1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // These classes wrap the information about a call or function
10 // definition used to handle ABI compliancy.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "TargetInfo.h"
15 #include "ABIInfo.h"
16 #include "CGBlocks.h"
17 #include "CGCXXABI.h"
18 #include "CGValue.h"
19 #include "CodeGenFunction.h"
20 #include "clang/AST/Attr.h"
21 #include "clang/AST/RecordLayout.h"
22 #include "clang/Basic/CodeGenOptions.h"
23 #include "clang/Basic/DiagnosticFrontend.h"
24 #include "clang/Basic/Builtins.h"
25 #include "clang/CodeGen/CGFunctionInfo.h"
26 #include "clang/CodeGen/SwiftCallingConv.h"
27 #include "llvm/ADT/SmallBitVector.h"
28 #include "llvm/ADT/StringExtras.h"
29 #include "llvm/ADT/StringSwitch.h"
30 #include "llvm/ADT/Triple.h"
31 #include "llvm/ADT/Twine.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/IntrinsicsNVPTX.h"
34 #include "llvm/IR/IntrinsicsS390.h"
35 #include "llvm/IR/Type.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include <algorithm> // std::sort
38 
39 using namespace clang;
40 using namespace CodeGen;
41 
42 // Helper for coercing an aggregate argument or return value into an integer
43 // array of the same size (including padding) and alignment.  This alternate
44 // coercion happens only for the RenderScript ABI and can be removed after
45 // runtimes that rely on it are no longer supported.
46 //
47 // RenderScript assumes that the size of the argument / return value in the IR
48 // is the same as the size of the corresponding qualified type. This helper
49 // coerces the aggregate type into an array of the same size (including
50 // padding).  This coercion is used in lieu of expansion of struct members or
51 // other canonical coercions that return a coerced-type of larger size.
52 //
53 // Ty          - The argument / return value type
54 // Context     - The associated ASTContext
55 // LLVMContext - The associated LLVMContext
56 static ABIArgInfo coerceToIntArray(QualType Ty,
57                                    ASTContext &Context,
58                                    llvm::LLVMContext &LLVMContext) {
59   // Alignment and Size are measured in bits.
60   const uint64_t Size = Context.getTypeSize(Ty);
61   const uint64_t Alignment = Context.getTypeAlign(Ty);
62   llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment);
63   const uint64_t NumElements = (Size + Alignment - 1) / Alignment;
64   return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements));
65 }
66 
67 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
68                                llvm::Value *Array,
69                                llvm::Value *Value,
70                                unsigned FirstIndex,
71                                unsigned LastIndex) {
72   // Alternatively, we could emit this as a loop in the source.
73   for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
74     llvm::Value *Cell =
75         Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I);
76     Builder.CreateAlignedStore(Value, Cell, CharUnits::One());
77   }
78 }
79 
80 static bool isAggregateTypeForABI(QualType T) {
81   return !CodeGenFunction::hasScalarEvaluationKind(T) ||
82          T->isMemberFunctionPointerType();
83 }
84 
85 ABIArgInfo ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByVal,
86                                             bool Realign,
87                                             llvm::Type *Padding) const {
88   return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty), ByVal,
89                                  Realign, Padding);
90 }
91 
92 ABIArgInfo
93 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const {
94   return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty),
95                                       /*ByVal*/ false, Realign);
96 }
97 
98 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
99                              QualType Ty) const {
100   return Address::invalid();
101 }
102 
103 bool ABIInfo::isPromotableIntegerTypeForABI(QualType Ty) const {
104   if (Ty->isPromotableIntegerType())
105     return true;
106 
107   if (const auto *EIT = Ty->getAs<ExtIntType>())
108     if (EIT->getNumBits() < getContext().getTypeSize(getContext().IntTy))
109       return true;
110 
111   return false;
112 }
113 
114 ABIInfo::~ABIInfo() {}
115 
116 /// Does the given lowering require more than the given number of
117 /// registers when expanded?
118 ///
119 /// This is intended to be the basis of a reasonable basic implementation
120 /// of should{Pass,Return}IndirectlyForSwift.
121 ///
122 /// For most targets, a limit of four total registers is reasonable; this
123 /// limits the amount of code required in order to move around the value
124 /// in case it wasn't produced immediately prior to the call by the caller
125 /// (or wasn't produced in exactly the right registers) or isn't used
126 /// immediately within the callee.  But some targets may need to further
127 /// limit the register count due to an inability to support that many
128 /// return registers.
129 static bool occupiesMoreThan(CodeGenTypes &cgt,
130                              ArrayRef<llvm::Type*> scalarTypes,
131                              unsigned maxAllRegisters) {
132   unsigned intCount = 0, fpCount = 0;
133   for (llvm::Type *type : scalarTypes) {
134     if (type->isPointerTy()) {
135       intCount++;
136     } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) {
137       auto ptrWidth = cgt.getTarget().getPointerWidth(0);
138       intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth;
139     } else {
140       assert(type->isVectorTy() || type->isFloatingPointTy());
141       fpCount++;
142     }
143   }
144 
145   return (intCount + fpCount > maxAllRegisters);
146 }
147 
148 bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize,
149                                              llvm::Type *eltTy,
150                                              unsigned numElts) const {
151   // The default implementation of this assumes that the target guarantees
152   // 128-bit SIMD support but nothing more.
153   return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16);
154 }
155 
156 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT,
157                                               CGCXXABI &CXXABI) {
158   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
159   if (!RD) {
160     if (!RT->getDecl()->canPassInRegisters())
161       return CGCXXABI::RAA_Indirect;
162     return CGCXXABI::RAA_Default;
163   }
164   return CXXABI.getRecordArgABI(RD);
165 }
166 
167 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T,
168                                               CGCXXABI &CXXABI) {
169   const RecordType *RT = T->getAs<RecordType>();
170   if (!RT)
171     return CGCXXABI::RAA_Default;
172   return getRecordArgABI(RT, CXXABI);
173 }
174 
175 static bool classifyReturnType(const CGCXXABI &CXXABI, CGFunctionInfo &FI,
176                                const ABIInfo &Info) {
177   QualType Ty = FI.getReturnType();
178 
179   if (const auto *RT = Ty->getAs<RecordType>())
180     if (!isa<CXXRecordDecl>(RT->getDecl()) &&
181         !RT->getDecl()->canPassInRegisters()) {
182       FI.getReturnInfo() = Info.getNaturalAlignIndirect(Ty);
183       return true;
184     }
185 
186   return CXXABI.classifyReturnType(FI);
187 }
188 
189 /// Pass transparent unions as if they were the type of the first element. Sema
190 /// should ensure that all elements of the union have the same "machine type".
191 static QualType useFirstFieldIfTransparentUnion(QualType Ty) {
192   if (const RecordType *UT = Ty->getAsUnionType()) {
193     const RecordDecl *UD = UT->getDecl();
194     if (UD->hasAttr<TransparentUnionAttr>()) {
195       assert(!UD->field_empty() && "sema created an empty transparent union");
196       return UD->field_begin()->getType();
197     }
198   }
199   return Ty;
200 }
201 
202 CGCXXABI &ABIInfo::getCXXABI() const {
203   return CGT.getCXXABI();
204 }
205 
206 ASTContext &ABIInfo::getContext() const {
207   return CGT.getContext();
208 }
209 
210 llvm::LLVMContext &ABIInfo::getVMContext() const {
211   return CGT.getLLVMContext();
212 }
213 
214 const llvm::DataLayout &ABIInfo::getDataLayout() const {
215   return CGT.getDataLayout();
216 }
217 
218 const TargetInfo &ABIInfo::getTarget() const {
219   return CGT.getTarget();
220 }
221 
222 const CodeGenOptions &ABIInfo::getCodeGenOpts() const {
223   return CGT.getCodeGenOpts();
224 }
225 
226 bool ABIInfo::isAndroid() const { return getTarget().getTriple().isAndroid(); }
227 
228 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
229   return false;
230 }
231 
232 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
233                                                 uint64_t Members) const {
234   return false;
235 }
236 
237 LLVM_DUMP_METHOD void ABIArgInfo::dump() const {
238   raw_ostream &OS = llvm::errs();
239   OS << "(ABIArgInfo Kind=";
240   switch (TheKind) {
241   case Direct:
242     OS << "Direct Type=";
243     if (llvm::Type *Ty = getCoerceToType())
244       Ty->print(OS);
245     else
246       OS << "null";
247     break;
248   case Extend:
249     OS << "Extend";
250     break;
251   case Ignore:
252     OS << "Ignore";
253     break;
254   case InAlloca:
255     OS << "InAlloca Offset=" << getInAllocaFieldIndex();
256     break;
257   case Indirect:
258     OS << "Indirect Align=" << getIndirectAlign().getQuantity()
259        << " ByVal=" << getIndirectByVal()
260        << " Realign=" << getIndirectRealign();
261     break;
262   case IndirectAliased:
263     OS << "Indirect Align=" << getIndirectAlign().getQuantity()
264        << " AadrSpace=" << getIndirectAddrSpace()
265        << " Realign=" << getIndirectRealign();
266     break;
267   case Expand:
268     OS << "Expand";
269     break;
270   case CoerceAndExpand:
271     OS << "CoerceAndExpand Type=";
272     getCoerceAndExpandType()->print(OS);
273     break;
274   }
275   OS << ")\n";
276 }
277 
278 // Dynamically round a pointer up to a multiple of the given alignment.
279 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF,
280                                                   llvm::Value *Ptr,
281                                                   CharUnits Align) {
282   llvm::Value *PtrAsInt = Ptr;
283   // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align;
284   PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy);
285   PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt,
286         llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1));
287   PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt,
288            llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity()));
289   PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt,
290                                         Ptr->getType(),
291                                         Ptr->getName() + ".aligned");
292   return PtrAsInt;
293 }
294 
295 /// Emit va_arg for a platform using the common void* representation,
296 /// where arguments are simply emitted in an array of slots on the stack.
297 ///
298 /// This version implements the core direct-value passing rules.
299 ///
300 /// \param SlotSize - The size and alignment of a stack slot.
301 ///   Each argument will be allocated to a multiple of this number of
302 ///   slots, and all the slots will be aligned to this value.
303 /// \param AllowHigherAlign - The slot alignment is not a cap;
304 ///   an argument type with an alignment greater than the slot size
305 ///   will be emitted on a higher-alignment address, potentially
306 ///   leaving one or more empty slots behind as padding.  If this
307 ///   is false, the returned address might be less-aligned than
308 ///   DirectAlign.
309 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF,
310                                       Address VAListAddr,
311                                       llvm::Type *DirectTy,
312                                       CharUnits DirectSize,
313                                       CharUnits DirectAlign,
314                                       CharUnits SlotSize,
315                                       bool AllowHigherAlign) {
316   // Cast the element type to i8* if necessary.  Some platforms define
317   // va_list as a struct containing an i8* instead of just an i8*.
318   if (VAListAddr.getElementType() != CGF.Int8PtrTy)
319     VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy);
320 
321   llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur");
322 
323   // If the CC aligns values higher than the slot size, do so if needed.
324   Address Addr = Address::invalid();
325   if (AllowHigherAlign && DirectAlign > SlotSize) {
326     Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign),
327                                                  DirectAlign);
328   } else {
329     Addr = Address(Ptr, SlotSize);
330   }
331 
332   // Advance the pointer past the argument, then store that back.
333   CharUnits FullDirectSize = DirectSize.alignTo(SlotSize);
334   Address NextPtr =
335       CGF.Builder.CreateConstInBoundsByteGEP(Addr, FullDirectSize, "argp.next");
336   CGF.Builder.CreateStore(NextPtr.getPointer(), VAListAddr);
337 
338   // If the argument is smaller than a slot, and this is a big-endian
339   // target, the argument will be right-adjusted in its slot.
340   if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() &&
341       !DirectTy->isStructTy()) {
342     Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize);
343   }
344 
345   Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy);
346   return Addr;
347 }
348 
349 /// Emit va_arg for a platform using the common void* representation,
350 /// where arguments are simply emitted in an array of slots on the stack.
351 ///
352 /// \param IsIndirect - Values of this type are passed indirectly.
353 /// \param ValueInfo - The size and alignment of this type, generally
354 ///   computed with getContext().getTypeInfoInChars(ValueTy).
355 /// \param SlotSizeAndAlign - The size and alignment of a stack slot.
356 ///   Each argument will be allocated to a multiple of this number of
357 ///   slots, and all the slots will be aligned to this value.
358 /// \param AllowHigherAlign - The slot alignment is not a cap;
359 ///   an argument type with an alignment greater than the slot size
360 ///   will be emitted on a higher-alignment address, potentially
361 ///   leaving one or more empty slots behind as padding.
362 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr,
363                                 QualType ValueTy, bool IsIndirect,
364                                 TypeInfoChars ValueInfo,
365                                 CharUnits SlotSizeAndAlign,
366                                 bool AllowHigherAlign) {
367   // The size and alignment of the value that was passed directly.
368   CharUnits DirectSize, DirectAlign;
369   if (IsIndirect) {
370     DirectSize = CGF.getPointerSize();
371     DirectAlign = CGF.getPointerAlign();
372   } else {
373     DirectSize = ValueInfo.Width;
374     DirectAlign = ValueInfo.Align;
375   }
376 
377   // Cast the address we've calculated to the right type.
378   llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy);
379   if (IsIndirect)
380     DirectTy = DirectTy->getPointerTo(0);
381 
382   Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy,
383                                         DirectSize, DirectAlign,
384                                         SlotSizeAndAlign,
385                                         AllowHigherAlign);
386 
387   if (IsIndirect) {
388     Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.Align);
389   }
390 
391   return Addr;
392 
393 }
394 
395 static Address complexTempStructure(CodeGenFunction &CGF, Address VAListAddr,
396                                     QualType Ty, CharUnits SlotSize,
397                                     CharUnits EltSize, const ComplexType *CTy) {
398   Address Addr =
399       emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty, SlotSize * 2,
400                              SlotSize, SlotSize, /*AllowHigher*/ true);
401 
402   Address RealAddr = Addr;
403   Address ImagAddr = RealAddr;
404   if (CGF.CGM.getDataLayout().isBigEndian()) {
405     RealAddr =
406         CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize - EltSize);
407     ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr,
408                                                       2 * SlotSize - EltSize);
409   } else {
410     ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize);
411   }
412 
413   llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType());
414   RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy);
415   ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy);
416   llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal");
417   llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag");
418 
419   Address Temp = CGF.CreateMemTemp(Ty, "vacplx");
420   CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty),
421                          /*init*/ true);
422   return Temp;
423 }
424 
425 static Address emitMergePHI(CodeGenFunction &CGF,
426                             Address Addr1, llvm::BasicBlock *Block1,
427                             Address Addr2, llvm::BasicBlock *Block2,
428                             const llvm::Twine &Name = "") {
429   assert(Addr1.getType() == Addr2.getType());
430   llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name);
431   PHI->addIncoming(Addr1.getPointer(), Block1);
432   PHI->addIncoming(Addr2.getPointer(), Block2);
433   CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment());
434   return Address(PHI, Align);
435 }
436 
437 TargetCodeGenInfo::~TargetCodeGenInfo() = default;
438 
439 // If someone can figure out a general rule for this, that would be great.
440 // It's probably just doomed to be platform-dependent, though.
441 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const {
442   // Verified for:
443   //   x86-64     FreeBSD, Linux, Darwin
444   //   x86-32     FreeBSD, Linux, Darwin
445   //   PowerPC    Linux, Darwin
446   //   ARM        Darwin (*not* EABI)
447   //   AArch64    Linux
448   return 32;
449 }
450 
451 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args,
452                                      const FunctionNoProtoType *fnType) const {
453   // The following conventions are known to require this to be false:
454   //   x86_stdcall
455   //   MIPS
456   // For everything else, we just prefer false unless we opt out.
457   return false;
458 }
459 
460 void
461 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib,
462                                              llvm::SmallString<24> &Opt) const {
463   // This assumes the user is passing a library name like "rt" instead of a
464   // filename like "librt.a/so", and that they don't care whether it's static or
465   // dynamic.
466   Opt = "-l";
467   Opt += Lib;
468 }
469 
470 unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const {
471   // OpenCL kernels are called via an explicit runtime API with arguments
472   // set with clSetKernelArg(), not as normal sub-functions.
473   // Return SPIR_KERNEL by default as the kernel calling convention to
474   // ensure the fingerprint is fixed such way that each OpenCL argument
475   // gets one matching argument in the produced kernel function argument
476   // list to enable feasible implementation of clSetKernelArg() with
477   // aggregates etc. In case we would use the default C calling conv here,
478   // clSetKernelArg() might break depending on the target-specific
479   // conventions; different targets might split structs passed as values
480   // to multiple function arguments etc.
481   return llvm::CallingConv::SPIR_KERNEL;
482 }
483 
484 llvm::Constant *TargetCodeGenInfo::getNullPointer(const CodeGen::CodeGenModule &CGM,
485     llvm::PointerType *T, QualType QT) const {
486   return llvm::ConstantPointerNull::get(T);
487 }
488 
489 LangAS TargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM,
490                                                    const VarDecl *D) const {
491   assert(!CGM.getLangOpts().OpenCL &&
492          !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) &&
493          "Address space agnostic languages only");
494   return D ? D->getType().getAddressSpace() : LangAS::Default;
495 }
496 
497 llvm::Value *TargetCodeGenInfo::performAddrSpaceCast(
498     CodeGen::CodeGenFunction &CGF, llvm::Value *Src, LangAS SrcAddr,
499     LangAS DestAddr, llvm::Type *DestTy, bool isNonNull) const {
500   // Since target may map different address spaces in AST to the same address
501   // space, an address space conversion may end up as a bitcast.
502   if (auto *C = dyn_cast<llvm::Constant>(Src))
503     return performAddrSpaceCast(CGF.CGM, C, SrcAddr, DestAddr, DestTy);
504   // Try to preserve the source's name to make IR more readable.
505   return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
506       Src, DestTy, Src->hasName() ? Src->getName() + ".ascast" : "");
507 }
508 
509 llvm::Constant *
510 TargetCodeGenInfo::performAddrSpaceCast(CodeGenModule &CGM, llvm::Constant *Src,
511                                         LangAS SrcAddr, LangAS DestAddr,
512                                         llvm::Type *DestTy) const {
513   // Since target may map different address spaces in AST to the same address
514   // space, an address space conversion may end up as a bitcast.
515   return llvm::ConstantExpr::getPointerCast(Src, DestTy);
516 }
517 
518 llvm::SyncScope::ID
519 TargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts,
520                                       SyncScope Scope,
521                                       llvm::AtomicOrdering Ordering,
522                                       llvm::LLVMContext &Ctx) const {
523   return Ctx.getOrInsertSyncScopeID(""); /* default sync scope */
524 }
525 
526 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
527 
528 /// isEmptyField - Return true iff a the field is "empty", that is it
529 /// is an unnamed bit-field or an (array of) empty record(s).
530 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
531                          bool AllowArrays) {
532   if (FD->isUnnamedBitfield())
533     return true;
534 
535   QualType FT = FD->getType();
536 
537   // Constant arrays of empty records count as empty, strip them off.
538   // Constant arrays of zero length always count as empty.
539   bool WasArray = false;
540   if (AllowArrays)
541     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
542       if (AT->getSize() == 0)
543         return true;
544       FT = AT->getElementType();
545       // The [[no_unique_address]] special case below does not apply to
546       // arrays of C++ empty records, so we need to remember this fact.
547       WasArray = true;
548     }
549 
550   const RecordType *RT = FT->getAs<RecordType>();
551   if (!RT)
552     return false;
553 
554   // C++ record fields are never empty, at least in the Itanium ABI.
555   //
556   // FIXME: We should use a predicate for whether this behavior is true in the
557   // current ABI.
558   //
559   // The exception to the above rule are fields marked with the
560   // [[no_unique_address]] attribute (since C++20).  Those do count as empty
561   // according to the Itanium ABI.  The exception applies only to records,
562   // not arrays of records, so we must also check whether we stripped off an
563   // array type above.
564   if (isa<CXXRecordDecl>(RT->getDecl()) &&
565       (WasArray || !FD->hasAttr<NoUniqueAddressAttr>()))
566     return false;
567 
568   return isEmptyRecord(Context, FT, AllowArrays);
569 }
570 
571 /// isEmptyRecord - Return true iff a structure contains only empty
572 /// fields. Note that a structure with a flexible array member is not
573 /// considered empty.
574 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
575   const RecordType *RT = T->getAs<RecordType>();
576   if (!RT)
577     return false;
578   const RecordDecl *RD = RT->getDecl();
579   if (RD->hasFlexibleArrayMember())
580     return false;
581 
582   // If this is a C++ record, check the bases first.
583   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
584     for (const auto &I : CXXRD->bases())
585       if (!isEmptyRecord(Context, I.getType(), true))
586         return false;
587 
588   for (const auto *I : RD->fields())
589     if (!isEmptyField(Context, I, AllowArrays))
590       return false;
591   return true;
592 }
593 
594 /// isSingleElementStruct - Determine if a structure is a "single
595 /// element struct", i.e. it has exactly one non-empty field or
596 /// exactly one field which is itself a single element
597 /// struct. Structures with flexible array members are never
598 /// considered single element structs.
599 ///
600 /// \return The field declaration for the single non-empty field, if
601 /// it exists.
602 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
603   const RecordType *RT = T->getAs<RecordType>();
604   if (!RT)
605     return nullptr;
606 
607   const RecordDecl *RD = RT->getDecl();
608   if (RD->hasFlexibleArrayMember())
609     return nullptr;
610 
611   const Type *Found = nullptr;
612 
613   // If this is a C++ record, check the bases first.
614   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
615     for (const auto &I : CXXRD->bases()) {
616       // Ignore empty records.
617       if (isEmptyRecord(Context, I.getType(), true))
618         continue;
619 
620       // If we already found an element then this isn't a single-element struct.
621       if (Found)
622         return nullptr;
623 
624       // If this is non-empty and not a single element struct, the composite
625       // cannot be a single element struct.
626       Found = isSingleElementStruct(I.getType(), Context);
627       if (!Found)
628         return nullptr;
629     }
630   }
631 
632   // Check for single element.
633   for (const auto *FD : RD->fields()) {
634     QualType FT = FD->getType();
635 
636     // Ignore empty fields.
637     if (isEmptyField(Context, FD, true))
638       continue;
639 
640     // If we already found an element then this isn't a single-element
641     // struct.
642     if (Found)
643       return nullptr;
644 
645     // Treat single element arrays as the element.
646     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
647       if (AT->getSize().getZExtValue() != 1)
648         break;
649       FT = AT->getElementType();
650     }
651 
652     if (!isAggregateTypeForABI(FT)) {
653       Found = FT.getTypePtr();
654     } else {
655       Found = isSingleElementStruct(FT, Context);
656       if (!Found)
657         return nullptr;
658     }
659   }
660 
661   // We don't consider a struct a single-element struct if it has
662   // padding beyond the element type.
663   if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T))
664     return nullptr;
665 
666   return Found;
667 }
668 
669 namespace {
670 Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty,
671                        const ABIArgInfo &AI) {
672   // This default implementation defers to the llvm backend's va_arg
673   // instruction. It can handle only passing arguments directly
674   // (typically only handled in the backend for primitive types), or
675   // aggregates passed indirectly by pointer (NOTE: if the "byval"
676   // flag has ABI impact in the callee, this implementation cannot
677   // work.)
678 
679   // Only a few cases are covered here at the moment -- those needed
680   // by the default abi.
681   llvm::Value *Val;
682 
683   if (AI.isIndirect()) {
684     assert(!AI.getPaddingType() &&
685            "Unexpected PaddingType seen in arginfo in generic VAArg emitter!");
686     assert(
687         !AI.getIndirectRealign() &&
688         "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!");
689 
690     auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty);
691     CharUnits TyAlignForABI = TyInfo.Align;
692 
693     llvm::Type *BaseTy =
694         llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
695     llvm::Value *Addr =
696         CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy);
697     return Address(Addr, TyAlignForABI);
698   } else {
699     assert((AI.isDirect() || AI.isExtend()) &&
700            "Unexpected ArgInfo Kind in generic VAArg emitter!");
701 
702     assert(!AI.getInReg() &&
703            "Unexpected InReg seen in arginfo in generic VAArg emitter!");
704     assert(!AI.getPaddingType() &&
705            "Unexpected PaddingType seen in arginfo in generic VAArg emitter!");
706     assert(!AI.getDirectOffset() &&
707            "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!");
708     assert(!AI.getCoerceToType() &&
709            "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!");
710 
711     Address Temp = CGF.CreateMemTemp(Ty, "varet");
712     Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), CGF.ConvertType(Ty));
713     CGF.Builder.CreateStore(Val, Temp);
714     return Temp;
715   }
716 }
717 
718 /// DefaultABIInfo - The default implementation for ABI specific
719 /// details. This implementation provides information which results in
720 /// self-consistent and sensible LLVM IR generation, but does not
721 /// conform to any particular ABI.
722 class DefaultABIInfo : public ABIInfo {
723 public:
724   DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
725 
726   ABIArgInfo classifyReturnType(QualType RetTy) const;
727   ABIArgInfo classifyArgumentType(QualType RetTy) const;
728 
729   void computeInfo(CGFunctionInfo &FI) const override {
730     if (!getCXXABI().classifyReturnType(FI))
731       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
732     for (auto &I : FI.arguments())
733       I.info = classifyArgumentType(I.type);
734   }
735 
736   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
737                     QualType Ty) const override {
738     return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty));
739   }
740 };
741 
742 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
743 public:
744   DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
745       : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {}
746 };
747 
748 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
749   Ty = useFirstFieldIfTransparentUnion(Ty);
750 
751   if (isAggregateTypeForABI(Ty)) {
752     // Records with non-trivial destructors/copy-constructors should not be
753     // passed by value.
754     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
755       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
756 
757     return getNaturalAlignIndirect(Ty);
758   }
759 
760   // Treat an enum type as its underlying type.
761   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
762     Ty = EnumTy->getDecl()->getIntegerType();
763 
764   ASTContext &Context = getContext();
765   if (const auto *EIT = Ty->getAs<ExtIntType>())
766     if (EIT->getNumBits() >
767         Context.getTypeSize(Context.getTargetInfo().hasInt128Type()
768                                 ? Context.Int128Ty
769                                 : Context.LongLongTy))
770       return getNaturalAlignIndirect(Ty);
771 
772   return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
773                                             : ABIArgInfo::getDirect());
774 }
775 
776 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
777   if (RetTy->isVoidType())
778     return ABIArgInfo::getIgnore();
779 
780   if (isAggregateTypeForABI(RetTy))
781     return getNaturalAlignIndirect(RetTy);
782 
783   // Treat an enum type as its underlying type.
784   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
785     RetTy = EnumTy->getDecl()->getIntegerType();
786 
787   if (const auto *EIT = RetTy->getAs<ExtIntType>())
788     if (EIT->getNumBits() >
789         getContext().getTypeSize(getContext().getTargetInfo().hasInt128Type()
790                                      ? getContext().Int128Ty
791                                      : getContext().LongLongTy))
792       return getNaturalAlignIndirect(RetTy);
793 
794   return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
795                                                : ABIArgInfo::getDirect());
796 }
797 
798 //===----------------------------------------------------------------------===//
799 // WebAssembly ABI Implementation
800 //
801 // This is a very simple ABI that relies a lot on DefaultABIInfo.
802 //===----------------------------------------------------------------------===//
803 
804 class WebAssemblyABIInfo final : public SwiftABIInfo {
805 public:
806   enum ABIKind {
807     MVP = 0,
808     ExperimentalMV = 1,
809   };
810 
811 private:
812   DefaultABIInfo defaultInfo;
813   ABIKind Kind;
814 
815 public:
816   explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind)
817       : SwiftABIInfo(CGT), defaultInfo(CGT), Kind(Kind) {}
818 
819 private:
820   ABIArgInfo classifyReturnType(QualType RetTy) const;
821   ABIArgInfo classifyArgumentType(QualType Ty) const;
822 
823   // DefaultABIInfo's classifyReturnType and classifyArgumentType are
824   // non-virtual, but computeInfo and EmitVAArg are virtual, so we
825   // overload them.
826   void computeInfo(CGFunctionInfo &FI) const override {
827     if (!getCXXABI().classifyReturnType(FI))
828       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
829     for (auto &Arg : FI.arguments())
830       Arg.info = classifyArgumentType(Arg.type);
831   }
832 
833   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
834                     QualType Ty) const override;
835 
836   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
837                                     bool asReturnValue) const override {
838     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
839   }
840 
841   bool isSwiftErrorInRegister() const override {
842     return false;
843   }
844 };
845 
846 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo {
847 public:
848   explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
849                                         WebAssemblyABIInfo::ABIKind K)
850       : TargetCodeGenInfo(std::make_unique<WebAssemblyABIInfo>(CGT, K)) {}
851 
852   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
853                            CodeGen::CodeGenModule &CGM) const override {
854     TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
855     if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) {
856       if (const auto *Attr = FD->getAttr<WebAssemblyImportModuleAttr>()) {
857         llvm::Function *Fn = cast<llvm::Function>(GV);
858         llvm::AttrBuilder B;
859         B.addAttribute("wasm-import-module", Attr->getImportModule());
860         Fn->addFnAttrs(B);
861       }
862       if (const auto *Attr = FD->getAttr<WebAssemblyImportNameAttr>()) {
863         llvm::Function *Fn = cast<llvm::Function>(GV);
864         llvm::AttrBuilder B;
865         B.addAttribute("wasm-import-name", Attr->getImportName());
866         Fn->addFnAttrs(B);
867       }
868       if (const auto *Attr = FD->getAttr<WebAssemblyExportNameAttr>()) {
869         llvm::Function *Fn = cast<llvm::Function>(GV);
870         llvm::AttrBuilder B;
871         B.addAttribute("wasm-export-name", Attr->getExportName());
872         Fn->addFnAttrs(B);
873       }
874     }
875 
876     if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) {
877       llvm::Function *Fn = cast<llvm::Function>(GV);
878       if (!FD->doesThisDeclarationHaveABody() && !FD->hasPrototype())
879         Fn->addFnAttr("no-prototype");
880     }
881   }
882 };
883 
884 /// Classify argument of given type \p Ty.
885 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const {
886   Ty = useFirstFieldIfTransparentUnion(Ty);
887 
888   if (isAggregateTypeForABI(Ty)) {
889     // Records with non-trivial destructors/copy-constructors should not be
890     // passed by value.
891     if (auto RAA = getRecordArgABI(Ty, getCXXABI()))
892       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
893     // Ignore empty structs/unions.
894     if (isEmptyRecord(getContext(), Ty, true))
895       return ABIArgInfo::getIgnore();
896     // Lower single-element structs to just pass a regular value. TODO: We
897     // could do reasonable-size multiple-element structs too, using getExpand(),
898     // though watch out for things like bitfields.
899     if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
900       return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
901     // For the experimental multivalue ABI, fully expand all other aggregates
902     if (Kind == ABIKind::ExperimentalMV) {
903       const RecordType *RT = Ty->getAs<RecordType>();
904       assert(RT);
905       bool HasBitField = false;
906       for (auto *Field : RT->getDecl()->fields()) {
907         if (Field->isBitField()) {
908           HasBitField = true;
909           break;
910         }
911       }
912       if (!HasBitField)
913         return ABIArgInfo::getExpand();
914     }
915   }
916 
917   // Otherwise just do the default thing.
918   return defaultInfo.classifyArgumentType(Ty);
919 }
920 
921 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const {
922   if (isAggregateTypeForABI(RetTy)) {
923     // Records with non-trivial destructors/copy-constructors should not be
924     // returned by value.
925     if (!getRecordArgABI(RetTy, getCXXABI())) {
926       // Ignore empty structs/unions.
927       if (isEmptyRecord(getContext(), RetTy, true))
928         return ABIArgInfo::getIgnore();
929       // Lower single-element structs to just return a regular value. TODO: We
930       // could do reasonable-size multiple-element structs too, using
931       // ABIArgInfo::getDirect().
932       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
933         return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
934       // For the experimental multivalue ABI, return all other aggregates
935       if (Kind == ABIKind::ExperimentalMV)
936         return ABIArgInfo::getDirect();
937     }
938   }
939 
940   // Otherwise just do the default thing.
941   return defaultInfo.classifyReturnType(RetTy);
942 }
943 
944 Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
945                                       QualType Ty) const {
946   bool IsIndirect = isAggregateTypeForABI(Ty) &&
947                     !isEmptyRecord(getContext(), Ty, true) &&
948                     !isSingleElementStruct(Ty, getContext());
949   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
950                           getContext().getTypeInfoInChars(Ty),
951                           CharUnits::fromQuantity(4),
952                           /*AllowHigherAlign=*/true);
953 }
954 
955 //===----------------------------------------------------------------------===//
956 // le32/PNaCl bitcode ABI Implementation
957 //
958 // This is a simplified version of the x86_32 ABI.  Arguments and return values
959 // are always passed on the stack.
960 //===----------------------------------------------------------------------===//
961 
962 class PNaClABIInfo : public ABIInfo {
963  public:
964   PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
965 
966   ABIArgInfo classifyReturnType(QualType RetTy) const;
967   ABIArgInfo classifyArgumentType(QualType RetTy) const;
968 
969   void computeInfo(CGFunctionInfo &FI) const override;
970   Address EmitVAArg(CodeGenFunction &CGF,
971                     Address VAListAddr, QualType Ty) const override;
972 };
973 
974 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo {
975  public:
976    PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
977        : TargetCodeGenInfo(std::make_unique<PNaClABIInfo>(CGT)) {}
978 };
979 
980 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const {
981   if (!getCXXABI().classifyReturnType(FI))
982     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
983 
984   for (auto &I : FI.arguments())
985     I.info = classifyArgumentType(I.type);
986 }
987 
988 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
989                                 QualType Ty) const {
990   // The PNaCL ABI is a bit odd, in that varargs don't use normal
991   // function classification. Structs get passed directly for varargs
992   // functions, through a rewriting transform in
993   // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows
994   // this target to actually support a va_arg instructions with an
995   // aggregate type, unlike other targets.
996   return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect());
997 }
998 
999 /// Classify argument of given type \p Ty.
1000 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const {
1001   if (isAggregateTypeForABI(Ty)) {
1002     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
1003       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
1004     return getNaturalAlignIndirect(Ty);
1005   } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
1006     // Treat an enum type as its underlying type.
1007     Ty = EnumTy->getDecl()->getIntegerType();
1008   } else if (Ty->isFloatingType()) {
1009     // Floating-point types don't go inreg.
1010     return ABIArgInfo::getDirect();
1011   } else if (const auto *EIT = Ty->getAs<ExtIntType>()) {
1012     // Treat extended integers as integers if <=64, otherwise pass indirectly.
1013     if (EIT->getNumBits() > 64)
1014       return getNaturalAlignIndirect(Ty);
1015     return ABIArgInfo::getDirect();
1016   }
1017 
1018   return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
1019                                             : ABIArgInfo::getDirect());
1020 }
1021 
1022 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const {
1023   if (RetTy->isVoidType())
1024     return ABIArgInfo::getIgnore();
1025 
1026   // In the PNaCl ABI we always return records/structures on the stack.
1027   if (isAggregateTypeForABI(RetTy))
1028     return getNaturalAlignIndirect(RetTy);
1029 
1030   // Treat extended integers as integers if <=64, otherwise pass indirectly.
1031   if (const auto *EIT = RetTy->getAs<ExtIntType>()) {
1032     if (EIT->getNumBits() > 64)
1033       return getNaturalAlignIndirect(RetTy);
1034     return ABIArgInfo::getDirect();
1035   }
1036 
1037   // Treat an enum type as its underlying type.
1038   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
1039     RetTy = EnumTy->getDecl()->getIntegerType();
1040 
1041   return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
1042                                                : ABIArgInfo::getDirect());
1043 }
1044 
1045 /// IsX86_MMXType - Return true if this is an MMX type.
1046 bool IsX86_MMXType(llvm::Type *IRType) {
1047   // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>.
1048   return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
1049     cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
1050     IRType->getScalarSizeInBits() != 64;
1051 }
1052 
1053 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
1054                                           StringRef Constraint,
1055                                           llvm::Type* Ty) {
1056   bool IsMMXCons = llvm::StringSwitch<bool>(Constraint)
1057                      .Cases("y", "&y", "^Ym", true)
1058                      .Default(false);
1059   if (IsMMXCons && Ty->isVectorTy()) {
1060     if (cast<llvm::VectorType>(Ty)->getPrimitiveSizeInBits().getFixedSize() !=
1061         64) {
1062       // Invalid MMX constraint
1063       return nullptr;
1064     }
1065 
1066     return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
1067   }
1068 
1069   // No operation needed
1070   return Ty;
1071 }
1072 
1073 /// Returns true if this type can be passed in SSE registers with the
1074 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64.
1075 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) {
1076   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
1077     if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) {
1078       if (BT->getKind() == BuiltinType::LongDouble) {
1079         if (&Context.getTargetInfo().getLongDoubleFormat() ==
1080             &llvm::APFloat::x87DoubleExtended())
1081           return false;
1082       }
1083       return true;
1084     }
1085   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
1086     // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX
1087     // registers specially.
1088     unsigned VecSize = Context.getTypeSize(VT);
1089     if (VecSize == 128 || VecSize == 256 || VecSize == 512)
1090       return true;
1091   }
1092   return false;
1093 }
1094 
1095 /// Returns true if this aggregate is small enough to be passed in SSE registers
1096 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64.
1097 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) {
1098   return NumMembers <= 4;
1099 }
1100 
1101 /// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86.
1102 static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) {
1103   auto AI = ABIArgInfo::getDirect(T);
1104   AI.setInReg(true);
1105   AI.setCanBeFlattened(false);
1106   return AI;
1107 }
1108 
1109 //===----------------------------------------------------------------------===//
1110 // X86-32 ABI Implementation
1111 //===----------------------------------------------------------------------===//
1112 
1113 /// Similar to llvm::CCState, but for Clang.
1114 struct CCState {
1115   CCState(CGFunctionInfo &FI)
1116       : IsPreassigned(FI.arg_size()), CC(FI.getCallingConvention()) {}
1117 
1118   llvm::SmallBitVector IsPreassigned;
1119   unsigned CC = CallingConv::CC_C;
1120   unsigned FreeRegs = 0;
1121   unsigned FreeSSERegs = 0;
1122 };
1123 
1124 /// X86_32ABIInfo - The X86-32 ABI information.
1125 class X86_32ABIInfo : public SwiftABIInfo {
1126   enum Class {
1127     Integer,
1128     Float
1129   };
1130 
1131   static const unsigned MinABIStackAlignInBytes = 4;
1132 
1133   bool IsDarwinVectorABI;
1134   bool IsRetSmallStructInRegABI;
1135   bool IsWin32StructABI;
1136   bool IsSoftFloatABI;
1137   bool IsMCUABI;
1138   bool IsLinuxABI;
1139   unsigned DefaultNumRegisterParameters;
1140 
1141   static bool isRegisterSize(unsigned Size) {
1142     return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
1143   }
1144 
1145   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
1146     // FIXME: Assumes vectorcall is in use.
1147     return isX86VectorTypeForVectorCall(getContext(), Ty);
1148   }
1149 
1150   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
1151                                          uint64_t NumMembers) const override {
1152     // FIXME: Assumes vectorcall is in use.
1153     return isX86VectorCallAggregateSmallEnough(NumMembers);
1154   }
1155 
1156   bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const;
1157 
1158   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1159   /// such that the argument will be passed in memory.
1160   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
1161 
1162   ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const;
1163 
1164   /// Return the alignment to use for the given type on the stack.
1165   unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
1166 
1167   Class classify(QualType Ty) const;
1168   ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const;
1169   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
1170 
1171   /// Updates the number of available free registers, returns
1172   /// true if any registers were allocated.
1173   bool updateFreeRegs(QualType Ty, CCState &State) const;
1174 
1175   bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg,
1176                                 bool &NeedsPadding) const;
1177   bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const;
1178 
1179   bool canExpandIndirectArgument(QualType Ty) const;
1180 
1181   /// Rewrite the function info so that all memory arguments use
1182   /// inalloca.
1183   void rewriteWithInAlloca(CGFunctionInfo &FI) const;
1184 
1185   void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
1186                            CharUnits &StackOffset, ABIArgInfo &Info,
1187                            QualType Type) const;
1188   void runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const;
1189 
1190 public:
1191 
1192   void computeInfo(CGFunctionInfo &FI) const override;
1193   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
1194                     QualType Ty) const override;
1195 
1196   X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
1197                 bool RetSmallStructInRegABI, bool Win32StructABI,
1198                 unsigned NumRegisterParameters, bool SoftFloatABI)
1199     : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI),
1200       IsRetSmallStructInRegABI(RetSmallStructInRegABI),
1201       IsWin32StructABI(Win32StructABI), IsSoftFloatABI(SoftFloatABI),
1202       IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()),
1203       IsLinuxABI(CGT.getTarget().getTriple().isOSLinux() ||
1204                  CGT.getTarget().getTriple().isOSCygMing()),
1205       DefaultNumRegisterParameters(NumRegisterParameters) {}
1206 
1207   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
1208                                     bool asReturnValue) const override {
1209     // LLVM's x86-32 lowering currently only assigns up to three
1210     // integer registers and three fp registers.  Oddly, it'll use up to
1211     // four vector registers for vectors, but those can overlap with the
1212     // scalar registers.
1213     return occupiesMoreThan(CGT, scalars, /*total*/ 3);
1214   }
1215 
1216   bool isSwiftErrorInRegister() const override {
1217     // x86-32 lowering does not support passing swifterror in a register.
1218     return false;
1219   }
1220 };
1221 
1222 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
1223 public:
1224   X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
1225                           bool RetSmallStructInRegABI, bool Win32StructABI,
1226                           unsigned NumRegisterParameters, bool SoftFloatABI)
1227       : TargetCodeGenInfo(std::make_unique<X86_32ABIInfo>(
1228             CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI,
1229             NumRegisterParameters, SoftFloatABI)) {}
1230 
1231   static bool isStructReturnInRegABI(
1232       const llvm::Triple &Triple, const CodeGenOptions &Opts);
1233 
1234   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
1235                            CodeGen::CodeGenModule &CGM) const override;
1236 
1237   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
1238     // Darwin uses different dwarf register numbers for EH.
1239     if (CGM.getTarget().getTriple().isOSDarwin()) return 5;
1240     return 4;
1241   }
1242 
1243   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1244                                llvm::Value *Address) const override;
1245 
1246   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
1247                                   StringRef Constraint,
1248                                   llvm::Type* Ty) const override {
1249     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
1250   }
1251 
1252   void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue,
1253                                 std::string &Constraints,
1254                                 std::vector<llvm::Type *> &ResultRegTypes,
1255                                 std::vector<llvm::Type *> &ResultTruncRegTypes,
1256                                 std::vector<LValue> &ResultRegDests,
1257                                 std::string &AsmString,
1258                                 unsigned NumOutputs) const override;
1259 
1260   llvm::Constant *
1261   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
1262     unsigned Sig = (0xeb << 0) |  // jmp rel8
1263                    (0x06 << 8) |  //           .+0x08
1264                    ('v' << 16) |
1265                    ('2' << 24);
1266     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
1267   }
1268 
1269   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
1270     return "movl\t%ebp, %ebp"
1271            "\t\t// marker for objc_retainAutoreleaseReturnValue";
1272   }
1273 };
1274 
1275 }
1276 
1277 /// Rewrite input constraint references after adding some output constraints.
1278 /// In the case where there is one output and one input and we add one output,
1279 /// we need to replace all operand references greater than or equal to 1:
1280 ///     mov $0, $1
1281 ///     mov eax, $1
1282 /// The result will be:
1283 ///     mov $0, $2
1284 ///     mov eax, $2
1285 static void rewriteInputConstraintReferences(unsigned FirstIn,
1286                                              unsigned NumNewOuts,
1287                                              std::string &AsmString) {
1288   std::string Buf;
1289   llvm::raw_string_ostream OS(Buf);
1290   size_t Pos = 0;
1291   while (Pos < AsmString.size()) {
1292     size_t DollarStart = AsmString.find('$', Pos);
1293     if (DollarStart == std::string::npos)
1294       DollarStart = AsmString.size();
1295     size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart);
1296     if (DollarEnd == std::string::npos)
1297       DollarEnd = AsmString.size();
1298     OS << StringRef(&AsmString[Pos], DollarEnd - Pos);
1299     Pos = DollarEnd;
1300     size_t NumDollars = DollarEnd - DollarStart;
1301     if (NumDollars % 2 != 0 && Pos < AsmString.size()) {
1302       // We have an operand reference.
1303       size_t DigitStart = Pos;
1304       if (AsmString[DigitStart] == '{') {
1305         OS << '{';
1306         ++DigitStart;
1307       }
1308       size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart);
1309       if (DigitEnd == std::string::npos)
1310         DigitEnd = AsmString.size();
1311       StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart);
1312       unsigned OperandIndex;
1313       if (!OperandStr.getAsInteger(10, OperandIndex)) {
1314         if (OperandIndex >= FirstIn)
1315           OperandIndex += NumNewOuts;
1316         OS << OperandIndex;
1317       } else {
1318         OS << OperandStr;
1319       }
1320       Pos = DigitEnd;
1321     }
1322   }
1323   AsmString = std::move(OS.str());
1324 }
1325 
1326 /// Add output constraints for EAX:EDX because they are return registers.
1327 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs(
1328     CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints,
1329     std::vector<llvm::Type *> &ResultRegTypes,
1330     std::vector<llvm::Type *> &ResultTruncRegTypes,
1331     std::vector<LValue> &ResultRegDests, std::string &AsmString,
1332     unsigned NumOutputs) const {
1333   uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType());
1334 
1335   // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is
1336   // larger.
1337   if (!Constraints.empty())
1338     Constraints += ',';
1339   if (RetWidth <= 32) {
1340     Constraints += "={eax}";
1341     ResultRegTypes.push_back(CGF.Int32Ty);
1342   } else {
1343     // Use the 'A' constraint for EAX:EDX.
1344     Constraints += "=A";
1345     ResultRegTypes.push_back(CGF.Int64Ty);
1346   }
1347 
1348   // Truncate EAX or EAX:EDX to an integer of the appropriate size.
1349   llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth);
1350   ResultTruncRegTypes.push_back(CoerceTy);
1351 
1352   // Coerce the integer by bitcasting the return slot pointer.
1353   ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(CGF),
1354                                                   CoerceTy->getPointerTo()));
1355   ResultRegDests.push_back(ReturnSlot);
1356 
1357   rewriteInputConstraintReferences(NumOutputs, 1, AsmString);
1358 }
1359 
1360 /// shouldReturnTypeInRegister - Determine if the given type should be
1361 /// returned in a register (for the Darwin and MCU ABI).
1362 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
1363                                                ASTContext &Context) const {
1364   uint64_t Size = Context.getTypeSize(Ty);
1365 
1366   // For i386, type must be register sized.
1367   // For the MCU ABI, it only needs to be <= 8-byte
1368   if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size)))
1369    return false;
1370 
1371   if (Ty->isVectorType()) {
1372     // 64- and 128- bit vectors inside structures are not returned in
1373     // registers.
1374     if (Size == 64 || Size == 128)
1375       return false;
1376 
1377     return true;
1378   }
1379 
1380   // If this is a builtin, pointer, enum, complex type, member pointer, or
1381   // member function pointer it is ok.
1382   if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
1383       Ty->isAnyComplexType() || Ty->isEnumeralType() ||
1384       Ty->isBlockPointerType() || Ty->isMemberPointerType())
1385     return true;
1386 
1387   // Arrays are treated like records.
1388   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
1389     return shouldReturnTypeInRegister(AT->getElementType(), Context);
1390 
1391   // Otherwise, it must be a record type.
1392   const RecordType *RT = Ty->getAs<RecordType>();
1393   if (!RT) return false;
1394 
1395   // FIXME: Traverse bases here too.
1396 
1397   // Structure types are passed in register if all fields would be
1398   // passed in a register.
1399   for (const auto *FD : RT->getDecl()->fields()) {
1400     // Empty fields are ignored.
1401     if (isEmptyField(Context, FD, true))
1402       continue;
1403 
1404     // Check fields recursively.
1405     if (!shouldReturnTypeInRegister(FD->getType(), Context))
1406       return false;
1407   }
1408   return true;
1409 }
1410 
1411 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
1412   // Treat complex types as the element type.
1413   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
1414     Ty = CTy->getElementType();
1415 
1416   // Check for a type which we know has a simple scalar argument-passing
1417   // convention without any padding.  (We're specifically looking for 32
1418   // and 64-bit integer and integer-equivalents, float, and double.)
1419   if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
1420       !Ty->isEnumeralType() && !Ty->isBlockPointerType())
1421     return false;
1422 
1423   uint64_t Size = Context.getTypeSize(Ty);
1424   return Size == 32 || Size == 64;
1425 }
1426 
1427 static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD,
1428                           uint64_t &Size) {
1429   for (const auto *FD : RD->fields()) {
1430     // Scalar arguments on the stack get 4 byte alignment on x86. If the
1431     // argument is smaller than 32-bits, expanding the struct will create
1432     // alignment padding.
1433     if (!is32Or64BitBasicType(FD->getType(), Context))
1434       return false;
1435 
1436     // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
1437     // how to expand them yet, and the predicate for telling if a bitfield still
1438     // counts as "basic" is more complicated than what we were doing previously.
1439     if (FD->isBitField())
1440       return false;
1441 
1442     Size += Context.getTypeSize(FD->getType());
1443   }
1444   return true;
1445 }
1446 
1447 static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD,
1448                                  uint64_t &Size) {
1449   // Don't do this if there are any non-empty bases.
1450   for (const CXXBaseSpecifier &Base : RD->bases()) {
1451     if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(),
1452                               Size))
1453       return false;
1454   }
1455   if (!addFieldSizes(Context, RD, Size))
1456     return false;
1457   return true;
1458 }
1459 
1460 /// Test whether an argument type which is to be passed indirectly (on the
1461 /// stack) would have the equivalent layout if it was expanded into separate
1462 /// arguments. If so, we prefer to do the latter to avoid inhibiting
1463 /// optimizations.
1464 bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const {
1465   // We can only expand structure types.
1466   const RecordType *RT = Ty->getAs<RecordType>();
1467   if (!RT)
1468     return false;
1469   const RecordDecl *RD = RT->getDecl();
1470   uint64_t Size = 0;
1471   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1472     if (!IsWin32StructABI) {
1473       // On non-Windows, we have to conservatively match our old bitcode
1474       // prototypes in order to be ABI-compatible at the bitcode level.
1475       if (!CXXRD->isCLike())
1476         return false;
1477     } else {
1478       // Don't do this for dynamic classes.
1479       if (CXXRD->isDynamicClass())
1480         return false;
1481     }
1482     if (!addBaseAndFieldSizes(getContext(), CXXRD, Size))
1483       return false;
1484   } else {
1485     if (!addFieldSizes(getContext(), RD, Size))
1486       return false;
1487   }
1488 
1489   // We can do this if there was no alignment padding.
1490   return Size == getContext().getTypeSize(Ty);
1491 }
1492 
1493 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const {
1494   // If the return value is indirect, then the hidden argument is consuming one
1495   // integer register.
1496   if (State.FreeRegs) {
1497     --State.FreeRegs;
1498     if (!IsMCUABI)
1499       return getNaturalAlignIndirectInReg(RetTy);
1500   }
1501   return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
1502 }
1503 
1504 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
1505                                              CCState &State) const {
1506   if (RetTy->isVoidType())
1507     return ABIArgInfo::getIgnore();
1508 
1509   const Type *Base = nullptr;
1510   uint64_t NumElts = 0;
1511   if ((State.CC == llvm::CallingConv::X86_VectorCall ||
1512        State.CC == llvm::CallingConv::X86_RegCall) &&
1513       isHomogeneousAggregate(RetTy, Base, NumElts)) {
1514     // The LLVM struct type for such an aggregate should lower properly.
1515     return ABIArgInfo::getDirect();
1516   }
1517 
1518   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
1519     // On Darwin, some vectors are returned in registers.
1520     if (IsDarwinVectorABI) {
1521       uint64_t Size = getContext().getTypeSize(RetTy);
1522 
1523       // 128-bit vectors are a special case; they are returned in
1524       // registers and we need to make sure to pick a type the LLVM
1525       // backend will like.
1526       if (Size == 128)
1527         return ABIArgInfo::getDirect(llvm::FixedVectorType::get(
1528             llvm::Type::getInt64Ty(getVMContext()), 2));
1529 
1530       // Always return in register if it fits in a general purpose
1531       // register, or if it is 64 bits and has a single element.
1532       if ((Size == 8 || Size == 16 || Size == 32) ||
1533           (Size == 64 && VT->getNumElements() == 1))
1534         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1535                                                             Size));
1536 
1537       return getIndirectReturnResult(RetTy, State);
1538     }
1539 
1540     return ABIArgInfo::getDirect();
1541   }
1542 
1543   if (isAggregateTypeForABI(RetTy)) {
1544     if (const RecordType *RT = RetTy->getAs<RecordType>()) {
1545       // Structures with flexible arrays are always indirect.
1546       if (RT->getDecl()->hasFlexibleArrayMember())
1547         return getIndirectReturnResult(RetTy, State);
1548     }
1549 
1550     // If specified, structs and unions are always indirect.
1551     if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType())
1552       return getIndirectReturnResult(RetTy, State);
1553 
1554     // Ignore empty structs/unions.
1555     if (isEmptyRecord(getContext(), RetTy, true))
1556       return ABIArgInfo::getIgnore();
1557 
1558     // Return complex of _Float16 as <2 x half> so the backend will use xmm0.
1559     if (const ComplexType *CT = RetTy->getAs<ComplexType>()) {
1560       QualType ET = getContext().getCanonicalType(CT->getElementType());
1561       if (ET->isFloat16Type())
1562         return ABIArgInfo::getDirect(llvm::FixedVectorType::get(
1563             llvm::Type::getHalfTy(getVMContext()), 2));
1564     }
1565 
1566     // Small structures which are register sized are generally returned
1567     // in a register.
1568     if (shouldReturnTypeInRegister(RetTy, getContext())) {
1569       uint64_t Size = getContext().getTypeSize(RetTy);
1570 
1571       // As a special-case, if the struct is a "single-element" struct, and
1572       // the field is of type "float" or "double", return it in a
1573       // floating-point register. (MSVC does not apply this special case.)
1574       // We apply a similar transformation for pointer types to improve the
1575       // quality of the generated IR.
1576       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
1577         if ((!IsWin32StructABI && SeltTy->isRealFloatingType())
1578             || SeltTy->hasPointerRepresentation())
1579           return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
1580 
1581       // FIXME: We should be able to narrow this integer in cases with dead
1582       // padding.
1583       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
1584     }
1585 
1586     return getIndirectReturnResult(RetTy, State);
1587   }
1588 
1589   // Treat an enum type as its underlying type.
1590   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
1591     RetTy = EnumTy->getDecl()->getIntegerType();
1592 
1593   if (const auto *EIT = RetTy->getAs<ExtIntType>())
1594     if (EIT->getNumBits() > 64)
1595       return getIndirectReturnResult(RetTy, State);
1596 
1597   return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
1598                                                : ABIArgInfo::getDirect());
1599 }
1600 
1601 static bool isSIMDVectorType(ASTContext &Context, QualType Ty) {
1602   return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128;
1603 }
1604 
1605 static bool isRecordWithSIMDVectorType(ASTContext &Context, QualType Ty) {
1606   const RecordType *RT = Ty->getAs<RecordType>();
1607   if (!RT)
1608     return 0;
1609   const RecordDecl *RD = RT->getDecl();
1610 
1611   // If this is a C++ record, check the bases first.
1612   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
1613     for (const auto &I : CXXRD->bases())
1614       if (!isRecordWithSIMDVectorType(Context, I.getType()))
1615         return false;
1616 
1617   for (const auto *i : RD->fields()) {
1618     QualType FT = i->getType();
1619 
1620     if (isSIMDVectorType(Context, FT))
1621       return true;
1622 
1623     if (isRecordWithSIMDVectorType(Context, FT))
1624       return true;
1625   }
1626 
1627   return false;
1628 }
1629 
1630 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
1631                                                  unsigned Align) const {
1632   // Otherwise, if the alignment is less than or equal to the minimum ABI
1633   // alignment, just use the default; the backend will handle this.
1634   if (Align <= MinABIStackAlignInBytes)
1635     return 0; // Use default alignment.
1636 
1637   if (IsLinuxABI) {
1638     // Exclude other System V OS (e.g Darwin, PS4 and FreeBSD) since we don't
1639     // want to spend any effort dealing with the ramifications of ABI breaks.
1640     //
1641     // If the vector type is __m128/__m256/__m512, return the default alignment.
1642     if (Ty->isVectorType() && (Align == 16 || Align == 32 || Align == 64))
1643       return Align;
1644   }
1645   // On non-Darwin, the stack type alignment is always 4.
1646   if (!IsDarwinVectorABI) {
1647     // Set explicit alignment, since we may need to realign the top.
1648     return MinABIStackAlignInBytes;
1649   }
1650 
1651   // Otherwise, if the type contains an SSE vector type, the alignment is 16.
1652   if (Align >= 16 && (isSIMDVectorType(getContext(), Ty) ||
1653                       isRecordWithSIMDVectorType(getContext(), Ty)))
1654     return 16;
1655 
1656   return MinABIStackAlignInBytes;
1657 }
1658 
1659 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal,
1660                                             CCState &State) const {
1661   if (!ByVal) {
1662     if (State.FreeRegs) {
1663       --State.FreeRegs; // Non-byval indirects just use one pointer.
1664       if (!IsMCUABI)
1665         return getNaturalAlignIndirectInReg(Ty);
1666     }
1667     return getNaturalAlignIndirect(Ty, false);
1668   }
1669 
1670   // Compute the byval alignment.
1671   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
1672   unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
1673   if (StackAlign == 0)
1674     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true);
1675 
1676   // If the stack alignment is less than the type alignment, realign the
1677   // argument.
1678   bool Realign = TypeAlign > StackAlign;
1679   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign),
1680                                  /*ByVal=*/true, Realign);
1681 }
1682 
1683 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const {
1684   const Type *T = isSingleElementStruct(Ty, getContext());
1685   if (!T)
1686     T = Ty.getTypePtr();
1687 
1688   if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
1689     BuiltinType::Kind K = BT->getKind();
1690     if (K == BuiltinType::Float || K == BuiltinType::Double)
1691       return Float;
1692   }
1693   return Integer;
1694 }
1695 
1696 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const {
1697   if (!IsSoftFloatABI) {
1698     Class C = classify(Ty);
1699     if (C == Float)
1700       return false;
1701   }
1702 
1703   unsigned Size = getContext().getTypeSize(Ty);
1704   unsigned SizeInRegs = (Size + 31) / 32;
1705 
1706   if (SizeInRegs == 0)
1707     return false;
1708 
1709   if (!IsMCUABI) {
1710     if (SizeInRegs > State.FreeRegs) {
1711       State.FreeRegs = 0;
1712       return false;
1713     }
1714   } else {
1715     // The MCU psABI allows passing parameters in-reg even if there are
1716     // earlier parameters that are passed on the stack. Also,
1717     // it does not allow passing >8-byte structs in-register,
1718     // even if there are 3 free registers available.
1719     if (SizeInRegs > State.FreeRegs || SizeInRegs > 2)
1720       return false;
1721   }
1722 
1723   State.FreeRegs -= SizeInRegs;
1724   return true;
1725 }
1726 
1727 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State,
1728                                              bool &InReg,
1729                                              bool &NeedsPadding) const {
1730   // On Windows, aggregates other than HFAs are never passed in registers, and
1731   // they do not consume register slots. Homogenous floating-point aggregates
1732   // (HFAs) have already been dealt with at this point.
1733   if (IsWin32StructABI && isAggregateTypeForABI(Ty))
1734     return false;
1735 
1736   NeedsPadding = false;
1737   InReg = !IsMCUABI;
1738 
1739   if (!updateFreeRegs(Ty, State))
1740     return false;
1741 
1742   if (IsMCUABI)
1743     return true;
1744 
1745   if (State.CC == llvm::CallingConv::X86_FastCall ||
1746       State.CC == llvm::CallingConv::X86_VectorCall ||
1747       State.CC == llvm::CallingConv::X86_RegCall) {
1748     if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs)
1749       NeedsPadding = true;
1750 
1751     return false;
1752   }
1753 
1754   return true;
1755 }
1756 
1757 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const {
1758   if (!updateFreeRegs(Ty, State))
1759     return false;
1760 
1761   if (IsMCUABI)
1762     return false;
1763 
1764   if (State.CC == llvm::CallingConv::X86_FastCall ||
1765       State.CC == llvm::CallingConv::X86_VectorCall ||
1766       State.CC == llvm::CallingConv::X86_RegCall) {
1767     if (getContext().getTypeSize(Ty) > 32)
1768       return false;
1769 
1770     return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() ||
1771         Ty->isReferenceType());
1772   }
1773 
1774   return true;
1775 }
1776 
1777 void X86_32ABIInfo::runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const {
1778   // Vectorcall x86 works subtly different than in x64, so the format is
1779   // a bit different than the x64 version.  First, all vector types (not HVAs)
1780   // are assigned, with the first 6 ending up in the [XYZ]MM0-5 registers.
1781   // This differs from the x64 implementation, where the first 6 by INDEX get
1782   // registers.
1783   // In the second pass over the arguments, HVAs are passed in the remaining
1784   // vector registers if possible, or indirectly by address. The address will be
1785   // passed in ECX/EDX if available. Any other arguments are passed according to
1786   // the usual fastcall rules.
1787   MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments();
1788   for (int I = 0, E = Args.size(); I < E; ++I) {
1789     const Type *Base = nullptr;
1790     uint64_t NumElts = 0;
1791     const QualType &Ty = Args[I].type;
1792     if ((Ty->isVectorType() || Ty->isBuiltinType()) &&
1793         isHomogeneousAggregate(Ty, Base, NumElts)) {
1794       if (State.FreeSSERegs >= NumElts) {
1795         State.FreeSSERegs -= NumElts;
1796         Args[I].info = ABIArgInfo::getDirectInReg();
1797         State.IsPreassigned.set(I);
1798       }
1799     }
1800   }
1801 }
1802 
1803 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
1804                                                CCState &State) const {
1805   // FIXME: Set alignment on indirect arguments.
1806   bool IsFastCall = State.CC == llvm::CallingConv::X86_FastCall;
1807   bool IsRegCall = State.CC == llvm::CallingConv::X86_RegCall;
1808   bool IsVectorCall = State.CC == llvm::CallingConv::X86_VectorCall;
1809 
1810   Ty = useFirstFieldIfTransparentUnion(Ty);
1811   TypeInfo TI = getContext().getTypeInfo(Ty);
1812 
1813   // Check with the C++ ABI first.
1814   const RecordType *RT = Ty->getAs<RecordType>();
1815   if (RT) {
1816     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
1817     if (RAA == CGCXXABI::RAA_Indirect) {
1818       return getIndirectResult(Ty, false, State);
1819     } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
1820       // The field index doesn't matter, we'll fix it up later.
1821       return ABIArgInfo::getInAlloca(/*FieldIndex=*/0);
1822     }
1823   }
1824 
1825   // Regcall uses the concept of a homogenous vector aggregate, similar
1826   // to other targets.
1827   const Type *Base = nullptr;
1828   uint64_t NumElts = 0;
1829   if ((IsRegCall || IsVectorCall) &&
1830       isHomogeneousAggregate(Ty, Base, NumElts)) {
1831     if (State.FreeSSERegs >= NumElts) {
1832       State.FreeSSERegs -= NumElts;
1833 
1834       // Vectorcall passes HVAs directly and does not flatten them, but regcall
1835       // does.
1836       if (IsVectorCall)
1837         return getDirectX86Hva();
1838 
1839       if (Ty->isBuiltinType() || Ty->isVectorType())
1840         return ABIArgInfo::getDirect();
1841       return ABIArgInfo::getExpand();
1842     }
1843     return getIndirectResult(Ty, /*ByVal=*/false, State);
1844   }
1845 
1846   if (isAggregateTypeForABI(Ty)) {
1847     // Structures with flexible arrays are always indirect.
1848     // FIXME: This should not be byval!
1849     if (RT && RT->getDecl()->hasFlexibleArrayMember())
1850       return getIndirectResult(Ty, true, State);
1851 
1852     // Ignore empty structs/unions on non-Windows.
1853     if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true))
1854       return ABIArgInfo::getIgnore();
1855 
1856     llvm::LLVMContext &LLVMContext = getVMContext();
1857     llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
1858     bool NeedsPadding = false;
1859     bool InReg;
1860     if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) {
1861       unsigned SizeInRegs = (TI.Width + 31) / 32;
1862       SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32);
1863       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
1864       if (InReg)
1865         return ABIArgInfo::getDirectInReg(Result);
1866       else
1867         return ABIArgInfo::getDirect(Result);
1868     }
1869     llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr;
1870 
1871     // Pass over-aligned aggregates on Windows indirectly. This behavior was
1872     // added in MSVC 2015.
1873     if (IsWin32StructABI && TI.isAlignRequired() && TI.Align > 32)
1874       return getIndirectResult(Ty, /*ByVal=*/false, State);
1875 
1876     // Expand small (<= 128-bit) record types when we know that the stack layout
1877     // of those arguments will match the struct. This is important because the
1878     // LLVM backend isn't smart enough to remove byval, which inhibits many
1879     // optimizations.
1880     // Don't do this for the MCU if there are still free integer registers
1881     // (see X86_64 ABI for full explanation).
1882     if (TI.Width <= 4 * 32 && (!IsMCUABI || State.FreeRegs == 0) &&
1883         canExpandIndirectArgument(Ty))
1884       return ABIArgInfo::getExpandWithPadding(
1885           IsFastCall || IsVectorCall || IsRegCall, PaddingType);
1886 
1887     return getIndirectResult(Ty, true, State);
1888   }
1889 
1890   if (const VectorType *VT = Ty->getAs<VectorType>()) {
1891     // On Windows, vectors are passed directly if registers are available, or
1892     // indirectly if not. This avoids the need to align argument memory. Pass
1893     // user-defined vector types larger than 512 bits indirectly for simplicity.
1894     if (IsWin32StructABI) {
1895       if (TI.Width <= 512 && State.FreeSSERegs > 0) {
1896         --State.FreeSSERegs;
1897         return ABIArgInfo::getDirectInReg();
1898       }
1899       return getIndirectResult(Ty, /*ByVal=*/false, State);
1900     }
1901 
1902     // On Darwin, some vectors are passed in memory, we handle this by passing
1903     // it as an i8/i16/i32/i64.
1904     if (IsDarwinVectorABI) {
1905       if ((TI.Width == 8 || TI.Width == 16 || TI.Width == 32) ||
1906           (TI.Width == 64 && VT->getNumElements() == 1))
1907         return ABIArgInfo::getDirect(
1908             llvm::IntegerType::get(getVMContext(), TI.Width));
1909     }
1910 
1911     if (IsX86_MMXType(CGT.ConvertType(Ty)))
1912       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64));
1913 
1914     return ABIArgInfo::getDirect();
1915   }
1916 
1917 
1918   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1919     Ty = EnumTy->getDecl()->getIntegerType();
1920 
1921   bool InReg = shouldPrimitiveUseInReg(Ty, State);
1922 
1923   if (isPromotableIntegerTypeForABI(Ty)) {
1924     if (InReg)
1925       return ABIArgInfo::getExtendInReg(Ty);
1926     return ABIArgInfo::getExtend(Ty);
1927   }
1928 
1929   if (const auto * EIT = Ty->getAs<ExtIntType>()) {
1930     if (EIT->getNumBits() <= 64) {
1931       if (InReg)
1932         return ABIArgInfo::getDirectInReg();
1933       return ABIArgInfo::getDirect();
1934     }
1935     return getIndirectResult(Ty, /*ByVal=*/false, State);
1936   }
1937 
1938   if (InReg)
1939     return ABIArgInfo::getDirectInReg();
1940   return ABIArgInfo::getDirect();
1941 }
1942 
1943 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
1944   CCState State(FI);
1945   if (IsMCUABI)
1946     State.FreeRegs = 3;
1947   else if (State.CC == llvm::CallingConv::X86_FastCall) {
1948     State.FreeRegs = 2;
1949     State.FreeSSERegs = 3;
1950   } else if (State.CC == llvm::CallingConv::X86_VectorCall) {
1951     State.FreeRegs = 2;
1952     State.FreeSSERegs = 6;
1953   } else if (FI.getHasRegParm())
1954     State.FreeRegs = FI.getRegParm();
1955   else if (State.CC == llvm::CallingConv::X86_RegCall) {
1956     State.FreeRegs = 5;
1957     State.FreeSSERegs = 8;
1958   } else if (IsWin32StructABI) {
1959     // Since MSVC 2015, the first three SSE vectors have been passed in
1960     // registers. The rest are passed indirectly.
1961     State.FreeRegs = DefaultNumRegisterParameters;
1962     State.FreeSSERegs = 3;
1963   } else
1964     State.FreeRegs = DefaultNumRegisterParameters;
1965 
1966   if (!::classifyReturnType(getCXXABI(), FI, *this)) {
1967     FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State);
1968   } else if (FI.getReturnInfo().isIndirect()) {
1969     // The C++ ABI is not aware of register usage, so we have to check if the
1970     // return value was sret and put it in a register ourselves if appropriate.
1971     if (State.FreeRegs) {
1972       --State.FreeRegs;  // The sret parameter consumes a register.
1973       if (!IsMCUABI)
1974         FI.getReturnInfo().setInReg(true);
1975     }
1976   }
1977 
1978   // The chain argument effectively gives us another free register.
1979   if (FI.isChainCall())
1980     ++State.FreeRegs;
1981 
1982   // For vectorcall, do a first pass over the arguments, assigning FP and vector
1983   // arguments to XMM registers as available.
1984   if (State.CC == llvm::CallingConv::X86_VectorCall)
1985     runVectorCallFirstPass(FI, State);
1986 
1987   bool UsedInAlloca = false;
1988   MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments();
1989   for (int I = 0, E = Args.size(); I < E; ++I) {
1990     // Skip arguments that have already been assigned.
1991     if (State.IsPreassigned.test(I))
1992       continue;
1993 
1994     Args[I].info = classifyArgumentType(Args[I].type, State);
1995     UsedInAlloca |= (Args[I].info.getKind() == ABIArgInfo::InAlloca);
1996   }
1997 
1998   // If we needed to use inalloca for any argument, do a second pass and rewrite
1999   // all the memory arguments to use inalloca.
2000   if (UsedInAlloca)
2001     rewriteWithInAlloca(FI);
2002 }
2003 
2004 void
2005 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
2006                                    CharUnits &StackOffset, ABIArgInfo &Info,
2007                                    QualType Type) const {
2008   // Arguments are always 4-byte-aligned.
2009   CharUnits WordSize = CharUnits::fromQuantity(4);
2010   assert(StackOffset.isMultipleOf(WordSize) && "unaligned inalloca struct");
2011 
2012   // sret pointers and indirect things will require an extra pointer
2013   // indirection, unless they are byval. Most things are byval, and will not
2014   // require this indirection.
2015   bool IsIndirect = false;
2016   if (Info.isIndirect() && !Info.getIndirectByVal())
2017     IsIndirect = true;
2018   Info = ABIArgInfo::getInAlloca(FrameFields.size(), IsIndirect);
2019   llvm::Type *LLTy = CGT.ConvertTypeForMem(Type);
2020   if (IsIndirect)
2021     LLTy = LLTy->getPointerTo(0);
2022   FrameFields.push_back(LLTy);
2023   StackOffset += IsIndirect ? WordSize : getContext().getTypeSizeInChars(Type);
2024 
2025   // Insert padding bytes to respect alignment.
2026   CharUnits FieldEnd = StackOffset;
2027   StackOffset = FieldEnd.alignTo(WordSize);
2028   if (StackOffset != FieldEnd) {
2029     CharUnits NumBytes = StackOffset - FieldEnd;
2030     llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext());
2031     Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity());
2032     FrameFields.push_back(Ty);
2033   }
2034 }
2035 
2036 static bool isArgInAlloca(const ABIArgInfo &Info) {
2037   // Leave ignored and inreg arguments alone.
2038   switch (Info.getKind()) {
2039   case ABIArgInfo::InAlloca:
2040     return true;
2041   case ABIArgInfo::Ignore:
2042   case ABIArgInfo::IndirectAliased:
2043     return false;
2044   case ABIArgInfo::Indirect:
2045   case ABIArgInfo::Direct:
2046   case ABIArgInfo::Extend:
2047     return !Info.getInReg();
2048   case ABIArgInfo::Expand:
2049   case ABIArgInfo::CoerceAndExpand:
2050     // These are aggregate types which are never passed in registers when
2051     // inalloca is involved.
2052     return true;
2053   }
2054   llvm_unreachable("invalid enum");
2055 }
2056 
2057 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const {
2058   assert(IsWin32StructABI && "inalloca only supported on win32");
2059 
2060   // Build a packed struct type for all of the arguments in memory.
2061   SmallVector<llvm::Type *, 6> FrameFields;
2062 
2063   // The stack alignment is always 4.
2064   CharUnits StackAlign = CharUnits::fromQuantity(4);
2065 
2066   CharUnits StackOffset;
2067   CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end();
2068 
2069   // Put 'this' into the struct before 'sret', if necessary.
2070   bool IsThisCall =
2071       FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall;
2072   ABIArgInfo &Ret = FI.getReturnInfo();
2073   if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall &&
2074       isArgInAlloca(I->info)) {
2075     addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
2076     ++I;
2077   }
2078 
2079   // Put the sret parameter into the inalloca struct if it's in memory.
2080   if (Ret.isIndirect() && !Ret.getInReg()) {
2081     addFieldToArgStruct(FrameFields, StackOffset, Ret, FI.getReturnType());
2082     // On Windows, the hidden sret parameter is always returned in eax.
2083     Ret.setInAllocaSRet(IsWin32StructABI);
2084   }
2085 
2086   // Skip the 'this' parameter in ecx.
2087   if (IsThisCall)
2088     ++I;
2089 
2090   // Put arguments passed in memory into the struct.
2091   for (; I != E; ++I) {
2092     if (isArgInAlloca(I->info))
2093       addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
2094   }
2095 
2096   FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields,
2097                                         /*isPacked=*/true),
2098                   StackAlign);
2099 }
2100 
2101 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF,
2102                                  Address VAListAddr, QualType Ty) const {
2103 
2104   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
2105 
2106   // x86-32 changes the alignment of certain arguments on the stack.
2107   //
2108   // Just messing with TypeInfo like this works because we never pass
2109   // anything indirectly.
2110   TypeInfo.Align = CharUnits::fromQuantity(
2111                 getTypeStackAlignInBytes(Ty, TypeInfo.Align.getQuantity()));
2112 
2113   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
2114                           TypeInfo, CharUnits::fromQuantity(4),
2115                           /*AllowHigherAlign*/ true);
2116 }
2117 
2118 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI(
2119     const llvm::Triple &Triple, const CodeGenOptions &Opts) {
2120   assert(Triple.getArch() == llvm::Triple::x86);
2121 
2122   switch (Opts.getStructReturnConvention()) {
2123   case CodeGenOptions::SRCK_Default:
2124     break;
2125   case CodeGenOptions::SRCK_OnStack:  // -fpcc-struct-return
2126     return false;
2127   case CodeGenOptions::SRCK_InRegs:  // -freg-struct-return
2128     return true;
2129   }
2130 
2131   if (Triple.isOSDarwin() || Triple.isOSIAMCU())
2132     return true;
2133 
2134   switch (Triple.getOS()) {
2135   case llvm::Triple::DragonFly:
2136   case llvm::Triple::FreeBSD:
2137   case llvm::Triple::OpenBSD:
2138   case llvm::Triple::Win32:
2139     return true;
2140   default:
2141     return false;
2142   }
2143 }
2144 
2145 static void addX86InterruptAttrs(const FunctionDecl *FD, llvm::GlobalValue *GV,
2146                                  CodeGen::CodeGenModule &CGM) {
2147   if (!FD->hasAttr<AnyX86InterruptAttr>())
2148     return;
2149 
2150   llvm::Function *Fn = cast<llvm::Function>(GV);
2151   Fn->setCallingConv(llvm::CallingConv::X86_INTR);
2152   if (FD->getNumParams() == 0)
2153     return;
2154 
2155   auto PtrTy = cast<PointerType>(FD->getParamDecl(0)->getType());
2156   llvm::Type *ByValTy = CGM.getTypes().ConvertType(PtrTy->getPointeeType());
2157   llvm::Attribute NewAttr = llvm::Attribute::getWithByValType(
2158     Fn->getContext(), ByValTy);
2159   Fn->addParamAttr(0, NewAttr);
2160 }
2161 
2162 void X86_32TargetCodeGenInfo::setTargetAttributes(
2163     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
2164   if (GV->isDeclaration())
2165     return;
2166   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
2167     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
2168       llvm::Function *Fn = cast<llvm::Function>(GV);
2169       Fn->addFnAttr("stackrealign");
2170     }
2171 
2172     addX86InterruptAttrs(FD, GV, CGM);
2173   }
2174 }
2175 
2176 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
2177                                                CodeGen::CodeGenFunction &CGF,
2178                                                llvm::Value *Address) const {
2179   CodeGen::CGBuilderTy &Builder = CGF.Builder;
2180 
2181   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
2182 
2183   // 0-7 are the eight integer registers;  the order is different
2184   //   on Darwin (for EH), but the range is the same.
2185   // 8 is %eip.
2186   AssignToArrayRange(Builder, Address, Four8, 0, 8);
2187 
2188   if (CGF.CGM.getTarget().getTriple().isOSDarwin()) {
2189     // 12-16 are st(0..4).  Not sure why we stop at 4.
2190     // These have size 16, which is sizeof(long double) on
2191     // platforms with 8-byte alignment for that type.
2192     llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
2193     AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
2194 
2195   } else {
2196     // 9 is %eflags, which doesn't get a size on Darwin for some
2197     // reason.
2198     Builder.CreateAlignedStore(
2199         Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9),
2200                                CharUnits::One());
2201 
2202     // 11-16 are st(0..5).  Not sure why we stop at 5.
2203     // These have size 12, which is sizeof(long double) on
2204     // platforms with 4-byte alignment for that type.
2205     llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
2206     AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
2207   }
2208 
2209   return false;
2210 }
2211 
2212 //===----------------------------------------------------------------------===//
2213 // X86-64 ABI Implementation
2214 //===----------------------------------------------------------------------===//
2215 
2216 
2217 namespace {
2218 /// The AVX ABI level for X86 targets.
2219 enum class X86AVXABILevel {
2220   None,
2221   AVX,
2222   AVX512
2223 };
2224 
2225 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel.
2226 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) {
2227   switch (AVXLevel) {
2228   case X86AVXABILevel::AVX512:
2229     return 512;
2230   case X86AVXABILevel::AVX:
2231     return 256;
2232   case X86AVXABILevel::None:
2233     return 128;
2234   }
2235   llvm_unreachable("Unknown AVXLevel");
2236 }
2237 
2238 /// X86_64ABIInfo - The X86_64 ABI information.
2239 class X86_64ABIInfo : public SwiftABIInfo {
2240   enum Class {
2241     Integer = 0,
2242     SSE,
2243     SSEUp,
2244     X87,
2245     X87Up,
2246     ComplexX87,
2247     NoClass,
2248     Memory
2249   };
2250 
2251   /// merge - Implement the X86_64 ABI merging algorithm.
2252   ///
2253   /// Merge an accumulating classification \arg Accum with a field
2254   /// classification \arg Field.
2255   ///
2256   /// \param Accum - The accumulating classification. This should
2257   /// always be either NoClass or the result of a previous merge
2258   /// call. In addition, this should never be Memory (the caller
2259   /// should just return Memory for the aggregate).
2260   static Class merge(Class Accum, Class Field);
2261 
2262   /// postMerge - Implement the X86_64 ABI post merging algorithm.
2263   ///
2264   /// Post merger cleanup, reduces a malformed Hi and Lo pair to
2265   /// final MEMORY or SSE classes when necessary.
2266   ///
2267   /// \param AggregateSize - The size of the current aggregate in
2268   /// the classification process.
2269   ///
2270   /// \param Lo - The classification for the parts of the type
2271   /// residing in the low word of the containing object.
2272   ///
2273   /// \param Hi - The classification for the parts of the type
2274   /// residing in the higher words of the containing object.
2275   ///
2276   void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
2277 
2278   /// classify - Determine the x86_64 register classes in which the
2279   /// given type T should be passed.
2280   ///
2281   /// \param Lo - The classification for the parts of the type
2282   /// residing in the low word of the containing object.
2283   ///
2284   /// \param Hi - The classification for the parts of the type
2285   /// residing in the high word of the containing object.
2286   ///
2287   /// \param OffsetBase - The bit offset of this type in the
2288   /// containing object.  Some parameters are classified different
2289   /// depending on whether they straddle an eightbyte boundary.
2290   ///
2291   /// \param isNamedArg - Whether the argument in question is a "named"
2292   /// argument, as used in AMD64-ABI 3.5.7.
2293   ///
2294   /// If a word is unused its result will be NoClass; if a type should
2295   /// be passed in Memory then at least the classification of \arg Lo
2296   /// will be Memory.
2297   ///
2298   /// The \arg Lo class will be NoClass iff the argument is ignored.
2299   ///
2300   /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
2301   /// also be ComplexX87.
2302   void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi,
2303                 bool isNamedArg) const;
2304 
2305   llvm::Type *GetByteVectorType(QualType Ty) const;
2306   llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
2307                                  unsigned IROffset, QualType SourceTy,
2308                                  unsigned SourceOffset) const;
2309   llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
2310                                      unsigned IROffset, QualType SourceTy,
2311                                      unsigned SourceOffset) const;
2312 
2313   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
2314   /// such that the argument will be returned in memory.
2315   ABIArgInfo getIndirectReturnResult(QualType Ty) const;
2316 
2317   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
2318   /// such that the argument will be passed in memory.
2319   ///
2320   /// \param freeIntRegs - The number of free integer registers remaining
2321   /// available.
2322   ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;
2323 
2324   ABIArgInfo classifyReturnType(QualType RetTy) const;
2325 
2326   ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs,
2327                                   unsigned &neededInt, unsigned &neededSSE,
2328                                   bool isNamedArg) const;
2329 
2330   ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt,
2331                                        unsigned &NeededSSE) const;
2332 
2333   ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
2334                                            unsigned &NeededSSE) const;
2335 
2336   bool IsIllegalVectorType(QualType Ty) const;
2337 
2338   /// The 0.98 ABI revision clarified a lot of ambiguities,
2339   /// unfortunately in ways that were not always consistent with
2340   /// certain previous compilers.  In particular, platforms which
2341   /// required strict binary compatibility with older versions of GCC
2342   /// may need to exempt themselves.
2343   bool honorsRevision0_98() const {
2344     return !getTarget().getTriple().isOSDarwin();
2345   }
2346 
2347   /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to
2348   /// classify it as INTEGER (for compatibility with older clang compilers).
2349   bool classifyIntegerMMXAsSSE() const {
2350     // Clang <= 3.8 did not do this.
2351     if (getContext().getLangOpts().getClangABICompat() <=
2352         LangOptions::ClangABI::Ver3_8)
2353       return false;
2354 
2355     const llvm::Triple &Triple = getTarget().getTriple();
2356     if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::PS4)
2357       return false;
2358     if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10)
2359       return false;
2360     return true;
2361   }
2362 
2363   // GCC classifies vectors of __int128 as memory.
2364   bool passInt128VectorsInMem() const {
2365     // Clang <= 9.0 did not do this.
2366     if (getContext().getLangOpts().getClangABICompat() <=
2367         LangOptions::ClangABI::Ver9)
2368       return false;
2369 
2370     const llvm::Triple &T = getTarget().getTriple();
2371     return T.isOSLinux() || T.isOSNetBSD();
2372   }
2373 
2374   X86AVXABILevel AVXLevel;
2375   // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on
2376   // 64-bit hardware.
2377   bool Has64BitPointers;
2378 
2379 public:
2380   X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) :
2381       SwiftABIInfo(CGT), AVXLevel(AVXLevel),
2382       Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {
2383   }
2384 
2385   bool isPassedUsingAVXType(QualType type) const {
2386     unsigned neededInt, neededSSE;
2387     // The freeIntRegs argument doesn't matter here.
2388     ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE,
2389                                            /*isNamedArg*/true);
2390     if (info.isDirect()) {
2391       llvm::Type *ty = info.getCoerceToType();
2392       if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
2393         return vectorTy->getPrimitiveSizeInBits().getFixedSize() > 128;
2394     }
2395     return false;
2396   }
2397 
2398   void computeInfo(CGFunctionInfo &FI) const override;
2399 
2400   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
2401                     QualType Ty) const override;
2402   Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
2403                       QualType Ty) const override;
2404 
2405   bool has64BitPointers() const {
2406     return Has64BitPointers;
2407   }
2408 
2409   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
2410                                     bool asReturnValue) const override {
2411     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
2412   }
2413   bool isSwiftErrorInRegister() const override {
2414     return true;
2415   }
2416 };
2417 
2418 /// WinX86_64ABIInfo - The Windows X86_64 ABI information.
2419 class WinX86_64ABIInfo : public SwiftABIInfo {
2420 public:
2421   WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
2422       : SwiftABIInfo(CGT), AVXLevel(AVXLevel),
2423         IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {}
2424 
2425   void computeInfo(CGFunctionInfo &FI) const override;
2426 
2427   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
2428                     QualType Ty) const override;
2429 
2430   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
2431     // FIXME: Assumes vectorcall is in use.
2432     return isX86VectorTypeForVectorCall(getContext(), Ty);
2433   }
2434 
2435   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
2436                                          uint64_t NumMembers) const override {
2437     // FIXME: Assumes vectorcall is in use.
2438     return isX86VectorCallAggregateSmallEnough(NumMembers);
2439   }
2440 
2441   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type *> scalars,
2442                                     bool asReturnValue) const override {
2443     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
2444   }
2445 
2446   bool isSwiftErrorInRegister() const override {
2447     return true;
2448   }
2449 
2450 private:
2451   ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType,
2452                       bool IsVectorCall, bool IsRegCall) const;
2453   ABIArgInfo reclassifyHvaArgForVectorCall(QualType Ty, unsigned &FreeSSERegs,
2454                                            const ABIArgInfo &current) const;
2455 
2456   X86AVXABILevel AVXLevel;
2457 
2458   bool IsMingw64;
2459 };
2460 
2461 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
2462 public:
2463   X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
2464       : TargetCodeGenInfo(std::make_unique<X86_64ABIInfo>(CGT, AVXLevel)) {}
2465 
2466   const X86_64ABIInfo &getABIInfo() const {
2467     return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
2468   }
2469 
2470   /// Disable tail call on x86-64. The epilogue code before the tail jump blocks
2471   /// autoreleaseRV/retainRV and autoreleaseRV/unsafeClaimRV optimizations.
2472   bool markARCOptimizedReturnCallsAsNoTail() const override { return true; }
2473 
2474   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
2475     return 7;
2476   }
2477 
2478   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2479                                llvm::Value *Address) const override {
2480     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
2481 
2482     // 0-15 are the 16 integer registers.
2483     // 16 is %rip.
2484     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
2485     return false;
2486   }
2487 
2488   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
2489                                   StringRef Constraint,
2490                                   llvm::Type* Ty) const override {
2491     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
2492   }
2493 
2494   bool isNoProtoCallVariadic(const CallArgList &args,
2495                              const FunctionNoProtoType *fnType) const override {
2496     // The default CC on x86-64 sets %al to the number of SSA
2497     // registers used, and GCC sets this when calling an unprototyped
2498     // function, so we override the default behavior.  However, don't do
2499     // that when AVX types are involved: the ABI explicitly states it is
2500     // undefined, and it doesn't work in practice because of how the ABI
2501     // defines varargs anyway.
2502     if (fnType->getCallConv() == CC_C) {
2503       bool HasAVXType = false;
2504       for (CallArgList::const_iterator
2505              it = args.begin(), ie = args.end(); it != ie; ++it) {
2506         if (getABIInfo().isPassedUsingAVXType(it->Ty)) {
2507           HasAVXType = true;
2508           break;
2509         }
2510       }
2511 
2512       if (!HasAVXType)
2513         return true;
2514     }
2515 
2516     return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
2517   }
2518 
2519   llvm::Constant *
2520   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
2521     unsigned Sig = (0xeb << 0) | // jmp rel8
2522                    (0x06 << 8) | //           .+0x08
2523                    ('v' << 16) |
2524                    ('2' << 24);
2525     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
2526   }
2527 
2528   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2529                            CodeGen::CodeGenModule &CGM) const override {
2530     if (GV->isDeclaration())
2531       return;
2532     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
2533       if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
2534         llvm::Function *Fn = cast<llvm::Function>(GV);
2535         Fn->addFnAttr("stackrealign");
2536       }
2537 
2538       addX86InterruptAttrs(FD, GV, CGM);
2539     }
2540   }
2541 
2542   void checkFunctionCallABI(CodeGenModule &CGM, SourceLocation CallLoc,
2543                             const FunctionDecl *Caller,
2544                             const FunctionDecl *Callee,
2545                             const CallArgList &Args) const override;
2546 };
2547 
2548 static void initFeatureMaps(const ASTContext &Ctx,
2549                             llvm::StringMap<bool> &CallerMap,
2550                             const FunctionDecl *Caller,
2551                             llvm::StringMap<bool> &CalleeMap,
2552                             const FunctionDecl *Callee) {
2553   if (CalleeMap.empty() && CallerMap.empty()) {
2554     // The caller is potentially nullptr in the case where the call isn't in a
2555     // function.  In this case, the getFunctionFeatureMap ensures we just get
2556     // the TU level setting (since it cannot be modified by 'target'..
2557     Ctx.getFunctionFeatureMap(CallerMap, Caller);
2558     Ctx.getFunctionFeatureMap(CalleeMap, Callee);
2559   }
2560 }
2561 
2562 static bool checkAVXParamFeature(DiagnosticsEngine &Diag,
2563                                  SourceLocation CallLoc,
2564                                  const llvm::StringMap<bool> &CallerMap,
2565                                  const llvm::StringMap<bool> &CalleeMap,
2566                                  QualType Ty, StringRef Feature,
2567                                  bool IsArgument) {
2568   bool CallerHasFeat = CallerMap.lookup(Feature);
2569   bool CalleeHasFeat = CalleeMap.lookup(Feature);
2570   if (!CallerHasFeat && !CalleeHasFeat)
2571     return Diag.Report(CallLoc, diag::warn_avx_calling_convention)
2572            << IsArgument << Ty << Feature;
2573 
2574   // Mixing calling conventions here is very clearly an error.
2575   if (!CallerHasFeat || !CalleeHasFeat)
2576     return Diag.Report(CallLoc, diag::err_avx_calling_convention)
2577            << IsArgument << Ty << Feature;
2578 
2579   // Else, both caller and callee have the required feature, so there is no need
2580   // to diagnose.
2581   return false;
2582 }
2583 
2584 static bool checkAVXParam(DiagnosticsEngine &Diag, ASTContext &Ctx,
2585                           SourceLocation CallLoc,
2586                           const llvm::StringMap<bool> &CallerMap,
2587                           const llvm::StringMap<bool> &CalleeMap, QualType Ty,
2588                           bool IsArgument) {
2589   uint64_t Size = Ctx.getTypeSize(Ty);
2590   if (Size > 256)
2591     return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty,
2592                                 "avx512f", IsArgument);
2593 
2594   if (Size > 128)
2595     return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty, "avx",
2596                                 IsArgument);
2597 
2598   return false;
2599 }
2600 
2601 void X86_64TargetCodeGenInfo::checkFunctionCallABI(
2602     CodeGenModule &CGM, SourceLocation CallLoc, const FunctionDecl *Caller,
2603     const FunctionDecl *Callee, const CallArgList &Args) const {
2604   llvm::StringMap<bool> CallerMap;
2605   llvm::StringMap<bool> CalleeMap;
2606   unsigned ArgIndex = 0;
2607 
2608   // We need to loop through the actual call arguments rather than the the
2609   // function's parameters, in case this variadic.
2610   for (const CallArg &Arg : Args) {
2611     // The "avx" feature changes how vectors >128 in size are passed. "avx512f"
2612     // additionally changes how vectors >256 in size are passed. Like GCC, we
2613     // warn when a function is called with an argument where this will change.
2614     // Unlike GCC, we also error when it is an obvious ABI mismatch, that is,
2615     // the caller and callee features are mismatched.
2616     // Unfortunately, we cannot do this diagnostic in SEMA, since the callee can
2617     // change its ABI with attribute-target after this call.
2618     if (Arg.getType()->isVectorType() &&
2619         CGM.getContext().getTypeSize(Arg.getType()) > 128) {
2620       initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee);
2621       QualType Ty = Arg.getType();
2622       // The CallArg seems to have desugared the type already, so for clearer
2623       // diagnostics, replace it with the type in the FunctionDecl if possible.
2624       if (ArgIndex < Callee->getNumParams())
2625         Ty = Callee->getParamDecl(ArgIndex)->getType();
2626 
2627       if (checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap,
2628                         CalleeMap, Ty, /*IsArgument*/ true))
2629         return;
2630     }
2631     ++ArgIndex;
2632   }
2633 
2634   // Check return always, as we don't have a good way of knowing in codegen
2635   // whether this value is used, tail-called, etc.
2636   if (Callee->getReturnType()->isVectorType() &&
2637       CGM.getContext().getTypeSize(Callee->getReturnType()) > 128) {
2638     initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee);
2639     checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap,
2640                   CalleeMap, Callee->getReturnType(),
2641                   /*IsArgument*/ false);
2642   }
2643 }
2644 
2645 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) {
2646   // If the argument does not end in .lib, automatically add the suffix.
2647   // If the argument contains a space, enclose it in quotes.
2648   // This matches the behavior of MSVC.
2649   bool Quote = (Lib.find(' ') != StringRef::npos);
2650   std::string ArgStr = Quote ? "\"" : "";
2651   ArgStr += Lib;
2652   if (!Lib.endswith_insensitive(".lib") && !Lib.endswith_insensitive(".a"))
2653     ArgStr += ".lib";
2654   ArgStr += Quote ? "\"" : "";
2655   return ArgStr;
2656 }
2657 
2658 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo {
2659 public:
2660   WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
2661         bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI,
2662         unsigned NumRegisterParameters)
2663     : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI,
2664         Win32StructABI, NumRegisterParameters, false) {}
2665 
2666   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2667                            CodeGen::CodeGenModule &CGM) const override;
2668 
2669   void getDependentLibraryOption(llvm::StringRef Lib,
2670                                  llvm::SmallString<24> &Opt) const override {
2671     Opt = "/DEFAULTLIB:";
2672     Opt += qualifyWindowsLibrary(Lib);
2673   }
2674 
2675   void getDetectMismatchOption(llvm::StringRef Name,
2676                                llvm::StringRef Value,
2677                                llvm::SmallString<32> &Opt) const override {
2678     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
2679   }
2680 };
2681 
2682 static void addStackProbeTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2683                                           CodeGen::CodeGenModule &CGM) {
2684   if (llvm::Function *Fn = dyn_cast_or_null<llvm::Function>(GV)) {
2685 
2686     if (CGM.getCodeGenOpts().StackProbeSize != 4096)
2687       Fn->addFnAttr("stack-probe-size",
2688                     llvm::utostr(CGM.getCodeGenOpts().StackProbeSize));
2689     if (CGM.getCodeGenOpts().NoStackArgProbe)
2690       Fn->addFnAttr("no-stack-arg-probe");
2691   }
2692 }
2693 
2694 void WinX86_32TargetCodeGenInfo::setTargetAttributes(
2695     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
2696   X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
2697   if (GV->isDeclaration())
2698     return;
2699   addStackProbeTargetAttributes(D, GV, CGM);
2700 }
2701 
2702 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
2703 public:
2704   WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
2705                              X86AVXABILevel AVXLevel)
2706       : TargetCodeGenInfo(std::make_unique<WinX86_64ABIInfo>(CGT, AVXLevel)) {}
2707 
2708   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2709                            CodeGen::CodeGenModule &CGM) const override;
2710 
2711   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
2712     return 7;
2713   }
2714 
2715   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2716                                llvm::Value *Address) const override {
2717     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
2718 
2719     // 0-15 are the 16 integer registers.
2720     // 16 is %rip.
2721     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
2722     return false;
2723   }
2724 
2725   void getDependentLibraryOption(llvm::StringRef Lib,
2726                                  llvm::SmallString<24> &Opt) const override {
2727     Opt = "/DEFAULTLIB:";
2728     Opt += qualifyWindowsLibrary(Lib);
2729   }
2730 
2731   void getDetectMismatchOption(llvm::StringRef Name,
2732                                llvm::StringRef Value,
2733                                llvm::SmallString<32> &Opt) const override {
2734     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
2735   }
2736 };
2737 
2738 void WinX86_64TargetCodeGenInfo::setTargetAttributes(
2739     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
2740   TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
2741   if (GV->isDeclaration())
2742     return;
2743   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
2744     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
2745       llvm::Function *Fn = cast<llvm::Function>(GV);
2746       Fn->addFnAttr("stackrealign");
2747     }
2748 
2749     addX86InterruptAttrs(FD, GV, CGM);
2750   }
2751 
2752   addStackProbeTargetAttributes(D, GV, CGM);
2753 }
2754 }
2755 
2756 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
2757                               Class &Hi) const {
2758   // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
2759   //
2760   // (a) If one of the classes is Memory, the whole argument is passed in
2761   //     memory.
2762   //
2763   // (b) If X87UP is not preceded by X87, the whole argument is passed in
2764   //     memory.
2765   //
2766   // (c) If the size of the aggregate exceeds two eightbytes and the first
2767   //     eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
2768   //     argument is passed in memory. NOTE: This is necessary to keep the
2769   //     ABI working for processors that don't support the __m256 type.
2770   //
2771   // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
2772   //
2773   // Some of these are enforced by the merging logic.  Others can arise
2774   // only with unions; for example:
2775   //   union { _Complex double; unsigned; }
2776   //
2777   // Note that clauses (b) and (c) were added in 0.98.
2778   //
2779   if (Hi == Memory)
2780     Lo = Memory;
2781   if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
2782     Lo = Memory;
2783   if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
2784     Lo = Memory;
2785   if (Hi == SSEUp && Lo != SSE)
2786     Hi = SSE;
2787 }
2788 
2789 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
2790   // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
2791   // classified recursively so that always two fields are
2792   // considered. The resulting class is calculated according to
2793   // the classes of the fields in the eightbyte:
2794   //
2795   // (a) If both classes are equal, this is the resulting class.
2796   //
2797   // (b) If one of the classes is NO_CLASS, the resulting class is
2798   // the other class.
2799   //
2800   // (c) If one of the classes is MEMORY, the result is the MEMORY
2801   // class.
2802   //
2803   // (d) If one of the classes is INTEGER, the result is the
2804   // INTEGER.
2805   //
2806   // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
2807   // MEMORY is used as class.
2808   //
2809   // (f) Otherwise class SSE is used.
2810 
2811   // Accum should never be memory (we should have returned) or
2812   // ComplexX87 (because this cannot be passed in a structure).
2813   assert((Accum != Memory && Accum != ComplexX87) &&
2814          "Invalid accumulated classification during merge.");
2815   if (Accum == Field || Field == NoClass)
2816     return Accum;
2817   if (Field == Memory)
2818     return Memory;
2819   if (Accum == NoClass)
2820     return Field;
2821   if (Accum == Integer || Field == Integer)
2822     return Integer;
2823   if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
2824       Accum == X87 || Accum == X87Up)
2825     return Memory;
2826   return SSE;
2827 }
2828 
2829 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
2830                              Class &Lo, Class &Hi, bool isNamedArg) const {
2831   // FIXME: This code can be simplified by introducing a simple value class for
2832   // Class pairs with appropriate constructor methods for the various
2833   // situations.
2834 
2835   // FIXME: Some of the split computations are wrong; unaligned vectors
2836   // shouldn't be passed in registers for example, so there is no chance they
2837   // can straddle an eightbyte. Verify & simplify.
2838 
2839   Lo = Hi = NoClass;
2840 
2841   Class &Current = OffsetBase < 64 ? Lo : Hi;
2842   Current = Memory;
2843 
2844   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
2845     BuiltinType::Kind k = BT->getKind();
2846 
2847     if (k == BuiltinType::Void) {
2848       Current = NoClass;
2849     } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
2850       Lo = Integer;
2851       Hi = Integer;
2852     } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
2853       Current = Integer;
2854     } else if (k == BuiltinType::Float || k == BuiltinType::Double ||
2855                k == BuiltinType::Float16) {
2856       Current = SSE;
2857     } else if (k == BuiltinType::LongDouble) {
2858       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
2859       if (LDF == &llvm::APFloat::IEEEquad()) {
2860         Lo = SSE;
2861         Hi = SSEUp;
2862       } else if (LDF == &llvm::APFloat::x87DoubleExtended()) {
2863         Lo = X87;
2864         Hi = X87Up;
2865       } else if (LDF == &llvm::APFloat::IEEEdouble()) {
2866         Current = SSE;
2867       } else
2868         llvm_unreachable("unexpected long double representation!");
2869     }
2870     // FIXME: _Decimal32 and _Decimal64 are SSE.
2871     // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
2872     return;
2873   }
2874 
2875   if (const EnumType *ET = Ty->getAs<EnumType>()) {
2876     // Classify the underlying integer type.
2877     classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg);
2878     return;
2879   }
2880 
2881   if (Ty->hasPointerRepresentation()) {
2882     Current = Integer;
2883     return;
2884   }
2885 
2886   if (Ty->isMemberPointerType()) {
2887     if (Ty->isMemberFunctionPointerType()) {
2888       if (Has64BitPointers) {
2889         // If Has64BitPointers, this is an {i64, i64}, so classify both
2890         // Lo and Hi now.
2891         Lo = Hi = Integer;
2892       } else {
2893         // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that
2894         // straddles an eightbyte boundary, Hi should be classified as well.
2895         uint64_t EB_FuncPtr = (OffsetBase) / 64;
2896         uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64;
2897         if (EB_FuncPtr != EB_ThisAdj) {
2898           Lo = Hi = Integer;
2899         } else {
2900           Current = Integer;
2901         }
2902       }
2903     } else {
2904       Current = Integer;
2905     }
2906     return;
2907   }
2908 
2909   if (const VectorType *VT = Ty->getAs<VectorType>()) {
2910     uint64_t Size = getContext().getTypeSize(VT);
2911     if (Size == 1 || Size == 8 || Size == 16 || Size == 32) {
2912       // gcc passes the following as integer:
2913       // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float>
2914       // 2 bytes - <2 x char>, <1 x short>
2915       // 1 byte  - <1 x char>
2916       Current = Integer;
2917 
2918       // If this type crosses an eightbyte boundary, it should be
2919       // split.
2920       uint64_t EB_Lo = (OffsetBase) / 64;
2921       uint64_t EB_Hi = (OffsetBase + Size - 1) / 64;
2922       if (EB_Lo != EB_Hi)
2923         Hi = Lo;
2924     } else if (Size == 64) {
2925       QualType ElementType = VT->getElementType();
2926 
2927       // gcc passes <1 x double> in memory. :(
2928       if (ElementType->isSpecificBuiltinType(BuiltinType::Double))
2929         return;
2930 
2931       // gcc passes <1 x long long> as SSE but clang used to unconditionally
2932       // pass them as integer.  For platforms where clang is the de facto
2933       // platform compiler, we must continue to use integer.
2934       if (!classifyIntegerMMXAsSSE() &&
2935           (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) ||
2936            ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) ||
2937            ElementType->isSpecificBuiltinType(BuiltinType::Long) ||
2938            ElementType->isSpecificBuiltinType(BuiltinType::ULong)))
2939         Current = Integer;
2940       else
2941         Current = SSE;
2942 
2943       // If this type crosses an eightbyte boundary, it should be
2944       // split.
2945       if (OffsetBase && OffsetBase != 64)
2946         Hi = Lo;
2947     } else if (Size == 128 ||
2948                (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) {
2949       QualType ElementType = VT->getElementType();
2950 
2951       // gcc passes 256 and 512 bit <X x __int128> vectors in memory. :(
2952       if (passInt128VectorsInMem() && Size != 128 &&
2953           (ElementType->isSpecificBuiltinType(BuiltinType::Int128) ||
2954            ElementType->isSpecificBuiltinType(BuiltinType::UInt128)))
2955         return;
2956 
2957       // Arguments of 256-bits are split into four eightbyte chunks. The
2958       // least significant one belongs to class SSE and all the others to class
2959       // SSEUP. The original Lo and Hi design considers that types can't be
2960       // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
2961       // This design isn't correct for 256-bits, but since there're no cases
2962       // where the upper parts would need to be inspected, avoid adding
2963       // complexity and just consider Hi to match the 64-256 part.
2964       //
2965       // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in
2966       // registers if they are "named", i.e. not part of the "..." of a
2967       // variadic function.
2968       //
2969       // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are
2970       // split into eight eightbyte chunks, one SSE and seven SSEUP.
2971       Lo = SSE;
2972       Hi = SSEUp;
2973     }
2974     return;
2975   }
2976 
2977   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
2978     QualType ET = getContext().getCanonicalType(CT->getElementType());
2979 
2980     uint64_t Size = getContext().getTypeSize(Ty);
2981     if (ET->isIntegralOrEnumerationType()) {
2982       if (Size <= 64)
2983         Current = Integer;
2984       else if (Size <= 128)
2985         Lo = Hi = Integer;
2986     } else if (ET->isFloat16Type() || ET == getContext().FloatTy) {
2987       Current = SSE;
2988     } else if (ET == getContext().DoubleTy) {
2989       Lo = Hi = SSE;
2990     } else if (ET == getContext().LongDoubleTy) {
2991       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
2992       if (LDF == &llvm::APFloat::IEEEquad())
2993         Current = Memory;
2994       else if (LDF == &llvm::APFloat::x87DoubleExtended())
2995         Current = ComplexX87;
2996       else if (LDF == &llvm::APFloat::IEEEdouble())
2997         Lo = Hi = SSE;
2998       else
2999         llvm_unreachable("unexpected long double representation!");
3000     }
3001 
3002     // If this complex type crosses an eightbyte boundary then it
3003     // should be split.
3004     uint64_t EB_Real = (OffsetBase) / 64;
3005     uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
3006     if (Hi == NoClass && EB_Real != EB_Imag)
3007       Hi = Lo;
3008 
3009     return;
3010   }
3011 
3012   if (const auto *EITy = Ty->getAs<ExtIntType>()) {
3013     if (EITy->getNumBits() <= 64)
3014       Current = Integer;
3015     else if (EITy->getNumBits() <= 128)
3016       Lo = Hi = Integer;
3017     // Larger values need to get passed in memory.
3018     return;
3019   }
3020 
3021   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
3022     // Arrays are treated like structures.
3023 
3024     uint64_t Size = getContext().getTypeSize(Ty);
3025 
3026     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
3027     // than eight eightbytes, ..., it has class MEMORY.
3028     if (Size > 512)
3029       return;
3030 
3031     // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
3032     // fields, it has class MEMORY.
3033     //
3034     // Only need to check alignment of array base.
3035     if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
3036       return;
3037 
3038     // Otherwise implement simplified merge. We could be smarter about
3039     // this, but it isn't worth it and would be harder to verify.
3040     Current = NoClass;
3041     uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
3042     uint64_t ArraySize = AT->getSize().getZExtValue();
3043 
3044     // The only case a 256-bit wide vector could be used is when the array
3045     // contains a single 256-bit element. Since Lo and Hi logic isn't extended
3046     // to work for sizes wider than 128, early check and fallback to memory.
3047     //
3048     if (Size > 128 &&
3049         (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel)))
3050       return;
3051 
3052     for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
3053       Class FieldLo, FieldHi;
3054       classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg);
3055       Lo = merge(Lo, FieldLo);
3056       Hi = merge(Hi, FieldHi);
3057       if (Lo == Memory || Hi == Memory)
3058         break;
3059     }
3060 
3061     postMerge(Size, Lo, Hi);
3062     assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
3063     return;
3064   }
3065 
3066   if (const RecordType *RT = Ty->getAs<RecordType>()) {
3067     uint64_t Size = getContext().getTypeSize(Ty);
3068 
3069     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
3070     // than eight eightbytes, ..., it has class MEMORY.
3071     if (Size > 512)
3072       return;
3073 
3074     // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
3075     // copy constructor or a non-trivial destructor, it is passed by invisible
3076     // reference.
3077     if (getRecordArgABI(RT, getCXXABI()))
3078       return;
3079 
3080     const RecordDecl *RD = RT->getDecl();
3081 
3082     // Assume variable sized types are passed in memory.
3083     if (RD->hasFlexibleArrayMember())
3084       return;
3085 
3086     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
3087 
3088     // Reset Lo class, this will be recomputed.
3089     Current = NoClass;
3090 
3091     // If this is a C++ record, classify the bases first.
3092     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
3093       for (const auto &I : CXXRD->bases()) {
3094         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
3095                "Unexpected base class!");
3096         const auto *Base =
3097             cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
3098 
3099         // Classify this field.
3100         //
3101         // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
3102         // single eightbyte, each is classified separately. Each eightbyte gets
3103         // initialized to class NO_CLASS.
3104         Class FieldLo, FieldHi;
3105         uint64_t Offset =
3106           OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base));
3107         classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg);
3108         Lo = merge(Lo, FieldLo);
3109         Hi = merge(Hi, FieldHi);
3110         if (Lo == Memory || Hi == Memory) {
3111           postMerge(Size, Lo, Hi);
3112           return;
3113         }
3114       }
3115     }
3116 
3117     // Classify the fields one at a time, merging the results.
3118     unsigned idx = 0;
3119     bool UseClang11Compat = getContext().getLangOpts().getClangABICompat() <=
3120                                 LangOptions::ClangABI::Ver11 ||
3121                             getContext().getTargetInfo().getTriple().isPS4();
3122     bool IsUnion = RT->isUnionType() && !UseClang11Compat;
3123 
3124     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
3125            i != e; ++i, ++idx) {
3126       uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
3127       bool BitField = i->isBitField();
3128 
3129       // Ignore padding bit-fields.
3130       if (BitField && i->isUnnamedBitfield())
3131         continue;
3132 
3133       // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
3134       // eight eightbytes, or it contains unaligned fields, it has class MEMORY.
3135       //
3136       // The only case a 256-bit or a 512-bit wide vector could be used is when
3137       // the struct contains a single 256-bit or 512-bit element. Early check
3138       // and fallback to memory.
3139       //
3140       // FIXME: Extended the Lo and Hi logic properly to work for size wider
3141       // than 128.
3142       if (Size > 128 &&
3143           ((!IsUnion && Size != getContext().getTypeSize(i->getType())) ||
3144            Size > getNativeVectorSizeForAVXABI(AVXLevel))) {
3145         Lo = Memory;
3146         postMerge(Size, Lo, Hi);
3147         return;
3148       }
3149       // Note, skip this test for bit-fields, see below.
3150       if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
3151         Lo = Memory;
3152         postMerge(Size, Lo, Hi);
3153         return;
3154       }
3155 
3156       // Classify this field.
3157       //
3158       // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
3159       // exceeds a single eightbyte, each is classified
3160       // separately. Each eightbyte gets initialized to class
3161       // NO_CLASS.
3162       Class FieldLo, FieldHi;
3163 
3164       // Bit-fields require special handling, they do not force the
3165       // structure to be passed in memory even if unaligned, and
3166       // therefore they can straddle an eightbyte.
3167       if (BitField) {
3168         assert(!i->isUnnamedBitfield());
3169         uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
3170         uint64_t Size = i->getBitWidthValue(getContext());
3171 
3172         uint64_t EB_Lo = Offset / 64;
3173         uint64_t EB_Hi = (Offset + Size - 1) / 64;
3174 
3175         if (EB_Lo) {
3176           assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
3177           FieldLo = NoClass;
3178           FieldHi = Integer;
3179         } else {
3180           FieldLo = Integer;
3181           FieldHi = EB_Hi ? Integer : NoClass;
3182         }
3183       } else
3184         classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg);
3185       Lo = merge(Lo, FieldLo);
3186       Hi = merge(Hi, FieldHi);
3187       if (Lo == Memory || Hi == Memory)
3188         break;
3189     }
3190 
3191     postMerge(Size, Lo, Hi);
3192   }
3193 }
3194 
3195 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
3196   // If this is a scalar LLVM value then assume LLVM will pass it in the right
3197   // place naturally.
3198   if (!isAggregateTypeForABI(Ty)) {
3199     // Treat an enum type as its underlying type.
3200     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3201       Ty = EnumTy->getDecl()->getIntegerType();
3202 
3203     if (Ty->isExtIntType())
3204       return getNaturalAlignIndirect(Ty);
3205 
3206     return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
3207                                               : ABIArgInfo::getDirect());
3208   }
3209 
3210   return getNaturalAlignIndirect(Ty);
3211 }
3212 
3213 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
3214   if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
3215     uint64_t Size = getContext().getTypeSize(VecTy);
3216     unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel);
3217     if (Size <= 64 || Size > LargestVector)
3218       return true;
3219     QualType EltTy = VecTy->getElementType();
3220     if (passInt128VectorsInMem() &&
3221         (EltTy->isSpecificBuiltinType(BuiltinType::Int128) ||
3222          EltTy->isSpecificBuiltinType(BuiltinType::UInt128)))
3223       return true;
3224   }
3225 
3226   return false;
3227 }
3228 
3229 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
3230                                             unsigned freeIntRegs) const {
3231   // If this is a scalar LLVM value then assume LLVM will pass it in the right
3232   // place naturally.
3233   //
3234   // This assumption is optimistic, as there could be free registers available
3235   // when we need to pass this argument in memory, and LLVM could try to pass
3236   // the argument in the free register. This does not seem to happen currently,
3237   // but this code would be much safer if we could mark the argument with
3238   // 'onstack'. See PR12193.
3239   if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty) &&
3240       !Ty->isExtIntType()) {
3241     // Treat an enum type as its underlying type.
3242     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3243       Ty = EnumTy->getDecl()->getIntegerType();
3244 
3245     return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
3246                                               : ABIArgInfo::getDirect());
3247   }
3248 
3249   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
3250     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
3251 
3252   // Compute the byval alignment. We specify the alignment of the byval in all
3253   // cases so that the mid-level optimizer knows the alignment of the byval.
3254   unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
3255 
3256   // Attempt to avoid passing indirect results using byval when possible. This
3257   // is important for good codegen.
3258   //
3259   // We do this by coercing the value into a scalar type which the backend can
3260   // handle naturally (i.e., without using byval).
3261   //
3262   // For simplicity, we currently only do this when we have exhausted all of the
3263   // free integer registers. Doing this when there are free integer registers
3264   // would require more care, as we would have to ensure that the coerced value
3265   // did not claim the unused register. That would require either reording the
3266   // arguments to the function (so that any subsequent inreg values came first),
3267   // or only doing this optimization when there were no following arguments that
3268   // might be inreg.
3269   //
3270   // We currently expect it to be rare (particularly in well written code) for
3271   // arguments to be passed on the stack when there are still free integer
3272   // registers available (this would typically imply large structs being passed
3273   // by value), so this seems like a fair tradeoff for now.
3274   //
3275   // We can revisit this if the backend grows support for 'onstack' parameter
3276   // attributes. See PR12193.
3277   if (freeIntRegs == 0) {
3278     uint64_t Size = getContext().getTypeSize(Ty);
3279 
3280     // If this type fits in an eightbyte, coerce it into the matching integral
3281     // type, which will end up on the stack (with alignment 8).
3282     if (Align == 8 && Size <= 64)
3283       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
3284                                                           Size));
3285   }
3286 
3287   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align));
3288 }
3289 
3290 /// The ABI specifies that a value should be passed in a full vector XMM/YMM
3291 /// register. Pick an LLVM IR type that will be passed as a vector register.
3292 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
3293   // Wrapper structs/arrays that only contain vectors are passed just like
3294   // vectors; strip them off if present.
3295   if (const Type *InnerTy = isSingleElementStruct(Ty, getContext()))
3296     Ty = QualType(InnerTy, 0);
3297 
3298   llvm::Type *IRType = CGT.ConvertType(Ty);
3299   if (isa<llvm::VectorType>(IRType)) {
3300     // Don't pass vXi128 vectors in their native type, the backend can't
3301     // legalize them.
3302     if (passInt128VectorsInMem() &&
3303         cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy(128)) {
3304       // Use a vXi64 vector.
3305       uint64_t Size = getContext().getTypeSize(Ty);
3306       return llvm::FixedVectorType::get(llvm::Type::getInt64Ty(getVMContext()),
3307                                         Size / 64);
3308     }
3309 
3310     return IRType;
3311   }
3312 
3313   if (IRType->getTypeID() == llvm::Type::FP128TyID)
3314     return IRType;
3315 
3316   // We couldn't find the preferred IR vector type for 'Ty'.
3317   uint64_t Size = getContext().getTypeSize(Ty);
3318   assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!");
3319 
3320 
3321   // Return a LLVM IR vector type based on the size of 'Ty'.
3322   return llvm::FixedVectorType::get(llvm::Type::getDoubleTy(getVMContext()),
3323                                     Size / 64);
3324 }
3325 
3326 /// BitsContainNoUserData - Return true if the specified [start,end) bit range
3327 /// is known to either be off the end of the specified type or being in
3328 /// alignment padding.  The user type specified is known to be at most 128 bits
3329 /// in size, and have passed through X86_64ABIInfo::classify with a successful
3330 /// classification that put one of the two halves in the INTEGER class.
3331 ///
3332 /// It is conservatively correct to return false.
3333 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
3334                                   unsigned EndBit, ASTContext &Context) {
3335   // If the bytes being queried are off the end of the type, there is no user
3336   // data hiding here.  This handles analysis of builtins, vectors and other
3337   // types that don't contain interesting padding.
3338   unsigned TySize = (unsigned)Context.getTypeSize(Ty);
3339   if (TySize <= StartBit)
3340     return true;
3341 
3342   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
3343     unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
3344     unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
3345 
3346     // Check each element to see if the element overlaps with the queried range.
3347     for (unsigned i = 0; i != NumElts; ++i) {
3348       // If the element is after the span we care about, then we're done..
3349       unsigned EltOffset = i*EltSize;
3350       if (EltOffset >= EndBit) break;
3351 
3352       unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
3353       if (!BitsContainNoUserData(AT->getElementType(), EltStart,
3354                                  EndBit-EltOffset, Context))
3355         return false;
3356     }
3357     // If it overlaps no elements, then it is safe to process as padding.
3358     return true;
3359   }
3360 
3361   if (const RecordType *RT = Ty->getAs<RecordType>()) {
3362     const RecordDecl *RD = RT->getDecl();
3363     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3364 
3365     // If this is a C++ record, check the bases first.
3366     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
3367       for (const auto &I : CXXRD->bases()) {
3368         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
3369                "Unexpected base class!");
3370         const auto *Base =
3371             cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
3372 
3373         // If the base is after the span we care about, ignore it.
3374         unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base));
3375         if (BaseOffset >= EndBit) continue;
3376 
3377         unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
3378         if (!BitsContainNoUserData(I.getType(), BaseStart,
3379                                    EndBit-BaseOffset, Context))
3380           return false;
3381       }
3382     }
3383 
3384     // Verify that no field has data that overlaps the region of interest.  Yes
3385     // this could be sped up a lot by being smarter about queried fields,
3386     // however we're only looking at structs up to 16 bytes, so we don't care
3387     // much.
3388     unsigned idx = 0;
3389     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
3390          i != e; ++i, ++idx) {
3391       unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
3392 
3393       // If we found a field after the region we care about, then we're done.
3394       if (FieldOffset >= EndBit) break;
3395 
3396       unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
3397       if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
3398                                  Context))
3399         return false;
3400     }
3401 
3402     // If nothing in this record overlapped the area of interest, then we're
3403     // clean.
3404     return true;
3405   }
3406 
3407   return false;
3408 }
3409 
3410 /// getFPTypeAtOffset - Return a floating point type at the specified offset.
3411 static llvm::Type *getFPTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
3412                                      const llvm::DataLayout &TD) {
3413   if (IROffset == 0 && IRType->isFloatingPointTy())
3414     return IRType;
3415 
3416   // If this is a struct, recurse into the field at the specified offset.
3417   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
3418     const llvm::StructLayout *SL = TD.getStructLayout(STy);
3419     unsigned Elt = SL->getElementContainingOffset(IROffset);
3420     IROffset -= SL->getElementOffset(Elt);
3421     return getFPTypeAtOffset(STy->getElementType(Elt), IROffset, TD);
3422   }
3423 
3424   // If this is an array, recurse into the field at the specified offset.
3425   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
3426     llvm::Type *EltTy = ATy->getElementType();
3427     unsigned EltSize = TD.getTypeAllocSize(EltTy);
3428     IROffset -= IROffset / EltSize * EltSize;
3429     return getFPTypeAtOffset(EltTy, IROffset, TD);
3430   }
3431 
3432   return nullptr;
3433 }
3434 
3435 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
3436 /// low 8 bytes of an XMM register, corresponding to the SSE class.
3437 llvm::Type *X86_64ABIInfo::
3438 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
3439                    QualType SourceTy, unsigned SourceOffset) const {
3440   const llvm::DataLayout &TD = getDataLayout();
3441   unsigned SourceSize =
3442       (unsigned)getContext().getTypeSize(SourceTy) / 8 - SourceOffset;
3443   llvm::Type *T0 = getFPTypeAtOffset(IRType, IROffset, TD);
3444   if (!T0 || T0->isDoubleTy())
3445     return llvm::Type::getDoubleTy(getVMContext());
3446 
3447   // Get the adjacent FP type.
3448   llvm::Type *T1 = nullptr;
3449   unsigned T0Size = TD.getTypeAllocSize(T0);
3450   if (SourceSize > T0Size)
3451       T1 = getFPTypeAtOffset(IRType, IROffset + T0Size, TD);
3452   if (T1 == nullptr) {
3453     // Check if IRType is a half + float. float type will be in IROffset+4 due
3454     // to its alignment.
3455     if (T0->isHalfTy() && SourceSize > 4)
3456       T1 = getFPTypeAtOffset(IRType, IROffset + 4, TD);
3457     // If we can't get a second FP type, return a simple half or float.
3458     // avx512fp16-abi.c:pr51813_2 shows it works to return float for
3459     // {float, i8} too.
3460     if (T1 == nullptr)
3461       return T0;
3462   }
3463 
3464   if (T0->isFloatTy() && T1->isFloatTy())
3465     return llvm::FixedVectorType::get(T0, 2);
3466 
3467   if (T0->isHalfTy() && T1->isHalfTy()) {
3468     llvm::Type *T2 = nullptr;
3469     if (SourceSize > 4)
3470       T2 = getFPTypeAtOffset(IRType, IROffset + 4, TD);
3471     if (T2 == nullptr)
3472       return llvm::FixedVectorType::get(T0, 2);
3473     return llvm::FixedVectorType::get(T0, 4);
3474   }
3475 
3476   if (T0->isHalfTy() || T1->isHalfTy())
3477     return llvm::FixedVectorType::get(llvm::Type::getHalfTy(getVMContext()), 4);
3478 
3479   return llvm::Type::getDoubleTy(getVMContext());
3480 }
3481 
3482 
3483 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
3484 /// an 8-byte GPR.  This means that we either have a scalar or we are talking
3485 /// about the high or low part of an up-to-16-byte struct.  This routine picks
3486 /// the best LLVM IR type to represent this, which may be i64 or may be anything
3487 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
3488 /// etc).
3489 ///
3490 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
3491 /// the source type.  IROffset is an offset in bytes into the LLVM IR type that
3492 /// the 8-byte value references.  PrefType may be null.
3493 ///
3494 /// SourceTy is the source-level type for the entire argument.  SourceOffset is
3495 /// an offset into this that we're processing (which is always either 0 or 8).
3496 ///
3497 llvm::Type *X86_64ABIInfo::
3498 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
3499                        QualType SourceTy, unsigned SourceOffset) const {
3500   // If we're dealing with an un-offset LLVM IR type, then it means that we're
3501   // returning an 8-byte unit starting with it.  See if we can safely use it.
3502   if (IROffset == 0) {
3503     // Pointers and int64's always fill the 8-byte unit.
3504     if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) ||
3505         IRType->isIntegerTy(64))
3506       return IRType;
3507 
3508     // If we have a 1/2/4-byte integer, we can use it only if the rest of the
3509     // goodness in the source type is just tail padding.  This is allowed to
3510     // kick in for struct {double,int} on the int, but not on
3511     // struct{double,int,int} because we wouldn't return the second int.  We
3512     // have to do this analysis on the source type because we can't depend on
3513     // unions being lowered a specific way etc.
3514     if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
3515         IRType->isIntegerTy(32) ||
3516         (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) {
3517       unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 :
3518           cast<llvm::IntegerType>(IRType)->getBitWidth();
3519 
3520       if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
3521                                 SourceOffset*8+64, getContext()))
3522         return IRType;
3523     }
3524   }
3525 
3526   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
3527     // If this is a struct, recurse into the field at the specified offset.
3528     const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy);
3529     if (IROffset < SL->getSizeInBytes()) {
3530       unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
3531       IROffset -= SL->getElementOffset(FieldIdx);
3532 
3533       return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
3534                                     SourceTy, SourceOffset);
3535     }
3536   }
3537 
3538   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
3539     llvm::Type *EltTy = ATy->getElementType();
3540     unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy);
3541     unsigned EltOffset = IROffset/EltSize*EltSize;
3542     return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
3543                                   SourceOffset);
3544   }
3545 
3546   // Okay, we don't have any better idea of what to pass, so we pass this in an
3547   // integer register that isn't too big to fit the rest of the struct.
3548   unsigned TySizeInBytes =
3549     (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
3550 
3551   assert(TySizeInBytes != SourceOffset && "Empty field?");
3552 
3553   // It is always safe to classify this as an integer type up to i64 that
3554   // isn't larger than the structure.
3555   return llvm::IntegerType::get(getVMContext(),
3556                                 std::min(TySizeInBytes-SourceOffset, 8U)*8);
3557 }
3558 
3559 
3560 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
3561 /// be used as elements of a two register pair to pass or return, return a
3562 /// first class aggregate to represent them.  For example, if the low part of
3563 /// a by-value argument should be passed as i32* and the high part as float,
3564 /// return {i32*, float}.
3565 static llvm::Type *
3566 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
3567                            const llvm::DataLayout &TD) {
3568   // In order to correctly satisfy the ABI, we need to the high part to start
3569   // at offset 8.  If the high and low parts we inferred are both 4-byte types
3570   // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
3571   // the second element at offset 8.  Check for this:
3572   unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
3573   unsigned HiAlign = TD.getABITypeAlignment(Hi);
3574   unsigned HiStart = llvm::alignTo(LoSize, HiAlign);
3575   assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
3576 
3577   // To handle this, we have to increase the size of the low part so that the
3578   // second element will start at an 8 byte offset.  We can't increase the size
3579   // of the second element because it might make us access off the end of the
3580   // struct.
3581   if (HiStart != 8) {
3582     // There are usually two sorts of types the ABI generation code can produce
3583     // for the low part of a pair that aren't 8 bytes in size: half, float or
3584     // i8/i16/i32.  This can also include pointers when they are 32-bit (X32 and
3585     // NaCl).
3586     // Promote these to a larger type.
3587     if (Lo->isHalfTy() || Lo->isFloatTy())
3588       Lo = llvm::Type::getDoubleTy(Lo->getContext());
3589     else {
3590       assert((Lo->isIntegerTy() || Lo->isPointerTy())
3591              && "Invalid/unknown lo type");
3592       Lo = llvm::Type::getInt64Ty(Lo->getContext());
3593     }
3594   }
3595 
3596   llvm::StructType *Result = llvm::StructType::get(Lo, Hi);
3597 
3598   // Verify that the second element is at an 8-byte offset.
3599   assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
3600          "Invalid x86-64 argument pair!");
3601   return Result;
3602 }
3603 
3604 ABIArgInfo X86_64ABIInfo::
3605 classifyReturnType(QualType RetTy) const {
3606   // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
3607   // classification algorithm.
3608   X86_64ABIInfo::Class Lo, Hi;
3609   classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true);
3610 
3611   // Check some invariants.
3612   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
3613   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
3614 
3615   llvm::Type *ResType = nullptr;
3616   switch (Lo) {
3617   case NoClass:
3618     if (Hi == NoClass)
3619       return ABIArgInfo::getIgnore();
3620     // If the low part is just padding, it takes no register, leave ResType
3621     // null.
3622     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
3623            "Unknown missing lo part");
3624     break;
3625 
3626   case SSEUp:
3627   case X87Up:
3628     llvm_unreachable("Invalid classification for lo word.");
3629 
3630     // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
3631     // hidden argument.
3632   case Memory:
3633     return getIndirectReturnResult(RetTy);
3634 
3635     // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
3636     // available register of the sequence %rax, %rdx is used.
3637   case Integer:
3638     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
3639 
3640     // If we have a sign or zero extended integer, make sure to return Extend
3641     // so that the parameter gets the right LLVM IR attributes.
3642     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
3643       // Treat an enum type as its underlying type.
3644       if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
3645         RetTy = EnumTy->getDecl()->getIntegerType();
3646 
3647       if (RetTy->isIntegralOrEnumerationType() &&
3648           isPromotableIntegerTypeForABI(RetTy))
3649         return ABIArgInfo::getExtend(RetTy);
3650     }
3651     break;
3652 
3653     // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
3654     // available SSE register of the sequence %xmm0, %xmm1 is used.
3655   case SSE:
3656     ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
3657     break;
3658 
3659     // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
3660     // returned on the X87 stack in %st0 as 80-bit x87 number.
3661   case X87:
3662     ResType = llvm::Type::getX86_FP80Ty(getVMContext());
3663     break;
3664 
3665     // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
3666     // part of the value is returned in %st0 and the imaginary part in
3667     // %st1.
3668   case ComplexX87:
3669     assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
3670     ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
3671                                     llvm::Type::getX86_FP80Ty(getVMContext()));
3672     break;
3673   }
3674 
3675   llvm::Type *HighPart = nullptr;
3676   switch (Hi) {
3677     // Memory was handled previously and X87 should
3678     // never occur as a hi class.
3679   case Memory:
3680   case X87:
3681     llvm_unreachable("Invalid classification for hi word.");
3682 
3683   case ComplexX87: // Previously handled.
3684   case NoClass:
3685     break;
3686 
3687   case Integer:
3688     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3689     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3690       return ABIArgInfo::getDirect(HighPart, 8);
3691     break;
3692   case SSE:
3693     HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3694     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3695       return ABIArgInfo::getDirect(HighPart, 8);
3696     break;
3697 
3698     // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
3699     // is passed in the next available eightbyte chunk if the last used
3700     // vector register.
3701     //
3702     // SSEUP should always be preceded by SSE, just widen.
3703   case SSEUp:
3704     assert(Lo == SSE && "Unexpected SSEUp classification.");
3705     ResType = GetByteVectorType(RetTy);
3706     break;
3707 
3708     // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
3709     // returned together with the previous X87 value in %st0.
3710   case X87Up:
3711     // If X87Up is preceded by X87, we don't need to do
3712     // anything. However, in some cases with unions it may not be
3713     // preceded by X87. In such situations we follow gcc and pass the
3714     // extra bits in an SSE reg.
3715     if (Lo != X87) {
3716       HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3717       if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3718         return ABIArgInfo::getDirect(HighPart, 8);
3719     }
3720     break;
3721   }
3722 
3723   // If a high part was specified, merge it together with the low part.  It is
3724   // known to pass in the high eightbyte of the result.  We do this by forming a
3725   // first class struct aggregate with the high and low part: {low, high}
3726   if (HighPart)
3727     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
3728 
3729   return ABIArgInfo::getDirect(ResType);
3730 }
3731 
3732 ABIArgInfo X86_64ABIInfo::classifyArgumentType(
3733   QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE,
3734   bool isNamedArg)
3735   const
3736 {
3737   Ty = useFirstFieldIfTransparentUnion(Ty);
3738 
3739   X86_64ABIInfo::Class Lo, Hi;
3740   classify(Ty, 0, Lo, Hi, isNamedArg);
3741 
3742   // Check some invariants.
3743   // FIXME: Enforce these by construction.
3744   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
3745   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
3746 
3747   neededInt = 0;
3748   neededSSE = 0;
3749   llvm::Type *ResType = nullptr;
3750   switch (Lo) {
3751   case NoClass:
3752     if (Hi == NoClass)
3753       return ABIArgInfo::getIgnore();
3754     // If the low part is just padding, it takes no register, leave ResType
3755     // null.
3756     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
3757            "Unknown missing lo part");
3758     break;
3759 
3760     // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
3761     // on the stack.
3762   case Memory:
3763 
3764     // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
3765     // COMPLEX_X87, it is passed in memory.
3766   case X87:
3767   case ComplexX87:
3768     if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect)
3769       ++neededInt;
3770     return getIndirectResult(Ty, freeIntRegs);
3771 
3772   case SSEUp:
3773   case X87Up:
3774     llvm_unreachable("Invalid classification for lo word.");
3775 
3776     // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
3777     // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
3778     // and %r9 is used.
3779   case Integer:
3780     ++neededInt;
3781 
3782     // Pick an 8-byte type based on the preferred type.
3783     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
3784 
3785     // If we have a sign or zero extended integer, make sure to return Extend
3786     // so that the parameter gets the right LLVM IR attributes.
3787     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
3788       // Treat an enum type as its underlying type.
3789       if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3790         Ty = EnumTy->getDecl()->getIntegerType();
3791 
3792       if (Ty->isIntegralOrEnumerationType() &&
3793           isPromotableIntegerTypeForABI(Ty))
3794         return ABIArgInfo::getExtend(Ty);
3795     }
3796 
3797     break;
3798 
3799     // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
3800     // available SSE register is used, the registers are taken in the
3801     // order from %xmm0 to %xmm7.
3802   case SSE: {
3803     llvm::Type *IRType = CGT.ConvertType(Ty);
3804     ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
3805     ++neededSSE;
3806     break;
3807   }
3808   }
3809 
3810   llvm::Type *HighPart = nullptr;
3811   switch (Hi) {
3812     // Memory was handled previously, ComplexX87 and X87 should
3813     // never occur as hi classes, and X87Up must be preceded by X87,
3814     // which is passed in memory.
3815   case Memory:
3816   case X87:
3817   case ComplexX87:
3818     llvm_unreachable("Invalid classification for hi word.");
3819 
3820   case NoClass: break;
3821 
3822   case Integer:
3823     ++neededInt;
3824     // Pick an 8-byte type based on the preferred type.
3825     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
3826 
3827     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
3828       return ABIArgInfo::getDirect(HighPart, 8);
3829     break;
3830 
3831     // X87Up generally doesn't occur here (long double is passed in
3832     // memory), except in situations involving unions.
3833   case X87Up:
3834   case SSE:
3835     HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
3836 
3837     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
3838       return ABIArgInfo::getDirect(HighPart, 8);
3839 
3840     ++neededSSE;
3841     break;
3842 
3843     // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
3844     // eightbyte is passed in the upper half of the last used SSE
3845     // register.  This only happens when 128-bit vectors are passed.
3846   case SSEUp:
3847     assert(Lo == SSE && "Unexpected SSEUp classification");
3848     ResType = GetByteVectorType(Ty);
3849     break;
3850   }
3851 
3852   // If a high part was specified, merge it together with the low part.  It is
3853   // known to pass in the high eightbyte of the result.  We do this by forming a
3854   // first class struct aggregate with the high and low part: {low, high}
3855   if (HighPart)
3856     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
3857 
3858   return ABIArgInfo::getDirect(ResType);
3859 }
3860 
3861 ABIArgInfo
3862 X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
3863                                              unsigned &NeededSSE) const {
3864   auto RT = Ty->getAs<RecordType>();
3865   assert(RT && "classifyRegCallStructType only valid with struct types");
3866 
3867   if (RT->getDecl()->hasFlexibleArrayMember())
3868     return getIndirectReturnResult(Ty);
3869 
3870   // Sum up bases
3871   if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
3872     if (CXXRD->isDynamicClass()) {
3873       NeededInt = NeededSSE = 0;
3874       return getIndirectReturnResult(Ty);
3875     }
3876 
3877     for (const auto &I : CXXRD->bases())
3878       if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE)
3879               .isIndirect()) {
3880         NeededInt = NeededSSE = 0;
3881         return getIndirectReturnResult(Ty);
3882       }
3883   }
3884 
3885   // Sum up members
3886   for (const auto *FD : RT->getDecl()->fields()) {
3887     if (FD->getType()->isRecordType() && !FD->getType()->isUnionType()) {
3888       if (classifyRegCallStructTypeImpl(FD->getType(), NeededInt, NeededSSE)
3889               .isIndirect()) {
3890         NeededInt = NeededSSE = 0;
3891         return getIndirectReturnResult(Ty);
3892       }
3893     } else {
3894       unsigned LocalNeededInt, LocalNeededSSE;
3895       if (classifyArgumentType(FD->getType(), UINT_MAX, LocalNeededInt,
3896                                LocalNeededSSE, true)
3897               .isIndirect()) {
3898         NeededInt = NeededSSE = 0;
3899         return getIndirectReturnResult(Ty);
3900       }
3901       NeededInt += LocalNeededInt;
3902       NeededSSE += LocalNeededSSE;
3903     }
3904   }
3905 
3906   return ABIArgInfo::getDirect();
3907 }
3908 
3909 ABIArgInfo X86_64ABIInfo::classifyRegCallStructType(QualType Ty,
3910                                                     unsigned &NeededInt,
3911                                                     unsigned &NeededSSE) const {
3912 
3913   NeededInt = 0;
3914   NeededSSE = 0;
3915 
3916   return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE);
3917 }
3918 
3919 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
3920 
3921   const unsigned CallingConv = FI.getCallingConvention();
3922   // It is possible to force Win64 calling convention on any x86_64 target by
3923   // using __attribute__((ms_abi)). In such case to correctly emit Win64
3924   // compatible code delegate this call to WinX86_64ABIInfo::computeInfo.
3925   if (CallingConv == llvm::CallingConv::Win64) {
3926     WinX86_64ABIInfo Win64ABIInfo(CGT, AVXLevel);
3927     Win64ABIInfo.computeInfo(FI);
3928     return;
3929   }
3930 
3931   bool IsRegCall = CallingConv == llvm::CallingConv::X86_RegCall;
3932 
3933   // Keep track of the number of assigned registers.
3934   unsigned FreeIntRegs = IsRegCall ? 11 : 6;
3935   unsigned FreeSSERegs = IsRegCall ? 16 : 8;
3936   unsigned NeededInt, NeededSSE;
3937 
3938   if (!::classifyReturnType(getCXXABI(), FI, *this)) {
3939     if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() &&
3940         !FI.getReturnType()->getTypePtr()->isUnionType()) {
3941       FI.getReturnInfo() =
3942           classifyRegCallStructType(FI.getReturnType(), NeededInt, NeededSSE);
3943       if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
3944         FreeIntRegs -= NeededInt;
3945         FreeSSERegs -= NeededSSE;
3946       } else {
3947         FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType());
3948       }
3949     } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>() &&
3950                getContext().getCanonicalType(FI.getReturnType()
3951                                                  ->getAs<ComplexType>()
3952                                                  ->getElementType()) ==
3953                    getContext().LongDoubleTy)
3954       // Complex Long Double Type is passed in Memory when Regcall
3955       // calling convention is used.
3956       FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType());
3957     else
3958       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3959   }
3960 
3961   // If the return value is indirect, then the hidden argument is consuming one
3962   // integer register.
3963   if (FI.getReturnInfo().isIndirect())
3964     --FreeIntRegs;
3965 
3966   // The chain argument effectively gives us another free register.
3967   if (FI.isChainCall())
3968     ++FreeIntRegs;
3969 
3970   unsigned NumRequiredArgs = FI.getNumRequiredArgs();
3971   // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
3972   // get assigned (in left-to-right order) for passing as follows...
3973   unsigned ArgNo = 0;
3974   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3975        it != ie; ++it, ++ArgNo) {
3976     bool IsNamedArg = ArgNo < NumRequiredArgs;
3977 
3978     if (IsRegCall && it->type->isStructureOrClassType())
3979       it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE);
3980     else
3981       it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt,
3982                                       NeededSSE, IsNamedArg);
3983 
3984     // AMD64-ABI 3.2.3p3: If there are no registers available for any
3985     // eightbyte of an argument, the whole argument is passed on the
3986     // stack. If registers have already been assigned for some
3987     // eightbytes of such an argument, the assignments get reverted.
3988     if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
3989       FreeIntRegs -= NeededInt;
3990       FreeSSERegs -= NeededSSE;
3991     } else {
3992       it->info = getIndirectResult(it->type, FreeIntRegs);
3993     }
3994   }
3995 }
3996 
3997 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF,
3998                                          Address VAListAddr, QualType Ty) {
3999   Address overflow_arg_area_p =
4000       CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
4001   llvm::Value *overflow_arg_area =
4002     CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
4003 
4004   // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
4005   // byte boundary if alignment needed by type exceeds 8 byte boundary.
4006   // It isn't stated explicitly in the standard, but in practice we use
4007   // alignment greater than 16 where necessary.
4008   CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
4009   if (Align > CharUnits::fromQuantity(8)) {
4010     overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area,
4011                                                       Align);
4012   }
4013 
4014   // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
4015   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
4016   llvm::Value *Res =
4017     CGF.Builder.CreateBitCast(overflow_arg_area,
4018                               llvm::PointerType::getUnqual(LTy));
4019 
4020   // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
4021   // l->overflow_arg_area + sizeof(type).
4022   // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
4023   // an 8 byte boundary.
4024 
4025   uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
4026   llvm::Value *Offset =
4027       llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7);
4028   overflow_arg_area = CGF.Builder.CreateGEP(CGF.Int8Ty, overflow_arg_area,
4029                                             Offset, "overflow_arg_area.next");
4030   CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
4031 
4032   // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
4033   return Address(Res, Align);
4034 }
4035 
4036 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4037                                  QualType Ty) const {
4038   // Assume that va_list type is correct; should be pointer to LLVM type:
4039   // struct {
4040   //   i32 gp_offset;
4041   //   i32 fp_offset;
4042   //   i8* overflow_arg_area;
4043   //   i8* reg_save_area;
4044   // };
4045   unsigned neededInt, neededSSE;
4046 
4047   Ty = getContext().getCanonicalType(Ty);
4048   ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE,
4049                                        /*isNamedArg*/false);
4050 
4051   // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
4052   // in the registers. If not go to step 7.
4053   if (!neededInt && !neededSSE)
4054     return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
4055 
4056   // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
4057   // general purpose registers needed to pass type and num_fp to hold
4058   // the number of floating point registers needed.
4059 
4060   // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
4061   // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
4062   // l->fp_offset > 304 - num_fp * 16 go to step 7.
4063   //
4064   // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
4065   // register save space).
4066 
4067   llvm::Value *InRegs = nullptr;
4068   Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid();
4069   llvm::Value *gp_offset = nullptr, *fp_offset = nullptr;
4070   if (neededInt) {
4071     gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
4072     gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
4073     InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
4074     InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
4075   }
4076 
4077   if (neededSSE) {
4078     fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
4079     fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
4080     llvm::Value *FitsInFP =
4081       llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
4082     FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
4083     InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
4084   }
4085 
4086   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
4087   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
4088   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
4089   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
4090 
4091   // Emit code to load the value if it was passed in registers.
4092 
4093   CGF.EmitBlock(InRegBlock);
4094 
4095   // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
4096   // an offset of l->gp_offset and/or l->fp_offset. This may require
4097   // copying to a temporary location in case the parameter is passed
4098   // in different register classes or requires an alignment greater
4099   // than 8 for general purpose registers and 16 for XMM registers.
4100   //
4101   // FIXME: This really results in shameful code when we end up needing to
4102   // collect arguments from different places; often what should result in a
4103   // simple assembling of a structure from scattered addresses has many more
4104   // loads than necessary. Can we clean this up?
4105   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
4106   llvm::Value *RegSaveArea = CGF.Builder.CreateLoad(
4107       CGF.Builder.CreateStructGEP(VAListAddr, 3), "reg_save_area");
4108 
4109   Address RegAddr = Address::invalid();
4110   if (neededInt && neededSSE) {
4111     // FIXME: Cleanup.
4112     assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
4113     llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
4114     Address Tmp = CGF.CreateMemTemp(Ty);
4115     Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
4116     assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
4117     llvm::Type *TyLo = ST->getElementType(0);
4118     llvm::Type *TyHi = ST->getElementType(1);
4119     assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
4120            "Unexpected ABI info for mixed regs");
4121     llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
4122     llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
4123     llvm::Value *GPAddr =
4124         CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, gp_offset);
4125     llvm::Value *FPAddr =
4126         CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, fp_offset);
4127     llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr;
4128     llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr;
4129 
4130     // Copy the first element.
4131     // FIXME: Our choice of alignment here and below is probably pessimistic.
4132     llvm::Value *V = CGF.Builder.CreateAlignedLoad(
4133         TyLo, CGF.Builder.CreateBitCast(RegLoAddr, PTyLo),
4134         CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyLo)));
4135     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
4136 
4137     // Copy the second element.
4138     V = CGF.Builder.CreateAlignedLoad(
4139         TyHi, CGF.Builder.CreateBitCast(RegHiAddr, PTyHi),
4140         CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyHi)));
4141     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
4142 
4143     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
4144   } else if (neededInt) {
4145     RegAddr = Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, gp_offset),
4146                       CharUnits::fromQuantity(8));
4147     RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
4148 
4149     // Copy to a temporary if necessary to ensure the appropriate alignment.
4150     auto TInfo = getContext().getTypeInfoInChars(Ty);
4151     uint64_t TySize = TInfo.Width.getQuantity();
4152     CharUnits TyAlign = TInfo.Align;
4153 
4154     // Copy into a temporary if the type is more aligned than the
4155     // register save area.
4156     if (TyAlign.getQuantity() > 8) {
4157       Address Tmp = CGF.CreateMemTemp(Ty);
4158       CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false);
4159       RegAddr = Tmp;
4160     }
4161 
4162   } else if (neededSSE == 1) {
4163     RegAddr = Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, fp_offset),
4164                       CharUnits::fromQuantity(16));
4165     RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
4166   } else {
4167     assert(neededSSE == 2 && "Invalid number of needed registers!");
4168     // SSE registers are spaced 16 bytes apart in the register save
4169     // area, we need to collect the two eightbytes together.
4170     // The ABI isn't explicit about this, but it seems reasonable
4171     // to assume that the slots are 16-byte aligned, since the stack is
4172     // naturally 16-byte aligned and the prologue is expected to store
4173     // all the SSE registers to the RSA.
4174     Address RegAddrLo = Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea,
4175                                                       fp_offset),
4176                                 CharUnits::fromQuantity(16));
4177     Address RegAddrHi =
4178       CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo,
4179                                              CharUnits::fromQuantity(16));
4180     llvm::Type *ST = AI.canHaveCoerceToType()
4181                          ? AI.getCoerceToType()
4182                          : llvm::StructType::get(CGF.DoubleTy, CGF.DoubleTy);
4183     llvm::Value *V;
4184     Address Tmp = CGF.CreateMemTemp(Ty);
4185     Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
4186     V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast(
4187         RegAddrLo, ST->getStructElementType(0)));
4188     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
4189     V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast(
4190         RegAddrHi, ST->getStructElementType(1)));
4191     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
4192 
4193     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
4194   }
4195 
4196   // AMD64-ABI 3.5.7p5: Step 5. Set:
4197   // l->gp_offset = l->gp_offset + num_gp * 8
4198   // l->fp_offset = l->fp_offset + num_fp * 16.
4199   if (neededInt) {
4200     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
4201     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
4202                             gp_offset_p);
4203   }
4204   if (neededSSE) {
4205     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
4206     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
4207                             fp_offset_p);
4208   }
4209   CGF.EmitBranch(ContBlock);
4210 
4211   // Emit code to load the value if it was passed in memory.
4212 
4213   CGF.EmitBlock(InMemBlock);
4214   Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
4215 
4216   // Return the appropriate result.
4217 
4218   CGF.EmitBlock(ContBlock);
4219   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock,
4220                                  "vaarg.addr");
4221   return ResAddr;
4222 }
4223 
4224 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
4225                                    QualType Ty) const {
4226   // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
4227   // not 1, 2, 4, or 8 bytes, must be passed by reference."
4228   uint64_t Width = getContext().getTypeSize(Ty);
4229   bool IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width);
4230 
4231   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
4232                           CGF.getContext().getTypeInfoInChars(Ty),
4233                           CharUnits::fromQuantity(8),
4234                           /*allowHigherAlign*/ false);
4235 }
4236 
4237 ABIArgInfo WinX86_64ABIInfo::reclassifyHvaArgForVectorCall(
4238     QualType Ty, unsigned &FreeSSERegs, const ABIArgInfo &current) const {
4239   const Type *Base = nullptr;
4240   uint64_t NumElts = 0;
4241 
4242   if (!Ty->isBuiltinType() && !Ty->isVectorType() &&
4243       isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) {
4244     FreeSSERegs -= NumElts;
4245     return getDirectX86Hva();
4246   }
4247   return current;
4248 }
4249 
4250 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs,
4251                                       bool IsReturnType, bool IsVectorCall,
4252                                       bool IsRegCall) const {
4253 
4254   if (Ty->isVoidType())
4255     return ABIArgInfo::getIgnore();
4256 
4257   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4258     Ty = EnumTy->getDecl()->getIntegerType();
4259 
4260   TypeInfo Info = getContext().getTypeInfo(Ty);
4261   uint64_t Width = Info.Width;
4262   CharUnits Align = getContext().toCharUnitsFromBits(Info.Align);
4263 
4264   const RecordType *RT = Ty->getAs<RecordType>();
4265   if (RT) {
4266     if (!IsReturnType) {
4267       if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()))
4268         return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
4269     }
4270 
4271     if (RT->getDecl()->hasFlexibleArrayMember())
4272       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
4273 
4274   }
4275 
4276   const Type *Base = nullptr;
4277   uint64_t NumElts = 0;
4278   // vectorcall adds the concept of a homogenous vector aggregate, similar to
4279   // other targets.
4280   if ((IsVectorCall || IsRegCall) &&
4281       isHomogeneousAggregate(Ty, Base, NumElts)) {
4282     if (IsRegCall) {
4283       if (FreeSSERegs >= NumElts) {
4284         FreeSSERegs -= NumElts;
4285         if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())
4286           return ABIArgInfo::getDirect();
4287         return ABIArgInfo::getExpand();
4288       }
4289       return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
4290     } else if (IsVectorCall) {
4291       if (FreeSSERegs >= NumElts &&
4292           (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) {
4293         FreeSSERegs -= NumElts;
4294         return ABIArgInfo::getDirect();
4295       } else if (IsReturnType) {
4296         return ABIArgInfo::getExpand();
4297       } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) {
4298         // HVAs are delayed and reclassified in the 2nd step.
4299         return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
4300       }
4301     }
4302   }
4303 
4304   if (Ty->isMemberPointerType()) {
4305     // If the member pointer is represented by an LLVM int or ptr, pass it
4306     // directly.
4307     llvm::Type *LLTy = CGT.ConvertType(Ty);
4308     if (LLTy->isPointerTy() || LLTy->isIntegerTy())
4309       return ABIArgInfo::getDirect();
4310   }
4311 
4312   if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) {
4313     // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
4314     // not 1, 2, 4, or 8 bytes, must be passed by reference."
4315     if (Width > 64 || !llvm::isPowerOf2_64(Width))
4316       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
4317 
4318     // Otherwise, coerce it to a small integer.
4319     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width));
4320   }
4321 
4322   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
4323     switch (BT->getKind()) {
4324     case BuiltinType::Bool:
4325       // Bool type is always extended to the ABI, other builtin types are not
4326       // extended.
4327       return ABIArgInfo::getExtend(Ty);
4328 
4329     case BuiltinType::LongDouble:
4330       // Mingw64 GCC uses the old 80 bit extended precision floating point
4331       // unit. It passes them indirectly through memory.
4332       if (IsMingw64) {
4333         const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
4334         if (LDF == &llvm::APFloat::x87DoubleExtended())
4335           return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
4336       }
4337       break;
4338 
4339     case BuiltinType::Int128:
4340     case BuiltinType::UInt128:
4341       // If it's a parameter type, the normal ABI rule is that arguments larger
4342       // than 8 bytes are passed indirectly. GCC follows it. We follow it too,
4343       // even though it isn't particularly efficient.
4344       if (!IsReturnType)
4345         return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
4346 
4347       // Mingw64 GCC returns i128 in XMM0. Coerce to v2i64 to handle that.
4348       // Clang matches them for compatibility.
4349       return ABIArgInfo::getDirect(llvm::FixedVectorType::get(
4350           llvm::Type::getInt64Ty(getVMContext()), 2));
4351 
4352     default:
4353       break;
4354     }
4355   }
4356 
4357   if (Ty->isExtIntType()) {
4358     // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
4359     // not 1, 2, 4, or 8 bytes, must be passed by reference."
4360     // However, non-power-of-two _ExtInts will be passed as 1,2,4 or 8 bytes
4361     // anyway as long is it fits in them, so we don't have to check the power of
4362     // 2.
4363     if (Width <= 64)
4364       return ABIArgInfo::getDirect();
4365     return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
4366   }
4367 
4368   return ABIArgInfo::getDirect();
4369 }
4370 
4371 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
4372   const unsigned CC = FI.getCallingConvention();
4373   bool IsVectorCall = CC == llvm::CallingConv::X86_VectorCall;
4374   bool IsRegCall = CC == llvm::CallingConv::X86_RegCall;
4375 
4376   // If __attribute__((sysv_abi)) is in use, use the SysV argument
4377   // classification rules.
4378   if (CC == llvm::CallingConv::X86_64_SysV) {
4379     X86_64ABIInfo SysVABIInfo(CGT, AVXLevel);
4380     SysVABIInfo.computeInfo(FI);
4381     return;
4382   }
4383 
4384   unsigned FreeSSERegs = 0;
4385   if (IsVectorCall) {
4386     // We can use up to 4 SSE return registers with vectorcall.
4387     FreeSSERegs = 4;
4388   } else if (IsRegCall) {
4389     // RegCall gives us 16 SSE registers.
4390     FreeSSERegs = 16;
4391   }
4392 
4393   if (!getCXXABI().classifyReturnType(FI))
4394     FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true,
4395                                   IsVectorCall, IsRegCall);
4396 
4397   if (IsVectorCall) {
4398     // We can use up to 6 SSE register parameters with vectorcall.
4399     FreeSSERegs = 6;
4400   } else if (IsRegCall) {
4401     // RegCall gives us 16 SSE registers, we can reuse the return registers.
4402     FreeSSERegs = 16;
4403   }
4404 
4405   unsigned ArgNum = 0;
4406   unsigned ZeroSSERegs = 0;
4407   for (auto &I : FI.arguments()) {
4408     // Vectorcall in x64 only permits the first 6 arguments to be passed as
4409     // XMM/YMM registers. After the sixth argument, pretend no vector
4410     // registers are left.
4411     unsigned *MaybeFreeSSERegs =
4412         (IsVectorCall && ArgNum >= 6) ? &ZeroSSERegs : &FreeSSERegs;
4413     I.info =
4414         classify(I.type, *MaybeFreeSSERegs, false, IsVectorCall, IsRegCall);
4415     ++ArgNum;
4416   }
4417 
4418   if (IsVectorCall) {
4419     // For vectorcall, assign aggregate HVAs to any free vector registers in a
4420     // second pass.
4421     for (auto &I : FI.arguments())
4422       I.info = reclassifyHvaArgForVectorCall(I.type, FreeSSERegs, I.info);
4423   }
4424 }
4425 
4426 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4427                                     QualType Ty) const {
4428   // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
4429   // not 1, 2, 4, or 8 bytes, must be passed by reference."
4430   uint64_t Width = getContext().getTypeSize(Ty);
4431   bool IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width);
4432 
4433   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
4434                           CGF.getContext().getTypeInfoInChars(Ty),
4435                           CharUnits::fromQuantity(8),
4436                           /*allowHigherAlign*/ false);
4437 }
4438 
4439 static bool PPC_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4440                                         llvm::Value *Address, bool Is64Bit,
4441                                         bool IsAIX) {
4442   // This is calculated from the LLVM and GCC tables and verified
4443   // against gcc output.  AFAIK all PPC ABIs use the same encoding.
4444 
4445   CodeGen::CGBuilderTy &Builder = CGF.Builder;
4446 
4447   llvm::IntegerType *i8 = CGF.Int8Ty;
4448   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
4449   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
4450   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
4451 
4452   // 0-31: r0-31, the 4-byte or 8-byte general-purpose registers
4453   AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 0, 31);
4454 
4455   // 32-63: fp0-31, the 8-byte floating-point registers
4456   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
4457 
4458   // 64-67 are various 4-byte or 8-byte special-purpose registers:
4459   // 64: mq
4460   // 65: lr
4461   // 66: ctr
4462   // 67: ap
4463   AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 64, 67);
4464 
4465   // 68-76 are various 4-byte special-purpose registers:
4466   // 68-75 cr0-7
4467   // 76: xer
4468   AssignToArrayRange(Builder, Address, Four8, 68, 76);
4469 
4470   // 77-108: v0-31, the 16-byte vector registers
4471   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
4472 
4473   // 109: vrsave
4474   // 110: vscr
4475   AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 109, 110);
4476 
4477   // AIX does not utilize the rest of the registers.
4478   if (IsAIX)
4479     return false;
4480 
4481   // 111: spe_acc
4482   // 112: spefscr
4483   // 113: sfp
4484   AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 111, 113);
4485 
4486   if (!Is64Bit)
4487     return false;
4488 
4489   // TODO: Need to verify if these registers are used on 64 bit AIX with Power8
4490   // or above CPU.
4491   // 64-bit only registers:
4492   // 114: tfhar
4493   // 115: tfiar
4494   // 116: texasr
4495   AssignToArrayRange(Builder, Address, Eight8, 114, 116);
4496 
4497   return false;
4498 }
4499 
4500 // AIX
4501 namespace {
4502 /// AIXABIInfo - The AIX XCOFF ABI information.
4503 class AIXABIInfo : public ABIInfo {
4504   const bool Is64Bit;
4505   const unsigned PtrByteSize;
4506   CharUnits getParamTypeAlignment(QualType Ty) const;
4507 
4508 public:
4509   AIXABIInfo(CodeGen::CodeGenTypes &CGT, bool Is64Bit)
4510       : ABIInfo(CGT), Is64Bit(Is64Bit), PtrByteSize(Is64Bit ? 8 : 4) {}
4511 
4512   bool isPromotableTypeForABI(QualType Ty) const;
4513 
4514   ABIArgInfo classifyReturnType(QualType RetTy) const;
4515   ABIArgInfo classifyArgumentType(QualType Ty) const;
4516 
4517   void computeInfo(CGFunctionInfo &FI) const override {
4518     if (!getCXXABI().classifyReturnType(FI))
4519       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4520 
4521     for (auto &I : FI.arguments())
4522       I.info = classifyArgumentType(I.type);
4523   }
4524 
4525   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4526                     QualType Ty) const override;
4527 };
4528 
4529 class AIXTargetCodeGenInfo : public TargetCodeGenInfo {
4530   const bool Is64Bit;
4531 
4532 public:
4533   AIXTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool Is64Bit)
4534       : TargetCodeGenInfo(std::make_unique<AIXABIInfo>(CGT, Is64Bit)),
4535         Is64Bit(Is64Bit) {}
4536   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4537     return 1; // r1 is the dedicated stack pointer
4538   }
4539 
4540   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4541                                llvm::Value *Address) const override;
4542 };
4543 } // namespace
4544 
4545 // Return true if the ABI requires Ty to be passed sign- or zero-
4546 // extended to 32/64 bits.
4547 bool AIXABIInfo::isPromotableTypeForABI(QualType Ty) const {
4548   // Treat an enum type as its underlying type.
4549   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4550     Ty = EnumTy->getDecl()->getIntegerType();
4551 
4552   // Promotable integer types are required to be promoted by the ABI.
4553   if (Ty->isPromotableIntegerType())
4554     return true;
4555 
4556   if (!Is64Bit)
4557     return false;
4558 
4559   // For 64 bit mode, in addition to the usual promotable integer types, we also
4560   // need to extend all 32-bit types, since the ABI requires promotion to 64
4561   // bits.
4562   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
4563     switch (BT->getKind()) {
4564     case BuiltinType::Int:
4565     case BuiltinType::UInt:
4566       return true;
4567     default:
4568       break;
4569     }
4570 
4571   return false;
4572 }
4573 
4574 ABIArgInfo AIXABIInfo::classifyReturnType(QualType RetTy) const {
4575   if (RetTy->isAnyComplexType())
4576     return ABIArgInfo::getDirect();
4577 
4578   if (RetTy->isVectorType())
4579     return ABIArgInfo::getDirect();
4580 
4581   if (RetTy->isVoidType())
4582     return ABIArgInfo::getIgnore();
4583 
4584   if (isAggregateTypeForABI(RetTy))
4585     return getNaturalAlignIndirect(RetTy);
4586 
4587   return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
4588                                         : ABIArgInfo::getDirect());
4589 }
4590 
4591 ABIArgInfo AIXABIInfo::classifyArgumentType(QualType Ty) const {
4592   Ty = useFirstFieldIfTransparentUnion(Ty);
4593 
4594   if (Ty->isAnyComplexType())
4595     return ABIArgInfo::getDirect();
4596 
4597   if (Ty->isVectorType())
4598     return ABIArgInfo::getDirect();
4599 
4600   if (isAggregateTypeForABI(Ty)) {
4601     // Records with non-trivial destructors/copy-constructors should not be
4602     // passed by value.
4603     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
4604       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
4605 
4606     CharUnits CCAlign = getParamTypeAlignment(Ty);
4607     CharUnits TyAlign = getContext().getTypeAlignInChars(Ty);
4608 
4609     return ABIArgInfo::getIndirect(CCAlign, /*ByVal*/ true,
4610                                    /*Realign*/ TyAlign > CCAlign);
4611   }
4612 
4613   return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
4614                                      : ABIArgInfo::getDirect());
4615 }
4616 
4617 CharUnits AIXABIInfo::getParamTypeAlignment(QualType Ty) const {
4618   // Complex types are passed just like their elements.
4619   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
4620     Ty = CTy->getElementType();
4621 
4622   if (Ty->isVectorType())
4623     return CharUnits::fromQuantity(16);
4624 
4625   // If the structure contains a vector type, the alignment is 16.
4626   if (isRecordWithSIMDVectorType(getContext(), Ty))
4627     return CharUnits::fromQuantity(16);
4628 
4629   return CharUnits::fromQuantity(PtrByteSize);
4630 }
4631 
4632 Address AIXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4633                               QualType Ty) const {
4634 
4635   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
4636   TypeInfo.Align = getParamTypeAlignment(Ty);
4637 
4638   CharUnits SlotSize = CharUnits::fromQuantity(PtrByteSize);
4639 
4640   // If we have a complex type and the base type is smaller than the register
4641   // size, the ABI calls for the real and imaginary parts to be right-adjusted
4642   // in separate words in 32bit mode or doublewords in 64bit mode. However,
4643   // Clang expects us to produce a pointer to a structure with the two parts
4644   // packed tightly. So generate loads of the real and imaginary parts relative
4645   // to the va_list pointer, and store them to a temporary structure. We do the
4646   // same as the PPC64ABI here.
4647   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
4648     CharUnits EltSize = TypeInfo.Width / 2;
4649     if (EltSize < SlotSize)
4650       return complexTempStructure(CGF, VAListAddr, Ty, SlotSize, EltSize, CTy);
4651   }
4652 
4653   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, TypeInfo,
4654                           SlotSize, /*AllowHigher*/ true);
4655 }
4656 
4657 bool AIXTargetCodeGenInfo::initDwarfEHRegSizeTable(
4658     CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const {
4659   return PPC_initDwarfEHRegSizeTable(CGF, Address, Is64Bit, /*IsAIX*/ true);
4660 }
4661 
4662 // PowerPC-32
4663 namespace {
4664 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information.
4665 class PPC32_SVR4_ABIInfo : public DefaultABIInfo {
4666   bool IsSoftFloatABI;
4667   bool IsRetSmallStructInRegABI;
4668 
4669   CharUnits getParamTypeAlignment(QualType Ty) const;
4670 
4671 public:
4672   PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI,
4673                      bool RetSmallStructInRegABI)
4674       : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI),
4675         IsRetSmallStructInRegABI(RetSmallStructInRegABI) {}
4676 
4677   ABIArgInfo classifyReturnType(QualType RetTy) const;
4678 
4679   void computeInfo(CGFunctionInfo &FI) const override {
4680     if (!getCXXABI().classifyReturnType(FI))
4681       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4682     for (auto &I : FI.arguments())
4683       I.info = classifyArgumentType(I.type);
4684   }
4685 
4686   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4687                     QualType Ty) const override;
4688 };
4689 
4690 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo {
4691 public:
4692   PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI,
4693                          bool RetSmallStructInRegABI)
4694       : TargetCodeGenInfo(std::make_unique<PPC32_SVR4_ABIInfo>(
4695             CGT, SoftFloatABI, RetSmallStructInRegABI)) {}
4696 
4697   static bool isStructReturnInRegABI(const llvm::Triple &Triple,
4698                                      const CodeGenOptions &Opts);
4699 
4700   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4701     // This is recovered from gcc output.
4702     return 1; // r1 is the dedicated stack pointer
4703   }
4704 
4705   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4706                                llvm::Value *Address) const override;
4707 };
4708 }
4709 
4710 CharUnits PPC32_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const {
4711   // Complex types are passed just like their elements.
4712   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
4713     Ty = CTy->getElementType();
4714 
4715   if (Ty->isVectorType())
4716     return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16
4717                                                                        : 4);
4718 
4719   // For single-element float/vector structs, we consider the whole type
4720   // to have the same alignment requirements as its single element.
4721   const Type *AlignTy = nullptr;
4722   if (const Type *EltType = isSingleElementStruct(Ty, getContext())) {
4723     const BuiltinType *BT = EltType->getAs<BuiltinType>();
4724     if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) ||
4725         (BT && BT->isFloatingPoint()))
4726       AlignTy = EltType;
4727   }
4728 
4729   if (AlignTy)
4730     return CharUnits::fromQuantity(AlignTy->isVectorType() ? 16 : 4);
4731   return CharUnits::fromQuantity(4);
4732 }
4733 
4734 ABIArgInfo PPC32_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
4735   uint64_t Size;
4736 
4737   // -msvr4-struct-return puts small aggregates in GPR3 and GPR4.
4738   if (isAggregateTypeForABI(RetTy) && IsRetSmallStructInRegABI &&
4739       (Size = getContext().getTypeSize(RetTy)) <= 64) {
4740     // System V ABI (1995), page 3-22, specified:
4741     // > A structure or union whose size is less than or equal to 8 bytes
4742     // > shall be returned in r3 and r4, as if it were first stored in the
4743     // > 8-byte aligned memory area and then the low addressed word were
4744     // > loaded into r3 and the high-addressed word into r4.  Bits beyond
4745     // > the last member of the structure or union are not defined.
4746     //
4747     // GCC for big-endian PPC32 inserts the pad before the first member,
4748     // not "beyond the last member" of the struct.  To stay compatible
4749     // with GCC, we coerce the struct to an integer of the same size.
4750     // LLVM will extend it and return i32 in r3, or i64 in r3:r4.
4751     if (Size == 0)
4752       return ABIArgInfo::getIgnore();
4753     else {
4754       llvm::Type *CoerceTy = llvm::Type::getIntNTy(getVMContext(), Size);
4755       return ABIArgInfo::getDirect(CoerceTy);
4756     }
4757   }
4758 
4759   return DefaultABIInfo::classifyReturnType(RetTy);
4760 }
4761 
4762 // TODO: this implementation is now likely redundant with
4763 // DefaultABIInfo::EmitVAArg.
4764 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList,
4765                                       QualType Ty) const {
4766   if (getTarget().getTriple().isOSDarwin()) {
4767     auto TI = getContext().getTypeInfoInChars(Ty);
4768     TI.Align = getParamTypeAlignment(Ty);
4769 
4770     CharUnits SlotSize = CharUnits::fromQuantity(4);
4771     return emitVoidPtrVAArg(CGF, VAList, Ty,
4772                             classifyArgumentType(Ty).isIndirect(), TI, SlotSize,
4773                             /*AllowHigherAlign=*/true);
4774   }
4775 
4776   const unsigned OverflowLimit = 8;
4777   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
4778     // TODO: Implement this. For now ignore.
4779     (void)CTy;
4780     return Address::invalid(); // FIXME?
4781   }
4782 
4783   // struct __va_list_tag {
4784   //   unsigned char gpr;
4785   //   unsigned char fpr;
4786   //   unsigned short reserved;
4787   //   void *overflow_arg_area;
4788   //   void *reg_save_area;
4789   // };
4790 
4791   bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64;
4792   bool isInt = !Ty->isFloatingType();
4793   bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64;
4794 
4795   // All aggregates are passed indirectly?  That doesn't seem consistent
4796   // with the argument-lowering code.
4797   bool isIndirect = isAggregateTypeForABI(Ty);
4798 
4799   CGBuilderTy &Builder = CGF.Builder;
4800 
4801   // The calling convention either uses 1-2 GPRs or 1 FPR.
4802   Address NumRegsAddr = Address::invalid();
4803   if (isInt || IsSoftFloatABI) {
4804     NumRegsAddr = Builder.CreateStructGEP(VAList, 0, "gpr");
4805   } else {
4806     NumRegsAddr = Builder.CreateStructGEP(VAList, 1, "fpr");
4807   }
4808 
4809   llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs");
4810 
4811   // "Align" the register count when TY is i64.
4812   if (isI64 || (isF64 && IsSoftFloatABI)) {
4813     NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1));
4814     NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U));
4815   }
4816 
4817   llvm::Value *CC =
4818       Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond");
4819 
4820   llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs");
4821   llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow");
4822   llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
4823 
4824   Builder.CreateCondBr(CC, UsingRegs, UsingOverflow);
4825 
4826   llvm::Type *DirectTy = CGF.ConvertType(Ty);
4827   if (isIndirect) DirectTy = DirectTy->getPointerTo(0);
4828 
4829   // Case 1: consume registers.
4830   Address RegAddr = Address::invalid();
4831   {
4832     CGF.EmitBlock(UsingRegs);
4833 
4834     Address RegSaveAreaPtr = Builder.CreateStructGEP(VAList, 4);
4835     RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr),
4836                       CharUnits::fromQuantity(8));
4837     assert(RegAddr.getElementType() == CGF.Int8Ty);
4838 
4839     // Floating-point registers start after the general-purpose registers.
4840     if (!(isInt || IsSoftFloatABI)) {
4841       RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr,
4842                                                    CharUnits::fromQuantity(32));
4843     }
4844 
4845     // Get the address of the saved value by scaling the number of
4846     // registers we've used by the number of
4847     CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8);
4848     llvm::Value *RegOffset =
4849       Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity()));
4850     RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty,
4851                                             RegAddr.getPointer(), RegOffset),
4852                       RegAddr.getAlignment().alignmentOfArrayElement(RegSize));
4853     RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy);
4854 
4855     // Increase the used-register count.
4856     NumRegs =
4857       Builder.CreateAdd(NumRegs,
4858                         Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1));
4859     Builder.CreateStore(NumRegs, NumRegsAddr);
4860 
4861     CGF.EmitBranch(Cont);
4862   }
4863 
4864   // Case 2: consume space in the overflow area.
4865   Address MemAddr = Address::invalid();
4866   {
4867     CGF.EmitBlock(UsingOverflow);
4868 
4869     Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr);
4870 
4871     // Everything in the overflow area is rounded up to a size of at least 4.
4872     CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4);
4873 
4874     CharUnits Size;
4875     if (!isIndirect) {
4876       auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty);
4877       Size = TypeInfo.Width.alignTo(OverflowAreaAlign);
4878     } else {
4879       Size = CGF.getPointerSize();
4880     }
4881 
4882     Address OverflowAreaAddr = Builder.CreateStructGEP(VAList, 3);
4883     Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"),
4884                          OverflowAreaAlign);
4885     // Round up address of argument to alignment
4886     CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
4887     if (Align > OverflowAreaAlign) {
4888       llvm::Value *Ptr = OverflowArea.getPointer();
4889       OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align),
4890                                                            Align);
4891     }
4892 
4893     MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy);
4894 
4895     // Increase the overflow area.
4896     OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size);
4897     Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr);
4898     CGF.EmitBranch(Cont);
4899   }
4900 
4901   CGF.EmitBlock(Cont);
4902 
4903   // Merge the cases with a phi.
4904   Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow,
4905                                 "vaarg.addr");
4906 
4907   // Load the pointer if the argument was passed indirectly.
4908   if (isIndirect) {
4909     Result = Address(Builder.CreateLoad(Result, "aggr"),
4910                      getContext().getTypeAlignInChars(Ty));
4911   }
4912 
4913   return Result;
4914 }
4915 
4916 bool PPC32TargetCodeGenInfo::isStructReturnInRegABI(
4917     const llvm::Triple &Triple, const CodeGenOptions &Opts) {
4918   assert(Triple.isPPC32());
4919 
4920   switch (Opts.getStructReturnConvention()) {
4921   case CodeGenOptions::SRCK_Default:
4922     break;
4923   case CodeGenOptions::SRCK_OnStack: // -maix-struct-return
4924     return false;
4925   case CodeGenOptions::SRCK_InRegs: // -msvr4-struct-return
4926     return true;
4927   }
4928 
4929   if (Triple.isOSBinFormatELF() && !Triple.isOSLinux())
4930     return true;
4931 
4932   return false;
4933 }
4934 
4935 bool
4936 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4937                                                 llvm::Value *Address) const {
4938   return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ false,
4939                                      /*IsAIX*/ false);
4940 }
4941 
4942 // PowerPC-64
4943 
4944 namespace {
4945 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information.
4946 class PPC64_SVR4_ABIInfo : public SwiftABIInfo {
4947 public:
4948   enum ABIKind {
4949     ELFv1 = 0,
4950     ELFv2
4951   };
4952 
4953 private:
4954   static const unsigned GPRBits = 64;
4955   ABIKind Kind;
4956   bool IsSoftFloatABI;
4957 
4958 public:
4959   PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind,
4960                      bool SoftFloatABI)
4961       : SwiftABIInfo(CGT), Kind(Kind), IsSoftFloatABI(SoftFloatABI) {}
4962 
4963   bool isPromotableTypeForABI(QualType Ty) const;
4964   CharUnits getParamTypeAlignment(QualType Ty) const;
4965 
4966   ABIArgInfo classifyReturnType(QualType RetTy) const;
4967   ABIArgInfo classifyArgumentType(QualType Ty) const;
4968 
4969   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
4970   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
4971                                          uint64_t Members) const override;
4972 
4973   // TODO: We can add more logic to computeInfo to improve performance.
4974   // Example: For aggregate arguments that fit in a register, we could
4975   // use getDirectInReg (as is done below for structs containing a single
4976   // floating-point value) to avoid pushing them to memory on function
4977   // entry.  This would require changing the logic in PPCISelLowering
4978   // when lowering the parameters in the caller and args in the callee.
4979   void computeInfo(CGFunctionInfo &FI) const override {
4980     if (!getCXXABI().classifyReturnType(FI))
4981       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4982     for (auto &I : FI.arguments()) {
4983       // We rely on the default argument classification for the most part.
4984       // One exception:  An aggregate containing a single floating-point
4985       // or vector item must be passed in a register if one is available.
4986       const Type *T = isSingleElementStruct(I.type, getContext());
4987       if (T) {
4988         const BuiltinType *BT = T->getAs<BuiltinType>();
4989         if ((T->isVectorType() && getContext().getTypeSize(T) == 128) ||
4990             (BT && BT->isFloatingPoint())) {
4991           QualType QT(T, 0);
4992           I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT));
4993           continue;
4994         }
4995       }
4996       I.info = classifyArgumentType(I.type);
4997     }
4998   }
4999 
5000   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5001                     QualType Ty) const override;
5002 
5003   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
5004                                     bool asReturnValue) const override {
5005     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
5006   }
5007 
5008   bool isSwiftErrorInRegister() const override {
5009     return false;
5010   }
5011 };
5012 
5013 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo {
5014 
5015 public:
5016   PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT,
5017                                PPC64_SVR4_ABIInfo::ABIKind Kind,
5018                                bool SoftFloatABI)
5019       : TargetCodeGenInfo(
5020             std::make_unique<PPC64_SVR4_ABIInfo>(CGT, Kind, SoftFloatABI)) {}
5021 
5022   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
5023     // This is recovered from gcc output.
5024     return 1; // r1 is the dedicated stack pointer
5025   }
5026 
5027   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5028                                llvm::Value *Address) const override;
5029 };
5030 
5031 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
5032 public:
5033   PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
5034 
5035   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
5036     // This is recovered from gcc output.
5037     return 1; // r1 is the dedicated stack pointer
5038   }
5039 
5040   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5041                                llvm::Value *Address) const override;
5042 };
5043 
5044 }
5045 
5046 // Return true if the ABI requires Ty to be passed sign- or zero-
5047 // extended to 64 bits.
5048 bool
5049 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const {
5050   // Treat an enum type as its underlying type.
5051   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5052     Ty = EnumTy->getDecl()->getIntegerType();
5053 
5054   // Promotable integer types are required to be promoted by the ABI.
5055   if (isPromotableIntegerTypeForABI(Ty))
5056     return true;
5057 
5058   // In addition to the usual promotable integer types, we also need to
5059   // extend all 32-bit types, since the ABI requires promotion to 64 bits.
5060   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
5061     switch (BT->getKind()) {
5062     case BuiltinType::Int:
5063     case BuiltinType::UInt:
5064       return true;
5065     default:
5066       break;
5067     }
5068 
5069   if (const auto *EIT = Ty->getAs<ExtIntType>())
5070     if (EIT->getNumBits() < 64)
5071       return true;
5072 
5073   return false;
5074 }
5075 
5076 /// isAlignedParamType - Determine whether a type requires 16-byte or
5077 /// higher alignment in the parameter area.  Always returns at least 8.
5078 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const {
5079   // Complex types are passed just like their elements.
5080   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
5081     Ty = CTy->getElementType();
5082 
5083   // Only vector types of size 16 bytes need alignment (larger types are
5084   // passed via reference, smaller types are not aligned).
5085   if (Ty->isVectorType()) {
5086     return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8);
5087   } else if (Ty->isRealFloatingType() &&
5088              &getContext().getFloatTypeSemantics(Ty) ==
5089                  &llvm::APFloat::IEEEquad()) {
5090     // According to ABI document section 'Optional Save Areas': If extended
5091     // precision floating-point values in IEEE BINARY 128 QUADRUPLE PRECISION
5092     // format are supported, map them to a single quadword, quadword aligned.
5093     return CharUnits::fromQuantity(16);
5094   }
5095 
5096   // For single-element float/vector structs, we consider the whole type
5097   // to have the same alignment requirements as its single element.
5098   const Type *AlignAsType = nullptr;
5099   const Type *EltType = isSingleElementStruct(Ty, getContext());
5100   if (EltType) {
5101     const BuiltinType *BT = EltType->getAs<BuiltinType>();
5102     if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) ||
5103         (BT && BT->isFloatingPoint()))
5104       AlignAsType = EltType;
5105   }
5106 
5107   // Likewise for ELFv2 homogeneous aggregates.
5108   const Type *Base = nullptr;
5109   uint64_t Members = 0;
5110   if (!AlignAsType && Kind == ELFv2 &&
5111       isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members))
5112     AlignAsType = Base;
5113 
5114   // With special case aggregates, only vector base types need alignment.
5115   if (AlignAsType) {
5116     return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8);
5117   }
5118 
5119   // Otherwise, we only need alignment for any aggregate type that
5120   // has an alignment requirement of >= 16 bytes.
5121   if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) {
5122     return CharUnits::fromQuantity(16);
5123   }
5124 
5125   return CharUnits::fromQuantity(8);
5126 }
5127 
5128 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous
5129 /// aggregate.  Base is set to the base element type, and Members is set
5130 /// to the number of base elements.
5131 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base,
5132                                      uint64_t &Members) const {
5133   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
5134     uint64_t NElements = AT->getSize().getZExtValue();
5135     if (NElements == 0)
5136       return false;
5137     if (!isHomogeneousAggregate(AT->getElementType(), Base, Members))
5138       return false;
5139     Members *= NElements;
5140   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
5141     const RecordDecl *RD = RT->getDecl();
5142     if (RD->hasFlexibleArrayMember())
5143       return false;
5144 
5145     Members = 0;
5146 
5147     // If this is a C++ record, check the properties of the record such as
5148     // bases and ABI specific restrictions
5149     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
5150       if (!getCXXABI().isPermittedToBeHomogeneousAggregate(CXXRD))
5151         return false;
5152 
5153       for (const auto &I : CXXRD->bases()) {
5154         // Ignore empty records.
5155         if (isEmptyRecord(getContext(), I.getType(), true))
5156           continue;
5157 
5158         uint64_t FldMembers;
5159         if (!isHomogeneousAggregate(I.getType(), Base, FldMembers))
5160           return false;
5161 
5162         Members += FldMembers;
5163       }
5164     }
5165 
5166     for (const auto *FD : RD->fields()) {
5167       // Ignore (non-zero arrays of) empty records.
5168       QualType FT = FD->getType();
5169       while (const ConstantArrayType *AT =
5170              getContext().getAsConstantArrayType(FT)) {
5171         if (AT->getSize().getZExtValue() == 0)
5172           return false;
5173         FT = AT->getElementType();
5174       }
5175       if (isEmptyRecord(getContext(), FT, true))
5176         continue;
5177 
5178       // For compatibility with GCC, ignore empty bitfields in C++ mode.
5179       if (getContext().getLangOpts().CPlusPlus &&
5180           FD->isZeroLengthBitField(getContext()))
5181         continue;
5182 
5183       uint64_t FldMembers;
5184       if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers))
5185         return false;
5186 
5187       Members = (RD->isUnion() ?
5188                  std::max(Members, FldMembers) : Members + FldMembers);
5189     }
5190 
5191     if (!Base)
5192       return false;
5193 
5194     // Ensure there is no padding.
5195     if (getContext().getTypeSize(Base) * Members !=
5196         getContext().getTypeSize(Ty))
5197       return false;
5198   } else {
5199     Members = 1;
5200     if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
5201       Members = 2;
5202       Ty = CT->getElementType();
5203     }
5204 
5205     // Most ABIs only support float, double, and some vector type widths.
5206     if (!isHomogeneousAggregateBaseType(Ty))
5207       return false;
5208 
5209     // The base type must be the same for all members.  Types that
5210     // agree in both total size and mode (float vs. vector) are
5211     // treated as being equivalent here.
5212     const Type *TyPtr = Ty.getTypePtr();
5213     if (!Base) {
5214       Base = TyPtr;
5215       // If it's a non-power-of-2 vector, its size is already a power-of-2,
5216       // so make sure to widen it explicitly.
5217       if (const VectorType *VT = Base->getAs<VectorType>()) {
5218         QualType EltTy = VT->getElementType();
5219         unsigned NumElements =
5220             getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy);
5221         Base = getContext()
5222                    .getVectorType(EltTy, NumElements, VT->getVectorKind())
5223                    .getTypePtr();
5224       }
5225     }
5226 
5227     if (Base->isVectorType() != TyPtr->isVectorType() ||
5228         getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr))
5229       return false;
5230   }
5231   return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members);
5232 }
5233 
5234 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
5235   // Homogeneous aggregates for ELFv2 must have base types of float,
5236   // double, long double, or 128-bit vectors.
5237   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
5238     if (BT->getKind() == BuiltinType::Float ||
5239         BT->getKind() == BuiltinType::Double ||
5240         BT->getKind() == BuiltinType::LongDouble ||
5241         BT->getKind() == BuiltinType::Ibm128 ||
5242         (getContext().getTargetInfo().hasFloat128Type() &&
5243          (BT->getKind() == BuiltinType::Float128))) {
5244       if (IsSoftFloatABI)
5245         return false;
5246       return true;
5247     }
5248   }
5249   if (const VectorType *VT = Ty->getAs<VectorType>()) {
5250     if (getContext().getTypeSize(VT) == 128)
5251       return true;
5252   }
5253   return false;
5254 }
5255 
5256 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough(
5257     const Type *Base, uint64_t Members) const {
5258   // Vector and fp128 types require one register, other floating point types
5259   // require one or two registers depending on their size.
5260   uint32_t NumRegs =
5261       ((getContext().getTargetInfo().hasFloat128Type() &&
5262           Base->isFloat128Type()) ||
5263         Base->isVectorType()) ? 1
5264                               : (getContext().getTypeSize(Base) + 63) / 64;
5265 
5266   // Homogeneous Aggregates may occupy at most 8 registers.
5267   return Members * NumRegs <= 8;
5268 }
5269 
5270 ABIArgInfo
5271 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const {
5272   Ty = useFirstFieldIfTransparentUnion(Ty);
5273 
5274   if (Ty->isAnyComplexType())
5275     return ABIArgInfo::getDirect();
5276 
5277   // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes)
5278   // or via reference (larger than 16 bytes).
5279   if (Ty->isVectorType()) {
5280     uint64_t Size = getContext().getTypeSize(Ty);
5281     if (Size > 128)
5282       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5283     else if (Size < 128) {
5284       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
5285       return ABIArgInfo::getDirect(CoerceTy);
5286     }
5287   }
5288 
5289   if (const auto *EIT = Ty->getAs<ExtIntType>())
5290     if (EIT->getNumBits() > 128)
5291       return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
5292 
5293   if (isAggregateTypeForABI(Ty)) {
5294     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
5295       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
5296 
5297     uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity();
5298     uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity();
5299 
5300     // ELFv2 homogeneous aggregates are passed as array types.
5301     const Type *Base = nullptr;
5302     uint64_t Members = 0;
5303     if (Kind == ELFv2 &&
5304         isHomogeneousAggregate(Ty, Base, Members)) {
5305       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
5306       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
5307       return ABIArgInfo::getDirect(CoerceTy);
5308     }
5309 
5310     // If an aggregate may end up fully in registers, we do not
5311     // use the ByVal method, but pass the aggregate as array.
5312     // This is usually beneficial since we avoid forcing the
5313     // back-end to store the argument to memory.
5314     uint64_t Bits = getContext().getTypeSize(Ty);
5315     if (Bits > 0 && Bits <= 8 * GPRBits) {
5316       llvm::Type *CoerceTy;
5317 
5318       // Types up to 8 bytes are passed as integer type (which will be
5319       // properly aligned in the argument save area doubleword).
5320       if (Bits <= GPRBits)
5321         CoerceTy =
5322             llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8));
5323       // Larger types are passed as arrays, with the base type selected
5324       // according to the required alignment in the save area.
5325       else {
5326         uint64_t RegBits = ABIAlign * 8;
5327         uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits;
5328         llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits);
5329         CoerceTy = llvm::ArrayType::get(RegTy, NumRegs);
5330       }
5331 
5332       return ABIArgInfo::getDirect(CoerceTy);
5333     }
5334 
5335     // All other aggregates are passed ByVal.
5336     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
5337                                    /*ByVal=*/true,
5338                                    /*Realign=*/TyAlign > ABIAlign);
5339   }
5340 
5341   return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
5342                                      : ABIArgInfo::getDirect());
5343 }
5344 
5345 ABIArgInfo
5346 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
5347   if (RetTy->isVoidType())
5348     return ABIArgInfo::getIgnore();
5349 
5350   if (RetTy->isAnyComplexType())
5351     return ABIArgInfo::getDirect();
5352 
5353   // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes)
5354   // or via reference (larger than 16 bytes).
5355   if (RetTy->isVectorType()) {
5356     uint64_t Size = getContext().getTypeSize(RetTy);
5357     if (Size > 128)
5358       return getNaturalAlignIndirect(RetTy);
5359     else if (Size < 128) {
5360       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
5361       return ABIArgInfo::getDirect(CoerceTy);
5362     }
5363   }
5364 
5365   if (const auto *EIT = RetTy->getAs<ExtIntType>())
5366     if (EIT->getNumBits() > 128)
5367       return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
5368 
5369   if (isAggregateTypeForABI(RetTy)) {
5370     // ELFv2 homogeneous aggregates are returned as array types.
5371     const Type *Base = nullptr;
5372     uint64_t Members = 0;
5373     if (Kind == ELFv2 &&
5374         isHomogeneousAggregate(RetTy, Base, Members)) {
5375       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
5376       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
5377       return ABIArgInfo::getDirect(CoerceTy);
5378     }
5379 
5380     // ELFv2 small aggregates are returned in up to two registers.
5381     uint64_t Bits = getContext().getTypeSize(RetTy);
5382     if (Kind == ELFv2 && Bits <= 2 * GPRBits) {
5383       if (Bits == 0)
5384         return ABIArgInfo::getIgnore();
5385 
5386       llvm::Type *CoerceTy;
5387       if (Bits > GPRBits) {
5388         CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits);
5389         CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy);
5390       } else
5391         CoerceTy =
5392             llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8));
5393       return ABIArgInfo::getDirect(CoerceTy);
5394     }
5395 
5396     // All other aggregates are returned indirectly.
5397     return getNaturalAlignIndirect(RetTy);
5398   }
5399 
5400   return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
5401                                         : ABIArgInfo::getDirect());
5402 }
5403 
5404 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine.
5405 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5406                                       QualType Ty) const {
5407   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
5408   TypeInfo.Align = getParamTypeAlignment(Ty);
5409 
5410   CharUnits SlotSize = CharUnits::fromQuantity(8);
5411 
5412   // If we have a complex type and the base type is smaller than 8 bytes,
5413   // the ABI calls for the real and imaginary parts to be right-adjusted
5414   // in separate doublewords.  However, Clang expects us to produce a
5415   // pointer to a structure with the two parts packed tightly.  So generate
5416   // loads of the real and imaginary parts relative to the va_list pointer,
5417   // and store them to a temporary structure.
5418   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
5419     CharUnits EltSize = TypeInfo.Width / 2;
5420     if (EltSize < SlotSize)
5421       return complexTempStructure(CGF, VAListAddr, Ty, SlotSize, EltSize, CTy);
5422   }
5423 
5424   // Otherwise, just use the general rule.
5425   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
5426                           TypeInfo, SlotSize, /*AllowHigher*/ true);
5427 }
5428 
5429 bool
5430 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable(
5431   CodeGen::CodeGenFunction &CGF,
5432   llvm::Value *Address) const {
5433   return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ true,
5434                                      /*IsAIX*/ false);
5435 }
5436 
5437 bool
5438 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5439                                                 llvm::Value *Address) const {
5440   return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ true,
5441                                      /*IsAIX*/ false);
5442 }
5443 
5444 //===----------------------------------------------------------------------===//
5445 // AArch64 ABI Implementation
5446 //===----------------------------------------------------------------------===//
5447 
5448 namespace {
5449 
5450 class AArch64ABIInfo : public SwiftABIInfo {
5451 public:
5452   enum ABIKind {
5453     AAPCS = 0,
5454     DarwinPCS,
5455     Win64
5456   };
5457 
5458 private:
5459   ABIKind Kind;
5460 
5461 public:
5462   AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind)
5463     : SwiftABIInfo(CGT), Kind(Kind) {}
5464 
5465 private:
5466   ABIKind getABIKind() const { return Kind; }
5467   bool isDarwinPCS() const { return Kind == DarwinPCS; }
5468 
5469   ABIArgInfo classifyReturnType(QualType RetTy, bool IsVariadic) const;
5470   ABIArgInfo classifyArgumentType(QualType RetTy, bool IsVariadic,
5471                                   unsigned CallingConvention) const;
5472   ABIArgInfo coerceIllegalVector(QualType Ty) const;
5473   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
5474   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
5475                                          uint64_t Members) const override;
5476 
5477   bool isIllegalVectorType(QualType Ty) const;
5478 
5479   void computeInfo(CGFunctionInfo &FI) const override {
5480     if (!::classifyReturnType(getCXXABI(), FI, *this))
5481       FI.getReturnInfo() =
5482           classifyReturnType(FI.getReturnType(), FI.isVariadic());
5483 
5484     for (auto &it : FI.arguments())
5485       it.info = classifyArgumentType(it.type, FI.isVariadic(),
5486                                      FI.getCallingConvention());
5487   }
5488 
5489   Address EmitDarwinVAArg(Address VAListAddr, QualType Ty,
5490                           CodeGenFunction &CGF) const;
5491 
5492   Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty,
5493                          CodeGenFunction &CGF) const;
5494 
5495   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5496                     QualType Ty) const override {
5497     llvm::Type *BaseTy = CGF.ConvertType(Ty);
5498     if (isa<llvm::ScalableVectorType>(BaseTy))
5499       llvm::report_fatal_error("Passing SVE types to variadic functions is "
5500                                "currently not supported");
5501 
5502     return Kind == Win64 ? EmitMSVAArg(CGF, VAListAddr, Ty)
5503                          : isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF)
5504                                          : EmitAAPCSVAArg(VAListAddr, Ty, CGF);
5505   }
5506 
5507   Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
5508                       QualType Ty) const override;
5509 
5510   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
5511                                     bool asReturnValue) const override {
5512     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
5513   }
5514   bool isSwiftErrorInRegister() const override {
5515     return true;
5516   }
5517 
5518   bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy,
5519                                  unsigned elts) const override;
5520 
5521   bool allowBFloatArgsAndRet() const override {
5522     return getTarget().hasBFloat16Type();
5523   }
5524 };
5525 
5526 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo {
5527 public:
5528   AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind)
5529       : TargetCodeGenInfo(std::make_unique<AArch64ABIInfo>(CGT, Kind)) {}
5530 
5531   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
5532     return "mov\tfp, fp\t\t// marker for objc_retainAutoreleaseReturnValue";
5533   }
5534 
5535   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
5536     return 31;
5537   }
5538 
5539   bool doesReturnSlotInterfereWithArgs() const override { return false; }
5540 
5541   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5542                            CodeGen::CodeGenModule &CGM) const override {
5543     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
5544     if (!FD)
5545       return;
5546 
5547     const auto *TA = FD->getAttr<TargetAttr>();
5548     if (TA == nullptr)
5549       return;
5550 
5551     ParsedTargetAttr Attr = TA->parse();
5552     if (Attr.BranchProtection.empty())
5553       return;
5554 
5555     TargetInfo::BranchProtectionInfo BPI;
5556     StringRef Error;
5557     (void)CGM.getTarget().validateBranchProtection(Attr.BranchProtection,
5558                                                    BPI, Error);
5559     assert(Error.empty());
5560 
5561     auto *Fn = cast<llvm::Function>(GV);
5562     static const char *SignReturnAddrStr[] = {"none", "non-leaf", "all"};
5563     Fn->addFnAttr("sign-return-address", SignReturnAddrStr[static_cast<int>(BPI.SignReturnAddr)]);
5564 
5565     if (BPI.SignReturnAddr != LangOptions::SignReturnAddressScopeKind::None) {
5566       Fn->addFnAttr("sign-return-address-key",
5567                     BPI.SignKey == LangOptions::SignReturnAddressKeyKind::AKey
5568                         ? "a_key"
5569                         : "b_key");
5570     }
5571 
5572     Fn->addFnAttr("branch-target-enforcement",
5573                   BPI.BranchTargetEnforcement ? "true" : "false");
5574   }
5575 
5576   bool isScalarizableAsmOperand(CodeGen::CodeGenFunction &CGF,
5577                                 llvm::Type *Ty) const override {
5578     if (CGF.getTarget().hasFeature("ls64")) {
5579       auto *ST = dyn_cast<llvm::StructType>(Ty);
5580       if (ST && ST->getNumElements() == 1) {
5581         auto *AT = dyn_cast<llvm::ArrayType>(ST->getElementType(0));
5582         if (AT && AT->getNumElements() == 8 &&
5583             AT->getElementType()->isIntegerTy(64))
5584           return true;
5585       }
5586     }
5587     return TargetCodeGenInfo::isScalarizableAsmOperand(CGF, Ty);
5588   }
5589 };
5590 
5591 class WindowsAArch64TargetCodeGenInfo : public AArch64TargetCodeGenInfo {
5592 public:
5593   WindowsAArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind K)
5594       : AArch64TargetCodeGenInfo(CGT, K) {}
5595 
5596   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5597                            CodeGen::CodeGenModule &CGM) const override;
5598 
5599   void getDependentLibraryOption(llvm::StringRef Lib,
5600                                  llvm::SmallString<24> &Opt) const override {
5601     Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib);
5602   }
5603 
5604   void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value,
5605                                llvm::SmallString<32> &Opt) const override {
5606     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
5607   }
5608 };
5609 
5610 void WindowsAArch64TargetCodeGenInfo::setTargetAttributes(
5611     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
5612   AArch64TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
5613   if (GV->isDeclaration())
5614     return;
5615   addStackProbeTargetAttributes(D, GV, CGM);
5616 }
5617 }
5618 
5619 ABIArgInfo AArch64ABIInfo::coerceIllegalVector(QualType Ty) const {
5620   assert(Ty->isVectorType() && "expected vector type!");
5621 
5622   const auto *VT = Ty->castAs<VectorType>();
5623   if (VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector) {
5624     assert(VT->getElementType()->isBuiltinType() && "expected builtin type!");
5625     assert(VT->getElementType()->castAs<BuiltinType>()->getKind() ==
5626                BuiltinType::UChar &&
5627            "unexpected builtin type for SVE predicate!");
5628     return ABIArgInfo::getDirect(llvm::ScalableVectorType::get(
5629         llvm::Type::getInt1Ty(getVMContext()), 16));
5630   }
5631 
5632   if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector) {
5633     assert(VT->getElementType()->isBuiltinType() && "expected builtin type!");
5634 
5635     const auto *BT = VT->getElementType()->castAs<BuiltinType>();
5636     llvm::ScalableVectorType *ResType = nullptr;
5637     switch (BT->getKind()) {
5638     default:
5639       llvm_unreachable("unexpected builtin type for SVE vector!");
5640     case BuiltinType::SChar:
5641     case BuiltinType::UChar:
5642       ResType = llvm::ScalableVectorType::get(
5643           llvm::Type::getInt8Ty(getVMContext()), 16);
5644       break;
5645     case BuiltinType::Short:
5646     case BuiltinType::UShort:
5647       ResType = llvm::ScalableVectorType::get(
5648           llvm::Type::getInt16Ty(getVMContext()), 8);
5649       break;
5650     case BuiltinType::Int:
5651     case BuiltinType::UInt:
5652       ResType = llvm::ScalableVectorType::get(
5653           llvm::Type::getInt32Ty(getVMContext()), 4);
5654       break;
5655     case BuiltinType::Long:
5656     case BuiltinType::ULong:
5657       ResType = llvm::ScalableVectorType::get(
5658           llvm::Type::getInt64Ty(getVMContext()), 2);
5659       break;
5660     case BuiltinType::Half:
5661       ResType = llvm::ScalableVectorType::get(
5662           llvm::Type::getHalfTy(getVMContext()), 8);
5663       break;
5664     case BuiltinType::Float:
5665       ResType = llvm::ScalableVectorType::get(
5666           llvm::Type::getFloatTy(getVMContext()), 4);
5667       break;
5668     case BuiltinType::Double:
5669       ResType = llvm::ScalableVectorType::get(
5670           llvm::Type::getDoubleTy(getVMContext()), 2);
5671       break;
5672     case BuiltinType::BFloat16:
5673       ResType = llvm::ScalableVectorType::get(
5674           llvm::Type::getBFloatTy(getVMContext()), 8);
5675       break;
5676     }
5677     return ABIArgInfo::getDirect(ResType);
5678   }
5679 
5680   uint64_t Size = getContext().getTypeSize(Ty);
5681   // Android promotes <2 x i8> to i16, not i32
5682   if (isAndroid() && (Size <= 16)) {
5683     llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext());
5684     return ABIArgInfo::getDirect(ResType);
5685   }
5686   if (Size <= 32) {
5687     llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext());
5688     return ABIArgInfo::getDirect(ResType);
5689   }
5690   if (Size == 64) {
5691     auto *ResType =
5692         llvm::FixedVectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2);
5693     return ABIArgInfo::getDirect(ResType);
5694   }
5695   if (Size == 128) {
5696     auto *ResType =
5697         llvm::FixedVectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4);
5698     return ABIArgInfo::getDirect(ResType);
5699   }
5700   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5701 }
5702 
5703 ABIArgInfo
5704 AArch64ABIInfo::classifyArgumentType(QualType Ty, bool IsVariadic,
5705                                      unsigned CallingConvention) const {
5706   Ty = useFirstFieldIfTransparentUnion(Ty);
5707 
5708   // Handle illegal vector types here.
5709   if (isIllegalVectorType(Ty))
5710     return coerceIllegalVector(Ty);
5711 
5712   if (!isAggregateTypeForABI(Ty)) {
5713     // Treat an enum type as its underlying type.
5714     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5715       Ty = EnumTy->getDecl()->getIntegerType();
5716 
5717     if (const auto *EIT = Ty->getAs<ExtIntType>())
5718       if (EIT->getNumBits() > 128)
5719         return getNaturalAlignIndirect(Ty);
5720 
5721     return (isPromotableIntegerTypeForABI(Ty) && isDarwinPCS()
5722                 ? ABIArgInfo::getExtend(Ty)
5723                 : ABIArgInfo::getDirect());
5724   }
5725 
5726   // Structures with either a non-trivial destructor or a non-trivial
5727   // copy constructor are always indirect.
5728   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
5729     return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
5730                                      CGCXXABI::RAA_DirectInMemory);
5731   }
5732 
5733   // Empty records are always ignored on Darwin, but actually passed in C++ mode
5734   // elsewhere for GNU compatibility.
5735   uint64_t Size = getContext().getTypeSize(Ty);
5736   bool IsEmpty = isEmptyRecord(getContext(), Ty, true);
5737   if (IsEmpty || Size == 0) {
5738     if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS())
5739       return ABIArgInfo::getIgnore();
5740 
5741     // GNU C mode. The only argument that gets ignored is an empty one with size
5742     // 0.
5743     if (IsEmpty && Size == 0)
5744       return ABIArgInfo::getIgnore();
5745     return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
5746   }
5747 
5748   // Homogeneous Floating-point Aggregates (HFAs) need to be expanded.
5749   const Type *Base = nullptr;
5750   uint64_t Members = 0;
5751   bool IsWin64 = Kind == Win64 || CallingConvention == llvm::CallingConv::Win64;
5752   bool IsWinVariadic = IsWin64 && IsVariadic;
5753   // In variadic functions on Windows, all composite types are treated alike,
5754   // no special handling of HFAs/HVAs.
5755   if (!IsWinVariadic && isHomogeneousAggregate(Ty, Base, Members)) {
5756     if (Kind != AArch64ABIInfo::AAPCS)
5757       return ABIArgInfo::getDirect(
5758           llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members));
5759 
5760     // For alignment adjusted HFAs, cap the argument alignment to 16, leave it
5761     // default otherwise.
5762     unsigned Align =
5763         getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity();
5764     unsigned BaseAlign = getContext().getTypeAlignInChars(Base).getQuantity();
5765     Align = (Align > BaseAlign && Align >= 16) ? 16 : 0;
5766     return ABIArgInfo::getDirect(
5767         llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members), 0,
5768         nullptr, true, Align);
5769   }
5770 
5771   // Aggregates <= 16 bytes are passed directly in registers or on the stack.
5772   if (Size <= 128) {
5773     // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of
5774     // same size and alignment.
5775     if (getTarget().isRenderScriptTarget()) {
5776       return coerceToIntArray(Ty, getContext(), getVMContext());
5777     }
5778     unsigned Alignment;
5779     if (Kind == AArch64ABIInfo::AAPCS) {
5780       Alignment = getContext().getTypeUnadjustedAlign(Ty);
5781       Alignment = Alignment < 128 ? 64 : 128;
5782     } else {
5783       Alignment = std::max(getContext().getTypeAlign(Ty),
5784                            (unsigned)getTarget().getPointerWidth(0));
5785     }
5786     Size = llvm::alignTo(Size, Alignment);
5787 
5788     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
5789     // For aggregates with 16-byte alignment, we use i128.
5790     llvm::Type *BaseTy = llvm::Type::getIntNTy(getVMContext(), Alignment);
5791     return ABIArgInfo::getDirect(
5792         Size == Alignment ? BaseTy
5793                           : llvm::ArrayType::get(BaseTy, Size / Alignment));
5794   }
5795 
5796   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5797 }
5798 
5799 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy,
5800                                               bool IsVariadic) const {
5801   if (RetTy->isVoidType())
5802     return ABIArgInfo::getIgnore();
5803 
5804   if (const auto *VT = RetTy->getAs<VectorType>()) {
5805     if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector ||
5806         VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector)
5807       return coerceIllegalVector(RetTy);
5808   }
5809 
5810   // Large vector types should be returned via memory.
5811   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
5812     return getNaturalAlignIndirect(RetTy);
5813 
5814   if (!isAggregateTypeForABI(RetTy)) {
5815     // Treat an enum type as its underlying type.
5816     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5817       RetTy = EnumTy->getDecl()->getIntegerType();
5818 
5819     if (const auto *EIT = RetTy->getAs<ExtIntType>())
5820       if (EIT->getNumBits() > 128)
5821         return getNaturalAlignIndirect(RetTy);
5822 
5823     return (isPromotableIntegerTypeForABI(RetTy) && isDarwinPCS()
5824                 ? ABIArgInfo::getExtend(RetTy)
5825                 : ABIArgInfo::getDirect());
5826   }
5827 
5828   uint64_t Size = getContext().getTypeSize(RetTy);
5829   if (isEmptyRecord(getContext(), RetTy, true) || Size == 0)
5830     return ABIArgInfo::getIgnore();
5831 
5832   const Type *Base = nullptr;
5833   uint64_t Members = 0;
5834   if (isHomogeneousAggregate(RetTy, Base, Members) &&
5835       !(getTarget().getTriple().getArch() == llvm::Triple::aarch64_32 &&
5836         IsVariadic))
5837     // Homogeneous Floating-point Aggregates (HFAs) are returned directly.
5838     return ABIArgInfo::getDirect();
5839 
5840   // Aggregates <= 16 bytes are returned directly in registers or on the stack.
5841   if (Size <= 128) {
5842     // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of
5843     // same size and alignment.
5844     if (getTarget().isRenderScriptTarget()) {
5845       return coerceToIntArray(RetTy, getContext(), getVMContext());
5846     }
5847 
5848     if (Size <= 64 && getDataLayout().isLittleEndian()) {
5849       // Composite types are returned in lower bits of a 64-bit register for LE,
5850       // and in higher bits for BE. However, integer types are always returned
5851       // in lower bits for both LE and BE, and they are not rounded up to
5852       // 64-bits. We can skip rounding up of composite types for LE, but not for
5853       // BE, otherwise composite types will be indistinguishable from integer
5854       // types.
5855       return ABIArgInfo::getDirect(
5856           llvm::IntegerType::get(getVMContext(), Size));
5857     }
5858 
5859     unsigned Alignment = getContext().getTypeAlign(RetTy);
5860     Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes
5861 
5862     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
5863     // For aggregates with 16-byte alignment, we use i128.
5864     if (Alignment < 128 && Size == 128) {
5865       llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
5866       return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
5867     }
5868     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
5869   }
5870 
5871   return getNaturalAlignIndirect(RetTy);
5872 }
5873 
5874 /// isIllegalVectorType - check whether the vector type is legal for AArch64.
5875 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const {
5876   if (const VectorType *VT = Ty->getAs<VectorType>()) {
5877     // Check whether VT is a fixed-length SVE vector. These types are
5878     // represented as scalable vectors in function args/return and must be
5879     // coerced from fixed vectors.
5880     if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector ||
5881         VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector)
5882       return true;
5883 
5884     // Check whether VT is legal.
5885     unsigned NumElements = VT->getNumElements();
5886     uint64_t Size = getContext().getTypeSize(VT);
5887     // NumElements should be power of 2.
5888     if (!llvm::isPowerOf2_32(NumElements))
5889       return true;
5890 
5891     // arm64_32 has to be compatible with the ARM logic here, which allows huge
5892     // vectors for some reason.
5893     llvm::Triple Triple = getTarget().getTriple();
5894     if (Triple.getArch() == llvm::Triple::aarch64_32 &&
5895         Triple.isOSBinFormatMachO())
5896       return Size <= 32;
5897 
5898     return Size != 64 && (Size != 128 || NumElements == 1);
5899   }
5900   return false;
5901 }
5902 
5903 bool AArch64ABIInfo::isLegalVectorTypeForSwift(CharUnits totalSize,
5904                                                llvm::Type *eltTy,
5905                                                unsigned elts) const {
5906   if (!llvm::isPowerOf2_32(elts))
5907     return false;
5908   if (totalSize.getQuantity() != 8 &&
5909       (totalSize.getQuantity() != 16 || elts == 1))
5910     return false;
5911   return true;
5912 }
5913 
5914 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
5915   // Homogeneous aggregates for AAPCS64 must have base types of a floating
5916   // point type or a short-vector type. This is the same as the 32-bit ABI,
5917   // but with the difference that any floating-point type is allowed,
5918   // including __fp16.
5919   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
5920     if (BT->isFloatingPoint())
5921       return true;
5922   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
5923     unsigned VecSize = getContext().getTypeSize(VT);
5924     if (VecSize == 64 || VecSize == 128)
5925       return true;
5926   }
5927   return false;
5928 }
5929 
5930 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
5931                                                        uint64_t Members) const {
5932   return Members <= 4;
5933 }
5934 
5935 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr, QualType Ty,
5936                                        CodeGenFunction &CGF) const {
5937   ABIArgInfo AI = classifyArgumentType(Ty, /*IsVariadic=*/true,
5938                                        CGF.CurFnInfo->getCallingConvention());
5939   bool IsIndirect = AI.isIndirect();
5940 
5941   llvm::Type *BaseTy = CGF.ConvertType(Ty);
5942   if (IsIndirect)
5943     BaseTy = llvm::PointerType::getUnqual(BaseTy);
5944   else if (AI.getCoerceToType())
5945     BaseTy = AI.getCoerceToType();
5946 
5947   unsigned NumRegs = 1;
5948   if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) {
5949     BaseTy = ArrTy->getElementType();
5950     NumRegs = ArrTy->getNumElements();
5951   }
5952   bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy();
5953 
5954   // The AArch64 va_list type and handling is specified in the Procedure Call
5955   // Standard, section B.4:
5956   //
5957   // struct {
5958   //   void *__stack;
5959   //   void *__gr_top;
5960   //   void *__vr_top;
5961   //   int __gr_offs;
5962   //   int __vr_offs;
5963   // };
5964 
5965   llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
5966   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
5967   llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
5968   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
5969 
5970   CharUnits TySize = getContext().getTypeSizeInChars(Ty);
5971   CharUnits TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty);
5972 
5973   Address reg_offs_p = Address::invalid();
5974   llvm::Value *reg_offs = nullptr;
5975   int reg_top_index;
5976   int RegSize = IsIndirect ? 8 : TySize.getQuantity();
5977   if (!IsFPR) {
5978     // 3 is the field number of __gr_offs
5979     reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p");
5980     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs");
5981     reg_top_index = 1; // field number for __gr_top
5982     RegSize = llvm::alignTo(RegSize, 8);
5983   } else {
5984     // 4 is the field number of __vr_offs.
5985     reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p");
5986     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs");
5987     reg_top_index = 2; // field number for __vr_top
5988     RegSize = 16 * NumRegs;
5989   }
5990 
5991   //=======================================
5992   // Find out where argument was passed
5993   //=======================================
5994 
5995   // If reg_offs >= 0 we're already using the stack for this type of
5996   // argument. We don't want to keep updating reg_offs (in case it overflows,
5997   // though anyone passing 2GB of arguments, each at most 16 bytes, deserves
5998   // whatever they get).
5999   llvm::Value *UsingStack = nullptr;
6000   UsingStack = CGF.Builder.CreateICmpSGE(
6001       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0));
6002 
6003   CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock);
6004 
6005   // Otherwise, at least some kind of argument could go in these registers, the
6006   // question is whether this particular type is too big.
6007   CGF.EmitBlock(MaybeRegBlock);
6008 
6009   // Integer arguments may need to correct register alignment (for example a
6010   // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we
6011   // align __gr_offs to calculate the potential address.
6012   if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) {
6013     int Align = TyAlign.getQuantity();
6014 
6015     reg_offs = CGF.Builder.CreateAdd(
6016         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1),
6017         "align_regoffs");
6018     reg_offs = CGF.Builder.CreateAnd(
6019         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align),
6020         "aligned_regoffs");
6021   }
6022 
6023   // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list.
6024   // The fact that this is done unconditionally reflects the fact that
6025   // allocating an argument to the stack also uses up all the remaining
6026   // registers of the appropriate kind.
6027   llvm::Value *NewOffset = nullptr;
6028   NewOffset = CGF.Builder.CreateAdd(
6029       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs");
6030   CGF.Builder.CreateStore(NewOffset, reg_offs_p);
6031 
6032   // Now we're in a position to decide whether this argument really was in
6033   // registers or not.
6034   llvm::Value *InRegs = nullptr;
6035   InRegs = CGF.Builder.CreateICmpSLE(
6036       NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg");
6037 
6038   CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock);
6039 
6040   //=======================================
6041   // Argument was in registers
6042   //=======================================
6043 
6044   // Now we emit the code for if the argument was originally passed in
6045   // registers. First start the appropriate block:
6046   CGF.EmitBlock(InRegBlock);
6047 
6048   llvm::Value *reg_top = nullptr;
6049   Address reg_top_p =
6050       CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p");
6051   reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top");
6052   Address BaseAddr(CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, reg_top, reg_offs),
6053                    CharUnits::fromQuantity(IsFPR ? 16 : 8));
6054   Address RegAddr = Address::invalid();
6055   llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty);
6056 
6057   if (IsIndirect) {
6058     // If it's been passed indirectly (actually a struct), whatever we find from
6059     // stored registers or on the stack will actually be a struct **.
6060     MemTy = llvm::PointerType::getUnqual(MemTy);
6061   }
6062 
6063   const Type *Base = nullptr;
6064   uint64_t NumMembers = 0;
6065   bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers);
6066   if (IsHFA && NumMembers > 1) {
6067     // Homogeneous aggregates passed in registers will have their elements split
6068     // and stored 16-bytes apart regardless of size (they're notionally in qN,
6069     // qN+1, ...). We reload and store into a temporary local variable
6070     // contiguously.
6071     assert(!IsIndirect && "Homogeneous aggregates should be passed directly");
6072     auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0));
6073     llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0));
6074     llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers);
6075     Address Tmp = CGF.CreateTempAlloca(HFATy,
6076                                        std::max(TyAlign, BaseTyInfo.Align));
6077 
6078     // On big-endian platforms, the value will be right-aligned in its slot.
6079     int Offset = 0;
6080     if (CGF.CGM.getDataLayout().isBigEndian() &&
6081         BaseTyInfo.Width.getQuantity() < 16)
6082       Offset = 16 - BaseTyInfo.Width.getQuantity();
6083 
6084     for (unsigned i = 0; i < NumMembers; ++i) {
6085       CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset);
6086       Address LoadAddr =
6087         CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset);
6088       LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy);
6089 
6090       Address StoreAddr = CGF.Builder.CreateConstArrayGEP(Tmp, i);
6091 
6092       llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr);
6093       CGF.Builder.CreateStore(Elem, StoreAddr);
6094     }
6095 
6096     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy);
6097   } else {
6098     // Otherwise the object is contiguous in memory.
6099 
6100     // It might be right-aligned in its slot.
6101     CharUnits SlotSize = BaseAddr.getAlignment();
6102     if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect &&
6103         (IsHFA || !isAggregateTypeForABI(Ty)) &&
6104         TySize < SlotSize) {
6105       CharUnits Offset = SlotSize - TySize;
6106       BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset);
6107     }
6108 
6109     RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy);
6110   }
6111 
6112   CGF.EmitBranch(ContBlock);
6113 
6114   //=======================================
6115   // Argument was on the stack
6116   //=======================================
6117   CGF.EmitBlock(OnStackBlock);
6118 
6119   Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p");
6120   llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack");
6121 
6122   // Again, stack arguments may need realignment. In this case both integer and
6123   // floating-point ones might be affected.
6124   if (!IsIndirect && TyAlign.getQuantity() > 8) {
6125     int Align = TyAlign.getQuantity();
6126 
6127     OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty);
6128 
6129     OnStackPtr = CGF.Builder.CreateAdd(
6130         OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1),
6131         "align_stack");
6132     OnStackPtr = CGF.Builder.CreateAnd(
6133         OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align),
6134         "align_stack");
6135 
6136     OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy);
6137   }
6138   Address OnStackAddr(OnStackPtr,
6139                       std::max(CharUnits::fromQuantity(8), TyAlign));
6140 
6141   // All stack slots are multiples of 8 bytes.
6142   CharUnits StackSlotSize = CharUnits::fromQuantity(8);
6143   CharUnits StackSize;
6144   if (IsIndirect)
6145     StackSize = StackSlotSize;
6146   else
6147     StackSize = TySize.alignTo(StackSlotSize);
6148 
6149   llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize);
6150   llvm::Value *NewStack = CGF.Builder.CreateInBoundsGEP(
6151       CGF.Int8Ty, OnStackPtr, StackSizeC, "new_stack");
6152 
6153   // Write the new value of __stack for the next call to va_arg
6154   CGF.Builder.CreateStore(NewStack, stack_p);
6155 
6156   if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) &&
6157       TySize < StackSlotSize) {
6158     CharUnits Offset = StackSlotSize - TySize;
6159     OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset);
6160   }
6161 
6162   OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy);
6163 
6164   CGF.EmitBranch(ContBlock);
6165 
6166   //=======================================
6167   // Tidy up
6168   //=======================================
6169   CGF.EmitBlock(ContBlock);
6170 
6171   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
6172                                  OnStackAddr, OnStackBlock, "vaargs.addr");
6173 
6174   if (IsIndirect)
6175     return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"),
6176                    TyAlign);
6177 
6178   return ResAddr;
6179 }
6180 
6181 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty,
6182                                         CodeGenFunction &CGF) const {
6183   // The backend's lowering doesn't support va_arg for aggregates or
6184   // illegal vector types.  Lower VAArg here for these cases and use
6185   // the LLVM va_arg instruction for everything else.
6186   if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty))
6187     return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect());
6188 
6189   uint64_t PointerSize = getTarget().getPointerWidth(0) / 8;
6190   CharUnits SlotSize = CharUnits::fromQuantity(PointerSize);
6191 
6192   // Empty records are ignored for parameter passing purposes.
6193   if (isEmptyRecord(getContext(), Ty, true)) {
6194     Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
6195     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
6196     return Addr;
6197   }
6198 
6199   // The size of the actual thing passed, which might end up just
6200   // being a pointer for indirect types.
6201   auto TyInfo = getContext().getTypeInfoInChars(Ty);
6202 
6203   // Arguments bigger than 16 bytes which aren't homogeneous
6204   // aggregates should be passed indirectly.
6205   bool IsIndirect = false;
6206   if (TyInfo.Width.getQuantity() > 16) {
6207     const Type *Base = nullptr;
6208     uint64_t Members = 0;
6209     IsIndirect = !isHomogeneousAggregate(Ty, Base, Members);
6210   }
6211 
6212   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
6213                           TyInfo, SlotSize, /*AllowHigherAlign*/ true);
6214 }
6215 
6216 Address AArch64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
6217                                     QualType Ty) const {
6218   bool IsIndirect = false;
6219 
6220   // Composites larger than 16 bytes are passed by reference.
6221   if (isAggregateTypeForABI(Ty) && getContext().getTypeSize(Ty) > 128)
6222     IsIndirect = true;
6223 
6224   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
6225                           CGF.getContext().getTypeInfoInChars(Ty),
6226                           CharUnits::fromQuantity(8),
6227                           /*allowHigherAlign*/ false);
6228 }
6229 
6230 //===----------------------------------------------------------------------===//
6231 // ARM ABI Implementation
6232 //===----------------------------------------------------------------------===//
6233 
6234 namespace {
6235 
6236 class ARMABIInfo : public SwiftABIInfo {
6237 public:
6238   enum ABIKind {
6239     APCS = 0,
6240     AAPCS = 1,
6241     AAPCS_VFP = 2,
6242     AAPCS16_VFP = 3,
6243   };
6244 
6245 private:
6246   ABIKind Kind;
6247   bool IsFloatABISoftFP;
6248 
6249 public:
6250   ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind)
6251       : SwiftABIInfo(CGT), Kind(_Kind) {
6252     setCCs();
6253     IsFloatABISoftFP = CGT.getCodeGenOpts().FloatABI == "softfp" ||
6254         CGT.getCodeGenOpts().FloatABI == ""; // default
6255   }
6256 
6257   bool isEABI() const {
6258     switch (getTarget().getTriple().getEnvironment()) {
6259     case llvm::Triple::Android:
6260     case llvm::Triple::EABI:
6261     case llvm::Triple::EABIHF:
6262     case llvm::Triple::GNUEABI:
6263     case llvm::Triple::GNUEABIHF:
6264     case llvm::Triple::MuslEABI:
6265     case llvm::Triple::MuslEABIHF:
6266       return true;
6267     default:
6268       return false;
6269     }
6270   }
6271 
6272   bool isEABIHF() const {
6273     switch (getTarget().getTriple().getEnvironment()) {
6274     case llvm::Triple::EABIHF:
6275     case llvm::Triple::GNUEABIHF:
6276     case llvm::Triple::MuslEABIHF:
6277       return true;
6278     default:
6279       return false;
6280     }
6281   }
6282 
6283   ABIKind getABIKind() const { return Kind; }
6284 
6285   bool allowBFloatArgsAndRet() const override {
6286     return !IsFloatABISoftFP && getTarget().hasBFloat16Type();
6287   }
6288 
6289 private:
6290   ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic,
6291                                 unsigned functionCallConv) const;
6292   ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic,
6293                                   unsigned functionCallConv) const;
6294   ABIArgInfo classifyHomogeneousAggregate(QualType Ty, const Type *Base,
6295                                           uint64_t Members) const;
6296   ABIArgInfo coerceIllegalVector(QualType Ty) const;
6297   bool isIllegalVectorType(QualType Ty) const;
6298   bool containsAnyFP16Vectors(QualType Ty) const;
6299 
6300   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
6301   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
6302                                          uint64_t Members) const override;
6303 
6304   bool isEffectivelyAAPCS_VFP(unsigned callConvention, bool acceptHalf) const;
6305 
6306   void computeInfo(CGFunctionInfo &FI) const override;
6307 
6308   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6309                     QualType Ty) const override;
6310 
6311   llvm::CallingConv::ID getLLVMDefaultCC() const;
6312   llvm::CallingConv::ID getABIDefaultCC() const;
6313   void setCCs();
6314 
6315   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
6316                                     bool asReturnValue) const override {
6317     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
6318   }
6319   bool isSwiftErrorInRegister() const override {
6320     return true;
6321   }
6322   bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy,
6323                                  unsigned elts) const override;
6324 };
6325 
6326 class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
6327 public:
6328   ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
6329       : TargetCodeGenInfo(std::make_unique<ARMABIInfo>(CGT, K)) {}
6330 
6331   const ARMABIInfo &getABIInfo() const {
6332     return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo());
6333   }
6334 
6335   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
6336     return 13;
6337   }
6338 
6339   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
6340     return "mov\tr7, r7\t\t// marker for objc_retainAutoreleaseReturnValue";
6341   }
6342 
6343   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
6344                                llvm::Value *Address) const override {
6345     llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
6346 
6347     // 0-15 are the 16 integer registers.
6348     AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15);
6349     return false;
6350   }
6351 
6352   unsigned getSizeOfUnwindException() const override {
6353     if (getABIInfo().isEABI()) return 88;
6354     return TargetCodeGenInfo::getSizeOfUnwindException();
6355   }
6356 
6357   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6358                            CodeGen::CodeGenModule &CGM) const override {
6359     if (GV->isDeclaration())
6360       return;
6361     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
6362     if (!FD)
6363       return;
6364 
6365     const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>();
6366     if (!Attr)
6367       return;
6368 
6369     const char *Kind;
6370     switch (Attr->getInterrupt()) {
6371     case ARMInterruptAttr::Generic: Kind = ""; break;
6372     case ARMInterruptAttr::IRQ:     Kind = "IRQ"; break;
6373     case ARMInterruptAttr::FIQ:     Kind = "FIQ"; break;
6374     case ARMInterruptAttr::SWI:     Kind = "SWI"; break;
6375     case ARMInterruptAttr::ABORT:   Kind = "ABORT"; break;
6376     case ARMInterruptAttr::UNDEF:   Kind = "UNDEF"; break;
6377     }
6378 
6379     llvm::Function *Fn = cast<llvm::Function>(GV);
6380 
6381     Fn->addFnAttr("interrupt", Kind);
6382 
6383     ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind();
6384     if (ABI == ARMABIInfo::APCS)
6385       return;
6386 
6387     // AAPCS guarantees that sp will be 8-byte aligned on any public interface,
6388     // however this is not necessarily true on taking any interrupt. Instruct
6389     // the backend to perform a realignment as part of the function prologue.
6390     llvm::AttrBuilder B;
6391     B.addStackAlignmentAttr(8);
6392     Fn->addFnAttrs(B);
6393   }
6394 };
6395 
6396 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo {
6397 public:
6398   WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
6399       : ARMTargetCodeGenInfo(CGT, K) {}
6400 
6401   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6402                            CodeGen::CodeGenModule &CGM) const override;
6403 
6404   void getDependentLibraryOption(llvm::StringRef Lib,
6405                                  llvm::SmallString<24> &Opt) const override {
6406     Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib);
6407   }
6408 
6409   void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value,
6410                                llvm::SmallString<32> &Opt) const override {
6411     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
6412   }
6413 };
6414 
6415 void WindowsARMTargetCodeGenInfo::setTargetAttributes(
6416     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
6417   ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
6418   if (GV->isDeclaration())
6419     return;
6420   addStackProbeTargetAttributes(D, GV, CGM);
6421 }
6422 }
6423 
6424 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
6425   if (!::classifyReturnType(getCXXABI(), FI, *this))
6426     FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), FI.isVariadic(),
6427                                             FI.getCallingConvention());
6428 
6429   for (auto &I : FI.arguments())
6430     I.info = classifyArgumentType(I.type, FI.isVariadic(),
6431                                   FI.getCallingConvention());
6432 
6433 
6434   // Always honor user-specified calling convention.
6435   if (FI.getCallingConvention() != llvm::CallingConv::C)
6436     return;
6437 
6438   llvm::CallingConv::ID cc = getRuntimeCC();
6439   if (cc != llvm::CallingConv::C)
6440     FI.setEffectiveCallingConvention(cc);
6441 }
6442 
6443 /// Return the default calling convention that LLVM will use.
6444 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const {
6445   // The default calling convention that LLVM will infer.
6446   if (isEABIHF() || getTarget().getTriple().isWatchABI())
6447     return llvm::CallingConv::ARM_AAPCS_VFP;
6448   else if (isEABI())
6449     return llvm::CallingConv::ARM_AAPCS;
6450   else
6451     return llvm::CallingConv::ARM_APCS;
6452 }
6453 
6454 /// Return the calling convention that our ABI would like us to use
6455 /// as the C calling convention.
6456 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const {
6457   switch (getABIKind()) {
6458   case APCS: return llvm::CallingConv::ARM_APCS;
6459   case AAPCS: return llvm::CallingConv::ARM_AAPCS;
6460   case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
6461   case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
6462   }
6463   llvm_unreachable("bad ABI kind");
6464 }
6465 
6466 void ARMABIInfo::setCCs() {
6467   assert(getRuntimeCC() == llvm::CallingConv::C);
6468 
6469   // Don't muddy up the IR with a ton of explicit annotations if
6470   // they'd just match what LLVM will infer from the triple.
6471   llvm::CallingConv::ID abiCC = getABIDefaultCC();
6472   if (abiCC != getLLVMDefaultCC())
6473     RuntimeCC = abiCC;
6474 }
6475 
6476 ABIArgInfo ARMABIInfo::coerceIllegalVector(QualType Ty) const {
6477   uint64_t Size = getContext().getTypeSize(Ty);
6478   if (Size <= 32) {
6479     llvm::Type *ResType =
6480         llvm::Type::getInt32Ty(getVMContext());
6481     return ABIArgInfo::getDirect(ResType);
6482   }
6483   if (Size == 64 || Size == 128) {
6484     auto *ResType = llvm::FixedVectorType::get(
6485         llvm::Type::getInt32Ty(getVMContext()), Size / 32);
6486     return ABIArgInfo::getDirect(ResType);
6487   }
6488   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
6489 }
6490 
6491 ABIArgInfo ARMABIInfo::classifyHomogeneousAggregate(QualType Ty,
6492                                                     const Type *Base,
6493                                                     uint64_t Members) const {
6494   assert(Base && "Base class should be set for homogeneous aggregate");
6495   // Base can be a floating-point or a vector.
6496   if (const VectorType *VT = Base->getAs<VectorType>()) {
6497     // FP16 vectors should be converted to integer vectors
6498     if (!getTarget().hasLegalHalfType() && containsAnyFP16Vectors(Ty)) {
6499       uint64_t Size = getContext().getTypeSize(VT);
6500       auto *NewVecTy = llvm::FixedVectorType::get(
6501           llvm::Type::getInt32Ty(getVMContext()), Size / 32);
6502       llvm::Type *Ty = llvm::ArrayType::get(NewVecTy, Members);
6503       return ABIArgInfo::getDirect(Ty, 0, nullptr, false);
6504     }
6505   }
6506   unsigned Align = 0;
6507   if (getABIKind() == ARMABIInfo::AAPCS ||
6508       getABIKind() == ARMABIInfo::AAPCS_VFP) {
6509     // For alignment adjusted HFAs, cap the argument alignment to 8, leave it
6510     // default otherwise.
6511     Align = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity();
6512     unsigned BaseAlign = getContext().getTypeAlignInChars(Base).getQuantity();
6513     Align = (Align > BaseAlign && Align >= 8) ? 8 : 0;
6514   }
6515   return ABIArgInfo::getDirect(nullptr, 0, nullptr, false, Align);
6516 }
6517 
6518 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, bool isVariadic,
6519                                             unsigned functionCallConv) const {
6520   // 6.1.2.1 The following argument types are VFP CPRCs:
6521   //   A single-precision floating-point type (including promoted
6522   //   half-precision types); A double-precision floating-point type;
6523   //   A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate
6524   //   with a Base Type of a single- or double-precision floating-point type,
6525   //   64-bit containerized vectors or 128-bit containerized vectors with one
6526   //   to four Elements.
6527   // Variadic functions should always marshal to the base standard.
6528   bool IsAAPCS_VFP =
6529       !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ false);
6530 
6531   Ty = useFirstFieldIfTransparentUnion(Ty);
6532 
6533   // Handle illegal vector types here.
6534   if (isIllegalVectorType(Ty))
6535     return coerceIllegalVector(Ty);
6536 
6537   if (!isAggregateTypeForABI(Ty)) {
6538     // Treat an enum type as its underlying type.
6539     if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
6540       Ty = EnumTy->getDecl()->getIntegerType();
6541     }
6542 
6543     if (const auto *EIT = Ty->getAs<ExtIntType>())
6544       if (EIT->getNumBits() > 64)
6545         return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
6546 
6547     return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
6548                                               : ABIArgInfo::getDirect());
6549   }
6550 
6551   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
6552     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
6553   }
6554 
6555   // Ignore empty records.
6556   if (isEmptyRecord(getContext(), Ty, true))
6557     return ABIArgInfo::getIgnore();
6558 
6559   if (IsAAPCS_VFP) {
6560     // Homogeneous Aggregates need to be expanded when we can fit the aggregate
6561     // into VFP registers.
6562     const Type *Base = nullptr;
6563     uint64_t Members = 0;
6564     if (isHomogeneousAggregate(Ty, Base, Members))
6565       return classifyHomogeneousAggregate(Ty, Base, Members);
6566   } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) {
6567     // WatchOS does have homogeneous aggregates. Note that we intentionally use
6568     // this convention even for a variadic function: the backend will use GPRs
6569     // if needed.
6570     const Type *Base = nullptr;
6571     uint64_t Members = 0;
6572     if (isHomogeneousAggregate(Ty, Base, Members)) {
6573       assert(Base && Members <= 4 && "unexpected homogeneous aggregate");
6574       llvm::Type *Ty =
6575         llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members);
6576       return ABIArgInfo::getDirect(Ty, 0, nullptr, false);
6577     }
6578   }
6579 
6580   if (getABIKind() == ARMABIInfo::AAPCS16_VFP &&
6581       getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) {
6582     // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're
6583     // bigger than 128-bits, they get placed in space allocated by the caller,
6584     // and a pointer is passed.
6585     return ABIArgInfo::getIndirect(
6586         CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false);
6587   }
6588 
6589   // Support byval for ARM.
6590   // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at
6591   // most 8-byte. We realign the indirect argument if type alignment is bigger
6592   // than ABI alignment.
6593   uint64_t ABIAlign = 4;
6594   uint64_t TyAlign;
6595   if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
6596       getABIKind() == ARMABIInfo::AAPCS) {
6597     TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity();
6598     ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
6599   } else {
6600     TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity();
6601   }
6602   if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) {
6603     assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval");
6604     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
6605                                    /*ByVal=*/true,
6606                                    /*Realign=*/TyAlign > ABIAlign);
6607   }
6608 
6609   // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of
6610   // same size and alignment.
6611   if (getTarget().isRenderScriptTarget()) {
6612     return coerceToIntArray(Ty, getContext(), getVMContext());
6613   }
6614 
6615   // Otherwise, pass by coercing to a structure of the appropriate size.
6616   llvm::Type* ElemTy;
6617   unsigned SizeRegs;
6618   // FIXME: Try to match the types of the arguments more accurately where
6619   // we can.
6620   if (TyAlign <= 4) {
6621     ElemTy = llvm::Type::getInt32Ty(getVMContext());
6622     SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
6623   } else {
6624     ElemTy = llvm::Type::getInt64Ty(getVMContext());
6625     SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
6626   }
6627 
6628   return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs));
6629 }
6630 
6631 static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
6632                               llvm::LLVMContext &VMContext) {
6633   // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
6634   // is called integer-like if its size is less than or equal to one word, and
6635   // the offset of each of its addressable sub-fields is zero.
6636 
6637   uint64_t Size = Context.getTypeSize(Ty);
6638 
6639   // Check that the type fits in a word.
6640   if (Size > 32)
6641     return false;
6642 
6643   // FIXME: Handle vector types!
6644   if (Ty->isVectorType())
6645     return false;
6646 
6647   // Float types are never treated as "integer like".
6648   if (Ty->isRealFloatingType())
6649     return false;
6650 
6651   // If this is a builtin or pointer type then it is ok.
6652   if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
6653     return true;
6654 
6655   // Small complex integer types are "integer like".
6656   if (const ComplexType *CT = Ty->getAs<ComplexType>())
6657     return isIntegerLikeType(CT->getElementType(), Context, VMContext);
6658 
6659   // Single element and zero sized arrays should be allowed, by the definition
6660   // above, but they are not.
6661 
6662   // Otherwise, it must be a record type.
6663   const RecordType *RT = Ty->getAs<RecordType>();
6664   if (!RT) return false;
6665 
6666   // Ignore records with flexible arrays.
6667   const RecordDecl *RD = RT->getDecl();
6668   if (RD->hasFlexibleArrayMember())
6669     return false;
6670 
6671   // Check that all sub-fields are at offset 0, and are themselves "integer
6672   // like".
6673   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
6674 
6675   bool HadField = false;
6676   unsigned idx = 0;
6677   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
6678        i != e; ++i, ++idx) {
6679     const FieldDecl *FD = *i;
6680 
6681     // Bit-fields are not addressable, we only need to verify they are "integer
6682     // like". We still have to disallow a subsequent non-bitfield, for example:
6683     //   struct { int : 0; int x }
6684     // is non-integer like according to gcc.
6685     if (FD->isBitField()) {
6686       if (!RD->isUnion())
6687         HadField = true;
6688 
6689       if (!isIntegerLikeType(FD->getType(), Context, VMContext))
6690         return false;
6691 
6692       continue;
6693     }
6694 
6695     // Check if this field is at offset 0.
6696     if (Layout.getFieldOffset(idx) != 0)
6697       return false;
6698 
6699     if (!isIntegerLikeType(FD->getType(), Context, VMContext))
6700       return false;
6701 
6702     // Only allow at most one field in a structure. This doesn't match the
6703     // wording above, but follows gcc in situations with a field following an
6704     // empty structure.
6705     if (!RD->isUnion()) {
6706       if (HadField)
6707         return false;
6708 
6709       HadField = true;
6710     }
6711   }
6712 
6713   return true;
6714 }
6715 
6716 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, bool isVariadic,
6717                                           unsigned functionCallConv) const {
6718 
6719   // Variadic functions should always marshal to the base standard.
6720   bool IsAAPCS_VFP =
6721       !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ true);
6722 
6723   if (RetTy->isVoidType())
6724     return ABIArgInfo::getIgnore();
6725 
6726   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
6727     // Large vector types should be returned via memory.
6728     if (getContext().getTypeSize(RetTy) > 128)
6729       return getNaturalAlignIndirect(RetTy);
6730     // TODO: FP16/BF16 vectors should be converted to integer vectors
6731     // This check is similar  to isIllegalVectorType - refactor?
6732     if ((!getTarget().hasLegalHalfType() &&
6733         (VT->getElementType()->isFloat16Type() ||
6734          VT->getElementType()->isHalfType())) ||
6735         (IsFloatABISoftFP &&
6736          VT->getElementType()->isBFloat16Type()))
6737       return coerceIllegalVector(RetTy);
6738   }
6739 
6740   if (!isAggregateTypeForABI(RetTy)) {
6741     // Treat an enum type as its underlying type.
6742     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
6743       RetTy = EnumTy->getDecl()->getIntegerType();
6744 
6745     if (const auto *EIT = RetTy->getAs<ExtIntType>())
6746       if (EIT->getNumBits() > 64)
6747         return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
6748 
6749     return isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
6750                                                 : ABIArgInfo::getDirect();
6751   }
6752 
6753   // Are we following APCS?
6754   if (getABIKind() == APCS) {
6755     if (isEmptyRecord(getContext(), RetTy, false))
6756       return ABIArgInfo::getIgnore();
6757 
6758     // Complex types are all returned as packed integers.
6759     //
6760     // FIXME: Consider using 2 x vector types if the back end handles them
6761     // correctly.
6762     if (RetTy->isAnyComplexType())
6763       return ABIArgInfo::getDirect(llvm::IntegerType::get(
6764           getVMContext(), getContext().getTypeSize(RetTy)));
6765 
6766     // Integer like structures are returned in r0.
6767     if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
6768       // Return in the smallest viable integer type.
6769       uint64_t Size = getContext().getTypeSize(RetTy);
6770       if (Size <= 8)
6771         return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
6772       if (Size <= 16)
6773         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
6774       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6775     }
6776 
6777     // Otherwise return in memory.
6778     return getNaturalAlignIndirect(RetTy);
6779   }
6780 
6781   // Otherwise this is an AAPCS variant.
6782 
6783   if (isEmptyRecord(getContext(), RetTy, true))
6784     return ABIArgInfo::getIgnore();
6785 
6786   // Check for homogeneous aggregates with AAPCS-VFP.
6787   if (IsAAPCS_VFP) {
6788     const Type *Base = nullptr;
6789     uint64_t Members = 0;
6790     if (isHomogeneousAggregate(RetTy, Base, Members))
6791       return classifyHomogeneousAggregate(RetTy, Base, Members);
6792   }
6793 
6794   // Aggregates <= 4 bytes are returned in r0; other aggregates
6795   // are returned indirectly.
6796   uint64_t Size = getContext().getTypeSize(RetTy);
6797   if (Size <= 32) {
6798     // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of
6799     // same size and alignment.
6800     if (getTarget().isRenderScriptTarget()) {
6801       return coerceToIntArray(RetTy, getContext(), getVMContext());
6802     }
6803     if (getDataLayout().isBigEndian())
6804       // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4)
6805       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6806 
6807     // Return in the smallest viable integer type.
6808     if (Size <= 8)
6809       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
6810     if (Size <= 16)
6811       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
6812     return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6813   } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) {
6814     llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext());
6815     llvm::Type *CoerceTy =
6816         llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32);
6817     return ABIArgInfo::getDirect(CoerceTy);
6818   }
6819 
6820   return getNaturalAlignIndirect(RetTy);
6821 }
6822 
6823 /// isIllegalVector - check whether Ty is an illegal vector type.
6824 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const {
6825   if (const VectorType *VT = Ty->getAs<VectorType> ()) {
6826     // On targets that don't support half, fp16 or bfloat, they are expanded
6827     // into float, and we don't want the ABI to depend on whether or not they
6828     // are supported in hardware. Thus return false to coerce vectors of these
6829     // types into integer vectors.
6830     // We do not depend on hasLegalHalfType for bfloat as it is a
6831     // separate IR type.
6832     if ((!getTarget().hasLegalHalfType() &&
6833         (VT->getElementType()->isFloat16Type() ||
6834          VT->getElementType()->isHalfType())) ||
6835         (IsFloatABISoftFP &&
6836          VT->getElementType()->isBFloat16Type()))
6837       return true;
6838     if (isAndroid()) {
6839       // Android shipped using Clang 3.1, which supported a slightly different
6840       // vector ABI. The primary differences were that 3-element vector types
6841       // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path
6842       // accepts that legacy behavior for Android only.
6843       // Check whether VT is legal.
6844       unsigned NumElements = VT->getNumElements();
6845       // NumElements should be power of 2 or equal to 3.
6846       if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3)
6847         return true;
6848     } else {
6849       // Check whether VT is legal.
6850       unsigned NumElements = VT->getNumElements();
6851       uint64_t Size = getContext().getTypeSize(VT);
6852       // NumElements should be power of 2.
6853       if (!llvm::isPowerOf2_32(NumElements))
6854         return true;
6855       // Size should be greater than 32 bits.
6856       return Size <= 32;
6857     }
6858   }
6859   return false;
6860 }
6861 
6862 /// Return true if a type contains any 16-bit floating point vectors
6863 bool ARMABIInfo::containsAnyFP16Vectors(QualType Ty) const {
6864   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
6865     uint64_t NElements = AT->getSize().getZExtValue();
6866     if (NElements == 0)
6867       return false;
6868     return containsAnyFP16Vectors(AT->getElementType());
6869   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
6870     const RecordDecl *RD = RT->getDecl();
6871 
6872     // If this is a C++ record, check the bases first.
6873     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
6874       if (llvm::any_of(CXXRD->bases(), [this](const CXXBaseSpecifier &B) {
6875             return containsAnyFP16Vectors(B.getType());
6876           }))
6877         return true;
6878 
6879     if (llvm::any_of(RD->fields(), [this](FieldDecl *FD) {
6880           return FD && containsAnyFP16Vectors(FD->getType());
6881         }))
6882       return true;
6883 
6884     return false;
6885   } else {
6886     if (const VectorType *VT = Ty->getAs<VectorType>())
6887       return (VT->getElementType()->isFloat16Type() ||
6888               VT->getElementType()->isBFloat16Type() ||
6889               VT->getElementType()->isHalfType());
6890     return false;
6891   }
6892 }
6893 
6894 bool ARMABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize,
6895                                            llvm::Type *eltTy,
6896                                            unsigned numElts) const {
6897   if (!llvm::isPowerOf2_32(numElts))
6898     return false;
6899   unsigned size = getDataLayout().getTypeStoreSizeInBits(eltTy);
6900   if (size > 64)
6901     return false;
6902   if (vectorSize.getQuantity() != 8 &&
6903       (vectorSize.getQuantity() != 16 || numElts == 1))
6904     return false;
6905   return true;
6906 }
6907 
6908 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
6909   // Homogeneous aggregates for AAPCS-VFP must have base types of float,
6910   // double, or 64-bit or 128-bit vectors.
6911   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
6912     if (BT->getKind() == BuiltinType::Float ||
6913         BT->getKind() == BuiltinType::Double ||
6914         BT->getKind() == BuiltinType::LongDouble)
6915       return true;
6916   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
6917     unsigned VecSize = getContext().getTypeSize(VT);
6918     if (VecSize == 64 || VecSize == 128)
6919       return true;
6920   }
6921   return false;
6922 }
6923 
6924 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
6925                                                    uint64_t Members) const {
6926   return Members <= 4;
6927 }
6928 
6929 bool ARMABIInfo::isEffectivelyAAPCS_VFP(unsigned callConvention,
6930                                         bool acceptHalf) const {
6931   // Give precedence to user-specified calling conventions.
6932   if (callConvention != llvm::CallingConv::C)
6933     return (callConvention == llvm::CallingConv::ARM_AAPCS_VFP);
6934   else
6935     return (getABIKind() == AAPCS_VFP) ||
6936            (acceptHalf && (getABIKind() == AAPCS16_VFP));
6937 }
6938 
6939 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6940                               QualType Ty) const {
6941   CharUnits SlotSize = CharUnits::fromQuantity(4);
6942 
6943   // Empty records are ignored for parameter passing purposes.
6944   if (isEmptyRecord(getContext(), Ty, true)) {
6945     Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize);
6946     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
6947     return Addr;
6948   }
6949 
6950   CharUnits TySize = getContext().getTypeSizeInChars(Ty);
6951   CharUnits TyAlignForABI = getContext().getTypeUnadjustedAlignInChars(Ty);
6952 
6953   // Use indirect if size of the illegal vector is bigger than 16 bytes.
6954   bool IsIndirect = false;
6955   const Type *Base = nullptr;
6956   uint64_t Members = 0;
6957   if (TySize > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) {
6958     IsIndirect = true;
6959 
6960   // ARMv7k passes structs bigger than 16 bytes indirectly, in space
6961   // allocated by the caller.
6962   } else if (TySize > CharUnits::fromQuantity(16) &&
6963              getABIKind() == ARMABIInfo::AAPCS16_VFP &&
6964              !isHomogeneousAggregate(Ty, Base, Members)) {
6965     IsIndirect = true;
6966 
6967   // Otherwise, bound the type's ABI alignment.
6968   // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for
6969   // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte.
6970   // Our callers should be prepared to handle an under-aligned address.
6971   } else if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
6972              getABIKind() == ARMABIInfo::AAPCS) {
6973     TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
6974     TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8));
6975   } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) {
6976     // ARMv7k allows type alignment up to 16 bytes.
6977     TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
6978     TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16));
6979   } else {
6980     TyAlignForABI = CharUnits::fromQuantity(4);
6981   }
6982 
6983   TypeInfoChars TyInfo(TySize, TyAlignForABI, AlignRequirementKind::None);
6984   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo,
6985                           SlotSize, /*AllowHigherAlign*/ true);
6986 }
6987 
6988 //===----------------------------------------------------------------------===//
6989 // NVPTX ABI Implementation
6990 //===----------------------------------------------------------------------===//
6991 
6992 namespace {
6993 
6994 class NVPTXTargetCodeGenInfo;
6995 
6996 class NVPTXABIInfo : public ABIInfo {
6997   NVPTXTargetCodeGenInfo &CGInfo;
6998 
6999 public:
7000   NVPTXABIInfo(CodeGenTypes &CGT, NVPTXTargetCodeGenInfo &Info)
7001       : ABIInfo(CGT), CGInfo(Info) {}
7002 
7003   ABIArgInfo classifyReturnType(QualType RetTy) const;
7004   ABIArgInfo classifyArgumentType(QualType Ty) const;
7005 
7006   void computeInfo(CGFunctionInfo &FI) const override;
7007   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7008                     QualType Ty) const override;
7009   bool isUnsupportedType(QualType T) const;
7010   ABIArgInfo coerceToIntArrayWithLimit(QualType Ty, unsigned MaxSize) const;
7011 };
7012 
7013 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo {
7014 public:
7015   NVPTXTargetCodeGenInfo(CodeGenTypes &CGT)
7016       : TargetCodeGenInfo(std::make_unique<NVPTXABIInfo>(CGT, *this)) {}
7017 
7018   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7019                            CodeGen::CodeGenModule &M) const override;
7020   bool shouldEmitStaticExternCAliases() const override;
7021 
7022   llvm::Type *getCUDADeviceBuiltinSurfaceDeviceType() const override {
7023     // On the device side, surface reference is represented as an object handle
7024     // in 64-bit integer.
7025     return llvm::Type::getInt64Ty(getABIInfo().getVMContext());
7026   }
7027 
7028   llvm::Type *getCUDADeviceBuiltinTextureDeviceType() const override {
7029     // On the device side, texture reference is represented as an object handle
7030     // in 64-bit integer.
7031     return llvm::Type::getInt64Ty(getABIInfo().getVMContext());
7032   }
7033 
7034   bool emitCUDADeviceBuiltinSurfaceDeviceCopy(CodeGenFunction &CGF, LValue Dst,
7035                                               LValue Src) const override {
7036     emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src);
7037     return true;
7038   }
7039 
7040   bool emitCUDADeviceBuiltinTextureDeviceCopy(CodeGenFunction &CGF, LValue Dst,
7041                                               LValue Src) const override {
7042     emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src);
7043     return true;
7044   }
7045 
7046 private:
7047   // Adds a NamedMDNode with GV, Name, and Operand as operands, and adds the
7048   // resulting MDNode to the nvvm.annotations MDNode.
7049   static void addNVVMMetadata(llvm::GlobalValue *GV, StringRef Name,
7050                               int Operand);
7051 
7052   static void emitBuiltinSurfTexDeviceCopy(CodeGenFunction &CGF, LValue Dst,
7053                                            LValue Src) {
7054     llvm::Value *Handle = nullptr;
7055     llvm::Constant *C =
7056         llvm::dyn_cast<llvm::Constant>(Src.getAddress(CGF).getPointer());
7057     // Lookup `addrspacecast` through the constant pointer if any.
7058     if (auto *ASC = llvm::dyn_cast_or_null<llvm::AddrSpaceCastOperator>(C))
7059       C = llvm::cast<llvm::Constant>(ASC->getPointerOperand());
7060     if (auto *GV = llvm::dyn_cast_or_null<llvm::GlobalVariable>(C)) {
7061       // Load the handle from the specific global variable using
7062       // `nvvm.texsurf.handle.internal` intrinsic.
7063       Handle = CGF.EmitRuntimeCall(
7064           CGF.CGM.getIntrinsic(llvm::Intrinsic::nvvm_texsurf_handle_internal,
7065                                {GV->getType()}),
7066           {GV}, "texsurf_handle");
7067     } else
7068       Handle = CGF.EmitLoadOfScalar(Src, SourceLocation());
7069     CGF.EmitStoreOfScalar(Handle, Dst);
7070   }
7071 };
7072 
7073 /// Checks if the type is unsupported directly by the current target.
7074 bool NVPTXABIInfo::isUnsupportedType(QualType T) const {
7075   ASTContext &Context = getContext();
7076   if (!Context.getTargetInfo().hasFloat16Type() && T->isFloat16Type())
7077     return true;
7078   if (!Context.getTargetInfo().hasFloat128Type() &&
7079       (T->isFloat128Type() ||
7080        (T->isRealFloatingType() && Context.getTypeSize(T) == 128)))
7081     return true;
7082   if (const auto *EIT = T->getAs<ExtIntType>())
7083     return EIT->getNumBits() >
7084            (Context.getTargetInfo().hasInt128Type() ? 128U : 64U);
7085   if (!Context.getTargetInfo().hasInt128Type() && T->isIntegerType() &&
7086       Context.getTypeSize(T) > 64U)
7087     return true;
7088   if (const auto *AT = T->getAsArrayTypeUnsafe())
7089     return isUnsupportedType(AT->getElementType());
7090   const auto *RT = T->getAs<RecordType>();
7091   if (!RT)
7092     return false;
7093   const RecordDecl *RD = RT->getDecl();
7094 
7095   // If this is a C++ record, check the bases first.
7096   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
7097     for (const CXXBaseSpecifier &I : CXXRD->bases())
7098       if (isUnsupportedType(I.getType()))
7099         return true;
7100 
7101   for (const FieldDecl *I : RD->fields())
7102     if (isUnsupportedType(I->getType()))
7103       return true;
7104   return false;
7105 }
7106 
7107 /// Coerce the given type into an array with maximum allowed size of elements.
7108 ABIArgInfo NVPTXABIInfo::coerceToIntArrayWithLimit(QualType Ty,
7109                                                    unsigned MaxSize) const {
7110   // Alignment and Size are measured in bits.
7111   const uint64_t Size = getContext().getTypeSize(Ty);
7112   const uint64_t Alignment = getContext().getTypeAlign(Ty);
7113   const unsigned Div = std::min<unsigned>(MaxSize, Alignment);
7114   llvm::Type *IntType = llvm::Type::getIntNTy(getVMContext(), Div);
7115   const uint64_t NumElements = (Size + Div - 1) / Div;
7116   return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements));
7117 }
7118 
7119 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const {
7120   if (RetTy->isVoidType())
7121     return ABIArgInfo::getIgnore();
7122 
7123   if (getContext().getLangOpts().OpenMP &&
7124       getContext().getLangOpts().OpenMPIsDevice && isUnsupportedType(RetTy))
7125     return coerceToIntArrayWithLimit(RetTy, 64);
7126 
7127   // note: this is different from default ABI
7128   if (!RetTy->isScalarType())
7129     return ABIArgInfo::getDirect();
7130 
7131   // Treat an enum type as its underlying type.
7132   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
7133     RetTy = EnumTy->getDecl()->getIntegerType();
7134 
7135   return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
7136                                                : ABIArgInfo::getDirect());
7137 }
7138 
7139 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const {
7140   // Treat an enum type as its underlying type.
7141   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
7142     Ty = EnumTy->getDecl()->getIntegerType();
7143 
7144   // Return aggregates type as indirect by value
7145   if (isAggregateTypeForABI(Ty)) {
7146     // Under CUDA device compilation, tex/surf builtin types are replaced with
7147     // object types and passed directly.
7148     if (getContext().getLangOpts().CUDAIsDevice) {
7149       if (Ty->isCUDADeviceBuiltinSurfaceType())
7150         return ABIArgInfo::getDirect(
7151             CGInfo.getCUDADeviceBuiltinSurfaceDeviceType());
7152       if (Ty->isCUDADeviceBuiltinTextureType())
7153         return ABIArgInfo::getDirect(
7154             CGInfo.getCUDADeviceBuiltinTextureDeviceType());
7155     }
7156     return getNaturalAlignIndirect(Ty, /* byval */ true);
7157   }
7158 
7159   if (const auto *EIT = Ty->getAs<ExtIntType>()) {
7160     if ((EIT->getNumBits() > 128) ||
7161         (!getContext().getTargetInfo().hasInt128Type() &&
7162          EIT->getNumBits() > 64))
7163       return getNaturalAlignIndirect(Ty, /* byval */ true);
7164   }
7165 
7166   return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
7167                                             : ABIArgInfo::getDirect());
7168 }
7169 
7170 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
7171   if (!getCXXABI().classifyReturnType(FI))
7172     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7173   for (auto &I : FI.arguments())
7174     I.info = classifyArgumentType(I.type);
7175 
7176   // Always honor user-specified calling convention.
7177   if (FI.getCallingConvention() != llvm::CallingConv::C)
7178     return;
7179 
7180   FI.setEffectiveCallingConvention(getRuntimeCC());
7181 }
7182 
7183 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7184                                 QualType Ty) const {
7185   llvm_unreachable("NVPTX does not support varargs");
7186 }
7187 
7188 void NVPTXTargetCodeGenInfo::setTargetAttributes(
7189     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
7190   if (GV->isDeclaration())
7191     return;
7192   const VarDecl *VD = dyn_cast_or_null<VarDecl>(D);
7193   if (VD) {
7194     if (M.getLangOpts().CUDA) {
7195       if (VD->getType()->isCUDADeviceBuiltinSurfaceType())
7196         addNVVMMetadata(GV, "surface", 1);
7197       else if (VD->getType()->isCUDADeviceBuiltinTextureType())
7198         addNVVMMetadata(GV, "texture", 1);
7199       return;
7200     }
7201   }
7202 
7203   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
7204   if (!FD) return;
7205 
7206   llvm::Function *F = cast<llvm::Function>(GV);
7207 
7208   // Perform special handling in OpenCL mode
7209   if (M.getLangOpts().OpenCL) {
7210     // Use OpenCL function attributes to check for kernel functions
7211     // By default, all functions are device functions
7212     if (FD->hasAttr<OpenCLKernelAttr>()) {
7213       // OpenCL __kernel functions get kernel metadata
7214       // Create !{<func-ref>, metadata !"kernel", i32 1} node
7215       addNVVMMetadata(F, "kernel", 1);
7216       // And kernel functions are not subject to inlining
7217       F->addFnAttr(llvm::Attribute::NoInline);
7218     }
7219   }
7220 
7221   // Perform special handling in CUDA mode.
7222   if (M.getLangOpts().CUDA) {
7223     // CUDA __global__ functions get a kernel metadata entry.  Since
7224     // __global__ functions cannot be called from the device, we do not
7225     // need to set the noinline attribute.
7226     if (FD->hasAttr<CUDAGlobalAttr>()) {
7227       // Create !{<func-ref>, metadata !"kernel", i32 1} node
7228       addNVVMMetadata(F, "kernel", 1);
7229     }
7230     if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) {
7231       // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node
7232       llvm::APSInt MaxThreads(32);
7233       MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext());
7234       if (MaxThreads > 0)
7235         addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue());
7236 
7237       // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was
7238       // not specified in __launch_bounds__ or if the user specified a 0 value,
7239       // we don't have to add a PTX directive.
7240       if (Attr->getMinBlocks()) {
7241         llvm::APSInt MinBlocks(32);
7242         MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext());
7243         if (MinBlocks > 0)
7244           // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node
7245           addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue());
7246       }
7247     }
7248   }
7249 }
7250 
7251 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::GlobalValue *GV,
7252                                              StringRef Name, int Operand) {
7253   llvm::Module *M = GV->getParent();
7254   llvm::LLVMContext &Ctx = M->getContext();
7255 
7256   // Get "nvvm.annotations" metadata node
7257   llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations");
7258 
7259   llvm::Metadata *MDVals[] = {
7260       llvm::ConstantAsMetadata::get(GV), llvm::MDString::get(Ctx, Name),
7261       llvm::ConstantAsMetadata::get(
7262           llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))};
7263   // Append metadata to nvvm.annotations
7264   MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
7265 }
7266 
7267 bool NVPTXTargetCodeGenInfo::shouldEmitStaticExternCAliases() const {
7268   return false;
7269 }
7270 }
7271 
7272 //===----------------------------------------------------------------------===//
7273 // SystemZ ABI Implementation
7274 //===----------------------------------------------------------------------===//
7275 
7276 namespace {
7277 
7278 class SystemZABIInfo : public SwiftABIInfo {
7279   bool HasVector;
7280   bool IsSoftFloatABI;
7281 
7282 public:
7283   SystemZABIInfo(CodeGenTypes &CGT, bool HV, bool SF)
7284     : SwiftABIInfo(CGT), HasVector(HV), IsSoftFloatABI(SF) {}
7285 
7286   bool isPromotableIntegerTypeForABI(QualType Ty) const;
7287   bool isCompoundType(QualType Ty) const;
7288   bool isVectorArgumentType(QualType Ty) const;
7289   bool isFPArgumentType(QualType Ty) const;
7290   QualType GetSingleElementType(QualType Ty) const;
7291 
7292   ABIArgInfo classifyReturnType(QualType RetTy) const;
7293   ABIArgInfo classifyArgumentType(QualType ArgTy) const;
7294 
7295   void computeInfo(CGFunctionInfo &FI) const override {
7296     if (!getCXXABI().classifyReturnType(FI))
7297       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7298     for (auto &I : FI.arguments())
7299       I.info = classifyArgumentType(I.type);
7300   }
7301 
7302   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7303                     QualType Ty) const override;
7304 
7305   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
7306                                     bool asReturnValue) const override {
7307     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
7308   }
7309   bool isSwiftErrorInRegister() const override {
7310     return false;
7311   }
7312 };
7313 
7314 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
7315 public:
7316   SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector, bool SoftFloatABI)
7317       : TargetCodeGenInfo(
7318             std::make_unique<SystemZABIInfo>(CGT, HasVector, SoftFloatABI)) {}
7319 
7320   llvm::Value *testFPKind(llvm::Value *V, unsigned BuiltinID,
7321                           CGBuilderTy &Builder,
7322                           CodeGenModule &CGM) const override {
7323     assert(V->getType()->isFloatingPointTy() && "V should have an FP type.");
7324     // Only use TDC in constrained FP mode.
7325     if (!Builder.getIsFPConstrained())
7326       return nullptr;
7327 
7328     llvm::Type *Ty = V->getType();
7329     if (Ty->isFloatTy() || Ty->isDoubleTy() || Ty->isFP128Ty()) {
7330       llvm::Module &M = CGM.getModule();
7331       auto &Ctx = M.getContext();
7332       llvm::Function *TDCFunc =
7333           llvm::Intrinsic::getDeclaration(&M, llvm::Intrinsic::s390_tdc, Ty);
7334       unsigned TDCBits = 0;
7335       switch (BuiltinID) {
7336       case Builtin::BI__builtin_isnan:
7337         TDCBits = 0xf;
7338         break;
7339       case Builtin::BIfinite:
7340       case Builtin::BI__finite:
7341       case Builtin::BIfinitef:
7342       case Builtin::BI__finitef:
7343       case Builtin::BIfinitel:
7344       case Builtin::BI__finitel:
7345       case Builtin::BI__builtin_isfinite:
7346         TDCBits = 0xfc0;
7347         break;
7348       case Builtin::BI__builtin_isinf:
7349         TDCBits = 0x30;
7350         break;
7351       default:
7352         break;
7353       }
7354       if (TDCBits)
7355         return Builder.CreateCall(
7356             TDCFunc,
7357             {V, llvm::ConstantInt::get(llvm::Type::getInt64Ty(Ctx), TDCBits)});
7358     }
7359     return nullptr;
7360   }
7361 };
7362 }
7363 
7364 bool SystemZABIInfo::isPromotableIntegerTypeForABI(QualType Ty) const {
7365   // Treat an enum type as its underlying type.
7366   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
7367     Ty = EnumTy->getDecl()->getIntegerType();
7368 
7369   // Promotable integer types are required to be promoted by the ABI.
7370   if (ABIInfo::isPromotableIntegerTypeForABI(Ty))
7371     return true;
7372 
7373   if (const auto *EIT = Ty->getAs<ExtIntType>())
7374     if (EIT->getNumBits() < 64)
7375       return true;
7376 
7377   // 32-bit values must also be promoted.
7378   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
7379     switch (BT->getKind()) {
7380     case BuiltinType::Int:
7381     case BuiltinType::UInt:
7382       return true;
7383     default:
7384       return false;
7385     }
7386   return false;
7387 }
7388 
7389 bool SystemZABIInfo::isCompoundType(QualType Ty) const {
7390   return (Ty->isAnyComplexType() ||
7391           Ty->isVectorType() ||
7392           isAggregateTypeForABI(Ty));
7393 }
7394 
7395 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const {
7396   return (HasVector &&
7397           Ty->isVectorType() &&
7398           getContext().getTypeSize(Ty) <= 128);
7399 }
7400 
7401 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const {
7402   if (IsSoftFloatABI)
7403     return false;
7404 
7405   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
7406     switch (BT->getKind()) {
7407     case BuiltinType::Float:
7408     case BuiltinType::Double:
7409       return true;
7410     default:
7411       return false;
7412     }
7413 
7414   return false;
7415 }
7416 
7417 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const {
7418   const RecordType *RT = Ty->getAs<RecordType>();
7419 
7420   if (RT && RT->isStructureOrClassType()) {
7421     const RecordDecl *RD = RT->getDecl();
7422     QualType Found;
7423 
7424     // If this is a C++ record, check the bases first.
7425     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
7426       for (const auto &I : CXXRD->bases()) {
7427         QualType Base = I.getType();
7428 
7429         // Empty bases don't affect things either way.
7430         if (isEmptyRecord(getContext(), Base, true))
7431           continue;
7432 
7433         if (!Found.isNull())
7434           return Ty;
7435         Found = GetSingleElementType(Base);
7436       }
7437 
7438     // Check the fields.
7439     for (const auto *FD : RD->fields()) {
7440       // For compatibility with GCC, ignore empty bitfields in C++ mode.
7441       // Unlike isSingleElementStruct(), empty structure and array fields
7442       // do count.  So do anonymous bitfields that aren't zero-sized.
7443       if (getContext().getLangOpts().CPlusPlus &&
7444           FD->isZeroLengthBitField(getContext()))
7445         continue;
7446       // Like isSingleElementStruct(), ignore C++20 empty data members.
7447       if (FD->hasAttr<NoUniqueAddressAttr>() &&
7448           isEmptyRecord(getContext(), FD->getType(), true))
7449         continue;
7450 
7451       // Unlike isSingleElementStruct(), arrays do not count.
7452       // Nested structures still do though.
7453       if (!Found.isNull())
7454         return Ty;
7455       Found = GetSingleElementType(FD->getType());
7456     }
7457 
7458     // Unlike isSingleElementStruct(), trailing padding is allowed.
7459     // An 8-byte aligned struct s { float f; } is passed as a double.
7460     if (!Found.isNull())
7461       return Found;
7462   }
7463 
7464   return Ty;
7465 }
7466 
7467 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7468                                   QualType Ty) const {
7469   // Assume that va_list type is correct; should be pointer to LLVM type:
7470   // struct {
7471   //   i64 __gpr;
7472   //   i64 __fpr;
7473   //   i8 *__overflow_arg_area;
7474   //   i8 *__reg_save_area;
7475   // };
7476 
7477   // Every non-vector argument occupies 8 bytes and is passed by preference
7478   // in either GPRs or FPRs.  Vector arguments occupy 8 or 16 bytes and are
7479   // always passed on the stack.
7480   Ty = getContext().getCanonicalType(Ty);
7481   auto TyInfo = getContext().getTypeInfoInChars(Ty);
7482   llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty);
7483   llvm::Type *DirectTy = ArgTy;
7484   ABIArgInfo AI = classifyArgumentType(Ty);
7485   bool IsIndirect = AI.isIndirect();
7486   bool InFPRs = false;
7487   bool IsVector = false;
7488   CharUnits UnpaddedSize;
7489   CharUnits DirectAlign;
7490   if (IsIndirect) {
7491     DirectTy = llvm::PointerType::getUnqual(DirectTy);
7492     UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8);
7493   } else {
7494     if (AI.getCoerceToType())
7495       ArgTy = AI.getCoerceToType();
7496     InFPRs = (!IsSoftFloatABI && (ArgTy->isFloatTy() || ArgTy->isDoubleTy()));
7497     IsVector = ArgTy->isVectorTy();
7498     UnpaddedSize = TyInfo.Width;
7499     DirectAlign = TyInfo.Align;
7500   }
7501   CharUnits PaddedSize = CharUnits::fromQuantity(8);
7502   if (IsVector && UnpaddedSize > PaddedSize)
7503     PaddedSize = CharUnits::fromQuantity(16);
7504   assert((UnpaddedSize <= PaddedSize) && "Invalid argument size.");
7505 
7506   CharUnits Padding = (PaddedSize - UnpaddedSize);
7507 
7508   llvm::Type *IndexTy = CGF.Int64Ty;
7509   llvm::Value *PaddedSizeV =
7510     llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity());
7511 
7512   if (IsVector) {
7513     // Work out the address of a vector argument on the stack.
7514     // Vector arguments are always passed in the high bits of a
7515     // single (8 byte) or double (16 byte) stack slot.
7516     Address OverflowArgAreaPtr =
7517         CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr");
7518     Address OverflowArgArea =
7519       Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
7520               TyInfo.Align);
7521     Address MemAddr =
7522       CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr");
7523 
7524     // Update overflow_arg_area_ptr pointer
7525     llvm::Value *NewOverflowArgArea =
7526       CGF.Builder.CreateGEP(OverflowArgArea.getElementType(),
7527                             OverflowArgArea.getPointer(), PaddedSizeV,
7528                             "overflow_arg_area");
7529     CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
7530 
7531     return MemAddr;
7532   }
7533 
7534   assert(PaddedSize.getQuantity() == 8);
7535 
7536   unsigned MaxRegs, RegCountField, RegSaveIndex;
7537   CharUnits RegPadding;
7538   if (InFPRs) {
7539     MaxRegs = 4; // Maximum of 4 FPR arguments
7540     RegCountField = 1; // __fpr
7541     RegSaveIndex = 16; // save offset for f0
7542     RegPadding = CharUnits(); // floats are passed in the high bits of an FPR
7543   } else {
7544     MaxRegs = 5; // Maximum of 5 GPR arguments
7545     RegCountField = 0; // __gpr
7546     RegSaveIndex = 2; // save offset for r2
7547     RegPadding = Padding; // values are passed in the low bits of a GPR
7548   }
7549 
7550   Address RegCountPtr =
7551       CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr");
7552   llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count");
7553   llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs);
7554   llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV,
7555                                                  "fits_in_regs");
7556 
7557   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
7558   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
7559   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
7560   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
7561 
7562   // Emit code to load the value if it was passed in registers.
7563   CGF.EmitBlock(InRegBlock);
7564 
7565   // Work out the address of an argument register.
7566   llvm::Value *ScaledRegCount =
7567     CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count");
7568   llvm::Value *RegBase =
7569     llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity()
7570                                       + RegPadding.getQuantity());
7571   llvm::Value *RegOffset =
7572     CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset");
7573   Address RegSaveAreaPtr =
7574       CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr");
7575   llvm::Value *RegSaveArea =
7576     CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area");
7577   Address RawRegAddr(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, RegOffset,
7578                                            "raw_reg_addr"),
7579                      PaddedSize);
7580   Address RegAddr =
7581     CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr");
7582 
7583   // Update the register count
7584   llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1);
7585   llvm::Value *NewRegCount =
7586     CGF.Builder.CreateAdd(RegCount, One, "reg_count");
7587   CGF.Builder.CreateStore(NewRegCount, RegCountPtr);
7588   CGF.EmitBranch(ContBlock);
7589 
7590   // Emit code to load the value if it was passed in memory.
7591   CGF.EmitBlock(InMemBlock);
7592 
7593   // Work out the address of a stack argument.
7594   Address OverflowArgAreaPtr =
7595       CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr");
7596   Address OverflowArgArea =
7597     Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
7598             PaddedSize);
7599   Address RawMemAddr =
7600     CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr");
7601   Address MemAddr =
7602     CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr");
7603 
7604   // Update overflow_arg_area_ptr pointer
7605   llvm::Value *NewOverflowArgArea =
7606     CGF.Builder.CreateGEP(OverflowArgArea.getElementType(),
7607                           OverflowArgArea.getPointer(), PaddedSizeV,
7608                           "overflow_arg_area");
7609   CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
7610   CGF.EmitBranch(ContBlock);
7611 
7612   // Return the appropriate result.
7613   CGF.EmitBlock(ContBlock);
7614   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
7615                                  MemAddr, InMemBlock, "va_arg.addr");
7616 
7617   if (IsIndirect)
7618     ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"),
7619                       TyInfo.Align);
7620 
7621   return ResAddr;
7622 }
7623 
7624 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const {
7625   if (RetTy->isVoidType())
7626     return ABIArgInfo::getIgnore();
7627   if (isVectorArgumentType(RetTy))
7628     return ABIArgInfo::getDirect();
7629   if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64)
7630     return getNaturalAlignIndirect(RetTy);
7631   return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
7632                                                : ABIArgInfo::getDirect());
7633 }
7634 
7635 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const {
7636   // Handle the generic C++ ABI.
7637   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
7638     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
7639 
7640   // Integers and enums are extended to full register width.
7641   if (isPromotableIntegerTypeForABI(Ty))
7642     return ABIArgInfo::getExtend(Ty);
7643 
7644   // Handle vector types and vector-like structure types.  Note that
7645   // as opposed to float-like structure types, we do not allow any
7646   // padding for vector-like structures, so verify the sizes match.
7647   uint64_t Size = getContext().getTypeSize(Ty);
7648   QualType SingleElementTy = GetSingleElementType(Ty);
7649   if (isVectorArgumentType(SingleElementTy) &&
7650       getContext().getTypeSize(SingleElementTy) == Size)
7651     return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy));
7652 
7653   // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly.
7654   if (Size != 8 && Size != 16 && Size != 32 && Size != 64)
7655     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
7656 
7657   // Handle small structures.
7658   if (const RecordType *RT = Ty->getAs<RecordType>()) {
7659     // Structures with flexible arrays have variable length, so really
7660     // fail the size test above.
7661     const RecordDecl *RD = RT->getDecl();
7662     if (RD->hasFlexibleArrayMember())
7663       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
7664 
7665     // The structure is passed as an unextended integer, a float, or a double.
7666     llvm::Type *PassTy;
7667     if (isFPArgumentType(SingleElementTy)) {
7668       assert(Size == 32 || Size == 64);
7669       if (Size == 32)
7670         PassTy = llvm::Type::getFloatTy(getVMContext());
7671       else
7672         PassTy = llvm::Type::getDoubleTy(getVMContext());
7673     } else
7674       PassTy = llvm::IntegerType::get(getVMContext(), Size);
7675     return ABIArgInfo::getDirect(PassTy);
7676   }
7677 
7678   // Non-structure compounds are passed indirectly.
7679   if (isCompoundType(Ty))
7680     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
7681 
7682   return ABIArgInfo::getDirect(nullptr);
7683 }
7684 
7685 //===----------------------------------------------------------------------===//
7686 // MSP430 ABI Implementation
7687 //===----------------------------------------------------------------------===//
7688 
7689 namespace {
7690 
7691 class MSP430ABIInfo : public DefaultABIInfo {
7692   static ABIArgInfo complexArgInfo() {
7693     ABIArgInfo Info = ABIArgInfo::getDirect();
7694     Info.setCanBeFlattened(false);
7695     return Info;
7696   }
7697 
7698 public:
7699   MSP430ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
7700 
7701   ABIArgInfo classifyReturnType(QualType RetTy) const {
7702     if (RetTy->isAnyComplexType())
7703       return complexArgInfo();
7704 
7705     return DefaultABIInfo::classifyReturnType(RetTy);
7706   }
7707 
7708   ABIArgInfo classifyArgumentType(QualType RetTy) const {
7709     if (RetTy->isAnyComplexType())
7710       return complexArgInfo();
7711 
7712     return DefaultABIInfo::classifyArgumentType(RetTy);
7713   }
7714 
7715   // Just copy the original implementations because
7716   // DefaultABIInfo::classify{Return,Argument}Type() are not virtual
7717   void computeInfo(CGFunctionInfo &FI) const override {
7718     if (!getCXXABI().classifyReturnType(FI))
7719       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7720     for (auto &I : FI.arguments())
7721       I.info = classifyArgumentType(I.type);
7722   }
7723 
7724   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7725                     QualType Ty) const override {
7726     return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty));
7727   }
7728 };
7729 
7730 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
7731 public:
7732   MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
7733       : TargetCodeGenInfo(std::make_unique<MSP430ABIInfo>(CGT)) {}
7734   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7735                            CodeGen::CodeGenModule &M) const override;
7736 };
7737 
7738 }
7739 
7740 void MSP430TargetCodeGenInfo::setTargetAttributes(
7741     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
7742   if (GV->isDeclaration())
7743     return;
7744   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
7745     const auto *InterruptAttr = FD->getAttr<MSP430InterruptAttr>();
7746     if (!InterruptAttr)
7747       return;
7748 
7749     // Handle 'interrupt' attribute:
7750     llvm::Function *F = cast<llvm::Function>(GV);
7751 
7752     // Step 1: Set ISR calling convention.
7753     F->setCallingConv(llvm::CallingConv::MSP430_INTR);
7754 
7755     // Step 2: Add attributes goodness.
7756     F->addFnAttr(llvm::Attribute::NoInline);
7757     F->addFnAttr("interrupt", llvm::utostr(InterruptAttr->getNumber()));
7758   }
7759 }
7760 
7761 //===----------------------------------------------------------------------===//
7762 // MIPS ABI Implementation.  This works for both little-endian and
7763 // big-endian variants.
7764 //===----------------------------------------------------------------------===//
7765 
7766 namespace {
7767 class MipsABIInfo : public ABIInfo {
7768   bool IsO32;
7769   unsigned MinABIStackAlignInBytes, StackAlignInBytes;
7770   void CoerceToIntArgs(uint64_t TySize,
7771                        SmallVectorImpl<llvm::Type *> &ArgList) const;
7772   llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const;
7773   llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const;
7774   llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const;
7775 public:
7776   MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) :
7777     ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8),
7778     StackAlignInBytes(IsO32 ? 8 : 16) {}
7779 
7780   ABIArgInfo classifyReturnType(QualType RetTy) const;
7781   ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const;
7782   void computeInfo(CGFunctionInfo &FI) const override;
7783   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7784                     QualType Ty) const override;
7785   ABIArgInfo extendType(QualType Ty) const;
7786 };
7787 
7788 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
7789   unsigned SizeOfUnwindException;
7790 public:
7791   MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32)
7792       : TargetCodeGenInfo(std::make_unique<MipsABIInfo>(CGT, IsO32)),
7793         SizeOfUnwindException(IsO32 ? 24 : 32) {}
7794 
7795   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
7796     return 29;
7797   }
7798 
7799   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7800                            CodeGen::CodeGenModule &CGM) const override {
7801     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
7802     if (!FD) return;
7803     llvm::Function *Fn = cast<llvm::Function>(GV);
7804 
7805     if (FD->hasAttr<MipsLongCallAttr>())
7806       Fn->addFnAttr("long-call");
7807     else if (FD->hasAttr<MipsShortCallAttr>())
7808       Fn->addFnAttr("short-call");
7809 
7810     // Other attributes do not have a meaning for declarations.
7811     if (GV->isDeclaration())
7812       return;
7813 
7814     if (FD->hasAttr<Mips16Attr>()) {
7815       Fn->addFnAttr("mips16");
7816     }
7817     else if (FD->hasAttr<NoMips16Attr>()) {
7818       Fn->addFnAttr("nomips16");
7819     }
7820 
7821     if (FD->hasAttr<MicroMipsAttr>())
7822       Fn->addFnAttr("micromips");
7823     else if (FD->hasAttr<NoMicroMipsAttr>())
7824       Fn->addFnAttr("nomicromips");
7825 
7826     const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>();
7827     if (!Attr)
7828       return;
7829 
7830     const char *Kind;
7831     switch (Attr->getInterrupt()) {
7832     case MipsInterruptAttr::eic:     Kind = "eic"; break;
7833     case MipsInterruptAttr::sw0:     Kind = "sw0"; break;
7834     case MipsInterruptAttr::sw1:     Kind = "sw1"; break;
7835     case MipsInterruptAttr::hw0:     Kind = "hw0"; break;
7836     case MipsInterruptAttr::hw1:     Kind = "hw1"; break;
7837     case MipsInterruptAttr::hw2:     Kind = "hw2"; break;
7838     case MipsInterruptAttr::hw3:     Kind = "hw3"; break;
7839     case MipsInterruptAttr::hw4:     Kind = "hw4"; break;
7840     case MipsInterruptAttr::hw5:     Kind = "hw5"; break;
7841     }
7842 
7843     Fn->addFnAttr("interrupt", Kind);
7844 
7845   }
7846 
7847   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
7848                                llvm::Value *Address) const override;
7849 
7850   unsigned getSizeOfUnwindException() const override {
7851     return SizeOfUnwindException;
7852   }
7853 };
7854 }
7855 
7856 void MipsABIInfo::CoerceToIntArgs(
7857     uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const {
7858   llvm::IntegerType *IntTy =
7859     llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
7860 
7861   // Add (TySize / MinABIStackAlignInBytes) args of IntTy.
7862   for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N)
7863     ArgList.push_back(IntTy);
7864 
7865   // If necessary, add one more integer type to ArgList.
7866   unsigned R = TySize % (MinABIStackAlignInBytes * 8);
7867 
7868   if (R)
7869     ArgList.push_back(llvm::IntegerType::get(getVMContext(), R));
7870 }
7871 
7872 // In N32/64, an aligned double precision floating point field is passed in
7873 // a register.
7874 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const {
7875   SmallVector<llvm::Type*, 8> ArgList, IntArgList;
7876 
7877   if (IsO32) {
7878     CoerceToIntArgs(TySize, ArgList);
7879     return llvm::StructType::get(getVMContext(), ArgList);
7880   }
7881 
7882   if (Ty->isComplexType())
7883     return CGT.ConvertType(Ty);
7884 
7885   const RecordType *RT = Ty->getAs<RecordType>();
7886 
7887   // Unions/vectors are passed in integer registers.
7888   if (!RT || !RT->isStructureOrClassType()) {
7889     CoerceToIntArgs(TySize, ArgList);
7890     return llvm::StructType::get(getVMContext(), ArgList);
7891   }
7892 
7893   const RecordDecl *RD = RT->getDecl();
7894   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
7895   assert(!(TySize % 8) && "Size of structure must be multiple of 8.");
7896 
7897   uint64_t LastOffset = 0;
7898   unsigned idx = 0;
7899   llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64);
7900 
7901   // Iterate over fields in the struct/class and check if there are any aligned
7902   // double fields.
7903   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
7904        i != e; ++i, ++idx) {
7905     const QualType Ty = i->getType();
7906     const BuiltinType *BT = Ty->getAs<BuiltinType>();
7907 
7908     if (!BT || BT->getKind() != BuiltinType::Double)
7909       continue;
7910 
7911     uint64_t Offset = Layout.getFieldOffset(idx);
7912     if (Offset % 64) // Ignore doubles that are not aligned.
7913       continue;
7914 
7915     // Add ((Offset - LastOffset) / 64) args of type i64.
7916     for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j)
7917       ArgList.push_back(I64);
7918 
7919     // Add double type.
7920     ArgList.push_back(llvm::Type::getDoubleTy(getVMContext()));
7921     LastOffset = Offset + 64;
7922   }
7923 
7924   CoerceToIntArgs(TySize - LastOffset, IntArgList);
7925   ArgList.append(IntArgList.begin(), IntArgList.end());
7926 
7927   return llvm::StructType::get(getVMContext(), ArgList);
7928 }
7929 
7930 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset,
7931                                         uint64_t Offset) const {
7932   if (OrigOffset + MinABIStackAlignInBytes > Offset)
7933     return nullptr;
7934 
7935   return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8);
7936 }
7937 
7938 ABIArgInfo
7939 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const {
7940   Ty = useFirstFieldIfTransparentUnion(Ty);
7941 
7942   uint64_t OrigOffset = Offset;
7943   uint64_t TySize = getContext().getTypeSize(Ty);
7944   uint64_t Align = getContext().getTypeAlign(Ty) / 8;
7945 
7946   Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes),
7947                    (uint64_t)StackAlignInBytes);
7948   unsigned CurrOffset = llvm::alignTo(Offset, Align);
7949   Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8;
7950 
7951   if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) {
7952     // Ignore empty aggregates.
7953     if (TySize == 0)
7954       return ABIArgInfo::getIgnore();
7955 
7956     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
7957       Offset = OrigOffset + MinABIStackAlignInBytes;
7958       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
7959     }
7960 
7961     // If we have reached here, aggregates are passed directly by coercing to
7962     // another structure type. Padding is inserted if the offset of the
7963     // aggregate is unaligned.
7964     ABIArgInfo ArgInfo =
7965         ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0,
7966                               getPaddingType(OrigOffset, CurrOffset));
7967     ArgInfo.setInReg(true);
7968     return ArgInfo;
7969   }
7970 
7971   // Treat an enum type as its underlying type.
7972   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
7973     Ty = EnumTy->getDecl()->getIntegerType();
7974 
7975   // Make sure we pass indirectly things that are too large.
7976   if (const auto *EIT = Ty->getAs<ExtIntType>())
7977     if (EIT->getNumBits() > 128 ||
7978         (EIT->getNumBits() > 64 &&
7979          !getContext().getTargetInfo().hasInt128Type()))
7980       return getNaturalAlignIndirect(Ty);
7981 
7982   // All integral types are promoted to the GPR width.
7983   if (Ty->isIntegralOrEnumerationType())
7984     return extendType(Ty);
7985 
7986   return ABIArgInfo::getDirect(
7987       nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset));
7988 }
7989 
7990 llvm::Type*
7991 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const {
7992   const RecordType *RT = RetTy->getAs<RecordType>();
7993   SmallVector<llvm::Type*, 8> RTList;
7994 
7995   if (RT && RT->isStructureOrClassType()) {
7996     const RecordDecl *RD = RT->getDecl();
7997     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
7998     unsigned FieldCnt = Layout.getFieldCount();
7999 
8000     // N32/64 returns struct/classes in floating point registers if the
8001     // following conditions are met:
8002     // 1. The size of the struct/class is no larger than 128-bit.
8003     // 2. The struct/class has one or two fields all of which are floating
8004     //    point types.
8005     // 3. The offset of the first field is zero (this follows what gcc does).
8006     //
8007     // Any other composite results are returned in integer registers.
8008     //
8009     if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) {
8010       RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end();
8011       for (; b != e; ++b) {
8012         const BuiltinType *BT = b->getType()->getAs<BuiltinType>();
8013 
8014         if (!BT || !BT->isFloatingPoint())
8015           break;
8016 
8017         RTList.push_back(CGT.ConvertType(b->getType()));
8018       }
8019 
8020       if (b == e)
8021         return llvm::StructType::get(getVMContext(), RTList,
8022                                      RD->hasAttr<PackedAttr>());
8023 
8024       RTList.clear();
8025     }
8026   }
8027 
8028   CoerceToIntArgs(Size, RTList);
8029   return llvm::StructType::get(getVMContext(), RTList);
8030 }
8031 
8032 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
8033   uint64_t Size = getContext().getTypeSize(RetTy);
8034 
8035   if (RetTy->isVoidType())
8036     return ABIArgInfo::getIgnore();
8037 
8038   // O32 doesn't treat zero-sized structs differently from other structs.
8039   // However, N32/N64 ignores zero sized return values.
8040   if (!IsO32 && Size == 0)
8041     return ABIArgInfo::getIgnore();
8042 
8043   if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) {
8044     if (Size <= 128) {
8045       if (RetTy->isAnyComplexType())
8046         return ABIArgInfo::getDirect();
8047 
8048       // O32 returns integer vectors in registers and N32/N64 returns all small
8049       // aggregates in registers.
8050       if (!IsO32 ||
8051           (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) {
8052         ABIArgInfo ArgInfo =
8053             ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
8054         ArgInfo.setInReg(true);
8055         return ArgInfo;
8056       }
8057     }
8058 
8059     return getNaturalAlignIndirect(RetTy);
8060   }
8061 
8062   // Treat an enum type as its underlying type.
8063   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
8064     RetTy = EnumTy->getDecl()->getIntegerType();
8065 
8066   // Make sure we pass indirectly things that are too large.
8067   if (const auto *EIT = RetTy->getAs<ExtIntType>())
8068     if (EIT->getNumBits() > 128 ||
8069         (EIT->getNumBits() > 64 &&
8070          !getContext().getTargetInfo().hasInt128Type()))
8071       return getNaturalAlignIndirect(RetTy);
8072 
8073   if (isPromotableIntegerTypeForABI(RetTy))
8074     return ABIArgInfo::getExtend(RetTy);
8075 
8076   if ((RetTy->isUnsignedIntegerOrEnumerationType() ||
8077       RetTy->isSignedIntegerOrEnumerationType()) && Size == 32 && !IsO32)
8078     return ABIArgInfo::getSignExtend(RetTy);
8079 
8080   return ABIArgInfo::getDirect();
8081 }
8082 
8083 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
8084   ABIArgInfo &RetInfo = FI.getReturnInfo();
8085   if (!getCXXABI().classifyReturnType(FI))
8086     RetInfo = classifyReturnType(FI.getReturnType());
8087 
8088   // Check if a pointer to an aggregate is passed as a hidden argument.
8089   uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0;
8090 
8091   for (auto &I : FI.arguments())
8092     I.info = classifyArgumentType(I.type, Offset);
8093 }
8094 
8095 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8096                                QualType OrigTy) const {
8097   QualType Ty = OrigTy;
8098 
8099   // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64.
8100   // Pointers are also promoted in the same way but this only matters for N32.
8101   unsigned SlotSizeInBits = IsO32 ? 32 : 64;
8102   unsigned PtrWidth = getTarget().getPointerWidth(0);
8103   bool DidPromote = false;
8104   if ((Ty->isIntegerType() &&
8105           getContext().getIntWidth(Ty) < SlotSizeInBits) ||
8106       (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) {
8107     DidPromote = true;
8108     Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits,
8109                                             Ty->isSignedIntegerType());
8110   }
8111 
8112   auto TyInfo = getContext().getTypeInfoInChars(Ty);
8113 
8114   // The alignment of things in the argument area is never larger than
8115   // StackAlignInBytes.
8116   TyInfo.Align =
8117     std::min(TyInfo.Align, CharUnits::fromQuantity(StackAlignInBytes));
8118 
8119   // MinABIStackAlignInBytes is the size of argument slots on the stack.
8120   CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes);
8121 
8122   Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
8123                           TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true);
8124 
8125 
8126   // If there was a promotion, "unpromote" into a temporary.
8127   // TODO: can we just use a pointer into a subset of the original slot?
8128   if (DidPromote) {
8129     Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp");
8130     llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr);
8131 
8132     // Truncate down to the right width.
8133     llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType()
8134                                                  : CGF.IntPtrTy);
8135     llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy);
8136     if (OrigTy->isPointerType())
8137       V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType());
8138 
8139     CGF.Builder.CreateStore(V, Temp);
8140     Addr = Temp;
8141   }
8142 
8143   return Addr;
8144 }
8145 
8146 ABIArgInfo MipsABIInfo::extendType(QualType Ty) const {
8147   int TySize = getContext().getTypeSize(Ty);
8148 
8149   // MIPS64 ABI requires unsigned 32 bit integers to be sign extended.
8150   if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
8151     return ABIArgInfo::getSignExtend(Ty);
8152 
8153   return ABIArgInfo::getExtend(Ty);
8154 }
8155 
8156 bool
8157 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
8158                                                llvm::Value *Address) const {
8159   // This information comes from gcc's implementation, which seems to
8160   // as canonical as it gets.
8161 
8162   // Everything on MIPS is 4 bytes.  Double-precision FP registers
8163   // are aliased to pairs of single-precision FP registers.
8164   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
8165 
8166   // 0-31 are the general purpose registers, $0 - $31.
8167   // 32-63 are the floating-point registers, $f0 - $f31.
8168   // 64 and 65 are the multiply/divide registers, $hi and $lo.
8169   // 66 is the (notional, I think) register for signal-handler return.
8170   AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65);
8171 
8172   // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
8173   // They are one bit wide and ignored here.
8174 
8175   // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
8176   // (coprocessor 1 is the FP unit)
8177   // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
8178   // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
8179   // 176-181 are the DSP accumulator registers.
8180   AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181);
8181   return false;
8182 }
8183 
8184 //===----------------------------------------------------------------------===//
8185 // M68k ABI Implementation
8186 //===----------------------------------------------------------------------===//
8187 
8188 namespace {
8189 
8190 class M68kTargetCodeGenInfo : public TargetCodeGenInfo {
8191 public:
8192   M68kTargetCodeGenInfo(CodeGenTypes &CGT)
8193       : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {}
8194   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
8195                            CodeGen::CodeGenModule &M) const override;
8196 };
8197 
8198 } // namespace
8199 
8200 void M68kTargetCodeGenInfo::setTargetAttributes(
8201     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
8202   if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) {
8203     if (const auto *attr = FD->getAttr<M68kInterruptAttr>()) {
8204       // Handle 'interrupt' attribute:
8205       llvm::Function *F = cast<llvm::Function>(GV);
8206 
8207       // Step 1: Set ISR calling convention.
8208       F->setCallingConv(llvm::CallingConv::M68k_INTR);
8209 
8210       // Step 2: Add attributes goodness.
8211       F->addFnAttr(llvm::Attribute::NoInline);
8212 
8213       // Step 3: Emit ISR vector alias.
8214       unsigned Num = attr->getNumber() / 2;
8215       llvm::GlobalAlias::create(llvm::Function::ExternalLinkage,
8216                                 "__isr_" + Twine(Num), F);
8217     }
8218   }
8219 }
8220 
8221 //===----------------------------------------------------------------------===//
8222 // AVR ABI Implementation. Documented at
8223 // https://gcc.gnu.org/wiki/avr-gcc#Calling_Convention
8224 // https://gcc.gnu.org/wiki/avr-gcc#Reduced_Tiny
8225 //===----------------------------------------------------------------------===//
8226 
8227 namespace {
8228 class AVRABIInfo : public DefaultABIInfo {
8229 public:
8230   AVRABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
8231 
8232   ABIArgInfo classifyReturnType(QualType Ty) const {
8233     // A return struct with size less than or equal to 8 bytes is returned
8234     // directly via registers R18-R25.
8235     if (isAggregateTypeForABI(Ty) && getContext().getTypeSize(Ty) <= 64)
8236       return ABIArgInfo::getDirect();
8237     else
8238       return DefaultABIInfo::classifyReturnType(Ty);
8239   }
8240 
8241   // Just copy the original implementation of DefaultABIInfo::computeInfo(),
8242   // since DefaultABIInfo::classify{Return,Argument}Type() are not virtual.
8243   void computeInfo(CGFunctionInfo &FI) const override {
8244     if (!getCXXABI().classifyReturnType(FI))
8245       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
8246     for (auto &I : FI.arguments())
8247       I.info = classifyArgumentType(I.type);
8248   }
8249 };
8250 
8251 class AVRTargetCodeGenInfo : public TargetCodeGenInfo {
8252 public:
8253   AVRTargetCodeGenInfo(CodeGenTypes &CGT)
8254       : TargetCodeGenInfo(std::make_unique<AVRABIInfo>(CGT)) {}
8255 
8256   LangAS getGlobalVarAddressSpace(CodeGenModule &CGM,
8257                                   const VarDecl *D) const override {
8258     // Check if a global/static variable is defined within address space 1
8259     // but not constant.
8260     LangAS AS = D->getType().getAddressSpace();
8261     if (isTargetAddressSpace(AS) && toTargetAddressSpace(AS) == 1 &&
8262         !D->getType().isConstQualified())
8263       CGM.getDiags().Report(D->getLocation(),
8264                             diag::err_verify_nonconst_addrspace)
8265           << "__flash";
8266     return TargetCodeGenInfo::getGlobalVarAddressSpace(CGM, D);
8267   }
8268 
8269   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
8270                            CodeGen::CodeGenModule &CGM) const override {
8271     if (GV->isDeclaration())
8272       return;
8273     const auto *FD = dyn_cast_or_null<FunctionDecl>(D);
8274     if (!FD) return;
8275     auto *Fn = cast<llvm::Function>(GV);
8276 
8277     if (FD->getAttr<AVRInterruptAttr>())
8278       Fn->addFnAttr("interrupt");
8279 
8280     if (FD->getAttr<AVRSignalAttr>())
8281       Fn->addFnAttr("signal");
8282   }
8283 };
8284 }
8285 
8286 //===----------------------------------------------------------------------===//
8287 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults.
8288 // Currently subclassed only to implement custom OpenCL C function attribute
8289 // handling.
8290 //===----------------------------------------------------------------------===//
8291 
8292 namespace {
8293 
8294 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo {
8295 public:
8296   TCETargetCodeGenInfo(CodeGenTypes &CGT)
8297     : DefaultTargetCodeGenInfo(CGT) {}
8298 
8299   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
8300                            CodeGen::CodeGenModule &M) const override;
8301 };
8302 
8303 void TCETargetCodeGenInfo::setTargetAttributes(
8304     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
8305   if (GV->isDeclaration())
8306     return;
8307   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
8308   if (!FD) return;
8309 
8310   llvm::Function *F = cast<llvm::Function>(GV);
8311 
8312   if (M.getLangOpts().OpenCL) {
8313     if (FD->hasAttr<OpenCLKernelAttr>()) {
8314       // OpenCL C Kernel functions are not subject to inlining
8315       F->addFnAttr(llvm::Attribute::NoInline);
8316       const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>();
8317       if (Attr) {
8318         // Convert the reqd_work_group_size() attributes to metadata.
8319         llvm::LLVMContext &Context = F->getContext();
8320         llvm::NamedMDNode *OpenCLMetadata =
8321             M.getModule().getOrInsertNamedMetadata(
8322                 "opencl.kernel_wg_size_info");
8323 
8324         SmallVector<llvm::Metadata *, 5> Operands;
8325         Operands.push_back(llvm::ConstantAsMetadata::get(F));
8326 
8327         Operands.push_back(
8328             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
8329                 M.Int32Ty, llvm::APInt(32, Attr->getXDim()))));
8330         Operands.push_back(
8331             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
8332                 M.Int32Ty, llvm::APInt(32, Attr->getYDim()))));
8333         Operands.push_back(
8334             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
8335                 M.Int32Ty, llvm::APInt(32, Attr->getZDim()))));
8336 
8337         // Add a boolean constant operand for "required" (true) or "hint"
8338         // (false) for implementing the work_group_size_hint attr later.
8339         // Currently always true as the hint is not yet implemented.
8340         Operands.push_back(
8341             llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context)));
8342         OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands));
8343       }
8344     }
8345   }
8346 }
8347 
8348 }
8349 
8350 //===----------------------------------------------------------------------===//
8351 // Hexagon ABI Implementation
8352 //===----------------------------------------------------------------------===//
8353 
8354 namespace {
8355 
8356 class HexagonABIInfo : public DefaultABIInfo {
8357 public:
8358   HexagonABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
8359 
8360 private:
8361   ABIArgInfo classifyReturnType(QualType RetTy) const;
8362   ABIArgInfo classifyArgumentType(QualType RetTy) const;
8363   ABIArgInfo classifyArgumentType(QualType RetTy, unsigned *RegsLeft) const;
8364 
8365   void computeInfo(CGFunctionInfo &FI) const override;
8366 
8367   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8368                     QualType Ty) const override;
8369   Address EmitVAArgFromMemory(CodeGenFunction &CFG, Address VAListAddr,
8370                               QualType Ty) const;
8371   Address EmitVAArgForHexagon(CodeGenFunction &CFG, Address VAListAddr,
8372                               QualType Ty) const;
8373   Address EmitVAArgForHexagonLinux(CodeGenFunction &CFG, Address VAListAddr,
8374                                    QualType Ty) const;
8375 };
8376 
8377 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo {
8378 public:
8379   HexagonTargetCodeGenInfo(CodeGenTypes &CGT)
8380       : TargetCodeGenInfo(std::make_unique<HexagonABIInfo>(CGT)) {}
8381 
8382   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
8383     return 29;
8384   }
8385 
8386   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
8387                            CodeGen::CodeGenModule &GCM) const override {
8388     if (GV->isDeclaration())
8389       return;
8390     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
8391     if (!FD)
8392       return;
8393   }
8394 };
8395 
8396 } // namespace
8397 
8398 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const {
8399   unsigned RegsLeft = 6;
8400   if (!getCXXABI().classifyReturnType(FI))
8401     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
8402   for (auto &I : FI.arguments())
8403     I.info = classifyArgumentType(I.type, &RegsLeft);
8404 }
8405 
8406 static bool HexagonAdjustRegsLeft(uint64_t Size, unsigned *RegsLeft) {
8407   assert(Size <= 64 && "Not expecting to pass arguments larger than 64 bits"
8408                        " through registers");
8409 
8410   if (*RegsLeft == 0)
8411     return false;
8412 
8413   if (Size <= 32) {
8414     (*RegsLeft)--;
8415     return true;
8416   }
8417 
8418   if (2 <= (*RegsLeft & (~1U))) {
8419     *RegsLeft = (*RegsLeft & (~1U)) - 2;
8420     return true;
8421   }
8422 
8423   // Next available register was r5 but candidate was greater than 32-bits so it
8424   // has to go on the stack. However we still consume r5
8425   if (*RegsLeft == 1)
8426     *RegsLeft = 0;
8427 
8428   return false;
8429 }
8430 
8431 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty,
8432                                                 unsigned *RegsLeft) const {
8433   if (!isAggregateTypeForABI(Ty)) {
8434     // Treat an enum type as its underlying type.
8435     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
8436       Ty = EnumTy->getDecl()->getIntegerType();
8437 
8438     uint64_t Size = getContext().getTypeSize(Ty);
8439     if (Size <= 64)
8440       HexagonAdjustRegsLeft(Size, RegsLeft);
8441 
8442     if (Size > 64 && Ty->isExtIntType())
8443       return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
8444 
8445     return isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
8446                                              : ABIArgInfo::getDirect();
8447   }
8448 
8449   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
8450     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
8451 
8452   // Ignore empty records.
8453   if (isEmptyRecord(getContext(), Ty, true))
8454     return ABIArgInfo::getIgnore();
8455 
8456   uint64_t Size = getContext().getTypeSize(Ty);
8457   unsigned Align = getContext().getTypeAlign(Ty);
8458 
8459   if (Size > 64)
8460     return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
8461 
8462   if (HexagonAdjustRegsLeft(Size, RegsLeft))
8463     Align = Size <= 32 ? 32 : 64;
8464   if (Size <= Align) {
8465     // Pass in the smallest viable integer type.
8466     if (!llvm::isPowerOf2_64(Size))
8467       Size = llvm::NextPowerOf2(Size);
8468     return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size));
8469   }
8470   return DefaultABIInfo::classifyArgumentType(Ty);
8471 }
8472 
8473 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const {
8474   if (RetTy->isVoidType())
8475     return ABIArgInfo::getIgnore();
8476 
8477   const TargetInfo &T = CGT.getTarget();
8478   uint64_t Size = getContext().getTypeSize(RetTy);
8479 
8480   if (RetTy->getAs<VectorType>()) {
8481     // HVX vectors are returned in vector registers or register pairs.
8482     if (T.hasFeature("hvx")) {
8483       assert(T.hasFeature("hvx-length64b") || T.hasFeature("hvx-length128b"));
8484       uint64_t VecSize = T.hasFeature("hvx-length64b") ? 64*8 : 128*8;
8485       if (Size == VecSize || Size == 2*VecSize)
8486         return ABIArgInfo::getDirectInReg();
8487     }
8488     // Large vector types should be returned via memory.
8489     if (Size > 64)
8490       return getNaturalAlignIndirect(RetTy);
8491   }
8492 
8493   if (!isAggregateTypeForABI(RetTy)) {
8494     // Treat an enum type as its underlying type.
8495     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
8496       RetTy = EnumTy->getDecl()->getIntegerType();
8497 
8498     if (Size > 64 && RetTy->isExtIntType())
8499       return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
8500 
8501     return isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
8502                                                 : ABIArgInfo::getDirect();
8503   }
8504 
8505   if (isEmptyRecord(getContext(), RetTy, true))
8506     return ABIArgInfo::getIgnore();
8507 
8508   // Aggregates <= 8 bytes are returned in registers, other aggregates
8509   // are returned indirectly.
8510   if (Size <= 64) {
8511     // Return in the smallest viable integer type.
8512     if (!llvm::isPowerOf2_64(Size))
8513       Size = llvm::NextPowerOf2(Size);
8514     return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size));
8515   }
8516   return getNaturalAlignIndirect(RetTy, /*ByVal=*/true);
8517 }
8518 
8519 Address HexagonABIInfo::EmitVAArgFromMemory(CodeGenFunction &CGF,
8520                                             Address VAListAddr,
8521                                             QualType Ty) const {
8522   // Load the overflow area pointer.
8523   Address __overflow_area_pointer_p =
8524       CGF.Builder.CreateStructGEP(VAListAddr, 2, "__overflow_area_pointer_p");
8525   llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad(
8526       __overflow_area_pointer_p, "__overflow_area_pointer");
8527 
8528   uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
8529   if (Align > 4) {
8530     // Alignment should be a power of 2.
8531     assert((Align & (Align - 1)) == 0 && "Alignment is not power of 2!");
8532 
8533     // overflow_arg_area = (overflow_arg_area + align - 1) & -align;
8534     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int64Ty, Align - 1);
8535 
8536     // Add offset to the current pointer to access the argument.
8537     __overflow_area_pointer =
8538         CGF.Builder.CreateGEP(CGF.Int8Ty, __overflow_area_pointer, Offset);
8539     llvm::Value *AsInt =
8540         CGF.Builder.CreatePtrToInt(__overflow_area_pointer, CGF.Int32Ty);
8541 
8542     // Create a mask which should be "AND"ed
8543     // with (overflow_arg_area + align - 1)
8544     llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -(int)Align);
8545     __overflow_area_pointer = CGF.Builder.CreateIntToPtr(
8546         CGF.Builder.CreateAnd(AsInt, Mask), __overflow_area_pointer->getType(),
8547         "__overflow_area_pointer.align");
8548   }
8549 
8550   // Get the type of the argument from memory and bitcast
8551   // overflow area pointer to the argument type.
8552   llvm::Type *PTy = CGF.ConvertTypeForMem(Ty);
8553   Address AddrTyped = CGF.Builder.CreateBitCast(
8554       Address(__overflow_area_pointer, CharUnits::fromQuantity(Align)),
8555       llvm::PointerType::getUnqual(PTy));
8556 
8557   // Round up to the minimum stack alignment for varargs which is 4 bytes.
8558   uint64_t Offset = llvm::alignTo(CGF.getContext().getTypeSize(Ty) / 8, 4);
8559 
8560   __overflow_area_pointer = CGF.Builder.CreateGEP(
8561       CGF.Int8Ty, __overflow_area_pointer,
8562       llvm::ConstantInt::get(CGF.Int32Ty, Offset),
8563       "__overflow_area_pointer.next");
8564   CGF.Builder.CreateStore(__overflow_area_pointer, __overflow_area_pointer_p);
8565 
8566   return AddrTyped;
8567 }
8568 
8569 Address HexagonABIInfo::EmitVAArgForHexagon(CodeGenFunction &CGF,
8570                                             Address VAListAddr,
8571                                             QualType Ty) const {
8572   // FIXME: Need to handle alignment
8573   llvm::Type *BP = CGF.Int8PtrTy;
8574   llvm::Type *BPP = CGF.Int8PtrPtrTy;
8575   CGBuilderTy &Builder = CGF.Builder;
8576   Address VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
8577   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
8578   // Handle address alignment for type alignment > 32 bits
8579   uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8;
8580   if (TyAlign > 4) {
8581     assert((TyAlign & (TyAlign - 1)) == 0 && "Alignment is not power of 2!");
8582     llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty);
8583     AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1));
8584     AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1)));
8585     Addr = Builder.CreateIntToPtr(AddrAsInt, BP);
8586   }
8587   llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
8588   Address AddrTyped = Builder.CreateBitCast(
8589       Address(Addr, CharUnits::fromQuantity(TyAlign)), PTy);
8590 
8591   uint64_t Offset = llvm::alignTo(CGF.getContext().getTypeSize(Ty) / 8, 4);
8592   llvm::Value *NextAddr = Builder.CreateGEP(
8593       CGF.Int8Ty, Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), "ap.next");
8594   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
8595 
8596   return AddrTyped;
8597 }
8598 
8599 Address HexagonABIInfo::EmitVAArgForHexagonLinux(CodeGenFunction &CGF,
8600                                                  Address VAListAddr,
8601                                                  QualType Ty) const {
8602   int ArgSize = CGF.getContext().getTypeSize(Ty) / 8;
8603 
8604   if (ArgSize > 8)
8605     return EmitVAArgFromMemory(CGF, VAListAddr, Ty);
8606 
8607   // Here we have check if the argument is in register area or
8608   // in overflow area.
8609   // If the saved register area pointer + argsize rounded up to alignment >
8610   // saved register area end pointer, argument is in overflow area.
8611   unsigned RegsLeft = 6;
8612   Ty = CGF.getContext().getCanonicalType(Ty);
8613   (void)classifyArgumentType(Ty, &RegsLeft);
8614 
8615   llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
8616   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
8617   llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
8618   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
8619 
8620   // Get rounded size of the argument.GCC does not allow vararg of
8621   // size < 4 bytes. We follow the same logic here.
8622   ArgSize = (CGF.getContext().getTypeSize(Ty) <= 32) ? 4 : 8;
8623   int ArgAlign = (CGF.getContext().getTypeSize(Ty) <= 32) ? 4 : 8;
8624 
8625   // Argument may be in saved register area
8626   CGF.EmitBlock(MaybeRegBlock);
8627 
8628   // Load the current saved register area pointer.
8629   Address __current_saved_reg_area_pointer_p = CGF.Builder.CreateStructGEP(
8630       VAListAddr, 0, "__current_saved_reg_area_pointer_p");
8631   llvm::Value *__current_saved_reg_area_pointer = CGF.Builder.CreateLoad(
8632       __current_saved_reg_area_pointer_p, "__current_saved_reg_area_pointer");
8633 
8634   // Load the saved register area end pointer.
8635   Address __saved_reg_area_end_pointer_p = CGF.Builder.CreateStructGEP(
8636       VAListAddr, 1, "__saved_reg_area_end_pointer_p");
8637   llvm::Value *__saved_reg_area_end_pointer = CGF.Builder.CreateLoad(
8638       __saved_reg_area_end_pointer_p, "__saved_reg_area_end_pointer");
8639 
8640   // If the size of argument is > 4 bytes, check if the stack
8641   // location is aligned to 8 bytes
8642   if (ArgAlign > 4) {
8643 
8644     llvm::Value *__current_saved_reg_area_pointer_int =
8645         CGF.Builder.CreatePtrToInt(__current_saved_reg_area_pointer,
8646                                    CGF.Int32Ty);
8647 
8648     __current_saved_reg_area_pointer_int = CGF.Builder.CreateAdd(
8649         __current_saved_reg_area_pointer_int,
8650         llvm::ConstantInt::get(CGF.Int32Ty, (ArgAlign - 1)),
8651         "align_current_saved_reg_area_pointer");
8652 
8653     __current_saved_reg_area_pointer_int =
8654         CGF.Builder.CreateAnd(__current_saved_reg_area_pointer_int,
8655                               llvm::ConstantInt::get(CGF.Int32Ty, -ArgAlign),
8656                               "align_current_saved_reg_area_pointer");
8657 
8658     __current_saved_reg_area_pointer =
8659         CGF.Builder.CreateIntToPtr(__current_saved_reg_area_pointer_int,
8660                                    __current_saved_reg_area_pointer->getType(),
8661                                    "align_current_saved_reg_area_pointer");
8662   }
8663 
8664   llvm::Value *__new_saved_reg_area_pointer =
8665       CGF.Builder.CreateGEP(CGF.Int8Ty, __current_saved_reg_area_pointer,
8666                             llvm::ConstantInt::get(CGF.Int32Ty, ArgSize),
8667                             "__new_saved_reg_area_pointer");
8668 
8669   llvm::Value *UsingStack = 0;
8670   UsingStack = CGF.Builder.CreateICmpSGT(__new_saved_reg_area_pointer,
8671                                          __saved_reg_area_end_pointer);
8672 
8673   CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, InRegBlock);
8674 
8675   // Argument in saved register area
8676   // Implement the block where argument is in register saved area
8677   CGF.EmitBlock(InRegBlock);
8678 
8679   llvm::Type *PTy = CGF.ConvertType(Ty);
8680   llvm::Value *__saved_reg_area_p = CGF.Builder.CreateBitCast(
8681       __current_saved_reg_area_pointer, llvm::PointerType::getUnqual(PTy));
8682 
8683   CGF.Builder.CreateStore(__new_saved_reg_area_pointer,
8684                           __current_saved_reg_area_pointer_p);
8685 
8686   CGF.EmitBranch(ContBlock);
8687 
8688   // Argument in overflow area
8689   // Implement the block where the argument is in overflow area.
8690   CGF.EmitBlock(OnStackBlock);
8691 
8692   // Load the overflow area pointer
8693   Address __overflow_area_pointer_p =
8694       CGF.Builder.CreateStructGEP(VAListAddr, 2, "__overflow_area_pointer_p");
8695   llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad(
8696       __overflow_area_pointer_p, "__overflow_area_pointer");
8697 
8698   // Align the overflow area pointer according to the alignment of the argument
8699   if (ArgAlign > 4) {
8700     llvm::Value *__overflow_area_pointer_int =
8701         CGF.Builder.CreatePtrToInt(__overflow_area_pointer, CGF.Int32Ty);
8702 
8703     __overflow_area_pointer_int =
8704         CGF.Builder.CreateAdd(__overflow_area_pointer_int,
8705                               llvm::ConstantInt::get(CGF.Int32Ty, ArgAlign - 1),
8706                               "align_overflow_area_pointer");
8707 
8708     __overflow_area_pointer_int =
8709         CGF.Builder.CreateAnd(__overflow_area_pointer_int,
8710                               llvm::ConstantInt::get(CGF.Int32Ty, -ArgAlign),
8711                               "align_overflow_area_pointer");
8712 
8713     __overflow_area_pointer = CGF.Builder.CreateIntToPtr(
8714         __overflow_area_pointer_int, __overflow_area_pointer->getType(),
8715         "align_overflow_area_pointer");
8716   }
8717 
8718   // Get the pointer for next argument in overflow area and store it
8719   // to overflow area pointer.
8720   llvm::Value *__new_overflow_area_pointer = CGF.Builder.CreateGEP(
8721       CGF.Int8Ty, __overflow_area_pointer,
8722       llvm::ConstantInt::get(CGF.Int32Ty, ArgSize),
8723       "__overflow_area_pointer.next");
8724 
8725   CGF.Builder.CreateStore(__new_overflow_area_pointer,
8726                           __overflow_area_pointer_p);
8727 
8728   CGF.Builder.CreateStore(__new_overflow_area_pointer,
8729                           __current_saved_reg_area_pointer_p);
8730 
8731   // Bitcast the overflow area pointer to the type of argument.
8732   llvm::Type *OverflowPTy = CGF.ConvertTypeForMem(Ty);
8733   llvm::Value *__overflow_area_p = CGF.Builder.CreateBitCast(
8734       __overflow_area_pointer, llvm::PointerType::getUnqual(OverflowPTy));
8735 
8736   CGF.EmitBranch(ContBlock);
8737 
8738   // Get the correct pointer to load the variable argument
8739   // Implement the ContBlock
8740   CGF.EmitBlock(ContBlock);
8741 
8742   llvm::Type *MemPTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
8743   llvm::PHINode *ArgAddr = CGF.Builder.CreatePHI(MemPTy, 2, "vaarg.addr");
8744   ArgAddr->addIncoming(__saved_reg_area_p, InRegBlock);
8745   ArgAddr->addIncoming(__overflow_area_p, OnStackBlock);
8746 
8747   return Address(ArgAddr, CharUnits::fromQuantity(ArgAlign));
8748 }
8749 
8750 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8751                                   QualType Ty) const {
8752 
8753   if (getTarget().getTriple().isMusl())
8754     return EmitVAArgForHexagonLinux(CGF, VAListAddr, Ty);
8755 
8756   return EmitVAArgForHexagon(CGF, VAListAddr, Ty);
8757 }
8758 
8759 //===----------------------------------------------------------------------===//
8760 // Lanai ABI Implementation
8761 //===----------------------------------------------------------------------===//
8762 
8763 namespace {
8764 class LanaiABIInfo : public DefaultABIInfo {
8765 public:
8766   LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
8767 
8768   bool shouldUseInReg(QualType Ty, CCState &State) const;
8769 
8770   void computeInfo(CGFunctionInfo &FI) const override {
8771     CCState State(FI);
8772     // Lanai uses 4 registers to pass arguments unless the function has the
8773     // regparm attribute set.
8774     if (FI.getHasRegParm()) {
8775       State.FreeRegs = FI.getRegParm();
8776     } else {
8777       State.FreeRegs = 4;
8778     }
8779 
8780     if (!getCXXABI().classifyReturnType(FI))
8781       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
8782     for (auto &I : FI.arguments())
8783       I.info = classifyArgumentType(I.type, State);
8784   }
8785 
8786   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
8787   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
8788 };
8789 } // end anonymous namespace
8790 
8791 bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const {
8792   unsigned Size = getContext().getTypeSize(Ty);
8793   unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U;
8794 
8795   if (SizeInRegs == 0)
8796     return false;
8797 
8798   if (SizeInRegs > State.FreeRegs) {
8799     State.FreeRegs = 0;
8800     return false;
8801   }
8802 
8803   State.FreeRegs -= SizeInRegs;
8804 
8805   return true;
8806 }
8807 
8808 ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal,
8809                                            CCState &State) const {
8810   if (!ByVal) {
8811     if (State.FreeRegs) {
8812       --State.FreeRegs; // Non-byval indirects just use one pointer.
8813       return getNaturalAlignIndirectInReg(Ty);
8814     }
8815     return getNaturalAlignIndirect(Ty, false);
8816   }
8817 
8818   // Compute the byval alignment.
8819   const unsigned MinABIStackAlignInBytes = 4;
8820   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
8821   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true,
8822                                  /*Realign=*/TypeAlign >
8823                                      MinABIStackAlignInBytes);
8824 }
8825 
8826 ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty,
8827                                               CCState &State) const {
8828   // Check with the C++ ABI first.
8829   const RecordType *RT = Ty->getAs<RecordType>();
8830   if (RT) {
8831     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
8832     if (RAA == CGCXXABI::RAA_Indirect) {
8833       return getIndirectResult(Ty, /*ByVal=*/false, State);
8834     } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
8835       return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
8836     }
8837   }
8838 
8839   if (isAggregateTypeForABI(Ty)) {
8840     // Structures with flexible arrays are always indirect.
8841     if (RT && RT->getDecl()->hasFlexibleArrayMember())
8842       return getIndirectResult(Ty, /*ByVal=*/true, State);
8843 
8844     // Ignore empty structs/unions.
8845     if (isEmptyRecord(getContext(), Ty, true))
8846       return ABIArgInfo::getIgnore();
8847 
8848     llvm::LLVMContext &LLVMContext = getVMContext();
8849     unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
8850     if (SizeInRegs <= State.FreeRegs) {
8851       llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
8852       SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32);
8853       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
8854       State.FreeRegs -= SizeInRegs;
8855       return ABIArgInfo::getDirectInReg(Result);
8856     } else {
8857       State.FreeRegs = 0;
8858     }
8859     return getIndirectResult(Ty, true, State);
8860   }
8861 
8862   // Treat an enum type as its underlying type.
8863   if (const auto *EnumTy = Ty->getAs<EnumType>())
8864     Ty = EnumTy->getDecl()->getIntegerType();
8865 
8866   bool InReg = shouldUseInReg(Ty, State);
8867 
8868   // Don't pass >64 bit integers in registers.
8869   if (const auto *EIT = Ty->getAs<ExtIntType>())
8870     if (EIT->getNumBits() > 64)
8871       return getIndirectResult(Ty, /*ByVal=*/true, State);
8872 
8873   if (isPromotableIntegerTypeForABI(Ty)) {
8874     if (InReg)
8875       return ABIArgInfo::getDirectInReg();
8876     return ABIArgInfo::getExtend(Ty);
8877   }
8878   if (InReg)
8879     return ABIArgInfo::getDirectInReg();
8880   return ABIArgInfo::getDirect();
8881 }
8882 
8883 namespace {
8884 class LanaiTargetCodeGenInfo : public TargetCodeGenInfo {
8885 public:
8886   LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
8887       : TargetCodeGenInfo(std::make_unique<LanaiABIInfo>(CGT)) {}
8888 };
8889 }
8890 
8891 //===----------------------------------------------------------------------===//
8892 // AMDGPU ABI Implementation
8893 //===----------------------------------------------------------------------===//
8894 
8895 namespace {
8896 
8897 class AMDGPUABIInfo final : public DefaultABIInfo {
8898 private:
8899   static const unsigned MaxNumRegsForArgsRet = 16;
8900 
8901   unsigned numRegsForType(QualType Ty) const;
8902 
8903   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
8904   bool isHomogeneousAggregateSmallEnough(const Type *Base,
8905                                          uint64_t Members) const override;
8906 
8907   // Coerce HIP scalar pointer arguments from generic pointers to global ones.
8908   llvm::Type *coerceKernelArgumentType(llvm::Type *Ty, unsigned FromAS,
8909                                        unsigned ToAS) const {
8910     // Single value types.
8911     if (Ty->isPointerTy() && Ty->getPointerAddressSpace() == FromAS)
8912       return llvm::PointerType::get(
8913           cast<llvm::PointerType>(Ty)->getElementType(), ToAS);
8914     return Ty;
8915   }
8916 
8917 public:
8918   explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) :
8919     DefaultABIInfo(CGT) {}
8920 
8921   ABIArgInfo classifyReturnType(QualType RetTy) const;
8922   ABIArgInfo classifyKernelArgumentType(QualType Ty) const;
8923   ABIArgInfo classifyArgumentType(QualType Ty, unsigned &NumRegsLeft) const;
8924 
8925   void computeInfo(CGFunctionInfo &FI) const override;
8926   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8927                     QualType Ty) const override;
8928 };
8929 
8930 bool AMDGPUABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
8931   return true;
8932 }
8933 
8934 bool AMDGPUABIInfo::isHomogeneousAggregateSmallEnough(
8935   const Type *Base, uint64_t Members) const {
8936   uint32_t NumRegs = (getContext().getTypeSize(Base) + 31) / 32;
8937 
8938   // Homogeneous Aggregates may occupy at most 16 registers.
8939   return Members * NumRegs <= MaxNumRegsForArgsRet;
8940 }
8941 
8942 /// Estimate number of registers the type will use when passed in registers.
8943 unsigned AMDGPUABIInfo::numRegsForType(QualType Ty) const {
8944   unsigned NumRegs = 0;
8945 
8946   if (const VectorType *VT = Ty->getAs<VectorType>()) {
8947     // Compute from the number of elements. The reported size is based on the
8948     // in-memory size, which includes the padding 4th element for 3-vectors.
8949     QualType EltTy = VT->getElementType();
8950     unsigned EltSize = getContext().getTypeSize(EltTy);
8951 
8952     // 16-bit element vectors should be passed as packed.
8953     if (EltSize == 16)
8954       return (VT->getNumElements() + 1) / 2;
8955 
8956     unsigned EltNumRegs = (EltSize + 31) / 32;
8957     return EltNumRegs * VT->getNumElements();
8958   }
8959 
8960   if (const RecordType *RT = Ty->getAs<RecordType>()) {
8961     const RecordDecl *RD = RT->getDecl();
8962     assert(!RD->hasFlexibleArrayMember());
8963 
8964     for (const FieldDecl *Field : RD->fields()) {
8965       QualType FieldTy = Field->getType();
8966       NumRegs += numRegsForType(FieldTy);
8967     }
8968 
8969     return NumRegs;
8970   }
8971 
8972   return (getContext().getTypeSize(Ty) + 31) / 32;
8973 }
8974 
8975 void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const {
8976   llvm::CallingConv::ID CC = FI.getCallingConvention();
8977 
8978   if (!getCXXABI().classifyReturnType(FI))
8979     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
8980 
8981   unsigned NumRegsLeft = MaxNumRegsForArgsRet;
8982   for (auto &Arg : FI.arguments()) {
8983     if (CC == llvm::CallingConv::AMDGPU_KERNEL) {
8984       Arg.info = classifyKernelArgumentType(Arg.type);
8985     } else {
8986       Arg.info = classifyArgumentType(Arg.type, NumRegsLeft);
8987     }
8988   }
8989 }
8990 
8991 Address AMDGPUABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8992                                  QualType Ty) const {
8993   llvm_unreachable("AMDGPU does not support varargs");
8994 }
8995 
8996 ABIArgInfo AMDGPUABIInfo::classifyReturnType(QualType RetTy) const {
8997   if (isAggregateTypeForABI(RetTy)) {
8998     // Records with non-trivial destructors/copy-constructors should not be
8999     // returned by value.
9000     if (!getRecordArgABI(RetTy, getCXXABI())) {
9001       // Ignore empty structs/unions.
9002       if (isEmptyRecord(getContext(), RetTy, true))
9003         return ABIArgInfo::getIgnore();
9004 
9005       // Lower single-element structs to just return a regular value.
9006       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
9007         return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
9008 
9009       if (const RecordType *RT = RetTy->getAs<RecordType>()) {
9010         const RecordDecl *RD = RT->getDecl();
9011         if (RD->hasFlexibleArrayMember())
9012           return DefaultABIInfo::classifyReturnType(RetTy);
9013       }
9014 
9015       // Pack aggregates <= 4 bytes into single VGPR or pair.
9016       uint64_t Size = getContext().getTypeSize(RetTy);
9017       if (Size <= 16)
9018         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
9019 
9020       if (Size <= 32)
9021         return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
9022 
9023       if (Size <= 64) {
9024         llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext());
9025         return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2));
9026       }
9027 
9028       if (numRegsForType(RetTy) <= MaxNumRegsForArgsRet)
9029         return ABIArgInfo::getDirect();
9030     }
9031   }
9032 
9033   // Otherwise just do the default thing.
9034   return DefaultABIInfo::classifyReturnType(RetTy);
9035 }
9036 
9037 /// For kernels all parameters are really passed in a special buffer. It doesn't
9038 /// make sense to pass anything byval, so everything must be direct.
9039 ABIArgInfo AMDGPUABIInfo::classifyKernelArgumentType(QualType Ty) const {
9040   Ty = useFirstFieldIfTransparentUnion(Ty);
9041 
9042   // TODO: Can we omit empty structs?
9043 
9044   if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
9045     Ty = QualType(SeltTy, 0);
9046 
9047   llvm::Type *OrigLTy = CGT.ConvertType(Ty);
9048   llvm::Type *LTy = OrigLTy;
9049   if (getContext().getLangOpts().HIP) {
9050     LTy = coerceKernelArgumentType(
9051         OrigLTy, /*FromAS=*/getContext().getTargetAddressSpace(LangAS::Default),
9052         /*ToAS=*/getContext().getTargetAddressSpace(LangAS::cuda_device));
9053   }
9054 
9055   // FIXME: Should also use this for OpenCL, but it requires addressing the
9056   // problem of kernels being called.
9057   //
9058   // FIXME: This doesn't apply the optimization of coercing pointers in structs
9059   // to global address space when using byref. This would require implementing a
9060   // new kind of coercion of the in-memory type when for indirect arguments.
9061   if (!getContext().getLangOpts().OpenCL && LTy == OrigLTy &&
9062       isAggregateTypeForABI(Ty)) {
9063     return ABIArgInfo::getIndirectAliased(
9064         getContext().getTypeAlignInChars(Ty),
9065         getContext().getTargetAddressSpace(LangAS::opencl_constant),
9066         false /*Realign*/, nullptr /*Padding*/);
9067   }
9068 
9069   // If we set CanBeFlattened to true, CodeGen will expand the struct to its
9070   // individual elements, which confuses the Clover OpenCL backend; therefore we
9071   // have to set it to false here. Other args of getDirect() are just defaults.
9072   return ABIArgInfo::getDirect(LTy, 0, nullptr, false);
9073 }
9074 
9075 ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty,
9076                                                unsigned &NumRegsLeft) const {
9077   assert(NumRegsLeft <= MaxNumRegsForArgsRet && "register estimate underflow");
9078 
9079   Ty = useFirstFieldIfTransparentUnion(Ty);
9080 
9081   if (isAggregateTypeForABI(Ty)) {
9082     // Records with non-trivial destructors/copy-constructors should not be
9083     // passed by value.
9084     if (auto RAA = getRecordArgABI(Ty, getCXXABI()))
9085       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
9086 
9087     // Ignore empty structs/unions.
9088     if (isEmptyRecord(getContext(), Ty, true))
9089       return ABIArgInfo::getIgnore();
9090 
9091     // Lower single-element structs to just pass a regular value. TODO: We
9092     // could do reasonable-size multiple-element structs too, using getExpand(),
9093     // though watch out for things like bitfields.
9094     if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
9095       return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
9096 
9097     if (const RecordType *RT = Ty->getAs<RecordType>()) {
9098       const RecordDecl *RD = RT->getDecl();
9099       if (RD->hasFlexibleArrayMember())
9100         return DefaultABIInfo::classifyArgumentType(Ty);
9101     }
9102 
9103     // Pack aggregates <= 8 bytes into single VGPR or pair.
9104     uint64_t Size = getContext().getTypeSize(Ty);
9105     if (Size <= 64) {
9106       unsigned NumRegs = (Size + 31) / 32;
9107       NumRegsLeft -= std::min(NumRegsLeft, NumRegs);
9108 
9109       if (Size <= 16)
9110         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
9111 
9112       if (Size <= 32)
9113         return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
9114 
9115       // XXX: Should this be i64 instead, and should the limit increase?
9116       llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext());
9117       return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2));
9118     }
9119 
9120     if (NumRegsLeft > 0) {
9121       unsigned NumRegs = numRegsForType(Ty);
9122       if (NumRegsLeft >= NumRegs) {
9123         NumRegsLeft -= NumRegs;
9124         return ABIArgInfo::getDirect();
9125       }
9126     }
9127   }
9128 
9129   // Otherwise just do the default thing.
9130   ABIArgInfo ArgInfo = DefaultABIInfo::classifyArgumentType(Ty);
9131   if (!ArgInfo.isIndirect()) {
9132     unsigned NumRegs = numRegsForType(Ty);
9133     NumRegsLeft -= std::min(NumRegs, NumRegsLeft);
9134   }
9135 
9136   return ArgInfo;
9137 }
9138 
9139 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo {
9140 public:
9141   AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT)
9142       : TargetCodeGenInfo(std::make_unique<AMDGPUABIInfo>(CGT)) {}
9143   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
9144                            CodeGen::CodeGenModule &M) const override;
9145   unsigned getOpenCLKernelCallingConv() const override;
9146 
9147   llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM,
9148       llvm::PointerType *T, QualType QT) const override;
9149 
9150   LangAS getASTAllocaAddressSpace() const override {
9151     return getLangASFromTargetAS(
9152         getABIInfo().getDataLayout().getAllocaAddrSpace());
9153   }
9154   LangAS getGlobalVarAddressSpace(CodeGenModule &CGM,
9155                                   const VarDecl *D) const override;
9156   llvm::SyncScope::ID getLLVMSyncScopeID(const LangOptions &LangOpts,
9157                                          SyncScope Scope,
9158                                          llvm::AtomicOrdering Ordering,
9159                                          llvm::LLVMContext &Ctx) const override;
9160   llvm::Function *
9161   createEnqueuedBlockKernel(CodeGenFunction &CGF,
9162                             llvm::Function *BlockInvokeFunc,
9163                             llvm::Value *BlockLiteral) const override;
9164   bool shouldEmitStaticExternCAliases() const override;
9165   void setCUDAKernelCallingConvention(const FunctionType *&FT) const override;
9166 };
9167 }
9168 
9169 static bool requiresAMDGPUProtectedVisibility(const Decl *D,
9170                                               llvm::GlobalValue *GV) {
9171   if (GV->getVisibility() != llvm::GlobalValue::HiddenVisibility)
9172     return false;
9173 
9174   return D->hasAttr<OpenCLKernelAttr>() ||
9175          (isa<FunctionDecl>(D) && D->hasAttr<CUDAGlobalAttr>()) ||
9176          (isa<VarDecl>(D) &&
9177           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
9178            cast<VarDecl>(D)->getType()->isCUDADeviceBuiltinSurfaceType() ||
9179            cast<VarDecl>(D)->getType()->isCUDADeviceBuiltinTextureType()));
9180 }
9181 
9182 void AMDGPUTargetCodeGenInfo::setTargetAttributes(
9183     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
9184   if (requiresAMDGPUProtectedVisibility(D, GV)) {
9185     GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
9186     GV->setDSOLocal(true);
9187   }
9188 
9189   if (GV->isDeclaration())
9190     return;
9191   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
9192   if (!FD)
9193     return;
9194 
9195   llvm::Function *F = cast<llvm::Function>(GV);
9196 
9197   const auto *ReqdWGS = M.getLangOpts().OpenCL ?
9198     FD->getAttr<ReqdWorkGroupSizeAttr>() : nullptr;
9199 
9200 
9201   const bool IsOpenCLKernel = M.getLangOpts().OpenCL &&
9202                               FD->hasAttr<OpenCLKernelAttr>();
9203   const bool IsHIPKernel = M.getLangOpts().HIP &&
9204                            FD->hasAttr<CUDAGlobalAttr>();
9205   if ((IsOpenCLKernel || IsHIPKernel) &&
9206       (M.getTriple().getOS() == llvm::Triple::AMDHSA))
9207     F->addFnAttr("amdgpu-implicitarg-num-bytes", "56");
9208 
9209   if (IsHIPKernel)
9210     F->addFnAttr("uniform-work-group-size", "true");
9211 
9212 
9213   const auto *FlatWGS = FD->getAttr<AMDGPUFlatWorkGroupSizeAttr>();
9214   if (ReqdWGS || FlatWGS) {
9215     unsigned Min = 0;
9216     unsigned Max = 0;
9217     if (FlatWGS) {
9218       Min = FlatWGS->getMin()
9219                 ->EvaluateKnownConstInt(M.getContext())
9220                 .getExtValue();
9221       Max = FlatWGS->getMax()
9222                 ->EvaluateKnownConstInt(M.getContext())
9223                 .getExtValue();
9224     }
9225     if (ReqdWGS && Min == 0 && Max == 0)
9226       Min = Max = ReqdWGS->getXDim() * ReqdWGS->getYDim() * ReqdWGS->getZDim();
9227 
9228     if (Min != 0) {
9229       assert(Min <= Max && "Min must be less than or equal Max");
9230 
9231       std::string AttrVal = llvm::utostr(Min) + "," + llvm::utostr(Max);
9232       F->addFnAttr("amdgpu-flat-work-group-size", AttrVal);
9233     } else
9234       assert(Max == 0 && "Max must be zero");
9235   } else if (IsOpenCLKernel || IsHIPKernel) {
9236     // By default, restrict the maximum size to a value specified by
9237     // --gpu-max-threads-per-block=n or its default value for HIP.
9238     const unsigned OpenCLDefaultMaxWorkGroupSize = 256;
9239     const unsigned DefaultMaxWorkGroupSize =
9240         IsOpenCLKernel ? OpenCLDefaultMaxWorkGroupSize
9241                        : M.getLangOpts().GPUMaxThreadsPerBlock;
9242     std::string AttrVal =
9243         std::string("1,") + llvm::utostr(DefaultMaxWorkGroupSize);
9244     F->addFnAttr("amdgpu-flat-work-group-size", AttrVal);
9245   }
9246 
9247   if (const auto *Attr = FD->getAttr<AMDGPUWavesPerEUAttr>()) {
9248     unsigned Min =
9249         Attr->getMin()->EvaluateKnownConstInt(M.getContext()).getExtValue();
9250     unsigned Max = Attr->getMax() ? Attr->getMax()
9251                                         ->EvaluateKnownConstInt(M.getContext())
9252                                         .getExtValue()
9253                                   : 0;
9254 
9255     if (Min != 0) {
9256       assert((Max == 0 || Min <= Max) && "Min must be less than or equal Max");
9257 
9258       std::string AttrVal = llvm::utostr(Min);
9259       if (Max != 0)
9260         AttrVal = AttrVal + "," + llvm::utostr(Max);
9261       F->addFnAttr("amdgpu-waves-per-eu", AttrVal);
9262     } else
9263       assert(Max == 0 && "Max must be zero");
9264   }
9265 
9266   if (const auto *Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) {
9267     unsigned NumSGPR = Attr->getNumSGPR();
9268 
9269     if (NumSGPR != 0)
9270       F->addFnAttr("amdgpu-num-sgpr", llvm::utostr(NumSGPR));
9271   }
9272 
9273   if (const auto *Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) {
9274     uint32_t NumVGPR = Attr->getNumVGPR();
9275 
9276     if (NumVGPR != 0)
9277       F->addFnAttr("amdgpu-num-vgpr", llvm::utostr(NumVGPR));
9278   }
9279 
9280   if (M.getContext().getTargetInfo().allowAMDGPUUnsafeFPAtomics())
9281     F->addFnAttr("amdgpu-unsafe-fp-atomics", "true");
9282 
9283   if (!getABIInfo().getCodeGenOpts().EmitIEEENaNCompliantInsts)
9284     F->addFnAttr("amdgpu-ieee", "false");
9285 }
9286 
9287 unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const {
9288   return llvm::CallingConv::AMDGPU_KERNEL;
9289 }
9290 
9291 // Currently LLVM assumes null pointers always have value 0,
9292 // which results in incorrectly transformed IR. Therefore, instead of
9293 // emitting null pointers in private and local address spaces, a null
9294 // pointer in generic address space is emitted which is casted to a
9295 // pointer in local or private address space.
9296 llvm::Constant *AMDGPUTargetCodeGenInfo::getNullPointer(
9297     const CodeGen::CodeGenModule &CGM, llvm::PointerType *PT,
9298     QualType QT) const {
9299   if (CGM.getContext().getTargetNullPointerValue(QT) == 0)
9300     return llvm::ConstantPointerNull::get(PT);
9301 
9302   auto &Ctx = CGM.getContext();
9303   auto NPT = llvm::PointerType::get(PT->getElementType(),
9304       Ctx.getTargetAddressSpace(LangAS::opencl_generic));
9305   return llvm::ConstantExpr::getAddrSpaceCast(
9306       llvm::ConstantPointerNull::get(NPT), PT);
9307 }
9308 
9309 LangAS
9310 AMDGPUTargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM,
9311                                                   const VarDecl *D) const {
9312   assert(!CGM.getLangOpts().OpenCL &&
9313          !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) &&
9314          "Address space agnostic languages only");
9315   LangAS DefaultGlobalAS = getLangASFromTargetAS(
9316       CGM.getContext().getTargetAddressSpace(LangAS::opencl_global));
9317   if (!D)
9318     return DefaultGlobalAS;
9319 
9320   LangAS AddrSpace = D->getType().getAddressSpace();
9321   assert(AddrSpace == LangAS::Default || isTargetAddressSpace(AddrSpace));
9322   if (AddrSpace != LangAS::Default)
9323     return AddrSpace;
9324 
9325   if (CGM.isTypeConstant(D->getType(), false)) {
9326     if (auto ConstAS = CGM.getTarget().getConstantAddressSpace())
9327       return ConstAS.getValue();
9328   }
9329   return DefaultGlobalAS;
9330 }
9331 
9332 llvm::SyncScope::ID
9333 AMDGPUTargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts,
9334                                             SyncScope Scope,
9335                                             llvm::AtomicOrdering Ordering,
9336                                             llvm::LLVMContext &Ctx) const {
9337   std::string Name;
9338   switch (Scope) {
9339   case SyncScope::OpenCLWorkGroup:
9340     Name = "workgroup";
9341     break;
9342   case SyncScope::OpenCLDevice:
9343     Name = "agent";
9344     break;
9345   case SyncScope::OpenCLAllSVMDevices:
9346     Name = "";
9347     break;
9348   case SyncScope::OpenCLSubGroup:
9349     Name = "wavefront";
9350   }
9351 
9352   if (Ordering != llvm::AtomicOrdering::SequentiallyConsistent) {
9353     if (!Name.empty())
9354       Name = Twine(Twine(Name) + Twine("-")).str();
9355 
9356     Name = Twine(Twine(Name) + Twine("one-as")).str();
9357   }
9358 
9359   return Ctx.getOrInsertSyncScopeID(Name);
9360 }
9361 
9362 bool AMDGPUTargetCodeGenInfo::shouldEmitStaticExternCAliases() const {
9363   return false;
9364 }
9365 
9366 void AMDGPUTargetCodeGenInfo::setCUDAKernelCallingConvention(
9367     const FunctionType *&FT) const {
9368   FT = getABIInfo().getContext().adjustFunctionType(
9369       FT, FT->getExtInfo().withCallingConv(CC_OpenCLKernel));
9370 }
9371 
9372 //===----------------------------------------------------------------------===//
9373 // SPARC v8 ABI Implementation.
9374 // Based on the SPARC Compliance Definition version 2.4.1.
9375 //
9376 // Ensures that complex values are passed in registers.
9377 //
9378 namespace {
9379 class SparcV8ABIInfo : public DefaultABIInfo {
9380 public:
9381   SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
9382 
9383 private:
9384   ABIArgInfo classifyReturnType(QualType RetTy) const;
9385   void computeInfo(CGFunctionInfo &FI) const override;
9386 };
9387 } // end anonymous namespace
9388 
9389 
9390 ABIArgInfo
9391 SparcV8ABIInfo::classifyReturnType(QualType Ty) const {
9392   if (Ty->isAnyComplexType()) {
9393     return ABIArgInfo::getDirect();
9394   }
9395   else {
9396     return DefaultABIInfo::classifyReturnType(Ty);
9397   }
9398 }
9399 
9400 void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const {
9401 
9402   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
9403   for (auto &Arg : FI.arguments())
9404     Arg.info = classifyArgumentType(Arg.type);
9405 }
9406 
9407 namespace {
9408 class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo {
9409 public:
9410   SparcV8TargetCodeGenInfo(CodeGenTypes &CGT)
9411       : TargetCodeGenInfo(std::make_unique<SparcV8ABIInfo>(CGT)) {}
9412 };
9413 } // end anonymous namespace
9414 
9415 //===----------------------------------------------------------------------===//
9416 // SPARC v9 ABI Implementation.
9417 // Based on the SPARC Compliance Definition version 2.4.1.
9418 //
9419 // Function arguments a mapped to a nominal "parameter array" and promoted to
9420 // registers depending on their type. Each argument occupies 8 or 16 bytes in
9421 // the array, structs larger than 16 bytes are passed indirectly.
9422 //
9423 // One case requires special care:
9424 //
9425 //   struct mixed {
9426 //     int i;
9427 //     float f;
9428 //   };
9429 //
9430 // When a struct mixed is passed by value, it only occupies 8 bytes in the
9431 // parameter array, but the int is passed in an integer register, and the float
9432 // is passed in a floating point register. This is represented as two arguments
9433 // with the LLVM IR inreg attribute:
9434 //
9435 //   declare void f(i32 inreg %i, float inreg %f)
9436 //
9437 // The code generator will only allocate 4 bytes from the parameter array for
9438 // the inreg arguments. All other arguments are allocated a multiple of 8
9439 // bytes.
9440 //
9441 namespace {
9442 class SparcV9ABIInfo : public ABIInfo {
9443 public:
9444   SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
9445 
9446 private:
9447   ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const;
9448   void computeInfo(CGFunctionInfo &FI) const override;
9449   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9450                     QualType Ty) const override;
9451 
9452   // Coercion type builder for structs passed in registers. The coercion type
9453   // serves two purposes:
9454   //
9455   // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned'
9456   //    in registers.
9457   // 2. Expose aligned floating point elements as first-level elements, so the
9458   //    code generator knows to pass them in floating point registers.
9459   //
9460   // We also compute the InReg flag which indicates that the struct contains
9461   // aligned 32-bit floats.
9462   //
9463   struct CoerceBuilder {
9464     llvm::LLVMContext &Context;
9465     const llvm::DataLayout &DL;
9466     SmallVector<llvm::Type*, 8> Elems;
9467     uint64_t Size;
9468     bool InReg;
9469 
9470     CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl)
9471       : Context(c), DL(dl), Size(0), InReg(false) {}
9472 
9473     // Pad Elems with integers until Size is ToSize.
9474     void pad(uint64_t ToSize) {
9475       assert(ToSize >= Size && "Cannot remove elements");
9476       if (ToSize == Size)
9477         return;
9478 
9479       // Finish the current 64-bit word.
9480       uint64_t Aligned = llvm::alignTo(Size, 64);
9481       if (Aligned > Size && Aligned <= ToSize) {
9482         Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size));
9483         Size = Aligned;
9484       }
9485 
9486       // Add whole 64-bit words.
9487       while (Size + 64 <= ToSize) {
9488         Elems.push_back(llvm::Type::getInt64Ty(Context));
9489         Size += 64;
9490       }
9491 
9492       // Final in-word padding.
9493       if (Size < ToSize) {
9494         Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size));
9495         Size = ToSize;
9496       }
9497     }
9498 
9499     // Add a floating point element at Offset.
9500     void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) {
9501       // Unaligned floats are treated as integers.
9502       if (Offset % Bits)
9503         return;
9504       // The InReg flag is only required if there are any floats < 64 bits.
9505       if (Bits < 64)
9506         InReg = true;
9507       pad(Offset);
9508       Elems.push_back(Ty);
9509       Size = Offset + Bits;
9510     }
9511 
9512     // Add a struct type to the coercion type, starting at Offset (in bits).
9513     void addStruct(uint64_t Offset, llvm::StructType *StrTy) {
9514       const llvm::StructLayout *Layout = DL.getStructLayout(StrTy);
9515       for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) {
9516         llvm::Type *ElemTy = StrTy->getElementType(i);
9517         uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i);
9518         switch (ElemTy->getTypeID()) {
9519         case llvm::Type::StructTyID:
9520           addStruct(ElemOffset, cast<llvm::StructType>(ElemTy));
9521           break;
9522         case llvm::Type::FloatTyID:
9523           addFloat(ElemOffset, ElemTy, 32);
9524           break;
9525         case llvm::Type::DoubleTyID:
9526           addFloat(ElemOffset, ElemTy, 64);
9527           break;
9528         case llvm::Type::FP128TyID:
9529           addFloat(ElemOffset, ElemTy, 128);
9530           break;
9531         case llvm::Type::PointerTyID:
9532           if (ElemOffset % 64 == 0) {
9533             pad(ElemOffset);
9534             Elems.push_back(ElemTy);
9535             Size += 64;
9536           }
9537           break;
9538         default:
9539           break;
9540         }
9541       }
9542     }
9543 
9544     // Check if Ty is a usable substitute for the coercion type.
9545     bool isUsableType(llvm::StructType *Ty) const {
9546       return llvm::makeArrayRef(Elems) == Ty->elements();
9547     }
9548 
9549     // Get the coercion type as a literal struct type.
9550     llvm::Type *getType() const {
9551       if (Elems.size() == 1)
9552         return Elems.front();
9553       else
9554         return llvm::StructType::get(Context, Elems);
9555     }
9556   };
9557 };
9558 } // end anonymous namespace
9559 
9560 ABIArgInfo
9561 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const {
9562   if (Ty->isVoidType())
9563     return ABIArgInfo::getIgnore();
9564 
9565   uint64_t Size = getContext().getTypeSize(Ty);
9566 
9567   // Anything too big to fit in registers is passed with an explicit indirect
9568   // pointer / sret pointer.
9569   if (Size > SizeLimit)
9570     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
9571 
9572   // Treat an enum type as its underlying type.
9573   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
9574     Ty = EnumTy->getDecl()->getIntegerType();
9575 
9576   // Integer types smaller than a register are extended.
9577   if (Size < 64 && Ty->isIntegerType())
9578     return ABIArgInfo::getExtend(Ty);
9579 
9580   if (const auto *EIT = Ty->getAs<ExtIntType>())
9581     if (EIT->getNumBits() < 64)
9582       return ABIArgInfo::getExtend(Ty);
9583 
9584   // Other non-aggregates go in registers.
9585   if (!isAggregateTypeForABI(Ty))
9586     return ABIArgInfo::getDirect();
9587 
9588   // If a C++ object has either a non-trivial copy constructor or a non-trivial
9589   // destructor, it is passed with an explicit indirect pointer / sret pointer.
9590   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
9591     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
9592 
9593   // This is a small aggregate type that should be passed in registers.
9594   // Build a coercion type from the LLVM struct type.
9595   llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty));
9596   if (!StrTy)
9597     return ABIArgInfo::getDirect();
9598 
9599   CoerceBuilder CB(getVMContext(), getDataLayout());
9600   CB.addStruct(0, StrTy);
9601   CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64));
9602 
9603   // Try to use the original type for coercion.
9604   llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType();
9605 
9606   if (CB.InReg)
9607     return ABIArgInfo::getDirectInReg(CoerceTy);
9608   else
9609     return ABIArgInfo::getDirect(CoerceTy);
9610 }
9611 
9612 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9613                                   QualType Ty) const {
9614   ABIArgInfo AI = classifyType(Ty, 16 * 8);
9615   llvm::Type *ArgTy = CGT.ConvertType(Ty);
9616   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
9617     AI.setCoerceToType(ArgTy);
9618 
9619   CharUnits SlotSize = CharUnits::fromQuantity(8);
9620 
9621   CGBuilderTy &Builder = CGF.Builder;
9622   Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
9623   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
9624 
9625   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
9626 
9627   Address ArgAddr = Address::invalid();
9628   CharUnits Stride;
9629   switch (AI.getKind()) {
9630   case ABIArgInfo::Expand:
9631   case ABIArgInfo::CoerceAndExpand:
9632   case ABIArgInfo::InAlloca:
9633     llvm_unreachable("Unsupported ABI kind for va_arg");
9634 
9635   case ABIArgInfo::Extend: {
9636     Stride = SlotSize;
9637     CharUnits Offset = SlotSize - TypeInfo.Width;
9638     ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend");
9639     break;
9640   }
9641 
9642   case ABIArgInfo::Direct: {
9643     auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
9644     Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize);
9645     ArgAddr = Addr;
9646     break;
9647   }
9648 
9649   case ABIArgInfo::Indirect:
9650   case ABIArgInfo::IndirectAliased:
9651     Stride = SlotSize;
9652     ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect");
9653     ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"),
9654                       TypeInfo.Align);
9655     break;
9656 
9657   case ABIArgInfo::Ignore:
9658     return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.Align);
9659   }
9660 
9661   // Update VAList.
9662   Address NextPtr = Builder.CreateConstInBoundsByteGEP(Addr, Stride, "ap.next");
9663   Builder.CreateStore(NextPtr.getPointer(), VAListAddr);
9664 
9665   return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr");
9666 }
9667 
9668 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const {
9669   FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8);
9670   for (auto &I : FI.arguments())
9671     I.info = classifyType(I.type, 16 * 8);
9672 }
9673 
9674 namespace {
9675 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo {
9676 public:
9677   SparcV9TargetCodeGenInfo(CodeGenTypes &CGT)
9678       : TargetCodeGenInfo(std::make_unique<SparcV9ABIInfo>(CGT)) {}
9679 
9680   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
9681     return 14;
9682   }
9683 
9684   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
9685                                llvm::Value *Address) const override;
9686 };
9687 } // end anonymous namespace
9688 
9689 bool
9690 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
9691                                                 llvm::Value *Address) const {
9692   // This is calculated from the LLVM and GCC tables and verified
9693   // against gcc output.  AFAIK all ABIs use the same encoding.
9694 
9695   CodeGen::CGBuilderTy &Builder = CGF.Builder;
9696 
9697   llvm::IntegerType *i8 = CGF.Int8Ty;
9698   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
9699   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
9700 
9701   // 0-31: the 8-byte general-purpose registers
9702   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
9703 
9704   // 32-63: f0-31, the 4-byte floating-point registers
9705   AssignToArrayRange(Builder, Address, Four8, 32, 63);
9706 
9707   //   Y   = 64
9708   //   PSR = 65
9709   //   WIM = 66
9710   //   TBR = 67
9711   //   PC  = 68
9712   //   NPC = 69
9713   //   FSR = 70
9714   //   CSR = 71
9715   AssignToArrayRange(Builder, Address, Eight8, 64, 71);
9716 
9717   // 72-87: d0-15, the 8-byte floating-point registers
9718   AssignToArrayRange(Builder, Address, Eight8, 72, 87);
9719 
9720   return false;
9721 }
9722 
9723 // ARC ABI implementation.
9724 namespace {
9725 
9726 class ARCABIInfo : public DefaultABIInfo {
9727 public:
9728   using DefaultABIInfo::DefaultABIInfo;
9729 
9730 private:
9731   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9732                     QualType Ty) const override;
9733 
9734   void updateState(const ABIArgInfo &Info, QualType Ty, CCState &State) const {
9735     if (!State.FreeRegs)
9736       return;
9737     if (Info.isIndirect() && Info.getInReg())
9738       State.FreeRegs--;
9739     else if (Info.isDirect() && Info.getInReg()) {
9740       unsigned sz = (getContext().getTypeSize(Ty) + 31) / 32;
9741       if (sz < State.FreeRegs)
9742         State.FreeRegs -= sz;
9743       else
9744         State.FreeRegs = 0;
9745     }
9746   }
9747 
9748   void computeInfo(CGFunctionInfo &FI) const override {
9749     CCState State(FI);
9750     // ARC uses 8 registers to pass arguments.
9751     State.FreeRegs = 8;
9752 
9753     if (!getCXXABI().classifyReturnType(FI))
9754       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
9755     updateState(FI.getReturnInfo(), FI.getReturnType(), State);
9756     for (auto &I : FI.arguments()) {
9757       I.info = classifyArgumentType(I.type, State.FreeRegs);
9758       updateState(I.info, I.type, State);
9759     }
9760   }
9761 
9762   ABIArgInfo getIndirectByRef(QualType Ty, bool HasFreeRegs) const;
9763   ABIArgInfo getIndirectByValue(QualType Ty) const;
9764   ABIArgInfo classifyArgumentType(QualType Ty, uint8_t FreeRegs) const;
9765   ABIArgInfo classifyReturnType(QualType RetTy) const;
9766 };
9767 
9768 class ARCTargetCodeGenInfo : public TargetCodeGenInfo {
9769 public:
9770   ARCTargetCodeGenInfo(CodeGenTypes &CGT)
9771       : TargetCodeGenInfo(std::make_unique<ARCABIInfo>(CGT)) {}
9772 };
9773 
9774 
9775 ABIArgInfo ARCABIInfo::getIndirectByRef(QualType Ty, bool HasFreeRegs) const {
9776   return HasFreeRegs ? getNaturalAlignIndirectInReg(Ty) :
9777                        getNaturalAlignIndirect(Ty, false);
9778 }
9779 
9780 ABIArgInfo ARCABIInfo::getIndirectByValue(QualType Ty) const {
9781   // Compute the byval alignment.
9782   const unsigned MinABIStackAlignInBytes = 4;
9783   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
9784   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true,
9785                                  TypeAlign > MinABIStackAlignInBytes);
9786 }
9787 
9788 Address ARCABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9789                               QualType Ty) const {
9790   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
9791                           getContext().getTypeInfoInChars(Ty),
9792                           CharUnits::fromQuantity(4), true);
9793 }
9794 
9795 ABIArgInfo ARCABIInfo::classifyArgumentType(QualType Ty,
9796                                             uint8_t FreeRegs) const {
9797   // Handle the generic C++ ABI.
9798   const RecordType *RT = Ty->getAs<RecordType>();
9799   if (RT) {
9800     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
9801     if (RAA == CGCXXABI::RAA_Indirect)
9802       return getIndirectByRef(Ty, FreeRegs > 0);
9803 
9804     if (RAA == CGCXXABI::RAA_DirectInMemory)
9805       return getIndirectByValue(Ty);
9806   }
9807 
9808   // Treat an enum type as its underlying type.
9809   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
9810     Ty = EnumTy->getDecl()->getIntegerType();
9811 
9812   auto SizeInRegs = llvm::alignTo(getContext().getTypeSize(Ty), 32) / 32;
9813 
9814   if (isAggregateTypeForABI(Ty)) {
9815     // Structures with flexible arrays are always indirect.
9816     if (RT && RT->getDecl()->hasFlexibleArrayMember())
9817       return getIndirectByValue(Ty);
9818 
9819     // Ignore empty structs/unions.
9820     if (isEmptyRecord(getContext(), Ty, true))
9821       return ABIArgInfo::getIgnore();
9822 
9823     llvm::LLVMContext &LLVMContext = getVMContext();
9824 
9825     llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
9826     SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32);
9827     llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
9828 
9829     return FreeRegs >= SizeInRegs ?
9830         ABIArgInfo::getDirectInReg(Result) :
9831         ABIArgInfo::getDirect(Result, 0, nullptr, false);
9832   }
9833 
9834   if (const auto *EIT = Ty->getAs<ExtIntType>())
9835     if (EIT->getNumBits() > 64)
9836       return getIndirectByValue(Ty);
9837 
9838   return isPromotableIntegerTypeForABI(Ty)
9839              ? (FreeRegs >= SizeInRegs ? ABIArgInfo::getExtendInReg(Ty)
9840                                        : ABIArgInfo::getExtend(Ty))
9841              : (FreeRegs >= SizeInRegs ? ABIArgInfo::getDirectInReg()
9842                                        : ABIArgInfo::getDirect());
9843 }
9844 
9845 ABIArgInfo ARCABIInfo::classifyReturnType(QualType RetTy) const {
9846   if (RetTy->isAnyComplexType())
9847     return ABIArgInfo::getDirectInReg();
9848 
9849   // Arguments of size > 4 registers are indirect.
9850   auto RetSize = llvm::alignTo(getContext().getTypeSize(RetTy), 32) / 32;
9851   if (RetSize > 4)
9852     return getIndirectByRef(RetTy, /*HasFreeRegs*/ true);
9853 
9854   return DefaultABIInfo::classifyReturnType(RetTy);
9855 }
9856 
9857 } // End anonymous namespace.
9858 
9859 //===----------------------------------------------------------------------===//
9860 // XCore ABI Implementation
9861 //===----------------------------------------------------------------------===//
9862 
9863 namespace {
9864 
9865 /// A SmallStringEnc instance is used to build up the TypeString by passing
9866 /// it by reference between functions that append to it.
9867 typedef llvm::SmallString<128> SmallStringEnc;
9868 
9869 /// TypeStringCache caches the meta encodings of Types.
9870 ///
9871 /// The reason for caching TypeStrings is two fold:
9872 ///   1. To cache a type's encoding for later uses;
9873 ///   2. As a means to break recursive member type inclusion.
9874 ///
9875 /// A cache Entry can have a Status of:
9876 ///   NonRecursive:   The type encoding is not recursive;
9877 ///   Recursive:      The type encoding is recursive;
9878 ///   Incomplete:     An incomplete TypeString;
9879 ///   IncompleteUsed: An incomplete TypeString that has been used in a
9880 ///                   Recursive type encoding.
9881 ///
9882 /// A NonRecursive entry will have all of its sub-members expanded as fully
9883 /// as possible. Whilst it may contain types which are recursive, the type
9884 /// itself is not recursive and thus its encoding may be safely used whenever
9885 /// the type is encountered.
9886 ///
9887 /// A Recursive entry will have all of its sub-members expanded as fully as
9888 /// possible. The type itself is recursive and it may contain other types which
9889 /// are recursive. The Recursive encoding must not be used during the expansion
9890 /// of a recursive type's recursive branch. For simplicity the code uses
9891 /// IncompleteCount to reject all usage of Recursive encodings for member types.
9892 ///
9893 /// An Incomplete entry is always a RecordType and only encodes its
9894 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and
9895 /// are placed into the cache during type expansion as a means to identify and
9896 /// handle recursive inclusion of types as sub-members. If there is recursion
9897 /// the entry becomes IncompleteUsed.
9898 ///
9899 /// During the expansion of a RecordType's members:
9900 ///
9901 ///   If the cache contains a NonRecursive encoding for the member type, the
9902 ///   cached encoding is used;
9903 ///
9904 ///   If the cache contains a Recursive encoding for the member type, the
9905 ///   cached encoding is 'Swapped' out, as it may be incorrect, and...
9906 ///
9907 ///   If the member is a RecordType, an Incomplete encoding is placed into the
9908 ///   cache to break potential recursive inclusion of itself as a sub-member;
9909 ///
9910 ///   Once a member RecordType has been expanded, its temporary incomplete
9911 ///   entry is removed from the cache. If a Recursive encoding was swapped out
9912 ///   it is swapped back in;
9913 ///
9914 ///   If an incomplete entry is used to expand a sub-member, the incomplete
9915 ///   entry is marked as IncompleteUsed. The cache keeps count of how many
9916 ///   IncompleteUsed entries it currently contains in IncompleteUsedCount;
9917 ///
9918 ///   If a member's encoding is found to be a NonRecursive or Recursive viz:
9919 ///   IncompleteUsedCount==0, the member's encoding is added to the cache.
9920 ///   Else the member is part of a recursive type and thus the recursion has
9921 ///   been exited too soon for the encoding to be correct for the member.
9922 ///
9923 class TypeStringCache {
9924   enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed};
9925   struct Entry {
9926     std::string Str;     // The encoded TypeString for the type.
9927     enum Status State;   // Information about the encoding in 'Str'.
9928     std::string Swapped; // A temporary place holder for a Recursive encoding
9929                          // during the expansion of RecordType's members.
9930   };
9931   std::map<const IdentifierInfo *, struct Entry> Map;
9932   unsigned IncompleteCount;     // Number of Incomplete entries in the Map.
9933   unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map.
9934 public:
9935   TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {}
9936   void addIncomplete(const IdentifierInfo *ID, std::string StubEnc);
9937   bool removeIncomplete(const IdentifierInfo *ID);
9938   void addIfComplete(const IdentifierInfo *ID, StringRef Str,
9939                      bool IsRecursive);
9940   StringRef lookupStr(const IdentifierInfo *ID);
9941 };
9942 
9943 /// TypeString encodings for enum & union fields must be order.
9944 /// FieldEncoding is a helper for this ordering process.
9945 class FieldEncoding {
9946   bool HasName;
9947   std::string Enc;
9948 public:
9949   FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {}
9950   StringRef str() { return Enc; }
9951   bool operator<(const FieldEncoding &rhs) const {
9952     if (HasName != rhs.HasName) return HasName;
9953     return Enc < rhs.Enc;
9954   }
9955 };
9956 
9957 class XCoreABIInfo : public DefaultABIInfo {
9958 public:
9959   XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
9960   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9961                     QualType Ty) const override;
9962 };
9963 
9964 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo {
9965   mutable TypeStringCache TSC;
9966   void emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
9967                     const CodeGen::CodeGenModule &M) const;
9968 
9969 public:
9970   XCoreTargetCodeGenInfo(CodeGenTypes &CGT)
9971       : TargetCodeGenInfo(std::make_unique<XCoreABIInfo>(CGT)) {}
9972   void emitTargetMetadata(CodeGen::CodeGenModule &CGM,
9973                           const llvm::MapVector<GlobalDecl, StringRef>
9974                               &MangledDeclNames) const override;
9975 };
9976 
9977 } // End anonymous namespace.
9978 
9979 // TODO: this implementation is likely now redundant with the default
9980 // EmitVAArg.
9981 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9982                                 QualType Ty) const {
9983   CGBuilderTy &Builder = CGF.Builder;
9984 
9985   // Get the VAList.
9986   CharUnits SlotSize = CharUnits::fromQuantity(4);
9987   Address AP(Builder.CreateLoad(VAListAddr), SlotSize);
9988 
9989   // Handle the argument.
9990   ABIArgInfo AI = classifyArgumentType(Ty);
9991   CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty);
9992   llvm::Type *ArgTy = CGT.ConvertType(Ty);
9993   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
9994     AI.setCoerceToType(ArgTy);
9995   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
9996 
9997   Address Val = Address::invalid();
9998   CharUnits ArgSize = CharUnits::Zero();
9999   switch (AI.getKind()) {
10000   case ABIArgInfo::Expand:
10001   case ABIArgInfo::CoerceAndExpand:
10002   case ABIArgInfo::InAlloca:
10003     llvm_unreachable("Unsupported ABI kind for va_arg");
10004   case ABIArgInfo::Ignore:
10005     Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign);
10006     ArgSize = CharUnits::Zero();
10007     break;
10008   case ABIArgInfo::Extend:
10009   case ABIArgInfo::Direct:
10010     Val = Builder.CreateBitCast(AP, ArgPtrTy);
10011     ArgSize = CharUnits::fromQuantity(
10012                        getDataLayout().getTypeAllocSize(AI.getCoerceToType()));
10013     ArgSize = ArgSize.alignTo(SlotSize);
10014     break;
10015   case ABIArgInfo::Indirect:
10016   case ABIArgInfo::IndirectAliased:
10017     Val = Builder.CreateElementBitCast(AP, ArgPtrTy);
10018     Val = Address(Builder.CreateLoad(Val), TypeAlign);
10019     ArgSize = SlotSize;
10020     break;
10021   }
10022 
10023   // Increment the VAList.
10024   if (!ArgSize.isZero()) {
10025     Address APN = Builder.CreateConstInBoundsByteGEP(AP, ArgSize);
10026     Builder.CreateStore(APN.getPointer(), VAListAddr);
10027   }
10028 
10029   return Val;
10030 }
10031 
10032 /// During the expansion of a RecordType, an incomplete TypeString is placed
10033 /// into the cache as a means to identify and break recursion.
10034 /// If there is a Recursive encoding in the cache, it is swapped out and will
10035 /// be reinserted by removeIncomplete().
10036 /// All other types of encoding should have been used rather than arriving here.
10037 void TypeStringCache::addIncomplete(const IdentifierInfo *ID,
10038                                     std::string StubEnc) {
10039   if (!ID)
10040     return;
10041   Entry &E = Map[ID];
10042   assert( (E.Str.empty() || E.State == Recursive) &&
10043          "Incorrectly use of addIncomplete");
10044   assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()");
10045   E.Swapped.swap(E.Str); // swap out the Recursive
10046   E.Str.swap(StubEnc);
10047   E.State = Incomplete;
10048   ++IncompleteCount;
10049 }
10050 
10051 /// Once the RecordType has been expanded, the temporary incomplete TypeString
10052 /// must be removed from the cache.
10053 /// If a Recursive was swapped out by addIncomplete(), it will be replaced.
10054 /// Returns true if the RecordType was defined recursively.
10055 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) {
10056   if (!ID)
10057     return false;
10058   auto I = Map.find(ID);
10059   assert(I != Map.end() && "Entry not present");
10060   Entry &E = I->second;
10061   assert( (E.State == Incomplete ||
10062            E.State == IncompleteUsed) &&
10063          "Entry must be an incomplete type");
10064   bool IsRecursive = false;
10065   if (E.State == IncompleteUsed) {
10066     // We made use of our Incomplete encoding, thus we are recursive.
10067     IsRecursive = true;
10068     --IncompleteUsedCount;
10069   }
10070   if (E.Swapped.empty())
10071     Map.erase(I);
10072   else {
10073     // Swap the Recursive back.
10074     E.Swapped.swap(E.Str);
10075     E.Swapped.clear();
10076     E.State = Recursive;
10077   }
10078   --IncompleteCount;
10079   return IsRecursive;
10080 }
10081 
10082 /// Add the encoded TypeString to the cache only if it is NonRecursive or
10083 /// Recursive (viz: all sub-members were expanded as fully as possible).
10084 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str,
10085                                     bool IsRecursive) {
10086   if (!ID || IncompleteUsedCount)
10087     return; // No key or it is is an incomplete sub-type so don't add.
10088   Entry &E = Map[ID];
10089   if (IsRecursive && !E.Str.empty()) {
10090     assert(E.State==Recursive && E.Str.size() == Str.size() &&
10091            "This is not the same Recursive entry");
10092     // The parent container was not recursive after all, so we could have used
10093     // this Recursive sub-member entry after all, but we assumed the worse when
10094     // we started viz: IncompleteCount!=0.
10095     return;
10096   }
10097   assert(E.Str.empty() && "Entry already present");
10098   E.Str = Str.str();
10099   E.State = IsRecursive? Recursive : NonRecursive;
10100 }
10101 
10102 /// Return a cached TypeString encoding for the ID. If there isn't one, or we
10103 /// are recursively expanding a type (IncompleteCount != 0) and the cached
10104 /// encoding is Recursive, return an empty StringRef.
10105 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) {
10106   if (!ID)
10107     return StringRef();   // We have no key.
10108   auto I = Map.find(ID);
10109   if (I == Map.end())
10110     return StringRef();   // We have no encoding.
10111   Entry &E = I->second;
10112   if (E.State == Recursive && IncompleteCount)
10113     return StringRef();   // We don't use Recursive encodings for member types.
10114 
10115   if (E.State == Incomplete) {
10116     // The incomplete type is being used to break out of recursion.
10117     E.State = IncompleteUsed;
10118     ++IncompleteUsedCount;
10119   }
10120   return E.Str;
10121 }
10122 
10123 /// The XCore ABI includes a type information section that communicates symbol
10124 /// type information to the linker. The linker uses this information to verify
10125 /// safety/correctness of things such as array bound and pointers et al.
10126 /// The ABI only requires C (and XC) language modules to emit TypeStrings.
10127 /// This type information (TypeString) is emitted into meta data for all global
10128 /// symbols: definitions, declarations, functions & variables.
10129 ///
10130 /// The TypeString carries type, qualifier, name, size & value details.
10131 /// Please see 'Tools Development Guide' section 2.16.2 for format details:
10132 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf
10133 /// The output is tested by test/CodeGen/xcore-stringtype.c.
10134 ///
10135 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
10136                           const CodeGen::CodeGenModule &CGM,
10137                           TypeStringCache &TSC);
10138 
10139 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols.
10140 void XCoreTargetCodeGenInfo::emitTargetMD(
10141     const Decl *D, llvm::GlobalValue *GV,
10142     const CodeGen::CodeGenModule &CGM) const {
10143   SmallStringEnc Enc;
10144   if (getTypeString(Enc, D, CGM, TSC)) {
10145     llvm::LLVMContext &Ctx = CGM.getModule().getContext();
10146     llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV),
10147                                 llvm::MDString::get(Ctx, Enc.str())};
10148     llvm::NamedMDNode *MD =
10149       CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings");
10150     MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
10151   }
10152 }
10153 
10154 void XCoreTargetCodeGenInfo::emitTargetMetadata(
10155     CodeGen::CodeGenModule &CGM,
10156     const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames) const {
10157   // Warning, new MangledDeclNames may be appended within this loop.
10158   // We rely on MapVector insertions adding new elements to the end
10159   // of the container.
10160   for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
10161     auto Val = *(MangledDeclNames.begin() + I);
10162     llvm::GlobalValue *GV = CGM.GetGlobalValue(Val.second);
10163     if (GV) {
10164       const Decl *D = Val.first.getDecl()->getMostRecentDecl();
10165       emitTargetMD(D, GV, CGM);
10166     }
10167   }
10168 }
10169 //===----------------------------------------------------------------------===//
10170 // SPIR ABI Implementation
10171 //===----------------------------------------------------------------------===//
10172 
10173 namespace {
10174 class SPIRABIInfo : public DefaultABIInfo {
10175 public:
10176   SPIRABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) { setCCs(); }
10177 
10178 private:
10179   void setCCs();
10180 };
10181 } // end anonymous namespace
10182 namespace {
10183 class SPIRTargetCodeGenInfo : public TargetCodeGenInfo {
10184 public:
10185   SPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
10186       : TargetCodeGenInfo(std::make_unique<SPIRABIInfo>(CGT)) {}
10187 
10188   LangAS getASTAllocaAddressSpace() const override {
10189     return getLangASFromTargetAS(
10190         getABIInfo().getDataLayout().getAllocaAddrSpace());
10191   }
10192 
10193   unsigned getOpenCLKernelCallingConv() const override;
10194 };
10195 
10196 } // End anonymous namespace.
10197 void SPIRABIInfo::setCCs() {
10198   assert(getRuntimeCC() == llvm::CallingConv::C);
10199   RuntimeCC = llvm::CallingConv::SPIR_FUNC;
10200 }
10201 
10202 namespace clang {
10203 namespace CodeGen {
10204 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) {
10205   DefaultABIInfo SPIRABI(CGM.getTypes());
10206   SPIRABI.computeInfo(FI);
10207 }
10208 }
10209 }
10210 
10211 unsigned SPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const {
10212   return llvm::CallingConv::SPIR_KERNEL;
10213 }
10214 
10215 static bool appendType(SmallStringEnc &Enc, QualType QType,
10216                        const CodeGen::CodeGenModule &CGM,
10217                        TypeStringCache &TSC);
10218 
10219 /// Helper function for appendRecordType().
10220 /// Builds a SmallVector containing the encoded field types in declaration
10221 /// order.
10222 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE,
10223                              const RecordDecl *RD,
10224                              const CodeGen::CodeGenModule &CGM,
10225                              TypeStringCache &TSC) {
10226   for (const auto *Field : RD->fields()) {
10227     SmallStringEnc Enc;
10228     Enc += "m(";
10229     Enc += Field->getName();
10230     Enc += "){";
10231     if (Field->isBitField()) {
10232       Enc += "b(";
10233       llvm::raw_svector_ostream OS(Enc);
10234       OS << Field->getBitWidthValue(CGM.getContext());
10235       Enc += ':';
10236     }
10237     if (!appendType(Enc, Field->getType(), CGM, TSC))
10238       return false;
10239     if (Field->isBitField())
10240       Enc += ')';
10241     Enc += '}';
10242     FE.emplace_back(!Field->getName().empty(), Enc);
10243   }
10244   return true;
10245 }
10246 
10247 /// Appends structure and union types to Enc and adds encoding to cache.
10248 /// Recursively calls appendType (via extractFieldType) for each field.
10249 /// Union types have their fields ordered according to the ABI.
10250 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT,
10251                              const CodeGen::CodeGenModule &CGM,
10252                              TypeStringCache &TSC, const IdentifierInfo *ID) {
10253   // Append the cached TypeString if we have one.
10254   StringRef TypeString = TSC.lookupStr(ID);
10255   if (!TypeString.empty()) {
10256     Enc += TypeString;
10257     return true;
10258   }
10259 
10260   // Start to emit an incomplete TypeString.
10261   size_t Start = Enc.size();
10262   Enc += (RT->isUnionType()? 'u' : 's');
10263   Enc += '(';
10264   if (ID)
10265     Enc += ID->getName();
10266   Enc += "){";
10267 
10268   // We collect all encoded fields and order as necessary.
10269   bool IsRecursive = false;
10270   const RecordDecl *RD = RT->getDecl()->getDefinition();
10271   if (RD && !RD->field_empty()) {
10272     // An incomplete TypeString stub is placed in the cache for this RecordType
10273     // so that recursive calls to this RecordType will use it whilst building a
10274     // complete TypeString for this RecordType.
10275     SmallVector<FieldEncoding, 16> FE;
10276     std::string StubEnc(Enc.substr(Start).str());
10277     StubEnc += '}';  // StubEnc now holds a valid incomplete TypeString.
10278     TSC.addIncomplete(ID, std::move(StubEnc));
10279     if (!extractFieldType(FE, RD, CGM, TSC)) {
10280       (void) TSC.removeIncomplete(ID);
10281       return false;
10282     }
10283     IsRecursive = TSC.removeIncomplete(ID);
10284     // The ABI requires unions to be sorted but not structures.
10285     // See FieldEncoding::operator< for sort algorithm.
10286     if (RT->isUnionType())
10287       llvm::sort(FE);
10288     // We can now complete the TypeString.
10289     unsigned E = FE.size();
10290     for (unsigned I = 0; I != E; ++I) {
10291       if (I)
10292         Enc += ',';
10293       Enc += FE[I].str();
10294     }
10295   }
10296   Enc += '}';
10297   TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive);
10298   return true;
10299 }
10300 
10301 /// Appends enum types to Enc and adds the encoding to the cache.
10302 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET,
10303                            TypeStringCache &TSC,
10304                            const IdentifierInfo *ID) {
10305   // Append the cached TypeString if we have one.
10306   StringRef TypeString = TSC.lookupStr(ID);
10307   if (!TypeString.empty()) {
10308     Enc += TypeString;
10309     return true;
10310   }
10311 
10312   size_t Start = Enc.size();
10313   Enc += "e(";
10314   if (ID)
10315     Enc += ID->getName();
10316   Enc += "){";
10317 
10318   // We collect all encoded enumerations and order them alphanumerically.
10319   if (const EnumDecl *ED = ET->getDecl()->getDefinition()) {
10320     SmallVector<FieldEncoding, 16> FE;
10321     for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E;
10322          ++I) {
10323       SmallStringEnc EnumEnc;
10324       EnumEnc += "m(";
10325       EnumEnc += I->getName();
10326       EnumEnc += "){";
10327       I->getInitVal().toString(EnumEnc);
10328       EnumEnc += '}';
10329       FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc));
10330     }
10331     llvm::sort(FE);
10332     unsigned E = FE.size();
10333     for (unsigned I = 0; I != E; ++I) {
10334       if (I)
10335         Enc += ',';
10336       Enc += FE[I].str();
10337     }
10338   }
10339   Enc += '}';
10340   TSC.addIfComplete(ID, Enc.substr(Start), false);
10341   return true;
10342 }
10343 
10344 /// Appends type's qualifier to Enc.
10345 /// This is done prior to appending the type's encoding.
10346 static void appendQualifier(SmallStringEnc &Enc, QualType QT) {
10347   // Qualifiers are emitted in alphabetical order.
10348   static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"};
10349   int Lookup = 0;
10350   if (QT.isConstQualified())
10351     Lookup += 1<<0;
10352   if (QT.isRestrictQualified())
10353     Lookup += 1<<1;
10354   if (QT.isVolatileQualified())
10355     Lookup += 1<<2;
10356   Enc += Table[Lookup];
10357 }
10358 
10359 /// Appends built-in types to Enc.
10360 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) {
10361   const char *EncType;
10362   switch (BT->getKind()) {
10363     case BuiltinType::Void:
10364       EncType = "0";
10365       break;
10366     case BuiltinType::Bool:
10367       EncType = "b";
10368       break;
10369     case BuiltinType::Char_U:
10370       EncType = "uc";
10371       break;
10372     case BuiltinType::UChar:
10373       EncType = "uc";
10374       break;
10375     case BuiltinType::SChar:
10376       EncType = "sc";
10377       break;
10378     case BuiltinType::UShort:
10379       EncType = "us";
10380       break;
10381     case BuiltinType::Short:
10382       EncType = "ss";
10383       break;
10384     case BuiltinType::UInt:
10385       EncType = "ui";
10386       break;
10387     case BuiltinType::Int:
10388       EncType = "si";
10389       break;
10390     case BuiltinType::ULong:
10391       EncType = "ul";
10392       break;
10393     case BuiltinType::Long:
10394       EncType = "sl";
10395       break;
10396     case BuiltinType::ULongLong:
10397       EncType = "ull";
10398       break;
10399     case BuiltinType::LongLong:
10400       EncType = "sll";
10401       break;
10402     case BuiltinType::Float:
10403       EncType = "ft";
10404       break;
10405     case BuiltinType::Double:
10406       EncType = "d";
10407       break;
10408     case BuiltinType::LongDouble:
10409       EncType = "ld";
10410       break;
10411     default:
10412       return false;
10413   }
10414   Enc += EncType;
10415   return true;
10416 }
10417 
10418 /// Appends a pointer encoding to Enc before calling appendType for the pointee.
10419 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT,
10420                               const CodeGen::CodeGenModule &CGM,
10421                               TypeStringCache &TSC) {
10422   Enc += "p(";
10423   if (!appendType(Enc, PT->getPointeeType(), CGM, TSC))
10424     return false;
10425   Enc += ')';
10426   return true;
10427 }
10428 
10429 /// Appends array encoding to Enc before calling appendType for the element.
10430 static bool appendArrayType(SmallStringEnc &Enc, QualType QT,
10431                             const ArrayType *AT,
10432                             const CodeGen::CodeGenModule &CGM,
10433                             TypeStringCache &TSC, StringRef NoSizeEnc) {
10434   if (AT->getSizeModifier() != ArrayType::Normal)
10435     return false;
10436   Enc += "a(";
10437   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
10438     CAT->getSize().toStringUnsigned(Enc);
10439   else
10440     Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "".
10441   Enc += ':';
10442   // The Qualifiers should be attached to the type rather than the array.
10443   appendQualifier(Enc, QT);
10444   if (!appendType(Enc, AT->getElementType(), CGM, TSC))
10445     return false;
10446   Enc += ')';
10447   return true;
10448 }
10449 
10450 /// Appends a function encoding to Enc, calling appendType for the return type
10451 /// and the arguments.
10452 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT,
10453                              const CodeGen::CodeGenModule &CGM,
10454                              TypeStringCache &TSC) {
10455   Enc += "f{";
10456   if (!appendType(Enc, FT->getReturnType(), CGM, TSC))
10457     return false;
10458   Enc += "}(";
10459   if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) {
10460     // N.B. we are only interested in the adjusted param types.
10461     auto I = FPT->param_type_begin();
10462     auto E = FPT->param_type_end();
10463     if (I != E) {
10464       do {
10465         if (!appendType(Enc, *I, CGM, TSC))
10466           return false;
10467         ++I;
10468         if (I != E)
10469           Enc += ',';
10470       } while (I != E);
10471       if (FPT->isVariadic())
10472         Enc += ",va";
10473     } else {
10474       if (FPT->isVariadic())
10475         Enc += "va";
10476       else
10477         Enc += '0';
10478     }
10479   }
10480   Enc += ')';
10481   return true;
10482 }
10483 
10484 /// Handles the type's qualifier before dispatching a call to handle specific
10485 /// type encodings.
10486 static bool appendType(SmallStringEnc &Enc, QualType QType,
10487                        const CodeGen::CodeGenModule &CGM,
10488                        TypeStringCache &TSC) {
10489 
10490   QualType QT = QType.getCanonicalType();
10491 
10492   if (const ArrayType *AT = QT->getAsArrayTypeUnsafe())
10493     // The Qualifiers should be attached to the type rather than the array.
10494     // Thus we don't call appendQualifier() here.
10495     return appendArrayType(Enc, QT, AT, CGM, TSC, "");
10496 
10497   appendQualifier(Enc, QT);
10498 
10499   if (const BuiltinType *BT = QT->getAs<BuiltinType>())
10500     return appendBuiltinType(Enc, BT);
10501 
10502   if (const PointerType *PT = QT->getAs<PointerType>())
10503     return appendPointerType(Enc, PT, CGM, TSC);
10504 
10505   if (const EnumType *ET = QT->getAs<EnumType>())
10506     return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier());
10507 
10508   if (const RecordType *RT = QT->getAsStructureType())
10509     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
10510 
10511   if (const RecordType *RT = QT->getAsUnionType())
10512     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
10513 
10514   if (const FunctionType *FT = QT->getAs<FunctionType>())
10515     return appendFunctionType(Enc, FT, CGM, TSC);
10516 
10517   return false;
10518 }
10519 
10520 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
10521                           const CodeGen::CodeGenModule &CGM,
10522                           TypeStringCache &TSC) {
10523   if (!D)
10524     return false;
10525 
10526   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
10527     if (FD->getLanguageLinkage() != CLanguageLinkage)
10528       return false;
10529     return appendType(Enc, FD->getType(), CGM, TSC);
10530   }
10531 
10532   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
10533     if (VD->getLanguageLinkage() != CLanguageLinkage)
10534       return false;
10535     QualType QT = VD->getType().getCanonicalType();
10536     if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) {
10537       // Global ArrayTypes are given a size of '*' if the size is unknown.
10538       // The Qualifiers should be attached to the type rather than the array.
10539       // Thus we don't call appendQualifier() here.
10540       return appendArrayType(Enc, QT, AT, CGM, TSC, "*");
10541     }
10542     return appendType(Enc, QT, CGM, TSC);
10543   }
10544   return false;
10545 }
10546 
10547 //===----------------------------------------------------------------------===//
10548 // RISCV ABI Implementation
10549 //===----------------------------------------------------------------------===//
10550 
10551 namespace {
10552 class RISCVABIInfo : public DefaultABIInfo {
10553 private:
10554   // Size of the integer ('x') registers in bits.
10555   unsigned XLen;
10556   // Size of the floating point ('f') registers in bits. Note that the target
10557   // ISA might have a wider FLen than the selected ABI (e.g. an RV32IF target
10558   // with soft float ABI has FLen==0).
10559   unsigned FLen;
10560   static const int NumArgGPRs = 8;
10561   static const int NumArgFPRs = 8;
10562   bool detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff,
10563                                       llvm::Type *&Field1Ty,
10564                                       CharUnits &Field1Off,
10565                                       llvm::Type *&Field2Ty,
10566                                       CharUnits &Field2Off) const;
10567 
10568 public:
10569   RISCVABIInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen, unsigned FLen)
10570       : DefaultABIInfo(CGT), XLen(XLen), FLen(FLen) {}
10571 
10572   // DefaultABIInfo's classifyReturnType and classifyArgumentType are
10573   // non-virtual, but computeInfo is virtual, so we overload it.
10574   void computeInfo(CGFunctionInfo &FI) const override;
10575 
10576   ABIArgInfo classifyArgumentType(QualType Ty, bool IsFixed, int &ArgGPRsLeft,
10577                                   int &ArgFPRsLeft) const;
10578   ABIArgInfo classifyReturnType(QualType RetTy) const;
10579 
10580   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
10581                     QualType Ty) const override;
10582 
10583   ABIArgInfo extendType(QualType Ty) const;
10584 
10585   bool detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty,
10586                                 CharUnits &Field1Off, llvm::Type *&Field2Ty,
10587                                 CharUnits &Field2Off, int &NeededArgGPRs,
10588                                 int &NeededArgFPRs) const;
10589   ABIArgInfo coerceAndExpandFPCCEligibleStruct(llvm::Type *Field1Ty,
10590                                                CharUnits Field1Off,
10591                                                llvm::Type *Field2Ty,
10592                                                CharUnits Field2Off) const;
10593 };
10594 } // end anonymous namespace
10595 
10596 void RISCVABIInfo::computeInfo(CGFunctionInfo &FI) const {
10597   QualType RetTy = FI.getReturnType();
10598   if (!getCXXABI().classifyReturnType(FI))
10599     FI.getReturnInfo() = classifyReturnType(RetTy);
10600 
10601   // IsRetIndirect is true if classifyArgumentType indicated the value should
10602   // be passed indirect, or if the type size is a scalar greater than 2*XLen
10603   // and not a complex type with elements <= FLen. e.g. fp128 is passed direct
10604   // in LLVM IR, relying on the backend lowering code to rewrite the argument
10605   // list and pass indirectly on RV32.
10606   bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect;
10607   if (!IsRetIndirect && RetTy->isScalarType() &&
10608       getContext().getTypeSize(RetTy) > (2 * XLen)) {
10609     if (RetTy->isComplexType() && FLen) {
10610       QualType EltTy = RetTy->castAs<ComplexType>()->getElementType();
10611       IsRetIndirect = getContext().getTypeSize(EltTy) > FLen;
10612     } else {
10613       // This is a normal scalar > 2*XLen, such as fp128 on RV32.
10614       IsRetIndirect = true;
10615     }
10616   }
10617 
10618   // We must track the number of GPRs used in order to conform to the RISC-V
10619   // ABI, as integer scalars passed in registers should have signext/zeroext
10620   // when promoted, but are anyext if passed on the stack. As GPR usage is
10621   // different for variadic arguments, we must also track whether we are
10622   // examining a vararg or not.
10623   int ArgGPRsLeft = IsRetIndirect ? NumArgGPRs - 1 : NumArgGPRs;
10624   int ArgFPRsLeft = FLen ? NumArgFPRs : 0;
10625   int NumFixedArgs = FI.getNumRequiredArgs();
10626 
10627   int ArgNum = 0;
10628   for (auto &ArgInfo : FI.arguments()) {
10629     bool IsFixed = ArgNum < NumFixedArgs;
10630     ArgInfo.info =
10631         classifyArgumentType(ArgInfo.type, IsFixed, ArgGPRsLeft, ArgFPRsLeft);
10632     ArgNum++;
10633   }
10634 }
10635 
10636 // Returns true if the struct is a potential candidate for the floating point
10637 // calling convention. If this function returns true, the caller is
10638 // responsible for checking that if there is only a single field then that
10639 // field is a float.
10640 bool RISCVABIInfo::detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff,
10641                                                   llvm::Type *&Field1Ty,
10642                                                   CharUnits &Field1Off,
10643                                                   llvm::Type *&Field2Ty,
10644                                                   CharUnits &Field2Off) const {
10645   bool IsInt = Ty->isIntegralOrEnumerationType();
10646   bool IsFloat = Ty->isRealFloatingType();
10647 
10648   if (IsInt || IsFloat) {
10649     uint64_t Size = getContext().getTypeSize(Ty);
10650     if (IsInt && Size > XLen)
10651       return false;
10652     // Can't be eligible if larger than the FP registers. Half precision isn't
10653     // currently supported on RISC-V and the ABI hasn't been confirmed, so
10654     // default to the integer ABI in that case.
10655     if (IsFloat && (Size > FLen || Size < 32))
10656       return false;
10657     // Can't be eligible if an integer type was already found (int+int pairs
10658     // are not eligible).
10659     if (IsInt && Field1Ty && Field1Ty->isIntegerTy())
10660       return false;
10661     if (!Field1Ty) {
10662       Field1Ty = CGT.ConvertType(Ty);
10663       Field1Off = CurOff;
10664       return true;
10665     }
10666     if (!Field2Ty) {
10667       Field2Ty = CGT.ConvertType(Ty);
10668       Field2Off = CurOff;
10669       return true;
10670     }
10671     return false;
10672   }
10673 
10674   if (auto CTy = Ty->getAs<ComplexType>()) {
10675     if (Field1Ty)
10676       return false;
10677     QualType EltTy = CTy->getElementType();
10678     if (getContext().getTypeSize(EltTy) > FLen)
10679       return false;
10680     Field1Ty = CGT.ConvertType(EltTy);
10681     Field1Off = CurOff;
10682     Field2Ty = Field1Ty;
10683     Field2Off = Field1Off + getContext().getTypeSizeInChars(EltTy);
10684     return true;
10685   }
10686 
10687   if (const ConstantArrayType *ATy = getContext().getAsConstantArrayType(Ty)) {
10688     uint64_t ArraySize = ATy->getSize().getZExtValue();
10689     QualType EltTy = ATy->getElementType();
10690     CharUnits EltSize = getContext().getTypeSizeInChars(EltTy);
10691     for (uint64_t i = 0; i < ArraySize; ++i) {
10692       bool Ret = detectFPCCEligibleStructHelper(EltTy, CurOff, Field1Ty,
10693                                                 Field1Off, Field2Ty, Field2Off);
10694       if (!Ret)
10695         return false;
10696       CurOff += EltSize;
10697     }
10698     return true;
10699   }
10700 
10701   if (const auto *RTy = Ty->getAs<RecordType>()) {
10702     // Structures with either a non-trivial destructor or a non-trivial
10703     // copy constructor are not eligible for the FP calling convention.
10704     if (getRecordArgABI(Ty, CGT.getCXXABI()))
10705       return false;
10706     if (isEmptyRecord(getContext(), Ty, true))
10707       return true;
10708     const RecordDecl *RD = RTy->getDecl();
10709     // Unions aren't eligible unless they're empty (which is caught above).
10710     if (RD->isUnion())
10711       return false;
10712     int ZeroWidthBitFieldCount = 0;
10713     for (const FieldDecl *FD : RD->fields()) {
10714       const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
10715       uint64_t FieldOffInBits = Layout.getFieldOffset(FD->getFieldIndex());
10716       QualType QTy = FD->getType();
10717       if (FD->isBitField()) {
10718         unsigned BitWidth = FD->getBitWidthValue(getContext());
10719         // Allow a bitfield with a type greater than XLen as long as the
10720         // bitwidth is XLen or less.
10721         if (getContext().getTypeSize(QTy) > XLen && BitWidth <= XLen)
10722           QTy = getContext().getIntTypeForBitwidth(XLen, false);
10723         if (BitWidth == 0) {
10724           ZeroWidthBitFieldCount++;
10725           continue;
10726         }
10727       }
10728 
10729       bool Ret = detectFPCCEligibleStructHelper(
10730           QTy, CurOff + getContext().toCharUnitsFromBits(FieldOffInBits),
10731           Field1Ty, Field1Off, Field2Ty, Field2Off);
10732       if (!Ret)
10733         return false;
10734 
10735       // As a quirk of the ABI, zero-width bitfields aren't ignored for fp+fp
10736       // or int+fp structs, but are ignored for a struct with an fp field and
10737       // any number of zero-width bitfields.
10738       if (Field2Ty && ZeroWidthBitFieldCount > 0)
10739         return false;
10740     }
10741     return Field1Ty != nullptr;
10742   }
10743 
10744   return false;
10745 }
10746 
10747 // Determine if a struct is eligible for passing according to the floating
10748 // point calling convention (i.e., when flattened it contains a single fp
10749 // value, fp+fp, or int+fp of appropriate size). If so, NeededArgFPRs and
10750 // NeededArgGPRs are incremented appropriately.
10751 bool RISCVABIInfo::detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty,
10752                                             CharUnits &Field1Off,
10753                                             llvm::Type *&Field2Ty,
10754                                             CharUnits &Field2Off,
10755                                             int &NeededArgGPRs,
10756                                             int &NeededArgFPRs) const {
10757   Field1Ty = nullptr;
10758   Field2Ty = nullptr;
10759   NeededArgGPRs = 0;
10760   NeededArgFPRs = 0;
10761   bool IsCandidate = detectFPCCEligibleStructHelper(
10762       Ty, CharUnits::Zero(), Field1Ty, Field1Off, Field2Ty, Field2Off);
10763   // Not really a candidate if we have a single int but no float.
10764   if (Field1Ty && !Field2Ty && !Field1Ty->isFloatingPointTy())
10765     return false;
10766   if (!IsCandidate)
10767     return false;
10768   if (Field1Ty && Field1Ty->isFloatingPointTy())
10769     NeededArgFPRs++;
10770   else if (Field1Ty)
10771     NeededArgGPRs++;
10772   if (Field2Ty && Field2Ty->isFloatingPointTy())
10773     NeededArgFPRs++;
10774   else if (Field2Ty)
10775     NeededArgGPRs++;
10776   return true;
10777 }
10778 
10779 // Call getCoerceAndExpand for the two-element flattened struct described by
10780 // Field1Ty, Field1Off, Field2Ty, Field2Off. This method will create an
10781 // appropriate coerceToType and unpaddedCoerceToType.
10782 ABIArgInfo RISCVABIInfo::coerceAndExpandFPCCEligibleStruct(
10783     llvm::Type *Field1Ty, CharUnits Field1Off, llvm::Type *Field2Ty,
10784     CharUnits Field2Off) const {
10785   SmallVector<llvm::Type *, 3> CoerceElts;
10786   SmallVector<llvm::Type *, 2> UnpaddedCoerceElts;
10787   if (!Field1Off.isZero())
10788     CoerceElts.push_back(llvm::ArrayType::get(
10789         llvm::Type::getInt8Ty(getVMContext()), Field1Off.getQuantity()));
10790 
10791   CoerceElts.push_back(Field1Ty);
10792   UnpaddedCoerceElts.push_back(Field1Ty);
10793 
10794   if (!Field2Ty) {
10795     return ABIArgInfo::getCoerceAndExpand(
10796         llvm::StructType::get(getVMContext(), CoerceElts, !Field1Off.isZero()),
10797         UnpaddedCoerceElts[0]);
10798   }
10799 
10800   CharUnits Field2Align =
10801       CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(Field2Ty));
10802   CharUnits Field1End = Field1Off +
10803       CharUnits::fromQuantity(getDataLayout().getTypeStoreSize(Field1Ty));
10804   CharUnits Field2OffNoPadNoPack = Field1End.alignTo(Field2Align);
10805 
10806   CharUnits Padding = CharUnits::Zero();
10807   if (Field2Off > Field2OffNoPadNoPack)
10808     Padding = Field2Off - Field2OffNoPadNoPack;
10809   else if (Field2Off != Field2Align && Field2Off > Field1End)
10810     Padding = Field2Off - Field1End;
10811 
10812   bool IsPacked = !Field2Off.isMultipleOf(Field2Align);
10813 
10814   if (!Padding.isZero())
10815     CoerceElts.push_back(llvm::ArrayType::get(
10816         llvm::Type::getInt8Ty(getVMContext()), Padding.getQuantity()));
10817 
10818   CoerceElts.push_back(Field2Ty);
10819   UnpaddedCoerceElts.push_back(Field2Ty);
10820 
10821   auto CoerceToType =
10822       llvm::StructType::get(getVMContext(), CoerceElts, IsPacked);
10823   auto UnpaddedCoerceToType =
10824       llvm::StructType::get(getVMContext(), UnpaddedCoerceElts, IsPacked);
10825 
10826   return ABIArgInfo::getCoerceAndExpand(CoerceToType, UnpaddedCoerceToType);
10827 }
10828 
10829 ABIArgInfo RISCVABIInfo::classifyArgumentType(QualType Ty, bool IsFixed,
10830                                               int &ArgGPRsLeft,
10831                                               int &ArgFPRsLeft) const {
10832   assert(ArgGPRsLeft <= NumArgGPRs && "Arg GPR tracking underflow");
10833   Ty = useFirstFieldIfTransparentUnion(Ty);
10834 
10835   // Structures with either a non-trivial destructor or a non-trivial
10836   // copy constructor are always passed indirectly.
10837   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
10838     if (ArgGPRsLeft)
10839       ArgGPRsLeft -= 1;
10840     return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
10841                                            CGCXXABI::RAA_DirectInMemory);
10842   }
10843 
10844   // Ignore empty structs/unions.
10845   if (isEmptyRecord(getContext(), Ty, true))
10846     return ABIArgInfo::getIgnore();
10847 
10848   uint64_t Size = getContext().getTypeSize(Ty);
10849 
10850   // Pass floating point values via FPRs if possible.
10851   if (IsFixed && Ty->isFloatingType() && !Ty->isComplexType() &&
10852       FLen >= Size && ArgFPRsLeft) {
10853     ArgFPRsLeft--;
10854     return ABIArgInfo::getDirect();
10855   }
10856 
10857   // Complex types for the hard float ABI must be passed direct rather than
10858   // using CoerceAndExpand.
10859   if (IsFixed && Ty->isComplexType() && FLen && ArgFPRsLeft >= 2) {
10860     QualType EltTy = Ty->castAs<ComplexType>()->getElementType();
10861     if (getContext().getTypeSize(EltTy) <= FLen) {
10862       ArgFPRsLeft -= 2;
10863       return ABIArgInfo::getDirect();
10864     }
10865   }
10866 
10867   if (IsFixed && FLen && Ty->isStructureOrClassType()) {
10868     llvm::Type *Field1Ty = nullptr;
10869     llvm::Type *Field2Ty = nullptr;
10870     CharUnits Field1Off = CharUnits::Zero();
10871     CharUnits Field2Off = CharUnits::Zero();
10872     int NeededArgGPRs = 0;
10873     int NeededArgFPRs = 0;
10874     bool IsCandidate =
10875         detectFPCCEligibleStruct(Ty, Field1Ty, Field1Off, Field2Ty, Field2Off,
10876                                  NeededArgGPRs, NeededArgFPRs);
10877     if (IsCandidate && NeededArgGPRs <= ArgGPRsLeft &&
10878         NeededArgFPRs <= ArgFPRsLeft) {
10879       ArgGPRsLeft -= NeededArgGPRs;
10880       ArgFPRsLeft -= NeededArgFPRs;
10881       return coerceAndExpandFPCCEligibleStruct(Field1Ty, Field1Off, Field2Ty,
10882                                                Field2Off);
10883     }
10884   }
10885 
10886   uint64_t NeededAlign = getContext().getTypeAlign(Ty);
10887   bool MustUseStack = false;
10888   // Determine the number of GPRs needed to pass the current argument
10889   // according to the ABI. 2*XLen-aligned varargs are passed in "aligned"
10890   // register pairs, so may consume 3 registers.
10891   int NeededArgGPRs = 1;
10892   if (!IsFixed && NeededAlign == 2 * XLen)
10893     NeededArgGPRs = 2 + (ArgGPRsLeft % 2);
10894   else if (Size > XLen && Size <= 2 * XLen)
10895     NeededArgGPRs = 2;
10896 
10897   if (NeededArgGPRs > ArgGPRsLeft) {
10898     MustUseStack = true;
10899     NeededArgGPRs = ArgGPRsLeft;
10900   }
10901 
10902   ArgGPRsLeft -= NeededArgGPRs;
10903 
10904   if (!isAggregateTypeForABI(Ty) && !Ty->isVectorType()) {
10905     // Treat an enum type as its underlying type.
10906     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
10907       Ty = EnumTy->getDecl()->getIntegerType();
10908 
10909     // All integral types are promoted to XLen width, unless passed on the
10910     // stack.
10911     if (Size < XLen && Ty->isIntegralOrEnumerationType() && !MustUseStack) {
10912       return extendType(Ty);
10913     }
10914 
10915     if (const auto *EIT = Ty->getAs<ExtIntType>()) {
10916       if (EIT->getNumBits() < XLen && !MustUseStack)
10917         return extendType(Ty);
10918       if (EIT->getNumBits() > 128 ||
10919           (!getContext().getTargetInfo().hasInt128Type() &&
10920            EIT->getNumBits() > 64))
10921         return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
10922     }
10923 
10924     return ABIArgInfo::getDirect();
10925   }
10926 
10927   // Aggregates which are <= 2*XLen will be passed in registers if possible,
10928   // so coerce to integers.
10929   if (Size <= 2 * XLen) {
10930     unsigned Alignment = getContext().getTypeAlign(Ty);
10931 
10932     // Use a single XLen int if possible, 2*XLen if 2*XLen alignment is
10933     // required, and a 2-element XLen array if only XLen alignment is required.
10934     if (Size <= XLen) {
10935       return ABIArgInfo::getDirect(
10936           llvm::IntegerType::get(getVMContext(), XLen));
10937     } else if (Alignment == 2 * XLen) {
10938       return ABIArgInfo::getDirect(
10939           llvm::IntegerType::get(getVMContext(), 2 * XLen));
10940     } else {
10941       return ABIArgInfo::getDirect(llvm::ArrayType::get(
10942           llvm::IntegerType::get(getVMContext(), XLen), 2));
10943     }
10944   }
10945   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
10946 }
10947 
10948 ABIArgInfo RISCVABIInfo::classifyReturnType(QualType RetTy) const {
10949   if (RetTy->isVoidType())
10950     return ABIArgInfo::getIgnore();
10951 
10952   int ArgGPRsLeft = 2;
10953   int ArgFPRsLeft = FLen ? 2 : 0;
10954 
10955   // The rules for return and argument types are the same, so defer to
10956   // classifyArgumentType.
10957   return classifyArgumentType(RetTy, /*IsFixed=*/true, ArgGPRsLeft,
10958                               ArgFPRsLeft);
10959 }
10960 
10961 Address RISCVABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
10962                                 QualType Ty) const {
10963   CharUnits SlotSize = CharUnits::fromQuantity(XLen / 8);
10964 
10965   // Empty records are ignored for parameter passing purposes.
10966   if (isEmptyRecord(getContext(), Ty, true)) {
10967     Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize);
10968     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
10969     return Addr;
10970   }
10971 
10972   auto TInfo = getContext().getTypeInfoInChars(Ty);
10973 
10974   // Arguments bigger than 2*Xlen bytes are passed indirectly.
10975   bool IsIndirect = TInfo.Width > 2 * SlotSize;
10976 
10977   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TInfo,
10978                           SlotSize, /*AllowHigherAlign=*/true);
10979 }
10980 
10981 ABIArgInfo RISCVABIInfo::extendType(QualType Ty) const {
10982   int TySize = getContext().getTypeSize(Ty);
10983   // RV64 ABI requires unsigned 32 bit integers to be sign extended.
10984   if (XLen == 64 && Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
10985     return ABIArgInfo::getSignExtend(Ty);
10986   return ABIArgInfo::getExtend(Ty);
10987 }
10988 
10989 namespace {
10990 class RISCVTargetCodeGenInfo : public TargetCodeGenInfo {
10991 public:
10992   RISCVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen,
10993                          unsigned FLen)
10994       : TargetCodeGenInfo(std::make_unique<RISCVABIInfo>(CGT, XLen, FLen)) {}
10995 
10996   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
10997                            CodeGen::CodeGenModule &CGM) const override {
10998     const auto *FD = dyn_cast_or_null<FunctionDecl>(D);
10999     if (!FD) return;
11000 
11001     const auto *Attr = FD->getAttr<RISCVInterruptAttr>();
11002     if (!Attr)
11003       return;
11004 
11005     const char *Kind;
11006     switch (Attr->getInterrupt()) {
11007     case RISCVInterruptAttr::user: Kind = "user"; break;
11008     case RISCVInterruptAttr::supervisor: Kind = "supervisor"; break;
11009     case RISCVInterruptAttr::machine: Kind = "machine"; break;
11010     }
11011 
11012     auto *Fn = cast<llvm::Function>(GV);
11013 
11014     Fn->addFnAttr("interrupt", Kind);
11015   }
11016 };
11017 } // namespace
11018 
11019 //===----------------------------------------------------------------------===//
11020 // VE ABI Implementation.
11021 //
11022 namespace {
11023 class VEABIInfo : public DefaultABIInfo {
11024 public:
11025   VEABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
11026 
11027 private:
11028   ABIArgInfo classifyReturnType(QualType RetTy) const;
11029   ABIArgInfo classifyArgumentType(QualType RetTy) const;
11030   void computeInfo(CGFunctionInfo &FI) const override;
11031 };
11032 } // end anonymous namespace
11033 
11034 ABIArgInfo VEABIInfo::classifyReturnType(QualType Ty) const {
11035   if (Ty->isAnyComplexType())
11036     return ABIArgInfo::getDirect();
11037   uint64_t Size = getContext().getTypeSize(Ty);
11038   if (Size < 64 && Ty->isIntegerType())
11039     return ABIArgInfo::getExtend(Ty);
11040   return DefaultABIInfo::classifyReturnType(Ty);
11041 }
11042 
11043 ABIArgInfo VEABIInfo::classifyArgumentType(QualType Ty) const {
11044   if (Ty->isAnyComplexType())
11045     return ABIArgInfo::getDirect();
11046   uint64_t Size = getContext().getTypeSize(Ty);
11047   if (Size < 64 && Ty->isIntegerType())
11048     return ABIArgInfo::getExtend(Ty);
11049   return DefaultABIInfo::classifyArgumentType(Ty);
11050 }
11051 
11052 void VEABIInfo::computeInfo(CGFunctionInfo &FI) const {
11053   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
11054   for (auto &Arg : FI.arguments())
11055     Arg.info = classifyArgumentType(Arg.type);
11056 }
11057 
11058 namespace {
11059 class VETargetCodeGenInfo : public TargetCodeGenInfo {
11060 public:
11061   VETargetCodeGenInfo(CodeGenTypes &CGT)
11062       : TargetCodeGenInfo(std::make_unique<VEABIInfo>(CGT)) {}
11063   // VE ABI requires the arguments of variadic and prototype-less functions
11064   // are passed in both registers and memory.
11065   bool isNoProtoCallVariadic(const CallArgList &args,
11066                              const FunctionNoProtoType *fnType) const override {
11067     return true;
11068   }
11069 };
11070 } // end anonymous namespace
11071 
11072 //===----------------------------------------------------------------------===//
11073 // Driver code
11074 //===----------------------------------------------------------------------===//
11075 
11076 bool CodeGenModule::supportsCOMDAT() const {
11077   return getTriple().supportsCOMDAT();
11078 }
11079 
11080 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
11081   if (TheTargetCodeGenInfo)
11082     return *TheTargetCodeGenInfo;
11083 
11084   // Helper to set the unique_ptr while still keeping the return value.
11085   auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & {
11086     this->TheTargetCodeGenInfo.reset(P);
11087     return *P;
11088   };
11089 
11090   const llvm::Triple &Triple = getTarget().getTriple();
11091   switch (Triple.getArch()) {
11092   default:
11093     return SetCGInfo(new DefaultTargetCodeGenInfo(Types));
11094 
11095   case llvm::Triple::le32:
11096     return SetCGInfo(new PNaClTargetCodeGenInfo(Types));
11097   case llvm::Triple::m68k:
11098     return SetCGInfo(new M68kTargetCodeGenInfo(Types));
11099   case llvm::Triple::mips:
11100   case llvm::Triple::mipsel:
11101     if (Triple.getOS() == llvm::Triple::NaCl)
11102       return SetCGInfo(new PNaClTargetCodeGenInfo(Types));
11103     return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true));
11104 
11105   case llvm::Triple::mips64:
11106   case llvm::Triple::mips64el:
11107     return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false));
11108 
11109   case llvm::Triple::avr:
11110     return SetCGInfo(new AVRTargetCodeGenInfo(Types));
11111 
11112   case llvm::Triple::aarch64:
11113   case llvm::Triple::aarch64_32:
11114   case llvm::Triple::aarch64_be: {
11115     AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS;
11116     if (getTarget().getABI() == "darwinpcs")
11117       Kind = AArch64ABIInfo::DarwinPCS;
11118     else if (Triple.isOSWindows())
11119       return SetCGInfo(
11120           new WindowsAArch64TargetCodeGenInfo(Types, AArch64ABIInfo::Win64));
11121 
11122     return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind));
11123   }
11124 
11125   case llvm::Triple::wasm32:
11126   case llvm::Triple::wasm64: {
11127     WebAssemblyABIInfo::ABIKind Kind = WebAssemblyABIInfo::MVP;
11128     if (getTarget().getABI() == "experimental-mv")
11129       Kind = WebAssemblyABIInfo::ExperimentalMV;
11130     return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types, Kind));
11131   }
11132 
11133   case llvm::Triple::arm:
11134   case llvm::Triple::armeb:
11135   case llvm::Triple::thumb:
11136   case llvm::Triple::thumbeb: {
11137     if (Triple.getOS() == llvm::Triple::Win32) {
11138       return SetCGInfo(
11139           new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP));
11140     }
11141 
11142     ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
11143     StringRef ABIStr = getTarget().getABI();
11144     if (ABIStr == "apcs-gnu")
11145       Kind = ARMABIInfo::APCS;
11146     else if (ABIStr == "aapcs16")
11147       Kind = ARMABIInfo::AAPCS16_VFP;
11148     else if (CodeGenOpts.FloatABI == "hard" ||
11149              (CodeGenOpts.FloatABI != "soft" &&
11150               (Triple.getEnvironment() == llvm::Triple::GNUEABIHF ||
11151                Triple.getEnvironment() == llvm::Triple::MuslEABIHF ||
11152                Triple.getEnvironment() == llvm::Triple::EABIHF)))
11153       Kind = ARMABIInfo::AAPCS_VFP;
11154 
11155     return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind));
11156   }
11157 
11158   case llvm::Triple::ppc: {
11159     if (Triple.isOSAIX())
11160       return SetCGInfo(new AIXTargetCodeGenInfo(Types, /*Is64Bit*/ false));
11161 
11162     bool IsSoftFloat =
11163         CodeGenOpts.FloatABI == "soft" || getTarget().hasFeature("spe");
11164     bool RetSmallStructInRegABI =
11165         PPC32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
11166     return SetCGInfo(
11167         new PPC32TargetCodeGenInfo(Types, IsSoftFloat, RetSmallStructInRegABI));
11168   }
11169   case llvm::Triple::ppcle: {
11170     bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
11171     bool RetSmallStructInRegABI =
11172         PPC32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
11173     return SetCGInfo(
11174         new PPC32TargetCodeGenInfo(Types, IsSoftFloat, RetSmallStructInRegABI));
11175   }
11176   case llvm::Triple::ppc64:
11177     if (Triple.isOSAIX())
11178       return SetCGInfo(new AIXTargetCodeGenInfo(Types, /*Is64Bit*/ true));
11179 
11180     if (Triple.isOSBinFormatELF()) {
11181       PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1;
11182       if (getTarget().getABI() == "elfv2")
11183         Kind = PPC64_SVR4_ABIInfo::ELFv2;
11184       bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
11185 
11186       return SetCGInfo(
11187           new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, IsSoftFloat));
11188     }
11189     return SetCGInfo(new PPC64TargetCodeGenInfo(Types));
11190   case llvm::Triple::ppc64le: {
11191     assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
11192     PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2;
11193     if (getTarget().getABI() == "elfv1")
11194       Kind = PPC64_SVR4_ABIInfo::ELFv1;
11195     bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
11196 
11197     return SetCGInfo(
11198         new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, IsSoftFloat));
11199   }
11200 
11201   case llvm::Triple::nvptx:
11202   case llvm::Triple::nvptx64:
11203     return SetCGInfo(new NVPTXTargetCodeGenInfo(Types));
11204 
11205   case llvm::Triple::msp430:
11206     return SetCGInfo(new MSP430TargetCodeGenInfo(Types));
11207 
11208   case llvm::Triple::riscv32:
11209   case llvm::Triple::riscv64: {
11210     StringRef ABIStr = getTarget().getABI();
11211     unsigned XLen = getTarget().getPointerWidth(0);
11212     unsigned ABIFLen = 0;
11213     if (ABIStr.endswith("f"))
11214       ABIFLen = 32;
11215     else if (ABIStr.endswith("d"))
11216       ABIFLen = 64;
11217     return SetCGInfo(new RISCVTargetCodeGenInfo(Types, XLen, ABIFLen));
11218   }
11219 
11220   case llvm::Triple::systemz: {
11221     bool SoftFloat = CodeGenOpts.FloatABI == "soft";
11222     bool HasVector = !SoftFloat && getTarget().getABI() == "vector";
11223     return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector, SoftFloat));
11224   }
11225 
11226   case llvm::Triple::tce:
11227   case llvm::Triple::tcele:
11228     return SetCGInfo(new TCETargetCodeGenInfo(Types));
11229 
11230   case llvm::Triple::x86: {
11231     bool IsDarwinVectorABI = Triple.isOSDarwin();
11232     bool RetSmallStructInRegABI =
11233         X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
11234     bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing();
11235 
11236     if (Triple.getOS() == llvm::Triple::Win32) {
11237       return SetCGInfo(new WinX86_32TargetCodeGenInfo(
11238           Types, IsDarwinVectorABI, RetSmallStructInRegABI,
11239           IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters));
11240     } else {
11241       return SetCGInfo(new X86_32TargetCodeGenInfo(
11242           Types, IsDarwinVectorABI, RetSmallStructInRegABI,
11243           IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters,
11244           CodeGenOpts.FloatABI == "soft"));
11245     }
11246   }
11247 
11248   case llvm::Triple::x86_64: {
11249     StringRef ABI = getTarget().getABI();
11250     X86AVXABILevel AVXLevel =
11251         (ABI == "avx512"
11252              ? X86AVXABILevel::AVX512
11253              : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None);
11254 
11255     switch (Triple.getOS()) {
11256     case llvm::Triple::Win32:
11257       return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel));
11258     default:
11259       return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel));
11260     }
11261   }
11262   case llvm::Triple::hexagon:
11263     return SetCGInfo(new HexagonTargetCodeGenInfo(Types));
11264   case llvm::Triple::lanai:
11265     return SetCGInfo(new LanaiTargetCodeGenInfo(Types));
11266   case llvm::Triple::r600:
11267     return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types));
11268   case llvm::Triple::amdgcn:
11269     return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types));
11270   case llvm::Triple::sparc:
11271     return SetCGInfo(new SparcV8TargetCodeGenInfo(Types));
11272   case llvm::Triple::sparcv9:
11273     return SetCGInfo(new SparcV9TargetCodeGenInfo(Types));
11274   case llvm::Triple::xcore:
11275     return SetCGInfo(new XCoreTargetCodeGenInfo(Types));
11276   case llvm::Triple::arc:
11277     return SetCGInfo(new ARCTargetCodeGenInfo(Types));
11278   case llvm::Triple::spir:
11279   case llvm::Triple::spir64:
11280     return SetCGInfo(new SPIRTargetCodeGenInfo(Types));
11281   case llvm::Triple::ve:
11282     return SetCGInfo(new VETargetCodeGenInfo(Types));
11283   }
11284 }
11285 
11286 /// Create an OpenCL kernel for an enqueued block.
11287 ///
11288 /// The kernel has the same function type as the block invoke function. Its
11289 /// name is the name of the block invoke function postfixed with "_kernel".
11290 /// It simply calls the block invoke function then returns.
11291 llvm::Function *
11292 TargetCodeGenInfo::createEnqueuedBlockKernel(CodeGenFunction &CGF,
11293                                              llvm::Function *Invoke,
11294                                              llvm::Value *BlockLiteral) const {
11295   auto *InvokeFT = Invoke->getFunctionType();
11296   llvm::SmallVector<llvm::Type *, 2> ArgTys;
11297   for (auto &P : InvokeFT->params())
11298     ArgTys.push_back(P);
11299   auto &C = CGF.getLLVMContext();
11300   std::string Name = Invoke->getName().str() + "_kernel";
11301   auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false);
11302   auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name,
11303                                    &CGF.CGM.getModule());
11304   auto IP = CGF.Builder.saveIP();
11305   auto *BB = llvm::BasicBlock::Create(C, "entry", F);
11306   auto &Builder = CGF.Builder;
11307   Builder.SetInsertPoint(BB);
11308   llvm::SmallVector<llvm::Value *, 2> Args;
11309   for (auto &A : F->args())
11310     Args.push_back(&A);
11311   llvm::CallInst *call = Builder.CreateCall(Invoke, Args);
11312   call->setCallingConv(Invoke->getCallingConv());
11313   Builder.CreateRetVoid();
11314   Builder.restoreIP(IP);
11315   return F;
11316 }
11317 
11318 /// Create an OpenCL kernel for an enqueued block.
11319 ///
11320 /// The type of the first argument (the block literal) is the struct type
11321 /// of the block literal instead of a pointer type. The first argument
11322 /// (block literal) is passed directly by value to the kernel. The kernel
11323 /// allocates the same type of struct on stack and stores the block literal
11324 /// to it and passes its pointer to the block invoke function. The kernel
11325 /// has "enqueued-block" function attribute and kernel argument metadata.
11326 llvm::Function *AMDGPUTargetCodeGenInfo::createEnqueuedBlockKernel(
11327     CodeGenFunction &CGF, llvm::Function *Invoke,
11328     llvm::Value *BlockLiteral) const {
11329   auto &Builder = CGF.Builder;
11330   auto &C = CGF.getLLVMContext();
11331 
11332   auto *BlockTy = BlockLiteral->getType()->getPointerElementType();
11333   auto *InvokeFT = Invoke->getFunctionType();
11334   llvm::SmallVector<llvm::Type *, 2> ArgTys;
11335   llvm::SmallVector<llvm::Metadata *, 8> AddressQuals;
11336   llvm::SmallVector<llvm::Metadata *, 8> AccessQuals;
11337   llvm::SmallVector<llvm::Metadata *, 8> ArgTypeNames;
11338   llvm::SmallVector<llvm::Metadata *, 8> ArgBaseTypeNames;
11339   llvm::SmallVector<llvm::Metadata *, 8> ArgTypeQuals;
11340   llvm::SmallVector<llvm::Metadata *, 8> ArgNames;
11341 
11342   ArgTys.push_back(BlockTy);
11343   ArgTypeNames.push_back(llvm::MDString::get(C, "__block_literal"));
11344   AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(0)));
11345   ArgBaseTypeNames.push_back(llvm::MDString::get(C, "__block_literal"));
11346   ArgTypeQuals.push_back(llvm::MDString::get(C, ""));
11347   AccessQuals.push_back(llvm::MDString::get(C, "none"));
11348   ArgNames.push_back(llvm::MDString::get(C, "block_literal"));
11349   for (unsigned I = 1, E = InvokeFT->getNumParams(); I < E; ++I) {
11350     ArgTys.push_back(InvokeFT->getParamType(I));
11351     ArgTypeNames.push_back(llvm::MDString::get(C, "void*"));
11352     AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(3)));
11353     AccessQuals.push_back(llvm::MDString::get(C, "none"));
11354     ArgBaseTypeNames.push_back(llvm::MDString::get(C, "void*"));
11355     ArgTypeQuals.push_back(llvm::MDString::get(C, ""));
11356     ArgNames.push_back(
11357         llvm::MDString::get(C, (Twine("local_arg") + Twine(I)).str()));
11358   }
11359   std::string Name = Invoke->getName().str() + "_kernel";
11360   auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false);
11361   auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name,
11362                                    &CGF.CGM.getModule());
11363   F->addFnAttr("enqueued-block");
11364   auto IP = CGF.Builder.saveIP();
11365   auto *BB = llvm::BasicBlock::Create(C, "entry", F);
11366   Builder.SetInsertPoint(BB);
11367   const auto BlockAlign = CGF.CGM.getDataLayout().getPrefTypeAlign(BlockTy);
11368   auto *BlockPtr = Builder.CreateAlloca(BlockTy, nullptr);
11369   BlockPtr->setAlignment(BlockAlign);
11370   Builder.CreateAlignedStore(F->arg_begin(), BlockPtr, BlockAlign);
11371   auto *Cast = Builder.CreatePointerCast(BlockPtr, InvokeFT->getParamType(0));
11372   llvm::SmallVector<llvm::Value *, 2> Args;
11373   Args.push_back(Cast);
11374   for (auto I = F->arg_begin() + 1, E = F->arg_end(); I != E; ++I)
11375     Args.push_back(I);
11376   llvm::CallInst *call = Builder.CreateCall(Invoke, Args);
11377   call->setCallingConv(Invoke->getCallingConv());
11378   Builder.CreateRetVoid();
11379   Builder.restoreIP(IP);
11380 
11381   F->setMetadata("kernel_arg_addr_space", llvm::MDNode::get(C, AddressQuals));
11382   F->setMetadata("kernel_arg_access_qual", llvm::MDNode::get(C, AccessQuals));
11383   F->setMetadata("kernel_arg_type", llvm::MDNode::get(C, ArgTypeNames));
11384   F->setMetadata("kernel_arg_base_type",
11385                  llvm::MDNode::get(C, ArgBaseTypeNames));
11386   F->setMetadata("kernel_arg_type_qual", llvm::MDNode::get(C, ArgTypeQuals));
11387   if (CGF.CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
11388     F->setMetadata("kernel_arg_name", llvm::MDNode::get(C, ArgNames));
11389 
11390   return F;
11391 }
11392