1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // These classes wrap the information about a call or function 11 // definition used to handle ABI compliancy. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "TargetInfo.h" 16 #include "ABIInfo.h" 17 #include "CGCXXABI.h" 18 #include "CodeGenFunction.h" 19 #include "clang/AST/RecordLayout.h" 20 #include "clang/CodeGen/CGFunctionInfo.h" 21 #include "clang/Frontend/CodeGenOptions.h" 22 #include "llvm/ADT/Triple.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/Type.h" 25 #include "llvm/Support/raw_ostream.h" 26 27 #include <algorithm> // std::sort 28 29 using namespace clang; 30 using namespace CodeGen; 31 32 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder, 33 llvm::Value *Array, 34 llvm::Value *Value, 35 unsigned FirstIndex, 36 unsigned LastIndex) { 37 // Alternatively, we could emit this as a loop in the source. 38 for (unsigned I = FirstIndex; I <= LastIndex; ++I) { 39 llvm::Value *Cell = Builder.CreateConstInBoundsGEP1_32(Array, I); 40 Builder.CreateStore(Value, Cell); 41 } 42 } 43 44 static bool isAggregateTypeForABI(QualType T) { 45 return !CodeGenFunction::hasScalarEvaluationKind(T) || 46 T->isMemberFunctionPointerType(); 47 } 48 49 ABIInfo::~ABIInfo() {} 50 51 static bool isRecordReturnIndirect(const RecordType *RT, 52 CGCXXABI &CXXABI) { 53 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); 54 if (!RD) 55 return false; 56 return CXXABI.isReturnTypeIndirect(RD); 57 } 58 59 60 static bool isRecordReturnIndirect(QualType T, CGCXXABI &CXXABI) { 61 const RecordType *RT = T->getAs<RecordType>(); 62 if (!RT) 63 return false; 64 return isRecordReturnIndirect(RT, CXXABI); 65 } 66 67 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT, 68 CGCXXABI &CXXABI) { 69 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); 70 if (!RD) 71 return CGCXXABI::RAA_Default; 72 return CXXABI.getRecordArgABI(RD); 73 } 74 75 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T, 76 CGCXXABI &CXXABI) { 77 const RecordType *RT = T->getAs<RecordType>(); 78 if (!RT) 79 return CGCXXABI::RAA_Default; 80 return getRecordArgABI(RT, CXXABI); 81 } 82 83 CGCXXABI &ABIInfo::getCXXABI() const { 84 return CGT.getCXXABI(); 85 } 86 87 ASTContext &ABIInfo::getContext() const { 88 return CGT.getContext(); 89 } 90 91 llvm::LLVMContext &ABIInfo::getVMContext() const { 92 return CGT.getLLVMContext(); 93 } 94 95 const llvm::DataLayout &ABIInfo::getDataLayout() const { 96 return CGT.getDataLayout(); 97 } 98 99 const TargetInfo &ABIInfo::getTarget() const { 100 return CGT.getTarget(); 101 } 102 103 void ABIArgInfo::dump() const { 104 raw_ostream &OS = llvm::errs(); 105 OS << "(ABIArgInfo Kind="; 106 switch (TheKind) { 107 case Direct: 108 OS << "Direct Type="; 109 if (llvm::Type *Ty = getCoerceToType()) 110 Ty->print(OS); 111 else 112 OS << "null"; 113 break; 114 case Extend: 115 OS << "Extend"; 116 break; 117 case Ignore: 118 OS << "Ignore"; 119 break; 120 case InAlloca: 121 OS << "InAlloca Offset=" << getInAllocaFieldIndex(); 122 break; 123 case Indirect: 124 OS << "Indirect Align=" << getIndirectAlign() 125 << " ByVal=" << getIndirectByVal() 126 << " Realign=" << getIndirectRealign(); 127 break; 128 case Expand: 129 OS << "Expand"; 130 break; 131 } 132 OS << ")\n"; 133 } 134 135 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; } 136 137 // If someone can figure out a general rule for this, that would be great. 138 // It's probably just doomed to be platform-dependent, though. 139 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const { 140 // Verified for: 141 // x86-64 FreeBSD, Linux, Darwin 142 // x86-32 FreeBSD, Linux, Darwin 143 // PowerPC Linux, Darwin 144 // ARM Darwin (*not* EABI) 145 // AArch64 Linux 146 return 32; 147 } 148 149 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args, 150 const FunctionNoProtoType *fnType) const { 151 // The following conventions are known to require this to be false: 152 // x86_stdcall 153 // MIPS 154 // For everything else, we just prefer false unless we opt out. 155 return false; 156 } 157 158 void 159 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib, 160 llvm::SmallString<24> &Opt) const { 161 // This assumes the user is passing a library name like "rt" instead of a 162 // filename like "librt.a/so", and that they don't care whether it's static or 163 // dynamic. 164 Opt = "-l"; 165 Opt += Lib; 166 } 167 168 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays); 169 170 /// isEmptyField - Return true iff a the field is "empty", that is it 171 /// is an unnamed bit-field or an (array of) empty record(s). 172 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD, 173 bool AllowArrays) { 174 if (FD->isUnnamedBitfield()) 175 return true; 176 177 QualType FT = FD->getType(); 178 179 // Constant arrays of empty records count as empty, strip them off. 180 // Constant arrays of zero length always count as empty. 181 if (AllowArrays) 182 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 183 if (AT->getSize() == 0) 184 return true; 185 FT = AT->getElementType(); 186 } 187 188 const RecordType *RT = FT->getAs<RecordType>(); 189 if (!RT) 190 return false; 191 192 // C++ record fields are never empty, at least in the Itanium ABI. 193 // 194 // FIXME: We should use a predicate for whether this behavior is true in the 195 // current ABI. 196 if (isa<CXXRecordDecl>(RT->getDecl())) 197 return false; 198 199 return isEmptyRecord(Context, FT, AllowArrays); 200 } 201 202 /// isEmptyRecord - Return true iff a structure contains only empty 203 /// fields. Note that a structure with a flexible array member is not 204 /// considered empty. 205 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) { 206 const RecordType *RT = T->getAs<RecordType>(); 207 if (!RT) 208 return 0; 209 const RecordDecl *RD = RT->getDecl(); 210 if (RD->hasFlexibleArrayMember()) 211 return false; 212 213 // If this is a C++ record, check the bases first. 214 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 215 for (const auto &I : CXXRD->bases()) 216 if (!isEmptyRecord(Context, I.getType(), true)) 217 return false; 218 219 for (const auto *I : RD->fields()) 220 if (!isEmptyField(Context, I, AllowArrays)) 221 return false; 222 return true; 223 } 224 225 /// isSingleElementStruct - Determine if a structure is a "single 226 /// element struct", i.e. it has exactly one non-empty field or 227 /// exactly one field which is itself a single element 228 /// struct. Structures with flexible array members are never 229 /// considered single element structs. 230 /// 231 /// \return The field declaration for the single non-empty field, if 232 /// it exists. 233 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) { 234 const RecordType *RT = T->getAsStructureType(); 235 if (!RT) 236 return 0; 237 238 const RecordDecl *RD = RT->getDecl(); 239 if (RD->hasFlexibleArrayMember()) 240 return 0; 241 242 const Type *Found = 0; 243 244 // If this is a C++ record, check the bases first. 245 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 246 for (const auto &I : CXXRD->bases()) { 247 // Ignore empty records. 248 if (isEmptyRecord(Context, I.getType(), true)) 249 continue; 250 251 // If we already found an element then this isn't a single-element struct. 252 if (Found) 253 return 0; 254 255 // If this is non-empty and not a single element struct, the composite 256 // cannot be a single element struct. 257 Found = isSingleElementStruct(I.getType(), Context); 258 if (!Found) 259 return 0; 260 } 261 } 262 263 // Check for single element. 264 for (const auto *FD : RD->fields()) { 265 QualType FT = FD->getType(); 266 267 // Ignore empty fields. 268 if (isEmptyField(Context, FD, true)) 269 continue; 270 271 // If we already found an element then this isn't a single-element 272 // struct. 273 if (Found) 274 return 0; 275 276 // Treat single element arrays as the element. 277 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 278 if (AT->getSize().getZExtValue() != 1) 279 break; 280 FT = AT->getElementType(); 281 } 282 283 if (!isAggregateTypeForABI(FT)) { 284 Found = FT.getTypePtr(); 285 } else { 286 Found = isSingleElementStruct(FT, Context); 287 if (!Found) 288 return 0; 289 } 290 } 291 292 // We don't consider a struct a single-element struct if it has 293 // padding beyond the element type. 294 if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T)) 295 return 0; 296 297 return Found; 298 } 299 300 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) { 301 // Treat complex types as the element type. 302 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 303 Ty = CTy->getElementType(); 304 305 // Check for a type which we know has a simple scalar argument-passing 306 // convention without any padding. (We're specifically looking for 32 307 // and 64-bit integer and integer-equivalents, float, and double.) 308 if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() && 309 !Ty->isEnumeralType() && !Ty->isBlockPointerType()) 310 return false; 311 312 uint64_t Size = Context.getTypeSize(Ty); 313 return Size == 32 || Size == 64; 314 } 315 316 /// canExpandIndirectArgument - Test whether an argument type which is to be 317 /// passed indirectly (on the stack) would have the equivalent layout if it was 318 /// expanded into separate arguments. If so, we prefer to do the latter to avoid 319 /// inhibiting optimizations. 320 /// 321 // FIXME: This predicate is missing many cases, currently it just follows 322 // llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We 323 // should probably make this smarter, or better yet make the LLVM backend 324 // capable of handling it. 325 static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) { 326 // We can only expand structure types. 327 const RecordType *RT = Ty->getAs<RecordType>(); 328 if (!RT) 329 return false; 330 331 // We can only expand (C) structures. 332 // 333 // FIXME: This needs to be generalized to handle classes as well. 334 const RecordDecl *RD = RT->getDecl(); 335 if (!RD->isStruct() || isa<CXXRecordDecl>(RD)) 336 return false; 337 338 uint64_t Size = 0; 339 340 for (const auto *FD : RD->fields()) { 341 if (!is32Or64BitBasicType(FD->getType(), Context)) 342 return false; 343 344 // FIXME: Reject bit-fields wholesale; there are two problems, we don't know 345 // how to expand them yet, and the predicate for telling if a bitfield still 346 // counts as "basic" is more complicated than what we were doing previously. 347 if (FD->isBitField()) 348 return false; 349 350 Size += Context.getTypeSize(FD->getType()); 351 } 352 353 // Make sure there are not any holes in the struct. 354 if (Size != Context.getTypeSize(Ty)) 355 return false; 356 357 return true; 358 } 359 360 namespace { 361 /// DefaultABIInfo - The default implementation for ABI specific 362 /// details. This implementation provides information which results in 363 /// self-consistent and sensible LLVM IR generation, but does not 364 /// conform to any particular ABI. 365 class DefaultABIInfo : public ABIInfo { 366 public: 367 DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 368 369 ABIArgInfo classifyReturnType(QualType RetTy) const; 370 ABIArgInfo classifyArgumentType(QualType RetTy) const; 371 372 void computeInfo(CGFunctionInfo &FI) const override { 373 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 374 for (auto &I : FI.arguments()) 375 I.info = classifyArgumentType(I.type); 376 } 377 378 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 379 CodeGenFunction &CGF) const override; 380 }; 381 382 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo { 383 public: 384 DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 385 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 386 }; 387 388 llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 389 CodeGenFunction &CGF) const { 390 return 0; 391 } 392 393 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const { 394 if (isAggregateTypeForABI(Ty)) { 395 // Records with non-trivial destructors/constructors should not be passed 396 // by value. 397 if (isRecordReturnIndirect(Ty, getCXXABI())) 398 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 399 400 return ABIArgInfo::getIndirect(0); 401 } 402 403 // Treat an enum type as its underlying type. 404 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 405 Ty = EnumTy->getDecl()->getIntegerType(); 406 407 return (Ty->isPromotableIntegerType() ? 408 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 409 } 410 411 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const { 412 if (RetTy->isVoidType()) 413 return ABIArgInfo::getIgnore(); 414 415 if (isAggregateTypeForABI(RetTy)) 416 return ABIArgInfo::getIndirect(0); 417 418 // Treat an enum type as its underlying type. 419 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 420 RetTy = EnumTy->getDecl()->getIntegerType(); 421 422 return (RetTy->isPromotableIntegerType() ? 423 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 424 } 425 426 //===----------------------------------------------------------------------===// 427 // le32/PNaCl bitcode ABI Implementation 428 // 429 // This is a simplified version of the x86_32 ABI. Arguments and return values 430 // are always passed on the stack. 431 //===----------------------------------------------------------------------===// 432 433 class PNaClABIInfo : public ABIInfo { 434 public: 435 PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 436 437 ABIArgInfo classifyReturnType(QualType RetTy) const; 438 ABIArgInfo classifyArgumentType(QualType RetTy) const; 439 440 void computeInfo(CGFunctionInfo &FI) const override; 441 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 442 CodeGenFunction &CGF) const override; 443 }; 444 445 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo { 446 public: 447 PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 448 : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {} 449 }; 450 451 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const { 452 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 453 454 for (auto &I : FI.arguments()) 455 I.info = classifyArgumentType(I.type); 456 } 457 458 llvm::Value *PNaClABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 459 CodeGenFunction &CGF) const { 460 return 0; 461 } 462 463 /// \brief Classify argument of given type \p Ty. 464 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const { 465 if (isAggregateTypeForABI(Ty)) { 466 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 467 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 468 return ABIArgInfo::getIndirect(0); 469 } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 470 // Treat an enum type as its underlying type. 471 Ty = EnumTy->getDecl()->getIntegerType(); 472 } else if (Ty->isFloatingType()) { 473 // Floating-point types don't go inreg. 474 return ABIArgInfo::getDirect(); 475 } 476 477 return (Ty->isPromotableIntegerType() ? 478 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 479 } 480 481 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const { 482 if (RetTy->isVoidType()) 483 return ABIArgInfo::getIgnore(); 484 485 // In the PNaCl ABI we always return records/structures on the stack. 486 if (isAggregateTypeForABI(RetTy)) 487 return ABIArgInfo::getIndirect(0); 488 489 // Treat an enum type as its underlying type. 490 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 491 RetTy = EnumTy->getDecl()->getIntegerType(); 492 493 return (RetTy->isPromotableIntegerType() ? 494 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 495 } 496 497 /// IsX86_MMXType - Return true if this is an MMX type. 498 bool IsX86_MMXType(llvm::Type *IRType) { 499 // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>. 500 return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 && 501 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() && 502 IRType->getScalarSizeInBits() != 64; 503 } 504 505 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 506 StringRef Constraint, 507 llvm::Type* Ty) { 508 if ((Constraint == "y" || Constraint == "&y") && Ty->isVectorTy()) { 509 if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) { 510 // Invalid MMX constraint 511 return 0; 512 } 513 514 return llvm::Type::getX86_MMXTy(CGF.getLLVMContext()); 515 } 516 517 // No operation needed 518 return Ty; 519 } 520 521 //===----------------------------------------------------------------------===// 522 // X86-32 ABI Implementation 523 //===----------------------------------------------------------------------===// 524 525 /// \brief Similar to llvm::CCState, but for Clang. 526 struct CCState { 527 CCState(unsigned CC) : CC(CC), FreeRegs(0) {} 528 529 unsigned CC; 530 unsigned FreeRegs; 531 unsigned StackOffset; 532 bool UseInAlloca; 533 }; 534 535 /// X86_32ABIInfo - The X86-32 ABI information. 536 class X86_32ABIInfo : public ABIInfo { 537 enum Class { 538 Integer, 539 Float 540 }; 541 542 static const unsigned MinABIStackAlignInBytes = 4; 543 544 bool IsDarwinVectorABI; 545 bool IsSmallStructInRegABI; 546 bool IsWin32StructABI; 547 unsigned DefaultNumRegisterParameters; 548 549 static bool isRegisterSize(unsigned Size) { 550 return (Size == 8 || Size == 16 || Size == 32 || Size == 64); 551 } 552 553 bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context, 554 bool IsInstanceMethod) const; 555 556 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 557 /// such that the argument will be passed in memory. 558 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 559 560 ABIArgInfo getIndirectReturnResult(CCState &State) const; 561 562 /// \brief Return the alignment to use for the given type on the stack. 563 unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const; 564 565 Class classify(QualType Ty) const; 566 ABIArgInfo classifyReturnType(QualType RetTy, CCState &State, 567 bool IsInstanceMethod) const; 568 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 569 bool shouldUseInReg(QualType Ty, CCState &State, bool &NeedsPadding) const; 570 571 /// \brief Rewrite the function info so that all memory arguments use 572 /// inalloca. 573 void rewriteWithInAlloca(CGFunctionInfo &FI) const; 574 575 void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 576 unsigned &StackOffset, ABIArgInfo &Info, 577 QualType Type) const; 578 579 public: 580 581 void computeInfo(CGFunctionInfo &FI) const override; 582 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 583 CodeGenFunction &CGF) const override; 584 585 X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p, bool w, 586 unsigned r) 587 : ABIInfo(CGT), IsDarwinVectorABI(d), IsSmallStructInRegABI(p), 588 IsWin32StructABI(w), DefaultNumRegisterParameters(r) {} 589 }; 590 591 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo { 592 public: 593 X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 594 bool d, bool p, bool w, unsigned r) 595 :TargetCodeGenInfo(new X86_32ABIInfo(CGT, d, p, w, r)) {} 596 597 static bool isStructReturnInRegABI( 598 const llvm::Triple &Triple, const CodeGenOptions &Opts); 599 600 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 601 CodeGen::CodeGenModule &CGM) const override; 602 603 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 604 // Darwin uses different dwarf register numbers for EH. 605 if (CGM.getTarget().getTriple().isOSDarwin()) return 5; 606 return 4; 607 } 608 609 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 610 llvm::Value *Address) const override; 611 612 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 613 StringRef Constraint, 614 llvm::Type* Ty) const override { 615 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 616 } 617 618 llvm::Constant * 619 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 620 unsigned Sig = (0xeb << 0) | // jmp rel8 621 (0x06 << 8) | // .+0x08 622 ('F' << 16) | 623 ('T' << 24); 624 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 625 } 626 627 }; 628 629 } 630 631 /// shouldReturnTypeInRegister - Determine if the given type should be 632 /// passed in a register (for the Darwin ABI). 633 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty, ASTContext &Context, 634 bool IsInstanceMethod) const { 635 uint64_t Size = Context.getTypeSize(Ty); 636 637 // Type must be register sized. 638 if (!isRegisterSize(Size)) 639 return false; 640 641 if (Ty->isVectorType()) { 642 // 64- and 128- bit vectors inside structures are not returned in 643 // registers. 644 if (Size == 64 || Size == 128) 645 return false; 646 647 return true; 648 } 649 650 // If this is a builtin, pointer, enum, complex type, member pointer, or 651 // member function pointer it is ok. 652 if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() || 653 Ty->isAnyComplexType() || Ty->isEnumeralType() || 654 Ty->isBlockPointerType() || Ty->isMemberPointerType()) 655 return true; 656 657 // Arrays are treated like records. 658 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) 659 return shouldReturnTypeInRegister(AT->getElementType(), Context, 660 IsInstanceMethod); 661 662 // Otherwise, it must be a record type. 663 const RecordType *RT = Ty->getAs<RecordType>(); 664 if (!RT) return false; 665 666 // FIXME: Traverse bases here too. 667 668 // For thiscall conventions, structures will never be returned in 669 // a register. This is for compatibility with the MSVC ABI 670 if (IsWin32StructABI && IsInstanceMethod && RT->isStructureType()) 671 return false; 672 673 // Structure types are passed in register if all fields would be 674 // passed in a register. 675 for (const auto *FD : RT->getDecl()->fields()) { 676 // Empty fields are ignored. 677 if (isEmptyField(Context, FD, true)) 678 continue; 679 680 // Check fields recursively. 681 if (!shouldReturnTypeInRegister(FD->getType(), Context, IsInstanceMethod)) 682 return false; 683 } 684 return true; 685 } 686 687 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(CCState &State) const { 688 // If the return value is indirect, then the hidden argument is consuming one 689 // integer register. 690 if (State.FreeRegs) { 691 --State.FreeRegs; 692 return ABIArgInfo::getIndirectInReg(/*Align=*/0, /*ByVal=*/false); 693 } 694 return ABIArgInfo::getIndirect(/*Align=*/0, /*ByVal=*/false); 695 } 696 697 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, CCState &State, 698 bool IsInstanceMethod) const { 699 if (RetTy->isVoidType()) 700 return ABIArgInfo::getIgnore(); 701 702 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 703 // On Darwin, some vectors are returned in registers. 704 if (IsDarwinVectorABI) { 705 uint64_t Size = getContext().getTypeSize(RetTy); 706 707 // 128-bit vectors are a special case; they are returned in 708 // registers and we need to make sure to pick a type the LLVM 709 // backend will like. 710 if (Size == 128) 711 return ABIArgInfo::getDirect(llvm::VectorType::get( 712 llvm::Type::getInt64Ty(getVMContext()), 2)); 713 714 // Always return in register if it fits in a general purpose 715 // register, or if it is 64 bits and has a single element. 716 if ((Size == 8 || Size == 16 || Size == 32) || 717 (Size == 64 && VT->getNumElements() == 1)) 718 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 719 Size)); 720 721 return getIndirectReturnResult(State); 722 } 723 724 return ABIArgInfo::getDirect(); 725 } 726 727 if (isAggregateTypeForABI(RetTy)) { 728 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 729 if (isRecordReturnIndirect(RT, getCXXABI())) 730 return getIndirectReturnResult(State); 731 732 // Structures with flexible arrays are always indirect. 733 if (RT->getDecl()->hasFlexibleArrayMember()) 734 return getIndirectReturnResult(State); 735 } 736 737 // If specified, structs and unions are always indirect. 738 if (!IsSmallStructInRegABI && !RetTy->isAnyComplexType()) 739 return getIndirectReturnResult(State); 740 741 // Small structures which are register sized are generally returned 742 // in a register. 743 if (shouldReturnTypeInRegister(RetTy, getContext(), IsInstanceMethod)) { 744 uint64_t Size = getContext().getTypeSize(RetTy); 745 746 // As a special-case, if the struct is a "single-element" struct, and 747 // the field is of type "float" or "double", return it in a 748 // floating-point register. (MSVC does not apply this special case.) 749 // We apply a similar transformation for pointer types to improve the 750 // quality of the generated IR. 751 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 752 if ((!IsWin32StructABI && SeltTy->isRealFloatingType()) 753 || SeltTy->hasPointerRepresentation()) 754 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 755 756 // FIXME: We should be able to narrow this integer in cases with dead 757 // padding. 758 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size)); 759 } 760 761 return getIndirectReturnResult(State); 762 } 763 764 // Treat an enum type as its underlying type. 765 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 766 RetTy = EnumTy->getDecl()->getIntegerType(); 767 768 return (RetTy->isPromotableIntegerType() ? 769 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 770 } 771 772 static bool isSSEVectorType(ASTContext &Context, QualType Ty) { 773 return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128; 774 } 775 776 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) { 777 const RecordType *RT = Ty->getAs<RecordType>(); 778 if (!RT) 779 return 0; 780 const RecordDecl *RD = RT->getDecl(); 781 782 // If this is a C++ record, check the bases first. 783 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 784 for (const auto &I : CXXRD->bases()) 785 if (!isRecordWithSSEVectorType(Context, I.getType())) 786 return false; 787 788 for (const auto *i : RD->fields()) { 789 QualType FT = i->getType(); 790 791 if (isSSEVectorType(Context, FT)) 792 return true; 793 794 if (isRecordWithSSEVectorType(Context, FT)) 795 return true; 796 } 797 798 return false; 799 } 800 801 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty, 802 unsigned Align) const { 803 // Otherwise, if the alignment is less than or equal to the minimum ABI 804 // alignment, just use the default; the backend will handle this. 805 if (Align <= MinABIStackAlignInBytes) 806 return 0; // Use default alignment. 807 808 // On non-Darwin, the stack type alignment is always 4. 809 if (!IsDarwinVectorABI) { 810 // Set explicit alignment, since we may need to realign the top. 811 return MinABIStackAlignInBytes; 812 } 813 814 // Otherwise, if the type contains an SSE vector type, the alignment is 16. 815 if (Align >= 16 && (isSSEVectorType(getContext(), Ty) || 816 isRecordWithSSEVectorType(getContext(), Ty))) 817 return 16; 818 819 return MinABIStackAlignInBytes; 820 } 821 822 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal, 823 CCState &State) const { 824 if (!ByVal) { 825 if (State.FreeRegs) { 826 --State.FreeRegs; // Non-byval indirects just use one pointer. 827 return ABIArgInfo::getIndirectInReg(0, false); 828 } 829 return ABIArgInfo::getIndirect(0, false); 830 } 831 832 // Compute the byval alignment. 833 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 834 unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign); 835 if (StackAlign == 0) 836 return ABIArgInfo::getIndirect(4, /*ByVal=*/true); 837 838 // If the stack alignment is less than the type alignment, realign the 839 // argument. 840 bool Realign = TypeAlign > StackAlign; 841 return ABIArgInfo::getIndirect(StackAlign, /*ByVal=*/true, Realign); 842 } 843 844 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const { 845 const Type *T = isSingleElementStruct(Ty, getContext()); 846 if (!T) 847 T = Ty.getTypePtr(); 848 849 if (const BuiltinType *BT = T->getAs<BuiltinType>()) { 850 BuiltinType::Kind K = BT->getKind(); 851 if (K == BuiltinType::Float || K == BuiltinType::Double) 852 return Float; 853 } 854 return Integer; 855 } 856 857 bool X86_32ABIInfo::shouldUseInReg(QualType Ty, CCState &State, 858 bool &NeedsPadding) const { 859 NeedsPadding = false; 860 Class C = classify(Ty); 861 if (C == Float) 862 return false; 863 864 unsigned Size = getContext().getTypeSize(Ty); 865 unsigned SizeInRegs = (Size + 31) / 32; 866 867 if (SizeInRegs == 0) 868 return false; 869 870 if (SizeInRegs > State.FreeRegs) { 871 State.FreeRegs = 0; 872 return false; 873 } 874 875 State.FreeRegs -= SizeInRegs; 876 877 if (State.CC == llvm::CallingConv::X86_FastCall) { 878 if (Size > 32) 879 return false; 880 881 if (Ty->isIntegralOrEnumerationType()) 882 return true; 883 884 if (Ty->isPointerType()) 885 return true; 886 887 if (Ty->isReferenceType()) 888 return true; 889 890 if (State.FreeRegs) 891 NeedsPadding = true; 892 893 return false; 894 } 895 896 return true; 897 } 898 899 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, 900 CCState &State) const { 901 // FIXME: Set alignment on indirect arguments. 902 if (isAggregateTypeForABI(Ty)) { 903 if (const RecordType *RT = Ty->getAs<RecordType>()) { 904 // Check with the C++ ABI first. 905 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 906 if (RAA == CGCXXABI::RAA_Indirect) { 907 return getIndirectResult(Ty, false, State); 908 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 909 // The field index doesn't matter, we'll fix it up later. 910 return ABIArgInfo::getInAlloca(/*FieldIndex=*/0); 911 } 912 913 // Structs are always byval on win32, regardless of what they contain. 914 if (IsWin32StructABI) 915 return getIndirectResult(Ty, true, State); 916 917 // Structures with flexible arrays are always indirect. 918 if (RT->getDecl()->hasFlexibleArrayMember()) 919 return getIndirectResult(Ty, true, State); 920 } 921 922 // Ignore empty structs/unions. 923 if (isEmptyRecord(getContext(), Ty, true)) 924 return ABIArgInfo::getIgnore(); 925 926 llvm::LLVMContext &LLVMContext = getVMContext(); 927 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 928 bool NeedsPadding; 929 if (shouldUseInReg(Ty, State, NeedsPadding)) { 930 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; 931 SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32); 932 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 933 return ABIArgInfo::getDirectInReg(Result); 934 } 935 llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : 0; 936 937 // Expand small (<= 128-bit) record types when we know that the stack layout 938 // of those arguments will match the struct. This is important because the 939 // LLVM backend isn't smart enough to remove byval, which inhibits many 940 // optimizations. 941 if (getContext().getTypeSize(Ty) <= 4*32 && 942 canExpandIndirectArgument(Ty, getContext())) 943 return ABIArgInfo::getExpandWithPadding( 944 State.CC == llvm::CallingConv::X86_FastCall, PaddingType); 945 946 return getIndirectResult(Ty, true, State); 947 } 948 949 if (const VectorType *VT = Ty->getAs<VectorType>()) { 950 // On Darwin, some vectors are passed in memory, we handle this by passing 951 // it as an i8/i16/i32/i64. 952 if (IsDarwinVectorABI) { 953 uint64_t Size = getContext().getTypeSize(Ty); 954 if ((Size == 8 || Size == 16 || Size == 32) || 955 (Size == 64 && VT->getNumElements() == 1)) 956 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 957 Size)); 958 } 959 960 if (IsX86_MMXType(CGT.ConvertType(Ty))) 961 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64)); 962 963 return ABIArgInfo::getDirect(); 964 } 965 966 967 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 968 Ty = EnumTy->getDecl()->getIntegerType(); 969 970 bool NeedsPadding; 971 bool InReg = shouldUseInReg(Ty, State, NeedsPadding); 972 973 if (Ty->isPromotableIntegerType()) { 974 if (InReg) 975 return ABIArgInfo::getExtendInReg(); 976 return ABIArgInfo::getExtend(); 977 } 978 if (InReg) 979 return ABIArgInfo::getDirectInReg(); 980 return ABIArgInfo::getDirect(); 981 } 982 983 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const { 984 CCState State(FI.getCallingConvention()); 985 if (State.CC == llvm::CallingConv::X86_FastCall) 986 State.FreeRegs = 2; 987 else if (FI.getHasRegParm()) 988 State.FreeRegs = FI.getRegParm(); 989 else 990 State.FreeRegs = DefaultNumRegisterParameters; 991 992 FI.getReturnInfo() = 993 classifyReturnType(FI.getReturnType(), State, FI.isInstanceMethod()); 994 995 // On win32, use the x86_cdeclmethodcc convention for cdecl methods that use 996 // sret. This convention swaps the order of the first two parameters behind 997 // the scenes to match MSVC. 998 if (IsWin32StructABI && FI.isInstanceMethod() && 999 FI.getCallingConvention() == llvm::CallingConv::C && 1000 FI.getReturnInfo().isIndirect()) 1001 FI.setEffectiveCallingConvention(llvm::CallingConv::X86_CDeclMethod); 1002 1003 bool UsedInAlloca = false; 1004 for (auto &I : FI.arguments()) { 1005 I.info = classifyArgumentType(I.type, State); 1006 UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca); 1007 } 1008 1009 // If we needed to use inalloca for any argument, do a second pass and rewrite 1010 // all the memory arguments to use inalloca. 1011 if (UsedInAlloca) 1012 rewriteWithInAlloca(FI); 1013 } 1014 1015 void 1016 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1017 unsigned &StackOffset, 1018 ABIArgInfo &Info, QualType Type) const { 1019 assert(StackOffset % 4U == 0 && "unaligned inalloca struct"); 1020 Info = ABIArgInfo::getInAlloca(FrameFields.size()); 1021 FrameFields.push_back(CGT.ConvertTypeForMem(Type)); 1022 StackOffset += getContext().getTypeSizeInChars(Type).getQuantity(); 1023 1024 // Insert padding bytes to respect alignment. For x86_32, each argument is 4 1025 // byte aligned. 1026 if (StackOffset % 4U) { 1027 unsigned OldOffset = StackOffset; 1028 StackOffset = llvm::RoundUpToAlignment(StackOffset, 4U); 1029 unsigned NumBytes = StackOffset - OldOffset; 1030 assert(NumBytes); 1031 llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext()); 1032 Ty = llvm::ArrayType::get(Ty, NumBytes); 1033 FrameFields.push_back(Ty); 1034 } 1035 } 1036 1037 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const { 1038 assert(IsWin32StructABI && "inalloca only supported on win32"); 1039 1040 // Build a packed struct type for all of the arguments in memory. 1041 SmallVector<llvm::Type *, 6> FrameFields; 1042 1043 unsigned StackOffset = 0; 1044 1045 // Put the sret parameter into the inalloca struct if it's in memory. 1046 ABIArgInfo &Ret = FI.getReturnInfo(); 1047 if (Ret.isIndirect() && !Ret.getInReg()) { 1048 CanQualType PtrTy = getContext().getPointerType(FI.getReturnType()); 1049 addFieldToArgStruct(FrameFields, StackOffset, Ret, PtrTy); 1050 // On Windows, the hidden sret parameter is always returned in eax. 1051 Ret.setInAllocaSRet(IsWin32StructABI); 1052 } 1053 1054 // Skip the 'this' parameter in ecx. 1055 CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end(); 1056 if (FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall) 1057 ++I; 1058 1059 // Put arguments passed in memory into the struct. 1060 for (; I != E; ++I) { 1061 1062 // Leave ignored and inreg arguments alone. 1063 switch (I->info.getKind()) { 1064 case ABIArgInfo::Indirect: 1065 assert(I->info.getIndirectByVal()); 1066 break; 1067 case ABIArgInfo::Ignore: 1068 continue; 1069 case ABIArgInfo::Direct: 1070 case ABIArgInfo::Extend: 1071 if (I->info.getInReg()) 1072 continue; 1073 break; 1074 default: 1075 break; 1076 } 1077 1078 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 1079 } 1080 1081 FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields, 1082 /*isPacked=*/true)); 1083 } 1084 1085 llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 1086 CodeGenFunction &CGF) const { 1087 llvm::Type *BPP = CGF.Int8PtrPtrTy; 1088 1089 CGBuilderTy &Builder = CGF.Builder; 1090 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, 1091 "ap"); 1092 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 1093 1094 // Compute if the address needs to be aligned 1095 unsigned Align = CGF.getContext().getTypeAlignInChars(Ty).getQuantity(); 1096 Align = getTypeStackAlignInBytes(Ty, Align); 1097 Align = std::max(Align, 4U); 1098 if (Align > 4) { 1099 // addr = (addr + align - 1) & -align; 1100 llvm::Value *Offset = 1101 llvm::ConstantInt::get(CGF.Int32Ty, Align - 1); 1102 Addr = CGF.Builder.CreateGEP(Addr, Offset); 1103 llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(Addr, 1104 CGF.Int32Ty); 1105 llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -Align); 1106 Addr = CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask), 1107 Addr->getType(), 1108 "ap.cur.aligned"); 1109 } 1110 1111 llvm::Type *PTy = 1112 llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 1113 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); 1114 1115 uint64_t Offset = 1116 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, Align); 1117 llvm::Value *NextAddr = 1118 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), 1119 "ap.next"); 1120 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 1121 1122 return AddrTyped; 1123 } 1124 1125 void X86_32TargetCodeGenInfo::SetTargetAttributes(const Decl *D, 1126 llvm::GlobalValue *GV, 1127 CodeGen::CodeGenModule &CGM) const { 1128 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1129 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 1130 // Get the LLVM function. 1131 llvm::Function *Fn = cast<llvm::Function>(GV); 1132 1133 // Now add the 'alignstack' attribute with a value of 16. 1134 llvm::AttrBuilder B; 1135 B.addStackAlignmentAttr(16); 1136 Fn->addAttributes(llvm::AttributeSet::FunctionIndex, 1137 llvm::AttributeSet::get(CGM.getLLVMContext(), 1138 llvm::AttributeSet::FunctionIndex, 1139 B)); 1140 } 1141 } 1142 } 1143 1144 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable( 1145 CodeGen::CodeGenFunction &CGF, 1146 llvm::Value *Address) const { 1147 CodeGen::CGBuilderTy &Builder = CGF.Builder; 1148 1149 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 1150 1151 // 0-7 are the eight integer registers; the order is different 1152 // on Darwin (for EH), but the range is the same. 1153 // 8 is %eip. 1154 AssignToArrayRange(Builder, Address, Four8, 0, 8); 1155 1156 if (CGF.CGM.getTarget().getTriple().isOSDarwin()) { 1157 // 12-16 are st(0..4). Not sure why we stop at 4. 1158 // These have size 16, which is sizeof(long double) on 1159 // platforms with 8-byte alignment for that type. 1160 llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16); 1161 AssignToArrayRange(Builder, Address, Sixteen8, 12, 16); 1162 1163 } else { 1164 // 9 is %eflags, which doesn't get a size on Darwin for some 1165 // reason. 1166 Builder.CreateStore(Four8, Builder.CreateConstInBoundsGEP1_32(Address, 9)); 1167 1168 // 11-16 are st(0..5). Not sure why we stop at 5. 1169 // These have size 12, which is sizeof(long double) on 1170 // platforms with 4-byte alignment for that type. 1171 llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12); 1172 AssignToArrayRange(Builder, Address, Twelve8, 11, 16); 1173 } 1174 1175 return false; 1176 } 1177 1178 //===----------------------------------------------------------------------===// 1179 // X86-64 ABI Implementation 1180 //===----------------------------------------------------------------------===// 1181 1182 1183 namespace { 1184 /// X86_64ABIInfo - The X86_64 ABI information. 1185 class X86_64ABIInfo : public ABIInfo { 1186 enum Class { 1187 Integer = 0, 1188 SSE, 1189 SSEUp, 1190 X87, 1191 X87Up, 1192 ComplexX87, 1193 NoClass, 1194 Memory 1195 }; 1196 1197 /// merge - Implement the X86_64 ABI merging algorithm. 1198 /// 1199 /// Merge an accumulating classification \arg Accum with a field 1200 /// classification \arg Field. 1201 /// 1202 /// \param Accum - The accumulating classification. This should 1203 /// always be either NoClass or the result of a previous merge 1204 /// call. In addition, this should never be Memory (the caller 1205 /// should just return Memory for the aggregate). 1206 static Class merge(Class Accum, Class Field); 1207 1208 /// postMerge - Implement the X86_64 ABI post merging algorithm. 1209 /// 1210 /// Post merger cleanup, reduces a malformed Hi and Lo pair to 1211 /// final MEMORY or SSE classes when necessary. 1212 /// 1213 /// \param AggregateSize - The size of the current aggregate in 1214 /// the classification process. 1215 /// 1216 /// \param Lo - The classification for the parts of the type 1217 /// residing in the low word of the containing object. 1218 /// 1219 /// \param Hi - The classification for the parts of the type 1220 /// residing in the higher words of the containing object. 1221 /// 1222 void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const; 1223 1224 /// classify - Determine the x86_64 register classes in which the 1225 /// given type T should be passed. 1226 /// 1227 /// \param Lo - The classification for the parts of the type 1228 /// residing in the low word of the containing object. 1229 /// 1230 /// \param Hi - The classification for the parts of the type 1231 /// residing in the high word of the containing object. 1232 /// 1233 /// \param OffsetBase - The bit offset of this type in the 1234 /// containing object. Some parameters are classified different 1235 /// depending on whether they straddle an eightbyte boundary. 1236 /// 1237 /// \param isNamedArg - Whether the argument in question is a "named" 1238 /// argument, as used in AMD64-ABI 3.5.7. 1239 /// 1240 /// If a word is unused its result will be NoClass; if a type should 1241 /// be passed in Memory then at least the classification of \arg Lo 1242 /// will be Memory. 1243 /// 1244 /// The \arg Lo class will be NoClass iff the argument is ignored. 1245 /// 1246 /// If the \arg Lo class is ComplexX87, then the \arg Hi class will 1247 /// also be ComplexX87. 1248 void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi, 1249 bool isNamedArg) const; 1250 1251 llvm::Type *GetByteVectorType(QualType Ty) const; 1252 llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType, 1253 unsigned IROffset, QualType SourceTy, 1254 unsigned SourceOffset) const; 1255 llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType, 1256 unsigned IROffset, QualType SourceTy, 1257 unsigned SourceOffset) const; 1258 1259 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 1260 /// such that the argument will be returned in memory. 1261 ABIArgInfo getIndirectReturnResult(QualType Ty) const; 1262 1263 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 1264 /// such that the argument will be passed in memory. 1265 /// 1266 /// \param freeIntRegs - The number of free integer registers remaining 1267 /// available. 1268 ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const; 1269 1270 ABIArgInfo classifyReturnType(QualType RetTy) const; 1271 1272 ABIArgInfo classifyArgumentType(QualType Ty, 1273 unsigned freeIntRegs, 1274 unsigned &neededInt, 1275 unsigned &neededSSE, 1276 bool isNamedArg) const; 1277 1278 bool IsIllegalVectorType(QualType Ty) const; 1279 1280 /// The 0.98 ABI revision clarified a lot of ambiguities, 1281 /// unfortunately in ways that were not always consistent with 1282 /// certain previous compilers. In particular, platforms which 1283 /// required strict binary compatibility with older versions of GCC 1284 /// may need to exempt themselves. 1285 bool honorsRevision0_98() const { 1286 return !getTarget().getTriple().isOSDarwin(); 1287 } 1288 1289 bool HasAVX; 1290 // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on 1291 // 64-bit hardware. 1292 bool Has64BitPointers; 1293 1294 public: 1295 X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, bool hasavx) : 1296 ABIInfo(CGT), HasAVX(hasavx), 1297 Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) { 1298 } 1299 1300 bool isPassedUsingAVXType(QualType type) const { 1301 unsigned neededInt, neededSSE; 1302 // The freeIntRegs argument doesn't matter here. 1303 ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE, 1304 /*isNamedArg*/true); 1305 if (info.isDirect()) { 1306 llvm::Type *ty = info.getCoerceToType(); 1307 if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty)) 1308 return (vectorTy->getBitWidth() > 128); 1309 } 1310 return false; 1311 } 1312 1313 void computeInfo(CGFunctionInfo &FI) const override; 1314 1315 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 1316 CodeGenFunction &CGF) const override; 1317 }; 1318 1319 /// WinX86_64ABIInfo - The Windows X86_64 ABI information. 1320 class WinX86_64ABIInfo : public ABIInfo { 1321 1322 ABIArgInfo classify(QualType Ty, bool IsReturnType) const; 1323 1324 public: 1325 WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 1326 1327 void computeInfo(CGFunctionInfo &FI) const override; 1328 1329 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 1330 CodeGenFunction &CGF) const override; 1331 }; 1332 1333 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo { 1334 public: 1335 X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX) 1336 : TargetCodeGenInfo(new X86_64ABIInfo(CGT, HasAVX)) {} 1337 1338 const X86_64ABIInfo &getABIInfo() const { 1339 return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo()); 1340 } 1341 1342 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 1343 return 7; 1344 } 1345 1346 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 1347 llvm::Value *Address) const override { 1348 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 1349 1350 // 0-15 are the 16 integer registers. 1351 // 16 is %rip. 1352 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 1353 return false; 1354 } 1355 1356 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 1357 StringRef Constraint, 1358 llvm::Type* Ty) const override { 1359 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 1360 } 1361 1362 bool isNoProtoCallVariadic(const CallArgList &args, 1363 const FunctionNoProtoType *fnType) const override { 1364 // The default CC on x86-64 sets %al to the number of SSA 1365 // registers used, and GCC sets this when calling an unprototyped 1366 // function, so we override the default behavior. However, don't do 1367 // that when AVX types are involved: the ABI explicitly states it is 1368 // undefined, and it doesn't work in practice because of how the ABI 1369 // defines varargs anyway. 1370 if (fnType->getCallConv() == CC_C) { 1371 bool HasAVXType = false; 1372 for (CallArgList::const_iterator 1373 it = args.begin(), ie = args.end(); it != ie; ++it) { 1374 if (getABIInfo().isPassedUsingAVXType(it->Ty)) { 1375 HasAVXType = true; 1376 break; 1377 } 1378 } 1379 1380 if (!HasAVXType) 1381 return true; 1382 } 1383 1384 return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType); 1385 } 1386 1387 llvm::Constant * 1388 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 1389 unsigned Sig = (0xeb << 0) | // jmp rel8 1390 (0x0a << 8) | // .+0x0c 1391 ('F' << 16) | 1392 ('T' << 24); 1393 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 1394 } 1395 1396 }; 1397 1398 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) { 1399 // If the argument does not end in .lib, automatically add the suffix. This 1400 // matches the behavior of MSVC. 1401 std::string ArgStr = Lib; 1402 if (!Lib.endswith_lower(".lib")) 1403 ArgStr += ".lib"; 1404 return ArgStr; 1405 } 1406 1407 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo { 1408 public: 1409 WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 1410 bool d, bool p, bool w, unsigned RegParms) 1411 : X86_32TargetCodeGenInfo(CGT, d, p, w, RegParms) {} 1412 1413 void getDependentLibraryOption(llvm::StringRef Lib, 1414 llvm::SmallString<24> &Opt) const override { 1415 Opt = "/DEFAULTLIB:"; 1416 Opt += qualifyWindowsLibrary(Lib); 1417 } 1418 1419 void getDetectMismatchOption(llvm::StringRef Name, 1420 llvm::StringRef Value, 1421 llvm::SmallString<32> &Opt) const override { 1422 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 1423 } 1424 }; 1425 1426 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo { 1427 public: 1428 WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 1429 : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {} 1430 1431 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 1432 return 7; 1433 } 1434 1435 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 1436 llvm::Value *Address) const override { 1437 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 1438 1439 // 0-15 are the 16 integer registers. 1440 // 16 is %rip. 1441 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 1442 return false; 1443 } 1444 1445 void getDependentLibraryOption(llvm::StringRef Lib, 1446 llvm::SmallString<24> &Opt) const override { 1447 Opt = "/DEFAULTLIB:"; 1448 Opt += qualifyWindowsLibrary(Lib); 1449 } 1450 1451 void getDetectMismatchOption(llvm::StringRef Name, 1452 llvm::StringRef Value, 1453 llvm::SmallString<32> &Opt) const override { 1454 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 1455 } 1456 }; 1457 1458 } 1459 1460 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo, 1461 Class &Hi) const { 1462 // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done: 1463 // 1464 // (a) If one of the classes is Memory, the whole argument is passed in 1465 // memory. 1466 // 1467 // (b) If X87UP is not preceded by X87, the whole argument is passed in 1468 // memory. 1469 // 1470 // (c) If the size of the aggregate exceeds two eightbytes and the first 1471 // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole 1472 // argument is passed in memory. NOTE: This is necessary to keep the 1473 // ABI working for processors that don't support the __m256 type. 1474 // 1475 // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE. 1476 // 1477 // Some of these are enforced by the merging logic. Others can arise 1478 // only with unions; for example: 1479 // union { _Complex double; unsigned; } 1480 // 1481 // Note that clauses (b) and (c) were added in 0.98. 1482 // 1483 if (Hi == Memory) 1484 Lo = Memory; 1485 if (Hi == X87Up && Lo != X87 && honorsRevision0_98()) 1486 Lo = Memory; 1487 if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp)) 1488 Lo = Memory; 1489 if (Hi == SSEUp && Lo != SSE) 1490 Hi = SSE; 1491 } 1492 1493 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) { 1494 // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is 1495 // classified recursively so that always two fields are 1496 // considered. The resulting class is calculated according to 1497 // the classes of the fields in the eightbyte: 1498 // 1499 // (a) If both classes are equal, this is the resulting class. 1500 // 1501 // (b) If one of the classes is NO_CLASS, the resulting class is 1502 // the other class. 1503 // 1504 // (c) If one of the classes is MEMORY, the result is the MEMORY 1505 // class. 1506 // 1507 // (d) If one of the classes is INTEGER, the result is the 1508 // INTEGER. 1509 // 1510 // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class, 1511 // MEMORY is used as class. 1512 // 1513 // (f) Otherwise class SSE is used. 1514 1515 // Accum should never be memory (we should have returned) or 1516 // ComplexX87 (because this cannot be passed in a structure). 1517 assert((Accum != Memory && Accum != ComplexX87) && 1518 "Invalid accumulated classification during merge."); 1519 if (Accum == Field || Field == NoClass) 1520 return Accum; 1521 if (Field == Memory) 1522 return Memory; 1523 if (Accum == NoClass) 1524 return Field; 1525 if (Accum == Integer || Field == Integer) 1526 return Integer; 1527 if (Field == X87 || Field == X87Up || Field == ComplexX87 || 1528 Accum == X87 || Accum == X87Up) 1529 return Memory; 1530 return SSE; 1531 } 1532 1533 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, 1534 Class &Lo, Class &Hi, bool isNamedArg) const { 1535 // FIXME: This code can be simplified by introducing a simple value class for 1536 // Class pairs with appropriate constructor methods for the various 1537 // situations. 1538 1539 // FIXME: Some of the split computations are wrong; unaligned vectors 1540 // shouldn't be passed in registers for example, so there is no chance they 1541 // can straddle an eightbyte. Verify & simplify. 1542 1543 Lo = Hi = NoClass; 1544 1545 Class &Current = OffsetBase < 64 ? Lo : Hi; 1546 Current = Memory; 1547 1548 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 1549 BuiltinType::Kind k = BT->getKind(); 1550 1551 if (k == BuiltinType::Void) { 1552 Current = NoClass; 1553 } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) { 1554 Lo = Integer; 1555 Hi = Integer; 1556 } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) { 1557 Current = Integer; 1558 } else if ((k == BuiltinType::Float || k == BuiltinType::Double) || 1559 (k == BuiltinType::LongDouble && 1560 getTarget().getTriple().isOSNaCl())) { 1561 Current = SSE; 1562 } else if (k == BuiltinType::LongDouble) { 1563 Lo = X87; 1564 Hi = X87Up; 1565 } 1566 // FIXME: _Decimal32 and _Decimal64 are SSE. 1567 // FIXME: _float128 and _Decimal128 are (SSE, SSEUp). 1568 return; 1569 } 1570 1571 if (const EnumType *ET = Ty->getAs<EnumType>()) { 1572 // Classify the underlying integer type. 1573 classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg); 1574 return; 1575 } 1576 1577 if (Ty->hasPointerRepresentation()) { 1578 Current = Integer; 1579 return; 1580 } 1581 1582 if (Ty->isMemberPointerType()) { 1583 if (Ty->isMemberFunctionPointerType() && Has64BitPointers) 1584 Lo = Hi = Integer; 1585 else 1586 Current = Integer; 1587 return; 1588 } 1589 1590 if (const VectorType *VT = Ty->getAs<VectorType>()) { 1591 uint64_t Size = getContext().getTypeSize(VT); 1592 if (Size == 32) { 1593 // gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x 1594 // float> as integer. 1595 Current = Integer; 1596 1597 // If this type crosses an eightbyte boundary, it should be 1598 // split. 1599 uint64_t EB_Real = (OffsetBase) / 64; 1600 uint64_t EB_Imag = (OffsetBase + Size - 1) / 64; 1601 if (EB_Real != EB_Imag) 1602 Hi = Lo; 1603 } else if (Size == 64) { 1604 // gcc passes <1 x double> in memory. :( 1605 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) 1606 return; 1607 1608 // gcc passes <1 x long long> as INTEGER. 1609 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong) || 1610 VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULongLong) || 1611 VT->getElementType()->isSpecificBuiltinType(BuiltinType::Long) || 1612 VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULong)) 1613 Current = Integer; 1614 else 1615 Current = SSE; 1616 1617 // If this type crosses an eightbyte boundary, it should be 1618 // split. 1619 if (OffsetBase && OffsetBase != 64) 1620 Hi = Lo; 1621 } else if (Size == 128 || (HasAVX && isNamedArg && Size == 256)) { 1622 // Arguments of 256-bits are split into four eightbyte chunks. The 1623 // least significant one belongs to class SSE and all the others to class 1624 // SSEUP. The original Lo and Hi design considers that types can't be 1625 // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense. 1626 // This design isn't correct for 256-bits, but since there're no cases 1627 // where the upper parts would need to be inspected, avoid adding 1628 // complexity and just consider Hi to match the 64-256 part. 1629 // 1630 // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in 1631 // registers if they are "named", i.e. not part of the "..." of a 1632 // variadic function. 1633 Lo = SSE; 1634 Hi = SSEUp; 1635 } 1636 return; 1637 } 1638 1639 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 1640 QualType ET = getContext().getCanonicalType(CT->getElementType()); 1641 1642 uint64_t Size = getContext().getTypeSize(Ty); 1643 if (ET->isIntegralOrEnumerationType()) { 1644 if (Size <= 64) 1645 Current = Integer; 1646 else if (Size <= 128) 1647 Lo = Hi = Integer; 1648 } else if (ET == getContext().FloatTy) 1649 Current = SSE; 1650 else if (ET == getContext().DoubleTy || 1651 (ET == getContext().LongDoubleTy && 1652 getTarget().getTriple().isOSNaCl())) 1653 Lo = Hi = SSE; 1654 else if (ET == getContext().LongDoubleTy) 1655 Current = ComplexX87; 1656 1657 // If this complex type crosses an eightbyte boundary then it 1658 // should be split. 1659 uint64_t EB_Real = (OffsetBase) / 64; 1660 uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64; 1661 if (Hi == NoClass && EB_Real != EB_Imag) 1662 Hi = Lo; 1663 1664 return; 1665 } 1666 1667 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 1668 // Arrays are treated like structures. 1669 1670 uint64_t Size = getContext().getTypeSize(Ty); 1671 1672 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 1673 // than four eightbytes, ..., it has class MEMORY. 1674 if (Size > 256) 1675 return; 1676 1677 // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned 1678 // fields, it has class MEMORY. 1679 // 1680 // Only need to check alignment of array base. 1681 if (OffsetBase % getContext().getTypeAlign(AT->getElementType())) 1682 return; 1683 1684 // Otherwise implement simplified merge. We could be smarter about 1685 // this, but it isn't worth it and would be harder to verify. 1686 Current = NoClass; 1687 uint64_t EltSize = getContext().getTypeSize(AT->getElementType()); 1688 uint64_t ArraySize = AT->getSize().getZExtValue(); 1689 1690 // The only case a 256-bit wide vector could be used is when the array 1691 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 1692 // to work for sizes wider than 128, early check and fallback to memory. 1693 if (Size > 128 && EltSize != 256) 1694 return; 1695 1696 for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) { 1697 Class FieldLo, FieldHi; 1698 classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg); 1699 Lo = merge(Lo, FieldLo); 1700 Hi = merge(Hi, FieldHi); 1701 if (Lo == Memory || Hi == Memory) 1702 break; 1703 } 1704 1705 postMerge(Size, Lo, Hi); 1706 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification."); 1707 return; 1708 } 1709 1710 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1711 uint64_t Size = getContext().getTypeSize(Ty); 1712 1713 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 1714 // than four eightbytes, ..., it has class MEMORY. 1715 if (Size > 256) 1716 return; 1717 1718 // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial 1719 // copy constructor or a non-trivial destructor, it is passed by invisible 1720 // reference. 1721 if (getRecordArgABI(RT, getCXXABI())) 1722 return; 1723 1724 const RecordDecl *RD = RT->getDecl(); 1725 1726 // Assume variable sized types are passed in memory. 1727 if (RD->hasFlexibleArrayMember()) 1728 return; 1729 1730 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 1731 1732 // Reset Lo class, this will be recomputed. 1733 Current = NoClass; 1734 1735 // If this is a C++ record, classify the bases first. 1736 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 1737 for (const auto &I : CXXRD->bases()) { 1738 assert(!I.isVirtual() && !I.getType()->isDependentType() && 1739 "Unexpected base class!"); 1740 const CXXRecordDecl *Base = 1741 cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); 1742 1743 // Classify this field. 1744 // 1745 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a 1746 // single eightbyte, each is classified separately. Each eightbyte gets 1747 // initialized to class NO_CLASS. 1748 Class FieldLo, FieldHi; 1749 uint64_t Offset = 1750 OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base)); 1751 classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg); 1752 Lo = merge(Lo, FieldLo); 1753 Hi = merge(Hi, FieldHi); 1754 if (Lo == Memory || Hi == Memory) 1755 break; 1756 } 1757 } 1758 1759 // Classify the fields one at a time, merging the results. 1760 unsigned idx = 0; 1761 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 1762 i != e; ++i, ++idx) { 1763 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 1764 bool BitField = i->isBitField(); 1765 1766 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than 1767 // four eightbytes, or it contains unaligned fields, it has class MEMORY. 1768 // 1769 // The only case a 256-bit wide vector could be used is when the struct 1770 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 1771 // to work for sizes wider than 128, early check and fallback to memory. 1772 // 1773 if (Size > 128 && getContext().getTypeSize(i->getType()) != 256) { 1774 Lo = Memory; 1775 return; 1776 } 1777 // Note, skip this test for bit-fields, see below. 1778 if (!BitField && Offset % getContext().getTypeAlign(i->getType())) { 1779 Lo = Memory; 1780 return; 1781 } 1782 1783 // Classify this field. 1784 // 1785 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate 1786 // exceeds a single eightbyte, each is classified 1787 // separately. Each eightbyte gets initialized to class 1788 // NO_CLASS. 1789 Class FieldLo, FieldHi; 1790 1791 // Bit-fields require special handling, they do not force the 1792 // structure to be passed in memory even if unaligned, and 1793 // therefore they can straddle an eightbyte. 1794 if (BitField) { 1795 // Ignore padding bit-fields. 1796 if (i->isUnnamedBitfield()) 1797 continue; 1798 1799 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 1800 uint64_t Size = i->getBitWidthValue(getContext()); 1801 1802 uint64_t EB_Lo = Offset / 64; 1803 uint64_t EB_Hi = (Offset + Size - 1) / 64; 1804 1805 if (EB_Lo) { 1806 assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes."); 1807 FieldLo = NoClass; 1808 FieldHi = Integer; 1809 } else { 1810 FieldLo = Integer; 1811 FieldHi = EB_Hi ? Integer : NoClass; 1812 } 1813 } else 1814 classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg); 1815 Lo = merge(Lo, FieldLo); 1816 Hi = merge(Hi, FieldHi); 1817 if (Lo == Memory || Hi == Memory) 1818 break; 1819 } 1820 1821 postMerge(Size, Lo, Hi); 1822 } 1823 } 1824 1825 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const { 1826 // If this is a scalar LLVM value then assume LLVM will pass it in the right 1827 // place naturally. 1828 if (!isAggregateTypeForABI(Ty)) { 1829 // Treat an enum type as its underlying type. 1830 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 1831 Ty = EnumTy->getDecl()->getIntegerType(); 1832 1833 return (Ty->isPromotableIntegerType() ? 1834 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 1835 } 1836 1837 return ABIArgInfo::getIndirect(0); 1838 } 1839 1840 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const { 1841 if (const VectorType *VecTy = Ty->getAs<VectorType>()) { 1842 uint64_t Size = getContext().getTypeSize(VecTy); 1843 unsigned LargestVector = HasAVX ? 256 : 128; 1844 if (Size <= 64 || Size > LargestVector) 1845 return true; 1846 } 1847 1848 return false; 1849 } 1850 1851 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty, 1852 unsigned freeIntRegs) const { 1853 // If this is a scalar LLVM value then assume LLVM will pass it in the right 1854 // place naturally. 1855 // 1856 // This assumption is optimistic, as there could be free registers available 1857 // when we need to pass this argument in memory, and LLVM could try to pass 1858 // the argument in the free register. This does not seem to happen currently, 1859 // but this code would be much safer if we could mark the argument with 1860 // 'onstack'. See PR12193. 1861 if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) { 1862 // Treat an enum type as its underlying type. 1863 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 1864 Ty = EnumTy->getDecl()->getIntegerType(); 1865 1866 return (Ty->isPromotableIntegerType() ? 1867 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 1868 } 1869 1870 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 1871 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 1872 1873 // Compute the byval alignment. We specify the alignment of the byval in all 1874 // cases so that the mid-level optimizer knows the alignment of the byval. 1875 unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U); 1876 1877 // Attempt to avoid passing indirect results using byval when possible. This 1878 // is important for good codegen. 1879 // 1880 // We do this by coercing the value into a scalar type which the backend can 1881 // handle naturally (i.e., without using byval). 1882 // 1883 // For simplicity, we currently only do this when we have exhausted all of the 1884 // free integer registers. Doing this when there are free integer registers 1885 // would require more care, as we would have to ensure that the coerced value 1886 // did not claim the unused register. That would require either reording the 1887 // arguments to the function (so that any subsequent inreg values came first), 1888 // or only doing this optimization when there were no following arguments that 1889 // might be inreg. 1890 // 1891 // We currently expect it to be rare (particularly in well written code) for 1892 // arguments to be passed on the stack when there are still free integer 1893 // registers available (this would typically imply large structs being passed 1894 // by value), so this seems like a fair tradeoff for now. 1895 // 1896 // We can revisit this if the backend grows support for 'onstack' parameter 1897 // attributes. See PR12193. 1898 if (freeIntRegs == 0) { 1899 uint64_t Size = getContext().getTypeSize(Ty); 1900 1901 // If this type fits in an eightbyte, coerce it into the matching integral 1902 // type, which will end up on the stack (with alignment 8). 1903 if (Align == 8 && Size <= 64) 1904 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1905 Size)); 1906 } 1907 1908 return ABIArgInfo::getIndirect(Align); 1909 } 1910 1911 /// GetByteVectorType - The ABI specifies that a value should be passed in an 1912 /// full vector XMM/YMM register. Pick an LLVM IR type that will be passed as a 1913 /// vector register. 1914 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const { 1915 llvm::Type *IRType = CGT.ConvertType(Ty); 1916 1917 // Wrapper structs that just contain vectors are passed just like vectors, 1918 // strip them off if present. 1919 llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType); 1920 while (STy && STy->getNumElements() == 1) { 1921 IRType = STy->getElementType(0); 1922 STy = dyn_cast<llvm::StructType>(IRType); 1923 } 1924 1925 // If the preferred type is a 16-byte vector, prefer to pass it. 1926 if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(IRType)){ 1927 llvm::Type *EltTy = VT->getElementType(); 1928 unsigned BitWidth = VT->getBitWidth(); 1929 if ((BitWidth >= 128 && BitWidth <= 256) && 1930 (EltTy->isFloatTy() || EltTy->isDoubleTy() || 1931 EltTy->isIntegerTy(8) || EltTy->isIntegerTy(16) || 1932 EltTy->isIntegerTy(32) || EltTy->isIntegerTy(64) || 1933 EltTy->isIntegerTy(128))) 1934 return VT; 1935 } 1936 1937 return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 2); 1938 } 1939 1940 /// BitsContainNoUserData - Return true if the specified [start,end) bit range 1941 /// is known to either be off the end of the specified type or being in 1942 /// alignment padding. The user type specified is known to be at most 128 bits 1943 /// in size, and have passed through X86_64ABIInfo::classify with a successful 1944 /// classification that put one of the two halves in the INTEGER class. 1945 /// 1946 /// It is conservatively correct to return false. 1947 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit, 1948 unsigned EndBit, ASTContext &Context) { 1949 // If the bytes being queried are off the end of the type, there is no user 1950 // data hiding here. This handles analysis of builtins, vectors and other 1951 // types that don't contain interesting padding. 1952 unsigned TySize = (unsigned)Context.getTypeSize(Ty); 1953 if (TySize <= StartBit) 1954 return true; 1955 1956 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 1957 unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType()); 1958 unsigned NumElts = (unsigned)AT->getSize().getZExtValue(); 1959 1960 // Check each element to see if the element overlaps with the queried range. 1961 for (unsigned i = 0; i != NumElts; ++i) { 1962 // If the element is after the span we care about, then we're done.. 1963 unsigned EltOffset = i*EltSize; 1964 if (EltOffset >= EndBit) break; 1965 1966 unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0; 1967 if (!BitsContainNoUserData(AT->getElementType(), EltStart, 1968 EndBit-EltOffset, Context)) 1969 return false; 1970 } 1971 // If it overlaps no elements, then it is safe to process as padding. 1972 return true; 1973 } 1974 1975 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1976 const RecordDecl *RD = RT->getDecl(); 1977 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 1978 1979 // If this is a C++ record, check the bases first. 1980 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 1981 for (const auto &I : CXXRD->bases()) { 1982 assert(!I.isVirtual() && !I.getType()->isDependentType() && 1983 "Unexpected base class!"); 1984 const CXXRecordDecl *Base = 1985 cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); 1986 1987 // If the base is after the span we care about, ignore it. 1988 unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base)); 1989 if (BaseOffset >= EndBit) continue; 1990 1991 unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0; 1992 if (!BitsContainNoUserData(I.getType(), BaseStart, 1993 EndBit-BaseOffset, Context)) 1994 return false; 1995 } 1996 } 1997 1998 // Verify that no field has data that overlaps the region of interest. Yes 1999 // this could be sped up a lot by being smarter about queried fields, 2000 // however we're only looking at structs up to 16 bytes, so we don't care 2001 // much. 2002 unsigned idx = 0; 2003 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 2004 i != e; ++i, ++idx) { 2005 unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx); 2006 2007 // If we found a field after the region we care about, then we're done. 2008 if (FieldOffset >= EndBit) break; 2009 2010 unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0; 2011 if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset, 2012 Context)) 2013 return false; 2014 } 2015 2016 // If nothing in this record overlapped the area of interest, then we're 2017 // clean. 2018 return true; 2019 } 2020 2021 return false; 2022 } 2023 2024 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a 2025 /// float member at the specified offset. For example, {int,{float}} has a 2026 /// float at offset 4. It is conservatively correct for this routine to return 2027 /// false. 2028 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset, 2029 const llvm::DataLayout &TD) { 2030 // Base case if we find a float. 2031 if (IROffset == 0 && IRType->isFloatTy()) 2032 return true; 2033 2034 // If this is a struct, recurse into the field at the specified offset. 2035 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 2036 const llvm::StructLayout *SL = TD.getStructLayout(STy); 2037 unsigned Elt = SL->getElementContainingOffset(IROffset); 2038 IROffset -= SL->getElementOffset(Elt); 2039 return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD); 2040 } 2041 2042 // If this is an array, recurse into the field at the specified offset. 2043 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 2044 llvm::Type *EltTy = ATy->getElementType(); 2045 unsigned EltSize = TD.getTypeAllocSize(EltTy); 2046 IROffset -= IROffset/EltSize*EltSize; 2047 return ContainsFloatAtOffset(EltTy, IROffset, TD); 2048 } 2049 2050 return false; 2051 } 2052 2053 2054 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the 2055 /// low 8 bytes of an XMM register, corresponding to the SSE class. 2056 llvm::Type *X86_64ABIInfo:: 2057 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset, 2058 QualType SourceTy, unsigned SourceOffset) const { 2059 // The only three choices we have are either double, <2 x float>, or float. We 2060 // pass as float if the last 4 bytes is just padding. This happens for 2061 // structs that contain 3 floats. 2062 if (BitsContainNoUserData(SourceTy, SourceOffset*8+32, 2063 SourceOffset*8+64, getContext())) 2064 return llvm::Type::getFloatTy(getVMContext()); 2065 2066 // We want to pass as <2 x float> if the LLVM IR type contains a float at 2067 // offset+0 and offset+4. Walk the LLVM IR type to find out if this is the 2068 // case. 2069 if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) && 2070 ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout())) 2071 return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2); 2072 2073 return llvm::Type::getDoubleTy(getVMContext()); 2074 } 2075 2076 2077 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in 2078 /// an 8-byte GPR. This means that we either have a scalar or we are talking 2079 /// about the high or low part of an up-to-16-byte struct. This routine picks 2080 /// the best LLVM IR type to represent this, which may be i64 or may be anything 2081 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*, 2082 /// etc). 2083 /// 2084 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for 2085 /// the source type. IROffset is an offset in bytes into the LLVM IR type that 2086 /// the 8-byte value references. PrefType may be null. 2087 /// 2088 /// SourceTy is the source level type for the entire argument. SourceOffset is 2089 /// an offset into this that we're processing (which is always either 0 or 8). 2090 /// 2091 llvm::Type *X86_64ABIInfo:: 2092 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset, 2093 QualType SourceTy, unsigned SourceOffset) const { 2094 // If we're dealing with an un-offset LLVM IR type, then it means that we're 2095 // returning an 8-byte unit starting with it. See if we can safely use it. 2096 if (IROffset == 0) { 2097 // Pointers and int64's always fill the 8-byte unit. 2098 if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) || 2099 IRType->isIntegerTy(64)) 2100 return IRType; 2101 2102 // If we have a 1/2/4-byte integer, we can use it only if the rest of the 2103 // goodness in the source type is just tail padding. This is allowed to 2104 // kick in for struct {double,int} on the int, but not on 2105 // struct{double,int,int} because we wouldn't return the second int. We 2106 // have to do this analysis on the source type because we can't depend on 2107 // unions being lowered a specific way etc. 2108 if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) || 2109 IRType->isIntegerTy(32) || 2110 (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) { 2111 unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 : 2112 cast<llvm::IntegerType>(IRType)->getBitWidth(); 2113 2114 if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth, 2115 SourceOffset*8+64, getContext())) 2116 return IRType; 2117 } 2118 } 2119 2120 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 2121 // If this is a struct, recurse into the field at the specified offset. 2122 const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy); 2123 if (IROffset < SL->getSizeInBytes()) { 2124 unsigned FieldIdx = SL->getElementContainingOffset(IROffset); 2125 IROffset -= SL->getElementOffset(FieldIdx); 2126 2127 return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset, 2128 SourceTy, SourceOffset); 2129 } 2130 } 2131 2132 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 2133 llvm::Type *EltTy = ATy->getElementType(); 2134 unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy); 2135 unsigned EltOffset = IROffset/EltSize*EltSize; 2136 return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy, 2137 SourceOffset); 2138 } 2139 2140 // Okay, we don't have any better idea of what to pass, so we pass this in an 2141 // integer register that isn't too big to fit the rest of the struct. 2142 unsigned TySizeInBytes = 2143 (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity(); 2144 2145 assert(TySizeInBytes != SourceOffset && "Empty field?"); 2146 2147 // It is always safe to classify this as an integer type up to i64 that 2148 // isn't larger than the structure. 2149 return llvm::IntegerType::get(getVMContext(), 2150 std::min(TySizeInBytes-SourceOffset, 8U)*8); 2151 } 2152 2153 2154 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally 2155 /// be used as elements of a two register pair to pass or return, return a 2156 /// first class aggregate to represent them. For example, if the low part of 2157 /// a by-value argument should be passed as i32* and the high part as float, 2158 /// return {i32*, float}. 2159 static llvm::Type * 2160 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi, 2161 const llvm::DataLayout &TD) { 2162 // In order to correctly satisfy the ABI, we need to the high part to start 2163 // at offset 8. If the high and low parts we inferred are both 4-byte types 2164 // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have 2165 // the second element at offset 8. Check for this: 2166 unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo); 2167 unsigned HiAlign = TD.getABITypeAlignment(Hi); 2168 unsigned HiStart = llvm::DataLayout::RoundUpAlignment(LoSize, HiAlign); 2169 assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!"); 2170 2171 // To handle this, we have to increase the size of the low part so that the 2172 // second element will start at an 8 byte offset. We can't increase the size 2173 // of the second element because it might make us access off the end of the 2174 // struct. 2175 if (HiStart != 8) { 2176 // There are only two sorts of types the ABI generation code can produce for 2177 // the low part of a pair that aren't 8 bytes in size: float or i8/i16/i32. 2178 // Promote these to a larger type. 2179 if (Lo->isFloatTy()) 2180 Lo = llvm::Type::getDoubleTy(Lo->getContext()); 2181 else { 2182 assert(Lo->isIntegerTy() && "Invalid/unknown lo type"); 2183 Lo = llvm::Type::getInt64Ty(Lo->getContext()); 2184 } 2185 } 2186 2187 llvm::StructType *Result = llvm::StructType::get(Lo, Hi, NULL); 2188 2189 2190 // Verify that the second element is at an 8-byte offset. 2191 assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 && 2192 "Invalid x86-64 argument pair!"); 2193 return Result; 2194 } 2195 2196 ABIArgInfo X86_64ABIInfo:: 2197 classifyReturnType(QualType RetTy) const { 2198 // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the 2199 // classification algorithm. 2200 X86_64ABIInfo::Class Lo, Hi; 2201 classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true); 2202 2203 // Check some invariants. 2204 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 2205 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 2206 2207 llvm::Type *ResType = 0; 2208 switch (Lo) { 2209 case NoClass: 2210 if (Hi == NoClass) 2211 return ABIArgInfo::getIgnore(); 2212 // If the low part is just padding, it takes no register, leave ResType 2213 // null. 2214 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 2215 "Unknown missing lo part"); 2216 break; 2217 2218 case SSEUp: 2219 case X87Up: 2220 llvm_unreachable("Invalid classification for lo word."); 2221 2222 // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via 2223 // hidden argument. 2224 case Memory: 2225 return getIndirectReturnResult(RetTy); 2226 2227 // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next 2228 // available register of the sequence %rax, %rdx is used. 2229 case Integer: 2230 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 2231 2232 // If we have a sign or zero extended integer, make sure to return Extend 2233 // so that the parameter gets the right LLVM IR attributes. 2234 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 2235 // Treat an enum type as its underlying type. 2236 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 2237 RetTy = EnumTy->getDecl()->getIntegerType(); 2238 2239 if (RetTy->isIntegralOrEnumerationType() && 2240 RetTy->isPromotableIntegerType()) 2241 return ABIArgInfo::getExtend(); 2242 } 2243 break; 2244 2245 // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next 2246 // available SSE register of the sequence %xmm0, %xmm1 is used. 2247 case SSE: 2248 ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 2249 break; 2250 2251 // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is 2252 // returned on the X87 stack in %st0 as 80-bit x87 number. 2253 case X87: 2254 ResType = llvm::Type::getX86_FP80Ty(getVMContext()); 2255 break; 2256 2257 // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real 2258 // part of the value is returned in %st0 and the imaginary part in 2259 // %st1. 2260 case ComplexX87: 2261 assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification."); 2262 ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()), 2263 llvm::Type::getX86_FP80Ty(getVMContext()), 2264 NULL); 2265 break; 2266 } 2267 2268 llvm::Type *HighPart = 0; 2269 switch (Hi) { 2270 // Memory was handled previously and X87 should 2271 // never occur as a hi class. 2272 case Memory: 2273 case X87: 2274 llvm_unreachable("Invalid classification for hi word."); 2275 2276 case ComplexX87: // Previously handled. 2277 case NoClass: 2278 break; 2279 2280 case Integer: 2281 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 2282 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 2283 return ABIArgInfo::getDirect(HighPart, 8); 2284 break; 2285 case SSE: 2286 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 2287 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 2288 return ABIArgInfo::getDirect(HighPart, 8); 2289 break; 2290 2291 // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte 2292 // is passed in the next available eightbyte chunk if the last used 2293 // vector register. 2294 // 2295 // SSEUP should always be preceded by SSE, just widen. 2296 case SSEUp: 2297 assert(Lo == SSE && "Unexpected SSEUp classification."); 2298 ResType = GetByteVectorType(RetTy); 2299 break; 2300 2301 // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is 2302 // returned together with the previous X87 value in %st0. 2303 case X87Up: 2304 // If X87Up is preceded by X87, we don't need to do 2305 // anything. However, in some cases with unions it may not be 2306 // preceded by X87. In such situations we follow gcc and pass the 2307 // extra bits in an SSE reg. 2308 if (Lo != X87) { 2309 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 2310 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 2311 return ABIArgInfo::getDirect(HighPart, 8); 2312 } 2313 break; 2314 } 2315 2316 // If a high part was specified, merge it together with the low part. It is 2317 // known to pass in the high eightbyte of the result. We do this by forming a 2318 // first class struct aggregate with the high and low part: {low, high} 2319 if (HighPart) 2320 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 2321 2322 return ABIArgInfo::getDirect(ResType); 2323 } 2324 2325 ABIArgInfo X86_64ABIInfo::classifyArgumentType( 2326 QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE, 2327 bool isNamedArg) 2328 const 2329 { 2330 X86_64ABIInfo::Class Lo, Hi; 2331 classify(Ty, 0, Lo, Hi, isNamedArg); 2332 2333 // Check some invariants. 2334 // FIXME: Enforce these by construction. 2335 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 2336 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 2337 2338 neededInt = 0; 2339 neededSSE = 0; 2340 llvm::Type *ResType = 0; 2341 switch (Lo) { 2342 case NoClass: 2343 if (Hi == NoClass) 2344 return ABIArgInfo::getIgnore(); 2345 // If the low part is just padding, it takes no register, leave ResType 2346 // null. 2347 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 2348 "Unknown missing lo part"); 2349 break; 2350 2351 // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument 2352 // on the stack. 2353 case Memory: 2354 2355 // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or 2356 // COMPLEX_X87, it is passed in memory. 2357 case X87: 2358 case ComplexX87: 2359 if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect) 2360 ++neededInt; 2361 return getIndirectResult(Ty, freeIntRegs); 2362 2363 case SSEUp: 2364 case X87Up: 2365 llvm_unreachable("Invalid classification for lo word."); 2366 2367 // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next 2368 // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8 2369 // and %r9 is used. 2370 case Integer: 2371 ++neededInt; 2372 2373 // Pick an 8-byte type based on the preferred type. 2374 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0); 2375 2376 // If we have a sign or zero extended integer, make sure to return Extend 2377 // so that the parameter gets the right LLVM IR attributes. 2378 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 2379 // Treat an enum type as its underlying type. 2380 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2381 Ty = EnumTy->getDecl()->getIntegerType(); 2382 2383 if (Ty->isIntegralOrEnumerationType() && 2384 Ty->isPromotableIntegerType()) 2385 return ABIArgInfo::getExtend(); 2386 } 2387 2388 break; 2389 2390 // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next 2391 // available SSE register is used, the registers are taken in the 2392 // order from %xmm0 to %xmm7. 2393 case SSE: { 2394 llvm::Type *IRType = CGT.ConvertType(Ty); 2395 ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0); 2396 ++neededSSE; 2397 break; 2398 } 2399 } 2400 2401 llvm::Type *HighPart = 0; 2402 switch (Hi) { 2403 // Memory was handled previously, ComplexX87 and X87 should 2404 // never occur as hi classes, and X87Up must be preceded by X87, 2405 // which is passed in memory. 2406 case Memory: 2407 case X87: 2408 case ComplexX87: 2409 llvm_unreachable("Invalid classification for hi word."); 2410 2411 case NoClass: break; 2412 2413 case Integer: 2414 ++neededInt; 2415 // Pick an 8-byte type based on the preferred type. 2416 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 2417 2418 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 2419 return ABIArgInfo::getDirect(HighPart, 8); 2420 break; 2421 2422 // X87Up generally doesn't occur here (long double is passed in 2423 // memory), except in situations involving unions. 2424 case X87Up: 2425 case SSE: 2426 HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 2427 2428 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 2429 return ABIArgInfo::getDirect(HighPart, 8); 2430 2431 ++neededSSE; 2432 break; 2433 2434 // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the 2435 // eightbyte is passed in the upper half of the last used SSE 2436 // register. This only happens when 128-bit vectors are passed. 2437 case SSEUp: 2438 assert(Lo == SSE && "Unexpected SSEUp classification"); 2439 ResType = GetByteVectorType(Ty); 2440 break; 2441 } 2442 2443 // If a high part was specified, merge it together with the low part. It is 2444 // known to pass in the high eightbyte of the result. We do this by forming a 2445 // first class struct aggregate with the high and low part: {low, high} 2446 if (HighPart) 2447 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 2448 2449 return ABIArgInfo::getDirect(ResType); 2450 } 2451 2452 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 2453 2454 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 2455 2456 // Keep track of the number of assigned registers. 2457 unsigned freeIntRegs = 6, freeSSERegs = 8; 2458 2459 // If the return value is indirect, then the hidden argument is consuming one 2460 // integer register. 2461 if (FI.getReturnInfo().isIndirect()) 2462 --freeIntRegs; 2463 2464 bool isVariadic = FI.isVariadic(); 2465 unsigned numRequiredArgs = 0; 2466 if (isVariadic) 2467 numRequiredArgs = FI.getRequiredArgs().getNumRequiredArgs(); 2468 2469 // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers 2470 // get assigned (in left-to-right order) for passing as follows... 2471 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 2472 it != ie; ++it) { 2473 bool isNamedArg = true; 2474 if (isVariadic) 2475 isNamedArg = (it - FI.arg_begin()) < 2476 static_cast<signed>(numRequiredArgs); 2477 2478 unsigned neededInt, neededSSE; 2479 it->info = classifyArgumentType(it->type, freeIntRegs, neededInt, 2480 neededSSE, isNamedArg); 2481 2482 // AMD64-ABI 3.2.3p3: If there are no registers available for any 2483 // eightbyte of an argument, the whole argument is passed on the 2484 // stack. If registers have already been assigned for some 2485 // eightbytes of such an argument, the assignments get reverted. 2486 if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) { 2487 freeIntRegs -= neededInt; 2488 freeSSERegs -= neededSSE; 2489 } else { 2490 it->info = getIndirectResult(it->type, freeIntRegs); 2491 } 2492 } 2493 } 2494 2495 static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr, 2496 QualType Ty, 2497 CodeGenFunction &CGF) { 2498 llvm::Value *overflow_arg_area_p = 2499 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p"); 2500 llvm::Value *overflow_arg_area = 2501 CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area"); 2502 2503 // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16 2504 // byte boundary if alignment needed by type exceeds 8 byte boundary. 2505 // It isn't stated explicitly in the standard, but in practice we use 2506 // alignment greater than 16 where necessary. 2507 uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8; 2508 if (Align > 8) { 2509 // overflow_arg_area = (overflow_arg_area + align - 1) & -align; 2510 llvm::Value *Offset = 2511 llvm::ConstantInt::get(CGF.Int64Ty, Align - 1); 2512 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset); 2513 llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area, 2514 CGF.Int64Ty); 2515 llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, -(uint64_t)Align); 2516 overflow_arg_area = 2517 CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask), 2518 overflow_arg_area->getType(), 2519 "overflow_arg_area.align"); 2520 } 2521 2522 // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area. 2523 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 2524 llvm::Value *Res = 2525 CGF.Builder.CreateBitCast(overflow_arg_area, 2526 llvm::PointerType::getUnqual(LTy)); 2527 2528 // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to: 2529 // l->overflow_arg_area + sizeof(type). 2530 // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to 2531 // an 8 byte boundary. 2532 2533 uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8; 2534 llvm::Value *Offset = 2535 llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7); 2536 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset, 2537 "overflow_arg_area.next"); 2538 CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p); 2539 2540 // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type. 2541 return Res; 2542 } 2543 2544 llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 2545 CodeGenFunction &CGF) const { 2546 // Assume that va_list type is correct; should be pointer to LLVM type: 2547 // struct { 2548 // i32 gp_offset; 2549 // i32 fp_offset; 2550 // i8* overflow_arg_area; 2551 // i8* reg_save_area; 2552 // }; 2553 unsigned neededInt, neededSSE; 2554 2555 Ty = CGF.getContext().getCanonicalType(Ty); 2556 ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE, 2557 /*isNamedArg*/false); 2558 2559 // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed 2560 // in the registers. If not go to step 7. 2561 if (!neededInt && !neededSSE) 2562 return EmitVAArgFromMemory(VAListAddr, Ty, CGF); 2563 2564 // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of 2565 // general purpose registers needed to pass type and num_fp to hold 2566 // the number of floating point registers needed. 2567 2568 // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into 2569 // registers. In the case: l->gp_offset > 48 - num_gp * 8 or 2570 // l->fp_offset > 304 - num_fp * 16 go to step 7. 2571 // 2572 // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of 2573 // register save space). 2574 2575 llvm::Value *InRegs = 0; 2576 llvm::Value *gp_offset_p = 0, *gp_offset = 0; 2577 llvm::Value *fp_offset_p = 0, *fp_offset = 0; 2578 if (neededInt) { 2579 gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p"); 2580 gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset"); 2581 InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8); 2582 InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp"); 2583 } 2584 2585 if (neededSSE) { 2586 fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p"); 2587 fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset"); 2588 llvm::Value *FitsInFP = 2589 llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16); 2590 FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp"); 2591 InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP; 2592 } 2593 2594 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 2595 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 2596 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 2597 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 2598 2599 // Emit code to load the value if it was passed in registers. 2600 2601 CGF.EmitBlock(InRegBlock); 2602 2603 // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with 2604 // an offset of l->gp_offset and/or l->fp_offset. This may require 2605 // copying to a temporary location in case the parameter is passed 2606 // in different register classes or requires an alignment greater 2607 // than 8 for general purpose registers and 16 for XMM registers. 2608 // 2609 // FIXME: This really results in shameful code when we end up needing to 2610 // collect arguments from different places; often what should result in a 2611 // simple assembling of a structure from scattered addresses has many more 2612 // loads than necessary. Can we clean this up? 2613 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 2614 llvm::Value *RegAddr = 2615 CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(VAListAddr, 3), 2616 "reg_save_area"); 2617 if (neededInt && neededSSE) { 2618 // FIXME: Cleanup. 2619 assert(AI.isDirect() && "Unexpected ABI info for mixed regs"); 2620 llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType()); 2621 llvm::Value *Tmp = CGF.CreateMemTemp(Ty); 2622 Tmp = CGF.Builder.CreateBitCast(Tmp, ST->getPointerTo()); 2623 assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs"); 2624 llvm::Type *TyLo = ST->getElementType(0); 2625 llvm::Type *TyHi = ST->getElementType(1); 2626 assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) && 2627 "Unexpected ABI info for mixed regs"); 2628 llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo); 2629 llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi); 2630 llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset); 2631 llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset); 2632 llvm::Value *RegLoAddr = TyLo->isFloatingPointTy() ? FPAddr : GPAddr; 2633 llvm::Value *RegHiAddr = TyLo->isFloatingPointTy() ? GPAddr : FPAddr; 2634 llvm::Value *V = 2635 CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo)); 2636 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 2637 V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi)); 2638 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 2639 2640 RegAddr = CGF.Builder.CreateBitCast(Tmp, 2641 llvm::PointerType::getUnqual(LTy)); 2642 } else if (neededInt) { 2643 RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset); 2644 RegAddr = CGF.Builder.CreateBitCast(RegAddr, 2645 llvm::PointerType::getUnqual(LTy)); 2646 2647 // Copy to a temporary if necessary to ensure the appropriate alignment. 2648 std::pair<CharUnits, CharUnits> SizeAlign = 2649 CGF.getContext().getTypeInfoInChars(Ty); 2650 uint64_t TySize = SizeAlign.first.getQuantity(); 2651 unsigned TyAlign = SizeAlign.second.getQuantity(); 2652 if (TyAlign > 8) { 2653 llvm::Value *Tmp = CGF.CreateMemTemp(Ty); 2654 CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, 8, false); 2655 RegAddr = Tmp; 2656 } 2657 } else if (neededSSE == 1) { 2658 RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset); 2659 RegAddr = CGF.Builder.CreateBitCast(RegAddr, 2660 llvm::PointerType::getUnqual(LTy)); 2661 } else { 2662 assert(neededSSE == 2 && "Invalid number of needed registers!"); 2663 // SSE registers are spaced 16 bytes apart in the register save 2664 // area, we need to collect the two eightbytes together. 2665 llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset); 2666 llvm::Value *RegAddrHi = CGF.Builder.CreateConstGEP1_32(RegAddrLo, 16); 2667 llvm::Type *DoubleTy = CGF.DoubleTy; 2668 llvm::Type *DblPtrTy = 2669 llvm::PointerType::getUnqual(DoubleTy); 2670 llvm::StructType *ST = llvm::StructType::get(DoubleTy, DoubleTy, NULL); 2671 llvm::Value *V, *Tmp = CGF.CreateMemTemp(Ty); 2672 Tmp = CGF.Builder.CreateBitCast(Tmp, ST->getPointerTo()); 2673 V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo, 2674 DblPtrTy)); 2675 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 2676 V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi, 2677 DblPtrTy)); 2678 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 2679 RegAddr = CGF.Builder.CreateBitCast(Tmp, 2680 llvm::PointerType::getUnqual(LTy)); 2681 } 2682 2683 // AMD64-ABI 3.5.7p5: Step 5. Set: 2684 // l->gp_offset = l->gp_offset + num_gp * 8 2685 // l->fp_offset = l->fp_offset + num_fp * 16. 2686 if (neededInt) { 2687 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8); 2688 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset), 2689 gp_offset_p); 2690 } 2691 if (neededSSE) { 2692 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16); 2693 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset), 2694 fp_offset_p); 2695 } 2696 CGF.EmitBranch(ContBlock); 2697 2698 // Emit code to load the value if it was passed in memory. 2699 2700 CGF.EmitBlock(InMemBlock); 2701 llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF); 2702 2703 // Return the appropriate result. 2704 2705 CGF.EmitBlock(ContBlock); 2706 llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(), 2, 2707 "vaarg.addr"); 2708 ResAddr->addIncoming(RegAddr, InRegBlock); 2709 ResAddr->addIncoming(MemAddr, InMemBlock); 2710 return ResAddr; 2711 } 2712 2713 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, bool IsReturnType) const { 2714 2715 if (Ty->isVoidType()) 2716 return ABIArgInfo::getIgnore(); 2717 2718 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2719 Ty = EnumTy->getDecl()->getIntegerType(); 2720 2721 uint64_t Size = getContext().getTypeSize(Ty); 2722 2723 const RecordType *RT = Ty->getAs<RecordType>(); 2724 if (RT) { 2725 if (IsReturnType) { 2726 if (isRecordReturnIndirect(RT, getCXXABI())) 2727 return ABIArgInfo::getIndirect(0, false); 2728 } else { 2729 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI())) 2730 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 2731 } 2732 2733 if (RT->getDecl()->hasFlexibleArrayMember()) 2734 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 2735 2736 // FIXME: mingw-w64-gcc emits 128-bit struct as i128 2737 if (Size == 128 && getTarget().getTriple().isWindowsGNUEnvironment()) 2738 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 2739 Size)); 2740 } 2741 2742 if (Ty->isMemberPointerType()) { 2743 // If the member pointer is represented by an LLVM int or ptr, pass it 2744 // directly. 2745 llvm::Type *LLTy = CGT.ConvertType(Ty); 2746 if (LLTy->isPointerTy() || LLTy->isIntegerTy()) 2747 return ABIArgInfo::getDirect(); 2748 } 2749 2750 if (RT || Ty->isMemberPointerType()) { 2751 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 2752 // not 1, 2, 4, or 8 bytes, must be passed by reference." 2753 if (Size > 64 || !llvm::isPowerOf2_64(Size)) 2754 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 2755 2756 // Otherwise, coerce it to a small integer. 2757 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 2758 } 2759 2760 if (Ty->isPromotableIntegerType()) 2761 return ABIArgInfo::getExtend(); 2762 2763 return ABIArgInfo::getDirect(); 2764 } 2765 2766 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 2767 2768 QualType RetTy = FI.getReturnType(); 2769 FI.getReturnInfo() = classify(RetTy, true); 2770 2771 for (auto &I : FI.arguments()) 2772 I.info = classify(I.type, false); 2773 } 2774 2775 llvm::Value *WinX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 2776 CodeGenFunction &CGF) const { 2777 llvm::Type *BPP = CGF.Int8PtrPtrTy; 2778 2779 CGBuilderTy &Builder = CGF.Builder; 2780 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, 2781 "ap"); 2782 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 2783 llvm::Type *PTy = 2784 llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 2785 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); 2786 2787 uint64_t Offset = 2788 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 8); 2789 llvm::Value *NextAddr = 2790 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), 2791 "ap.next"); 2792 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 2793 2794 return AddrTyped; 2795 } 2796 2797 namespace { 2798 2799 class NaClX86_64ABIInfo : public ABIInfo { 2800 public: 2801 NaClX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX) 2802 : ABIInfo(CGT), PInfo(CGT), NInfo(CGT, HasAVX) {} 2803 void computeInfo(CGFunctionInfo &FI) const override; 2804 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 2805 CodeGenFunction &CGF) const override; 2806 private: 2807 PNaClABIInfo PInfo; // Used for generating calls with pnaclcall callingconv. 2808 X86_64ABIInfo NInfo; // Used for everything else. 2809 }; 2810 2811 class NaClX86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2812 public: 2813 NaClX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX) 2814 : TargetCodeGenInfo(new NaClX86_64ABIInfo(CGT, HasAVX)) {} 2815 }; 2816 2817 } 2818 2819 void NaClX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 2820 if (FI.getASTCallingConvention() == CC_PnaclCall) 2821 PInfo.computeInfo(FI); 2822 else 2823 NInfo.computeInfo(FI); 2824 } 2825 2826 llvm::Value *NaClX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 2827 CodeGenFunction &CGF) const { 2828 // Always use the native convention; calling pnacl-style varargs functions 2829 // is unuspported. 2830 return NInfo.EmitVAArg(VAListAddr, Ty, CGF); 2831 } 2832 2833 2834 // PowerPC-32 2835 2836 namespace { 2837 class PPC32TargetCodeGenInfo : public DefaultTargetCodeGenInfo { 2838 public: 2839 PPC32TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {} 2840 2841 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 2842 // This is recovered from gcc output. 2843 return 1; // r1 is the dedicated stack pointer 2844 } 2845 2846 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2847 llvm::Value *Address) const override; 2848 }; 2849 2850 } 2851 2852 bool 2853 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2854 llvm::Value *Address) const { 2855 // This is calculated from the LLVM and GCC tables and verified 2856 // against gcc output. AFAIK all ABIs use the same encoding. 2857 2858 CodeGen::CGBuilderTy &Builder = CGF.Builder; 2859 2860 llvm::IntegerType *i8 = CGF.Int8Ty; 2861 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 2862 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 2863 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 2864 2865 // 0-31: r0-31, the 4-byte general-purpose registers 2866 AssignToArrayRange(Builder, Address, Four8, 0, 31); 2867 2868 // 32-63: fp0-31, the 8-byte floating-point registers 2869 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 2870 2871 // 64-76 are various 4-byte special-purpose registers: 2872 // 64: mq 2873 // 65: lr 2874 // 66: ctr 2875 // 67: ap 2876 // 68-75 cr0-7 2877 // 76: xer 2878 AssignToArrayRange(Builder, Address, Four8, 64, 76); 2879 2880 // 77-108: v0-31, the 16-byte vector registers 2881 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 2882 2883 // 109: vrsave 2884 // 110: vscr 2885 // 111: spe_acc 2886 // 112: spefscr 2887 // 113: sfp 2888 AssignToArrayRange(Builder, Address, Four8, 109, 113); 2889 2890 return false; 2891 } 2892 2893 // PowerPC-64 2894 2895 namespace { 2896 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information. 2897 class PPC64_SVR4_ABIInfo : public DefaultABIInfo { 2898 2899 public: 2900 PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 2901 2902 bool isPromotableTypeForABI(QualType Ty) const; 2903 2904 ABIArgInfo classifyReturnType(QualType RetTy) const; 2905 ABIArgInfo classifyArgumentType(QualType Ty) const; 2906 2907 // TODO: We can add more logic to computeInfo to improve performance. 2908 // Example: For aggregate arguments that fit in a register, we could 2909 // use getDirectInReg (as is done below for structs containing a single 2910 // floating-point value) to avoid pushing them to memory on function 2911 // entry. This would require changing the logic in PPCISelLowering 2912 // when lowering the parameters in the caller and args in the callee. 2913 void computeInfo(CGFunctionInfo &FI) const override { 2914 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 2915 for (auto &I : FI.arguments()) { 2916 // We rely on the default argument classification for the most part. 2917 // One exception: An aggregate containing a single floating-point 2918 // or vector item must be passed in a register if one is available. 2919 const Type *T = isSingleElementStruct(I.type, getContext()); 2920 if (T) { 2921 const BuiltinType *BT = T->getAs<BuiltinType>(); 2922 if (T->isVectorType() || (BT && BT->isFloatingPoint())) { 2923 QualType QT(T, 0); 2924 I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT)); 2925 continue; 2926 } 2927 } 2928 I.info = classifyArgumentType(I.type); 2929 } 2930 } 2931 2932 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 2933 CodeGenFunction &CGF) const override; 2934 }; 2935 2936 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo { 2937 public: 2938 PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT) 2939 : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT)) {} 2940 2941 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 2942 // This is recovered from gcc output. 2943 return 1; // r1 is the dedicated stack pointer 2944 } 2945 2946 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2947 llvm::Value *Address) const override; 2948 }; 2949 2950 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo { 2951 public: 2952 PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {} 2953 2954 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 2955 // This is recovered from gcc output. 2956 return 1; // r1 is the dedicated stack pointer 2957 } 2958 2959 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2960 llvm::Value *Address) const override; 2961 }; 2962 2963 } 2964 2965 // Return true if the ABI requires Ty to be passed sign- or zero- 2966 // extended to 64 bits. 2967 bool 2968 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const { 2969 // Treat an enum type as its underlying type. 2970 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2971 Ty = EnumTy->getDecl()->getIntegerType(); 2972 2973 // Promotable integer types are required to be promoted by the ABI. 2974 if (Ty->isPromotableIntegerType()) 2975 return true; 2976 2977 // In addition to the usual promotable integer types, we also need to 2978 // extend all 32-bit types, since the ABI requires promotion to 64 bits. 2979 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 2980 switch (BT->getKind()) { 2981 case BuiltinType::Int: 2982 case BuiltinType::UInt: 2983 return true; 2984 default: 2985 break; 2986 } 2987 2988 return false; 2989 } 2990 2991 ABIArgInfo 2992 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const { 2993 if (Ty->isAnyComplexType()) 2994 return ABIArgInfo::getDirect(); 2995 2996 if (isAggregateTypeForABI(Ty)) { 2997 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 2998 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 2999 3000 return ABIArgInfo::getIndirect(0); 3001 } 3002 3003 return (isPromotableTypeForABI(Ty) ? 3004 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 3005 } 3006 3007 ABIArgInfo 3008 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { 3009 if (RetTy->isVoidType()) 3010 return ABIArgInfo::getIgnore(); 3011 3012 if (RetTy->isAnyComplexType()) 3013 return ABIArgInfo::getDirect(); 3014 3015 if (isAggregateTypeForABI(RetTy)) 3016 return ABIArgInfo::getIndirect(0); 3017 3018 return (isPromotableTypeForABI(RetTy) ? 3019 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 3020 } 3021 3022 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine. 3023 llvm::Value *PPC64_SVR4_ABIInfo::EmitVAArg(llvm::Value *VAListAddr, 3024 QualType Ty, 3025 CodeGenFunction &CGF) const { 3026 llvm::Type *BP = CGF.Int8PtrTy; 3027 llvm::Type *BPP = CGF.Int8PtrPtrTy; 3028 3029 CGBuilderTy &Builder = CGF.Builder; 3030 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); 3031 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 3032 3033 // Update the va_list pointer. The pointer should be bumped by the 3034 // size of the object. We can trust getTypeSize() except for a complex 3035 // type whose base type is smaller than a doubleword. For these, the 3036 // size of the object is 16 bytes; see below for further explanation. 3037 unsigned SizeInBytes = CGF.getContext().getTypeSize(Ty) / 8; 3038 QualType BaseTy; 3039 unsigned CplxBaseSize = 0; 3040 3041 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 3042 BaseTy = CTy->getElementType(); 3043 CplxBaseSize = CGF.getContext().getTypeSize(BaseTy) / 8; 3044 if (CplxBaseSize < 8) 3045 SizeInBytes = 16; 3046 } 3047 3048 unsigned Offset = llvm::RoundUpToAlignment(SizeInBytes, 8); 3049 llvm::Value *NextAddr = 3050 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int64Ty, Offset), 3051 "ap.next"); 3052 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 3053 3054 // If we have a complex type and the base type is smaller than 8 bytes, 3055 // the ABI calls for the real and imaginary parts to be right-adjusted 3056 // in separate doublewords. However, Clang expects us to produce a 3057 // pointer to a structure with the two parts packed tightly. So generate 3058 // loads of the real and imaginary parts relative to the va_list pointer, 3059 // and store them to a temporary structure. 3060 if (CplxBaseSize && CplxBaseSize < 8) { 3061 llvm::Value *RealAddr = Builder.CreatePtrToInt(Addr, CGF.Int64Ty); 3062 llvm::Value *ImagAddr = RealAddr; 3063 RealAddr = Builder.CreateAdd(RealAddr, Builder.getInt64(8 - CplxBaseSize)); 3064 ImagAddr = Builder.CreateAdd(ImagAddr, Builder.getInt64(16 - CplxBaseSize)); 3065 llvm::Type *PBaseTy = llvm::PointerType::getUnqual(CGF.ConvertType(BaseTy)); 3066 RealAddr = Builder.CreateIntToPtr(RealAddr, PBaseTy); 3067 ImagAddr = Builder.CreateIntToPtr(ImagAddr, PBaseTy); 3068 llvm::Value *Real = Builder.CreateLoad(RealAddr, false, ".vareal"); 3069 llvm::Value *Imag = Builder.CreateLoad(ImagAddr, false, ".vaimag"); 3070 llvm::Value *Ptr = CGF.CreateTempAlloca(CGT.ConvertTypeForMem(Ty), 3071 "vacplx"); 3072 llvm::Value *RealPtr = Builder.CreateStructGEP(Ptr, 0, ".real"); 3073 llvm::Value *ImagPtr = Builder.CreateStructGEP(Ptr, 1, ".imag"); 3074 Builder.CreateStore(Real, RealPtr, false); 3075 Builder.CreateStore(Imag, ImagPtr, false); 3076 return Ptr; 3077 } 3078 3079 // If the argument is smaller than 8 bytes, it is right-adjusted in 3080 // its doubleword slot. Adjust the pointer to pick it up from the 3081 // correct offset. 3082 if (SizeInBytes < 8) { 3083 llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty); 3084 AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt64(8 - SizeInBytes)); 3085 Addr = Builder.CreateIntToPtr(AddrAsInt, BP); 3086 } 3087 3088 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 3089 return Builder.CreateBitCast(Addr, PTy); 3090 } 3091 3092 static bool 3093 PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 3094 llvm::Value *Address) { 3095 // This is calculated from the LLVM and GCC tables and verified 3096 // against gcc output. AFAIK all ABIs use the same encoding. 3097 3098 CodeGen::CGBuilderTy &Builder = CGF.Builder; 3099 3100 llvm::IntegerType *i8 = CGF.Int8Ty; 3101 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 3102 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 3103 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 3104 3105 // 0-31: r0-31, the 8-byte general-purpose registers 3106 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 3107 3108 // 32-63: fp0-31, the 8-byte floating-point registers 3109 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 3110 3111 // 64-76 are various 4-byte special-purpose registers: 3112 // 64: mq 3113 // 65: lr 3114 // 66: ctr 3115 // 67: ap 3116 // 68-75 cr0-7 3117 // 76: xer 3118 AssignToArrayRange(Builder, Address, Four8, 64, 76); 3119 3120 // 77-108: v0-31, the 16-byte vector registers 3121 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 3122 3123 // 109: vrsave 3124 // 110: vscr 3125 // 111: spe_acc 3126 // 112: spefscr 3127 // 113: sfp 3128 AssignToArrayRange(Builder, Address, Four8, 109, 113); 3129 3130 return false; 3131 } 3132 3133 bool 3134 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable( 3135 CodeGen::CodeGenFunction &CGF, 3136 llvm::Value *Address) const { 3137 3138 return PPC64_initDwarfEHRegSizeTable(CGF, Address); 3139 } 3140 3141 bool 3142 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 3143 llvm::Value *Address) const { 3144 3145 return PPC64_initDwarfEHRegSizeTable(CGF, Address); 3146 } 3147 3148 //===----------------------------------------------------------------------===// 3149 // ARM64 ABI Implementation 3150 //===----------------------------------------------------------------------===// 3151 3152 namespace { 3153 3154 class ARM64ABIInfo : public ABIInfo { 3155 public: 3156 enum ABIKind { 3157 AAPCS = 0, 3158 DarwinPCS 3159 }; 3160 3161 private: 3162 ABIKind Kind; 3163 3164 public: 3165 ARM64ABIInfo(CodeGenTypes &CGT, ABIKind Kind) : ABIInfo(CGT), Kind(Kind) {} 3166 3167 private: 3168 ABIKind getABIKind() const { return Kind; } 3169 bool isDarwinPCS() const { return Kind == DarwinPCS; } 3170 3171 ABIArgInfo classifyReturnType(QualType RetTy) const; 3172 ABIArgInfo classifyArgumentType(QualType RetTy, unsigned &AllocatedVFP, 3173 bool &IsHA, unsigned &AllocatedGPR, 3174 bool &IsSmallAggr, bool IsNamedArg) const; 3175 bool isIllegalVectorType(QualType Ty) const; 3176 3177 virtual void computeInfo(CGFunctionInfo &FI) const { 3178 // To correctly handle Homogeneous Aggregate, we need to keep track of the 3179 // number of SIMD and Floating-point registers allocated so far. 3180 // If the argument is an HFA or an HVA and there are sufficient unallocated 3181 // SIMD and Floating-point registers, then the argument is allocated to SIMD 3182 // and Floating-point Registers (with one register per member of the HFA or 3183 // HVA). Otherwise, the NSRN is set to 8. 3184 unsigned AllocatedVFP = 0; 3185 3186 // To correctly handle small aggregates, we need to keep track of the number 3187 // of GPRs allocated so far. If the small aggregate can't all fit into 3188 // registers, it will be on stack. We don't allow the aggregate to be 3189 // partially in registers. 3190 unsigned AllocatedGPR = 0; 3191 3192 // Find the number of named arguments. Variadic arguments get special 3193 // treatment with the Darwin ABI. 3194 unsigned NumRequiredArgs = (FI.isVariadic() ? 3195 FI.getRequiredArgs().getNumRequiredArgs() : 3196 FI.arg_size()); 3197 3198 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 3199 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 3200 it != ie; ++it) { 3201 unsigned PreAllocation = AllocatedVFP, PreGPR = AllocatedGPR; 3202 bool IsHA = false, IsSmallAggr = false; 3203 const unsigned NumVFPs = 8; 3204 const unsigned NumGPRs = 8; 3205 bool IsNamedArg = ((it - FI.arg_begin()) < 3206 static_cast<signed>(NumRequiredArgs)); 3207 it->info = classifyArgumentType(it->type, AllocatedVFP, IsHA, 3208 AllocatedGPR, IsSmallAggr, IsNamedArg); 3209 3210 // Under AAPCS the 64-bit stack slot alignment means we can't pass HAs 3211 // as sequences of floats since they'll get "holes" inserted as 3212 // padding by the back end. 3213 if (IsHA && AllocatedVFP > NumVFPs && !isDarwinPCS() && 3214 getContext().getTypeAlign(it->type) < 64) { 3215 uint32_t NumStackSlots = getContext().getTypeSize(it->type); 3216 NumStackSlots = llvm::RoundUpToAlignment(NumStackSlots, 64) / 64; 3217 3218 llvm::Type *CoerceTy = llvm::ArrayType::get( 3219 llvm::Type::getDoubleTy(getVMContext()), NumStackSlots); 3220 it->info = ABIArgInfo::getDirect(CoerceTy); 3221 } 3222 3223 // If we do not have enough VFP registers for the HA, any VFP registers 3224 // that are unallocated are marked as unavailable. To achieve this, we add 3225 // padding of (NumVFPs - PreAllocation) floats. 3226 if (IsHA && AllocatedVFP > NumVFPs && PreAllocation < NumVFPs) { 3227 llvm::Type *PaddingTy = llvm::ArrayType::get( 3228 llvm::Type::getFloatTy(getVMContext()), NumVFPs - PreAllocation); 3229 it->info.setPaddingType(PaddingTy); 3230 } 3231 3232 // If we do not have enough GPRs for the small aggregate, any GPR regs 3233 // that are unallocated are marked as unavailable. 3234 if (IsSmallAggr && AllocatedGPR > NumGPRs && PreGPR < NumGPRs) { 3235 llvm::Type *PaddingTy = llvm::ArrayType::get( 3236 llvm::Type::getInt32Ty(getVMContext()), NumGPRs - PreGPR); 3237 it->info = 3238 ABIArgInfo::getDirect(it->info.getCoerceToType(), 0, PaddingTy); 3239 } 3240 } 3241 } 3242 3243 llvm::Value *EmitDarwinVAArg(llvm::Value *VAListAddr, QualType Ty, 3244 CodeGenFunction &CGF) const; 3245 3246 llvm::Value *EmitAAPCSVAArg(llvm::Value *VAListAddr, QualType Ty, 3247 CodeGenFunction &CGF) const; 3248 3249 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 3250 CodeGenFunction &CGF) const { 3251 return isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF) 3252 : EmitAAPCSVAArg(VAListAddr, Ty, CGF); 3253 } 3254 }; 3255 3256 class ARM64TargetCodeGenInfo : public TargetCodeGenInfo { 3257 public: 3258 ARM64TargetCodeGenInfo(CodeGenTypes &CGT, ARM64ABIInfo::ABIKind Kind) 3259 : TargetCodeGenInfo(new ARM64ABIInfo(CGT, Kind)) {} 3260 3261 StringRef getARCRetainAutoreleasedReturnValueMarker() const { 3262 return "mov\tfp, fp\t\t; marker for objc_retainAutoreleaseReturnValue"; 3263 } 3264 3265 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const { return 31; } 3266 3267 virtual bool doesReturnSlotInterfereWithArgs() const { return false; } 3268 }; 3269 } 3270 3271 static bool isHomogeneousAggregate(QualType Ty, const Type *&Base, 3272 ASTContext &Context, 3273 uint64_t *HAMembers = 0); 3274 3275 ABIArgInfo ARM64ABIInfo::classifyArgumentType(QualType Ty, 3276 unsigned &AllocatedVFP, 3277 bool &IsHA, 3278 unsigned &AllocatedGPR, 3279 bool &IsSmallAggr, 3280 bool IsNamedArg) const { 3281 // Handle illegal vector types here. 3282 if (isIllegalVectorType(Ty)) { 3283 uint64_t Size = getContext().getTypeSize(Ty); 3284 if (Size <= 32) { 3285 llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext()); 3286 AllocatedGPR++; 3287 return ABIArgInfo::getDirect(ResType); 3288 } 3289 if (Size == 64) { 3290 llvm::Type *ResType = 3291 llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2); 3292 AllocatedVFP++; 3293 return ABIArgInfo::getDirect(ResType); 3294 } 3295 if (Size == 128) { 3296 llvm::Type *ResType = 3297 llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4); 3298 AllocatedVFP++; 3299 return ABIArgInfo::getDirect(ResType); 3300 } 3301 AllocatedGPR++; 3302 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 3303 } 3304 if (Ty->isVectorType()) 3305 // Size of a legal vector should be either 64 or 128. 3306 AllocatedVFP++; 3307 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 3308 if (BT->getKind() == BuiltinType::Half || 3309 BT->getKind() == BuiltinType::Float || 3310 BT->getKind() == BuiltinType::Double || 3311 BT->getKind() == BuiltinType::LongDouble) 3312 AllocatedVFP++; 3313 } 3314 3315 if (!isAggregateTypeForABI(Ty)) { 3316 // Treat an enum type as its underlying type. 3317 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3318 Ty = EnumTy->getDecl()->getIntegerType(); 3319 3320 if (!Ty->isFloatingType() && !Ty->isVectorType()) { 3321 unsigned Alignment = getContext().getTypeAlign(Ty); 3322 if (!isDarwinPCS() && Alignment > 64) 3323 AllocatedGPR = llvm::RoundUpToAlignment(AllocatedGPR, Alignment / 64); 3324 3325 int RegsNeeded = getContext().getTypeSize(Ty) > 64 ? 2 : 1; 3326 AllocatedGPR += RegsNeeded; 3327 } 3328 return (Ty->isPromotableIntegerType() && isDarwinPCS() 3329 ? ABIArgInfo::getExtend() 3330 : ABIArgInfo::getDirect()); 3331 } 3332 3333 // Structures with either a non-trivial destructor or a non-trivial 3334 // copy constructor are always indirect. 3335 if (isRecordReturnIndirect(Ty, getCXXABI())) { 3336 AllocatedGPR++; 3337 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 3338 } 3339 3340 // Empty records are always ignored on Darwin, but actually passed in C++ mode 3341 // elsewhere for GNU compatibility. 3342 if (isEmptyRecord(getContext(), Ty, true)) { 3343 if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS()) 3344 return ABIArgInfo::getIgnore(); 3345 3346 ++AllocatedGPR; 3347 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 3348 } 3349 3350 // Homogeneous Floating-point Aggregates (HFAs) need to be expanded. 3351 const Type *Base = 0; 3352 uint64_t Members = 0; 3353 if (isHomogeneousAggregate(Ty, Base, getContext(), &Members)) { 3354 IsHA = true; 3355 if (!IsNamedArg && isDarwinPCS()) { 3356 // With the Darwin ABI, variadic arguments are always passed on the stack 3357 // and should not be expanded. Treat variadic HFAs as arrays of doubles. 3358 uint64_t Size = getContext().getTypeSize(Ty); 3359 llvm::Type *BaseTy = llvm::Type::getDoubleTy(getVMContext()); 3360 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 3361 } 3362 AllocatedVFP += Members; 3363 return ABIArgInfo::getExpand(); 3364 } 3365 3366 // Aggregates <= 16 bytes are passed directly in registers or on the stack. 3367 uint64_t Size = getContext().getTypeSize(Ty); 3368 if (Size <= 128) { 3369 unsigned Alignment = getContext().getTypeAlign(Ty); 3370 if (!isDarwinPCS() && Alignment > 64) 3371 AllocatedGPR = llvm::RoundUpToAlignment(AllocatedGPR, Alignment / 64); 3372 3373 Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes 3374 AllocatedGPR += Size / 64; 3375 IsSmallAggr = true; 3376 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 3377 // For aggregates with 16-byte alignment, we use i128. 3378 if (Alignment < 128 && Size == 128) { 3379 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); 3380 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 3381 } 3382 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 3383 } 3384 3385 AllocatedGPR++; 3386 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 3387 } 3388 3389 ABIArgInfo ARM64ABIInfo::classifyReturnType(QualType RetTy) const { 3390 if (RetTy->isVoidType()) 3391 return ABIArgInfo::getIgnore(); 3392 3393 // Large vector types should be returned via memory. 3394 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) 3395 return ABIArgInfo::getIndirect(0); 3396 3397 if (!isAggregateTypeForABI(RetTy)) { 3398 // Treat an enum type as its underlying type. 3399 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 3400 RetTy = EnumTy->getDecl()->getIntegerType(); 3401 3402 return (RetTy->isPromotableIntegerType() && isDarwinPCS() 3403 ? ABIArgInfo::getExtend() 3404 : ABIArgInfo::getDirect()); 3405 } 3406 3407 // Structures with either a non-trivial destructor or a non-trivial 3408 // copy constructor are always indirect. 3409 if (isRecordReturnIndirect(RetTy, getCXXABI())) 3410 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 3411 3412 if (isEmptyRecord(getContext(), RetTy, true)) 3413 return ABIArgInfo::getIgnore(); 3414 3415 const Type *Base = 0; 3416 if (isHomogeneousAggregate(RetTy, Base, getContext())) 3417 // Homogeneous Floating-point Aggregates (HFAs) are returned directly. 3418 return ABIArgInfo::getDirect(); 3419 3420 // Aggregates <= 16 bytes are returned directly in registers or on the stack. 3421 uint64_t Size = getContext().getTypeSize(RetTy); 3422 if (Size <= 128) { 3423 Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes 3424 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 3425 } 3426 3427 return ABIArgInfo::getIndirect(0); 3428 } 3429 3430 /// isIllegalVectorType - check whether the vector type is legal for ARM64. 3431 bool ARM64ABIInfo::isIllegalVectorType(QualType Ty) const { 3432 if (const VectorType *VT = Ty->getAs<VectorType>()) { 3433 // Check whether VT is legal. 3434 unsigned NumElements = VT->getNumElements(); 3435 uint64_t Size = getContext().getTypeSize(VT); 3436 // NumElements should be power of 2 between 1 and 16. 3437 if ((NumElements & (NumElements - 1)) != 0 || NumElements > 16) 3438 return true; 3439 return Size != 64 && (Size != 128 || NumElements == 1); 3440 } 3441 return false; 3442 } 3443 3444 static llvm::Value *EmitAArch64VAArg(llvm::Value *VAListAddr, QualType Ty, 3445 int AllocatedGPR, int AllocatedVFP, 3446 bool IsIndirect, CodeGenFunction &CGF) { 3447 // The AArch64 va_list type and handling is specified in the Procedure Call 3448 // Standard, section B.4: 3449 // 3450 // struct { 3451 // void *__stack; 3452 // void *__gr_top; 3453 // void *__vr_top; 3454 // int __gr_offs; 3455 // int __vr_offs; 3456 // }; 3457 3458 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); 3459 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 3460 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); 3461 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 3462 auto &Ctx = CGF.getContext(); 3463 3464 llvm::Value *reg_offs_p = 0, *reg_offs = 0; 3465 int reg_top_index; 3466 int RegSize; 3467 if (AllocatedGPR) { 3468 assert(!AllocatedVFP && "Arguments never split between int & VFP regs"); 3469 // 3 is the field number of __gr_offs 3470 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p"); 3471 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs"); 3472 reg_top_index = 1; // field number for __gr_top 3473 RegSize = 8 * AllocatedGPR; 3474 } else { 3475 assert(!AllocatedGPR && "Argument must go in VFP or int regs"); 3476 // 4 is the field number of __vr_offs. 3477 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p"); 3478 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs"); 3479 reg_top_index = 2; // field number for __vr_top 3480 RegSize = 16 * AllocatedVFP; 3481 } 3482 3483 //======================================= 3484 // Find out where argument was passed 3485 //======================================= 3486 3487 // If reg_offs >= 0 we're already using the stack for this type of 3488 // argument. We don't want to keep updating reg_offs (in case it overflows, 3489 // though anyone passing 2GB of arguments, each at most 16 bytes, deserves 3490 // whatever they get). 3491 llvm::Value *UsingStack = 0; 3492 UsingStack = CGF.Builder.CreateICmpSGE( 3493 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0)); 3494 3495 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock); 3496 3497 // Otherwise, at least some kind of argument could go in these registers, the 3498 // question is whether this particular type is too big. 3499 CGF.EmitBlock(MaybeRegBlock); 3500 3501 // Integer arguments may need to correct register alignment (for example a 3502 // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we 3503 // align __gr_offs to calculate the potential address. 3504 if (AllocatedGPR && !IsIndirect && Ctx.getTypeAlign(Ty) > 64) { 3505 int Align = Ctx.getTypeAlign(Ty) / 8; 3506 3507 reg_offs = CGF.Builder.CreateAdd( 3508 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1), 3509 "align_regoffs"); 3510 reg_offs = CGF.Builder.CreateAnd( 3511 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align), 3512 "aligned_regoffs"); 3513 } 3514 3515 // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list. 3516 llvm::Value *NewOffset = 0; 3517 NewOffset = CGF.Builder.CreateAdd( 3518 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs"); 3519 CGF.Builder.CreateStore(NewOffset, reg_offs_p); 3520 3521 // Now we're in a position to decide whether this argument really was in 3522 // registers or not. 3523 llvm::Value *InRegs = 0; 3524 InRegs = CGF.Builder.CreateICmpSLE( 3525 NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg"); 3526 3527 CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock); 3528 3529 //======================================= 3530 // Argument was in registers 3531 //======================================= 3532 3533 // Now we emit the code for if the argument was originally passed in 3534 // registers. First start the appropriate block: 3535 CGF.EmitBlock(InRegBlock); 3536 3537 llvm::Value *reg_top_p = 0, *reg_top = 0; 3538 reg_top_p = 3539 CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p"); 3540 reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top"); 3541 llvm::Value *BaseAddr = CGF.Builder.CreateGEP(reg_top, reg_offs); 3542 llvm::Value *RegAddr = 0; 3543 llvm::Type *MemTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); 3544 3545 if (IsIndirect) { 3546 // If it's been passed indirectly (actually a struct), whatever we find from 3547 // stored registers or on the stack will actually be a struct **. 3548 MemTy = llvm::PointerType::getUnqual(MemTy); 3549 } 3550 3551 const Type *Base = 0; 3552 uint64_t NumMembers; 3553 if (isHomogeneousAggregate(Ty, Base, Ctx, &NumMembers) && NumMembers > 1) { 3554 // Homogeneous aggregates passed in registers will have their elements split 3555 // and stored 16-bytes apart regardless of size (they're notionally in qN, 3556 // qN+1, ...). We reload and store into a temporary local variable 3557 // contiguously. 3558 assert(!IsIndirect && "Homogeneous aggregates should be passed directly"); 3559 llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0)); 3560 llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers); 3561 llvm::Value *Tmp = CGF.CreateTempAlloca(HFATy); 3562 int Offset = 0; 3563 3564 if (CGF.CGM.getDataLayout().isBigEndian() && Ctx.getTypeSize(Base) < 128) 3565 Offset = 16 - Ctx.getTypeSize(Base) / 8; 3566 for (unsigned i = 0; i < NumMembers; ++i) { 3567 llvm::Value *BaseOffset = 3568 llvm::ConstantInt::get(CGF.Int32Ty, 16 * i + Offset); 3569 llvm::Value *LoadAddr = CGF.Builder.CreateGEP(BaseAddr, BaseOffset); 3570 LoadAddr = CGF.Builder.CreateBitCast( 3571 LoadAddr, llvm::PointerType::getUnqual(BaseTy)); 3572 llvm::Value *StoreAddr = CGF.Builder.CreateStructGEP(Tmp, i); 3573 3574 llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr); 3575 CGF.Builder.CreateStore(Elem, StoreAddr); 3576 } 3577 3578 RegAddr = CGF.Builder.CreateBitCast(Tmp, MemTy); 3579 } else { 3580 // Otherwise the object is contiguous in memory 3581 unsigned BeAlign = reg_top_index == 2 ? 16 : 8; 3582 if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) && 3583 Ctx.getTypeSize(Ty) < (BeAlign * 8)) { 3584 int Offset = BeAlign - Ctx.getTypeSize(Ty) / 8; 3585 BaseAddr = CGF.Builder.CreatePtrToInt(BaseAddr, CGF.Int64Ty); 3586 3587 BaseAddr = CGF.Builder.CreateAdd( 3588 BaseAddr, llvm::ConstantInt::get(CGF.Int64Ty, Offset), "align_be"); 3589 3590 BaseAddr = CGF.Builder.CreateIntToPtr(BaseAddr, CGF.Int8PtrTy); 3591 } 3592 3593 RegAddr = CGF.Builder.CreateBitCast(BaseAddr, MemTy); 3594 } 3595 3596 CGF.EmitBranch(ContBlock); 3597 3598 //======================================= 3599 // Argument was on the stack 3600 //======================================= 3601 CGF.EmitBlock(OnStackBlock); 3602 3603 llvm::Value *stack_p = 0, *OnStackAddr = 0; 3604 stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p"); 3605 OnStackAddr = CGF.Builder.CreateLoad(stack_p, "stack"); 3606 3607 // Again, stack arguments may need realigmnent. In this case both integer and 3608 // floating-point ones might be affected. 3609 if (!IsIndirect && Ctx.getTypeAlign(Ty) > 64) { 3610 int Align = Ctx.getTypeAlign(Ty) / 8; 3611 3612 OnStackAddr = CGF.Builder.CreatePtrToInt(OnStackAddr, CGF.Int64Ty); 3613 3614 OnStackAddr = CGF.Builder.CreateAdd( 3615 OnStackAddr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1), 3616 "align_stack"); 3617 OnStackAddr = CGF.Builder.CreateAnd( 3618 OnStackAddr, llvm::ConstantInt::get(CGF.Int64Ty, -Align), 3619 "align_stack"); 3620 3621 OnStackAddr = CGF.Builder.CreateIntToPtr(OnStackAddr, CGF.Int8PtrTy); 3622 } 3623 3624 uint64_t StackSize; 3625 if (IsIndirect) 3626 StackSize = 8; 3627 else 3628 StackSize = Ctx.getTypeSize(Ty) / 8; 3629 3630 // All stack slots are 8 bytes 3631 StackSize = llvm::RoundUpToAlignment(StackSize, 8); 3632 3633 llvm::Value *StackSizeC = llvm::ConstantInt::get(CGF.Int32Ty, StackSize); 3634 llvm::Value *NewStack = 3635 CGF.Builder.CreateGEP(OnStackAddr, StackSizeC, "new_stack"); 3636 3637 // Write the new value of __stack for the next call to va_arg 3638 CGF.Builder.CreateStore(NewStack, stack_p); 3639 3640 if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) && 3641 Ctx.getTypeSize(Ty) < 64) { 3642 int Offset = 8 - Ctx.getTypeSize(Ty) / 8; 3643 OnStackAddr = CGF.Builder.CreatePtrToInt(OnStackAddr, CGF.Int64Ty); 3644 3645 OnStackAddr = CGF.Builder.CreateAdd( 3646 OnStackAddr, llvm::ConstantInt::get(CGF.Int64Ty, Offset), "align_be"); 3647 3648 OnStackAddr = CGF.Builder.CreateIntToPtr(OnStackAddr, CGF.Int8PtrTy); 3649 } 3650 3651 OnStackAddr = CGF.Builder.CreateBitCast(OnStackAddr, MemTy); 3652 3653 CGF.EmitBranch(ContBlock); 3654 3655 //======================================= 3656 // Tidy up 3657 //======================================= 3658 CGF.EmitBlock(ContBlock); 3659 3660 llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(MemTy, 2, "vaarg.addr"); 3661 ResAddr->addIncoming(RegAddr, InRegBlock); 3662 ResAddr->addIncoming(OnStackAddr, OnStackBlock); 3663 3664 if (IsIndirect) 3665 return CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"); 3666 3667 return ResAddr; 3668 } 3669 3670 llvm::Value *ARM64ABIInfo::EmitAAPCSVAArg(llvm::Value *VAListAddr, QualType Ty, 3671 CodeGenFunction &CGF) const { 3672 3673 unsigned AllocatedGPR = 0, AllocatedVFP = 0; 3674 bool IsHA = false, IsSmallAggr = false; 3675 ABIArgInfo AI = classifyArgumentType(Ty, AllocatedVFP, IsHA, AllocatedGPR, 3676 IsSmallAggr, false /*IsNamedArg*/); 3677 3678 return EmitAArch64VAArg(VAListAddr, Ty, AllocatedGPR, AllocatedVFP, 3679 AI.isIndirect(), CGF); 3680 } 3681 3682 llvm::Value *ARM64ABIInfo::EmitDarwinVAArg(llvm::Value *VAListAddr, QualType Ty, 3683 CodeGenFunction &CGF) const { 3684 // We do not support va_arg for aggregates or illegal vector types. 3685 // Lower VAArg here for these cases and use the LLVM va_arg instruction for 3686 // other cases. 3687 if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty)) 3688 return 0; 3689 3690 uint64_t Size = CGF.getContext().getTypeSize(Ty) / 8; 3691 uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8; 3692 3693 const Type *Base = 0; 3694 bool isHA = isHomogeneousAggregate(Ty, Base, getContext()); 3695 3696 bool isIndirect = false; 3697 // Arguments bigger than 16 bytes which aren't homogeneous aggregates should 3698 // be passed indirectly. 3699 if (Size > 16 && !isHA) { 3700 isIndirect = true; 3701 Size = 8; 3702 Align = 8; 3703 } 3704 3705 llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext()); 3706 llvm::Type *BPP = llvm::PointerType::getUnqual(BP); 3707 3708 CGBuilderTy &Builder = CGF.Builder; 3709 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); 3710 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 3711 3712 if (isEmptyRecord(getContext(), Ty, true)) { 3713 // These are ignored for parameter passing purposes. 3714 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 3715 return Builder.CreateBitCast(Addr, PTy); 3716 } 3717 3718 const uint64_t MinABIAlign = 8; 3719 if (Align > MinABIAlign) { 3720 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, Align - 1); 3721 Addr = Builder.CreateGEP(Addr, Offset); 3722 llvm::Value *AsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty); 3723 llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, ~(Align - 1)); 3724 llvm::Value *Aligned = Builder.CreateAnd(AsInt, Mask); 3725 Addr = Builder.CreateIntToPtr(Aligned, BP, "ap.align"); 3726 } 3727 3728 uint64_t Offset = llvm::RoundUpToAlignment(Size, MinABIAlign); 3729 llvm::Value *NextAddr = Builder.CreateGEP( 3730 Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), "ap.next"); 3731 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 3732 3733 if (isIndirect) 3734 Addr = Builder.CreateLoad(Builder.CreateBitCast(Addr, BPP)); 3735 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 3736 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); 3737 3738 return AddrTyped; 3739 } 3740 3741 //===----------------------------------------------------------------------===// 3742 // ARM ABI Implementation 3743 //===----------------------------------------------------------------------===// 3744 3745 namespace { 3746 3747 class ARMABIInfo : public ABIInfo { 3748 public: 3749 enum ABIKind { 3750 APCS = 0, 3751 AAPCS = 1, 3752 AAPCS_VFP 3753 }; 3754 3755 private: 3756 ABIKind Kind; 3757 mutable int VFPRegs[16]; 3758 const unsigned NumVFPs; 3759 const unsigned NumGPRs; 3760 mutable unsigned AllocatedGPRs; 3761 mutable unsigned AllocatedVFPs; 3762 3763 public: 3764 ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) : ABIInfo(CGT), Kind(_Kind), 3765 NumVFPs(16), NumGPRs(4) { 3766 setRuntimeCC(); 3767 resetAllocatedRegs(); 3768 } 3769 3770 bool isEABI() const { 3771 switch (getTarget().getTriple().getEnvironment()) { 3772 case llvm::Triple::Android: 3773 case llvm::Triple::EABI: 3774 case llvm::Triple::EABIHF: 3775 case llvm::Triple::GNUEABI: 3776 case llvm::Triple::GNUEABIHF: 3777 return true; 3778 default: 3779 return false; 3780 } 3781 } 3782 3783 bool isEABIHF() const { 3784 switch (getTarget().getTriple().getEnvironment()) { 3785 case llvm::Triple::EABIHF: 3786 case llvm::Triple::GNUEABIHF: 3787 return true; 3788 default: 3789 return false; 3790 } 3791 } 3792 3793 ABIKind getABIKind() const { return Kind; } 3794 3795 private: 3796 ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic) const; 3797 ABIArgInfo classifyArgumentType(QualType RetTy, bool &IsHA, bool isVariadic, 3798 bool &IsCPRC) const; 3799 bool isIllegalVectorType(QualType Ty) const; 3800 3801 void computeInfo(CGFunctionInfo &FI) const override; 3802 3803 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 3804 CodeGenFunction &CGF) const override; 3805 3806 llvm::CallingConv::ID getLLVMDefaultCC() const; 3807 llvm::CallingConv::ID getABIDefaultCC() const; 3808 void setRuntimeCC(); 3809 3810 void markAllocatedGPRs(unsigned Alignment, unsigned NumRequired) const; 3811 void markAllocatedVFPs(unsigned Alignment, unsigned NumRequired) const; 3812 void resetAllocatedRegs(void) const; 3813 }; 3814 3815 class ARMTargetCodeGenInfo : public TargetCodeGenInfo { 3816 public: 3817 ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 3818 :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {} 3819 3820 const ARMABIInfo &getABIInfo() const { 3821 return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo()); 3822 } 3823 3824 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 3825 return 13; 3826 } 3827 3828 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 3829 return "mov\tr7, r7\t\t@ marker for objc_retainAutoreleaseReturnValue"; 3830 } 3831 3832 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 3833 llvm::Value *Address) const override { 3834 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 3835 3836 // 0-15 are the 16 integer registers. 3837 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15); 3838 return false; 3839 } 3840 3841 unsigned getSizeOfUnwindException() const override { 3842 if (getABIInfo().isEABI()) return 88; 3843 return TargetCodeGenInfo::getSizeOfUnwindException(); 3844 } 3845 3846 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 3847 CodeGen::CodeGenModule &CGM) const override { 3848 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); 3849 if (!FD) 3850 return; 3851 3852 const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>(); 3853 if (!Attr) 3854 return; 3855 3856 const char *Kind; 3857 switch (Attr->getInterrupt()) { 3858 case ARMInterruptAttr::Generic: Kind = ""; break; 3859 case ARMInterruptAttr::IRQ: Kind = "IRQ"; break; 3860 case ARMInterruptAttr::FIQ: Kind = "FIQ"; break; 3861 case ARMInterruptAttr::SWI: Kind = "SWI"; break; 3862 case ARMInterruptAttr::ABORT: Kind = "ABORT"; break; 3863 case ARMInterruptAttr::UNDEF: Kind = "UNDEF"; break; 3864 } 3865 3866 llvm::Function *Fn = cast<llvm::Function>(GV); 3867 3868 Fn->addFnAttr("interrupt", Kind); 3869 3870 if (cast<ARMABIInfo>(getABIInfo()).getABIKind() == ARMABIInfo::APCS) 3871 return; 3872 3873 // AAPCS guarantees that sp will be 8-byte aligned on any public interface, 3874 // however this is not necessarily true on taking any interrupt. Instruct 3875 // the backend to perform a realignment as part of the function prologue. 3876 llvm::AttrBuilder B; 3877 B.addStackAlignmentAttr(8); 3878 Fn->addAttributes(llvm::AttributeSet::FunctionIndex, 3879 llvm::AttributeSet::get(CGM.getLLVMContext(), 3880 llvm::AttributeSet::FunctionIndex, 3881 B)); 3882 } 3883 3884 }; 3885 3886 } 3887 3888 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const { 3889 // To correctly handle Homogeneous Aggregate, we need to keep track of the 3890 // VFP registers allocated so far. 3891 // C.1.vfp If the argument is a VFP CPRC and there are sufficient consecutive 3892 // VFP registers of the appropriate type unallocated then the argument is 3893 // allocated to the lowest-numbered sequence of such registers. 3894 // C.2.vfp If the argument is a VFP CPRC then any VFP registers that are 3895 // unallocated are marked as unavailable. 3896 resetAllocatedRegs(); 3897 3898 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), FI.isVariadic()); 3899 for (auto &I : FI.arguments()) { 3900 unsigned PreAllocationVFPs = AllocatedVFPs; 3901 unsigned PreAllocationGPRs = AllocatedGPRs; 3902 bool IsHA = false; 3903 bool IsCPRC = false; 3904 // 6.1.2.3 There is one VFP co-processor register class using registers 3905 // s0-s15 (d0-d7) for passing arguments. 3906 I.info = classifyArgumentType(I.type, IsHA, FI.isVariadic(), IsCPRC); 3907 assert((IsCPRC || !IsHA) && "Homogeneous aggregates must be CPRCs"); 3908 // If we do not have enough VFP registers for the HA, any VFP registers 3909 // that are unallocated are marked as unavailable. To achieve this, we add 3910 // padding of (NumVFPs - PreAllocationVFP) floats. 3911 // Note that IsHA will only be set when using the AAPCS-VFP calling convention, 3912 // and the callee is not variadic. 3913 if (IsHA && AllocatedVFPs > NumVFPs && PreAllocationVFPs < NumVFPs) { 3914 llvm::Type *PaddingTy = llvm::ArrayType::get( 3915 llvm::Type::getFloatTy(getVMContext()), NumVFPs - PreAllocationVFPs); 3916 I.info = ABIArgInfo::getExpandWithPadding(false, PaddingTy); 3917 } 3918 3919 // If we have allocated some arguments onto the stack (due to running 3920 // out of VFP registers), we cannot split an argument between GPRs and 3921 // the stack. If this situation occurs, we add padding to prevent the 3922 // GPRs from being used. In this situiation, the current argument could 3923 // only be allocated by rule C.8, so rule C.6 would mark these GPRs as 3924 // unusable anyway. 3925 const bool StackUsed = PreAllocationGPRs > NumGPRs || PreAllocationVFPs > NumVFPs; 3926 if (!IsCPRC && PreAllocationGPRs < NumGPRs && AllocatedGPRs > NumGPRs && StackUsed) { 3927 llvm::Type *PaddingTy = llvm::ArrayType::get( 3928 llvm::Type::getInt32Ty(getVMContext()), NumGPRs - PreAllocationGPRs); 3929 I.info = ABIArgInfo::getExpandWithPadding(false, PaddingTy); 3930 } 3931 } 3932 3933 // Always honor user-specified calling convention. 3934 if (FI.getCallingConvention() != llvm::CallingConv::C) 3935 return; 3936 3937 llvm::CallingConv::ID cc = getRuntimeCC(); 3938 if (cc != llvm::CallingConv::C) 3939 FI.setEffectiveCallingConvention(cc); 3940 } 3941 3942 /// Return the default calling convention that LLVM will use. 3943 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const { 3944 // The default calling convention that LLVM will infer. 3945 if (isEABIHF()) 3946 return llvm::CallingConv::ARM_AAPCS_VFP; 3947 else if (isEABI()) 3948 return llvm::CallingConv::ARM_AAPCS; 3949 else 3950 return llvm::CallingConv::ARM_APCS; 3951 } 3952 3953 /// Return the calling convention that our ABI would like us to use 3954 /// as the C calling convention. 3955 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const { 3956 switch (getABIKind()) { 3957 case APCS: return llvm::CallingConv::ARM_APCS; 3958 case AAPCS: return llvm::CallingConv::ARM_AAPCS; 3959 case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 3960 } 3961 llvm_unreachable("bad ABI kind"); 3962 } 3963 3964 void ARMABIInfo::setRuntimeCC() { 3965 assert(getRuntimeCC() == llvm::CallingConv::C); 3966 3967 // Don't muddy up the IR with a ton of explicit annotations if 3968 // they'd just match what LLVM will infer from the triple. 3969 llvm::CallingConv::ID abiCC = getABIDefaultCC(); 3970 if (abiCC != getLLVMDefaultCC()) 3971 RuntimeCC = abiCC; 3972 } 3973 3974 /// isHomogeneousAggregate - Return true if a type is an AAPCS-VFP homogeneous 3975 /// aggregate. If HAMembers is non-null, the number of base elements 3976 /// contained in the type is returned through it; this is used for the 3977 /// recursive calls that check aggregate component types. 3978 static bool isHomogeneousAggregate(QualType Ty, const Type *&Base, 3979 ASTContext &Context, uint64_t *HAMembers) { 3980 uint64_t Members = 0; 3981 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 3982 if (!isHomogeneousAggregate(AT->getElementType(), Base, Context, &Members)) 3983 return false; 3984 Members *= AT->getSize().getZExtValue(); 3985 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 3986 const RecordDecl *RD = RT->getDecl(); 3987 if (RD->hasFlexibleArrayMember()) 3988 return false; 3989 3990 Members = 0; 3991 for (const auto *FD : RD->fields()) { 3992 uint64_t FldMembers; 3993 if (!isHomogeneousAggregate(FD->getType(), Base, Context, &FldMembers)) 3994 return false; 3995 3996 Members = (RD->isUnion() ? 3997 std::max(Members, FldMembers) : Members + FldMembers); 3998 } 3999 } else { 4000 Members = 1; 4001 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 4002 Members = 2; 4003 Ty = CT->getElementType(); 4004 } 4005 4006 // Homogeneous aggregates for AAPCS-VFP must have base types of float, 4007 // double, or 64-bit or 128-bit vectors. 4008 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 4009 if (BT->getKind() != BuiltinType::Float && 4010 BT->getKind() != BuiltinType::Double && 4011 BT->getKind() != BuiltinType::LongDouble) 4012 return false; 4013 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 4014 unsigned VecSize = Context.getTypeSize(VT); 4015 if (VecSize != 64 && VecSize != 128) 4016 return false; 4017 } else { 4018 return false; 4019 } 4020 4021 // The base type must be the same for all members. Vector types of the 4022 // same total size are treated as being equivalent here. 4023 const Type *TyPtr = Ty.getTypePtr(); 4024 if (!Base) 4025 Base = TyPtr; 4026 4027 if (Base != TyPtr) { 4028 // Homogeneous aggregates are defined as containing members with the 4029 // same machine type. There are two cases in which two members have 4030 // different TypePtrs but the same machine type: 4031 4032 // 1) Vectors of the same length, regardless of the type and number 4033 // of their members. 4034 const bool SameLengthVectors = Base->isVectorType() && TyPtr->isVectorType() 4035 && (Context.getTypeSize(Base) == Context.getTypeSize(TyPtr)); 4036 4037 // 2) In the 32-bit AAPCS, `double' and `long double' have the same 4038 // machine type. This is not the case for the 64-bit AAPCS. 4039 const bool SameSizeDoubles = 4040 ( ( Base->isSpecificBuiltinType(BuiltinType::Double) 4041 && TyPtr->isSpecificBuiltinType(BuiltinType::LongDouble)) 4042 || ( Base->isSpecificBuiltinType(BuiltinType::LongDouble) 4043 && TyPtr->isSpecificBuiltinType(BuiltinType::Double))) 4044 && (Context.getTypeSize(Base) == Context.getTypeSize(TyPtr)); 4045 4046 if (!SameLengthVectors && !SameSizeDoubles) 4047 return false; 4048 } 4049 } 4050 4051 // Homogeneous Aggregates can have at most 4 members of the base type. 4052 if (HAMembers) 4053 *HAMembers = Members; 4054 4055 return (Members > 0 && Members <= 4); 4056 } 4057 4058 /// markAllocatedVFPs - update VFPRegs according to the alignment and 4059 /// number of VFP registers (unit is S register) requested. 4060 void ARMABIInfo::markAllocatedVFPs(unsigned Alignment, 4061 unsigned NumRequired) const { 4062 // Early Exit. 4063 if (AllocatedVFPs >= 16) { 4064 // We use AllocatedVFP > 16 to signal that some CPRCs were allocated on 4065 // the stack. 4066 AllocatedVFPs = 17; 4067 return; 4068 } 4069 // C.1.vfp If the argument is a VFP CPRC and there are sufficient consecutive 4070 // VFP registers of the appropriate type unallocated then the argument is 4071 // allocated to the lowest-numbered sequence of such registers. 4072 for (unsigned I = 0; I < 16; I += Alignment) { 4073 bool FoundSlot = true; 4074 for (unsigned J = I, JEnd = I + NumRequired; J < JEnd; J++) 4075 if (J >= 16 || VFPRegs[J]) { 4076 FoundSlot = false; 4077 break; 4078 } 4079 if (FoundSlot) { 4080 for (unsigned J = I, JEnd = I + NumRequired; J < JEnd; J++) 4081 VFPRegs[J] = 1; 4082 AllocatedVFPs += NumRequired; 4083 return; 4084 } 4085 } 4086 // C.2.vfp If the argument is a VFP CPRC then any VFP registers that are 4087 // unallocated are marked as unavailable. 4088 for (unsigned I = 0; I < 16; I++) 4089 VFPRegs[I] = 1; 4090 AllocatedVFPs = 17; // We do not have enough VFP registers. 4091 } 4092 4093 /// Update AllocatedGPRs to record the number of general purpose registers 4094 /// which have been allocated. It is valid for AllocatedGPRs to go above 4, 4095 /// this represents arguments being stored on the stack. 4096 void ARMABIInfo::markAllocatedGPRs(unsigned Alignment, 4097 unsigned NumRequired) const { 4098 assert((Alignment == 1 || Alignment == 2) && "Alignment must be 4 or 8 bytes"); 4099 4100 if (Alignment == 2 && AllocatedGPRs & 0x1) 4101 AllocatedGPRs += 1; 4102 4103 AllocatedGPRs += NumRequired; 4104 } 4105 4106 void ARMABIInfo::resetAllocatedRegs(void) const { 4107 AllocatedGPRs = 0; 4108 AllocatedVFPs = 0; 4109 for (unsigned i = 0; i < NumVFPs; ++i) 4110 VFPRegs[i] = 0; 4111 } 4112 4113 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, bool &IsHA, 4114 bool isVariadic, 4115 bool &IsCPRC) const { 4116 // We update number of allocated VFPs according to 4117 // 6.1.2.1 The following argument types are VFP CPRCs: 4118 // A single-precision floating-point type (including promoted 4119 // half-precision types); A double-precision floating-point type; 4120 // A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate 4121 // with a Base Type of a single- or double-precision floating-point type, 4122 // 64-bit containerized vectors or 128-bit containerized vectors with one 4123 // to four Elements. 4124 4125 // Handle illegal vector types here. 4126 if (isIllegalVectorType(Ty)) { 4127 uint64_t Size = getContext().getTypeSize(Ty); 4128 if (Size <= 32) { 4129 llvm::Type *ResType = 4130 llvm::Type::getInt32Ty(getVMContext()); 4131 markAllocatedGPRs(1, 1); 4132 return ABIArgInfo::getDirect(ResType); 4133 } 4134 if (Size == 64) { 4135 llvm::Type *ResType = llvm::VectorType::get( 4136 llvm::Type::getInt32Ty(getVMContext()), 2); 4137 if (getABIKind() == ARMABIInfo::AAPCS || isVariadic){ 4138 markAllocatedGPRs(2, 2); 4139 } else { 4140 markAllocatedVFPs(2, 2); 4141 IsCPRC = true; 4142 } 4143 return ABIArgInfo::getDirect(ResType); 4144 } 4145 if (Size == 128) { 4146 llvm::Type *ResType = llvm::VectorType::get( 4147 llvm::Type::getInt32Ty(getVMContext()), 4); 4148 if (getABIKind() == ARMABIInfo::AAPCS || isVariadic) { 4149 markAllocatedGPRs(2, 4); 4150 } else { 4151 markAllocatedVFPs(4, 4); 4152 IsCPRC = true; 4153 } 4154 return ABIArgInfo::getDirect(ResType); 4155 } 4156 markAllocatedGPRs(1, 1); 4157 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 4158 } 4159 // Update VFPRegs for legal vector types. 4160 if (getABIKind() == ARMABIInfo::AAPCS_VFP && !isVariadic) { 4161 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4162 uint64_t Size = getContext().getTypeSize(VT); 4163 // Size of a legal vector should be power of 2 and above 64. 4164 markAllocatedVFPs(Size >= 128 ? 4 : 2, Size / 32); 4165 IsCPRC = true; 4166 } 4167 } 4168 // Update VFPRegs for floating point types. 4169 if (getABIKind() == ARMABIInfo::AAPCS_VFP && !isVariadic) { 4170 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 4171 if (BT->getKind() == BuiltinType::Half || 4172 BT->getKind() == BuiltinType::Float) { 4173 markAllocatedVFPs(1, 1); 4174 IsCPRC = true; 4175 } 4176 if (BT->getKind() == BuiltinType::Double || 4177 BT->getKind() == BuiltinType::LongDouble) { 4178 markAllocatedVFPs(2, 2); 4179 IsCPRC = true; 4180 } 4181 } 4182 } 4183 4184 if (!isAggregateTypeForABI(Ty)) { 4185 // Treat an enum type as its underlying type. 4186 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 4187 Ty = EnumTy->getDecl()->getIntegerType(); 4188 } 4189 4190 unsigned Size = getContext().getTypeSize(Ty); 4191 if (!IsCPRC) 4192 markAllocatedGPRs(Size > 32 ? 2 : 1, (Size + 31) / 32); 4193 return (Ty->isPromotableIntegerType() ? 4194 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 4195 } 4196 4197 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 4198 markAllocatedGPRs(1, 1); 4199 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 4200 } 4201 4202 // Ignore empty records. 4203 if (isEmptyRecord(getContext(), Ty, true)) 4204 return ABIArgInfo::getIgnore(); 4205 4206 if (getABIKind() == ARMABIInfo::AAPCS_VFP && !isVariadic) { 4207 // Homogeneous Aggregates need to be expanded when we can fit the aggregate 4208 // into VFP registers. 4209 const Type *Base = 0; 4210 uint64_t Members = 0; 4211 if (isHomogeneousAggregate(Ty, Base, getContext(), &Members)) { 4212 assert(Base && "Base class should be set for homogeneous aggregate"); 4213 // Base can be a floating-point or a vector. 4214 if (Base->isVectorType()) { 4215 // ElementSize is in number of floats. 4216 unsigned ElementSize = getContext().getTypeSize(Base) == 64 ? 2 : 4; 4217 markAllocatedVFPs(ElementSize, 4218 Members * ElementSize); 4219 } else if (Base->isSpecificBuiltinType(BuiltinType::Float)) 4220 markAllocatedVFPs(1, Members); 4221 else { 4222 assert(Base->isSpecificBuiltinType(BuiltinType::Double) || 4223 Base->isSpecificBuiltinType(BuiltinType::LongDouble)); 4224 markAllocatedVFPs(2, Members * 2); 4225 } 4226 IsHA = true; 4227 IsCPRC = true; 4228 return ABIArgInfo::getExpand(); 4229 } 4230 } 4231 4232 // Support byval for ARM. 4233 // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at 4234 // most 8-byte. We realign the indirect argument if type alignment is bigger 4235 // than ABI alignment. 4236 uint64_t ABIAlign = 4; 4237 uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8; 4238 if (getABIKind() == ARMABIInfo::AAPCS_VFP || 4239 getABIKind() == ARMABIInfo::AAPCS) 4240 ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8); 4241 if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) { 4242 // Update Allocated GPRs 4243 markAllocatedGPRs(1, 1); 4244 return ABIArgInfo::getIndirect(TyAlign, /*ByVal=*/true, 4245 /*Realign=*/TyAlign > ABIAlign); 4246 } 4247 4248 // Otherwise, pass by coercing to a structure of the appropriate size. 4249 llvm::Type* ElemTy; 4250 unsigned SizeRegs; 4251 // FIXME: Try to match the types of the arguments more accurately where 4252 // we can. 4253 if (getContext().getTypeAlign(Ty) <= 32) { 4254 ElemTy = llvm::Type::getInt32Ty(getVMContext()); 4255 SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32; 4256 markAllocatedGPRs(1, SizeRegs); 4257 } else { 4258 ElemTy = llvm::Type::getInt64Ty(getVMContext()); 4259 SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64; 4260 markAllocatedGPRs(2, SizeRegs * 2); 4261 } 4262 4263 llvm::Type *STy = 4264 llvm::StructType::get(llvm::ArrayType::get(ElemTy, SizeRegs), NULL); 4265 return ABIArgInfo::getDirect(STy); 4266 } 4267 4268 static bool isIntegerLikeType(QualType Ty, ASTContext &Context, 4269 llvm::LLVMContext &VMContext) { 4270 // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure 4271 // is called integer-like if its size is less than or equal to one word, and 4272 // the offset of each of its addressable sub-fields is zero. 4273 4274 uint64_t Size = Context.getTypeSize(Ty); 4275 4276 // Check that the type fits in a word. 4277 if (Size > 32) 4278 return false; 4279 4280 // FIXME: Handle vector types! 4281 if (Ty->isVectorType()) 4282 return false; 4283 4284 // Float types are never treated as "integer like". 4285 if (Ty->isRealFloatingType()) 4286 return false; 4287 4288 // If this is a builtin or pointer type then it is ok. 4289 if (Ty->getAs<BuiltinType>() || Ty->isPointerType()) 4290 return true; 4291 4292 // Small complex integer types are "integer like". 4293 if (const ComplexType *CT = Ty->getAs<ComplexType>()) 4294 return isIntegerLikeType(CT->getElementType(), Context, VMContext); 4295 4296 // Single element and zero sized arrays should be allowed, by the definition 4297 // above, but they are not. 4298 4299 // Otherwise, it must be a record type. 4300 const RecordType *RT = Ty->getAs<RecordType>(); 4301 if (!RT) return false; 4302 4303 // Ignore records with flexible arrays. 4304 const RecordDecl *RD = RT->getDecl(); 4305 if (RD->hasFlexibleArrayMember()) 4306 return false; 4307 4308 // Check that all sub-fields are at offset 0, and are themselves "integer 4309 // like". 4310 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 4311 4312 bool HadField = false; 4313 unsigned idx = 0; 4314 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 4315 i != e; ++i, ++idx) { 4316 const FieldDecl *FD = *i; 4317 4318 // Bit-fields are not addressable, we only need to verify they are "integer 4319 // like". We still have to disallow a subsequent non-bitfield, for example: 4320 // struct { int : 0; int x } 4321 // is non-integer like according to gcc. 4322 if (FD->isBitField()) { 4323 if (!RD->isUnion()) 4324 HadField = true; 4325 4326 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 4327 return false; 4328 4329 continue; 4330 } 4331 4332 // Check if this field is at offset 0. 4333 if (Layout.getFieldOffset(idx) != 0) 4334 return false; 4335 4336 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 4337 return false; 4338 4339 // Only allow at most one field in a structure. This doesn't match the 4340 // wording above, but follows gcc in situations with a field following an 4341 // empty structure. 4342 if (!RD->isUnion()) { 4343 if (HadField) 4344 return false; 4345 4346 HadField = true; 4347 } 4348 } 4349 4350 return true; 4351 } 4352 4353 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, 4354 bool isVariadic) const { 4355 if (RetTy->isVoidType()) 4356 return ABIArgInfo::getIgnore(); 4357 4358 // Large vector types should be returned via memory. 4359 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) { 4360 markAllocatedGPRs(1, 1); 4361 return ABIArgInfo::getIndirect(0); 4362 } 4363 4364 if (!isAggregateTypeForABI(RetTy)) { 4365 // Treat an enum type as its underlying type. 4366 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 4367 RetTy = EnumTy->getDecl()->getIntegerType(); 4368 4369 return (RetTy->isPromotableIntegerType() ? 4370 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 4371 } 4372 4373 // Structures with either a non-trivial destructor or a non-trivial 4374 // copy constructor are always indirect. 4375 if (isRecordReturnIndirect(RetTy, getCXXABI())) { 4376 markAllocatedGPRs(1, 1); 4377 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 4378 } 4379 4380 // Are we following APCS? 4381 if (getABIKind() == APCS) { 4382 if (isEmptyRecord(getContext(), RetTy, false)) 4383 return ABIArgInfo::getIgnore(); 4384 4385 // Complex types are all returned as packed integers. 4386 // 4387 // FIXME: Consider using 2 x vector types if the back end handles them 4388 // correctly. 4389 if (RetTy->isAnyComplexType()) 4390 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 4391 getContext().getTypeSize(RetTy))); 4392 4393 // Integer like structures are returned in r0. 4394 if (isIntegerLikeType(RetTy, getContext(), getVMContext())) { 4395 // Return in the smallest viable integer type. 4396 uint64_t Size = getContext().getTypeSize(RetTy); 4397 if (Size <= 8) 4398 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 4399 if (Size <= 16) 4400 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 4401 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 4402 } 4403 4404 // Otherwise return in memory. 4405 markAllocatedGPRs(1, 1); 4406 return ABIArgInfo::getIndirect(0); 4407 } 4408 4409 // Otherwise this is an AAPCS variant. 4410 4411 if (isEmptyRecord(getContext(), RetTy, true)) 4412 return ABIArgInfo::getIgnore(); 4413 4414 // Check for homogeneous aggregates with AAPCS-VFP. 4415 if (getABIKind() == AAPCS_VFP && !isVariadic) { 4416 const Type *Base = 0; 4417 if (isHomogeneousAggregate(RetTy, Base, getContext())) { 4418 assert(Base && "Base class should be set for homogeneous aggregate"); 4419 // Homogeneous Aggregates are returned directly. 4420 return ABIArgInfo::getDirect(); 4421 } 4422 } 4423 4424 // Aggregates <= 4 bytes are returned in r0; other aggregates 4425 // are returned indirectly. 4426 uint64_t Size = getContext().getTypeSize(RetTy); 4427 if (Size <= 32) { 4428 // Return in the smallest viable integer type. 4429 if (Size <= 8) 4430 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 4431 if (Size <= 16) 4432 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 4433 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 4434 } 4435 4436 markAllocatedGPRs(1, 1); 4437 return ABIArgInfo::getIndirect(0); 4438 } 4439 4440 /// isIllegalVector - check whether Ty is an illegal vector type. 4441 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const { 4442 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4443 // Check whether VT is legal. 4444 unsigned NumElements = VT->getNumElements(); 4445 uint64_t Size = getContext().getTypeSize(VT); 4446 // NumElements should be power of 2. 4447 if ((NumElements & (NumElements - 1)) != 0) 4448 return true; 4449 // Size should be greater than 32 bits. 4450 return Size <= 32; 4451 } 4452 return false; 4453 } 4454 4455 llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 4456 CodeGenFunction &CGF) const { 4457 llvm::Type *BP = CGF.Int8PtrTy; 4458 llvm::Type *BPP = CGF.Int8PtrPtrTy; 4459 4460 CGBuilderTy &Builder = CGF.Builder; 4461 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); 4462 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 4463 4464 if (isEmptyRecord(getContext(), Ty, true)) { 4465 // These are ignored for parameter passing purposes. 4466 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 4467 return Builder.CreateBitCast(Addr, PTy); 4468 } 4469 4470 uint64_t Size = CGF.getContext().getTypeSize(Ty) / 8; 4471 uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8; 4472 bool IsIndirect = false; 4473 4474 // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for 4475 // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte. 4476 if (getABIKind() == ARMABIInfo::AAPCS_VFP || 4477 getABIKind() == ARMABIInfo::AAPCS) 4478 TyAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8); 4479 else 4480 TyAlign = 4; 4481 // Use indirect if size of the illegal vector is bigger than 16 bytes. 4482 if (isIllegalVectorType(Ty) && Size > 16) { 4483 IsIndirect = true; 4484 Size = 4; 4485 TyAlign = 4; 4486 } 4487 4488 // Handle address alignment for ABI alignment > 4 bytes. 4489 if (TyAlign > 4) { 4490 assert((TyAlign & (TyAlign - 1)) == 0 && 4491 "Alignment is not power of 2!"); 4492 llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty); 4493 AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1)); 4494 AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1))); 4495 Addr = Builder.CreateIntToPtr(AddrAsInt, BP, "ap.align"); 4496 } 4497 4498 uint64_t Offset = 4499 llvm::RoundUpToAlignment(Size, 4); 4500 llvm::Value *NextAddr = 4501 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), 4502 "ap.next"); 4503 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 4504 4505 if (IsIndirect) 4506 Addr = Builder.CreateLoad(Builder.CreateBitCast(Addr, BPP)); 4507 else if (TyAlign < CGF.getContext().getTypeAlign(Ty) / 8) { 4508 // We can't directly cast ap.cur to pointer to a vector type, since ap.cur 4509 // may not be correctly aligned for the vector type. We create an aligned 4510 // temporary space and copy the content over from ap.cur to the temporary 4511 // space. This is necessary if the natural alignment of the type is greater 4512 // than the ABI alignment. 4513 llvm::Type *I8PtrTy = Builder.getInt8PtrTy(); 4514 CharUnits CharSize = getContext().getTypeSizeInChars(Ty); 4515 llvm::Value *AlignedTemp = CGF.CreateTempAlloca(CGF.ConvertType(Ty), 4516 "var.align"); 4517 llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy); 4518 llvm::Value *Src = Builder.CreateBitCast(Addr, I8PtrTy); 4519 Builder.CreateMemCpy(Dst, Src, 4520 llvm::ConstantInt::get(CGF.IntPtrTy, CharSize.getQuantity()), 4521 TyAlign, false); 4522 Addr = AlignedTemp; //The content is in aligned location. 4523 } 4524 llvm::Type *PTy = 4525 llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 4526 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); 4527 4528 return AddrTyped; 4529 } 4530 4531 namespace { 4532 4533 class NaClARMABIInfo : public ABIInfo { 4534 public: 4535 NaClARMABIInfo(CodeGen::CodeGenTypes &CGT, ARMABIInfo::ABIKind Kind) 4536 : ABIInfo(CGT), PInfo(CGT), NInfo(CGT, Kind) {} 4537 void computeInfo(CGFunctionInfo &FI) const override; 4538 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 4539 CodeGenFunction &CGF) const override; 4540 private: 4541 PNaClABIInfo PInfo; // Used for generating calls with pnaclcall callingconv. 4542 ARMABIInfo NInfo; // Used for everything else. 4543 }; 4544 4545 class NaClARMTargetCodeGenInfo : public TargetCodeGenInfo { 4546 public: 4547 NaClARMTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, ARMABIInfo::ABIKind Kind) 4548 : TargetCodeGenInfo(new NaClARMABIInfo(CGT, Kind)) {} 4549 }; 4550 4551 } 4552 4553 void NaClARMABIInfo::computeInfo(CGFunctionInfo &FI) const { 4554 if (FI.getASTCallingConvention() == CC_PnaclCall) 4555 PInfo.computeInfo(FI); 4556 else 4557 static_cast<const ABIInfo&>(NInfo).computeInfo(FI); 4558 } 4559 4560 llvm::Value *NaClARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 4561 CodeGenFunction &CGF) const { 4562 // Always use the native convention; calling pnacl-style varargs functions 4563 // is unsupported. 4564 return static_cast<const ABIInfo&>(NInfo).EmitVAArg(VAListAddr, Ty, CGF); 4565 } 4566 4567 //===----------------------------------------------------------------------===// 4568 // AArch64 ABI Implementation 4569 //===----------------------------------------------------------------------===// 4570 4571 namespace { 4572 4573 class AArch64ABIInfo : public ABIInfo { 4574 public: 4575 AArch64ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 4576 4577 private: 4578 // The AArch64 PCS is explicit about return types and argument types being 4579 // handled identically, so we don't need to draw a distinction between 4580 // Argument and Return classification. 4581 ABIArgInfo classifyGenericType(QualType Ty, int &FreeIntRegs, 4582 int &FreeVFPRegs) const; 4583 4584 ABIArgInfo tryUseRegs(QualType Ty, int &FreeRegs, int RegsNeeded, bool IsInt, 4585 llvm::Type *DirectTy = 0) const; 4586 4587 void computeInfo(CGFunctionInfo &FI) const override; 4588 4589 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 4590 CodeGenFunction &CGF) const override; 4591 }; 4592 4593 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo { 4594 public: 4595 AArch64TargetCodeGenInfo(CodeGenTypes &CGT) 4596 :TargetCodeGenInfo(new AArch64ABIInfo(CGT)) {} 4597 4598 const AArch64ABIInfo &getABIInfo() const { 4599 return static_cast<const AArch64ABIInfo&>(TargetCodeGenInfo::getABIInfo()); 4600 } 4601 4602 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4603 return 31; 4604 } 4605 4606 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4607 llvm::Value *Address) const override { 4608 // 0-31 are x0-x30 and sp: 8 bytes each 4609 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 4610 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 31); 4611 4612 // 64-95 are v0-v31: 16 bytes each 4613 llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16); 4614 AssignToArrayRange(CGF.Builder, Address, Sixteen8, 64, 95); 4615 4616 return false; 4617 } 4618 4619 }; 4620 4621 } 4622 4623 void AArch64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 4624 int FreeIntRegs = 8, FreeVFPRegs = 8; 4625 4626 FI.getReturnInfo() = classifyGenericType(FI.getReturnType(), 4627 FreeIntRegs, FreeVFPRegs); 4628 4629 FreeIntRegs = FreeVFPRegs = 8; 4630 for (auto &I : FI.arguments()) { 4631 I.info = classifyGenericType(I.type, FreeIntRegs, FreeVFPRegs); 4632 4633 } 4634 } 4635 4636 ABIArgInfo 4637 AArch64ABIInfo::tryUseRegs(QualType Ty, int &FreeRegs, int RegsNeeded, 4638 bool IsInt, llvm::Type *DirectTy) const { 4639 if (FreeRegs >= RegsNeeded) { 4640 FreeRegs -= RegsNeeded; 4641 return ABIArgInfo::getDirect(DirectTy); 4642 } 4643 4644 llvm::Type *Padding = 0; 4645 4646 // We need padding so that later arguments don't get filled in anyway. That 4647 // wouldn't happen if only ByVal arguments followed in the same category, but 4648 // a large structure will simply seem to be a pointer as far as LLVM is 4649 // concerned. 4650 if (FreeRegs > 0) { 4651 if (IsInt) 4652 Padding = llvm::Type::getInt64Ty(getVMContext()); 4653 else 4654 Padding = llvm::Type::getFloatTy(getVMContext()); 4655 4656 // Either [N x i64] or [N x float]. 4657 Padding = llvm::ArrayType::get(Padding, FreeRegs); 4658 FreeRegs = 0; 4659 } 4660 4661 return ABIArgInfo::getIndirect(getContext().getTypeAlign(Ty) / 8, 4662 /*IsByVal=*/ true, /*Realign=*/ false, 4663 Padding); 4664 } 4665 4666 4667 ABIArgInfo AArch64ABIInfo::classifyGenericType(QualType Ty, 4668 int &FreeIntRegs, 4669 int &FreeVFPRegs) const { 4670 // Can only occurs for return, but harmless otherwise. 4671 if (Ty->isVoidType()) 4672 return ABIArgInfo::getIgnore(); 4673 4674 // Large vector types should be returned via memory. There's no such concept 4675 // in the ABI, but they'd be over 16 bytes anyway so no matter how they're 4676 // classified they'd go into memory (see B.3). 4677 if (Ty->isVectorType() && getContext().getTypeSize(Ty) > 128) { 4678 if (FreeIntRegs > 0) 4679 --FreeIntRegs; 4680 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 4681 } 4682 4683 // All non-aggregate LLVM types have a concrete ABI representation so they can 4684 // be passed directly. After this block we're guaranteed to be in a 4685 // complicated case. 4686 if (!isAggregateTypeForABI(Ty)) { 4687 // Treat an enum type as its underlying type. 4688 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4689 Ty = EnumTy->getDecl()->getIntegerType(); 4690 4691 if (Ty->isFloatingType() || Ty->isVectorType()) 4692 return tryUseRegs(Ty, FreeVFPRegs, /*RegsNeeded=*/ 1, /*IsInt=*/ false); 4693 4694 assert(getContext().getTypeSize(Ty) <= 128 && 4695 "unexpectedly large scalar type"); 4696 4697 int RegsNeeded = getContext().getTypeSize(Ty) > 64 ? 2 : 1; 4698 4699 // If the type may need padding registers to ensure "alignment", we must be 4700 // careful when this is accounted for. Increasing the effective size covers 4701 // all cases. 4702 if (getContext().getTypeAlign(Ty) == 128) 4703 RegsNeeded += FreeIntRegs % 2 != 0; 4704 4705 return tryUseRegs(Ty, FreeIntRegs, RegsNeeded, /*IsInt=*/ true); 4706 } 4707 4708 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 4709 if (FreeIntRegs > 0 && RAA == CGCXXABI::RAA_Indirect) 4710 --FreeIntRegs; 4711 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 4712 } 4713 4714 if (isEmptyRecord(getContext(), Ty, true)) { 4715 if (!getContext().getLangOpts().CPlusPlus) { 4716 // Empty structs outside C++ mode are a GNU extension, so no ABI can 4717 // possibly tell us what to do. It turns out (I believe) that GCC ignores 4718 // the object for parameter-passsing purposes. 4719 return ABIArgInfo::getIgnore(); 4720 } 4721 4722 // The combination of C++98 9p5 (sizeof(struct) != 0) and the pseudocode 4723 // description of va_arg in the PCS require that an empty struct does 4724 // actually occupy space for parameter-passing. I'm hoping for a 4725 // clarification giving an explicit paragraph to point to in future. 4726 return tryUseRegs(Ty, FreeIntRegs, /*RegsNeeded=*/ 1, /*IsInt=*/ true, 4727 llvm::Type::getInt8Ty(getVMContext())); 4728 } 4729 4730 // Homogeneous vector aggregates get passed in registers or on the stack. 4731 const Type *Base = 0; 4732 uint64_t NumMembers = 0; 4733 if (isHomogeneousAggregate(Ty, Base, getContext(), &NumMembers)) { 4734 assert(Base && "Base class should be set for homogeneous aggregate"); 4735 // Homogeneous aggregates are passed and returned directly. 4736 return tryUseRegs(Ty, FreeVFPRegs, /*RegsNeeded=*/ NumMembers, 4737 /*IsInt=*/ false); 4738 } 4739 4740 uint64_t Size = getContext().getTypeSize(Ty); 4741 if (Size <= 128) { 4742 // Small structs can use the same direct type whether they're in registers 4743 // or on the stack. 4744 llvm::Type *BaseTy; 4745 unsigned NumBases; 4746 int SizeInRegs = (Size + 63) / 64; 4747 4748 if (getContext().getTypeAlign(Ty) == 128) { 4749 BaseTy = llvm::Type::getIntNTy(getVMContext(), 128); 4750 NumBases = 1; 4751 4752 // If the type may need padding registers to ensure "alignment", we must 4753 // be careful when this is accounted for. Increasing the effective size 4754 // covers all cases. 4755 SizeInRegs += FreeIntRegs % 2 != 0; 4756 } else { 4757 BaseTy = llvm::Type::getInt64Ty(getVMContext()); 4758 NumBases = SizeInRegs; 4759 } 4760 llvm::Type *DirectTy = llvm::ArrayType::get(BaseTy, NumBases); 4761 4762 return tryUseRegs(Ty, FreeIntRegs, /*RegsNeeded=*/ SizeInRegs, 4763 /*IsInt=*/ true, DirectTy); 4764 } 4765 4766 // If the aggregate is > 16 bytes, it's passed and returned indirectly. In 4767 // LLVM terms the return uses an "sret" pointer, but that's handled elsewhere. 4768 --FreeIntRegs; 4769 return ABIArgInfo::getIndirect(0, /* byVal = */ false); 4770 } 4771 4772 llvm::Value *AArch64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 4773 CodeGenFunction &CGF) const { 4774 int FreeIntRegs = 8, FreeVFPRegs = 8; 4775 Ty = CGF.getContext().getCanonicalType(Ty); 4776 ABIArgInfo AI = classifyGenericType(Ty, FreeIntRegs, FreeVFPRegs); 4777 4778 return EmitAArch64VAArg(VAListAddr, Ty, 8 - FreeIntRegs, 8 - FreeVFPRegs, 4779 AI.isIndirect(), CGF); 4780 } 4781 4782 //===----------------------------------------------------------------------===// 4783 // NVPTX ABI Implementation 4784 //===----------------------------------------------------------------------===// 4785 4786 namespace { 4787 4788 class NVPTXABIInfo : public ABIInfo { 4789 public: 4790 NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 4791 4792 ABIArgInfo classifyReturnType(QualType RetTy) const; 4793 ABIArgInfo classifyArgumentType(QualType Ty) const; 4794 4795 void computeInfo(CGFunctionInfo &FI) const override; 4796 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 4797 CodeGenFunction &CFG) const override; 4798 }; 4799 4800 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo { 4801 public: 4802 NVPTXTargetCodeGenInfo(CodeGenTypes &CGT) 4803 : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {} 4804 4805 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 4806 CodeGen::CodeGenModule &M) const override; 4807 private: 4808 // Adds a NamedMDNode with F, Name, and Operand as operands, and adds the 4809 // resulting MDNode to the nvvm.annotations MDNode. 4810 static void addNVVMMetadata(llvm::Function *F, StringRef Name, int Operand); 4811 }; 4812 4813 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const { 4814 if (RetTy->isVoidType()) 4815 return ABIArgInfo::getIgnore(); 4816 4817 // note: this is different from default ABI 4818 if (!RetTy->isScalarType()) 4819 return ABIArgInfo::getDirect(); 4820 4821 // Treat an enum type as its underlying type. 4822 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 4823 RetTy = EnumTy->getDecl()->getIntegerType(); 4824 4825 return (RetTy->isPromotableIntegerType() ? 4826 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 4827 } 4828 4829 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const { 4830 // Treat an enum type as its underlying type. 4831 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4832 Ty = EnumTy->getDecl()->getIntegerType(); 4833 4834 return (Ty->isPromotableIntegerType() ? 4835 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 4836 } 4837 4838 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const { 4839 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4840 for (auto &I : FI.arguments()) 4841 I.info = classifyArgumentType(I.type); 4842 4843 // Always honor user-specified calling convention. 4844 if (FI.getCallingConvention() != llvm::CallingConv::C) 4845 return; 4846 4847 FI.setEffectiveCallingConvention(getRuntimeCC()); 4848 } 4849 4850 llvm::Value *NVPTXABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 4851 CodeGenFunction &CFG) const { 4852 llvm_unreachable("NVPTX does not support varargs"); 4853 } 4854 4855 void NVPTXTargetCodeGenInfo:: 4856 SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 4857 CodeGen::CodeGenModule &M) const{ 4858 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); 4859 if (!FD) return; 4860 4861 llvm::Function *F = cast<llvm::Function>(GV); 4862 4863 // Perform special handling in OpenCL mode 4864 if (M.getLangOpts().OpenCL) { 4865 // Use OpenCL function attributes to check for kernel functions 4866 // By default, all functions are device functions 4867 if (FD->hasAttr<OpenCLKernelAttr>()) { 4868 // OpenCL __kernel functions get kernel metadata 4869 // Create !{<func-ref>, metadata !"kernel", i32 1} node 4870 addNVVMMetadata(F, "kernel", 1); 4871 // And kernel functions are not subject to inlining 4872 F->addFnAttr(llvm::Attribute::NoInline); 4873 } 4874 } 4875 4876 // Perform special handling in CUDA mode. 4877 if (M.getLangOpts().CUDA) { 4878 // CUDA __global__ functions get a kernel metadata entry. Since 4879 // __global__ functions cannot be called from the device, we do not 4880 // need to set the noinline attribute. 4881 if (FD->hasAttr<CUDAGlobalAttr>()) { 4882 // Create !{<func-ref>, metadata !"kernel", i32 1} node 4883 addNVVMMetadata(F, "kernel", 1); 4884 } 4885 if (FD->hasAttr<CUDALaunchBoundsAttr>()) { 4886 // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node 4887 addNVVMMetadata(F, "maxntidx", 4888 FD->getAttr<CUDALaunchBoundsAttr>()->getMaxThreads()); 4889 // min blocks is a default argument for CUDALaunchBoundsAttr, so getting a 4890 // zero value from getMinBlocks either means it was not specified in 4891 // __launch_bounds__ or the user specified a 0 value. In both cases, we 4892 // don't have to add a PTX directive. 4893 int MinCTASM = FD->getAttr<CUDALaunchBoundsAttr>()->getMinBlocks(); 4894 if (MinCTASM > 0) { 4895 // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node 4896 addNVVMMetadata(F, "minctasm", MinCTASM); 4897 } 4898 } 4899 } 4900 } 4901 4902 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::Function *F, StringRef Name, 4903 int Operand) { 4904 llvm::Module *M = F->getParent(); 4905 llvm::LLVMContext &Ctx = M->getContext(); 4906 4907 // Get "nvvm.annotations" metadata node 4908 llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations"); 4909 4910 llvm::Value *MDVals[] = { 4911 F, llvm::MDString::get(Ctx, Name), 4912 llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand)}; 4913 // Append metadata to nvvm.annotations 4914 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 4915 } 4916 } 4917 4918 //===----------------------------------------------------------------------===// 4919 // SystemZ ABI Implementation 4920 //===----------------------------------------------------------------------===// 4921 4922 namespace { 4923 4924 class SystemZABIInfo : public ABIInfo { 4925 public: 4926 SystemZABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 4927 4928 bool isPromotableIntegerType(QualType Ty) const; 4929 bool isCompoundType(QualType Ty) const; 4930 bool isFPArgumentType(QualType Ty) const; 4931 4932 ABIArgInfo classifyReturnType(QualType RetTy) const; 4933 ABIArgInfo classifyArgumentType(QualType ArgTy) const; 4934 4935 void computeInfo(CGFunctionInfo &FI) const override { 4936 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4937 for (auto &I : FI.arguments()) 4938 I.info = classifyArgumentType(I.type); 4939 } 4940 4941 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 4942 CodeGenFunction &CGF) const override; 4943 }; 4944 4945 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo { 4946 public: 4947 SystemZTargetCodeGenInfo(CodeGenTypes &CGT) 4948 : TargetCodeGenInfo(new SystemZABIInfo(CGT)) {} 4949 }; 4950 4951 } 4952 4953 bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const { 4954 // Treat an enum type as its underlying type. 4955 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4956 Ty = EnumTy->getDecl()->getIntegerType(); 4957 4958 // Promotable integer types are required to be promoted by the ABI. 4959 if (Ty->isPromotableIntegerType()) 4960 return true; 4961 4962 // 32-bit values must also be promoted. 4963 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 4964 switch (BT->getKind()) { 4965 case BuiltinType::Int: 4966 case BuiltinType::UInt: 4967 return true; 4968 default: 4969 return false; 4970 } 4971 return false; 4972 } 4973 4974 bool SystemZABIInfo::isCompoundType(QualType Ty) const { 4975 return Ty->isAnyComplexType() || isAggregateTypeForABI(Ty); 4976 } 4977 4978 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const { 4979 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 4980 switch (BT->getKind()) { 4981 case BuiltinType::Float: 4982 case BuiltinType::Double: 4983 return true; 4984 default: 4985 return false; 4986 } 4987 4988 if (const RecordType *RT = Ty->getAsStructureType()) { 4989 const RecordDecl *RD = RT->getDecl(); 4990 bool Found = false; 4991 4992 // If this is a C++ record, check the bases first. 4993 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 4994 for (const auto &I : CXXRD->bases()) { 4995 QualType Base = I.getType(); 4996 4997 // Empty bases don't affect things either way. 4998 if (isEmptyRecord(getContext(), Base, true)) 4999 continue; 5000 5001 if (Found) 5002 return false; 5003 Found = isFPArgumentType(Base); 5004 if (!Found) 5005 return false; 5006 } 5007 5008 // Check the fields. 5009 for (const auto *FD : RD->fields()) { 5010 // Empty bitfields don't affect things either way. 5011 // Unlike isSingleElementStruct(), empty structure and array fields 5012 // do count. So do anonymous bitfields that aren't zero-sized. 5013 if (FD->isBitField() && FD->getBitWidthValue(getContext()) == 0) 5014 return true; 5015 5016 // Unlike isSingleElementStruct(), arrays do not count. 5017 // Nested isFPArgumentType structures still do though. 5018 if (Found) 5019 return false; 5020 Found = isFPArgumentType(FD->getType()); 5021 if (!Found) 5022 return false; 5023 } 5024 5025 // Unlike isSingleElementStruct(), trailing padding is allowed. 5026 // An 8-byte aligned struct s { float f; } is passed as a double. 5027 return Found; 5028 } 5029 5030 return false; 5031 } 5032 5033 llvm::Value *SystemZABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5034 CodeGenFunction &CGF) const { 5035 // Assume that va_list type is correct; should be pointer to LLVM type: 5036 // struct { 5037 // i64 __gpr; 5038 // i64 __fpr; 5039 // i8 *__overflow_arg_area; 5040 // i8 *__reg_save_area; 5041 // }; 5042 5043 // Every argument occupies 8 bytes and is passed by preference in either 5044 // GPRs or FPRs. 5045 Ty = CGF.getContext().getCanonicalType(Ty); 5046 ABIArgInfo AI = classifyArgumentType(Ty); 5047 bool InFPRs = isFPArgumentType(Ty); 5048 5049 llvm::Type *APTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); 5050 bool IsIndirect = AI.isIndirect(); 5051 unsigned UnpaddedBitSize; 5052 if (IsIndirect) { 5053 APTy = llvm::PointerType::getUnqual(APTy); 5054 UnpaddedBitSize = 64; 5055 } else 5056 UnpaddedBitSize = getContext().getTypeSize(Ty); 5057 unsigned PaddedBitSize = 64; 5058 assert((UnpaddedBitSize <= PaddedBitSize) && "Invalid argument size."); 5059 5060 unsigned PaddedSize = PaddedBitSize / 8; 5061 unsigned Padding = (PaddedBitSize - UnpaddedBitSize) / 8; 5062 5063 unsigned MaxRegs, RegCountField, RegSaveIndex, RegPadding; 5064 if (InFPRs) { 5065 MaxRegs = 4; // Maximum of 4 FPR arguments 5066 RegCountField = 1; // __fpr 5067 RegSaveIndex = 16; // save offset for f0 5068 RegPadding = 0; // floats are passed in the high bits of an FPR 5069 } else { 5070 MaxRegs = 5; // Maximum of 5 GPR arguments 5071 RegCountField = 0; // __gpr 5072 RegSaveIndex = 2; // save offset for r2 5073 RegPadding = Padding; // values are passed in the low bits of a GPR 5074 } 5075 5076 llvm::Value *RegCountPtr = 5077 CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr"); 5078 llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count"); 5079 llvm::Type *IndexTy = RegCount->getType(); 5080 llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs); 5081 llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV, 5082 "fits_in_regs"); 5083 5084 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 5085 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 5086 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 5087 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 5088 5089 // Emit code to load the value if it was passed in registers. 5090 CGF.EmitBlock(InRegBlock); 5091 5092 // Work out the address of an argument register. 5093 llvm::Value *PaddedSizeV = llvm::ConstantInt::get(IndexTy, PaddedSize); 5094 llvm::Value *ScaledRegCount = 5095 CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count"); 5096 llvm::Value *RegBase = 5097 llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize + RegPadding); 5098 llvm::Value *RegOffset = 5099 CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset"); 5100 llvm::Value *RegSaveAreaPtr = 5101 CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr"); 5102 llvm::Value *RegSaveArea = 5103 CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area"); 5104 llvm::Value *RawRegAddr = 5105 CGF.Builder.CreateGEP(RegSaveArea, RegOffset, "raw_reg_addr"); 5106 llvm::Value *RegAddr = 5107 CGF.Builder.CreateBitCast(RawRegAddr, APTy, "reg_addr"); 5108 5109 // Update the register count 5110 llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1); 5111 llvm::Value *NewRegCount = 5112 CGF.Builder.CreateAdd(RegCount, One, "reg_count"); 5113 CGF.Builder.CreateStore(NewRegCount, RegCountPtr); 5114 CGF.EmitBranch(ContBlock); 5115 5116 // Emit code to load the value if it was passed in memory. 5117 CGF.EmitBlock(InMemBlock); 5118 5119 // Work out the address of a stack argument. 5120 llvm::Value *OverflowArgAreaPtr = 5121 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr"); 5122 llvm::Value *OverflowArgArea = 5123 CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"); 5124 llvm::Value *PaddingV = llvm::ConstantInt::get(IndexTy, Padding); 5125 llvm::Value *RawMemAddr = 5126 CGF.Builder.CreateGEP(OverflowArgArea, PaddingV, "raw_mem_addr"); 5127 llvm::Value *MemAddr = 5128 CGF.Builder.CreateBitCast(RawMemAddr, APTy, "mem_addr"); 5129 5130 // Update overflow_arg_area_ptr pointer 5131 llvm::Value *NewOverflowArgArea = 5132 CGF.Builder.CreateGEP(OverflowArgArea, PaddedSizeV, "overflow_arg_area"); 5133 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 5134 CGF.EmitBranch(ContBlock); 5135 5136 // Return the appropriate result. 5137 CGF.EmitBlock(ContBlock); 5138 llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(APTy, 2, "va_arg.addr"); 5139 ResAddr->addIncoming(RegAddr, InRegBlock); 5140 ResAddr->addIncoming(MemAddr, InMemBlock); 5141 5142 if (IsIndirect) 5143 return CGF.Builder.CreateLoad(ResAddr, "indirect_arg"); 5144 5145 return ResAddr; 5146 } 5147 5148 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI( 5149 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 5150 assert(Triple.getArch() == llvm::Triple::x86); 5151 5152 switch (Opts.getStructReturnConvention()) { 5153 case CodeGenOptions::SRCK_Default: 5154 break; 5155 case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return 5156 return false; 5157 case CodeGenOptions::SRCK_InRegs: // -freg-struct-return 5158 return true; 5159 } 5160 5161 if (Triple.isOSDarwin()) 5162 return true; 5163 5164 switch (Triple.getOS()) { 5165 case llvm::Triple::AuroraUX: 5166 case llvm::Triple::DragonFly: 5167 case llvm::Triple::FreeBSD: 5168 case llvm::Triple::OpenBSD: 5169 case llvm::Triple::Bitrig: 5170 return true; 5171 case llvm::Triple::Win32: 5172 switch (Triple.getEnvironment()) { 5173 case llvm::Triple::UnknownEnvironment: 5174 case llvm::Triple::Cygnus: 5175 case llvm::Triple::GNU: 5176 case llvm::Triple::MSVC: 5177 return true; 5178 default: 5179 return false; 5180 } 5181 default: 5182 return false; 5183 } 5184 } 5185 5186 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const { 5187 if (RetTy->isVoidType()) 5188 return ABIArgInfo::getIgnore(); 5189 if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64) 5190 return ABIArgInfo::getIndirect(0); 5191 return (isPromotableIntegerType(RetTy) ? 5192 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 5193 } 5194 5195 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const { 5196 // Handle the generic C++ ABI. 5197 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 5198 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 5199 5200 // Integers and enums are extended to full register width. 5201 if (isPromotableIntegerType(Ty)) 5202 return ABIArgInfo::getExtend(); 5203 5204 // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly. 5205 uint64_t Size = getContext().getTypeSize(Ty); 5206 if (Size != 8 && Size != 16 && Size != 32 && Size != 64) 5207 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 5208 5209 // Handle small structures. 5210 if (const RecordType *RT = Ty->getAs<RecordType>()) { 5211 // Structures with flexible arrays have variable length, so really 5212 // fail the size test above. 5213 const RecordDecl *RD = RT->getDecl(); 5214 if (RD->hasFlexibleArrayMember()) 5215 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 5216 5217 // The structure is passed as an unextended integer, a float, or a double. 5218 llvm::Type *PassTy; 5219 if (isFPArgumentType(Ty)) { 5220 assert(Size == 32 || Size == 64); 5221 if (Size == 32) 5222 PassTy = llvm::Type::getFloatTy(getVMContext()); 5223 else 5224 PassTy = llvm::Type::getDoubleTy(getVMContext()); 5225 } else 5226 PassTy = llvm::IntegerType::get(getVMContext(), Size); 5227 return ABIArgInfo::getDirect(PassTy); 5228 } 5229 5230 // Non-structure compounds are passed indirectly. 5231 if (isCompoundType(Ty)) 5232 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 5233 5234 return ABIArgInfo::getDirect(0); 5235 } 5236 5237 //===----------------------------------------------------------------------===// 5238 // MSP430 ABI Implementation 5239 //===----------------------------------------------------------------------===// 5240 5241 namespace { 5242 5243 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo { 5244 public: 5245 MSP430TargetCodeGenInfo(CodeGenTypes &CGT) 5246 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 5247 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5248 CodeGen::CodeGenModule &M) const override; 5249 }; 5250 5251 } 5252 5253 void MSP430TargetCodeGenInfo::SetTargetAttributes(const Decl *D, 5254 llvm::GlobalValue *GV, 5255 CodeGen::CodeGenModule &M) const { 5256 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 5257 if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) { 5258 // Handle 'interrupt' attribute: 5259 llvm::Function *F = cast<llvm::Function>(GV); 5260 5261 // Step 1: Set ISR calling convention. 5262 F->setCallingConv(llvm::CallingConv::MSP430_INTR); 5263 5264 // Step 2: Add attributes goodness. 5265 F->addFnAttr(llvm::Attribute::NoInline); 5266 5267 // Step 3: Emit ISR vector alias. 5268 unsigned Num = attr->getNumber() / 2; 5269 new llvm::GlobalAlias(GV->getType(), llvm::Function::ExternalLinkage, 5270 "__isr_" + Twine(Num), 5271 GV, &M.getModule()); 5272 } 5273 } 5274 } 5275 5276 //===----------------------------------------------------------------------===// 5277 // MIPS ABI Implementation. This works for both little-endian and 5278 // big-endian variants. 5279 //===----------------------------------------------------------------------===// 5280 5281 namespace { 5282 class MipsABIInfo : public ABIInfo { 5283 bool IsO32; 5284 unsigned MinABIStackAlignInBytes, StackAlignInBytes; 5285 void CoerceToIntArgs(uint64_t TySize, 5286 SmallVectorImpl<llvm::Type *> &ArgList) const; 5287 llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const; 5288 llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const; 5289 llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const; 5290 public: 5291 MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) : 5292 ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8), 5293 StackAlignInBytes(IsO32 ? 8 : 16) {} 5294 5295 ABIArgInfo classifyReturnType(QualType RetTy) const; 5296 ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const; 5297 void computeInfo(CGFunctionInfo &FI) const override; 5298 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5299 CodeGenFunction &CGF) const override; 5300 }; 5301 5302 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo { 5303 unsigned SizeOfUnwindException; 5304 public: 5305 MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32) 5306 : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)), 5307 SizeOfUnwindException(IsO32 ? 24 : 32) {} 5308 5309 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 5310 return 29; 5311 } 5312 5313 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5314 CodeGen::CodeGenModule &CGM) const override { 5315 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); 5316 if (!FD) return; 5317 llvm::Function *Fn = cast<llvm::Function>(GV); 5318 if (FD->hasAttr<Mips16Attr>()) { 5319 Fn->addFnAttr("mips16"); 5320 } 5321 else if (FD->hasAttr<NoMips16Attr>()) { 5322 Fn->addFnAttr("nomips16"); 5323 } 5324 } 5325 5326 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5327 llvm::Value *Address) const override; 5328 5329 unsigned getSizeOfUnwindException() const override { 5330 return SizeOfUnwindException; 5331 } 5332 }; 5333 } 5334 5335 void MipsABIInfo::CoerceToIntArgs(uint64_t TySize, 5336 SmallVectorImpl<llvm::Type *> &ArgList) const { 5337 llvm::IntegerType *IntTy = 5338 llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8); 5339 5340 // Add (TySize / MinABIStackAlignInBytes) args of IntTy. 5341 for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N) 5342 ArgList.push_back(IntTy); 5343 5344 // If necessary, add one more integer type to ArgList. 5345 unsigned R = TySize % (MinABIStackAlignInBytes * 8); 5346 5347 if (R) 5348 ArgList.push_back(llvm::IntegerType::get(getVMContext(), R)); 5349 } 5350 5351 // In N32/64, an aligned double precision floating point field is passed in 5352 // a register. 5353 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const { 5354 SmallVector<llvm::Type*, 8> ArgList, IntArgList; 5355 5356 if (IsO32) { 5357 CoerceToIntArgs(TySize, ArgList); 5358 return llvm::StructType::get(getVMContext(), ArgList); 5359 } 5360 5361 if (Ty->isComplexType()) 5362 return CGT.ConvertType(Ty); 5363 5364 const RecordType *RT = Ty->getAs<RecordType>(); 5365 5366 // Unions/vectors are passed in integer registers. 5367 if (!RT || !RT->isStructureOrClassType()) { 5368 CoerceToIntArgs(TySize, ArgList); 5369 return llvm::StructType::get(getVMContext(), ArgList); 5370 } 5371 5372 const RecordDecl *RD = RT->getDecl(); 5373 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 5374 assert(!(TySize % 8) && "Size of structure must be multiple of 8."); 5375 5376 uint64_t LastOffset = 0; 5377 unsigned idx = 0; 5378 llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64); 5379 5380 // Iterate over fields in the struct/class and check if there are any aligned 5381 // double fields. 5382 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 5383 i != e; ++i, ++idx) { 5384 const QualType Ty = i->getType(); 5385 const BuiltinType *BT = Ty->getAs<BuiltinType>(); 5386 5387 if (!BT || BT->getKind() != BuiltinType::Double) 5388 continue; 5389 5390 uint64_t Offset = Layout.getFieldOffset(idx); 5391 if (Offset % 64) // Ignore doubles that are not aligned. 5392 continue; 5393 5394 // Add ((Offset - LastOffset) / 64) args of type i64. 5395 for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j) 5396 ArgList.push_back(I64); 5397 5398 // Add double type. 5399 ArgList.push_back(llvm::Type::getDoubleTy(getVMContext())); 5400 LastOffset = Offset + 64; 5401 } 5402 5403 CoerceToIntArgs(TySize - LastOffset, IntArgList); 5404 ArgList.append(IntArgList.begin(), IntArgList.end()); 5405 5406 return llvm::StructType::get(getVMContext(), ArgList); 5407 } 5408 5409 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset, 5410 uint64_t Offset) const { 5411 if (OrigOffset + MinABIStackAlignInBytes > Offset) 5412 return 0; 5413 5414 return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8); 5415 } 5416 5417 ABIArgInfo 5418 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const { 5419 uint64_t OrigOffset = Offset; 5420 uint64_t TySize = getContext().getTypeSize(Ty); 5421 uint64_t Align = getContext().getTypeAlign(Ty) / 8; 5422 5423 Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes), 5424 (uint64_t)StackAlignInBytes); 5425 unsigned CurrOffset = llvm::RoundUpToAlignment(Offset, Align); 5426 Offset = CurrOffset + llvm::RoundUpToAlignment(TySize, Align * 8) / 8; 5427 5428 if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) { 5429 // Ignore empty aggregates. 5430 if (TySize == 0) 5431 return ABIArgInfo::getIgnore(); 5432 5433 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 5434 Offset = OrigOffset + MinABIStackAlignInBytes; 5435 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 5436 } 5437 5438 // If we have reached here, aggregates are passed directly by coercing to 5439 // another structure type. Padding is inserted if the offset of the 5440 // aggregate is unaligned. 5441 return ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0, 5442 getPaddingType(OrigOffset, CurrOffset)); 5443 } 5444 5445 // Treat an enum type as its underlying type. 5446 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5447 Ty = EnumTy->getDecl()->getIntegerType(); 5448 5449 if (Ty->isPromotableIntegerType()) 5450 return ABIArgInfo::getExtend(); 5451 5452 return ABIArgInfo::getDirect( 5453 0, 0, IsO32 ? 0 : getPaddingType(OrigOffset, CurrOffset)); 5454 } 5455 5456 llvm::Type* 5457 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const { 5458 const RecordType *RT = RetTy->getAs<RecordType>(); 5459 SmallVector<llvm::Type*, 8> RTList; 5460 5461 if (RT && RT->isStructureOrClassType()) { 5462 const RecordDecl *RD = RT->getDecl(); 5463 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 5464 unsigned FieldCnt = Layout.getFieldCount(); 5465 5466 // N32/64 returns struct/classes in floating point registers if the 5467 // following conditions are met: 5468 // 1. The size of the struct/class is no larger than 128-bit. 5469 // 2. The struct/class has one or two fields all of which are floating 5470 // point types. 5471 // 3. The offset of the first field is zero (this follows what gcc does). 5472 // 5473 // Any other composite results are returned in integer registers. 5474 // 5475 if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) { 5476 RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end(); 5477 for (; b != e; ++b) { 5478 const BuiltinType *BT = b->getType()->getAs<BuiltinType>(); 5479 5480 if (!BT || !BT->isFloatingPoint()) 5481 break; 5482 5483 RTList.push_back(CGT.ConvertType(b->getType())); 5484 } 5485 5486 if (b == e) 5487 return llvm::StructType::get(getVMContext(), RTList, 5488 RD->hasAttr<PackedAttr>()); 5489 5490 RTList.clear(); 5491 } 5492 } 5493 5494 CoerceToIntArgs(Size, RTList); 5495 return llvm::StructType::get(getVMContext(), RTList); 5496 } 5497 5498 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const { 5499 uint64_t Size = getContext().getTypeSize(RetTy); 5500 5501 if (RetTy->isVoidType() || Size == 0) 5502 return ABIArgInfo::getIgnore(); 5503 5504 if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) { 5505 if (isRecordReturnIndirect(RetTy, getCXXABI())) 5506 return ABIArgInfo::getIndirect(0); 5507 5508 if (Size <= 128) { 5509 if (RetTy->isAnyComplexType()) 5510 return ABIArgInfo::getDirect(); 5511 5512 // O32 returns integer vectors in registers. 5513 if (IsO32 && RetTy->isVectorType() && !RetTy->hasFloatingRepresentation()) 5514 return ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size)); 5515 5516 if (!IsO32) 5517 return ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size)); 5518 } 5519 5520 return ABIArgInfo::getIndirect(0); 5521 } 5522 5523 // Treat an enum type as its underlying type. 5524 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5525 RetTy = EnumTy->getDecl()->getIntegerType(); 5526 5527 return (RetTy->isPromotableIntegerType() ? 5528 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 5529 } 5530 5531 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const { 5532 ABIArgInfo &RetInfo = FI.getReturnInfo(); 5533 RetInfo = classifyReturnType(FI.getReturnType()); 5534 5535 // Check if a pointer to an aggregate is passed as a hidden argument. 5536 uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0; 5537 5538 for (auto &I : FI.arguments()) 5539 I.info = classifyArgumentType(I.type, Offset); 5540 } 5541 5542 llvm::Value* MipsABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5543 CodeGenFunction &CGF) const { 5544 llvm::Type *BP = CGF.Int8PtrTy; 5545 llvm::Type *BPP = CGF.Int8PtrPtrTy; 5546 5547 CGBuilderTy &Builder = CGF.Builder; 5548 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); 5549 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 5550 int64_t TypeAlign = getContext().getTypeAlign(Ty) / 8; 5551 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 5552 llvm::Value *AddrTyped; 5553 unsigned PtrWidth = getTarget().getPointerWidth(0); 5554 llvm::IntegerType *IntTy = (PtrWidth == 32) ? CGF.Int32Ty : CGF.Int64Ty; 5555 5556 if (TypeAlign > MinABIStackAlignInBytes) { 5557 llvm::Value *AddrAsInt = CGF.Builder.CreatePtrToInt(Addr, IntTy); 5558 llvm::Value *Inc = llvm::ConstantInt::get(IntTy, TypeAlign - 1); 5559 llvm::Value *Mask = llvm::ConstantInt::get(IntTy, -TypeAlign); 5560 llvm::Value *Add = CGF.Builder.CreateAdd(AddrAsInt, Inc); 5561 llvm::Value *And = CGF.Builder.CreateAnd(Add, Mask); 5562 AddrTyped = CGF.Builder.CreateIntToPtr(And, PTy); 5563 } 5564 else 5565 AddrTyped = Builder.CreateBitCast(Addr, PTy); 5566 5567 llvm::Value *AlignedAddr = Builder.CreateBitCast(AddrTyped, BP); 5568 TypeAlign = std::max((unsigned)TypeAlign, MinABIStackAlignInBytes); 5569 uint64_t Offset = 5570 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, TypeAlign); 5571 llvm::Value *NextAddr = 5572 Builder.CreateGEP(AlignedAddr, llvm::ConstantInt::get(IntTy, Offset), 5573 "ap.next"); 5574 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 5575 5576 return AddrTyped; 5577 } 5578 5579 bool 5580 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5581 llvm::Value *Address) const { 5582 // This information comes from gcc's implementation, which seems to 5583 // as canonical as it gets. 5584 5585 // Everything on MIPS is 4 bytes. Double-precision FP registers 5586 // are aliased to pairs of single-precision FP registers. 5587 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 5588 5589 // 0-31 are the general purpose registers, $0 - $31. 5590 // 32-63 are the floating-point registers, $f0 - $f31. 5591 // 64 and 65 are the multiply/divide registers, $hi and $lo. 5592 // 66 is the (notional, I think) register for signal-handler return. 5593 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65); 5594 5595 // 67-74 are the floating-point status registers, $fcc0 - $fcc7. 5596 // They are one bit wide and ignored here. 5597 5598 // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31. 5599 // (coprocessor 1 is the FP unit) 5600 // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31. 5601 // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31. 5602 // 176-181 are the DSP accumulator registers. 5603 AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181); 5604 return false; 5605 } 5606 5607 //===----------------------------------------------------------------------===// 5608 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults. 5609 // Currently subclassed only to implement custom OpenCL C function attribute 5610 // handling. 5611 //===----------------------------------------------------------------------===// 5612 5613 namespace { 5614 5615 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo { 5616 public: 5617 TCETargetCodeGenInfo(CodeGenTypes &CGT) 5618 : DefaultTargetCodeGenInfo(CGT) {} 5619 5620 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5621 CodeGen::CodeGenModule &M) const override; 5622 }; 5623 5624 void TCETargetCodeGenInfo::SetTargetAttributes(const Decl *D, 5625 llvm::GlobalValue *GV, 5626 CodeGen::CodeGenModule &M) const { 5627 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); 5628 if (!FD) return; 5629 5630 llvm::Function *F = cast<llvm::Function>(GV); 5631 5632 if (M.getLangOpts().OpenCL) { 5633 if (FD->hasAttr<OpenCLKernelAttr>()) { 5634 // OpenCL C Kernel functions are not subject to inlining 5635 F->addFnAttr(llvm::Attribute::NoInline); 5636 const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>(); 5637 if (Attr) { 5638 // Convert the reqd_work_group_size() attributes to metadata. 5639 llvm::LLVMContext &Context = F->getContext(); 5640 llvm::NamedMDNode *OpenCLMetadata = 5641 M.getModule().getOrInsertNamedMetadata("opencl.kernel_wg_size_info"); 5642 5643 SmallVector<llvm::Value*, 5> Operands; 5644 Operands.push_back(F); 5645 5646 Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty, 5647 llvm::APInt(32, Attr->getXDim()))); 5648 Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty, 5649 llvm::APInt(32, Attr->getYDim()))); 5650 Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty, 5651 llvm::APInt(32, Attr->getZDim()))); 5652 5653 // Add a boolean constant operand for "required" (true) or "hint" (false) 5654 // for implementing the work_group_size_hint attr later. Currently 5655 // always true as the hint is not yet implemented. 5656 Operands.push_back(llvm::ConstantInt::getTrue(Context)); 5657 OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands)); 5658 } 5659 } 5660 } 5661 } 5662 5663 } 5664 5665 //===----------------------------------------------------------------------===// 5666 // Hexagon ABI Implementation 5667 //===----------------------------------------------------------------------===// 5668 5669 namespace { 5670 5671 class HexagonABIInfo : public ABIInfo { 5672 5673 5674 public: 5675 HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 5676 5677 private: 5678 5679 ABIArgInfo classifyReturnType(QualType RetTy) const; 5680 ABIArgInfo classifyArgumentType(QualType RetTy) const; 5681 5682 void computeInfo(CGFunctionInfo &FI) const override; 5683 5684 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5685 CodeGenFunction &CGF) const override; 5686 }; 5687 5688 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo { 5689 public: 5690 HexagonTargetCodeGenInfo(CodeGenTypes &CGT) 5691 :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {} 5692 5693 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 5694 return 29; 5695 } 5696 }; 5697 5698 } 5699 5700 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const { 5701 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 5702 for (auto &I : FI.arguments()) 5703 I.info = classifyArgumentType(I.type); 5704 } 5705 5706 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const { 5707 if (!isAggregateTypeForABI(Ty)) { 5708 // Treat an enum type as its underlying type. 5709 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5710 Ty = EnumTy->getDecl()->getIntegerType(); 5711 5712 return (Ty->isPromotableIntegerType() ? 5713 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 5714 } 5715 5716 // Ignore empty records. 5717 if (isEmptyRecord(getContext(), Ty, true)) 5718 return ABIArgInfo::getIgnore(); 5719 5720 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 5721 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 5722 5723 uint64_t Size = getContext().getTypeSize(Ty); 5724 if (Size > 64) 5725 return ABIArgInfo::getIndirect(0, /*ByVal=*/true); 5726 // Pass in the smallest viable integer type. 5727 else if (Size > 32) 5728 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); 5729 else if (Size > 16) 5730 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 5731 else if (Size > 8) 5732 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 5733 else 5734 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 5735 } 5736 5737 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const { 5738 if (RetTy->isVoidType()) 5739 return ABIArgInfo::getIgnore(); 5740 5741 // Large vector types should be returned via memory. 5742 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64) 5743 return ABIArgInfo::getIndirect(0); 5744 5745 if (!isAggregateTypeForABI(RetTy)) { 5746 // Treat an enum type as its underlying type. 5747 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5748 RetTy = EnumTy->getDecl()->getIntegerType(); 5749 5750 return (RetTy->isPromotableIntegerType() ? 5751 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 5752 } 5753 5754 // Structures with either a non-trivial destructor or a non-trivial 5755 // copy constructor are always indirect. 5756 if (isRecordReturnIndirect(RetTy, getCXXABI())) 5757 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 5758 5759 if (isEmptyRecord(getContext(), RetTy, true)) 5760 return ABIArgInfo::getIgnore(); 5761 5762 // Aggregates <= 8 bytes are returned in r0; other aggregates 5763 // are returned indirectly. 5764 uint64_t Size = getContext().getTypeSize(RetTy); 5765 if (Size <= 64) { 5766 // Return in the smallest viable integer type. 5767 if (Size <= 8) 5768 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 5769 if (Size <= 16) 5770 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 5771 if (Size <= 32) 5772 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 5773 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); 5774 } 5775 5776 return ABIArgInfo::getIndirect(0, /*ByVal=*/true); 5777 } 5778 5779 llvm::Value *HexagonABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5780 CodeGenFunction &CGF) const { 5781 // FIXME: Need to handle alignment 5782 llvm::Type *BPP = CGF.Int8PtrPtrTy; 5783 5784 CGBuilderTy &Builder = CGF.Builder; 5785 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, 5786 "ap"); 5787 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 5788 llvm::Type *PTy = 5789 llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 5790 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); 5791 5792 uint64_t Offset = 5793 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4); 5794 llvm::Value *NextAddr = 5795 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), 5796 "ap.next"); 5797 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 5798 5799 return AddrTyped; 5800 } 5801 5802 5803 //===----------------------------------------------------------------------===// 5804 // SPARC v9 ABI Implementation. 5805 // Based on the SPARC Compliance Definition version 2.4.1. 5806 // 5807 // Function arguments a mapped to a nominal "parameter array" and promoted to 5808 // registers depending on their type. Each argument occupies 8 or 16 bytes in 5809 // the array, structs larger than 16 bytes are passed indirectly. 5810 // 5811 // One case requires special care: 5812 // 5813 // struct mixed { 5814 // int i; 5815 // float f; 5816 // }; 5817 // 5818 // When a struct mixed is passed by value, it only occupies 8 bytes in the 5819 // parameter array, but the int is passed in an integer register, and the float 5820 // is passed in a floating point register. This is represented as two arguments 5821 // with the LLVM IR inreg attribute: 5822 // 5823 // declare void f(i32 inreg %i, float inreg %f) 5824 // 5825 // The code generator will only allocate 4 bytes from the parameter array for 5826 // the inreg arguments. All other arguments are allocated a multiple of 8 5827 // bytes. 5828 // 5829 namespace { 5830 class SparcV9ABIInfo : public ABIInfo { 5831 public: 5832 SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 5833 5834 private: 5835 ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const; 5836 void computeInfo(CGFunctionInfo &FI) const override; 5837 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5838 CodeGenFunction &CGF) const override; 5839 5840 // Coercion type builder for structs passed in registers. The coercion type 5841 // serves two purposes: 5842 // 5843 // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned' 5844 // in registers. 5845 // 2. Expose aligned floating point elements as first-level elements, so the 5846 // code generator knows to pass them in floating point registers. 5847 // 5848 // We also compute the InReg flag which indicates that the struct contains 5849 // aligned 32-bit floats. 5850 // 5851 struct CoerceBuilder { 5852 llvm::LLVMContext &Context; 5853 const llvm::DataLayout &DL; 5854 SmallVector<llvm::Type*, 8> Elems; 5855 uint64_t Size; 5856 bool InReg; 5857 5858 CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl) 5859 : Context(c), DL(dl), Size(0), InReg(false) {} 5860 5861 // Pad Elems with integers until Size is ToSize. 5862 void pad(uint64_t ToSize) { 5863 assert(ToSize >= Size && "Cannot remove elements"); 5864 if (ToSize == Size) 5865 return; 5866 5867 // Finish the current 64-bit word. 5868 uint64_t Aligned = llvm::RoundUpToAlignment(Size, 64); 5869 if (Aligned > Size && Aligned <= ToSize) { 5870 Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size)); 5871 Size = Aligned; 5872 } 5873 5874 // Add whole 64-bit words. 5875 while (Size + 64 <= ToSize) { 5876 Elems.push_back(llvm::Type::getInt64Ty(Context)); 5877 Size += 64; 5878 } 5879 5880 // Final in-word padding. 5881 if (Size < ToSize) { 5882 Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size)); 5883 Size = ToSize; 5884 } 5885 } 5886 5887 // Add a floating point element at Offset. 5888 void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) { 5889 // Unaligned floats are treated as integers. 5890 if (Offset % Bits) 5891 return; 5892 // The InReg flag is only required if there are any floats < 64 bits. 5893 if (Bits < 64) 5894 InReg = true; 5895 pad(Offset); 5896 Elems.push_back(Ty); 5897 Size = Offset + Bits; 5898 } 5899 5900 // Add a struct type to the coercion type, starting at Offset (in bits). 5901 void addStruct(uint64_t Offset, llvm::StructType *StrTy) { 5902 const llvm::StructLayout *Layout = DL.getStructLayout(StrTy); 5903 for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) { 5904 llvm::Type *ElemTy = StrTy->getElementType(i); 5905 uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i); 5906 switch (ElemTy->getTypeID()) { 5907 case llvm::Type::StructTyID: 5908 addStruct(ElemOffset, cast<llvm::StructType>(ElemTy)); 5909 break; 5910 case llvm::Type::FloatTyID: 5911 addFloat(ElemOffset, ElemTy, 32); 5912 break; 5913 case llvm::Type::DoubleTyID: 5914 addFloat(ElemOffset, ElemTy, 64); 5915 break; 5916 case llvm::Type::FP128TyID: 5917 addFloat(ElemOffset, ElemTy, 128); 5918 break; 5919 case llvm::Type::PointerTyID: 5920 if (ElemOffset % 64 == 0) { 5921 pad(ElemOffset); 5922 Elems.push_back(ElemTy); 5923 Size += 64; 5924 } 5925 break; 5926 default: 5927 break; 5928 } 5929 } 5930 } 5931 5932 // Check if Ty is a usable substitute for the coercion type. 5933 bool isUsableType(llvm::StructType *Ty) const { 5934 if (Ty->getNumElements() != Elems.size()) 5935 return false; 5936 for (unsigned i = 0, e = Elems.size(); i != e; ++i) 5937 if (Elems[i] != Ty->getElementType(i)) 5938 return false; 5939 return true; 5940 } 5941 5942 // Get the coercion type as a literal struct type. 5943 llvm::Type *getType() const { 5944 if (Elems.size() == 1) 5945 return Elems.front(); 5946 else 5947 return llvm::StructType::get(Context, Elems); 5948 } 5949 }; 5950 }; 5951 } // end anonymous namespace 5952 5953 ABIArgInfo 5954 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const { 5955 if (Ty->isVoidType()) 5956 return ABIArgInfo::getIgnore(); 5957 5958 uint64_t Size = getContext().getTypeSize(Ty); 5959 5960 // Anything too big to fit in registers is passed with an explicit indirect 5961 // pointer / sret pointer. 5962 if (Size > SizeLimit) 5963 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 5964 5965 // Treat an enum type as its underlying type. 5966 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5967 Ty = EnumTy->getDecl()->getIntegerType(); 5968 5969 // Integer types smaller than a register are extended. 5970 if (Size < 64 && Ty->isIntegerType()) 5971 return ABIArgInfo::getExtend(); 5972 5973 // Other non-aggregates go in registers. 5974 if (!isAggregateTypeForABI(Ty)) 5975 return ABIArgInfo::getDirect(); 5976 5977 // If a C++ object has either a non-trivial copy constructor or a non-trivial 5978 // destructor, it is passed with an explicit indirect pointer / sret pointer. 5979 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 5980 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 5981 5982 // This is a small aggregate type that should be passed in registers. 5983 // Build a coercion type from the LLVM struct type. 5984 llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty)); 5985 if (!StrTy) 5986 return ABIArgInfo::getDirect(); 5987 5988 CoerceBuilder CB(getVMContext(), getDataLayout()); 5989 CB.addStruct(0, StrTy); 5990 CB.pad(llvm::RoundUpToAlignment(CB.DL.getTypeSizeInBits(StrTy), 64)); 5991 5992 // Try to use the original type for coercion. 5993 llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType(); 5994 5995 if (CB.InReg) 5996 return ABIArgInfo::getDirectInReg(CoerceTy); 5997 else 5998 return ABIArgInfo::getDirect(CoerceTy); 5999 } 6000 6001 llvm::Value *SparcV9ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 6002 CodeGenFunction &CGF) const { 6003 ABIArgInfo AI = classifyType(Ty, 16 * 8); 6004 llvm::Type *ArgTy = CGT.ConvertType(Ty); 6005 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 6006 AI.setCoerceToType(ArgTy); 6007 6008 llvm::Type *BPP = CGF.Int8PtrPtrTy; 6009 CGBuilderTy &Builder = CGF.Builder; 6010 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); 6011 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 6012 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 6013 llvm::Value *ArgAddr; 6014 unsigned Stride; 6015 6016 switch (AI.getKind()) { 6017 case ABIArgInfo::Expand: 6018 case ABIArgInfo::InAlloca: 6019 llvm_unreachable("Unsupported ABI kind for va_arg"); 6020 6021 case ABIArgInfo::Extend: 6022 Stride = 8; 6023 ArgAddr = Builder 6024 .CreateConstGEP1_32(Addr, 8 - getDataLayout().getTypeAllocSize(ArgTy), 6025 "extend"); 6026 break; 6027 6028 case ABIArgInfo::Direct: 6029 Stride = getDataLayout().getTypeAllocSize(AI.getCoerceToType()); 6030 ArgAddr = Addr; 6031 break; 6032 6033 case ABIArgInfo::Indirect: 6034 Stride = 8; 6035 ArgAddr = Builder.CreateBitCast(Addr, 6036 llvm::PointerType::getUnqual(ArgPtrTy), 6037 "indirect"); 6038 ArgAddr = Builder.CreateLoad(ArgAddr, "indirect.arg"); 6039 break; 6040 6041 case ABIArgInfo::Ignore: 6042 return llvm::UndefValue::get(ArgPtrTy); 6043 } 6044 6045 // Update VAList. 6046 Addr = Builder.CreateConstGEP1_32(Addr, Stride, "ap.next"); 6047 Builder.CreateStore(Addr, VAListAddrAsBPP); 6048 6049 return Builder.CreatePointerCast(ArgAddr, ArgPtrTy, "arg.addr"); 6050 } 6051 6052 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const { 6053 FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8); 6054 for (auto &I : FI.arguments()) 6055 I.info = classifyType(I.type, 16 * 8); 6056 } 6057 6058 namespace { 6059 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo { 6060 public: 6061 SparcV9TargetCodeGenInfo(CodeGenTypes &CGT) 6062 : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {} 6063 6064 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 6065 return 14; 6066 } 6067 6068 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 6069 llvm::Value *Address) const override; 6070 }; 6071 } // end anonymous namespace 6072 6073 bool 6074 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 6075 llvm::Value *Address) const { 6076 // This is calculated from the LLVM and GCC tables and verified 6077 // against gcc output. AFAIK all ABIs use the same encoding. 6078 6079 CodeGen::CGBuilderTy &Builder = CGF.Builder; 6080 6081 llvm::IntegerType *i8 = CGF.Int8Ty; 6082 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 6083 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 6084 6085 // 0-31: the 8-byte general-purpose registers 6086 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 6087 6088 // 32-63: f0-31, the 4-byte floating-point registers 6089 AssignToArrayRange(Builder, Address, Four8, 32, 63); 6090 6091 // Y = 64 6092 // PSR = 65 6093 // WIM = 66 6094 // TBR = 67 6095 // PC = 68 6096 // NPC = 69 6097 // FSR = 70 6098 // CSR = 71 6099 AssignToArrayRange(Builder, Address, Eight8, 64, 71); 6100 6101 // 72-87: d0-15, the 8-byte floating-point registers 6102 AssignToArrayRange(Builder, Address, Eight8, 72, 87); 6103 6104 return false; 6105 } 6106 6107 6108 //===----------------------------------------------------------------------===// 6109 // XCore ABI Implementation 6110 //===----------------------------------------------------------------------===// 6111 6112 namespace { 6113 6114 /// A SmallStringEnc instance is used to build up the TypeString by passing 6115 /// it by reference between functions that append to it. 6116 typedef llvm::SmallString<128> SmallStringEnc; 6117 6118 /// TypeStringCache caches the meta encodings of Types. 6119 /// 6120 /// The reason for caching TypeStrings is two fold: 6121 /// 1. To cache a type's encoding for later uses; 6122 /// 2. As a means to break recursive member type inclusion. 6123 /// 6124 /// A cache Entry can have a Status of: 6125 /// NonRecursive: The type encoding is not recursive; 6126 /// Recursive: The type encoding is recursive; 6127 /// Incomplete: An incomplete TypeString; 6128 /// IncompleteUsed: An incomplete TypeString that has been used in a 6129 /// Recursive type encoding. 6130 /// 6131 /// A NonRecursive entry will have all of its sub-members expanded as fully 6132 /// as possible. Whilst it may contain types which are recursive, the type 6133 /// itself is not recursive and thus its encoding may be safely used whenever 6134 /// the type is encountered. 6135 /// 6136 /// A Recursive entry will have all of its sub-members expanded as fully as 6137 /// possible. The type itself is recursive and it may contain other types which 6138 /// are recursive. The Recursive encoding must not be used during the expansion 6139 /// of a recursive type's recursive branch. For simplicity the code uses 6140 /// IncompleteCount to reject all usage of Recursive encodings for member types. 6141 /// 6142 /// An Incomplete entry is always a RecordType and only encodes its 6143 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and 6144 /// are placed into the cache during type expansion as a means to identify and 6145 /// handle recursive inclusion of types as sub-members. If there is recursion 6146 /// the entry becomes IncompleteUsed. 6147 /// 6148 /// During the expansion of a RecordType's members: 6149 /// 6150 /// If the cache contains a NonRecursive encoding for the member type, the 6151 /// cached encoding is used; 6152 /// 6153 /// If the cache contains a Recursive encoding for the member type, the 6154 /// cached encoding is 'Swapped' out, as it may be incorrect, and... 6155 /// 6156 /// If the member is a RecordType, an Incomplete encoding is placed into the 6157 /// cache to break potential recursive inclusion of itself as a sub-member; 6158 /// 6159 /// Once a member RecordType has been expanded, its temporary incomplete 6160 /// entry is removed from the cache. If a Recursive encoding was swapped out 6161 /// it is swapped back in; 6162 /// 6163 /// If an incomplete entry is used to expand a sub-member, the incomplete 6164 /// entry is marked as IncompleteUsed. The cache keeps count of how many 6165 /// IncompleteUsed entries it currently contains in IncompleteUsedCount; 6166 /// 6167 /// If a member's encoding is found to be a NonRecursive or Recursive viz: 6168 /// IncompleteUsedCount==0, the member's encoding is added to the cache. 6169 /// Else the member is part of a recursive type and thus the recursion has 6170 /// been exited too soon for the encoding to be correct for the member. 6171 /// 6172 class TypeStringCache { 6173 enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed}; 6174 struct Entry { 6175 std::string Str; // The encoded TypeString for the type. 6176 enum Status State; // Information about the encoding in 'Str'. 6177 std::string Swapped; // A temporary place holder for a Recursive encoding 6178 // during the expansion of RecordType's members. 6179 }; 6180 std::map<const IdentifierInfo *, struct Entry> Map; 6181 unsigned IncompleteCount; // Number of Incomplete entries in the Map. 6182 unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map. 6183 public: 6184 void addIncomplete(const IdentifierInfo *ID, std::string StubEnc); 6185 bool removeIncomplete(const IdentifierInfo *ID); 6186 void addIfComplete(const IdentifierInfo *ID, StringRef Str, 6187 bool IsRecursive); 6188 StringRef lookupStr(const IdentifierInfo *ID); 6189 }; 6190 6191 /// TypeString encodings for union fields must be order. 6192 /// FieldEncoding is a helper for this ordering process. 6193 class FieldEncoding { 6194 bool HasName; 6195 std::string Enc; 6196 public: 6197 FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {}; 6198 StringRef str() {return Enc.c_str();}; 6199 bool operator<(const FieldEncoding &rhs) const { 6200 if (HasName != rhs.HasName) return HasName; 6201 return Enc < rhs.Enc; 6202 } 6203 }; 6204 6205 class XCoreABIInfo : public DefaultABIInfo { 6206 public: 6207 XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 6208 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 6209 CodeGenFunction &CGF) const override; 6210 }; 6211 6212 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo { 6213 mutable TypeStringCache TSC; 6214 public: 6215 XCoreTargetCodeGenInfo(CodeGenTypes &CGT) 6216 :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {} 6217 virtual void emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 6218 CodeGen::CodeGenModule &M) const; 6219 }; 6220 6221 } // End anonymous namespace. 6222 6223 llvm::Value *XCoreABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 6224 CodeGenFunction &CGF) const { 6225 CGBuilderTy &Builder = CGF.Builder; 6226 6227 // Get the VAList. 6228 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, 6229 CGF.Int8PtrPtrTy); 6230 llvm::Value *AP = Builder.CreateLoad(VAListAddrAsBPP); 6231 6232 // Handle the argument. 6233 ABIArgInfo AI = classifyArgumentType(Ty); 6234 llvm::Type *ArgTy = CGT.ConvertType(Ty); 6235 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 6236 AI.setCoerceToType(ArgTy); 6237 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 6238 llvm::Value *Val; 6239 uint64_t ArgSize = 0; 6240 switch (AI.getKind()) { 6241 case ABIArgInfo::Expand: 6242 case ABIArgInfo::InAlloca: 6243 llvm_unreachable("Unsupported ABI kind for va_arg"); 6244 case ABIArgInfo::Ignore: 6245 Val = llvm::UndefValue::get(ArgPtrTy); 6246 ArgSize = 0; 6247 break; 6248 case ABIArgInfo::Extend: 6249 case ABIArgInfo::Direct: 6250 Val = Builder.CreatePointerCast(AP, ArgPtrTy); 6251 ArgSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType()); 6252 if (ArgSize < 4) 6253 ArgSize = 4; 6254 break; 6255 case ABIArgInfo::Indirect: 6256 llvm::Value *ArgAddr; 6257 ArgAddr = Builder.CreateBitCast(AP, llvm::PointerType::getUnqual(ArgPtrTy)); 6258 ArgAddr = Builder.CreateLoad(ArgAddr); 6259 Val = Builder.CreatePointerCast(ArgAddr, ArgPtrTy); 6260 ArgSize = 4; 6261 break; 6262 } 6263 6264 // Increment the VAList. 6265 if (ArgSize) { 6266 llvm::Value *APN = Builder.CreateConstGEP1_32(AP, ArgSize); 6267 Builder.CreateStore(APN, VAListAddrAsBPP); 6268 } 6269 return Val; 6270 } 6271 6272 /// During the expansion of a RecordType, an incomplete TypeString is placed 6273 /// into the cache as a means to identify and break recursion. 6274 /// If there is a Recursive encoding in the cache, it is swapped out and will 6275 /// be reinserted by removeIncomplete(). 6276 /// All other types of encoding should have been used rather than arriving here. 6277 void TypeStringCache::addIncomplete(const IdentifierInfo *ID, 6278 std::string StubEnc) { 6279 if (!ID) 6280 return; 6281 Entry &E = Map[ID]; 6282 assert( (E.Str.empty() || E.State == Recursive) && 6283 "Incorrectly use of addIncomplete"); 6284 assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()"); 6285 E.Swapped.swap(E.Str); // swap out the Recursive 6286 E.Str.swap(StubEnc); 6287 E.State = Incomplete; 6288 ++IncompleteCount; 6289 } 6290 6291 /// Once the RecordType has been expanded, the temporary incomplete TypeString 6292 /// must be removed from the cache. 6293 /// If a Recursive was swapped out by addIncomplete(), it will be replaced. 6294 /// Returns true if the RecordType was defined recursively. 6295 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) { 6296 if (!ID) 6297 return false; 6298 auto I = Map.find(ID); 6299 assert(I != Map.end() && "Entry not present"); 6300 Entry &E = I->second; 6301 assert( (E.State == Incomplete || 6302 E.State == IncompleteUsed) && 6303 "Entry must be an incomplete type"); 6304 bool IsRecursive = false; 6305 if (E.State == IncompleteUsed) { 6306 // We made use of our Incomplete encoding, thus we are recursive. 6307 IsRecursive = true; 6308 --IncompleteUsedCount; 6309 } 6310 if (E.Swapped.empty()) 6311 Map.erase(I); 6312 else { 6313 // Swap the Recursive back. 6314 E.Swapped.swap(E.Str); 6315 E.Swapped.clear(); 6316 E.State = Recursive; 6317 } 6318 --IncompleteCount; 6319 return IsRecursive; 6320 } 6321 6322 /// Add the encoded TypeString to the cache only if it is NonRecursive or 6323 /// Recursive (viz: all sub-members were expanded as fully as possible). 6324 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str, 6325 bool IsRecursive) { 6326 if (!ID || IncompleteUsedCount) 6327 return; // No key or it is is an incomplete sub-type so don't add. 6328 Entry &E = Map[ID]; 6329 if (IsRecursive && !E.Str.empty()) { 6330 assert(E.State==Recursive && E.Str.size() == Str.size() && 6331 "This is not the same Recursive entry"); 6332 // The parent container was not recursive after all, so we could have used 6333 // this Recursive sub-member entry after all, but we assumed the worse when 6334 // we started viz: IncompleteCount!=0. 6335 return; 6336 } 6337 assert(E.Str.empty() && "Entry already present"); 6338 E.Str = Str.str(); 6339 E.State = IsRecursive? Recursive : NonRecursive; 6340 } 6341 6342 /// Return a cached TypeString encoding for the ID. If there isn't one, or we 6343 /// are recursively expanding a type (IncompleteCount != 0) and the cached 6344 /// encoding is Recursive, return an empty StringRef. 6345 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) { 6346 if (!ID) 6347 return StringRef(); // We have no key. 6348 auto I = Map.find(ID); 6349 if (I == Map.end()) 6350 return StringRef(); // We have no encoding. 6351 Entry &E = I->second; 6352 if (E.State == Recursive && IncompleteCount) 6353 return StringRef(); // We don't use Recursive encodings for member types. 6354 6355 if (E.State == Incomplete) { 6356 // The incomplete type is being used to break out of recursion. 6357 E.State = IncompleteUsed; 6358 ++IncompleteUsedCount; 6359 } 6360 return E.Str.c_str(); 6361 } 6362 6363 /// The XCore ABI includes a type information section that communicates symbol 6364 /// type information to the linker. The linker uses this information to verify 6365 /// safety/correctness of things such as array bound and pointers et al. 6366 /// The ABI only requires C (and XC) language modules to emit TypeStrings. 6367 /// This type information (TypeString) is emitted into meta data for all global 6368 /// symbols: definitions, declarations, functions & variables. 6369 /// 6370 /// The TypeString carries type, qualifier, name, size & value details. 6371 /// Please see 'Tools Development Guide' section 2.16.2 for format details: 6372 /// <https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf> 6373 /// The output is tested by test/CodeGen/xcore-stringtype.c. 6374 /// 6375 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 6376 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC); 6377 6378 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols. 6379 void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 6380 CodeGen::CodeGenModule &CGM) const { 6381 SmallStringEnc Enc; 6382 if (getTypeString(Enc, D, CGM, TSC)) { 6383 llvm::LLVMContext &Ctx = CGM.getModule().getContext(); 6384 llvm::SmallVector<llvm::Value *, 2> MDVals; 6385 MDVals.push_back(GV); 6386 MDVals.push_back(llvm::MDString::get(Ctx, Enc.str())); 6387 llvm::NamedMDNode *MD = 6388 CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings"); 6389 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 6390 } 6391 } 6392 6393 static bool appendType(SmallStringEnc &Enc, QualType QType, 6394 const CodeGen::CodeGenModule &CGM, 6395 TypeStringCache &TSC); 6396 6397 /// Helper function for appendRecordType(). 6398 /// Builds a SmallVector containing the encoded field types in declaration order. 6399 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE, 6400 const RecordDecl *RD, 6401 const CodeGen::CodeGenModule &CGM, 6402 TypeStringCache &TSC) { 6403 for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end(); 6404 I != E; ++I) { 6405 SmallStringEnc Enc; 6406 Enc += "m("; 6407 Enc += I->getName(); 6408 Enc += "){"; 6409 if (I->isBitField()) { 6410 Enc += "b("; 6411 llvm::raw_svector_ostream OS(Enc); 6412 OS.resync(); 6413 OS << I->getBitWidthValue(CGM.getContext()); 6414 OS.flush(); 6415 Enc += ':'; 6416 } 6417 if (!appendType(Enc, I->getType(), CGM, TSC)) 6418 return false; 6419 if (I->isBitField()) 6420 Enc += ')'; 6421 Enc += '}'; 6422 FE.push_back(FieldEncoding(!I->getName().empty(), Enc)); 6423 } 6424 return true; 6425 } 6426 6427 /// Appends structure and union types to Enc and adds encoding to cache. 6428 /// Recursively calls appendType (via extractFieldType) for each field. 6429 /// Union types have their fields ordered according to the ABI. 6430 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT, 6431 const CodeGen::CodeGenModule &CGM, 6432 TypeStringCache &TSC, const IdentifierInfo *ID) { 6433 // Append the cached TypeString if we have one. 6434 StringRef TypeString = TSC.lookupStr(ID); 6435 if (!TypeString.empty()) { 6436 Enc += TypeString; 6437 return true; 6438 } 6439 6440 // Start to emit an incomplete TypeString. 6441 size_t Start = Enc.size(); 6442 Enc += (RT->isUnionType()? 'u' : 's'); 6443 Enc += '('; 6444 if (ID) 6445 Enc += ID->getName(); 6446 Enc += "){"; 6447 6448 // We collect all encoded fields and order as necessary. 6449 bool IsRecursive = false; 6450 SmallVector<FieldEncoding, 16> FE; 6451 const RecordDecl *RD = RT->getDecl()->getDefinition(); 6452 if (RD && !RD->field_empty()) { 6453 // An incomplete TypeString stub is placed in the cache for this RecordType 6454 // so that recursive calls to this RecordType will use it whilst building a 6455 // complete TypeString for this RecordType. 6456 std::string StubEnc(Enc.substr(Start).str()); 6457 StubEnc += '}'; // StubEnc now holds a valid incomplete TypeString. 6458 TSC.addIncomplete(ID, std::move(StubEnc)); 6459 if (!extractFieldType(FE, RD, CGM, TSC)) { 6460 (void) TSC.removeIncomplete(ID); 6461 return false; 6462 } 6463 IsRecursive = TSC.removeIncomplete(ID); 6464 // The ABI requires unions to be sorted but not structures. 6465 // See FieldEncoding::operator< for sort algorithm. 6466 if (RT->isUnionType()) 6467 std::sort(FE.begin(), FE.end()); 6468 } 6469 6470 // We can now complete the TypeString. 6471 if (unsigned E = FE.size()) 6472 for (unsigned I = 0; I != E; ++I) { 6473 if (I) 6474 Enc += ','; 6475 Enc += FE[I].str(); 6476 } 6477 Enc += '}'; 6478 TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive); 6479 return true; 6480 } 6481 6482 /// Appends enum types to Enc and adds the encoding to the cache. 6483 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET, 6484 TypeStringCache &TSC, 6485 const IdentifierInfo *ID) { 6486 // Append the cached TypeString if we have one. 6487 StringRef TypeString = TSC.lookupStr(ID); 6488 if (!TypeString.empty()) { 6489 Enc += TypeString; 6490 return true; 6491 } 6492 6493 size_t Start = Enc.size(); 6494 Enc += "e("; 6495 if (ID) 6496 Enc += ID->getName(); 6497 Enc += "){"; 6498 if (const EnumDecl *ED = ET->getDecl()->getDefinition()) { 6499 auto I = ED->enumerator_begin(); 6500 auto E = ED->enumerator_end(); 6501 while (I != E) { 6502 Enc += "m("; 6503 Enc += I->getName(); 6504 Enc += "){"; 6505 I->getInitVal().toString(Enc); 6506 Enc += '}'; 6507 ++I; 6508 if (I != E) 6509 Enc += ','; 6510 } 6511 } 6512 Enc += '}'; 6513 TSC.addIfComplete(ID, Enc.substr(Start), false); 6514 return true; 6515 } 6516 6517 /// Appends type's qualifier to Enc. 6518 /// This is done prior to appending the type's encoding. 6519 static void appendQualifier(SmallStringEnc &Enc, QualType QT) { 6520 // Qualifiers are emitted in alphabetical order. 6521 static const char *Table[] = {"","c:","r:","cr:","v:","cv:","rv:","crv:"}; 6522 int Lookup = 0; 6523 if (QT.isConstQualified()) 6524 Lookup += 1<<0; 6525 if (QT.isRestrictQualified()) 6526 Lookup += 1<<1; 6527 if (QT.isVolatileQualified()) 6528 Lookup += 1<<2; 6529 Enc += Table[Lookup]; 6530 } 6531 6532 /// Appends built-in types to Enc. 6533 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) { 6534 const char *EncType; 6535 switch (BT->getKind()) { 6536 case BuiltinType::Void: 6537 EncType = "0"; 6538 break; 6539 case BuiltinType::Bool: 6540 EncType = "b"; 6541 break; 6542 case BuiltinType::Char_U: 6543 EncType = "uc"; 6544 break; 6545 case BuiltinType::UChar: 6546 EncType = "uc"; 6547 break; 6548 case BuiltinType::SChar: 6549 EncType = "sc"; 6550 break; 6551 case BuiltinType::UShort: 6552 EncType = "us"; 6553 break; 6554 case BuiltinType::Short: 6555 EncType = "ss"; 6556 break; 6557 case BuiltinType::UInt: 6558 EncType = "ui"; 6559 break; 6560 case BuiltinType::Int: 6561 EncType = "si"; 6562 break; 6563 case BuiltinType::ULong: 6564 EncType = "ul"; 6565 break; 6566 case BuiltinType::Long: 6567 EncType = "sl"; 6568 break; 6569 case BuiltinType::ULongLong: 6570 EncType = "ull"; 6571 break; 6572 case BuiltinType::LongLong: 6573 EncType = "sll"; 6574 break; 6575 case BuiltinType::Float: 6576 EncType = "ft"; 6577 break; 6578 case BuiltinType::Double: 6579 EncType = "d"; 6580 break; 6581 case BuiltinType::LongDouble: 6582 EncType = "ld"; 6583 break; 6584 default: 6585 return false; 6586 } 6587 Enc += EncType; 6588 return true; 6589 } 6590 6591 /// Appends a pointer encoding to Enc before calling appendType for the pointee. 6592 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT, 6593 const CodeGen::CodeGenModule &CGM, 6594 TypeStringCache &TSC) { 6595 Enc += "p("; 6596 if (!appendType(Enc, PT->getPointeeType(), CGM, TSC)) 6597 return false; 6598 Enc += ')'; 6599 return true; 6600 } 6601 6602 /// Appends array encoding to Enc before calling appendType for the element. 6603 static bool appendArrayType(SmallStringEnc &Enc, const ArrayType *AT, 6604 const CodeGen::CodeGenModule &CGM, 6605 TypeStringCache &TSC, StringRef NoSizeEnc) { 6606 if (AT->getSizeModifier() != ArrayType::Normal) 6607 return false; 6608 Enc += "a("; 6609 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) 6610 CAT->getSize().toStringUnsigned(Enc); 6611 else 6612 Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "". 6613 Enc += ':'; 6614 if (!appendType(Enc, AT->getElementType(), CGM, TSC)) 6615 return false; 6616 Enc += ')'; 6617 return true; 6618 } 6619 6620 /// Appends a function encoding to Enc, calling appendType for the return type 6621 /// and the arguments. 6622 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT, 6623 const CodeGen::CodeGenModule &CGM, 6624 TypeStringCache &TSC) { 6625 Enc += "f{"; 6626 if (!appendType(Enc, FT->getReturnType(), CGM, TSC)) 6627 return false; 6628 Enc += "}("; 6629 if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) { 6630 // N.B. we are only interested in the adjusted param types. 6631 auto I = FPT->param_type_begin(); 6632 auto E = FPT->param_type_end(); 6633 if (I != E) { 6634 do { 6635 if (!appendType(Enc, *I, CGM, TSC)) 6636 return false; 6637 ++I; 6638 if (I != E) 6639 Enc += ','; 6640 } while (I != E); 6641 if (FPT->isVariadic()) 6642 Enc += ",va"; 6643 } else { 6644 if (FPT->isVariadic()) 6645 Enc += "va"; 6646 else 6647 Enc += '0'; 6648 } 6649 } 6650 Enc += ')'; 6651 return true; 6652 } 6653 6654 /// Handles the type's qualifier before dispatching a call to handle specific 6655 /// type encodings. 6656 static bool appendType(SmallStringEnc &Enc, QualType QType, 6657 const CodeGen::CodeGenModule &CGM, 6658 TypeStringCache &TSC) { 6659 6660 QualType QT = QType.getCanonicalType(); 6661 6662 appendQualifier(Enc, QT); 6663 6664 if (const BuiltinType *BT = QT->getAs<BuiltinType>()) 6665 return appendBuiltinType(Enc, BT); 6666 6667 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) 6668 return appendArrayType(Enc, AT, CGM, TSC, ""); 6669 6670 if (const PointerType *PT = QT->getAs<PointerType>()) 6671 return appendPointerType(Enc, PT, CGM, TSC); 6672 6673 if (const EnumType *ET = QT->getAs<EnumType>()) 6674 return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier()); 6675 6676 if (const RecordType *RT = QT->getAsStructureType()) 6677 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 6678 6679 if (const RecordType *RT = QT->getAsUnionType()) 6680 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 6681 6682 if (const FunctionType *FT = QT->getAs<FunctionType>()) 6683 return appendFunctionType(Enc, FT, CGM, TSC); 6684 6685 return false; 6686 } 6687 6688 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 6689 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) { 6690 if (!D) 6691 return false; 6692 6693 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 6694 if (FD->getLanguageLinkage() != CLanguageLinkage) 6695 return false; 6696 return appendType(Enc, FD->getType(), CGM, TSC); 6697 } 6698 6699 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 6700 if (VD->getLanguageLinkage() != CLanguageLinkage) 6701 return false; 6702 QualType QT = VD->getType().getCanonicalType(); 6703 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) { 6704 // Global ArrayTypes are given a size of '*' if the size is unknown. 6705 appendQualifier(Enc, QT); 6706 return appendArrayType(Enc, AT, CGM, TSC, "*"); 6707 } 6708 return appendType(Enc, QT, CGM, TSC); 6709 } 6710 return false; 6711 } 6712 6713 6714 //===----------------------------------------------------------------------===// 6715 // Driver code 6716 //===----------------------------------------------------------------------===// 6717 6718 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { 6719 if (TheTargetCodeGenInfo) 6720 return *TheTargetCodeGenInfo; 6721 6722 const llvm::Triple &Triple = getTarget().getTriple(); 6723 switch (Triple.getArch()) { 6724 default: 6725 return *(TheTargetCodeGenInfo = new DefaultTargetCodeGenInfo(Types)); 6726 6727 case llvm::Triple::le32: 6728 return *(TheTargetCodeGenInfo = new PNaClTargetCodeGenInfo(Types)); 6729 case llvm::Triple::mips: 6730 case llvm::Triple::mipsel: 6731 return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, true)); 6732 6733 case llvm::Triple::mips64: 6734 case llvm::Triple::mips64el: 6735 return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, false)); 6736 6737 case llvm::Triple::arm64: 6738 case llvm::Triple::arm64_be: { 6739 ARM64ABIInfo::ABIKind Kind = ARM64ABIInfo::AAPCS; 6740 if (strcmp(getTarget().getABI(), "darwinpcs") == 0) 6741 Kind = ARM64ABIInfo::DarwinPCS; 6742 6743 return *(TheTargetCodeGenInfo = new ARM64TargetCodeGenInfo(Types, Kind)); 6744 } 6745 6746 case llvm::Triple::aarch64: 6747 case llvm::Triple::aarch64_be: 6748 return *(TheTargetCodeGenInfo = new AArch64TargetCodeGenInfo(Types)); 6749 6750 case llvm::Triple::arm: 6751 case llvm::Triple::armeb: 6752 case llvm::Triple::thumb: 6753 case llvm::Triple::thumbeb: 6754 { 6755 ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS; 6756 if (strcmp(getTarget().getABI(), "apcs-gnu") == 0) 6757 Kind = ARMABIInfo::APCS; 6758 else if (CodeGenOpts.FloatABI == "hard" || 6759 (CodeGenOpts.FloatABI != "soft" && 6760 Triple.getEnvironment() == llvm::Triple::GNUEABIHF)) 6761 Kind = ARMABIInfo::AAPCS_VFP; 6762 6763 switch (Triple.getOS()) { 6764 case llvm::Triple::NaCl: 6765 return *(TheTargetCodeGenInfo = 6766 new NaClARMTargetCodeGenInfo(Types, Kind)); 6767 default: 6768 return *(TheTargetCodeGenInfo = 6769 new ARMTargetCodeGenInfo(Types, Kind)); 6770 } 6771 } 6772 6773 case llvm::Triple::ppc: 6774 return *(TheTargetCodeGenInfo = new PPC32TargetCodeGenInfo(Types)); 6775 case llvm::Triple::ppc64: 6776 if (Triple.isOSBinFormatELF()) 6777 return *(TheTargetCodeGenInfo = new PPC64_SVR4_TargetCodeGenInfo(Types)); 6778 else 6779 return *(TheTargetCodeGenInfo = new PPC64TargetCodeGenInfo(Types)); 6780 case llvm::Triple::ppc64le: 6781 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); 6782 return *(TheTargetCodeGenInfo = new PPC64_SVR4_TargetCodeGenInfo(Types)); 6783 6784 case llvm::Triple::nvptx: 6785 case llvm::Triple::nvptx64: 6786 return *(TheTargetCodeGenInfo = new NVPTXTargetCodeGenInfo(Types)); 6787 6788 case llvm::Triple::msp430: 6789 return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo(Types)); 6790 6791 case llvm::Triple::systemz: 6792 return *(TheTargetCodeGenInfo = new SystemZTargetCodeGenInfo(Types)); 6793 6794 case llvm::Triple::tce: 6795 return *(TheTargetCodeGenInfo = new TCETargetCodeGenInfo(Types)); 6796 6797 case llvm::Triple::x86: { 6798 bool IsDarwinVectorABI = Triple.isOSDarwin(); 6799 bool IsSmallStructInRegABI = 6800 X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 6801 bool IsWin32FloatStructABI = Triple.isWindowsMSVCEnvironment(); 6802 6803 if (Triple.getOS() == llvm::Triple::Win32) { 6804 return *(TheTargetCodeGenInfo = 6805 new WinX86_32TargetCodeGenInfo(Types, 6806 IsDarwinVectorABI, IsSmallStructInRegABI, 6807 IsWin32FloatStructABI, 6808 CodeGenOpts.NumRegisterParameters)); 6809 } else { 6810 return *(TheTargetCodeGenInfo = 6811 new X86_32TargetCodeGenInfo(Types, 6812 IsDarwinVectorABI, IsSmallStructInRegABI, 6813 IsWin32FloatStructABI, 6814 CodeGenOpts.NumRegisterParameters)); 6815 } 6816 } 6817 6818 case llvm::Triple::x86_64: { 6819 bool HasAVX = strcmp(getTarget().getABI(), "avx") == 0; 6820 6821 switch (Triple.getOS()) { 6822 case llvm::Triple::Win32: 6823 case llvm::Triple::MinGW32: 6824 case llvm::Triple::Cygwin: 6825 return *(TheTargetCodeGenInfo = new WinX86_64TargetCodeGenInfo(Types)); 6826 case llvm::Triple::NaCl: 6827 return *(TheTargetCodeGenInfo = new NaClX86_64TargetCodeGenInfo(Types, 6828 HasAVX)); 6829 default: 6830 return *(TheTargetCodeGenInfo = new X86_64TargetCodeGenInfo(Types, 6831 HasAVX)); 6832 } 6833 } 6834 case llvm::Triple::hexagon: 6835 return *(TheTargetCodeGenInfo = new HexagonTargetCodeGenInfo(Types)); 6836 case llvm::Triple::sparcv9: 6837 return *(TheTargetCodeGenInfo = new SparcV9TargetCodeGenInfo(Types)); 6838 case llvm::Triple::xcore: 6839 return *(TheTargetCodeGenInfo = new XCoreTargetCodeGenInfo(Types)); 6840 } 6841 } 6842