 1060 return true; 1061 } 1062 return false; 1063 } 1064 1065 /// Returns true if this aggregate is small enough to be passed in SSE registers 1066 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64. 1067 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) { 1068 return NumMembers <= 4; 1069 } 1070 1071 /// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86. 1072 static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) { 1073 auto AI = ABIArgInfo::getDirect(T); 1074 AI.setInReg(true); 1075 AI.setCanBeFlattened(false); 1076 return AI; 1077 } 1078 1079 //===----------------------------------------------------------------------===// 1080 // X86-32 ABI Implementation 1081 //===----------------------------------------------------------------------===// 1082 1083 /// Similar to llvm::CCState, but for Clang. 1084 struct CCState { 1085 CCState(CGFunctionInfo &FI) 1086 : IsPreassigned(FI.arg_size()), CC(FI.getCallingConvention()) {} 1087 1088 llvm::SmallBitVector IsPreassigned; 1089 unsigned CC = CallingConv::CC_C; 1090 unsigned FreeRegs = 0; 1091 unsigned FreeSSERegs = 0; 1092 }; 1093 1094 /// X86_32ABIInfo - The X86-32 ABI information. 1095 class X86_32ABIInfo : public SwiftABIInfo { 1096 enum Class { 1097 Integer, 1098 Float 1099 }; 1100 1101 static const unsigned MinABIStackAlignInBytes = 4; 1102 1103 bool IsDarwinVectorABI; 1104 bool IsRetSmallStructInRegABI; 1105 bool IsWin32StructABI; 1106 bool IsSoftFloatABI; 1107 bool IsMCUABI; 1108 bool IsLinuxABI; 1109 unsigned DefaultNumRegisterParameters; 1110 1111 static bool isRegisterSize(unsigned Size) { 1112 return (Size == 8 || Size == 16 || Size == 32 || Size == 64); 1113 } 1114 1115 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 1116 // FIXME: Assumes vectorcall is in use. 1117 return isX86VectorTypeForVectorCall(getContext(), Ty); 1118 } 1119 1120 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 1121 uint64_t NumMembers) const override { 1122 // FIXME: Assumes vectorcall is in use. 1123 return isX86VectorCallAggregateSmallEnough(NumMembers); 1124 } 1125 1126 bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const; 1127 1128 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 1129 /// such that the argument will be passed in memory. 1130 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 1131 1132 ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const; 1133 1134 /// Return the alignment to use for the given type on the stack. 1135 unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const; 1136 1137 Class classify(QualType Ty) const; 1138 ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const; 1139 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 1140 1141 /// Updates the number of available free registers, returns 1142 /// true if any registers were allocated. 1143 bool updateFreeRegs(QualType Ty, CCState &State) const; 1144 1145 bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg, 1146 bool &NeedsPadding) const; 1147 bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const; 1148 1149 bool canExpandIndirectArgument(QualType Ty) const; 1150 1151 /// Rewrite the function info so that all memory arguments use 1152 /// inalloca. 1153 void rewriteWithInAlloca(CGFunctionInfo &FI) const; 1154 1155 void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1156 CharUnits &StackOffset, ABIArgInfo &Info, 1157 QualType Type) const; 1158 void runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const; 1159 1160 public: 1161 1162 void computeInfo(CGFunctionInfo &FI) const override; 1163 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 1164 QualType Ty) const override; 1165 1166 X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 1167 bool RetSmallStructInRegABI, bool Win32StructABI, 1168 unsigned NumRegisterParameters, bool SoftFloatABI) 1169 : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI), 1170 IsRetSmallStructInRegABI(RetSmallStructInRegABI), 1171 IsWin32StructABI(Win32StructABI), IsSoftFloatABI(SoftFloatABI), 1172 IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()), 1173 IsLinuxABI(CGT.getTarget().getTriple().isOSLinux()), 1174 DefaultNumRegisterParameters(NumRegisterParameters) {} 1175 1176 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 1177 bool asReturnValue) const override { 1178 // LLVM's x86-32 lowering currently only assigns up to three 1179 // integer registers and three fp registers. Oddly, it'll use up to 1180 // four vector registers for vectors, but those can overlap with the 1181 // scalar registers. 1182 return occupiesMoreThan(CGT, scalars, /*total*/ 3); 1183 } 1184 1185 bool isSwiftErrorInRegister() const override { 1186 // x86-32 lowering does not support passing swifterror in a register. 1187 return false; 1188 } 1189 }; 1190 1191 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo { 1192 public: 1193 X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 1194 bool RetSmallStructInRegABI, bool Win32StructABI, 1195 unsigned NumRegisterParameters, bool SoftFloatABI) 1196 : TargetCodeGenInfo(std::make_unique<X86_32ABIInfo>( 1197 CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI, 1198 NumRegisterParameters, SoftFloatABI)) {} 1199 1200 static bool isStructReturnInRegABI( 1201 const llvm::Triple &Triple, const CodeGenOptions &Opts); 1202 1203 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 1204 CodeGen::CodeGenModule &CGM) const override; 1205 1206 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 1207 // Darwin uses different dwarf register numbers for EH. 1208 if (CGM.getTarget().getTriple().isOSDarwin()) return 5; 1209 return 4; 1210 } 1211 1212 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 1213 llvm::Value *Address) const override; 1214 1215 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 1216 StringRef Constraint, 1217 llvm::Type* Ty) const override { 1218 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 1219 } 1220 1221 void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue, 1222 std::string &Constraints, 1223 std::vector<llvm::Type *> &ResultRegTypes, 1224 std::vector<llvm::Type *> &ResultTruncRegTypes, 1225 std::vector<LValue> &ResultRegDests, 1226 std::string &AsmString, 1227 unsigned NumOutputs) const override; 1228 1229 llvm::Constant * 1230 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 1231 unsigned Sig = (0xeb << 0) | // jmp rel8 1232 (0x06 << 8) | // .+0x08 1233 ('v' << 16) | 1234 ('2' << 24); 1235 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 1236 } 1237 1238 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 1239 return "movl\t%ebp, %ebp" 1240 "\t\t// marker for objc_retainAutoreleaseReturnValue"; 1241 } 1242 }; 1243 1244 } 1245 1246 /// Rewrite input constraint references after adding some output constraints. 1247 /// In the case where there is one output and one input and we add one output, 1248 /// we need to replace all operand references greater than or equal to 1: 1249 /// mov $0, $1 1250 /// mov eax, $1 1251 /// The result will be: 1252 /// mov $0, $2 1253 /// mov eax, $2 1254 static void rewriteInputConstraintReferences(unsigned FirstIn, 1255 unsigned NumNewOuts, 1256 std::string &AsmString) { 1257 std::string Buf; 1258 llvm::raw_string_ostream OS(Buf); 1259 size_t Pos = 0; 1260 while (Pos < AsmString.size()) { 1261 size_t DollarStart = AsmString.find('$', Pos); 1262 if (DollarStart == std::string::npos) 1263 DollarStart = AsmString.size(); 1264 size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart); 1265 if (DollarEnd == std::string::npos) 1266 DollarEnd = AsmString.size(); 1267 OS << StringRef(&AsmString[Pos], DollarEnd - Pos); 1268 Pos = DollarEnd; 1269 size_t NumDollars = DollarEnd - DollarStart; 1270 if (NumDollars % 2 != 0 && Pos < AsmString.size()) { 1271 // We have an operand reference. 1272 size_t DigitStart = Pos; 1273 if (AsmString[DigitStart] == '{') { 1274 OS << '{'; 1275 ++DigitStart; 1276 } 1277 size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart); 1278 if (DigitEnd == std::string::npos) 1279 DigitEnd = AsmString.size(); 1280 StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart); 1281 unsigned OperandIndex; 1282 if (!OperandStr.getAsInteger(10, OperandIndex)) { 1283 if (OperandIndex >= FirstIn) 1284 OperandIndex += NumNewOuts; 1285 OS << OperandIndex; 1286 } else { 1287 OS << OperandStr; 1288 } 1289 Pos = DigitEnd; 1290 } 1291 } 1292 AsmString = std::move(OS.str()); 1293 } 1294 1295 /// Add output constraints for EAX:EDX because they are return registers. 1296 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs( 1297 CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints, 1298 std::vector<llvm::Type *> &ResultRegTypes, 1299 std::vector<llvm::Type *> &ResultTruncRegTypes, 1300 std::vector<LValue> &ResultRegDests, std::string &AsmString, 1301 unsigned NumOutputs) const { 1302 uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType()); 1303 1304 // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is 1305 // larger. 1306 if (!Constraints.empty()) 1307 Constraints += ','; 1308 if (RetWidth <= 32) { 1309 Constraints += "={eax}"; 1310 ResultRegTypes.push_back(CGF.Int32Ty); 1311 } else { 1312 // Use the 'A' constraint for EAX:EDX. 1313 Constraints += "=A"; 1314 ResultRegTypes.push_back(CGF.Int64Ty); 1315 } 1316 1317 // Truncate EAX or EAX:EDX to an integer of the appropriate size. 1318 llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth); 1319 ResultTruncRegTypes.push_back(CoerceTy); 1320 1321 // Coerce the integer by bitcasting the return slot pointer. 1322 ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(CGF), 1323 CoerceTy->getPointerTo())); 1324 ResultRegDests.push_back(ReturnSlot); 1325 1326 rewriteInputConstraintReferences(NumOutputs, 1, AsmString); 1327 } 1328 1329 /// shouldReturnTypeInRegister - Determine if the given type should be 1330 /// returned in a register (for the Darwin and MCU ABI). 1331 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty, 1332 ASTContext &Context) const { 1333 uint64_t Size = Context.getTypeSize(Ty); 1334 1335 // For i386, type must be register sized. 1336 // For the MCU ABI, it only needs to be <= 8-byte 1337 if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size))) 1338 return false; 1339 1340 if (Ty->isVectorType()) { 1341 // 64- and 128- bit vectors inside structures are not returned in 1342 // registers. 1343 if (Size == 64 || Size == 128) 1344 return false; 1345 1346 return true; 1347 } 1348 1349 // If this is a builtin, pointer, enum, complex type, member pointer, or 1350 // member function pointer it is ok. 1351 if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() || 1352 Ty->isAnyComplexType() || Ty->isEnumeralType() || 1353 Ty->isBlockPointerType() || Ty->isMemberPointerType()) 1354 return true; 1355 1356 // Arrays are treated like records. 1357 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) 1358 return shouldReturnTypeInRegister(AT->getElementType(), Context); 1359 1360 // Otherwise, it must be a record type. 1361 const RecordType *RT = Ty->getAs<RecordType>(); 1362 if (!RT) return false; 1363 1364 // FIXME: Traverse bases here too. 1365 1366 // Structure types are passed in register if all fields would be 1367 // passed in a register. 1368 for (const auto *FD : RT->getDecl()->fields()) { 1369 // Empty fields are ignored. 1370 if (isEmptyField(Context, FD, true)) 1371 continue; 1372 1373 // Check fields recursively. 1374 if (!shouldReturnTypeInRegister(FD->getType(), Context)) 1375 return false; 1376 } 1377 return true; 1378 } 1379 1380 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) { 1381 // Treat complex types as the element type. 1382 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 1383 Ty = CTy->getElementType(); 1384 1385 // Check for a type which we know has a simple scalar argument-passing 1386 // convention without any padding. (We're specifically looking for 32 1387 // and 64-bit integer and integer-equivalents, float, and double.) 1388 if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() && 1389 !Ty->isEnumeralType() && !Ty->isBlockPointerType()) 1390 return false; 1391 1392 uint64_t Size = Context.getTypeSize(Ty); 1393 return Size == 32 || Size == 64; 1394 } 1395 1396 static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD, 1397 uint64_t &Size) { 1398 for (const auto *FD : RD->fields()) { 1399 // Scalar arguments on the stack get 4 byte alignment on x86. If the 1400 // argument is smaller than 32-bits, expanding the struct will create 1401 // alignment padding. 1402 if (!is32Or64BitBasicType(FD->getType(), Context)) 1403 return false; 1404 1405 // FIXME: Reject bit-fields wholesale; there are two problems, we don't know 1406 // how to expand them yet, and the predicate for telling if a bitfield still 1407 // counts as "basic" is more complicated than what we were doing previously. 1408 if (FD->isBitField()) 1409 return false; 1410 1411 Size += Context.getTypeSize(FD->getType()); 1412 } 1413 return true; 1414 } 1415 1416 static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD, 1417 uint64_t &Size) { 1418 // Don't do this if there are any non-empty bases. 1419 for (const CXXBaseSpecifier &Base : RD->bases()) { 1420 if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(), 1421 Size)) 1422 return false; 1423 } 1424 if (!addFieldSizes(Context, RD, Size)) 1425 return false; 1426 return true; 1427 } 1428 1429 /// Test whether an argument type which is to be passed indirectly (on the 1430 /// stack) would have the equivalent layout if it was expanded into separate 1431 /// arguments. If so, we prefer to do the latter to avoid inhibiting 1432 /// optimizations. 1433 bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const { 1434 // We can only expand structure types. 1435 const RecordType *RT = Ty->getAs<RecordType>(); 1436 if (!RT) 1437 return false; 1438 const RecordDecl *RD = RT->getDecl(); 1439 uint64_t Size = 0; 1440 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 1441 if (!IsWin32StructABI) { 1442 // On non-Windows, we have to conservatively match our old bitcode 1443 // prototypes in order to be ABI-compatible at the bitcode level. 1444 if (!CXXRD->isCLike()) 1445 return false; 1446 } else { 1447 // Don't do this for dynamic classes. 1448 if (CXXRD->isDynamicClass()) 1449 return false; 1450 } 1451 if (!addBaseAndFieldSizes(getContext(), CXXRD, Size)) 1452 return false; 1453 } else { 1454 if (!addFieldSizes(getContext(), RD, Size)) 1455 return false; 1456 } 1457 1458 // We can do this if there was no alignment padding. 1459 return Size == getContext().getTypeSize(Ty); 1460 } 1461 1462 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const { 1463 // If the return value is indirect, then the hidden argument is consuming one 1464 // integer register. 1465 if (State.FreeRegs) { 1466 --State.FreeRegs; 1467 if (!IsMCUABI) 1468 return getNaturalAlignIndirectInReg(RetTy); 1469 } 1470 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 1471 } 1472 1473 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, 1474 CCState &State) const { 1475 if (RetTy->isVoidType()) 1476 return ABIArgInfo::getIgnore(); 1477 1478 const Type *Base = nullptr; 1479 uint64_t NumElts = 0; 1480 if ((State.CC == llvm::CallingConv::X86_VectorCall || 1481 State.CC == llvm::CallingConv::X86_RegCall) && 1482 isHomogeneousAggregate(RetTy, Base, NumElts)) { 1483 // The LLVM struct type for such an aggregate should lower properly. 1484 return ABIArgInfo::getDirect(); 1485 } 1486 1487 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 1488 // On Darwin, some vectors are returned in registers. 1489 if (IsDarwinVectorABI) { 1490 uint64_t Size = getContext().getTypeSize(RetTy); 1491 1492 // 128-bit vectors are a special case; they are returned in 1493 // registers and we need to make sure to pick a type the LLVM 1494 // backend will like. 1495 if (Size == 128) 1496 return ABIArgInfo::getDirect(llvm::FixedVectorType::get( 1497 llvm::Type::getInt64Ty(getVMContext()), 2)); 1498 1499 // Always return in register if it fits in a general purpose 1500 // register, or if it is 64 bits and has a single element. 1501 if ((Size == 8 || Size == 16 || Size == 32) || 1502 (Size == 64 && VT->getNumElements() == 1)) 1503 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1504 Size)); 1505 1506 return getIndirectReturnResult(RetTy, State); 1507 } 1508 1509 return ABIArgInfo::getDirect(); 1510 } 1511 1512 if (isAggregateTypeForABI(RetTy)) { 1513 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 1514 // Structures with flexible arrays are always indirect. 1515 if (RT->getDecl()->hasFlexibleArrayMember()) 1516 return getIndirectReturnResult(RetTy, State); 1517 } 1518 1519 // If specified, structs and unions are always indirect. 1520 if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType()) 1521 return getIndirectReturnResult(RetTy, State); 1522 1523 // Ignore empty structs/unions. 1524 if (isEmptyRecord(getContext(), RetTy, true)) 1525 return ABIArgInfo::getIgnore(); 1526 1527 // Small structures which are register sized are generally returned 1528 // in a register. 1529 if (shouldReturnTypeInRegister(RetTy, getContext())) { 1530 uint64_t Size = getContext().getTypeSize(RetTy); 1531 1532 // As a special-case, if the struct is a "single-element" struct, and 1533 // the field is of type "float" or "double", return it in a 1534 // floating-point register. (MSVC does not apply this special case.) 1535 // We apply a similar transformation for pointer types to improve the 1536 // quality of the generated IR. 1537 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 1538 if ((!IsWin32StructABI && SeltTy->isRealFloatingType()) 1539 || SeltTy->hasPointerRepresentation()) 1540 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 1541 1542 // FIXME: We should be able to narrow this integer in cases with dead 1543 // padding. 1544 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size)); 1545 } 1546 1547 return getIndirectReturnResult(RetTy, State); 1548 } 1549 1550 // Treat an enum type as its underlying type. 1551 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 1552 RetTy = EnumTy->getDecl()->getIntegerType(); 1553 1554 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 1555 if (EIT->getNumBits() > 64) 1556 return getIndirectReturnResult(RetTy, State); 1557 1558 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 1559 : ABIArgInfo::getDirect()); 1560 } 1561 1562 static bool isSIMDVectorType(ASTContext &Context, QualType Ty) { 1563 return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128; 1564 } 1565 1566 static bool isRecordWithSIMDVectorType(ASTContext &Context, QualType Ty) { 1567 const RecordType *RT = Ty->getAs<RecordType>(); 1568 if (!RT) 1569 return 0; 1570 const RecordDecl *RD = RT->getDecl(); 1571 1572 // If this is a C++ record, check the bases first. 1573 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 1574 for (const auto &I : CXXRD->bases()) 1575 if (!isRecordWithSIMDVectorType(Context, I.getType())) 1576 return false; 1577 1578 for (const auto *i : RD->fields()) { 1579 QualType FT = i->getType(); 1580 1581 if (isSIMDVectorType(Context, FT)) 1582 return true; 1583 1584 if (isRecordWithSIMDVectorType(Context, FT)) 1585 return true; 1586 } 1587 1588 return false; 1589 } 1590 1591 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty, 1592 unsigned Align) const { 1593 // Otherwise, if the alignment is less than or equal to the minimum ABI 1594 // alignment, just use the default; the backend will handle this. 1595 if (Align <= MinABIStackAlignInBytes) 1596 return 0; // Use default alignment. 1597 1598 if (IsLinuxABI) { 1599 // Exclude other System V OS (e.g Darwin, PS4 and FreeBSD) since we don't 1600 // want to spend any effort dealing with the ramifications of ABI breaks. 1601 // 1602 // If the vector type is __m128/__m256/__m512, return the default alignment. 1603 if (Ty->isVectorType() && (Align == 16 || Align == 32 || Align == 64)) 1604 return Align; 1605 } 1606 // On non-Darwin, the stack type alignment is always 4. 1607 if (!IsDarwinVectorABI) { 1608 // Set explicit alignment, since we may need to realign the top. 1609 return MinABIStackAlignInBytes; 1610 } 1611 1612 // Otherwise, if the type contains an SSE vector type, the alignment is 16. 1613 if (Align >= 16 && (isSIMDVectorType(getContext(), Ty) || 1614 isRecordWithSIMDVectorType(getContext(), Ty))) 1615 return 16; 1616 1617 return MinABIStackAlignInBytes; 1618 } 1619 1620 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal, 1621 CCState &State) const { 1622 if (!ByVal) { 1623 if (State.FreeRegs) { 1624 --State.FreeRegs; // Non-byval indirects just use one pointer. 1625 if (!IsMCUABI) 1626 return getNaturalAlignIndirectInReg(Ty); 1627 } 1628 return getNaturalAlignIndirect(Ty, false); 1629 } 1630 1631 // Compute the byval alignment. 1632 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 1633 unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign); 1634 if (StackAlign == 0) 1635 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true); 1636 1637 // If the stack alignment is less than the type alignment, realign the 1638 // argument. 1639 bool Realign = TypeAlign > StackAlign; 1640 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign), 1641 /*ByVal=*/true, Realign); 1642 } 1643 1644 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const { 1645 const Type *T = isSingleElementStruct(Ty, getContext()); 1646 if (!T) 1647 T = Ty.getTypePtr(); 1648 1649 if (const BuiltinType *BT = T->getAs<BuiltinType>()) { 1650 BuiltinType::Kind K = BT->getKind(); 1651 if (K == BuiltinType::Float || K == BuiltinType::Double) 1652 return Float; 1653 } 1654 return Integer; 1655 } 1656 1657 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const { 1658 if (!IsSoftFloatABI) { 1659 Class C = classify(Ty); 1660 if (C == Float) 1661 return false; 1662 } 1663 1664 unsigned Size = getContext().getTypeSize(Ty); 1665 unsigned SizeInRegs = (Size + 31) / 32; 1666 1667 if (SizeInRegs == 0) 1668 return false; 1669 1670 if (!IsMCUABI) { 1671 if (SizeInRegs > State.FreeRegs) { 1672 State.FreeRegs = 0; 1673 return false; 1674 } 1675 } else { 1676 // The MCU psABI allows passing parameters in-reg even if there are 1677 // earlier parameters that are passed on the stack. Also, 1678 // it does not allow passing >8-byte structs in-register, 1679 // even if there are 3 free registers available. 1680 if (SizeInRegs > State.FreeRegs || SizeInRegs > 2) 1681 return false; 1682 } 1683 1684 State.FreeRegs -= SizeInRegs; 1685 return true; 1686 } 1687 1688 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State, 1689 bool &InReg, 1690 bool &NeedsPadding) const { 1691 // On Windows, aggregates other than HFAs are never passed in registers, and 1692 // they do not consume register slots. Homogenous floating-point aggregates 1693 // (HFAs) have already been dealt with at this point. 1694 if (IsWin32StructABI && isAggregateTypeForABI(Ty)) 1695 return false; 1696 1697 NeedsPadding = false; 1698 InReg = !IsMCUABI; 1699 1700 if (!updateFreeRegs(Ty, State)) 1701 return false; 1702 1703 if (IsMCUABI) 1704 return true; 1705 1706 if (State.CC == llvm::CallingConv::X86_FastCall || 1707 State.CC == llvm::CallingConv::X86_VectorCall || 1708 State.CC == llvm::CallingConv::X86_RegCall) { 1709 if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs) 1710 NeedsPadding = true; 1711 1712 return false; 1713 } 1714 1715 return true; 1716 } 1717 1718 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const { 1719 if (!updateFreeRegs(Ty, State)) 1720 return false; 1721 1722 if (IsMCUABI) 1723 return false; 1724 1725 if (State.CC == llvm::CallingConv::X86_FastCall || 1726 State.CC == llvm::CallingConv::X86_VectorCall || 1727 State.CC == llvm::CallingConv::X86_RegCall) { 1728 if (getContext().getTypeSize(Ty) > 32) 1729 return false; 1730 1731 return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() || 1732 Ty->isReferenceType()); 1733 } 1734 1735 return true; 1736 } 1737 1738 void X86_32ABIInfo::runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const { 1739 // Vectorcall x86 works subtly different than in x64, so the format is 1740 // a bit different than the x64 version. First, all vector types (not HVAs) 1741 // are assigned, with the first 6 ending up in the [XYZ]MM0-5 registers. 1742 // This differs from the x64 implementation, where the first 6 by INDEX get 1743 // registers. 1744 // In the second pass over the arguments, HVAs are passed in the remaining 1745 // vector registers if possible, or indirectly by address. The address will be 1746 // passed in ECX/EDX if available. Any other arguments are passed according to 1747 // the usual fastcall rules. 1748 MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments(); 1749 for (int I = 0, E = Args.size(); I < E; ++I) { 1750 const Type *Base = nullptr; 1751 uint64_t NumElts = 0; 1752 const QualType &Ty = Args[I].type; 1753 if ((Ty->isVectorType() || Ty->isBuiltinType()) && 1754 isHomogeneousAggregate(Ty, Base, NumElts)) { 1755 if (State.FreeSSERegs >= NumElts) { 1756 State.FreeSSERegs -= NumElts; 1757 Args[I].info = ABIArgInfo::getDirectInReg(); 1758 State.IsPreassigned.set(I); 1759 } 1760 } 1761 } 1762 } 1763 1764 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, 1765 CCState &State) const { 1766 // FIXME: Set alignment on indirect arguments. 1767 bool IsFastCall = State.CC == llvm::CallingConv::X86_FastCall; 1768 bool IsRegCall = State.CC == llvm::CallingConv::X86_RegCall; 1769 bool IsVectorCall = State.CC == llvm::CallingConv::X86_VectorCall; 1770 1771 Ty = useFirstFieldIfTransparentUnion(Ty); 1772 TypeInfo TI = getContext().getTypeInfo(Ty); 1773 1774 // Check with the C++ ABI first. 1775 const RecordType *RT = Ty->getAs<RecordType>(); 1776 if (RT) { 1777 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 1778 if (RAA == CGCXXABI::RAA_Indirect) { 1779 return getIndirectResult(Ty, false, State); 1780 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 1781 // The field index doesn't matter, we'll fix it up later. 1782 return ABIArgInfo::getInAlloca(/*FieldIndex=*/0); 1783 } 1784 } 1785 1786 // Regcall uses the concept of a homogenous vector aggregate, similar 1787 // to other targets. 1788 const Type *Base = nullptr; 1789 uint64_t NumElts = 0; 1790 if ((IsRegCall || IsVectorCall) && 1791 isHomogeneousAggregate(Ty, Base, NumElts)) { 1792 if (State.FreeSSERegs >= NumElts) { 1793 State.FreeSSERegs -= NumElts; 1794 1795 // Vectorcall passes HVAs directly and does not flatten them, but regcall 1796 // does. 1797 if (IsVectorCall) 1798 return getDirectX86Hva(); 1799 1800 if (Ty->isBuiltinType() || Ty->isVectorType()) 1801 return ABIArgInfo::getDirect(); 1802 return ABIArgInfo::getExpand(); 1803 } 1804 return getIndirectResult(Ty, /*ByVal=*/false, State); 1805 } 1806 1807 if (isAggregateTypeForABI(Ty)) { 1808 // Structures with flexible arrays are always indirect. 1809 // FIXME: This should not be byval! 1810 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 1811 return getIndirectResult(Ty, true, State); 1812 1813 // Ignore empty structs/unions on non-Windows. 1814 if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true)) 1815 return ABIArgInfo::getIgnore(); 1816 1817 llvm::LLVMContext &LLVMContext = getVMContext(); 1818 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 1819 bool NeedsPadding = false; 1820 bool InReg; 1821 if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) { 1822 unsigned SizeInRegs = (TI.Width + 31) / 32; 1823 SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32); 1824 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 1825 if (InReg) 1826 return ABIArgInfo::getDirectInReg(Result); 1827 else 1828 return ABIArgInfo::getDirect(Result); 1829 } 1830 llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr; 1831 1832 // Pass over-aligned aggregates on Windows indirectly. This behavior was 1833 // added in MSVC 2015. 1834 if (IsWin32StructABI && TI.AlignIsRequired && TI.Align > 32) 1835 return getIndirectResult(Ty, /*ByVal=*/false, State); 1836 1837 // Expand small (<= 128-bit) record types when we know that the stack layout 1838 // of those arguments will match the struct. This is important because the 1839 // LLVM backend isn't smart enough to remove byval, which inhibits many 1840 // optimizations. 1841 // Don't do this for the MCU if there are still free integer registers 1842 // (see X86_64 ABI for full explanation). 1843 if (TI.Width <= 4 * 32 && (!IsMCUABI || State.FreeRegs == 0) && 1844 canExpandIndirectArgument(Ty)) 1845 return ABIArgInfo::getExpandWithPadding( 1846 IsFastCall || IsVectorCall || IsRegCall, PaddingType); 1847 1848 return getIndirectResult(Ty, true, State); 1849 } 1850 1851 if (const VectorType *VT = Ty->getAs<VectorType>()) { 1852 // On Windows, vectors are passed directly if registers are available, or 1853 // indirectly if not. This avoids the need to align argument memory. Pass 1854 // user-defined vector types larger than 512 bits indirectly for simplicity. 1855 if (IsWin32StructABI) { 1856 if (TI.Width <= 512 && State.FreeSSERegs > 0) { 1857 --State.FreeSSERegs; 1858 return ABIArgInfo::getDirectInReg(); 1859 } 1860 return getIndirectResult(Ty, /*ByVal=*/false, State); 1861 } 1862 1863 // On Darwin, some vectors are passed in memory, we handle this by passing 1864 // it as an i8/i16/i32/i64. 1865 if (IsDarwinVectorABI) { 1866 if ((TI.Width == 8 || TI.Width == 16 || TI.Width == 32) || 1867 (TI.Width == 64 && VT->getNumElements() == 1)) 1868 return ABIArgInfo::getDirect( 1869 llvm::IntegerType::get(getVMContext(), TI.Width)); 1870 } 1871 1872 if (IsX86_MMXType(CGT.ConvertType(Ty))) 1873 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64)); 1874 1875 return ABIArgInfo::getDirect(); 1876 } 1877 1878 1879 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 1880 Ty = EnumTy->getDecl()->getIntegerType(); 1881 1882 bool InReg = shouldPrimitiveUseInReg(Ty, State); 1883 1884 if (isPromotableIntegerTypeForABI(Ty)) { 1885 if (InReg) 1886 return ABIArgInfo::getExtendInReg(Ty); 1887 return ABIArgInfo::getExtend(Ty); 1888 } 1889 1890 if (const auto * EIT = Ty->getAs<ExtIntType>()) { 1891 if (EIT->getNumBits() <= 64) { 1892 if (InReg) 1893 return ABIArgInfo::getDirectInReg(); 1894 return ABIArgInfo::getDirect(); 1895 } 1896 return getIndirectResult(Ty, /*ByVal=*/false, State); 1897 } 1898 1899 if (InReg) 1900 return ABIArgInfo::getDirectInReg(); 1901 return ABIArgInfo::getDirect(); 1902 } 1903 1904 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const { 1905 CCState State(FI); 1906 if (IsMCUABI) 1907 State.FreeRegs = 3; 1908 else if (State.CC == llvm::CallingConv::X86_FastCall) { 1909 State.FreeRegs = 2; 1910 State.FreeSSERegs = 3; 1911 } else if (State.CC == llvm::CallingConv::X86_VectorCall) { 1912 State.FreeRegs = 2; 1913 State.FreeSSERegs = 6; 1914 } else if (FI.getHasRegParm()) 1915 State.FreeRegs = FI.getRegParm(); 1916 else if (State.CC == llvm::CallingConv::X86_RegCall) { 1917 State.FreeRegs = 5; 1918 State.FreeSSERegs = 8; 1919 } else if (IsWin32StructABI) { 1920 // Since MSVC 2015, the first three SSE vectors have been passed in 1921 // registers. The rest are passed indirectly. 1922 State.FreeRegs = DefaultNumRegisterParameters; 1923 State.FreeSSERegs = 3; 1924 } else 1925 State.FreeRegs = DefaultNumRegisterParameters; 1926 1927 if (!::classifyReturnType(getCXXABI(), FI, *this)) { 1928 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State); 1929 } else if (FI.getReturnInfo().isIndirect()) { 1930 // The C++ ABI is not aware of register usage, so we have to check if the 1931 // return value was sret and put it in a register ourselves if appropriate. 1932 if (State.FreeRegs) { 1933 --State.FreeRegs; // The sret parameter consumes a register. 1934 if (!IsMCUABI) 1935 FI.getReturnInfo().setInReg(true); 1936 } 1937 } 1938 1939 // The chain argument effectively gives us another free register. 1940 if (FI.isChainCall()) 1941 ++State.FreeRegs; 1942 1943 // For vectorcall, do a first pass over the arguments, assigning FP and vector 1944 // arguments to XMM registers as available. 1945 if (State.CC == llvm::CallingConv::X86_VectorCall) 1946 runVectorCallFirstPass(FI, State); 1947 1948 bool UsedInAlloca = false; 1949 MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments(); 1950 for (int I = 0, E = Args.size(); I < E; ++I) { 1951 // Skip arguments that have already been assigned. 1952 if (State.IsPreassigned.test(I)) 1953 continue; 1954 1955 Args[I].info = classifyArgumentType(Args[I].type, State); 1956 UsedInAlloca |= (Args[I].info.getKind() == ABIArgInfo::InAlloca); 1957 } 1958 1959 // If we needed to use inalloca for any argument, do a second pass and rewrite 1960 // all the memory arguments to use inalloca. 1961 if (UsedInAlloca) 1962 rewriteWithInAlloca(FI); 1963 } 1964 1965 void 1966 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1967 CharUnits &StackOffset, ABIArgInfo &Info, 1968 QualType Type) const { 1969 // Arguments are always 4-byte-aligned. 1970 CharUnits WordSize = CharUnits::fromQuantity(4); 1971 assert(StackOffset.isMultipleOf(WordSize) && "unaligned inalloca struct"); 1972 1973 // sret pointers and indirect things will require an extra pointer 1974 // indirection, unless they are byval. Most things are byval, and will not 1975 // require this indirection. 1976 bool IsIndirect = false; 1977 if (Info.isIndirect() && !Info.getIndirectByVal()) 1978 IsIndirect = true; 1979 Info = ABIArgInfo::getInAlloca(FrameFields.size(), IsIndirect); 1980 llvm::Type *LLTy = CGT.ConvertTypeForMem(Type); 1981 if (IsIndirect) 1982 LLTy = LLTy->getPointerTo(0); 1983 FrameFields.push_back(LLTy); 1984 StackOffset += IsIndirect ? WordSize : getContext().getTypeSizeInChars(Type); 1985 1986 // Insert padding bytes to respect alignment. 1987 CharUnits FieldEnd = StackOffset; 1988 StackOffset = FieldEnd.alignTo(WordSize); 1989 if (StackOffset != FieldEnd) { 1990 CharUnits NumBytes = StackOffset - FieldEnd; 1991 llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext()); 1992 Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity()); 1993 FrameFields.push_back(Ty); 1994 } 1995 } 1996 1997 static bool isArgInAlloca(const ABIArgInfo &Info) { 1998 // Leave ignored and inreg arguments alone. 1999 switch (Info.getKind()) { 2000 case ABIArgInfo::InAlloca: 2001 return true; 2002 case ABIArgInfo::Ignore: 2003 case ABIArgInfo::IndirectAliased: 2004 return false; 2005 case ABIArgInfo::Indirect: 2006 case ABIArgInfo::Direct: 2007 case ABIArgInfo::Extend: 2008 return !Info.getInReg(); 2009 case ABIArgInfo::Expand: 2010 case ABIArgInfo::CoerceAndExpand: 2011 // These are aggregate types which are never passed in registers when 2012 // inalloca is involved. 2013 return true; 2014 } 2015 llvm_unreachable("invalid enum"); 2016 } 2017 2018 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const { 2019 assert(IsWin32StructABI && "inalloca only supported on win32"); 2020 2021 // Build a packed struct type for all of the arguments in memory. 2022 SmallVector<llvm::Type *, 6> FrameFields; 2023 2024 // The stack alignment is always 4. 2025 CharUnits StackAlign = CharUnits::fromQuantity(4); 2026 2027 CharUnits StackOffset; 2028 CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end(); 2029 2030 // Put 'this' into the struct before 'sret', if necessary. 2031 bool IsThisCall = 2032 FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall; 2033 ABIArgInfo &Ret = FI.getReturnInfo(); 2034 if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall && 2035 isArgInAlloca(I->info)) { 2036 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 2037 ++I; 2038 } 2039 2040 // Put the sret parameter into the inalloca struct if it's in memory. 2041 if (Ret.isIndirect() && !Ret.getInReg()) { 2042 addFieldToArgStruct(FrameFields, StackOffset, Ret, FI.getReturnType()); 2043 // On Windows, the hidden sret parameter is always returned in eax. 2044 Ret.setInAllocaSRet(IsWin32StructABI); 2045 } 2046 2047 // Skip the 'this' parameter in ecx. 2048 if (IsThisCall) 2049 ++I; 2050 2051 // Put arguments passed in memory into the struct. 2052 for (; I != E; ++I) { 2053 if (isArgInAlloca(I->info)) 2054 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 2055 } 2056 2057 FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields, 2058 /*isPacked=*/true), 2059 StackAlign); 2060 } 2061 2062 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF, 2063 Address VAListAddr, QualType Ty) const { 2064 2065 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 2066 2067 // x86-32 changes the alignment of certain arguments on the stack. 2068 // 2069 // Just messing with TypeInfo like this works because we never pass 2070 // anything indirectly. 2071 TypeInfo.Align = CharUnits::fromQuantity( 2072 getTypeStackAlignInBytes(Ty, TypeInfo.Align.getQuantity())); 2073 2074 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 2075 TypeInfo, CharUnits::fromQuantity(4), 2076 /*AllowHigherAlign*/ true); 2077 } 2078 2079 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI( 2080 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 2081 assert(Triple.getArch() == llvm::Triple::x86); 2082 2083 switch (Opts.getStructReturnConvention()) { 2084 case CodeGenOptions::SRCK_Default: 2085 break; 2086 case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return 2087 return false; 2088 case CodeGenOptions::SRCK_InRegs: // -freg-struct-return 2089 return true; 2090 } 2091 2092 if (Triple.isOSDarwin() || Triple.isOSIAMCU()) 2093 return true; 2094 2095 switch (Triple.getOS()) { 2096 case llvm::Triple::DragonFly: 2097 case llvm::Triple::FreeBSD: 2098 case llvm::Triple::OpenBSD: 2099 case llvm::Triple::Win32: 2100 return true; 2101 default: 2102 return false; 2103 } 2104 } 2105 2106 static void addX86InterruptAttrs(const FunctionDecl *FD, llvm::GlobalValue *GV, 2107 CodeGen::CodeGenModule &CGM) { 2108 if (!FD->hasAttr<AnyX86InterruptAttr>()) 2109 return; 2110 2111 llvm::Function *Fn = cast<llvm::Function>(GV); 2112 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2113 if (FD->getNumParams() == 0) 2114 return; 2115 2116 auto PtrTy = cast<PointerType>(FD->getParamDecl(0)->getType()); 2117 llvm::Type *ByValTy = CGM.getTypes().ConvertType(PtrTy->getPointeeType()); 2118 llvm::Attribute NewAttr = llvm::Attribute::getWithByValType( 2119 Fn->getContext(), ByValTy); 2120 Fn->addParamAttr(0, NewAttr); 2121 } 2122 2123 void X86_32TargetCodeGenInfo::setTargetAttributes( 2124 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2125 if (GV->isDeclaration()) 2126 return; 2127 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2128 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2129 llvm::Function *Fn = cast<llvm::Function>(GV); 2130 Fn->addFnAttr("stackrealign"); 2131 } 2132 2133 addX86InterruptAttrs(FD, GV, CGM); 2134 } 2135 } 2136 2137 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable( 2138 CodeGen::CodeGenFunction &CGF, 2139 llvm::Value *Address) const { 2140 CodeGen::CGBuilderTy &Builder = CGF.Builder; 2141 2142 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 2143 2144 // 0-7 are the eight integer registers; the order is different 2145 // on Darwin (for EH), but the range is the same. 2146 // 8 is %eip. 2147 AssignToArrayRange(Builder, Address, Four8, 0, 8); 2148 2149 if (CGF.CGM.getTarget().getTriple().isOSDarwin()) { 2150 // 12-16 are st(0..4). Not sure why we stop at 4. 2151 // These have size 16, which is sizeof(long double) on 2152 // platforms with 8-byte alignment for that type. 2153 llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16); 2154 AssignToArrayRange(Builder, Address, Sixteen8, 12, 16); 2155 2156 } else { 2157 // 9 is %eflags, which doesn't get a size on Darwin for some 2158 // reason. 2159 Builder.CreateAlignedStore( 2160 Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9), 2161 CharUnits::One()); 2162 2163 // 11-16 are st(0..5). Not sure why we stop at 5. 2164 // These have size 12, which is sizeof(long double) on 2165 // platforms with 4-byte alignment for that type. 2166 llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12); 2167 AssignToArrayRange(Builder, Address, Twelve8, 11, 16); 2168 } 2169 2170 return false; 2171 } 2172 2173 //===----------------------------------------------------------------------===// 2174 // X86-64 ABI Implementation 2175 //===----------------------------------------------------------------------===// 2176 2177 2178 namespace { 2179 /// The AVX ABI level for X86 targets. 2180 enum class X86AVXABILevel { 2181 None, 2182 AVX, 2183 AVX512 2184 }; 2185 2186 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel. 2187 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) { 2188 switch (AVXLevel) { 2189 case X86AVXABILevel::AVX512: 2190 return 512; 2191 case X86AVXABILevel::AVX: 2192 return 256; 2193 case X86AVXABILevel::None: 2194 return 128; 2195 } 2196 llvm_unreachable("Unknown AVXLevel"); 2197 } 2198 2199 /// X86_64ABIInfo - The X86_64 ABI information. 2200 class X86_64ABIInfo : public SwiftABIInfo { 2201 enum Class { 2202 Integer = 0, 2203 SSE, 2204 SSEUp, 2205 X87, 2206 X87Up, 2207 ComplexX87, 2208 NoClass, 2209 Memory 2210 }; 2211 2212 /// merge - Implement the X86_64 ABI merging algorithm. 2213 /// 2214 /// Merge an accumulating classification \arg Accum with a field 2215 /// classification \arg Field. 2216 /// 2217 /// \param Accum - The accumulating classification. This should 2218 /// always be either NoClass or the result of a previous merge 2219 /// call. In addition, this should never be Memory (the caller 2220 /// should just return Memory for the aggregate). 2221 static Class merge(Class Accum, Class Field); 2222 2223 /// postMerge - Implement the X86_64 ABI post merging algorithm. 2224 /// 2225 /// Post merger cleanup, reduces a malformed Hi and Lo pair to 2226 /// final MEMORY or SSE classes when necessary. 2227 /// 2228 /// \param AggregateSize - The size of the current aggregate in 2229 /// the classification process. 2230 /// 2231 /// \param Lo - The classification for the parts of the type 2232 /// residing in the low word of the containing object. 2233 /// 2234 /// \param Hi - The classification for the parts of the type 2235 /// residing in the higher words of the containing object. 2236 /// 2237 void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const; 2238 2239 /// classify - Determine the x86_64 register classes in which the 2240 /// given type T should be passed. 2241 /// 2242 /// \param Lo - The classification for the parts of the type 2243 /// residing in the low word of the containing object. 2244 /// 2245 /// \param Hi - The classification for the parts of the type 2246 /// residing in the high word of the containing object. 2247 /// 2248 /// \param OffsetBase - The bit offset of this type in the 2249 /// containing object. Some parameters are classified different 2250 /// depending on whether they straddle an eightbyte boundary. 2251 /// 2252 /// \param isNamedArg - Whether the argument in question is a "named" 2253 /// argument, as used in AMD64-ABI 3.5.7. 2254 /// 2255 /// If a word is unused its result will be NoClass; if a type should 2256 /// be passed in Memory then at least the classification of \arg Lo 2257 /// will be Memory. 2258 /// 2259 /// The \arg Lo class will be NoClass iff the argument is ignored. 2260 /// 2261 /// If the \arg Lo class is ComplexX87, then the \arg Hi class will 2262 /// also be ComplexX87. 2263 void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi, 2264 bool isNamedArg) const; 2265 2266 llvm::Type *GetByteVectorType(QualType Ty) const; 2267 llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType, 2268 unsigned IROffset, QualType SourceTy, 2269 unsigned SourceOffset) const; 2270 llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType, 2271 unsigned IROffset, QualType SourceTy, 2272 unsigned SourceOffset) const; 2273 2274 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 2275 /// such that the argument will be returned in memory. 2276 ABIArgInfo getIndirectReturnResult(QualType Ty) const; 2277 2278 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 2279 /// such that the argument will be passed in memory. 2280 /// 2281 /// \param freeIntRegs - The number of free integer registers remaining 2282 /// available. 2283 ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const; 2284 2285 ABIArgInfo classifyReturnType(QualType RetTy) const; 2286 2287 ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs, 2288 unsigned &neededInt, unsigned &neededSSE, 2289 bool isNamedArg) const; 2290 2291 ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt, 2292 unsigned &NeededSSE) const; 2293 2294 ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 2295 unsigned &NeededSSE) const; 2296 2297 bool IsIllegalVectorType(QualType Ty) const; 2298 2299 /// The 0.98 ABI revision clarified a lot of ambiguities, 2300 /// unfortunately in ways that were not always consistent with 2301 /// certain previous compilers. In particular, platforms which 2302 /// required strict binary compatibility with older versions of GCC 2303 /// may need to exempt themselves. 2304 bool honorsRevision0_98() const { 2305 return !getTarget().getTriple().isOSDarwin(); 2306 } 2307 2308 /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to 2309 /// classify it as INTEGER (for compatibility with older clang compilers). 2310 bool classifyIntegerMMXAsSSE() const { 2311 // Clang <= 3.8 did not do this. 2312 if (getContext().getLangOpts().getClangABICompat() <= 2313 LangOptions::ClangABI::Ver3_8) 2314 return false; 2315 2316 const llvm::Triple &Triple = getTarget().getTriple(); 2317 if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::PS4) 2318 return false; 2319 if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10) 2320 return false; 2321 return true; 2322 } 2323 2324 // GCC classifies vectors of __int128 as memory. 2325 bool passInt128VectorsInMem() const { 2326 // Clang <= 9.0 did not do this. 2327 if (getContext().getLangOpts().getClangABICompat() <= 2328 LangOptions::ClangABI::Ver9) 2329 return false; 2330 2331 const llvm::Triple &T = getTarget().getTriple(); 2332 return T.isOSLinux() || T.isOSNetBSD(); 2333 } 2334 2335 X86AVXABILevel AVXLevel; 2336 // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on 2337 // 64-bit hardware. 2338 bool Has64BitPointers; 2339 2340 public: 2341 X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) : 2342 SwiftABIInfo(CGT), AVXLevel(AVXLevel), 2343 Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) { 2344 } 2345 2346 bool isPassedUsingAVXType(QualType type) const { 2347 unsigned neededInt, neededSSE; 2348 // The freeIntRegs argument doesn't matter here. 2349 ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE, 2350 /*isNamedArg*/true); 2351 if (info.isDirect()) { 2352 llvm::Type *ty = info.getCoerceToType(); 2353 if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty)) 2354 return vectorTy->getPrimitiveSizeInBits().getFixedSize() > 128; 2355 } 2356 return false; 2357 } 2358 2359 void computeInfo(CGFunctionInfo &FI) const override; 2360 2361 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2362 QualType Ty) const override; 2363 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 2364 QualType Ty) const override; 2365 2366 bool has64BitPointers() const { 2367 return Has64BitPointers; 2368 } 2369 2370 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 2371 bool asReturnValue) const override { 2372 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2373 } 2374 bool isSwiftErrorInRegister() const override { 2375 return true; 2376 } 2377 }; 2378 2379 /// WinX86_64ABIInfo - The Windows X86_64 ABI information. 2380 class WinX86_64ABIInfo : public SwiftABIInfo { 2381 public: 2382 WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2383 : SwiftABIInfo(CGT), AVXLevel(AVXLevel), 2384 IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {} 2385 2386 void computeInfo(CGFunctionInfo &FI) const override; 2387 2388 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2389 QualType Ty) const override; 2390 2391 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 2392 // FIXME: Assumes vectorcall is in use. 2393 return isX86VectorTypeForVectorCall(getContext(), Ty); 2394 } 2395 2396 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 2397 uint64_t NumMembers) const override { 2398 // FIXME: Assumes vectorcall is in use. 2399 return isX86VectorCallAggregateSmallEnough(NumMembers); 2400 } 2401 2402 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type *> scalars, 2403 bool asReturnValue) const override { 2404 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2405 } 2406 2407 bool isSwiftErrorInRegister() const override { 2408 return true; 2409 } 2410 2411 private: 2412 ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType, 2413 bool IsVectorCall, bool IsRegCall) const; 2414 ABIArgInfo reclassifyHvaArgForVectorCall(QualType Ty, unsigned &FreeSSERegs, 2415 const ABIArgInfo ¤t) const; 2416 2417 X86AVXABILevel AVXLevel; 2418 2419 bool IsMingw64; 2420 }; 2421 2422 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2423 public: 2424 X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2425 : TargetCodeGenInfo(std::make_unique<X86_64ABIInfo>(CGT, AVXLevel)) {} 2426 2427 const X86_64ABIInfo &getABIInfo() const { 2428 return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo()); 2429 } 2430 2431 /// Disable tail call on x86-64. The epilogue code before the tail jump blocks 2432 /// autoreleaseRV/retainRV and autoreleaseRV/unsafeClaimRV optimizations. 2433 bool markARCOptimizedReturnCallsAsNoTail() const override { return true; } 2434 2435 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2436 return 7; 2437 } 2438 2439 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2440 llvm::Value *Address) const override { 2441 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2442 2443 // 0-15 are the 16 integer registers. 2444 // 16 is %rip. 2445 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2446 return false; 2447 } 2448 2449 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 2450 StringRef Constraint, 2451 llvm::Type* Ty) const override { 2452 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 2453 } 2454 2455 bool isNoProtoCallVariadic(const CallArgList &args, 2456 const FunctionNoProtoType *fnType) const override { 2457 // The default CC on x86-64 sets %al to the number of SSA 2458 // registers used, and GCC sets this when calling an unprototyped 2459 // function, so we override the default behavior. However, don't do 2460 // that when AVX types are involved: the ABI explicitly states it is 2461 // undefined, and it doesn't work in practice because of how the ABI 2462 // defines varargs anyway. 2463 if (fnType->getCallConv() == CC_C) { 2464 bool HasAVXType = false; 2465 for (CallArgList::const_iterator 2466 it = args.begin(), ie = args.end(); it != ie; ++it) { 2467 if (getABIInfo().isPassedUsingAVXType(it->Ty)) { 2468 HasAVXType = true; 2469 break; 2470 } 2471 } 2472 2473 if (!HasAVXType) 2474 return true; 2475 } 2476 2477 return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType); 2478 } 2479 2480 llvm::Constant * 2481 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 2482 unsigned Sig = (0xeb << 0) | // jmp rel8 2483 (0x06 << 8) | // .+0x08 2484 ('v' << 16) | 2485 ('2' << 24); 2486 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 2487 } 2488 2489 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2490 CodeGen::CodeGenModule &CGM) const override { 2491 if (GV->isDeclaration()) 2492 return; 2493 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2494 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2495 llvm::Function *Fn = cast<llvm::Function>(GV); 2496 Fn->addFnAttr("stackrealign"); 2497 } 2498 2499 addX86InterruptAttrs(FD, GV, CGM); 2500 } 2501 } 2502 2503 void checkFunctionCallABI(CodeGenModule &CGM, SourceLocation CallLoc, 2504 const FunctionDecl *Caller, 2505 const FunctionDecl *Callee, 2506 const CallArgList &Args) const override; 2507 }; 2508 2509 static void initFeatureMaps(const ASTContext &Ctx, 2510 llvm::StringMap<bool> &CallerMap, 2511 const FunctionDecl *Caller, 2512 llvm::StringMap<bool> &CalleeMap, 2513 const FunctionDecl *Callee) { 2514 if (CalleeMap.empty() && CallerMap.empty()) { 2515 // The caller is potentially nullptr in the case where the call isn't in a 2516 // function. In this case, the getFunctionFeatureMap ensures we just get 2517 // the TU level setting (since it cannot be modified by 'target'.. 2518 Ctx.getFunctionFeatureMap(CallerMap, Caller); 2519 Ctx.getFunctionFeatureMap(CalleeMap, Callee); 2520 } 2521 } 2522 2523 static bool checkAVXParamFeature(DiagnosticsEngine &Diag, 2524 SourceLocation CallLoc, 2525 const llvm::StringMap<bool> &CallerMap, 2526 const llvm::StringMap<bool> &CalleeMap, 2527 QualType Ty, StringRef Feature, 2528 bool IsArgument) { 2529 bool CallerHasFeat = CallerMap.lookup(Feature); 2530 bool CalleeHasFeat = CalleeMap.lookup(Feature); 2531 if (!CallerHasFeat && !CalleeHasFeat) 2532 return Diag.Report(CallLoc, diag::warn_avx_calling_convention) 2533 << IsArgument << Ty << Feature; 2534 2535 // Mixing calling conventions here is very clearly an error. 2536 if (!CallerHasFeat || !CalleeHasFeat) 2537 return Diag.Report(CallLoc, diag::err_avx_calling_convention) 2538 << IsArgument << Ty << Feature; 2539 2540 // Else, both caller and callee have the required feature, so there is no need 2541 // to diagnose. 2542 return false; 2543 } 2544 2545 static bool checkAVXParam(DiagnosticsEngine &Diag, ASTContext &Ctx, 2546 SourceLocation CallLoc, 2547 const llvm::StringMap<bool> &CallerMap, 2548 const llvm::StringMap<bool> &CalleeMap, QualType Ty, 2549 bool IsArgument) { 2550 uint64_t Size = Ctx.getTypeSize(Ty); 2551 if (Size > 256) 2552 return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty, 2553 "avx512f", IsArgument); 2554 2555 if (Size > 128) 2556 return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty, "avx", 2557 IsArgument); 2558 2559 return false; 2560 } 2561 2562 void X86_64TargetCodeGenInfo::checkFunctionCallABI( 2563 CodeGenModule &CGM, SourceLocation CallLoc, const FunctionDecl *Caller, 2564 const FunctionDecl *Callee, const CallArgList &Args) const { 2565 llvm::StringMap<bool> CallerMap; 2566 llvm::StringMap<bool> CalleeMap; 2567 unsigned ArgIndex = 0; 2568 2569 // We need to loop through the actual call arguments rather than the the 2570 // function's parameters, in case this variadic. 2571 for (const CallArg &Arg : Args) { 2572 // The "avx" feature changes how vectors >128 in size are passed. "avx512f" 2573 // additionally changes how vectors >256 in size are passed. Like GCC, we 2574 // warn when a function is called with an argument where this will change. 2575 // Unlike GCC, we also error when it is an obvious ABI mismatch, that is, 2576 // the caller and callee features are mismatched. 2577 // Unfortunately, we cannot do this diagnostic in SEMA, since the callee can 2578 // change its ABI with attribute-target after this call. 2579 if (Arg.getType()->isVectorType() && 2580 CGM.getContext().getTypeSize(Arg.getType()) > 128) { 2581 initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee); 2582 QualType Ty = Arg.getType(); 2583 // The CallArg seems to have desugared the type already, so for clearer 2584 // diagnostics, replace it with the type in the FunctionDecl if possible. 2585 if (ArgIndex < Callee->getNumParams()) 2586 Ty = Callee->getParamDecl(ArgIndex)->getType(); 2587 2588 if (checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap, 2589 CalleeMap, Ty, /*IsArgument*/ true)) 2590 return; 2591 } 2592 ++ArgIndex; 2593 } 2594 2595 // Check return always, as we don't have a good way of knowing in codegen 2596 // whether this value is used, tail-called, etc. 2597 if (Callee->getReturnType()->isVectorType() && 2598 CGM.getContext().getTypeSize(Callee->getReturnType()) > 128) { 2599 initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee); 2600 checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap, 2601 CalleeMap, Callee->getReturnType(), 2602 /*IsArgument*/ false); 2603 } 2604 } 2605 2606 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) { 2607 // If the argument does not end in .lib, automatically add the suffix. 2608 // If the argument contains a space, enclose it in quotes. 2609 // This matches the behavior of MSVC. 2610 bool Quote = (Lib.find(' ') != StringRef::npos); 2611 std::string ArgStr = Quote ? "\"" : ""; 2612 ArgStr += Lib; 2613 if (!Lib.endswith_lower(".lib") && !Lib.endswith_lower(".a")) 2614 ArgStr += ".lib"; 2615 ArgStr += Quote ? "\"" : ""; 2616 return ArgStr; 2617 } 2618 2619 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo { 2620 public: 2621 WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2622 bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI, 2623 unsigned NumRegisterParameters) 2624 : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI, 2625 Win32StructABI, NumRegisterParameters, false) {} 2626 2627 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2628 CodeGen::CodeGenModule &CGM) const override; 2629 2630 void getDependentLibraryOption(llvm::StringRef Lib, 2631 llvm::SmallString<24> &Opt) const override { 2632 Opt = "/DEFAULTLIB:"; 2633 Opt += qualifyWindowsLibrary(Lib); 2634 } 2635 2636 void getDetectMismatchOption(llvm::StringRef Name, 2637 llvm::StringRef Value, 2638 llvm::SmallString<32> &Opt) const override { 2639 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2640 } 2641 }; 2642 2643 static void addStackProbeTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2644 CodeGen::CodeGenModule &CGM) { 2645 if (llvm::Function *Fn = dyn_cast_or_null<llvm::Function>(GV)) { 2646 2647 if (CGM.getCodeGenOpts().StackProbeSize != 4096) 2648 Fn->addFnAttr("stack-probe-size", 2649 llvm::utostr(CGM.getCodeGenOpts().StackProbeSize)); 2650 if (CGM.getCodeGenOpts().NoStackArgProbe) 2651 Fn->addFnAttr("no-stack-arg-probe"); 2652 } 2653 } 2654 2655 void WinX86_32TargetCodeGenInfo::setTargetAttributes( 2656 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2657 X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2658 if (GV->isDeclaration()) 2659 return; 2660 addStackProbeTargetAttributes(D, GV, CGM); 2661 } 2662 2663 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2664 public: 2665 WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2666 X86AVXABILevel AVXLevel) 2667 : TargetCodeGenInfo(std::make_unique<WinX86_64ABIInfo>(CGT, AVXLevel)) {} 2668 2669 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2670 CodeGen::CodeGenModule &CGM) const override; 2671 2672 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2673 return 7; 2674 } 2675 2676 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2677 llvm::Value *Address) const override { 2678 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2679 2680 // 0-15 are the 16 integer registers. 2681 // 16 is %rip. 2682 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2683 return false; 2684 } 2685 2686 void getDependentLibraryOption(llvm::StringRef Lib, 2687 llvm::SmallString<24> &Opt) const override { 2688 Opt = "/DEFAULTLIB:"; 2689 Opt += qualifyWindowsLibrary(Lib); 2690 } 2691 2692 void getDetectMismatchOption(llvm::StringRef Name, 2693 llvm::StringRef Value, 2694 llvm::SmallString<32> &Opt) const override { 2695 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2696 } 2697 }; 2698 2699 void WinX86_64TargetCodeGenInfo::setTargetAttributes( 2700 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2701 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2702 if (GV->isDeclaration()) 2703 return; 2704 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2705 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2706 llvm::Function *Fn = cast<llvm::Function>(GV); 2707 Fn->addFnAttr("stackrealign"); 2708 } 2709 2710 addX86InterruptAttrs(FD, GV, CGM); 2711 } 2712 2713 addStackProbeTargetAttributes(D, GV, CGM); 2714 } 2715 } 2716 2717 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo, 2718 Class &Hi) const { 2719 // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done: 2720 // 2721 // (a) If one of the classes is Memory, the whole argument is passed in 2722 // memory. 2723 // 2724 // (b) If X87UP is not preceded by X87, the whole argument is passed in 2725 // memory. 2726 // 2727 // (c) If the size of the aggregate exceeds two eightbytes and the first 2728 // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole 2729 // argument is passed in memory. NOTE: This is necessary to keep the 2730 // ABI working for processors that don't support the __m256 type. 2731 // 2732 // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE. 2733 // 2734 // Some of these are enforced by the merging logic. Others can arise 2735 // only with unions; for example: 2736 // union { _Complex double; unsigned; } 2737 // 2738 // Note that clauses (b) and (c) were added in 0.98. 2739 // 2740 if (Hi == Memory) 2741 Lo = Memory; 2742 if (Hi == X87Up && Lo != X87 && honorsRevision0_98()) 2743 Lo = Memory; 2744 if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp)) 2745 Lo = Memory; 2746 if (Hi == SSEUp && Lo != SSE) 2747 Hi = SSE; 2748 } 2749 2750 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) { 2751 // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is 2752 // classified recursively so that always two fields are 2753 // considered. The resulting class is calculated according to 2754 // the classes of the fields in the eightbyte: 2755 // 2756 // (a) If both classes are equal, this is the resulting class. 2757 // 2758 // (b) If one of the classes is NO_CLASS, the resulting class is 2759 // the other class. 2760 // 2761 // (c) If one of the classes is MEMORY, the result is the MEMORY 2762 // class. 2763 // 2764 // (d) If one of the classes is INTEGER, the result is the 2765 // INTEGER. 2766 // 2767 // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class, 2768 // MEMORY is used as class. 2769 // 2770 // (f) Otherwise class SSE is used. 2771 2772 // Accum should never be memory (we should have returned) or 2773 // ComplexX87 (because this cannot be passed in a structure). 2774 assert((Accum != Memory && Accum != ComplexX87) && 2775 "Invalid accumulated classification during merge."); 2776 if (Accum == Field || Field == NoClass) 2777 return Accum; 2778 if (Field == Memory) 2779 return Memory; 2780 if (Accum == NoClass) 2781 return Field; 2782 if (Accum == Integer || Field == Integer) 2783 return Integer; 2784 if (Field == X87 || Field == X87Up || Field == ComplexX87 || 2785 Accum == X87 || Accum == X87Up) 2786 return Memory; 2787 return SSE; 2788 } 2789 2790 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, 2791 Class &Lo, Class &Hi, bool isNamedArg) const { 2792 // FIXME: This code can be simplified by introducing a simple value class for 2793 // Class pairs with appropriate constructor methods for the various 2794 // situations. 2795 2796 // FIXME: Some of the split computations are wrong; unaligned vectors 2797 // shouldn't be passed in registers for example, so there is no chance they 2798 // can straddle an eightbyte. Verify & simplify. 2799 2800 Lo = Hi = NoClass; 2801 2802 Class &Current = OffsetBase < 64 ? Lo : Hi; 2803 Current = Memory; 2804 2805 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 2806 BuiltinType::Kind k = BT->getKind(); 2807 2808 if (k == BuiltinType::Void) { 2809 Current = NoClass; 2810 } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) { 2811 Lo = Integer; 2812 Hi = Integer; 2813 } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) { 2814 Current = Integer; 2815 } else if (k == BuiltinType::Float || k == BuiltinType::Double) { 2816 Current = SSE; 2817 } else if (k == BuiltinType::LongDouble) { 2818 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2819 if (LDF == &llvm::APFloat::IEEEquad()) { 2820 Lo = SSE; 2821 Hi = SSEUp; 2822 } else if (LDF == &llvm::APFloat::x87DoubleExtended()) { 2823 Lo = X87; 2824 Hi = X87Up; 2825 } else if (LDF == &llvm::APFloat::IEEEdouble()) { 2826 Current = SSE; 2827 } else 2828 llvm_unreachable("unexpected long double representation!"); 2829 } 2830 // FIXME: _Decimal32 and _Decimal64 are SSE. 2831 // FIXME: _float128 and _Decimal128 are (SSE, SSEUp). 2832 return; 2833 } 2834 2835 if (const EnumType *ET = Ty->getAs<EnumType>()) { 2836 // Classify the underlying integer type. 2837 classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg); 2838 return; 2839 } 2840 2841 if (Ty->hasPointerRepresentation()) { 2842 Current = Integer; 2843 return; 2844 } 2845 2846 if (Ty->isMemberPointerType()) { 2847 if (Ty->isMemberFunctionPointerType()) { 2848 if (Has64BitPointers) { 2849 // If Has64BitPointers, this is an {i64, i64}, so classify both 2850 // Lo and Hi now. 2851 Lo = Hi = Integer; 2852 } else { 2853 // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that 2854 // straddles an eightbyte boundary, Hi should be classified as well. 2855 uint64_t EB_FuncPtr = (OffsetBase) / 64; 2856 uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64; 2857 if (EB_FuncPtr != EB_ThisAdj) { 2858 Lo = Hi = Integer; 2859 } else { 2860 Current = Integer; 2861 } 2862 } 2863 } else { 2864 Current = Integer; 2865 } 2866 return; 2867 } 2868 2869 if (const VectorType *VT = Ty->getAs<VectorType>()) { 2870 uint64_t Size = getContext().getTypeSize(VT); 2871 if (Size == 1 || Size == 8 || Size == 16 || Size == 32) { 2872 // gcc passes the following as integer: 2873 // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float> 2874 // 2 bytes - <2 x char>, <1 x short> 2875 // 1 byte - <1 x char> 2876 Current = Integer; 2877 2878 // If this type crosses an eightbyte boundary, it should be 2879 // split. 2880 uint64_t EB_Lo = (OffsetBase) / 64; 2881 uint64_t EB_Hi = (OffsetBase + Size - 1) / 64; 2882 if (EB_Lo != EB_Hi) 2883 Hi = Lo; 2884 } else if (Size == 64) { 2885 QualType ElementType = VT->getElementType(); 2886 2887 // gcc passes <1 x double> in memory. :( 2888 if (ElementType->isSpecificBuiltinType(BuiltinType::Double)) 2889 return; 2890 2891 // gcc passes <1 x long long> as SSE but clang used to unconditionally 2892 // pass them as integer. For platforms where clang is the de facto 2893 // platform compiler, we must continue to use integer. 2894 if (!classifyIntegerMMXAsSSE() && 2895 (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) || 2896 ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) || 2897 ElementType->isSpecificBuiltinType(BuiltinType::Long) || 2898 ElementType->isSpecificBuiltinType(BuiltinType::ULong))) 2899 Current = Integer; 2900 else 2901 Current = SSE; 2902 2903 // If this type crosses an eightbyte boundary, it should be 2904 // split. 2905 if (OffsetBase && OffsetBase != 64) 2906 Hi = Lo; 2907 } else if (Size == 128 || 2908 (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) { 2909 QualType ElementType = VT->getElementType(); 2910 2911 // gcc passes 256 and 512 bit <X x __int128> vectors in memory. :( 2912 if (passInt128VectorsInMem() && Size != 128 && 2913 (ElementType->isSpecificBuiltinType(BuiltinType::Int128) || 2914 ElementType->isSpecificBuiltinType(BuiltinType::UInt128))) 2915 return; 2916 2917 // Arguments of 256-bits are split into four eightbyte chunks. The 2918 // least significant one belongs to class SSE and all the others to class 2919 // SSEUP. The original Lo and Hi design considers that types can't be 2920 // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense. 2921 // This design isn't correct for 256-bits, but since there're no cases 2922 // where the upper parts would need to be inspected, avoid adding 2923 // complexity and just consider Hi to match the 64-256 part. 2924 // 2925 // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in 2926 // registers if they are "named", i.e. not part of the "..." of a 2927 // variadic function. 2928 // 2929 // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are 2930 // split into eight eightbyte chunks, one SSE and seven SSEUP. 2931 Lo = SSE; 2932 Hi = SSEUp; 2933 } 2934 return; 2935 } 2936 2937 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 2938 QualType ET = getContext().getCanonicalType(CT->getElementType()); 2939 2940 uint64_t Size = getContext().getTypeSize(Ty); 2941 if (ET->isIntegralOrEnumerationType()) { 2942 if (Size <= 64) 2943 Current = Integer; 2944 else if (Size <= 128) 2945 Lo = Hi = Integer; 2946 } else if (ET == getContext().FloatTy) { 2947 Current = SSE; 2948 } else if (ET == getContext().DoubleTy) { 2949 Lo = Hi = SSE; 2950 } else if (ET == getContext().LongDoubleTy) { 2951 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2952 if (LDF == &llvm::APFloat::IEEEquad()) 2953 Current = Memory; 2954 else if (LDF == &llvm::APFloat::x87DoubleExtended()) 2955 Current = ComplexX87; 2956 else if (LDF == &llvm::APFloat::IEEEdouble()) 2957 Lo = Hi = SSE; 2958 else 2959 llvm_unreachable("unexpected long double representation!"); 2960 } 2961 2962 // If this complex type crosses an eightbyte boundary then it 2963 // should be split. 2964 uint64_t EB_Real = (OffsetBase) / 64; 2965 uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64; 2966 if (Hi == NoClass && EB_Real != EB_Imag) 2967 Hi = Lo; 2968 2969 return; 2970 } 2971 2972 if (const auto *EITy = Ty->getAs<ExtIntType>()) { 2973 if (EITy->getNumBits() <= 64) 2974 Current = Integer; 2975 else if (EITy->getNumBits() <= 128) 2976 Lo = Hi = Integer; 2977 // Larger values need to get passed in memory. 2978 return; 2979 } 2980 2981 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 2982 // Arrays are treated like structures. 2983 2984 uint64_t Size = getContext().getTypeSize(Ty); 2985 2986 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 2987 // than eight eightbytes, ..., it has class MEMORY. 2988 if (Size > 512) 2989 return; 2990 2991 // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned 2992 // fields, it has class MEMORY. 2993 // 2994 // Only need to check alignment of array base. 2995 if (OffsetBase % getContext().getTypeAlign(AT->getElementType())) 2996 return; 2997 2998 // Otherwise implement simplified merge. We could be smarter about 2999 // this, but it isn't worth it and would be harder to verify. 3000 Current = NoClass; 3001 uint64_t EltSize = getContext().getTypeSize(AT->getElementType()); 3002 uint64_t ArraySize = AT->getSize().getZExtValue(); 3003 3004 // The only case a 256-bit wide vector could be used is when the array 3005 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 3006 // to work for sizes wider than 128, early check and fallback to memory. 3007 // 3008 if (Size > 128 && 3009 (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel))) 3010 return; 3011 3012 for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) { 3013 Class FieldLo, FieldHi; 3014 classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg); 3015 Lo = merge(Lo, FieldLo); 3016 Hi = merge(Hi, FieldHi); 3017 if (Lo == Memory || Hi == Memory) 3018 break; 3019 } 3020 3021 postMerge(Size, Lo, Hi); 3022 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification."); 3023 return; 3024 } 3025 3026 if (const RecordType *RT = Ty->getAs<RecordType>()) { 3027 uint64_t Size = getContext().getTypeSize(Ty); 3028 3029 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 3030 // than eight eightbytes, ..., it has class MEMORY. 3031 if (Size > 512) 3032 return; 3033 3034 // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial 3035 // copy constructor or a non-trivial destructor, it is passed by invisible 3036 // reference. 3037 if (getRecordArgABI(RT, getCXXABI())) 3038 return; 3039 3040 const RecordDecl *RD = RT->getDecl(); 3041 3042 // Assume variable sized types are passed in memory. 3043 if (RD->hasFlexibleArrayMember()) 3044 return; 3045 3046 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 3047 3048 // Reset Lo class, this will be recomputed. 3049 Current = NoClass; 3050 3051 // If this is a C++ record, classify the bases first. 3052 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 3053 for (const auto &I : CXXRD->bases()) { 3054 assert(!I.isVirtual() && !I.getType()->isDependentType() && 3055 "Unexpected base class!"); 3056 const auto *Base = 3057 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 3058 3059 // Classify this field. 3060 // 3061 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a 3062 // single eightbyte, each is classified separately. Each eightbyte gets 3063 // initialized to class NO_CLASS. 3064 Class FieldLo, FieldHi; 3065 uint64_t Offset = 3066 OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base)); 3067 classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg); 3068 Lo = merge(Lo, FieldLo); 3069 Hi = merge(Hi, FieldHi); 3070 if (Lo == Memory || Hi == Memory) { 3071 postMerge(Size, Lo, Hi); 3072 return; 3073 } 3074 } 3075 } 3076 3077 // Classify the fields one at a time, merging the results. 3078 unsigned idx = 0; 3079 bool UseClang11Compat = getContext().getLangOpts().getClangABICompat() <= 3080 LangOptions::ClangABI::Ver11 || 3081 getContext().getTargetInfo().getTriple().isPS4(); 3082 bool IsUnion = RT->isUnionType() && !UseClang11Compat; 3083 3084 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 3085 i != e; ++i, ++idx) { 3086 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 3087 bool BitField = i->isBitField(); 3088 3089 // Ignore padding bit-fields. 3090 if (BitField && i->isUnnamedBitfield()) 3091 continue; 3092 3093 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than 3094 // eight eightbytes, or it contains unaligned fields, it has class MEMORY. 3095 // 3096 // The only case a 256-bit or a 512-bit wide vector could be used is when 3097 // the struct contains a single 256-bit or 512-bit element. Early check 3098 // and fallback to memory. 3099 // 3100 // FIXME: Extended the Lo and Hi logic properly to work for size wider 3101 // than 128. 3102 if (Size > 128 && 3103 ((!IsUnion && Size != getContext().getTypeSize(i->getType())) || 3104 Size > getNativeVectorSizeForAVXABI(AVXLevel))) { 3105 Lo = Memory; 3106 postMerge(Size, Lo, Hi); 3107 return; 3108 } 3109 // Note, skip this test for bit-fields, see below. 3110 if (!BitField && Offset % getContext().getTypeAlign(i->getType())) { 3111 Lo = Memory; 3112 postMerge(Size, Lo, Hi); 3113 return; 3114 } 3115 3116 // Classify this field. 3117 // 3118 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate 3119 // exceeds a single eightbyte, each is classified 3120 // separately. Each eightbyte gets initialized to class 3121 // NO_CLASS. 3122 Class FieldLo, FieldHi; 3123 3124 // Bit-fields require special handling, they do not force the 3125 // structure to be passed in memory even if unaligned, and 3126 // therefore they can straddle an eightbyte. 3127 if (BitField) { 3128 assert(!i->isUnnamedBitfield()); 3129 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 3130 uint64_t Size = i->getBitWidthValue(getContext()); 3131 3132 uint64_t EB_Lo = Offset / 64; 3133 uint64_t EB_Hi = (Offset + Size - 1) / 64; 3134 3135 if (EB_Lo) { 3136 assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes."); 3137 FieldLo = NoClass; 3138 FieldHi = Integer; 3139 } else { 3140 FieldLo = Integer; 3141 FieldHi = EB_Hi ? Integer : NoClass; 3142 } 3143 } else 3144 classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg); 3145 Lo = merge(Lo, FieldLo); 3146 Hi = merge(Hi, FieldHi); 3147 if (Lo == Memory || Hi == Memory) 3148 break; 3149 } 3150 3151 postMerge(Size, Lo, Hi); 3152 } 3153 } 3154 3155 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const { 3156 // If this is a scalar LLVM value then assume LLVM will pass it in the right 3157 // place naturally. 3158 if (!isAggregateTypeForABI(Ty)) { 3159 // Treat an enum type as its underlying type. 3160 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3161 Ty = EnumTy->getDecl()->getIntegerType(); 3162 3163 if (Ty->isExtIntType()) 3164 return getNaturalAlignIndirect(Ty); 3165 3166 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 3167 : ABIArgInfo::getDirect()); 3168 } 3169 3170 return getNaturalAlignIndirect(Ty); 3171 } 3172 3173 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const { 3174 if (const VectorType *VecTy = Ty->getAs<VectorType>()) { 3175 uint64_t Size = getContext().getTypeSize(VecTy); 3176 unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel); 3177 if (Size <= 64 || Size > LargestVector) 3178 return true; 3179 QualType EltTy = VecTy->getElementType(); 3180 if (passInt128VectorsInMem() && 3181 (EltTy->isSpecificBuiltinType(BuiltinType::Int128) || 3182 EltTy->isSpecificBuiltinType(BuiltinType::UInt128))) 3183 return true; 3184 } 3185 3186 return false; 3187 } 3188 3189 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty, 3190 unsigned freeIntRegs) const { 3191 // If this is a scalar LLVM value then assume LLVM will pass it in the right 3192 // place naturally. 3193 // 3194 // This assumption is optimistic, as there could be free registers available 3195 // when we need to pass this argument in memory, and LLVM could try to pass 3196 // the argument in the free register. This does not seem to happen currently, 3197 // but this code would be much safer if we could mark the argument with 3198 // 'onstack'. See PR12193. 3199 if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty) && 3200 !Ty->isExtIntType()) { 3201 // Treat an enum type as its underlying type. 3202 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3203 Ty = EnumTy->getDecl()->getIntegerType(); 3204 3205 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 3206 : ABIArgInfo::getDirect()); 3207 } 3208 3209 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 3210 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 3211 3212 // Compute the byval alignment. We specify the alignment of the byval in all 3213 // cases so that the mid-level optimizer knows the alignment of the byval. 3214 unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U); 3215 3216 // Attempt to avoid passing indirect results using byval when possible. This 3217 // is important for good codegen. 3218 // 3219 // We do this by coercing the value into a scalar type which the backend can 3220 // handle naturally (i.e., without using byval). 3221 // 3222 // For simplicity, we currently only do this when we have exhausted all of the 3223 // free integer registers. Doing this when there are free integer registers 3224 // would require more care, as we would have to ensure that the coerced value 3225 // did not claim the unused register. That would require either reording the 3226 // arguments to the function (so that any subsequent inreg values came first), 3227 // or only doing this optimization when there were no following arguments that 3228 // might be inreg. 3229 // 3230 // We currently expect it to be rare (particularly in well written code) for 3231 // arguments to be passed on the stack when there are still free integer 3232 // registers available (this would typically imply large structs being passed 3233 // by value), so this seems like a fair tradeoff for now. 3234 // 3235 // We can revisit this if the backend grows support for 'onstack' parameter 3236 // attributes. See PR12193. 3237 if (freeIntRegs == 0) { 3238 uint64_t Size = getContext().getTypeSize(Ty); 3239 3240 // If this type fits in an eightbyte, coerce it into the matching integral 3241 // type, which will end up on the stack (with alignment 8). 3242 if (Align == 8 && Size <= 64) 3243 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 3244 Size)); 3245 } 3246 3247 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align)); 3248 } 3249 3250 /// The ABI specifies that a value should be passed in a full vector XMM/YMM 3251 /// register. Pick an LLVM IR type that will be passed as a vector register. 3252 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const { 3253 // Wrapper structs/arrays that only contain vectors are passed just like 3254 // vectors; strip them off if present. 3255 if (const Type *InnerTy = isSingleElementStruct(Ty, getContext())) 3256 Ty = QualType(InnerTy, 0); 3257 3258 llvm::Type *IRType = CGT.ConvertType(Ty); 3259 if (isa<llvm::VectorType>(IRType)) { 3260 // Don't pass vXi128 vectors in their native type, the backend can't 3261 // legalize them. 3262 if (passInt128VectorsInMem() && 3263 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy(128)) { 3264 // Use a vXi64 vector. 3265 uint64_t Size = getContext().getTypeSize(Ty); 3266 return llvm::FixedVectorType::get(llvm::Type::getInt64Ty(getVMContext()), 3267 Size / 64); 3268 } 3269 3270 return IRType; 3271 } 3272 3273 if (IRType->getTypeID() == llvm::Type::FP128TyID) 3274 return IRType; 3275 3276 // We couldn't find the preferred IR vector type for 'Ty'. 3277 uint64_t Size = getContext().getTypeSize(Ty); 3278 assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!"); 3279 3280 3281 // Return a LLVM IR vector type based on the size of 'Ty'. 3282 return llvm::FixedVectorType::get(llvm::Type::getDoubleTy(getVMContext()), 3283 Size / 64); 3284 } 3285 3286 /// BitsContainNoUserData - Return true if the specified [start,end) bit range 3287 /// is known to either be off the end of the specified type or being in 3288 /// alignment padding. The user type specified is known to be at most 128 bits 3289 /// in size, and have passed through X86_64ABIInfo::classify with a successful 3290 /// classification that put one of the two halves in the INTEGER class. 3291 /// 3292 /// It is conservatively correct to return false. 3293 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit, 3294 unsigned EndBit, ASTContext &Context) { 3295 // If the bytes being queried are off the end of the type, there is no user 3296 // data hiding here. This handles analysis of builtins, vectors and other 3297 // types that don't contain interesting padding. 3298 unsigned TySize = (unsigned)Context.getTypeSize(Ty); 3299 if (TySize <= StartBit) 3300 return true; 3301 3302 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 3303 unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType()); 3304 unsigned NumElts = (unsigned)AT->getSize().getZExtValue(); 3305 3306 // Check each element to see if the element overlaps with the queried range. 3307 for (unsigned i = 0; i != NumElts; ++i) { 3308 // If the element is after the span we care about, then we're done.. 3309 unsigned EltOffset = i*EltSize; 3310 if (EltOffset >= EndBit) break; 3311 3312 unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0; 3313 if (!BitsContainNoUserData(AT->getElementType(), EltStart, 3314 EndBit-EltOffset, Context)) 3315 return false; 3316 } 3317 // If it overlaps no elements, then it is safe to process as padding. 3318 return true; 3319 } 3320 3321 if (const RecordType *RT = Ty->getAs<RecordType>()) { 3322 const RecordDecl *RD = RT->getDecl(); 3323 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 3324 3325 // If this is a C++ record, check the bases first. 3326 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 3327 for (const auto &I : CXXRD->bases()) { 3328 assert(!I.isVirtual() && !I.getType()->isDependentType() && 3329 "Unexpected base class!"); 3330 const auto *Base = 3331 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 3332 3333 // If the base is after the span we care about, ignore it. 3334 unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base)); 3335 if (BaseOffset >= EndBit) continue; 3336 3337 unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0; 3338 if (!BitsContainNoUserData(I.getType(), BaseStart, 3339 EndBit-BaseOffset, Context)) 3340 return false; 3341 } 3342 } 3343 3344 // Verify that no field has data that overlaps the region of interest. Yes 3345 // this could be sped up a lot by being smarter about queried fields, 3346 // however we're only looking at structs up to 16 bytes, so we don't care 3347 // much. 3348 unsigned idx = 0; 3349 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 3350 i != e; ++i, ++idx) { 3351 unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx); 3352 3353 // If we found a field after the region we care about, then we're done. 3354 if (FieldOffset >= EndBit) break; 3355 3356 unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0; 3357 if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset, 3358 Context)) 3359 return false; 3360 } 3361 3362 // If nothing in this record overlapped the area of interest, then we're 3363 // clean. 3364 return true; 3365 } 3366 3367 return false; 3368 } 3369 3370 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a 3371 /// float member at the specified offset. For example, {int,{float}} has a 3372 /// float at offset 4. It is conservatively correct for this routine to return 3373 /// false. 3374 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset, 3375 const llvm::DataLayout &TD) { 3376 // Base case if we find a float. 3377 if (IROffset == 0 && IRType->isFloatTy()) 3378 return true; 3379 3380 // If this is a struct, recurse into the field at the specified offset. 3381 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 3382 const llvm::StructLayout *SL = TD.getStructLayout(STy); 3383 unsigned Elt = SL->getElementContainingOffset(IROffset); 3384 IROffset -= SL->getElementOffset(Elt); 3385 return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD); 3386 } 3387 3388 // If this is an array, recurse into the field at the specified offset. 3389 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 3390 llvm::Type *EltTy = ATy->getElementType(); 3391 unsigned EltSize = TD.getTypeAllocSize(EltTy); 3392 IROffset -= IROffset/EltSize*EltSize; 3393 return ContainsFloatAtOffset(EltTy, IROffset, TD); 3394 } 3395 3396 return false; 3397 } 3398 3399 3400 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the 3401 /// low 8 bytes of an XMM register, corresponding to the SSE class. 3402 llvm::Type *X86_64ABIInfo:: 3403 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3404 QualType SourceTy, unsigned SourceOffset) const { 3405 // The only three choices we have are either double, <2 x float>, or float. We 3406 // pass as float if the last 4 bytes is just padding. This happens for 3407 // structs that contain 3 floats. 3408 if (BitsContainNoUserData(SourceTy, SourceOffset*8+32, 3409 SourceOffset*8+64, getContext())) 3410 return llvm::Type::getFloatTy(getVMContext()); 3411 3412 // We want to pass as <2 x float> if the LLVM IR type contains a float at 3413 // offset+0 and offset+4. Walk the LLVM IR type to find out if this is the 3414 // case. 3415 if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) && 3416 ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout())) 3417 return llvm::FixedVectorType::get(llvm::Type::getFloatTy(getVMContext()), 3418 2); 3419 3420 return llvm::Type::getDoubleTy(getVMContext()); 3421 } 3422 3423 3424 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in 3425 /// an 8-byte GPR. This means that we either have a scalar or we are talking 3426 /// about the high or low part of an up-to-16-byte struct. This routine picks 3427 /// the best LLVM IR type to represent this, which may be i64 or may be anything 3428 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*, 3429 /// etc). 3430 /// 3431 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for 3432 /// the source type. IROffset is an offset in bytes into the LLVM IR type that 3433 /// the 8-byte value references. PrefType may be null. 3434 /// 3435 /// SourceTy is the source-level type for the entire argument. SourceOffset is 3436 /// an offset into this that we're processing (which is always either 0 or 8). 3437 /// 3438 llvm::Type *X86_64ABIInfo:: 3439 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3440 QualType SourceTy, unsigned SourceOffset) const { 3441 // If we're dealing with an un-offset LLVM IR type, then it means that we're 3442 // returning an 8-byte unit starting with it. See if we can safely use it. 3443 if (IROffset == 0) { 3444 // Pointers and int64's always fill the 8-byte unit. 3445 if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) || 3446 IRType->isIntegerTy(64)) 3447 return IRType; 3448 3449 // If we have a 1/2/4-byte integer, we can use it only if the rest of the 3450 // goodness in the source type is just tail padding. This is allowed to 3451 // kick in for struct {double,int} on the int, but not on 3452 // struct{double,int,int} because we wouldn't return the second int. We 3453 // have to do this analysis on the source type because we can't depend on 3454 // unions being lowered a specific way etc. 3455 if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) || 3456 IRType->isIntegerTy(32) || 3457 (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) { 3458 unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 : 3459 cast<llvm::IntegerType>(IRType)->getBitWidth(); 3460 3461 if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth, 3462 SourceOffset*8+64, getContext())) 3463 return IRType; 3464 } 3465 } 3466 3467 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 3468 // If this is a struct, recurse into the field at the specified offset. 3469 const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy); 3470 if (IROffset < SL->getSizeInBytes()) { 3471 unsigned FieldIdx = SL->getElementContainingOffset(IROffset); 3472 IROffset -= SL->getElementOffset(FieldIdx); 3473 3474 return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset, 3475 SourceTy, SourceOffset); 3476 } 3477 } 3478 3479 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 3480 llvm::Type *EltTy = ATy->getElementType(); 3481 unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy); 3482 unsigned EltOffset = IROffset/EltSize*EltSize; 3483 return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy, 3484 SourceOffset); 3485 } 3486 3487 // Okay, we don't have any better idea of what to pass, so we pass this in an 3488 // integer register that isn't too big to fit the rest of the struct. 3489 unsigned TySizeInBytes = 3490 (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity(); 3491 3492 assert(TySizeInBytes != SourceOffset && "Empty field?"); 3493 3494 // It is always safe to classify this as an integer type up to i64 that 3495 // isn't larger than the structure. 3496 return llvm::IntegerType::get(getVMContext(), 3497 std::min(TySizeInBytes-SourceOffset, 8U)*8); 3498 } 3499 3500 3501 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally 3502 /// be used as elements of a two register pair to pass or return, return a 3503 /// first class aggregate to represent them. For example, if the low part of 3504 /// a by-value argument should be passed as i32* and the high part as float, 3505 /// return {i32*, float}. 3506 static llvm::Type * 3507 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi, 3508 const llvm::DataLayout &TD) { 3509 // In order to correctly satisfy the ABI, we need to the high part to start 3510 // at offset 8. If the high and low parts we inferred are both 4-byte types 3511 // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have 3512 // the second element at offset 8. Check for this: 3513 unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo); 3514 unsigned HiAlign = TD.getABITypeAlignment(Hi); 3515 unsigned HiStart = llvm::alignTo(LoSize, HiAlign); 3516 assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!"); 3517 3518 // To handle this, we have to increase the size of the low part so that the 3519 // second element will start at an 8 byte offset. We can't increase the size 3520 // of the second element because it might make us access off the end of the 3521 // struct. 3522 if (HiStart != 8) { 3523 // There are usually two sorts of types the ABI generation code can produce 3524 // for the low part of a pair that aren't 8 bytes in size: float or 3525 // i8/i16/i32. This can also include pointers when they are 32-bit (X32 and 3526 // NaCl). 3527 // Promote these to a larger type. 3528 if (Lo->isFloatTy()) 3529 Lo = llvm::Type::getDoubleTy(Lo->getContext()); 3530 else { 3531 assert((Lo->isIntegerTy() || Lo->isPointerTy()) 3532 && "Invalid/unknown lo type"); 3533 Lo = llvm::Type::getInt64Ty(Lo->getContext()); 3534 } 3535 } 3536 3537 llvm::StructType *Result = llvm::StructType::get(Lo, Hi); 3538 3539 // Verify that the second element is at an 8-byte offset. 3540 assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 && 3541 "Invalid x86-64 argument pair!"); 3542 return Result; 3543 } 3544 3545 ABIArgInfo X86_64ABIInfo:: 3546 classifyReturnType(QualType RetTy) const { 3547 // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the 3548 // classification algorithm. 3549 X86_64ABIInfo::Class Lo, Hi; 3550 classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true); 3551 3552 // Check some invariants. 3553 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3554 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3555 3556 llvm::Type *ResType = nullptr; 3557 switch (Lo) { 3558 case NoClass: 3559 if (Hi == NoClass) 3560 return ABIArgInfo::getIgnore(); 3561 // If the low part is just padding, it takes no register, leave ResType 3562 // null. 3563 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3564 "Unknown missing lo part"); 3565 break; 3566 3567 case SSEUp: 3568 case X87Up: 3569 llvm_unreachable("Invalid classification for lo word."); 3570 3571 // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via 3572 // hidden argument. 3573 case Memory: 3574 return getIndirectReturnResult(RetTy); 3575 3576 // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next 3577 // available register of the sequence %rax, %rdx is used. 3578 case Integer: 3579 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3580 3581 // If we have a sign or zero extended integer, make sure to return Extend 3582 // so that the parameter gets the right LLVM IR attributes. 3583 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3584 // Treat an enum type as its underlying type. 3585 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 3586 RetTy = EnumTy->getDecl()->getIntegerType(); 3587 3588 if (RetTy->isIntegralOrEnumerationType() && 3589 isPromotableIntegerTypeForABI(RetTy)) 3590 return ABIArgInfo::getExtend(RetTy); 3591 } 3592 break; 3593 3594 // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next 3595 // available SSE register of the sequence %xmm0, %xmm1 is used. 3596 case SSE: 3597 ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3598 break; 3599 3600 // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is 3601 // returned on the X87 stack in %st0 as 80-bit x87 number. 3602 case X87: 3603 ResType = llvm::Type::getX86_FP80Ty(getVMContext()); 3604 break; 3605 3606 // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real 3607 // part of the value is returned in %st0 and the imaginary part in 3608 // %st1. 3609 case ComplexX87: 3610 assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification."); 3611 ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()), 3612 llvm::Type::getX86_FP80Ty(getVMContext())); 3613 break; 3614 } 3615 3616 llvm::Type *HighPart = nullptr; 3617 switch (Hi) { 3618 // Memory was handled previously and X87 should 3619 // never occur as a hi class. 3620 case Memory: 3621 case X87: 3622 llvm_unreachable("Invalid classification for hi word."); 3623 3624 case ComplexX87: // Previously handled. 3625 case NoClass: 3626 break; 3627 3628 case Integer: 3629 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3630 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3631 return ABIArgInfo::getDirect(HighPart, 8); 3632 break; 3633 case SSE: 3634 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3635 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3636 return ABIArgInfo::getDirect(HighPart, 8); 3637 break; 3638 3639 // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte 3640 // is passed in the next available eightbyte chunk if the last used 3641 // vector register. 3642 // 3643 // SSEUP should always be preceded by SSE, just widen. 3644 case SSEUp: 3645 assert(Lo == SSE && "Unexpected SSEUp classification."); 3646 ResType = GetByteVectorType(RetTy); 3647 break; 3648 3649 // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is 3650 // returned together with the previous X87 value in %st0. 3651 case X87Up: 3652 // If X87Up is preceded by X87, we don't need to do 3653 // anything. However, in some cases with unions it may not be 3654 // preceded by X87. In such situations we follow gcc and pass the 3655 // extra bits in an SSE reg. 3656 if (Lo != X87) { 3657 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3658 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3659 return ABIArgInfo::getDirect(HighPart, 8); 3660 } 3661 break; 3662 } 3663 3664 // If a high part was specified, merge it together with the low part. It is 3665 // known to pass in the high eightbyte of the result. We do this by forming a 3666 // first class struct aggregate with the high and low part: {low, high} 3667 if (HighPart) 3668 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3669 3670 return ABIArgInfo::getDirect(ResType); 3671 } 3672 3673 ABIArgInfo X86_64ABIInfo::classifyArgumentType( 3674 QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE, 3675 bool isNamedArg) 3676 const 3677 { 3678 Ty = useFirstFieldIfTransparentUnion(Ty); 3679 3680 X86_64ABIInfo::Class Lo, Hi; 3681 classify(Ty, 0, Lo, Hi, isNamedArg); 3682 3683 // Check some invariants. 3684 // FIXME: Enforce these by construction. 3685 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3686 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3687 3688 neededInt = 0; 3689 neededSSE = 0; 3690 llvm::Type *ResType = nullptr; 3691 switch (Lo) { 3692 case NoClass: 3693 if (Hi == NoClass) 3694 return ABIArgInfo::getIgnore(); 3695 // If the low part is just padding, it takes no register, leave ResType 3696 // null. 3697 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3698 "Unknown missing lo part"); 3699 break; 3700 3701 // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument 3702 // on the stack. 3703 case Memory: 3704 3705 // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or 3706 // COMPLEX_X87, it is passed in memory. 3707 case X87: 3708 case ComplexX87: 3709 if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect) 3710 ++neededInt; 3711 return getIndirectResult(Ty, freeIntRegs); 3712 3713 case SSEUp: 3714 case X87Up: 3715 llvm_unreachable("Invalid classification for lo word."); 3716 3717 // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next 3718 // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8 3719 // and %r9 is used. 3720 case Integer: 3721 ++neededInt; 3722 3723 // Pick an 8-byte type based on the preferred type. 3724 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0); 3725 3726 // If we have a sign or zero extended integer, make sure to return Extend 3727 // so that the parameter gets the right LLVM IR attributes. 3728 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3729 // Treat an enum type as its underlying type. 3730 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3731 Ty = EnumTy->getDecl()->getIntegerType(); 3732 3733 if (Ty->isIntegralOrEnumerationType() && 3734 isPromotableIntegerTypeForABI(Ty)) 3735 return ABIArgInfo::getExtend(Ty); 3736 } 3737 3738 break; 3739 3740 // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next 3741 // available SSE register is used, the registers are taken in the 3742 // order from %xmm0 to %xmm7. 3743 case SSE: { 3744 llvm::Type *IRType = CGT.ConvertType(Ty); 3745 ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0); 3746 ++neededSSE; 3747 break; 3748 } 3749 } 3750 3751 llvm::Type *HighPart = nullptr; 3752 switch (Hi) { 3753 // Memory was handled previously, ComplexX87 and X87 should 3754 // never occur as hi classes, and X87Up must be preceded by X87, 3755 // which is passed in memory. 3756 case Memory: 3757 case X87: 3758 case ComplexX87: 3759 llvm_unreachable("Invalid classification for hi word."); 3760 3761 case NoClass: break; 3762 3763 case Integer: 3764 ++neededInt; 3765 // Pick an 8-byte type based on the preferred type. 3766 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3767 3768 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3769 return ABIArgInfo::getDirect(HighPart, 8); 3770 break; 3771 3772 // X87Up generally doesn't occur here (long double is passed in 3773 // memory), except in situations involving unions. 3774 case X87Up: 3775 case SSE: 3776 HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3777 3778 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3779 return ABIArgInfo::getDirect(HighPart, 8); 3780 3781 ++neededSSE; 3782 break; 3783 3784 // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the 3785 // eightbyte is passed in the upper half of the last used SSE 3786 // register. This only happens when 128-bit vectors are passed. 3787 case SSEUp: 3788 assert(Lo == SSE && "Unexpected SSEUp classification"); 3789 ResType = GetByteVectorType(Ty); 3790 break; 3791 } 3792 3793 // If a high part was specified, merge it together with the low part. It is 3794 // known to pass in the high eightbyte of the result. We do this by forming a 3795 // first class struct aggregate with the high and low part: {low, high} 3796 if (HighPart) 3797 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3798 3799 return ABIArgInfo::getDirect(ResType); 3800 } 3801 3802 ABIArgInfo 3803 X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 3804 unsigned &NeededSSE) const { 3805 auto RT = Ty->getAs<RecordType>(); 3806 assert(RT && "classifyRegCallStructType only valid with struct types"); 3807 3808 if (RT->getDecl()->hasFlexibleArrayMember()) 3809 return getIndirectReturnResult(Ty); 3810 3811 // Sum up bases 3812 if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 3813 if (CXXRD->isDynamicClass()) { 3814 NeededInt = NeededSSE = 0; 3815 return getIndirectReturnResult(Ty); 3816 } 3817 3818 for (const auto &I : CXXRD->bases()) 3819 if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE) 3820 .isIndirect()) { 3821 NeededInt = NeededSSE = 0; 3822 return getIndirectReturnResult(Ty); 3823 } 3824 } 3825 3826 // Sum up members 3827 for (const auto *FD : RT->getDecl()->fields()) { 3828 if (FD->getType()->isRecordType() && !FD->getType()->isUnionType()) { 3829 if (classifyRegCallStructTypeImpl(FD->getType(), NeededInt, NeededSSE) 3830 .isIndirect()) { 3831 NeededInt = NeededSSE = 0; 3832 return getIndirectReturnResult(Ty); 3833 } 3834 } else { 3835 unsigned LocalNeededInt, LocalNeededSSE; 3836 if (classifyArgumentType(FD->getType(), UINT_MAX, LocalNeededInt, 3837 LocalNeededSSE, true) 3838 .isIndirect()) { 3839 NeededInt = NeededSSE = 0; 3840 return getIndirectReturnResult(Ty); 3841 } 3842 NeededInt += LocalNeededInt; 3843 NeededSSE += LocalNeededSSE; 3844 } 3845 } 3846 3847 return ABIArgInfo::getDirect(); 3848 } 3849 3850 ABIArgInfo X86_64ABIInfo::classifyRegCallStructType(QualType Ty, 3851 unsigned &NeededInt, 3852 unsigned &NeededSSE) const { 3853 3854 NeededInt = 0; 3855 NeededSSE = 0; 3856 3857 return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE); 3858 } 3859 3860 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 3861 3862 const unsigned CallingConv = FI.getCallingConvention(); 3863 // It is possible to force Win64 calling convention on any x86_64 target by 3864 // using __attribute__((ms_abi)). In such case to correctly emit Win64 3865 // compatible code delegate this call to WinX86_64ABIInfo::computeInfo. 3866 if (CallingConv == llvm::CallingConv::Win64) { 3867 WinX86_64ABIInfo Win64ABIInfo(CGT, AVXLevel); 3868 Win64ABIInfo.computeInfo(FI); 3869 return; 3870 } 3871 3872 bool IsRegCall = CallingConv == llvm::CallingConv::X86_RegCall; 3873 3874 // Keep track of the number of assigned registers. 3875 unsigned FreeIntRegs = IsRegCall ? 11 : 6; 3876 unsigned FreeSSERegs = IsRegCall ? 16 : 8; 3877 unsigned NeededInt, NeededSSE; 3878 3879 if (!::classifyReturnType(getCXXABI(), FI, *this)) { 3880 if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() && 3881 !FI.getReturnType()->getTypePtr()->isUnionType()) { 3882 FI.getReturnInfo() = 3883 classifyRegCallStructType(FI.getReturnType(), NeededInt, NeededSSE); 3884 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 3885 FreeIntRegs -= NeededInt; 3886 FreeSSERegs -= NeededSSE; 3887 } else { 3888 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 3889 } 3890 } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>() && 3891 getContext().getCanonicalType(FI.getReturnType() 3892 ->getAs<ComplexType>() 3893 ->getElementType()) == 3894 getContext().LongDoubleTy) 3895 // Complex Long Double Type is passed in Memory when Regcall 3896 // calling convention is used. 3897 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 3898 else 3899 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 3900 } 3901 3902 // If the return value is indirect, then the hidden argument is consuming one 3903 // integer register. 3904 if (FI.getReturnInfo().isIndirect()) 3905 --FreeIntRegs; 3906 3907 // The chain argument effectively gives us another free register. 3908 if (FI.isChainCall()) 3909 ++FreeIntRegs; 3910 3911 unsigned NumRequiredArgs = FI.getNumRequiredArgs(); 3912 // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers 3913 // get assigned (in left-to-right order) for passing as follows... 3914 unsigned ArgNo = 0; 3915 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 3916 it != ie; ++it, ++ArgNo) { 3917 bool IsNamedArg = ArgNo < NumRequiredArgs; 3918 3919 if (IsRegCall && it->type->isStructureOrClassType()) 3920 it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE); 3921 else 3922 it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt, 3923 NeededSSE, IsNamedArg); 3924 3925 // AMD64-ABI 3.2.3p3: If there are no registers available for any 3926 // eightbyte of an argument, the whole argument is passed on the 3927 // stack. If registers have already been assigned for some 3928 // eightbytes of such an argument, the assignments get reverted. 3929 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 3930 FreeIntRegs -= NeededInt; 3931 FreeSSERegs -= NeededSSE; 3932 } else { 3933 it->info = getIndirectResult(it->type, FreeIntRegs); 3934 } 3935 } 3936 } 3937 3938 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF, 3939 Address VAListAddr, QualType Ty) { 3940 Address overflow_arg_area_p = 3941 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p"); 3942 llvm::Value *overflow_arg_area = 3943 CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area"); 3944 3945 // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16 3946 // byte boundary if alignment needed by type exceeds 8 byte boundary. 3947 // It isn't stated explicitly in the standard, but in practice we use 3948 // alignment greater than 16 where necessary. 3949 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 3950 if (Align > CharUnits::fromQuantity(8)) { 3951 overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area, 3952 Align); 3953 } 3954 3955 // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area. 3956 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 3957 llvm::Value *Res = 3958 CGF.Builder.CreateBitCast(overflow_arg_area, 3959 llvm::PointerType::getUnqual(LTy)); 3960 3961 // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to: 3962 // l->overflow_arg_area + sizeof(type). 3963 // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to 3964 // an 8 byte boundary. 3965 3966 uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8; 3967 llvm::Value *Offset = 3968 llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7); 3969 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset, 3970 "overflow_arg_area.next"); 3971 CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p); 3972 3973 // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type. 3974 return Address(Res, Align); 3975 } 3976 3977 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 3978 QualType Ty) const { 3979 // Assume that va_list type is correct; should be pointer to LLVM type: 3980 // struct { 3981 // i32 gp_offset; 3982 // i32 fp_offset; 3983 // i8* overflow_arg_area; 3984 // i8* reg_save_area; 3985 // }; 3986 unsigned neededInt, neededSSE; 3987 3988 Ty = getContext().getCanonicalType(Ty); 3989 ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE, 3990 /*isNamedArg*/false); 3991 3992 // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed 3993 // in the registers. If not go to step 7. 3994 if (!neededInt && !neededSSE) 3995 return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 3996 3997 // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of 3998 // general purpose registers needed to pass type and num_fp to hold 3999 // the number of floating point registers needed. 4000 4001 // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into 4002 // registers. In the case: l->gp_offset > 48 - num_gp * 8 or 4003 // l->fp_offset > 304 - num_fp * 16 go to step 7. 4004 // 4005 // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of 4006 // register save space). 4007 4008 llvm::Value *InRegs = nullptr; 4009 Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid(); 4010 llvm::Value *gp_offset = nullptr, *fp_offset = nullptr; 4011 if (neededInt) { 4012 gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p"); 4013 gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset"); 4014 InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8); 4015 InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp"); 4016 } 4017 4018 if (neededSSE) { 4019 fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p"); 4020 fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset"); 4021 llvm::Value *FitsInFP = 4022 llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16); 4023 FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp"); 4024 InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP; 4025 } 4026 4027 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 4028 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 4029 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 4030 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 4031 4032 // Emit code to load the value if it was passed in registers. 4033 4034 CGF.EmitBlock(InRegBlock); 4035 4036 // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with 4037 // an offset of l->gp_offset and/or l->fp_offset. This may require 4038 // copying to a temporary location in case the parameter is passed 4039 // in different register classes or requires an alignment greater 4040 // than 8 for general purpose registers and 16 for XMM registers. 4041 // 4042 // FIXME: This really results in shameful code when we end up needing to 4043 // collect arguments from different places; often what should result in a 4044 // simple assembling of a structure from scattered addresses has many more 4045 // loads than necessary. Can we clean this up? 4046 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 4047 llvm::Value *RegSaveArea = CGF.Builder.CreateLoad( 4048 CGF.Builder.CreateStructGEP(VAListAddr, 3), "reg_save_area"); 4049 4050 Address RegAddr = Address::invalid(); 4051 if (neededInt && neededSSE) { 4052 // FIXME: Cleanup. 4053 assert(AI.isDirect() && "Unexpected ABI info for mixed regs"); 4054 llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType()); 4055 Address Tmp = CGF.CreateMemTemp(Ty); 4056 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 4057 assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs"); 4058 llvm::Type *TyLo = ST->getElementType(0); 4059 llvm::Type *TyHi = ST->getElementType(1); 4060 assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) && 4061 "Unexpected ABI info for mixed regs"); 4062 llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo); 4063 llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi); 4064 llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegSaveArea, gp_offset); 4065 llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegSaveArea, fp_offset); 4066 llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr; 4067 llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr; 4068 4069 // Copy the first element. 4070 // FIXME: Our choice of alignment here and below is probably pessimistic. 4071 llvm::Value *V = CGF.Builder.CreateAlignedLoad( 4072 TyLo, CGF.Builder.CreateBitCast(RegLoAddr, PTyLo), 4073 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyLo))); 4074 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 4075 4076 // Copy the second element. 4077 V = CGF.Builder.CreateAlignedLoad( 4078 TyHi, CGF.Builder.CreateBitCast(RegHiAddr, PTyHi), 4079 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyHi))); 4080 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 4081 4082 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 4083 } else if (neededInt) { 4084 RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, gp_offset), 4085 CharUnits::fromQuantity(8)); 4086 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 4087 4088 // Copy to a temporary if necessary to ensure the appropriate alignment. 4089 auto TInfo = getContext().getTypeInfoInChars(Ty); 4090 uint64_t TySize = TInfo.Width.getQuantity(); 4091 CharUnits TyAlign = TInfo.Align; 4092 4093 // Copy into a temporary if the type is more aligned than the 4094 // register save area. 4095 if (TyAlign.getQuantity() > 8) { 4096 Address Tmp = CGF.CreateMemTemp(Ty); 4097 CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false); 4098 RegAddr = Tmp; 4099 } 4100 4101 } else if (neededSSE == 1) { 4102 RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset), 4103 CharUnits::fromQuantity(16)); 4104 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 4105 } else { 4106 assert(neededSSE == 2 && "Invalid number of needed registers!"); 4107 // SSE registers are spaced 16 bytes apart in the register save 4108 // area, we need to collect the two eightbytes together. 4109 // The ABI isn't explicit about this, but it seems reasonable 4110 // to assume that the slots are 16-byte aligned, since the stack is 4111 // naturally 16-byte aligned and the prologue is expected to store 4112 // all the SSE registers to the RSA. 4113 Address RegAddrLo = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset), 4114 CharUnits::fromQuantity(16)); 4115 Address RegAddrHi = 4116 CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo, 4117 CharUnits::fromQuantity(16)); 4118 llvm::Type *ST = AI.canHaveCoerceToType() 4119 ? AI.getCoerceToType() 4120 : llvm::StructType::get(CGF.DoubleTy, CGF.DoubleTy); 4121 llvm::Value *V; 4122 Address Tmp = CGF.CreateMemTemp(Ty); 4123 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 4124 V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast( 4125 RegAddrLo, ST->getStructElementType(0))); 4126 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 4127 V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast( 4128 RegAddrHi, ST->getStructElementType(1))); 4129 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 4130 4131 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 4132 } 4133 4134 // AMD64-ABI 3.5.7p5: Step 5. Set: 4135 // l->gp_offset = l->gp_offset + num_gp * 8 4136 // l->fp_offset = l->fp_offset + num_fp * 16. 4137 if (neededInt) { 4138 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8); 4139 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset), 4140 gp_offset_p); 4141 } 4142 if (neededSSE) { 4143 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16); 4144 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset), 4145 fp_offset_p); 4146 } 4147 CGF.EmitBranch(ContBlock); 4148 4149 // Emit code to load the value if it was passed in memory. 4150 4151 CGF.EmitBlock(InMemBlock); 4152 Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 4153 4154 // Return the appropriate result. 4155 4156 CGF.EmitBlock(ContBlock); 4157 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock, 4158 "vaarg.addr"); 4159 return ResAddr; 4160 } 4161 4162 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 4163 QualType Ty) const { 4164 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 4165 CGF.getContext().getTypeInfoInChars(Ty), 4166 CharUnits::fromQuantity(8), 4167 /*allowHigherAlign*/ false); 4168 } 4169 4170 ABIArgInfo WinX86_64ABIInfo::reclassifyHvaArgForVectorCall( 4171 QualType Ty, unsigned &FreeSSERegs, const ABIArgInfo ¤t) const { 4172 const Type *Base = nullptr; 4173 uint64_t NumElts = 0; 4174 4175 if (!Ty->isBuiltinType() && !Ty->isVectorType() && 4176 isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) { 4177 FreeSSERegs -= NumElts; 4178 return getDirectX86Hva(); 4179 } 4180 return current; 4181 } 4182 4183 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs, 4184 bool IsReturnType, bool IsVectorCall, 4185 bool IsRegCall) const { 4186 4187 if (Ty->isVoidType()) 4188 return ABIArgInfo::getIgnore(); 4189 4190 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4191 Ty = EnumTy->getDecl()->getIntegerType(); 4192 4193 TypeInfo Info = getContext().getTypeInfo(Ty); 4194 uint64_t Width = Info.Width; 4195 CharUnits Align = getContext().toCharUnitsFromBits(Info.Align); 4196 4197 const RecordType *RT = Ty->getAs<RecordType>(); 4198 if (RT) { 4199 if (!IsReturnType) { 4200 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI())) 4201 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 4202 } 4203 4204 if (RT->getDecl()->hasFlexibleArrayMember()) 4205 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4206 4207 } 4208 4209 const Type *Base = nullptr; 4210 uint64_t NumElts = 0; 4211 // vectorcall adds the concept of a homogenous vector aggregate, similar to 4212 // other targets. 4213 if ((IsVectorCall || IsRegCall) && 4214 isHomogeneousAggregate(Ty, Base, NumElts)) { 4215 if (IsRegCall) { 4216 if (FreeSSERegs >= NumElts) { 4217 FreeSSERegs -= NumElts; 4218 if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType()) 4219 return ABIArgInfo::getDirect(); 4220 return ABIArgInfo::getExpand(); 4221 } 4222 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4223 } else if (IsVectorCall) { 4224 if (FreeSSERegs >= NumElts && 4225 (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) { 4226 FreeSSERegs -= NumElts; 4227 return ABIArgInfo::getDirect(); 4228 } else if (IsReturnType) { 4229 return ABIArgInfo::getExpand(); 4230 } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) { 4231 // HVAs are delayed and reclassified in the 2nd step. 4232 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4233 } 4234 } 4235 } 4236 4237 if (Ty->isMemberPointerType()) { 4238 // If the member pointer is represented by an LLVM int or ptr, pass it 4239 // directly. 4240 llvm::Type *LLTy = CGT.ConvertType(Ty); 4241 if (LLTy->isPointerTy() || LLTy->isIntegerTy()) 4242 return ABIArgInfo::getDirect(); 4243 } 4244 4245 if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) { 4246 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4247 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4248 if (Width > 64 || !llvm::isPowerOf2_64(Width)) 4249 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4250 4251 // Otherwise, coerce it to a small integer. 4252 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width)); 4253 } 4254 4255 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 4256 switch (BT->getKind()) { 4257 case BuiltinType::Bool: 4258 // Bool type is always extended to the ABI, other builtin types are not 4259 // extended. 4260 return ABIArgInfo::getExtend(Ty); 4261 4262 case BuiltinType::LongDouble: 4263 // Mingw64 GCC uses the old 80 bit extended precision floating point 4264 // unit. It passes them indirectly through memory. 4265 if (IsMingw64) { 4266 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 4267 if (LDF == &llvm::APFloat::x87DoubleExtended()) 4268 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4269 } 4270 break; 4271 4272 case BuiltinType::Int128: 4273 case BuiltinType::UInt128: 4274 // If it's a parameter type, the normal ABI rule is that arguments larger 4275 // than 8 bytes are passed indirectly. GCC follows it. We follow it too, 4276 // even though it isn't particularly efficient. 4277 if (!IsReturnType) 4278 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4279 4280 // Mingw64 GCC returns i128 in XMM0. Coerce to v2i64 to handle that. 4281 // Clang matches them for compatibility. 4282 return ABIArgInfo::getDirect(llvm::FixedVectorType::get( 4283 llvm::Type::getInt64Ty(getVMContext()), 2)); 4284 4285 default: 4286 break; 4287 } 4288 } 4289 4290 if (Ty->isExtIntType()) { 4291 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4292 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4293 // However, non-power-of-two _ExtInts will be passed as 1,2,4 or 8 bytes 4294 // anyway as long is it fits in them, so we don't have to check the power of 4295 // 2. 4296 if (Width <= 64) 4297 return ABIArgInfo::getDirect(); 4298 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4299 } 4300 4301 return ABIArgInfo::getDirect(); 4302 } 4303 4304 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 4305 const unsigned CC = FI.getCallingConvention(); 4306 bool IsVectorCall = CC == llvm::CallingConv::X86_VectorCall; 4307 bool IsRegCall = CC == llvm::CallingConv::X86_RegCall; 4308 4309 // If __attribute__((sysv_abi)) is in use, use the SysV argument 4310 // classification rules. 4311 if (CC == llvm::CallingConv::X86_64_SysV) { 4312 X86_64ABIInfo SysVABIInfo(CGT, AVXLevel); 4313 SysVABIInfo.computeInfo(FI); 4314 return; 4315 } 4316 4317 unsigned FreeSSERegs = 0; 4318 if (IsVectorCall) { 4319 // We can use up to 4 SSE return registers with vectorcall. 4320 FreeSSERegs = 4; 4321 } else if (IsRegCall) { 4322 // RegCall gives us 16 SSE registers. 4323 FreeSSERegs = 16; 4324 } 4325 4326 if (!getCXXABI().classifyReturnType(FI)) 4327 FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true, 4328 IsVectorCall, IsRegCall); 4329 4330 if (IsVectorCall) { 4331 // We can use up to 6 SSE register parameters with vectorcall. 4332 FreeSSERegs = 6; 4333 } else if (IsRegCall) { 4334 // RegCall gives us 16 SSE registers, we can reuse the return registers. 4335 FreeSSERegs = 16; 4336 } 4337 4338 unsigned ArgNum = 0; 4339 unsigned ZeroSSERegs = 0; 4340 for (auto &I : FI.arguments()) { 4341 // Vectorcall in x64 only permits the first 6 arguments to be passed as 4342 // XMM/YMM registers. After the sixth argument, pretend no vector 4343 // registers are left. 4344 unsigned *MaybeFreeSSERegs = 4345 (IsVectorCall && ArgNum >= 6) ? &ZeroSSERegs : &FreeSSERegs; 4346 I.info = 4347 classify(I.type, *MaybeFreeSSERegs, false, IsVectorCall, IsRegCall); 4348 ++ArgNum; 4349 } 4350 4351 if (IsVectorCall) { 4352 // For vectorcall, assign aggregate HVAs to any free vector registers in a 4353 // second pass. 4354 for (auto &I : FI.arguments()) 4355 I.info = reclassifyHvaArgForVectorCall(I.type, FreeSSERegs, I.info); 4356 } 4357 } 4358 4359 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4360 QualType Ty) const { 4361 4362 bool IsIndirect = false; 4363 4364 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4365 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4366 if (isAggregateTypeForABI(Ty) || Ty->isMemberPointerType()) { 4367 uint64_t Width = getContext().getTypeSize(Ty); 4368 IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width); 4369 } 4370 4371 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 4372 CGF.getContext().getTypeInfoInChars(Ty), 4373 CharUnits::fromQuantity(8), 4374 /*allowHigherAlign*/ false); 4375 } 4376 4377 static bool PPC_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4378 llvm::Value *Address, bool Is64Bit, 4379 bool IsAIX) { 4380 // This is calculated from the LLVM and GCC tables and verified 4381 // against gcc output. AFAIK all PPC ABIs use the same encoding. 4382 4383 CodeGen::CGBuilderTy &Builder = CGF.Builder; 4384 4385 llvm::IntegerType *i8 = CGF.Int8Ty; 4386 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 4387 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 4388 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 4389 4390 // 0-31: r0-31, the 4-byte or 8-byte general-purpose registers 4391 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 0, 31); 4392 4393 // 32-63: fp0-31, the 8-byte floating-point registers 4394 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 4395 4396 // 64-67 are various 4-byte or 8-byte special-purpose registers: 4397 // 64: mq 4398 // 65: lr 4399 // 66: ctr 4400 // 67: ap 4401 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 64, 67); 4402 4403 // 68-76 are various 4-byte special-purpose registers: 4404 // 68-75 cr0-7 4405 // 76: xer 4406 AssignToArrayRange(Builder, Address, Four8, 68, 76); 4407 4408 // 77-108: v0-31, the 16-byte vector registers 4409 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 4410 4411 // 109: vrsave 4412 // 110: vscr 4413 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 109, 110); 4414 4415 // AIX does not utilize the rest of the registers. 4416 if (IsAIX) 4417 return false; 4418 4419 // 111: spe_acc 4420 // 112: spefscr 4421 // 113: sfp 4422 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 111, 113); 4423 4424 if (!Is64Bit) 4425 return false; 4426 4427 // TODO: Need to verify if these registers are used on 64 bit AIX with Power8 4428 // or above CPU. 4429 // 64-bit only registers: 4430 // 114: tfhar 4431 // 115: tfiar 4432 // 116: texasr 4433 AssignToArrayRange(Builder, Address, Eight8, 114, 116); 4434 4435 return false; 4436 } 4437 4438 // AIX 4439 namespace { 4440 /// AIXABIInfo - The AIX XCOFF ABI information. 4441 class AIXABIInfo : public ABIInfo { 4442 const bool Is64Bit; 4443 const unsigned PtrByteSize; 4444 CharUnits getParamTypeAlignment(QualType Ty) const; 4445 4446 public: 4447 AIXABIInfo(CodeGen::CodeGenTypes &CGT, bool Is64Bit) 4448 : ABIInfo(CGT), Is64Bit(Is64Bit), PtrByteSize(Is64Bit ? 8 : 4) {} 4449 4450 bool isPromotableTypeForABI(QualType Ty) const; 4451 4452 ABIArgInfo classifyReturnType(QualType RetTy) const; 4453 ABIArgInfo classifyArgumentType(QualType Ty) const; 4454 4455 void computeInfo(CGFunctionInfo &FI) const override { 4456 if (!getCXXABI().classifyReturnType(FI)) 4457 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4458 4459 for (auto &I : FI.arguments()) 4460 I.info = classifyArgumentType(I.type); 4461 } 4462 4463 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4464 QualType Ty) const override; 4465 }; 4466 4467 class AIXTargetCodeGenInfo : public TargetCodeGenInfo { 4468 const bool Is64Bit; 4469 4470 public: 4471 AIXTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool Is64Bit) 4472 : TargetCodeGenInfo(std::make_unique<AIXABIInfo>(CGT, Is64Bit)), 4473 Is64Bit(Is64Bit) {} 4474 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4475 return 1; // r1 is the dedicated stack pointer 4476 } 4477 4478 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4479 llvm::Value *Address) const override; 4480 }; 4481 } // namespace 4482 4483 // Return true if the ABI requires Ty to be passed sign- or zero- 4484 // extended to 32/64 bits. 4485 bool AIXABIInfo::isPromotableTypeForABI(QualType Ty) const { 4486 // Treat an enum type as its underlying type. 4487 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4488 Ty = EnumTy->getDecl()->getIntegerType(); 4489 4490 // Promotable integer types are required to be promoted by the ABI. 4491 if (Ty->isPromotableIntegerType()) 4492 return true; 4493 4494 if (!Is64Bit) 4495 return false; 4496 4497 // For 64 bit mode, in addition to the usual promotable integer types, we also 4498 // need to extend all 32-bit types, since the ABI requires promotion to 64 4499 // bits. 4500 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 4501 switch (BT->getKind()) { 4502 case BuiltinType::Int: 4503 case BuiltinType::UInt: 4504 return true; 4505 default: 4506 break; 4507 } 4508 4509 return false; 4510 } 4511 4512 ABIArgInfo AIXABIInfo::classifyReturnType(QualType RetTy) const { 4513 if (RetTy->isAnyComplexType()) 4514 return ABIArgInfo::getDirect(); 4515 4516 if (RetTy->isVectorType()) 4517 return ABIArgInfo::getDirect(); 4518 4519 if (RetTy->isVoidType()) 4520 return ABIArgInfo::getIgnore(); 4521 4522 if (isAggregateTypeForABI(RetTy)) 4523 return getNaturalAlignIndirect(RetTy); 4524 4525 return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 4526 : ABIArgInfo::getDirect()); 4527 } 4528 4529 ABIArgInfo AIXABIInfo::classifyArgumentType(QualType Ty) const { 4530 Ty = useFirstFieldIfTransparentUnion(Ty); 4531 4532 if (Ty->isAnyComplexType()) 4533 return ABIArgInfo::getDirect(); 4534 4535 if (Ty->isVectorType()) 4536 return ABIArgInfo::getDirect(); 4537 4538 if (isAggregateTypeForABI(Ty)) { 4539 // Records with non-trivial destructors/copy-constructors should not be 4540 // passed by value. 4541 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 4542 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 4543 4544 CharUnits CCAlign = getParamTypeAlignment(Ty); 4545 CharUnits TyAlign = getContext().getTypeAlignInChars(Ty); 4546 4547 return ABIArgInfo::getIndirect(CCAlign, /*ByVal*/ true, 4548 /*Realign*/ TyAlign > CCAlign); 4549 } 4550 4551 return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 4552 : ABIArgInfo::getDirect()); 4553 } 4554 4555 CharUnits AIXABIInfo::getParamTypeAlignment(QualType Ty) const { 4556 // Complex types are passed just like their elements. 4557 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 4558 Ty = CTy->getElementType(); 4559 4560 if (Ty->isVectorType()) 4561 return CharUnits::fromQuantity(16); 4562 4563 // If the structure contains a vector type, the alignment is 16. 4564 if (isRecordWithSIMDVectorType(getContext(), Ty)) 4565 return CharUnits::fromQuantity(16); 4566 4567 return CharUnits::fromQuantity(PtrByteSize); 4568 } 4569 4570 Address AIXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4571 QualType Ty) const { 4572 if (Ty->isAnyComplexType()) 4573 llvm::report_fatal_error("complex type is not supported on AIX yet"); 4574 4575 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 4576 TypeInfo.Align = getParamTypeAlignment(Ty); 4577 4578 CharUnits SlotSize = CharUnits::fromQuantity(PtrByteSize); 4579 4580 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, TypeInfo, 4581 SlotSize, /*AllowHigher*/ true); 4582 } 4583 4584 bool AIXTargetCodeGenInfo::initDwarfEHRegSizeTable( 4585 CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const { 4586 return PPC_initDwarfEHRegSizeTable(CGF, Address, Is64Bit, /*IsAIX*/ true); 4587 } 4588 4589 // PowerPC-32 4590 namespace { 4591 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information. 4592 class PPC32_SVR4_ABIInfo : public DefaultABIInfo { 4593 bool IsSoftFloatABI; 4594 bool IsRetSmallStructInRegABI; 4595 4596 CharUnits getParamTypeAlignment(QualType Ty) const; 4597 4598 public: 4599 PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI, 4600 bool RetSmallStructInRegABI) 4601 : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI), 4602 IsRetSmallStructInRegABI(RetSmallStructInRegABI) {} 4603 4604 ABIArgInfo classifyReturnType(QualType RetTy) const; 4605 4606 void computeInfo(CGFunctionInfo &FI) const override { 4607 if (!getCXXABI().classifyReturnType(FI)) 4608 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4609 for (auto &I : FI.arguments()) 4610 I.info = classifyArgumentType(I.type); 4611 } 4612 4613 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4614 QualType Ty) const override; 4615 }; 4616 4617 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo { 4618 public: 4619 PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI, 4620 bool RetSmallStructInRegABI) 4621 : TargetCodeGenInfo(std::make_unique<PPC32_SVR4_ABIInfo>( 4622 CGT, SoftFloatABI, RetSmallStructInRegABI)) {} 4623 4624 static bool isStructReturnInRegABI(const llvm::Triple &Triple, 4625 const CodeGenOptions &Opts); 4626 4627 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4628 // This is recovered from gcc output. 4629 return 1; // r1 is the dedicated stack pointer 4630 } 4631 4632 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4633 llvm::Value *Address) const override; 4634 }; 4635 } 4636 4637 CharUnits PPC32_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 4638 // Complex types are passed just like their elements. 4639 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 4640 Ty = CTy->getElementType(); 4641 4642 if (Ty->isVectorType()) 4643 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 4644 : 4); 4645 4646 // For single-element float/vector structs, we consider the whole type 4647 // to have the same alignment requirements as its single element. 4648 const Type *AlignTy = nullptr; 4649 if (const Type *EltType = isSingleElementStruct(Ty, getContext())) { 4650 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 4651 if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) || 4652 (BT && BT->isFloatingPoint())) 4653 AlignTy = EltType; 4654 } 4655 4656 if (AlignTy) 4657 return CharUnits::fromQuantity(AlignTy->isVectorType() ? 16 : 4); 4658 return CharUnits::fromQuantity(4); 4659 } 4660 4661 ABIArgInfo PPC32_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { 4662 uint64_t Size; 4663 4664 // -msvr4-struct-return puts small aggregates in GPR3 and GPR4. 4665 if (isAggregateTypeForABI(RetTy) && IsRetSmallStructInRegABI && 4666 (Size = getContext().getTypeSize(RetTy)) <= 64) { 4667 // System V ABI (1995), page 3-22, specified: 4668 // > A structure or union whose size is less than or equal to 8 bytes 4669 // > shall be returned in r3 and r4, as if it were first stored in the 4670 // > 8-byte aligned memory area and then the low addressed word were 4671 // > loaded into r3 and the high-addressed word into r4. Bits beyond 4672 // > the last member of the structure or union are not defined. 4673 // 4674 // GCC for big-endian PPC32 inserts the pad before the first member, 4675 // not "beyond the last member" of the struct. To stay compatible 4676 // with GCC, we coerce the struct to an integer of the same size. 4677 // LLVM will extend it and return i32 in r3, or i64 in r3:r4. 4678 if (Size == 0) 4679 return ABIArgInfo::getIgnore(); 4680 else { 4681 llvm::Type *CoerceTy = llvm::Type::getIntNTy(getVMContext(), Size); 4682 return ABIArgInfo::getDirect(CoerceTy); 4683 } 4684 } 4685 4686 return DefaultABIInfo::classifyReturnType(RetTy); 4687 } 4688 4689 // TODO: this implementation is now likely redundant with 4690 // DefaultABIInfo::EmitVAArg. 4691 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList, 4692 QualType Ty) const { 4693 if (getTarget().getTriple().isOSDarwin()) { 4694 auto TI = getContext().getTypeInfoInChars(Ty); 4695 TI.Align = getParamTypeAlignment(Ty); 4696 4697 CharUnits SlotSize = CharUnits::fromQuantity(4); 4698 return emitVoidPtrVAArg(CGF, VAList, Ty, 4699 classifyArgumentType(Ty).isIndirect(), TI, SlotSize, 4700 /*AllowHigherAlign=*/true); 4701 } 4702 4703 const unsigned OverflowLimit = 8; 4704 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 4705 // TODO: Implement this. For now ignore. 4706 (void)CTy; 4707 return Address::invalid(); // FIXME? 4708 } 4709 4710 // struct __va_list_tag { 4711 // unsigned char gpr; 4712 // unsigned char fpr; 4713 // unsigned short reserved; 4714 // void *overflow_arg_area; 4715 // void *reg_save_area; 4716 // }; 4717 4718 bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64; 4719 bool isInt = !Ty->isFloatingType(); 4720 bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64; 4721 4722 // All aggregates are passed indirectly? That doesn't seem consistent 4723 // with the argument-lowering code. 4724 bool isIndirect = isAggregateTypeForABI(Ty); 4725 4726 CGBuilderTy &Builder = CGF.Builder; 4727 4728 // The calling convention either uses 1-2 GPRs or 1 FPR. 4729 Address NumRegsAddr = Address::invalid(); 4730 if (isInt || IsSoftFloatABI) { 4731 NumRegsAddr = Builder.CreateStructGEP(VAList, 0, "gpr"); 4732 } else { 4733 NumRegsAddr = Builder.CreateStructGEP(VAList, 1, "fpr"); 4734 } 4735 4736 llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs"); 4737 4738 // "Align" the register count when TY is i64. 4739 if (isI64 || (isF64 && IsSoftFloatABI)) { 4740 NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1)); 4741 NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U)); 4742 } 4743 4744 llvm::Value *CC = 4745 Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond"); 4746 4747 llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs"); 4748 llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow"); 4749 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 4750 4751 Builder.CreateCondBr(CC, UsingRegs, UsingOverflow); 4752 4753 llvm::Type *DirectTy = CGF.ConvertType(Ty); 4754 if (isIndirect) DirectTy = DirectTy->getPointerTo(0); 4755 4756 // Case 1: consume registers. 4757 Address RegAddr = Address::invalid(); 4758 { 4759 CGF.EmitBlock(UsingRegs); 4760 4761 Address RegSaveAreaPtr = Builder.CreateStructGEP(VAList, 4); 4762 RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr), 4763 CharUnits::fromQuantity(8)); 4764 assert(RegAddr.getElementType() == CGF.Int8Ty); 4765 4766 // Floating-point registers start after the general-purpose registers. 4767 if (!(isInt || IsSoftFloatABI)) { 4768 RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr, 4769 CharUnits::fromQuantity(32)); 4770 } 4771 4772 // Get the address of the saved value by scaling the number of 4773 // registers we've used by the number of 4774 CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8); 4775 llvm::Value *RegOffset = 4776 Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity())); 4777 RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty, 4778 RegAddr.getPointer(), RegOffset), 4779 RegAddr.getAlignment().alignmentOfArrayElement(RegSize)); 4780 RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy); 4781 4782 // Increase the used-register count. 4783 NumRegs = 4784 Builder.CreateAdd(NumRegs, 4785 Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1)); 4786 Builder.CreateStore(NumRegs, NumRegsAddr); 4787 4788 CGF.EmitBranch(Cont); 4789 } 4790 4791 // Case 2: consume space in the overflow area. 4792 Address MemAddr = Address::invalid(); 4793 { 4794 CGF.EmitBlock(UsingOverflow); 4795 4796 Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr); 4797 4798 // Everything in the overflow area is rounded up to a size of at least 4. 4799 CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4); 4800 4801 CharUnits Size; 4802 if (!isIndirect) { 4803 auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty); 4804 Size = TypeInfo.Width.alignTo(OverflowAreaAlign); 4805 } else { 4806 Size = CGF.getPointerSize(); 4807 } 4808 4809 Address OverflowAreaAddr = Builder.CreateStructGEP(VAList, 3); 4810 Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"), 4811 OverflowAreaAlign); 4812 // Round up address of argument to alignment 4813 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 4814 if (Align > OverflowAreaAlign) { 4815 llvm::Value *Ptr = OverflowArea.getPointer(); 4816 OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align), 4817 Align); 4818 } 4819 4820 MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy); 4821 4822 // Increase the overflow area. 4823 OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size); 4824 Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr); 4825 CGF.EmitBranch(Cont); 4826 } 4827 4828 CGF.EmitBlock(Cont); 4829 4830 // Merge the cases with a phi. 4831 Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow, 4832 "vaarg.addr"); 4833 4834 // Load the pointer if the argument was passed indirectly. 4835 if (isIndirect) { 4836 Result = Address(Builder.CreateLoad(Result, "aggr"), 4837 getContext().getTypeAlignInChars(Ty)); 4838 } 4839 4840 return Result; 4841 } 4842 4843 bool PPC32TargetCodeGenInfo::isStructReturnInRegABI( 4844 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 4845 assert(Triple.isPPC32()); 4846 4847 switch (Opts.getStructReturnConvention()) { 4848 case CodeGenOptions::SRCK_Default: 4849 break; 4850 case CodeGenOptions::SRCK_OnStack: // -maix-struct-return 4851 return false; 4852 case CodeGenOptions::SRCK_InRegs: // -msvr4-struct-return 4853 return true; 4854 } 4855 4856 if (Triple.isOSBinFormatELF() && !Triple.isOSLinux()) 4857 return true; 4858 4859 return false; 4860 } 4861 4862 bool 4863 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4864 llvm::Value *Address) const { 4865 return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ false, 4866 /*IsAIX*/ false); 4867 } 4868 4869 // PowerPC-64 4870 4871 namespace { 4872 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information. 4873 class PPC64_SVR4_ABIInfo : public SwiftABIInfo { 4874 public: 4875 enum ABIKind { 4876 ELFv1 = 0, 4877 ELFv2 4878 }; 4879 4880 private: 4881 static const unsigned GPRBits = 64; 4882 ABIKind Kind; 4883 bool IsSoftFloatABI; 4884 4885 public: 4886 PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, 4887 bool SoftFloatABI) 4888 : SwiftABIInfo(CGT), Kind(Kind), IsSoftFloatABI(SoftFloatABI) {} 4889 4890 bool isPromotableTypeForABI(QualType Ty) const; 4891 CharUnits getParamTypeAlignment(QualType Ty) const; 4892 4893 ABIArgInfo classifyReturnType(QualType RetTy) const; 4894 ABIArgInfo classifyArgumentType(QualType Ty) const; 4895 4896 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 4897 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 4898 uint64_t Members) const override; 4899 4900 // TODO: We can add more logic to computeInfo to improve performance. 4901 // Example: For aggregate arguments that fit in a register, we could 4902 // use getDirectInReg (as is done below for structs containing a single 4903 // floating-point value) to avoid pushing them to memory on function 4904 // entry. This would require changing the logic in PPCISelLowering 4905 // when lowering the parameters in the caller and args in the callee. 4906 void computeInfo(CGFunctionInfo &FI) const override { 4907 if (!getCXXABI().classifyReturnType(FI)) 4908 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4909 for (auto &I : FI.arguments()) { 4910 // We rely on the default argument classification for the most part. 4911 // One exception: An aggregate containing a single floating-point 4912 // or vector item must be passed in a register if one is available. 4913 const Type *T = isSingleElementStruct(I.type, getContext()); 4914 if (T) { 4915 const BuiltinType *BT = T->getAs<BuiltinType>(); 4916 if ((T->isVectorType() && getContext().getTypeSize(T) == 128) || 4917 (BT && BT->isFloatingPoint())) { 4918 QualType QT(T, 0); 4919 I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT)); 4920 continue; 4921 } 4922 } 4923 I.info = classifyArgumentType(I.type); 4924 } 4925 } 4926 4927 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4928 QualType Ty) const override; 4929 4930 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 4931 bool asReturnValue) const override { 4932 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 4933 } 4934 4935 bool isSwiftErrorInRegister() const override { 4936 return false; 4937 } 4938 }; 4939 4940 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo { 4941 4942 public: 4943 PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT, 4944 PPC64_SVR4_ABIInfo::ABIKind Kind, 4945 bool SoftFloatABI) 4946 : TargetCodeGenInfo( 4947 std::make_unique<PPC64_SVR4_ABIInfo>(CGT, Kind, SoftFloatABI)) {} 4948 4949 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4950 // This is recovered from gcc output. 4951 return 1; // r1 is the dedicated stack pointer 4952 } 4953 4954 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4955 llvm::Value *Address) const override; 4956 }; 4957 4958 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo { 4959 public: 4960 PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {} 4961 4962 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4963 // This is recovered from gcc output. 4964 return 1; // r1 is the dedicated stack pointer 4965 } 4966 4967 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4968 llvm::Value *Address) const override; 4969 }; 4970 4971 } 4972 4973 // Return true if the ABI requires Ty to be passed sign- or zero- 4974 // extended to 64 bits. 4975 bool 4976 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const { 4977 // Treat an enum type as its underlying type. 4978 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4979 Ty = EnumTy->getDecl()->getIntegerType(); 4980 4981 // Promotable integer types are required to be promoted by the ABI. 4982 if (isPromotableIntegerTypeForABI(Ty)) 4983 return true; 4984 4985 // In addition to the usual promotable integer types, we also need to 4986 // extend all 32-bit types, since the ABI requires promotion to 64 bits. 4987 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 4988 switch (BT->getKind()) { 4989 case BuiltinType::Int: 4990 case BuiltinType::UInt: 4991 return true; 4992 default: 4993 break; 4994 } 4995 4996 if (const auto *EIT = Ty->getAs<ExtIntType>()) 4997 if (EIT->getNumBits() < 64) 4998 return true; 4999 5000 return false; 5001 } 5002 5003 /// isAlignedParamType - Determine whether a type requires 16-byte or 5004 /// higher alignment in the parameter area. Always returns at least 8. 5005 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 5006 // Complex types are passed just like their elements. 5007 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 5008 Ty = CTy->getElementType(); 5009 5010 // Only vector types of size 16 bytes need alignment (larger types are 5011 // passed via reference, smaller types are not aligned). 5012 if (Ty->isVectorType()) { 5013 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8); 5014 } else if (Ty->isRealFloatingType() && 5015 &getContext().getFloatTypeSemantics(Ty) == 5016 &llvm::APFloat::IEEEquad()) { 5017 // According to ABI document section 'Optional Save Areas': If extended 5018 // precision floating-point values in IEEE BINARY 128 QUADRUPLE PRECISION 5019 // format are supported, map them to a single quadword, quadword aligned. 5020 return CharUnits::fromQuantity(16); 5021 } 5022 5023 // For single-element float/vector structs, we consider the whole type 5024 // to have the same alignment requirements as its single element. 5025 const Type *AlignAsType = nullptr; 5026 const Type *EltType = isSingleElementStruct(Ty, getContext()); 5027 if (EltType) { 5028 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 5029 if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) || 5030 (BT && BT->isFloatingPoint())) 5031 AlignAsType = EltType; 5032 } 5033 5034 // Likewise for ELFv2 homogeneous aggregates. 5035 const Type *Base = nullptr; 5036 uint64_t Members = 0; 5037 if (!AlignAsType && Kind == ELFv2 && 5038 isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members)) 5039 AlignAsType = Base; 5040 5041 // With special case aggregates, only vector base types need alignment. 5042 if (AlignAsType) { 5043 return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8); 5044 } 5045 5046 // Otherwise, we only need alignment for any aggregate type that 5047 // has an alignment requirement of >= 16 bytes. 5048 if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) { 5049 return CharUnits::fromQuantity(16); 5050 } 5051 5052 return CharUnits::fromQuantity(8); 5053 } 5054 5055 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous 5056 /// aggregate. Base is set to the base element type, and Members is set 5057 /// to the number of base elements. 5058 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base, 5059 uint64_t &Members) const { 5060 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 5061 uint64_t NElements = AT->getSize().getZExtValue(); 5062 if (NElements == 0) 5063 return false; 5064 if (!isHomogeneousAggregate(AT->getElementType(), Base, Members)) 5065 return false; 5066 Members *= NElements; 5067 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 5068 const RecordDecl *RD = RT->getDecl(); 5069 if (RD->hasFlexibleArrayMember()) 5070 return false; 5071 5072 Members = 0; 5073 5074 // If this is a C++ record, check the properties of the record such as 5075 // bases and ABI specific restrictions 5076 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 5077 if (!getCXXABI().isPermittedToBeHomogeneousAggregate(CXXRD)) 5078 return false; 5079 5080 for (const auto &I : CXXRD->bases()) { 5081 // Ignore empty records. 5082 if (isEmptyRecord(getContext(), I.getType(), true)) 5083 continue; 5084 5085 uint64_t FldMembers; 5086 if (!isHomogeneousAggregate(I.getType(), Base, FldMembers)) 5087 return false; 5088 5089 Members += FldMembers; 5090 } 5091 } 5092 5093 for (const auto *FD : RD->fields()) { 5094 // Ignore (non-zero arrays of) empty records. 5095 QualType FT = FD->getType(); 5096 while (const ConstantArrayType *AT = 5097 getContext().getAsConstantArrayType(FT)) { 5098 if (AT->getSize().getZExtValue() == 0) 5099 return false; 5100 FT = AT->getElementType(); 5101 } 5102 if (isEmptyRecord(getContext(), FT, true)) 5103 continue; 5104 5105 // For compatibility with GCC, ignore empty bitfields in C++ mode. 5106 if (getContext().getLangOpts().CPlusPlus && 5107 FD->isZeroLengthBitField(getContext())) 5108 continue; 5109 5110 uint64_t FldMembers; 5111 if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers)) 5112 return false; 5113 5114 Members = (RD->isUnion() ? 5115 std::max(Members, FldMembers) : Members + FldMembers); 5116 } 5117 5118 if (!Base) 5119 return false; 5120 5121 // Ensure there is no padding. 5122 if (getContext().getTypeSize(Base) * Members != 5123 getContext().getTypeSize(Ty)) 5124 return false; 5125 } else { 5126 Members = 1; 5127 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 5128 Members = 2; 5129 Ty = CT->getElementType(); 5130 } 5131 5132 // Most ABIs only support float, double, and some vector type widths. 5133 if (!isHomogeneousAggregateBaseType(Ty)) 5134 return false; 5135 5136 // The base type must be the same for all members. Types that 5137 // agree in both total size and mode (float vs. vector) are 5138 // treated as being equivalent here. 5139 const Type *TyPtr = Ty.getTypePtr(); 5140 if (!Base) { 5141 Base = TyPtr; 5142 // If it's a non-power-of-2 vector, its size is already a power-of-2, 5143 // so make sure to widen it explicitly. 5144 if (const VectorType *VT = Base->getAs<VectorType>()) { 5145 QualType EltTy = VT->getElementType(); 5146 unsigned NumElements = 5147 getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy); 5148 Base = getContext() 5149 .getVectorType(EltTy, NumElements, VT->getVectorKind()) 5150 .getTypePtr(); 5151 } 5152 } 5153 5154 if (Base->isVectorType() != TyPtr->isVectorType() || 5155 getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr)) 5156 return false; 5157 } 5158 return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members); 5159 } 5160 5161 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 5162 // Homogeneous aggregates for ELFv2 must have base types of float, 5163 // double, long double, or 128-bit vectors. 5164 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 5165 if (BT->getKind() == BuiltinType::Float || 5166 BT->getKind() == BuiltinType::Double || 5167 BT->getKind() == BuiltinType::LongDouble || 5168 (getContext().getTargetInfo().hasFloat128Type() && 5169 (BT->getKind() == BuiltinType::Float128))) { 5170 if (IsSoftFloatABI) 5171 return false; 5172 return true; 5173 } 5174 } 5175 if (const VectorType *VT = Ty->getAs<VectorType>()) { 5176 if (getContext().getTypeSize(VT) == 128) 5177 return true; 5178 } 5179 return false; 5180 } 5181 5182 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough( 5183 const Type *Base, uint64_t Members) const { 5184 // Vector and fp128 types require one register, other floating point types 5185 // require one or two registers depending on their size. 5186 uint32_t NumRegs = 5187 ((getContext().getTargetInfo().hasFloat128Type() && 5188 Base->isFloat128Type()) || 5189 Base->isVectorType()) ? 1 5190 : (getContext().getTypeSize(Base) + 63) / 64; 5191 5192 // Homogeneous Aggregates may occupy at most 8 registers. 5193 return Members * NumRegs <= 8; 5194 } 5195 5196 ABIArgInfo 5197 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const { 5198 Ty = useFirstFieldIfTransparentUnion(Ty); 5199 5200 if (Ty->isAnyComplexType()) 5201 return ABIArgInfo::getDirect(); 5202 5203 // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes) 5204 // or via reference (larger than 16 bytes). 5205 if (Ty->isVectorType()) { 5206 uint64_t Size = getContext().getTypeSize(Ty); 5207 if (Size > 128) 5208 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5209 else if (Size < 128) { 5210 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 5211 return ABIArgInfo::getDirect(CoerceTy); 5212 } 5213 } 5214 5215 if (const auto *EIT = Ty->getAs<ExtIntType>()) 5216 if (EIT->getNumBits() > 128) 5217 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 5218 5219 if (isAggregateTypeForABI(Ty)) { 5220 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 5221 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 5222 5223 uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity(); 5224 uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); 5225 5226 // ELFv2 homogeneous aggregates are passed as array types. 5227 const Type *Base = nullptr; 5228 uint64_t Members = 0; 5229 if (Kind == ELFv2 && 5230 isHomogeneousAggregate(Ty, Base, Members)) { 5231 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 5232 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 5233 return ABIArgInfo::getDirect(CoerceTy); 5234 } 5235 5236 // If an aggregate may end up fully in registers, we do not 5237 // use the ByVal method, but pass the aggregate as array. 5238 // This is usually beneficial since we avoid forcing the 5239 // back-end to store the argument to memory. 5240 uint64_t Bits = getContext().getTypeSize(Ty); 5241 if (Bits > 0 && Bits <= 8 * GPRBits) { 5242 llvm::Type *CoerceTy; 5243 5244 // Types up to 8 bytes are passed as integer type (which will be 5245 // properly aligned in the argument save area doubleword). 5246 if (Bits <= GPRBits) 5247 CoerceTy = 5248 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 5249 // Larger types are passed as arrays, with the base type selected 5250 // according to the required alignment in the save area. 5251 else { 5252 uint64_t RegBits = ABIAlign * 8; 5253 uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits; 5254 llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits); 5255 CoerceTy = llvm::ArrayType::get(RegTy, NumRegs); 5256 } 5257 5258 return ABIArgInfo::getDirect(CoerceTy); 5259 } 5260 5261 // All other aggregates are passed ByVal. 5262 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 5263 /*ByVal=*/true, 5264 /*Realign=*/TyAlign > ABIAlign); 5265 } 5266 5267 return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 5268 : ABIArgInfo::getDirect()); 5269 } 5270 5271 ABIArgInfo 5272 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { 5273 if (RetTy->isVoidType()) 5274 return ABIArgInfo::getIgnore(); 5275 5276 if (RetTy->isAnyComplexType()) 5277 return ABIArgInfo::getDirect(); 5278 5279 // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes) 5280 // or via reference (larger than 16 bytes). 5281 if (RetTy->isVectorType()) { 5282 uint64_t Size = getContext().getTypeSize(RetTy); 5283 if (Size > 128) 5284 return getNaturalAlignIndirect(RetTy); 5285 else if (Size < 128) { 5286 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 5287 return ABIArgInfo::getDirect(CoerceTy); 5288 } 5289 } 5290 5291 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 5292 if (EIT->getNumBits() > 128) 5293 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 5294 5295 if (isAggregateTypeForABI(RetTy)) { 5296 // ELFv2 homogeneous aggregates are returned as array types. 5297 const Type *Base = nullptr; 5298 uint64_t Members = 0; 5299 if (Kind == ELFv2 && 5300 isHomogeneousAggregate(RetTy, Base, Members)) { 5301 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 5302 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 5303 return ABIArgInfo::getDirect(CoerceTy); 5304 } 5305 5306 // ELFv2 small aggregates are returned in up to two registers. 5307 uint64_t Bits = getContext().getTypeSize(RetTy); 5308 if (Kind == ELFv2 && Bits <= 2 * GPRBits) { 5309 if (Bits == 0) 5310 return ABIArgInfo::getIgnore(); 5311 5312 llvm::Type *CoerceTy; 5313 if (Bits > GPRBits) { 5314 CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits); 5315 CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy); 5316 } else 5317 CoerceTy = 5318 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 5319 return ABIArgInfo::getDirect(CoerceTy); 5320 } 5321 5322 // All other aggregates are returned indirectly. 5323 return getNaturalAlignIndirect(RetTy); 5324 } 5325 5326 return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 5327 : ABIArgInfo::getDirect()); 5328 } 5329 5330 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine. 5331 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5332 QualType Ty) const { 5333 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 5334 TypeInfo.Align = getParamTypeAlignment(Ty); 5335 5336 CharUnits SlotSize = CharUnits::fromQuantity(8); 5337 5338 // If we have a complex type and the base type is smaller than 8 bytes, 5339 // the ABI calls for the real and imaginary parts to be right-adjusted 5340 // in separate doublewords. However, Clang expects us to produce a 5341 // pointer to a structure with the two parts packed tightly. So generate 5342 // loads of the real and imaginary parts relative to the va_list pointer, 5343 // and store them to a temporary structure. 5344 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 5345 CharUnits EltSize = TypeInfo.Width / 2; 5346 if (EltSize < SlotSize) { 5347 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty, 5348 SlotSize * 2, SlotSize, 5349 SlotSize, /*AllowHigher*/ true); 5350 5351 Address RealAddr = Addr; 5352 Address ImagAddr = RealAddr; 5353 if (CGF.CGM.getDataLayout().isBigEndian()) { 5354 RealAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, 5355 SlotSize - EltSize); 5356 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr, 5357 2 * SlotSize - EltSize); 5358 } else { 5359 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize); 5360 } 5361 5362 llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType()); 5363 RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy); 5364 ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy); 5365 llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal"); 5366 llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag"); 5367 5368 Address Temp = CGF.CreateMemTemp(Ty, "vacplx"); 5369 CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty), 5370 /*init*/ true); 5371 return Temp; 5372 } 5373 } 5374 5375 // Otherwise, just use the general rule. 5376 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 5377 TypeInfo, SlotSize, /*AllowHigher*/ true); 5378 } 5379 5380 bool 5381 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable( 5382 CodeGen::CodeGenFunction &CGF, 5383 llvm::Value *Address) const { 5384 return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ true, 5385 /*IsAIX*/ false); 5386 } 5387 5388 bool 5389 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5390 llvm::Value *Address) const { 5391 return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ true, 5392 /*IsAIX*/ false); 5393 } 5394 5395 //===----------------------------------------------------------------------===// 5396 // AArch64 ABI Implementation 5397 //===----------------------------------------------------------------------===// 5398 5399 namespace { 5400 5401 class AArch64ABIInfo : public SwiftABIInfo { 5402 public: 5403 enum ABIKind { 5404 AAPCS = 0, 5405 DarwinPCS, 5406 Win64 5407 }; 5408 5409 private: 5410 ABIKind Kind; 5411 5412 public: 5413 AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind) 5414 : SwiftABIInfo(CGT), Kind(Kind) {} 5415 5416 private: 5417 ABIKind getABIKind() const { return Kind; } 5418 bool isDarwinPCS() const { return Kind == DarwinPCS; } 5419 5420 ABIArgInfo classifyReturnType(QualType RetTy, bool IsVariadic) const; 5421 ABIArgInfo classifyArgumentType(QualType RetTy, bool IsVariadic, 5422 unsigned CallingConvention) const; 5423 ABIArgInfo coerceIllegalVector(QualType Ty) const; 5424 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 5425 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 5426 uint64_t Members) const override; 5427 5428 bool isIllegalVectorType(QualType Ty) const; 5429 5430 void computeInfo(CGFunctionInfo &FI) const override { 5431 if (!::classifyReturnType(getCXXABI(), FI, *this)) 5432 FI.getReturnInfo() = 5433 classifyReturnType(FI.getReturnType(), FI.isVariadic()); 5434 5435 for (auto &it : FI.arguments()) 5436 it.info = classifyArgumentType(it.type, FI.isVariadic(), 5437 FI.getCallingConvention()); 5438 } 5439 5440 Address EmitDarwinVAArg(Address VAListAddr, QualType Ty, 5441 CodeGenFunction &CGF) const; 5442 5443 Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty, 5444 CodeGenFunction &CGF) const; 5445 5446 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5447 QualType Ty) const override { 5448 llvm::Type *BaseTy = CGF.ConvertType(Ty); 5449 if (isa<llvm::ScalableVectorType>(BaseTy)) 5450 llvm::report_fatal_error("Passing SVE types to variadic functions is " 5451 "currently not supported"); 5452 5453 return Kind == Win64 ? EmitMSVAArg(CGF, VAListAddr, Ty) 5454 : isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF) 5455 : EmitAAPCSVAArg(VAListAddr, Ty, CGF); 5456 } 5457 5458 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 5459 QualType Ty) const override; 5460 5461 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 5462 bool asReturnValue) const override { 5463 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 5464 } 5465 bool isSwiftErrorInRegister() const override { 5466 return true; 5467 } 5468 5469 bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy, 5470 unsigned elts) const override; 5471 5472 bool allowBFloatArgsAndRet() const override { 5473 return getTarget().hasBFloat16Type(); 5474 } 5475 }; 5476 5477 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo { 5478 public: 5479 AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind) 5480 : TargetCodeGenInfo(std::make_unique<AArch64ABIInfo>(CGT, Kind)) {} 5481 5482 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 5483 return "mov\tfp, fp\t\t// marker for objc_retainAutoreleaseReturnValue"; 5484 } 5485 5486 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 5487 return 31; 5488 } 5489 5490 bool doesReturnSlotInterfereWithArgs() const override { return false; } 5491 5492 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5493 CodeGen::CodeGenModule &CGM) const override { 5494 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 5495 if (!FD) 5496 return; 5497 5498 const auto *TA = FD->getAttr<TargetAttr>(); 5499 if (TA == nullptr) 5500 return; 5501 5502 ParsedTargetAttr Attr = TA->parse(); 5503 if (Attr.BranchProtection.empty()) 5504 return; 5505 5506 TargetInfo::BranchProtectionInfo BPI; 5507 StringRef Error; 5508 (void)CGM.getTarget().validateBranchProtection(Attr.BranchProtection, 5509 BPI, Error); 5510 assert(Error.empty()); 5511 5512 auto *Fn = cast<llvm::Function>(GV); 5513 static const char *SignReturnAddrStr[] = {"none", "non-leaf", "all"}; 5514 Fn->addFnAttr("sign-return-address", SignReturnAddrStr[static_cast<int>(BPI.SignReturnAddr)]); 5515 5516 if (BPI.SignReturnAddr != LangOptions::SignReturnAddressScopeKind::None) { 5517 Fn->addFnAttr("sign-return-address-key", 5518 BPI.SignKey == LangOptions::SignReturnAddressKeyKind::AKey 5519 ? "a_key" 5520 : "b_key"); 5521 } 5522 5523 Fn->addFnAttr("branch-target-enforcement", 5524 BPI.BranchTargetEnforcement ? "true" : "false"); 5525 } 5526 }; 5527 5528 class WindowsAArch64TargetCodeGenInfo : public AArch64TargetCodeGenInfo { 5529 public: 5530 WindowsAArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind K) 5531 : AArch64TargetCodeGenInfo(CGT, K) {} 5532 5533 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5534 CodeGen::CodeGenModule &CGM) const override; 5535 5536 void getDependentLibraryOption(llvm::StringRef Lib, 5537 llvm::SmallString<24> &Opt) const override { 5538 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); 5539 } 5540 5541 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, 5542 llvm::SmallString<32> &Opt) const override { 5543 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 5544 } 5545 }; 5546 5547 void WindowsAArch64TargetCodeGenInfo::setTargetAttributes( 5548 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 5549 AArch64TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 5550 if (GV->isDeclaration()) 5551 return; 5552 addStackProbeTargetAttributes(D, GV, CGM); 5553 } 5554 } 5555 5556 ABIArgInfo AArch64ABIInfo::coerceIllegalVector(QualType Ty) const { 5557 assert(Ty->isVectorType() && "expected vector type!"); 5558 5559 const auto *VT = Ty->castAs<VectorType>(); 5560 if (VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector) { 5561 assert(VT->getElementType()->isBuiltinType() && "expected builtin type!"); 5562 assert(VT->getElementType()->castAs<BuiltinType>()->getKind() == 5563 BuiltinType::UChar && 5564 "unexpected builtin type for SVE predicate!"); 5565 return ABIArgInfo::getDirect(llvm::ScalableVectorType::get( 5566 llvm::Type::getInt1Ty(getVMContext()), 16)); 5567 } 5568 5569 if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector) { 5570 assert(VT->getElementType()->isBuiltinType() && "expected builtin type!"); 5571 5572 const auto *BT = VT->getElementType()->castAs<BuiltinType>(); 5573 llvm::ScalableVectorType *ResType = nullptr; 5574 switch (BT->getKind()) { 5575 default: 5576 llvm_unreachable("unexpected builtin type for SVE vector!"); 5577 case BuiltinType::SChar: 5578 case BuiltinType::UChar: 5579 ResType = llvm::ScalableVectorType::get( 5580 llvm::Type::getInt8Ty(getVMContext()), 16); 5581 break; 5582 case BuiltinType::Short: 5583 case BuiltinType::UShort: 5584 ResType = llvm::ScalableVectorType::get( 5585 llvm::Type::getInt16Ty(getVMContext()), 8); 5586 break; 5587 case BuiltinType::Int: 5588 case BuiltinType::UInt: 5589 ResType = llvm::ScalableVectorType::get( 5590 llvm::Type::getInt32Ty(getVMContext()), 4); 5591 break; 5592 case BuiltinType::Long: 5593 case BuiltinType::ULong: 5594 ResType = llvm::ScalableVectorType::get( 5595 llvm::Type::getInt64Ty(getVMContext()), 2); 5596 break; 5597 case BuiltinType::Half: 5598 ResType = llvm::ScalableVectorType::get( 5599 llvm::Type::getHalfTy(getVMContext()), 8); 5600 break; 5601 case BuiltinType::Float: 5602 ResType = llvm::ScalableVectorType::get( 5603 llvm::Type::getFloatTy(getVMContext()), 4); 5604 break; 5605 case BuiltinType::Double: 5606 ResType = llvm::ScalableVectorType::get( 5607 llvm::Type::getDoubleTy(getVMContext()), 2); 5608 break; 5609 case BuiltinType::BFloat16: 5610 ResType = llvm::ScalableVectorType::get( 5611 llvm::Type::getBFloatTy(getVMContext()), 8); 5612 break; 5613 } 5614 return ABIArgInfo::getDirect(ResType); 5615 } 5616 5617 uint64_t Size = getContext().getTypeSize(Ty); 5618 // Android promotes <2 x i8> to i16, not i32 5619 if (isAndroid() && (Size <= 16)) { 5620 llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext()); 5621 return ABIArgInfo::getDirect(ResType); 5622 } 5623 if (Size <= 32) { 5624 llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext()); 5625 return ABIArgInfo::getDirect(ResType); 5626 } 5627 if (Size == 64) { 5628 auto *ResType = 5629 llvm::FixedVectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2); 5630 return ABIArgInfo::getDirect(ResType); 5631 } 5632 if (Size == 128) { 5633 auto *ResType = 5634 llvm::FixedVectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4); 5635 return ABIArgInfo::getDirect(ResType); 5636 } 5637 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5638 } 5639 5640 ABIArgInfo 5641 AArch64ABIInfo::classifyArgumentType(QualType Ty, bool IsVariadic, 5642 unsigned CallingConvention) const { 5643 Ty = useFirstFieldIfTransparentUnion(Ty); 5644 5645 // Handle illegal vector types here. 5646 if (isIllegalVectorType(Ty)) 5647 return coerceIllegalVector(Ty); 5648 5649 if (!isAggregateTypeForABI(Ty)) { 5650 // Treat an enum type as its underlying type. 5651 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5652 Ty = EnumTy->getDecl()->getIntegerType(); 5653 5654 if (const auto *EIT = Ty->getAs<ExtIntType>()) 5655 if (EIT->getNumBits() > 128) 5656 return getNaturalAlignIndirect(Ty); 5657 5658 return (isPromotableIntegerTypeForABI(Ty) && isDarwinPCS() 5659 ? ABIArgInfo::getExtend(Ty) 5660 : ABIArgInfo::getDirect()); 5661 } 5662 5663 // Structures with either a non-trivial destructor or a non-trivial 5664 // copy constructor are always indirect. 5665 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 5666 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 5667 CGCXXABI::RAA_DirectInMemory); 5668 } 5669 5670 // Empty records are always ignored on Darwin, but actually passed in C++ mode 5671 // elsewhere for GNU compatibility. 5672 uint64_t Size = getContext().getTypeSize(Ty); 5673 bool IsEmpty = isEmptyRecord(getContext(), Ty, true); 5674 if (IsEmpty || Size == 0) { 5675 if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS()) 5676 return ABIArgInfo::getIgnore(); 5677 5678 // GNU C mode. The only argument that gets ignored is an empty one with size 5679 // 0. 5680 if (IsEmpty && Size == 0) 5681 return ABIArgInfo::getIgnore(); 5682 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 5683 } 5684 5685 // Homogeneous Floating-point Aggregates (HFAs) need to be expanded. 5686 const Type *Base = nullptr; 5687 uint64_t Members = 0; 5688 bool IsWin64 = Kind == Win64 || CallingConvention == llvm::CallingConv::Win64; 5689 bool IsWinVariadic = IsWin64 && IsVariadic; 5690 // In variadic functions on Windows, all composite types are treated alike, 5691 // no special handling of HFAs/HVAs. 5692 if (!IsWinVariadic && isHomogeneousAggregate(Ty, Base, Members)) { 5693 if (Kind != AArch64ABIInfo::AAPCS) 5694 return ABIArgInfo::getDirect( 5695 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members)); 5696 5697 // For alignment adjusted HFAs, cap the argument alignment to 16, leave it 5698 // default otherwise. 5699 unsigned Align = 5700 getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity(); 5701 unsigned BaseAlign = getContext().getTypeAlignInChars(Base).getQuantity(); 5702 Align = (Align > BaseAlign && Align >= 16) ? 16 : 0; 5703 return ABIArgInfo::getDirect( 5704 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members), 0, 5705 nullptr, true, Align); 5706 } 5707 5708 // Aggregates <= 16 bytes are passed directly in registers or on the stack. 5709 if (Size <= 128) { 5710 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 5711 // same size and alignment. 5712 if (getTarget().isRenderScriptTarget()) { 5713 return coerceToIntArray(Ty, getContext(), getVMContext()); 5714 } 5715 unsigned Alignment; 5716 if (Kind == AArch64ABIInfo::AAPCS) { 5717 Alignment = getContext().getTypeUnadjustedAlign(Ty); 5718 Alignment = Alignment < 128 ? 64 : 128; 5719 } else { 5720 Alignment = std::max(getContext().getTypeAlign(Ty), 5721 (unsigned)getTarget().getPointerWidth(0)); 5722 } 5723 Size = llvm::alignTo(Size, Alignment); 5724 5725 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 5726 // For aggregates with 16-byte alignment, we use i128. 5727 llvm::Type *BaseTy = llvm::Type::getIntNTy(getVMContext(), Alignment); 5728 return ABIArgInfo::getDirect( 5729 Size == Alignment ? BaseTy 5730 : llvm::ArrayType::get(BaseTy, Size / Alignment)); 5731 } 5732 5733 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5734 } 5735 5736 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy, 5737 bool IsVariadic) const { 5738 if (RetTy->isVoidType()) 5739 return ABIArgInfo::getIgnore(); 5740 5741 if (const auto *VT = RetTy->getAs<VectorType>()) { 5742 if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector || 5743 VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector) 5744 return coerceIllegalVector(RetTy); 5745 } 5746 5747 // Large vector types should be returned via memory. 5748 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) 5749 return getNaturalAlignIndirect(RetTy); 5750 5751 if (!isAggregateTypeForABI(RetTy)) { 5752 // Treat an enum type as its underlying type. 5753 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5754 RetTy = EnumTy->getDecl()->getIntegerType(); 5755 5756 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 5757 if (EIT->getNumBits() > 128) 5758 return getNaturalAlignIndirect(RetTy); 5759 5760 return (isPromotableIntegerTypeForABI(RetTy) && isDarwinPCS() 5761 ? ABIArgInfo::getExtend(RetTy) 5762 : ABIArgInfo::getDirect()); 5763 } 5764 5765 uint64_t Size = getContext().getTypeSize(RetTy); 5766 if (isEmptyRecord(getContext(), RetTy, true) || Size == 0) 5767 return ABIArgInfo::getIgnore(); 5768 5769 const Type *Base = nullptr; 5770 uint64_t Members = 0; 5771 if (isHomogeneousAggregate(RetTy, Base, Members) && 5772 !(getTarget().getTriple().getArch() == llvm::Triple::aarch64_32 && 5773 IsVariadic)) 5774 // Homogeneous Floating-point Aggregates (HFAs) are returned directly. 5775 return ABIArgInfo::getDirect(); 5776 5777 // Aggregates <= 16 bytes are returned directly in registers or on the stack. 5778 if (Size <= 128) { 5779 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 5780 // same size and alignment. 5781 if (getTarget().isRenderScriptTarget()) { 5782 return coerceToIntArray(RetTy, getContext(), getVMContext()); 5783 } 5784 5785 if (Size <= 64 && getDataLayout().isLittleEndian()) { 5786 // Composite types are returned in lower bits of a 64-bit register for LE, 5787 // and in higher bits for BE. However, integer types are always returned 5788 // in lower bits for both LE and BE, and they are not rounded up to 5789 // 64-bits. We can skip rounding up of composite types for LE, but not for 5790 // BE, otherwise composite types will be indistinguishable from integer 5791 // types. 5792 return ABIArgInfo::getDirect( 5793 llvm::IntegerType::get(getVMContext(), Size)); 5794 } 5795 5796 unsigned Alignment = getContext().getTypeAlign(RetTy); 5797 Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes 5798 5799 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 5800 // For aggregates with 16-byte alignment, we use i128. 5801 if (Alignment < 128 && Size == 128) { 5802 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); 5803 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 5804 } 5805 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 5806 } 5807 5808 return getNaturalAlignIndirect(RetTy); 5809 } 5810 5811 /// isIllegalVectorType - check whether the vector type is legal for AArch64. 5812 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const { 5813 if (const VectorType *VT = Ty->getAs<VectorType>()) { 5814 // Check whether VT is a fixed-length SVE vector. These types are 5815 // represented as scalable vectors in function args/return and must be 5816 // coerced from fixed vectors. 5817 if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector || 5818 VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector) 5819 return true; 5820 5821 // Check whether VT is legal. 5822 unsigned NumElements = VT->getNumElements(); 5823 uint64_t Size = getContext().getTypeSize(VT); 5824 // NumElements should be power of 2. 5825 if (!llvm::isPowerOf2_32(NumElements)) 5826 return true; 5827 5828 // arm64_32 has to be compatible with the ARM logic here, which allows huge 5829 // vectors for some reason. 5830 llvm::Triple Triple = getTarget().getTriple(); 5831 if (Triple.getArch() == llvm::Triple::aarch64_32 && 5832 Triple.isOSBinFormatMachO()) 5833 return Size <= 32; 5834 5835 return Size != 64 && (Size != 128 || NumElements == 1); 5836 } 5837 return false; 5838 } 5839 5840 bool AArch64ABIInfo::isLegalVectorTypeForSwift(CharUnits totalSize, 5841 llvm::Type *eltTy, 5842 unsigned elts) const { 5843 if (!llvm::isPowerOf2_32(elts)) 5844 return false; 5845 if (totalSize.getQuantity() != 8 && 5846 (totalSize.getQuantity() != 16 || elts == 1)) 5847 return false; 5848 return true; 5849 } 5850 5851 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 5852 // Homogeneous aggregates for AAPCS64 must have base types of a floating 5853 // point type or a short-vector type. This is the same as the 32-bit ABI, 5854 // but with the difference that any floating-point type is allowed, 5855 // including __fp16. 5856 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 5857 if (BT->isFloatingPoint()) 5858 return true; 5859 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 5860 unsigned VecSize = getContext().getTypeSize(VT); 5861 if (VecSize == 64 || VecSize == 128) 5862 return true; 5863 } 5864 return false; 5865 } 5866 5867 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 5868 uint64_t Members) const { 5869 return Members <= 4; 5870 } 5871 5872 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr, QualType Ty, 5873 CodeGenFunction &CGF) const { 5874 ABIArgInfo AI = classifyArgumentType(Ty, /*IsVariadic=*/true, 5875 CGF.CurFnInfo->getCallingConvention()); 5876 bool IsIndirect = AI.isIndirect(); 5877 5878 llvm::Type *BaseTy = CGF.ConvertType(Ty); 5879 if (IsIndirect) 5880 BaseTy = llvm::PointerType::getUnqual(BaseTy); 5881 else if (AI.getCoerceToType()) 5882 BaseTy = AI.getCoerceToType(); 5883 5884 unsigned NumRegs = 1; 5885 if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) { 5886 BaseTy = ArrTy->getElementType(); 5887 NumRegs = ArrTy->getNumElements(); 5888 } 5889 bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy(); 5890 5891 // The AArch64 va_list type and handling is specified in the Procedure Call 5892 // Standard, section B.4: 5893 // 5894 // struct { 5895 // void *__stack; 5896 // void *__gr_top; 5897 // void *__vr_top; 5898 // int __gr_offs; 5899 // int __vr_offs; 5900 // }; 5901 5902 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); 5903 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 5904 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); 5905 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 5906 5907 CharUnits TySize = getContext().getTypeSizeInChars(Ty); 5908 CharUnits TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty); 5909 5910 Address reg_offs_p = Address::invalid(); 5911 llvm::Value *reg_offs = nullptr; 5912 int reg_top_index; 5913 int RegSize = IsIndirect ? 8 : TySize.getQuantity(); 5914 if (!IsFPR) { 5915 // 3 is the field number of __gr_offs 5916 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p"); 5917 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs"); 5918 reg_top_index = 1; // field number for __gr_top 5919 RegSize = llvm::alignTo(RegSize, 8); 5920 } else { 5921 // 4 is the field number of __vr_offs. 5922 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p"); 5923 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs"); 5924 reg_top_index = 2; // field number for __vr_top 5925 RegSize = 16 * NumRegs; 5926 } 5927 5928 //======================================= 5929 // Find out where argument was passed 5930 //======================================= 5931 5932 // If reg_offs >= 0 we're already using the stack for this type of 5933 // argument. We don't want to keep updating reg_offs (in case it overflows, 5934 // though anyone passing 2GB of arguments, each at most 16 bytes, deserves 5935 // whatever they get). 5936 llvm::Value *UsingStack = nullptr; 5937 UsingStack = CGF.Builder.CreateICmpSGE( 5938 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0)); 5939 5940 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock); 5941 5942 // Otherwise, at least some kind of argument could go in these registers, the 5943 // question is whether this particular type is too big. 5944 CGF.EmitBlock(MaybeRegBlock); 5945 5946 // Integer arguments may need to correct register alignment (for example a 5947 // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we 5948 // align __gr_offs to calculate the potential address. 5949 if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) { 5950 int Align = TyAlign.getQuantity(); 5951 5952 reg_offs = CGF.Builder.CreateAdd( 5953 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1), 5954 "align_regoffs"); 5955 reg_offs = CGF.Builder.CreateAnd( 5956 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align), 5957 "aligned_regoffs"); 5958 } 5959 5960 // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list. 5961 // The fact that this is done unconditionally reflects the fact that 5962 // allocating an argument to the stack also uses up all the remaining 5963 // registers of the appropriate kind. 5964 llvm::Value *NewOffset = nullptr; 5965 NewOffset = CGF.Builder.CreateAdd( 5966 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs"); 5967 CGF.Builder.CreateStore(NewOffset, reg_offs_p); 5968 5969 // Now we're in a position to decide whether this argument really was in 5970 // registers or not. 5971 llvm::Value *InRegs = nullptr; 5972 InRegs = CGF.Builder.CreateICmpSLE( 5973 NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg"); 5974 5975 CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock); 5976 5977 //======================================= 5978 // Argument was in registers 5979 //======================================= 5980 5981 // Now we emit the code for if the argument was originally passed in 5982 // registers. First start the appropriate block: 5983 CGF.EmitBlock(InRegBlock); 5984 5985 llvm::Value *reg_top = nullptr; 5986 Address reg_top_p = 5987 CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p"); 5988 reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top"); 5989 Address BaseAddr(CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, reg_top, reg_offs), 5990 CharUnits::fromQuantity(IsFPR ? 16 : 8)); 5991 Address RegAddr = Address::invalid(); 5992 llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty); 5993 5994 if (IsIndirect) { 5995 // If it's been passed indirectly (actually a struct), whatever we find from 5996 // stored registers or on the stack will actually be a struct **. 5997 MemTy = llvm::PointerType::getUnqual(MemTy); 5998 } 5999 6000 const Type *Base = nullptr; 6001 uint64_t NumMembers = 0; 6002 bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers); 6003 if (IsHFA && NumMembers > 1) { 6004 // Homogeneous aggregates passed in registers will have their elements split 6005 // and stored 16-bytes apart regardless of size (they're notionally in qN, 6006 // qN+1, ...). We reload and store into a temporary local variable 6007 // contiguously. 6008 assert(!IsIndirect && "Homogeneous aggregates should be passed directly"); 6009 auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0)); 6010 llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0)); 6011 llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers); 6012 Address Tmp = CGF.CreateTempAlloca(HFATy, 6013 std::max(TyAlign, BaseTyInfo.Align)); 6014 6015 // On big-endian platforms, the value will be right-aligned in its slot. 6016 int Offset = 0; 6017 if (CGF.CGM.getDataLayout().isBigEndian() && 6018 BaseTyInfo.Width.getQuantity() < 16) 6019 Offset = 16 - BaseTyInfo.Width.getQuantity(); 6020 6021 for (unsigned i = 0; i < NumMembers; ++i) { 6022 CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset); 6023 Address LoadAddr = 6024 CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset); 6025 LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy); 6026 6027 Address StoreAddr = CGF.Builder.CreateConstArrayGEP(Tmp, i); 6028 6029 llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr); 6030 CGF.Builder.CreateStore(Elem, StoreAddr); 6031 } 6032 6033 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy); 6034 } else { 6035 // Otherwise the object is contiguous in memory. 6036 6037 // It might be right-aligned in its slot. 6038 CharUnits SlotSize = BaseAddr.getAlignment(); 6039 if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect && 6040 (IsHFA || !isAggregateTypeForABI(Ty)) && 6041 TySize < SlotSize) { 6042 CharUnits Offset = SlotSize - TySize; 6043 BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset); 6044 } 6045 6046 RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy); 6047 } 6048 6049 CGF.EmitBranch(ContBlock); 6050 6051 //======================================= 6052 // Argument was on the stack 6053 //======================================= 6054 CGF.EmitBlock(OnStackBlock); 6055 6056 Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p"); 6057 llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack"); 6058 6059 // Again, stack arguments may need realignment. In this case both integer and 6060 // floating-point ones might be affected. 6061 if (!IsIndirect && TyAlign.getQuantity() > 8) { 6062 int Align = TyAlign.getQuantity(); 6063 6064 OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty); 6065 6066 OnStackPtr = CGF.Builder.CreateAdd( 6067 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1), 6068 "align_stack"); 6069 OnStackPtr = CGF.Builder.CreateAnd( 6070 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align), 6071 "align_stack"); 6072 6073 OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy); 6074 } 6075 Address OnStackAddr(OnStackPtr, 6076 std::max(CharUnits::fromQuantity(8), TyAlign)); 6077 6078 // All stack slots are multiples of 8 bytes. 6079 CharUnits StackSlotSize = CharUnits::fromQuantity(8); 6080 CharUnits StackSize; 6081 if (IsIndirect) 6082 StackSize = StackSlotSize; 6083 else 6084 StackSize = TySize.alignTo(StackSlotSize); 6085 6086 llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize); 6087 llvm::Value *NewStack = CGF.Builder.CreateInBoundsGEP( 6088 CGF.Int8Ty, OnStackPtr, StackSizeC, "new_stack"); 6089 6090 // Write the new value of __stack for the next call to va_arg 6091 CGF.Builder.CreateStore(NewStack, stack_p); 6092 6093 if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) && 6094 TySize < StackSlotSize) { 6095 CharUnits Offset = StackSlotSize - TySize; 6096 OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset); 6097 } 6098 6099 OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy); 6100 6101 CGF.EmitBranch(ContBlock); 6102 6103 //======================================= 6104 // Tidy up 6105 //======================================= 6106 CGF.EmitBlock(ContBlock); 6107 6108 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 6109 OnStackAddr, OnStackBlock, "vaargs.addr"); 6110 6111 if (IsIndirect) 6112 return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"), 6113 TyAlign); 6114 6115 return ResAddr; 6116 } 6117 6118 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty, 6119 CodeGenFunction &CGF) const { 6120 // The backend's lowering doesn't support va_arg for aggregates or 6121 // illegal vector types. Lower VAArg here for these cases and use 6122 // the LLVM va_arg instruction for everything else. 6123 if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty)) 6124 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 6125 6126 uint64_t PointerSize = getTarget().getPointerWidth(0) / 8; 6127 CharUnits SlotSize = CharUnits::fromQuantity(PointerSize); 6128 6129 // Empty records are ignored for parameter passing purposes. 6130 if (isEmptyRecord(getContext(), Ty, true)) { 6131 Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 6132 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 6133 return Addr; 6134 } 6135 6136 // The size of the actual thing passed, which might end up just 6137 // being a pointer for indirect types. 6138 auto TyInfo = getContext().getTypeInfoInChars(Ty); 6139 6140 // Arguments bigger than 16 bytes which aren't homogeneous 6141 // aggregates should be passed indirectly. 6142 bool IsIndirect = false; 6143 if (TyInfo.Width.getQuantity() > 16) { 6144 const Type *Base = nullptr; 6145 uint64_t Members = 0; 6146 IsIndirect = !isHomogeneousAggregate(Ty, Base, Members); 6147 } 6148 6149 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 6150 TyInfo, SlotSize, /*AllowHigherAlign*/ true); 6151 } 6152 6153 Address AArch64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 6154 QualType Ty) const { 6155 bool IsIndirect = false; 6156 6157 // Composites larger than 16 bytes are passed by reference. 6158 if (isAggregateTypeForABI(Ty) && getContext().getTypeSize(Ty) > 128) 6159 IsIndirect = true; 6160 6161 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 6162 CGF.getContext().getTypeInfoInChars(Ty), 6163 CharUnits::fromQuantity(8), 6164 /*allowHigherAlign*/ false); 6165 } 6166 6167 //===----------------------------------------------------------------------===// 6168 // ARM ABI Implementation 6169 //===----------------------------------------------------------------------===// 6170 6171 namespace { 6172 6173 class ARMABIInfo : public SwiftABIInfo { 6174 public: 6175 enum ABIKind { 6176 APCS = 0, 6177 AAPCS = 1, 6178 AAPCS_VFP = 2, 6179 AAPCS16_VFP = 3, 6180 }; 6181 6182 private: 6183 ABIKind Kind; 6184 bool IsFloatABISoftFP; 6185 6186 public: 6187 ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) 6188 : SwiftABIInfo(CGT), Kind(_Kind) { 6189 setCCs(); 6190 IsFloatABISoftFP = CGT.getCodeGenOpts().FloatABI == "softfp" || 6191 CGT.getCodeGenOpts().FloatABI == ""; // default 6192 } 6193 6194 bool isEABI() const { 6195 switch (getTarget().getTriple().getEnvironment()) { 6196 case llvm::Triple::Android: 6197 case llvm::Triple::EABI: 6198 case llvm::Triple::EABIHF: 6199 case llvm::Triple::GNUEABI: 6200 case llvm::Triple::GNUEABIHF: 6201 case llvm::Triple::MuslEABI: 6202 case llvm::Triple::MuslEABIHF: 6203 return true; 6204 default: 6205 return false; 6206 } 6207 } 6208 6209 bool isEABIHF() const { 6210 switch (getTarget().getTriple().getEnvironment()) { 6211 case llvm::Triple::EABIHF: 6212 case llvm::Triple::GNUEABIHF: 6213 case llvm::Triple::MuslEABIHF: 6214 return true; 6215 default: 6216 return false; 6217 } 6218 } 6219 6220 ABIKind getABIKind() const { return Kind; } 6221 6222 bool allowBFloatArgsAndRet() const override { 6223 return !IsFloatABISoftFP && getTarget().hasBFloat16Type(); 6224 } 6225 6226 private: 6227 ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic, 6228 unsigned functionCallConv) const; 6229 ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic, 6230 unsigned functionCallConv) const; 6231 ABIArgInfo classifyHomogeneousAggregate(QualType Ty, const Type *Base, 6232 uint64_t Members) const; 6233 ABIArgInfo coerceIllegalVector(QualType Ty) const; 6234 bool isIllegalVectorType(QualType Ty) const; 6235 bool containsAnyFP16Vectors(QualType Ty) const; 6236 6237 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 6238 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 6239 uint64_t Members) const override; 6240 6241 bool isEffectivelyAAPCS_VFP(unsigned callConvention, bool acceptHalf) const; 6242 6243 void computeInfo(CGFunctionInfo &FI) const override; 6244 6245 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6246 QualType Ty) const override; 6247 6248 llvm::CallingConv::ID getLLVMDefaultCC() const; 6249 llvm::CallingConv::ID getABIDefaultCC() const; 6250 void setCCs(); 6251 6252 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 6253 bool asReturnValue) const override { 6254 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 6255 } 6256 bool isSwiftErrorInRegister() const override { 6257 return true; 6258 } 6259 bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy, 6260 unsigned elts) const override; 6261 }; 6262 6263 class ARMTargetCodeGenInfo : public TargetCodeGenInfo { 6264 public: 6265 ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 6266 : TargetCodeGenInfo(std::make_unique<ARMABIInfo>(CGT, K)) {} 6267 6268 const ARMABIInfo &getABIInfo() const { 6269 return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo()); 6270 } 6271 6272 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 6273 return 13; 6274 } 6275 6276 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 6277 return "mov\tr7, r7\t\t// marker for objc_retainAutoreleaseReturnValue"; 6278 } 6279 6280 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 6281 llvm::Value *Address) const override { 6282 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 6283 6284 // 0-15 are the 16 integer registers. 6285 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15); 6286 return false; 6287 } 6288 6289 unsigned getSizeOfUnwindException() const override { 6290 if (getABIInfo().isEABI()) return 88; 6291 return TargetCodeGenInfo::getSizeOfUnwindException(); 6292 } 6293 6294 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6295 CodeGen::CodeGenModule &CGM) const override { 6296 if (GV->isDeclaration()) 6297 return; 6298 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 6299 if (!FD) 6300 return; 6301 6302 const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>(); 6303 if (!Attr) 6304 return; 6305 6306 const char *Kind; 6307 switch (Attr->getInterrupt()) { 6308 case ARMInterruptAttr::Generic: Kind = ""; break; 6309 case ARMInterruptAttr::IRQ: Kind = "IRQ"; break; 6310 case ARMInterruptAttr::FIQ: Kind = "FIQ"; break; 6311 case ARMInterruptAttr::SWI: Kind = "SWI"; break; 6312 case ARMInterruptAttr::ABORT: Kind = "ABORT"; break; 6313 case ARMInterruptAttr::UNDEF: Kind = "UNDEF"; break; 6314 } 6315 6316 llvm::Function *Fn = cast<llvm::Function>(GV); 6317 6318 Fn->addFnAttr("interrupt", Kind); 6319 6320 ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind(); 6321 if (ABI == ARMABIInfo::APCS) 6322 return; 6323 6324 // AAPCS guarantees that sp will be 8-byte aligned on any public interface, 6325 // however this is not necessarily true on taking any interrupt. Instruct 6326 // the backend to perform a realignment as part of the function prologue. 6327 llvm::AttrBuilder B; 6328 B.addStackAlignmentAttr(8); 6329 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 6330 } 6331 }; 6332 6333 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo { 6334 public: 6335 WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 6336 : ARMTargetCodeGenInfo(CGT, K) {} 6337 6338 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6339 CodeGen::CodeGenModule &CGM) const override; 6340 6341 void getDependentLibraryOption(llvm::StringRef Lib, 6342 llvm::SmallString<24> &Opt) const override { 6343 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); 6344 } 6345 6346 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, 6347 llvm::SmallString<32> &Opt) const override { 6348 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 6349 } 6350 }; 6351 6352 void WindowsARMTargetCodeGenInfo::setTargetAttributes( 6353 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 6354 ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 6355 if (GV->isDeclaration()) 6356 return; 6357 addStackProbeTargetAttributes(D, GV, CGM); 6358 } 6359 } 6360 6361 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const { 6362 if (!::classifyReturnType(getCXXABI(), FI, *this)) 6363 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), FI.isVariadic(), 6364 FI.getCallingConvention()); 6365 6366 for (auto &I : FI.arguments()) 6367 I.info = classifyArgumentType(I.type, FI.isVariadic(), 6368 FI.getCallingConvention()); 6369 6370 6371 // Always honor user-specified calling convention. 6372 if (FI.getCallingConvention() != llvm::CallingConv::C) 6373 return; 6374 6375 llvm::CallingConv::ID cc = getRuntimeCC(); 6376 if (cc != llvm::CallingConv::C) 6377 FI.setEffectiveCallingConvention(cc); 6378 } 6379 6380 /// Return the default calling convention that LLVM will use. 6381 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const { 6382 // The default calling convention that LLVM will infer. 6383 if (isEABIHF() || getTarget().getTriple().isWatchABI()) 6384 return llvm::CallingConv::ARM_AAPCS_VFP; 6385 else if (isEABI()) 6386 return llvm::CallingConv::ARM_AAPCS; 6387 else 6388 return llvm::CallingConv::ARM_APCS; 6389 } 6390 6391 /// Return the calling convention that our ABI would like us to use 6392 /// as the C calling convention. 6393 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const { 6394 switch (getABIKind()) { 6395 case APCS: return llvm::CallingConv::ARM_APCS; 6396 case AAPCS: return llvm::CallingConv::ARM_AAPCS; 6397 case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 6398 case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 6399 } 6400 llvm_unreachable("bad ABI kind"); 6401 } 6402 6403 void ARMABIInfo::setCCs() { 6404 assert(getRuntimeCC() == llvm::CallingConv::C); 6405 6406 // Don't muddy up the IR with a ton of explicit annotations if 6407 // they'd just match what LLVM will infer from the triple. 6408 llvm::CallingConv::ID abiCC = getABIDefaultCC(); 6409 if (abiCC != getLLVMDefaultCC()) 6410 RuntimeCC = abiCC; 6411 } 6412 6413 ABIArgInfo ARMABIInfo::coerceIllegalVector(QualType Ty) const { 6414 uint64_t Size = getContext().getTypeSize(Ty); 6415 if (Size <= 32) { 6416 llvm::Type *ResType = 6417 llvm::Type::getInt32Ty(getVMContext()); 6418 return ABIArgInfo::getDirect(ResType); 6419 } 6420 if (Size == 64 || Size == 128) { 6421 auto *ResType = llvm::FixedVectorType::get( 6422 llvm::Type::getInt32Ty(getVMContext()), Size / 32); 6423 return ABIArgInfo::getDirect(ResType); 6424 } 6425 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6426 } 6427 6428 ABIArgInfo ARMABIInfo::classifyHomogeneousAggregate(QualType Ty, 6429 const Type *Base, 6430 uint64_t Members) const { 6431 assert(Base && "Base class should be set for homogeneous aggregate"); 6432 // Base can be a floating-point or a vector. 6433 if (const VectorType *VT = Base->getAs<VectorType>()) { 6434 // FP16 vectors should be converted to integer vectors 6435 if (!getTarget().hasLegalHalfType() && containsAnyFP16Vectors(Ty)) { 6436 uint64_t Size = getContext().getTypeSize(VT); 6437 auto *NewVecTy = llvm::FixedVectorType::get( 6438 llvm::Type::getInt32Ty(getVMContext()), Size / 32); 6439 llvm::Type *Ty = llvm::ArrayType::get(NewVecTy, Members); 6440 return ABIArgInfo::getDirect(Ty, 0, nullptr, false); 6441 } 6442 } 6443 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); 6444 } 6445 6446 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, bool isVariadic, 6447 unsigned functionCallConv) const { 6448 // 6.1.2.1 The following argument types are VFP CPRCs: 6449 // A single-precision floating-point type (including promoted 6450 // half-precision types); A double-precision floating-point type; 6451 // A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate 6452 // with a Base Type of a single- or double-precision floating-point type, 6453 // 64-bit containerized vectors or 128-bit containerized vectors with one 6454 // to four Elements. 6455 // Variadic functions should always marshal to the base standard. 6456 bool IsAAPCS_VFP = 6457 !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ false); 6458 6459 Ty = useFirstFieldIfTransparentUnion(Ty); 6460 6461 // Handle illegal vector types here. 6462 if (isIllegalVectorType(Ty)) 6463 return coerceIllegalVector(Ty); 6464 6465 if (!isAggregateTypeForABI(Ty)) { 6466 // Treat an enum type as its underlying type. 6467 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 6468 Ty = EnumTy->getDecl()->getIntegerType(); 6469 } 6470 6471 if (const auto *EIT = Ty->getAs<ExtIntType>()) 6472 if (EIT->getNumBits() > 64) 6473 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 6474 6475 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 6476 : ABIArgInfo::getDirect()); 6477 } 6478 6479 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 6480 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 6481 } 6482 6483 // Ignore empty records. 6484 if (isEmptyRecord(getContext(), Ty, true)) 6485 return ABIArgInfo::getIgnore(); 6486 6487 if (IsAAPCS_VFP) { 6488 // Homogeneous Aggregates need to be expanded when we can fit the aggregate 6489 // into VFP registers. 6490 const Type *Base = nullptr; 6491 uint64_t Members = 0; 6492 if (isHomogeneousAggregate(Ty, Base, Members)) 6493 return classifyHomogeneousAggregate(Ty, Base, Members); 6494 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 6495 // WatchOS does have homogeneous aggregates. Note that we intentionally use 6496 // this convention even for a variadic function: the backend will use GPRs 6497 // if needed. 6498 const Type *Base = nullptr; 6499 uint64_t Members = 0; 6500 if (isHomogeneousAggregate(Ty, Base, Members)) { 6501 assert(Base && Members <= 4 && "unexpected homogeneous aggregate"); 6502 llvm::Type *Ty = 6503 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members); 6504 return ABIArgInfo::getDirect(Ty, 0, nullptr, false); 6505 } 6506 } 6507 6508 if (getABIKind() == ARMABIInfo::AAPCS16_VFP && 6509 getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) { 6510 // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're 6511 // bigger than 128-bits, they get placed in space allocated by the caller, 6512 // and a pointer is passed. 6513 return ABIArgInfo::getIndirect( 6514 CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false); 6515 } 6516 6517 // Support byval for ARM. 6518 // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at 6519 // most 8-byte. We realign the indirect argument if type alignment is bigger 6520 // than ABI alignment. 6521 uint64_t ABIAlign = 4; 6522 uint64_t TyAlign; 6523 if (getABIKind() == ARMABIInfo::AAPCS_VFP || 6524 getABIKind() == ARMABIInfo::AAPCS) { 6525 TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity(); 6526 ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8); 6527 } else { 6528 TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); 6529 } 6530 if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) { 6531 assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval"); 6532 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 6533 /*ByVal=*/true, 6534 /*Realign=*/TyAlign > ABIAlign); 6535 } 6536 6537 // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of 6538 // same size and alignment. 6539 if (getTarget().isRenderScriptTarget()) { 6540 return coerceToIntArray(Ty, getContext(), getVMContext()); 6541 } 6542 6543 // Otherwise, pass by coercing to a structure of the appropriate size. 6544 llvm::Type* ElemTy; 6545 unsigned SizeRegs; 6546 // FIXME: Try to match the types of the arguments more accurately where 6547 // we can. 6548 if (TyAlign <= 4) { 6549 ElemTy = llvm::Type::getInt32Ty(getVMContext()); 6550 SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32; 6551 } else { 6552 ElemTy = llvm::Type::getInt64Ty(getVMContext()); 6553 SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64; 6554 } 6555 6556 return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs)); 6557 } 6558 6559 static bool isIntegerLikeType(QualType Ty, ASTContext &Context, 6560 llvm::LLVMContext &VMContext) { 6561 // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure 6562 // is called integer-like if its size is less than or equal to one word, and 6563 // the offset of each of its addressable sub-fields is zero. 6564 6565 uint64_t Size = Context.getTypeSize(Ty); 6566 6567 // Check that the type fits in a word. 6568 if (Size > 32) 6569 return false; 6570 6571 // FIXME: Handle vector types! 6572 if (Ty->isVectorType()) 6573 return false; 6574 6575 // Float types are never treated as "integer like". 6576 if (Ty->isRealFloatingType()) 6577 return false; 6578 6579 // If this is a builtin or pointer type then it is ok. 6580 if (Ty->getAs<BuiltinType>() || Ty->isPointerType()) 6581 return true; 6582 6583 // Small complex integer types are "integer like". 6584 if (const ComplexType *CT = Ty->getAs<ComplexType>()) 6585 return isIntegerLikeType(CT->getElementType(), Context, VMContext); 6586 6587 // Single element and zero sized arrays should be allowed, by the definition 6588 // above, but they are not. 6589 6590 // Otherwise, it must be a record type. 6591 const RecordType *RT = Ty->getAs<RecordType>(); 6592 if (!RT) return false; 6593 6594 // Ignore records with flexible arrays. 6595 const RecordDecl *RD = RT->getDecl(); 6596 if (RD->hasFlexibleArrayMember()) 6597 return false; 6598 6599 // Check that all sub-fields are at offset 0, and are themselves "integer 6600 // like". 6601 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 6602 6603 bool HadField = false; 6604 unsigned idx = 0; 6605 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 6606 i != e; ++i, ++idx) { 6607 const FieldDecl *FD = *i; 6608 6609 // Bit-fields are not addressable, we only need to verify they are "integer 6610 // like". We still have to disallow a subsequent non-bitfield, for example: 6611 // struct { int : 0; int x } 6612 // is non-integer like according to gcc. 6613 if (FD->isBitField()) { 6614 if (!RD->isUnion()) 6615 HadField = true; 6616 6617 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 6618 return false; 6619 6620 continue; 6621 } 6622 6623 // Check if this field is at offset 0. 6624 if (Layout.getFieldOffset(idx) != 0) 6625 return false; 6626 6627 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 6628 return false; 6629 6630 // Only allow at most one field in a structure. This doesn't match the 6631 // wording above, but follows gcc in situations with a field following an 6632 // empty structure. 6633 if (!RD->isUnion()) { 6634 if (HadField) 6635 return false; 6636 6637 HadField = true; 6638 } 6639 } 6640 6641 return true; 6642 } 6643 6644 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, bool isVariadic, 6645 unsigned functionCallConv) const { 6646 6647 // Variadic functions should always marshal to the base standard. 6648 bool IsAAPCS_VFP = 6649 !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ true); 6650 6651 if (RetTy->isVoidType()) 6652 return ABIArgInfo::getIgnore(); 6653 6654 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 6655 // Large vector types should be returned via memory. 6656 if (getContext().getTypeSize(RetTy) > 128) 6657 return getNaturalAlignIndirect(RetTy); 6658 // TODO: FP16/BF16 vectors should be converted to integer vectors 6659 // This check is similar to isIllegalVectorType - refactor? 6660 if ((!getTarget().hasLegalHalfType() && 6661 (VT->getElementType()->isFloat16Type() || 6662 VT->getElementType()->isHalfType())) || 6663 (IsFloatABISoftFP && 6664 VT->getElementType()->isBFloat16Type())) 6665 return coerceIllegalVector(RetTy); 6666 } 6667 6668 if (!isAggregateTypeForABI(RetTy)) { 6669 // Treat an enum type as its underlying type. 6670 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 6671 RetTy = EnumTy->getDecl()->getIntegerType(); 6672 6673 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 6674 if (EIT->getNumBits() > 64) 6675 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 6676 6677 return isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 6678 : ABIArgInfo::getDirect(); 6679 } 6680 6681 // Are we following APCS? 6682 if (getABIKind() == APCS) { 6683 if (isEmptyRecord(getContext(), RetTy, false)) 6684 return ABIArgInfo::getIgnore(); 6685 6686 // Complex types are all returned as packed integers. 6687 // 6688 // FIXME: Consider using 2 x vector types if the back end handles them 6689 // correctly. 6690 if (RetTy->isAnyComplexType()) 6691 return ABIArgInfo::getDirect(llvm::IntegerType::get( 6692 getVMContext(), getContext().getTypeSize(RetTy))); 6693 6694 // Integer like structures are returned in r0. 6695 if (isIntegerLikeType(RetTy, getContext(), getVMContext())) { 6696 // Return in the smallest viable integer type. 6697 uint64_t Size = getContext().getTypeSize(RetTy); 6698 if (Size <= 8) 6699 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6700 if (Size <= 16) 6701 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6702 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6703 } 6704 6705 // Otherwise return in memory. 6706 return getNaturalAlignIndirect(RetTy); 6707 } 6708 6709 // Otherwise this is an AAPCS variant. 6710 6711 if (isEmptyRecord(getContext(), RetTy, true)) 6712 return ABIArgInfo::getIgnore(); 6713 6714 // Check for homogeneous aggregates with AAPCS-VFP. 6715 if (IsAAPCS_VFP) { 6716 const Type *Base = nullptr; 6717 uint64_t Members = 0; 6718 if (isHomogeneousAggregate(RetTy, Base, Members)) 6719 return classifyHomogeneousAggregate(RetTy, Base, Members); 6720 } 6721 6722 // Aggregates <= 4 bytes are returned in r0; other aggregates 6723 // are returned indirectly. 6724 uint64_t Size = getContext().getTypeSize(RetTy); 6725 if (Size <= 32) { 6726 // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of 6727 // same size and alignment. 6728 if (getTarget().isRenderScriptTarget()) { 6729 return coerceToIntArray(RetTy, getContext(), getVMContext()); 6730 } 6731 if (getDataLayout().isBigEndian()) 6732 // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4) 6733 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6734 6735 // Return in the smallest viable integer type. 6736 if (Size <= 8) 6737 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6738 if (Size <= 16) 6739 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6740 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6741 } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) { 6742 llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext()); 6743 llvm::Type *CoerceTy = 6744 llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32); 6745 return ABIArgInfo::getDirect(CoerceTy); 6746 } 6747 6748 return getNaturalAlignIndirect(RetTy); 6749 } 6750 6751 /// isIllegalVector - check whether Ty is an illegal vector type. 6752 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const { 6753 if (const VectorType *VT = Ty->getAs<VectorType> ()) { 6754 // On targets that don't support half, fp16 or bfloat, they are expanded 6755 // into float, and we don't want the ABI to depend on whether or not they 6756 // are supported in hardware. Thus return false to coerce vectors of these 6757 // types into integer vectors. 6758 // We do not depend on hasLegalHalfType for bfloat as it is a 6759 // separate IR type. 6760 if ((!getTarget().hasLegalHalfType() && 6761 (VT->getElementType()->isFloat16Type() || 6762 VT->getElementType()->isHalfType())) || 6763 (IsFloatABISoftFP && 6764 VT->getElementType()->isBFloat16Type())) 6765 return true; 6766 if (isAndroid()) { 6767 // Android shipped using Clang 3.1, which supported a slightly different 6768 // vector ABI. The primary differences were that 3-element vector types 6769 // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path 6770 // accepts that legacy behavior for Android only. 6771 // Check whether VT is legal. 6772 unsigned NumElements = VT->getNumElements(); 6773 // NumElements should be power of 2 or equal to 3. 6774 if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3) 6775 return true; 6776 } else { 6777 // Check whether VT is legal. 6778 unsigned NumElements = VT->getNumElements(); 6779 uint64_t Size = getContext().getTypeSize(VT); 6780 // NumElements should be power of 2. 6781 if (!llvm::isPowerOf2_32(NumElements)) 6782 return true; 6783 // Size should be greater than 32 bits. 6784 return Size <= 32; 6785 } 6786 } 6787 return false; 6788 } 6789 6790 /// Return true if a type contains any 16-bit floating point vectors 6791 bool ARMABIInfo::containsAnyFP16Vectors(QualType Ty) const { 6792 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 6793 uint64_t NElements = AT->getSize().getZExtValue(); 6794 if (NElements == 0) 6795 return false; 6796 return containsAnyFP16Vectors(AT->getElementType()); 6797 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 6798 const RecordDecl *RD = RT->getDecl(); 6799 6800 // If this is a C++ record, check the bases first. 6801 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 6802 if (llvm::any_of(CXXRD->bases(), [this](const CXXBaseSpecifier &B) { 6803 return containsAnyFP16Vectors(B.getType()); 6804 })) 6805 return true; 6806 6807 if (llvm::any_of(RD->fields(), [this](FieldDecl *FD) { 6808 return FD && containsAnyFP16Vectors(FD->getType()); 6809 })) 6810 return true; 6811 6812 return false; 6813 } else { 6814 if (const VectorType *VT = Ty->getAs<VectorType>()) 6815 return (VT->getElementType()->isFloat16Type() || 6816 VT->getElementType()->isBFloat16Type() || 6817 VT->getElementType()->isHalfType()); 6818 return false; 6819 } 6820 } 6821 6822 bool ARMABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, 6823 llvm::Type *eltTy, 6824 unsigned numElts) const { 6825 if (!llvm::isPowerOf2_32(numElts)) 6826 return false; 6827 unsigned size = getDataLayout().getTypeStoreSizeInBits(eltTy); 6828 if (size > 64) 6829 return false; 6830 if (vectorSize.getQuantity() != 8 && 6831 (vectorSize.getQuantity() != 16 || numElts == 1)) 6832 return false; 6833 return true; 6834 } 6835 6836 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 6837 // Homogeneous aggregates for AAPCS-VFP must have base types of float, 6838 // double, or 64-bit or 128-bit vectors. 6839 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 6840 if (BT->getKind() == BuiltinType::Float || 6841 BT->getKind() == BuiltinType::Double || 6842 BT->getKind() == BuiltinType::LongDouble) 6843 return true; 6844 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 6845 unsigned VecSize = getContext().getTypeSize(VT); 6846 if (VecSize == 64 || VecSize == 128) 6847 return true; 6848 } 6849 return false; 6850 } 6851 6852 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 6853 uint64_t Members) const { 6854 return Members <= 4; 6855 } 6856 6857 bool ARMABIInfo::isEffectivelyAAPCS_VFP(unsigned callConvention, 6858 bool acceptHalf) const { 6859 // Give precedence to user-specified calling conventions. 6860 if (callConvention != llvm::CallingConv::C) 6861 return (callConvention == llvm::CallingConv::ARM_AAPCS_VFP); 6862 else 6863 return (getABIKind() == AAPCS_VFP) || 6864 (acceptHalf && (getABIKind() == AAPCS16_VFP)); 6865 } 6866 6867 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6868 QualType Ty) const { 6869 CharUnits SlotSize = CharUnits::fromQuantity(4); 6870 6871 // Empty records are ignored for parameter passing purposes. 6872 if (isEmptyRecord(getContext(), Ty, true)) { 6873 Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize); 6874 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 6875 return Addr; 6876 } 6877 6878 CharUnits TySize = getContext().getTypeSizeInChars(Ty); 6879 CharUnits TyAlignForABI = getContext().getTypeUnadjustedAlignInChars(Ty); 6880 6881 // Use indirect if size of the illegal vector is bigger than 16 bytes. 6882 bool IsIndirect = false; 6883 const Type *Base = nullptr; 6884 uint64_t Members = 0; 6885 if (TySize > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) { 6886 IsIndirect = true; 6887 6888 // ARMv7k passes structs bigger than 16 bytes indirectly, in space 6889 // allocated by the caller. 6890 } else if (TySize > CharUnits::fromQuantity(16) && 6891 getABIKind() == ARMABIInfo::AAPCS16_VFP && 6892 !isHomogeneousAggregate(Ty, Base, Members)) { 6893 IsIndirect = true; 6894 6895 // Otherwise, bound the type's ABI alignment. 6896 // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for 6897 // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte. 6898 // Our callers should be prepared to handle an under-aligned address. 6899 } else if (getABIKind() == ARMABIInfo::AAPCS_VFP || 6900 getABIKind() == ARMABIInfo::AAPCS) { 6901 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 6902 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8)); 6903 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 6904 // ARMv7k allows type alignment up to 16 bytes. 6905 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 6906 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16)); 6907 } else { 6908 TyAlignForABI = CharUnits::fromQuantity(4); 6909 } 6910 6911 TypeInfoChars TyInfo(TySize, TyAlignForABI, false); 6912 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo, 6913 SlotSize, /*AllowHigherAlign*/ true); 6914 } 6915 6916 //===----------------------------------------------------------------------===// 6917 // NVPTX ABI Implementation 6918 //===----------------------------------------------------------------------===// 6919 6920 namespace { 6921 6922 class NVPTXTargetCodeGenInfo; 6923 6924 class NVPTXABIInfo : public ABIInfo { 6925 NVPTXTargetCodeGenInfo &CGInfo; 6926 6927 public: 6928 NVPTXABIInfo(CodeGenTypes &CGT, NVPTXTargetCodeGenInfo &Info) 6929 : ABIInfo(CGT), CGInfo(Info) {} 6930 6931 ABIArgInfo classifyReturnType(QualType RetTy) const; 6932 ABIArgInfo classifyArgumentType(QualType Ty) const; 6933 6934 void computeInfo(CGFunctionInfo &FI) const override; 6935 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6936 QualType Ty) const override; 6937 bool isUnsupportedType(QualType T) const; 6938 ABIArgInfo coerceToIntArrayWithLimit(QualType Ty, unsigned MaxSize) const; 6939 }; 6940 6941 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo { 6942 public: 6943 NVPTXTargetCodeGenInfo(CodeGenTypes &CGT) 6944 : TargetCodeGenInfo(std::make_unique<NVPTXABIInfo>(CGT, *this)) {} 6945 6946 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6947 CodeGen::CodeGenModule &M) const override; 6948 bool shouldEmitStaticExternCAliases() const override; 6949 6950 llvm::Type *getCUDADeviceBuiltinSurfaceDeviceType() const override { 6951 // On the device side, surface reference is represented as an object handle 6952 // in 64-bit integer. 6953 return llvm::Type::getInt64Ty(getABIInfo().getVMContext()); 6954 } 6955 6956 llvm::Type *getCUDADeviceBuiltinTextureDeviceType() const override { 6957 // On the device side, texture reference is represented as an object handle 6958 // in 64-bit integer. 6959 return llvm::Type::getInt64Ty(getABIInfo().getVMContext()); 6960 } 6961 6962 bool emitCUDADeviceBuiltinSurfaceDeviceCopy(CodeGenFunction &CGF, LValue Dst, 6963 LValue Src) const override { 6964 emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src); 6965 return true; 6966 } 6967 6968 bool emitCUDADeviceBuiltinTextureDeviceCopy(CodeGenFunction &CGF, LValue Dst, 6969 LValue Src) const override { 6970 emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src); 6971 return true; 6972 } 6973 6974 private: 6975 // Adds a NamedMDNode with GV, Name, and Operand as operands, and adds the 6976 // resulting MDNode to the nvvm.annotations MDNode. 6977 static void addNVVMMetadata(llvm::GlobalValue *GV, StringRef Name, 6978 int Operand); 6979 6980 static void emitBuiltinSurfTexDeviceCopy(CodeGenFunction &CGF, LValue Dst, 6981 LValue Src) { 6982 llvm::Value *Handle = nullptr; 6983 llvm::Constant *C = 6984 llvm::dyn_cast<llvm::Constant>(Src.getAddress(CGF).getPointer()); 6985 // Lookup `addrspacecast` through the constant pointer if any. 6986 if (auto *ASC = llvm::dyn_cast_or_null<llvm::AddrSpaceCastOperator>(C)) 6987 C = llvm::cast<llvm::Constant>(ASC->getPointerOperand()); 6988 if (auto *GV = llvm::dyn_cast_or_null<llvm::GlobalVariable>(C)) { 6989 // Load the handle from the specific global variable using 6990 // `nvvm.texsurf.handle.internal` intrinsic. 6991 Handle = CGF.EmitRuntimeCall( 6992 CGF.CGM.getIntrinsic(llvm::Intrinsic::nvvm_texsurf_handle_internal, 6993 {GV->getType()}), 6994 {GV}, "texsurf_handle"); 6995 } else 6996 Handle = CGF.EmitLoadOfScalar(Src, SourceLocation()); 6997 CGF.EmitStoreOfScalar(Handle, Dst); 6998 } 6999 }; 7000 7001 /// Checks if the type is unsupported directly by the current target. 7002 bool NVPTXABIInfo::isUnsupportedType(QualType T) const { 7003 ASTContext &Context = getContext(); 7004 if (!Context.getTargetInfo().hasFloat16Type() && T->isFloat16Type()) 7005 return true; 7006 if (!Context.getTargetInfo().hasFloat128Type() && 7007 (T->isFloat128Type() || 7008 (T->isRealFloatingType() && Context.getTypeSize(T) == 128))) 7009 return true; 7010 if (const auto *EIT = T->getAs<ExtIntType>()) 7011 return EIT->getNumBits() > 7012 (Context.getTargetInfo().hasInt128Type() ? 128U : 64U); 7013 if (!Context.getTargetInfo().hasInt128Type() && T->isIntegerType() && 7014 Context.getTypeSize(T) > 64U) 7015 return true; 7016 if (const auto *AT = T->getAsArrayTypeUnsafe()) 7017 return isUnsupportedType(AT->getElementType()); 7018 const auto *RT = T->getAs<RecordType>(); 7019 if (!RT) 7020 return false; 7021 const RecordDecl *RD = RT->getDecl(); 7022 7023 // If this is a C++ record, check the bases first. 7024 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 7025 for (const CXXBaseSpecifier &I : CXXRD->bases()) 7026 if (isUnsupportedType(I.getType())) 7027 return true; 7028 7029 for (const FieldDecl *I : RD->fields()) 7030 if (isUnsupportedType(I->getType())) 7031 return true; 7032 return false; 7033 } 7034 7035 /// Coerce the given type into an array with maximum allowed size of elements. 7036 ABIArgInfo NVPTXABIInfo::coerceToIntArrayWithLimit(QualType Ty, 7037 unsigned MaxSize) const { 7038 // Alignment and Size are measured in bits. 7039 const uint64_t Size = getContext().getTypeSize(Ty); 7040 const uint64_t Alignment = getContext().getTypeAlign(Ty); 7041 const unsigned Div = std::min<unsigned>(MaxSize, Alignment); 7042 llvm::Type *IntType = llvm::Type::getIntNTy(getVMContext(), Div); 7043 const uint64_t NumElements = (Size + Div - 1) / Div; 7044 return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements)); 7045 } 7046 7047 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const { 7048 if (RetTy->isVoidType()) 7049 return ABIArgInfo::getIgnore(); 7050 7051 if (getContext().getLangOpts().OpenMP && 7052 getContext().getLangOpts().OpenMPIsDevice && isUnsupportedType(RetTy)) 7053 return coerceToIntArrayWithLimit(RetTy, 64); 7054 7055 // note: this is different from default ABI 7056 if (!RetTy->isScalarType()) 7057 return ABIArgInfo::getDirect(); 7058 7059 // Treat an enum type as its underlying type. 7060 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 7061 RetTy = EnumTy->getDecl()->getIntegerType(); 7062 7063 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 7064 : ABIArgInfo::getDirect()); 7065 } 7066 7067 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const { 7068 // Treat an enum type as its underlying type. 7069 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7070 Ty = EnumTy->getDecl()->getIntegerType(); 7071 7072 // Return aggregates type as indirect by value 7073 if (isAggregateTypeForABI(Ty)) { 7074 // Under CUDA device compilation, tex/surf builtin types are replaced with 7075 // object types and passed directly. 7076 if (getContext().getLangOpts().CUDAIsDevice) { 7077 if (Ty->isCUDADeviceBuiltinSurfaceType()) 7078 return ABIArgInfo::getDirect( 7079 CGInfo.getCUDADeviceBuiltinSurfaceDeviceType()); 7080 if (Ty->isCUDADeviceBuiltinTextureType()) 7081 return ABIArgInfo::getDirect( 7082 CGInfo.getCUDADeviceBuiltinTextureDeviceType()); 7083 } 7084 return getNaturalAlignIndirect(Ty, /* byval */ true); 7085 } 7086 7087 if (const auto *EIT = Ty->getAs<ExtIntType>()) { 7088 if ((EIT->getNumBits() > 128) || 7089 (!getContext().getTargetInfo().hasInt128Type() && 7090 EIT->getNumBits() > 64)) 7091 return getNaturalAlignIndirect(Ty, /* byval */ true); 7092 } 7093 7094 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 7095 : ABIArgInfo::getDirect()); 7096 } 7097 7098 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const { 7099 if (!getCXXABI().classifyReturnType(FI)) 7100 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7101 for (auto &I : FI.arguments()) 7102 I.info = classifyArgumentType(I.type); 7103 7104 // Always honor user-specified calling convention. 7105 if (FI.getCallingConvention() != llvm::CallingConv::C) 7106 return; 7107 7108 FI.setEffectiveCallingConvention(getRuntimeCC()); 7109 } 7110 7111 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7112 QualType Ty) const { 7113 llvm_unreachable("NVPTX does not support varargs"); 7114 } 7115 7116 void NVPTXTargetCodeGenInfo::setTargetAttributes( 7117 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 7118 if (GV->isDeclaration()) 7119 return; 7120 const VarDecl *VD = dyn_cast_or_null<VarDecl>(D); 7121 if (VD) { 7122 if (M.getLangOpts().CUDA) { 7123 if (VD->getType()->isCUDADeviceBuiltinSurfaceType()) 7124 addNVVMMetadata(GV, "surface", 1); 7125 else if (VD->getType()->isCUDADeviceBuiltinTextureType()) 7126 addNVVMMetadata(GV, "texture", 1); 7127 return; 7128 } 7129 } 7130 7131 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 7132 if (!FD) return; 7133 7134 llvm::Function *F = cast<llvm::Function>(GV); 7135 7136 // Perform special handling in OpenCL mode 7137 if (M.getLangOpts().OpenCL) { 7138 // Use OpenCL function attributes to check for kernel functions 7139 // By default, all functions are device functions 7140 if (FD->hasAttr<OpenCLKernelAttr>()) { 7141 // OpenCL __kernel functions get kernel metadata 7142 // Create !{<func-ref>, metadata !"kernel", i32 1} node 7143 addNVVMMetadata(F, "kernel", 1); 7144 // And kernel functions are not subject to inlining 7145 F->addFnAttr(llvm::Attribute::NoInline); 7146 } 7147 } 7148 7149 // Perform special handling in CUDA mode. 7150 if (M.getLangOpts().CUDA) { 7151 // CUDA __global__ functions get a kernel metadata entry. Since 7152 // __global__ functions cannot be called from the device, we do not 7153 // need to set the noinline attribute. 7154 if (FD->hasAttr<CUDAGlobalAttr>()) { 7155 // Create !{<func-ref>, metadata !"kernel", i32 1} node 7156 addNVVMMetadata(F, "kernel", 1); 7157 } 7158 if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) { 7159 // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node 7160 llvm::APSInt MaxThreads(32); 7161 MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext()); 7162 if (MaxThreads > 0) 7163 addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue()); 7164 7165 // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was 7166 // not specified in __launch_bounds__ or if the user specified a 0 value, 7167 // we don't have to add a PTX directive. 7168 if (Attr->getMinBlocks()) { 7169 llvm::APSInt MinBlocks(32); 7170 MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext()); 7171 if (MinBlocks > 0) 7172 // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node 7173 addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue()); 7174 } 7175 } 7176 } 7177 } 7178 7179 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::GlobalValue *GV, 7180 StringRef Name, int Operand) { 7181 llvm::Module *M = GV->getParent(); 7182 llvm::LLVMContext &Ctx = M->getContext(); 7183 7184 // Get "nvvm.annotations" metadata node 7185 llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations"); 7186 7187 llvm::Metadata *MDVals[] = { 7188 llvm::ConstantAsMetadata::get(GV), llvm::MDString::get(Ctx, Name), 7189 llvm::ConstantAsMetadata::get( 7190 llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))}; 7191 // Append metadata to nvvm.annotations 7192 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 7193 } 7194 7195 bool NVPTXTargetCodeGenInfo::shouldEmitStaticExternCAliases() const { 7196 return false; 7197 } 7198 } 7199 7200 //===----------------------------------------------------------------------===// 7201 // SystemZ ABI Implementation 7202 //===----------------------------------------------------------------------===// 7203 7204 namespace { 7205 7206 class SystemZABIInfo : public SwiftABIInfo { 7207 bool HasVector; 7208 bool IsSoftFloatABI; 7209 7210 public: 7211 SystemZABIInfo(CodeGenTypes &CGT, bool HV, bool SF) 7212 : SwiftABIInfo(CGT), HasVector(HV), IsSoftFloatABI(SF) {} 7213 7214 bool isPromotableIntegerTypeForABI(QualType Ty) const; 7215 bool isCompoundType(QualType Ty) const; 7216 bool isVectorArgumentType(QualType Ty) const; 7217 bool isFPArgumentType(QualType Ty) const; 7218 QualType GetSingleElementType(QualType Ty) const; 7219 7220 ABIArgInfo classifyReturnType(QualType RetTy) const; 7221 ABIArgInfo classifyArgumentType(QualType ArgTy) const; 7222 7223 void computeInfo(CGFunctionInfo &FI) const override { 7224 if (!getCXXABI().classifyReturnType(FI)) 7225 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7226 for (auto &I : FI.arguments()) 7227 I.info = classifyArgumentType(I.type); 7228 } 7229 7230 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7231 QualType Ty) const override; 7232 7233 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 7234 bool asReturnValue) const override { 7235 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 7236 } 7237 bool isSwiftErrorInRegister() const override { 7238 return false; 7239 } 7240 }; 7241 7242 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo { 7243 public: 7244 SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector, bool SoftFloatABI) 7245 : TargetCodeGenInfo( 7246 std::make_unique<SystemZABIInfo>(CGT, HasVector, SoftFloatABI)) {} 7247 7248 llvm::Value *testFPKind(llvm::Value *V, unsigned BuiltinID, 7249 CGBuilderTy &Builder, 7250 CodeGenModule &CGM) const override { 7251 assert(V->getType()->isFloatingPointTy() && "V should have an FP type."); 7252 // Only use TDC in constrained FP mode. 7253 if (!Builder.getIsFPConstrained()) 7254 return nullptr; 7255 7256 llvm::Type *Ty = V->getType(); 7257 if (Ty->isFloatTy() || Ty->isDoubleTy() || Ty->isFP128Ty()) { 7258 llvm::Module &M = CGM.getModule(); 7259 auto &Ctx = M.getContext(); 7260 llvm::Function *TDCFunc = 7261 llvm::Intrinsic::getDeclaration(&M, llvm::Intrinsic::s390_tdc, Ty); 7262 unsigned TDCBits = 0; 7263 switch (BuiltinID) { 7264 case Builtin::BI__builtin_isnan: 7265 TDCBits = 0xf; 7266 break; 7267 case Builtin::BIfinite: 7268 case Builtin::BI__finite: 7269 case Builtin::BIfinitef: 7270 case Builtin::BI__finitef: 7271 case Builtin::BIfinitel: 7272 case Builtin::BI__finitel: 7273 case Builtin::BI__builtin_isfinite: 7274 TDCBits = 0xfc0; 7275 break; 7276 case Builtin::BI__builtin_isinf: 7277 TDCBits = 0x30; 7278 break; 7279 default: 7280 break; 7281 } 7282 if (TDCBits) 7283 return Builder.CreateCall( 7284 TDCFunc, 7285 {V, llvm::ConstantInt::get(llvm::Type::getInt64Ty(Ctx), TDCBits)}); 7286 } 7287 return nullptr; 7288 } 7289 }; 7290 } 7291 7292 bool SystemZABIInfo::isPromotableIntegerTypeForABI(QualType Ty) const { 7293 // Treat an enum type as its underlying type. 7294 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7295 Ty = EnumTy->getDecl()->getIntegerType(); 7296 7297 // Promotable integer types are required to be promoted by the ABI. 7298 if (ABIInfo::isPromotableIntegerTypeForABI(Ty)) 7299 return true; 7300 7301 if (const auto *EIT = Ty->getAs<ExtIntType>()) 7302 if (EIT->getNumBits() < 64) 7303 return true; 7304 7305 // 32-bit values must also be promoted. 7306 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 7307 switch (BT->getKind()) { 7308 case BuiltinType::Int: 7309 case BuiltinType::UInt: 7310 return true; 7311 default: 7312 return false; 7313 } 7314 return false; 7315 } 7316 7317 bool SystemZABIInfo::isCompoundType(QualType Ty) const { 7318 return (Ty->isAnyComplexType() || 7319 Ty->isVectorType() || 7320 isAggregateTypeForABI(Ty)); 7321 } 7322 7323 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const { 7324 return (HasVector && 7325 Ty->isVectorType() && 7326 getContext().getTypeSize(Ty) <= 128); 7327 } 7328 7329 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const { 7330 if (IsSoftFloatABI) 7331 return false; 7332 7333 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 7334 switch (BT->getKind()) { 7335 case BuiltinType::Float: 7336 case BuiltinType::Double: 7337 return true; 7338 default: 7339 return false; 7340 } 7341 7342 return false; 7343 } 7344 7345 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const { 7346 const RecordType *RT = Ty->getAs<RecordType>(); 7347 7348 if (RT && RT->isStructureOrClassType()) { 7349 const RecordDecl *RD = RT->getDecl(); 7350 QualType Found; 7351 7352 // If this is a C++ record, check the bases first. 7353 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 7354 for (const auto &I : CXXRD->bases()) { 7355 QualType Base = I.getType(); 7356 7357 // Empty bases don't affect things either way. 7358 if (isEmptyRecord(getContext(), Base, true)) 7359 continue; 7360 7361 if (!Found.isNull()) 7362 return Ty; 7363 Found = GetSingleElementType(Base); 7364 } 7365 7366 // Check the fields. 7367 for (const auto *FD : RD->fields()) { 7368 // For compatibility with GCC, ignore empty bitfields in C++ mode. 7369 // Unlike isSingleElementStruct(), empty structure and array fields 7370 // do count. So do anonymous bitfields that aren't zero-sized. 7371 if (getContext().getLangOpts().CPlusPlus && 7372 FD->isZeroLengthBitField(getContext())) 7373 continue; 7374 // Like isSingleElementStruct(), ignore C++20 empty data members. 7375 if (FD->hasAttr<NoUniqueAddressAttr>() && 7376 isEmptyRecord(getContext(), FD->getType(), true)) 7377 continue; 7378 7379 // Unlike isSingleElementStruct(), arrays do not count. 7380 // Nested structures still do though. 7381 if (!Found.isNull()) 7382 return Ty; 7383 Found = GetSingleElementType(FD->getType()); 7384 } 7385 7386 // Unlike isSingleElementStruct(), trailing padding is allowed. 7387 // An 8-byte aligned struct s { float f; } is passed as a double. 7388 if (!Found.isNull()) 7389 return Found; 7390 } 7391 7392 return Ty; 7393 } 7394 7395 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7396 QualType Ty) const { 7397 // Assume that va_list type is correct; should be pointer to LLVM type: 7398 // struct { 7399 // i64 __gpr; 7400 // i64 __fpr; 7401 // i8 *__overflow_arg_area; 7402 // i8 *__reg_save_area; 7403 // }; 7404 7405 // Every non-vector argument occupies 8 bytes and is passed by preference 7406 // in either GPRs or FPRs. Vector arguments occupy 8 or 16 bytes and are 7407 // always passed on the stack. 7408 Ty = getContext().getCanonicalType(Ty); 7409 auto TyInfo = getContext().getTypeInfoInChars(Ty); 7410 llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty); 7411 llvm::Type *DirectTy = ArgTy; 7412 ABIArgInfo AI = classifyArgumentType(Ty); 7413 bool IsIndirect = AI.isIndirect(); 7414 bool InFPRs = false; 7415 bool IsVector = false; 7416 CharUnits UnpaddedSize; 7417 CharUnits DirectAlign; 7418 if (IsIndirect) { 7419 DirectTy = llvm::PointerType::getUnqual(DirectTy); 7420 UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8); 7421 } else { 7422 if (AI.getCoerceToType()) 7423 ArgTy = AI.getCoerceToType(); 7424 InFPRs = (!IsSoftFloatABI && (ArgTy->isFloatTy() || ArgTy->isDoubleTy())); 7425 IsVector = ArgTy->isVectorTy(); 7426 UnpaddedSize = TyInfo.Width; 7427 DirectAlign = TyInfo.Align; 7428 } 7429 CharUnits PaddedSize = CharUnits::fromQuantity(8); 7430 if (IsVector && UnpaddedSize > PaddedSize) 7431 PaddedSize = CharUnits::fromQuantity(16); 7432 assert((UnpaddedSize <= PaddedSize) && "Invalid argument size."); 7433 7434 CharUnits Padding = (PaddedSize - UnpaddedSize); 7435 7436 llvm::Type *IndexTy = CGF.Int64Ty; 7437 llvm::Value *PaddedSizeV = 7438 llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity()); 7439 7440 if (IsVector) { 7441 // Work out the address of a vector argument on the stack. 7442 // Vector arguments are always passed in the high bits of a 7443 // single (8 byte) or double (16 byte) stack slot. 7444 Address OverflowArgAreaPtr = 7445 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr"); 7446 Address OverflowArgArea = 7447 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 7448 TyInfo.Align); 7449 Address MemAddr = 7450 CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr"); 7451 7452 // Update overflow_arg_area_ptr pointer 7453 llvm::Value *NewOverflowArgArea = 7454 CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV, 7455 "overflow_arg_area"); 7456 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 7457 7458 return MemAddr; 7459 } 7460 7461 assert(PaddedSize.getQuantity() == 8); 7462 7463 unsigned MaxRegs, RegCountField, RegSaveIndex; 7464 CharUnits RegPadding; 7465 if (InFPRs) { 7466 MaxRegs = 4; // Maximum of 4 FPR arguments 7467 RegCountField = 1; // __fpr 7468 RegSaveIndex = 16; // save offset for f0 7469 RegPadding = CharUnits(); // floats are passed in the high bits of an FPR 7470 } else { 7471 MaxRegs = 5; // Maximum of 5 GPR arguments 7472 RegCountField = 0; // __gpr 7473 RegSaveIndex = 2; // save offset for r2 7474 RegPadding = Padding; // values are passed in the low bits of a GPR 7475 } 7476 7477 Address RegCountPtr = 7478 CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr"); 7479 llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count"); 7480 llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs); 7481 llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV, 7482 "fits_in_regs"); 7483 7484 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 7485 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 7486 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 7487 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 7488 7489 // Emit code to load the value if it was passed in registers. 7490 CGF.EmitBlock(InRegBlock); 7491 7492 // Work out the address of an argument register. 7493 llvm::Value *ScaledRegCount = 7494 CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count"); 7495 llvm::Value *RegBase = 7496 llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity() 7497 + RegPadding.getQuantity()); 7498 llvm::Value *RegOffset = 7499 CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset"); 7500 Address RegSaveAreaPtr = 7501 CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr"); 7502 llvm::Value *RegSaveArea = 7503 CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area"); 7504 Address RawRegAddr(CGF.Builder.CreateGEP(RegSaveArea, RegOffset, 7505 "raw_reg_addr"), 7506 PaddedSize); 7507 Address RegAddr = 7508 CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr"); 7509 7510 // Update the register count 7511 llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1); 7512 llvm::Value *NewRegCount = 7513 CGF.Builder.CreateAdd(RegCount, One, "reg_count"); 7514 CGF.Builder.CreateStore(NewRegCount, RegCountPtr); 7515 CGF.EmitBranch(ContBlock); 7516 7517 // Emit code to load the value if it was passed in memory. 7518 CGF.EmitBlock(InMemBlock); 7519 7520 // Work out the address of a stack argument. 7521 Address OverflowArgAreaPtr = 7522 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr"); 7523 Address OverflowArgArea = 7524 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 7525 PaddedSize); 7526 Address RawMemAddr = 7527 CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr"); 7528 Address MemAddr = 7529 CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr"); 7530 7531 // Update overflow_arg_area_ptr pointer 7532 llvm::Value *NewOverflowArgArea = 7533 CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV, 7534 "overflow_arg_area"); 7535 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 7536 CGF.EmitBranch(ContBlock); 7537 7538 // Return the appropriate result. 7539 CGF.EmitBlock(ContBlock); 7540 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 7541 MemAddr, InMemBlock, "va_arg.addr"); 7542 7543 if (IsIndirect) 7544 ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"), 7545 TyInfo.Align); 7546 7547 return ResAddr; 7548 } 7549 7550 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const { 7551 if (RetTy->isVoidType()) 7552 return ABIArgInfo::getIgnore(); 7553 if (isVectorArgumentType(RetTy)) 7554 return ABIArgInfo::getDirect(); 7555 if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64) 7556 return getNaturalAlignIndirect(RetTy); 7557 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 7558 : ABIArgInfo::getDirect()); 7559 } 7560 7561 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const { 7562 // Handle the generic C++ ABI. 7563 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 7564 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7565 7566 // Integers and enums are extended to full register width. 7567 if (isPromotableIntegerTypeForABI(Ty)) 7568 return ABIArgInfo::getExtend(Ty); 7569 7570 // Handle vector types and vector-like structure types. Note that 7571 // as opposed to float-like structure types, we do not allow any 7572 // padding for vector-like structures, so verify the sizes match. 7573 uint64_t Size = getContext().getTypeSize(Ty); 7574 QualType SingleElementTy = GetSingleElementType(Ty); 7575 if (isVectorArgumentType(SingleElementTy) && 7576 getContext().getTypeSize(SingleElementTy) == Size) 7577 return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy)); 7578 7579 // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly. 7580 if (Size != 8 && Size != 16 && Size != 32 && Size != 64) 7581 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 7582 7583 // Handle small structures. 7584 if (const RecordType *RT = Ty->getAs<RecordType>()) { 7585 // Structures with flexible arrays have variable length, so really 7586 // fail the size test above. 7587 const RecordDecl *RD = RT->getDecl(); 7588 if (RD->hasFlexibleArrayMember()) 7589 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 7590 7591 // The structure is passed as an unextended integer, a float, or a double. 7592 llvm::Type *PassTy; 7593 if (isFPArgumentType(SingleElementTy)) { 7594 assert(Size == 32 || Size == 64); 7595 if (Size == 32) 7596 PassTy = llvm::Type::getFloatTy(getVMContext()); 7597 else 7598 PassTy = llvm::Type::getDoubleTy(getVMContext()); 7599 } else 7600 PassTy = llvm::IntegerType::get(getVMContext(), Size); 7601 return ABIArgInfo::getDirect(PassTy); 7602 } 7603 7604 // Non-structure compounds are passed indirectly. 7605 if (isCompoundType(Ty)) 7606 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 7607 7608 return ABIArgInfo::getDirect(nullptr); 7609 } 7610 7611 //===----------------------------------------------------------------------===// 7612 // MSP430 ABI Implementation 7613 //===----------------------------------------------------------------------===// 7614 7615 namespace { 7616 7617 class MSP430ABIInfo : public DefaultABIInfo { 7618 static ABIArgInfo complexArgInfo() { 7619 ABIArgInfo Info = ABIArgInfo::getDirect(); 7620 Info.setCanBeFlattened(false); 7621 return Info; 7622 } 7623 7624 public: 7625 MSP430ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 7626 7627 ABIArgInfo classifyReturnType(QualType RetTy) const { 7628 if (RetTy->isAnyComplexType()) 7629 return complexArgInfo(); 7630 7631 return DefaultABIInfo::classifyReturnType(RetTy); 7632 } 7633 7634 ABIArgInfo classifyArgumentType(QualType RetTy) const { 7635 if (RetTy->isAnyComplexType()) 7636 return complexArgInfo(); 7637 7638 return DefaultABIInfo::classifyArgumentType(RetTy); 7639 } 7640 7641 // Just copy the original implementations because 7642 // DefaultABIInfo::classify{Return,Argument}Type() are not virtual 7643 void computeInfo(CGFunctionInfo &FI) const override { 7644 if (!getCXXABI().classifyReturnType(FI)) 7645 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7646 for (auto &I : FI.arguments()) 7647 I.info = classifyArgumentType(I.type); 7648 } 7649 7650 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7651 QualType Ty) const override { 7652 return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty)); 7653 } 7654 }; 7655 7656 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo { 7657 public: 7658 MSP430TargetCodeGenInfo(CodeGenTypes &CGT) 7659 : TargetCodeGenInfo(std::make_unique<MSP430ABIInfo>(CGT)) {} 7660 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7661 CodeGen::CodeGenModule &M) const override; 7662 }; 7663 7664 } 7665 7666 void MSP430TargetCodeGenInfo::setTargetAttributes( 7667 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 7668 if (GV->isDeclaration()) 7669 return; 7670 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 7671 const auto *InterruptAttr = FD->getAttr<MSP430InterruptAttr>(); 7672 if (!InterruptAttr) 7673 return; 7674 7675 // Handle 'interrupt' attribute: 7676 llvm::Function *F = cast<llvm::Function>(GV); 7677 7678 // Step 1: Set ISR calling convention. 7679 F->setCallingConv(llvm::CallingConv::MSP430_INTR); 7680 7681 // Step 2: Add attributes goodness. 7682 F->addFnAttr(llvm::Attribute::NoInline); 7683 F->addFnAttr("interrupt", llvm::utostr(InterruptAttr->getNumber())); 7684 } 7685 } 7686 7687 //===----------------------------------------------------------------------===// 7688 // MIPS ABI Implementation. This works for both little-endian and 7689 // big-endian variants. 7690 //===----------------------------------------------------------------------===// 7691 7692 namespace { 7693 class MipsABIInfo : public ABIInfo { 7694 bool IsO32; 7695 unsigned MinABIStackAlignInBytes, StackAlignInBytes; 7696 void CoerceToIntArgs(uint64_t TySize, 7697 SmallVectorImpl<llvm::Type *> &ArgList) const; 7698 llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const; 7699 llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const; 7700 llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const; 7701 public: 7702 MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) : 7703 ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8), 7704 StackAlignInBytes(IsO32 ? 8 : 16) {} 7705 7706 ABIArgInfo classifyReturnType(QualType RetTy) const; 7707 ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const; 7708 void computeInfo(CGFunctionInfo &FI) const override; 7709 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7710 QualType Ty) const override; 7711 ABIArgInfo extendType(QualType Ty) const; 7712 }; 7713 7714 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo { 7715 unsigned SizeOfUnwindException; 7716 public: 7717 MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32) 7718 : TargetCodeGenInfo(std::make_unique<MipsABIInfo>(CGT, IsO32)), 7719 SizeOfUnwindException(IsO32 ? 24 : 32) {} 7720 7721 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 7722 return 29; 7723 } 7724 7725 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7726 CodeGen::CodeGenModule &CGM) const override { 7727 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 7728 if (!FD) return; 7729 llvm::Function *Fn = cast<llvm::Function>(GV); 7730 7731 if (FD->hasAttr<MipsLongCallAttr>()) 7732 Fn->addFnAttr("long-call"); 7733 else if (FD->hasAttr<MipsShortCallAttr>()) 7734 Fn->addFnAttr("short-call"); 7735 7736 // Other attributes do not have a meaning for declarations. 7737 if (GV->isDeclaration()) 7738 return; 7739 7740 if (FD->hasAttr<Mips16Attr>()) { 7741 Fn->addFnAttr("mips16"); 7742 } 7743 else if (FD->hasAttr<NoMips16Attr>()) { 7744 Fn->addFnAttr("nomips16"); 7745 } 7746 7747 if (FD->hasAttr<MicroMipsAttr>()) 7748 Fn->addFnAttr("micromips"); 7749 else if (FD->hasAttr<NoMicroMipsAttr>()) 7750 Fn->addFnAttr("nomicromips"); 7751 7752 const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>(); 7753 if (!Attr) 7754 return; 7755 7756 const char *Kind; 7757 switch (Attr->getInterrupt()) { 7758 case MipsInterruptAttr::eic: Kind = "eic"; break; 7759 case MipsInterruptAttr::sw0: Kind = "sw0"; break; 7760 case MipsInterruptAttr::sw1: Kind = "sw1"; break; 7761 case MipsInterruptAttr::hw0: Kind = "hw0"; break; 7762 case MipsInterruptAttr::hw1: Kind = "hw1"; break; 7763 case MipsInterruptAttr::hw2: Kind = "hw2"; break; 7764 case MipsInterruptAttr::hw3: Kind = "hw3"; break; 7765 case MipsInterruptAttr::hw4: Kind = "hw4"; break; 7766 case MipsInterruptAttr::hw5: Kind = "hw5"; break; 7767 } 7768 7769 Fn->addFnAttr("interrupt", Kind); 7770 7771 } 7772 7773 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 7774 llvm::Value *Address) const override; 7775 7776 unsigned getSizeOfUnwindException() const override { 7777 return SizeOfUnwindException; 7778 } 7779 }; 7780 } 7781 7782 void MipsABIInfo::CoerceToIntArgs( 7783 uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const { 7784 llvm::IntegerType *IntTy = 7785 llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8); 7786 7787 // Add (TySize / MinABIStackAlignInBytes) args of IntTy. 7788 for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N) 7789 ArgList.push_back(IntTy); 7790 7791 // If necessary, add one more integer type to ArgList. 7792 unsigned R = TySize % (MinABIStackAlignInBytes * 8); 7793 7794 if (R) 7795 ArgList.push_back(llvm::IntegerType::get(getVMContext(), R)); 7796 } 7797 7798 // In N32/64, an aligned double precision floating point field is passed in 7799 // a register. 7800 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const { 7801 SmallVector<llvm::Type*, 8> ArgList, IntArgList; 7802 7803 if (IsO32) { 7804 CoerceToIntArgs(TySize, ArgList); 7805 return llvm::StructType::get(getVMContext(), ArgList); 7806 } 7807 7808 if (Ty->isComplexType()) 7809 return CGT.ConvertType(Ty); 7810 7811 const RecordType *RT = Ty->getAs<RecordType>(); 7812 7813 // Unions/vectors are passed in integer registers. 7814 if (!RT || !RT->isStructureOrClassType()) { 7815 CoerceToIntArgs(TySize, ArgList); 7816 return llvm::StructType::get(getVMContext(), ArgList); 7817 } 7818 7819 const RecordDecl *RD = RT->getDecl(); 7820 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 7821 assert(!(TySize % 8) && "Size of structure must be multiple of 8."); 7822 7823 uint64_t LastOffset = 0; 7824 unsigned idx = 0; 7825 llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64); 7826 7827 // Iterate over fields in the struct/class and check if there are any aligned 7828 // double fields. 7829 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 7830 i != e; ++i, ++idx) { 7831 const QualType Ty = i->getType(); 7832 const BuiltinType *BT = Ty->getAs<BuiltinType>(); 7833 7834 if (!BT || BT->getKind() != BuiltinType::Double) 7835 continue; 7836 7837 uint64_t Offset = Layout.getFieldOffset(idx); 7838 if (Offset % 64) // Ignore doubles that are not aligned. 7839 continue; 7840 7841 // Add ((Offset - LastOffset) / 64) args of type i64. 7842 for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j) 7843 ArgList.push_back(I64); 7844 7845 // Add double type. 7846 ArgList.push_back(llvm::Type::getDoubleTy(getVMContext())); 7847 LastOffset = Offset + 64; 7848 } 7849 7850 CoerceToIntArgs(TySize - LastOffset, IntArgList); 7851 ArgList.append(IntArgList.begin(), IntArgList.end()); 7852 7853 return llvm::StructType::get(getVMContext(), ArgList); 7854 } 7855 7856 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset, 7857 uint64_t Offset) const { 7858 if (OrigOffset + MinABIStackAlignInBytes > Offset) 7859 return nullptr; 7860 7861 return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8); 7862 } 7863 7864 ABIArgInfo 7865 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const { 7866 Ty = useFirstFieldIfTransparentUnion(Ty); 7867 7868 uint64_t OrigOffset = Offset; 7869 uint64_t TySize = getContext().getTypeSize(Ty); 7870 uint64_t Align = getContext().getTypeAlign(Ty) / 8; 7871 7872 Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes), 7873 (uint64_t)StackAlignInBytes); 7874 unsigned CurrOffset = llvm::alignTo(Offset, Align); 7875 Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8; 7876 7877 if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) { 7878 // Ignore empty aggregates. 7879 if (TySize == 0) 7880 return ABIArgInfo::getIgnore(); 7881 7882 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 7883 Offset = OrigOffset + MinABIStackAlignInBytes; 7884 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7885 } 7886 7887 // If we have reached here, aggregates are passed directly by coercing to 7888 // another structure type. Padding is inserted if the offset of the 7889 // aggregate is unaligned. 7890 ABIArgInfo ArgInfo = 7891 ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0, 7892 getPaddingType(OrigOffset, CurrOffset)); 7893 ArgInfo.setInReg(true); 7894 return ArgInfo; 7895 } 7896 7897 // Treat an enum type as its underlying type. 7898 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7899 Ty = EnumTy->getDecl()->getIntegerType(); 7900 7901 // Make sure we pass indirectly things that are too large. 7902 if (const auto *EIT = Ty->getAs<ExtIntType>()) 7903 if (EIT->getNumBits() > 128 || 7904 (EIT->getNumBits() > 64 && 7905 !getContext().getTargetInfo().hasInt128Type())) 7906 return getNaturalAlignIndirect(Ty); 7907 7908 // All integral types are promoted to the GPR width. 7909 if (Ty->isIntegralOrEnumerationType()) 7910 return extendType(Ty); 7911 7912 return ABIArgInfo::getDirect( 7913 nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset)); 7914 } 7915 7916 llvm::Type* 7917 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const { 7918 const RecordType *RT = RetTy->getAs<RecordType>(); 7919 SmallVector<llvm::Type*, 8> RTList; 7920 7921 if (RT && RT->isStructureOrClassType()) { 7922 const RecordDecl *RD = RT->getDecl(); 7923 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 7924 unsigned FieldCnt = Layout.getFieldCount(); 7925 7926 // N32/64 returns struct/classes in floating point registers if the 7927 // following conditions are met: 7928 // 1. The size of the struct/class is no larger than 128-bit. 7929 // 2. The struct/class has one or two fields all of which are floating 7930 // point types. 7931 // 3. The offset of the first field is zero (this follows what gcc does). 7932 // 7933 // Any other composite results are returned in integer registers. 7934 // 7935 if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) { 7936 RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end(); 7937 for (; b != e; ++b) { 7938 const BuiltinType *BT = b->getType()->getAs<BuiltinType>(); 7939 7940 if (!BT || !BT->isFloatingPoint()) 7941 break; 7942 7943 RTList.push_back(CGT.ConvertType(b->getType())); 7944 } 7945 7946 if (b == e) 7947 return llvm::StructType::get(getVMContext(), RTList, 7948 RD->hasAttr<PackedAttr>()); 7949 7950 RTList.clear(); 7951 } 7952 } 7953 7954 CoerceToIntArgs(Size, RTList); 7955 return llvm::StructType::get(getVMContext(), RTList); 7956 } 7957 7958 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const { 7959 uint64_t Size = getContext().getTypeSize(RetTy); 7960 7961 if (RetTy->isVoidType()) 7962 return ABIArgInfo::getIgnore(); 7963 7964 // O32 doesn't treat zero-sized structs differently from other structs. 7965 // However, N32/N64 ignores zero sized return values. 7966 if (!IsO32 && Size == 0) 7967 return ABIArgInfo::getIgnore(); 7968 7969 if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) { 7970 if (Size <= 128) { 7971 if (RetTy->isAnyComplexType()) 7972 return ABIArgInfo::getDirect(); 7973 7974 // O32 returns integer vectors in registers and N32/N64 returns all small 7975 // aggregates in registers. 7976 if (!IsO32 || 7977 (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) { 7978 ABIArgInfo ArgInfo = 7979 ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size)); 7980 ArgInfo.setInReg(true); 7981 return ArgInfo; 7982 } 7983 } 7984 7985 return getNaturalAlignIndirect(RetTy); 7986 } 7987 7988 // Treat an enum type as its underlying type. 7989 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 7990 RetTy = EnumTy->getDecl()->getIntegerType(); 7991 7992 // Make sure we pass indirectly things that are too large. 7993 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 7994 if (EIT->getNumBits() > 128 || 7995 (EIT->getNumBits() > 64 && 7996 !getContext().getTargetInfo().hasInt128Type())) 7997 return getNaturalAlignIndirect(RetTy); 7998 7999 if (isPromotableIntegerTypeForABI(RetTy)) 8000 return ABIArgInfo::getExtend(RetTy); 8001 8002 if ((RetTy->isUnsignedIntegerOrEnumerationType() || 8003 RetTy->isSignedIntegerOrEnumerationType()) && Size == 32 && !IsO32) 8004 return ABIArgInfo::getSignExtend(RetTy); 8005 8006 return ABIArgInfo::getDirect(); 8007 } 8008 8009 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const { 8010 ABIArgInfo &RetInfo = FI.getReturnInfo(); 8011 if (!getCXXABI().classifyReturnType(FI)) 8012 RetInfo = classifyReturnType(FI.getReturnType()); 8013 8014 // Check if a pointer to an aggregate is passed as a hidden argument. 8015 uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0; 8016 8017 for (auto &I : FI.arguments()) 8018 I.info = classifyArgumentType(I.type, Offset); 8019 } 8020 8021 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8022 QualType OrigTy) const { 8023 QualType Ty = OrigTy; 8024 8025 // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64. 8026 // Pointers are also promoted in the same way but this only matters for N32. 8027 unsigned SlotSizeInBits = IsO32 ? 32 : 64; 8028 unsigned PtrWidth = getTarget().getPointerWidth(0); 8029 bool DidPromote = false; 8030 if ((Ty->isIntegerType() && 8031 getContext().getIntWidth(Ty) < SlotSizeInBits) || 8032 (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) { 8033 DidPromote = true; 8034 Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits, 8035 Ty->isSignedIntegerType()); 8036 } 8037 8038 auto TyInfo = getContext().getTypeInfoInChars(Ty); 8039 8040 // The alignment of things in the argument area is never larger than 8041 // StackAlignInBytes. 8042 TyInfo.Align = 8043 std::min(TyInfo.Align, CharUnits::fromQuantity(StackAlignInBytes)); 8044 8045 // MinABIStackAlignInBytes is the size of argument slots on the stack. 8046 CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes); 8047 8048 Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 8049 TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true); 8050 8051 8052 // If there was a promotion, "unpromote" into a temporary. 8053 // TODO: can we just use a pointer into a subset of the original slot? 8054 if (DidPromote) { 8055 Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp"); 8056 llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr); 8057 8058 // Truncate down to the right width. 8059 llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType() 8060 : CGF.IntPtrTy); 8061 llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy); 8062 if (OrigTy->isPointerType()) 8063 V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType()); 8064 8065 CGF.Builder.CreateStore(V, Temp); 8066 Addr = Temp; 8067 } 8068 8069 return Addr; 8070 } 8071 8072 ABIArgInfo MipsABIInfo::extendType(QualType Ty) const { 8073 int TySize = getContext().getTypeSize(Ty); 8074 8075 // MIPS64 ABI requires unsigned 32 bit integers to be sign extended. 8076 if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 8077 return ABIArgInfo::getSignExtend(Ty); 8078 8079 return ABIArgInfo::getExtend(Ty); 8080 } 8081 8082 bool 8083 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 8084 llvm::Value *Address) const { 8085 // This information comes from gcc's implementation, which seems to 8086 // as canonical as it gets. 8087 8088 // Everything on MIPS is 4 bytes. Double-precision FP registers 8089 // are aliased to pairs of single-precision FP registers. 8090 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 8091 8092 // 0-31 are the general purpose registers, $0 - $31. 8093 // 32-63 are the floating-point registers, $f0 - $f31. 8094 // 64 and 65 are the multiply/divide registers, $hi and $lo. 8095 // 66 is the (notional, I think) register for signal-handler return. 8096 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65); 8097 8098 // 67-74 are the floating-point status registers, $fcc0 - $fcc7. 8099 // They are one bit wide and ignored here. 8100 8101 // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31. 8102 // (coprocessor 1 is the FP unit) 8103 // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31. 8104 // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31. 8105 // 176-181 are the DSP accumulator registers. 8106 AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181); 8107 return false; 8108 } 8109 8110 //===----------------------------------------------------------------------===// 8111 // M68k ABI Implementation 8112 //===----------------------------------------------------------------------===// 8113 8114 namespace { 8115 8116 class M68kTargetCodeGenInfo : public TargetCodeGenInfo { 8117 public: 8118 M68kTargetCodeGenInfo(CodeGenTypes &CGT) 8119 : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {} 8120 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 8121 CodeGen::CodeGenModule &M) const override; 8122 }; 8123 8124 } // namespace 8125 8126 void M68kTargetCodeGenInfo::setTargetAttributes( 8127 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 8128 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 8129 if (const auto *attr = FD->getAttr<M68kInterruptAttr>()) { 8130 // Handle 'interrupt' attribute: 8131 llvm::Function *F = cast<llvm::Function>(GV); 8132 8133 // Step 1: Set ISR calling convention. 8134 F->setCallingConv(llvm::CallingConv::M68k_INTR); 8135 8136 // Step 2: Add attributes goodness. 8137 F->addFnAttr(llvm::Attribute::NoInline); 8138 8139 // Step 3: Emit ISR vector alias. 8140 unsigned Num = attr->getNumber() / 2; 8141 llvm::GlobalAlias::create(llvm::Function::ExternalLinkage, 8142 "__isr_" + Twine(Num), F); 8143 } 8144 } 8145 } 8146 8147 //===----------------------------------------------------------------------===// 8148 // AVR ABI Implementation. 8149 //===----------------------------------------------------------------------===// 8150 8151 namespace { 8152 class AVRTargetCodeGenInfo : public TargetCodeGenInfo { 8153 public: 8154 AVRTargetCodeGenInfo(CodeGenTypes &CGT) 8155 : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {} 8156 8157 LangAS getGlobalVarAddressSpace(CodeGenModule &CGM, 8158 const VarDecl *D) const override { 8159 // Check if a global/static variable is defined within address space 1 8160 // but not constant. 8161 LangAS AS = D->getType().getAddressSpace(); 8162 if (isTargetAddressSpace(AS) && toTargetAddressSpace(AS) == 1 && 8163 !D->getType().isConstQualified()) 8164 CGM.getDiags().Report(D->getLocation(), 8165 diag::err_verify_nonconst_addrspace) 8166 << "__flash"; 8167 return TargetCodeGenInfo::getGlobalVarAddressSpace(CGM, D); 8168 } 8169 8170 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 8171 CodeGen::CodeGenModule &CGM) const override { 8172 if (GV->isDeclaration()) 8173 return; 8174 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 8175 if (!FD) return; 8176 auto *Fn = cast<llvm::Function>(GV); 8177 8178 if (FD->getAttr<AVRInterruptAttr>()) 8179 Fn->addFnAttr("interrupt"); 8180 8181 if (FD->getAttr<AVRSignalAttr>()) 8182 Fn->addFnAttr("signal"); 8183 } 8184 }; 8185 } 8186 8187 //===----------------------------------------------------------------------===// 8188 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults. 8189 // Currently subclassed only to implement custom OpenCL C function attribute 8190 // handling. 8191 //===----------------------------------------------------------------------===// 8192 8193 namespace { 8194 8195 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo { 8196 public: 8197 TCETargetCodeGenInfo(CodeGenTypes &CGT) 8198 : DefaultTargetCodeGenInfo(CGT) {} 8199 8200 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 8201 CodeGen::CodeGenModule &M) const override; 8202 }; 8203 8204 void TCETargetCodeGenInfo::setTargetAttributes( 8205 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 8206 if (GV->isDeclaration()) 8207 return; 8208 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 8209 if (!FD) return; 8210 8211 llvm::Function *F = cast<llvm::Function>(GV); 8212 8213 if (M.getLangOpts().OpenCL) { 8214 if (FD->hasAttr<OpenCLKernelAttr>()) { 8215 // OpenCL C Kernel functions are not subject to inlining 8216 F->addFnAttr(llvm::Attribute::NoInline); 8217 const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>(); 8218 if (Attr) { 8219 // Convert the reqd_work_group_size() attributes to metadata. 8220 llvm::LLVMContext &Context = F->getContext(); 8221 llvm::NamedMDNode *OpenCLMetadata = 8222 M.getModule().getOrInsertNamedMetadata( 8223 "opencl.kernel_wg_size_info"); 8224 8225 SmallVector<llvm::Metadata *, 5> Operands; 8226 Operands.push_back(llvm::ConstantAsMetadata::get(F)); 8227 8228 Operands.push_back( 8229 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 8230 M.Int32Ty, llvm::APInt(32, Attr->getXDim())))); 8231 Operands.push_back( 8232 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 8233 M.Int32Ty, llvm::APInt(32, Attr->getYDim())))); 8234 Operands.push_back( 8235 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 8236 M.Int32Ty, llvm::APInt(32, Attr->getZDim())))); 8237 8238 // Add a boolean constant operand for "required" (true) or "hint" 8239 // (false) for implementing the work_group_size_hint attr later. 8240 // Currently always true as the hint is not yet implemented. 8241 Operands.push_back( 8242 llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context))); 8243 OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands)); 8244 } 8245 } 8246 } 8247 } 8248 8249 } 8250 8251 //===----------------------------------------------------------------------===// 8252 // Hexagon ABI Implementation 8253 //===----------------------------------------------------------------------===// 8254 8255 namespace { 8256 8257 class HexagonABIInfo : public DefaultABIInfo { 8258 public: 8259 HexagonABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 8260 8261 private: 8262 ABIArgInfo classifyReturnType(QualType RetTy) const; 8263 ABIArgInfo classifyArgumentType(QualType RetTy) const; 8264 ABIArgInfo classifyArgumentType(QualType RetTy, unsigned *RegsLeft) const; 8265 8266 void computeInfo(CGFunctionInfo &FI) const override; 8267 8268 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8269 QualType Ty) const override; 8270 Address EmitVAArgFromMemory(CodeGenFunction &CFG, Address VAListAddr, 8271 QualType Ty) const; 8272 Address EmitVAArgForHexagon(CodeGenFunction &CFG, Address VAListAddr, 8273 QualType Ty) const; 8274 Address EmitVAArgForHexagonLinux(CodeGenFunction &CFG, Address VAListAddr, 8275 QualType Ty) const; 8276 }; 8277 8278 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo { 8279 public: 8280 HexagonTargetCodeGenInfo(CodeGenTypes &CGT) 8281 : TargetCodeGenInfo(std::make_unique<HexagonABIInfo>(CGT)) {} 8282 8283 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 8284 return 29; 8285 } 8286 8287 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 8288 CodeGen::CodeGenModule &GCM) const override { 8289 if (GV->isDeclaration()) 8290 return; 8291 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 8292 if (!FD) 8293 return; 8294 } 8295 }; 8296 8297 } // namespace 8298 8299 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const { 8300 unsigned RegsLeft = 6; 8301 if (!getCXXABI().classifyReturnType(FI)) 8302 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 8303 for (auto &I : FI.arguments()) 8304 I.info = classifyArgumentType(I.type, &RegsLeft); 8305 } 8306 8307 static bool HexagonAdjustRegsLeft(uint64_t Size, unsigned *RegsLeft) { 8308 assert(Size <= 64 && "Not expecting to pass arguments larger than 64 bits" 8309 " through registers"); 8310 8311 if (*RegsLeft == 0) 8312 return false; 8313 8314 if (Size <= 32) { 8315 (*RegsLeft)--; 8316 return true; 8317 } 8318 8319 if (2 <= (*RegsLeft & (~1U))) { 8320 *RegsLeft = (*RegsLeft & (~1U)) - 2; 8321 return true; 8322 } 8323 8324 // Next available register was r5 but candidate was greater than 32-bits so it 8325 // has to go on the stack. However we still consume r5 8326 if (*RegsLeft == 1) 8327 *RegsLeft = 0; 8328 8329 return false; 8330 } 8331 8332 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty, 8333 unsigned *RegsLeft) const { 8334 if (!isAggregateTypeForABI(Ty)) { 8335 // Treat an enum type as its underlying type. 8336 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 8337 Ty = EnumTy->getDecl()->getIntegerType(); 8338 8339 uint64_t Size = getContext().getTypeSize(Ty); 8340 if (Size <= 64) 8341 HexagonAdjustRegsLeft(Size, RegsLeft); 8342 8343 if (Size > 64 && Ty->isExtIntType()) 8344 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 8345 8346 return isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 8347 : ABIArgInfo::getDirect(); 8348 } 8349 8350 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 8351 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 8352 8353 // Ignore empty records. 8354 if (isEmptyRecord(getContext(), Ty, true)) 8355 return ABIArgInfo::getIgnore(); 8356 8357 uint64_t Size = getContext().getTypeSize(Ty); 8358 unsigned Align = getContext().getTypeAlign(Ty); 8359 8360 if (Size > 64) 8361 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 8362 8363 if (HexagonAdjustRegsLeft(Size, RegsLeft)) 8364 Align = Size <= 32 ? 32 : 64; 8365 if (Size <= Align) { 8366 // Pass in the smallest viable integer type. 8367 if (!llvm::isPowerOf2_64(Size)) 8368 Size = llvm::NextPowerOf2(Size); 8369 return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size)); 8370 } 8371 return DefaultABIInfo::classifyArgumentType(Ty); 8372 } 8373 8374 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const { 8375 if (RetTy->isVoidType()) 8376 return ABIArgInfo::getIgnore(); 8377 8378 const TargetInfo &T = CGT.getTarget(); 8379 uint64_t Size = getContext().getTypeSize(RetTy); 8380 8381 if (RetTy->getAs<VectorType>()) { 8382 // HVX vectors are returned in vector registers or register pairs. 8383 if (T.hasFeature("hvx")) { 8384 assert(T.hasFeature("hvx-length64b") || T.hasFeature("hvx-length128b")); 8385 uint64_t VecSize = T.hasFeature("hvx-length64b") ? 64*8 : 128*8; 8386 if (Size == VecSize || Size == 2*VecSize) 8387 return ABIArgInfo::getDirectInReg(); 8388 } 8389 // Large vector types should be returned via memory. 8390 if (Size > 64) 8391 return getNaturalAlignIndirect(RetTy); 8392 } 8393 8394 if (!isAggregateTypeForABI(RetTy)) { 8395 // Treat an enum type as its underlying type. 8396 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 8397 RetTy = EnumTy->getDecl()->getIntegerType(); 8398 8399 if (Size > 64 && RetTy->isExtIntType()) 8400 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 8401 8402 return isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 8403 : ABIArgInfo::getDirect(); 8404 } 8405 8406 if (isEmptyRecord(getContext(), RetTy, true)) 8407 return ABIArgInfo::getIgnore(); 8408 8409 // Aggregates <= 8 bytes are returned in registers, other aggregates 8410 // are returned indirectly. 8411 if (Size <= 64) { 8412 // Return in the smallest viable integer type. 8413 if (!llvm::isPowerOf2_64(Size)) 8414 Size = llvm::NextPowerOf2(Size); 8415 return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size)); 8416 } 8417 return getNaturalAlignIndirect(RetTy, /*ByVal=*/true); 8418 } 8419 8420 Address HexagonABIInfo::EmitVAArgFromMemory(CodeGenFunction &CGF, 8421 Address VAListAddr, 8422 QualType Ty) const { 8423 // Load the overflow area pointer. 8424 Address __overflow_area_pointer_p = 8425 CGF.Builder.CreateStructGEP(VAListAddr, 2, "__overflow_area_pointer_p"); 8426 llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad( 8427 __overflow_area_pointer_p, "__overflow_area_pointer"); 8428 8429 uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8; 8430 if (Align > 4) { 8431 // Alignment should be a power of 2. 8432 assert((Align & (Align - 1)) == 0 && "Alignment is not power of 2!"); 8433 8434 // overflow_arg_area = (overflow_arg_area + align - 1) & -align; 8435 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int64Ty, Align - 1); 8436 8437 // Add offset to the current pointer to access the argument. 8438 __overflow_area_pointer = 8439 CGF.Builder.CreateGEP(__overflow_area_pointer, Offset); 8440 llvm::Value *AsInt = 8441 CGF.Builder.CreatePtrToInt(__overflow_area_pointer, CGF.Int32Ty); 8442 8443 // Create a mask which should be "AND"ed 8444 // with (overflow_arg_area + align - 1) 8445 llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -(int)Align); 8446 __overflow_area_pointer = CGF.Builder.CreateIntToPtr( 8447 CGF.Builder.CreateAnd(AsInt, Mask), __overflow_area_pointer->getType(), 8448 "__overflow_area_pointer.align"); 8449 } 8450 8451 // Get the type of the argument from memory and bitcast 8452 // overflow area pointer to the argument type. 8453 llvm::Type *PTy = CGF.ConvertTypeForMem(Ty); 8454 Address AddrTyped = CGF.Builder.CreateBitCast( 8455 Address(__overflow_area_pointer, CharUnits::fromQuantity(Align)), 8456 llvm::PointerType::getUnqual(PTy)); 8457 8458 // Round up to the minimum stack alignment for varargs which is 4 bytes. 8459 uint64_t Offset = llvm::alignTo(CGF.getContext().getTypeSize(Ty) / 8, 4); 8460 8461 __overflow_area_pointer = CGF.Builder.CreateGEP( 8462 __overflow_area_pointer, llvm::ConstantInt::get(CGF.Int32Ty, Offset), 8463 "__overflow_area_pointer.next"); 8464 CGF.Builder.CreateStore(__overflow_area_pointer, __overflow_area_pointer_p); 8465 8466 return AddrTyped; 8467 } 8468 8469 Address HexagonABIInfo::EmitVAArgForHexagon(CodeGenFunction &CGF, 8470 Address VAListAddr, 8471 QualType Ty) const { 8472 // FIXME: Need to handle alignment 8473 llvm::Type *BP = CGF.Int8PtrTy; 8474 llvm::Type *BPP = CGF.Int8PtrPtrTy; 8475 CGBuilderTy &Builder = CGF.Builder; 8476 Address VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); 8477 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 8478 // Handle address alignment for type alignment > 32 bits 8479 uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8; 8480 if (TyAlign > 4) { 8481 assert((TyAlign & (TyAlign - 1)) == 0 && "Alignment is not power of 2!"); 8482 llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty); 8483 AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1)); 8484 AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1))); 8485 Addr = Builder.CreateIntToPtr(AddrAsInt, BP); 8486 } 8487 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 8488 Address AddrTyped = Builder.CreateBitCast( 8489 Address(Addr, CharUnits::fromQuantity(TyAlign)), PTy); 8490 8491 uint64_t Offset = llvm::alignTo(CGF.getContext().getTypeSize(Ty) / 8, 4); 8492 llvm::Value *NextAddr = Builder.CreateGEP( 8493 Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), "ap.next"); 8494 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 8495 8496 return AddrTyped; 8497 } 8498 8499 Address HexagonABIInfo::EmitVAArgForHexagonLinux(CodeGenFunction &CGF, 8500 Address VAListAddr, 8501 QualType Ty) const { 8502 int ArgSize = CGF.getContext().getTypeSize(Ty) / 8; 8503 8504 if (ArgSize > 8) 8505 return EmitVAArgFromMemory(CGF, VAListAddr, Ty); 8506 8507 // Here we have check if the argument is in register area or 8508 // in overflow area. 8509 // If the saved register area pointer + argsize rounded up to alignment > 8510 // saved register area end pointer, argument is in overflow area. 8511 unsigned RegsLeft = 6; 8512 Ty = CGF.getContext().getCanonicalType(Ty); 8513 (void)classifyArgumentType(Ty, &RegsLeft); 8514 8515 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); 8516 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 8517 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); 8518 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 8519 8520 // Get rounded size of the argument.GCC does not allow vararg of 8521 // size < 4 bytes. We follow the same logic here. 8522 ArgSize = (CGF.getContext().getTypeSize(Ty) <= 32) ? 4 : 8; 8523 int ArgAlign = (CGF.getContext().getTypeSize(Ty) <= 32) ? 4 : 8; 8524 8525 // Argument may be in saved register area 8526 CGF.EmitBlock(MaybeRegBlock); 8527 8528 // Load the current saved register area pointer. 8529 Address __current_saved_reg_area_pointer_p = CGF.Builder.CreateStructGEP( 8530 VAListAddr, 0, "__current_saved_reg_area_pointer_p"); 8531 llvm::Value *__current_saved_reg_area_pointer = CGF.Builder.CreateLoad( 8532 __current_saved_reg_area_pointer_p, "__current_saved_reg_area_pointer"); 8533 8534 // Load the saved register area end pointer. 8535 Address __saved_reg_area_end_pointer_p = CGF.Builder.CreateStructGEP( 8536 VAListAddr, 1, "__saved_reg_area_end_pointer_p"); 8537 llvm::Value *__saved_reg_area_end_pointer = CGF.Builder.CreateLoad( 8538 __saved_reg_area_end_pointer_p, "__saved_reg_area_end_pointer"); 8539 8540 // If the size of argument is > 4 bytes, check if the stack 8541 // location is aligned to 8 bytes 8542 if (ArgAlign > 4) { 8543 8544 llvm::Value *__current_saved_reg_area_pointer_int = 8545 CGF.Builder.CreatePtrToInt(__current_saved_reg_area_pointer, 8546 CGF.Int32Ty); 8547 8548 __current_saved_reg_area_pointer_int = CGF.Builder.CreateAdd( 8549 __current_saved_reg_area_pointer_int, 8550 llvm::ConstantInt::get(CGF.Int32Ty, (ArgAlign - 1)), 8551 "align_current_saved_reg_area_pointer"); 8552 8553 __current_saved_reg_area_pointer_int = 8554 CGF.Builder.CreateAnd(__current_saved_reg_area_pointer_int, 8555 llvm::ConstantInt::get(CGF.Int32Ty, -ArgAlign), 8556 "align_current_saved_reg_area_pointer"); 8557 8558 __current_saved_reg_area_pointer = 8559 CGF.Builder.CreateIntToPtr(__current_saved_reg_area_pointer_int, 8560 __current_saved_reg_area_pointer->getType(), 8561 "align_current_saved_reg_area_pointer"); 8562 } 8563 8564 llvm::Value *__new_saved_reg_area_pointer = 8565 CGF.Builder.CreateGEP(__current_saved_reg_area_pointer, 8566 llvm::ConstantInt::get(CGF.Int32Ty, ArgSize), 8567 "__new_saved_reg_area_pointer"); 8568 8569 llvm::Value *UsingStack = 0; 8570 UsingStack = CGF.Builder.CreateICmpSGT(__new_saved_reg_area_pointer, 8571 __saved_reg_area_end_pointer); 8572 8573 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, InRegBlock); 8574 8575 // Argument in saved register area 8576 // Implement the block where argument is in register saved area 8577 CGF.EmitBlock(InRegBlock); 8578 8579 llvm::Type *PTy = CGF.ConvertType(Ty); 8580 llvm::Value *__saved_reg_area_p = CGF.Builder.CreateBitCast( 8581 __current_saved_reg_area_pointer, llvm::PointerType::getUnqual(PTy)); 8582 8583 CGF.Builder.CreateStore(__new_saved_reg_area_pointer, 8584 __current_saved_reg_area_pointer_p); 8585 8586 CGF.EmitBranch(ContBlock); 8587 8588 // Argument in overflow area 8589 // Implement the block where the argument is in overflow area. 8590 CGF.EmitBlock(OnStackBlock); 8591 8592 // Load the overflow area pointer 8593 Address __overflow_area_pointer_p = 8594 CGF.Builder.CreateStructGEP(VAListAddr, 2, "__overflow_area_pointer_p"); 8595 llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad( 8596 __overflow_area_pointer_p, "__overflow_area_pointer"); 8597 8598 // Align the overflow area pointer according to the alignment of the argument 8599 if (ArgAlign > 4) { 8600 llvm::Value *__overflow_area_pointer_int = 8601 CGF.Builder.CreatePtrToInt(__overflow_area_pointer, CGF.Int32Ty); 8602 8603 __overflow_area_pointer_int = 8604 CGF.Builder.CreateAdd(__overflow_area_pointer_int, 8605 llvm::ConstantInt::get(CGF.Int32Ty, ArgAlign - 1), 8606 "align_overflow_area_pointer"); 8607 8608 __overflow_area_pointer_int = 8609 CGF.Builder.CreateAnd(__overflow_area_pointer_int, 8610 llvm::ConstantInt::get(CGF.Int32Ty, -ArgAlign), 8611 "align_overflow_area_pointer"); 8612 8613 __overflow_area_pointer = CGF.Builder.CreateIntToPtr( 8614 __overflow_area_pointer_int, __overflow_area_pointer->getType(), 8615 "align_overflow_area_pointer"); 8616 } 8617 8618 // Get the pointer for next argument in overflow area and store it 8619 // to overflow area pointer. 8620 llvm::Value *__new_overflow_area_pointer = CGF.Builder.CreateGEP( 8621 __overflow_area_pointer, llvm::ConstantInt::get(CGF.Int32Ty, ArgSize), 8622 "__overflow_area_pointer.next"); 8623 8624 CGF.Builder.CreateStore(__new_overflow_area_pointer, 8625 __overflow_area_pointer_p); 8626 8627 CGF.Builder.CreateStore(__new_overflow_area_pointer, 8628 __current_saved_reg_area_pointer_p); 8629 8630 // Bitcast the overflow area pointer to the type of argument. 8631 llvm::Type *OverflowPTy = CGF.ConvertTypeForMem(Ty); 8632 llvm::Value *__overflow_area_p = CGF.Builder.CreateBitCast( 8633 __overflow_area_pointer, llvm::PointerType::getUnqual(OverflowPTy)); 8634 8635 CGF.EmitBranch(ContBlock); 8636 8637 // Get the correct pointer to load the variable argument 8638 // Implement the ContBlock 8639 CGF.EmitBlock(ContBlock); 8640 8641 llvm::Type *MemPTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); 8642 llvm::PHINode *ArgAddr = CGF.Builder.CreatePHI(MemPTy, 2, "vaarg.addr"); 8643 ArgAddr->addIncoming(__saved_reg_area_p, InRegBlock); 8644 ArgAddr->addIncoming(__overflow_area_p, OnStackBlock); 8645 8646 return Address(ArgAddr, CharUnits::fromQuantity(ArgAlign)); 8647 } 8648 8649 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8650 QualType Ty) const { 8651 8652 if (getTarget().getTriple().isMusl()) 8653 return EmitVAArgForHexagonLinux(CGF, VAListAddr, Ty); 8654 8655 return EmitVAArgForHexagon(CGF, VAListAddr, Ty); 8656 } 8657 8658 //===----------------------------------------------------------------------===// 8659 // Lanai ABI Implementation 8660 //===----------------------------------------------------------------------===// 8661 8662 namespace { 8663 class LanaiABIInfo : public DefaultABIInfo { 8664 public: 8665 LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 8666 8667 bool shouldUseInReg(QualType Ty, CCState &State) const; 8668 8669 void computeInfo(CGFunctionInfo &FI) const override { 8670 CCState State(FI); 8671 // Lanai uses 4 registers to pass arguments unless the function has the 8672 // regparm attribute set. 8673 if (FI.getHasRegParm()) { 8674 State.FreeRegs = FI.getRegParm(); 8675 } else { 8676 State.FreeRegs = 4; 8677 } 8678 8679 if (!getCXXABI().classifyReturnType(FI)) 8680 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 8681 for (auto &I : FI.arguments()) 8682 I.info = classifyArgumentType(I.type, State); 8683 } 8684 8685 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 8686 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 8687 }; 8688 } // end anonymous namespace 8689 8690 bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const { 8691 unsigned Size = getContext().getTypeSize(Ty); 8692 unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U; 8693 8694 if (SizeInRegs == 0) 8695 return false; 8696 8697 if (SizeInRegs > State.FreeRegs) { 8698 State.FreeRegs = 0; 8699 return false; 8700 } 8701 8702 State.FreeRegs -= SizeInRegs; 8703 8704 return true; 8705 } 8706 8707 ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal, 8708 CCState &State) const { 8709 if (!ByVal) { 8710 if (State.FreeRegs) { 8711 --State.FreeRegs; // Non-byval indirects just use one pointer. 8712 return getNaturalAlignIndirectInReg(Ty); 8713 } 8714 return getNaturalAlignIndirect(Ty, false); 8715 } 8716 8717 // Compute the byval alignment. 8718 const unsigned MinABIStackAlignInBytes = 4; 8719 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 8720 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true, 8721 /*Realign=*/TypeAlign > 8722 MinABIStackAlignInBytes); 8723 } 8724 8725 ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty, 8726 CCState &State) const { 8727 // Check with the C++ ABI first. 8728 const RecordType *RT = Ty->getAs<RecordType>(); 8729 if (RT) { 8730 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 8731 if (RAA == CGCXXABI::RAA_Indirect) { 8732 return getIndirectResult(Ty, /*ByVal=*/false, State); 8733 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 8734 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 8735 } 8736 } 8737 8738 if (isAggregateTypeForABI(Ty)) { 8739 // Structures with flexible arrays are always indirect. 8740 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 8741 return getIndirectResult(Ty, /*ByVal=*/true, State); 8742 8743 // Ignore empty structs/unions. 8744 if (isEmptyRecord(getContext(), Ty, true)) 8745 return ABIArgInfo::getIgnore(); 8746 8747 llvm::LLVMContext &LLVMContext = getVMContext(); 8748 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; 8749 if (SizeInRegs <= State.FreeRegs) { 8750 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 8751 SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32); 8752 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 8753 State.FreeRegs -= SizeInRegs; 8754 return ABIArgInfo::getDirectInReg(Result); 8755 } else { 8756 State.FreeRegs = 0; 8757 } 8758 return getIndirectResult(Ty, true, State); 8759 } 8760 8761 // Treat an enum type as its underlying type. 8762 if (const auto *EnumTy = Ty->getAs<EnumType>()) 8763 Ty = EnumTy->getDecl()->getIntegerType(); 8764 8765 bool InReg = shouldUseInReg(Ty, State); 8766 8767 // Don't pass >64 bit integers in registers. 8768 if (const auto *EIT = Ty->getAs<ExtIntType>()) 8769 if (EIT->getNumBits() > 64) 8770 return getIndirectResult(Ty, /*ByVal=*/true, State); 8771 8772 if (isPromotableIntegerTypeForABI(Ty)) { 8773 if (InReg) 8774 return ABIArgInfo::getDirectInReg(); 8775 return ABIArgInfo::getExtend(Ty); 8776 } 8777 if (InReg) 8778 return ABIArgInfo::getDirectInReg(); 8779 return ABIArgInfo::getDirect(); 8780 } 8781 8782 namespace { 8783 class LanaiTargetCodeGenInfo : public TargetCodeGenInfo { 8784 public: 8785 LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 8786 : TargetCodeGenInfo(std::make_unique<LanaiABIInfo>(CGT)) {} 8787 }; 8788 } 8789 8790 //===----------------------------------------------------------------------===// 8791 // AMDGPU ABI Implementation 8792 //===----------------------------------------------------------------------===// 8793 8794 namespace { 8795 8796 class AMDGPUABIInfo final : public DefaultABIInfo { 8797 private: 8798 static const unsigned MaxNumRegsForArgsRet = 16; 8799 8800 unsigned numRegsForType(QualType Ty) const; 8801 8802 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 8803 bool isHomogeneousAggregateSmallEnough(const Type *Base, 8804 uint64_t Members) const override; 8805 8806 // Coerce HIP scalar pointer arguments from generic pointers to global ones. 8807 llvm::Type *coerceKernelArgumentType(llvm::Type *Ty, unsigned FromAS, 8808 unsigned ToAS) const { 8809 // Single value types. 8810 if (Ty->isPointerTy() && Ty->getPointerAddressSpace() == FromAS) 8811 return llvm::PointerType::get( 8812 cast<llvm::PointerType>(Ty)->getElementType(), ToAS); 8813 return Ty; 8814 } 8815 8816 public: 8817 explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) : 8818 DefaultABIInfo(CGT) {} 8819 8820 ABIArgInfo classifyReturnType(QualType RetTy) const; 8821 ABIArgInfo classifyKernelArgumentType(QualType Ty) const; 8822 ABIArgInfo classifyArgumentType(QualType Ty, unsigned &NumRegsLeft) const; 8823 8824 void computeInfo(CGFunctionInfo &FI) const override; 8825 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8826 QualType Ty) const override; 8827 }; 8828 8829 bool AMDGPUABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 8830 return true; 8831 } 8832 8833 bool AMDGPUABIInfo::isHomogeneousAggregateSmallEnough( 8834 const Type *Base, uint64_t Members) const { 8835 uint32_t NumRegs = (getContext().getTypeSize(Base) + 31) / 32; 8836 8837 // Homogeneous Aggregates may occupy at most 16 registers. 8838 return Members * NumRegs <= MaxNumRegsForArgsRet; 8839 } 8840 8841 /// Estimate number of registers the type will use when passed in registers. 8842 unsigned AMDGPUABIInfo::numRegsForType(QualType Ty) const { 8843 unsigned NumRegs = 0; 8844 8845 if (const VectorType *VT = Ty->getAs<VectorType>()) { 8846 // Compute from the number of elements. The reported size is based on the 8847 // in-memory size, which includes the padding 4th element for 3-vectors. 8848 QualType EltTy = VT->getElementType(); 8849 unsigned EltSize = getContext().getTypeSize(EltTy); 8850 8851 // 16-bit element vectors should be passed as packed. 8852 if (EltSize == 16) 8853 return (VT->getNumElements() + 1) / 2; 8854 8855 unsigned EltNumRegs = (EltSize + 31) / 32; 8856 return EltNumRegs * VT->getNumElements(); 8857 } 8858 8859 if (const RecordType *RT = Ty->getAs<RecordType>()) { 8860 const RecordDecl *RD = RT->getDecl(); 8861 assert(!RD->hasFlexibleArrayMember()); 8862 8863 for (const FieldDecl *Field : RD->fields()) { 8864 QualType FieldTy = Field->getType(); 8865 NumRegs += numRegsForType(FieldTy); 8866 } 8867 8868 return NumRegs; 8869 } 8870 8871 return (getContext().getTypeSize(Ty) + 31) / 32; 8872 } 8873 8874 void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const { 8875 llvm::CallingConv::ID CC = FI.getCallingConvention(); 8876 8877 if (!getCXXABI().classifyReturnType(FI)) 8878 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 8879 8880 unsigned NumRegsLeft = MaxNumRegsForArgsRet; 8881 for (auto &Arg : FI.arguments()) { 8882 if (CC == llvm::CallingConv::AMDGPU_KERNEL) { 8883 Arg.info = classifyKernelArgumentType(Arg.type); 8884 } else { 8885 Arg.info = classifyArgumentType(Arg.type, NumRegsLeft); 8886 } 8887 } 8888 } 8889 8890 Address AMDGPUABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8891 QualType Ty) const { 8892 llvm_unreachable("AMDGPU does not support varargs"); 8893 } 8894 8895 ABIArgInfo AMDGPUABIInfo::classifyReturnType(QualType RetTy) const { 8896 if (isAggregateTypeForABI(RetTy)) { 8897 // Records with non-trivial destructors/copy-constructors should not be 8898 // returned by value. 8899 if (!getRecordArgABI(RetTy, getCXXABI())) { 8900 // Ignore empty structs/unions. 8901 if (isEmptyRecord(getContext(), RetTy, true)) 8902 return ABIArgInfo::getIgnore(); 8903 8904 // Lower single-element structs to just return a regular value. 8905 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 8906 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 8907 8908 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 8909 const RecordDecl *RD = RT->getDecl(); 8910 if (RD->hasFlexibleArrayMember()) 8911 return DefaultABIInfo::classifyReturnType(RetTy); 8912 } 8913 8914 // Pack aggregates <= 4 bytes into single VGPR or pair. 8915 uint64_t Size = getContext().getTypeSize(RetTy); 8916 if (Size <= 16) 8917 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 8918 8919 if (Size <= 32) 8920 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 8921 8922 if (Size <= 64) { 8923 llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext()); 8924 return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2)); 8925 } 8926 8927 if (numRegsForType(RetTy) <= MaxNumRegsForArgsRet) 8928 return ABIArgInfo::getDirect(); 8929 } 8930 } 8931 8932 // Otherwise just do the default thing. 8933 return DefaultABIInfo::classifyReturnType(RetTy); 8934 } 8935 8936 /// For kernels all parameters are really passed in a special buffer. It doesn't 8937 /// make sense to pass anything byval, so everything must be direct. 8938 ABIArgInfo AMDGPUABIInfo::classifyKernelArgumentType(QualType Ty) const { 8939 Ty = useFirstFieldIfTransparentUnion(Ty); 8940 8941 // TODO: Can we omit empty structs? 8942 8943 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 8944 Ty = QualType(SeltTy, 0); 8945 8946 llvm::Type *OrigLTy = CGT.ConvertType(Ty); 8947 llvm::Type *LTy = OrigLTy; 8948 if (getContext().getLangOpts().HIP) { 8949 LTy = coerceKernelArgumentType( 8950 OrigLTy, /*FromAS=*/getContext().getTargetAddressSpace(LangAS::Default), 8951 /*ToAS=*/getContext().getTargetAddressSpace(LangAS::cuda_device)); 8952 } 8953 8954 // FIXME: Should also use this for OpenCL, but it requires addressing the 8955 // problem of kernels being called. 8956 // 8957 // FIXME: This doesn't apply the optimization of coercing pointers in structs 8958 // to global address space when using byref. This would require implementing a 8959 // new kind of coercion of the in-memory type when for indirect arguments. 8960 if (!getContext().getLangOpts().OpenCL && LTy == OrigLTy && 8961 isAggregateTypeForABI(Ty)) { 8962 return ABIArgInfo::getIndirectAliased( 8963 getContext().getTypeAlignInChars(Ty), 8964 getContext().getTargetAddressSpace(LangAS::opencl_constant), 8965 false /*Realign*/, nullptr /*Padding*/); 8966 } 8967 8968 // If we set CanBeFlattened to true, CodeGen will expand the struct to its 8969 // individual elements, which confuses the Clover OpenCL backend; therefore we 8970 // have to set it to false here. Other args of getDirect() are just defaults. 8971 return ABIArgInfo::getDirect(LTy, 0, nullptr, false); 8972 } 8973 8974 ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty, 8975 unsigned &NumRegsLeft) const { 8976 assert(NumRegsLeft <= MaxNumRegsForArgsRet && "register estimate underflow"); 8977 8978 Ty = useFirstFieldIfTransparentUnion(Ty); 8979 8980 if (isAggregateTypeForABI(Ty)) { 8981 // Records with non-trivial destructors/copy-constructors should not be 8982 // passed by value. 8983 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 8984 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 8985 8986 // Ignore empty structs/unions. 8987 if (isEmptyRecord(getContext(), Ty, true)) 8988 return ABIArgInfo::getIgnore(); 8989 8990 // Lower single-element structs to just pass a regular value. TODO: We 8991 // could do reasonable-size multiple-element structs too, using getExpand(), 8992 // though watch out for things like bitfields. 8993 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 8994 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 8995 8996 if (const RecordType *RT = Ty->getAs<RecordType>()) { 8997 const RecordDecl *RD = RT->getDecl(); 8998 if (RD->hasFlexibleArrayMember()) 8999 return DefaultABIInfo::classifyArgumentType(Ty); 9000 } 9001 9002 // Pack aggregates <= 8 bytes into single VGPR or pair. 9003 uint64_t Size = getContext().getTypeSize(Ty); 9004 if (Size <= 64) { 9005 unsigned NumRegs = (Size + 31) / 32; 9006 NumRegsLeft -= std::min(NumRegsLeft, NumRegs); 9007 9008 if (Size <= 16) 9009 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 9010 9011 if (Size <= 32) 9012 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 9013 9014 // XXX: Should this be i64 instead, and should the limit increase? 9015 llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext()); 9016 return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2)); 9017 } 9018 9019 if (NumRegsLeft > 0) { 9020 unsigned NumRegs = numRegsForType(Ty); 9021 if (NumRegsLeft >= NumRegs) { 9022 NumRegsLeft -= NumRegs; 9023 return ABIArgInfo::getDirect(); 9024 } 9025 } 9026 } 9027 9028 // Otherwise just do the default thing. 9029 ABIArgInfo ArgInfo = DefaultABIInfo::classifyArgumentType(Ty); 9030 if (!ArgInfo.isIndirect()) { 9031 unsigned NumRegs = numRegsForType(Ty); 9032 NumRegsLeft -= std::min(NumRegs, NumRegsLeft); 9033 } 9034 9035 return ArgInfo; 9036 } 9037 9038 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo { 9039 public: 9040 AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT) 9041 : TargetCodeGenInfo(std::make_unique<AMDGPUABIInfo>(CGT)) {} 9042 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 9043 CodeGen::CodeGenModule &M) const override; 9044 unsigned getOpenCLKernelCallingConv() const override; 9045 9046 llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM, 9047 llvm::PointerType *T, QualType QT) const override; 9048 9049 LangAS getASTAllocaAddressSpace() const override { 9050 return getLangASFromTargetAS( 9051 getABIInfo().getDataLayout().getAllocaAddrSpace()); 9052 } 9053 LangAS getGlobalVarAddressSpace(CodeGenModule &CGM, 9054 const VarDecl *D) const override; 9055 llvm::SyncScope::ID getLLVMSyncScopeID(const LangOptions &LangOpts, 9056 SyncScope Scope, 9057 llvm::AtomicOrdering Ordering, 9058 llvm::LLVMContext &Ctx) const override; 9059 llvm::Function * 9060 createEnqueuedBlockKernel(CodeGenFunction &CGF, 9061 llvm::Function *BlockInvokeFunc, 9062 llvm::Value *BlockLiteral) const override; 9063 bool shouldEmitStaticExternCAliases() const override; 9064 void setCUDAKernelCallingConvention(const FunctionType *&FT) const override; 9065 }; 9066 } 9067 9068 static bool requiresAMDGPUProtectedVisibility(const Decl *D, 9069 llvm::GlobalValue *GV) { 9070 if (GV->getVisibility() != llvm::GlobalValue::HiddenVisibility) 9071 return false; 9072 9073 return D->hasAttr<OpenCLKernelAttr>() || 9074 (isa<FunctionDecl>(D) && D->hasAttr<CUDAGlobalAttr>()) || 9075 (isa<VarDecl>(D) && 9076 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || 9077 cast<VarDecl>(D)->getType()->isCUDADeviceBuiltinSurfaceType() || 9078 cast<VarDecl>(D)->getType()->isCUDADeviceBuiltinTextureType())); 9079 } 9080 9081 void AMDGPUTargetCodeGenInfo::setTargetAttributes( 9082 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 9083 if (requiresAMDGPUProtectedVisibility(D, GV)) { 9084 GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 9085 GV->setDSOLocal(true); 9086 } 9087 9088 if (GV->isDeclaration()) 9089 return; 9090 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 9091 if (!FD) 9092 return; 9093 9094 llvm::Function *F = cast<llvm::Function>(GV); 9095 9096 const auto *ReqdWGS = M.getLangOpts().OpenCL ? 9097 FD->getAttr<ReqdWorkGroupSizeAttr>() : nullptr; 9098 9099 9100 const bool IsOpenCLKernel = M.getLangOpts().OpenCL && 9101 FD->hasAttr<OpenCLKernelAttr>(); 9102 const bool IsHIPKernel = M.getLangOpts().HIP && 9103 FD->hasAttr<CUDAGlobalAttr>(); 9104 if ((IsOpenCLKernel || IsHIPKernel) && 9105 (M.getTriple().getOS() == llvm::Triple::AMDHSA)) 9106 F->addFnAttr("amdgpu-implicitarg-num-bytes", "56"); 9107 9108 if (IsHIPKernel) 9109 F->addFnAttr("uniform-work-group-size", "true"); 9110 9111 9112 const auto *FlatWGS = FD->getAttr<AMDGPUFlatWorkGroupSizeAttr>(); 9113 if (ReqdWGS || FlatWGS) { 9114 unsigned Min = 0; 9115 unsigned Max = 0; 9116 if (FlatWGS) { 9117 Min = FlatWGS->getMin() 9118 ->EvaluateKnownConstInt(M.getContext()) 9119 .getExtValue(); 9120 Max = FlatWGS->getMax() 9121 ->EvaluateKnownConstInt(M.getContext()) 9122 .getExtValue(); 9123 } 9124 if (ReqdWGS && Min == 0 && Max == 0) 9125 Min = Max = ReqdWGS->getXDim() * ReqdWGS->getYDim() * ReqdWGS->getZDim(); 9126 9127 if (Min != 0) { 9128 assert(Min <= Max && "Min must be less than or equal Max"); 9129 9130 std::string AttrVal = llvm::utostr(Min) + "," + llvm::utostr(Max); 9131 F->addFnAttr("amdgpu-flat-work-group-size", AttrVal); 9132 } else 9133 assert(Max == 0 && "Max must be zero"); 9134 } else if (IsOpenCLKernel || IsHIPKernel) { 9135 // By default, restrict the maximum size to a value specified by 9136 // --gpu-max-threads-per-block=n or its default value for HIP. 9137 const unsigned OpenCLDefaultMaxWorkGroupSize = 256; 9138 const unsigned DefaultMaxWorkGroupSize = 9139 IsOpenCLKernel ? OpenCLDefaultMaxWorkGroupSize 9140 : M.getLangOpts().GPUMaxThreadsPerBlock; 9141 std::string AttrVal = 9142 std::string("1,") + llvm::utostr(DefaultMaxWorkGroupSize); 9143 F->addFnAttr("amdgpu-flat-work-group-size", AttrVal); 9144 } 9145 9146 if (const auto *Attr = FD->getAttr<AMDGPUWavesPerEUAttr>()) { 9147 unsigned Min = 9148 Attr->getMin()->EvaluateKnownConstInt(M.getContext()).getExtValue(); 9149 unsigned Max = Attr->getMax() ? Attr->getMax() 9150 ->EvaluateKnownConstInt(M.getContext()) 9151 .getExtValue() 9152 : 0; 9153 9154 if (Min != 0) { 9155 assert((Max == 0 || Min <= Max) && "Min must be less than or equal Max"); 9156 9157 std::string AttrVal = llvm::utostr(Min); 9158 if (Max != 0) 9159 AttrVal = AttrVal + "," + llvm::utostr(Max); 9160 F->addFnAttr("amdgpu-waves-per-eu", AttrVal); 9161 } else 9162 assert(Max == 0 && "Max must be zero"); 9163 } 9164 9165 if (const auto *Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) { 9166 unsigned NumSGPR = Attr->getNumSGPR(); 9167 9168 if (NumSGPR != 0) 9169 F->addFnAttr("amdgpu-num-sgpr", llvm::utostr(NumSGPR)); 9170 } 9171 9172 if (const auto *Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) { 9173 uint32_t NumVGPR = Attr->getNumVGPR(); 9174 9175 if (NumVGPR != 0) 9176 F->addFnAttr("amdgpu-num-vgpr", llvm::utostr(NumVGPR)); 9177 } 9178 9179 if (M.getContext().getTargetInfo().allowAMDGPUUnsafeFPAtomics()) 9180 F->addFnAttr("amdgpu-unsafe-fp-atomics", "true"); 9181 9182 if (!getABIInfo().getCodeGenOpts().EmitIEEENaNCompliantInsts) 9183 F->addFnAttr("amdgpu-ieee", "false"); 9184 } 9185 9186 unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 9187 return llvm::CallingConv::AMDGPU_KERNEL; 9188 } 9189 9190 // Currently LLVM assumes null pointers always have value 0, 9191 // which results in incorrectly transformed IR. Therefore, instead of 9192 // emitting null pointers in private and local address spaces, a null 9193 // pointer in generic address space is emitted which is casted to a 9194 // pointer in local or private address space. 9195 llvm::Constant *AMDGPUTargetCodeGenInfo::getNullPointer( 9196 const CodeGen::CodeGenModule &CGM, llvm::PointerType *PT, 9197 QualType QT) const { 9198 if (CGM.getContext().getTargetNullPointerValue(QT) == 0) 9199 return llvm::ConstantPointerNull::get(PT); 9200 9201 auto &Ctx = CGM.getContext(); 9202 auto NPT = llvm::PointerType::get(PT->getElementType(), 9203 Ctx.getTargetAddressSpace(LangAS::opencl_generic)); 9204 return llvm::ConstantExpr::getAddrSpaceCast( 9205 llvm::ConstantPointerNull::get(NPT), PT); 9206 } 9207 9208 LangAS 9209 AMDGPUTargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM, 9210 const VarDecl *D) const { 9211 assert(!CGM.getLangOpts().OpenCL && 9212 !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && 9213 "Address space agnostic languages only"); 9214 LangAS DefaultGlobalAS = getLangASFromTargetAS( 9215 CGM.getContext().getTargetAddressSpace(LangAS::opencl_global)); 9216 if (!D) 9217 return DefaultGlobalAS; 9218 9219 LangAS AddrSpace = D->getType().getAddressSpace(); 9220 assert(AddrSpace == LangAS::Default || isTargetAddressSpace(AddrSpace)); 9221 if (AddrSpace != LangAS::Default) 9222 return AddrSpace; 9223 9224 if (CGM.isTypeConstant(D->getType(), false)) { 9225 if (auto ConstAS = CGM.getTarget().getConstantAddressSpace()) 9226 return ConstAS.getValue(); 9227 } 9228 return DefaultGlobalAS; 9229 } 9230 9231 llvm::SyncScope::ID 9232 AMDGPUTargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts, 9233 SyncScope Scope, 9234 llvm::AtomicOrdering Ordering, 9235 llvm::LLVMContext &Ctx) const { 9236 std::string Name; 9237 switch (Scope) { 9238 case SyncScope::OpenCLWorkGroup: 9239 Name = "workgroup"; 9240 break; 9241 case SyncScope::OpenCLDevice: 9242 Name = "agent"; 9243 break; 9244 case SyncScope::OpenCLAllSVMDevices: 9245 Name = ""; 9246 break; 9247 case SyncScope::OpenCLSubGroup: 9248 Name = "wavefront"; 9249 } 9250 9251 if (Ordering != llvm::AtomicOrdering::SequentiallyConsistent) { 9252 if (!Name.empty()) 9253 Name = Twine(Twine(Name) + Twine("-")).str(); 9254 9255 Name = Twine(Twine(Name) + Twine("one-as")).str(); 9256 } 9257 9258 return Ctx.getOrInsertSyncScopeID(Name); 9259 } 9260 9261 bool AMDGPUTargetCodeGenInfo::shouldEmitStaticExternCAliases() const { 9262 return false; 9263 } 9264 9265 void AMDGPUTargetCodeGenInfo::setCUDAKernelCallingConvention( 9266 const FunctionType *&FT) const { 9267 FT = getABIInfo().getContext().adjustFunctionType( 9268 FT, FT->getExtInfo().withCallingConv(CC_OpenCLKernel)); 9269 } 9270 9271 //===----------------------------------------------------------------------===// 9272 // SPARC v8 ABI Implementation. 9273 // Based on the SPARC Compliance Definition version 2.4.1. 9274 // 9275 // Ensures that complex values are passed in registers. 9276 // 9277 namespace { 9278 class SparcV8ABIInfo : public DefaultABIInfo { 9279 public: 9280 SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 9281 9282 private: 9283 ABIArgInfo classifyReturnType(QualType RetTy) const; 9284 void computeInfo(CGFunctionInfo &FI) const override; 9285 }; 9286 } // end anonymous namespace 9287 9288 9289 ABIArgInfo 9290 SparcV8ABIInfo::classifyReturnType(QualType Ty) const { 9291 if (Ty->isAnyComplexType()) { 9292 return ABIArgInfo::getDirect(); 9293 } 9294 else { 9295 return DefaultABIInfo::classifyReturnType(Ty); 9296 } 9297 } 9298 9299 void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const { 9300 9301 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 9302 for (auto &Arg : FI.arguments()) 9303 Arg.info = classifyArgumentType(Arg.type); 9304 } 9305 9306 namespace { 9307 class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo { 9308 public: 9309 SparcV8TargetCodeGenInfo(CodeGenTypes &CGT) 9310 : TargetCodeGenInfo(std::make_unique<SparcV8ABIInfo>(CGT)) {} 9311 }; 9312 } // end anonymous namespace 9313 9314 //===----------------------------------------------------------------------===// 9315 // SPARC v9 ABI Implementation. 9316 // Based on the SPARC Compliance Definition version 2.4.1. 9317 // 9318 // Function arguments a mapped to a nominal "parameter array" and promoted to 9319 // registers depending on their type. Each argument occupies 8 or 16 bytes in 9320 // the array, structs larger than 16 bytes are passed indirectly. 9321 // 9322 // One case requires special care: 9323 // 9324 // struct mixed { 9325 // int i; 9326 // float f; 9327 // }; 9328 // 9329 // When a struct mixed is passed by value, it only occupies 8 bytes in the 9330 // parameter array, but the int is passed in an integer register, and the float 9331 // is passed in a floating point register. This is represented as two arguments 9332 // with the LLVM IR inreg attribute: 9333 // 9334 // declare void f(i32 inreg %i, float inreg %f) 9335 // 9336 // The code generator will only allocate 4 bytes from the parameter array for 9337 // the inreg arguments. All other arguments are allocated a multiple of 8 9338 // bytes. 9339 // 9340 namespace { 9341 class SparcV9ABIInfo : public ABIInfo { 9342 public: 9343 SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 9344 9345 private: 9346 ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const; 9347 void computeInfo(CGFunctionInfo &FI) const override; 9348 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9349 QualType Ty) const override; 9350 9351 // Coercion type builder for structs passed in registers. The coercion type 9352 // serves two purposes: 9353 // 9354 // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned' 9355 // in registers. 9356 // 2. Expose aligned floating point elements as first-level elements, so the 9357 // code generator knows to pass them in floating point registers. 9358 // 9359 // We also compute the InReg flag which indicates that the struct contains 9360 // aligned 32-bit floats. 9361 // 9362 struct CoerceBuilder { 9363 llvm::LLVMContext &Context; 9364 const llvm::DataLayout &DL; 9365 SmallVector<llvm::Type*, 8> Elems; 9366 uint64_t Size; 9367 bool InReg; 9368 9369 CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl) 9370 : Context(c), DL(dl), Size(0), InReg(false) {} 9371 9372 // Pad Elems with integers until Size is ToSize. 9373 void pad(uint64_t ToSize) { 9374 assert(ToSize >= Size && "Cannot remove elements"); 9375 if (ToSize == Size) 9376 return; 9377 9378 // Finish the current 64-bit word. 9379 uint64_t Aligned = llvm::alignTo(Size, 64); 9380 if (Aligned > Size && Aligned <= ToSize) { 9381 Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size)); 9382 Size = Aligned; 9383 } 9384 9385 // Add whole 64-bit words. 9386 while (Size + 64 <= ToSize) { 9387 Elems.push_back(llvm::Type::getInt64Ty(Context)); 9388 Size += 64; 9389 } 9390 9391 // Final in-word padding. 9392 if (Size < ToSize) { 9393 Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size)); 9394 Size = ToSize; 9395 } 9396 } 9397 9398 // Add a floating point element at Offset. 9399 void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) { 9400 // Unaligned floats are treated as integers. 9401 if (Offset % Bits) 9402 return; 9403 // The InReg flag is only required if there are any floats < 64 bits. 9404 if (Bits < 64) 9405 InReg = true; 9406 pad(Offset); 9407 Elems.push_back(Ty); 9408 Size = Offset + Bits; 9409 } 9410 9411 // Add a struct type to the coercion type, starting at Offset (in bits). 9412 void addStruct(uint64_t Offset, llvm::StructType *StrTy) { 9413 const llvm::StructLayout *Layout = DL.getStructLayout(StrTy); 9414 for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) { 9415 llvm::Type *ElemTy = StrTy->getElementType(i); 9416 uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i); 9417 switch (ElemTy->getTypeID()) { 9418 case llvm::Type::StructTyID: 9419 addStruct(ElemOffset, cast<llvm::StructType>(ElemTy)); 9420 break; 9421 case llvm::Type::FloatTyID: 9422 addFloat(ElemOffset, ElemTy, 32); 9423 break; 9424 case llvm::Type::DoubleTyID: 9425 addFloat(ElemOffset, ElemTy, 64); 9426 break; 9427 case llvm::Type::FP128TyID: 9428 addFloat(ElemOffset, ElemTy, 128); 9429 break; 9430 case llvm::Type::PointerTyID: 9431 if (ElemOffset % 64 == 0) { 9432 pad(ElemOffset); 9433 Elems.push_back(ElemTy); 9434 Size += 64; 9435 } 9436 break; 9437 default: 9438 break; 9439 } 9440 } 9441 } 9442 9443 // Check if Ty is a usable substitute for the coercion type. 9444 bool isUsableType(llvm::StructType *Ty) const { 9445 return llvm::makeArrayRef(Elems) == Ty->elements(); 9446 } 9447 9448 // Get the coercion type as a literal struct type. 9449 llvm::Type *getType() const { 9450 if (Elems.size() == 1) 9451 return Elems.front(); 9452 else 9453 return llvm::StructType::get(Context, Elems); 9454 } 9455 }; 9456 }; 9457 } // end anonymous namespace 9458 9459 ABIArgInfo 9460 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const { 9461 if (Ty->isVoidType()) 9462 return ABIArgInfo::getIgnore(); 9463 9464 uint64_t Size = getContext().getTypeSize(Ty); 9465 9466 // Anything too big to fit in registers is passed with an explicit indirect 9467 // pointer / sret pointer. 9468 if (Size > SizeLimit) 9469 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 9470 9471 // Treat an enum type as its underlying type. 9472 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 9473 Ty = EnumTy->getDecl()->getIntegerType(); 9474 9475 // Integer types smaller than a register are extended. 9476 if (Size < 64 && Ty->isIntegerType()) 9477 return ABIArgInfo::getExtend(Ty); 9478 9479 if (const auto *EIT = Ty->getAs<ExtIntType>()) 9480 if (EIT->getNumBits() < 64) 9481 return ABIArgInfo::getExtend(Ty); 9482 9483 // Other non-aggregates go in registers. 9484 if (!isAggregateTypeForABI(Ty)) 9485 return ABIArgInfo::getDirect(); 9486 9487 // If a C++ object has either a non-trivial copy constructor or a non-trivial 9488 // destructor, it is passed with an explicit indirect pointer / sret pointer. 9489 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 9490 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 9491 9492 // This is a small aggregate type that should be passed in registers. 9493 // Build a coercion type from the LLVM struct type. 9494 llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty)); 9495 if (!StrTy) 9496 return ABIArgInfo::getDirect(); 9497 9498 CoerceBuilder CB(getVMContext(), getDataLayout()); 9499 CB.addStruct(0, StrTy); 9500 CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64)); 9501 9502 // Try to use the original type for coercion. 9503 llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType(); 9504 9505 if (CB.InReg) 9506 return ABIArgInfo::getDirectInReg(CoerceTy); 9507 else 9508 return ABIArgInfo::getDirect(CoerceTy); 9509 } 9510 9511 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9512 QualType Ty) const { 9513 ABIArgInfo AI = classifyType(Ty, 16 * 8); 9514 llvm::Type *ArgTy = CGT.ConvertType(Ty); 9515 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 9516 AI.setCoerceToType(ArgTy); 9517 9518 CharUnits SlotSize = CharUnits::fromQuantity(8); 9519 9520 CGBuilderTy &Builder = CGF.Builder; 9521 Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 9522 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 9523 9524 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 9525 9526 Address ArgAddr = Address::invalid(); 9527 CharUnits Stride; 9528 switch (AI.getKind()) { 9529 case ABIArgInfo::Expand: 9530 case ABIArgInfo::CoerceAndExpand: 9531 case ABIArgInfo::InAlloca: 9532 llvm_unreachable("Unsupported ABI kind for va_arg"); 9533 9534 case ABIArgInfo::Extend: { 9535 Stride = SlotSize; 9536 CharUnits Offset = SlotSize - TypeInfo.Width; 9537 ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend"); 9538 break; 9539 } 9540 9541 case ABIArgInfo::Direct: { 9542 auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType()); 9543 Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize); 9544 ArgAddr = Addr; 9545 break; 9546 } 9547 9548 case ABIArgInfo::Indirect: 9549 case ABIArgInfo::IndirectAliased: 9550 Stride = SlotSize; 9551 ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect"); 9552 ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"), 9553 TypeInfo.Align); 9554 break; 9555 9556 case ABIArgInfo::Ignore: 9557 return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.Align); 9558 } 9559 9560 // Update VAList. 9561 Address NextPtr = Builder.CreateConstInBoundsByteGEP(Addr, Stride, "ap.next"); 9562 Builder.CreateStore(NextPtr.getPointer(), VAListAddr); 9563 9564 return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr"); 9565 } 9566 9567 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const { 9568 FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8); 9569 for (auto &I : FI.arguments()) 9570 I.info = classifyType(I.type, 16 * 8); 9571 } 9572 9573 namespace { 9574 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo { 9575 public: 9576 SparcV9TargetCodeGenInfo(CodeGenTypes &CGT) 9577 : TargetCodeGenInfo(std::make_unique<SparcV9ABIInfo>(CGT)) {} 9578 9579 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 9580 return 14; 9581 } 9582 9583 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 9584 llvm::Value *Address) const override; 9585 }; 9586 } // end anonymous namespace 9587 9588 bool 9589 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 9590 llvm::Value *Address) const { 9591 // This is calculated from the LLVM and GCC tables and verified 9592 // against gcc output. AFAIK all ABIs use the same encoding. 9593 9594 CodeGen::CGBuilderTy &Builder = CGF.Builder; 9595 9596 llvm::IntegerType *i8 = CGF.Int8Ty; 9597 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 9598 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 9599 9600 // 0-31: the 8-byte general-purpose registers 9601 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 9602 9603 // 32-63: f0-31, the 4-byte floating-point registers 9604 AssignToArrayRange(Builder, Address, Four8, 32, 63); 9605 9606 // Y = 64 9607 // PSR = 65 9608 // WIM = 66 9609 // TBR = 67 9610 // PC = 68 9611 // NPC = 69 9612 // FSR = 70 9613 // CSR = 71 9614 AssignToArrayRange(Builder, Address, Eight8, 64, 71); 9615 9616 // 72-87: d0-15, the 8-byte floating-point registers 9617 AssignToArrayRange(Builder, Address, Eight8, 72, 87); 9618 9619 return false; 9620 } 9621 9622 // ARC ABI implementation. 9623 namespace { 9624 9625 class ARCABIInfo : public DefaultABIInfo { 9626 public: 9627 using DefaultABIInfo::DefaultABIInfo; 9628 9629 private: 9630 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9631 QualType Ty) const override; 9632 9633 void updateState(const ABIArgInfo &Info, QualType Ty, CCState &State) const { 9634 if (!State.FreeRegs) 9635 return; 9636 if (Info.isIndirect() && Info.getInReg()) 9637 State.FreeRegs--; 9638 else if (Info.isDirect() && Info.getInReg()) { 9639 unsigned sz = (getContext().getTypeSize(Ty) + 31) / 32; 9640 if (sz < State.FreeRegs) 9641 State.FreeRegs -= sz; 9642 else 9643 State.FreeRegs = 0; 9644 } 9645 } 9646 9647 void computeInfo(CGFunctionInfo &FI) const override { 9648 CCState State(FI); 9649 // ARC uses 8 registers to pass arguments. 9650 State.FreeRegs = 8; 9651 9652 if (!getCXXABI().classifyReturnType(FI)) 9653 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 9654 updateState(FI.getReturnInfo(), FI.getReturnType(), State); 9655 for (auto &I : FI.arguments()) { 9656 I.info = classifyArgumentType(I.type, State.FreeRegs); 9657 updateState(I.info, I.type, State); 9658 } 9659 } 9660 9661 ABIArgInfo getIndirectByRef(QualType Ty, bool HasFreeRegs) const; 9662 ABIArgInfo getIndirectByValue(QualType Ty) const; 9663 ABIArgInfo classifyArgumentType(QualType Ty, uint8_t FreeRegs) const; 9664 ABIArgInfo classifyReturnType(QualType RetTy) const; 9665 }; 9666 9667 class ARCTargetCodeGenInfo : public TargetCodeGenInfo { 9668 public: 9669 ARCTargetCodeGenInfo(CodeGenTypes &CGT) 9670 : TargetCodeGenInfo(std::make_unique<ARCABIInfo>(CGT)) {} 9671 }; 9672 9673 9674 ABIArgInfo ARCABIInfo::getIndirectByRef(QualType Ty, bool HasFreeRegs) const { 9675 return HasFreeRegs ? getNaturalAlignIndirectInReg(Ty) : 9676 getNaturalAlignIndirect(Ty, false); 9677 } 9678 9679 ABIArgInfo ARCABIInfo::getIndirectByValue(QualType Ty) const { 9680 // Compute the byval alignment. 9681 const unsigned MinABIStackAlignInBytes = 4; 9682 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 9683 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true, 9684 TypeAlign > MinABIStackAlignInBytes); 9685 } 9686 9687 Address ARCABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9688 QualType Ty) const { 9689 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 9690 getContext().getTypeInfoInChars(Ty), 9691 CharUnits::fromQuantity(4), true); 9692 } 9693 9694 ABIArgInfo ARCABIInfo::classifyArgumentType(QualType Ty, 9695 uint8_t FreeRegs) const { 9696 // Handle the generic C++ ABI. 9697 const RecordType *RT = Ty->getAs<RecordType>(); 9698 if (RT) { 9699 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 9700 if (RAA == CGCXXABI::RAA_Indirect) 9701 return getIndirectByRef(Ty, FreeRegs > 0); 9702 9703 if (RAA == CGCXXABI::RAA_DirectInMemory) 9704 return getIndirectByValue(Ty); 9705 } 9706 9707 // Treat an enum type as its underlying type. 9708 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 9709 Ty = EnumTy->getDecl()->getIntegerType(); 9710 9711 auto SizeInRegs = llvm::alignTo(getContext().getTypeSize(Ty), 32) / 32; 9712 9713 if (isAggregateTypeForABI(Ty)) { 9714 // Structures with flexible arrays are always indirect. 9715 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 9716 return getIndirectByValue(Ty); 9717 9718 // Ignore empty structs/unions. 9719 if (isEmptyRecord(getContext(), Ty, true)) 9720 return ABIArgInfo::getIgnore(); 9721 9722 llvm::LLVMContext &LLVMContext = getVMContext(); 9723 9724 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 9725 SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32); 9726 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 9727 9728 return FreeRegs >= SizeInRegs ? 9729 ABIArgInfo::getDirectInReg(Result) : 9730 ABIArgInfo::getDirect(Result, 0, nullptr, false); 9731 } 9732 9733 if (const auto *EIT = Ty->getAs<ExtIntType>()) 9734 if (EIT->getNumBits() > 64) 9735 return getIndirectByValue(Ty); 9736 9737 return isPromotableIntegerTypeForABI(Ty) 9738 ? (FreeRegs >= SizeInRegs ? ABIArgInfo::getExtendInReg(Ty) 9739 : ABIArgInfo::getExtend(Ty)) 9740 : (FreeRegs >= SizeInRegs ? ABIArgInfo::getDirectInReg() 9741 : ABIArgInfo::getDirect()); 9742 } 9743 9744 ABIArgInfo ARCABIInfo::classifyReturnType(QualType RetTy) const { 9745 if (RetTy->isAnyComplexType()) 9746 return ABIArgInfo::getDirectInReg(); 9747 9748 // Arguments of size > 4 registers are indirect. 9749 auto RetSize = llvm::alignTo(getContext().getTypeSize(RetTy), 32) / 32; 9750 if (RetSize > 4) 9751 return getIndirectByRef(RetTy, /*HasFreeRegs*/ true); 9752 9753 return DefaultABIInfo::classifyReturnType(RetTy); 9754 } 9755 9756 } // End anonymous namespace. 9757 9758 //===----------------------------------------------------------------------===// 9759 // XCore ABI Implementation 9760 //===----------------------------------------------------------------------===// 9761 9762 namespace { 9763 9764 /// A SmallStringEnc instance is used to build up the TypeString by passing 9765 /// it by reference between functions that append to it. 9766 typedef llvm::SmallString<128> SmallStringEnc; 9767 9768 /// TypeStringCache caches the meta encodings of Types. 9769 /// 9770 /// The reason for caching TypeStrings is two fold: 9771 /// 1. To cache a type's encoding for later uses; 9772 /// 2. As a means to break recursive member type inclusion. 9773 /// 9774 /// A cache Entry can have a Status of: 9775 /// NonRecursive: The type encoding is not recursive; 9776 /// Recursive: The type encoding is recursive; 9777 /// Incomplete: An incomplete TypeString; 9778 /// IncompleteUsed: An incomplete TypeString that has been used in a 9779 /// Recursive type encoding. 9780 /// 9781 /// A NonRecursive entry will have all of its sub-members expanded as fully 9782 /// as possible. Whilst it may contain types which are recursive, the type 9783 /// itself is not recursive and thus its encoding may be safely used whenever 9784 /// the type is encountered. 9785 /// 9786 /// A Recursive entry will have all of its sub-members expanded as fully as 9787 /// possible. The type itself is recursive and it may contain other types which 9788 /// are recursive. The Recursive encoding must not be used during the expansion 9789 /// of a recursive type's recursive branch. For simplicity the code uses 9790 /// IncompleteCount to reject all usage of Recursive encodings for member types. 9791 /// 9792 /// An Incomplete entry is always a RecordType and only encodes its 9793 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and 9794 /// are placed into the cache during type expansion as a means to identify and 9795 /// handle recursive inclusion of types as sub-members. If there is recursion 9796 /// the entry becomes IncompleteUsed. 9797 /// 9798 /// During the expansion of a RecordType's members: 9799 /// 9800 /// If the cache contains a NonRecursive encoding for the member type, the 9801 /// cached encoding is used; 9802 /// 9803 /// If the cache contains a Recursive encoding for the member type, the 9804 /// cached encoding is 'Swapped' out, as it may be incorrect, and... 9805 /// 9806 /// If the member is a RecordType, an Incomplete encoding is placed into the 9807 /// cache to break potential recursive inclusion of itself as a sub-member; 9808 /// 9809 /// Once a member RecordType has been expanded, its temporary incomplete 9810 /// entry is removed from the cache. If a Recursive encoding was swapped out 9811 /// it is swapped back in; 9812 /// 9813 /// If an incomplete entry is used to expand a sub-member, the incomplete 9814 /// entry is marked as IncompleteUsed. The cache keeps count of how many 9815 /// IncompleteUsed entries it currently contains in IncompleteUsedCount; 9816 /// 9817 /// If a member's encoding is found to be a NonRecursive or Recursive viz: 9818 /// IncompleteUsedCount==0, the member's encoding is added to the cache. 9819 /// Else the member is part of a recursive type and thus the recursion has 9820 /// been exited too soon for the encoding to be correct for the member. 9821 /// 9822 class TypeStringCache { 9823 enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed}; 9824 struct Entry { 9825 std::string Str; // The encoded TypeString for the type. 9826 enum Status State; // Information about the encoding in 'Str'. 9827 std::string Swapped; // A temporary place holder for a Recursive encoding 9828 // during the expansion of RecordType's members. 9829 }; 9830 std::map<const IdentifierInfo *, struct Entry> Map; 9831 unsigned IncompleteCount; // Number of Incomplete entries in the Map. 9832 unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map. 9833 public: 9834 TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {} 9835 void addIncomplete(const IdentifierInfo *ID, std::string StubEnc); 9836 bool removeIncomplete(const IdentifierInfo *ID); 9837 void addIfComplete(const IdentifierInfo *ID, StringRef Str, 9838 bool IsRecursive); 9839 StringRef lookupStr(const IdentifierInfo *ID); 9840 }; 9841 9842 /// TypeString encodings for enum & union fields must be order. 9843 /// FieldEncoding is a helper for this ordering process. 9844 class FieldEncoding { 9845 bool HasName; 9846 std::string Enc; 9847 public: 9848 FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {} 9849 StringRef str() { return Enc; } 9850 bool operator<(const FieldEncoding &rhs) const { 9851 if (HasName != rhs.HasName) return HasName; 9852 return Enc < rhs.Enc; 9853 } 9854 }; 9855 9856 class XCoreABIInfo : public DefaultABIInfo { 9857 public: 9858 XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 9859 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9860 QualType Ty) const override; 9861 }; 9862 9863 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo { 9864 mutable TypeStringCache TSC; 9865 void emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 9866 const CodeGen::CodeGenModule &M) const; 9867 9868 public: 9869 XCoreTargetCodeGenInfo(CodeGenTypes &CGT) 9870 : TargetCodeGenInfo(std::make_unique<XCoreABIInfo>(CGT)) {} 9871 void emitTargetMetadata(CodeGen::CodeGenModule &CGM, 9872 const llvm::MapVector<GlobalDecl, StringRef> 9873 &MangledDeclNames) const override; 9874 }; 9875 9876 } // End anonymous namespace. 9877 9878 // TODO: this implementation is likely now redundant with the default 9879 // EmitVAArg. 9880 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9881 QualType Ty) const { 9882 CGBuilderTy &Builder = CGF.Builder; 9883 9884 // Get the VAList. 9885 CharUnits SlotSize = CharUnits::fromQuantity(4); 9886 Address AP(Builder.CreateLoad(VAListAddr), SlotSize); 9887 9888 // Handle the argument. 9889 ABIArgInfo AI = classifyArgumentType(Ty); 9890 CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty); 9891 llvm::Type *ArgTy = CGT.ConvertType(Ty); 9892 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 9893 AI.setCoerceToType(ArgTy); 9894 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 9895 9896 Address Val = Address::invalid(); 9897 CharUnits ArgSize = CharUnits::Zero(); 9898 switch (AI.getKind()) { 9899 case ABIArgInfo::Expand: 9900 case ABIArgInfo::CoerceAndExpand: 9901 case ABIArgInfo::InAlloca: 9902 llvm_unreachable("Unsupported ABI kind for va_arg"); 9903 case ABIArgInfo::Ignore: 9904 Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign); 9905 ArgSize = CharUnits::Zero(); 9906 break; 9907 case ABIArgInfo::Extend: 9908 case ABIArgInfo::Direct: 9909 Val = Builder.CreateBitCast(AP, ArgPtrTy); 9910 ArgSize = CharUnits::fromQuantity( 9911 getDataLayout().getTypeAllocSize(AI.getCoerceToType())); 9912 ArgSize = ArgSize.alignTo(SlotSize); 9913 break; 9914 case ABIArgInfo::Indirect: 9915 case ABIArgInfo::IndirectAliased: 9916 Val = Builder.CreateElementBitCast(AP, ArgPtrTy); 9917 Val = Address(Builder.CreateLoad(Val), TypeAlign); 9918 ArgSize = SlotSize; 9919 break; 9920 } 9921 9922 // Increment the VAList. 9923 if (!ArgSize.isZero()) { 9924 Address APN = Builder.CreateConstInBoundsByteGEP(AP, ArgSize); 9925 Builder.CreateStore(APN.getPointer(), VAListAddr); 9926 } 9927 9928 return Val; 9929 } 9930 9931 /// During the expansion of a RecordType, an incomplete TypeString is placed 9932 /// into the cache as a means to identify and break recursion. 9933 /// If there is a Recursive encoding in the cache, it is swapped out and will 9934 /// be reinserted by removeIncomplete(). 9935 /// All other types of encoding should have been used rather than arriving here. 9936 void TypeStringCache::addIncomplete(const IdentifierInfo *ID, 9937 std::string StubEnc) { 9938 if (!ID) 9939 return; 9940 Entry &E = Map[ID]; 9941 assert( (E.Str.empty() || E.State == Recursive) && 9942 "Incorrectly use of addIncomplete"); 9943 assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()"); 9944 E.Swapped.swap(E.Str); // swap out the Recursive 9945 E.Str.swap(StubEnc); 9946 E.State = Incomplete; 9947 ++IncompleteCount; 9948 } 9949 9950 /// Once the RecordType has been expanded, the temporary incomplete TypeString 9951 /// must be removed from the cache. 9952 /// If a Recursive was swapped out by addIncomplete(), it will be replaced. 9953 /// Returns true if the RecordType was defined recursively. 9954 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) { 9955 if (!ID) 9956 return false; 9957 auto I = Map.find(ID); 9958 assert(I != Map.end() && "Entry not present"); 9959 Entry &E = I->second; 9960 assert( (E.State == Incomplete || 9961 E.State == IncompleteUsed) && 9962 "Entry must be an incomplete type"); 9963 bool IsRecursive = false; 9964 if (E.State == IncompleteUsed) { 9965 // We made use of our Incomplete encoding, thus we are recursive. 9966 IsRecursive = true; 9967 --IncompleteUsedCount; 9968 } 9969 if (E.Swapped.empty()) 9970 Map.erase(I); 9971 else { 9972 // Swap the Recursive back. 9973 E.Swapped.swap(E.Str); 9974 E.Swapped.clear(); 9975 E.State = Recursive; 9976 } 9977 --IncompleteCount; 9978 return IsRecursive; 9979 } 9980 9981 /// Add the encoded TypeString to the cache only if it is NonRecursive or 9982 /// Recursive (viz: all sub-members were expanded as fully as possible). 9983 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str, 9984 bool IsRecursive) { 9985 if (!ID || IncompleteUsedCount) 9986 return; // No key or it is is an incomplete sub-type so don't add. 9987 Entry &E = Map[ID]; 9988 if (IsRecursive && !E.Str.empty()) { 9989 assert(E.State==Recursive && E.Str.size() == Str.size() && 9990 "This is not the same Recursive entry"); 9991 // The parent container was not recursive after all, so we could have used 9992 // this Recursive sub-member entry after all, but we assumed the worse when 9993 // we started viz: IncompleteCount!=0. 9994 return; 9995 } 9996 assert(E.Str.empty() && "Entry already present"); 9997 E.Str = Str.str(); 9998 E.State = IsRecursive? Recursive : NonRecursive; 9999 } 10000 10001 /// Return a cached TypeString encoding for the ID. If there isn't one, or we 10002 /// are recursively expanding a type (IncompleteCount != 0) and the cached 10003 /// encoding is Recursive, return an empty StringRef. 10004 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) { 10005 if (!ID) 10006 return StringRef(); // We have no key. 10007 auto I = Map.find(ID); 10008 if (I == Map.end()) 10009 return StringRef(); // We have no encoding. 10010 Entry &E = I->second; 10011 if (E.State == Recursive && IncompleteCount) 10012 return StringRef(); // We don't use Recursive encodings for member types. 10013 10014 if (E.State == Incomplete) { 10015 // The incomplete type is being used to break out of recursion. 10016 E.State = IncompleteUsed; 10017 ++IncompleteUsedCount; 10018 } 10019 return E.Str; 10020 } 10021 10022 /// The XCore ABI includes a type information section that communicates symbol 10023 /// type information to the linker. The linker uses this information to verify 10024 /// safety/correctness of things such as array bound and pointers et al. 10025 /// The ABI only requires C (and XC) language modules to emit TypeStrings. 10026 /// This type information (TypeString) is emitted into meta data for all global 10027 /// symbols: definitions, declarations, functions & variables. 10028 /// 10029 /// The TypeString carries type, qualifier, name, size & value details. 10030 /// Please see 'Tools Development Guide' section 2.16.2 for format details: 10031 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf 10032 /// The output is tested by test/CodeGen/xcore-stringtype.c. 10033 /// 10034 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 10035 const CodeGen::CodeGenModule &CGM, 10036 TypeStringCache &TSC); 10037 10038 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols. 10039 void XCoreTargetCodeGenInfo::emitTargetMD( 10040 const Decl *D, llvm::GlobalValue *GV, 10041 const CodeGen::CodeGenModule &CGM) const { 10042 SmallStringEnc Enc; 10043 if (getTypeString(Enc, D, CGM, TSC)) { 10044 llvm::LLVMContext &Ctx = CGM.getModule().getContext(); 10045 llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV), 10046 llvm::MDString::get(Ctx, Enc.str())}; 10047 llvm::NamedMDNode *MD = 10048 CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings"); 10049 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 10050 } 10051 } 10052 10053 void XCoreTargetCodeGenInfo::emitTargetMetadata( 10054 CodeGen::CodeGenModule &CGM, 10055 const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames) const { 10056 // Warning, new MangledDeclNames may be appended within this loop. 10057 // We rely on MapVector insertions adding new elements to the end 10058 // of the container. 10059 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 10060 auto Val = *(MangledDeclNames.begin() + I); 10061 llvm::GlobalValue *GV = CGM.GetGlobalValue(Val.second); 10062 if (GV) { 10063 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 10064 emitTargetMD(D, GV, CGM); 10065 } 10066 } 10067 } 10068 //===----------------------------------------------------------------------===// 10069 // SPIR ABI Implementation 10070 //===----------------------------------------------------------------------===// 10071 10072 namespace { 10073 class SPIRABIInfo : public DefaultABIInfo { 10074 public: 10075 SPIRABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) { setCCs(); } 10076 10077 private: 10078 void setCCs(); 10079 }; 10080 } // end anonymous namespace 10081 namespace { 10082 class SPIRTargetCodeGenInfo : public TargetCodeGenInfo { 10083 public: 10084 SPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 10085 : TargetCodeGenInfo(std::make_unique<SPIRABIInfo>(CGT)) {} 10086 10087 LangAS getASTAllocaAddressSpace() const override { 10088 return getLangASFromTargetAS( 10089 getABIInfo().getDataLayout().getAllocaAddrSpace()); 10090 } 10091 10092 unsigned getOpenCLKernelCallingConv() const override; 10093 }; 10094 10095 } // End anonymous namespace. 10096 void SPIRABIInfo::setCCs() { 10097 assert(getRuntimeCC() == llvm::CallingConv::C); 10098 RuntimeCC = llvm::CallingConv::SPIR_FUNC; 10099 } 10100 10101 namespace clang { 10102 namespace CodeGen { 10103 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) { 10104 DefaultABIInfo SPIRABI(CGM.getTypes()); 10105 SPIRABI.computeInfo(FI); 10106 } 10107 } 10108 } 10109 10110 unsigned SPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 10111 return llvm::CallingConv::SPIR_KERNEL; 10112 } 10113 10114 static bool appendType(SmallStringEnc &Enc, QualType QType, 10115 const CodeGen::CodeGenModule &CGM, 10116 TypeStringCache &TSC); 10117 10118 /// Helper function for appendRecordType(). 10119 /// Builds a SmallVector containing the encoded field types in declaration 10120 /// order. 10121 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE, 10122 const RecordDecl *RD, 10123 const CodeGen::CodeGenModule &CGM, 10124 TypeStringCache &TSC) { 10125 for (const auto *Field : RD->fields()) { 10126 SmallStringEnc Enc; 10127 Enc += "m("; 10128 Enc += Field->getName(); 10129 Enc += "){"; 10130 if (Field->isBitField()) { 10131 Enc += "b("; 10132 llvm::raw_svector_ostream OS(Enc); 10133 OS << Field->getBitWidthValue(CGM.getContext()); 10134 Enc += ':'; 10135 } 10136 if (!appendType(Enc, Field->getType(), CGM, TSC)) 10137 return false; 10138 if (Field->isBitField()) 10139 Enc += ')'; 10140 Enc += '}'; 10141 FE.emplace_back(!Field->getName().empty(), Enc); 10142 } 10143 return true; 10144 } 10145 10146 /// Appends structure and union types to Enc and adds encoding to cache. 10147 /// Recursively calls appendType (via extractFieldType) for each field. 10148 /// Union types have their fields ordered according to the ABI. 10149 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT, 10150 const CodeGen::CodeGenModule &CGM, 10151 TypeStringCache &TSC, const IdentifierInfo *ID) { 10152 // Append the cached TypeString if we have one. 10153 StringRef TypeString = TSC.lookupStr(ID); 10154 if (!TypeString.empty()) { 10155 Enc += TypeString; 10156 return true; 10157 } 10158 10159 // Start to emit an incomplete TypeString. 10160 size_t Start = Enc.size(); 10161 Enc += (RT->isUnionType()? 'u' : 's'); 10162 Enc += '('; 10163 if (ID) 10164 Enc += ID->getName(); 10165 Enc += "){"; 10166 10167 // We collect all encoded fields and order as necessary. 10168 bool IsRecursive = false; 10169 const RecordDecl *RD = RT->getDecl()->getDefinition(); 10170 if (RD && !RD->field_empty()) { 10171 // An incomplete TypeString stub is placed in the cache for this RecordType 10172 // so that recursive calls to this RecordType will use it whilst building a 10173 // complete TypeString for this RecordType. 10174 SmallVector<FieldEncoding, 16> FE; 10175 std::string StubEnc(Enc.substr(Start).str()); 10176 StubEnc += '}'; // StubEnc now holds a valid incomplete TypeString. 10177 TSC.addIncomplete(ID, std::move(StubEnc)); 10178 if (!extractFieldType(FE, RD, CGM, TSC)) { 10179 (void) TSC.removeIncomplete(ID); 10180 return false; 10181 } 10182 IsRecursive = TSC.removeIncomplete(ID); 10183 // The ABI requires unions to be sorted but not structures. 10184 // See FieldEncoding::operator< for sort algorithm. 10185 if (RT->isUnionType()) 10186 llvm::sort(FE); 10187 // We can now complete the TypeString. 10188 unsigned E = FE.size(); 10189 for (unsigned I = 0; I != E; ++I) { 10190 if (I) 10191 Enc += ','; 10192 Enc += FE[I].str(); 10193 } 10194 } 10195 Enc += '}'; 10196 TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive); 10197 return true; 10198 } 10199 10200 /// Appends enum types to Enc and adds the encoding to the cache. 10201 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET, 10202 TypeStringCache &TSC, 10203 const IdentifierInfo *ID) { 10204 // Append the cached TypeString if we have one. 10205 StringRef TypeString = TSC.lookupStr(ID); 10206 if (!TypeString.empty()) { 10207 Enc += TypeString; 10208 return true; 10209 } 10210 10211 size_t Start = Enc.size(); 10212 Enc += "e("; 10213 if (ID) 10214 Enc += ID->getName(); 10215 Enc += "){"; 10216 10217 // We collect all encoded enumerations and order them alphanumerically. 10218 if (const EnumDecl *ED = ET->getDecl()->getDefinition()) { 10219 SmallVector<FieldEncoding, 16> FE; 10220 for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E; 10221 ++I) { 10222 SmallStringEnc EnumEnc; 10223 EnumEnc += "m("; 10224 EnumEnc += I->getName(); 10225 EnumEnc += "){"; 10226 I->getInitVal().toString(EnumEnc); 10227 EnumEnc += '}'; 10228 FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc)); 10229 } 10230 llvm::sort(FE); 10231 unsigned E = FE.size(); 10232 for (unsigned I = 0; I != E; ++I) { 10233 if (I) 10234 Enc += ','; 10235 Enc += FE[I].str(); 10236 } 10237 } 10238 Enc += '}'; 10239 TSC.addIfComplete(ID, Enc.substr(Start), false); 10240 return true; 10241 } 10242 10243 /// Appends type's qualifier to Enc. 10244 /// This is done prior to appending the type's encoding. 10245 static void appendQualifier(SmallStringEnc &Enc, QualType QT) { 10246 // Qualifiers are emitted in alphabetical order. 10247 static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"}; 10248 int Lookup = 0; 10249 if (QT.isConstQualified()) 10250 Lookup += 1<<0; 10251 if (QT.isRestrictQualified()) 10252 Lookup += 1<<1; 10253 if (QT.isVolatileQualified()) 10254 Lookup += 1<<2; 10255 Enc += Table[Lookup]; 10256 } 10257 10258 /// Appends built-in types to Enc. 10259 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) { 10260 const char *EncType; 10261 switch (BT->getKind()) { 10262 case BuiltinType::Void: 10263 EncType = "0"; 10264 break; 10265 case BuiltinType::Bool: 10266 EncType = "b"; 10267 break; 10268 case BuiltinType::Char_U: 10269 EncType = "uc"; 10270 break; 10271 case BuiltinType::UChar: 10272 EncType = "uc"; 10273 break; 10274 case BuiltinType::SChar: 10275 EncType = "sc"; 10276 break; 10277 case BuiltinType::UShort: 10278 EncType = "us"; 10279 break; 10280 case BuiltinType::Short: 10281 EncType = "ss"; 10282 break; 10283 case BuiltinType::UInt: 10284 EncType = "ui"; 10285 break; 10286 case BuiltinType::Int: 10287 EncType = "si"; 10288 break; 10289 case BuiltinType::ULong: 10290 EncType = "ul"; 10291 break; 10292 case BuiltinType::Long: 10293 EncType = "sl"; 10294 break; 10295 case BuiltinType::ULongLong: 10296 EncType = "ull"; 10297 break; 10298 case BuiltinType::LongLong: 10299 EncType = "sll"; 10300 break; 10301 case BuiltinType::Float: 10302 EncType = "ft"; 10303 break; 10304 case BuiltinType::Double: 10305 EncType = "d"; 10306 break; 10307 case BuiltinType::LongDouble: 10308 EncType = "ld"; 10309 break; 10310 default: 10311 return false; 10312 } 10313 Enc += EncType; 10314 return true; 10315 } 10316 10317 /// Appends a pointer encoding to Enc before calling appendType for the pointee. 10318 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT, 10319 const CodeGen::CodeGenModule &CGM, 10320 TypeStringCache &TSC) { 10321 Enc += "p("; 10322 if (!appendType(Enc, PT->getPointeeType(), CGM, TSC)) 10323 return false; 10324 Enc += ')'; 10325 return true; 10326 } 10327 10328 /// Appends array encoding to Enc before calling appendType for the element. 10329 static bool appendArrayType(SmallStringEnc &Enc, QualType QT, 10330 const ArrayType *AT, 10331 const CodeGen::CodeGenModule &CGM, 10332 TypeStringCache &TSC, StringRef NoSizeEnc) { 10333 if (AT->getSizeModifier() != ArrayType::Normal) 10334 return false; 10335 Enc += "a("; 10336 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) 10337 CAT->getSize().toStringUnsigned(Enc); 10338 else 10339 Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "". 10340 Enc += ':'; 10341 // The Qualifiers should be attached to the type rather than the array. 10342 appendQualifier(Enc, QT); 10343 if (!appendType(Enc, AT->getElementType(), CGM, TSC)) 10344 return false; 10345 Enc += ')'; 10346 return true; 10347 } 10348 10349 /// Appends a function encoding to Enc, calling appendType for the return type 10350 /// and the arguments. 10351 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT, 10352 const CodeGen::CodeGenModule &CGM, 10353 TypeStringCache &TSC) { 10354 Enc += "f{"; 10355 if (!appendType(Enc, FT->getReturnType(), CGM, TSC)) 10356 return false; 10357 Enc += "}("; 10358 if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) { 10359 // N.B. we are only interested in the adjusted param types. 10360 auto I = FPT->param_type_begin(); 10361 auto E = FPT->param_type_end(); 10362 if (I != E) { 10363 do { 10364 if (!appendType(Enc, *I, CGM, TSC)) 10365 return false; 10366 ++I; 10367 if (I != E) 10368 Enc += ','; 10369 } while (I != E); 10370 if (FPT->isVariadic()) 10371 Enc += ",va"; 10372 } else { 10373 if (FPT->isVariadic()) 10374 Enc += "va"; 10375 else 10376 Enc += '0'; 10377 } 10378 } 10379 Enc += ')'; 10380 return true; 10381 } 10382 10383 /// Handles the type's qualifier before dispatching a call to handle specific 10384 /// type encodings. 10385 static bool appendType(SmallStringEnc &Enc, QualType QType, 10386 const CodeGen::CodeGenModule &CGM, 10387 TypeStringCache &TSC) { 10388 10389 QualType QT = QType.getCanonicalType(); 10390 10391 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) 10392 // The Qualifiers should be attached to the type rather than the array. 10393 // Thus we don't call appendQualifier() here. 10394 return appendArrayType(Enc, QT, AT, CGM, TSC, ""); 10395 10396 appendQualifier(Enc, QT); 10397 10398 if (const BuiltinType *BT = QT->getAs<BuiltinType>()) 10399 return appendBuiltinType(Enc, BT); 10400 10401 if (const PointerType *PT = QT->getAs<PointerType>()) 10402 return appendPointerType(Enc, PT, CGM, TSC); 10403 10404 if (const EnumType *ET = QT->getAs<EnumType>()) 10405 return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier()); 10406 10407 if (const RecordType *RT = QT->getAsStructureType()) 10408 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 10409 10410 if (const RecordType *RT = QT->getAsUnionType()) 10411 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 10412 10413 if (const FunctionType *FT = QT->getAs<FunctionType>()) 10414 return appendFunctionType(Enc, FT, CGM, TSC); 10415 10416 return false; 10417 } 10418 10419 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 10420 const CodeGen::CodeGenModule &CGM, 10421 TypeStringCache &TSC) { 10422 if (!D) 10423 return false; 10424 10425 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 10426 if (FD->getLanguageLinkage() != CLanguageLinkage) 10427 return false; 10428 return appendType(Enc, FD->getType(), CGM, TSC); 10429 } 10430 10431 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 10432 if (VD->getLanguageLinkage() != CLanguageLinkage) 10433 return false; 10434 QualType QT = VD->getType().getCanonicalType(); 10435 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) { 10436 // Global ArrayTypes are given a size of '*' if the size is unknown. 10437 // The Qualifiers should be attached to the type rather than the array. 10438 // Thus we don't call appendQualifier() here. 10439 return appendArrayType(Enc, QT, AT, CGM, TSC, "*"); 10440 } 10441 return appendType(Enc, QT, CGM, TSC); 10442 } 10443 return false; 10444 } 10445 10446 //===----------------------------------------------------------------------===// 10447 // RISCV ABI Implementation 10448 //===----------------------------------------------------------------------===// 10449 10450 namespace { 10451 class RISCVABIInfo : public DefaultABIInfo { 10452 private: 10453 // Size of the integer ('x') registers in bits. 10454 unsigned XLen; 10455 // Size of the floating point ('f') registers in bits. Note that the target 10456 // ISA might have a wider FLen than the selected ABI (e.g. an RV32IF target 10457 // with soft float ABI has FLen==0). 10458 unsigned FLen; 10459 static const int NumArgGPRs = 8; 10460 static const int NumArgFPRs = 8; 10461 bool detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff, 10462 llvm::Type *&Field1Ty, 10463 CharUnits &Field1Off, 10464 llvm::Type *&Field2Ty, 10465 CharUnits &Field2Off) const; 10466 10467 public: 10468 RISCVABIInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen, unsigned FLen) 10469 : DefaultABIInfo(CGT), XLen(XLen), FLen(FLen) {} 10470 10471 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 10472 // non-virtual, but computeInfo is virtual, so we overload it. 10473 void computeInfo(CGFunctionInfo &FI) const override; 10474 10475 ABIArgInfo classifyArgumentType(QualType Ty, bool IsFixed, int &ArgGPRsLeft, 10476 int &ArgFPRsLeft) const; 10477 ABIArgInfo classifyReturnType(QualType RetTy) const; 10478 10479 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 10480 QualType Ty) const override; 10481 10482 ABIArgInfo extendType(QualType Ty) const; 10483 10484 bool detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty, 10485 CharUnits &Field1Off, llvm::Type *&Field2Ty, 10486 CharUnits &Field2Off, int &NeededArgGPRs, 10487 int &NeededArgFPRs) const; 10488 ABIArgInfo coerceAndExpandFPCCEligibleStruct(llvm::Type *Field1Ty, 10489 CharUnits Field1Off, 10490 llvm::Type *Field2Ty, 10491 CharUnits Field2Off) const; 10492 }; 10493 } // end anonymous namespace 10494 10495 void RISCVABIInfo::computeInfo(CGFunctionInfo &FI) const { 10496 QualType RetTy = FI.getReturnType(); 10497 if (!getCXXABI().classifyReturnType(FI)) 10498 FI.getReturnInfo() = classifyReturnType(RetTy); 10499 10500 // IsRetIndirect is true if classifyArgumentType indicated the value should 10501 // be passed indirect, or if the type size is a scalar greater than 2*XLen 10502 // and not a complex type with elements <= FLen. e.g. fp128 is passed direct 10503 // in LLVM IR, relying on the backend lowering code to rewrite the argument 10504 // list and pass indirectly on RV32. 10505 bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect; 10506 if (!IsRetIndirect && RetTy->isScalarType() && 10507 getContext().getTypeSize(RetTy) > (2 * XLen)) { 10508 if (RetTy->isComplexType() && FLen) { 10509 QualType EltTy = RetTy->castAs<ComplexType>()->getElementType(); 10510 IsRetIndirect = getContext().getTypeSize(EltTy) > FLen; 10511 } else { 10512 // This is a normal scalar > 2*XLen, such as fp128 on RV32. 10513 IsRetIndirect = true; 10514 } 10515 } 10516 10517 // We must track the number of GPRs used in order to conform to the RISC-V 10518 // ABI, as integer scalars passed in registers should have signext/zeroext 10519 // when promoted, but are anyext if passed on the stack. As GPR usage is 10520 // different for variadic arguments, we must also track whether we are 10521 // examining a vararg or not. 10522 int ArgGPRsLeft = IsRetIndirect ? NumArgGPRs - 1 : NumArgGPRs; 10523 int ArgFPRsLeft = FLen ? NumArgFPRs : 0; 10524 int NumFixedArgs = FI.getNumRequiredArgs(); 10525 10526 int ArgNum = 0; 10527 for (auto &ArgInfo : FI.arguments()) { 10528 bool IsFixed = ArgNum < NumFixedArgs; 10529 ArgInfo.info = 10530 classifyArgumentType(ArgInfo.type, IsFixed, ArgGPRsLeft, ArgFPRsLeft); 10531 ArgNum++; 10532 } 10533 } 10534 10535 // Returns true if the struct is a potential candidate for the floating point 10536 // calling convention. If this function returns true, the caller is 10537 // responsible for checking that if there is only a single field then that 10538 // field is a float. 10539 bool RISCVABIInfo::detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff, 10540 llvm::Type *&Field1Ty, 10541 CharUnits &Field1Off, 10542 llvm::Type *&Field2Ty, 10543 CharUnits &Field2Off) const { 10544 bool IsInt = Ty->isIntegralOrEnumerationType(); 10545 bool IsFloat = Ty->isRealFloatingType(); 10546 10547 if (IsInt || IsFloat) { 10548 uint64_t Size = getContext().getTypeSize(Ty); 10549 if (IsInt && Size > XLen) 10550 return false; 10551 // Can't be eligible if larger than the FP registers. Half precision isn't 10552 // currently supported on RISC-V and the ABI hasn't been confirmed, so 10553 // default to the integer ABI in that case. 10554 if (IsFloat && (Size > FLen || Size < 32)) 10555 return false; 10556 // Can't be eligible if an integer type was already found (int+int pairs 10557 // are not eligible). 10558 if (IsInt && Field1Ty && Field1Ty->isIntegerTy()) 10559 return false; 10560 if (!Field1Ty) { 10561 Field1Ty = CGT.ConvertType(Ty); 10562 Field1Off = CurOff; 10563 return true; 10564 } 10565 if (!Field2Ty) { 10566 Field2Ty = CGT.ConvertType(Ty); 10567 Field2Off = CurOff; 10568 return true; 10569 } 10570 return false; 10571 } 10572 10573 if (auto CTy = Ty->getAs<ComplexType>()) { 10574 if (Field1Ty) 10575 return false; 10576 QualType EltTy = CTy->getElementType(); 10577 if (getContext().getTypeSize(EltTy) > FLen) 10578 return false; 10579 Field1Ty = CGT.ConvertType(EltTy); 10580 Field1Off = CurOff; 10581 Field2Ty = Field1Ty; 10582 Field2Off = Field1Off + getContext().getTypeSizeInChars(EltTy); 10583 return true; 10584 } 10585 10586 if (const ConstantArrayType *ATy = getContext().getAsConstantArrayType(Ty)) { 10587 uint64_t ArraySize = ATy->getSize().getZExtValue(); 10588 QualType EltTy = ATy->getElementType(); 10589 CharUnits EltSize = getContext().getTypeSizeInChars(EltTy); 10590 for (uint64_t i = 0; i < ArraySize; ++i) { 10591 bool Ret = detectFPCCEligibleStructHelper(EltTy, CurOff, Field1Ty, 10592 Field1Off, Field2Ty, Field2Off); 10593 if (!Ret) 10594 return false; 10595 CurOff += EltSize; 10596 } 10597 return true; 10598 } 10599 10600 if (const auto *RTy = Ty->getAs<RecordType>()) { 10601 // Structures with either a non-trivial destructor or a non-trivial 10602 // copy constructor are not eligible for the FP calling convention. 10603 if (getRecordArgABI(Ty, CGT.getCXXABI())) 10604 return false; 10605 if (isEmptyRecord(getContext(), Ty, true)) 10606 return true; 10607 const RecordDecl *RD = RTy->getDecl(); 10608 // Unions aren't eligible unless they're empty (which is caught above). 10609 if (RD->isUnion()) 10610 return false; 10611 int ZeroWidthBitFieldCount = 0; 10612 for (const FieldDecl *FD : RD->fields()) { 10613 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 10614 uint64_t FieldOffInBits = Layout.getFieldOffset(FD->getFieldIndex()); 10615 QualType QTy = FD->getType(); 10616 if (FD->isBitField()) { 10617 unsigned BitWidth = FD->getBitWidthValue(getContext()); 10618 // Allow a bitfield with a type greater than XLen as long as the 10619 // bitwidth is XLen or less. 10620 if (getContext().getTypeSize(QTy) > XLen && BitWidth <= XLen) 10621 QTy = getContext().getIntTypeForBitwidth(XLen, false); 10622 if (BitWidth == 0) { 10623 ZeroWidthBitFieldCount++; 10624 continue; 10625 } 10626 } 10627 10628 bool Ret = detectFPCCEligibleStructHelper( 10629 QTy, CurOff + getContext().toCharUnitsFromBits(FieldOffInBits), 10630 Field1Ty, Field1Off, Field2Ty, Field2Off); 10631 if (!Ret) 10632 return false; 10633 10634 // As a quirk of the ABI, zero-width bitfields aren't ignored for fp+fp 10635 // or int+fp structs, but are ignored for a struct with an fp field and 10636 // any number of zero-width bitfields. 10637 if (Field2Ty && ZeroWidthBitFieldCount > 0) 10638 return false; 10639 } 10640 return Field1Ty != nullptr; 10641 } 10642 10643 return false; 10644 } 10645 10646 // Determine if a struct is eligible for passing according to the floating 10647 // point calling convention (i.e., when flattened it contains a single fp 10648 // value, fp+fp, or int+fp of appropriate size). If so, NeededArgFPRs and 10649 // NeededArgGPRs are incremented appropriately. 10650 bool RISCVABIInfo::detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty, 10651 CharUnits &Field1Off, 10652 llvm::Type *&Field2Ty, 10653 CharUnits &Field2Off, 10654 int &NeededArgGPRs, 10655 int &NeededArgFPRs) const { 10656 Field1Ty = nullptr; 10657 Field2Ty = nullptr; 10658 NeededArgGPRs = 0; 10659 NeededArgFPRs = 0; 10660 bool IsCandidate = detectFPCCEligibleStructHelper( 10661 Ty, CharUnits::Zero(), Field1Ty, Field1Off, Field2Ty, Field2Off); 10662 // Not really a candidate if we have a single int but no float. 10663 if (Field1Ty && !Field2Ty && !Field1Ty->isFloatingPointTy()) 10664 return false; 10665 if (!IsCandidate) 10666 return false; 10667 if (Field1Ty && Field1Ty->isFloatingPointTy()) 10668 NeededArgFPRs++; 10669 else if (Field1Ty) 10670 NeededArgGPRs++; 10671 if (Field2Ty && Field2Ty->isFloatingPointTy()) 10672 NeededArgFPRs++; 10673 else if (Field2Ty) 10674 NeededArgGPRs++; 10675 return true; 10676 } 10677 10678 // Call getCoerceAndExpand for the two-element flattened struct described by 10679 // Field1Ty, Field1Off, Field2Ty, Field2Off. This method will create an 10680 // appropriate coerceToType and unpaddedCoerceToType. 10681 ABIArgInfo RISCVABIInfo::coerceAndExpandFPCCEligibleStruct( 10682 llvm::Type *Field1Ty, CharUnits Field1Off, llvm::Type *Field2Ty, 10683 CharUnits Field2Off) const { 10684 SmallVector<llvm::Type *, 3> CoerceElts; 10685 SmallVector<llvm::Type *, 2> UnpaddedCoerceElts; 10686 if (!Field1Off.isZero()) 10687 CoerceElts.push_back(llvm::ArrayType::get( 10688 llvm::Type::getInt8Ty(getVMContext()), Field1Off.getQuantity())); 10689 10690 CoerceElts.push_back(Field1Ty); 10691 UnpaddedCoerceElts.push_back(Field1Ty); 10692 10693 if (!Field2Ty) { 10694 return ABIArgInfo::getCoerceAndExpand( 10695 llvm::StructType::get(getVMContext(), CoerceElts, !Field1Off.isZero()), 10696 UnpaddedCoerceElts[0]); 10697 } 10698 10699 CharUnits Field2Align = 10700 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(Field2Ty)); 10701 CharUnits Field1End = Field1Off + 10702 CharUnits::fromQuantity(getDataLayout().getTypeStoreSize(Field1Ty)); 10703 CharUnits Field2OffNoPadNoPack = Field1End.alignTo(Field2Align); 10704 10705 CharUnits Padding = CharUnits::Zero(); 10706 if (Field2Off > Field2OffNoPadNoPack) 10707 Padding = Field2Off - Field2OffNoPadNoPack; 10708 else if (Field2Off != Field2Align && Field2Off > Field1End) 10709 Padding = Field2Off - Field1End; 10710 10711 bool IsPacked = !Field2Off.isMultipleOf(Field2Align); 10712 10713 if (!Padding.isZero()) 10714 CoerceElts.push_back(llvm::ArrayType::get( 10715 llvm::Type::getInt8Ty(getVMContext()), Padding.getQuantity())); 10716 10717 CoerceElts.push_back(Field2Ty); 10718 UnpaddedCoerceElts.push_back(Field2Ty); 10719 10720 auto CoerceToType = 10721 llvm::StructType::get(getVMContext(), CoerceElts, IsPacked); 10722 auto UnpaddedCoerceToType = 10723 llvm::StructType::get(getVMContext(), UnpaddedCoerceElts, IsPacked); 10724 10725 return ABIArgInfo::getCoerceAndExpand(CoerceToType, UnpaddedCoerceToType); 10726 } 10727 10728 ABIArgInfo RISCVABIInfo::classifyArgumentType(QualType Ty, bool IsFixed, 10729 int &ArgGPRsLeft, 10730 int &ArgFPRsLeft) const { 10731 assert(ArgGPRsLeft <= NumArgGPRs && "Arg GPR tracking underflow"); 10732 Ty = useFirstFieldIfTransparentUnion(Ty); 10733 10734 // Structures with either a non-trivial destructor or a non-trivial 10735 // copy constructor are always passed indirectly. 10736 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 10737 if (ArgGPRsLeft) 10738 ArgGPRsLeft -= 1; 10739 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 10740 CGCXXABI::RAA_DirectInMemory); 10741 } 10742 10743 // Ignore empty structs/unions. 10744 if (isEmptyRecord(getContext(), Ty, true)) 10745 return ABIArgInfo::getIgnore(); 10746 10747 uint64_t Size = getContext().getTypeSize(Ty); 10748 10749 // Pass floating point values via FPRs if possible. 10750 if (IsFixed && Ty->isFloatingType() && !Ty->isComplexType() && 10751 FLen >= Size && ArgFPRsLeft) { 10752 ArgFPRsLeft--; 10753 return ABIArgInfo::getDirect(); 10754 } 10755 10756 // Complex types for the hard float ABI must be passed direct rather than 10757 // using CoerceAndExpand. 10758 if (IsFixed && Ty->isComplexType() && FLen && ArgFPRsLeft >= 2) { 10759 QualType EltTy = Ty->castAs<ComplexType>()->getElementType(); 10760 if (getContext().getTypeSize(EltTy) <= FLen) { 10761 ArgFPRsLeft -= 2; 10762 return ABIArgInfo::getDirect(); 10763 } 10764 } 10765 10766 if (IsFixed && FLen && Ty->isStructureOrClassType()) { 10767 llvm::Type *Field1Ty = nullptr; 10768 llvm::Type *Field2Ty = nullptr; 10769 CharUnits Field1Off = CharUnits::Zero(); 10770 CharUnits Field2Off = CharUnits::Zero(); 10771 int NeededArgGPRs = 0; 10772 int NeededArgFPRs = 0; 10773 bool IsCandidate = 10774 detectFPCCEligibleStruct(Ty, Field1Ty, Field1Off, Field2Ty, Field2Off, 10775 NeededArgGPRs, NeededArgFPRs); 10776 if (IsCandidate && NeededArgGPRs <= ArgGPRsLeft && 10777 NeededArgFPRs <= ArgFPRsLeft) { 10778 ArgGPRsLeft -= NeededArgGPRs; 10779 ArgFPRsLeft -= NeededArgFPRs; 10780 return coerceAndExpandFPCCEligibleStruct(Field1Ty, Field1Off, Field2Ty, 10781 Field2Off); 10782 } 10783 } 10784 10785 uint64_t NeededAlign = getContext().getTypeAlign(Ty); 10786 bool MustUseStack = false; 10787 // Determine the number of GPRs needed to pass the current argument 10788 // according to the ABI. 2*XLen-aligned varargs are passed in "aligned" 10789 // register pairs, so may consume 3 registers. 10790 int NeededArgGPRs = 1; 10791 if (!IsFixed && NeededAlign == 2 * XLen) 10792 NeededArgGPRs = 2 + (ArgGPRsLeft % 2); 10793 else if (Size > XLen && Size <= 2 * XLen) 10794 NeededArgGPRs = 2; 10795 10796 if (NeededArgGPRs > ArgGPRsLeft) { 10797 MustUseStack = true; 10798 NeededArgGPRs = ArgGPRsLeft; 10799 } 10800 10801 ArgGPRsLeft -= NeededArgGPRs; 10802 10803 if (!isAggregateTypeForABI(Ty) && !Ty->isVectorType()) { 10804 // Treat an enum type as its underlying type. 10805 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 10806 Ty = EnumTy->getDecl()->getIntegerType(); 10807 10808 // All integral types are promoted to XLen width, unless passed on the 10809 // stack. 10810 if (Size < XLen && Ty->isIntegralOrEnumerationType() && !MustUseStack) { 10811 return extendType(Ty); 10812 } 10813 10814 if (const auto *EIT = Ty->getAs<ExtIntType>()) { 10815 if (EIT->getNumBits() < XLen && !MustUseStack) 10816 return extendType(Ty); 10817 if (EIT->getNumBits() > 128 || 10818 (!getContext().getTargetInfo().hasInt128Type() && 10819 EIT->getNumBits() > 64)) 10820 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 10821 } 10822 10823 return ABIArgInfo::getDirect(); 10824 } 10825 10826 // Aggregates which are <= 2*XLen will be passed in registers if possible, 10827 // so coerce to integers. 10828 if (Size <= 2 * XLen) { 10829 unsigned Alignment = getContext().getTypeAlign(Ty); 10830 10831 // Use a single XLen int if possible, 2*XLen if 2*XLen alignment is 10832 // required, and a 2-element XLen array if only XLen alignment is required. 10833 if (Size <= XLen) { 10834 return ABIArgInfo::getDirect( 10835 llvm::IntegerType::get(getVMContext(), XLen)); 10836 } else if (Alignment == 2 * XLen) { 10837 return ABIArgInfo::getDirect( 10838 llvm::IntegerType::get(getVMContext(), 2 * XLen)); 10839 } else { 10840 return ABIArgInfo::getDirect(llvm::ArrayType::get( 10841 llvm::IntegerType::get(getVMContext(), XLen), 2)); 10842 } 10843 } 10844 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 10845 } 10846 10847 ABIArgInfo RISCVABIInfo::classifyReturnType(QualType RetTy) const { 10848 if (RetTy->isVoidType()) 10849 return ABIArgInfo::getIgnore(); 10850 10851 int ArgGPRsLeft = 2; 10852 int ArgFPRsLeft = FLen ? 2 : 0; 10853 10854 // The rules for return and argument types are the same, so defer to 10855 // classifyArgumentType. 10856 return classifyArgumentType(RetTy, /*IsFixed=*/true, ArgGPRsLeft, 10857 ArgFPRsLeft); 10858 } 10859 10860 Address RISCVABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 10861 QualType Ty) const { 10862 CharUnits SlotSize = CharUnits::fromQuantity(XLen / 8); 10863 10864 // Empty records are ignored for parameter passing purposes. 10865 if (isEmptyRecord(getContext(), Ty, true)) { 10866 Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize); 10867 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 10868 return Addr; 10869 } 10870 10871 auto TInfo = getContext().getTypeInfoInChars(Ty); 10872 10873 // Arguments bigger than 2*Xlen bytes are passed indirectly. 10874 bool IsIndirect = TInfo.Width > 2 * SlotSize; 10875 10876 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TInfo, 10877 SlotSize, /*AllowHigherAlign=*/true); 10878 } 10879 10880 ABIArgInfo RISCVABIInfo::extendType(QualType Ty) const { 10881 int TySize = getContext().getTypeSize(Ty); 10882 // RV64 ABI requires unsigned 32 bit integers to be sign extended. 10883 if (XLen == 64 && Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 10884 return ABIArgInfo::getSignExtend(Ty); 10885 return ABIArgInfo::getExtend(Ty); 10886 } 10887 10888 namespace { 10889 class RISCVTargetCodeGenInfo : public TargetCodeGenInfo { 10890 public: 10891 RISCVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen, 10892 unsigned FLen) 10893 : TargetCodeGenInfo(std::make_unique<RISCVABIInfo>(CGT, XLen, FLen)) {} 10894 10895 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 10896 CodeGen::CodeGenModule &CGM) const override { 10897 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 10898 if (!FD) return; 10899 10900 const auto *Attr = FD->getAttr<RISCVInterruptAttr>(); 10901 if (!Attr) 10902 return; 10903 10904 const char *Kind; 10905 switch (Attr->getInterrupt()) { 10906 case RISCVInterruptAttr::user: Kind = "user"; break; 10907 case RISCVInterruptAttr::supervisor: Kind = "supervisor"; break; 10908 case RISCVInterruptAttr::machine: Kind = "machine"; break; 10909 } 10910 10911 auto *Fn = cast<llvm::Function>(GV); 10912 10913 Fn->addFnAttr("interrupt", Kind); 10914 } 10915 }; 10916 } // namespace 10917 10918 //===----------------------------------------------------------------------===// 10919 // VE ABI Implementation. 10920 // 10921 namespace { 10922 class VEABIInfo : public DefaultABIInfo { 10923 public: 10924 VEABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 10925 10926 private: 10927 ABIArgInfo classifyReturnType(QualType RetTy) const; 10928 ABIArgInfo classifyArgumentType(QualType RetTy) const; 10929 void computeInfo(CGFunctionInfo &FI) const override; 10930 }; 10931 } // end anonymous namespace 10932 10933 ABIArgInfo VEABIInfo::classifyReturnType(QualType Ty) const { 10934 if (Ty->isAnyComplexType()) 10935 return ABIArgInfo::getDirect(); 10936 uint64_t Size = getContext().getTypeSize(Ty); 10937 if (Size < 64 && Ty->isIntegerType()) 10938 return ABIArgInfo::getExtend(Ty); 10939 return DefaultABIInfo::classifyReturnType(Ty); 10940 } 10941 10942 ABIArgInfo VEABIInfo::classifyArgumentType(QualType Ty) const { 10943 if (Ty->isAnyComplexType()) 10944 return ABIArgInfo::getDirect(); 10945 uint64_t Size = getContext().getTypeSize(Ty); 10946 if (Size < 64 && Ty->isIntegerType()) 10947 return ABIArgInfo::getExtend(Ty); 10948 return DefaultABIInfo::classifyArgumentType(Ty); 10949 } 10950 10951 void VEABIInfo::computeInfo(CGFunctionInfo &FI) const { 10952 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 10953 for (auto &Arg : FI.arguments()) 10954 Arg.info = classifyArgumentType(Arg.type); 10955 } 10956 10957 namespace { 10958 class VETargetCodeGenInfo : public TargetCodeGenInfo { 10959 public: 10960 VETargetCodeGenInfo(CodeGenTypes &CGT) 10961 : TargetCodeGenInfo(std::make_unique<VEABIInfo>(CGT)) {} 10962 // VE ABI requires the arguments of variadic and prototype-less functions 10963 // are passed in both registers and memory. 10964 bool isNoProtoCallVariadic(const CallArgList &args, 10965 const FunctionNoProtoType *fnType) const override { 10966 return true; 10967 } 10968 }; 10969 } // end anonymous namespace 10970 10971 //===----------------------------------------------------------------------===// 10972 // Driver code 10973 //===----------------------------------------------------------------------===// 10974 10975 bool CodeGenModule::supportsCOMDAT() const { 10976 return getTriple().supportsCOMDAT(); 10977 } 10978 10979 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { 10980 if (TheTargetCodeGenInfo) 10981 return *TheTargetCodeGenInfo; 10982 10983 // Helper to set the unique_ptr while still keeping the return value. 10984 auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & { 10985 this->TheTargetCodeGenInfo.reset(P); 10986 return *P; 10987 }; 10988 10989 const llvm::Triple &Triple = getTarget().getTriple(); 10990 switch (Triple.getArch()) { 10991 default: 10992 return SetCGInfo(new DefaultTargetCodeGenInfo(Types)); 10993 10994 case llvm::Triple::le32: 10995 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 10996 case llvm::Triple::m68k: 10997 return SetCGInfo(new M68kTargetCodeGenInfo(Types)); 10998 case llvm::Triple::mips: 10999 case llvm::Triple::mipsel: 11000 if (Triple.getOS() == llvm::Triple::NaCl) 11001 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 11002 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true)); 11003 11004 case llvm::Triple::mips64: 11005 case llvm::Triple::mips64el: 11006 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false)); 11007 11008 case llvm::Triple::avr: 11009 return SetCGInfo(new AVRTargetCodeGenInfo(Types)); 11010 11011 case llvm::Triple::aarch64: 11012 case llvm::Triple::aarch64_32: 11013 case llvm::Triple::aarch64_be: { 11014 AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS; 11015 if (getTarget().getABI() == "darwinpcs") 11016 Kind = AArch64ABIInfo::DarwinPCS; 11017 else if (Triple.isOSWindows()) 11018 return SetCGInfo( 11019 new WindowsAArch64TargetCodeGenInfo(Types, AArch64ABIInfo::Win64)); 11020 11021 return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind)); 11022 } 11023 11024 case llvm::Triple::wasm32: 11025 case llvm::Triple::wasm64: { 11026 WebAssemblyABIInfo::ABIKind Kind = WebAssemblyABIInfo::MVP; 11027 if (getTarget().getABI() == "experimental-mv") 11028 Kind = WebAssemblyABIInfo::ExperimentalMV; 11029 return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types, Kind)); 11030 } 11031 11032 case llvm::Triple::arm: 11033 case llvm::Triple::armeb: 11034 case llvm::Triple::thumb: 11035 case llvm::Triple::thumbeb: { 11036 if (Triple.getOS() == llvm::Triple::Win32) { 11037 return SetCGInfo( 11038 new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP)); 11039 } 11040 11041 ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS; 11042 StringRef ABIStr = getTarget().getABI(); 11043 if (ABIStr == "apcs-gnu") 11044 Kind = ARMABIInfo::APCS; 11045 else if (ABIStr == "aapcs16") 11046 Kind = ARMABIInfo::AAPCS16_VFP; 11047 else if (CodeGenOpts.FloatABI == "hard" || 11048 (CodeGenOpts.FloatABI != "soft" && 11049 (Triple.getEnvironment() == llvm::Triple::GNUEABIHF || 11050 Triple.getEnvironment() == llvm::Triple::MuslEABIHF || 11051 Triple.getEnvironment() == llvm::Triple::EABIHF))) 11052 Kind = ARMABIInfo::AAPCS_VFP; 11053 11054 return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind)); 11055 } 11056 11057 case llvm::Triple::ppc: { 11058 if (Triple.isOSAIX()) 11059 return SetCGInfo(new AIXTargetCodeGenInfo(Types, /*Is64Bit*/ false)); 11060 11061 bool IsSoftFloat = 11062 CodeGenOpts.FloatABI == "soft" || getTarget().hasFeature("spe"); 11063 bool RetSmallStructInRegABI = 11064 PPC32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 11065 return SetCGInfo( 11066 new PPC32TargetCodeGenInfo(Types, IsSoftFloat, RetSmallStructInRegABI)); 11067 } 11068 case llvm::Triple::ppcle: { 11069 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 11070 bool RetSmallStructInRegABI = 11071 PPC32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 11072 return SetCGInfo( 11073 new PPC32TargetCodeGenInfo(Types, IsSoftFloat, RetSmallStructInRegABI)); 11074 } 11075 case llvm::Triple::ppc64: 11076 if (Triple.isOSAIX()) 11077 return SetCGInfo(new AIXTargetCodeGenInfo(Types, /*Is64Bit*/ true)); 11078 11079 if (Triple.isOSBinFormatELF()) { 11080 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1; 11081 if (getTarget().getABI() == "elfv2") 11082 Kind = PPC64_SVR4_ABIInfo::ELFv2; 11083 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 11084 11085 return SetCGInfo( 11086 new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, IsSoftFloat)); 11087 } 11088 return SetCGInfo(new PPC64TargetCodeGenInfo(Types)); 11089 case llvm::Triple::ppc64le: { 11090 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); 11091 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2; 11092 if (getTarget().getABI() == "elfv1") 11093 Kind = PPC64_SVR4_ABIInfo::ELFv1; 11094 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 11095 11096 return SetCGInfo( 11097 new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, IsSoftFloat)); 11098 } 11099 11100 case llvm::Triple::nvptx: 11101 case llvm::Triple::nvptx64: 11102 return SetCGInfo(new NVPTXTargetCodeGenInfo(Types)); 11103 11104 case llvm::Triple::msp430: 11105 return SetCGInfo(new MSP430TargetCodeGenInfo(Types)); 11106 11107 case llvm::Triple::riscv32: 11108 case llvm::Triple::riscv64: { 11109 StringRef ABIStr = getTarget().getABI(); 11110 unsigned XLen = getTarget().getPointerWidth(0); 11111 unsigned ABIFLen = 0; 11112 if (ABIStr.endswith("f")) 11113 ABIFLen = 32; 11114 else if (ABIStr.endswith("d")) 11115 ABIFLen = 64; 11116 return SetCGInfo(new RISCVTargetCodeGenInfo(Types, XLen, ABIFLen)); 11117 } 11118 11119 case llvm::Triple::systemz: { 11120 bool SoftFloat = CodeGenOpts.FloatABI == "soft"; 11121 bool HasVector = !SoftFloat && getTarget().getABI() == "vector"; 11122 return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector, SoftFloat)); 11123 } 11124 11125 case llvm::Triple::tce: 11126 case llvm::Triple::tcele: 11127 return SetCGInfo(new TCETargetCodeGenInfo(Types)); 11128 11129 case llvm::Triple::x86: { 11130 bool IsDarwinVectorABI = Triple.isOSDarwin(); 11131 bool RetSmallStructInRegABI = 11132 X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 11133 bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing(); 11134 11135 if (Triple.getOS() == llvm::Triple::Win32) { 11136 return SetCGInfo(new WinX86_32TargetCodeGenInfo( 11137 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 11138 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters)); 11139 } else { 11140 return SetCGInfo(new X86_32TargetCodeGenInfo( 11141 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 11142 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters, 11143 CodeGenOpts.FloatABI == "soft")); 11144 } 11145 } 11146 11147 case llvm::Triple::x86_64: { 11148 StringRef ABI = getTarget().getABI(); 11149 X86AVXABILevel AVXLevel = 11150 (ABI == "avx512" 11151 ? X86AVXABILevel::AVX512 11152 : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None); 11153 11154 switch (Triple.getOS()) { 11155 case llvm::Triple::Win32: 11156 return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel)); 11157 default: 11158 return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel)); 11159 } 11160 } 11161 case llvm::Triple::hexagon: 11162 return SetCGInfo(new HexagonTargetCodeGenInfo(Types)); 11163 case llvm::Triple::lanai: 11164 return SetCGInfo(new LanaiTargetCodeGenInfo(Types)); 11165 case llvm::Triple::r600: 11166 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 11167 case llvm::Triple::amdgcn: 11168 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 11169 case llvm::Triple::sparc: 11170 return SetCGInfo(new SparcV8TargetCodeGenInfo(Types)); 11171 case llvm::Triple::sparcv9: 11172 return SetCGInfo(new SparcV9TargetCodeGenInfo(Types)); 11173 case llvm::Triple::xcore: 11174 return SetCGInfo(new XCoreTargetCodeGenInfo(Types)); 11175 case llvm::Triple::arc: 11176 return SetCGInfo(new ARCTargetCodeGenInfo(Types)); 11177 case llvm::Triple::spir: 11178 case llvm::Triple::spir64: 11179 return SetCGInfo(new SPIRTargetCodeGenInfo(Types)); 11180 case llvm::Triple::ve: 11181 return SetCGInfo(new VETargetCodeGenInfo(Types)); 11182 } 11183 } 11184 11185 /// Create an OpenCL kernel for an enqueued block. 11186 /// 11187 /// The kernel has the same function type as the block invoke function. Its 11188 /// name is the name of the block invoke function postfixed with "_kernel". 11189 /// It simply calls the block invoke function then returns. 11190 llvm::Function * 11191 TargetCodeGenInfo::createEnqueuedBlockKernel(CodeGenFunction &CGF, 11192 llvm::Function *Invoke, 11193 llvm::Value *BlockLiteral) const { 11194 auto *InvokeFT = Invoke->getFunctionType(); 11195 llvm::SmallVector<llvm::Type *, 2> ArgTys; 11196 for (auto &P : InvokeFT->params()) 11197 ArgTys.push_back(P); 11198 auto &C = CGF.getLLVMContext(); 11199 std::string Name = Invoke->getName().str() + "_kernel"; 11200 auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false); 11201 auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name, 11202 &CGF.CGM.getModule()); 11203 auto IP = CGF.Builder.saveIP(); 11204 auto *BB = llvm::BasicBlock::Create(C, "entry", F); 11205 auto &Builder = CGF.Builder; 11206 Builder.SetInsertPoint(BB); 11207 llvm::SmallVector<llvm::Value *, 2> Args; 11208 for (auto &A : F->args()) 11209 Args.push_back(&A); 11210 llvm::CallInst *call = Builder.CreateCall(Invoke, Args); 11211 call->setCallingConv(Invoke->getCallingConv()); 11212 Builder.CreateRetVoid(); 11213 Builder.restoreIP(IP); 11214 return F; 11215 } 11216 11217 /// Create an OpenCL kernel for an enqueued block. 11218 /// 11219 /// The type of the first argument (the block literal) is the struct type 11220 /// of the block literal instead of a pointer type. The first argument 11221 /// (block literal) is passed directly by value to the kernel. The kernel 11222 /// allocates the same type of struct on stack and stores the block literal 11223 /// to it and passes its pointer to the block invoke function. The kernel 11224 /// has "enqueued-block" function attribute and kernel argument metadata. 11225 llvm::Function *AMDGPUTargetCodeGenInfo::createEnqueuedBlockKernel( 11226 CodeGenFunction &CGF, llvm::Function *Invoke, 11227 llvm::Value *BlockLiteral) const { 11228 auto &Builder = CGF.Builder; 11229 auto &C = CGF.getLLVMContext(); 11230 11231 auto *BlockTy = BlockLiteral->getType()->getPointerElementType(); 11232 auto *InvokeFT = Invoke->getFunctionType(); 11233 llvm::SmallVector<llvm::Type *, 2> ArgTys; 11234 llvm::SmallVector<llvm::Metadata *, 8> AddressQuals; 11235 llvm::SmallVector<llvm::Metadata *, 8> AccessQuals; 11236 llvm::SmallVector<llvm::Metadata *, 8> ArgTypeNames; 11237 llvm::SmallVector<llvm::Metadata *, 8> ArgBaseTypeNames; 11238 llvm::SmallVector<llvm::Metadata *, 8> ArgTypeQuals; 11239 llvm::SmallVector<llvm::Metadata *, 8> ArgNames; 11240 11241 ArgTys.push_back(BlockTy); 11242 ArgTypeNames.push_back(llvm::MDString::get(C, "__block_literal")); 11243 AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(0))); 11244 ArgBaseTypeNames.push_back(llvm::MDString::get(C, "__block_literal")); 11245 ArgTypeQuals.push_back(llvm::MDString::get(C, "")); 11246 AccessQuals.push_back(llvm::MDString::get(C, "none")); 11247 ArgNames.push_back(llvm::MDString::get(C, "block_literal")); 11248 for (unsigned I = 1, E = InvokeFT->getNumParams(); I < E; ++I) { 11249 ArgTys.push_back(InvokeFT->getParamType(I)); 11250 ArgTypeNames.push_back(llvm::MDString::get(C, "void*")); 11251 AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(3))); 11252 AccessQuals.push_back(llvm::MDString::get(C, "none")); 11253 ArgBaseTypeNames.push_back(llvm::MDString::get(C, "void*")); 11254 ArgTypeQuals.push_back(llvm::MDString::get(C, "")); 11255 ArgNames.push_back( 11256 llvm::MDString::get(C, (Twine("local_arg") + Twine(I)).str())); 11257 } 11258 std::string Name = Invoke->getName().str() + "_kernel"; 11259 auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false); 11260 auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name, 11261 &CGF.CGM.getModule()); 11262 F->addFnAttr("enqueued-block"); 11263 auto IP = CGF.Builder.saveIP(); 11264 auto *BB = llvm::BasicBlock::Create(C, "entry", F); 11265 Builder.SetInsertPoint(BB); 11266 const auto BlockAlign = CGF.CGM.getDataLayout().getPrefTypeAlign(BlockTy); 11267 auto *BlockPtr = Builder.CreateAlloca(BlockTy, nullptr); 11268 BlockPtr->setAlignment(BlockAlign); 11269 Builder.CreateAlignedStore(F->arg_begin(), BlockPtr, BlockAlign); 11270 auto *Cast = Builder.CreatePointerCast(BlockPtr, InvokeFT->getParamType(0)); 11271 llvm::SmallVector<llvm::Value *, 2> Args; 11272 Args.push_back(Cast); 11273 for (auto I = F->arg_begin() + 1, E = F->arg_end(); I != E; ++I) 11274 Args.push_back(I); 11275 llvm::CallInst *call = Builder.CreateCall(Invoke, Args); 11276 call->setCallingConv(Invoke->getCallingConv()); 11277 Builder.CreateRetVoid(); 11278 Builder.restoreIP(IP); 11279 11280 F->setMetadata("kernel_arg_addr_space", llvm::MDNode::get(C, AddressQuals)); 11281 F->setMetadata("kernel_arg_access_qual", llvm::MDNode::get(C, AccessQuals)); 11282 F->setMetadata("kernel_arg_type", llvm::MDNode::get(C, ArgTypeNames)); 11283 F->setMetadata("kernel_arg_base_type", 11284 llvm::MDNode::get(C, ArgBaseTypeNames)); 11285 F->setMetadata("kernel_arg_type_qual", llvm::MDNode::get(C, ArgTypeQuals)); 11286 if (CGF.CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 11287 F->setMetadata("kernel_arg_name", llvm::MDNode::get(C, ArgNames)); 11288 11289 return F; 11290 } 11291