1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // These classes wrap the information about a call or function 10 // definition used to handle ABI compliancy. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "TargetInfo.h" 15 #include "ABIInfo.h" 16 #include "CGBlocks.h" 17 #include "CGCXXABI.h" 18 #include "CGValue.h" 19 #include "CodeGenFunction.h" 20 #include "clang/AST/Attr.h" 21 #include "clang/AST/RecordLayout.h" 22 #include "clang/Basic/CodeGenOptions.h" 23 #include "clang/Basic/DiagnosticFrontend.h" 24 #include "clang/CodeGen/CGFunctionInfo.h" 25 #include "clang/CodeGen/SwiftCallingConv.h" 26 #include "llvm/ADT/SmallBitVector.h" 27 #include "llvm/ADT/StringExtras.h" 28 #include "llvm/ADT/StringSwitch.h" 29 #include "llvm/ADT/Triple.h" 30 #include "llvm/ADT/Twine.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/IntrinsicsNVPTX.h" 33 #include "llvm/IR/Type.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include <algorithm> // std::sort 36 37 using namespace clang; 38 using namespace CodeGen; 39 40 // Helper for coercing an aggregate argument or return value into an integer 41 // array of the same size (including padding) and alignment. This alternate 42 // coercion happens only for the RenderScript ABI and can be removed after 43 // runtimes that rely on it are no longer supported. 44 // 45 // RenderScript assumes that the size of the argument / return value in the IR 46 // is the same as the size of the corresponding qualified type. This helper 47 // coerces the aggregate type into an array of the same size (including 48 // padding). This coercion is used in lieu of expansion of struct members or 49 // other canonical coercions that return a coerced-type of larger size. 50 // 51 // Ty - The argument / return value type 52 // Context - The associated ASTContext 53 // LLVMContext - The associated LLVMContext 54 static ABIArgInfo coerceToIntArray(QualType Ty, 55 ASTContext &Context, 56 llvm::LLVMContext &LLVMContext) { 57 // Alignment and Size are measured in bits. 58 const uint64_t Size = Context.getTypeSize(Ty); 59 const uint64_t Alignment = Context.getTypeAlign(Ty); 60 llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment); 61 const uint64_t NumElements = (Size + Alignment - 1) / Alignment; 62 return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements)); 63 } 64 65 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder, 66 llvm::Value *Array, 67 llvm::Value *Value, 68 unsigned FirstIndex, 69 unsigned LastIndex) { 70 // Alternatively, we could emit this as a loop in the source. 71 for (unsigned I = FirstIndex; I <= LastIndex; ++I) { 72 llvm::Value *Cell = 73 Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I); 74 Builder.CreateAlignedStore(Value, Cell, CharUnits::One()); 75 } 76 } 77 78 static bool isAggregateTypeForABI(QualType T) { 79 return !CodeGenFunction::hasScalarEvaluationKind(T) || 80 T->isMemberFunctionPointerType(); 81 } 82 83 ABIArgInfo ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByVal, 84 bool Realign, 85 llvm::Type *Padding) const { 86 return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty), ByVal, 87 Realign, Padding); 88 } 89 90 ABIArgInfo 91 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const { 92 return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty), 93 /*ByVal*/ false, Realign); 94 } 95 96 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 97 QualType Ty) const { 98 return Address::invalid(); 99 } 100 101 bool ABIInfo::isPromotableIntegerTypeForABI(QualType Ty) const { 102 if (Ty->isPromotableIntegerType()) 103 return true; 104 105 if (const auto *EIT = Ty->getAs<ExtIntType>()) 106 if (EIT->getNumBits() < getContext().getTypeSize(getContext().IntTy)) 107 return true; 108 109 return false; 110 } 111 112 ABIInfo::~ABIInfo() {} 113 114 /// Does the given lowering require more than the given number of 115 /// registers when expanded? 116 /// 117 /// This is intended to be the basis of a reasonable basic implementation 118 /// of should{Pass,Return}IndirectlyForSwift. 119 /// 120 /// For most targets, a limit of four total registers is reasonable; this 121 /// limits the amount of code required in order to move around the value 122 /// in case it wasn't produced immediately prior to the call by the caller 123 /// (or wasn't produced in exactly the right registers) or isn't used 124 /// immediately within the callee. But some targets may need to further 125 /// limit the register count due to an inability to support that many 126 /// return registers. 127 static bool occupiesMoreThan(CodeGenTypes &cgt, 128 ArrayRef<llvm::Type*> scalarTypes, 129 unsigned maxAllRegisters) { 130 unsigned intCount = 0, fpCount = 0; 131 for (llvm::Type *type : scalarTypes) { 132 if (type->isPointerTy()) { 133 intCount++; 134 } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) { 135 auto ptrWidth = cgt.getTarget().getPointerWidth(0); 136 intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth; 137 } else { 138 assert(type->isVectorTy() || type->isFloatingPointTy()); 139 fpCount++; 140 } 141 } 142 143 return (intCount + fpCount > maxAllRegisters); 144 } 145 146 bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, 147 llvm::Type *eltTy, 148 unsigned numElts) const { 149 // The default implementation of this assumes that the target guarantees 150 // 128-bit SIMD support but nothing more. 151 return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16); 152 } 153 154 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT, 155 CGCXXABI &CXXABI) { 156 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); 157 if (!RD) { 158 if (!RT->getDecl()->canPassInRegisters()) 159 return CGCXXABI::RAA_Indirect; 160 return CGCXXABI::RAA_Default; 161 } 162 return CXXABI.getRecordArgABI(RD); 163 } 164 165 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T, 166 CGCXXABI &CXXABI) { 167 const RecordType *RT = T->getAs<RecordType>(); 168 if (!RT) 169 return CGCXXABI::RAA_Default; 170 return getRecordArgABI(RT, CXXABI); 171 } 172 173 static bool classifyReturnType(const CGCXXABI &CXXABI, CGFunctionInfo &FI, 174 const ABIInfo &Info) { 175 QualType Ty = FI.getReturnType(); 176 177 if (const auto *RT = Ty->getAs<RecordType>()) 178 if (!isa<CXXRecordDecl>(RT->getDecl()) && 179 !RT->getDecl()->canPassInRegisters()) { 180 FI.getReturnInfo() = Info.getNaturalAlignIndirect(Ty); 181 return true; 182 } 183 184 return CXXABI.classifyReturnType(FI); 185 } 186 187 /// Pass transparent unions as if they were the type of the first element. Sema 188 /// should ensure that all elements of the union have the same "machine type". 189 static QualType useFirstFieldIfTransparentUnion(QualType Ty) { 190 if (const RecordType *UT = Ty->getAsUnionType()) { 191 const RecordDecl *UD = UT->getDecl(); 192 if (UD->hasAttr<TransparentUnionAttr>()) { 193 assert(!UD->field_empty() && "sema created an empty transparent union"); 194 return UD->field_begin()->getType(); 195 } 196 } 197 return Ty; 198 } 199 200 CGCXXABI &ABIInfo::getCXXABI() const { 201 return CGT.getCXXABI(); 202 } 203 204 ASTContext &ABIInfo::getContext() const { 205 return CGT.getContext(); 206 } 207 208 llvm::LLVMContext &ABIInfo::getVMContext() const { 209 return CGT.getLLVMContext(); 210 } 211 212 const llvm::DataLayout &ABIInfo::getDataLayout() const { 213 return CGT.getDataLayout(); 214 } 215 216 const TargetInfo &ABIInfo::getTarget() const { 217 return CGT.getTarget(); 218 } 219 220 const CodeGenOptions &ABIInfo::getCodeGenOpts() const { 221 return CGT.getCodeGenOpts(); 222 } 223 224 bool ABIInfo::isAndroid() const { return getTarget().getTriple().isAndroid(); } 225 226 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 227 return false; 228 } 229 230 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 231 uint64_t Members) const { 232 return false; 233 } 234 235 LLVM_DUMP_METHOD void ABIArgInfo::dump() const { 236 raw_ostream &OS = llvm::errs(); 237 OS << "(ABIArgInfo Kind="; 238 switch (TheKind) { 239 case Direct: 240 OS << "Direct Type="; 241 if (llvm::Type *Ty = getCoerceToType()) 242 Ty->print(OS); 243 else 244 OS << "null"; 245 break; 246 case Extend: 247 OS << "Extend"; 248 break; 249 case Ignore: 250 OS << "Ignore"; 251 break; 252 case InAlloca: 253 OS << "InAlloca Offset=" << getInAllocaFieldIndex(); 254 break; 255 case Indirect: 256 OS << "Indirect Align=" << getIndirectAlign().getQuantity() 257 << " ByVal=" << getIndirectByVal() 258 << " Realign=" << getIndirectRealign(); 259 break; 260 case IndirectAliased: 261 OS << "Indirect Align=" << getIndirectAlign().getQuantity() 262 << " AadrSpace=" << getIndirectAddrSpace() 263 << " Realign=" << getIndirectRealign(); 264 break; 265 case Expand: 266 OS << "Expand"; 267 break; 268 case CoerceAndExpand: 269 OS << "CoerceAndExpand Type="; 270 getCoerceAndExpandType()->print(OS); 271 break; 272 } 273 OS << ")\n"; 274 } 275 276 // Dynamically round a pointer up to a multiple of the given alignment. 277 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF, 278 llvm::Value *Ptr, 279 CharUnits Align) { 280 llvm::Value *PtrAsInt = Ptr; 281 // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align; 282 PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy); 283 PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt, 284 llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1)); 285 PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt, 286 llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity())); 287 PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt, 288 Ptr->getType(), 289 Ptr->getName() + ".aligned"); 290 return PtrAsInt; 291 } 292 293 /// Emit va_arg for a platform using the common void* representation, 294 /// where arguments are simply emitted in an array of slots on the stack. 295 /// 296 /// This version implements the core direct-value passing rules. 297 /// 298 /// \param SlotSize - The size and alignment of a stack slot. 299 /// Each argument will be allocated to a multiple of this number of 300 /// slots, and all the slots will be aligned to this value. 301 /// \param AllowHigherAlign - The slot alignment is not a cap; 302 /// an argument type with an alignment greater than the slot size 303 /// will be emitted on a higher-alignment address, potentially 304 /// leaving one or more empty slots behind as padding. If this 305 /// is false, the returned address might be less-aligned than 306 /// DirectAlign. 307 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF, 308 Address VAListAddr, 309 llvm::Type *DirectTy, 310 CharUnits DirectSize, 311 CharUnits DirectAlign, 312 CharUnits SlotSize, 313 bool AllowHigherAlign) { 314 // Cast the element type to i8* if necessary. Some platforms define 315 // va_list as a struct containing an i8* instead of just an i8*. 316 if (VAListAddr.getElementType() != CGF.Int8PtrTy) 317 VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy); 318 319 llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur"); 320 321 // If the CC aligns values higher than the slot size, do so if needed. 322 Address Addr = Address::invalid(); 323 if (AllowHigherAlign && DirectAlign > SlotSize) { 324 Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign), 325 DirectAlign); 326 } else { 327 Addr = Address(Ptr, SlotSize); 328 } 329 330 // Advance the pointer past the argument, then store that back. 331 CharUnits FullDirectSize = DirectSize.alignTo(SlotSize); 332 Address NextPtr = 333 CGF.Builder.CreateConstInBoundsByteGEP(Addr, FullDirectSize, "argp.next"); 334 CGF.Builder.CreateStore(NextPtr.getPointer(), VAListAddr); 335 336 // If the argument is smaller than a slot, and this is a big-endian 337 // target, the argument will be right-adjusted in its slot. 338 if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() && 339 !DirectTy->isStructTy()) { 340 Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize); 341 } 342 343 Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy); 344 return Addr; 345 } 346 347 /// Emit va_arg for a platform using the common void* representation, 348 /// where arguments are simply emitted in an array of slots on the stack. 349 /// 350 /// \param IsIndirect - Values of this type are passed indirectly. 351 /// \param ValueInfo - The size and alignment of this type, generally 352 /// computed with getContext().getTypeInfoInChars(ValueTy). 353 /// \param SlotSizeAndAlign - The size and alignment of a stack slot. 354 /// Each argument will be allocated to a multiple of this number of 355 /// slots, and all the slots will be aligned to this value. 356 /// \param AllowHigherAlign - The slot alignment is not a cap; 357 /// an argument type with an alignment greater than the slot size 358 /// will be emitted on a higher-alignment address, potentially 359 /// leaving one or more empty slots behind as padding. 360 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr, 361 QualType ValueTy, bool IsIndirect, 362 TypeInfoChars ValueInfo, 363 CharUnits SlotSizeAndAlign, 364 bool AllowHigherAlign) { 365 // The size and alignment of the value that was passed directly. 366 CharUnits DirectSize, DirectAlign; 367 if (IsIndirect) { 368 DirectSize = CGF.getPointerSize(); 369 DirectAlign = CGF.getPointerAlign(); 370 } else { 371 DirectSize = ValueInfo.Width; 372 DirectAlign = ValueInfo.Align; 373 } 374 375 // Cast the address we've calculated to the right type. 376 llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy); 377 if (IsIndirect) 378 DirectTy = DirectTy->getPointerTo(0); 379 380 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy, 381 DirectSize, DirectAlign, 382 SlotSizeAndAlign, 383 AllowHigherAlign); 384 385 if (IsIndirect) { 386 Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.Align); 387 } 388 389 return Addr; 390 391 } 392 393 static Address emitMergePHI(CodeGenFunction &CGF, 394 Address Addr1, llvm::BasicBlock *Block1, 395 Address Addr2, llvm::BasicBlock *Block2, 396 const llvm::Twine &Name = "") { 397 assert(Addr1.getType() == Addr2.getType()); 398 llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name); 399 PHI->addIncoming(Addr1.getPointer(), Block1); 400 PHI->addIncoming(Addr2.getPointer(), Block2); 401 CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment()); 402 return Address(PHI, Align); 403 } 404 405 TargetCodeGenInfo::~TargetCodeGenInfo() = default; 406 407 // If someone can figure out a general rule for this, that would be great. 408 // It's probably just doomed to be platform-dependent, though. 409 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const { 410 // Verified for: 411 // x86-64 FreeBSD, Linux, Darwin 412 // x86-32 FreeBSD, Linux, Darwin 413 // PowerPC Linux, Darwin 414 // ARM Darwin (*not* EABI) 415 // AArch64 Linux 416 return 32; 417 } 418 419 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args, 420 const FunctionNoProtoType *fnType) const { 421 // The following conventions are known to require this to be false: 422 // x86_stdcall 423 // MIPS 424 // For everything else, we just prefer false unless we opt out. 425 return false; 426 } 427 428 void 429 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib, 430 llvm::SmallString<24> &Opt) const { 431 // This assumes the user is passing a library name like "rt" instead of a 432 // filename like "librt.a/so", and that they don't care whether it's static or 433 // dynamic. 434 Opt = "-l"; 435 Opt += Lib; 436 } 437 438 unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const { 439 // OpenCL kernels are called via an explicit runtime API with arguments 440 // set with clSetKernelArg(), not as normal sub-functions. 441 // Return SPIR_KERNEL by default as the kernel calling convention to 442 // ensure the fingerprint is fixed such way that each OpenCL argument 443 // gets one matching argument in the produced kernel function argument 444 // list to enable feasible implementation of clSetKernelArg() with 445 // aggregates etc. In case we would use the default C calling conv here, 446 // clSetKernelArg() might break depending on the target-specific 447 // conventions; different targets might split structs passed as values 448 // to multiple function arguments etc. 449 return llvm::CallingConv::SPIR_KERNEL; 450 } 451 452 llvm::Constant *TargetCodeGenInfo::getNullPointer(const CodeGen::CodeGenModule &CGM, 453 llvm::PointerType *T, QualType QT) const { 454 return llvm::ConstantPointerNull::get(T); 455 } 456 457 LangAS TargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM, 458 const VarDecl *D) const { 459 assert(!CGM.getLangOpts().OpenCL && 460 !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && 461 "Address space agnostic languages only"); 462 return D ? D->getType().getAddressSpace() : LangAS::Default; 463 } 464 465 llvm::Value *TargetCodeGenInfo::performAddrSpaceCast( 466 CodeGen::CodeGenFunction &CGF, llvm::Value *Src, LangAS SrcAddr, 467 LangAS DestAddr, llvm::Type *DestTy, bool isNonNull) const { 468 // Since target may map different address spaces in AST to the same address 469 // space, an address space conversion may end up as a bitcast. 470 if (auto *C = dyn_cast<llvm::Constant>(Src)) 471 return performAddrSpaceCast(CGF.CGM, C, SrcAddr, DestAddr, DestTy); 472 // Try to preserve the source's name to make IR more readable. 473 return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 474 Src, DestTy, Src->hasName() ? Src->getName() + ".ascast" : ""); 475 } 476 477 llvm::Constant * 478 TargetCodeGenInfo::performAddrSpaceCast(CodeGenModule &CGM, llvm::Constant *Src, 479 LangAS SrcAddr, LangAS DestAddr, 480 llvm::Type *DestTy) const { 481 // Since target may map different address spaces in AST to the same address 482 // space, an address space conversion may end up as a bitcast. 483 return llvm::ConstantExpr::getPointerCast(Src, DestTy); 484 } 485 486 llvm::SyncScope::ID 487 TargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts, 488 SyncScope Scope, 489 llvm::AtomicOrdering Ordering, 490 llvm::LLVMContext &Ctx) const { 491 return Ctx.getOrInsertSyncScopeID(""); /* default sync scope */ 492 } 493 494 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays); 495 496 /// isEmptyField - Return true iff a the field is "empty", that is it 497 /// is an unnamed bit-field or an (array of) empty record(s). 498 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD, 499 bool AllowArrays) { 500 if (FD->isUnnamedBitfield()) 501 return true; 502 503 QualType FT = FD->getType(); 504 505 // Constant arrays of empty records count as empty, strip them off. 506 // Constant arrays of zero length always count as empty. 507 bool WasArray = false; 508 if (AllowArrays) 509 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 510 if (AT->getSize() == 0) 511 return true; 512 FT = AT->getElementType(); 513 // The [[no_unique_address]] special case below does not apply to 514 // arrays of C++ empty records, so we need to remember this fact. 515 WasArray = true; 516 } 517 518 const RecordType *RT = FT->getAs<RecordType>(); 519 if (!RT) 520 return false; 521 522 // C++ record fields are never empty, at least in the Itanium ABI. 523 // 524 // FIXME: We should use a predicate for whether this behavior is true in the 525 // current ABI. 526 // 527 // The exception to the above rule are fields marked with the 528 // [[no_unique_address]] attribute (since C++20). Those do count as empty 529 // according to the Itanium ABI. The exception applies only to records, 530 // not arrays of records, so we must also check whether we stripped off an 531 // array type above. 532 if (isa<CXXRecordDecl>(RT->getDecl()) && 533 (WasArray || !FD->hasAttr<NoUniqueAddressAttr>())) 534 return false; 535 536 return isEmptyRecord(Context, FT, AllowArrays); 537 } 538 539 /// isEmptyRecord - Return true iff a structure contains only empty 540 /// fields. Note that a structure with a flexible array member is not 541 /// considered empty. 542 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) { 543 const RecordType *RT = T->getAs<RecordType>(); 544 if (!RT) 545 return false; 546 const RecordDecl *RD = RT->getDecl(); 547 if (RD->hasFlexibleArrayMember()) 548 return false; 549 550 // If this is a C++ record, check the bases first. 551 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 552 for (const auto &I : CXXRD->bases()) 553 if (!isEmptyRecord(Context, I.getType(), true)) 554 return false; 555 556 for (const auto *I : RD->fields()) 557 if (!isEmptyField(Context, I, AllowArrays)) 558 return false; 559 return true; 560 } 561 562 /// isSingleElementStruct - Determine if a structure is a "single 563 /// element struct", i.e. it has exactly one non-empty field or 564 /// exactly one field which is itself a single element 565 /// struct. Structures with flexible array members are never 566 /// considered single element structs. 567 /// 568 /// \return The field declaration for the single non-empty field, if 569 /// it exists. 570 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) { 571 const RecordType *RT = T->getAs<RecordType>(); 572 if (!RT) 573 return nullptr; 574 575 const RecordDecl *RD = RT->getDecl(); 576 if (RD->hasFlexibleArrayMember()) 577 return nullptr; 578 579 const Type *Found = nullptr; 580 581 // If this is a C++ record, check the bases first. 582 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 583 for (const auto &I : CXXRD->bases()) { 584 // Ignore empty records. 585 if (isEmptyRecord(Context, I.getType(), true)) 586 continue; 587 588 // If we already found an element then this isn't a single-element struct. 589 if (Found) 590 return nullptr; 591 592 // If this is non-empty and not a single element struct, the composite 593 // cannot be a single element struct. 594 Found = isSingleElementStruct(I.getType(), Context); 595 if (!Found) 596 return nullptr; 597 } 598 } 599 600 // Check for single element. 601 for (const auto *FD : RD->fields()) { 602 QualType FT = FD->getType(); 603 604 // Ignore empty fields. 605 if (isEmptyField(Context, FD, true)) 606 continue; 607 608 // If we already found an element then this isn't a single-element 609 // struct. 610 if (Found) 611 return nullptr; 612 613 // Treat single element arrays as the element. 614 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 615 if (AT->getSize().getZExtValue() != 1) 616 break; 617 FT = AT->getElementType(); 618 } 619 620 if (!isAggregateTypeForABI(FT)) { 621 Found = FT.getTypePtr(); 622 } else { 623 Found = isSingleElementStruct(FT, Context); 624 if (!Found) 625 return nullptr; 626 } 627 } 628 629 // We don't consider a struct a single-element struct if it has 630 // padding beyond the element type. 631 if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T)) 632 return nullptr; 633 634 return Found; 635 } 636 637 namespace { 638 Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty, 639 const ABIArgInfo &AI) { 640 // This default implementation defers to the llvm backend's va_arg 641 // instruction. It can handle only passing arguments directly 642 // (typically only handled in the backend for primitive types), or 643 // aggregates passed indirectly by pointer (NOTE: if the "byval" 644 // flag has ABI impact in the callee, this implementation cannot 645 // work.) 646 647 // Only a few cases are covered here at the moment -- those needed 648 // by the default abi. 649 llvm::Value *Val; 650 651 if (AI.isIndirect()) { 652 assert(!AI.getPaddingType() && 653 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 654 assert( 655 !AI.getIndirectRealign() && 656 "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!"); 657 658 auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty); 659 CharUnits TyAlignForABI = TyInfo.Align; 660 661 llvm::Type *BaseTy = 662 llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); 663 llvm::Value *Addr = 664 CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy); 665 return Address(Addr, TyAlignForABI); 666 } else { 667 assert((AI.isDirect() || AI.isExtend()) && 668 "Unexpected ArgInfo Kind in generic VAArg emitter!"); 669 670 assert(!AI.getInReg() && 671 "Unexpected InReg seen in arginfo in generic VAArg emitter!"); 672 assert(!AI.getPaddingType() && 673 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 674 assert(!AI.getDirectOffset() && 675 "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!"); 676 assert(!AI.getCoerceToType() && 677 "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!"); 678 679 Address Temp = CGF.CreateMemTemp(Ty, "varet"); 680 Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), CGF.ConvertType(Ty)); 681 CGF.Builder.CreateStore(Val, Temp); 682 return Temp; 683 } 684 } 685 686 /// DefaultABIInfo - The default implementation for ABI specific 687 /// details. This implementation provides information which results in 688 /// self-consistent and sensible LLVM IR generation, but does not 689 /// conform to any particular ABI. 690 class DefaultABIInfo : public ABIInfo { 691 public: 692 DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 693 694 ABIArgInfo classifyReturnType(QualType RetTy) const; 695 ABIArgInfo classifyArgumentType(QualType RetTy) const; 696 697 void computeInfo(CGFunctionInfo &FI) const override { 698 if (!getCXXABI().classifyReturnType(FI)) 699 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 700 for (auto &I : FI.arguments()) 701 I.info = classifyArgumentType(I.type); 702 } 703 704 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 705 QualType Ty) const override { 706 return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty)); 707 } 708 }; 709 710 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo { 711 public: 712 DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 713 : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {} 714 }; 715 716 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const { 717 Ty = useFirstFieldIfTransparentUnion(Ty); 718 719 if (isAggregateTypeForABI(Ty)) { 720 // Records with non-trivial destructors/copy-constructors should not be 721 // passed by value. 722 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 723 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 724 725 return getNaturalAlignIndirect(Ty); 726 } 727 728 // Treat an enum type as its underlying type. 729 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 730 Ty = EnumTy->getDecl()->getIntegerType(); 731 732 ASTContext &Context = getContext(); 733 if (const auto *EIT = Ty->getAs<ExtIntType>()) 734 if (EIT->getNumBits() > 735 Context.getTypeSize(Context.getTargetInfo().hasInt128Type() 736 ? Context.Int128Ty 737 : Context.LongLongTy)) 738 return getNaturalAlignIndirect(Ty); 739 740 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 741 : ABIArgInfo::getDirect()); 742 } 743 744 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const { 745 if (RetTy->isVoidType()) 746 return ABIArgInfo::getIgnore(); 747 748 if (isAggregateTypeForABI(RetTy)) 749 return getNaturalAlignIndirect(RetTy); 750 751 // Treat an enum type as its underlying type. 752 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 753 RetTy = EnumTy->getDecl()->getIntegerType(); 754 755 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 756 if (EIT->getNumBits() > 757 getContext().getTypeSize(getContext().getTargetInfo().hasInt128Type() 758 ? getContext().Int128Ty 759 : getContext().LongLongTy)) 760 return getNaturalAlignIndirect(RetTy); 761 762 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 763 : ABIArgInfo::getDirect()); 764 } 765 766 //===----------------------------------------------------------------------===// 767 // WebAssembly ABI Implementation 768 // 769 // This is a very simple ABI that relies a lot on DefaultABIInfo. 770 //===----------------------------------------------------------------------===// 771 772 class WebAssemblyABIInfo final : public SwiftABIInfo { 773 public: 774 enum ABIKind { 775 MVP = 0, 776 ExperimentalMV = 1, 777 }; 778 779 private: 780 DefaultABIInfo defaultInfo; 781 ABIKind Kind; 782 783 public: 784 explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind) 785 : SwiftABIInfo(CGT), defaultInfo(CGT), Kind(Kind) {} 786 787 private: 788 ABIArgInfo classifyReturnType(QualType RetTy) const; 789 ABIArgInfo classifyArgumentType(QualType Ty) const; 790 791 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 792 // non-virtual, but computeInfo and EmitVAArg are virtual, so we 793 // overload them. 794 void computeInfo(CGFunctionInfo &FI) const override { 795 if (!getCXXABI().classifyReturnType(FI)) 796 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 797 for (auto &Arg : FI.arguments()) 798 Arg.info = classifyArgumentType(Arg.type); 799 } 800 801 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 802 QualType Ty) const override; 803 804 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 805 bool asReturnValue) const override { 806 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 807 } 808 809 bool isSwiftErrorInRegister() const override { 810 return false; 811 } 812 }; 813 814 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo { 815 public: 816 explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 817 WebAssemblyABIInfo::ABIKind K) 818 : TargetCodeGenInfo(std::make_unique<WebAssemblyABIInfo>(CGT, K)) {} 819 820 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 821 CodeGen::CodeGenModule &CGM) const override { 822 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 823 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 824 if (const auto *Attr = FD->getAttr<WebAssemblyImportModuleAttr>()) { 825 llvm::Function *Fn = cast<llvm::Function>(GV); 826 llvm::AttrBuilder B; 827 B.addAttribute("wasm-import-module", Attr->getImportModule()); 828 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 829 } 830 if (const auto *Attr = FD->getAttr<WebAssemblyImportNameAttr>()) { 831 llvm::Function *Fn = cast<llvm::Function>(GV); 832 llvm::AttrBuilder B; 833 B.addAttribute("wasm-import-name", Attr->getImportName()); 834 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 835 } 836 if (const auto *Attr = FD->getAttr<WebAssemblyExportNameAttr>()) { 837 llvm::Function *Fn = cast<llvm::Function>(GV); 838 llvm::AttrBuilder B; 839 B.addAttribute("wasm-export-name", Attr->getExportName()); 840 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 841 } 842 } 843 844 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 845 llvm::Function *Fn = cast<llvm::Function>(GV); 846 if (!FD->doesThisDeclarationHaveABody() && !FD->hasPrototype()) 847 Fn->addFnAttr("no-prototype"); 848 } 849 } 850 }; 851 852 /// Classify argument of given type \p Ty. 853 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const { 854 Ty = useFirstFieldIfTransparentUnion(Ty); 855 856 if (isAggregateTypeForABI(Ty)) { 857 // Records with non-trivial destructors/copy-constructors should not be 858 // passed by value. 859 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 860 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 861 // Ignore empty structs/unions. 862 if (isEmptyRecord(getContext(), Ty, true)) 863 return ABIArgInfo::getIgnore(); 864 // Lower single-element structs to just pass a regular value. TODO: We 865 // could do reasonable-size multiple-element structs too, using getExpand(), 866 // though watch out for things like bitfields. 867 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 868 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 869 // For the experimental multivalue ABI, fully expand all other aggregates 870 if (Kind == ABIKind::ExperimentalMV) { 871 const RecordType *RT = Ty->getAs<RecordType>(); 872 assert(RT); 873 bool HasBitField = false; 874 for (auto *Field : RT->getDecl()->fields()) { 875 if (Field->isBitField()) { 876 HasBitField = true; 877 break; 878 } 879 } 880 if (!HasBitField) 881 return ABIArgInfo::getExpand(); 882 } 883 } 884 885 // Otherwise just do the default thing. 886 return defaultInfo.classifyArgumentType(Ty); 887 } 888 889 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const { 890 if (isAggregateTypeForABI(RetTy)) { 891 // Records with non-trivial destructors/copy-constructors should not be 892 // returned by value. 893 if (!getRecordArgABI(RetTy, getCXXABI())) { 894 // Ignore empty structs/unions. 895 if (isEmptyRecord(getContext(), RetTy, true)) 896 return ABIArgInfo::getIgnore(); 897 // Lower single-element structs to just return a regular value. TODO: We 898 // could do reasonable-size multiple-element structs too, using 899 // ABIArgInfo::getDirect(). 900 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 901 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 902 // For the experimental multivalue ABI, return all other aggregates 903 if (Kind == ABIKind::ExperimentalMV) 904 return ABIArgInfo::getDirect(); 905 } 906 } 907 908 // Otherwise just do the default thing. 909 return defaultInfo.classifyReturnType(RetTy); 910 } 911 912 Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 913 QualType Ty) const { 914 bool IsIndirect = isAggregateTypeForABI(Ty) && 915 !isEmptyRecord(getContext(), Ty, true) && 916 !isSingleElementStruct(Ty, getContext()); 917 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 918 getContext().getTypeInfoInChars(Ty), 919 CharUnits::fromQuantity(4), 920 /*AllowHigherAlign=*/true); 921 } 922 923 //===----------------------------------------------------------------------===// 924 // le32/PNaCl bitcode ABI Implementation 925 // 926 // This is a simplified version of the x86_32 ABI. Arguments and return values 927 // are always passed on the stack. 928 //===----------------------------------------------------------------------===// 929 930 class PNaClABIInfo : public ABIInfo { 931 public: 932 PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 933 934 ABIArgInfo classifyReturnType(QualType RetTy) const; 935 ABIArgInfo classifyArgumentType(QualType RetTy) const; 936 937 void computeInfo(CGFunctionInfo &FI) const override; 938 Address EmitVAArg(CodeGenFunction &CGF, 939 Address VAListAddr, QualType Ty) const override; 940 }; 941 942 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo { 943 public: 944 PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 945 : TargetCodeGenInfo(std::make_unique<PNaClABIInfo>(CGT)) {} 946 }; 947 948 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const { 949 if (!getCXXABI().classifyReturnType(FI)) 950 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 951 952 for (auto &I : FI.arguments()) 953 I.info = classifyArgumentType(I.type); 954 } 955 956 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 957 QualType Ty) const { 958 // The PNaCL ABI is a bit odd, in that varargs don't use normal 959 // function classification. Structs get passed directly for varargs 960 // functions, through a rewriting transform in 961 // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows 962 // this target to actually support a va_arg instructions with an 963 // aggregate type, unlike other targets. 964 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 965 } 966 967 /// Classify argument of given type \p Ty. 968 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const { 969 if (isAggregateTypeForABI(Ty)) { 970 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 971 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 972 return getNaturalAlignIndirect(Ty); 973 } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 974 // Treat an enum type as its underlying type. 975 Ty = EnumTy->getDecl()->getIntegerType(); 976 } else if (Ty->isFloatingType()) { 977 // Floating-point types don't go inreg. 978 return ABIArgInfo::getDirect(); 979 } else if (const auto *EIT = Ty->getAs<ExtIntType>()) { 980 // Treat extended integers as integers if <=64, otherwise pass indirectly. 981 if (EIT->getNumBits() > 64) 982 return getNaturalAlignIndirect(Ty); 983 return ABIArgInfo::getDirect(); 984 } 985 986 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 987 : ABIArgInfo::getDirect()); 988 } 989 990 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const { 991 if (RetTy->isVoidType()) 992 return ABIArgInfo::getIgnore(); 993 994 // In the PNaCl ABI we always return records/structures on the stack. 995 if (isAggregateTypeForABI(RetTy)) 996 return getNaturalAlignIndirect(RetTy); 997 998 // Treat extended integers as integers if <=64, otherwise pass indirectly. 999 if (const auto *EIT = RetTy->getAs<ExtIntType>()) { 1000 if (EIT->getNumBits() > 64) 1001 return getNaturalAlignIndirect(RetTy); 1002 return ABIArgInfo::getDirect(); 1003 } 1004 1005 // Treat an enum type as its underlying type. 1006 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 1007 RetTy = EnumTy->getDecl()->getIntegerType(); 1008 1009 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 1010 : ABIArgInfo::getDirect()); 1011 } 1012 1013 /// IsX86_MMXType - Return true if this is an MMX type. 1014 bool IsX86_MMXType(llvm::Type *IRType) { 1015 // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>. 1016 return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 && 1017 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() && 1018 IRType->getScalarSizeInBits() != 64; 1019 } 1020 1021 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 1022 StringRef Constraint, 1023 llvm::Type* Ty) { 1024 bool IsMMXCons = llvm::StringSwitch<bool>(Constraint) 1025 .Cases("y", "&y", "^Ym", true) 1026 .Default(false); 1027 if (IsMMXCons && Ty->isVectorTy()) { 1028 if (cast<llvm::VectorType>(Ty)->getPrimitiveSizeInBits().getFixedSize() != 1029 64) { 1030 // Invalid MMX constraint 1031 return nullptr; 1032 } 1033 1034 return llvm::Type::getX86_MMXTy(CGF.getLLVMContext()); 1035 } 1036 1037 // No operation needed 1038 return Ty; 1039 } 1040 1041 /// Returns true if this type can be passed in SSE registers with the 1042 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64. 1043 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) { 1044 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 1045 if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) { 1046 if (BT->getKind() == BuiltinType::LongDouble) { 1047 if (&Context.getTargetInfo().getLongDoubleFormat() == 1048 &llvm::APFloat::x87DoubleExtended()) 1049 return false; 1050 } 1051 return true; 1052 } 1053 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 1054 // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX 1055 // registers specially. 1056 unsigned VecSize = Context.getTypeSize(VT); 1057 if (VecSize == 128 || VecSize == 256 || VecSize == 512) 1058 return true; 1059 } 1060 return false; 1061 } 1062 1063 /// Returns true if this aggregate is small enough to be passed in SSE registers 1064 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64. 1065 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) { 1066 return NumMembers <= 4; 1067 } 1068 1069 /// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86. 1070 static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) { 1071 auto AI = ABIArgInfo::getDirect(T); 1072 AI.setInReg(true); 1073 AI.setCanBeFlattened(false); 1074 return AI; 1075 } 1076 1077 //===----------------------------------------------------------------------===// 1078 // X86-32 ABI Implementation 1079 //===----------------------------------------------------------------------===// 1080 1081 /// Similar to llvm::CCState, but for Clang. 1082 struct CCState { 1083 CCState(CGFunctionInfo &FI) 1084 : IsPreassigned(FI.arg_size()), CC(FI.getCallingConvention()) {} 1085 1086 llvm::SmallBitVector IsPreassigned; 1087 unsigned CC = CallingConv::CC_C; 1088 unsigned FreeRegs = 0; 1089 unsigned FreeSSERegs = 0; 1090 }; 1091 1092 enum { 1093 // Vectorcall only allows the first 6 parameters to be passed in registers. 1094 VectorcallMaxParamNumAsReg = 6 1095 }; 1096 1097 /// X86_32ABIInfo - The X86-32 ABI information. 1098 class X86_32ABIInfo : public SwiftABIInfo { 1099 enum Class { 1100 Integer, 1101 Float 1102 }; 1103 1104 static const unsigned MinABIStackAlignInBytes = 4; 1105 1106 bool IsDarwinVectorABI; 1107 bool IsRetSmallStructInRegABI; 1108 bool IsWin32StructABI; 1109 bool IsSoftFloatABI; 1110 bool IsMCUABI; 1111 unsigned DefaultNumRegisterParameters; 1112 1113 static bool isRegisterSize(unsigned Size) { 1114 return (Size == 8 || Size == 16 || Size == 32 || Size == 64); 1115 } 1116 1117 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 1118 // FIXME: Assumes vectorcall is in use. 1119 return isX86VectorTypeForVectorCall(getContext(), Ty); 1120 } 1121 1122 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 1123 uint64_t NumMembers) const override { 1124 // FIXME: Assumes vectorcall is in use. 1125 return isX86VectorCallAggregateSmallEnough(NumMembers); 1126 } 1127 1128 bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const; 1129 1130 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 1131 /// such that the argument will be passed in memory. 1132 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 1133 1134 ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const; 1135 1136 /// Return the alignment to use for the given type on the stack. 1137 unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const; 1138 1139 Class classify(QualType Ty) const; 1140 ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const; 1141 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 1142 1143 /// Updates the number of available free registers, returns 1144 /// true if any registers were allocated. 1145 bool updateFreeRegs(QualType Ty, CCState &State) const; 1146 1147 bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg, 1148 bool &NeedsPadding) const; 1149 bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const; 1150 1151 bool canExpandIndirectArgument(QualType Ty) const; 1152 1153 /// Rewrite the function info so that all memory arguments use 1154 /// inalloca. 1155 void rewriteWithInAlloca(CGFunctionInfo &FI) const; 1156 1157 void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1158 CharUnits &StackOffset, ABIArgInfo &Info, 1159 QualType Type) const; 1160 void runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const; 1161 1162 public: 1163 1164 void computeInfo(CGFunctionInfo &FI) const override; 1165 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 1166 QualType Ty) const override; 1167 1168 X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 1169 bool RetSmallStructInRegABI, bool Win32StructABI, 1170 unsigned NumRegisterParameters, bool SoftFloatABI) 1171 : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI), 1172 IsRetSmallStructInRegABI(RetSmallStructInRegABI), 1173 IsWin32StructABI(Win32StructABI), 1174 IsSoftFloatABI(SoftFloatABI), 1175 IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()), 1176 DefaultNumRegisterParameters(NumRegisterParameters) {} 1177 1178 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 1179 bool asReturnValue) const override { 1180 // LLVM's x86-32 lowering currently only assigns up to three 1181 // integer registers and three fp registers. Oddly, it'll use up to 1182 // four vector registers for vectors, but those can overlap with the 1183 // scalar registers. 1184 return occupiesMoreThan(CGT, scalars, /*total*/ 3); 1185 } 1186 1187 bool isSwiftErrorInRegister() const override { 1188 // x86-32 lowering does not support passing swifterror in a register. 1189 return false; 1190 } 1191 }; 1192 1193 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo { 1194 public: 1195 X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 1196 bool RetSmallStructInRegABI, bool Win32StructABI, 1197 unsigned NumRegisterParameters, bool SoftFloatABI) 1198 : TargetCodeGenInfo(std::make_unique<X86_32ABIInfo>( 1199 CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI, 1200 NumRegisterParameters, SoftFloatABI)) {} 1201 1202 static bool isStructReturnInRegABI( 1203 const llvm::Triple &Triple, const CodeGenOptions &Opts); 1204 1205 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 1206 CodeGen::CodeGenModule &CGM) const override; 1207 1208 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 1209 // Darwin uses different dwarf register numbers for EH. 1210 if (CGM.getTarget().getTriple().isOSDarwin()) return 5; 1211 return 4; 1212 } 1213 1214 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 1215 llvm::Value *Address) const override; 1216 1217 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 1218 StringRef Constraint, 1219 llvm::Type* Ty) const override { 1220 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 1221 } 1222 1223 void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue, 1224 std::string &Constraints, 1225 std::vector<llvm::Type *> &ResultRegTypes, 1226 std::vector<llvm::Type *> &ResultTruncRegTypes, 1227 std::vector<LValue> &ResultRegDests, 1228 std::string &AsmString, 1229 unsigned NumOutputs) const override; 1230 1231 llvm::Constant * 1232 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 1233 unsigned Sig = (0xeb << 0) | // jmp rel8 1234 (0x06 << 8) | // .+0x08 1235 ('v' << 16) | 1236 ('2' << 24); 1237 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 1238 } 1239 1240 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 1241 return "movl\t%ebp, %ebp" 1242 "\t\t// marker for objc_retainAutoreleaseReturnValue"; 1243 } 1244 }; 1245 1246 } 1247 1248 /// Rewrite input constraint references after adding some output constraints. 1249 /// In the case where there is one output and one input and we add one output, 1250 /// we need to replace all operand references greater than or equal to 1: 1251 /// mov $0, $1 1252 /// mov eax, $1 1253 /// The result will be: 1254 /// mov $0, $2 1255 /// mov eax, $2 1256 static void rewriteInputConstraintReferences(unsigned FirstIn, 1257 unsigned NumNewOuts, 1258 std::string &AsmString) { 1259 std::string Buf; 1260 llvm::raw_string_ostream OS(Buf); 1261 size_t Pos = 0; 1262 while (Pos < AsmString.size()) { 1263 size_t DollarStart = AsmString.find('$', Pos); 1264 if (DollarStart == std::string::npos) 1265 DollarStart = AsmString.size(); 1266 size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart); 1267 if (DollarEnd == std::string::npos) 1268 DollarEnd = AsmString.size(); 1269 OS << StringRef(&AsmString[Pos], DollarEnd - Pos); 1270 Pos = DollarEnd; 1271 size_t NumDollars = DollarEnd - DollarStart; 1272 if (NumDollars % 2 != 0 && Pos < AsmString.size()) { 1273 // We have an operand reference. 1274 size_t DigitStart = Pos; 1275 if (AsmString[DigitStart] == '{') { 1276 OS << '{'; 1277 ++DigitStart; 1278 } 1279 size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart); 1280 if (DigitEnd == std::string::npos) 1281 DigitEnd = AsmString.size(); 1282 StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart); 1283 unsigned OperandIndex; 1284 if (!OperandStr.getAsInteger(10, OperandIndex)) { 1285 if (OperandIndex >= FirstIn) 1286 OperandIndex += NumNewOuts; 1287 OS << OperandIndex; 1288 } else { 1289 OS << OperandStr; 1290 } 1291 Pos = DigitEnd; 1292 } 1293 } 1294 AsmString = std::move(OS.str()); 1295 } 1296 1297 /// Add output constraints for EAX:EDX because they are return registers. 1298 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs( 1299 CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints, 1300 std::vector<llvm::Type *> &ResultRegTypes, 1301 std::vector<llvm::Type *> &ResultTruncRegTypes, 1302 std::vector<LValue> &ResultRegDests, std::string &AsmString, 1303 unsigned NumOutputs) const { 1304 uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType()); 1305 1306 // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is 1307 // larger. 1308 if (!Constraints.empty()) 1309 Constraints += ','; 1310 if (RetWidth <= 32) { 1311 Constraints += "={eax}"; 1312 ResultRegTypes.push_back(CGF.Int32Ty); 1313 } else { 1314 // Use the 'A' constraint for EAX:EDX. 1315 Constraints += "=A"; 1316 ResultRegTypes.push_back(CGF.Int64Ty); 1317 } 1318 1319 // Truncate EAX or EAX:EDX to an integer of the appropriate size. 1320 llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth); 1321 ResultTruncRegTypes.push_back(CoerceTy); 1322 1323 // Coerce the integer by bitcasting the return slot pointer. 1324 ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(CGF), 1325 CoerceTy->getPointerTo())); 1326 ResultRegDests.push_back(ReturnSlot); 1327 1328 rewriteInputConstraintReferences(NumOutputs, 1, AsmString); 1329 } 1330 1331 /// shouldReturnTypeInRegister - Determine if the given type should be 1332 /// returned in a register (for the Darwin and MCU ABI). 1333 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty, 1334 ASTContext &Context) const { 1335 uint64_t Size = Context.getTypeSize(Ty); 1336 1337 // For i386, type must be register sized. 1338 // For the MCU ABI, it only needs to be <= 8-byte 1339 if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size))) 1340 return false; 1341 1342 if (Ty->isVectorType()) { 1343 // 64- and 128- bit vectors inside structures are not returned in 1344 // registers. 1345 if (Size == 64 || Size == 128) 1346 return false; 1347 1348 return true; 1349 } 1350 1351 // If this is a builtin, pointer, enum, complex type, member pointer, or 1352 // member function pointer it is ok. 1353 if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() || 1354 Ty->isAnyComplexType() || Ty->isEnumeralType() || 1355 Ty->isBlockPointerType() || Ty->isMemberPointerType()) 1356 return true; 1357 1358 // Arrays are treated like records. 1359 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) 1360 return shouldReturnTypeInRegister(AT->getElementType(), Context); 1361 1362 // Otherwise, it must be a record type. 1363 const RecordType *RT = Ty->getAs<RecordType>(); 1364 if (!RT) return false; 1365 1366 // FIXME: Traverse bases here too. 1367 1368 // Structure types are passed in register if all fields would be 1369 // passed in a register. 1370 for (const auto *FD : RT->getDecl()->fields()) { 1371 // Empty fields are ignored. 1372 if (isEmptyField(Context, FD, true)) 1373 continue; 1374 1375 // Check fields recursively. 1376 if (!shouldReturnTypeInRegister(FD->getType(), Context)) 1377 return false; 1378 } 1379 return true; 1380 } 1381 1382 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) { 1383 // Treat complex types as the element type. 1384 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 1385 Ty = CTy->getElementType(); 1386 1387 // Check for a type which we know has a simple scalar argument-passing 1388 // convention without any padding. (We're specifically looking for 32 1389 // and 64-bit integer and integer-equivalents, float, and double.) 1390 if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() && 1391 !Ty->isEnumeralType() && !Ty->isBlockPointerType()) 1392 return false; 1393 1394 uint64_t Size = Context.getTypeSize(Ty); 1395 return Size == 32 || Size == 64; 1396 } 1397 1398 static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD, 1399 uint64_t &Size) { 1400 for (const auto *FD : RD->fields()) { 1401 // Scalar arguments on the stack get 4 byte alignment on x86. If the 1402 // argument is smaller than 32-bits, expanding the struct will create 1403 // alignment padding. 1404 if (!is32Or64BitBasicType(FD->getType(), Context)) 1405 return false; 1406 1407 // FIXME: Reject bit-fields wholesale; there are two problems, we don't know 1408 // how to expand them yet, and the predicate for telling if a bitfield still 1409 // counts as "basic" is more complicated than what we were doing previously. 1410 if (FD->isBitField()) 1411 return false; 1412 1413 Size += Context.getTypeSize(FD->getType()); 1414 } 1415 return true; 1416 } 1417 1418 static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD, 1419 uint64_t &Size) { 1420 // Don't do this if there are any non-empty bases. 1421 for (const CXXBaseSpecifier &Base : RD->bases()) { 1422 if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(), 1423 Size)) 1424 return false; 1425 } 1426 if (!addFieldSizes(Context, RD, Size)) 1427 return false; 1428 return true; 1429 } 1430 1431 /// Test whether an argument type which is to be passed indirectly (on the 1432 /// stack) would have the equivalent layout if it was expanded into separate 1433 /// arguments. If so, we prefer to do the latter to avoid inhibiting 1434 /// optimizations. 1435 bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const { 1436 // We can only expand structure types. 1437 const RecordType *RT = Ty->getAs<RecordType>(); 1438 if (!RT) 1439 return false; 1440 const RecordDecl *RD = RT->getDecl(); 1441 uint64_t Size = 0; 1442 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 1443 if (!IsWin32StructABI) { 1444 // On non-Windows, we have to conservatively match our old bitcode 1445 // prototypes in order to be ABI-compatible at the bitcode level. 1446 if (!CXXRD->isCLike()) 1447 return false; 1448 } else { 1449 // Don't do this for dynamic classes. 1450 if (CXXRD->isDynamicClass()) 1451 return false; 1452 } 1453 if (!addBaseAndFieldSizes(getContext(), CXXRD, Size)) 1454 return false; 1455 } else { 1456 if (!addFieldSizes(getContext(), RD, Size)) 1457 return false; 1458 } 1459 1460 // We can do this if there was no alignment padding. 1461 return Size == getContext().getTypeSize(Ty); 1462 } 1463 1464 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const { 1465 // If the return value is indirect, then the hidden argument is consuming one 1466 // integer register. 1467 if (State.FreeRegs) { 1468 --State.FreeRegs; 1469 if (!IsMCUABI) 1470 return getNaturalAlignIndirectInReg(RetTy); 1471 } 1472 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 1473 } 1474 1475 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, 1476 CCState &State) const { 1477 if (RetTy->isVoidType()) 1478 return ABIArgInfo::getIgnore(); 1479 1480 const Type *Base = nullptr; 1481 uint64_t NumElts = 0; 1482 if ((State.CC == llvm::CallingConv::X86_VectorCall || 1483 State.CC == llvm::CallingConv::X86_RegCall) && 1484 isHomogeneousAggregate(RetTy, Base, NumElts)) { 1485 // The LLVM struct type for such an aggregate should lower properly. 1486 return ABIArgInfo::getDirect(); 1487 } 1488 1489 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 1490 // On Darwin, some vectors are returned in registers. 1491 if (IsDarwinVectorABI) { 1492 uint64_t Size = getContext().getTypeSize(RetTy); 1493 1494 // 128-bit vectors are a special case; they are returned in 1495 // registers and we need to make sure to pick a type the LLVM 1496 // backend will like. 1497 if (Size == 128) 1498 return ABIArgInfo::getDirect(llvm::FixedVectorType::get( 1499 llvm::Type::getInt64Ty(getVMContext()), 2)); 1500 1501 // Always return in register if it fits in a general purpose 1502 // register, or if it is 64 bits and has a single element. 1503 if ((Size == 8 || Size == 16 || Size == 32) || 1504 (Size == 64 && VT->getNumElements() == 1)) 1505 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1506 Size)); 1507 1508 return getIndirectReturnResult(RetTy, State); 1509 } 1510 1511 return ABIArgInfo::getDirect(); 1512 } 1513 1514 if (isAggregateTypeForABI(RetTy)) { 1515 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 1516 // Structures with flexible arrays are always indirect. 1517 if (RT->getDecl()->hasFlexibleArrayMember()) 1518 return getIndirectReturnResult(RetTy, State); 1519 } 1520 1521 // If specified, structs and unions are always indirect. 1522 if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType()) 1523 return getIndirectReturnResult(RetTy, State); 1524 1525 // Ignore empty structs/unions. 1526 if (isEmptyRecord(getContext(), RetTy, true)) 1527 return ABIArgInfo::getIgnore(); 1528 1529 // Small structures which are register sized are generally returned 1530 // in a register. 1531 if (shouldReturnTypeInRegister(RetTy, getContext())) { 1532 uint64_t Size = getContext().getTypeSize(RetTy); 1533 1534 // As a special-case, if the struct is a "single-element" struct, and 1535 // the field is of type "float" or "double", return it in a 1536 // floating-point register. (MSVC does not apply this special case.) 1537 // We apply a similar transformation for pointer types to improve the 1538 // quality of the generated IR. 1539 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 1540 if ((!IsWin32StructABI && SeltTy->isRealFloatingType()) 1541 || SeltTy->hasPointerRepresentation()) 1542 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 1543 1544 // FIXME: We should be able to narrow this integer in cases with dead 1545 // padding. 1546 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size)); 1547 } 1548 1549 return getIndirectReturnResult(RetTy, State); 1550 } 1551 1552 // Treat an enum type as its underlying type. 1553 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 1554 RetTy = EnumTy->getDecl()->getIntegerType(); 1555 1556 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 1557 if (EIT->getNumBits() > 64) 1558 return getIndirectReturnResult(RetTy, State); 1559 1560 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 1561 : ABIArgInfo::getDirect()); 1562 } 1563 1564 static bool isSIMDVectorType(ASTContext &Context, QualType Ty) { 1565 return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128; 1566 } 1567 1568 static bool isRecordWithSIMDVectorType(ASTContext &Context, QualType Ty) { 1569 const RecordType *RT = Ty->getAs<RecordType>(); 1570 if (!RT) 1571 return 0; 1572 const RecordDecl *RD = RT->getDecl(); 1573 1574 // If this is a C++ record, check the bases first. 1575 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 1576 for (const auto &I : CXXRD->bases()) 1577 if (!isRecordWithSIMDVectorType(Context, I.getType())) 1578 return false; 1579 1580 for (const auto *i : RD->fields()) { 1581 QualType FT = i->getType(); 1582 1583 if (isSIMDVectorType(Context, FT)) 1584 return true; 1585 1586 if (isRecordWithSIMDVectorType(Context, FT)) 1587 return true; 1588 } 1589 1590 return false; 1591 } 1592 1593 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty, 1594 unsigned Align) const { 1595 // Otherwise, if the alignment is less than or equal to the minimum ABI 1596 // alignment, just use the default; the backend will handle this. 1597 if (Align <= MinABIStackAlignInBytes) 1598 return 0; // Use default alignment. 1599 1600 // On non-Darwin, the stack type alignment is always 4. 1601 if (!IsDarwinVectorABI) { 1602 // Set explicit alignment, since we may need to realign the top. 1603 return MinABIStackAlignInBytes; 1604 } 1605 1606 // Otherwise, if the type contains an SSE vector type, the alignment is 16. 1607 if (Align >= 16 && (isSIMDVectorType(getContext(), Ty) || 1608 isRecordWithSIMDVectorType(getContext(), Ty))) 1609 return 16; 1610 1611 return MinABIStackAlignInBytes; 1612 } 1613 1614 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal, 1615 CCState &State) const { 1616 if (!ByVal) { 1617 if (State.FreeRegs) { 1618 --State.FreeRegs; // Non-byval indirects just use one pointer. 1619 if (!IsMCUABI) 1620 return getNaturalAlignIndirectInReg(Ty); 1621 } 1622 return getNaturalAlignIndirect(Ty, false); 1623 } 1624 1625 // Compute the byval alignment. 1626 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 1627 unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign); 1628 if (StackAlign == 0) 1629 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true); 1630 1631 // If the stack alignment is less than the type alignment, realign the 1632 // argument. 1633 bool Realign = TypeAlign > StackAlign; 1634 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign), 1635 /*ByVal=*/true, Realign); 1636 } 1637 1638 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const { 1639 const Type *T = isSingleElementStruct(Ty, getContext()); 1640 if (!T) 1641 T = Ty.getTypePtr(); 1642 1643 if (const BuiltinType *BT = T->getAs<BuiltinType>()) { 1644 BuiltinType::Kind K = BT->getKind(); 1645 if (K == BuiltinType::Float || K == BuiltinType::Double) 1646 return Float; 1647 } 1648 return Integer; 1649 } 1650 1651 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const { 1652 if (!IsSoftFloatABI) { 1653 Class C = classify(Ty); 1654 if (C == Float) 1655 return false; 1656 } 1657 1658 unsigned Size = getContext().getTypeSize(Ty); 1659 unsigned SizeInRegs = (Size + 31) / 32; 1660 1661 if (SizeInRegs == 0) 1662 return false; 1663 1664 if (!IsMCUABI) { 1665 if (SizeInRegs > State.FreeRegs) { 1666 State.FreeRegs = 0; 1667 return false; 1668 } 1669 } else { 1670 // The MCU psABI allows passing parameters in-reg even if there are 1671 // earlier parameters that are passed on the stack. Also, 1672 // it does not allow passing >8-byte structs in-register, 1673 // even if there are 3 free registers available. 1674 if (SizeInRegs > State.FreeRegs || SizeInRegs > 2) 1675 return false; 1676 } 1677 1678 State.FreeRegs -= SizeInRegs; 1679 return true; 1680 } 1681 1682 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State, 1683 bool &InReg, 1684 bool &NeedsPadding) const { 1685 // On Windows, aggregates other than HFAs are never passed in registers, and 1686 // they do not consume register slots. Homogenous floating-point aggregates 1687 // (HFAs) have already been dealt with at this point. 1688 if (IsWin32StructABI && isAggregateTypeForABI(Ty)) 1689 return false; 1690 1691 NeedsPadding = false; 1692 InReg = !IsMCUABI; 1693 1694 if (!updateFreeRegs(Ty, State)) 1695 return false; 1696 1697 if (IsMCUABI) 1698 return true; 1699 1700 if (State.CC == llvm::CallingConv::X86_FastCall || 1701 State.CC == llvm::CallingConv::X86_VectorCall || 1702 State.CC == llvm::CallingConv::X86_RegCall) { 1703 if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs) 1704 NeedsPadding = true; 1705 1706 return false; 1707 } 1708 1709 return true; 1710 } 1711 1712 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const { 1713 if (!updateFreeRegs(Ty, State)) 1714 return false; 1715 1716 if (IsMCUABI) 1717 return false; 1718 1719 if (State.CC == llvm::CallingConv::X86_FastCall || 1720 State.CC == llvm::CallingConv::X86_VectorCall || 1721 State.CC == llvm::CallingConv::X86_RegCall) { 1722 if (getContext().getTypeSize(Ty) > 32) 1723 return false; 1724 1725 return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() || 1726 Ty->isReferenceType()); 1727 } 1728 1729 return true; 1730 } 1731 1732 void X86_32ABIInfo::runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const { 1733 // Vectorcall x86 works subtly different than in x64, so the format is 1734 // a bit different than the x64 version. First, all vector types (not HVAs) 1735 // are assigned, with the first 6 ending up in the [XYZ]MM0-5 registers. 1736 // This differs from the x64 implementation, where the first 6 by INDEX get 1737 // registers. 1738 // In the second pass over the arguments, HVAs are passed in the remaining 1739 // vector registers if possible, or indirectly by address. The address will be 1740 // passed in ECX/EDX if available. Any other arguments are passed according to 1741 // the usual fastcall rules. 1742 MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments(); 1743 for (int I = 0, E = Args.size(); I < E; ++I) { 1744 const Type *Base = nullptr; 1745 uint64_t NumElts = 0; 1746 const QualType &Ty = Args[I].type; 1747 if ((Ty->isVectorType() || Ty->isBuiltinType()) && 1748 isHomogeneousAggregate(Ty, Base, NumElts)) { 1749 if (State.FreeSSERegs >= NumElts) { 1750 State.FreeSSERegs -= NumElts; 1751 Args[I].info = ABIArgInfo::getDirectInReg(); 1752 State.IsPreassigned.set(I); 1753 } 1754 } 1755 } 1756 } 1757 1758 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, 1759 CCState &State) const { 1760 // FIXME: Set alignment on indirect arguments. 1761 bool IsFastCall = State.CC == llvm::CallingConv::X86_FastCall; 1762 bool IsRegCall = State.CC == llvm::CallingConv::X86_RegCall; 1763 bool IsVectorCall = State.CC == llvm::CallingConv::X86_VectorCall; 1764 1765 Ty = useFirstFieldIfTransparentUnion(Ty); 1766 TypeInfo TI = getContext().getTypeInfo(Ty); 1767 1768 // Check with the C++ ABI first. 1769 const RecordType *RT = Ty->getAs<RecordType>(); 1770 if (RT) { 1771 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 1772 if (RAA == CGCXXABI::RAA_Indirect) { 1773 return getIndirectResult(Ty, false, State); 1774 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 1775 // The field index doesn't matter, we'll fix it up later. 1776 return ABIArgInfo::getInAlloca(/*FieldIndex=*/0); 1777 } 1778 } 1779 1780 // Regcall uses the concept of a homogenous vector aggregate, similar 1781 // to other targets. 1782 const Type *Base = nullptr; 1783 uint64_t NumElts = 0; 1784 if ((IsRegCall || IsVectorCall) && 1785 isHomogeneousAggregate(Ty, Base, NumElts)) { 1786 if (State.FreeSSERegs >= NumElts) { 1787 State.FreeSSERegs -= NumElts; 1788 1789 // Vectorcall passes HVAs directly and does not flatten them, but regcall 1790 // does. 1791 if (IsVectorCall) 1792 return getDirectX86Hva(); 1793 1794 if (Ty->isBuiltinType() || Ty->isVectorType()) 1795 return ABIArgInfo::getDirect(); 1796 return ABIArgInfo::getExpand(); 1797 } 1798 return getIndirectResult(Ty, /*ByVal=*/false, State); 1799 } 1800 1801 if (isAggregateTypeForABI(Ty)) { 1802 // Structures with flexible arrays are always indirect. 1803 // FIXME: This should not be byval! 1804 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 1805 return getIndirectResult(Ty, true, State); 1806 1807 // Ignore empty structs/unions on non-Windows. 1808 if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true)) 1809 return ABIArgInfo::getIgnore(); 1810 1811 llvm::LLVMContext &LLVMContext = getVMContext(); 1812 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 1813 bool NeedsPadding = false; 1814 bool InReg; 1815 if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) { 1816 unsigned SizeInRegs = (TI.Width + 31) / 32; 1817 SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32); 1818 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 1819 if (InReg) 1820 return ABIArgInfo::getDirectInReg(Result); 1821 else 1822 return ABIArgInfo::getDirect(Result); 1823 } 1824 llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr; 1825 1826 // Pass over-aligned aggregates on Windows indirectly. This behavior was 1827 // added in MSVC 2015. 1828 if (IsWin32StructABI && TI.AlignIsRequired && TI.Align > 32) 1829 return getIndirectResult(Ty, /*ByVal=*/false, State); 1830 1831 // Expand small (<= 128-bit) record types when we know that the stack layout 1832 // of those arguments will match the struct. This is important because the 1833 // LLVM backend isn't smart enough to remove byval, which inhibits many 1834 // optimizations. 1835 // Don't do this for the MCU if there are still free integer registers 1836 // (see X86_64 ABI for full explanation). 1837 if (TI.Width <= 4 * 32 && (!IsMCUABI || State.FreeRegs == 0) && 1838 canExpandIndirectArgument(Ty)) 1839 return ABIArgInfo::getExpandWithPadding( 1840 IsFastCall || IsVectorCall || IsRegCall, PaddingType); 1841 1842 return getIndirectResult(Ty, true, State); 1843 } 1844 1845 if (const VectorType *VT = Ty->getAs<VectorType>()) { 1846 // On Windows, vectors are passed directly if registers are available, or 1847 // indirectly if not. This avoids the need to align argument memory. Pass 1848 // user-defined vector types larger than 512 bits indirectly for simplicity. 1849 if (IsWin32StructABI) { 1850 if (TI.Width <= 512 && State.FreeSSERegs > 0) { 1851 --State.FreeSSERegs; 1852 return ABIArgInfo::getDirectInReg(); 1853 } 1854 return getIndirectResult(Ty, /*ByVal=*/false, State); 1855 } 1856 1857 // On Darwin, some vectors are passed in memory, we handle this by passing 1858 // it as an i8/i16/i32/i64. 1859 if (IsDarwinVectorABI) { 1860 if ((TI.Width == 8 || TI.Width == 16 || TI.Width == 32) || 1861 (TI.Width == 64 && VT->getNumElements() == 1)) 1862 return ABIArgInfo::getDirect( 1863 llvm::IntegerType::get(getVMContext(), TI.Width)); 1864 } 1865 1866 if (IsX86_MMXType(CGT.ConvertType(Ty))) 1867 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64)); 1868 1869 return ABIArgInfo::getDirect(); 1870 } 1871 1872 1873 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 1874 Ty = EnumTy->getDecl()->getIntegerType(); 1875 1876 bool InReg = shouldPrimitiveUseInReg(Ty, State); 1877 1878 if (isPromotableIntegerTypeForABI(Ty)) { 1879 if (InReg) 1880 return ABIArgInfo::getExtendInReg(Ty); 1881 return ABIArgInfo::getExtend(Ty); 1882 } 1883 1884 if (const auto * EIT = Ty->getAs<ExtIntType>()) { 1885 if (EIT->getNumBits() <= 64) { 1886 if (InReg) 1887 return ABIArgInfo::getDirectInReg(); 1888 return ABIArgInfo::getDirect(); 1889 } 1890 return getIndirectResult(Ty, /*ByVal=*/false, State); 1891 } 1892 1893 if (InReg) 1894 return ABIArgInfo::getDirectInReg(); 1895 return ABIArgInfo::getDirect(); 1896 } 1897 1898 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const { 1899 CCState State(FI); 1900 if (IsMCUABI) 1901 State.FreeRegs = 3; 1902 else if (State.CC == llvm::CallingConv::X86_FastCall) { 1903 State.FreeRegs = 2; 1904 State.FreeSSERegs = 3; 1905 } else if (State.CC == llvm::CallingConv::X86_VectorCall) { 1906 State.FreeRegs = 2; 1907 State.FreeSSERegs = 6; 1908 } else if (FI.getHasRegParm()) 1909 State.FreeRegs = FI.getRegParm(); 1910 else if (State.CC == llvm::CallingConv::X86_RegCall) { 1911 State.FreeRegs = 5; 1912 State.FreeSSERegs = 8; 1913 } else if (IsWin32StructABI) { 1914 // Since MSVC 2015, the first three SSE vectors have been passed in 1915 // registers. The rest are passed indirectly. 1916 State.FreeRegs = DefaultNumRegisterParameters; 1917 State.FreeSSERegs = 3; 1918 } else 1919 State.FreeRegs = DefaultNumRegisterParameters; 1920 1921 if (!::classifyReturnType(getCXXABI(), FI, *this)) { 1922 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State); 1923 } else if (FI.getReturnInfo().isIndirect()) { 1924 // The C++ ABI is not aware of register usage, so we have to check if the 1925 // return value was sret and put it in a register ourselves if appropriate. 1926 if (State.FreeRegs) { 1927 --State.FreeRegs; // The sret parameter consumes a register. 1928 if (!IsMCUABI) 1929 FI.getReturnInfo().setInReg(true); 1930 } 1931 } 1932 1933 // The chain argument effectively gives us another free register. 1934 if (FI.isChainCall()) 1935 ++State.FreeRegs; 1936 1937 // For vectorcall, do a first pass over the arguments, assigning FP and vector 1938 // arguments to XMM registers as available. 1939 if (State.CC == llvm::CallingConv::X86_VectorCall) 1940 runVectorCallFirstPass(FI, State); 1941 1942 bool UsedInAlloca = false; 1943 MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments(); 1944 for (int I = 0, E = Args.size(); I < E; ++I) { 1945 // Skip arguments that have already been assigned. 1946 if (State.IsPreassigned.test(I)) 1947 continue; 1948 1949 Args[I].info = classifyArgumentType(Args[I].type, State); 1950 UsedInAlloca |= (Args[I].info.getKind() == ABIArgInfo::InAlloca); 1951 } 1952 1953 // If we needed to use inalloca for any argument, do a second pass and rewrite 1954 // all the memory arguments to use inalloca. 1955 if (UsedInAlloca) 1956 rewriteWithInAlloca(FI); 1957 } 1958 1959 void 1960 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1961 CharUnits &StackOffset, ABIArgInfo &Info, 1962 QualType Type) const { 1963 // Arguments are always 4-byte-aligned. 1964 CharUnits WordSize = CharUnits::fromQuantity(4); 1965 assert(StackOffset.isMultipleOf(WordSize) && "unaligned inalloca struct"); 1966 1967 // sret pointers and indirect things will require an extra pointer 1968 // indirection, unless they are byval. Most things are byval, and will not 1969 // require this indirection. 1970 bool IsIndirect = false; 1971 if (Info.isIndirect() && !Info.getIndirectByVal()) 1972 IsIndirect = true; 1973 Info = ABIArgInfo::getInAlloca(FrameFields.size(), IsIndirect); 1974 llvm::Type *LLTy = CGT.ConvertTypeForMem(Type); 1975 if (IsIndirect) 1976 LLTy = LLTy->getPointerTo(0); 1977 FrameFields.push_back(LLTy); 1978 StackOffset += IsIndirect ? WordSize : getContext().getTypeSizeInChars(Type); 1979 1980 // Insert padding bytes to respect alignment. 1981 CharUnits FieldEnd = StackOffset; 1982 StackOffset = FieldEnd.alignTo(WordSize); 1983 if (StackOffset != FieldEnd) { 1984 CharUnits NumBytes = StackOffset - FieldEnd; 1985 llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext()); 1986 Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity()); 1987 FrameFields.push_back(Ty); 1988 } 1989 } 1990 1991 static bool isArgInAlloca(const ABIArgInfo &Info) { 1992 // Leave ignored and inreg arguments alone. 1993 switch (Info.getKind()) { 1994 case ABIArgInfo::InAlloca: 1995 return true; 1996 case ABIArgInfo::Ignore: 1997 case ABIArgInfo::IndirectAliased: 1998 return false; 1999 case ABIArgInfo::Indirect: 2000 case ABIArgInfo::Direct: 2001 case ABIArgInfo::Extend: 2002 return !Info.getInReg(); 2003 case ABIArgInfo::Expand: 2004 case ABIArgInfo::CoerceAndExpand: 2005 // These are aggregate types which are never passed in registers when 2006 // inalloca is involved. 2007 return true; 2008 } 2009 llvm_unreachable("invalid enum"); 2010 } 2011 2012 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const { 2013 assert(IsWin32StructABI && "inalloca only supported on win32"); 2014 2015 // Build a packed struct type for all of the arguments in memory. 2016 SmallVector<llvm::Type *, 6> FrameFields; 2017 2018 // The stack alignment is always 4. 2019 CharUnits StackAlign = CharUnits::fromQuantity(4); 2020 2021 CharUnits StackOffset; 2022 CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end(); 2023 2024 // Put 'this' into the struct before 'sret', if necessary. 2025 bool IsThisCall = 2026 FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall; 2027 ABIArgInfo &Ret = FI.getReturnInfo(); 2028 if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall && 2029 isArgInAlloca(I->info)) { 2030 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 2031 ++I; 2032 } 2033 2034 // Put the sret parameter into the inalloca struct if it's in memory. 2035 if (Ret.isIndirect() && !Ret.getInReg()) { 2036 addFieldToArgStruct(FrameFields, StackOffset, Ret, FI.getReturnType()); 2037 // On Windows, the hidden sret parameter is always returned in eax. 2038 Ret.setInAllocaSRet(IsWin32StructABI); 2039 } 2040 2041 // Skip the 'this' parameter in ecx. 2042 if (IsThisCall) 2043 ++I; 2044 2045 // Put arguments passed in memory into the struct. 2046 for (; I != E; ++I) { 2047 if (isArgInAlloca(I->info)) 2048 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 2049 } 2050 2051 FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields, 2052 /*isPacked=*/true), 2053 StackAlign); 2054 } 2055 2056 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF, 2057 Address VAListAddr, QualType Ty) const { 2058 2059 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 2060 2061 // x86-32 changes the alignment of certain arguments on the stack. 2062 // 2063 // Just messing with TypeInfo like this works because we never pass 2064 // anything indirectly. 2065 TypeInfo.Align = CharUnits::fromQuantity( 2066 getTypeStackAlignInBytes(Ty, TypeInfo.Align.getQuantity())); 2067 2068 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 2069 TypeInfo, CharUnits::fromQuantity(4), 2070 /*AllowHigherAlign*/ true); 2071 } 2072 2073 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI( 2074 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 2075 assert(Triple.getArch() == llvm::Triple::x86); 2076 2077 switch (Opts.getStructReturnConvention()) { 2078 case CodeGenOptions::SRCK_Default: 2079 break; 2080 case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return 2081 return false; 2082 case CodeGenOptions::SRCK_InRegs: // -freg-struct-return 2083 return true; 2084 } 2085 2086 if (Triple.isOSDarwin() || Triple.isOSIAMCU()) 2087 return true; 2088 2089 switch (Triple.getOS()) { 2090 case llvm::Triple::DragonFly: 2091 case llvm::Triple::FreeBSD: 2092 case llvm::Triple::OpenBSD: 2093 case llvm::Triple::Win32: 2094 return true; 2095 default: 2096 return false; 2097 } 2098 } 2099 2100 static void addX86InterruptAttrs(const FunctionDecl *FD, llvm::GlobalValue *GV, 2101 CodeGen::CodeGenModule &CGM) { 2102 if (!FD->hasAttr<AnyX86InterruptAttr>()) 2103 return; 2104 2105 llvm::Function *Fn = cast<llvm::Function>(GV); 2106 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2107 if (FD->getNumParams() == 0) 2108 return; 2109 2110 auto PtrTy = cast<PointerType>(FD->getParamDecl(0)->getType()); 2111 llvm::Type *ByValTy = CGM.getTypes().ConvertType(PtrTy->getPointeeType()); 2112 llvm::Attribute NewAttr = llvm::Attribute::getWithByValType( 2113 Fn->getContext(), ByValTy); 2114 Fn->addParamAttr(0, NewAttr); 2115 } 2116 2117 void X86_32TargetCodeGenInfo::setTargetAttributes( 2118 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2119 if (GV->isDeclaration()) 2120 return; 2121 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2122 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2123 llvm::Function *Fn = cast<llvm::Function>(GV); 2124 Fn->addFnAttr("stackrealign"); 2125 } 2126 2127 addX86InterruptAttrs(FD, GV, CGM); 2128 } 2129 } 2130 2131 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable( 2132 CodeGen::CodeGenFunction &CGF, 2133 llvm::Value *Address) const { 2134 CodeGen::CGBuilderTy &Builder = CGF.Builder; 2135 2136 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 2137 2138 // 0-7 are the eight integer registers; the order is different 2139 // on Darwin (for EH), but the range is the same. 2140 // 8 is %eip. 2141 AssignToArrayRange(Builder, Address, Four8, 0, 8); 2142 2143 if (CGF.CGM.getTarget().getTriple().isOSDarwin()) { 2144 // 12-16 are st(0..4). Not sure why we stop at 4. 2145 // These have size 16, which is sizeof(long double) on 2146 // platforms with 8-byte alignment for that type. 2147 llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16); 2148 AssignToArrayRange(Builder, Address, Sixteen8, 12, 16); 2149 2150 } else { 2151 // 9 is %eflags, which doesn't get a size on Darwin for some 2152 // reason. 2153 Builder.CreateAlignedStore( 2154 Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9), 2155 CharUnits::One()); 2156 2157 // 11-16 are st(0..5). Not sure why we stop at 5. 2158 // These have size 12, which is sizeof(long double) on 2159 // platforms with 4-byte alignment for that type. 2160 llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12); 2161 AssignToArrayRange(Builder, Address, Twelve8, 11, 16); 2162 } 2163 2164 return false; 2165 } 2166 2167 //===----------------------------------------------------------------------===// 2168 // X86-64 ABI Implementation 2169 //===----------------------------------------------------------------------===// 2170 2171 2172 namespace { 2173 /// The AVX ABI level for X86 targets. 2174 enum class X86AVXABILevel { 2175 None, 2176 AVX, 2177 AVX512 2178 }; 2179 2180 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel. 2181 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) { 2182 switch (AVXLevel) { 2183 case X86AVXABILevel::AVX512: 2184 return 512; 2185 case X86AVXABILevel::AVX: 2186 return 256; 2187 case X86AVXABILevel::None: 2188 return 128; 2189 } 2190 llvm_unreachable("Unknown AVXLevel"); 2191 } 2192 2193 /// X86_64ABIInfo - The X86_64 ABI information. 2194 class X86_64ABIInfo : public SwiftABIInfo { 2195 enum Class { 2196 Integer = 0, 2197 SSE, 2198 SSEUp, 2199 X87, 2200 X87Up, 2201 ComplexX87, 2202 NoClass, 2203 Memory 2204 }; 2205 2206 /// merge - Implement the X86_64 ABI merging algorithm. 2207 /// 2208 /// Merge an accumulating classification \arg Accum with a field 2209 /// classification \arg Field. 2210 /// 2211 /// \param Accum - The accumulating classification. This should 2212 /// always be either NoClass or the result of a previous merge 2213 /// call. In addition, this should never be Memory (the caller 2214 /// should just return Memory for the aggregate). 2215 static Class merge(Class Accum, Class Field); 2216 2217 /// postMerge - Implement the X86_64 ABI post merging algorithm. 2218 /// 2219 /// Post merger cleanup, reduces a malformed Hi and Lo pair to 2220 /// final MEMORY or SSE classes when necessary. 2221 /// 2222 /// \param AggregateSize - The size of the current aggregate in 2223 /// the classification process. 2224 /// 2225 /// \param Lo - The classification for the parts of the type 2226 /// residing in the low word of the containing object. 2227 /// 2228 /// \param Hi - The classification for the parts of the type 2229 /// residing in the higher words of the containing object. 2230 /// 2231 void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const; 2232 2233 /// classify - Determine the x86_64 register classes in which the 2234 /// given type T should be passed. 2235 /// 2236 /// \param Lo - The classification for the parts of the type 2237 /// residing in the low word of the containing object. 2238 /// 2239 /// \param Hi - The classification for the parts of the type 2240 /// residing in the high word of the containing object. 2241 /// 2242 /// \param OffsetBase - The bit offset of this type in the 2243 /// containing object. Some parameters are classified different 2244 /// depending on whether they straddle an eightbyte boundary. 2245 /// 2246 /// \param isNamedArg - Whether the argument in question is a "named" 2247 /// argument, as used in AMD64-ABI 3.5.7. 2248 /// 2249 /// If a word is unused its result will be NoClass; if a type should 2250 /// be passed in Memory then at least the classification of \arg Lo 2251 /// will be Memory. 2252 /// 2253 /// The \arg Lo class will be NoClass iff the argument is ignored. 2254 /// 2255 /// If the \arg Lo class is ComplexX87, then the \arg Hi class will 2256 /// also be ComplexX87. 2257 void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi, 2258 bool isNamedArg) const; 2259 2260 llvm::Type *GetByteVectorType(QualType Ty) const; 2261 llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType, 2262 unsigned IROffset, QualType SourceTy, 2263 unsigned SourceOffset) const; 2264 llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType, 2265 unsigned IROffset, QualType SourceTy, 2266 unsigned SourceOffset) const; 2267 2268 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 2269 /// such that the argument will be returned in memory. 2270 ABIArgInfo getIndirectReturnResult(QualType Ty) const; 2271 2272 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 2273 /// such that the argument will be passed in memory. 2274 /// 2275 /// \param freeIntRegs - The number of free integer registers remaining 2276 /// available. 2277 ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const; 2278 2279 ABIArgInfo classifyReturnType(QualType RetTy) const; 2280 2281 ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs, 2282 unsigned &neededInt, unsigned &neededSSE, 2283 bool isNamedArg) const; 2284 2285 ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt, 2286 unsigned &NeededSSE) const; 2287 2288 ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 2289 unsigned &NeededSSE) const; 2290 2291 bool IsIllegalVectorType(QualType Ty) const; 2292 2293 /// The 0.98 ABI revision clarified a lot of ambiguities, 2294 /// unfortunately in ways that were not always consistent with 2295 /// certain previous compilers. In particular, platforms which 2296 /// required strict binary compatibility with older versions of GCC 2297 /// may need to exempt themselves. 2298 bool honorsRevision0_98() const { 2299 return !getTarget().getTriple().isOSDarwin(); 2300 } 2301 2302 /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to 2303 /// classify it as INTEGER (for compatibility with older clang compilers). 2304 bool classifyIntegerMMXAsSSE() const { 2305 // Clang <= 3.8 did not do this. 2306 if (getContext().getLangOpts().getClangABICompat() <= 2307 LangOptions::ClangABI::Ver3_8) 2308 return false; 2309 2310 const llvm::Triple &Triple = getTarget().getTriple(); 2311 if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::PS4) 2312 return false; 2313 if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10) 2314 return false; 2315 return true; 2316 } 2317 2318 // GCC classifies vectors of __int128 as memory. 2319 bool passInt128VectorsInMem() const { 2320 // Clang <= 9.0 did not do this. 2321 if (getContext().getLangOpts().getClangABICompat() <= 2322 LangOptions::ClangABI::Ver9) 2323 return false; 2324 2325 const llvm::Triple &T = getTarget().getTriple(); 2326 return T.isOSLinux() || T.isOSNetBSD(); 2327 } 2328 2329 X86AVXABILevel AVXLevel; 2330 // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on 2331 // 64-bit hardware. 2332 bool Has64BitPointers; 2333 2334 public: 2335 X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) : 2336 SwiftABIInfo(CGT), AVXLevel(AVXLevel), 2337 Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) { 2338 } 2339 2340 bool isPassedUsingAVXType(QualType type) const { 2341 unsigned neededInt, neededSSE; 2342 // The freeIntRegs argument doesn't matter here. 2343 ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE, 2344 /*isNamedArg*/true); 2345 if (info.isDirect()) { 2346 llvm::Type *ty = info.getCoerceToType(); 2347 if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty)) 2348 return vectorTy->getPrimitiveSizeInBits().getFixedSize() > 128; 2349 } 2350 return false; 2351 } 2352 2353 void computeInfo(CGFunctionInfo &FI) const override; 2354 2355 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2356 QualType Ty) const override; 2357 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 2358 QualType Ty) const override; 2359 2360 bool has64BitPointers() const { 2361 return Has64BitPointers; 2362 } 2363 2364 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 2365 bool asReturnValue) const override { 2366 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2367 } 2368 bool isSwiftErrorInRegister() const override { 2369 return true; 2370 } 2371 }; 2372 2373 /// WinX86_64ABIInfo - The Windows X86_64 ABI information. 2374 class WinX86_64ABIInfo : public SwiftABIInfo { 2375 public: 2376 WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2377 : SwiftABIInfo(CGT), AVXLevel(AVXLevel), 2378 IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {} 2379 2380 void computeInfo(CGFunctionInfo &FI) const override; 2381 2382 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2383 QualType Ty) const override; 2384 2385 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 2386 // FIXME: Assumes vectorcall is in use. 2387 return isX86VectorTypeForVectorCall(getContext(), Ty); 2388 } 2389 2390 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 2391 uint64_t NumMembers) const override { 2392 // FIXME: Assumes vectorcall is in use. 2393 return isX86VectorCallAggregateSmallEnough(NumMembers); 2394 } 2395 2396 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type *> scalars, 2397 bool asReturnValue) const override { 2398 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2399 } 2400 2401 bool isSwiftErrorInRegister() const override { 2402 return true; 2403 } 2404 2405 private: 2406 ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType, 2407 bool IsVectorCall, bool IsRegCall) const; 2408 ABIArgInfo reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs, 2409 const ABIArgInfo ¤t) const; 2410 void computeVectorCallArgs(CGFunctionInfo &FI, unsigned FreeSSERegs, 2411 bool IsVectorCall, bool IsRegCall) const; 2412 2413 X86AVXABILevel AVXLevel; 2414 2415 bool IsMingw64; 2416 }; 2417 2418 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2419 public: 2420 X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2421 : TargetCodeGenInfo(std::make_unique<X86_64ABIInfo>(CGT, AVXLevel)) {} 2422 2423 const X86_64ABIInfo &getABIInfo() const { 2424 return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo()); 2425 } 2426 2427 /// Disable tail call on x86-64. The epilogue code before the tail jump blocks 2428 /// autoreleaseRV/retainRV and autoreleaseRV/unsafeClaimRV optimizations. 2429 bool markARCOptimizedReturnCallsAsNoTail() const override { return true; } 2430 2431 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2432 return 7; 2433 } 2434 2435 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2436 llvm::Value *Address) const override { 2437 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2438 2439 // 0-15 are the 16 integer registers. 2440 // 16 is %rip. 2441 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2442 return false; 2443 } 2444 2445 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 2446 StringRef Constraint, 2447 llvm::Type* Ty) const override { 2448 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 2449 } 2450 2451 bool isNoProtoCallVariadic(const CallArgList &args, 2452 const FunctionNoProtoType *fnType) const override { 2453 // The default CC on x86-64 sets %al to the number of SSA 2454 // registers used, and GCC sets this when calling an unprototyped 2455 // function, so we override the default behavior. However, don't do 2456 // that when AVX types are involved: the ABI explicitly states it is 2457 // undefined, and it doesn't work in practice because of how the ABI 2458 // defines varargs anyway. 2459 if (fnType->getCallConv() == CC_C) { 2460 bool HasAVXType = false; 2461 for (CallArgList::const_iterator 2462 it = args.begin(), ie = args.end(); it != ie; ++it) { 2463 if (getABIInfo().isPassedUsingAVXType(it->Ty)) { 2464 HasAVXType = true; 2465 break; 2466 } 2467 } 2468 2469 if (!HasAVXType) 2470 return true; 2471 } 2472 2473 return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType); 2474 } 2475 2476 llvm::Constant * 2477 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 2478 unsigned Sig = (0xeb << 0) | // jmp rel8 2479 (0x06 << 8) | // .+0x08 2480 ('v' << 16) | 2481 ('2' << 24); 2482 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 2483 } 2484 2485 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2486 CodeGen::CodeGenModule &CGM) const override { 2487 if (GV->isDeclaration()) 2488 return; 2489 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2490 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2491 llvm::Function *Fn = cast<llvm::Function>(GV); 2492 Fn->addFnAttr("stackrealign"); 2493 } 2494 2495 addX86InterruptAttrs(FD, GV, CGM); 2496 } 2497 } 2498 2499 void checkFunctionCallABI(CodeGenModule &CGM, SourceLocation CallLoc, 2500 const FunctionDecl *Caller, 2501 const FunctionDecl *Callee, 2502 const CallArgList &Args) const override; 2503 }; 2504 2505 static void initFeatureMaps(const ASTContext &Ctx, 2506 llvm::StringMap<bool> &CallerMap, 2507 const FunctionDecl *Caller, 2508 llvm::StringMap<bool> &CalleeMap, 2509 const FunctionDecl *Callee) { 2510 if (CalleeMap.empty() && CallerMap.empty()) { 2511 // The caller is potentially nullptr in the case where the call isn't in a 2512 // function. In this case, the getFunctionFeatureMap ensures we just get 2513 // the TU level setting (since it cannot be modified by 'target'.. 2514 Ctx.getFunctionFeatureMap(CallerMap, Caller); 2515 Ctx.getFunctionFeatureMap(CalleeMap, Callee); 2516 } 2517 } 2518 2519 static bool checkAVXParamFeature(DiagnosticsEngine &Diag, 2520 SourceLocation CallLoc, 2521 const llvm::StringMap<bool> &CallerMap, 2522 const llvm::StringMap<bool> &CalleeMap, 2523 QualType Ty, StringRef Feature, 2524 bool IsArgument) { 2525 bool CallerHasFeat = CallerMap.lookup(Feature); 2526 bool CalleeHasFeat = CalleeMap.lookup(Feature); 2527 if (!CallerHasFeat && !CalleeHasFeat) 2528 return Diag.Report(CallLoc, diag::warn_avx_calling_convention) 2529 << IsArgument << Ty << Feature; 2530 2531 // Mixing calling conventions here is very clearly an error. 2532 if (!CallerHasFeat || !CalleeHasFeat) 2533 return Diag.Report(CallLoc, diag::err_avx_calling_convention) 2534 << IsArgument << Ty << Feature; 2535 2536 // Else, both caller and callee have the required feature, so there is no need 2537 // to diagnose. 2538 return false; 2539 } 2540 2541 static bool checkAVXParam(DiagnosticsEngine &Diag, ASTContext &Ctx, 2542 SourceLocation CallLoc, 2543 const llvm::StringMap<bool> &CallerMap, 2544 const llvm::StringMap<bool> &CalleeMap, QualType Ty, 2545 bool IsArgument) { 2546 uint64_t Size = Ctx.getTypeSize(Ty); 2547 if (Size > 256) 2548 return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty, 2549 "avx512f", IsArgument); 2550 2551 if (Size > 128) 2552 return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty, "avx", 2553 IsArgument); 2554 2555 return false; 2556 } 2557 2558 void X86_64TargetCodeGenInfo::checkFunctionCallABI( 2559 CodeGenModule &CGM, SourceLocation CallLoc, const FunctionDecl *Caller, 2560 const FunctionDecl *Callee, const CallArgList &Args) const { 2561 llvm::StringMap<bool> CallerMap; 2562 llvm::StringMap<bool> CalleeMap; 2563 unsigned ArgIndex = 0; 2564 2565 // We need to loop through the actual call arguments rather than the the 2566 // function's parameters, in case this variadic. 2567 for (const CallArg &Arg : Args) { 2568 // The "avx" feature changes how vectors >128 in size are passed. "avx512f" 2569 // additionally changes how vectors >256 in size are passed. Like GCC, we 2570 // warn when a function is called with an argument where this will change. 2571 // Unlike GCC, we also error when it is an obvious ABI mismatch, that is, 2572 // the caller and callee features are mismatched. 2573 // Unfortunately, we cannot do this diagnostic in SEMA, since the callee can 2574 // change its ABI with attribute-target after this call. 2575 if (Arg.getType()->isVectorType() && 2576 CGM.getContext().getTypeSize(Arg.getType()) > 128) { 2577 initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee); 2578 QualType Ty = Arg.getType(); 2579 // The CallArg seems to have desugared the type already, so for clearer 2580 // diagnostics, replace it with the type in the FunctionDecl if possible. 2581 if (ArgIndex < Callee->getNumParams()) 2582 Ty = Callee->getParamDecl(ArgIndex)->getType(); 2583 2584 if (checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap, 2585 CalleeMap, Ty, /*IsArgument*/ true)) 2586 return; 2587 } 2588 ++ArgIndex; 2589 } 2590 2591 // Check return always, as we don't have a good way of knowing in codegen 2592 // whether this value is used, tail-called, etc. 2593 if (Callee->getReturnType()->isVectorType() && 2594 CGM.getContext().getTypeSize(Callee->getReturnType()) > 128) { 2595 initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee); 2596 checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap, 2597 CalleeMap, Callee->getReturnType(), 2598 /*IsArgument*/ false); 2599 } 2600 } 2601 2602 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) { 2603 // If the argument does not end in .lib, automatically add the suffix. 2604 // If the argument contains a space, enclose it in quotes. 2605 // This matches the behavior of MSVC. 2606 bool Quote = (Lib.find(' ') != StringRef::npos); 2607 std::string ArgStr = Quote ? "\"" : ""; 2608 ArgStr += Lib; 2609 if (!Lib.endswith_lower(".lib") && !Lib.endswith_lower(".a")) 2610 ArgStr += ".lib"; 2611 ArgStr += Quote ? "\"" : ""; 2612 return ArgStr; 2613 } 2614 2615 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo { 2616 public: 2617 WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2618 bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI, 2619 unsigned NumRegisterParameters) 2620 : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI, 2621 Win32StructABI, NumRegisterParameters, false) {} 2622 2623 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2624 CodeGen::CodeGenModule &CGM) const override; 2625 2626 void getDependentLibraryOption(llvm::StringRef Lib, 2627 llvm::SmallString<24> &Opt) const override { 2628 Opt = "/DEFAULTLIB:"; 2629 Opt += qualifyWindowsLibrary(Lib); 2630 } 2631 2632 void getDetectMismatchOption(llvm::StringRef Name, 2633 llvm::StringRef Value, 2634 llvm::SmallString<32> &Opt) const override { 2635 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2636 } 2637 }; 2638 2639 static void addStackProbeTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2640 CodeGen::CodeGenModule &CGM) { 2641 if (llvm::Function *Fn = dyn_cast_or_null<llvm::Function>(GV)) { 2642 2643 if (CGM.getCodeGenOpts().StackProbeSize != 4096) 2644 Fn->addFnAttr("stack-probe-size", 2645 llvm::utostr(CGM.getCodeGenOpts().StackProbeSize)); 2646 if (CGM.getCodeGenOpts().NoStackArgProbe) 2647 Fn->addFnAttr("no-stack-arg-probe"); 2648 } 2649 } 2650 2651 void WinX86_32TargetCodeGenInfo::setTargetAttributes( 2652 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2653 X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2654 if (GV->isDeclaration()) 2655 return; 2656 addStackProbeTargetAttributes(D, GV, CGM); 2657 } 2658 2659 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2660 public: 2661 WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2662 X86AVXABILevel AVXLevel) 2663 : TargetCodeGenInfo(std::make_unique<WinX86_64ABIInfo>(CGT, AVXLevel)) {} 2664 2665 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2666 CodeGen::CodeGenModule &CGM) const override; 2667 2668 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2669 return 7; 2670 } 2671 2672 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2673 llvm::Value *Address) const override { 2674 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2675 2676 // 0-15 are the 16 integer registers. 2677 // 16 is %rip. 2678 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2679 return false; 2680 } 2681 2682 void getDependentLibraryOption(llvm::StringRef Lib, 2683 llvm::SmallString<24> &Opt) const override { 2684 Opt = "/DEFAULTLIB:"; 2685 Opt += qualifyWindowsLibrary(Lib); 2686 } 2687 2688 void getDetectMismatchOption(llvm::StringRef Name, 2689 llvm::StringRef Value, 2690 llvm::SmallString<32> &Opt) const override { 2691 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2692 } 2693 }; 2694 2695 void WinX86_64TargetCodeGenInfo::setTargetAttributes( 2696 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2697 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2698 if (GV->isDeclaration()) 2699 return; 2700 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2701 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2702 llvm::Function *Fn = cast<llvm::Function>(GV); 2703 Fn->addFnAttr("stackrealign"); 2704 } 2705 2706 addX86InterruptAttrs(FD, GV, CGM); 2707 } 2708 2709 addStackProbeTargetAttributes(D, GV, CGM); 2710 } 2711 } 2712 2713 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo, 2714 Class &Hi) const { 2715 // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done: 2716 // 2717 // (a) If one of the classes is Memory, the whole argument is passed in 2718 // memory. 2719 // 2720 // (b) If X87UP is not preceded by X87, the whole argument is passed in 2721 // memory. 2722 // 2723 // (c) If the size of the aggregate exceeds two eightbytes and the first 2724 // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole 2725 // argument is passed in memory. NOTE: This is necessary to keep the 2726 // ABI working for processors that don't support the __m256 type. 2727 // 2728 // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE. 2729 // 2730 // Some of these are enforced by the merging logic. Others can arise 2731 // only with unions; for example: 2732 // union { _Complex double; unsigned; } 2733 // 2734 // Note that clauses (b) and (c) were added in 0.98. 2735 // 2736 if (Hi == Memory) 2737 Lo = Memory; 2738 if (Hi == X87Up && Lo != X87 && honorsRevision0_98()) 2739 Lo = Memory; 2740 if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp)) 2741 Lo = Memory; 2742 if (Hi == SSEUp && Lo != SSE) 2743 Hi = SSE; 2744 } 2745 2746 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) { 2747 // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is 2748 // classified recursively so that always two fields are 2749 // considered. The resulting class is calculated according to 2750 // the classes of the fields in the eightbyte: 2751 // 2752 // (a) If both classes are equal, this is the resulting class. 2753 // 2754 // (b) If one of the classes is NO_CLASS, the resulting class is 2755 // the other class. 2756 // 2757 // (c) If one of the classes is MEMORY, the result is the MEMORY 2758 // class. 2759 // 2760 // (d) If one of the classes is INTEGER, the result is the 2761 // INTEGER. 2762 // 2763 // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class, 2764 // MEMORY is used as class. 2765 // 2766 // (f) Otherwise class SSE is used. 2767 2768 // Accum should never be memory (we should have returned) or 2769 // ComplexX87 (because this cannot be passed in a structure). 2770 assert((Accum != Memory && Accum != ComplexX87) && 2771 "Invalid accumulated classification during merge."); 2772 if (Accum == Field || Field == NoClass) 2773 return Accum; 2774 if (Field == Memory) 2775 return Memory; 2776 if (Accum == NoClass) 2777 return Field; 2778 if (Accum == Integer || Field == Integer) 2779 return Integer; 2780 if (Field == X87 || Field == X87Up || Field == ComplexX87 || 2781 Accum == X87 || Accum == X87Up) 2782 return Memory; 2783 return SSE; 2784 } 2785 2786 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, 2787 Class &Lo, Class &Hi, bool isNamedArg) const { 2788 // FIXME: This code can be simplified by introducing a simple value class for 2789 // Class pairs with appropriate constructor methods for the various 2790 // situations. 2791 2792 // FIXME: Some of the split computations are wrong; unaligned vectors 2793 // shouldn't be passed in registers for example, so there is no chance they 2794 // can straddle an eightbyte. Verify & simplify. 2795 2796 Lo = Hi = NoClass; 2797 2798 Class &Current = OffsetBase < 64 ? Lo : Hi; 2799 Current = Memory; 2800 2801 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 2802 BuiltinType::Kind k = BT->getKind(); 2803 2804 if (k == BuiltinType::Void) { 2805 Current = NoClass; 2806 } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) { 2807 Lo = Integer; 2808 Hi = Integer; 2809 } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) { 2810 Current = Integer; 2811 } else if (k == BuiltinType::Float || k == BuiltinType::Double) { 2812 Current = SSE; 2813 } else if (k == BuiltinType::LongDouble) { 2814 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2815 if (LDF == &llvm::APFloat::IEEEquad()) { 2816 Lo = SSE; 2817 Hi = SSEUp; 2818 } else if (LDF == &llvm::APFloat::x87DoubleExtended()) { 2819 Lo = X87; 2820 Hi = X87Up; 2821 } else if (LDF == &llvm::APFloat::IEEEdouble()) { 2822 Current = SSE; 2823 } else 2824 llvm_unreachable("unexpected long double representation!"); 2825 } 2826 // FIXME: _Decimal32 and _Decimal64 are SSE. 2827 // FIXME: _float128 and _Decimal128 are (SSE, SSEUp). 2828 return; 2829 } 2830 2831 if (const EnumType *ET = Ty->getAs<EnumType>()) { 2832 // Classify the underlying integer type. 2833 classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg); 2834 return; 2835 } 2836 2837 if (Ty->hasPointerRepresentation()) { 2838 Current = Integer; 2839 return; 2840 } 2841 2842 if (Ty->isMemberPointerType()) { 2843 if (Ty->isMemberFunctionPointerType()) { 2844 if (Has64BitPointers) { 2845 // If Has64BitPointers, this is an {i64, i64}, so classify both 2846 // Lo and Hi now. 2847 Lo = Hi = Integer; 2848 } else { 2849 // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that 2850 // straddles an eightbyte boundary, Hi should be classified as well. 2851 uint64_t EB_FuncPtr = (OffsetBase) / 64; 2852 uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64; 2853 if (EB_FuncPtr != EB_ThisAdj) { 2854 Lo = Hi = Integer; 2855 } else { 2856 Current = Integer; 2857 } 2858 } 2859 } else { 2860 Current = Integer; 2861 } 2862 return; 2863 } 2864 2865 if (const VectorType *VT = Ty->getAs<VectorType>()) { 2866 uint64_t Size = getContext().getTypeSize(VT); 2867 if (Size == 1 || Size == 8 || Size == 16 || Size == 32) { 2868 // gcc passes the following as integer: 2869 // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float> 2870 // 2 bytes - <2 x char>, <1 x short> 2871 // 1 byte - <1 x char> 2872 Current = Integer; 2873 2874 // If this type crosses an eightbyte boundary, it should be 2875 // split. 2876 uint64_t EB_Lo = (OffsetBase) / 64; 2877 uint64_t EB_Hi = (OffsetBase + Size - 1) / 64; 2878 if (EB_Lo != EB_Hi) 2879 Hi = Lo; 2880 } else if (Size == 64) { 2881 QualType ElementType = VT->getElementType(); 2882 2883 // gcc passes <1 x double> in memory. :( 2884 if (ElementType->isSpecificBuiltinType(BuiltinType::Double)) 2885 return; 2886 2887 // gcc passes <1 x long long> as SSE but clang used to unconditionally 2888 // pass them as integer. For platforms where clang is the de facto 2889 // platform compiler, we must continue to use integer. 2890 if (!classifyIntegerMMXAsSSE() && 2891 (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) || 2892 ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) || 2893 ElementType->isSpecificBuiltinType(BuiltinType::Long) || 2894 ElementType->isSpecificBuiltinType(BuiltinType::ULong))) 2895 Current = Integer; 2896 else 2897 Current = SSE; 2898 2899 // If this type crosses an eightbyte boundary, it should be 2900 // split. 2901 if (OffsetBase && OffsetBase != 64) 2902 Hi = Lo; 2903 } else if (Size == 128 || 2904 (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) { 2905 QualType ElementType = VT->getElementType(); 2906 2907 // gcc passes 256 and 512 bit <X x __int128> vectors in memory. :( 2908 if (passInt128VectorsInMem() && Size != 128 && 2909 (ElementType->isSpecificBuiltinType(BuiltinType::Int128) || 2910 ElementType->isSpecificBuiltinType(BuiltinType::UInt128))) 2911 return; 2912 2913 // Arguments of 256-bits are split into four eightbyte chunks. The 2914 // least significant one belongs to class SSE and all the others to class 2915 // SSEUP. The original Lo and Hi design considers that types can't be 2916 // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense. 2917 // This design isn't correct for 256-bits, but since there're no cases 2918 // where the upper parts would need to be inspected, avoid adding 2919 // complexity and just consider Hi to match the 64-256 part. 2920 // 2921 // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in 2922 // registers if they are "named", i.e. not part of the "..." of a 2923 // variadic function. 2924 // 2925 // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are 2926 // split into eight eightbyte chunks, one SSE and seven SSEUP. 2927 Lo = SSE; 2928 Hi = SSEUp; 2929 } 2930 return; 2931 } 2932 2933 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 2934 QualType ET = getContext().getCanonicalType(CT->getElementType()); 2935 2936 uint64_t Size = getContext().getTypeSize(Ty); 2937 if (ET->isIntegralOrEnumerationType()) { 2938 if (Size <= 64) 2939 Current = Integer; 2940 else if (Size <= 128) 2941 Lo = Hi = Integer; 2942 } else if (ET == getContext().FloatTy) { 2943 Current = SSE; 2944 } else if (ET == getContext().DoubleTy) { 2945 Lo = Hi = SSE; 2946 } else if (ET == getContext().LongDoubleTy) { 2947 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2948 if (LDF == &llvm::APFloat::IEEEquad()) 2949 Current = Memory; 2950 else if (LDF == &llvm::APFloat::x87DoubleExtended()) 2951 Current = ComplexX87; 2952 else if (LDF == &llvm::APFloat::IEEEdouble()) 2953 Lo = Hi = SSE; 2954 else 2955 llvm_unreachable("unexpected long double representation!"); 2956 } 2957 2958 // If this complex type crosses an eightbyte boundary then it 2959 // should be split. 2960 uint64_t EB_Real = (OffsetBase) / 64; 2961 uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64; 2962 if (Hi == NoClass && EB_Real != EB_Imag) 2963 Hi = Lo; 2964 2965 return; 2966 } 2967 2968 if (const auto *EITy = Ty->getAs<ExtIntType>()) { 2969 if (EITy->getNumBits() <= 64) 2970 Current = Integer; 2971 else if (EITy->getNumBits() <= 128) 2972 Lo = Hi = Integer; 2973 // Larger values need to get passed in memory. 2974 return; 2975 } 2976 2977 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 2978 // Arrays are treated like structures. 2979 2980 uint64_t Size = getContext().getTypeSize(Ty); 2981 2982 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 2983 // than eight eightbytes, ..., it has class MEMORY. 2984 if (Size > 512) 2985 return; 2986 2987 // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned 2988 // fields, it has class MEMORY. 2989 // 2990 // Only need to check alignment of array base. 2991 if (OffsetBase % getContext().getTypeAlign(AT->getElementType())) 2992 return; 2993 2994 // Otherwise implement simplified merge. We could be smarter about 2995 // this, but it isn't worth it and would be harder to verify. 2996 Current = NoClass; 2997 uint64_t EltSize = getContext().getTypeSize(AT->getElementType()); 2998 uint64_t ArraySize = AT->getSize().getZExtValue(); 2999 3000 // The only case a 256-bit wide vector could be used is when the array 3001 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 3002 // to work for sizes wider than 128, early check and fallback to memory. 3003 // 3004 if (Size > 128 && 3005 (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel))) 3006 return; 3007 3008 for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) { 3009 Class FieldLo, FieldHi; 3010 classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg); 3011 Lo = merge(Lo, FieldLo); 3012 Hi = merge(Hi, FieldHi); 3013 if (Lo == Memory || Hi == Memory) 3014 break; 3015 } 3016 3017 postMerge(Size, Lo, Hi); 3018 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification."); 3019 return; 3020 } 3021 3022 if (const RecordType *RT = Ty->getAs<RecordType>()) { 3023 uint64_t Size = getContext().getTypeSize(Ty); 3024 3025 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 3026 // than eight eightbytes, ..., it has class MEMORY. 3027 if (Size > 512) 3028 return; 3029 3030 // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial 3031 // copy constructor or a non-trivial destructor, it is passed by invisible 3032 // reference. 3033 if (getRecordArgABI(RT, getCXXABI())) 3034 return; 3035 3036 const RecordDecl *RD = RT->getDecl(); 3037 3038 // Assume variable sized types are passed in memory. 3039 if (RD->hasFlexibleArrayMember()) 3040 return; 3041 3042 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 3043 3044 // Reset Lo class, this will be recomputed. 3045 Current = NoClass; 3046 3047 // If this is a C++ record, classify the bases first. 3048 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 3049 for (const auto &I : CXXRD->bases()) { 3050 assert(!I.isVirtual() && !I.getType()->isDependentType() && 3051 "Unexpected base class!"); 3052 const auto *Base = 3053 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 3054 3055 // Classify this field. 3056 // 3057 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a 3058 // single eightbyte, each is classified separately. Each eightbyte gets 3059 // initialized to class NO_CLASS. 3060 Class FieldLo, FieldHi; 3061 uint64_t Offset = 3062 OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base)); 3063 classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg); 3064 Lo = merge(Lo, FieldLo); 3065 Hi = merge(Hi, FieldHi); 3066 if (Lo == Memory || Hi == Memory) { 3067 postMerge(Size, Lo, Hi); 3068 return; 3069 } 3070 } 3071 } 3072 3073 // Classify the fields one at a time, merging the results. 3074 unsigned idx = 0; 3075 bool UseClang11Compat = getContext().getLangOpts().getClangABICompat() <= 3076 LangOptions::ClangABI::Ver11 || 3077 getContext().getTargetInfo().getTriple().isPS4(); 3078 bool IsUnion = RT->isUnionType() && !UseClang11Compat; 3079 3080 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 3081 i != e; ++i, ++idx) { 3082 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 3083 bool BitField = i->isBitField(); 3084 3085 // Ignore padding bit-fields. 3086 if (BitField && i->isUnnamedBitfield()) 3087 continue; 3088 3089 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than 3090 // eight eightbytes, or it contains unaligned fields, it has class MEMORY. 3091 // 3092 // The only case a 256-bit or a 512-bit wide vector could be used is when 3093 // the struct contains a single 256-bit or 512-bit element. Early check 3094 // and fallback to memory. 3095 // 3096 // FIXME: Extended the Lo and Hi logic properly to work for size wider 3097 // than 128. 3098 if (Size > 128 && 3099 ((!IsUnion && Size != getContext().getTypeSize(i->getType())) || 3100 Size > getNativeVectorSizeForAVXABI(AVXLevel))) { 3101 Lo = Memory; 3102 postMerge(Size, Lo, Hi); 3103 return; 3104 } 3105 // Note, skip this test for bit-fields, see below. 3106 if (!BitField && Offset % getContext().getTypeAlign(i->getType())) { 3107 Lo = Memory; 3108 postMerge(Size, Lo, Hi); 3109 return; 3110 } 3111 3112 // Classify this field. 3113 // 3114 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate 3115 // exceeds a single eightbyte, each is classified 3116 // separately. Each eightbyte gets initialized to class 3117 // NO_CLASS. 3118 Class FieldLo, FieldHi; 3119 3120 // Bit-fields require special handling, they do not force the 3121 // structure to be passed in memory even if unaligned, and 3122 // therefore they can straddle an eightbyte. 3123 if (BitField) { 3124 assert(!i->isUnnamedBitfield()); 3125 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 3126 uint64_t Size = i->getBitWidthValue(getContext()); 3127 3128 uint64_t EB_Lo = Offset / 64; 3129 uint64_t EB_Hi = (Offset + Size - 1) / 64; 3130 3131 if (EB_Lo) { 3132 assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes."); 3133 FieldLo = NoClass; 3134 FieldHi = Integer; 3135 } else { 3136 FieldLo = Integer; 3137 FieldHi = EB_Hi ? Integer : NoClass; 3138 } 3139 } else 3140 classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg); 3141 Lo = merge(Lo, FieldLo); 3142 Hi = merge(Hi, FieldHi); 3143 if (Lo == Memory || Hi == Memory) 3144 break; 3145 } 3146 3147 postMerge(Size, Lo, Hi); 3148 } 3149 } 3150 3151 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const { 3152 // If this is a scalar LLVM value then assume LLVM will pass it in the right 3153 // place naturally. 3154 if (!isAggregateTypeForABI(Ty)) { 3155 // Treat an enum type as its underlying type. 3156 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3157 Ty = EnumTy->getDecl()->getIntegerType(); 3158 3159 if (Ty->isExtIntType()) 3160 return getNaturalAlignIndirect(Ty); 3161 3162 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 3163 : ABIArgInfo::getDirect()); 3164 } 3165 3166 return getNaturalAlignIndirect(Ty); 3167 } 3168 3169 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const { 3170 if (const VectorType *VecTy = Ty->getAs<VectorType>()) { 3171 uint64_t Size = getContext().getTypeSize(VecTy); 3172 unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel); 3173 if (Size <= 64 || Size > LargestVector) 3174 return true; 3175 QualType EltTy = VecTy->getElementType(); 3176 if (passInt128VectorsInMem() && 3177 (EltTy->isSpecificBuiltinType(BuiltinType::Int128) || 3178 EltTy->isSpecificBuiltinType(BuiltinType::UInt128))) 3179 return true; 3180 } 3181 3182 return false; 3183 } 3184 3185 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty, 3186 unsigned freeIntRegs) const { 3187 // If this is a scalar LLVM value then assume LLVM will pass it in the right 3188 // place naturally. 3189 // 3190 // This assumption is optimistic, as there could be free registers available 3191 // when we need to pass this argument in memory, and LLVM could try to pass 3192 // the argument in the free register. This does not seem to happen currently, 3193 // but this code would be much safer if we could mark the argument with 3194 // 'onstack'. See PR12193. 3195 if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty) && 3196 !Ty->isExtIntType()) { 3197 // Treat an enum type as its underlying type. 3198 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3199 Ty = EnumTy->getDecl()->getIntegerType(); 3200 3201 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 3202 : ABIArgInfo::getDirect()); 3203 } 3204 3205 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 3206 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 3207 3208 // Compute the byval alignment. We specify the alignment of the byval in all 3209 // cases so that the mid-level optimizer knows the alignment of the byval. 3210 unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U); 3211 3212 // Attempt to avoid passing indirect results using byval when possible. This 3213 // is important for good codegen. 3214 // 3215 // We do this by coercing the value into a scalar type which the backend can 3216 // handle naturally (i.e., without using byval). 3217 // 3218 // For simplicity, we currently only do this when we have exhausted all of the 3219 // free integer registers. Doing this when there are free integer registers 3220 // would require more care, as we would have to ensure that the coerced value 3221 // did not claim the unused register. That would require either reording the 3222 // arguments to the function (so that any subsequent inreg values came first), 3223 // or only doing this optimization when there were no following arguments that 3224 // might be inreg. 3225 // 3226 // We currently expect it to be rare (particularly in well written code) for 3227 // arguments to be passed on the stack when there are still free integer 3228 // registers available (this would typically imply large structs being passed 3229 // by value), so this seems like a fair tradeoff for now. 3230 // 3231 // We can revisit this if the backend grows support for 'onstack' parameter 3232 // attributes. See PR12193. 3233 if (freeIntRegs == 0) { 3234 uint64_t Size = getContext().getTypeSize(Ty); 3235 3236 // If this type fits in an eightbyte, coerce it into the matching integral 3237 // type, which will end up on the stack (with alignment 8). 3238 if (Align == 8 && Size <= 64) 3239 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 3240 Size)); 3241 } 3242 3243 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align)); 3244 } 3245 3246 /// The ABI specifies that a value should be passed in a full vector XMM/YMM 3247 /// register. Pick an LLVM IR type that will be passed as a vector register. 3248 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const { 3249 // Wrapper structs/arrays that only contain vectors are passed just like 3250 // vectors; strip them off if present. 3251 if (const Type *InnerTy = isSingleElementStruct(Ty, getContext())) 3252 Ty = QualType(InnerTy, 0); 3253 3254 llvm::Type *IRType = CGT.ConvertType(Ty); 3255 if (isa<llvm::VectorType>(IRType)) { 3256 // Don't pass vXi128 vectors in their native type, the backend can't 3257 // legalize them. 3258 if (passInt128VectorsInMem() && 3259 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy(128)) { 3260 // Use a vXi64 vector. 3261 uint64_t Size = getContext().getTypeSize(Ty); 3262 return llvm::FixedVectorType::get(llvm::Type::getInt64Ty(getVMContext()), 3263 Size / 64); 3264 } 3265 3266 return IRType; 3267 } 3268 3269 if (IRType->getTypeID() == llvm::Type::FP128TyID) 3270 return IRType; 3271 3272 // We couldn't find the preferred IR vector type for 'Ty'. 3273 uint64_t Size = getContext().getTypeSize(Ty); 3274 assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!"); 3275 3276 3277 // Return a LLVM IR vector type based on the size of 'Ty'. 3278 return llvm::FixedVectorType::get(llvm::Type::getDoubleTy(getVMContext()), 3279 Size / 64); 3280 } 3281 3282 /// BitsContainNoUserData - Return true if the specified [start,end) bit range 3283 /// is known to either be off the end of the specified type or being in 3284 /// alignment padding. The user type specified is known to be at most 128 bits 3285 /// in size, and have passed through X86_64ABIInfo::classify with a successful 3286 /// classification that put one of the two halves in the INTEGER class. 3287 /// 3288 /// It is conservatively correct to return false. 3289 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit, 3290 unsigned EndBit, ASTContext &Context) { 3291 // If the bytes being queried are off the end of the type, there is no user 3292 // data hiding here. This handles analysis of builtins, vectors and other 3293 // types that don't contain interesting padding. 3294 unsigned TySize = (unsigned)Context.getTypeSize(Ty); 3295 if (TySize <= StartBit) 3296 return true; 3297 3298 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 3299 unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType()); 3300 unsigned NumElts = (unsigned)AT->getSize().getZExtValue(); 3301 3302 // Check each element to see if the element overlaps with the queried range. 3303 for (unsigned i = 0; i != NumElts; ++i) { 3304 // If the element is after the span we care about, then we're done.. 3305 unsigned EltOffset = i*EltSize; 3306 if (EltOffset >= EndBit) break; 3307 3308 unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0; 3309 if (!BitsContainNoUserData(AT->getElementType(), EltStart, 3310 EndBit-EltOffset, Context)) 3311 return false; 3312 } 3313 // If it overlaps no elements, then it is safe to process as padding. 3314 return true; 3315 } 3316 3317 if (const RecordType *RT = Ty->getAs<RecordType>()) { 3318 const RecordDecl *RD = RT->getDecl(); 3319 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 3320 3321 // If this is a C++ record, check the bases first. 3322 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 3323 for (const auto &I : CXXRD->bases()) { 3324 assert(!I.isVirtual() && !I.getType()->isDependentType() && 3325 "Unexpected base class!"); 3326 const auto *Base = 3327 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 3328 3329 // If the base is after the span we care about, ignore it. 3330 unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base)); 3331 if (BaseOffset >= EndBit) continue; 3332 3333 unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0; 3334 if (!BitsContainNoUserData(I.getType(), BaseStart, 3335 EndBit-BaseOffset, Context)) 3336 return false; 3337 } 3338 } 3339 3340 // Verify that no field has data that overlaps the region of interest. Yes 3341 // this could be sped up a lot by being smarter about queried fields, 3342 // however we're only looking at structs up to 16 bytes, so we don't care 3343 // much. 3344 unsigned idx = 0; 3345 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 3346 i != e; ++i, ++idx) { 3347 unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx); 3348 3349 // If we found a field after the region we care about, then we're done. 3350 if (FieldOffset >= EndBit) break; 3351 3352 unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0; 3353 if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset, 3354 Context)) 3355 return false; 3356 } 3357 3358 // If nothing in this record overlapped the area of interest, then we're 3359 // clean. 3360 return true; 3361 } 3362 3363 return false; 3364 } 3365 3366 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a 3367 /// float member at the specified offset. For example, {int,{float}} has a 3368 /// float at offset 4. It is conservatively correct for this routine to return 3369 /// false. 3370 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset, 3371 const llvm::DataLayout &TD) { 3372 // Base case if we find a float. 3373 if (IROffset == 0 && IRType->isFloatTy()) 3374 return true; 3375 3376 // If this is a struct, recurse into the field at the specified offset. 3377 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 3378 const llvm::StructLayout *SL = TD.getStructLayout(STy); 3379 unsigned Elt = SL->getElementContainingOffset(IROffset); 3380 IROffset -= SL->getElementOffset(Elt); 3381 return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD); 3382 } 3383 3384 // If this is an array, recurse into the field at the specified offset. 3385 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 3386 llvm::Type *EltTy = ATy->getElementType(); 3387 unsigned EltSize = TD.getTypeAllocSize(EltTy); 3388 IROffset -= IROffset/EltSize*EltSize; 3389 return ContainsFloatAtOffset(EltTy, IROffset, TD); 3390 } 3391 3392 return false; 3393 } 3394 3395 3396 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the 3397 /// low 8 bytes of an XMM register, corresponding to the SSE class. 3398 llvm::Type *X86_64ABIInfo:: 3399 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3400 QualType SourceTy, unsigned SourceOffset) const { 3401 // The only three choices we have are either double, <2 x float>, or float. We 3402 // pass as float if the last 4 bytes is just padding. This happens for 3403 // structs that contain 3 floats. 3404 if (BitsContainNoUserData(SourceTy, SourceOffset*8+32, 3405 SourceOffset*8+64, getContext())) 3406 return llvm::Type::getFloatTy(getVMContext()); 3407 3408 // We want to pass as <2 x float> if the LLVM IR type contains a float at 3409 // offset+0 and offset+4. Walk the LLVM IR type to find out if this is the 3410 // case. 3411 if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) && 3412 ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout())) 3413 return llvm::FixedVectorType::get(llvm::Type::getFloatTy(getVMContext()), 3414 2); 3415 3416 return llvm::Type::getDoubleTy(getVMContext()); 3417 } 3418 3419 3420 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in 3421 /// an 8-byte GPR. This means that we either have a scalar or we are talking 3422 /// about the high or low part of an up-to-16-byte struct. This routine picks 3423 /// the best LLVM IR type to represent this, which may be i64 or may be anything 3424 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*, 3425 /// etc). 3426 /// 3427 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for 3428 /// the source type. IROffset is an offset in bytes into the LLVM IR type that 3429 /// the 8-byte value references. PrefType may be null. 3430 /// 3431 /// SourceTy is the source-level type for the entire argument. SourceOffset is 3432 /// an offset into this that we're processing (which is always either 0 or 8). 3433 /// 3434 llvm::Type *X86_64ABIInfo:: 3435 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3436 QualType SourceTy, unsigned SourceOffset) const { 3437 // If we're dealing with an un-offset LLVM IR type, then it means that we're 3438 // returning an 8-byte unit starting with it. See if we can safely use it. 3439 if (IROffset == 0) { 3440 // Pointers and int64's always fill the 8-byte unit. 3441 if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) || 3442 IRType->isIntegerTy(64)) 3443 return IRType; 3444 3445 // If we have a 1/2/4-byte integer, we can use it only if the rest of the 3446 // goodness in the source type is just tail padding. This is allowed to 3447 // kick in for struct {double,int} on the int, but not on 3448 // struct{double,int,int} because we wouldn't return the second int. We 3449 // have to do this analysis on the source type because we can't depend on 3450 // unions being lowered a specific way etc. 3451 if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) || 3452 IRType->isIntegerTy(32) || 3453 (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) { 3454 unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 : 3455 cast<llvm::IntegerType>(IRType)->getBitWidth(); 3456 3457 if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth, 3458 SourceOffset*8+64, getContext())) 3459 return IRType; 3460 } 3461 } 3462 3463 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 3464 // If this is a struct, recurse into the field at the specified offset. 3465 const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy); 3466 if (IROffset < SL->getSizeInBytes()) { 3467 unsigned FieldIdx = SL->getElementContainingOffset(IROffset); 3468 IROffset -= SL->getElementOffset(FieldIdx); 3469 3470 return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset, 3471 SourceTy, SourceOffset); 3472 } 3473 } 3474 3475 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 3476 llvm::Type *EltTy = ATy->getElementType(); 3477 unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy); 3478 unsigned EltOffset = IROffset/EltSize*EltSize; 3479 return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy, 3480 SourceOffset); 3481 } 3482 3483 // Okay, we don't have any better idea of what to pass, so we pass this in an 3484 // integer register that isn't too big to fit the rest of the struct. 3485 unsigned TySizeInBytes = 3486 (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity(); 3487 3488 assert(TySizeInBytes != SourceOffset && "Empty field?"); 3489 3490 // It is always safe to classify this as an integer type up to i64 that 3491 // isn't larger than the structure. 3492 return llvm::IntegerType::get(getVMContext(), 3493 std::min(TySizeInBytes-SourceOffset, 8U)*8); 3494 } 3495 3496 3497 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally 3498 /// be used as elements of a two register pair to pass or return, return a 3499 /// first class aggregate to represent them. For example, if the low part of 3500 /// a by-value argument should be passed as i32* and the high part as float, 3501 /// return {i32*, float}. 3502 static llvm::Type * 3503 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi, 3504 const llvm::DataLayout &TD) { 3505 // In order to correctly satisfy the ABI, we need to the high part to start 3506 // at offset 8. If the high and low parts we inferred are both 4-byte types 3507 // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have 3508 // the second element at offset 8. Check for this: 3509 unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo); 3510 unsigned HiAlign = TD.getABITypeAlignment(Hi); 3511 unsigned HiStart = llvm::alignTo(LoSize, HiAlign); 3512 assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!"); 3513 3514 // To handle this, we have to increase the size of the low part so that the 3515 // second element will start at an 8 byte offset. We can't increase the size 3516 // of the second element because it might make us access off the end of the 3517 // struct. 3518 if (HiStart != 8) { 3519 // There are usually two sorts of types the ABI generation code can produce 3520 // for the low part of a pair that aren't 8 bytes in size: float or 3521 // i8/i16/i32. This can also include pointers when they are 32-bit (X32 and 3522 // NaCl). 3523 // Promote these to a larger type. 3524 if (Lo->isFloatTy()) 3525 Lo = llvm::Type::getDoubleTy(Lo->getContext()); 3526 else { 3527 assert((Lo->isIntegerTy() || Lo->isPointerTy()) 3528 && "Invalid/unknown lo type"); 3529 Lo = llvm::Type::getInt64Ty(Lo->getContext()); 3530 } 3531 } 3532 3533 llvm::StructType *Result = llvm::StructType::get(Lo, Hi); 3534 3535 // Verify that the second element is at an 8-byte offset. 3536 assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 && 3537 "Invalid x86-64 argument pair!"); 3538 return Result; 3539 } 3540 3541 ABIArgInfo X86_64ABIInfo:: 3542 classifyReturnType(QualType RetTy) const { 3543 // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the 3544 // classification algorithm. 3545 X86_64ABIInfo::Class Lo, Hi; 3546 classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true); 3547 3548 // Check some invariants. 3549 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3550 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3551 3552 llvm::Type *ResType = nullptr; 3553 switch (Lo) { 3554 case NoClass: 3555 if (Hi == NoClass) 3556 return ABIArgInfo::getIgnore(); 3557 // If the low part is just padding, it takes no register, leave ResType 3558 // null. 3559 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3560 "Unknown missing lo part"); 3561 break; 3562 3563 case SSEUp: 3564 case X87Up: 3565 llvm_unreachable("Invalid classification for lo word."); 3566 3567 // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via 3568 // hidden argument. 3569 case Memory: 3570 return getIndirectReturnResult(RetTy); 3571 3572 // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next 3573 // available register of the sequence %rax, %rdx is used. 3574 case Integer: 3575 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3576 3577 // If we have a sign or zero extended integer, make sure to return Extend 3578 // so that the parameter gets the right LLVM IR attributes. 3579 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3580 // Treat an enum type as its underlying type. 3581 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 3582 RetTy = EnumTy->getDecl()->getIntegerType(); 3583 3584 if (RetTy->isIntegralOrEnumerationType() && 3585 isPromotableIntegerTypeForABI(RetTy)) 3586 return ABIArgInfo::getExtend(RetTy); 3587 } 3588 break; 3589 3590 // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next 3591 // available SSE register of the sequence %xmm0, %xmm1 is used. 3592 case SSE: 3593 ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3594 break; 3595 3596 // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is 3597 // returned on the X87 stack in %st0 as 80-bit x87 number. 3598 case X87: 3599 ResType = llvm::Type::getX86_FP80Ty(getVMContext()); 3600 break; 3601 3602 // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real 3603 // part of the value is returned in %st0 and the imaginary part in 3604 // %st1. 3605 case ComplexX87: 3606 assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification."); 3607 ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()), 3608 llvm::Type::getX86_FP80Ty(getVMContext())); 3609 break; 3610 } 3611 3612 llvm::Type *HighPart = nullptr; 3613 switch (Hi) { 3614 // Memory was handled previously and X87 should 3615 // never occur as a hi class. 3616 case Memory: 3617 case X87: 3618 llvm_unreachable("Invalid classification for hi word."); 3619 3620 case ComplexX87: // Previously handled. 3621 case NoClass: 3622 break; 3623 3624 case Integer: 3625 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3626 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3627 return ABIArgInfo::getDirect(HighPart, 8); 3628 break; 3629 case SSE: 3630 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3631 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3632 return ABIArgInfo::getDirect(HighPart, 8); 3633 break; 3634 3635 // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte 3636 // is passed in the next available eightbyte chunk if the last used 3637 // vector register. 3638 // 3639 // SSEUP should always be preceded by SSE, just widen. 3640 case SSEUp: 3641 assert(Lo == SSE && "Unexpected SSEUp classification."); 3642 ResType = GetByteVectorType(RetTy); 3643 break; 3644 3645 // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is 3646 // returned together with the previous X87 value in %st0. 3647 case X87Up: 3648 // If X87Up is preceded by X87, we don't need to do 3649 // anything. However, in some cases with unions it may not be 3650 // preceded by X87. In such situations we follow gcc and pass the 3651 // extra bits in an SSE reg. 3652 if (Lo != X87) { 3653 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3654 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3655 return ABIArgInfo::getDirect(HighPart, 8); 3656 } 3657 break; 3658 } 3659 3660 // If a high part was specified, merge it together with the low part. It is 3661 // known to pass in the high eightbyte of the result. We do this by forming a 3662 // first class struct aggregate with the high and low part: {low, high} 3663 if (HighPart) 3664 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3665 3666 return ABIArgInfo::getDirect(ResType); 3667 } 3668 3669 ABIArgInfo X86_64ABIInfo::classifyArgumentType( 3670 QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE, 3671 bool isNamedArg) 3672 const 3673 { 3674 Ty = useFirstFieldIfTransparentUnion(Ty); 3675 3676 X86_64ABIInfo::Class Lo, Hi; 3677 classify(Ty, 0, Lo, Hi, isNamedArg); 3678 3679 // Check some invariants. 3680 // FIXME: Enforce these by construction. 3681 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3682 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3683 3684 neededInt = 0; 3685 neededSSE = 0; 3686 llvm::Type *ResType = nullptr; 3687 switch (Lo) { 3688 case NoClass: 3689 if (Hi == NoClass) 3690 return ABIArgInfo::getIgnore(); 3691 // If the low part is just padding, it takes no register, leave ResType 3692 // null. 3693 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3694 "Unknown missing lo part"); 3695 break; 3696 3697 // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument 3698 // on the stack. 3699 case Memory: 3700 3701 // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or 3702 // COMPLEX_X87, it is passed in memory. 3703 case X87: 3704 case ComplexX87: 3705 if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect) 3706 ++neededInt; 3707 return getIndirectResult(Ty, freeIntRegs); 3708 3709 case SSEUp: 3710 case X87Up: 3711 llvm_unreachable("Invalid classification for lo word."); 3712 3713 // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next 3714 // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8 3715 // and %r9 is used. 3716 case Integer: 3717 ++neededInt; 3718 3719 // Pick an 8-byte type based on the preferred type. 3720 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0); 3721 3722 // If we have a sign or zero extended integer, make sure to return Extend 3723 // so that the parameter gets the right LLVM IR attributes. 3724 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3725 // Treat an enum type as its underlying type. 3726 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3727 Ty = EnumTy->getDecl()->getIntegerType(); 3728 3729 if (Ty->isIntegralOrEnumerationType() && 3730 isPromotableIntegerTypeForABI(Ty)) 3731 return ABIArgInfo::getExtend(Ty); 3732 } 3733 3734 break; 3735 3736 // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next 3737 // available SSE register is used, the registers are taken in the 3738 // order from %xmm0 to %xmm7. 3739 case SSE: { 3740 llvm::Type *IRType = CGT.ConvertType(Ty); 3741 ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0); 3742 ++neededSSE; 3743 break; 3744 } 3745 } 3746 3747 llvm::Type *HighPart = nullptr; 3748 switch (Hi) { 3749 // Memory was handled previously, ComplexX87 and X87 should 3750 // never occur as hi classes, and X87Up must be preceded by X87, 3751 // which is passed in memory. 3752 case Memory: 3753 case X87: 3754 case ComplexX87: 3755 llvm_unreachable("Invalid classification for hi word."); 3756 3757 case NoClass: break; 3758 3759 case Integer: 3760 ++neededInt; 3761 // Pick an 8-byte type based on the preferred type. 3762 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3763 3764 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3765 return ABIArgInfo::getDirect(HighPart, 8); 3766 break; 3767 3768 // X87Up generally doesn't occur here (long double is passed in 3769 // memory), except in situations involving unions. 3770 case X87Up: 3771 case SSE: 3772 HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3773 3774 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3775 return ABIArgInfo::getDirect(HighPart, 8); 3776 3777 ++neededSSE; 3778 break; 3779 3780 // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the 3781 // eightbyte is passed in the upper half of the last used SSE 3782 // register. This only happens when 128-bit vectors are passed. 3783 case SSEUp: 3784 assert(Lo == SSE && "Unexpected SSEUp classification"); 3785 ResType = GetByteVectorType(Ty); 3786 break; 3787 } 3788 3789 // If a high part was specified, merge it together with the low part. It is 3790 // known to pass in the high eightbyte of the result. We do this by forming a 3791 // first class struct aggregate with the high and low part: {low, high} 3792 if (HighPart) 3793 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3794 3795 return ABIArgInfo::getDirect(ResType); 3796 } 3797 3798 ABIArgInfo 3799 X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 3800 unsigned &NeededSSE) const { 3801 auto RT = Ty->getAs<RecordType>(); 3802 assert(RT && "classifyRegCallStructType only valid with struct types"); 3803 3804 if (RT->getDecl()->hasFlexibleArrayMember()) 3805 return getIndirectReturnResult(Ty); 3806 3807 // Sum up bases 3808 if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 3809 if (CXXRD->isDynamicClass()) { 3810 NeededInt = NeededSSE = 0; 3811 return getIndirectReturnResult(Ty); 3812 } 3813 3814 for (const auto &I : CXXRD->bases()) 3815 if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE) 3816 .isIndirect()) { 3817 NeededInt = NeededSSE = 0; 3818 return getIndirectReturnResult(Ty); 3819 } 3820 } 3821 3822 // Sum up members 3823 for (const auto *FD : RT->getDecl()->fields()) { 3824 if (FD->getType()->isRecordType() && !FD->getType()->isUnionType()) { 3825 if (classifyRegCallStructTypeImpl(FD->getType(), NeededInt, NeededSSE) 3826 .isIndirect()) { 3827 NeededInt = NeededSSE = 0; 3828 return getIndirectReturnResult(Ty); 3829 } 3830 } else { 3831 unsigned LocalNeededInt, LocalNeededSSE; 3832 if (classifyArgumentType(FD->getType(), UINT_MAX, LocalNeededInt, 3833 LocalNeededSSE, true) 3834 .isIndirect()) { 3835 NeededInt = NeededSSE = 0; 3836 return getIndirectReturnResult(Ty); 3837 } 3838 NeededInt += LocalNeededInt; 3839 NeededSSE += LocalNeededSSE; 3840 } 3841 } 3842 3843 return ABIArgInfo::getDirect(); 3844 } 3845 3846 ABIArgInfo X86_64ABIInfo::classifyRegCallStructType(QualType Ty, 3847 unsigned &NeededInt, 3848 unsigned &NeededSSE) const { 3849 3850 NeededInt = 0; 3851 NeededSSE = 0; 3852 3853 return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE); 3854 } 3855 3856 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 3857 3858 const unsigned CallingConv = FI.getCallingConvention(); 3859 // It is possible to force Win64 calling convention on any x86_64 target by 3860 // using __attribute__((ms_abi)). In such case to correctly emit Win64 3861 // compatible code delegate this call to WinX86_64ABIInfo::computeInfo. 3862 if (CallingConv == llvm::CallingConv::Win64) { 3863 WinX86_64ABIInfo Win64ABIInfo(CGT, AVXLevel); 3864 Win64ABIInfo.computeInfo(FI); 3865 return; 3866 } 3867 3868 bool IsRegCall = CallingConv == llvm::CallingConv::X86_RegCall; 3869 3870 // Keep track of the number of assigned registers. 3871 unsigned FreeIntRegs = IsRegCall ? 11 : 6; 3872 unsigned FreeSSERegs = IsRegCall ? 16 : 8; 3873 unsigned NeededInt, NeededSSE; 3874 3875 if (!::classifyReturnType(getCXXABI(), FI, *this)) { 3876 if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() && 3877 !FI.getReturnType()->getTypePtr()->isUnionType()) { 3878 FI.getReturnInfo() = 3879 classifyRegCallStructType(FI.getReturnType(), NeededInt, NeededSSE); 3880 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 3881 FreeIntRegs -= NeededInt; 3882 FreeSSERegs -= NeededSSE; 3883 } else { 3884 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 3885 } 3886 } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>() && 3887 getContext().getCanonicalType(FI.getReturnType() 3888 ->getAs<ComplexType>() 3889 ->getElementType()) == 3890 getContext().LongDoubleTy) 3891 // Complex Long Double Type is passed in Memory when Regcall 3892 // calling convention is used. 3893 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 3894 else 3895 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 3896 } 3897 3898 // If the return value is indirect, then the hidden argument is consuming one 3899 // integer register. 3900 if (FI.getReturnInfo().isIndirect()) 3901 --FreeIntRegs; 3902 3903 // The chain argument effectively gives us another free register. 3904 if (FI.isChainCall()) 3905 ++FreeIntRegs; 3906 3907 unsigned NumRequiredArgs = FI.getNumRequiredArgs(); 3908 // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers 3909 // get assigned (in left-to-right order) for passing as follows... 3910 unsigned ArgNo = 0; 3911 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 3912 it != ie; ++it, ++ArgNo) { 3913 bool IsNamedArg = ArgNo < NumRequiredArgs; 3914 3915 if (IsRegCall && it->type->isStructureOrClassType()) 3916 it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE); 3917 else 3918 it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt, 3919 NeededSSE, IsNamedArg); 3920 3921 // AMD64-ABI 3.2.3p3: If there are no registers available for any 3922 // eightbyte of an argument, the whole argument is passed on the 3923 // stack. If registers have already been assigned for some 3924 // eightbytes of such an argument, the assignments get reverted. 3925 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 3926 FreeIntRegs -= NeededInt; 3927 FreeSSERegs -= NeededSSE; 3928 } else { 3929 it->info = getIndirectResult(it->type, FreeIntRegs); 3930 } 3931 } 3932 } 3933 3934 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF, 3935 Address VAListAddr, QualType Ty) { 3936 Address overflow_arg_area_p = 3937 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p"); 3938 llvm::Value *overflow_arg_area = 3939 CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area"); 3940 3941 // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16 3942 // byte boundary if alignment needed by type exceeds 8 byte boundary. 3943 // It isn't stated explicitly in the standard, but in practice we use 3944 // alignment greater than 16 where necessary. 3945 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 3946 if (Align > CharUnits::fromQuantity(8)) { 3947 overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area, 3948 Align); 3949 } 3950 3951 // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area. 3952 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 3953 llvm::Value *Res = 3954 CGF.Builder.CreateBitCast(overflow_arg_area, 3955 llvm::PointerType::getUnqual(LTy)); 3956 3957 // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to: 3958 // l->overflow_arg_area + sizeof(type). 3959 // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to 3960 // an 8 byte boundary. 3961 3962 uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8; 3963 llvm::Value *Offset = 3964 llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7); 3965 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset, 3966 "overflow_arg_area.next"); 3967 CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p); 3968 3969 // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type. 3970 return Address(Res, Align); 3971 } 3972 3973 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 3974 QualType Ty) const { 3975 // Assume that va_list type is correct; should be pointer to LLVM type: 3976 // struct { 3977 // i32 gp_offset; 3978 // i32 fp_offset; 3979 // i8* overflow_arg_area; 3980 // i8* reg_save_area; 3981 // }; 3982 unsigned neededInt, neededSSE; 3983 3984 Ty = getContext().getCanonicalType(Ty); 3985 ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE, 3986 /*isNamedArg*/false); 3987 3988 // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed 3989 // in the registers. If not go to step 7. 3990 if (!neededInt && !neededSSE) 3991 return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 3992 3993 // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of 3994 // general purpose registers needed to pass type and num_fp to hold 3995 // the number of floating point registers needed. 3996 3997 // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into 3998 // registers. In the case: l->gp_offset > 48 - num_gp * 8 or 3999 // l->fp_offset > 304 - num_fp * 16 go to step 7. 4000 // 4001 // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of 4002 // register save space). 4003 4004 llvm::Value *InRegs = nullptr; 4005 Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid(); 4006 llvm::Value *gp_offset = nullptr, *fp_offset = nullptr; 4007 if (neededInt) { 4008 gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p"); 4009 gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset"); 4010 InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8); 4011 InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp"); 4012 } 4013 4014 if (neededSSE) { 4015 fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p"); 4016 fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset"); 4017 llvm::Value *FitsInFP = 4018 llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16); 4019 FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp"); 4020 InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP; 4021 } 4022 4023 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 4024 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 4025 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 4026 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 4027 4028 // Emit code to load the value if it was passed in registers. 4029 4030 CGF.EmitBlock(InRegBlock); 4031 4032 // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with 4033 // an offset of l->gp_offset and/or l->fp_offset. This may require 4034 // copying to a temporary location in case the parameter is passed 4035 // in different register classes or requires an alignment greater 4036 // than 8 for general purpose registers and 16 for XMM registers. 4037 // 4038 // FIXME: This really results in shameful code when we end up needing to 4039 // collect arguments from different places; often what should result in a 4040 // simple assembling of a structure from scattered addresses has many more 4041 // loads than necessary. Can we clean this up? 4042 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 4043 llvm::Value *RegSaveArea = CGF.Builder.CreateLoad( 4044 CGF.Builder.CreateStructGEP(VAListAddr, 3), "reg_save_area"); 4045 4046 Address RegAddr = Address::invalid(); 4047 if (neededInt && neededSSE) { 4048 // FIXME: Cleanup. 4049 assert(AI.isDirect() && "Unexpected ABI info for mixed regs"); 4050 llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType()); 4051 Address Tmp = CGF.CreateMemTemp(Ty); 4052 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 4053 assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs"); 4054 llvm::Type *TyLo = ST->getElementType(0); 4055 llvm::Type *TyHi = ST->getElementType(1); 4056 assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) && 4057 "Unexpected ABI info for mixed regs"); 4058 llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo); 4059 llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi); 4060 llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegSaveArea, gp_offset); 4061 llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegSaveArea, fp_offset); 4062 llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr; 4063 llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr; 4064 4065 // Copy the first element. 4066 // FIXME: Our choice of alignment here and below is probably pessimistic. 4067 llvm::Value *V = CGF.Builder.CreateAlignedLoad( 4068 TyLo, CGF.Builder.CreateBitCast(RegLoAddr, PTyLo), 4069 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyLo))); 4070 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 4071 4072 // Copy the second element. 4073 V = CGF.Builder.CreateAlignedLoad( 4074 TyHi, CGF.Builder.CreateBitCast(RegHiAddr, PTyHi), 4075 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyHi))); 4076 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 4077 4078 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 4079 } else if (neededInt) { 4080 RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, gp_offset), 4081 CharUnits::fromQuantity(8)); 4082 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 4083 4084 // Copy to a temporary if necessary to ensure the appropriate alignment. 4085 auto TInfo = getContext().getTypeInfoInChars(Ty); 4086 uint64_t TySize = TInfo.Width.getQuantity(); 4087 CharUnits TyAlign = TInfo.Align; 4088 4089 // Copy into a temporary if the type is more aligned than the 4090 // register save area. 4091 if (TyAlign.getQuantity() > 8) { 4092 Address Tmp = CGF.CreateMemTemp(Ty); 4093 CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false); 4094 RegAddr = Tmp; 4095 } 4096 4097 } else if (neededSSE == 1) { 4098 RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset), 4099 CharUnits::fromQuantity(16)); 4100 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 4101 } else { 4102 assert(neededSSE == 2 && "Invalid number of needed registers!"); 4103 // SSE registers are spaced 16 bytes apart in the register save 4104 // area, we need to collect the two eightbytes together. 4105 // The ABI isn't explicit about this, but it seems reasonable 4106 // to assume that the slots are 16-byte aligned, since the stack is 4107 // naturally 16-byte aligned and the prologue is expected to store 4108 // all the SSE registers to the RSA. 4109 Address RegAddrLo = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset), 4110 CharUnits::fromQuantity(16)); 4111 Address RegAddrHi = 4112 CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo, 4113 CharUnits::fromQuantity(16)); 4114 llvm::Type *ST = AI.canHaveCoerceToType() 4115 ? AI.getCoerceToType() 4116 : llvm::StructType::get(CGF.DoubleTy, CGF.DoubleTy); 4117 llvm::Value *V; 4118 Address Tmp = CGF.CreateMemTemp(Ty); 4119 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 4120 V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast( 4121 RegAddrLo, ST->getStructElementType(0))); 4122 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 4123 V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast( 4124 RegAddrHi, ST->getStructElementType(1))); 4125 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 4126 4127 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 4128 } 4129 4130 // AMD64-ABI 3.5.7p5: Step 5. Set: 4131 // l->gp_offset = l->gp_offset + num_gp * 8 4132 // l->fp_offset = l->fp_offset + num_fp * 16. 4133 if (neededInt) { 4134 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8); 4135 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset), 4136 gp_offset_p); 4137 } 4138 if (neededSSE) { 4139 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16); 4140 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset), 4141 fp_offset_p); 4142 } 4143 CGF.EmitBranch(ContBlock); 4144 4145 // Emit code to load the value if it was passed in memory. 4146 4147 CGF.EmitBlock(InMemBlock); 4148 Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 4149 4150 // Return the appropriate result. 4151 4152 CGF.EmitBlock(ContBlock); 4153 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock, 4154 "vaarg.addr"); 4155 return ResAddr; 4156 } 4157 4158 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 4159 QualType Ty) const { 4160 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 4161 CGF.getContext().getTypeInfoInChars(Ty), 4162 CharUnits::fromQuantity(8), 4163 /*allowHigherAlign*/ false); 4164 } 4165 4166 ABIArgInfo 4167 WinX86_64ABIInfo::reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs, 4168 const ABIArgInfo ¤t) const { 4169 // Assumes vectorCall calling convention. 4170 const Type *Base = nullptr; 4171 uint64_t NumElts = 0; 4172 4173 if (!Ty->isBuiltinType() && !Ty->isVectorType() && 4174 isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) { 4175 FreeSSERegs -= NumElts; 4176 return getDirectX86Hva(); 4177 } 4178 return current; 4179 } 4180 4181 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs, 4182 bool IsReturnType, bool IsVectorCall, 4183 bool IsRegCall) const { 4184 4185 if (Ty->isVoidType()) 4186 return ABIArgInfo::getIgnore(); 4187 4188 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4189 Ty = EnumTy->getDecl()->getIntegerType(); 4190 4191 TypeInfo Info = getContext().getTypeInfo(Ty); 4192 uint64_t Width = Info.Width; 4193 CharUnits Align = getContext().toCharUnitsFromBits(Info.Align); 4194 4195 const RecordType *RT = Ty->getAs<RecordType>(); 4196 if (RT) { 4197 if (!IsReturnType) { 4198 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI())) 4199 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 4200 } 4201 4202 if (RT->getDecl()->hasFlexibleArrayMember()) 4203 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4204 4205 } 4206 4207 const Type *Base = nullptr; 4208 uint64_t NumElts = 0; 4209 // vectorcall adds the concept of a homogenous vector aggregate, similar to 4210 // other targets. 4211 if ((IsVectorCall || IsRegCall) && 4212 isHomogeneousAggregate(Ty, Base, NumElts)) { 4213 if (IsRegCall) { 4214 if (FreeSSERegs >= NumElts) { 4215 FreeSSERegs -= NumElts; 4216 if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType()) 4217 return ABIArgInfo::getDirect(); 4218 return ABIArgInfo::getExpand(); 4219 } 4220 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4221 } else if (IsVectorCall) { 4222 if (FreeSSERegs >= NumElts && 4223 (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) { 4224 FreeSSERegs -= NumElts; 4225 return ABIArgInfo::getDirect(); 4226 } else if (IsReturnType) { 4227 return ABIArgInfo::getExpand(); 4228 } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) { 4229 // HVAs are delayed and reclassified in the 2nd step. 4230 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4231 } 4232 } 4233 } 4234 4235 if (Ty->isMemberPointerType()) { 4236 // If the member pointer is represented by an LLVM int or ptr, pass it 4237 // directly. 4238 llvm::Type *LLTy = CGT.ConvertType(Ty); 4239 if (LLTy->isPointerTy() || LLTy->isIntegerTy()) 4240 return ABIArgInfo::getDirect(); 4241 } 4242 4243 if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) { 4244 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4245 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4246 if (Width > 64 || !llvm::isPowerOf2_64(Width)) 4247 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4248 4249 // Otherwise, coerce it to a small integer. 4250 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width)); 4251 } 4252 4253 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 4254 switch (BT->getKind()) { 4255 case BuiltinType::Bool: 4256 // Bool type is always extended to the ABI, other builtin types are not 4257 // extended. 4258 return ABIArgInfo::getExtend(Ty); 4259 4260 case BuiltinType::LongDouble: 4261 // Mingw64 GCC uses the old 80 bit extended precision floating point 4262 // unit. It passes them indirectly through memory. 4263 if (IsMingw64) { 4264 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 4265 if (LDF == &llvm::APFloat::x87DoubleExtended()) 4266 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4267 } 4268 break; 4269 4270 case BuiltinType::Int128: 4271 case BuiltinType::UInt128: 4272 // If it's a parameter type, the normal ABI rule is that arguments larger 4273 // than 8 bytes are passed indirectly. GCC follows it. We follow it too, 4274 // even though it isn't particularly efficient. 4275 if (!IsReturnType) 4276 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4277 4278 // Mingw64 GCC returns i128 in XMM0. Coerce to v2i64 to handle that. 4279 // Clang matches them for compatibility. 4280 return ABIArgInfo::getDirect(llvm::FixedVectorType::get( 4281 llvm::Type::getInt64Ty(getVMContext()), 2)); 4282 4283 default: 4284 break; 4285 } 4286 } 4287 4288 if (Ty->isExtIntType()) { 4289 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4290 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4291 // However, non-power-of-two _ExtInts will be passed as 1,2,4 or 8 bytes 4292 // anyway as long is it fits in them, so we don't have to check the power of 4293 // 2. 4294 if (Width <= 64) 4295 return ABIArgInfo::getDirect(); 4296 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4297 } 4298 4299 return ABIArgInfo::getDirect(); 4300 } 4301 4302 void WinX86_64ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI, 4303 unsigned FreeSSERegs, 4304 bool IsVectorCall, 4305 bool IsRegCall) const { 4306 unsigned Count = 0; 4307 for (auto &I : FI.arguments()) { 4308 // Vectorcall in x64 only permits the first 6 arguments to be passed 4309 // as XMM/YMM registers. 4310 if (Count < VectorcallMaxParamNumAsReg) 4311 I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall); 4312 else { 4313 // Since these cannot be passed in registers, pretend no registers 4314 // are left. 4315 unsigned ZeroSSERegsAvail = 0; 4316 I.info = classify(I.type, /*FreeSSERegs=*/ZeroSSERegsAvail, false, 4317 IsVectorCall, IsRegCall); 4318 } 4319 ++Count; 4320 } 4321 4322 for (auto &I : FI.arguments()) { 4323 I.info = reclassifyHvaArgType(I.type, FreeSSERegs, I.info); 4324 } 4325 } 4326 4327 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 4328 const unsigned CC = FI.getCallingConvention(); 4329 bool IsVectorCall = CC == llvm::CallingConv::X86_VectorCall; 4330 bool IsRegCall = CC == llvm::CallingConv::X86_RegCall; 4331 4332 // If __attribute__((sysv_abi)) is in use, use the SysV argument 4333 // classification rules. 4334 if (CC == llvm::CallingConv::X86_64_SysV) { 4335 X86_64ABIInfo SysVABIInfo(CGT, AVXLevel); 4336 SysVABIInfo.computeInfo(FI); 4337 return; 4338 } 4339 4340 unsigned FreeSSERegs = 0; 4341 if (IsVectorCall) { 4342 // We can use up to 4 SSE return registers with vectorcall. 4343 FreeSSERegs = 4; 4344 } else if (IsRegCall) { 4345 // RegCall gives us 16 SSE registers. 4346 FreeSSERegs = 16; 4347 } 4348 4349 if (!getCXXABI().classifyReturnType(FI)) 4350 FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true, 4351 IsVectorCall, IsRegCall); 4352 4353 if (IsVectorCall) { 4354 // We can use up to 6 SSE register parameters with vectorcall. 4355 FreeSSERegs = 6; 4356 } else if (IsRegCall) { 4357 // RegCall gives us 16 SSE registers, we can reuse the return registers. 4358 FreeSSERegs = 16; 4359 } 4360 4361 if (IsVectorCall) { 4362 computeVectorCallArgs(FI, FreeSSERegs, IsVectorCall, IsRegCall); 4363 } else { 4364 for (auto &I : FI.arguments()) 4365 I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall); 4366 } 4367 4368 } 4369 4370 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4371 QualType Ty) const { 4372 4373 bool IsIndirect = false; 4374 4375 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4376 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4377 if (isAggregateTypeForABI(Ty) || Ty->isMemberPointerType()) { 4378 uint64_t Width = getContext().getTypeSize(Ty); 4379 IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width); 4380 } 4381 4382 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 4383 CGF.getContext().getTypeInfoInChars(Ty), 4384 CharUnits::fromQuantity(8), 4385 /*allowHigherAlign*/ false); 4386 } 4387 4388 static bool PPC_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4389 llvm::Value *Address, bool Is64Bit, 4390 bool IsAIX) { 4391 // This is calculated from the LLVM and GCC tables and verified 4392 // against gcc output. AFAIK all PPC ABIs use the same encoding. 4393 4394 CodeGen::CGBuilderTy &Builder = CGF.Builder; 4395 4396 llvm::IntegerType *i8 = CGF.Int8Ty; 4397 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 4398 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 4399 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 4400 4401 // 0-31: r0-31, the 4-byte or 8-byte general-purpose registers 4402 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 0, 31); 4403 4404 // 32-63: fp0-31, the 8-byte floating-point registers 4405 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 4406 4407 // 64-67 are various 4-byte or 8-byte special-purpose registers: 4408 // 64: mq 4409 // 65: lr 4410 // 66: ctr 4411 // 67: ap 4412 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 64, 67); 4413 4414 // 68-76 are various 4-byte special-purpose registers: 4415 // 68-75 cr0-7 4416 // 76: xer 4417 AssignToArrayRange(Builder, Address, Four8, 68, 76); 4418 4419 // 77-108: v0-31, the 16-byte vector registers 4420 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 4421 4422 // 109: vrsave 4423 // 110: vscr 4424 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 109, 110); 4425 4426 // AIX does not utilize the rest of the registers. 4427 if (IsAIX) 4428 return false; 4429 4430 // 111: spe_acc 4431 // 112: spefscr 4432 // 113: sfp 4433 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 111, 113); 4434 4435 if (!Is64Bit) 4436 return false; 4437 4438 // TODO: Need to verify if these registers are used on 64 bit AIX with Power8 4439 // or above CPU. 4440 // 64-bit only registers: 4441 // 114: tfhar 4442 // 115: tfiar 4443 // 116: texasr 4444 AssignToArrayRange(Builder, Address, Eight8, 114, 116); 4445 4446 return false; 4447 } 4448 4449 // AIX 4450 namespace { 4451 /// AIXABIInfo - The AIX XCOFF ABI information. 4452 class AIXABIInfo : public ABIInfo { 4453 const bool Is64Bit; 4454 const unsigned PtrByteSize; 4455 CharUnits getParamTypeAlignment(QualType Ty) const; 4456 4457 public: 4458 AIXABIInfo(CodeGen::CodeGenTypes &CGT, bool Is64Bit) 4459 : ABIInfo(CGT), Is64Bit(Is64Bit), PtrByteSize(Is64Bit ? 8 : 4) {} 4460 4461 bool isPromotableTypeForABI(QualType Ty) const; 4462 4463 ABIArgInfo classifyReturnType(QualType RetTy) const; 4464 ABIArgInfo classifyArgumentType(QualType Ty) const; 4465 4466 void computeInfo(CGFunctionInfo &FI) const override { 4467 if (!getCXXABI().classifyReturnType(FI)) 4468 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4469 4470 for (auto &I : FI.arguments()) 4471 I.info = classifyArgumentType(I.type); 4472 } 4473 4474 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4475 QualType Ty) const override; 4476 }; 4477 4478 class AIXTargetCodeGenInfo : public TargetCodeGenInfo { 4479 const bool Is64Bit; 4480 4481 public: 4482 AIXTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool Is64Bit) 4483 : TargetCodeGenInfo(std::make_unique<AIXABIInfo>(CGT, Is64Bit)), 4484 Is64Bit(Is64Bit) {} 4485 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4486 return 1; // r1 is the dedicated stack pointer 4487 } 4488 4489 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4490 llvm::Value *Address) const override; 4491 }; 4492 } // namespace 4493 4494 // Return true if the ABI requires Ty to be passed sign- or zero- 4495 // extended to 32/64 bits. 4496 bool AIXABIInfo::isPromotableTypeForABI(QualType Ty) const { 4497 // Treat an enum type as its underlying type. 4498 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4499 Ty = EnumTy->getDecl()->getIntegerType(); 4500 4501 // Promotable integer types are required to be promoted by the ABI. 4502 if (Ty->isPromotableIntegerType()) 4503 return true; 4504 4505 if (!Is64Bit) 4506 return false; 4507 4508 // For 64 bit mode, in addition to the usual promotable integer types, we also 4509 // need to extend all 32-bit types, since the ABI requires promotion to 64 4510 // bits. 4511 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 4512 switch (BT->getKind()) { 4513 case BuiltinType::Int: 4514 case BuiltinType::UInt: 4515 return true; 4516 default: 4517 break; 4518 } 4519 4520 return false; 4521 } 4522 4523 ABIArgInfo AIXABIInfo::classifyReturnType(QualType RetTy) const { 4524 if (RetTy->isAnyComplexType()) 4525 return ABIArgInfo::getDirect(); 4526 4527 if (RetTy->isVectorType()) 4528 return ABIArgInfo::getDirect(); 4529 4530 if (RetTy->isVoidType()) 4531 return ABIArgInfo::getIgnore(); 4532 4533 if (isAggregateTypeForABI(RetTy)) 4534 return getNaturalAlignIndirect(RetTy); 4535 4536 return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 4537 : ABIArgInfo::getDirect()); 4538 } 4539 4540 ABIArgInfo AIXABIInfo::classifyArgumentType(QualType Ty) const { 4541 Ty = useFirstFieldIfTransparentUnion(Ty); 4542 4543 if (Ty->isAnyComplexType()) 4544 return ABIArgInfo::getDirect(); 4545 4546 if (Ty->isVectorType()) 4547 return ABIArgInfo::getDirect(); 4548 4549 if (isAggregateTypeForABI(Ty)) { 4550 // Records with non-trivial destructors/copy-constructors should not be 4551 // passed by value. 4552 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 4553 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 4554 4555 CharUnits CCAlign = getParamTypeAlignment(Ty); 4556 CharUnits TyAlign = getContext().getTypeAlignInChars(Ty); 4557 4558 return ABIArgInfo::getIndirect(CCAlign, /*ByVal*/ true, 4559 /*Realign*/ TyAlign > CCAlign); 4560 } 4561 4562 return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 4563 : ABIArgInfo::getDirect()); 4564 } 4565 4566 CharUnits AIXABIInfo::getParamTypeAlignment(QualType Ty) const { 4567 // Complex types are passed just like their elements. 4568 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 4569 Ty = CTy->getElementType(); 4570 4571 if (Ty->isVectorType()) 4572 return CharUnits::fromQuantity(16); 4573 4574 // If the structure contains a vector type, the alignment is 16. 4575 if (isRecordWithSIMDVectorType(getContext(), Ty)) 4576 return CharUnits::fromQuantity(16); 4577 4578 return CharUnits::fromQuantity(PtrByteSize); 4579 } 4580 4581 Address AIXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4582 QualType Ty) const { 4583 if (Ty->isAnyComplexType()) 4584 llvm::report_fatal_error("complex type is not supported on AIX yet"); 4585 4586 if (Ty->isVectorType()) 4587 llvm::report_fatal_error( 4588 "vector types are not yet supported for variadic functions on AIX"); 4589 4590 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 4591 TypeInfo.Align = getParamTypeAlignment(Ty); 4592 4593 CharUnits SlotSize = CharUnits::fromQuantity(PtrByteSize); 4594 4595 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, TypeInfo, 4596 SlotSize, /*AllowHigher*/ true); 4597 } 4598 4599 bool AIXTargetCodeGenInfo::initDwarfEHRegSizeTable( 4600 CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const { 4601 return PPC_initDwarfEHRegSizeTable(CGF, Address, Is64Bit, /*IsAIX*/ true); 4602 } 4603 4604 // PowerPC-32 4605 namespace { 4606 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information. 4607 class PPC32_SVR4_ABIInfo : public DefaultABIInfo { 4608 bool IsSoftFloatABI; 4609 bool IsRetSmallStructInRegABI; 4610 4611 CharUnits getParamTypeAlignment(QualType Ty) const; 4612 4613 public: 4614 PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI, 4615 bool RetSmallStructInRegABI) 4616 : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI), 4617 IsRetSmallStructInRegABI(RetSmallStructInRegABI) {} 4618 4619 ABIArgInfo classifyReturnType(QualType RetTy) const; 4620 4621 void computeInfo(CGFunctionInfo &FI) const override { 4622 if (!getCXXABI().classifyReturnType(FI)) 4623 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4624 for (auto &I : FI.arguments()) 4625 I.info = classifyArgumentType(I.type); 4626 } 4627 4628 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4629 QualType Ty) const override; 4630 }; 4631 4632 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo { 4633 public: 4634 PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI, 4635 bool RetSmallStructInRegABI) 4636 : TargetCodeGenInfo(std::make_unique<PPC32_SVR4_ABIInfo>( 4637 CGT, SoftFloatABI, RetSmallStructInRegABI)) {} 4638 4639 static bool isStructReturnInRegABI(const llvm::Triple &Triple, 4640 const CodeGenOptions &Opts); 4641 4642 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4643 // This is recovered from gcc output. 4644 return 1; // r1 is the dedicated stack pointer 4645 } 4646 4647 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4648 llvm::Value *Address) const override; 4649 }; 4650 } 4651 4652 CharUnits PPC32_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 4653 // Complex types are passed just like their elements. 4654 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 4655 Ty = CTy->getElementType(); 4656 4657 if (Ty->isVectorType()) 4658 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 4659 : 4); 4660 4661 // For single-element float/vector structs, we consider the whole type 4662 // to have the same alignment requirements as its single element. 4663 const Type *AlignTy = nullptr; 4664 if (const Type *EltType = isSingleElementStruct(Ty, getContext())) { 4665 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 4666 if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) || 4667 (BT && BT->isFloatingPoint())) 4668 AlignTy = EltType; 4669 } 4670 4671 if (AlignTy) 4672 return CharUnits::fromQuantity(AlignTy->isVectorType() ? 16 : 4); 4673 return CharUnits::fromQuantity(4); 4674 } 4675 4676 ABIArgInfo PPC32_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { 4677 uint64_t Size; 4678 4679 // -msvr4-struct-return puts small aggregates in GPR3 and GPR4. 4680 if (isAggregateTypeForABI(RetTy) && IsRetSmallStructInRegABI && 4681 (Size = getContext().getTypeSize(RetTy)) <= 64) { 4682 // System V ABI (1995), page 3-22, specified: 4683 // > A structure or union whose size is less than or equal to 8 bytes 4684 // > shall be returned in r3 and r4, as if it were first stored in the 4685 // > 8-byte aligned memory area and then the low addressed word were 4686 // > loaded into r3 and the high-addressed word into r4. Bits beyond 4687 // > the last member of the structure or union are not defined. 4688 // 4689 // GCC for big-endian PPC32 inserts the pad before the first member, 4690 // not "beyond the last member" of the struct. To stay compatible 4691 // with GCC, we coerce the struct to an integer of the same size. 4692 // LLVM will extend it and return i32 in r3, or i64 in r3:r4. 4693 if (Size == 0) 4694 return ABIArgInfo::getIgnore(); 4695 else { 4696 llvm::Type *CoerceTy = llvm::Type::getIntNTy(getVMContext(), Size); 4697 return ABIArgInfo::getDirect(CoerceTy); 4698 } 4699 } 4700 4701 return DefaultABIInfo::classifyReturnType(RetTy); 4702 } 4703 4704 // TODO: this implementation is now likely redundant with 4705 // DefaultABIInfo::EmitVAArg. 4706 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList, 4707 QualType Ty) const { 4708 if (getTarget().getTriple().isOSDarwin()) { 4709 auto TI = getContext().getTypeInfoInChars(Ty); 4710 TI.Align = getParamTypeAlignment(Ty); 4711 4712 CharUnits SlotSize = CharUnits::fromQuantity(4); 4713 return emitVoidPtrVAArg(CGF, VAList, Ty, 4714 classifyArgumentType(Ty).isIndirect(), TI, SlotSize, 4715 /*AllowHigherAlign=*/true); 4716 } 4717 4718 const unsigned OverflowLimit = 8; 4719 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 4720 // TODO: Implement this. For now ignore. 4721 (void)CTy; 4722 return Address::invalid(); // FIXME? 4723 } 4724 4725 // struct __va_list_tag { 4726 // unsigned char gpr; 4727 // unsigned char fpr; 4728 // unsigned short reserved; 4729 // void *overflow_arg_area; 4730 // void *reg_save_area; 4731 // }; 4732 4733 bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64; 4734 bool isInt = 4735 Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType(); 4736 bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64; 4737 4738 // All aggregates are passed indirectly? That doesn't seem consistent 4739 // with the argument-lowering code. 4740 bool isIndirect = Ty->isAggregateType(); 4741 4742 CGBuilderTy &Builder = CGF.Builder; 4743 4744 // The calling convention either uses 1-2 GPRs or 1 FPR. 4745 Address NumRegsAddr = Address::invalid(); 4746 if (isInt || IsSoftFloatABI) { 4747 NumRegsAddr = Builder.CreateStructGEP(VAList, 0, "gpr"); 4748 } else { 4749 NumRegsAddr = Builder.CreateStructGEP(VAList, 1, "fpr"); 4750 } 4751 4752 llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs"); 4753 4754 // "Align" the register count when TY is i64. 4755 if (isI64 || (isF64 && IsSoftFloatABI)) { 4756 NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1)); 4757 NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U)); 4758 } 4759 4760 llvm::Value *CC = 4761 Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond"); 4762 4763 llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs"); 4764 llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow"); 4765 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 4766 4767 Builder.CreateCondBr(CC, UsingRegs, UsingOverflow); 4768 4769 llvm::Type *DirectTy = CGF.ConvertType(Ty); 4770 if (isIndirect) DirectTy = DirectTy->getPointerTo(0); 4771 4772 // Case 1: consume registers. 4773 Address RegAddr = Address::invalid(); 4774 { 4775 CGF.EmitBlock(UsingRegs); 4776 4777 Address RegSaveAreaPtr = Builder.CreateStructGEP(VAList, 4); 4778 RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr), 4779 CharUnits::fromQuantity(8)); 4780 assert(RegAddr.getElementType() == CGF.Int8Ty); 4781 4782 // Floating-point registers start after the general-purpose registers. 4783 if (!(isInt || IsSoftFloatABI)) { 4784 RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr, 4785 CharUnits::fromQuantity(32)); 4786 } 4787 4788 // Get the address of the saved value by scaling the number of 4789 // registers we've used by the number of 4790 CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8); 4791 llvm::Value *RegOffset = 4792 Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity())); 4793 RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty, 4794 RegAddr.getPointer(), RegOffset), 4795 RegAddr.getAlignment().alignmentOfArrayElement(RegSize)); 4796 RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy); 4797 4798 // Increase the used-register count. 4799 NumRegs = 4800 Builder.CreateAdd(NumRegs, 4801 Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1)); 4802 Builder.CreateStore(NumRegs, NumRegsAddr); 4803 4804 CGF.EmitBranch(Cont); 4805 } 4806 4807 // Case 2: consume space in the overflow area. 4808 Address MemAddr = Address::invalid(); 4809 { 4810 CGF.EmitBlock(UsingOverflow); 4811 4812 Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr); 4813 4814 // Everything in the overflow area is rounded up to a size of at least 4. 4815 CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4); 4816 4817 CharUnits Size; 4818 if (!isIndirect) { 4819 auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty); 4820 Size = TypeInfo.Width.alignTo(OverflowAreaAlign); 4821 } else { 4822 Size = CGF.getPointerSize(); 4823 } 4824 4825 Address OverflowAreaAddr = Builder.CreateStructGEP(VAList, 3); 4826 Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"), 4827 OverflowAreaAlign); 4828 // Round up address of argument to alignment 4829 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 4830 if (Align > OverflowAreaAlign) { 4831 llvm::Value *Ptr = OverflowArea.getPointer(); 4832 OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align), 4833 Align); 4834 } 4835 4836 MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy); 4837 4838 // Increase the overflow area. 4839 OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size); 4840 Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr); 4841 CGF.EmitBranch(Cont); 4842 } 4843 4844 CGF.EmitBlock(Cont); 4845 4846 // Merge the cases with a phi. 4847 Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow, 4848 "vaarg.addr"); 4849 4850 // Load the pointer if the argument was passed indirectly. 4851 if (isIndirect) { 4852 Result = Address(Builder.CreateLoad(Result, "aggr"), 4853 getContext().getTypeAlignInChars(Ty)); 4854 } 4855 4856 return Result; 4857 } 4858 4859 bool PPC32TargetCodeGenInfo::isStructReturnInRegABI( 4860 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 4861 assert(Triple.getArch() == llvm::Triple::ppc); 4862 4863 switch (Opts.getStructReturnConvention()) { 4864 case CodeGenOptions::SRCK_Default: 4865 break; 4866 case CodeGenOptions::SRCK_OnStack: // -maix-struct-return 4867 return false; 4868 case CodeGenOptions::SRCK_InRegs: // -msvr4-struct-return 4869 return true; 4870 } 4871 4872 if (Triple.isOSBinFormatELF() && !Triple.isOSLinux()) 4873 return true; 4874 4875 return false; 4876 } 4877 4878 bool 4879 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4880 llvm::Value *Address) const { 4881 return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ false, 4882 /*IsAIX*/ false); 4883 } 4884 4885 // PowerPC-64 4886 4887 namespace { 4888 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information. 4889 class PPC64_SVR4_ABIInfo : public SwiftABIInfo { 4890 public: 4891 enum ABIKind { 4892 ELFv1 = 0, 4893 ELFv2 4894 }; 4895 4896 private: 4897 static const unsigned GPRBits = 64; 4898 ABIKind Kind; 4899 bool IsSoftFloatABI; 4900 4901 public: 4902 PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, 4903 bool SoftFloatABI) 4904 : SwiftABIInfo(CGT), Kind(Kind), IsSoftFloatABI(SoftFloatABI) {} 4905 4906 bool isPromotableTypeForABI(QualType Ty) const; 4907 CharUnits getParamTypeAlignment(QualType Ty) const; 4908 4909 ABIArgInfo classifyReturnType(QualType RetTy) const; 4910 ABIArgInfo classifyArgumentType(QualType Ty) const; 4911 4912 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 4913 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 4914 uint64_t Members) const override; 4915 4916 // TODO: We can add more logic to computeInfo to improve performance. 4917 // Example: For aggregate arguments that fit in a register, we could 4918 // use getDirectInReg (as is done below for structs containing a single 4919 // floating-point value) to avoid pushing them to memory on function 4920 // entry. This would require changing the logic in PPCISelLowering 4921 // when lowering the parameters in the caller and args in the callee. 4922 void computeInfo(CGFunctionInfo &FI) const override { 4923 if (!getCXXABI().classifyReturnType(FI)) 4924 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4925 for (auto &I : FI.arguments()) { 4926 // We rely on the default argument classification for the most part. 4927 // One exception: An aggregate containing a single floating-point 4928 // or vector item must be passed in a register if one is available. 4929 const Type *T = isSingleElementStruct(I.type, getContext()); 4930 if (T) { 4931 const BuiltinType *BT = T->getAs<BuiltinType>(); 4932 if ((T->isVectorType() && getContext().getTypeSize(T) == 128) || 4933 (BT && BT->isFloatingPoint())) { 4934 QualType QT(T, 0); 4935 I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT)); 4936 continue; 4937 } 4938 } 4939 I.info = classifyArgumentType(I.type); 4940 } 4941 } 4942 4943 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4944 QualType Ty) const override; 4945 4946 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 4947 bool asReturnValue) const override { 4948 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 4949 } 4950 4951 bool isSwiftErrorInRegister() const override { 4952 return false; 4953 } 4954 }; 4955 4956 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo { 4957 4958 public: 4959 PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT, 4960 PPC64_SVR4_ABIInfo::ABIKind Kind, 4961 bool SoftFloatABI) 4962 : TargetCodeGenInfo( 4963 std::make_unique<PPC64_SVR4_ABIInfo>(CGT, Kind, SoftFloatABI)) {} 4964 4965 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4966 // This is recovered from gcc output. 4967 return 1; // r1 is the dedicated stack pointer 4968 } 4969 4970 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4971 llvm::Value *Address) const override; 4972 }; 4973 4974 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo { 4975 public: 4976 PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {} 4977 4978 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4979 // This is recovered from gcc output. 4980 return 1; // r1 is the dedicated stack pointer 4981 } 4982 4983 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4984 llvm::Value *Address) const override; 4985 }; 4986 4987 } 4988 4989 // Return true if the ABI requires Ty to be passed sign- or zero- 4990 // extended to 64 bits. 4991 bool 4992 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const { 4993 // Treat an enum type as its underlying type. 4994 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4995 Ty = EnumTy->getDecl()->getIntegerType(); 4996 4997 // Promotable integer types are required to be promoted by the ABI. 4998 if (isPromotableIntegerTypeForABI(Ty)) 4999 return true; 5000 5001 // In addition to the usual promotable integer types, we also need to 5002 // extend all 32-bit types, since the ABI requires promotion to 64 bits. 5003 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 5004 switch (BT->getKind()) { 5005 case BuiltinType::Int: 5006 case BuiltinType::UInt: 5007 return true; 5008 default: 5009 break; 5010 } 5011 5012 if (const auto *EIT = Ty->getAs<ExtIntType>()) 5013 if (EIT->getNumBits() < 64) 5014 return true; 5015 5016 return false; 5017 } 5018 5019 /// isAlignedParamType - Determine whether a type requires 16-byte or 5020 /// higher alignment in the parameter area. Always returns at least 8. 5021 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 5022 // Complex types are passed just like their elements. 5023 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 5024 Ty = CTy->getElementType(); 5025 5026 // Only vector types of size 16 bytes need alignment (larger types are 5027 // passed via reference, smaller types are not aligned). 5028 if (Ty->isVectorType()) { 5029 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8); 5030 } else if (Ty->isRealFloatingType() && 5031 &getContext().getFloatTypeSemantics(Ty) == 5032 &llvm::APFloat::IEEEquad()) { 5033 // According to ABI document section 'Optional Save Areas': If extended 5034 // precision floating-point values in IEEE BINARY 128 QUADRUPLE PRECISION 5035 // format are supported, map them to a single quadword, quadword aligned. 5036 return CharUnits::fromQuantity(16); 5037 } 5038 5039 // For single-element float/vector structs, we consider the whole type 5040 // to have the same alignment requirements as its single element. 5041 const Type *AlignAsType = nullptr; 5042 const Type *EltType = isSingleElementStruct(Ty, getContext()); 5043 if (EltType) { 5044 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 5045 if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) || 5046 (BT && BT->isFloatingPoint())) 5047 AlignAsType = EltType; 5048 } 5049 5050 // Likewise for ELFv2 homogeneous aggregates. 5051 const Type *Base = nullptr; 5052 uint64_t Members = 0; 5053 if (!AlignAsType && Kind == ELFv2 && 5054 isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members)) 5055 AlignAsType = Base; 5056 5057 // With special case aggregates, only vector base types need alignment. 5058 if (AlignAsType) { 5059 return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8); 5060 } 5061 5062 // Otherwise, we only need alignment for any aggregate type that 5063 // has an alignment requirement of >= 16 bytes. 5064 if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) { 5065 return CharUnits::fromQuantity(16); 5066 } 5067 5068 return CharUnits::fromQuantity(8); 5069 } 5070 5071 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous 5072 /// aggregate. Base is set to the base element type, and Members is set 5073 /// to the number of base elements. 5074 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base, 5075 uint64_t &Members) const { 5076 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 5077 uint64_t NElements = AT->getSize().getZExtValue(); 5078 if (NElements == 0) 5079 return false; 5080 if (!isHomogeneousAggregate(AT->getElementType(), Base, Members)) 5081 return false; 5082 Members *= NElements; 5083 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 5084 const RecordDecl *RD = RT->getDecl(); 5085 if (RD->hasFlexibleArrayMember()) 5086 return false; 5087 5088 Members = 0; 5089 5090 // If this is a C++ record, check the bases first. 5091 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 5092 for (const auto &I : CXXRD->bases()) { 5093 // Ignore empty records. 5094 if (isEmptyRecord(getContext(), I.getType(), true)) 5095 continue; 5096 5097 uint64_t FldMembers; 5098 if (!isHomogeneousAggregate(I.getType(), Base, FldMembers)) 5099 return false; 5100 5101 Members += FldMembers; 5102 } 5103 } 5104 5105 for (const auto *FD : RD->fields()) { 5106 // Ignore (non-zero arrays of) empty records. 5107 QualType FT = FD->getType(); 5108 while (const ConstantArrayType *AT = 5109 getContext().getAsConstantArrayType(FT)) { 5110 if (AT->getSize().getZExtValue() == 0) 5111 return false; 5112 FT = AT->getElementType(); 5113 } 5114 if (isEmptyRecord(getContext(), FT, true)) 5115 continue; 5116 5117 // For compatibility with GCC, ignore empty bitfields in C++ mode. 5118 if (getContext().getLangOpts().CPlusPlus && 5119 FD->isZeroLengthBitField(getContext())) 5120 continue; 5121 5122 uint64_t FldMembers; 5123 if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers)) 5124 return false; 5125 5126 Members = (RD->isUnion() ? 5127 std::max(Members, FldMembers) : Members + FldMembers); 5128 } 5129 5130 if (!Base) 5131 return false; 5132 5133 // Ensure there is no padding. 5134 if (getContext().getTypeSize(Base) * Members != 5135 getContext().getTypeSize(Ty)) 5136 return false; 5137 } else { 5138 Members = 1; 5139 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 5140 Members = 2; 5141 Ty = CT->getElementType(); 5142 } 5143 5144 // Most ABIs only support float, double, and some vector type widths. 5145 if (!isHomogeneousAggregateBaseType(Ty)) 5146 return false; 5147 5148 // The base type must be the same for all members. Types that 5149 // agree in both total size and mode (float vs. vector) are 5150 // treated as being equivalent here. 5151 const Type *TyPtr = Ty.getTypePtr(); 5152 if (!Base) { 5153 Base = TyPtr; 5154 // If it's a non-power-of-2 vector, its size is already a power-of-2, 5155 // so make sure to widen it explicitly. 5156 if (const VectorType *VT = Base->getAs<VectorType>()) { 5157 QualType EltTy = VT->getElementType(); 5158 unsigned NumElements = 5159 getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy); 5160 Base = getContext() 5161 .getVectorType(EltTy, NumElements, VT->getVectorKind()) 5162 .getTypePtr(); 5163 } 5164 } 5165 5166 if (Base->isVectorType() != TyPtr->isVectorType() || 5167 getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr)) 5168 return false; 5169 } 5170 return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members); 5171 } 5172 5173 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 5174 // Homogeneous aggregates for ELFv2 must have base types of float, 5175 // double, long double, or 128-bit vectors. 5176 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 5177 if (BT->getKind() == BuiltinType::Float || 5178 BT->getKind() == BuiltinType::Double || 5179 BT->getKind() == BuiltinType::LongDouble || 5180 (getContext().getTargetInfo().hasFloat128Type() && 5181 (BT->getKind() == BuiltinType::Float128))) { 5182 if (IsSoftFloatABI) 5183 return false; 5184 return true; 5185 } 5186 } 5187 if (const VectorType *VT = Ty->getAs<VectorType>()) { 5188 if (getContext().getTypeSize(VT) == 128) 5189 return true; 5190 } 5191 return false; 5192 } 5193 5194 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough( 5195 const Type *Base, uint64_t Members) const { 5196 // Vector and fp128 types require one register, other floating point types 5197 // require one or two registers depending on their size. 5198 uint32_t NumRegs = 5199 ((getContext().getTargetInfo().hasFloat128Type() && 5200 Base->isFloat128Type()) || 5201 Base->isVectorType()) ? 1 5202 : (getContext().getTypeSize(Base) + 63) / 64; 5203 5204 // Homogeneous Aggregates may occupy at most 8 registers. 5205 return Members * NumRegs <= 8; 5206 } 5207 5208 ABIArgInfo 5209 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const { 5210 Ty = useFirstFieldIfTransparentUnion(Ty); 5211 5212 if (Ty->isAnyComplexType()) 5213 return ABIArgInfo::getDirect(); 5214 5215 // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes) 5216 // or via reference (larger than 16 bytes). 5217 if (Ty->isVectorType()) { 5218 uint64_t Size = getContext().getTypeSize(Ty); 5219 if (Size > 128) 5220 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5221 else if (Size < 128) { 5222 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 5223 return ABIArgInfo::getDirect(CoerceTy); 5224 } 5225 } 5226 5227 if (const auto *EIT = Ty->getAs<ExtIntType>()) 5228 if (EIT->getNumBits() > 128) 5229 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 5230 5231 if (isAggregateTypeForABI(Ty)) { 5232 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 5233 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 5234 5235 uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity(); 5236 uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); 5237 5238 // ELFv2 homogeneous aggregates are passed as array types. 5239 const Type *Base = nullptr; 5240 uint64_t Members = 0; 5241 if (Kind == ELFv2 && 5242 isHomogeneousAggregate(Ty, Base, Members)) { 5243 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 5244 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 5245 return ABIArgInfo::getDirect(CoerceTy); 5246 } 5247 5248 // If an aggregate may end up fully in registers, we do not 5249 // use the ByVal method, but pass the aggregate as array. 5250 // This is usually beneficial since we avoid forcing the 5251 // back-end to store the argument to memory. 5252 uint64_t Bits = getContext().getTypeSize(Ty); 5253 if (Bits > 0 && Bits <= 8 * GPRBits) { 5254 llvm::Type *CoerceTy; 5255 5256 // Types up to 8 bytes are passed as integer type (which will be 5257 // properly aligned in the argument save area doubleword). 5258 if (Bits <= GPRBits) 5259 CoerceTy = 5260 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 5261 // Larger types are passed as arrays, with the base type selected 5262 // according to the required alignment in the save area. 5263 else { 5264 uint64_t RegBits = ABIAlign * 8; 5265 uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits; 5266 llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits); 5267 CoerceTy = llvm::ArrayType::get(RegTy, NumRegs); 5268 } 5269 5270 return ABIArgInfo::getDirect(CoerceTy); 5271 } 5272 5273 // All other aggregates are passed ByVal. 5274 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 5275 /*ByVal=*/true, 5276 /*Realign=*/TyAlign > ABIAlign); 5277 } 5278 5279 return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 5280 : ABIArgInfo::getDirect()); 5281 } 5282 5283 ABIArgInfo 5284 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { 5285 if (RetTy->isVoidType()) 5286 return ABIArgInfo::getIgnore(); 5287 5288 if (RetTy->isAnyComplexType()) 5289 return ABIArgInfo::getDirect(); 5290 5291 // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes) 5292 // or via reference (larger than 16 bytes). 5293 if (RetTy->isVectorType()) { 5294 uint64_t Size = getContext().getTypeSize(RetTy); 5295 if (Size > 128) 5296 return getNaturalAlignIndirect(RetTy); 5297 else if (Size < 128) { 5298 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 5299 return ABIArgInfo::getDirect(CoerceTy); 5300 } 5301 } 5302 5303 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 5304 if (EIT->getNumBits() > 128) 5305 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 5306 5307 if (isAggregateTypeForABI(RetTy)) { 5308 // ELFv2 homogeneous aggregates are returned as array types. 5309 const Type *Base = nullptr; 5310 uint64_t Members = 0; 5311 if (Kind == ELFv2 && 5312 isHomogeneousAggregate(RetTy, Base, Members)) { 5313 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 5314 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 5315 return ABIArgInfo::getDirect(CoerceTy); 5316 } 5317 5318 // ELFv2 small aggregates are returned in up to two registers. 5319 uint64_t Bits = getContext().getTypeSize(RetTy); 5320 if (Kind == ELFv2 && Bits <= 2 * GPRBits) { 5321 if (Bits == 0) 5322 return ABIArgInfo::getIgnore(); 5323 5324 llvm::Type *CoerceTy; 5325 if (Bits > GPRBits) { 5326 CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits); 5327 CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy); 5328 } else 5329 CoerceTy = 5330 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 5331 return ABIArgInfo::getDirect(CoerceTy); 5332 } 5333 5334 // All other aggregates are returned indirectly. 5335 return getNaturalAlignIndirect(RetTy); 5336 } 5337 5338 return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 5339 : ABIArgInfo::getDirect()); 5340 } 5341 5342 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine. 5343 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5344 QualType Ty) const { 5345 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 5346 TypeInfo.Align = getParamTypeAlignment(Ty); 5347 5348 CharUnits SlotSize = CharUnits::fromQuantity(8); 5349 5350 // If we have a complex type and the base type is smaller than 8 bytes, 5351 // the ABI calls for the real and imaginary parts to be right-adjusted 5352 // in separate doublewords. However, Clang expects us to produce a 5353 // pointer to a structure with the two parts packed tightly. So generate 5354 // loads of the real and imaginary parts relative to the va_list pointer, 5355 // and store them to a temporary structure. 5356 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 5357 CharUnits EltSize = TypeInfo.Width / 2; 5358 if (EltSize < SlotSize) { 5359 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty, 5360 SlotSize * 2, SlotSize, 5361 SlotSize, /*AllowHigher*/ true); 5362 5363 Address RealAddr = Addr; 5364 Address ImagAddr = RealAddr; 5365 if (CGF.CGM.getDataLayout().isBigEndian()) { 5366 RealAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, 5367 SlotSize - EltSize); 5368 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr, 5369 2 * SlotSize - EltSize); 5370 } else { 5371 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize); 5372 } 5373 5374 llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType()); 5375 RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy); 5376 ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy); 5377 llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal"); 5378 llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag"); 5379 5380 Address Temp = CGF.CreateMemTemp(Ty, "vacplx"); 5381 CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty), 5382 /*init*/ true); 5383 return Temp; 5384 } 5385 } 5386 5387 // Otherwise, just use the general rule. 5388 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 5389 TypeInfo, SlotSize, /*AllowHigher*/ true); 5390 } 5391 5392 bool 5393 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable( 5394 CodeGen::CodeGenFunction &CGF, 5395 llvm::Value *Address) const { 5396 return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ true, 5397 /*IsAIX*/ false); 5398 } 5399 5400 bool 5401 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5402 llvm::Value *Address) const { 5403 return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ true, 5404 /*IsAIX*/ false); 5405 } 5406 5407 //===----------------------------------------------------------------------===// 5408 // AArch64 ABI Implementation 5409 //===----------------------------------------------------------------------===// 5410 5411 namespace { 5412 5413 class AArch64ABIInfo : public SwiftABIInfo { 5414 public: 5415 enum ABIKind { 5416 AAPCS = 0, 5417 DarwinPCS, 5418 Win64 5419 }; 5420 5421 private: 5422 ABIKind Kind; 5423 5424 public: 5425 AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind) 5426 : SwiftABIInfo(CGT), Kind(Kind) {} 5427 5428 private: 5429 ABIKind getABIKind() const { return Kind; } 5430 bool isDarwinPCS() const { return Kind == DarwinPCS; } 5431 5432 ABIArgInfo classifyReturnType(QualType RetTy, bool IsVariadic) const; 5433 ABIArgInfo classifyArgumentType(QualType RetTy) const; 5434 ABIArgInfo coerceIllegalVector(QualType Ty) const; 5435 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 5436 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 5437 uint64_t Members) const override; 5438 5439 bool isIllegalVectorType(QualType Ty) const; 5440 5441 void computeInfo(CGFunctionInfo &FI) const override { 5442 if (!::classifyReturnType(getCXXABI(), FI, *this)) 5443 FI.getReturnInfo() = 5444 classifyReturnType(FI.getReturnType(), FI.isVariadic()); 5445 5446 for (auto &it : FI.arguments()) 5447 it.info = classifyArgumentType(it.type); 5448 } 5449 5450 Address EmitDarwinVAArg(Address VAListAddr, QualType Ty, 5451 CodeGenFunction &CGF) const; 5452 5453 Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty, 5454 CodeGenFunction &CGF) const; 5455 5456 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5457 QualType Ty) const override { 5458 llvm::Type *BaseTy = CGF.ConvertType(Ty); 5459 if (isa<llvm::ScalableVectorType>(BaseTy)) 5460 llvm::report_fatal_error("Passing SVE types to variadic functions is " 5461 "currently not supported"); 5462 5463 return Kind == Win64 ? EmitMSVAArg(CGF, VAListAddr, Ty) 5464 : isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF) 5465 : EmitAAPCSVAArg(VAListAddr, Ty, CGF); 5466 } 5467 5468 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 5469 QualType Ty) const override; 5470 5471 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 5472 bool asReturnValue) const override { 5473 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 5474 } 5475 bool isSwiftErrorInRegister() const override { 5476 return true; 5477 } 5478 5479 bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy, 5480 unsigned elts) const override; 5481 5482 bool allowBFloatArgsAndRet() const override { 5483 return getTarget().hasBFloat16Type(); 5484 } 5485 }; 5486 5487 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo { 5488 public: 5489 AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind) 5490 : TargetCodeGenInfo(std::make_unique<AArch64ABIInfo>(CGT, Kind)) {} 5491 5492 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 5493 return "mov\tfp, fp\t\t// marker for objc_retainAutoreleaseReturnValue"; 5494 } 5495 5496 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 5497 return 31; 5498 } 5499 5500 bool doesReturnSlotInterfereWithArgs() const override { return false; } 5501 5502 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5503 CodeGen::CodeGenModule &CGM) const override { 5504 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 5505 if (!FD) 5506 return; 5507 5508 const auto *TA = FD->getAttr<TargetAttr>(); 5509 if (TA == nullptr) 5510 return; 5511 5512 ParsedTargetAttr Attr = TA->parse(); 5513 if (Attr.BranchProtection.empty()) 5514 return; 5515 5516 TargetInfo::BranchProtectionInfo BPI; 5517 StringRef Error; 5518 (void)CGM.getTarget().validateBranchProtection(Attr.BranchProtection, 5519 BPI, Error); 5520 assert(Error.empty()); 5521 5522 auto *Fn = cast<llvm::Function>(GV); 5523 static const char *SignReturnAddrStr[] = {"none", "non-leaf", "all"}; 5524 Fn->addFnAttr("sign-return-address", SignReturnAddrStr[static_cast<int>(BPI.SignReturnAddr)]); 5525 5526 if (BPI.SignReturnAddr != LangOptions::SignReturnAddressScopeKind::None) { 5527 Fn->addFnAttr("sign-return-address-key", 5528 BPI.SignKey == LangOptions::SignReturnAddressKeyKind::AKey 5529 ? "a_key" 5530 : "b_key"); 5531 } 5532 5533 Fn->addFnAttr("branch-target-enforcement", 5534 BPI.BranchTargetEnforcement ? "true" : "false"); 5535 } 5536 }; 5537 5538 class WindowsAArch64TargetCodeGenInfo : public AArch64TargetCodeGenInfo { 5539 public: 5540 WindowsAArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind K) 5541 : AArch64TargetCodeGenInfo(CGT, K) {} 5542 5543 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5544 CodeGen::CodeGenModule &CGM) const override; 5545 5546 void getDependentLibraryOption(llvm::StringRef Lib, 5547 llvm::SmallString<24> &Opt) const override { 5548 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); 5549 } 5550 5551 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, 5552 llvm::SmallString<32> &Opt) const override { 5553 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 5554 } 5555 }; 5556 5557 void WindowsAArch64TargetCodeGenInfo::setTargetAttributes( 5558 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 5559 AArch64TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 5560 if (GV->isDeclaration()) 5561 return; 5562 addStackProbeTargetAttributes(D, GV, CGM); 5563 } 5564 } 5565 5566 ABIArgInfo AArch64ABIInfo::coerceIllegalVector(QualType Ty) const { 5567 assert(Ty->isVectorType() && "expected vector type!"); 5568 5569 const auto *VT = Ty->castAs<VectorType>(); 5570 if (VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector) { 5571 assert(VT->getElementType()->isBuiltinType() && "expected builtin type!"); 5572 assert(VT->getElementType()->castAs<BuiltinType>()->getKind() == 5573 BuiltinType::UChar && 5574 "unexpected builtin type for SVE predicate!"); 5575 return ABIArgInfo::getDirect(llvm::ScalableVectorType::get( 5576 llvm::Type::getInt1Ty(getVMContext()), 16)); 5577 } 5578 5579 if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector) { 5580 assert(VT->getElementType()->isBuiltinType() && "expected builtin type!"); 5581 5582 const auto *BT = VT->getElementType()->castAs<BuiltinType>(); 5583 llvm::ScalableVectorType *ResType = nullptr; 5584 switch (BT->getKind()) { 5585 default: 5586 llvm_unreachable("unexpected builtin type for SVE vector!"); 5587 case BuiltinType::SChar: 5588 case BuiltinType::UChar: 5589 ResType = llvm::ScalableVectorType::get( 5590 llvm::Type::getInt8Ty(getVMContext()), 16); 5591 break; 5592 case BuiltinType::Short: 5593 case BuiltinType::UShort: 5594 ResType = llvm::ScalableVectorType::get( 5595 llvm::Type::getInt16Ty(getVMContext()), 8); 5596 break; 5597 case BuiltinType::Int: 5598 case BuiltinType::UInt: 5599 ResType = llvm::ScalableVectorType::get( 5600 llvm::Type::getInt32Ty(getVMContext()), 4); 5601 break; 5602 case BuiltinType::Long: 5603 case BuiltinType::ULong: 5604 ResType = llvm::ScalableVectorType::get( 5605 llvm::Type::getInt64Ty(getVMContext()), 2); 5606 break; 5607 case BuiltinType::Half: 5608 ResType = llvm::ScalableVectorType::get( 5609 llvm::Type::getHalfTy(getVMContext()), 8); 5610 break; 5611 case BuiltinType::Float: 5612 ResType = llvm::ScalableVectorType::get( 5613 llvm::Type::getFloatTy(getVMContext()), 4); 5614 break; 5615 case BuiltinType::Double: 5616 ResType = llvm::ScalableVectorType::get( 5617 llvm::Type::getDoubleTy(getVMContext()), 2); 5618 break; 5619 case BuiltinType::BFloat16: 5620 ResType = llvm::ScalableVectorType::get( 5621 llvm::Type::getBFloatTy(getVMContext()), 8); 5622 break; 5623 } 5624 return ABIArgInfo::getDirect(ResType); 5625 } 5626 5627 uint64_t Size = getContext().getTypeSize(Ty); 5628 // Android promotes <2 x i8> to i16, not i32 5629 if (isAndroid() && (Size <= 16)) { 5630 llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext()); 5631 return ABIArgInfo::getDirect(ResType); 5632 } 5633 if (Size <= 32) { 5634 llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext()); 5635 return ABIArgInfo::getDirect(ResType); 5636 } 5637 if (Size == 64) { 5638 auto *ResType = 5639 llvm::FixedVectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2); 5640 return ABIArgInfo::getDirect(ResType); 5641 } 5642 if (Size == 128) { 5643 auto *ResType = 5644 llvm::FixedVectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4); 5645 return ABIArgInfo::getDirect(ResType); 5646 } 5647 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5648 } 5649 5650 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const { 5651 Ty = useFirstFieldIfTransparentUnion(Ty); 5652 5653 // Handle illegal vector types here. 5654 if (isIllegalVectorType(Ty)) 5655 return coerceIllegalVector(Ty); 5656 5657 if (!isAggregateTypeForABI(Ty)) { 5658 // Treat an enum type as its underlying type. 5659 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5660 Ty = EnumTy->getDecl()->getIntegerType(); 5661 5662 if (const auto *EIT = Ty->getAs<ExtIntType>()) 5663 if (EIT->getNumBits() > 128) 5664 return getNaturalAlignIndirect(Ty); 5665 5666 return (isPromotableIntegerTypeForABI(Ty) && isDarwinPCS() 5667 ? ABIArgInfo::getExtend(Ty) 5668 : ABIArgInfo::getDirect()); 5669 } 5670 5671 // Structures with either a non-trivial destructor or a non-trivial 5672 // copy constructor are always indirect. 5673 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 5674 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 5675 CGCXXABI::RAA_DirectInMemory); 5676 } 5677 5678 // Empty records are always ignored on Darwin, but actually passed in C++ mode 5679 // elsewhere for GNU compatibility. 5680 uint64_t Size = getContext().getTypeSize(Ty); 5681 bool IsEmpty = isEmptyRecord(getContext(), Ty, true); 5682 if (IsEmpty || Size == 0) { 5683 if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS()) 5684 return ABIArgInfo::getIgnore(); 5685 5686 // GNU C mode. The only argument that gets ignored is an empty one with size 5687 // 0. 5688 if (IsEmpty && Size == 0) 5689 return ABIArgInfo::getIgnore(); 5690 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 5691 } 5692 5693 // Homogeneous Floating-point Aggregates (HFAs) need to be expanded. 5694 const Type *Base = nullptr; 5695 uint64_t Members = 0; 5696 if (isHomogeneousAggregate(Ty, Base, Members)) { 5697 return ABIArgInfo::getDirect( 5698 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members)); 5699 } 5700 5701 // Aggregates <= 16 bytes are passed directly in registers or on the stack. 5702 if (Size <= 128) { 5703 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 5704 // same size and alignment. 5705 if (getTarget().isRenderScriptTarget()) { 5706 return coerceToIntArray(Ty, getContext(), getVMContext()); 5707 } 5708 unsigned Alignment; 5709 if (Kind == AArch64ABIInfo::AAPCS) { 5710 Alignment = getContext().getTypeUnadjustedAlign(Ty); 5711 Alignment = Alignment < 128 ? 64 : 128; 5712 } else { 5713 Alignment = std::max(getContext().getTypeAlign(Ty), 5714 (unsigned)getTarget().getPointerWidth(0)); 5715 } 5716 Size = llvm::alignTo(Size, Alignment); 5717 5718 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 5719 // For aggregates with 16-byte alignment, we use i128. 5720 llvm::Type *BaseTy = llvm::Type::getIntNTy(getVMContext(), Alignment); 5721 return ABIArgInfo::getDirect( 5722 Size == Alignment ? BaseTy 5723 : llvm::ArrayType::get(BaseTy, Size / Alignment)); 5724 } 5725 5726 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5727 } 5728 5729 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy, 5730 bool IsVariadic) const { 5731 if (RetTy->isVoidType()) 5732 return ABIArgInfo::getIgnore(); 5733 5734 if (const auto *VT = RetTy->getAs<VectorType>()) { 5735 if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector || 5736 VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector) 5737 return coerceIllegalVector(RetTy); 5738 } 5739 5740 // Large vector types should be returned via memory. 5741 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) 5742 return getNaturalAlignIndirect(RetTy); 5743 5744 if (!isAggregateTypeForABI(RetTy)) { 5745 // Treat an enum type as its underlying type. 5746 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5747 RetTy = EnumTy->getDecl()->getIntegerType(); 5748 5749 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 5750 if (EIT->getNumBits() > 128) 5751 return getNaturalAlignIndirect(RetTy); 5752 5753 return (isPromotableIntegerTypeForABI(RetTy) && isDarwinPCS() 5754 ? ABIArgInfo::getExtend(RetTy) 5755 : ABIArgInfo::getDirect()); 5756 } 5757 5758 uint64_t Size = getContext().getTypeSize(RetTy); 5759 if (isEmptyRecord(getContext(), RetTy, true) || Size == 0) 5760 return ABIArgInfo::getIgnore(); 5761 5762 const Type *Base = nullptr; 5763 uint64_t Members = 0; 5764 if (isHomogeneousAggregate(RetTy, Base, Members) && 5765 !(getTarget().getTriple().getArch() == llvm::Triple::aarch64_32 && 5766 IsVariadic)) 5767 // Homogeneous Floating-point Aggregates (HFAs) are returned directly. 5768 return ABIArgInfo::getDirect(); 5769 5770 // Aggregates <= 16 bytes are returned directly in registers or on the stack. 5771 if (Size <= 128) { 5772 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 5773 // same size and alignment. 5774 if (getTarget().isRenderScriptTarget()) { 5775 return coerceToIntArray(RetTy, getContext(), getVMContext()); 5776 } 5777 unsigned Alignment = getContext().getTypeAlign(RetTy); 5778 Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes 5779 5780 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 5781 // For aggregates with 16-byte alignment, we use i128. 5782 if (Alignment < 128 && Size == 128) { 5783 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); 5784 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 5785 } 5786 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 5787 } 5788 5789 return getNaturalAlignIndirect(RetTy); 5790 } 5791 5792 /// isIllegalVectorType - check whether the vector type is legal for AArch64. 5793 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const { 5794 if (const VectorType *VT = Ty->getAs<VectorType>()) { 5795 // Check whether VT is a fixed-length SVE vector. These types are 5796 // represented as scalable vectors in function args/return and must be 5797 // coerced from fixed vectors. 5798 if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector || 5799 VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector) 5800 return true; 5801 5802 // Check whether VT is legal. 5803 unsigned NumElements = VT->getNumElements(); 5804 uint64_t Size = getContext().getTypeSize(VT); 5805 // NumElements should be power of 2. 5806 if (!llvm::isPowerOf2_32(NumElements)) 5807 return true; 5808 5809 // arm64_32 has to be compatible with the ARM logic here, which allows huge 5810 // vectors for some reason. 5811 llvm::Triple Triple = getTarget().getTriple(); 5812 if (Triple.getArch() == llvm::Triple::aarch64_32 && 5813 Triple.isOSBinFormatMachO()) 5814 return Size <= 32; 5815 5816 return Size != 64 && (Size != 128 || NumElements == 1); 5817 } 5818 return false; 5819 } 5820 5821 bool AArch64ABIInfo::isLegalVectorTypeForSwift(CharUnits totalSize, 5822 llvm::Type *eltTy, 5823 unsigned elts) const { 5824 if (!llvm::isPowerOf2_32(elts)) 5825 return false; 5826 if (totalSize.getQuantity() != 8 && 5827 (totalSize.getQuantity() != 16 || elts == 1)) 5828 return false; 5829 return true; 5830 } 5831 5832 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 5833 // Homogeneous aggregates for AAPCS64 must have base types of a floating 5834 // point type or a short-vector type. This is the same as the 32-bit ABI, 5835 // but with the difference that any floating-point type is allowed, 5836 // including __fp16. 5837 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 5838 if (BT->isFloatingPoint()) 5839 return true; 5840 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 5841 unsigned VecSize = getContext().getTypeSize(VT); 5842 if (VecSize == 64 || VecSize == 128) 5843 return true; 5844 } 5845 return false; 5846 } 5847 5848 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 5849 uint64_t Members) const { 5850 return Members <= 4; 5851 } 5852 5853 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr, 5854 QualType Ty, 5855 CodeGenFunction &CGF) const { 5856 ABIArgInfo AI = classifyArgumentType(Ty); 5857 bool IsIndirect = AI.isIndirect(); 5858 5859 llvm::Type *BaseTy = CGF.ConvertType(Ty); 5860 if (IsIndirect) 5861 BaseTy = llvm::PointerType::getUnqual(BaseTy); 5862 else if (AI.getCoerceToType()) 5863 BaseTy = AI.getCoerceToType(); 5864 5865 unsigned NumRegs = 1; 5866 if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) { 5867 BaseTy = ArrTy->getElementType(); 5868 NumRegs = ArrTy->getNumElements(); 5869 } 5870 bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy(); 5871 5872 // The AArch64 va_list type and handling is specified in the Procedure Call 5873 // Standard, section B.4: 5874 // 5875 // struct { 5876 // void *__stack; 5877 // void *__gr_top; 5878 // void *__vr_top; 5879 // int __gr_offs; 5880 // int __vr_offs; 5881 // }; 5882 5883 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); 5884 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 5885 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); 5886 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 5887 5888 CharUnits TySize = getContext().getTypeSizeInChars(Ty); 5889 CharUnits TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty); 5890 5891 Address reg_offs_p = Address::invalid(); 5892 llvm::Value *reg_offs = nullptr; 5893 int reg_top_index; 5894 int RegSize = IsIndirect ? 8 : TySize.getQuantity(); 5895 if (!IsFPR) { 5896 // 3 is the field number of __gr_offs 5897 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p"); 5898 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs"); 5899 reg_top_index = 1; // field number for __gr_top 5900 RegSize = llvm::alignTo(RegSize, 8); 5901 } else { 5902 // 4 is the field number of __vr_offs. 5903 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p"); 5904 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs"); 5905 reg_top_index = 2; // field number for __vr_top 5906 RegSize = 16 * NumRegs; 5907 } 5908 5909 //======================================= 5910 // Find out where argument was passed 5911 //======================================= 5912 5913 // If reg_offs >= 0 we're already using the stack for this type of 5914 // argument. We don't want to keep updating reg_offs (in case it overflows, 5915 // though anyone passing 2GB of arguments, each at most 16 bytes, deserves 5916 // whatever they get). 5917 llvm::Value *UsingStack = nullptr; 5918 UsingStack = CGF.Builder.CreateICmpSGE( 5919 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0)); 5920 5921 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock); 5922 5923 // Otherwise, at least some kind of argument could go in these registers, the 5924 // question is whether this particular type is too big. 5925 CGF.EmitBlock(MaybeRegBlock); 5926 5927 // Integer arguments may need to correct register alignment (for example a 5928 // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we 5929 // align __gr_offs to calculate the potential address. 5930 if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) { 5931 int Align = TyAlign.getQuantity(); 5932 5933 reg_offs = CGF.Builder.CreateAdd( 5934 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1), 5935 "align_regoffs"); 5936 reg_offs = CGF.Builder.CreateAnd( 5937 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align), 5938 "aligned_regoffs"); 5939 } 5940 5941 // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list. 5942 // The fact that this is done unconditionally reflects the fact that 5943 // allocating an argument to the stack also uses up all the remaining 5944 // registers of the appropriate kind. 5945 llvm::Value *NewOffset = nullptr; 5946 NewOffset = CGF.Builder.CreateAdd( 5947 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs"); 5948 CGF.Builder.CreateStore(NewOffset, reg_offs_p); 5949 5950 // Now we're in a position to decide whether this argument really was in 5951 // registers or not. 5952 llvm::Value *InRegs = nullptr; 5953 InRegs = CGF.Builder.CreateICmpSLE( 5954 NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg"); 5955 5956 CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock); 5957 5958 //======================================= 5959 // Argument was in registers 5960 //======================================= 5961 5962 // Now we emit the code for if the argument was originally passed in 5963 // registers. First start the appropriate block: 5964 CGF.EmitBlock(InRegBlock); 5965 5966 llvm::Value *reg_top = nullptr; 5967 Address reg_top_p = 5968 CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p"); 5969 reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top"); 5970 Address BaseAddr(CGF.Builder.CreateInBoundsGEP(reg_top, reg_offs), 5971 CharUnits::fromQuantity(IsFPR ? 16 : 8)); 5972 Address RegAddr = Address::invalid(); 5973 llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty); 5974 5975 if (IsIndirect) { 5976 // If it's been passed indirectly (actually a struct), whatever we find from 5977 // stored registers or on the stack will actually be a struct **. 5978 MemTy = llvm::PointerType::getUnqual(MemTy); 5979 } 5980 5981 const Type *Base = nullptr; 5982 uint64_t NumMembers = 0; 5983 bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers); 5984 if (IsHFA && NumMembers > 1) { 5985 // Homogeneous aggregates passed in registers will have their elements split 5986 // and stored 16-bytes apart regardless of size (they're notionally in qN, 5987 // qN+1, ...). We reload and store into a temporary local variable 5988 // contiguously. 5989 assert(!IsIndirect && "Homogeneous aggregates should be passed directly"); 5990 auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0)); 5991 llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0)); 5992 llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers); 5993 Address Tmp = CGF.CreateTempAlloca(HFATy, 5994 std::max(TyAlign, BaseTyInfo.Align)); 5995 5996 // On big-endian platforms, the value will be right-aligned in its slot. 5997 int Offset = 0; 5998 if (CGF.CGM.getDataLayout().isBigEndian() && 5999 BaseTyInfo.Width.getQuantity() < 16) 6000 Offset = 16 - BaseTyInfo.Width.getQuantity(); 6001 6002 for (unsigned i = 0; i < NumMembers; ++i) { 6003 CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset); 6004 Address LoadAddr = 6005 CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset); 6006 LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy); 6007 6008 Address StoreAddr = CGF.Builder.CreateConstArrayGEP(Tmp, i); 6009 6010 llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr); 6011 CGF.Builder.CreateStore(Elem, StoreAddr); 6012 } 6013 6014 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy); 6015 } else { 6016 // Otherwise the object is contiguous in memory. 6017 6018 // It might be right-aligned in its slot. 6019 CharUnits SlotSize = BaseAddr.getAlignment(); 6020 if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect && 6021 (IsHFA || !isAggregateTypeForABI(Ty)) && 6022 TySize < SlotSize) { 6023 CharUnits Offset = SlotSize - TySize; 6024 BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset); 6025 } 6026 6027 RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy); 6028 } 6029 6030 CGF.EmitBranch(ContBlock); 6031 6032 //======================================= 6033 // Argument was on the stack 6034 //======================================= 6035 CGF.EmitBlock(OnStackBlock); 6036 6037 Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p"); 6038 llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack"); 6039 6040 // Again, stack arguments may need realignment. In this case both integer and 6041 // floating-point ones might be affected. 6042 if (!IsIndirect && TyAlign.getQuantity() > 8) { 6043 int Align = TyAlign.getQuantity(); 6044 6045 OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty); 6046 6047 OnStackPtr = CGF.Builder.CreateAdd( 6048 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1), 6049 "align_stack"); 6050 OnStackPtr = CGF.Builder.CreateAnd( 6051 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align), 6052 "align_stack"); 6053 6054 OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy); 6055 } 6056 Address OnStackAddr(OnStackPtr, 6057 std::max(CharUnits::fromQuantity(8), TyAlign)); 6058 6059 // All stack slots are multiples of 8 bytes. 6060 CharUnits StackSlotSize = CharUnits::fromQuantity(8); 6061 CharUnits StackSize; 6062 if (IsIndirect) 6063 StackSize = StackSlotSize; 6064 else 6065 StackSize = TySize.alignTo(StackSlotSize); 6066 6067 llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize); 6068 llvm::Value *NewStack = 6069 CGF.Builder.CreateInBoundsGEP(OnStackPtr, StackSizeC, "new_stack"); 6070 6071 // Write the new value of __stack for the next call to va_arg 6072 CGF.Builder.CreateStore(NewStack, stack_p); 6073 6074 if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) && 6075 TySize < StackSlotSize) { 6076 CharUnits Offset = StackSlotSize - TySize; 6077 OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset); 6078 } 6079 6080 OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy); 6081 6082 CGF.EmitBranch(ContBlock); 6083 6084 //======================================= 6085 // Tidy up 6086 //======================================= 6087 CGF.EmitBlock(ContBlock); 6088 6089 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 6090 OnStackAddr, OnStackBlock, "vaargs.addr"); 6091 6092 if (IsIndirect) 6093 return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"), 6094 TyAlign); 6095 6096 return ResAddr; 6097 } 6098 6099 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty, 6100 CodeGenFunction &CGF) const { 6101 // The backend's lowering doesn't support va_arg for aggregates or 6102 // illegal vector types. Lower VAArg here for these cases and use 6103 // the LLVM va_arg instruction for everything else. 6104 if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty)) 6105 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 6106 6107 uint64_t PointerSize = getTarget().getPointerWidth(0) / 8; 6108 CharUnits SlotSize = CharUnits::fromQuantity(PointerSize); 6109 6110 // Empty records are ignored for parameter passing purposes. 6111 if (isEmptyRecord(getContext(), Ty, true)) { 6112 Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 6113 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 6114 return Addr; 6115 } 6116 6117 // The size of the actual thing passed, which might end up just 6118 // being a pointer for indirect types. 6119 auto TyInfo = getContext().getTypeInfoInChars(Ty); 6120 6121 // Arguments bigger than 16 bytes which aren't homogeneous 6122 // aggregates should be passed indirectly. 6123 bool IsIndirect = false; 6124 if (TyInfo.Width.getQuantity() > 16) { 6125 const Type *Base = nullptr; 6126 uint64_t Members = 0; 6127 IsIndirect = !isHomogeneousAggregate(Ty, Base, Members); 6128 } 6129 6130 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 6131 TyInfo, SlotSize, /*AllowHigherAlign*/ true); 6132 } 6133 6134 Address AArch64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 6135 QualType Ty) const { 6136 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 6137 CGF.getContext().getTypeInfoInChars(Ty), 6138 CharUnits::fromQuantity(8), 6139 /*allowHigherAlign*/ false); 6140 } 6141 6142 //===----------------------------------------------------------------------===// 6143 // ARM ABI Implementation 6144 //===----------------------------------------------------------------------===// 6145 6146 namespace { 6147 6148 class ARMABIInfo : public SwiftABIInfo { 6149 public: 6150 enum ABIKind { 6151 APCS = 0, 6152 AAPCS = 1, 6153 AAPCS_VFP = 2, 6154 AAPCS16_VFP = 3, 6155 }; 6156 6157 private: 6158 ABIKind Kind; 6159 bool IsFloatABISoftFP; 6160 6161 public: 6162 ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) 6163 : SwiftABIInfo(CGT), Kind(_Kind) { 6164 setCCs(); 6165 IsFloatABISoftFP = CGT.getCodeGenOpts().FloatABI == "softfp" || 6166 CGT.getCodeGenOpts().FloatABI == ""; // default 6167 } 6168 6169 bool isEABI() const { 6170 switch (getTarget().getTriple().getEnvironment()) { 6171 case llvm::Triple::Android: 6172 case llvm::Triple::EABI: 6173 case llvm::Triple::EABIHF: 6174 case llvm::Triple::GNUEABI: 6175 case llvm::Triple::GNUEABIHF: 6176 case llvm::Triple::MuslEABI: 6177 case llvm::Triple::MuslEABIHF: 6178 return true; 6179 default: 6180 return false; 6181 } 6182 } 6183 6184 bool isEABIHF() const { 6185 switch (getTarget().getTriple().getEnvironment()) { 6186 case llvm::Triple::EABIHF: 6187 case llvm::Triple::GNUEABIHF: 6188 case llvm::Triple::MuslEABIHF: 6189 return true; 6190 default: 6191 return false; 6192 } 6193 } 6194 6195 ABIKind getABIKind() const { return Kind; } 6196 6197 bool allowBFloatArgsAndRet() const override { 6198 return !IsFloatABISoftFP && getTarget().hasBFloat16Type(); 6199 } 6200 6201 private: 6202 ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic, 6203 unsigned functionCallConv) const; 6204 ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic, 6205 unsigned functionCallConv) const; 6206 ABIArgInfo classifyHomogeneousAggregate(QualType Ty, const Type *Base, 6207 uint64_t Members) const; 6208 ABIArgInfo coerceIllegalVector(QualType Ty) const; 6209 bool isIllegalVectorType(QualType Ty) const; 6210 bool containsAnyFP16Vectors(QualType Ty) const; 6211 6212 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 6213 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 6214 uint64_t Members) const override; 6215 6216 bool isEffectivelyAAPCS_VFP(unsigned callConvention, bool acceptHalf) const; 6217 6218 void computeInfo(CGFunctionInfo &FI) const override; 6219 6220 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6221 QualType Ty) const override; 6222 6223 llvm::CallingConv::ID getLLVMDefaultCC() const; 6224 llvm::CallingConv::ID getABIDefaultCC() const; 6225 void setCCs(); 6226 6227 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 6228 bool asReturnValue) const override { 6229 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 6230 } 6231 bool isSwiftErrorInRegister() const override { 6232 return true; 6233 } 6234 bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy, 6235 unsigned elts) const override; 6236 }; 6237 6238 class ARMTargetCodeGenInfo : public TargetCodeGenInfo { 6239 public: 6240 ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 6241 : TargetCodeGenInfo(std::make_unique<ARMABIInfo>(CGT, K)) {} 6242 6243 const ARMABIInfo &getABIInfo() const { 6244 return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo()); 6245 } 6246 6247 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 6248 return 13; 6249 } 6250 6251 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 6252 return "mov\tr7, r7\t\t// marker for objc_retainAutoreleaseReturnValue"; 6253 } 6254 6255 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 6256 llvm::Value *Address) const override { 6257 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 6258 6259 // 0-15 are the 16 integer registers. 6260 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15); 6261 return false; 6262 } 6263 6264 unsigned getSizeOfUnwindException() const override { 6265 if (getABIInfo().isEABI()) return 88; 6266 return TargetCodeGenInfo::getSizeOfUnwindException(); 6267 } 6268 6269 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6270 CodeGen::CodeGenModule &CGM) const override { 6271 if (GV->isDeclaration()) 6272 return; 6273 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 6274 if (!FD) 6275 return; 6276 6277 const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>(); 6278 if (!Attr) 6279 return; 6280 6281 const char *Kind; 6282 switch (Attr->getInterrupt()) { 6283 case ARMInterruptAttr::Generic: Kind = ""; break; 6284 case ARMInterruptAttr::IRQ: Kind = "IRQ"; break; 6285 case ARMInterruptAttr::FIQ: Kind = "FIQ"; break; 6286 case ARMInterruptAttr::SWI: Kind = "SWI"; break; 6287 case ARMInterruptAttr::ABORT: Kind = "ABORT"; break; 6288 case ARMInterruptAttr::UNDEF: Kind = "UNDEF"; break; 6289 } 6290 6291 llvm::Function *Fn = cast<llvm::Function>(GV); 6292 6293 Fn->addFnAttr("interrupt", Kind); 6294 6295 ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind(); 6296 if (ABI == ARMABIInfo::APCS) 6297 return; 6298 6299 // AAPCS guarantees that sp will be 8-byte aligned on any public interface, 6300 // however this is not necessarily true on taking any interrupt. Instruct 6301 // the backend to perform a realignment as part of the function prologue. 6302 llvm::AttrBuilder B; 6303 B.addStackAlignmentAttr(8); 6304 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 6305 } 6306 }; 6307 6308 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo { 6309 public: 6310 WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 6311 : ARMTargetCodeGenInfo(CGT, K) {} 6312 6313 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6314 CodeGen::CodeGenModule &CGM) const override; 6315 6316 void getDependentLibraryOption(llvm::StringRef Lib, 6317 llvm::SmallString<24> &Opt) const override { 6318 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); 6319 } 6320 6321 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, 6322 llvm::SmallString<32> &Opt) const override { 6323 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 6324 } 6325 }; 6326 6327 void WindowsARMTargetCodeGenInfo::setTargetAttributes( 6328 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 6329 ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 6330 if (GV->isDeclaration()) 6331 return; 6332 addStackProbeTargetAttributes(D, GV, CGM); 6333 } 6334 } 6335 6336 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const { 6337 if (!::classifyReturnType(getCXXABI(), FI, *this)) 6338 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), FI.isVariadic(), 6339 FI.getCallingConvention()); 6340 6341 for (auto &I : FI.arguments()) 6342 I.info = classifyArgumentType(I.type, FI.isVariadic(), 6343 FI.getCallingConvention()); 6344 6345 6346 // Always honor user-specified calling convention. 6347 if (FI.getCallingConvention() != llvm::CallingConv::C) 6348 return; 6349 6350 llvm::CallingConv::ID cc = getRuntimeCC(); 6351 if (cc != llvm::CallingConv::C) 6352 FI.setEffectiveCallingConvention(cc); 6353 } 6354 6355 /// Return the default calling convention that LLVM will use. 6356 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const { 6357 // The default calling convention that LLVM will infer. 6358 if (isEABIHF() || getTarget().getTriple().isWatchABI()) 6359 return llvm::CallingConv::ARM_AAPCS_VFP; 6360 else if (isEABI()) 6361 return llvm::CallingConv::ARM_AAPCS; 6362 else 6363 return llvm::CallingConv::ARM_APCS; 6364 } 6365 6366 /// Return the calling convention that our ABI would like us to use 6367 /// as the C calling convention. 6368 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const { 6369 switch (getABIKind()) { 6370 case APCS: return llvm::CallingConv::ARM_APCS; 6371 case AAPCS: return llvm::CallingConv::ARM_AAPCS; 6372 case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 6373 case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 6374 } 6375 llvm_unreachable("bad ABI kind"); 6376 } 6377 6378 void ARMABIInfo::setCCs() { 6379 assert(getRuntimeCC() == llvm::CallingConv::C); 6380 6381 // Don't muddy up the IR with a ton of explicit annotations if 6382 // they'd just match what LLVM will infer from the triple. 6383 llvm::CallingConv::ID abiCC = getABIDefaultCC(); 6384 if (abiCC != getLLVMDefaultCC()) 6385 RuntimeCC = abiCC; 6386 } 6387 6388 ABIArgInfo ARMABIInfo::coerceIllegalVector(QualType Ty) const { 6389 uint64_t Size = getContext().getTypeSize(Ty); 6390 if (Size <= 32) { 6391 llvm::Type *ResType = 6392 llvm::Type::getInt32Ty(getVMContext()); 6393 return ABIArgInfo::getDirect(ResType); 6394 } 6395 if (Size == 64 || Size == 128) { 6396 auto *ResType = llvm::FixedVectorType::get( 6397 llvm::Type::getInt32Ty(getVMContext()), Size / 32); 6398 return ABIArgInfo::getDirect(ResType); 6399 } 6400 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6401 } 6402 6403 ABIArgInfo ARMABIInfo::classifyHomogeneousAggregate(QualType Ty, 6404 const Type *Base, 6405 uint64_t Members) const { 6406 assert(Base && "Base class should be set for homogeneous aggregate"); 6407 // Base can be a floating-point or a vector. 6408 if (const VectorType *VT = Base->getAs<VectorType>()) { 6409 // FP16 vectors should be converted to integer vectors 6410 if (!getTarget().hasLegalHalfType() && containsAnyFP16Vectors(Ty)) { 6411 uint64_t Size = getContext().getTypeSize(VT); 6412 auto *NewVecTy = llvm::FixedVectorType::get( 6413 llvm::Type::getInt32Ty(getVMContext()), Size / 32); 6414 llvm::Type *Ty = llvm::ArrayType::get(NewVecTy, Members); 6415 return ABIArgInfo::getDirect(Ty, 0, nullptr, false); 6416 } 6417 } 6418 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); 6419 } 6420 6421 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, bool isVariadic, 6422 unsigned functionCallConv) const { 6423 // 6.1.2.1 The following argument types are VFP CPRCs: 6424 // A single-precision floating-point type (including promoted 6425 // half-precision types); A double-precision floating-point type; 6426 // A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate 6427 // with a Base Type of a single- or double-precision floating-point type, 6428 // 64-bit containerized vectors or 128-bit containerized vectors with one 6429 // to four Elements. 6430 // Variadic functions should always marshal to the base standard. 6431 bool IsAAPCS_VFP = 6432 !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ false); 6433 6434 Ty = useFirstFieldIfTransparentUnion(Ty); 6435 6436 // Handle illegal vector types here. 6437 if (isIllegalVectorType(Ty)) 6438 return coerceIllegalVector(Ty); 6439 6440 if (!isAggregateTypeForABI(Ty)) { 6441 // Treat an enum type as its underlying type. 6442 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 6443 Ty = EnumTy->getDecl()->getIntegerType(); 6444 } 6445 6446 if (const auto *EIT = Ty->getAs<ExtIntType>()) 6447 if (EIT->getNumBits() > 64) 6448 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 6449 6450 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 6451 : ABIArgInfo::getDirect()); 6452 } 6453 6454 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 6455 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 6456 } 6457 6458 // Ignore empty records. 6459 if (isEmptyRecord(getContext(), Ty, true)) 6460 return ABIArgInfo::getIgnore(); 6461 6462 if (IsAAPCS_VFP) { 6463 // Homogeneous Aggregates need to be expanded when we can fit the aggregate 6464 // into VFP registers. 6465 const Type *Base = nullptr; 6466 uint64_t Members = 0; 6467 if (isHomogeneousAggregate(Ty, Base, Members)) 6468 return classifyHomogeneousAggregate(Ty, Base, Members); 6469 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 6470 // WatchOS does have homogeneous aggregates. Note that we intentionally use 6471 // this convention even for a variadic function: the backend will use GPRs 6472 // if needed. 6473 const Type *Base = nullptr; 6474 uint64_t Members = 0; 6475 if (isHomogeneousAggregate(Ty, Base, Members)) { 6476 assert(Base && Members <= 4 && "unexpected homogeneous aggregate"); 6477 llvm::Type *Ty = 6478 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members); 6479 return ABIArgInfo::getDirect(Ty, 0, nullptr, false); 6480 } 6481 } 6482 6483 if (getABIKind() == ARMABIInfo::AAPCS16_VFP && 6484 getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) { 6485 // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're 6486 // bigger than 128-bits, they get placed in space allocated by the caller, 6487 // and a pointer is passed. 6488 return ABIArgInfo::getIndirect( 6489 CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false); 6490 } 6491 6492 // Support byval for ARM. 6493 // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at 6494 // most 8-byte. We realign the indirect argument if type alignment is bigger 6495 // than ABI alignment. 6496 uint64_t ABIAlign = 4; 6497 uint64_t TyAlign; 6498 if (getABIKind() == ARMABIInfo::AAPCS_VFP || 6499 getABIKind() == ARMABIInfo::AAPCS) { 6500 TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity(); 6501 ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8); 6502 } else { 6503 TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); 6504 } 6505 if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) { 6506 assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval"); 6507 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 6508 /*ByVal=*/true, 6509 /*Realign=*/TyAlign > ABIAlign); 6510 } 6511 6512 // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of 6513 // same size and alignment. 6514 if (getTarget().isRenderScriptTarget()) { 6515 return coerceToIntArray(Ty, getContext(), getVMContext()); 6516 } 6517 6518 // Otherwise, pass by coercing to a structure of the appropriate size. 6519 llvm::Type* ElemTy; 6520 unsigned SizeRegs; 6521 // FIXME: Try to match the types of the arguments more accurately where 6522 // we can. 6523 if (TyAlign <= 4) { 6524 ElemTy = llvm::Type::getInt32Ty(getVMContext()); 6525 SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32; 6526 } else { 6527 ElemTy = llvm::Type::getInt64Ty(getVMContext()); 6528 SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64; 6529 } 6530 6531 return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs)); 6532 } 6533 6534 static bool isIntegerLikeType(QualType Ty, ASTContext &Context, 6535 llvm::LLVMContext &VMContext) { 6536 // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure 6537 // is called integer-like if its size is less than or equal to one word, and 6538 // the offset of each of its addressable sub-fields is zero. 6539 6540 uint64_t Size = Context.getTypeSize(Ty); 6541 6542 // Check that the type fits in a word. 6543 if (Size > 32) 6544 return false; 6545 6546 // FIXME: Handle vector types! 6547 if (Ty->isVectorType()) 6548 return false; 6549 6550 // Float types are never treated as "integer like". 6551 if (Ty->isRealFloatingType()) 6552 return false; 6553 6554 // If this is a builtin or pointer type then it is ok. 6555 if (Ty->getAs<BuiltinType>() || Ty->isPointerType()) 6556 return true; 6557 6558 // Small complex integer types are "integer like". 6559 if (const ComplexType *CT = Ty->getAs<ComplexType>()) 6560 return isIntegerLikeType(CT->getElementType(), Context, VMContext); 6561 6562 // Single element and zero sized arrays should be allowed, by the definition 6563 // above, but they are not. 6564 6565 // Otherwise, it must be a record type. 6566 const RecordType *RT = Ty->getAs<RecordType>(); 6567 if (!RT) return false; 6568 6569 // Ignore records with flexible arrays. 6570 const RecordDecl *RD = RT->getDecl(); 6571 if (RD->hasFlexibleArrayMember()) 6572 return false; 6573 6574 // Check that all sub-fields are at offset 0, and are themselves "integer 6575 // like". 6576 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 6577 6578 bool HadField = false; 6579 unsigned idx = 0; 6580 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 6581 i != e; ++i, ++idx) { 6582 const FieldDecl *FD = *i; 6583 6584 // Bit-fields are not addressable, we only need to verify they are "integer 6585 // like". We still have to disallow a subsequent non-bitfield, for example: 6586 // struct { int : 0; int x } 6587 // is non-integer like according to gcc. 6588 if (FD->isBitField()) { 6589 if (!RD->isUnion()) 6590 HadField = true; 6591 6592 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 6593 return false; 6594 6595 continue; 6596 } 6597 6598 // Check if this field is at offset 0. 6599 if (Layout.getFieldOffset(idx) != 0) 6600 return false; 6601 6602 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 6603 return false; 6604 6605 // Only allow at most one field in a structure. This doesn't match the 6606 // wording above, but follows gcc in situations with a field following an 6607 // empty structure. 6608 if (!RD->isUnion()) { 6609 if (HadField) 6610 return false; 6611 6612 HadField = true; 6613 } 6614 } 6615 6616 return true; 6617 } 6618 6619 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, bool isVariadic, 6620 unsigned functionCallConv) const { 6621 6622 // Variadic functions should always marshal to the base standard. 6623 bool IsAAPCS_VFP = 6624 !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ true); 6625 6626 if (RetTy->isVoidType()) 6627 return ABIArgInfo::getIgnore(); 6628 6629 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 6630 // Large vector types should be returned via memory. 6631 if (getContext().getTypeSize(RetTy) > 128) 6632 return getNaturalAlignIndirect(RetTy); 6633 // TODO: FP16/BF16 vectors should be converted to integer vectors 6634 // This check is similar to isIllegalVectorType - refactor? 6635 if ((!getTarget().hasLegalHalfType() && 6636 (VT->getElementType()->isFloat16Type() || 6637 VT->getElementType()->isHalfType())) || 6638 (IsFloatABISoftFP && 6639 VT->getElementType()->isBFloat16Type())) 6640 return coerceIllegalVector(RetTy); 6641 } 6642 6643 if (!isAggregateTypeForABI(RetTy)) { 6644 // Treat an enum type as its underlying type. 6645 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 6646 RetTy = EnumTy->getDecl()->getIntegerType(); 6647 6648 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 6649 if (EIT->getNumBits() > 64) 6650 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 6651 6652 return isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 6653 : ABIArgInfo::getDirect(); 6654 } 6655 6656 // Are we following APCS? 6657 if (getABIKind() == APCS) { 6658 if (isEmptyRecord(getContext(), RetTy, false)) 6659 return ABIArgInfo::getIgnore(); 6660 6661 // Complex types are all returned as packed integers. 6662 // 6663 // FIXME: Consider using 2 x vector types if the back end handles them 6664 // correctly. 6665 if (RetTy->isAnyComplexType()) 6666 return ABIArgInfo::getDirect(llvm::IntegerType::get( 6667 getVMContext(), getContext().getTypeSize(RetTy))); 6668 6669 // Integer like structures are returned in r0. 6670 if (isIntegerLikeType(RetTy, getContext(), getVMContext())) { 6671 // Return in the smallest viable integer type. 6672 uint64_t Size = getContext().getTypeSize(RetTy); 6673 if (Size <= 8) 6674 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6675 if (Size <= 16) 6676 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6677 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6678 } 6679 6680 // Otherwise return in memory. 6681 return getNaturalAlignIndirect(RetTy); 6682 } 6683 6684 // Otherwise this is an AAPCS variant. 6685 6686 if (isEmptyRecord(getContext(), RetTy, true)) 6687 return ABIArgInfo::getIgnore(); 6688 6689 // Check for homogeneous aggregates with AAPCS-VFP. 6690 if (IsAAPCS_VFP) { 6691 const Type *Base = nullptr; 6692 uint64_t Members = 0; 6693 if (isHomogeneousAggregate(RetTy, Base, Members)) 6694 return classifyHomogeneousAggregate(RetTy, Base, Members); 6695 } 6696 6697 // Aggregates <= 4 bytes are returned in r0; other aggregates 6698 // are returned indirectly. 6699 uint64_t Size = getContext().getTypeSize(RetTy); 6700 if (Size <= 32) { 6701 // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of 6702 // same size and alignment. 6703 if (getTarget().isRenderScriptTarget()) { 6704 return coerceToIntArray(RetTy, getContext(), getVMContext()); 6705 } 6706 if (getDataLayout().isBigEndian()) 6707 // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4) 6708 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6709 6710 // Return in the smallest viable integer type. 6711 if (Size <= 8) 6712 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6713 if (Size <= 16) 6714 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6715 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6716 } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) { 6717 llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext()); 6718 llvm::Type *CoerceTy = 6719 llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32); 6720 return ABIArgInfo::getDirect(CoerceTy); 6721 } 6722 6723 return getNaturalAlignIndirect(RetTy); 6724 } 6725 6726 /// isIllegalVector - check whether Ty is an illegal vector type. 6727 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const { 6728 if (const VectorType *VT = Ty->getAs<VectorType> ()) { 6729 // On targets that don't support half, fp16 or bfloat, they are expanded 6730 // into float, and we don't want the ABI to depend on whether or not they 6731 // are supported in hardware. Thus return false to coerce vectors of these 6732 // types into integer vectors. 6733 // We do not depend on hasLegalHalfType for bfloat as it is a 6734 // separate IR type. 6735 if ((!getTarget().hasLegalHalfType() && 6736 (VT->getElementType()->isFloat16Type() || 6737 VT->getElementType()->isHalfType())) || 6738 (IsFloatABISoftFP && 6739 VT->getElementType()->isBFloat16Type())) 6740 return true; 6741 if (isAndroid()) { 6742 // Android shipped using Clang 3.1, which supported a slightly different 6743 // vector ABI. The primary differences were that 3-element vector types 6744 // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path 6745 // accepts that legacy behavior for Android only. 6746 // Check whether VT is legal. 6747 unsigned NumElements = VT->getNumElements(); 6748 // NumElements should be power of 2 or equal to 3. 6749 if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3) 6750 return true; 6751 } else { 6752 // Check whether VT is legal. 6753 unsigned NumElements = VT->getNumElements(); 6754 uint64_t Size = getContext().getTypeSize(VT); 6755 // NumElements should be power of 2. 6756 if (!llvm::isPowerOf2_32(NumElements)) 6757 return true; 6758 // Size should be greater than 32 bits. 6759 return Size <= 32; 6760 } 6761 } 6762 return false; 6763 } 6764 6765 /// Return true if a type contains any 16-bit floating point vectors 6766 bool ARMABIInfo::containsAnyFP16Vectors(QualType Ty) const { 6767 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 6768 uint64_t NElements = AT->getSize().getZExtValue(); 6769 if (NElements == 0) 6770 return false; 6771 return containsAnyFP16Vectors(AT->getElementType()); 6772 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 6773 const RecordDecl *RD = RT->getDecl(); 6774 6775 // If this is a C++ record, check the bases first. 6776 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 6777 if (llvm::any_of(CXXRD->bases(), [this](const CXXBaseSpecifier &B) { 6778 return containsAnyFP16Vectors(B.getType()); 6779 })) 6780 return true; 6781 6782 if (llvm::any_of(RD->fields(), [this](FieldDecl *FD) { 6783 return FD && containsAnyFP16Vectors(FD->getType()); 6784 })) 6785 return true; 6786 6787 return false; 6788 } else { 6789 if (const VectorType *VT = Ty->getAs<VectorType>()) 6790 return (VT->getElementType()->isFloat16Type() || 6791 VT->getElementType()->isBFloat16Type() || 6792 VT->getElementType()->isHalfType()); 6793 return false; 6794 } 6795 } 6796 6797 bool ARMABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, 6798 llvm::Type *eltTy, 6799 unsigned numElts) const { 6800 if (!llvm::isPowerOf2_32(numElts)) 6801 return false; 6802 unsigned size = getDataLayout().getTypeStoreSizeInBits(eltTy); 6803 if (size > 64) 6804 return false; 6805 if (vectorSize.getQuantity() != 8 && 6806 (vectorSize.getQuantity() != 16 || numElts == 1)) 6807 return false; 6808 return true; 6809 } 6810 6811 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 6812 // Homogeneous aggregates for AAPCS-VFP must have base types of float, 6813 // double, or 64-bit or 128-bit vectors. 6814 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 6815 if (BT->getKind() == BuiltinType::Float || 6816 BT->getKind() == BuiltinType::Double || 6817 BT->getKind() == BuiltinType::LongDouble) 6818 return true; 6819 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 6820 unsigned VecSize = getContext().getTypeSize(VT); 6821 if (VecSize == 64 || VecSize == 128) 6822 return true; 6823 } 6824 return false; 6825 } 6826 6827 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 6828 uint64_t Members) const { 6829 return Members <= 4; 6830 } 6831 6832 bool ARMABIInfo::isEffectivelyAAPCS_VFP(unsigned callConvention, 6833 bool acceptHalf) const { 6834 // Give precedence to user-specified calling conventions. 6835 if (callConvention != llvm::CallingConv::C) 6836 return (callConvention == llvm::CallingConv::ARM_AAPCS_VFP); 6837 else 6838 return (getABIKind() == AAPCS_VFP) || 6839 (acceptHalf && (getABIKind() == AAPCS16_VFP)); 6840 } 6841 6842 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6843 QualType Ty) const { 6844 CharUnits SlotSize = CharUnits::fromQuantity(4); 6845 6846 // Empty records are ignored for parameter passing purposes. 6847 if (isEmptyRecord(getContext(), Ty, true)) { 6848 Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize); 6849 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 6850 return Addr; 6851 } 6852 6853 CharUnits TySize = getContext().getTypeSizeInChars(Ty); 6854 CharUnits TyAlignForABI = getContext().getTypeUnadjustedAlignInChars(Ty); 6855 6856 // Use indirect if size of the illegal vector is bigger than 16 bytes. 6857 bool IsIndirect = false; 6858 const Type *Base = nullptr; 6859 uint64_t Members = 0; 6860 if (TySize > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) { 6861 IsIndirect = true; 6862 6863 // ARMv7k passes structs bigger than 16 bytes indirectly, in space 6864 // allocated by the caller. 6865 } else if (TySize > CharUnits::fromQuantity(16) && 6866 getABIKind() == ARMABIInfo::AAPCS16_VFP && 6867 !isHomogeneousAggregate(Ty, Base, Members)) { 6868 IsIndirect = true; 6869 6870 // Otherwise, bound the type's ABI alignment. 6871 // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for 6872 // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte. 6873 // Our callers should be prepared to handle an under-aligned address. 6874 } else if (getABIKind() == ARMABIInfo::AAPCS_VFP || 6875 getABIKind() == ARMABIInfo::AAPCS) { 6876 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 6877 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8)); 6878 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 6879 // ARMv7k allows type alignment up to 16 bytes. 6880 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 6881 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16)); 6882 } else { 6883 TyAlignForABI = CharUnits::fromQuantity(4); 6884 } 6885 6886 TypeInfoChars TyInfo(TySize, TyAlignForABI, false); 6887 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo, 6888 SlotSize, /*AllowHigherAlign*/ true); 6889 } 6890 6891 //===----------------------------------------------------------------------===// 6892 // NVPTX ABI Implementation 6893 //===----------------------------------------------------------------------===// 6894 6895 namespace { 6896 6897 class NVPTXTargetCodeGenInfo; 6898 6899 class NVPTXABIInfo : public ABIInfo { 6900 NVPTXTargetCodeGenInfo &CGInfo; 6901 6902 public: 6903 NVPTXABIInfo(CodeGenTypes &CGT, NVPTXTargetCodeGenInfo &Info) 6904 : ABIInfo(CGT), CGInfo(Info) {} 6905 6906 ABIArgInfo classifyReturnType(QualType RetTy) const; 6907 ABIArgInfo classifyArgumentType(QualType Ty) const; 6908 6909 void computeInfo(CGFunctionInfo &FI) const override; 6910 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6911 QualType Ty) const override; 6912 bool isUnsupportedType(QualType T) const; 6913 ABIArgInfo coerceToIntArrayWithLimit(QualType Ty, unsigned MaxSize) const; 6914 }; 6915 6916 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo { 6917 public: 6918 NVPTXTargetCodeGenInfo(CodeGenTypes &CGT) 6919 : TargetCodeGenInfo(std::make_unique<NVPTXABIInfo>(CGT, *this)) {} 6920 6921 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6922 CodeGen::CodeGenModule &M) const override; 6923 bool shouldEmitStaticExternCAliases() const override; 6924 6925 llvm::Type *getCUDADeviceBuiltinSurfaceDeviceType() const override { 6926 // On the device side, surface reference is represented as an object handle 6927 // in 64-bit integer. 6928 return llvm::Type::getInt64Ty(getABIInfo().getVMContext()); 6929 } 6930 6931 llvm::Type *getCUDADeviceBuiltinTextureDeviceType() const override { 6932 // On the device side, texture reference is represented as an object handle 6933 // in 64-bit integer. 6934 return llvm::Type::getInt64Ty(getABIInfo().getVMContext()); 6935 } 6936 6937 bool emitCUDADeviceBuiltinSurfaceDeviceCopy(CodeGenFunction &CGF, LValue Dst, 6938 LValue Src) const override { 6939 emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src); 6940 return true; 6941 } 6942 6943 bool emitCUDADeviceBuiltinTextureDeviceCopy(CodeGenFunction &CGF, LValue Dst, 6944 LValue Src) const override { 6945 emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src); 6946 return true; 6947 } 6948 6949 private: 6950 // Adds a NamedMDNode with GV, Name, and Operand as operands, and adds the 6951 // resulting MDNode to the nvvm.annotations MDNode. 6952 static void addNVVMMetadata(llvm::GlobalValue *GV, StringRef Name, 6953 int Operand); 6954 6955 static void emitBuiltinSurfTexDeviceCopy(CodeGenFunction &CGF, LValue Dst, 6956 LValue Src) { 6957 llvm::Value *Handle = nullptr; 6958 llvm::Constant *C = 6959 llvm::dyn_cast<llvm::Constant>(Src.getAddress(CGF).getPointer()); 6960 // Lookup `addrspacecast` through the constant pointer if any. 6961 if (auto *ASC = llvm::dyn_cast_or_null<llvm::AddrSpaceCastOperator>(C)) 6962 C = llvm::cast<llvm::Constant>(ASC->getPointerOperand()); 6963 if (auto *GV = llvm::dyn_cast_or_null<llvm::GlobalVariable>(C)) { 6964 // Load the handle from the specific global variable using 6965 // `nvvm.texsurf.handle.internal` intrinsic. 6966 Handle = CGF.EmitRuntimeCall( 6967 CGF.CGM.getIntrinsic(llvm::Intrinsic::nvvm_texsurf_handle_internal, 6968 {GV->getType()}), 6969 {GV}, "texsurf_handle"); 6970 } else 6971 Handle = CGF.EmitLoadOfScalar(Src, SourceLocation()); 6972 CGF.EmitStoreOfScalar(Handle, Dst); 6973 } 6974 }; 6975 6976 /// Checks if the type is unsupported directly by the current target. 6977 bool NVPTXABIInfo::isUnsupportedType(QualType T) const { 6978 ASTContext &Context = getContext(); 6979 if (!Context.getTargetInfo().hasFloat16Type() && T->isFloat16Type()) 6980 return true; 6981 if (!Context.getTargetInfo().hasFloat128Type() && 6982 (T->isFloat128Type() || 6983 (T->isRealFloatingType() && Context.getTypeSize(T) == 128))) 6984 return true; 6985 if (const auto *EIT = T->getAs<ExtIntType>()) 6986 return EIT->getNumBits() > 6987 (Context.getTargetInfo().hasInt128Type() ? 128U : 64U); 6988 if (!Context.getTargetInfo().hasInt128Type() && T->isIntegerType() && 6989 Context.getTypeSize(T) > 64U) 6990 return true; 6991 if (const auto *AT = T->getAsArrayTypeUnsafe()) 6992 return isUnsupportedType(AT->getElementType()); 6993 const auto *RT = T->getAs<RecordType>(); 6994 if (!RT) 6995 return false; 6996 const RecordDecl *RD = RT->getDecl(); 6997 6998 // If this is a C++ record, check the bases first. 6999 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 7000 for (const CXXBaseSpecifier &I : CXXRD->bases()) 7001 if (isUnsupportedType(I.getType())) 7002 return true; 7003 7004 for (const FieldDecl *I : RD->fields()) 7005 if (isUnsupportedType(I->getType())) 7006 return true; 7007 return false; 7008 } 7009 7010 /// Coerce the given type into an array with maximum allowed size of elements. 7011 ABIArgInfo NVPTXABIInfo::coerceToIntArrayWithLimit(QualType Ty, 7012 unsigned MaxSize) const { 7013 // Alignment and Size are measured in bits. 7014 const uint64_t Size = getContext().getTypeSize(Ty); 7015 const uint64_t Alignment = getContext().getTypeAlign(Ty); 7016 const unsigned Div = std::min<unsigned>(MaxSize, Alignment); 7017 llvm::Type *IntType = llvm::Type::getIntNTy(getVMContext(), Div); 7018 const uint64_t NumElements = (Size + Div - 1) / Div; 7019 return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements)); 7020 } 7021 7022 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const { 7023 if (RetTy->isVoidType()) 7024 return ABIArgInfo::getIgnore(); 7025 7026 if (getContext().getLangOpts().OpenMP && 7027 getContext().getLangOpts().OpenMPIsDevice && isUnsupportedType(RetTy)) 7028 return coerceToIntArrayWithLimit(RetTy, 64); 7029 7030 // note: this is different from default ABI 7031 if (!RetTy->isScalarType()) 7032 return ABIArgInfo::getDirect(); 7033 7034 // Treat an enum type as its underlying type. 7035 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 7036 RetTy = EnumTy->getDecl()->getIntegerType(); 7037 7038 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 7039 : ABIArgInfo::getDirect()); 7040 } 7041 7042 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const { 7043 // Treat an enum type as its underlying type. 7044 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7045 Ty = EnumTy->getDecl()->getIntegerType(); 7046 7047 // Return aggregates type as indirect by value 7048 if (isAggregateTypeForABI(Ty)) { 7049 // Under CUDA device compilation, tex/surf builtin types are replaced with 7050 // object types and passed directly. 7051 if (getContext().getLangOpts().CUDAIsDevice) { 7052 if (Ty->isCUDADeviceBuiltinSurfaceType()) 7053 return ABIArgInfo::getDirect( 7054 CGInfo.getCUDADeviceBuiltinSurfaceDeviceType()); 7055 if (Ty->isCUDADeviceBuiltinTextureType()) 7056 return ABIArgInfo::getDirect( 7057 CGInfo.getCUDADeviceBuiltinTextureDeviceType()); 7058 } 7059 return getNaturalAlignIndirect(Ty, /* byval */ true); 7060 } 7061 7062 if (const auto *EIT = Ty->getAs<ExtIntType>()) { 7063 if ((EIT->getNumBits() > 128) || 7064 (!getContext().getTargetInfo().hasInt128Type() && 7065 EIT->getNumBits() > 64)) 7066 return getNaturalAlignIndirect(Ty, /* byval */ true); 7067 } 7068 7069 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 7070 : ABIArgInfo::getDirect()); 7071 } 7072 7073 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const { 7074 if (!getCXXABI().classifyReturnType(FI)) 7075 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7076 for (auto &I : FI.arguments()) 7077 I.info = classifyArgumentType(I.type); 7078 7079 // Always honor user-specified calling convention. 7080 if (FI.getCallingConvention() != llvm::CallingConv::C) 7081 return; 7082 7083 FI.setEffectiveCallingConvention(getRuntimeCC()); 7084 } 7085 7086 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7087 QualType Ty) const { 7088 llvm_unreachable("NVPTX does not support varargs"); 7089 } 7090 7091 void NVPTXTargetCodeGenInfo::setTargetAttributes( 7092 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 7093 if (GV->isDeclaration()) 7094 return; 7095 const VarDecl *VD = dyn_cast_or_null<VarDecl>(D); 7096 if (VD) { 7097 if (M.getLangOpts().CUDA) { 7098 if (VD->getType()->isCUDADeviceBuiltinSurfaceType()) 7099 addNVVMMetadata(GV, "surface", 1); 7100 else if (VD->getType()->isCUDADeviceBuiltinTextureType()) 7101 addNVVMMetadata(GV, "texture", 1); 7102 return; 7103 } 7104 } 7105 7106 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 7107 if (!FD) return; 7108 7109 llvm::Function *F = cast<llvm::Function>(GV); 7110 7111 // Perform special handling in OpenCL mode 7112 if (M.getLangOpts().OpenCL) { 7113 // Use OpenCL function attributes to check for kernel functions 7114 // By default, all functions are device functions 7115 if (FD->hasAttr<OpenCLKernelAttr>()) { 7116 // OpenCL __kernel functions get kernel metadata 7117 // Create !{<func-ref>, metadata !"kernel", i32 1} node 7118 addNVVMMetadata(F, "kernel", 1); 7119 // And kernel functions are not subject to inlining 7120 F->addFnAttr(llvm::Attribute::NoInline); 7121 } 7122 } 7123 7124 // Perform special handling in CUDA mode. 7125 if (M.getLangOpts().CUDA) { 7126 // CUDA __global__ functions get a kernel metadata entry. Since 7127 // __global__ functions cannot be called from the device, we do not 7128 // need to set the noinline attribute. 7129 if (FD->hasAttr<CUDAGlobalAttr>()) { 7130 // Create !{<func-ref>, metadata !"kernel", i32 1} node 7131 addNVVMMetadata(F, "kernel", 1); 7132 } 7133 if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) { 7134 // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node 7135 llvm::APSInt MaxThreads(32); 7136 MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext()); 7137 if (MaxThreads > 0) 7138 addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue()); 7139 7140 // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was 7141 // not specified in __launch_bounds__ or if the user specified a 0 value, 7142 // we don't have to add a PTX directive. 7143 if (Attr->getMinBlocks()) { 7144 llvm::APSInt MinBlocks(32); 7145 MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext()); 7146 if (MinBlocks > 0) 7147 // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node 7148 addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue()); 7149 } 7150 } 7151 } 7152 } 7153 7154 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::GlobalValue *GV, 7155 StringRef Name, int Operand) { 7156 llvm::Module *M = GV->getParent(); 7157 llvm::LLVMContext &Ctx = M->getContext(); 7158 7159 // Get "nvvm.annotations" metadata node 7160 llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations"); 7161 7162 llvm::Metadata *MDVals[] = { 7163 llvm::ConstantAsMetadata::get(GV), llvm::MDString::get(Ctx, Name), 7164 llvm::ConstantAsMetadata::get( 7165 llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))}; 7166 // Append metadata to nvvm.annotations 7167 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 7168 } 7169 7170 bool NVPTXTargetCodeGenInfo::shouldEmitStaticExternCAliases() const { 7171 return false; 7172 } 7173 } 7174 7175 //===----------------------------------------------------------------------===// 7176 // SystemZ ABI Implementation 7177 //===----------------------------------------------------------------------===// 7178 7179 namespace { 7180 7181 class SystemZABIInfo : public SwiftABIInfo { 7182 bool HasVector; 7183 bool IsSoftFloatABI; 7184 7185 public: 7186 SystemZABIInfo(CodeGenTypes &CGT, bool HV, bool SF) 7187 : SwiftABIInfo(CGT), HasVector(HV), IsSoftFloatABI(SF) {} 7188 7189 bool isPromotableIntegerTypeForABI(QualType Ty) const; 7190 bool isCompoundType(QualType Ty) const; 7191 bool isVectorArgumentType(QualType Ty) const; 7192 bool isFPArgumentType(QualType Ty) const; 7193 QualType GetSingleElementType(QualType Ty) const; 7194 7195 ABIArgInfo classifyReturnType(QualType RetTy) const; 7196 ABIArgInfo classifyArgumentType(QualType ArgTy) const; 7197 7198 void computeInfo(CGFunctionInfo &FI) const override { 7199 if (!getCXXABI().classifyReturnType(FI)) 7200 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7201 for (auto &I : FI.arguments()) 7202 I.info = classifyArgumentType(I.type); 7203 } 7204 7205 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7206 QualType Ty) const override; 7207 7208 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 7209 bool asReturnValue) const override { 7210 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 7211 } 7212 bool isSwiftErrorInRegister() const override { 7213 return false; 7214 } 7215 }; 7216 7217 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo { 7218 public: 7219 SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector, bool SoftFloatABI) 7220 : TargetCodeGenInfo( 7221 std::make_unique<SystemZABIInfo>(CGT, HasVector, SoftFloatABI)) {} 7222 }; 7223 7224 } 7225 7226 bool SystemZABIInfo::isPromotableIntegerTypeForABI(QualType Ty) const { 7227 // Treat an enum type as its underlying type. 7228 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7229 Ty = EnumTy->getDecl()->getIntegerType(); 7230 7231 // Promotable integer types are required to be promoted by the ABI. 7232 if (ABIInfo::isPromotableIntegerTypeForABI(Ty)) 7233 return true; 7234 7235 if (const auto *EIT = Ty->getAs<ExtIntType>()) 7236 if (EIT->getNumBits() < 64) 7237 return true; 7238 7239 // 32-bit values must also be promoted. 7240 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 7241 switch (BT->getKind()) { 7242 case BuiltinType::Int: 7243 case BuiltinType::UInt: 7244 return true; 7245 default: 7246 return false; 7247 } 7248 return false; 7249 } 7250 7251 bool SystemZABIInfo::isCompoundType(QualType Ty) const { 7252 return (Ty->isAnyComplexType() || 7253 Ty->isVectorType() || 7254 isAggregateTypeForABI(Ty)); 7255 } 7256 7257 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const { 7258 return (HasVector && 7259 Ty->isVectorType() && 7260 getContext().getTypeSize(Ty) <= 128); 7261 } 7262 7263 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const { 7264 if (IsSoftFloatABI) 7265 return false; 7266 7267 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 7268 switch (BT->getKind()) { 7269 case BuiltinType::Float: 7270 case BuiltinType::Double: 7271 return true; 7272 default: 7273 return false; 7274 } 7275 7276 return false; 7277 } 7278 7279 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const { 7280 const RecordType *RT = Ty->getAs<RecordType>(); 7281 7282 if (RT && RT->isStructureOrClassType()) { 7283 const RecordDecl *RD = RT->getDecl(); 7284 QualType Found; 7285 7286 // If this is a C++ record, check the bases first. 7287 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 7288 for (const auto &I : CXXRD->bases()) { 7289 QualType Base = I.getType(); 7290 7291 // Empty bases don't affect things either way. 7292 if (isEmptyRecord(getContext(), Base, true)) 7293 continue; 7294 7295 if (!Found.isNull()) 7296 return Ty; 7297 Found = GetSingleElementType(Base); 7298 } 7299 7300 // Check the fields. 7301 for (const auto *FD : RD->fields()) { 7302 // For compatibility with GCC, ignore empty bitfields in C++ mode. 7303 // Unlike isSingleElementStruct(), empty structure and array fields 7304 // do count. So do anonymous bitfields that aren't zero-sized. 7305 if (getContext().getLangOpts().CPlusPlus && 7306 FD->isZeroLengthBitField(getContext())) 7307 continue; 7308 // Like isSingleElementStruct(), ignore C++20 empty data members. 7309 if (FD->hasAttr<NoUniqueAddressAttr>() && 7310 isEmptyRecord(getContext(), FD->getType(), true)) 7311 continue; 7312 7313 // Unlike isSingleElementStruct(), arrays do not count. 7314 // Nested structures still do though. 7315 if (!Found.isNull()) 7316 return Ty; 7317 Found = GetSingleElementType(FD->getType()); 7318 } 7319 7320 // Unlike isSingleElementStruct(), trailing padding is allowed. 7321 // An 8-byte aligned struct s { float f; } is passed as a double. 7322 if (!Found.isNull()) 7323 return Found; 7324 } 7325 7326 return Ty; 7327 } 7328 7329 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7330 QualType Ty) const { 7331 // Assume that va_list type is correct; should be pointer to LLVM type: 7332 // struct { 7333 // i64 __gpr; 7334 // i64 __fpr; 7335 // i8 *__overflow_arg_area; 7336 // i8 *__reg_save_area; 7337 // }; 7338 7339 // Every non-vector argument occupies 8 bytes and is passed by preference 7340 // in either GPRs or FPRs. Vector arguments occupy 8 or 16 bytes and are 7341 // always passed on the stack. 7342 Ty = getContext().getCanonicalType(Ty); 7343 auto TyInfo = getContext().getTypeInfoInChars(Ty); 7344 llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty); 7345 llvm::Type *DirectTy = ArgTy; 7346 ABIArgInfo AI = classifyArgumentType(Ty); 7347 bool IsIndirect = AI.isIndirect(); 7348 bool InFPRs = false; 7349 bool IsVector = false; 7350 CharUnits UnpaddedSize; 7351 CharUnits DirectAlign; 7352 if (IsIndirect) { 7353 DirectTy = llvm::PointerType::getUnqual(DirectTy); 7354 UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8); 7355 } else { 7356 if (AI.getCoerceToType()) 7357 ArgTy = AI.getCoerceToType(); 7358 InFPRs = (!IsSoftFloatABI && (ArgTy->isFloatTy() || ArgTy->isDoubleTy())); 7359 IsVector = ArgTy->isVectorTy(); 7360 UnpaddedSize = TyInfo.Width; 7361 DirectAlign = TyInfo.Align; 7362 } 7363 CharUnits PaddedSize = CharUnits::fromQuantity(8); 7364 if (IsVector && UnpaddedSize > PaddedSize) 7365 PaddedSize = CharUnits::fromQuantity(16); 7366 assert((UnpaddedSize <= PaddedSize) && "Invalid argument size."); 7367 7368 CharUnits Padding = (PaddedSize - UnpaddedSize); 7369 7370 llvm::Type *IndexTy = CGF.Int64Ty; 7371 llvm::Value *PaddedSizeV = 7372 llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity()); 7373 7374 if (IsVector) { 7375 // Work out the address of a vector argument on the stack. 7376 // Vector arguments are always passed in the high bits of a 7377 // single (8 byte) or double (16 byte) stack slot. 7378 Address OverflowArgAreaPtr = 7379 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr"); 7380 Address OverflowArgArea = 7381 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 7382 TyInfo.Align); 7383 Address MemAddr = 7384 CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr"); 7385 7386 // Update overflow_arg_area_ptr pointer 7387 llvm::Value *NewOverflowArgArea = 7388 CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV, 7389 "overflow_arg_area"); 7390 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 7391 7392 return MemAddr; 7393 } 7394 7395 assert(PaddedSize.getQuantity() == 8); 7396 7397 unsigned MaxRegs, RegCountField, RegSaveIndex; 7398 CharUnits RegPadding; 7399 if (InFPRs) { 7400 MaxRegs = 4; // Maximum of 4 FPR arguments 7401 RegCountField = 1; // __fpr 7402 RegSaveIndex = 16; // save offset for f0 7403 RegPadding = CharUnits(); // floats are passed in the high bits of an FPR 7404 } else { 7405 MaxRegs = 5; // Maximum of 5 GPR arguments 7406 RegCountField = 0; // __gpr 7407 RegSaveIndex = 2; // save offset for r2 7408 RegPadding = Padding; // values are passed in the low bits of a GPR 7409 } 7410 7411 Address RegCountPtr = 7412 CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr"); 7413 llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count"); 7414 llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs); 7415 llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV, 7416 "fits_in_regs"); 7417 7418 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 7419 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 7420 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 7421 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 7422 7423 // Emit code to load the value if it was passed in registers. 7424 CGF.EmitBlock(InRegBlock); 7425 7426 // Work out the address of an argument register. 7427 llvm::Value *ScaledRegCount = 7428 CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count"); 7429 llvm::Value *RegBase = 7430 llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity() 7431 + RegPadding.getQuantity()); 7432 llvm::Value *RegOffset = 7433 CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset"); 7434 Address RegSaveAreaPtr = 7435 CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr"); 7436 llvm::Value *RegSaveArea = 7437 CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area"); 7438 Address RawRegAddr(CGF.Builder.CreateGEP(RegSaveArea, RegOffset, 7439 "raw_reg_addr"), 7440 PaddedSize); 7441 Address RegAddr = 7442 CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr"); 7443 7444 // Update the register count 7445 llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1); 7446 llvm::Value *NewRegCount = 7447 CGF.Builder.CreateAdd(RegCount, One, "reg_count"); 7448 CGF.Builder.CreateStore(NewRegCount, RegCountPtr); 7449 CGF.EmitBranch(ContBlock); 7450 7451 // Emit code to load the value if it was passed in memory. 7452 CGF.EmitBlock(InMemBlock); 7453 7454 // Work out the address of a stack argument. 7455 Address OverflowArgAreaPtr = 7456 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr"); 7457 Address OverflowArgArea = 7458 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 7459 PaddedSize); 7460 Address RawMemAddr = 7461 CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr"); 7462 Address MemAddr = 7463 CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr"); 7464 7465 // Update overflow_arg_area_ptr pointer 7466 llvm::Value *NewOverflowArgArea = 7467 CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV, 7468 "overflow_arg_area"); 7469 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 7470 CGF.EmitBranch(ContBlock); 7471 7472 // Return the appropriate result. 7473 CGF.EmitBlock(ContBlock); 7474 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 7475 MemAddr, InMemBlock, "va_arg.addr"); 7476 7477 if (IsIndirect) 7478 ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"), 7479 TyInfo.Align); 7480 7481 return ResAddr; 7482 } 7483 7484 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const { 7485 if (RetTy->isVoidType()) 7486 return ABIArgInfo::getIgnore(); 7487 if (isVectorArgumentType(RetTy)) 7488 return ABIArgInfo::getDirect(); 7489 if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64) 7490 return getNaturalAlignIndirect(RetTy); 7491 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 7492 : ABIArgInfo::getDirect()); 7493 } 7494 7495 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const { 7496 // Handle the generic C++ ABI. 7497 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 7498 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7499 7500 // Integers and enums are extended to full register width. 7501 if (isPromotableIntegerTypeForABI(Ty)) 7502 return ABIArgInfo::getExtend(Ty); 7503 7504 // Handle vector types and vector-like structure types. Note that 7505 // as opposed to float-like structure types, we do not allow any 7506 // padding for vector-like structures, so verify the sizes match. 7507 uint64_t Size = getContext().getTypeSize(Ty); 7508 QualType SingleElementTy = GetSingleElementType(Ty); 7509 if (isVectorArgumentType(SingleElementTy) && 7510 getContext().getTypeSize(SingleElementTy) == Size) 7511 return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy)); 7512 7513 // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly. 7514 if (Size != 8 && Size != 16 && Size != 32 && Size != 64) 7515 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 7516 7517 // Handle small structures. 7518 if (const RecordType *RT = Ty->getAs<RecordType>()) { 7519 // Structures with flexible arrays have variable length, so really 7520 // fail the size test above. 7521 const RecordDecl *RD = RT->getDecl(); 7522 if (RD->hasFlexibleArrayMember()) 7523 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 7524 7525 // The structure is passed as an unextended integer, a float, or a double. 7526 llvm::Type *PassTy; 7527 if (isFPArgumentType(SingleElementTy)) { 7528 assert(Size == 32 || Size == 64); 7529 if (Size == 32) 7530 PassTy = llvm::Type::getFloatTy(getVMContext()); 7531 else 7532 PassTy = llvm::Type::getDoubleTy(getVMContext()); 7533 } else 7534 PassTy = llvm::IntegerType::get(getVMContext(), Size); 7535 return ABIArgInfo::getDirect(PassTy); 7536 } 7537 7538 // Non-structure compounds are passed indirectly. 7539 if (isCompoundType(Ty)) 7540 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 7541 7542 return ABIArgInfo::getDirect(nullptr); 7543 } 7544 7545 //===----------------------------------------------------------------------===// 7546 // MSP430 ABI Implementation 7547 //===----------------------------------------------------------------------===// 7548 7549 namespace { 7550 7551 class MSP430ABIInfo : public DefaultABIInfo { 7552 static ABIArgInfo complexArgInfo() { 7553 ABIArgInfo Info = ABIArgInfo::getDirect(); 7554 Info.setCanBeFlattened(false); 7555 return Info; 7556 } 7557 7558 public: 7559 MSP430ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 7560 7561 ABIArgInfo classifyReturnType(QualType RetTy) const { 7562 if (RetTy->isAnyComplexType()) 7563 return complexArgInfo(); 7564 7565 return DefaultABIInfo::classifyReturnType(RetTy); 7566 } 7567 7568 ABIArgInfo classifyArgumentType(QualType RetTy) const { 7569 if (RetTy->isAnyComplexType()) 7570 return complexArgInfo(); 7571 7572 return DefaultABIInfo::classifyArgumentType(RetTy); 7573 } 7574 7575 // Just copy the original implementations because 7576 // DefaultABIInfo::classify{Return,Argument}Type() are not virtual 7577 void computeInfo(CGFunctionInfo &FI) const override { 7578 if (!getCXXABI().classifyReturnType(FI)) 7579 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7580 for (auto &I : FI.arguments()) 7581 I.info = classifyArgumentType(I.type); 7582 } 7583 7584 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7585 QualType Ty) const override { 7586 return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty)); 7587 } 7588 }; 7589 7590 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo { 7591 public: 7592 MSP430TargetCodeGenInfo(CodeGenTypes &CGT) 7593 : TargetCodeGenInfo(std::make_unique<MSP430ABIInfo>(CGT)) {} 7594 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7595 CodeGen::CodeGenModule &M) const override; 7596 }; 7597 7598 } 7599 7600 void MSP430TargetCodeGenInfo::setTargetAttributes( 7601 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 7602 if (GV->isDeclaration()) 7603 return; 7604 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 7605 const auto *InterruptAttr = FD->getAttr<MSP430InterruptAttr>(); 7606 if (!InterruptAttr) 7607 return; 7608 7609 // Handle 'interrupt' attribute: 7610 llvm::Function *F = cast<llvm::Function>(GV); 7611 7612 // Step 1: Set ISR calling convention. 7613 F->setCallingConv(llvm::CallingConv::MSP430_INTR); 7614 7615 // Step 2: Add attributes goodness. 7616 F->addFnAttr(llvm::Attribute::NoInline); 7617 F->addFnAttr("interrupt", llvm::utostr(InterruptAttr->getNumber())); 7618 } 7619 } 7620 7621 //===----------------------------------------------------------------------===// 7622 // MIPS ABI Implementation. This works for both little-endian and 7623 // big-endian variants. 7624 //===----------------------------------------------------------------------===// 7625 7626 namespace { 7627 class MipsABIInfo : public ABIInfo { 7628 bool IsO32; 7629 unsigned MinABIStackAlignInBytes, StackAlignInBytes; 7630 void CoerceToIntArgs(uint64_t TySize, 7631 SmallVectorImpl<llvm::Type *> &ArgList) const; 7632 llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const; 7633 llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const; 7634 llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const; 7635 public: 7636 MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) : 7637 ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8), 7638 StackAlignInBytes(IsO32 ? 8 : 16) {} 7639 7640 ABIArgInfo classifyReturnType(QualType RetTy) const; 7641 ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const; 7642 void computeInfo(CGFunctionInfo &FI) const override; 7643 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7644 QualType Ty) const override; 7645 ABIArgInfo extendType(QualType Ty) const; 7646 }; 7647 7648 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo { 7649 unsigned SizeOfUnwindException; 7650 public: 7651 MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32) 7652 : TargetCodeGenInfo(std::make_unique<MipsABIInfo>(CGT, IsO32)), 7653 SizeOfUnwindException(IsO32 ? 24 : 32) {} 7654 7655 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 7656 return 29; 7657 } 7658 7659 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7660 CodeGen::CodeGenModule &CGM) const override { 7661 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 7662 if (!FD) return; 7663 llvm::Function *Fn = cast<llvm::Function>(GV); 7664 7665 if (FD->hasAttr<MipsLongCallAttr>()) 7666 Fn->addFnAttr("long-call"); 7667 else if (FD->hasAttr<MipsShortCallAttr>()) 7668 Fn->addFnAttr("short-call"); 7669 7670 // Other attributes do not have a meaning for declarations. 7671 if (GV->isDeclaration()) 7672 return; 7673 7674 if (FD->hasAttr<Mips16Attr>()) { 7675 Fn->addFnAttr("mips16"); 7676 } 7677 else if (FD->hasAttr<NoMips16Attr>()) { 7678 Fn->addFnAttr("nomips16"); 7679 } 7680 7681 if (FD->hasAttr<MicroMipsAttr>()) 7682 Fn->addFnAttr("micromips"); 7683 else if (FD->hasAttr<NoMicroMipsAttr>()) 7684 Fn->addFnAttr("nomicromips"); 7685 7686 const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>(); 7687 if (!Attr) 7688 return; 7689 7690 const char *Kind; 7691 switch (Attr->getInterrupt()) { 7692 case MipsInterruptAttr::eic: Kind = "eic"; break; 7693 case MipsInterruptAttr::sw0: Kind = "sw0"; break; 7694 case MipsInterruptAttr::sw1: Kind = "sw1"; break; 7695 case MipsInterruptAttr::hw0: Kind = "hw0"; break; 7696 case MipsInterruptAttr::hw1: Kind = "hw1"; break; 7697 case MipsInterruptAttr::hw2: Kind = "hw2"; break; 7698 case MipsInterruptAttr::hw3: Kind = "hw3"; break; 7699 case MipsInterruptAttr::hw4: Kind = "hw4"; break; 7700 case MipsInterruptAttr::hw5: Kind = "hw5"; break; 7701 } 7702 7703 Fn->addFnAttr("interrupt", Kind); 7704 7705 } 7706 7707 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 7708 llvm::Value *Address) const override; 7709 7710 unsigned getSizeOfUnwindException() const override { 7711 return SizeOfUnwindException; 7712 } 7713 }; 7714 } 7715 7716 void MipsABIInfo::CoerceToIntArgs( 7717 uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const { 7718 llvm::IntegerType *IntTy = 7719 llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8); 7720 7721 // Add (TySize / MinABIStackAlignInBytes) args of IntTy. 7722 for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N) 7723 ArgList.push_back(IntTy); 7724 7725 // If necessary, add one more integer type to ArgList. 7726 unsigned R = TySize % (MinABIStackAlignInBytes * 8); 7727 7728 if (R) 7729 ArgList.push_back(llvm::IntegerType::get(getVMContext(), R)); 7730 } 7731 7732 // In N32/64, an aligned double precision floating point field is passed in 7733 // a register. 7734 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const { 7735 SmallVector<llvm::Type*, 8> ArgList, IntArgList; 7736 7737 if (IsO32) { 7738 CoerceToIntArgs(TySize, ArgList); 7739 return llvm::StructType::get(getVMContext(), ArgList); 7740 } 7741 7742 if (Ty->isComplexType()) 7743 return CGT.ConvertType(Ty); 7744 7745 const RecordType *RT = Ty->getAs<RecordType>(); 7746 7747 // Unions/vectors are passed in integer registers. 7748 if (!RT || !RT->isStructureOrClassType()) { 7749 CoerceToIntArgs(TySize, ArgList); 7750 return llvm::StructType::get(getVMContext(), ArgList); 7751 } 7752 7753 const RecordDecl *RD = RT->getDecl(); 7754 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 7755 assert(!(TySize % 8) && "Size of structure must be multiple of 8."); 7756 7757 uint64_t LastOffset = 0; 7758 unsigned idx = 0; 7759 llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64); 7760 7761 // Iterate over fields in the struct/class and check if there are any aligned 7762 // double fields. 7763 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 7764 i != e; ++i, ++idx) { 7765 const QualType Ty = i->getType(); 7766 const BuiltinType *BT = Ty->getAs<BuiltinType>(); 7767 7768 if (!BT || BT->getKind() != BuiltinType::Double) 7769 continue; 7770 7771 uint64_t Offset = Layout.getFieldOffset(idx); 7772 if (Offset % 64) // Ignore doubles that are not aligned. 7773 continue; 7774 7775 // Add ((Offset - LastOffset) / 64) args of type i64. 7776 for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j) 7777 ArgList.push_back(I64); 7778 7779 // Add double type. 7780 ArgList.push_back(llvm::Type::getDoubleTy(getVMContext())); 7781 LastOffset = Offset + 64; 7782 } 7783 7784 CoerceToIntArgs(TySize - LastOffset, IntArgList); 7785 ArgList.append(IntArgList.begin(), IntArgList.end()); 7786 7787 return llvm::StructType::get(getVMContext(), ArgList); 7788 } 7789 7790 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset, 7791 uint64_t Offset) const { 7792 if (OrigOffset + MinABIStackAlignInBytes > Offset) 7793 return nullptr; 7794 7795 return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8); 7796 } 7797 7798 ABIArgInfo 7799 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const { 7800 Ty = useFirstFieldIfTransparentUnion(Ty); 7801 7802 uint64_t OrigOffset = Offset; 7803 uint64_t TySize = getContext().getTypeSize(Ty); 7804 uint64_t Align = getContext().getTypeAlign(Ty) / 8; 7805 7806 Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes), 7807 (uint64_t)StackAlignInBytes); 7808 unsigned CurrOffset = llvm::alignTo(Offset, Align); 7809 Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8; 7810 7811 if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) { 7812 // Ignore empty aggregates. 7813 if (TySize == 0) 7814 return ABIArgInfo::getIgnore(); 7815 7816 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 7817 Offset = OrigOffset + MinABIStackAlignInBytes; 7818 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7819 } 7820 7821 // If we have reached here, aggregates are passed directly by coercing to 7822 // another structure type. Padding is inserted if the offset of the 7823 // aggregate is unaligned. 7824 ABIArgInfo ArgInfo = 7825 ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0, 7826 getPaddingType(OrigOffset, CurrOffset)); 7827 ArgInfo.setInReg(true); 7828 return ArgInfo; 7829 } 7830 7831 // Treat an enum type as its underlying type. 7832 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7833 Ty = EnumTy->getDecl()->getIntegerType(); 7834 7835 // Make sure we pass indirectly things that are too large. 7836 if (const auto *EIT = Ty->getAs<ExtIntType>()) 7837 if (EIT->getNumBits() > 128 || 7838 (EIT->getNumBits() > 64 && 7839 !getContext().getTargetInfo().hasInt128Type())) 7840 return getNaturalAlignIndirect(Ty); 7841 7842 // All integral types are promoted to the GPR width. 7843 if (Ty->isIntegralOrEnumerationType()) 7844 return extendType(Ty); 7845 7846 return ABIArgInfo::getDirect( 7847 nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset)); 7848 } 7849 7850 llvm::Type* 7851 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const { 7852 const RecordType *RT = RetTy->getAs<RecordType>(); 7853 SmallVector<llvm::Type*, 8> RTList; 7854 7855 if (RT && RT->isStructureOrClassType()) { 7856 const RecordDecl *RD = RT->getDecl(); 7857 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 7858 unsigned FieldCnt = Layout.getFieldCount(); 7859 7860 // N32/64 returns struct/classes in floating point registers if the 7861 // following conditions are met: 7862 // 1. The size of the struct/class is no larger than 128-bit. 7863 // 2. The struct/class has one or two fields all of which are floating 7864 // point types. 7865 // 3. The offset of the first field is zero (this follows what gcc does). 7866 // 7867 // Any other composite results are returned in integer registers. 7868 // 7869 if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) { 7870 RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end(); 7871 for (; b != e; ++b) { 7872 const BuiltinType *BT = b->getType()->getAs<BuiltinType>(); 7873 7874 if (!BT || !BT->isFloatingPoint()) 7875 break; 7876 7877 RTList.push_back(CGT.ConvertType(b->getType())); 7878 } 7879 7880 if (b == e) 7881 return llvm::StructType::get(getVMContext(), RTList, 7882 RD->hasAttr<PackedAttr>()); 7883 7884 RTList.clear(); 7885 } 7886 } 7887 7888 CoerceToIntArgs(Size, RTList); 7889 return llvm::StructType::get(getVMContext(), RTList); 7890 } 7891 7892 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const { 7893 uint64_t Size = getContext().getTypeSize(RetTy); 7894 7895 if (RetTy->isVoidType()) 7896 return ABIArgInfo::getIgnore(); 7897 7898 // O32 doesn't treat zero-sized structs differently from other structs. 7899 // However, N32/N64 ignores zero sized return values. 7900 if (!IsO32 && Size == 0) 7901 return ABIArgInfo::getIgnore(); 7902 7903 if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) { 7904 if (Size <= 128) { 7905 if (RetTy->isAnyComplexType()) 7906 return ABIArgInfo::getDirect(); 7907 7908 // O32 returns integer vectors in registers and N32/N64 returns all small 7909 // aggregates in registers. 7910 if (!IsO32 || 7911 (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) { 7912 ABIArgInfo ArgInfo = 7913 ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size)); 7914 ArgInfo.setInReg(true); 7915 return ArgInfo; 7916 } 7917 } 7918 7919 return getNaturalAlignIndirect(RetTy); 7920 } 7921 7922 // Treat an enum type as its underlying type. 7923 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 7924 RetTy = EnumTy->getDecl()->getIntegerType(); 7925 7926 // Make sure we pass indirectly things that are too large. 7927 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 7928 if (EIT->getNumBits() > 128 || 7929 (EIT->getNumBits() > 64 && 7930 !getContext().getTargetInfo().hasInt128Type())) 7931 return getNaturalAlignIndirect(RetTy); 7932 7933 if (isPromotableIntegerTypeForABI(RetTy)) 7934 return ABIArgInfo::getExtend(RetTy); 7935 7936 if ((RetTy->isUnsignedIntegerOrEnumerationType() || 7937 RetTy->isSignedIntegerOrEnumerationType()) && Size == 32 && !IsO32) 7938 return ABIArgInfo::getSignExtend(RetTy); 7939 7940 return ABIArgInfo::getDirect(); 7941 } 7942 7943 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const { 7944 ABIArgInfo &RetInfo = FI.getReturnInfo(); 7945 if (!getCXXABI().classifyReturnType(FI)) 7946 RetInfo = classifyReturnType(FI.getReturnType()); 7947 7948 // Check if a pointer to an aggregate is passed as a hidden argument. 7949 uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0; 7950 7951 for (auto &I : FI.arguments()) 7952 I.info = classifyArgumentType(I.type, Offset); 7953 } 7954 7955 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7956 QualType OrigTy) const { 7957 QualType Ty = OrigTy; 7958 7959 // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64. 7960 // Pointers are also promoted in the same way but this only matters for N32. 7961 unsigned SlotSizeInBits = IsO32 ? 32 : 64; 7962 unsigned PtrWidth = getTarget().getPointerWidth(0); 7963 bool DidPromote = false; 7964 if ((Ty->isIntegerType() && 7965 getContext().getIntWidth(Ty) < SlotSizeInBits) || 7966 (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) { 7967 DidPromote = true; 7968 Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits, 7969 Ty->isSignedIntegerType()); 7970 } 7971 7972 auto TyInfo = getContext().getTypeInfoInChars(Ty); 7973 7974 // The alignment of things in the argument area is never larger than 7975 // StackAlignInBytes. 7976 TyInfo.Align = 7977 std::min(TyInfo.Align, CharUnits::fromQuantity(StackAlignInBytes)); 7978 7979 // MinABIStackAlignInBytes is the size of argument slots on the stack. 7980 CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes); 7981 7982 Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 7983 TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true); 7984 7985 7986 // If there was a promotion, "unpromote" into a temporary. 7987 // TODO: can we just use a pointer into a subset of the original slot? 7988 if (DidPromote) { 7989 Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp"); 7990 llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr); 7991 7992 // Truncate down to the right width. 7993 llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType() 7994 : CGF.IntPtrTy); 7995 llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy); 7996 if (OrigTy->isPointerType()) 7997 V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType()); 7998 7999 CGF.Builder.CreateStore(V, Temp); 8000 Addr = Temp; 8001 } 8002 8003 return Addr; 8004 } 8005 8006 ABIArgInfo MipsABIInfo::extendType(QualType Ty) const { 8007 int TySize = getContext().getTypeSize(Ty); 8008 8009 // MIPS64 ABI requires unsigned 32 bit integers to be sign extended. 8010 if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 8011 return ABIArgInfo::getSignExtend(Ty); 8012 8013 return ABIArgInfo::getExtend(Ty); 8014 } 8015 8016 bool 8017 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 8018 llvm::Value *Address) const { 8019 // This information comes from gcc's implementation, which seems to 8020 // as canonical as it gets. 8021 8022 // Everything on MIPS is 4 bytes. Double-precision FP registers 8023 // are aliased to pairs of single-precision FP registers. 8024 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 8025 8026 // 0-31 are the general purpose registers, $0 - $31. 8027 // 32-63 are the floating-point registers, $f0 - $f31. 8028 // 64 and 65 are the multiply/divide registers, $hi and $lo. 8029 // 66 is the (notional, I think) register for signal-handler return. 8030 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65); 8031 8032 // 67-74 are the floating-point status registers, $fcc0 - $fcc7. 8033 // They are one bit wide and ignored here. 8034 8035 // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31. 8036 // (coprocessor 1 is the FP unit) 8037 // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31. 8038 // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31. 8039 // 176-181 are the DSP accumulator registers. 8040 AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181); 8041 return false; 8042 } 8043 8044 //===----------------------------------------------------------------------===// 8045 // AVR ABI Implementation. 8046 //===----------------------------------------------------------------------===// 8047 8048 namespace { 8049 class AVRTargetCodeGenInfo : public TargetCodeGenInfo { 8050 public: 8051 AVRTargetCodeGenInfo(CodeGenTypes &CGT) 8052 : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {} 8053 8054 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 8055 CodeGen::CodeGenModule &CGM) const override { 8056 if (GV->isDeclaration()) 8057 return; 8058 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 8059 if (!FD) return; 8060 auto *Fn = cast<llvm::Function>(GV); 8061 8062 if (FD->getAttr<AVRInterruptAttr>()) 8063 Fn->addFnAttr("interrupt"); 8064 8065 if (FD->getAttr<AVRSignalAttr>()) 8066 Fn->addFnAttr("signal"); 8067 } 8068 }; 8069 } 8070 8071 //===----------------------------------------------------------------------===// 8072 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults. 8073 // Currently subclassed only to implement custom OpenCL C function attribute 8074 // handling. 8075 //===----------------------------------------------------------------------===// 8076 8077 namespace { 8078 8079 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo { 8080 public: 8081 TCETargetCodeGenInfo(CodeGenTypes &CGT) 8082 : DefaultTargetCodeGenInfo(CGT) {} 8083 8084 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 8085 CodeGen::CodeGenModule &M) const override; 8086 }; 8087 8088 void TCETargetCodeGenInfo::setTargetAttributes( 8089 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 8090 if (GV->isDeclaration()) 8091 return; 8092 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 8093 if (!FD) return; 8094 8095 llvm::Function *F = cast<llvm::Function>(GV); 8096 8097 if (M.getLangOpts().OpenCL) { 8098 if (FD->hasAttr<OpenCLKernelAttr>()) { 8099 // OpenCL C Kernel functions are not subject to inlining 8100 F->addFnAttr(llvm::Attribute::NoInline); 8101 const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>(); 8102 if (Attr) { 8103 // Convert the reqd_work_group_size() attributes to metadata. 8104 llvm::LLVMContext &Context = F->getContext(); 8105 llvm::NamedMDNode *OpenCLMetadata = 8106 M.getModule().getOrInsertNamedMetadata( 8107 "opencl.kernel_wg_size_info"); 8108 8109 SmallVector<llvm::Metadata *, 5> Operands; 8110 Operands.push_back(llvm::ConstantAsMetadata::get(F)); 8111 8112 Operands.push_back( 8113 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 8114 M.Int32Ty, llvm::APInt(32, Attr->getXDim())))); 8115 Operands.push_back( 8116 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 8117 M.Int32Ty, llvm::APInt(32, Attr->getYDim())))); 8118 Operands.push_back( 8119 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 8120 M.Int32Ty, llvm::APInt(32, Attr->getZDim())))); 8121 8122 // Add a boolean constant operand for "required" (true) or "hint" 8123 // (false) for implementing the work_group_size_hint attr later. 8124 // Currently always true as the hint is not yet implemented. 8125 Operands.push_back( 8126 llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context))); 8127 OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands)); 8128 } 8129 } 8130 } 8131 } 8132 8133 } 8134 8135 //===----------------------------------------------------------------------===// 8136 // Hexagon ABI Implementation 8137 //===----------------------------------------------------------------------===// 8138 8139 namespace { 8140 8141 class HexagonABIInfo : public DefaultABIInfo { 8142 public: 8143 HexagonABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 8144 8145 private: 8146 ABIArgInfo classifyReturnType(QualType RetTy) const; 8147 ABIArgInfo classifyArgumentType(QualType RetTy) const; 8148 ABIArgInfo classifyArgumentType(QualType RetTy, unsigned *RegsLeft) const; 8149 8150 void computeInfo(CGFunctionInfo &FI) const override; 8151 8152 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8153 QualType Ty) const override; 8154 Address EmitVAArgFromMemory(CodeGenFunction &CFG, Address VAListAddr, 8155 QualType Ty) const; 8156 Address EmitVAArgForHexagon(CodeGenFunction &CFG, Address VAListAddr, 8157 QualType Ty) const; 8158 Address EmitVAArgForHexagonLinux(CodeGenFunction &CFG, Address VAListAddr, 8159 QualType Ty) const; 8160 }; 8161 8162 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo { 8163 public: 8164 HexagonTargetCodeGenInfo(CodeGenTypes &CGT) 8165 : TargetCodeGenInfo(std::make_unique<HexagonABIInfo>(CGT)) {} 8166 8167 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 8168 return 29; 8169 } 8170 8171 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 8172 CodeGen::CodeGenModule &GCM) const override { 8173 if (GV->isDeclaration()) 8174 return; 8175 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 8176 if (!FD) 8177 return; 8178 } 8179 }; 8180 8181 } // namespace 8182 8183 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const { 8184 unsigned RegsLeft = 6; 8185 if (!getCXXABI().classifyReturnType(FI)) 8186 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 8187 for (auto &I : FI.arguments()) 8188 I.info = classifyArgumentType(I.type, &RegsLeft); 8189 } 8190 8191 static bool HexagonAdjustRegsLeft(uint64_t Size, unsigned *RegsLeft) { 8192 assert(Size <= 64 && "Not expecting to pass arguments larger than 64 bits" 8193 " through registers"); 8194 8195 if (*RegsLeft == 0) 8196 return false; 8197 8198 if (Size <= 32) { 8199 (*RegsLeft)--; 8200 return true; 8201 } 8202 8203 if (2 <= (*RegsLeft & (~1U))) { 8204 *RegsLeft = (*RegsLeft & (~1U)) - 2; 8205 return true; 8206 } 8207 8208 // Next available register was r5 but candidate was greater than 32-bits so it 8209 // has to go on the stack. However we still consume r5 8210 if (*RegsLeft == 1) 8211 *RegsLeft = 0; 8212 8213 return false; 8214 } 8215 8216 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty, 8217 unsigned *RegsLeft) const { 8218 if (!isAggregateTypeForABI(Ty)) { 8219 // Treat an enum type as its underlying type. 8220 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 8221 Ty = EnumTy->getDecl()->getIntegerType(); 8222 8223 uint64_t Size = getContext().getTypeSize(Ty); 8224 if (Size <= 64) 8225 HexagonAdjustRegsLeft(Size, RegsLeft); 8226 8227 if (Size > 64 && Ty->isExtIntType()) 8228 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 8229 8230 return isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 8231 : ABIArgInfo::getDirect(); 8232 } 8233 8234 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 8235 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 8236 8237 // Ignore empty records. 8238 if (isEmptyRecord(getContext(), Ty, true)) 8239 return ABIArgInfo::getIgnore(); 8240 8241 uint64_t Size = getContext().getTypeSize(Ty); 8242 unsigned Align = getContext().getTypeAlign(Ty); 8243 8244 if (Size > 64) 8245 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 8246 8247 if (HexagonAdjustRegsLeft(Size, RegsLeft)) 8248 Align = Size <= 32 ? 32 : 64; 8249 if (Size <= Align) { 8250 // Pass in the smallest viable integer type. 8251 if (!llvm::isPowerOf2_64(Size)) 8252 Size = llvm::NextPowerOf2(Size); 8253 return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size)); 8254 } 8255 return DefaultABIInfo::classifyArgumentType(Ty); 8256 } 8257 8258 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const { 8259 if (RetTy->isVoidType()) 8260 return ABIArgInfo::getIgnore(); 8261 8262 const TargetInfo &T = CGT.getTarget(); 8263 uint64_t Size = getContext().getTypeSize(RetTy); 8264 8265 if (RetTy->getAs<VectorType>()) { 8266 // HVX vectors are returned in vector registers or register pairs. 8267 if (T.hasFeature("hvx")) { 8268 assert(T.hasFeature("hvx-length64b") || T.hasFeature("hvx-length128b")); 8269 uint64_t VecSize = T.hasFeature("hvx-length64b") ? 64*8 : 128*8; 8270 if (Size == VecSize || Size == 2*VecSize) 8271 return ABIArgInfo::getDirectInReg(); 8272 } 8273 // Large vector types should be returned via memory. 8274 if (Size > 64) 8275 return getNaturalAlignIndirect(RetTy); 8276 } 8277 8278 if (!isAggregateTypeForABI(RetTy)) { 8279 // Treat an enum type as its underlying type. 8280 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 8281 RetTy = EnumTy->getDecl()->getIntegerType(); 8282 8283 if (Size > 64 && RetTy->isExtIntType()) 8284 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 8285 8286 return isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 8287 : ABIArgInfo::getDirect(); 8288 } 8289 8290 if (isEmptyRecord(getContext(), RetTy, true)) 8291 return ABIArgInfo::getIgnore(); 8292 8293 // Aggregates <= 8 bytes are returned in registers, other aggregates 8294 // are returned indirectly. 8295 if (Size <= 64) { 8296 // Return in the smallest viable integer type. 8297 if (!llvm::isPowerOf2_64(Size)) 8298 Size = llvm::NextPowerOf2(Size); 8299 return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size)); 8300 } 8301 return getNaturalAlignIndirect(RetTy, /*ByVal=*/true); 8302 } 8303 8304 Address HexagonABIInfo::EmitVAArgFromMemory(CodeGenFunction &CGF, 8305 Address VAListAddr, 8306 QualType Ty) const { 8307 // Load the overflow area pointer. 8308 Address __overflow_area_pointer_p = 8309 CGF.Builder.CreateStructGEP(VAListAddr, 2, "__overflow_area_pointer_p"); 8310 llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad( 8311 __overflow_area_pointer_p, "__overflow_area_pointer"); 8312 8313 uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8; 8314 if (Align > 4) { 8315 // Alignment should be a power of 2. 8316 assert((Align & (Align - 1)) == 0 && "Alignment is not power of 2!"); 8317 8318 // overflow_arg_area = (overflow_arg_area + align - 1) & -align; 8319 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int64Ty, Align - 1); 8320 8321 // Add offset to the current pointer to access the argument. 8322 __overflow_area_pointer = 8323 CGF.Builder.CreateGEP(__overflow_area_pointer, Offset); 8324 llvm::Value *AsInt = 8325 CGF.Builder.CreatePtrToInt(__overflow_area_pointer, CGF.Int32Ty); 8326 8327 // Create a mask which should be "AND"ed 8328 // with (overflow_arg_area + align - 1) 8329 llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -(int)Align); 8330 __overflow_area_pointer = CGF.Builder.CreateIntToPtr( 8331 CGF.Builder.CreateAnd(AsInt, Mask), __overflow_area_pointer->getType(), 8332 "__overflow_area_pointer.align"); 8333 } 8334 8335 // Get the type of the argument from memory and bitcast 8336 // overflow area pointer to the argument type. 8337 llvm::Type *PTy = CGF.ConvertTypeForMem(Ty); 8338 Address AddrTyped = CGF.Builder.CreateBitCast( 8339 Address(__overflow_area_pointer, CharUnits::fromQuantity(Align)), 8340 llvm::PointerType::getUnqual(PTy)); 8341 8342 // Round up to the minimum stack alignment for varargs which is 4 bytes. 8343 uint64_t Offset = llvm::alignTo(CGF.getContext().getTypeSize(Ty) / 8, 4); 8344 8345 __overflow_area_pointer = CGF.Builder.CreateGEP( 8346 __overflow_area_pointer, llvm::ConstantInt::get(CGF.Int32Ty, Offset), 8347 "__overflow_area_pointer.next"); 8348 CGF.Builder.CreateStore(__overflow_area_pointer, __overflow_area_pointer_p); 8349 8350 return AddrTyped; 8351 } 8352 8353 Address HexagonABIInfo::EmitVAArgForHexagon(CodeGenFunction &CGF, 8354 Address VAListAddr, 8355 QualType Ty) const { 8356 // FIXME: Need to handle alignment 8357 llvm::Type *BP = CGF.Int8PtrTy; 8358 llvm::Type *BPP = CGF.Int8PtrPtrTy; 8359 CGBuilderTy &Builder = CGF.Builder; 8360 Address VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); 8361 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 8362 // Handle address alignment for type alignment > 32 bits 8363 uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8; 8364 if (TyAlign > 4) { 8365 assert((TyAlign & (TyAlign - 1)) == 0 && "Alignment is not power of 2!"); 8366 llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty); 8367 AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1)); 8368 AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1))); 8369 Addr = Builder.CreateIntToPtr(AddrAsInt, BP); 8370 } 8371 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 8372 Address AddrTyped = Builder.CreateBitCast( 8373 Address(Addr, CharUnits::fromQuantity(TyAlign)), PTy); 8374 8375 uint64_t Offset = llvm::alignTo(CGF.getContext().getTypeSize(Ty) / 8, 4); 8376 llvm::Value *NextAddr = Builder.CreateGEP( 8377 Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), "ap.next"); 8378 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 8379 8380 return AddrTyped; 8381 } 8382 8383 Address HexagonABIInfo::EmitVAArgForHexagonLinux(CodeGenFunction &CGF, 8384 Address VAListAddr, 8385 QualType Ty) const { 8386 int ArgSize = CGF.getContext().getTypeSize(Ty) / 8; 8387 8388 if (ArgSize > 8) 8389 return EmitVAArgFromMemory(CGF, VAListAddr, Ty); 8390 8391 // Here we have check if the argument is in register area or 8392 // in overflow area. 8393 // If the saved register area pointer + argsize rounded up to alignment > 8394 // saved register area end pointer, argument is in overflow area. 8395 unsigned RegsLeft = 6; 8396 Ty = CGF.getContext().getCanonicalType(Ty); 8397 (void)classifyArgumentType(Ty, &RegsLeft); 8398 8399 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); 8400 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 8401 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); 8402 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 8403 8404 // Get rounded size of the argument.GCC does not allow vararg of 8405 // size < 4 bytes. We follow the same logic here. 8406 ArgSize = (CGF.getContext().getTypeSize(Ty) <= 32) ? 4 : 8; 8407 int ArgAlign = (CGF.getContext().getTypeSize(Ty) <= 32) ? 4 : 8; 8408 8409 // Argument may be in saved register area 8410 CGF.EmitBlock(MaybeRegBlock); 8411 8412 // Load the current saved register area pointer. 8413 Address __current_saved_reg_area_pointer_p = CGF.Builder.CreateStructGEP( 8414 VAListAddr, 0, "__current_saved_reg_area_pointer_p"); 8415 llvm::Value *__current_saved_reg_area_pointer = CGF.Builder.CreateLoad( 8416 __current_saved_reg_area_pointer_p, "__current_saved_reg_area_pointer"); 8417 8418 // Load the saved register area end pointer. 8419 Address __saved_reg_area_end_pointer_p = CGF.Builder.CreateStructGEP( 8420 VAListAddr, 1, "__saved_reg_area_end_pointer_p"); 8421 llvm::Value *__saved_reg_area_end_pointer = CGF.Builder.CreateLoad( 8422 __saved_reg_area_end_pointer_p, "__saved_reg_area_end_pointer"); 8423 8424 // If the size of argument is > 4 bytes, check if the stack 8425 // location is aligned to 8 bytes 8426 if (ArgAlign > 4) { 8427 8428 llvm::Value *__current_saved_reg_area_pointer_int = 8429 CGF.Builder.CreatePtrToInt(__current_saved_reg_area_pointer, 8430 CGF.Int32Ty); 8431 8432 __current_saved_reg_area_pointer_int = CGF.Builder.CreateAdd( 8433 __current_saved_reg_area_pointer_int, 8434 llvm::ConstantInt::get(CGF.Int32Ty, (ArgAlign - 1)), 8435 "align_current_saved_reg_area_pointer"); 8436 8437 __current_saved_reg_area_pointer_int = 8438 CGF.Builder.CreateAnd(__current_saved_reg_area_pointer_int, 8439 llvm::ConstantInt::get(CGF.Int32Ty, -ArgAlign), 8440 "align_current_saved_reg_area_pointer"); 8441 8442 __current_saved_reg_area_pointer = 8443 CGF.Builder.CreateIntToPtr(__current_saved_reg_area_pointer_int, 8444 __current_saved_reg_area_pointer->getType(), 8445 "align_current_saved_reg_area_pointer"); 8446 } 8447 8448 llvm::Value *__new_saved_reg_area_pointer = 8449 CGF.Builder.CreateGEP(__current_saved_reg_area_pointer, 8450 llvm::ConstantInt::get(CGF.Int32Ty, ArgSize), 8451 "__new_saved_reg_area_pointer"); 8452 8453 llvm::Value *UsingStack = 0; 8454 UsingStack = CGF.Builder.CreateICmpSGT(__new_saved_reg_area_pointer, 8455 __saved_reg_area_end_pointer); 8456 8457 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, InRegBlock); 8458 8459 // Argument in saved register area 8460 // Implement the block where argument is in register saved area 8461 CGF.EmitBlock(InRegBlock); 8462 8463 llvm::Type *PTy = CGF.ConvertType(Ty); 8464 llvm::Value *__saved_reg_area_p = CGF.Builder.CreateBitCast( 8465 __current_saved_reg_area_pointer, llvm::PointerType::getUnqual(PTy)); 8466 8467 CGF.Builder.CreateStore(__new_saved_reg_area_pointer, 8468 __current_saved_reg_area_pointer_p); 8469 8470 CGF.EmitBranch(ContBlock); 8471 8472 // Argument in overflow area 8473 // Implement the block where the argument is in overflow area. 8474 CGF.EmitBlock(OnStackBlock); 8475 8476 // Load the overflow area pointer 8477 Address __overflow_area_pointer_p = 8478 CGF.Builder.CreateStructGEP(VAListAddr, 2, "__overflow_area_pointer_p"); 8479 llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad( 8480 __overflow_area_pointer_p, "__overflow_area_pointer"); 8481 8482 // Align the overflow area pointer according to the alignment of the argument 8483 if (ArgAlign > 4) { 8484 llvm::Value *__overflow_area_pointer_int = 8485 CGF.Builder.CreatePtrToInt(__overflow_area_pointer, CGF.Int32Ty); 8486 8487 __overflow_area_pointer_int = 8488 CGF.Builder.CreateAdd(__overflow_area_pointer_int, 8489 llvm::ConstantInt::get(CGF.Int32Ty, ArgAlign - 1), 8490 "align_overflow_area_pointer"); 8491 8492 __overflow_area_pointer_int = 8493 CGF.Builder.CreateAnd(__overflow_area_pointer_int, 8494 llvm::ConstantInt::get(CGF.Int32Ty, -ArgAlign), 8495 "align_overflow_area_pointer"); 8496 8497 __overflow_area_pointer = CGF.Builder.CreateIntToPtr( 8498 __overflow_area_pointer_int, __overflow_area_pointer->getType(), 8499 "align_overflow_area_pointer"); 8500 } 8501 8502 // Get the pointer for next argument in overflow area and store it 8503 // to overflow area pointer. 8504 llvm::Value *__new_overflow_area_pointer = CGF.Builder.CreateGEP( 8505 __overflow_area_pointer, llvm::ConstantInt::get(CGF.Int32Ty, ArgSize), 8506 "__overflow_area_pointer.next"); 8507 8508 CGF.Builder.CreateStore(__new_overflow_area_pointer, 8509 __overflow_area_pointer_p); 8510 8511 CGF.Builder.CreateStore(__new_overflow_area_pointer, 8512 __current_saved_reg_area_pointer_p); 8513 8514 // Bitcast the overflow area pointer to the type of argument. 8515 llvm::Type *OverflowPTy = CGF.ConvertTypeForMem(Ty); 8516 llvm::Value *__overflow_area_p = CGF.Builder.CreateBitCast( 8517 __overflow_area_pointer, llvm::PointerType::getUnqual(OverflowPTy)); 8518 8519 CGF.EmitBranch(ContBlock); 8520 8521 // Get the correct pointer to load the variable argument 8522 // Implement the ContBlock 8523 CGF.EmitBlock(ContBlock); 8524 8525 llvm::Type *MemPTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); 8526 llvm::PHINode *ArgAddr = CGF.Builder.CreatePHI(MemPTy, 2, "vaarg.addr"); 8527 ArgAddr->addIncoming(__saved_reg_area_p, InRegBlock); 8528 ArgAddr->addIncoming(__overflow_area_p, OnStackBlock); 8529 8530 return Address(ArgAddr, CharUnits::fromQuantity(ArgAlign)); 8531 } 8532 8533 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8534 QualType Ty) const { 8535 8536 if (getTarget().getTriple().isMusl()) 8537 return EmitVAArgForHexagonLinux(CGF, VAListAddr, Ty); 8538 8539 return EmitVAArgForHexagon(CGF, VAListAddr, Ty); 8540 } 8541 8542 //===----------------------------------------------------------------------===// 8543 // Lanai ABI Implementation 8544 //===----------------------------------------------------------------------===// 8545 8546 namespace { 8547 class LanaiABIInfo : public DefaultABIInfo { 8548 public: 8549 LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 8550 8551 bool shouldUseInReg(QualType Ty, CCState &State) const; 8552 8553 void computeInfo(CGFunctionInfo &FI) const override { 8554 CCState State(FI); 8555 // Lanai uses 4 registers to pass arguments unless the function has the 8556 // regparm attribute set. 8557 if (FI.getHasRegParm()) { 8558 State.FreeRegs = FI.getRegParm(); 8559 } else { 8560 State.FreeRegs = 4; 8561 } 8562 8563 if (!getCXXABI().classifyReturnType(FI)) 8564 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 8565 for (auto &I : FI.arguments()) 8566 I.info = classifyArgumentType(I.type, State); 8567 } 8568 8569 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 8570 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 8571 }; 8572 } // end anonymous namespace 8573 8574 bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const { 8575 unsigned Size = getContext().getTypeSize(Ty); 8576 unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U; 8577 8578 if (SizeInRegs == 0) 8579 return false; 8580 8581 if (SizeInRegs > State.FreeRegs) { 8582 State.FreeRegs = 0; 8583 return false; 8584 } 8585 8586 State.FreeRegs -= SizeInRegs; 8587 8588 return true; 8589 } 8590 8591 ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal, 8592 CCState &State) const { 8593 if (!ByVal) { 8594 if (State.FreeRegs) { 8595 --State.FreeRegs; // Non-byval indirects just use one pointer. 8596 return getNaturalAlignIndirectInReg(Ty); 8597 } 8598 return getNaturalAlignIndirect(Ty, false); 8599 } 8600 8601 // Compute the byval alignment. 8602 const unsigned MinABIStackAlignInBytes = 4; 8603 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 8604 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true, 8605 /*Realign=*/TypeAlign > 8606 MinABIStackAlignInBytes); 8607 } 8608 8609 ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty, 8610 CCState &State) const { 8611 // Check with the C++ ABI first. 8612 const RecordType *RT = Ty->getAs<RecordType>(); 8613 if (RT) { 8614 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 8615 if (RAA == CGCXXABI::RAA_Indirect) { 8616 return getIndirectResult(Ty, /*ByVal=*/false, State); 8617 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 8618 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 8619 } 8620 } 8621 8622 if (isAggregateTypeForABI(Ty)) { 8623 // Structures with flexible arrays are always indirect. 8624 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 8625 return getIndirectResult(Ty, /*ByVal=*/true, State); 8626 8627 // Ignore empty structs/unions. 8628 if (isEmptyRecord(getContext(), Ty, true)) 8629 return ABIArgInfo::getIgnore(); 8630 8631 llvm::LLVMContext &LLVMContext = getVMContext(); 8632 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; 8633 if (SizeInRegs <= State.FreeRegs) { 8634 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 8635 SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32); 8636 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 8637 State.FreeRegs -= SizeInRegs; 8638 return ABIArgInfo::getDirectInReg(Result); 8639 } else { 8640 State.FreeRegs = 0; 8641 } 8642 return getIndirectResult(Ty, true, State); 8643 } 8644 8645 // Treat an enum type as its underlying type. 8646 if (const auto *EnumTy = Ty->getAs<EnumType>()) 8647 Ty = EnumTy->getDecl()->getIntegerType(); 8648 8649 bool InReg = shouldUseInReg(Ty, State); 8650 8651 // Don't pass >64 bit integers in registers. 8652 if (const auto *EIT = Ty->getAs<ExtIntType>()) 8653 if (EIT->getNumBits() > 64) 8654 return getIndirectResult(Ty, /*ByVal=*/true, State); 8655 8656 if (isPromotableIntegerTypeForABI(Ty)) { 8657 if (InReg) 8658 return ABIArgInfo::getDirectInReg(); 8659 return ABIArgInfo::getExtend(Ty); 8660 } 8661 if (InReg) 8662 return ABIArgInfo::getDirectInReg(); 8663 return ABIArgInfo::getDirect(); 8664 } 8665 8666 namespace { 8667 class LanaiTargetCodeGenInfo : public TargetCodeGenInfo { 8668 public: 8669 LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 8670 : TargetCodeGenInfo(std::make_unique<LanaiABIInfo>(CGT)) {} 8671 }; 8672 } 8673 8674 //===----------------------------------------------------------------------===// 8675 // AMDGPU ABI Implementation 8676 //===----------------------------------------------------------------------===// 8677 8678 namespace { 8679 8680 class AMDGPUABIInfo final : public DefaultABIInfo { 8681 private: 8682 static const unsigned MaxNumRegsForArgsRet = 16; 8683 8684 unsigned numRegsForType(QualType Ty) const; 8685 8686 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 8687 bool isHomogeneousAggregateSmallEnough(const Type *Base, 8688 uint64_t Members) const override; 8689 8690 // Coerce HIP scalar pointer arguments from generic pointers to global ones. 8691 llvm::Type *coerceKernelArgumentType(llvm::Type *Ty, unsigned FromAS, 8692 unsigned ToAS) const { 8693 // Single value types. 8694 if (Ty->isPointerTy() && Ty->getPointerAddressSpace() == FromAS) 8695 return llvm::PointerType::get( 8696 cast<llvm::PointerType>(Ty)->getElementType(), ToAS); 8697 return Ty; 8698 } 8699 8700 public: 8701 explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) : 8702 DefaultABIInfo(CGT) {} 8703 8704 ABIArgInfo classifyReturnType(QualType RetTy) const; 8705 ABIArgInfo classifyKernelArgumentType(QualType Ty) const; 8706 ABIArgInfo classifyArgumentType(QualType Ty, unsigned &NumRegsLeft) const; 8707 8708 void computeInfo(CGFunctionInfo &FI) const override; 8709 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8710 QualType Ty) const override; 8711 }; 8712 8713 bool AMDGPUABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 8714 return true; 8715 } 8716 8717 bool AMDGPUABIInfo::isHomogeneousAggregateSmallEnough( 8718 const Type *Base, uint64_t Members) const { 8719 uint32_t NumRegs = (getContext().getTypeSize(Base) + 31) / 32; 8720 8721 // Homogeneous Aggregates may occupy at most 16 registers. 8722 return Members * NumRegs <= MaxNumRegsForArgsRet; 8723 } 8724 8725 /// Estimate number of registers the type will use when passed in registers. 8726 unsigned AMDGPUABIInfo::numRegsForType(QualType Ty) const { 8727 unsigned NumRegs = 0; 8728 8729 if (const VectorType *VT = Ty->getAs<VectorType>()) { 8730 // Compute from the number of elements. The reported size is based on the 8731 // in-memory size, which includes the padding 4th element for 3-vectors. 8732 QualType EltTy = VT->getElementType(); 8733 unsigned EltSize = getContext().getTypeSize(EltTy); 8734 8735 // 16-bit element vectors should be passed as packed. 8736 if (EltSize == 16) 8737 return (VT->getNumElements() + 1) / 2; 8738 8739 unsigned EltNumRegs = (EltSize + 31) / 32; 8740 return EltNumRegs * VT->getNumElements(); 8741 } 8742 8743 if (const RecordType *RT = Ty->getAs<RecordType>()) { 8744 const RecordDecl *RD = RT->getDecl(); 8745 assert(!RD->hasFlexibleArrayMember()); 8746 8747 for (const FieldDecl *Field : RD->fields()) { 8748 QualType FieldTy = Field->getType(); 8749 NumRegs += numRegsForType(FieldTy); 8750 } 8751 8752 return NumRegs; 8753 } 8754 8755 return (getContext().getTypeSize(Ty) + 31) / 32; 8756 } 8757 8758 void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const { 8759 llvm::CallingConv::ID CC = FI.getCallingConvention(); 8760 8761 if (!getCXXABI().classifyReturnType(FI)) 8762 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 8763 8764 unsigned NumRegsLeft = MaxNumRegsForArgsRet; 8765 for (auto &Arg : FI.arguments()) { 8766 if (CC == llvm::CallingConv::AMDGPU_KERNEL) { 8767 Arg.info = classifyKernelArgumentType(Arg.type); 8768 } else { 8769 Arg.info = classifyArgumentType(Arg.type, NumRegsLeft); 8770 } 8771 } 8772 } 8773 8774 Address AMDGPUABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8775 QualType Ty) const { 8776 llvm_unreachable("AMDGPU does not support varargs"); 8777 } 8778 8779 ABIArgInfo AMDGPUABIInfo::classifyReturnType(QualType RetTy) const { 8780 if (isAggregateTypeForABI(RetTy)) { 8781 // Records with non-trivial destructors/copy-constructors should not be 8782 // returned by value. 8783 if (!getRecordArgABI(RetTy, getCXXABI())) { 8784 // Ignore empty structs/unions. 8785 if (isEmptyRecord(getContext(), RetTy, true)) 8786 return ABIArgInfo::getIgnore(); 8787 8788 // Lower single-element structs to just return a regular value. 8789 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 8790 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 8791 8792 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 8793 const RecordDecl *RD = RT->getDecl(); 8794 if (RD->hasFlexibleArrayMember()) 8795 return DefaultABIInfo::classifyReturnType(RetTy); 8796 } 8797 8798 // Pack aggregates <= 4 bytes into single VGPR or pair. 8799 uint64_t Size = getContext().getTypeSize(RetTy); 8800 if (Size <= 16) 8801 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 8802 8803 if (Size <= 32) 8804 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 8805 8806 if (Size <= 64) { 8807 llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext()); 8808 return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2)); 8809 } 8810 8811 if (numRegsForType(RetTy) <= MaxNumRegsForArgsRet) 8812 return ABIArgInfo::getDirect(); 8813 } 8814 } 8815 8816 // Otherwise just do the default thing. 8817 return DefaultABIInfo::classifyReturnType(RetTy); 8818 } 8819 8820 /// For kernels all parameters are really passed in a special buffer. It doesn't 8821 /// make sense to pass anything byval, so everything must be direct. 8822 ABIArgInfo AMDGPUABIInfo::classifyKernelArgumentType(QualType Ty) const { 8823 Ty = useFirstFieldIfTransparentUnion(Ty); 8824 8825 // TODO: Can we omit empty structs? 8826 8827 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 8828 Ty = QualType(SeltTy, 0); 8829 8830 llvm::Type *OrigLTy = CGT.ConvertType(Ty); 8831 llvm::Type *LTy = OrigLTy; 8832 if (getContext().getLangOpts().HIP) { 8833 LTy = coerceKernelArgumentType( 8834 OrigLTy, /*FromAS=*/getContext().getTargetAddressSpace(LangAS::Default), 8835 /*ToAS=*/getContext().getTargetAddressSpace(LangAS::cuda_device)); 8836 } 8837 8838 // FIXME: Should also use this for OpenCL, but it requires addressing the 8839 // problem of kernels being called. 8840 // 8841 // FIXME: This doesn't apply the optimization of coercing pointers in structs 8842 // to global address space when using byref. This would require implementing a 8843 // new kind of coercion of the in-memory type when for indirect arguments. 8844 if (!getContext().getLangOpts().OpenCL && LTy == OrigLTy && 8845 isAggregateTypeForABI(Ty)) { 8846 return ABIArgInfo::getIndirectAliased( 8847 getContext().getTypeAlignInChars(Ty), 8848 getContext().getTargetAddressSpace(LangAS::opencl_constant), 8849 false /*Realign*/, nullptr /*Padding*/); 8850 } 8851 8852 // If we set CanBeFlattened to true, CodeGen will expand the struct to its 8853 // individual elements, which confuses the Clover OpenCL backend; therefore we 8854 // have to set it to false here. Other args of getDirect() are just defaults. 8855 return ABIArgInfo::getDirect(LTy, 0, nullptr, false); 8856 } 8857 8858 ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty, 8859 unsigned &NumRegsLeft) const { 8860 assert(NumRegsLeft <= MaxNumRegsForArgsRet && "register estimate underflow"); 8861 8862 Ty = useFirstFieldIfTransparentUnion(Ty); 8863 8864 if (isAggregateTypeForABI(Ty)) { 8865 // Records with non-trivial destructors/copy-constructors should not be 8866 // passed by value. 8867 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 8868 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 8869 8870 // Ignore empty structs/unions. 8871 if (isEmptyRecord(getContext(), Ty, true)) 8872 return ABIArgInfo::getIgnore(); 8873 8874 // Lower single-element structs to just pass a regular value. TODO: We 8875 // could do reasonable-size multiple-element structs too, using getExpand(), 8876 // though watch out for things like bitfields. 8877 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 8878 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 8879 8880 if (const RecordType *RT = Ty->getAs<RecordType>()) { 8881 const RecordDecl *RD = RT->getDecl(); 8882 if (RD->hasFlexibleArrayMember()) 8883 return DefaultABIInfo::classifyArgumentType(Ty); 8884 } 8885 8886 // Pack aggregates <= 8 bytes into single VGPR or pair. 8887 uint64_t Size = getContext().getTypeSize(Ty); 8888 if (Size <= 64) { 8889 unsigned NumRegs = (Size + 31) / 32; 8890 NumRegsLeft -= std::min(NumRegsLeft, NumRegs); 8891 8892 if (Size <= 16) 8893 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 8894 8895 if (Size <= 32) 8896 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 8897 8898 // XXX: Should this be i64 instead, and should the limit increase? 8899 llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext()); 8900 return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2)); 8901 } 8902 8903 if (NumRegsLeft > 0) { 8904 unsigned NumRegs = numRegsForType(Ty); 8905 if (NumRegsLeft >= NumRegs) { 8906 NumRegsLeft -= NumRegs; 8907 return ABIArgInfo::getDirect(); 8908 } 8909 } 8910 } 8911 8912 // Otherwise just do the default thing. 8913 ABIArgInfo ArgInfo = DefaultABIInfo::classifyArgumentType(Ty); 8914 if (!ArgInfo.isIndirect()) { 8915 unsigned NumRegs = numRegsForType(Ty); 8916 NumRegsLeft -= std::min(NumRegs, NumRegsLeft); 8917 } 8918 8919 return ArgInfo; 8920 } 8921 8922 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo { 8923 public: 8924 AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT) 8925 : TargetCodeGenInfo(std::make_unique<AMDGPUABIInfo>(CGT)) {} 8926 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 8927 CodeGen::CodeGenModule &M) const override; 8928 unsigned getOpenCLKernelCallingConv() const override; 8929 8930 llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM, 8931 llvm::PointerType *T, QualType QT) const override; 8932 8933 LangAS getASTAllocaAddressSpace() const override { 8934 return getLangASFromTargetAS( 8935 getABIInfo().getDataLayout().getAllocaAddrSpace()); 8936 } 8937 LangAS getGlobalVarAddressSpace(CodeGenModule &CGM, 8938 const VarDecl *D) const override; 8939 llvm::SyncScope::ID getLLVMSyncScopeID(const LangOptions &LangOpts, 8940 SyncScope Scope, 8941 llvm::AtomicOrdering Ordering, 8942 llvm::LLVMContext &Ctx) const override; 8943 llvm::Function * 8944 createEnqueuedBlockKernel(CodeGenFunction &CGF, 8945 llvm::Function *BlockInvokeFunc, 8946 llvm::Value *BlockLiteral) const override; 8947 bool shouldEmitStaticExternCAliases() const override; 8948 void setCUDAKernelCallingConvention(const FunctionType *&FT) const override; 8949 }; 8950 } 8951 8952 static bool requiresAMDGPUProtectedVisibility(const Decl *D, 8953 llvm::GlobalValue *GV) { 8954 if (GV->getVisibility() != llvm::GlobalValue::HiddenVisibility) 8955 return false; 8956 8957 return D->hasAttr<OpenCLKernelAttr>() || 8958 (isa<FunctionDecl>(D) && D->hasAttr<CUDAGlobalAttr>()) || 8959 (isa<VarDecl>(D) && 8960 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || 8961 cast<VarDecl>(D)->getType()->isCUDADeviceBuiltinSurfaceType() || 8962 cast<VarDecl>(D)->getType()->isCUDADeviceBuiltinTextureType())); 8963 } 8964 8965 void AMDGPUTargetCodeGenInfo::setTargetAttributes( 8966 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 8967 if (requiresAMDGPUProtectedVisibility(D, GV)) { 8968 GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 8969 GV->setDSOLocal(true); 8970 } 8971 8972 if (GV->isDeclaration()) 8973 return; 8974 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 8975 if (!FD) 8976 return; 8977 8978 llvm::Function *F = cast<llvm::Function>(GV); 8979 8980 const auto *ReqdWGS = M.getLangOpts().OpenCL ? 8981 FD->getAttr<ReqdWorkGroupSizeAttr>() : nullptr; 8982 8983 8984 const bool IsOpenCLKernel = M.getLangOpts().OpenCL && 8985 FD->hasAttr<OpenCLKernelAttr>(); 8986 const bool IsHIPKernel = M.getLangOpts().HIP && 8987 FD->hasAttr<CUDAGlobalAttr>(); 8988 if ((IsOpenCLKernel || IsHIPKernel) && 8989 (M.getTriple().getOS() == llvm::Triple::AMDHSA)) 8990 F->addFnAttr("amdgpu-implicitarg-num-bytes", "56"); 8991 8992 if (IsHIPKernel) 8993 F->addFnAttr("uniform-work-group-size", "true"); 8994 8995 8996 const auto *FlatWGS = FD->getAttr<AMDGPUFlatWorkGroupSizeAttr>(); 8997 if (ReqdWGS || FlatWGS) { 8998 unsigned Min = 0; 8999 unsigned Max = 0; 9000 if (FlatWGS) { 9001 Min = FlatWGS->getMin() 9002 ->EvaluateKnownConstInt(M.getContext()) 9003 .getExtValue(); 9004 Max = FlatWGS->getMax() 9005 ->EvaluateKnownConstInt(M.getContext()) 9006 .getExtValue(); 9007 } 9008 if (ReqdWGS && Min == 0 && Max == 0) 9009 Min = Max = ReqdWGS->getXDim() * ReqdWGS->getYDim() * ReqdWGS->getZDim(); 9010 9011 if (Min != 0) { 9012 assert(Min <= Max && "Min must be less than or equal Max"); 9013 9014 std::string AttrVal = llvm::utostr(Min) + "," + llvm::utostr(Max); 9015 F->addFnAttr("amdgpu-flat-work-group-size", AttrVal); 9016 } else 9017 assert(Max == 0 && "Max must be zero"); 9018 } else if (IsOpenCLKernel || IsHIPKernel) { 9019 // By default, restrict the maximum size to a value specified by 9020 // --gpu-max-threads-per-block=n or its default value. 9021 std::string AttrVal = 9022 std::string("1,") + llvm::utostr(M.getLangOpts().GPUMaxThreadsPerBlock); 9023 F->addFnAttr("amdgpu-flat-work-group-size", AttrVal); 9024 } 9025 9026 if (const auto *Attr = FD->getAttr<AMDGPUWavesPerEUAttr>()) { 9027 unsigned Min = 9028 Attr->getMin()->EvaluateKnownConstInt(M.getContext()).getExtValue(); 9029 unsigned Max = Attr->getMax() ? Attr->getMax() 9030 ->EvaluateKnownConstInt(M.getContext()) 9031 .getExtValue() 9032 : 0; 9033 9034 if (Min != 0) { 9035 assert((Max == 0 || Min <= Max) && "Min must be less than or equal Max"); 9036 9037 std::string AttrVal = llvm::utostr(Min); 9038 if (Max != 0) 9039 AttrVal = AttrVal + "," + llvm::utostr(Max); 9040 F->addFnAttr("amdgpu-waves-per-eu", AttrVal); 9041 } else 9042 assert(Max == 0 && "Max must be zero"); 9043 } 9044 9045 if (const auto *Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) { 9046 unsigned NumSGPR = Attr->getNumSGPR(); 9047 9048 if (NumSGPR != 0) 9049 F->addFnAttr("amdgpu-num-sgpr", llvm::utostr(NumSGPR)); 9050 } 9051 9052 if (const auto *Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) { 9053 uint32_t NumVGPR = Attr->getNumVGPR(); 9054 9055 if (NumVGPR != 0) 9056 F->addFnAttr("amdgpu-num-vgpr", llvm::utostr(NumVGPR)); 9057 } 9058 9059 if (M.getContext().getTargetInfo().allowAMDGPUUnsafeFPAtomics()) 9060 F->addFnAttr("amdgpu-unsafe-fp-atomics", "true"); 9061 } 9062 9063 unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 9064 return llvm::CallingConv::AMDGPU_KERNEL; 9065 } 9066 9067 // Currently LLVM assumes null pointers always have value 0, 9068 // which results in incorrectly transformed IR. Therefore, instead of 9069 // emitting null pointers in private and local address spaces, a null 9070 // pointer in generic address space is emitted which is casted to a 9071 // pointer in local or private address space. 9072 llvm::Constant *AMDGPUTargetCodeGenInfo::getNullPointer( 9073 const CodeGen::CodeGenModule &CGM, llvm::PointerType *PT, 9074 QualType QT) const { 9075 if (CGM.getContext().getTargetNullPointerValue(QT) == 0) 9076 return llvm::ConstantPointerNull::get(PT); 9077 9078 auto &Ctx = CGM.getContext(); 9079 auto NPT = llvm::PointerType::get(PT->getElementType(), 9080 Ctx.getTargetAddressSpace(LangAS::opencl_generic)); 9081 return llvm::ConstantExpr::getAddrSpaceCast( 9082 llvm::ConstantPointerNull::get(NPT), PT); 9083 } 9084 9085 LangAS 9086 AMDGPUTargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM, 9087 const VarDecl *D) const { 9088 assert(!CGM.getLangOpts().OpenCL && 9089 !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && 9090 "Address space agnostic languages only"); 9091 LangAS DefaultGlobalAS = getLangASFromTargetAS( 9092 CGM.getContext().getTargetAddressSpace(LangAS::opencl_global)); 9093 if (!D) 9094 return DefaultGlobalAS; 9095 9096 LangAS AddrSpace = D->getType().getAddressSpace(); 9097 assert(AddrSpace == LangAS::Default || isTargetAddressSpace(AddrSpace)); 9098 if (AddrSpace != LangAS::Default) 9099 return AddrSpace; 9100 9101 if (CGM.isTypeConstant(D->getType(), false)) { 9102 if (auto ConstAS = CGM.getTarget().getConstantAddressSpace()) 9103 return ConstAS.getValue(); 9104 } 9105 return DefaultGlobalAS; 9106 } 9107 9108 llvm::SyncScope::ID 9109 AMDGPUTargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts, 9110 SyncScope Scope, 9111 llvm::AtomicOrdering Ordering, 9112 llvm::LLVMContext &Ctx) const { 9113 std::string Name; 9114 switch (Scope) { 9115 case SyncScope::OpenCLWorkGroup: 9116 Name = "workgroup"; 9117 break; 9118 case SyncScope::OpenCLDevice: 9119 Name = "agent"; 9120 break; 9121 case SyncScope::OpenCLAllSVMDevices: 9122 Name = ""; 9123 break; 9124 case SyncScope::OpenCLSubGroup: 9125 Name = "wavefront"; 9126 } 9127 9128 if (Ordering != llvm::AtomicOrdering::SequentiallyConsistent) { 9129 if (!Name.empty()) 9130 Name = Twine(Twine(Name) + Twine("-")).str(); 9131 9132 Name = Twine(Twine(Name) + Twine("one-as")).str(); 9133 } 9134 9135 return Ctx.getOrInsertSyncScopeID(Name); 9136 } 9137 9138 bool AMDGPUTargetCodeGenInfo::shouldEmitStaticExternCAliases() const { 9139 return false; 9140 } 9141 9142 void AMDGPUTargetCodeGenInfo::setCUDAKernelCallingConvention( 9143 const FunctionType *&FT) const { 9144 FT = getABIInfo().getContext().adjustFunctionType( 9145 FT, FT->getExtInfo().withCallingConv(CC_OpenCLKernel)); 9146 } 9147 9148 //===----------------------------------------------------------------------===// 9149 // SPARC v8 ABI Implementation. 9150 // Based on the SPARC Compliance Definition version 2.4.1. 9151 // 9152 // Ensures that complex values are passed in registers. 9153 // 9154 namespace { 9155 class SparcV8ABIInfo : public DefaultABIInfo { 9156 public: 9157 SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 9158 9159 private: 9160 ABIArgInfo classifyReturnType(QualType RetTy) const; 9161 void computeInfo(CGFunctionInfo &FI) const override; 9162 }; 9163 } // end anonymous namespace 9164 9165 9166 ABIArgInfo 9167 SparcV8ABIInfo::classifyReturnType(QualType Ty) const { 9168 if (Ty->isAnyComplexType()) { 9169 return ABIArgInfo::getDirect(); 9170 } 9171 else { 9172 return DefaultABIInfo::classifyReturnType(Ty); 9173 } 9174 } 9175 9176 void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const { 9177 9178 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 9179 for (auto &Arg : FI.arguments()) 9180 Arg.info = classifyArgumentType(Arg.type); 9181 } 9182 9183 namespace { 9184 class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo { 9185 public: 9186 SparcV8TargetCodeGenInfo(CodeGenTypes &CGT) 9187 : TargetCodeGenInfo(std::make_unique<SparcV8ABIInfo>(CGT)) {} 9188 }; 9189 } // end anonymous namespace 9190 9191 //===----------------------------------------------------------------------===// 9192 // SPARC v9 ABI Implementation. 9193 // Based on the SPARC Compliance Definition version 2.4.1. 9194 // 9195 // Function arguments a mapped to a nominal "parameter array" and promoted to 9196 // registers depending on their type. Each argument occupies 8 or 16 bytes in 9197 // the array, structs larger than 16 bytes are passed indirectly. 9198 // 9199 // One case requires special care: 9200 // 9201 // struct mixed { 9202 // int i; 9203 // float f; 9204 // }; 9205 // 9206 // When a struct mixed is passed by value, it only occupies 8 bytes in the 9207 // parameter array, but the int is passed in an integer register, and the float 9208 // is passed in a floating point register. This is represented as two arguments 9209 // with the LLVM IR inreg attribute: 9210 // 9211 // declare void f(i32 inreg %i, float inreg %f) 9212 // 9213 // The code generator will only allocate 4 bytes from the parameter array for 9214 // the inreg arguments. All other arguments are allocated a multiple of 8 9215 // bytes. 9216 // 9217 namespace { 9218 class SparcV9ABIInfo : public ABIInfo { 9219 public: 9220 SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 9221 9222 private: 9223 ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const; 9224 void computeInfo(CGFunctionInfo &FI) const override; 9225 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9226 QualType Ty) const override; 9227 9228 // Coercion type builder for structs passed in registers. The coercion type 9229 // serves two purposes: 9230 // 9231 // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned' 9232 // in registers. 9233 // 2. Expose aligned floating point elements as first-level elements, so the 9234 // code generator knows to pass them in floating point registers. 9235 // 9236 // We also compute the InReg flag which indicates that the struct contains 9237 // aligned 32-bit floats. 9238 // 9239 struct CoerceBuilder { 9240 llvm::LLVMContext &Context; 9241 const llvm::DataLayout &DL; 9242 SmallVector<llvm::Type*, 8> Elems; 9243 uint64_t Size; 9244 bool InReg; 9245 9246 CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl) 9247 : Context(c), DL(dl), Size(0), InReg(false) {} 9248 9249 // Pad Elems with integers until Size is ToSize. 9250 void pad(uint64_t ToSize) { 9251 assert(ToSize >= Size && "Cannot remove elements"); 9252 if (ToSize == Size) 9253 return; 9254 9255 // Finish the current 64-bit word. 9256 uint64_t Aligned = llvm::alignTo(Size, 64); 9257 if (Aligned > Size && Aligned <= ToSize) { 9258 Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size)); 9259 Size = Aligned; 9260 } 9261 9262 // Add whole 64-bit words. 9263 while (Size + 64 <= ToSize) { 9264 Elems.push_back(llvm::Type::getInt64Ty(Context)); 9265 Size += 64; 9266 } 9267 9268 // Final in-word padding. 9269 if (Size < ToSize) { 9270 Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size)); 9271 Size = ToSize; 9272 } 9273 } 9274 9275 // Add a floating point element at Offset. 9276 void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) { 9277 // Unaligned floats are treated as integers. 9278 if (Offset % Bits) 9279 return; 9280 // The InReg flag is only required if there are any floats < 64 bits. 9281 if (Bits < 64) 9282 InReg = true; 9283 pad(Offset); 9284 Elems.push_back(Ty); 9285 Size = Offset + Bits; 9286 } 9287 9288 // Add a struct type to the coercion type, starting at Offset (in bits). 9289 void addStruct(uint64_t Offset, llvm::StructType *StrTy) { 9290 const llvm::StructLayout *Layout = DL.getStructLayout(StrTy); 9291 for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) { 9292 llvm::Type *ElemTy = StrTy->getElementType(i); 9293 uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i); 9294 switch (ElemTy->getTypeID()) { 9295 case llvm::Type::StructTyID: 9296 addStruct(ElemOffset, cast<llvm::StructType>(ElemTy)); 9297 break; 9298 case llvm::Type::FloatTyID: 9299 addFloat(ElemOffset, ElemTy, 32); 9300 break; 9301 case llvm::Type::DoubleTyID: 9302 addFloat(ElemOffset, ElemTy, 64); 9303 break; 9304 case llvm::Type::FP128TyID: 9305 addFloat(ElemOffset, ElemTy, 128); 9306 break; 9307 case llvm::Type::PointerTyID: 9308 if (ElemOffset % 64 == 0) { 9309 pad(ElemOffset); 9310 Elems.push_back(ElemTy); 9311 Size += 64; 9312 } 9313 break; 9314 default: 9315 break; 9316 } 9317 } 9318 } 9319 9320 // Check if Ty is a usable substitute for the coercion type. 9321 bool isUsableType(llvm::StructType *Ty) const { 9322 return llvm::makeArrayRef(Elems) == Ty->elements(); 9323 } 9324 9325 // Get the coercion type as a literal struct type. 9326 llvm::Type *getType() const { 9327 if (Elems.size() == 1) 9328 return Elems.front(); 9329 else 9330 return llvm::StructType::get(Context, Elems); 9331 } 9332 }; 9333 }; 9334 } // end anonymous namespace 9335 9336 ABIArgInfo 9337 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const { 9338 if (Ty->isVoidType()) 9339 return ABIArgInfo::getIgnore(); 9340 9341 uint64_t Size = getContext().getTypeSize(Ty); 9342 9343 // Anything too big to fit in registers is passed with an explicit indirect 9344 // pointer / sret pointer. 9345 if (Size > SizeLimit) 9346 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 9347 9348 // Treat an enum type as its underlying type. 9349 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 9350 Ty = EnumTy->getDecl()->getIntegerType(); 9351 9352 // Integer types smaller than a register are extended. 9353 if (Size < 64 && Ty->isIntegerType()) 9354 return ABIArgInfo::getExtend(Ty); 9355 9356 if (const auto *EIT = Ty->getAs<ExtIntType>()) 9357 if (EIT->getNumBits() < 64) 9358 return ABIArgInfo::getExtend(Ty); 9359 9360 // Other non-aggregates go in registers. 9361 if (!isAggregateTypeForABI(Ty)) 9362 return ABIArgInfo::getDirect(); 9363 9364 // If a C++ object has either a non-trivial copy constructor or a non-trivial 9365 // destructor, it is passed with an explicit indirect pointer / sret pointer. 9366 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 9367 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 9368 9369 // This is a small aggregate type that should be passed in registers. 9370 // Build a coercion type from the LLVM struct type. 9371 llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty)); 9372 if (!StrTy) 9373 return ABIArgInfo::getDirect(); 9374 9375 CoerceBuilder CB(getVMContext(), getDataLayout()); 9376 CB.addStruct(0, StrTy); 9377 CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64)); 9378 9379 // Try to use the original type for coercion. 9380 llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType(); 9381 9382 if (CB.InReg) 9383 return ABIArgInfo::getDirectInReg(CoerceTy); 9384 else 9385 return ABIArgInfo::getDirect(CoerceTy); 9386 } 9387 9388 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9389 QualType Ty) const { 9390 ABIArgInfo AI = classifyType(Ty, 16 * 8); 9391 llvm::Type *ArgTy = CGT.ConvertType(Ty); 9392 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 9393 AI.setCoerceToType(ArgTy); 9394 9395 CharUnits SlotSize = CharUnits::fromQuantity(8); 9396 9397 CGBuilderTy &Builder = CGF.Builder; 9398 Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 9399 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 9400 9401 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 9402 9403 Address ArgAddr = Address::invalid(); 9404 CharUnits Stride; 9405 switch (AI.getKind()) { 9406 case ABIArgInfo::Expand: 9407 case ABIArgInfo::CoerceAndExpand: 9408 case ABIArgInfo::InAlloca: 9409 llvm_unreachable("Unsupported ABI kind for va_arg"); 9410 9411 case ABIArgInfo::Extend: { 9412 Stride = SlotSize; 9413 CharUnits Offset = SlotSize - TypeInfo.Width; 9414 ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend"); 9415 break; 9416 } 9417 9418 case ABIArgInfo::Direct: { 9419 auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType()); 9420 Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize); 9421 ArgAddr = Addr; 9422 break; 9423 } 9424 9425 case ABIArgInfo::Indirect: 9426 case ABIArgInfo::IndirectAliased: 9427 Stride = SlotSize; 9428 ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect"); 9429 ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"), 9430 TypeInfo.Align); 9431 break; 9432 9433 case ABIArgInfo::Ignore: 9434 return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.Align); 9435 } 9436 9437 // Update VAList. 9438 Address NextPtr = Builder.CreateConstInBoundsByteGEP(Addr, Stride, "ap.next"); 9439 Builder.CreateStore(NextPtr.getPointer(), VAListAddr); 9440 9441 return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr"); 9442 } 9443 9444 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const { 9445 FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8); 9446 for (auto &I : FI.arguments()) 9447 I.info = classifyType(I.type, 16 * 8); 9448 } 9449 9450 namespace { 9451 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo { 9452 public: 9453 SparcV9TargetCodeGenInfo(CodeGenTypes &CGT) 9454 : TargetCodeGenInfo(std::make_unique<SparcV9ABIInfo>(CGT)) {} 9455 9456 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 9457 return 14; 9458 } 9459 9460 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 9461 llvm::Value *Address) const override; 9462 }; 9463 } // end anonymous namespace 9464 9465 bool 9466 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 9467 llvm::Value *Address) const { 9468 // This is calculated from the LLVM and GCC tables and verified 9469 // against gcc output. AFAIK all ABIs use the same encoding. 9470 9471 CodeGen::CGBuilderTy &Builder = CGF.Builder; 9472 9473 llvm::IntegerType *i8 = CGF.Int8Ty; 9474 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 9475 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 9476 9477 // 0-31: the 8-byte general-purpose registers 9478 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 9479 9480 // 32-63: f0-31, the 4-byte floating-point registers 9481 AssignToArrayRange(Builder, Address, Four8, 32, 63); 9482 9483 // Y = 64 9484 // PSR = 65 9485 // WIM = 66 9486 // TBR = 67 9487 // PC = 68 9488 // NPC = 69 9489 // FSR = 70 9490 // CSR = 71 9491 AssignToArrayRange(Builder, Address, Eight8, 64, 71); 9492 9493 // 72-87: d0-15, the 8-byte floating-point registers 9494 AssignToArrayRange(Builder, Address, Eight8, 72, 87); 9495 9496 return false; 9497 } 9498 9499 // ARC ABI implementation. 9500 namespace { 9501 9502 class ARCABIInfo : public DefaultABIInfo { 9503 public: 9504 using DefaultABIInfo::DefaultABIInfo; 9505 9506 private: 9507 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9508 QualType Ty) const override; 9509 9510 void updateState(const ABIArgInfo &Info, QualType Ty, CCState &State) const { 9511 if (!State.FreeRegs) 9512 return; 9513 if (Info.isIndirect() && Info.getInReg()) 9514 State.FreeRegs--; 9515 else if (Info.isDirect() && Info.getInReg()) { 9516 unsigned sz = (getContext().getTypeSize(Ty) + 31) / 32; 9517 if (sz < State.FreeRegs) 9518 State.FreeRegs -= sz; 9519 else 9520 State.FreeRegs = 0; 9521 } 9522 } 9523 9524 void computeInfo(CGFunctionInfo &FI) const override { 9525 CCState State(FI); 9526 // ARC uses 8 registers to pass arguments. 9527 State.FreeRegs = 8; 9528 9529 if (!getCXXABI().classifyReturnType(FI)) 9530 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 9531 updateState(FI.getReturnInfo(), FI.getReturnType(), State); 9532 for (auto &I : FI.arguments()) { 9533 I.info = classifyArgumentType(I.type, State.FreeRegs); 9534 updateState(I.info, I.type, State); 9535 } 9536 } 9537 9538 ABIArgInfo getIndirectByRef(QualType Ty, bool HasFreeRegs) const; 9539 ABIArgInfo getIndirectByValue(QualType Ty) const; 9540 ABIArgInfo classifyArgumentType(QualType Ty, uint8_t FreeRegs) const; 9541 ABIArgInfo classifyReturnType(QualType RetTy) const; 9542 }; 9543 9544 class ARCTargetCodeGenInfo : public TargetCodeGenInfo { 9545 public: 9546 ARCTargetCodeGenInfo(CodeGenTypes &CGT) 9547 : TargetCodeGenInfo(std::make_unique<ARCABIInfo>(CGT)) {} 9548 }; 9549 9550 9551 ABIArgInfo ARCABIInfo::getIndirectByRef(QualType Ty, bool HasFreeRegs) const { 9552 return HasFreeRegs ? getNaturalAlignIndirectInReg(Ty) : 9553 getNaturalAlignIndirect(Ty, false); 9554 } 9555 9556 ABIArgInfo ARCABIInfo::getIndirectByValue(QualType Ty) const { 9557 // Compute the byval alignment. 9558 const unsigned MinABIStackAlignInBytes = 4; 9559 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 9560 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true, 9561 TypeAlign > MinABIStackAlignInBytes); 9562 } 9563 9564 Address ARCABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9565 QualType Ty) const { 9566 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 9567 getContext().getTypeInfoInChars(Ty), 9568 CharUnits::fromQuantity(4), true); 9569 } 9570 9571 ABIArgInfo ARCABIInfo::classifyArgumentType(QualType Ty, 9572 uint8_t FreeRegs) const { 9573 // Handle the generic C++ ABI. 9574 const RecordType *RT = Ty->getAs<RecordType>(); 9575 if (RT) { 9576 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 9577 if (RAA == CGCXXABI::RAA_Indirect) 9578 return getIndirectByRef(Ty, FreeRegs > 0); 9579 9580 if (RAA == CGCXXABI::RAA_DirectInMemory) 9581 return getIndirectByValue(Ty); 9582 } 9583 9584 // Treat an enum type as its underlying type. 9585 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 9586 Ty = EnumTy->getDecl()->getIntegerType(); 9587 9588 auto SizeInRegs = llvm::alignTo(getContext().getTypeSize(Ty), 32) / 32; 9589 9590 if (isAggregateTypeForABI(Ty)) { 9591 // Structures with flexible arrays are always indirect. 9592 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 9593 return getIndirectByValue(Ty); 9594 9595 // Ignore empty structs/unions. 9596 if (isEmptyRecord(getContext(), Ty, true)) 9597 return ABIArgInfo::getIgnore(); 9598 9599 llvm::LLVMContext &LLVMContext = getVMContext(); 9600 9601 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 9602 SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32); 9603 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 9604 9605 return FreeRegs >= SizeInRegs ? 9606 ABIArgInfo::getDirectInReg(Result) : 9607 ABIArgInfo::getDirect(Result, 0, nullptr, false); 9608 } 9609 9610 if (const auto *EIT = Ty->getAs<ExtIntType>()) 9611 if (EIT->getNumBits() > 64) 9612 return getIndirectByValue(Ty); 9613 9614 return isPromotableIntegerTypeForABI(Ty) 9615 ? (FreeRegs >= SizeInRegs ? ABIArgInfo::getExtendInReg(Ty) 9616 : ABIArgInfo::getExtend(Ty)) 9617 : (FreeRegs >= SizeInRegs ? ABIArgInfo::getDirectInReg() 9618 : ABIArgInfo::getDirect()); 9619 } 9620 9621 ABIArgInfo ARCABIInfo::classifyReturnType(QualType RetTy) const { 9622 if (RetTy->isAnyComplexType()) 9623 return ABIArgInfo::getDirectInReg(); 9624 9625 // Arguments of size > 4 registers are indirect. 9626 auto RetSize = llvm::alignTo(getContext().getTypeSize(RetTy), 32) / 32; 9627 if (RetSize > 4) 9628 return getIndirectByRef(RetTy, /*HasFreeRegs*/ true); 9629 9630 return DefaultABIInfo::classifyReturnType(RetTy); 9631 } 9632 9633 } // End anonymous namespace. 9634 9635 //===----------------------------------------------------------------------===// 9636 // XCore ABI Implementation 9637 //===----------------------------------------------------------------------===// 9638 9639 namespace { 9640 9641 /// A SmallStringEnc instance is used to build up the TypeString by passing 9642 /// it by reference between functions that append to it. 9643 typedef llvm::SmallString<128> SmallStringEnc; 9644 9645 /// TypeStringCache caches the meta encodings of Types. 9646 /// 9647 /// The reason for caching TypeStrings is two fold: 9648 /// 1. To cache a type's encoding for later uses; 9649 /// 2. As a means to break recursive member type inclusion. 9650 /// 9651 /// A cache Entry can have a Status of: 9652 /// NonRecursive: The type encoding is not recursive; 9653 /// Recursive: The type encoding is recursive; 9654 /// Incomplete: An incomplete TypeString; 9655 /// IncompleteUsed: An incomplete TypeString that has been used in a 9656 /// Recursive type encoding. 9657 /// 9658 /// A NonRecursive entry will have all of its sub-members expanded as fully 9659 /// as possible. Whilst it may contain types which are recursive, the type 9660 /// itself is not recursive and thus its encoding may be safely used whenever 9661 /// the type is encountered. 9662 /// 9663 /// A Recursive entry will have all of its sub-members expanded as fully as 9664 /// possible. The type itself is recursive and it may contain other types which 9665 /// are recursive. The Recursive encoding must not be used during the expansion 9666 /// of a recursive type's recursive branch. For simplicity the code uses 9667 /// IncompleteCount to reject all usage of Recursive encodings for member types. 9668 /// 9669 /// An Incomplete entry is always a RecordType and only encodes its 9670 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and 9671 /// are placed into the cache during type expansion as a means to identify and 9672 /// handle recursive inclusion of types as sub-members. If there is recursion 9673 /// the entry becomes IncompleteUsed. 9674 /// 9675 /// During the expansion of a RecordType's members: 9676 /// 9677 /// If the cache contains a NonRecursive encoding for the member type, the 9678 /// cached encoding is used; 9679 /// 9680 /// If the cache contains a Recursive encoding for the member type, the 9681 /// cached encoding is 'Swapped' out, as it may be incorrect, and... 9682 /// 9683 /// If the member is a RecordType, an Incomplete encoding is placed into the 9684 /// cache to break potential recursive inclusion of itself as a sub-member; 9685 /// 9686 /// Once a member RecordType has been expanded, its temporary incomplete 9687 /// entry is removed from the cache. If a Recursive encoding was swapped out 9688 /// it is swapped back in; 9689 /// 9690 /// If an incomplete entry is used to expand a sub-member, the incomplete 9691 /// entry is marked as IncompleteUsed. The cache keeps count of how many 9692 /// IncompleteUsed entries it currently contains in IncompleteUsedCount; 9693 /// 9694 /// If a member's encoding is found to be a NonRecursive or Recursive viz: 9695 /// IncompleteUsedCount==0, the member's encoding is added to the cache. 9696 /// Else the member is part of a recursive type and thus the recursion has 9697 /// been exited too soon for the encoding to be correct for the member. 9698 /// 9699 class TypeStringCache { 9700 enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed}; 9701 struct Entry { 9702 std::string Str; // The encoded TypeString for the type. 9703 enum Status State; // Information about the encoding in 'Str'. 9704 std::string Swapped; // A temporary place holder for a Recursive encoding 9705 // during the expansion of RecordType's members. 9706 }; 9707 std::map<const IdentifierInfo *, struct Entry> Map; 9708 unsigned IncompleteCount; // Number of Incomplete entries in the Map. 9709 unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map. 9710 public: 9711 TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {} 9712 void addIncomplete(const IdentifierInfo *ID, std::string StubEnc); 9713 bool removeIncomplete(const IdentifierInfo *ID); 9714 void addIfComplete(const IdentifierInfo *ID, StringRef Str, 9715 bool IsRecursive); 9716 StringRef lookupStr(const IdentifierInfo *ID); 9717 }; 9718 9719 /// TypeString encodings for enum & union fields must be order. 9720 /// FieldEncoding is a helper for this ordering process. 9721 class FieldEncoding { 9722 bool HasName; 9723 std::string Enc; 9724 public: 9725 FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {} 9726 StringRef str() { return Enc; } 9727 bool operator<(const FieldEncoding &rhs) const { 9728 if (HasName != rhs.HasName) return HasName; 9729 return Enc < rhs.Enc; 9730 } 9731 }; 9732 9733 class XCoreABIInfo : public DefaultABIInfo { 9734 public: 9735 XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 9736 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9737 QualType Ty) const override; 9738 }; 9739 9740 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo { 9741 mutable TypeStringCache TSC; 9742 void emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 9743 const CodeGen::CodeGenModule &M) const; 9744 9745 public: 9746 XCoreTargetCodeGenInfo(CodeGenTypes &CGT) 9747 : TargetCodeGenInfo(std::make_unique<XCoreABIInfo>(CGT)) {} 9748 void emitTargetMetadata(CodeGen::CodeGenModule &CGM, 9749 const llvm::MapVector<GlobalDecl, StringRef> 9750 &MangledDeclNames) const override; 9751 }; 9752 9753 } // End anonymous namespace. 9754 9755 // TODO: this implementation is likely now redundant with the default 9756 // EmitVAArg. 9757 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9758 QualType Ty) const { 9759 CGBuilderTy &Builder = CGF.Builder; 9760 9761 // Get the VAList. 9762 CharUnits SlotSize = CharUnits::fromQuantity(4); 9763 Address AP(Builder.CreateLoad(VAListAddr), SlotSize); 9764 9765 // Handle the argument. 9766 ABIArgInfo AI = classifyArgumentType(Ty); 9767 CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty); 9768 llvm::Type *ArgTy = CGT.ConvertType(Ty); 9769 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 9770 AI.setCoerceToType(ArgTy); 9771 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 9772 9773 Address Val = Address::invalid(); 9774 CharUnits ArgSize = CharUnits::Zero(); 9775 switch (AI.getKind()) { 9776 case ABIArgInfo::Expand: 9777 case ABIArgInfo::CoerceAndExpand: 9778 case ABIArgInfo::InAlloca: 9779 llvm_unreachable("Unsupported ABI kind for va_arg"); 9780 case ABIArgInfo::Ignore: 9781 Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign); 9782 ArgSize = CharUnits::Zero(); 9783 break; 9784 case ABIArgInfo::Extend: 9785 case ABIArgInfo::Direct: 9786 Val = Builder.CreateBitCast(AP, ArgPtrTy); 9787 ArgSize = CharUnits::fromQuantity( 9788 getDataLayout().getTypeAllocSize(AI.getCoerceToType())); 9789 ArgSize = ArgSize.alignTo(SlotSize); 9790 break; 9791 case ABIArgInfo::Indirect: 9792 case ABIArgInfo::IndirectAliased: 9793 Val = Builder.CreateElementBitCast(AP, ArgPtrTy); 9794 Val = Address(Builder.CreateLoad(Val), TypeAlign); 9795 ArgSize = SlotSize; 9796 break; 9797 } 9798 9799 // Increment the VAList. 9800 if (!ArgSize.isZero()) { 9801 Address APN = Builder.CreateConstInBoundsByteGEP(AP, ArgSize); 9802 Builder.CreateStore(APN.getPointer(), VAListAddr); 9803 } 9804 9805 return Val; 9806 } 9807 9808 /// During the expansion of a RecordType, an incomplete TypeString is placed 9809 /// into the cache as a means to identify and break recursion. 9810 /// If there is a Recursive encoding in the cache, it is swapped out and will 9811 /// be reinserted by removeIncomplete(). 9812 /// All other types of encoding should have been used rather than arriving here. 9813 void TypeStringCache::addIncomplete(const IdentifierInfo *ID, 9814 std::string StubEnc) { 9815 if (!ID) 9816 return; 9817 Entry &E = Map[ID]; 9818 assert( (E.Str.empty() || E.State == Recursive) && 9819 "Incorrectly use of addIncomplete"); 9820 assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()"); 9821 E.Swapped.swap(E.Str); // swap out the Recursive 9822 E.Str.swap(StubEnc); 9823 E.State = Incomplete; 9824 ++IncompleteCount; 9825 } 9826 9827 /// Once the RecordType has been expanded, the temporary incomplete TypeString 9828 /// must be removed from the cache. 9829 /// If a Recursive was swapped out by addIncomplete(), it will be replaced. 9830 /// Returns true if the RecordType was defined recursively. 9831 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) { 9832 if (!ID) 9833 return false; 9834 auto I = Map.find(ID); 9835 assert(I != Map.end() && "Entry not present"); 9836 Entry &E = I->second; 9837 assert( (E.State == Incomplete || 9838 E.State == IncompleteUsed) && 9839 "Entry must be an incomplete type"); 9840 bool IsRecursive = false; 9841 if (E.State == IncompleteUsed) { 9842 // We made use of our Incomplete encoding, thus we are recursive. 9843 IsRecursive = true; 9844 --IncompleteUsedCount; 9845 } 9846 if (E.Swapped.empty()) 9847 Map.erase(I); 9848 else { 9849 // Swap the Recursive back. 9850 E.Swapped.swap(E.Str); 9851 E.Swapped.clear(); 9852 E.State = Recursive; 9853 } 9854 --IncompleteCount; 9855 return IsRecursive; 9856 } 9857 9858 /// Add the encoded TypeString to the cache only if it is NonRecursive or 9859 /// Recursive (viz: all sub-members were expanded as fully as possible). 9860 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str, 9861 bool IsRecursive) { 9862 if (!ID || IncompleteUsedCount) 9863 return; // No key or it is is an incomplete sub-type so don't add. 9864 Entry &E = Map[ID]; 9865 if (IsRecursive && !E.Str.empty()) { 9866 assert(E.State==Recursive && E.Str.size() == Str.size() && 9867 "This is not the same Recursive entry"); 9868 // The parent container was not recursive after all, so we could have used 9869 // this Recursive sub-member entry after all, but we assumed the worse when 9870 // we started viz: IncompleteCount!=0. 9871 return; 9872 } 9873 assert(E.Str.empty() && "Entry already present"); 9874 E.Str = Str.str(); 9875 E.State = IsRecursive? Recursive : NonRecursive; 9876 } 9877 9878 /// Return a cached TypeString encoding for the ID. If there isn't one, or we 9879 /// are recursively expanding a type (IncompleteCount != 0) and the cached 9880 /// encoding is Recursive, return an empty StringRef. 9881 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) { 9882 if (!ID) 9883 return StringRef(); // We have no key. 9884 auto I = Map.find(ID); 9885 if (I == Map.end()) 9886 return StringRef(); // We have no encoding. 9887 Entry &E = I->second; 9888 if (E.State == Recursive && IncompleteCount) 9889 return StringRef(); // We don't use Recursive encodings for member types. 9890 9891 if (E.State == Incomplete) { 9892 // The incomplete type is being used to break out of recursion. 9893 E.State = IncompleteUsed; 9894 ++IncompleteUsedCount; 9895 } 9896 return E.Str; 9897 } 9898 9899 /// The XCore ABI includes a type information section that communicates symbol 9900 /// type information to the linker. The linker uses this information to verify 9901 /// safety/correctness of things such as array bound and pointers et al. 9902 /// The ABI only requires C (and XC) language modules to emit TypeStrings. 9903 /// This type information (TypeString) is emitted into meta data for all global 9904 /// symbols: definitions, declarations, functions & variables. 9905 /// 9906 /// The TypeString carries type, qualifier, name, size & value details. 9907 /// Please see 'Tools Development Guide' section 2.16.2 for format details: 9908 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf 9909 /// The output is tested by test/CodeGen/xcore-stringtype.c. 9910 /// 9911 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 9912 const CodeGen::CodeGenModule &CGM, 9913 TypeStringCache &TSC); 9914 9915 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols. 9916 void XCoreTargetCodeGenInfo::emitTargetMD( 9917 const Decl *D, llvm::GlobalValue *GV, 9918 const CodeGen::CodeGenModule &CGM) const { 9919 SmallStringEnc Enc; 9920 if (getTypeString(Enc, D, CGM, TSC)) { 9921 llvm::LLVMContext &Ctx = CGM.getModule().getContext(); 9922 llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV), 9923 llvm::MDString::get(Ctx, Enc.str())}; 9924 llvm::NamedMDNode *MD = 9925 CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings"); 9926 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 9927 } 9928 } 9929 9930 void XCoreTargetCodeGenInfo::emitTargetMetadata( 9931 CodeGen::CodeGenModule &CGM, 9932 const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames) const { 9933 // Warning, new MangledDeclNames may be appended within this loop. 9934 // We rely on MapVector insertions adding new elements to the end 9935 // of the container. 9936 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 9937 auto Val = *(MangledDeclNames.begin() + I); 9938 llvm::GlobalValue *GV = CGM.GetGlobalValue(Val.second); 9939 if (GV) { 9940 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 9941 emitTargetMD(D, GV, CGM); 9942 } 9943 } 9944 } 9945 //===----------------------------------------------------------------------===// 9946 // SPIR ABI Implementation 9947 //===----------------------------------------------------------------------===// 9948 9949 namespace { 9950 class SPIRABIInfo : public DefaultABIInfo { 9951 public: 9952 SPIRABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) { setCCs(); } 9953 9954 private: 9955 void setCCs(); 9956 }; 9957 } // end anonymous namespace 9958 namespace { 9959 class SPIRTargetCodeGenInfo : public TargetCodeGenInfo { 9960 public: 9961 SPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 9962 : TargetCodeGenInfo(std::make_unique<SPIRABIInfo>(CGT)) {} 9963 unsigned getOpenCLKernelCallingConv() const override; 9964 }; 9965 9966 } // End anonymous namespace. 9967 void SPIRABIInfo::setCCs() { 9968 assert(getRuntimeCC() == llvm::CallingConv::C); 9969 RuntimeCC = llvm::CallingConv::SPIR_FUNC; 9970 } 9971 9972 namespace clang { 9973 namespace CodeGen { 9974 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) { 9975 DefaultABIInfo SPIRABI(CGM.getTypes()); 9976 SPIRABI.computeInfo(FI); 9977 } 9978 } 9979 } 9980 9981 unsigned SPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 9982 return llvm::CallingConv::SPIR_KERNEL; 9983 } 9984 9985 static bool appendType(SmallStringEnc &Enc, QualType QType, 9986 const CodeGen::CodeGenModule &CGM, 9987 TypeStringCache &TSC); 9988 9989 /// Helper function for appendRecordType(). 9990 /// Builds a SmallVector containing the encoded field types in declaration 9991 /// order. 9992 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE, 9993 const RecordDecl *RD, 9994 const CodeGen::CodeGenModule &CGM, 9995 TypeStringCache &TSC) { 9996 for (const auto *Field : RD->fields()) { 9997 SmallStringEnc Enc; 9998 Enc += "m("; 9999 Enc += Field->getName(); 10000 Enc += "){"; 10001 if (Field->isBitField()) { 10002 Enc += "b("; 10003 llvm::raw_svector_ostream OS(Enc); 10004 OS << Field->getBitWidthValue(CGM.getContext()); 10005 Enc += ':'; 10006 } 10007 if (!appendType(Enc, Field->getType(), CGM, TSC)) 10008 return false; 10009 if (Field->isBitField()) 10010 Enc += ')'; 10011 Enc += '}'; 10012 FE.emplace_back(!Field->getName().empty(), Enc); 10013 } 10014 return true; 10015 } 10016 10017 /// Appends structure and union types to Enc and adds encoding to cache. 10018 /// Recursively calls appendType (via extractFieldType) for each field. 10019 /// Union types have their fields ordered according to the ABI. 10020 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT, 10021 const CodeGen::CodeGenModule &CGM, 10022 TypeStringCache &TSC, const IdentifierInfo *ID) { 10023 // Append the cached TypeString if we have one. 10024 StringRef TypeString = TSC.lookupStr(ID); 10025 if (!TypeString.empty()) { 10026 Enc += TypeString; 10027 return true; 10028 } 10029 10030 // Start to emit an incomplete TypeString. 10031 size_t Start = Enc.size(); 10032 Enc += (RT->isUnionType()? 'u' : 's'); 10033 Enc += '('; 10034 if (ID) 10035 Enc += ID->getName(); 10036 Enc += "){"; 10037 10038 // We collect all encoded fields and order as necessary. 10039 bool IsRecursive = false; 10040 const RecordDecl *RD = RT->getDecl()->getDefinition(); 10041 if (RD && !RD->field_empty()) { 10042 // An incomplete TypeString stub is placed in the cache for this RecordType 10043 // so that recursive calls to this RecordType will use it whilst building a 10044 // complete TypeString for this RecordType. 10045 SmallVector<FieldEncoding, 16> FE; 10046 std::string StubEnc(Enc.substr(Start).str()); 10047 StubEnc += '}'; // StubEnc now holds a valid incomplete TypeString. 10048 TSC.addIncomplete(ID, std::move(StubEnc)); 10049 if (!extractFieldType(FE, RD, CGM, TSC)) { 10050 (void) TSC.removeIncomplete(ID); 10051 return false; 10052 } 10053 IsRecursive = TSC.removeIncomplete(ID); 10054 // The ABI requires unions to be sorted but not structures. 10055 // See FieldEncoding::operator< for sort algorithm. 10056 if (RT->isUnionType()) 10057 llvm::sort(FE); 10058 // We can now complete the TypeString. 10059 unsigned E = FE.size(); 10060 for (unsigned I = 0; I != E; ++I) { 10061 if (I) 10062 Enc += ','; 10063 Enc += FE[I].str(); 10064 } 10065 } 10066 Enc += '}'; 10067 TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive); 10068 return true; 10069 } 10070 10071 /// Appends enum types to Enc and adds the encoding to the cache. 10072 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET, 10073 TypeStringCache &TSC, 10074 const IdentifierInfo *ID) { 10075 // Append the cached TypeString if we have one. 10076 StringRef TypeString = TSC.lookupStr(ID); 10077 if (!TypeString.empty()) { 10078 Enc += TypeString; 10079 return true; 10080 } 10081 10082 size_t Start = Enc.size(); 10083 Enc += "e("; 10084 if (ID) 10085 Enc += ID->getName(); 10086 Enc += "){"; 10087 10088 // We collect all encoded enumerations and order them alphanumerically. 10089 if (const EnumDecl *ED = ET->getDecl()->getDefinition()) { 10090 SmallVector<FieldEncoding, 16> FE; 10091 for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E; 10092 ++I) { 10093 SmallStringEnc EnumEnc; 10094 EnumEnc += "m("; 10095 EnumEnc += I->getName(); 10096 EnumEnc += "){"; 10097 I->getInitVal().toString(EnumEnc); 10098 EnumEnc += '}'; 10099 FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc)); 10100 } 10101 llvm::sort(FE); 10102 unsigned E = FE.size(); 10103 for (unsigned I = 0; I != E; ++I) { 10104 if (I) 10105 Enc += ','; 10106 Enc += FE[I].str(); 10107 } 10108 } 10109 Enc += '}'; 10110 TSC.addIfComplete(ID, Enc.substr(Start), false); 10111 return true; 10112 } 10113 10114 /// Appends type's qualifier to Enc. 10115 /// This is done prior to appending the type's encoding. 10116 static void appendQualifier(SmallStringEnc &Enc, QualType QT) { 10117 // Qualifiers are emitted in alphabetical order. 10118 static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"}; 10119 int Lookup = 0; 10120 if (QT.isConstQualified()) 10121 Lookup += 1<<0; 10122 if (QT.isRestrictQualified()) 10123 Lookup += 1<<1; 10124 if (QT.isVolatileQualified()) 10125 Lookup += 1<<2; 10126 Enc += Table[Lookup]; 10127 } 10128 10129 /// Appends built-in types to Enc. 10130 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) { 10131 const char *EncType; 10132 switch (BT->getKind()) { 10133 case BuiltinType::Void: 10134 EncType = "0"; 10135 break; 10136 case BuiltinType::Bool: 10137 EncType = "b"; 10138 break; 10139 case BuiltinType::Char_U: 10140 EncType = "uc"; 10141 break; 10142 case BuiltinType::UChar: 10143 EncType = "uc"; 10144 break; 10145 case BuiltinType::SChar: 10146 EncType = "sc"; 10147 break; 10148 case BuiltinType::UShort: 10149 EncType = "us"; 10150 break; 10151 case BuiltinType::Short: 10152 EncType = "ss"; 10153 break; 10154 case BuiltinType::UInt: 10155 EncType = "ui"; 10156 break; 10157 case BuiltinType::Int: 10158 EncType = "si"; 10159 break; 10160 case BuiltinType::ULong: 10161 EncType = "ul"; 10162 break; 10163 case BuiltinType::Long: 10164 EncType = "sl"; 10165 break; 10166 case BuiltinType::ULongLong: 10167 EncType = "ull"; 10168 break; 10169 case BuiltinType::LongLong: 10170 EncType = "sll"; 10171 break; 10172 case BuiltinType::Float: 10173 EncType = "ft"; 10174 break; 10175 case BuiltinType::Double: 10176 EncType = "d"; 10177 break; 10178 case BuiltinType::LongDouble: 10179 EncType = "ld"; 10180 break; 10181 default: 10182 return false; 10183 } 10184 Enc += EncType; 10185 return true; 10186 } 10187 10188 /// Appends a pointer encoding to Enc before calling appendType for the pointee. 10189 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT, 10190 const CodeGen::CodeGenModule &CGM, 10191 TypeStringCache &TSC) { 10192 Enc += "p("; 10193 if (!appendType(Enc, PT->getPointeeType(), CGM, TSC)) 10194 return false; 10195 Enc += ')'; 10196 return true; 10197 } 10198 10199 /// Appends array encoding to Enc before calling appendType for the element. 10200 static bool appendArrayType(SmallStringEnc &Enc, QualType QT, 10201 const ArrayType *AT, 10202 const CodeGen::CodeGenModule &CGM, 10203 TypeStringCache &TSC, StringRef NoSizeEnc) { 10204 if (AT->getSizeModifier() != ArrayType::Normal) 10205 return false; 10206 Enc += "a("; 10207 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) 10208 CAT->getSize().toStringUnsigned(Enc); 10209 else 10210 Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "". 10211 Enc += ':'; 10212 // The Qualifiers should be attached to the type rather than the array. 10213 appendQualifier(Enc, QT); 10214 if (!appendType(Enc, AT->getElementType(), CGM, TSC)) 10215 return false; 10216 Enc += ')'; 10217 return true; 10218 } 10219 10220 /// Appends a function encoding to Enc, calling appendType for the return type 10221 /// and the arguments. 10222 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT, 10223 const CodeGen::CodeGenModule &CGM, 10224 TypeStringCache &TSC) { 10225 Enc += "f{"; 10226 if (!appendType(Enc, FT->getReturnType(), CGM, TSC)) 10227 return false; 10228 Enc += "}("; 10229 if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) { 10230 // N.B. we are only interested in the adjusted param types. 10231 auto I = FPT->param_type_begin(); 10232 auto E = FPT->param_type_end(); 10233 if (I != E) { 10234 do { 10235 if (!appendType(Enc, *I, CGM, TSC)) 10236 return false; 10237 ++I; 10238 if (I != E) 10239 Enc += ','; 10240 } while (I != E); 10241 if (FPT->isVariadic()) 10242 Enc += ",va"; 10243 } else { 10244 if (FPT->isVariadic()) 10245 Enc += "va"; 10246 else 10247 Enc += '0'; 10248 } 10249 } 10250 Enc += ')'; 10251 return true; 10252 } 10253 10254 /// Handles the type's qualifier before dispatching a call to handle specific 10255 /// type encodings. 10256 static bool appendType(SmallStringEnc &Enc, QualType QType, 10257 const CodeGen::CodeGenModule &CGM, 10258 TypeStringCache &TSC) { 10259 10260 QualType QT = QType.getCanonicalType(); 10261 10262 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) 10263 // The Qualifiers should be attached to the type rather than the array. 10264 // Thus we don't call appendQualifier() here. 10265 return appendArrayType(Enc, QT, AT, CGM, TSC, ""); 10266 10267 appendQualifier(Enc, QT); 10268 10269 if (const BuiltinType *BT = QT->getAs<BuiltinType>()) 10270 return appendBuiltinType(Enc, BT); 10271 10272 if (const PointerType *PT = QT->getAs<PointerType>()) 10273 return appendPointerType(Enc, PT, CGM, TSC); 10274 10275 if (const EnumType *ET = QT->getAs<EnumType>()) 10276 return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier()); 10277 10278 if (const RecordType *RT = QT->getAsStructureType()) 10279 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 10280 10281 if (const RecordType *RT = QT->getAsUnionType()) 10282 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 10283 10284 if (const FunctionType *FT = QT->getAs<FunctionType>()) 10285 return appendFunctionType(Enc, FT, CGM, TSC); 10286 10287 return false; 10288 } 10289 10290 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 10291 const CodeGen::CodeGenModule &CGM, 10292 TypeStringCache &TSC) { 10293 if (!D) 10294 return false; 10295 10296 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 10297 if (FD->getLanguageLinkage() != CLanguageLinkage) 10298 return false; 10299 return appendType(Enc, FD->getType(), CGM, TSC); 10300 } 10301 10302 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 10303 if (VD->getLanguageLinkage() != CLanguageLinkage) 10304 return false; 10305 QualType QT = VD->getType().getCanonicalType(); 10306 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) { 10307 // Global ArrayTypes are given a size of '*' if the size is unknown. 10308 // The Qualifiers should be attached to the type rather than the array. 10309 // Thus we don't call appendQualifier() here. 10310 return appendArrayType(Enc, QT, AT, CGM, TSC, "*"); 10311 } 10312 return appendType(Enc, QT, CGM, TSC); 10313 } 10314 return false; 10315 } 10316 10317 //===----------------------------------------------------------------------===// 10318 // RISCV ABI Implementation 10319 //===----------------------------------------------------------------------===// 10320 10321 namespace { 10322 class RISCVABIInfo : public DefaultABIInfo { 10323 private: 10324 // Size of the integer ('x') registers in bits. 10325 unsigned XLen; 10326 // Size of the floating point ('f') registers in bits. Note that the target 10327 // ISA might have a wider FLen than the selected ABI (e.g. an RV32IF target 10328 // with soft float ABI has FLen==0). 10329 unsigned FLen; 10330 static const int NumArgGPRs = 8; 10331 static const int NumArgFPRs = 8; 10332 bool detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff, 10333 llvm::Type *&Field1Ty, 10334 CharUnits &Field1Off, 10335 llvm::Type *&Field2Ty, 10336 CharUnits &Field2Off) const; 10337 10338 public: 10339 RISCVABIInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen, unsigned FLen) 10340 : DefaultABIInfo(CGT), XLen(XLen), FLen(FLen) {} 10341 10342 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 10343 // non-virtual, but computeInfo is virtual, so we overload it. 10344 void computeInfo(CGFunctionInfo &FI) const override; 10345 10346 ABIArgInfo classifyArgumentType(QualType Ty, bool IsFixed, int &ArgGPRsLeft, 10347 int &ArgFPRsLeft) const; 10348 ABIArgInfo classifyReturnType(QualType RetTy) const; 10349 10350 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 10351 QualType Ty) const override; 10352 10353 ABIArgInfo extendType(QualType Ty) const; 10354 10355 bool detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty, 10356 CharUnits &Field1Off, llvm::Type *&Field2Ty, 10357 CharUnits &Field2Off, int &NeededArgGPRs, 10358 int &NeededArgFPRs) const; 10359 ABIArgInfo coerceAndExpandFPCCEligibleStruct(llvm::Type *Field1Ty, 10360 CharUnits Field1Off, 10361 llvm::Type *Field2Ty, 10362 CharUnits Field2Off) const; 10363 }; 10364 } // end anonymous namespace 10365 10366 void RISCVABIInfo::computeInfo(CGFunctionInfo &FI) const { 10367 QualType RetTy = FI.getReturnType(); 10368 if (!getCXXABI().classifyReturnType(FI)) 10369 FI.getReturnInfo() = classifyReturnType(RetTy); 10370 10371 // IsRetIndirect is true if classifyArgumentType indicated the value should 10372 // be passed indirect, or if the type size is a scalar greater than 2*XLen 10373 // and not a complex type with elements <= FLen. e.g. fp128 is passed direct 10374 // in LLVM IR, relying on the backend lowering code to rewrite the argument 10375 // list and pass indirectly on RV32. 10376 bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect; 10377 if (!IsRetIndirect && RetTy->isScalarType() && 10378 getContext().getTypeSize(RetTy) > (2 * XLen)) { 10379 if (RetTy->isComplexType() && FLen) { 10380 QualType EltTy = RetTy->castAs<ComplexType>()->getElementType(); 10381 IsRetIndirect = getContext().getTypeSize(EltTy) > FLen; 10382 } else { 10383 // This is a normal scalar > 2*XLen, such as fp128 on RV32. 10384 IsRetIndirect = true; 10385 } 10386 } 10387 10388 // We must track the number of GPRs used in order to conform to the RISC-V 10389 // ABI, as integer scalars passed in registers should have signext/zeroext 10390 // when promoted, but are anyext if passed on the stack. As GPR usage is 10391 // different for variadic arguments, we must also track whether we are 10392 // examining a vararg or not. 10393 int ArgGPRsLeft = IsRetIndirect ? NumArgGPRs - 1 : NumArgGPRs; 10394 int ArgFPRsLeft = FLen ? NumArgFPRs : 0; 10395 int NumFixedArgs = FI.getNumRequiredArgs(); 10396 10397 int ArgNum = 0; 10398 for (auto &ArgInfo : FI.arguments()) { 10399 bool IsFixed = ArgNum < NumFixedArgs; 10400 ArgInfo.info = 10401 classifyArgumentType(ArgInfo.type, IsFixed, ArgGPRsLeft, ArgFPRsLeft); 10402 ArgNum++; 10403 } 10404 } 10405 10406 // Returns true if the struct is a potential candidate for the floating point 10407 // calling convention. If this function returns true, the caller is 10408 // responsible for checking that if there is only a single field then that 10409 // field is a float. 10410 bool RISCVABIInfo::detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff, 10411 llvm::Type *&Field1Ty, 10412 CharUnits &Field1Off, 10413 llvm::Type *&Field2Ty, 10414 CharUnits &Field2Off) const { 10415 bool IsInt = Ty->isIntegralOrEnumerationType(); 10416 bool IsFloat = Ty->isRealFloatingType(); 10417 10418 if (IsInt || IsFloat) { 10419 uint64_t Size = getContext().getTypeSize(Ty); 10420 if (IsInt && Size > XLen) 10421 return false; 10422 // Can't be eligible if larger than the FP registers. Half precision isn't 10423 // currently supported on RISC-V and the ABI hasn't been confirmed, so 10424 // default to the integer ABI in that case. 10425 if (IsFloat && (Size > FLen || Size < 32)) 10426 return false; 10427 // Can't be eligible if an integer type was already found (int+int pairs 10428 // are not eligible). 10429 if (IsInt && Field1Ty && Field1Ty->isIntegerTy()) 10430 return false; 10431 if (!Field1Ty) { 10432 Field1Ty = CGT.ConvertType(Ty); 10433 Field1Off = CurOff; 10434 return true; 10435 } 10436 if (!Field2Ty) { 10437 Field2Ty = CGT.ConvertType(Ty); 10438 Field2Off = CurOff; 10439 return true; 10440 } 10441 return false; 10442 } 10443 10444 if (auto CTy = Ty->getAs<ComplexType>()) { 10445 if (Field1Ty) 10446 return false; 10447 QualType EltTy = CTy->getElementType(); 10448 if (getContext().getTypeSize(EltTy) > FLen) 10449 return false; 10450 Field1Ty = CGT.ConvertType(EltTy); 10451 Field1Off = CurOff; 10452 Field2Ty = Field1Ty; 10453 Field2Off = Field1Off + getContext().getTypeSizeInChars(EltTy); 10454 return true; 10455 } 10456 10457 if (const ConstantArrayType *ATy = getContext().getAsConstantArrayType(Ty)) { 10458 uint64_t ArraySize = ATy->getSize().getZExtValue(); 10459 QualType EltTy = ATy->getElementType(); 10460 CharUnits EltSize = getContext().getTypeSizeInChars(EltTy); 10461 for (uint64_t i = 0; i < ArraySize; ++i) { 10462 bool Ret = detectFPCCEligibleStructHelper(EltTy, CurOff, Field1Ty, 10463 Field1Off, Field2Ty, Field2Off); 10464 if (!Ret) 10465 return false; 10466 CurOff += EltSize; 10467 } 10468 return true; 10469 } 10470 10471 if (const auto *RTy = Ty->getAs<RecordType>()) { 10472 // Structures with either a non-trivial destructor or a non-trivial 10473 // copy constructor are not eligible for the FP calling convention. 10474 if (getRecordArgABI(Ty, CGT.getCXXABI())) 10475 return false; 10476 if (isEmptyRecord(getContext(), Ty, true)) 10477 return true; 10478 const RecordDecl *RD = RTy->getDecl(); 10479 // Unions aren't eligible unless they're empty (which is caught above). 10480 if (RD->isUnion()) 10481 return false; 10482 int ZeroWidthBitFieldCount = 0; 10483 for (const FieldDecl *FD : RD->fields()) { 10484 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 10485 uint64_t FieldOffInBits = Layout.getFieldOffset(FD->getFieldIndex()); 10486 QualType QTy = FD->getType(); 10487 if (FD->isBitField()) { 10488 unsigned BitWidth = FD->getBitWidthValue(getContext()); 10489 // Allow a bitfield with a type greater than XLen as long as the 10490 // bitwidth is XLen or less. 10491 if (getContext().getTypeSize(QTy) > XLen && BitWidth <= XLen) 10492 QTy = getContext().getIntTypeForBitwidth(XLen, false); 10493 if (BitWidth == 0) { 10494 ZeroWidthBitFieldCount++; 10495 continue; 10496 } 10497 } 10498 10499 bool Ret = detectFPCCEligibleStructHelper( 10500 QTy, CurOff + getContext().toCharUnitsFromBits(FieldOffInBits), 10501 Field1Ty, Field1Off, Field2Ty, Field2Off); 10502 if (!Ret) 10503 return false; 10504 10505 // As a quirk of the ABI, zero-width bitfields aren't ignored for fp+fp 10506 // or int+fp structs, but are ignored for a struct with an fp field and 10507 // any number of zero-width bitfields. 10508 if (Field2Ty && ZeroWidthBitFieldCount > 0) 10509 return false; 10510 } 10511 return Field1Ty != nullptr; 10512 } 10513 10514 return false; 10515 } 10516 10517 // Determine if a struct is eligible for passing according to the floating 10518 // point calling convention (i.e., when flattened it contains a single fp 10519 // value, fp+fp, or int+fp of appropriate size). If so, NeededArgFPRs and 10520 // NeededArgGPRs are incremented appropriately. 10521 bool RISCVABIInfo::detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty, 10522 CharUnits &Field1Off, 10523 llvm::Type *&Field2Ty, 10524 CharUnits &Field2Off, 10525 int &NeededArgGPRs, 10526 int &NeededArgFPRs) const { 10527 Field1Ty = nullptr; 10528 Field2Ty = nullptr; 10529 NeededArgGPRs = 0; 10530 NeededArgFPRs = 0; 10531 bool IsCandidate = detectFPCCEligibleStructHelper( 10532 Ty, CharUnits::Zero(), Field1Ty, Field1Off, Field2Ty, Field2Off); 10533 // Not really a candidate if we have a single int but no float. 10534 if (Field1Ty && !Field2Ty && !Field1Ty->isFloatingPointTy()) 10535 return false; 10536 if (!IsCandidate) 10537 return false; 10538 if (Field1Ty && Field1Ty->isFloatingPointTy()) 10539 NeededArgFPRs++; 10540 else if (Field1Ty) 10541 NeededArgGPRs++; 10542 if (Field2Ty && Field2Ty->isFloatingPointTy()) 10543 NeededArgFPRs++; 10544 else if (Field2Ty) 10545 NeededArgGPRs++; 10546 return true; 10547 } 10548 10549 // Call getCoerceAndExpand for the two-element flattened struct described by 10550 // Field1Ty, Field1Off, Field2Ty, Field2Off. This method will create an 10551 // appropriate coerceToType and unpaddedCoerceToType. 10552 ABIArgInfo RISCVABIInfo::coerceAndExpandFPCCEligibleStruct( 10553 llvm::Type *Field1Ty, CharUnits Field1Off, llvm::Type *Field2Ty, 10554 CharUnits Field2Off) const { 10555 SmallVector<llvm::Type *, 3> CoerceElts; 10556 SmallVector<llvm::Type *, 2> UnpaddedCoerceElts; 10557 if (!Field1Off.isZero()) 10558 CoerceElts.push_back(llvm::ArrayType::get( 10559 llvm::Type::getInt8Ty(getVMContext()), Field1Off.getQuantity())); 10560 10561 CoerceElts.push_back(Field1Ty); 10562 UnpaddedCoerceElts.push_back(Field1Ty); 10563 10564 if (!Field2Ty) { 10565 return ABIArgInfo::getCoerceAndExpand( 10566 llvm::StructType::get(getVMContext(), CoerceElts, !Field1Off.isZero()), 10567 UnpaddedCoerceElts[0]); 10568 } 10569 10570 CharUnits Field2Align = 10571 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(Field2Ty)); 10572 CharUnits Field1End = Field1Off + 10573 CharUnits::fromQuantity(getDataLayout().getTypeStoreSize(Field1Ty)); 10574 CharUnits Field2OffNoPadNoPack = Field1End.alignTo(Field2Align); 10575 10576 CharUnits Padding = CharUnits::Zero(); 10577 if (Field2Off > Field2OffNoPadNoPack) 10578 Padding = Field2Off - Field2OffNoPadNoPack; 10579 else if (Field2Off != Field2Align && Field2Off > Field1End) 10580 Padding = Field2Off - Field1End; 10581 10582 bool IsPacked = !Field2Off.isMultipleOf(Field2Align); 10583 10584 if (!Padding.isZero()) 10585 CoerceElts.push_back(llvm::ArrayType::get( 10586 llvm::Type::getInt8Ty(getVMContext()), Padding.getQuantity())); 10587 10588 CoerceElts.push_back(Field2Ty); 10589 UnpaddedCoerceElts.push_back(Field2Ty); 10590 10591 auto CoerceToType = 10592 llvm::StructType::get(getVMContext(), CoerceElts, IsPacked); 10593 auto UnpaddedCoerceToType = 10594 llvm::StructType::get(getVMContext(), UnpaddedCoerceElts, IsPacked); 10595 10596 return ABIArgInfo::getCoerceAndExpand(CoerceToType, UnpaddedCoerceToType); 10597 } 10598 10599 ABIArgInfo RISCVABIInfo::classifyArgumentType(QualType Ty, bool IsFixed, 10600 int &ArgGPRsLeft, 10601 int &ArgFPRsLeft) const { 10602 assert(ArgGPRsLeft <= NumArgGPRs && "Arg GPR tracking underflow"); 10603 Ty = useFirstFieldIfTransparentUnion(Ty); 10604 10605 // Structures with either a non-trivial destructor or a non-trivial 10606 // copy constructor are always passed indirectly. 10607 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 10608 if (ArgGPRsLeft) 10609 ArgGPRsLeft -= 1; 10610 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 10611 CGCXXABI::RAA_DirectInMemory); 10612 } 10613 10614 // Ignore empty structs/unions. 10615 if (isEmptyRecord(getContext(), Ty, true)) 10616 return ABIArgInfo::getIgnore(); 10617 10618 uint64_t Size = getContext().getTypeSize(Ty); 10619 10620 // Pass floating point values via FPRs if possible. 10621 if (IsFixed && Ty->isFloatingType() && !Ty->isComplexType() && 10622 FLen >= Size && ArgFPRsLeft) { 10623 ArgFPRsLeft--; 10624 return ABIArgInfo::getDirect(); 10625 } 10626 10627 // Complex types for the hard float ABI must be passed direct rather than 10628 // using CoerceAndExpand. 10629 if (IsFixed && Ty->isComplexType() && FLen && ArgFPRsLeft >= 2) { 10630 QualType EltTy = Ty->castAs<ComplexType>()->getElementType(); 10631 if (getContext().getTypeSize(EltTy) <= FLen) { 10632 ArgFPRsLeft -= 2; 10633 return ABIArgInfo::getDirect(); 10634 } 10635 } 10636 10637 if (IsFixed && FLen && Ty->isStructureOrClassType()) { 10638 llvm::Type *Field1Ty = nullptr; 10639 llvm::Type *Field2Ty = nullptr; 10640 CharUnits Field1Off = CharUnits::Zero(); 10641 CharUnits Field2Off = CharUnits::Zero(); 10642 int NeededArgGPRs; 10643 int NeededArgFPRs; 10644 bool IsCandidate = 10645 detectFPCCEligibleStruct(Ty, Field1Ty, Field1Off, Field2Ty, Field2Off, 10646 NeededArgGPRs, NeededArgFPRs); 10647 if (IsCandidate && NeededArgGPRs <= ArgGPRsLeft && 10648 NeededArgFPRs <= ArgFPRsLeft) { 10649 ArgGPRsLeft -= NeededArgGPRs; 10650 ArgFPRsLeft -= NeededArgFPRs; 10651 return coerceAndExpandFPCCEligibleStruct(Field1Ty, Field1Off, Field2Ty, 10652 Field2Off); 10653 } 10654 } 10655 10656 uint64_t NeededAlign = getContext().getTypeAlign(Ty); 10657 bool MustUseStack = false; 10658 // Determine the number of GPRs needed to pass the current argument 10659 // according to the ABI. 2*XLen-aligned varargs are passed in "aligned" 10660 // register pairs, so may consume 3 registers. 10661 int NeededArgGPRs = 1; 10662 if (!IsFixed && NeededAlign == 2 * XLen) 10663 NeededArgGPRs = 2 + (ArgGPRsLeft % 2); 10664 else if (Size > XLen && Size <= 2 * XLen) 10665 NeededArgGPRs = 2; 10666 10667 if (NeededArgGPRs > ArgGPRsLeft) { 10668 MustUseStack = true; 10669 NeededArgGPRs = ArgGPRsLeft; 10670 } 10671 10672 ArgGPRsLeft -= NeededArgGPRs; 10673 10674 if (!isAggregateTypeForABI(Ty) && !Ty->isVectorType()) { 10675 // Treat an enum type as its underlying type. 10676 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 10677 Ty = EnumTy->getDecl()->getIntegerType(); 10678 10679 // All integral types are promoted to XLen width, unless passed on the 10680 // stack. 10681 if (Size < XLen && Ty->isIntegralOrEnumerationType() && !MustUseStack) { 10682 return extendType(Ty); 10683 } 10684 10685 if (const auto *EIT = Ty->getAs<ExtIntType>()) { 10686 if (EIT->getNumBits() < XLen && !MustUseStack) 10687 return extendType(Ty); 10688 if (EIT->getNumBits() > 128 || 10689 (!getContext().getTargetInfo().hasInt128Type() && 10690 EIT->getNumBits() > 64)) 10691 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 10692 } 10693 10694 return ABIArgInfo::getDirect(); 10695 } 10696 10697 // Aggregates which are <= 2*XLen will be passed in registers if possible, 10698 // so coerce to integers. 10699 if (Size <= 2 * XLen) { 10700 unsigned Alignment = getContext().getTypeAlign(Ty); 10701 10702 // Use a single XLen int if possible, 2*XLen if 2*XLen alignment is 10703 // required, and a 2-element XLen array if only XLen alignment is required. 10704 if (Size <= XLen) { 10705 return ABIArgInfo::getDirect( 10706 llvm::IntegerType::get(getVMContext(), XLen)); 10707 } else if (Alignment == 2 * XLen) { 10708 return ABIArgInfo::getDirect( 10709 llvm::IntegerType::get(getVMContext(), 2 * XLen)); 10710 } else { 10711 return ABIArgInfo::getDirect(llvm::ArrayType::get( 10712 llvm::IntegerType::get(getVMContext(), XLen), 2)); 10713 } 10714 } 10715 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 10716 } 10717 10718 ABIArgInfo RISCVABIInfo::classifyReturnType(QualType RetTy) const { 10719 if (RetTy->isVoidType()) 10720 return ABIArgInfo::getIgnore(); 10721 10722 int ArgGPRsLeft = 2; 10723 int ArgFPRsLeft = FLen ? 2 : 0; 10724 10725 // The rules for return and argument types are the same, so defer to 10726 // classifyArgumentType. 10727 return classifyArgumentType(RetTy, /*IsFixed=*/true, ArgGPRsLeft, 10728 ArgFPRsLeft); 10729 } 10730 10731 Address RISCVABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 10732 QualType Ty) const { 10733 CharUnits SlotSize = CharUnits::fromQuantity(XLen / 8); 10734 10735 // Empty records are ignored for parameter passing purposes. 10736 if (isEmptyRecord(getContext(), Ty, true)) { 10737 Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize); 10738 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 10739 return Addr; 10740 } 10741 10742 auto TInfo = getContext().getTypeInfoInChars(Ty); 10743 10744 // Arguments bigger than 2*Xlen bytes are passed indirectly. 10745 bool IsIndirect = TInfo.Width > 2 * SlotSize; 10746 10747 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TInfo, 10748 SlotSize, /*AllowHigherAlign=*/true); 10749 } 10750 10751 ABIArgInfo RISCVABIInfo::extendType(QualType Ty) const { 10752 int TySize = getContext().getTypeSize(Ty); 10753 // RV64 ABI requires unsigned 32 bit integers to be sign extended. 10754 if (XLen == 64 && Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 10755 return ABIArgInfo::getSignExtend(Ty); 10756 return ABIArgInfo::getExtend(Ty); 10757 } 10758 10759 namespace { 10760 class RISCVTargetCodeGenInfo : public TargetCodeGenInfo { 10761 public: 10762 RISCVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen, 10763 unsigned FLen) 10764 : TargetCodeGenInfo(std::make_unique<RISCVABIInfo>(CGT, XLen, FLen)) {} 10765 10766 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 10767 CodeGen::CodeGenModule &CGM) const override { 10768 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 10769 if (!FD) return; 10770 10771 const auto *Attr = FD->getAttr<RISCVInterruptAttr>(); 10772 if (!Attr) 10773 return; 10774 10775 const char *Kind; 10776 switch (Attr->getInterrupt()) { 10777 case RISCVInterruptAttr::user: Kind = "user"; break; 10778 case RISCVInterruptAttr::supervisor: Kind = "supervisor"; break; 10779 case RISCVInterruptAttr::machine: Kind = "machine"; break; 10780 } 10781 10782 auto *Fn = cast<llvm::Function>(GV); 10783 10784 Fn->addFnAttr("interrupt", Kind); 10785 } 10786 }; 10787 } // namespace 10788 10789 //===----------------------------------------------------------------------===// 10790 // VE ABI Implementation. 10791 // 10792 namespace { 10793 class VEABIInfo : public DefaultABIInfo { 10794 public: 10795 VEABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 10796 10797 private: 10798 ABIArgInfo classifyReturnType(QualType RetTy) const; 10799 ABIArgInfo classifyArgumentType(QualType RetTy) const; 10800 void computeInfo(CGFunctionInfo &FI) const override; 10801 }; 10802 } // end anonymous namespace 10803 10804 ABIArgInfo VEABIInfo::classifyReturnType(QualType Ty) const { 10805 if (Ty->isAnyComplexType()) 10806 return ABIArgInfo::getDirect(); 10807 uint64_t Size = getContext().getTypeSize(Ty); 10808 if (Size < 64 && Ty->isIntegerType()) 10809 return ABIArgInfo::getExtend(Ty); 10810 return DefaultABIInfo::classifyReturnType(Ty); 10811 } 10812 10813 ABIArgInfo VEABIInfo::classifyArgumentType(QualType Ty) const { 10814 if (Ty->isAnyComplexType()) 10815 return ABIArgInfo::getDirect(); 10816 uint64_t Size = getContext().getTypeSize(Ty); 10817 if (Size < 64 && Ty->isIntegerType()) 10818 return ABIArgInfo::getExtend(Ty); 10819 return DefaultABIInfo::classifyArgumentType(Ty); 10820 } 10821 10822 void VEABIInfo::computeInfo(CGFunctionInfo &FI) const { 10823 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 10824 for (auto &Arg : FI.arguments()) 10825 Arg.info = classifyArgumentType(Arg.type); 10826 } 10827 10828 namespace { 10829 class VETargetCodeGenInfo : public TargetCodeGenInfo { 10830 public: 10831 VETargetCodeGenInfo(CodeGenTypes &CGT) 10832 : TargetCodeGenInfo(std::make_unique<VEABIInfo>(CGT)) {} 10833 // VE ABI requires the arguments of variadic and prototype-less functions 10834 // are passed in both registers and memory. 10835 bool isNoProtoCallVariadic(const CallArgList &args, 10836 const FunctionNoProtoType *fnType) const override { 10837 return true; 10838 } 10839 }; 10840 } // end anonymous namespace 10841 10842 //===----------------------------------------------------------------------===// 10843 // Driver code 10844 //===----------------------------------------------------------------------===// 10845 10846 bool CodeGenModule::supportsCOMDAT() const { 10847 return getTriple().supportsCOMDAT(); 10848 } 10849 10850 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { 10851 if (TheTargetCodeGenInfo) 10852 return *TheTargetCodeGenInfo; 10853 10854 // Helper to set the unique_ptr while still keeping the return value. 10855 auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & { 10856 this->TheTargetCodeGenInfo.reset(P); 10857 return *P; 10858 }; 10859 10860 const llvm::Triple &Triple = getTarget().getTriple(); 10861 switch (Triple.getArch()) { 10862 default: 10863 return SetCGInfo(new DefaultTargetCodeGenInfo(Types)); 10864 10865 case llvm::Triple::le32: 10866 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 10867 case llvm::Triple::mips: 10868 case llvm::Triple::mipsel: 10869 if (Triple.getOS() == llvm::Triple::NaCl) 10870 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 10871 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true)); 10872 10873 case llvm::Triple::mips64: 10874 case llvm::Triple::mips64el: 10875 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false)); 10876 10877 case llvm::Triple::avr: 10878 return SetCGInfo(new AVRTargetCodeGenInfo(Types)); 10879 10880 case llvm::Triple::aarch64: 10881 case llvm::Triple::aarch64_32: 10882 case llvm::Triple::aarch64_be: { 10883 AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS; 10884 if (getTarget().getABI() == "darwinpcs") 10885 Kind = AArch64ABIInfo::DarwinPCS; 10886 else if (Triple.isOSWindows()) 10887 return SetCGInfo( 10888 new WindowsAArch64TargetCodeGenInfo(Types, AArch64ABIInfo::Win64)); 10889 10890 return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind)); 10891 } 10892 10893 case llvm::Triple::wasm32: 10894 case llvm::Triple::wasm64: { 10895 WebAssemblyABIInfo::ABIKind Kind = WebAssemblyABIInfo::MVP; 10896 if (getTarget().getABI() == "experimental-mv") 10897 Kind = WebAssemblyABIInfo::ExperimentalMV; 10898 return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types, Kind)); 10899 } 10900 10901 case llvm::Triple::arm: 10902 case llvm::Triple::armeb: 10903 case llvm::Triple::thumb: 10904 case llvm::Triple::thumbeb: { 10905 if (Triple.getOS() == llvm::Triple::Win32) { 10906 return SetCGInfo( 10907 new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP)); 10908 } 10909 10910 ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS; 10911 StringRef ABIStr = getTarget().getABI(); 10912 if (ABIStr == "apcs-gnu") 10913 Kind = ARMABIInfo::APCS; 10914 else if (ABIStr == "aapcs16") 10915 Kind = ARMABIInfo::AAPCS16_VFP; 10916 else if (CodeGenOpts.FloatABI == "hard" || 10917 (CodeGenOpts.FloatABI != "soft" && 10918 (Triple.getEnvironment() == llvm::Triple::GNUEABIHF || 10919 Triple.getEnvironment() == llvm::Triple::MuslEABIHF || 10920 Triple.getEnvironment() == llvm::Triple::EABIHF))) 10921 Kind = ARMABIInfo::AAPCS_VFP; 10922 10923 return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind)); 10924 } 10925 10926 case llvm::Triple::ppc: { 10927 if (Triple.isOSAIX()) 10928 return SetCGInfo(new AIXTargetCodeGenInfo(Types, /*Is64Bit*/ false)); 10929 10930 bool IsSoftFloat = 10931 CodeGenOpts.FloatABI == "soft" || getTarget().hasFeature("spe"); 10932 bool RetSmallStructInRegABI = 10933 PPC32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 10934 return SetCGInfo( 10935 new PPC32TargetCodeGenInfo(Types, IsSoftFloat, RetSmallStructInRegABI)); 10936 } 10937 case llvm::Triple::ppc64: 10938 if (Triple.isOSAIX()) 10939 return SetCGInfo(new AIXTargetCodeGenInfo(Types, /*Is64Bit*/ true)); 10940 10941 if (Triple.isOSBinFormatELF()) { 10942 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1; 10943 if (getTarget().getABI() == "elfv2") 10944 Kind = PPC64_SVR4_ABIInfo::ELFv2; 10945 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 10946 10947 return SetCGInfo( 10948 new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, IsSoftFloat)); 10949 } 10950 return SetCGInfo(new PPC64TargetCodeGenInfo(Types)); 10951 case llvm::Triple::ppc64le: { 10952 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); 10953 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2; 10954 if (getTarget().getABI() == "elfv1") 10955 Kind = PPC64_SVR4_ABIInfo::ELFv1; 10956 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 10957 10958 return SetCGInfo( 10959 new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, IsSoftFloat)); 10960 } 10961 10962 case llvm::Triple::nvptx: 10963 case llvm::Triple::nvptx64: 10964 return SetCGInfo(new NVPTXTargetCodeGenInfo(Types)); 10965 10966 case llvm::Triple::msp430: 10967 return SetCGInfo(new MSP430TargetCodeGenInfo(Types)); 10968 10969 case llvm::Triple::riscv32: 10970 case llvm::Triple::riscv64: { 10971 StringRef ABIStr = getTarget().getABI(); 10972 unsigned XLen = getTarget().getPointerWidth(0); 10973 unsigned ABIFLen = 0; 10974 if (ABIStr.endswith("f")) 10975 ABIFLen = 32; 10976 else if (ABIStr.endswith("d")) 10977 ABIFLen = 64; 10978 return SetCGInfo(new RISCVTargetCodeGenInfo(Types, XLen, ABIFLen)); 10979 } 10980 10981 case llvm::Triple::systemz: { 10982 bool SoftFloat = CodeGenOpts.FloatABI == "soft"; 10983 bool HasVector = !SoftFloat && getTarget().getABI() == "vector"; 10984 return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector, SoftFloat)); 10985 } 10986 10987 case llvm::Triple::tce: 10988 case llvm::Triple::tcele: 10989 return SetCGInfo(new TCETargetCodeGenInfo(Types)); 10990 10991 case llvm::Triple::x86: { 10992 bool IsDarwinVectorABI = Triple.isOSDarwin(); 10993 bool RetSmallStructInRegABI = 10994 X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 10995 bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing(); 10996 10997 if (Triple.getOS() == llvm::Triple::Win32) { 10998 return SetCGInfo(new WinX86_32TargetCodeGenInfo( 10999 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 11000 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters)); 11001 } else { 11002 return SetCGInfo(new X86_32TargetCodeGenInfo( 11003 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 11004 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters, 11005 CodeGenOpts.FloatABI == "soft")); 11006 } 11007 } 11008 11009 case llvm::Triple::x86_64: { 11010 StringRef ABI = getTarget().getABI(); 11011 X86AVXABILevel AVXLevel = 11012 (ABI == "avx512" 11013 ? X86AVXABILevel::AVX512 11014 : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None); 11015 11016 switch (Triple.getOS()) { 11017 case llvm::Triple::Win32: 11018 return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel)); 11019 default: 11020 return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel)); 11021 } 11022 } 11023 case llvm::Triple::hexagon: 11024 return SetCGInfo(new HexagonTargetCodeGenInfo(Types)); 11025 case llvm::Triple::lanai: 11026 return SetCGInfo(new LanaiTargetCodeGenInfo(Types)); 11027 case llvm::Triple::r600: 11028 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 11029 case llvm::Triple::amdgcn: 11030 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 11031 case llvm::Triple::sparc: 11032 return SetCGInfo(new SparcV8TargetCodeGenInfo(Types)); 11033 case llvm::Triple::sparcv9: 11034 return SetCGInfo(new SparcV9TargetCodeGenInfo(Types)); 11035 case llvm::Triple::xcore: 11036 return SetCGInfo(new XCoreTargetCodeGenInfo(Types)); 11037 case llvm::Triple::arc: 11038 return SetCGInfo(new ARCTargetCodeGenInfo(Types)); 11039 case llvm::Triple::spir: 11040 case llvm::Triple::spir64: 11041 return SetCGInfo(new SPIRTargetCodeGenInfo(Types)); 11042 case llvm::Triple::ve: 11043 return SetCGInfo(new VETargetCodeGenInfo(Types)); 11044 } 11045 } 11046 11047 /// Create an OpenCL kernel for an enqueued block. 11048 /// 11049 /// The kernel has the same function type as the block invoke function. Its 11050 /// name is the name of the block invoke function postfixed with "_kernel". 11051 /// It simply calls the block invoke function then returns. 11052 llvm::Function * 11053 TargetCodeGenInfo::createEnqueuedBlockKernel(CodeGenFunction &CGF, 11054 llvm::Function *Invoke, 11055 llvm::Value *BlockLiteral) const { 11056 auto *InvokeFT = Invoke->getFunctionType(); 11057 llvm::SmallVector<llvm::Type *, 2> ArgTys; 11058 for (auto &P : InvokeFT->params()) 11059 ArgTys.push_back(P); 11060 auto &C = CGF.getLLVMContext(); 11061 std::string Name = Invoke->getName().str() + "_kernel"; 11062 auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false); 11063 auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name, 11064 &CGF.CGM.getModule()); 11065 auto IP = CGF.Builder.saveIP(); 11066 auto *BB = llvm::BasicBlock::Create(C, "entry", F); 11067 auto &Builder = CGF.Builder; 11068 Builder.SetInsertPoint(BB); 11069 llvm::SmallVector<llvm::Value *, 2> Args; 11070 for (auto &A : F->args()) 11071 Args.push_back(&A); 11072 llvm::CallInst *call = Builder.CreateCall(Invoke, Args); 11073 call->setCallingConv(Invoke->getCallingConv()); 11074 Builder.CreateRetVoid(); 11075 Builder.restoreIP(IP); 11076 return F; 11077 } 11078 11079 /// Create an OpenCL kernel for an enqueued block. 11080 /// 11081 /// The type of the first argument (the block literal) is the struct type 11082 /// of the block literal instead of a pointer type. The first argument 11083 /// (block literal) is passed directly by value to the kernel. The kernel 11084 /// allocates the same type of struct on stack and stores the block literal 11085 /// to it and passes its pointer to the block invoke function. The kernel 11086 /// has "enqueued-block" function attribute and kernel argument metadata. 11087 llvm::Function *AMDGPUTargetCodeGenInfo::createEnqueuedBlockKernel( 11088 CodeGenFunction &CGF, llvm::Function *Invoke, 11089 llvm::Value *BlockLiteral) const { 11090 auto &Builder = CGF.Builder; 11091 auto &C = CGF.getLLVMContext(); 11092 11093 auto *BlockTy = BlockLiteral->getType()->getPointerElementType(); 11094 auto *InvokeFT = Invoke->getFunctionType(); 11095 llvm::SmallVector<llvm::Type *, 2> ArgTys; 11096 llvm::SmallVector<llvm::Metadata *, 8> AddressQuals; 11097 llvm::SmallVector<llvm::Metadata *, 8> AccessQuals; 11098 llvm::SmallVector<llvm::Metadata *, 8> ArgTypeNames; 11099 llvm::SmallVector<llvm::Metadata *, 8> ArgBaseTypeNames; 11100 llvm::SmallVector<llvm::Metadata *, 8> ArgTypeQuals; 11101 llvm::SmallVector<llvm::Metadata *, 8> ArgNames; 11102 11103 ArgTys.push_back(BlockTy); 11104 ArgTypeNames.push_back(llvm::MDString::get(C, "__block_literal")); 11105 AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(0))); 11106 ArgBaseTypeNames.push_back(llvm::MDString::get(C, "__block_literal")); 11107 ArgTypeQuals.push_back(llvm::MDString::get(C, "")); 11108 AccessQuals.push_back(llvm::MDString::get(C, "none")); 11109 ArgNames.push_back(llvm::MDString::get(C, "block_literal")); 11110 for (unsigned I = 1, E = InvokeFT->getNumParams(); I < E; ++I) { 11111 ArgTys.push_back(InvokeFT->getParamType(I)); 11112 ArgTypeNames.push_back(llvm::MDString::get(C, "void*")); 11113 AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(3))); 11114 AccessQuals.push_back(llvm::MDString::get(C, "none")); 11115 ArgBaseTypeNames.push_back(llvm::MDString::get(C, "void*")); 11116 ArgTypeQuals.push_back(llvm::MDString::get(C, "")); 11117 ArgNames.push_back( 11118 llvm::MDString::get(C, (Twine("local_arg") + Twine(I)).str())); 11119 } 11120 std::string Name = Invoke->getName().str() + "_kernel"; 11121 auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false); 11122 auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name, 11123 &CGF.CGM.getModule()); 11124 F->addFnAttr("enqueued-block"); 11125 auto IP = CGF.Builder.saveIP(); 11126 auto *BB = llvm::BasicBlock::Create(C, "entry", F); 11127 Builder.SetInsertPoint(BB); 11128 const auto BlockAlign = CGF.CGM.getDataLayout().getPrefTypeAlign(BlockTy); 11129 auto *BlockPtr = Builder.CreateAlloca(BlockTy, nullptr); 11130 BlockPtr->setAlignment(BlockAlign); 11131 Builder.CreateAlignedStore(F->arg_begin(), BlockPtr, BlockAlign); 11132 auto *Cast = Builder.CreatePointerCast(BlockPtr, InvokeFT->getParamType(0)); 11133 llvm::SmallVector<llvm::Value *, 2> Args; 11134 Args.push_back(Cast); 11135 for (auto I = F->arg_begin() + 1, E = F->arg_end(); I != E; ++I) 11136 Args.push_back(I); 11137 llvm::CallInst *call = Builder.CreateCall(Invoke, Args); 11138 call->setCallingConv(Invoke->getCallingConv()); 11139 Builder.CreateRetVoid(); 11140 Builder.restoreIP(IP); 11141 11142 F->setMetadata("kernel_arg_addr_space", llvm::MDNode::get(C, AddressQuals)); 11143 F->setMetadata("kernel_arg_access_qual", llvm::MDNode::get(C, AccessQuals)); 11144 F->setMetadata("kernel_arg_type", llvm::MDNode::get(C, ArgTypeNames)); 11145 F->setMetadata("kernel_arg_base_type", 11146 llvm::MDNode::get(C, ArgBaseTypeNames)); 11147 F->setMetadata("kernel_arg_type_qual", llvm::MDNode::get(C, ArgTypeQuals)); 11148 if (CGF.CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 11149 F->setMetadata("kernel_arg_name", llvm::MDNode::get(C, ArgNames)); 11150 11151 return F; 11152 } 11153