1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // These classes wrap the information about a call or function 11 // definition used to handle ABI compliancy. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "TargetInfo.h" 16 #include "ABIInfo.h" 17 #include "CGCXXABI.h" 18 #include "CodeGenFunction.h" 19 #include "clang/AST/RecordLayout.h" 20 #include "clang/CodeGen/CGFunctionInfo.h" 21 #include "clang/Frontend/CodeGenOptions.h" 22 #include "llvm/ADT/Triple.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/Type.h" 25 #include "llvm/Support/raw_ostream.h" 26 27 #include <algorithm> // std::sort 28 29 using namespace clang; 30 using namespace CodeGen; 31 32 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder, 33 llvm::Value *Array, 34 llvm::Value *Value, 35 unsigned FirstIndex, 36 unsigned LastIndex) { 37 // Alternatively, we could emit this as a loop in the source. 38 for (unsigned I = FirstIndex; I <= LastIndex; ++I) { 39 llvm::Value *Cell = Builder.CreateConstInBoundsGEP1_32(Array, I); 40 Builder.CreateStore(Value, Cell); 41 } 42 } 43 44 static bool isAggregateTypeForABI(QualType T) { 45 return !CodeGenFunction::hasScalarEvaluationKind(T) || 46 T->isMemberFunctionPointerType(); 47 } 48 49 ABIInfo::~ABIInfo() {} 50 51 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT, 52 CGCXXABI &CXXABI) { 53 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); 54 if (!RD) 55 return CGCXXABI::RAA_Default; 56 return CXXABI.getRecordArgABI(RD); 57 } 58 59 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T, 60 CGCXXABI &CXXABI) { 61 const RecordType *RT = T->getAs<RecordType>(); 62 if (!RT) 63 return CGCXXABI::RAA_Default; 64 return getRecordArgABI(RT, CXXABI); 65 } 66 67 CGCXXABI &ABIInfo::getCXXABI() const { 68 return CGT.getCXXABI(); 69 } 70 71 ASTContext &ABIInfo::getContext() const { 72 return CGT.getContext(); 73 } 74 75 llvm::LLVMContext &ABIInfo::getVMContext() const { 76 return CGT.getLLVMContext(); 77 } 78 79 const llvm::DataLayout &ABIInfo::getDataLayout() const { 80 return CGT.getDataLayout(); 81 } 82 83 const TargetInfo &ABIInfo::getTarget() const { 84 return CGT.getTarget(); 85 } 86 87 void ABIArgInfo::dump() const { 88 raw_ostream &OS = llvm::errs(); 89 OS << "(ABIArgInfo Kind="; 90 switch (TheKind) { 91 case Direct: 92 OS << "Direct Type="; 93 if (llvm::Type *Ty = getCoerceToType()) 94 Ty->print(OS); 95 else 96 OS << "null"; 97 break; 98 case Extend: 99 OS << "Extend"; 100 break; 101 case Ignore: 102 OS << "Ignore"; 103 break; 104 case InAlloca: 105 OS << "InAlloca Offset=" << getInAllocaFieldIndex(); 106 break; 107 case Indirect: 108 OS << "Indirect Align=" << getIndirectAlign() 109 << " ByVal=" << getIndirectByVal() 110 << " Realign=" << getIndirectRealign(); 111 break; 112 case Expand: 113 OS << "Expand"; 114 break; 115 } 116 OS << ")\n"; 117 } 118 119 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; } 120 121 // If someone can figure out a general rule for this, that would be great. 122 // It's probably just doomed to be platform-dependent, though. 123 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const { 124 // Verified for: 125 // x86-64 FreeBSD, Linux, Darwin 126 // x86-32 FreeBSD, Linux, Darwin 127 // PowerPC Linux, Darwin 128 // ARM Darwin (*not* EABI) 129 // AArch64 Linux 130 return 32; 131 } 132 133 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args, 134 const FunctionNoProtoType *fnType) const { 135 // The following conventions are known to require this to be false: 136 // x86_stdcall 137 // MIPS 138 // For everything else, we just prefer false unless we opt out. 139 return false; 140 } 141 142 void 143 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib, 144 llvm::SmallString<24> &Opt) const { 145 // This assumes the user is passing a library name like "rt" instead of a 146 // filename like "librt.a/so", and that they don't care whether it's static or 147 // dynamic. 148 Opt = "-l"; 149 Opt += Lib; 150 } 151 152 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays); 153 154 /// isEmptyField - Return true iff a the field is "empty", that is it 155 /// is an unnamed bit-field or an (array of) empty record(s). 156 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD, 157 bool AllowArrays) { 158 if (FD->isUnnamedBitfield()) 159 return true; 160 161 QualType FT = FD->getType(); 162 163 // Constant arrays of empty records count as empty, strip them off. 164 // Constant arrays of zero length always count as empty. 165 if (AllowArrays) 166 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 167 if (AT->getSize() == 0) 168 return true; 169 FT = AT->getElementType(); 170 } 171 172 const RecordType *RT = FT->getAs<RecordType>(); 173 if (!RT) 174 return false; 175 176 // C++ record fields are never empty, at least in the Itanium ABI. 177 // 178 // FIXME: We should use a predicate for whether this behavior is true in the 179 // current ABI. 180 if (isa<CXXRecordDecl>(RT->getDecl())) 181 return false; 182 183 return isEmptyRecord(Context, FT, AllowArrays); 184 } 185 186 /// isEmptyRecord - Return true iff a structure contains only empty 187 /// fields. Note that a structure with a flexible array member is not 188 /// considered empty. 189 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) { 190 const RecordType *RT = T->getAs<RecordType>(); 191 if (!RT) 192 return 0; 193 const RecordDecl *RD = RT->getDecl(); 194 if (RD->hasFlexibleArrayMember()) 195 return false; 196 197 // If this is a C++ record, check the bases first. 198 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 199 for (const auto &I : CXXRD->bases()) 200 if (!isEmptyRecord(Context, I.getType(), true)) 201 return false; 202 203 for (const auto *I : RD->fields()) 204 if (!isEmptyField(Context, I, AllowArrays)) 205 return false; 206 return true; 207 } 208 209 /// isSingleElementStruct - Determine if a structure is a "single 210 /// element struct", i.e. it has exactly one non-empty field or 211 /// exactly one field which is itself a single element 212 /// struct. Structures with flexible array members are never 213 /// considered single element structs. 214 /// 215 /// \return The field declaration for the single non-empty field, if 216 /// it exists. 217 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) { 218 const RecordType *RT = T->getAsStructureType(); 219 if (!RT) 220 return nullptr; 221 222 const RecordDecl *RD = RT->getDecl(); 223 if (RD->hasFlexibleArrayMember()) 224 return nullptr; 225 226 const Type *Found = nullptr; 227 228 // If this is a C++ record, check the bases first. 229 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 230 for (const auto &I : CXXRD->bases()) { 231 // Ignore empty records. 232 if (isEmptyRecord(Context, I.getType(), true)) 233 continue; 234 235 // If we already found an element then this isn't a single-element struct. 236 if (Found) 237 return nullptr; 238 239 // If this is non-empty and not a single element struct, the composite 240 // cannot be a single element struct. 241 Found = isSingleElementStruct(I.getType(), Context); 242 if (!Found) 243 return nullptr; 244 } 245 } 246 247 // Check for single element. 248 for (const auto *FD : RD->fields()) { 249 QualType FT = FD->getType(); 250 251 // Ignore empty fields. 252 if (isEmptyField(Context, FD, true)) 253 continue; 254 255 // If we already found an element then this isn't a single-element 256 // struct. 257 if (Found) 258 return nullptr; 259 260 // Treat single element arrays as the element. 261 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 262 if (AT->getSize().getZExtValue() != 1) 263 break; 264 FT = AT->getElementType(); 265 } 266 267 if (!isAggregateTypeForABI(FT)) { 268 Found = FT.getTypePtr(); 269 } else { 270 Found = isSingleElementStruct(FT, Context); 271 if (!Found) 272 return nullptr; 273 } 274 } 275 276 // We don't consider a struct a single-element struct if it has 277 // padding beyond the element type. 278 if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T)) 279 return nullptr; 280 281 return Found; 282 } 283 284 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) { 285 // Treat complex types as the element type. 286 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 287 Ty = CTy->getElementType(); 288 289 // Check for a type which we know has a simple scalar argument-passing 290 // convention without any padding. (We're specifically looking for 32 291 // and 64-bit integer and integer-equivalents, float, and double.) 292 if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() && 293 !Ty->isEnumeralType() && !Ty->isBlockPointerType()) 294 return false; 295 296 uint64_t Size = Context.getTypeSize(Ty); 297 return Size == 32 || Size == 64; 298 } 299 300 /// canExpandIndirectArgument - Test whether an argument type which is to be 301 /// passed indirectly (on the stack) would have the equivalent layout if it was 302 /// expanded into separate arguments. If so, we prefer to do the latter to avoid 303 /// inhibiting optimizations. 304 /// 305 // FIXME: This predicate is missing many cases, currently it just follows 306 // llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We 307 // should probably make this smarter, or better yet make the LLVM backend 308 // capable of handling it. 309 static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) { 310 // We can only expand structure types. 311 const RecordType *RT = Ty->getAs<RecordType>(); 312 if (!RT) 313 return false; 314 315 // We can only expand (C) structures. 316 // 317 // FIXME: This needs to be generalized to handle classes as well. 318 const RecordDecl *RD = RT->getDecl(); 319 if (!RD->isStruct() || isa<CXXRecordDecl>(RD)) 320 return false; 321 322 uint64_t Size = 0; 323 324 for (const auto *FD : RD->fields()) { 325 if (!is32Or64BitBasicType(FD->getType(), Context)) 326 return false; 327 328 // FIXME: Reject bit-fields wholesale; there are two problems, we don't know 329 // how to expand them yet, and the predicate for telling if a bitfield still 330 // counts as "basic" is more complicated than what we were doing previously. 331 if (FD->isBitField()) 332 return false; 333 334 Size += Context.getTypeSize(FD->getType()); 335 } 336 337 // Make sure there are not any holes in the struct. 338 if (Size != Context.getTypeSize(Ty)) 339 return false; 340 341 return true; 342 } 343 344 namespace { 345 /// DefaultABIInfo - The default implementation for ABI specific 346 /// details. This implementation provides information which results in 347 /// self-consistent and sensible LLVM IR generation, but does not 348 /// conform to any particular ABI. 349 class DefaultABIInfo : public ABIInfo { 350 public: 351 DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 352 353 ABIArgInfo classifyReturnType(QualType RetTy) const; 354 ABIArgInfo classifyArgumentType(QualType RetTy) const; 355 356 void computeInfo(CGFunctionInfo &FI) const override { 357 if (!getCXXABI().classifyReturnType(FI)) 358 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 359 for (auto &I : FI.arguments()) 360 I.info = classifyArgumentType(I.type); 361 } 362 363 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 364 CodeGenFunction &CGF) const override; 365 }; 366 367 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo { 368 public: 369 DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 370 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 371 }; 372 373 llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 374 CodeGenFunction &CGF) const { 375 return nullptr; 376 } 377 378 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const { 379 if (isAggregateTypeForABI(Ty)) 380 return ABIArgInfo::getIndirect(0); 381 382 // Treat an enum type as its underlying type. 383 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 384 Ty = EnumTy->getDecl()->getIntegerType(); 385 386 return (Ty->isPromotableIntegerType() ? 387 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 388 } 389 390 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const { 391 if (RetTy->isVoidType()) 392 return ABIArgInfo::getIgnore(); 393 394 if (isAggregateTypeForABI(RetTy)) 395 return ABIArgInfo::getIndirect(0); 396 397 // Treat an enum type as its underlying type. 398 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 399 RetTy = EnumTy->getDecl()->getIntegerType(); 400 401 return (RetTy->isPromotableIntegerType() ? 402 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 403 } 404 405 //===----------------------------------------------------------------------===// 406 // le32/PNaCl bitcode ABI Implementation 407 // 408 // This is a simplified version of the x86_32 ABI. Arguments and return values 409 // are always passed on the stack. 410 //===----------------------------------------------------------------------===// 411 412 class PNaClABIInfo : public ABIInfo { 413 public: 414 PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 415 416 ABIArgInfo classifyReturnType(QualType RetTy) const; 417 ABIArgInfo classifyArgumentType(QualType RetTy) const; 418 419 void computeInfo(CGFunctionInfo &FI) const override; 420 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 421 CodeGenFunction &CGF) const override; 422 }; 423 424 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo { 425 public: 426 PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 427 : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {} 428 }; 429 430 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const { 431 if (!getCXXABI().classifyReturnType(FI)) 432 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 433 434 for (auto &I : FI.arguments()) 435 I.info = classifyArgumentType(I.type); 436 } 437 438 llvm::Value *PNaClABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 439 CodeGenFunction &CGF) const { 440 return nullptr; 441 } 442 443 /// \brief Classify argument of given type \p Ty. 444 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const { 445 if (isAggregateTypeForABI(Ty)) { 446 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 447 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 448 return ABIArgInfo::getIndirect(0); 449 } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 450 // Treat an enum type as its underlying type. 451 Ty = EnumTy->getDecl()->getIntegerType(); 452 } else if (Ty->isFloatingType()) { 453 // Floating-point types don't go inreg. 454 return ABIArgInfo::getDirect(); 455 } 456 457 return (Ty->isPromotableIntegerType() ? 458 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 459 } 460 461 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const { 462 if (RetTy->isVoidType()) 463 return ABIArgInfo::getIgnore(); 464 465 // In the PNaCl ABI we always return records/structures on the stack. 466 if (isAggregateTypeForABI(RetTy)) 467 return ABIArgInfo::getIndirect(0); 468 469 // Treat an enum type as its underlying type. 470 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 471 RetTy = EnumTy->getDecl()->getIntegerType(); 472 473 return (RetTy->isPromotableIntegerType() ? 474 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 475 } 476 477 /// IsX86_MMXType - Return true if this is an MMX type. 478 bool IsX86_MMXType(llvm::Type *IRType) { 479 // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>. 480 return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 && 481 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() && 482 IRType->getScalarSizeInBits() != 64; 483 } 484 485 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 486 StringRef Constraint, 487 llvm::Type* Ty) { 488 if ((Constraint == "y" || Constraint == "&y") && Ty->isVectorTy()) { 489 if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) { 490 // Invalid MMX constraint 491 return nullptr; 492 } 493 494 return llvm::Type::getX86_MMXTy(CGF.getLLVMContext()); 495 } 496 497 // No operation needed 498 return Ty; 499 } 500 501 //===----------------------------------------------------------------------===// 502 // X86-32 ABI Implementation 503 //===----------------------------------------------------------------------===// 504 505 /// \brief Similar to llvm::CCState, but for Clang. 506 struct CCState { 507 CCState(unsigned CC) : CC(CC), FreeRegs(0) {} 508 509 unsigned CC; 510 unsigned FreeRegs; 511 unsigned StackOffset; 512 bool UseInAlloca; 513 }; 514 515 /// X86_32ABIInfo - The X86-32 ABI information. 516 class X86_32ABIInfo : public ABIInfo { 517 enum Class { 518 Integer, 519 Float 520 }; 521 522 static const unsigned MinABIStackAlignInBytes = 4; 523 524 bool IsDarwinVectorABI; 525 bool IsSmallStructInRegABI; 526 bool IsWin32StructABI; 527 unsigned DefaultNumRegisterParameters; 528 529 static bool isRegisterSize(unsigned Size) { 530 return (Size == 8 || Size == 16 || Size == 32 || Size == 64); 531 } 532 533 bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const; 534 535 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 536 /// such that the argument will be passed in memory. 537 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 538 539 ABIArgInfo getIndirectReturnResult(CCState &State) const; 540 541 /// \brief Return the alignment to use for the given type on the stack. 542 unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const; 543 544 Class classify(QualType Ty) const; 545 ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const; 546 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 547 bool shouldUseInReg(QualType Ty, CCState &State, bool &NeedsPadding) const; 548 549 /// \brief Rewrite the function info so that all memory arguments use 550 /// inalloca. 551 void rewriteWithInAlloca(CGFunctionInfo &FI) const; 552 553 void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 554 unsigned &StackOffset, ABIArgInfo &Info, 555 QualType Type) const; 556 557 public: 558 559 void computeInfo(CGFunctionInfo &FI) const override; 560 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 561 CodeGenFunction &CGF) const override; 562 563 X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p, bool w, 564 unsigned r) 565 : ABIInfo(CGT), IsDarwinVectorABI(d), IsSmallStructInRegABI(p), 566 IsWin32StructABI(w), DefaultNumRegisterParameters(r) {} 567 }; 568 569 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo { 570 public: 571 X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 572 bool d, bool p, bool w, unsigned r) 573 :TargetCodeGenInfo(new X86_32ABIInfo(CGT, d, p, w, r)) {} 574 575 static bool isStructReturnInRegABI( 576 const llvm::Triple &Triple, const CodeGenOptions &Opts); 577 578 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 579 CodeGen::CodeGenModule &CGM) const override; 580 581 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 582 // Darwin uses different dwarf register numbers for EH. 583 if (CGM.getTarget().getTriple().isOSDarwin()) return 5; 584 return 4; 585 } 586 587 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 588 llvm::Value *Address) const override; 589 590 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 591 StringRef Constraint, 592 llvm::Type* Ty) const override { 593 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 594 } 595 596 llvm::Constant * 597 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 598 unsigned Sig = (0xeb << 0) | // jmp rel8 599 (0x06 << 8) | // .+0x08 600 ('F' << 16) | 601 ('T' << 24); 602 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 603 } 604 605 }; 606 607 } 608 609 /// shouldReturnTypeInRegister - Determine if the given type should be 610 /// passed in a register (for the Darwin ABI). 611 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty, 612 ASTContext &Context) const { 613 uint64_t Size = Context.getTypeSize(Ty); 614 615 // Type must be register sized. 616 if (!isRegisterSize(Size)) 617 return false; 618 619 if (Ty->isVectorType()) { 620 // 64- and 128- bit vectors inside structures are not returned in 621 // registers. 622 if (Size == 64 || Size == 128) 623 return false; 624 625 return true; 626 } 627 628 // If this is a builtin, pointer, enum, complex type, member pointer, or 629 // member function pointer it is ok. 630 if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() || 631 Ty->isAnyComplexType() || Ty->isEnumeralType() || 632 Ty->isBlockPointerType() || Ty->isMemberPointerType()) 633 return true; 634 635 // Arrays are treated like records. 636 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) 637 return shouldReturnTypeInRegister(AT->getElementType(), Context); 638 639 // Otherwise, it must be a record type. 640 const RecordType *RT = Ty->getAs<RecordType>(); 641 if (!RT) return false; 642 643 // FIXME: Traverse bases here too. 644 645 // Structure types are passed in register if all fields would be 646 // passed in a register. 647 for (const auto *FD : RT->getDecl()->fields()) { 648 // Empty fields are ignored. 649 if (isEmptyField(Context, FD, true)) 650 continue; 651 652 // Check fields recursively. 653 if (!shouldReturnTypeInRegister(FD->getType(), Context)) 654 return false; 655 } 656 return true; 657 } 658 659 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(CCState &State) const { 660 // If the return value is indirect, then the hidden argument is consuming one 661 // integer register. 662 if (State.FreeRegs) { 663 --State.FreeRegs; 664 return ABIArgInfo::getIndirectInReg(/*Align=*/0, /*ByVal=*/false); 665 } 666 return ABIArgInfo::getIndirect(/*Align=*/0, /*ByVal=*/false); 667 } 668 669 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, CCState &State) const { 670 if (RetTy->isVoidType()) 671 return ABIArgInfo::getIgnore(); 672 673 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 674 // On Darwin, some vectors are returned in registers. 675 if (IsDarwinVectorABI) { 676 uint64_t Size = getContext().getTypeSize(RetTy); 677 678 // 128-bit vectors are a special case; they are returned in 679 // registers and we need to make sure to pick a type the LLVM 680 // backend will like. 681 if (Size == 128) 682 return ABIArgInfo::getDirect(llvm::VectorType::get( 683 llvm::Type::getInt64Ty(getVMContext()), 2)); 684 685 // Always return in register if it fits in a general purpose 686 // register, or if it is 64 bits and has a single element. 687 if ((Size == 8 || Size == 16 || Size == 32) || 688 (Size == 64 && VT->getNumElements() == 1)) 689 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 690 Size)); 691 692 return getIndirectReturnResult(State); 693 } 694 695 return ABIArgInfo::getDirect(); 696 } 697 698 if (isAggregateTypeForABI(RetTy)) { 699 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 700 // Structures with flexible arrays are always indirect. 701 if (RT->getDecl()->hasFlexibleArrayMember()) 702 return getIndirectReturnResult(State); 703 } 704 705 // If specified, structs and unions are always indirect. 706 if (!IsSmallStructInRegABI && !RetTy->isAnyComplexType()) 707 return getIndirectReturnResult(State); 708 709 // Small structures which are register sized are generally returned 710 // in a register. 711 if (shouldReturnTypeInRegister(RetTy, getContext())) { 712 uint64_t Size = getContext().getTypeSize(RetTy); 713 714 // As a special-case, if the struct is a "single-element" struct, and 715 // the field is of type "float" or "double", return it in a 716 // floating-point register. (MSVC does not apply this special case.) 717 // We apply a similar transformation for pointer types to improve the 718 // quality of the generated IR. 719 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 720 if ((!IsWin32StructABI && SeltTy->isRealFloatingType()) 721 || SeltTy->hasPointerRepresentation()) 722 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 723 724 // FIXME: We should be able to narrow this integer in cases with dead 725 // padding. 726 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size)); 727 } 728 729 return getIndirectReturnResult(State); 730 } 731 732 // Treat an enum type as its underlying type. 733 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 734 RetTy = EnumTy->getDecl()->getIntegerType(); 735 736 return (RetTy->isPromotableIntegerType() ? 737 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 738 } 739 740 static bool isSSEVectorType(ASTContext &Context, QualType Ty) { 741 return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128; 742 } 743 744 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) { 745 const RecordType *RT = Ty->getAs<RecordType>(); 746 if (!RT) 747 return 0; 748 const RecordDecl *RD = RT->getDecl(); 749 750 // If this is a C++ record, check the bases first. 751 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 752 for (const auto &I : CXXRD->bases()) 753 if (!isRecordWithSSEVectorType(Context, I.getType())) 754 return false; 755 756 for (const auto *i : RD->fields()) { 757 QualType FT = i->getType(); 758 759 if (isSSEVectorType(Context, FT)) 760 return true; 761 762 if (isRecordWithSSEVectorType(Context, FT)) 763 return true; 764 } 765 766 return false; 767 } 768 769 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty, 770 unsigned Align) const { 771 // Otherwise, if the alignment is less than or equal to the minimum ABI 772 // alignment, just use the default; the backend will handle this. 773 if (Align <= MinABIStackAlignInBytes) 774 return 0; // Use default alignment. 775 776 // On non-Darwin, the stack type alignment is always 4. 777 if (!IsDarwinVectorABI) { 778 // Set explicit alignment, since we may need to realign the top. 779 return MinABIStackAlignInBytes; 780 } 781 782 // Otherwise, if the type contains an SSE vector type, the alignment is 16. 783 if (Align >= 16 && (isSSEVectorType(getContext(), Ty) || 784 isRecordWithSSEVectorType(getContext(), Ty))) 785 return 16; 786 787 return MinABIStackAlignInBytes; 788 } 789 790 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal, 791 CCState &State) const { 792 if (!ByVal) { 793 if (State.FreeRegs) { 794 --State.FreeRegs; // Non-byval indirects just use one pointer. 795 return ABIArgInfo::getIndirectInReg(0, false); 796 } 797 return ABIArgInfo::getIndirect(0, false); 798 } 799 800 // Compute the byval alignment. 801 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 802 unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign); 803 if (StackAlign == 0) 804 return ABIArgInfo::getIndirect(4, /*ByVal=*/true); 805 806 // If the stack alignment is less than the type alignment, realign the 807 // argument. 808 bool Realign = TypeAlign > StackAlign; 809 return ABIArgInfo::getIndirect(StackAlign, /*ByVal=*/true, Realign); 810 } 811 812 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const { 813 const Type *T = isSingleElementStruct(Ty, getContext()); 814 if (!T) 815 T = Ty.getTypePtr(); 816 817 if (const BuiltinType *BT = T->getAs<BuiltinType>()) { 818 BuiltinType::Kind K = BT->getKind(); 819 if (K == BuiltinType::Float || K == BuiltinType::Double) 820 return Float; 821 } 822 return Integer; 823 } 824 825 bool X86_32ABIInfo::shouldUseInReg(QualType Ty, CCState &State, 826 bool &NeedsPadding) const { 827 NeedsPadding = false; 828 Class C = classify(Ty); 829 if (C == Float) 830 return false; 831 832 unsigned Size = getContext().getTypeSize(Ty); 833 unsigned SizeInRegs = (Size + 31) / 32; 834 835 if (SizeInRegs == 0) 836 return false; 837 838 if (SizeInRegs > State.FreeRegs) { 839 State.FreeRegs = 0; 840 return false; 841 } 842 843 State.FreeRegs -= SizeInRegs; 844 845 if (State.CC == llvm::CallingConv::X86_FastCall) { 846 if (Size > 32) 847 return false; 848 849 if (Ty->isIntegralOrEnumerationType()) 850 return true; 851 852 if (Ty->isPointerType()) 853 return true; 854 855 if (Ty->isReferenceType()) 856 return true; 857 858 if (State.FreeRegs) 859 NeedsPadding = true; 860 861 return false; 862 } 863 864 return true; 865 } 866 867 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, 868 CCState &State) const { 869 // FIXME: Set alignment on indirect arguments. 870 if (isAggregateTypeForABI(Ty)) { 871 if (const RecordType *RT = Ty->getAs<RecordType>()) { 872 // Check with the C++ ABI first. 873 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 874 if (RAA == CGCXXABI::RAA_Indirect) { 875 return getIndirectResult(Ty, false, State); 876 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 877 // The field index doesn't matter, we'll fix it up later. 878 return ABIArgInfo::getInAlloca(/*FieldIndex=*/0); 879 } 880 881 // Structs are always byval on win32, regardless of what they contain. 882 if (IsWin32StructABI) 883 return getIndirectResult(Ty, true, State); 884 885 // Structures with flexible arrays are always indirect. 886 if (RT->getDecl()->hasFlexibleArrayMember()) 887 return getIndirectResult(Ty, true, State); 888 } 889 890 // Ignore empty structs/unions. 891 if (isEmptyRecord(getContext(), Ty, true)) 892 return ABIArgInfo::getIgnore(); 893 894 llvm::LLVMContext &LLVMContext = getVMContext(); 895 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 896 bool NeedsPadding; 897 if (shouldUseInReg(Ty, State, NeedsPadding)) { 898 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; 899 SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32); 900 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 901 return ABIArgInfo::getDirectInReg(Result); 902 } 903 llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr; 904 905 // Expand small (<= 128-bit) record types when we know that the stack layout 906 // of those arguments will match the struct. This is important because the 907 // LLVM backend isn't smart enough to remove byval, which inhibits many 908 // optimizations. 909 if (getContext().getTypeSize(Ty) <= 4*32 && 910 canExpandIndirectArgument(Ty, getContext())) 911 return ABIArgInfo::getExpandWithPadding( 912 State.CC == llvm::CallingConv::X86_FastCall, PaddingType); 913 914 return getIndirectResult(Ty, true, State); 915 } 916 917 if (const VectorType *VT = Ty->getAs<VectorType>()) { 918 // On Darwin, some vectors are passed in memory, we handle this by passing 919 // it as an i8/i16/i32/i64. 920 if (IsDarwinVectorABI) { 921 uint64_t Size = getContext().getTypeSize(Ty); 922 if ((Size == 8 || Size == 16 || Size == 32) || 923 (Size == 64 && VT->getNumElements() == 1)) 924 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 925 Size)); 926 } 927 928 if (IsX86_MMXType(CGT.ConvertType(Ty))) 929 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64)); 930 931 return ABIArgInfo::getDirect(); 932 } 933 934 935 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 936 Ty = EnumTy->getDecl()->getIntegerType(); 937 938 bool NeedsPadding; 939 bool InReg = shouldUseInReg(Ty, State, NeedsPadding); 940 941 if (Ty->isPromotableIntegerType()) { 942 if (InReg) 943 return ABIArgInfo::getExtendInReg(); 944 return ABIArgInfo::getExtend(); 945 } 946 if (InReg) 947 return ABIArgInfo::getDirectInReg(); 948 return ABIArgInfo::getDirect(); 949 } 950 951 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const { 952 CCState State(FI.getCallingConvention()); 953 if (State.CC == llvm::CallingConv::X86_FastCall) 954 State.FreeRegs = 2; 955 else if (FI.getHasRegParm()) 956 State.FreeRegs = FI.getRegParm(); 957 else 958 State.FreeRegs = DefaultNumRegisterParameters; 959 960 if (!getCXXABI().classifyReturnType(FI)) 961 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State); 962 963 bool UsedInAlloca = false; 964 for (auto &I : FI.arguments()) { 965 I.info = classifyArgumentType(I.type, State); 966 UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca); 967 } 968 969 // If we needed to use inalloca for any argument, do a second pass and rewrite 970 // all the memory arguments to use inalloca. 971 if (UsedInAlloca) 972 rewriteWithInAlloca(FI); 973 } 974 975 void 976 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 977 unsigned &StackOffset, 978 ABIArgInfo &Info, QualType Type) const { 979 assert(StackOffset % 4U == 0 && "unaligned inalloca struct"); 980 Info = ABIArgInfo::getInAlloca(FrameFields.size()); 981 FrameFields.push_back(CGT.ConvertTypeForMem(Type)); 982 StackOffset += getContext().getTypeSizeInChars(Type).getQuantity(); 983 984 // Insert padding bytes to respect alignment. For x86_32, each argument is 4 985 // byte aligned. 986 if (StackOffset % 4U) { 987 unsigned OldOffset = StackOffset; 988 StackOffset = llvm::RoundUpToAlignment(StackOffset, 4U); 989 unsigned NumBytes = StackOffset - OldOffset; 990 assert(NumBytes); 991 llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext()); 992 Ty = llvm::ArrayType::get(Ty, NumBytes); 993 FrameFields.push_back(Ty); 994 } 995 } 996 997 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const { 998 assert(IsWin32StructABI && "inalloca only supported on win32"); 999 1000 // Build a packed struct type for all of the arguments in memory. 1001 SmallVector<llvm::Type *, 6> FrameFields; 1002 1003 unsigned StackOffset = 0; 1004 1005 // Put the sret parameter into the inalloca struct if it's in memory. 1006 ABIArgInfo &Ret = FI.getReturnInfo(); 1007 if (Ret.isIndirect() && !Ret.getInReg()) { 1008 CanQualType PtrTy = getContext().getPointerType(FI.getReturnType()); 1009 addFieldToArgStruct(FrameFields, StackOffset, Ret, PtrTy); 1010 // On Windows, the hidden sret parameter is always returned in eax. 1011 Ret.setInAllocaSRet(IsWin32StructABI); 1012 } 1013 1014 // Skip the 'this' parameter in ecx. 1015 CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end(); 1016 if (FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall) 1017 ++I; 1018 1019 // Put arguments passed in memory into the struct. 1020 for (; I != E; ++I) { 1021 1022 // Leave ignored and inreg arguments alone. 1023 switch (I->info.getKind()) { 1024 case ABIArgInfo::Indirect: 1025 assert(I->info.getIndirectByVal()); 1026 break; 1027 case ABIArgInfo::Ignore: 1028 continue; 1029 case ABIArgInfo::Direct: 1030 case ABIArgInfo::Extend: 1031 if (I->info.getInReg()) 1032 continue; 1033 break; 1034 default: 1035 break; 1036 } 1037 1038 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 1039 } 1040 1041 FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields, 1042 /*isPacked=*/true)); 1043 } 1044 1045 llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 1046 CodeGenFunction &CGF) const { 1047 llvm::Type *BPP = CGF.Int8PtrPtrTy; 1048 1049 CGBuilderTy &Builder = CGF.Builder; 1050 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, 1051 "ap"); 1052 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 1053 1054 // Compute if the address needs to be aligned 1055 unsigned Align = CGF.getContext().getTypeAlignInChars(Ty).getQuantity(); 1056 Align = getTypeStackAlignInBytes(Ty, Align); 1057 Align = std::max(Align, 4U); 1058 if (Align > 4) { 1059 // addr = (addr + align - 1) & -align; 1060 llvm::Value *Offset = 1061 llvm::ConstantInt::get(CGF.Int32Ty, Align - 1); 1062 Addr = CGF.Builder.CreateGEP(Addr, Offset); 1063 llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(Addr, 1064 CGF.Int32Ty); 1065 llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -Align); 1066 Addr = CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask), 1067 Addr->getType(), 1068 "ap.cur.aligned"); 1069 } 1070 1071 llvm::Type *PTy = 1072 llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 1073 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); 1074 1075 uint64_t Offset = 1076 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, Align); 1077 llvm::Value *NextAddr = 1078 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), 1079 "ap.next"); 1080 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 1081 1082 return AddrTyped; 1083 } 1084 1085 void X86_32TargetCodeGenInfo::SetTargetAttributes(const Decl *D, 1086 llvm::GlobalValue *GV, 1087 CodeGen::CodeGenModule &CGM) const { 1088 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1089 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 1090 // Get the LLVM function. 1091 llvm::Function *Fn = cast<llvm::Function>(GV); 1092 1093 // Now add the 'alignstack' attribute with a value of 16. 1094 llvm::AttrBuilder B; 1095 B.addStackAlignmentAttr(16); 1096 Fn->addAttributes(llvm::AttributeSet::FunctionIndex, 1097 llvm::AttributeSet::get(CGM.getLLVMContext(), 1098 llvm::AttributeSet::FunctionIndex, 1099 B)); 1100 } 1101 } 1102 } 1103 1104 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable( 1105 CodeGen::CodeGenFunction &CGF, 1106 llvm::Value *Address) const { 1107 CodeGen::CGBuilderTy &Builder = CGF.Builder; 1108 1109 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 1110 1111 // 0-7 are the eight integer registers; the order is different 1112 // on Darwin (for EH), but the range is the same. 1113 // 8 is %eip. 1114 AssignToArrayRange(Builder, Address, Four8, 0, 8); 1115 1116 if (CGF.CGM.getTarget().getTriple().isOSDarwin()) { 1117 // 12-16 are st(0..4). Not sure why we stop at 4. 1118 // These have size 16, which is sizeof(long double) on 1119 // platforms with 8-byte alignment for that type. 1120 llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16); 1121 AssignToArrayRange(Builder, Address, Sixteen8, 12, 16); 1122 1123 } else { 1124 // 9 is %eflags, which doesn't get a size on Darwin for some 1125 // reason. 1126 Builder.CreateStore(Four8, Builder.CreateConstInBoundsGEP1_32(Address, 9)); 1127 1128 // 11-16 are st(0..5). Not sure why we stop at 5. 1129 // These have size 12, which is sizeof(long double) on 1130 // platforms with 4-byte alignment for that type. 1131 llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12); 1132 AssignToArrayRange(Builder, Address, Twelve8, 11, 16); 1133 } 1134 1135 return false; 1136 } 1137 1138 //===----------------------------------------------------------------------===// 1139 // X86-64 ABI Implementation 1140 //===----------------------------------------------------------------------===// 1141 1142 1143 namespace { 1144 /// X86_64ABIInfo - The X86_64 ABI information. 1145 class X86_64ABIInfo : public ABIInfo { 1146 enum Class { 1147 Integer = 0, 1148 SSE, 1149 SSEUp, 1150 X87, 1151 X87Up, 1152 ComplexX87, 1153 NoClass, 1154 Memory 1155 }; 1156 1157 /// merge - Implement the X86_64 ABI merging algorithm. 1158 /// 1159 /// Merge an accumulating classification \arg Accum with a field 1160 /// classification \arg Field. 1161 /// 1162 /// \param Accum - The accumulating classification. This should 1163 /// always be either NoClass or the result of a previous merge 1164 /// call. In addition, this should never be Memory (the caller 1165 /// should just return Memory for the aggregate). 1166 static Class merge(Class Accum, Class Field); 1167 1168 /// postMerge - Implement the X86_64 ABI post merging algorithm. 1169 /// 1170 /// Post merger cleanup, reduces a malformed Hi and Lo pair to 1171 /// final MEMORY or SSE classes when necessary. 1172 /// 1173 /// \param AggregateSize - The size of the current aggregate in 1174 /// the classification process. 1175 /// 1176 /// \param Lo - The classification for the parts of the type 1177 /// residing in the low word of the containing object. 1178 /// 1179 /// \param Hi - The classification for the parts of the type 1180 /// residing in the higher words of the containing object. 1181 /// 1182 void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const; 1183 1184 /// classify - Determine the x86_64 register classes in which the 1185 /// given type T should be passed. 1186 /// 1187 /// \param Lo - The classification for the parts of the type 1188 /// residing in the low word of the containing object. 1189 /// 1190 /// \param Hi - The classification for the parts of the type 1191 /// residing in the high word of the containing object. 1192 /// 1193 /// \param OffsetBase - The bit offset of this type in the 1194 /// containing object. Some parameters are classified different 1195 /// depending on whether they straddle an eightbyte boundary. 1196 /// 1197 /// \param isNamedArg - Whether the argument in question is a "named" 1198 /// argument, as used in AMD64-ABI 3.5.7. 1199 /// 1200 /// If a word is unused its result will be NoClass; if a type should 1201 /// be passed in Memory then at least the classification of \arg Lo 1202 /// will be Memory. 1203 /// 1204 /// The \arg Lo class will be NoClass iff the argument is ignored. 1205 /// 1206 /// If the \arg Lo class is ComplexX87, then the \arg Hi class will 1207 /// also be ComplexX87. 1208 void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi, 1209 bool isNamedArg) const; 1210 1211 llvm::Type *GetByteVectorType(QualType Ty) const; 1212 llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType, 1213 unsigned IROffset, QualType SourceTy, 1214 unsigned SourceOffset) const; 1215 llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType, 1216 unsigned IROffset, QualType SourceTy, 1217 unsigned SourceOffset) const; 1218 1219 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 1220 /// such that the argument will be returned in memory. 1221 ABIArgInfo getIndirectReturnResult(QualType Ty) const; 1222 1223 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 1224 /// such that the argument will be passed in memory. 1225 /// 1226 /// \param freeIntRegs - The number of free integer registers remaining 1227 /// available. 1228 ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const; 1229 1230 ABIArgInfo classifyReturnType(QualType RetTy) const; 1231 1232 ABIArgInfo classifyArgumentType(QualType Ty, 1233 unsigned freeIntRegs, 1234 unsigned &neededInt, 1235 unsigned &neededSSE, 1236 bool isNamedArg) const; 1237 1238 bool IsIllegalVectorType(QualType Ty) const; 1239 1240 /// The 0.98 ABI revision clarified a lot of ambiguities, 1241 /// unfortunately in ways that were not always consistent with 1242 /// certain previous compilers. In particular, platforms which 1243 /// required strict binary compatibility with older versions of GCC 1244 /// may need to exempt themselves. 1245 bool honorsRevision0_98() const { 1246 return !getTarget().getTriple().isOSDarwin(); 1247 } 1248 1249 bool HasAVX; 1250 // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on 1251 // 64-bit hardware. 1252 bool Has64BitPointers; 1253 1254 public: 1255 X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, bool hasavx) : 1256 ABIInfo(CGT), HasAVX(hasavx), 1257 Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) { 1258 } 1259 1260 bool isPassedUsingAVXType(QualType type) const { 1261 unsigned neededInt, neededSSE; 1262 // The freeIntRegs argument doesn't matter here. 1263 ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE, 1264 /*isNamedArg*/true); 1265 if (info.isDirect()) { 1266 llvm::Type *ty = info.getCoerceToType(); 1267 if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty)) 1268 return (vectorTy->getBitWidth() > 128); 1269 } 1270 return false; 1271 } 1272 1273 void computeInfo(CGFunctionInfo &FI) const override; 1274 1275 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 1276 CodeGenFunction &CGF) const override; 1277 }; 1278 1279 /// WinX86_64ABIInfo - The Windows X86_64 ABI information. 1280 class WinX86_64ABIInfo : public ABIInfo { 1281 1282 ABIArgInfo classify(QualType Ty, bool IsReturnType) const; 1283 1284 public: 1285 WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 1286 1287 void computeInfo(CGFunctionInfo &FI) const override; 1288 1289 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 1290 CodeGenFunction &CGF) const override; 1291 }; 1292 1293 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo { 1294 public: 1295 X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX) 1296 : TargetCodeGenInfo(new X86_64ABIInfo(CGT, HasAVX)) {} 1297 1298 const X86_64ABIInfo &getABIInfo() const { 1299 return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo()); 1300 } 1301 1302 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 1303 return 7; 1304 } 1305 1306 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 1307 llvm::Value *Address) const override { 1308 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 1309 1310 // 0-15 are the 16 integer registers. 1311 // 16 is %rip. 1312 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 1313 return false; 1314 } 1315 1316 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 1317 StringRef Constraint, 1318 llvm::Type* Ty) const override { 1319 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 1320 } 1321 1322 bool isNoProtoCallVariadic(const CallArgList &args, 1323 const FunctionNoProtoType *fnType) const override { 1324 // The default CC on x86-64 sets %al to the number of SSA 1325 // registers used, and GCC sets this when calling an unprototyped 1326 // function, so we override the default behavior. However, don't do 1327 // that when AVX types are involved: the ABI explicitly states it is 1328 // undefined, and it doesn't work in practice because of how the ABI 1329 // defines varargs anyway. 1330 if (fnType->getCallConv() == CC_C) { 1331 bool HasAVXType = false; 1332 for (CallArgList::const_iterator 1333 it = args.begin(), ie = args.end(); it != ie; ++it) { 1334 if (getABIInfo().isPassedUsingAVXType(it->Ty)) { 1335 HasAVXType = true; 1336 break; 1337 } 1338 } 1339 1340 if (!HasAVXType) 1341 return true; 1342 } 1343 1344 return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType); 1345 } 1346 1347 llvm::Constant * 1348 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 1349 unsigned Sig = (0xeb << 0) | // jmp rel8 1350 (0x0a << 8) | // .+0x0c 1351 ('F' << 16) | 1352 ('T' << 24); 1353 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 1354 } 1355 1356 }; 1357 1358 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) { 1359 // If the argument does not end in .lib, automatically add the suffix. This 1360 // matches the behavior of MSVC. 1361 std::string ArgStr = Lib; 1362 if (!Lib.endswith_lower(".lib")) 1363 ArgStr += ".lib"; 1364 return ArgStr; 1365 } 1366 1367 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo { 1368 public: 1369 WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 1370 bool d, bool p, bool w, unsigned RegParms) 1371 : X86_32TargetCodeGenInfo(CGT, d, p, w, RegParms) {} 1372 1373 void getDependentLibraryOption(llvm::StringRef Lib, 1374 llvm::SmallString<24> &Opt) const override { 1375 Opt = "/DEFAULTLIB:"; 1376 Opt += qualifyWindowsLibrary(Lib); 1377 } 1378 1379 void getDetectMismatchOption(llvm::StringRef Name, 1380 llvm::StringRef Value, 1381 llvm::SmallString<32> &Opt) const override { 1382 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 1383 } 1384 }; 1385 1386 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo { 1387 public: 1388 WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 1389 : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {} 1390 1391 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 1392 return 7; 1393 } 1394 1395 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 1396 llvm::Value *Address) const override { 1397 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 1398 1399 // 0-15 are the 16 integer registers. 1400 // 16 is %rip. 1401 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 1402 return false; 1403 } 1404 1405 void getDependentLibraryOption(llvm::StringRef Lib, 1406 llvm::SmallString<24> &Opt) const override { 1407 Opt = "/DEFAULTLIB:"; 1408 Opt += qualifyWindowsLibrary(Lib); 1409 } 1410 1411 void getDetectMismatchOption(llvm::StringRef Name, 1412 llvm::StringRef Value, 1413 llvm::SmallString<32> &Opt) const override { 1414 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 1415 } 1416 }; 1417 1418 } 1419 1420 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo, 1421 Class &Hi) const { 1422 // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done: 1423 // 1424 // (a) If one of the classes is Memory, the whole argument is passed in 1425 // memory. 1426 // 1427 // (b) If X87UP is not preceded by X87, the whole argument is passed in 1428 // memory. 1429 // 1430 // (c) If the size of the aggregate exceeds two eightbytes and the first 1431 // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole 1432 // argument is passed in memory. NOTE: This is necessary to keep the 1433 // ABI working for processors that don't support the __m256 type. 1434 // 1435 // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE. 1436 // 1437 // Some of these are enforced by the merging logic. Others can arise 1438 // only with unions; for example: 1439 // union { _Complex double; unsigned; } 1440 // 1441 // Note that clauses (b) and (c) were added in 0.98. 1442 // 1443 if (Hi == Memory) 1444 Lo = Memory; 1445 if (Hi == X87Up && Lo != X87 && honorsRevision0_98()) 1446 Lo = Memory; 1447 if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp)) 1448 Lo = Memory; 1449 if (Hi == SSEUp && Lo != SSE) 1450 Hi = SSE; 1451 } 1452 1453 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) { 1454 // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is 1455 // classified recursively so that always two fields are 1456 // considered. The resulting class is calculated according to 1457 // the classes of the fields in the eightbyte: 1458 // 1459 // (a) If both classes are equal, this is the resulting class. 1460 // 1461 // (b) If one of the classes is NO_CLASS, the resulting class is 1462 // the other class. 1463 // 1464 // (c) If one of the classes is MEMORY, the result is the MEMORY 1465 // class. 1466 // 1467 // (d) If one of the classes is INTEGER, the result is the 1468 // INTEGER. 1469 // 1470 // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class, 1471 // MEMORY is used as class. 1472 // 1473 // (f) Otherwise class SSE is used. 1474 1475 // Accum should never be memory (we should have returned) or 1476 // ComplexX87 (because this cannot be passed in a structure). 1477 assert((Accum != Memory && Accum != ComplexX87) && 1478 "Invalid accumulated classification during merge."); 1479 if (Accum == Field || Field == NoClass) 1480 return Accum; 1481 if (Field == Memory) 1482 return Memory; 1483 if (Accum == NoClass) 1484 return Field; 1485 if (Accum == Integer || Field == Integer) 1486 return Integer; 1487 if (Field == X87 || Field == X87Up || Field == ComplexX87 || 1488 Accum == X87 || Accum == X87Up) 1489 return Memory; 1490 return SSE; 1491 } 1492 1493 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, 1494 Class &Lo, Class &Hi, bool isNamedArg) const { 1495 // FIXME: This code can be simplified by introducing a simple value class for 1496 // Class pairs with appropriate constructor methods for the various 1497 // situations. 1498 1499 // FIXME: Some of the split computations are wrong; unaligned vectors 1500 // shouldn't be passed in registers for example, so there is no chance they 1501 // can straddle an eightbyte. Verify & simplify. 1502 1503 Lo = Hi = NoClass; 1504 1505 Class &Current = OffsetBase < 64 ? Lo : Hi; 1506 Current = Memory; 1507 1508 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 1509 BuiltinType::Kind k = BT->getKind(); 1510 1511 if (k == BuiltinType::Void) { 1512 Current = NoClass; 1513 } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) { 1514 Lo = Integer; 1515 Hi = Integer; 1516 } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) { 1517 Current = Integer; 1518 } else if ((k == BuiltinType::Float || k == BuiltinType::Double) || 1519 (k == BuiltinType::LongDouble && 1520 getTarget().getTriple().isOSNaCl())) { 1521 Current = SSE; 1522 } else if (k == BuiltinType::LongDouble) { 1523 Lo = X87; 1524 Hi = X87Up; 1525 } 1526 // FIXME: _Decimal32 and _Decimal64 are SSE. 1527 // FIXME: _float128 and _Decimal128 are (SSE, SSEUp). 1528 return; 1529 } 1530 1531 if (const EnumType *ET = Ty->getAs<EnumType>()) { 1532 // Classify the underlying integer type. 1533 classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg); 1534 return; 1535 } 1536 1537 if (Ty->hasPointerRepresentation()) { 1538 Current = Integer; 1539 return; 1540 } 1541 1542 if (Ty->isMemberPointerType()) { 1543 if (Ty->isMemberFunctionPointerType() && Has64BitPointers) 1544 Lo = Hi = Integer; 1545 else 1546 Current = Integer; 1547 return; 1548 } 1549 1550 if (const VectorType *VT = Ty->getAs<VectorType>()) { 1551 uint64_t Size = getContext().getTypeSize(VT); 1552 if (Size == 32) { 1553 // gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x 1554 // float> as integer. 1555 Current = Integer; 1556 1557 // If this type crosses an eightbyte boundary, it should be 1558 // split. 1559 uint64_t EB_Real = (OffsetBase) / 64; 1560 uint64_t EB_Imag = (OffsetBase + Size - 1) / 64; 1561 if (EB_Real != EB_Imag) 1562 Hi = Lo; 1563 } else if (Size == 64) { 1564 // gcc passes <1 x double> in memory. :( 1565 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) 1566 return; 1567 1568 // gcc passes <1 x long long> as INTEGER. 1569 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong) || 1570 VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULongLong) || 1571 VT->getElementType()->isSpecificBuiltinType(BuiltinType::Long) || 1572 VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULong)) 1573 Current = Integer; 1574 else 1575 Current = SSE; 1576 1577 // If this type crosses an eightbyte boundary, it should be 1578 // split. 1579 if (OffsetBase && OffsetBase != 64) 1580 Hi = Lo; 1581 } else if (Size == 128 || (HasAVX && isNamedArg && Size == 256)) { 1582 // Arguments of 256-bits are split into four eightbyte chunks. The 1583 // least significant one belongs to class SSE and all the others to class 1584 // SSEUP. The original Lo and Hi design considers that types can't be 1585 // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense. 1586 // This design isn't correct for 256-bits, but since there're no cases 1587 // where the upper parts would need to be inspected, avoid adding 1588 // complexity and just consider Hi to match the 64-256 part. 1589 // 1590 // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in 1591 // registers if they are "named", i.e. not part of the "..." of a 1592 // variadic function. 1593 Lo = SSE; 1594 Hi = SSEUp; 1595 } 1596 return; 1597 } 1598 1599 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 1600 QualType ET = getContext().getCanonicalType(CT->getElementType()); 1601 1602 uint64_t Size = getContext().getTypeSize(Ty); 1603 if (ET->isIntegralOrEnumerationType()) { 1604 if (Size <= 64) 1605 Current = Integer; 1606 else if (Size <= 128) 1607 Lo = Hi = Integer; 1608 } else if (ET == getContext().FloatTy) 1609 Current = SSE; 1610 else if (ET == getContext().DoubleTy || 1611 (ET == getContext().LongDoubleTy && 1612 getTarget().getTriple().isOSNaCl())) 1613 Lo = Hi = SSE; 1614 else if (ET == getContext().LongDoubleTy) 1615 Current = ComplexX87; 1616 1617 // If this complex type crosses an eightbyte boundary then it 1618 // should be split. 1619 uint64_t EB_Real = (OffsetBase) / 64; 1620 uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64; 1621 if (Hi == NoClass && EB_Real != EB_Imag) 1622 Hi = Lo; 1623 1624 return; 1625 } 1626 1627 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 1628 // Arrays are treated like structures. 1629 1630 uint64_t Size = getContext().getTypeSize(Ty); 1631 1632 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 1633 // than four eightbytes, ..., it has class MEMORY. 1634 if (Size > 256) 1635 return; 1636 1637 // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned 1638 // fields, it has class MEMORY. 1639 // 1640 // Only need to check alignment of array base. 1641 if (OffsetBase % getContext().getTypeAlign(AT->getElementType())) 1642 return; 1643 1644 // Otherwise implement simplified merge. We could be smarter about 1645 // this, but it isn't worth it and would be harder to verify. 1646 Current = NoClass; 1647 uint64_t EltSize = getContext().getTypeSize(AT->getElementType()); 1648 uint64_t ArraySize = AT->getSize().getZExtValue(); 1649 1650 // The only case a 256-bit wide vector could be used is when the array 1651 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 1652 // to work for sizes wider than 128, early check and fallback to memory. 1653 if (Size > 128 && EltSize != 256) 1654 return; 1655 1656 for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) { 1657 Class FieldLo, FieldHi; 1658 classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg); 1659 Lo = merge(Lo, FieldLo); 1660 Hi = merge(Hi, FieldHi); 1661 if (Lo == Memory || Hi == Memory) 1662 break; 1663 } 1664 1665 postMerge(Size, Lo, Hi); 1666 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification."); 1667 return; 1668 } 1669 1670 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1671 uint64_t Size = getContext().getTypeSize(Ty); 1672 1673 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 1674 // than four eightbytes, ..., it has class MEMORY. 1675 if (Size > 256) 1676 return; 1677 1678 // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial 1679 // copy constructor or a non-trivial destructor, it is passed by invisible 1680 // reference. 1681 if (getRecordArgABI(RT, getCXXABI())) 1682 return; 1683 1684 const RecordDecl *RD = RT->getDecl(); 1685 1686 // Assume variable sized types are passed in memory. 1687 if (RD->hasFlexibleArrayMember()) 1688 return; 1689 1690 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 1691 1692 // Reset Lo class, this will be recomputed. 1693 Current = NoClass; 1694 1695 // If this is a C++ record, classify the bases first. 1696 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 1697 for (const auto &I : CXXRD->bases()) { 1698 assert(!I.isVirtual() && !I.getType()->isDependentType() && 1699 "Unexpected base class!"); 1700 const CXXRecordDecl *Base = 1701 cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); 1702 1703 // Classify this field. 1704 // 1705 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a 1706 // single eightbyte, each is classified separately. Each eightbyte gets 1707 // initialized to class NO_CLASS. 1708 Class FieldLo, FieldHi; 1709 uint64_t Offset = 1710 OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base)); 1711 classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg); 1712 Lo = merge(Lo, FieldLo); 1713 Hi = merge(Hi, FieldHi); 1714 if (Lo == Memory || Hi == Memory) 1715 break; 1716 } 1717 } 1718 1719 // Classify the fields one at a time, merging the results. 1720 unsigned idx = 0; 1721 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 1722 i != e; ++i, ++idx) { 1723 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 1724 bool BitField = i->isBitField(); 1725 1726 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than 1727 // four eightbytes, or it contains unaligned fields, it has class MEMORY. 1728 // 1729 // The only case a 256-bit wide vector could be used is when the struct 1730 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 1731 // to work for sizes wider than 128, early check and fallback to memory. 1732 // 1733 if (Size > 128 && getContext().getTypeSize(i->getType()) != 256) { 1734 Lo = Memory; 1735 return; 1736 } 1737 // Note, skip this test for bit-fields, see below. 1738 if (!BitField && Offset % getContext().getTypeAlign(i->getType())) { 1739 Lo = Memory; 1740 return; 1741 } 1742 1743 // Classify this field. 1744 // 1745 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate 1746 // exceeds a single eightbyte, each is classified 1747 // separately. Each eightbyte gets initialized to class 1748 // NO_CLASS. 1749 Class FieldLo, FieldHi; 1750 1751 // Bit-fields require special handling, they do not force the 1752 // structure to be passed in memory even if unaligned, and 1753 // therefore they can straddle an eightbyte. 1754 if (BitField) { 1755 // Ignore padding bit-fields. 1756 if (i->isUnnamedBitfield()) 1757 continue; 1758 1759 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 1760 uint64_t Size = i->getBitWidthValue(getContext()); 1761 1762 uint64_t EB_Lo = Offset / 64; 1763 uint64_t EB_Hi = (Offset + Size - 1) / 64; 1764 1765 if (EB_Lo) { 1766 assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes."); 1767 FieldLo = NoClass; 1768 FieldHi = Integer; 1769 } else { 1770 FieldLo = Integer; 1771 FieldHi = EB_Hi ? Integer : NoClass; 1772 } 1773 } else 1774 classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg); 1775 Lo = merge(Lo, FieldLo); 1776 Hi = merge(Hi, FieldHi); 1777 if (Lo == Memory || Hi == Memory) 1778 break; 1779 } 1780 1781 postMerge(Size, Lo, Hi); 1782 } 1783 } 1784 1785 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const { 1786 // If this is a scalar LLVM value then assume LLVM will pass it in the right 1787 // place naturally. 1788 if (!isAggregateTypeForABI(Ty)) { 1789 // Treat an enum type as its underlying type. 1790 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 1791 Ty = EnumTy->getDecl()->getIntegerType(); 1792 1793 return (Ty->isPromotableIntegerType() ? 1794 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 1795 } 1796 1797 return ABIArgInfo::getIndirect(0); 1798 } 1799 1800 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const { 1801 if (const VectorType *VecTy = Ty->getAs<VectorType>()) { 1802 uint64_t Size = getContext().getTypeSize(VecTy); 1803 unsigned LargestVector = HasAVX ? 256 : 128; 1804 if (Size <= 64 || Size > LargestVector) 1805 return true; 1806 } 1807 1808 return false; 1809 } 1810 1811 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty, 1812 unsigned freeIntRegs) const { 1813 // If this is a scalar LLVM value then assume LLVM will pass it in the right 1814 // place naturally. 1815 // 1816 // This assumption is optimistic, as there could be free registers available 1817 // when we need to pass this argument in memory, and LLVM could try to pass 1818 // the argument in the free register. This does not seem to happen currently, 1819 // but this code would be much safer if we could mark the argument with 1820 // 'onstack'. See PR12193. 1821 if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) { 1822 // Treat an enum type as its underlying type. 1823 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 1824 Ty = EnumTy->getDecl()->getIntegerType(); 1825 1826 return (Ty->isPromotableIntegerType() ? 1827 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 1828 } 1829 1830 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 1831 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 1832 1833 // Compute the byval alignment. We specify the alignment of the byval in all 1834 // cases so that the mid-level optimizer knows the alignment of the byval. 1835 unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U); 1836 1837 // Attempt to avoid passing indirect results using byval when possible. This 1838 // is important for good codegen. 1839 // 1840 // We do this by coercing the value into a scalar type which the backend can 1841 // handle naturally (i.e., without using byval). 1842 // 1843 // For simplicity, we currently only do this when we have exhausted all of the 1844 // free integer registers. Doing this when there are free integer registers 1845 // would require more care, as we would have to ensure that the coerced value 1846 // did not claim the unused register. That would require either reording the 1847 // arguments to the function (so that any subsequent inreg values came first), 1848 // or only doing this optimization when there were no following arguments that 1849 // might be inreg. 1850 // 1851 // We currently expect it to be rare (particularly in well written code) for 1852 // arguments to be passed on the stack when there are still free integer 1853 // registers available (this would typically imply large structs being passed 1854 // by value), so this seems like a fair tradeoff for now. 1855 // 1856 // We can revisit this if the backend grows support for 'onstack' parameter 1857 // attributes. See PR12193. 1858 if (freeIntRegs == 0) { 1859 uint64_t Size = getContext().getTypeSize(Ty); 1860 1861 // If this type fits in an eightbyte, coerce it into the matching integral 1862 // type, which will end up on the stack (with alignment 8). 1863 if (Align == 8 && Size <= 64) 1864 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1865 Size)); 1866 } 1867 1868 return ABIArgInfo::getIndirect(Align); 1869 } 1870 1871 /// GetByteVectorType - The ABI specifies that a value should be passed in an 1872 /// full vector XMM/YMM register. Pick an LLVM IR type that will be passed as a 1873 /// vector register. 1874 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const { 1875 llvm::Type *IRType = CGT.ConvertType(Ty); 1876 1877 // Wrapper structs that just contain vectors are passed just like vectors, 1878 // strip them off if present. 1879 llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType); 1880 while (STy && STy->getNumElements() == 1) { 1881 IRType = STy->getElementType(0); 1882 STy = dyn_cast<llvm::StructType>(IRType); 1883 } 1884 1885 // If the preferred type is a 16-byte vector, prefer to pass it. 1886 if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(IRType)){ 1887 llvm::Type *EltTy = VT->getElementType(); 1888 unsigned BitWidth = VT->getBitWidth(); 1889 if ((BitWidth >= 128 && BitWidth <= 256) && 1890 (EltTy->isFloatTy() || EltTy->isDoubleTy() || 1891 EltTy->isIntegerTy(8) || EltTy->isIntegerTy(16) || 1892 EltTy->isIntegerTy(32) || EltTy->isIntegerTy(64) || 1893 EltTy->isIntegerTy(128))) 1894 return VT; 1895 } 1896 1897 return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 2); 1898 } 1899 1900 /// BitsContainNoUserData - Return true if the specified [start,end) bit range 1901 /// is known to either be off the end of the specified type or being in 1902 /// alignment padding. The user type specified is known to be at most 128 bits 1903 /// in size, and have passed through X86_64ABIInfo::classify with a successful 1904 /// classification that put one of the two halves in the INTEGER class. 1905 /// 1906 /// It is conservatively correct to return false. 1907 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit, 1908 unsigned EndBit, ASTContext &Context) { 1909 // If the bytes being queried are off the end of the type, there is no user 1910 // data hiding here. This handles analysis of builtins, vectors and other 1911 // types that don't contain interesting padding. 1912 unsigned TySize = (unsigned)Context.getTypeSize(Ty); 1913 if (TySize <= StartBit) 1914 return true; 1915 1916 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 1917 unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType()); 1918 unsigned NumElts = (unsigned)AT->getSize().getZExtValue(); 1919 1920 // Check each element to see if the element overlaps with the queried range. 1921 for (unsigned i = 0; i != NumElts; ++i) { 1922 // If the element is after the span we care about, then we're done.. 1923 unsigned EltOffset = i*EltSize; 1924 if (EltOffset >= EndBit) break; 1925 1926 unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0; 1927 if (!BitsContainNoUserData(AT->getElementType(), EltStart, 1928 EndBit-EltOffset, Context)) 1929 return false; 1930 } 1931 // If it overlaps no elements, then it is safe to process as padding. 1932 return true; 1933 } 1934 1935 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1936 const RecordDecl *RD = RT->getDecl(); 1937 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 1938 1939 // If this is a C++ record, check the bases first. 1940 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 1941 for (const auto &I : CXXRD->bases()) { 1942 assert(!I.isVirtual() && !I.getType()->isDependentType() && 1943 "Unexpected base class!"); 1944 const CXXRecordDecl *Base = 1945 cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); 1946 1947 // If the base is after the span we care about, ignore it. 1948 unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base)); 1949 if (BaseOffset >= EndBit) continue; 1950 1951 unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0; 1952 if (!BitsContainNoUserData(I.getType(), BaseStart, 1953 EndBit-BaseOffset, Context)) 1954 return false; 1955 } 1956 } 1957 1958 // Verify that no field has data that overlaps the region of interest. Yes 1959 // this could be sped up a lot by being smarter about queried fields, 1960 // however we're only looking at structs up to 16 bytes, so we don't care 1961 // much. 1962 unsigned idx = 0; 1963 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 1964 i != e; ++i, ++idx) { 1965 unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx); 1966 1967 // If we found a field after the region we care about, then we're done. 1968 if (FieldOffset >= EndBit) break; 1969 1970 unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0; 1971 if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset, 1972 Context)) 1973 return false; 1974 } 1975 1976 // If nothing in this record overlapped the area of interest, then we're 1977 // clean. 1978 return true; 1979 } 1980 1981 return false; 1982 } 1983 1984 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a 1985 /// float member at the specified offset. For example, {int,{float}} has a 1986 /// float at offset 4. It is conservatively correct for this routine to return 1987 /// false. 1988 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset, 1989 const llvm::DataLayout &TD) { 1990 // Base case if we find a float. 1991 if (IROffset == 0 && IRType->isFloatTy()) 1992 return true; 1993 1994 // If this is a struct, recurse into the field at the specified offset. 1995 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 1996 const llvm::StructLayout *SL = TD.getStructLayout(STy); 1997 unsigned Elt = SL->getElementContainingOffset(IROffset); 1998 IROffset -= SL->getElementOffset(Elt); 1999 return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD); 2000 } 2001 2002 // If this is an array, recurse into the field at the specified offset. 2003 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 2004 llvm::Type *EltTy = ATy->getElementType(); 2005 unsigned EltSize = TD.getTypeAllocSize(EltTy); 2006 IROffset -= IROffset/EltSize*EltSize; 2007 return ContainsFloatAtOffset(EltTy, IROffset, TD); 2008 } 2009 2010 return false; 2011 } 2012 2013 2014 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the 2015 /// low 8 bytes of an XMM register, corresponding to the SSE class. 2016 llvm::Type *X86_64ABIInfo:: 2017 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset, 2018 QualType SourceTy, unsigned SourceOffset) const { 2019 // The only three choices we have are either double, <2 x float>, or float. We 2020 // pass as float if the last 4 bytes is just padding. This happens for 2021 // structs that contain 3 floats. 2022 if (BitsContainNoUserData(SourceTy, SourceOffset*8+32, 2023 SourceOffset*8+64, getContext())) 2024 return llvm::Type::getFloatTy(getVMContext()); 2025 2026 // We want to pass as <2 x float> if the LLVM IR type contains a float at 2027 // offset+0 and offset+4. Walk the LLVM IR type to find out if this is the 2028 // case. 2029 if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) && 2030 ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout())) 2031 return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2); 2032 2033 return llvm::Type::getDoubleTy(getVMContext()); 2034 } 2035 2036 2037 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in 2038 /// an 8-byte GPR. This means that we either have a scalar or we are talking 2039 /// about the high or low part of an up-to-16-byte struct. This routine picks 2040 /// the best LLVM IR type to represent this, which may be i64 or may be anything 2041 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*, 2042 /// etc). 2043 /// 2044 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for 2045 /// the source type. IROffset is an offset in bytes into the LLVM IR type that 2046 /// the 8-byte value references. PrefType may be null. 2047 /// 2048 /// SourceTy is the source level type for the entire argument. SourceOffset is 2049 /// an offset into this that we're processing (which is always either 0 or 8). 2050 /// 2051 llvm::Type *X86_64ABIInfo:: 2052 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset, 2053 QualType SourceTy, unsigned SourceOffset) const { 2054 // If we're dealing with an un-offset LLVM IR type, then it means that we're 2055 // returning an 8-byte unit starting with it. See if we can safely use it. 2056 if (IROffset == 0) { 2057 // Pointers and int64's always fill the 8-byte unit. 2058 if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) || 2059 IRType->isIntegerTy(64)) 2060 return IRType; 2061 2062 // If we have a 1/2/4-byte integer, we can use it only if the rest of the 2063 // goodness in the source type is just tail padding. This is allowed to 2064 // kick in for struct {double,int} on the int, but not on 2065 // struct{double,int,int} because we wouldn't return the second int. We 2066 // have to do this analysis on the source type because we can't depend on 2067 // unions being lowered a specific way etc. 2068 if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) || 2069 IRType->isIntegerTy(32) || 2070 (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) { 2071 unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 : 2072 cast<llvm::IntegerType>(IRType)->getBitWidth(); 2073 2074 if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth, 2075 SourceOffset*8+64, getContext())) 2076 return IRType; 2077 } 2078 } 2079 2080 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 2081 // If this is a struct, recurse into the field at the specified offset. 2082 const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy); 2083 if (IROffset < SL->getSizeInBytes()) { 2084 unsigned FieldIdx = SL->getElementContainingOffset(IROffset); 2085 IROffset -= SL->getElementOffset(FieldIdx); 2086 2087 return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset, 2088 SourceTy, SourceOffset); 2089 } 2090 } 2091 2092 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 2093 llvm::Type *EltTy = ATy->getElementType(); 2094 unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy); 2095 unsigned EltOffset = IROffset/EltSize*EltSize; 2096 return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy, 2097 SourceOffset); 2098 } 2099 2100 // Okay, we don't have any better idea of what to pass, so we pass this in an 2101 // integer register that isn't too big to fit the rest of the struct. 2102 unsigned TySizeInBytes = 2103 (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity(); 2104 2105 assert(TySizeInBytes != SourceOffset && "Empty field?"); 2106 2107 // It is always safe to classify this as an integer type up to i64 that 2108 // isn't larger than the structure. 2109 return llvm::IntegerType::get(getVMContext(), 2110 std::min(TySizeInBytes-SourceOffset, 8U)*8); 2111 } 2112 2113 2114 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally 2115 /// be used as elements of a two register pair to pass or return, return a 2116 /// first class aggregate to represent them. For example, if the low part of 2117 /// a by-value argument should be passed as i32* and the high part as float, 2118 /// return {i32*, float}. 2119 static llvm::Type * 2120 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi, 2121 const llvm::DataLayout &TD) { 2122 // In order to correctly satisfy the ABI, we need to the high part to start 2123 // at offset 8. If the high and low parts we inferred are both 4-byte types 2124 // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have 2125 // the second element at offset 8. Check for this: 2126 unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo); 2127 unsigned HiAlign = TD.getABITypeAlignment(Hi); 2128 unsigned HiStart = llvm::DataLayout::RoundUpAlignment(LoSize, HiAlign); 2129 assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!"); 2130 2131 // To handle this, we have to increase the size of the low part so that the 2132 // second element will start at an 8 byte offset. We can't increase the size 2133 // of the second element because it might make us access off the end of the 2134 // struct. 2135 if (HiStart != 8) { 2136 // There are only two sorts of types the ABI generation code can produce for 2137 // the low part of a pair that aren't 8 bytes in size: float or i8/i16/i32. 2138 // Promote these to a larger type. 2139 if (Lo->isFloatTy()) 2140 Lo = llvm::Type::getDoubleTy(Lo->getContext()); 2141 else { 2142 assert(Lo->isIntegerTy() && "Invalid/unknown lo type"); 2143 Lo = llvm::Type::getInt64Ty(Lo->getContext()); 2144 } 2145 } 2146 2147 llvm::StructType *Result = llvm::StructType::get(Lo, Hi, NULL); 2148 2149 2150 // Verify that the second element is at an 8-byte offset. 2151 assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 && 2152 "Invalid x86-64 argument pair!"); 2153 return Result; 2154 } 2155 2156 ABIArgInfo X86_64ABIInfo:: 2157 classifyReturnType(QualType RetTy) const { 2158 // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the 2159 // classification algorithm. 2160 X86_64ABIInfo::Class Lo, Hi; 2161 classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true); 2162 2163 // Check some invariants. 2164 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 2165 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 2166 2167 llvm::Type *ResType = nullptr; 2168 switch (Lo) { 2169 case NoClass: 2170 if (Hi == NoClass) 2171 return ABIArgInfo::getIgnore(); 2172 // If the low part is just padding, it takes no register, leave ResType 2173 // null. 2174 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 2175 "Unknown missing lo part"); 2176 break; 2177 2178 case SSEUp: 2179 case X87Up: 2180 llvm_unreachable("Invalid classification for lo word."); 2181 2182 // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via 2183 // hidden argument. 2184 case Memory: 2185 return getIndirectReturnResult(RetTy); 2186 2187 // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next 2188 // available register of the sequence %rax, %rdx is used. 2189 case Integer: 2190 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 2191 2192 // If we have a sign or zero extended integer, make sure to return Extend 2193 // so that the parameter gets the right LLVM IR attributes. 2194 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 2195 // Treat an enum type as its underlying type. 2196 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 2197 RetTy = EnumTy->getDecl()->getIntegerType(); 2198 2199 if (RetTy->isIntegralOrEnumerationType() && 2200 RetTy->isPromotableIntegerType()) 2201 return ABIArgInfo::getExtend(); 2202 } 2203 break; 2204 2205 // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next 2206 // available SSE register of the sequence %xmm0, %xmm1 is used. 2207 case SSE: 2208 ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 2209 break; 2210 2211 // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is 2212 // returned on the X87 stack in %st0 as 80-bit x87 number. 2213 case X87: 2214 ResType = llvm::Type::getX86_FP80Ty(getVMContext()); 2215 break; 2216 2217 // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real 2218 // part of the value is returned in %st0 and the imaginary part in 2219 // %st1. 2220 case ComplexX87: 2221 assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification."); 2222 ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()), 2223 llvm::Type::getX86_FP80Ty(getVMContext()), 2224 NULL); 2225 break; 2226 } 2227 2228 llvm::Type *HighPart = nullptr; 2229 switch (Hi) { 2230 // Memory was handled previously and X87 should 2231 // never occur as a hi class. 2232 case Memory: 2233 case X87: 2234 llvm_unreachable("Invalid classification for hi word."); 2235 2236 case ComplexX87: // Previously handled. 2237 case NoClass: 2238 break; 2239 2240 case Integer: 2241 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 2242 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 2243 return ABIArgInfo::getDirect(HighPart, 8); 2244 break; 2245 case SSE: 2246 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 2247 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 2248 return ABIArgInfo::getDirect(HighPart, 8); 2249 break; 2250 2251 // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte 2252 // is passed in the next available eightbyte chunk if the last used 2253 // vector register. 2254 // 2255 // SSEUP should always be preceded by SSE, just widen. 2256 case SSEUp: 2257 assert(Lo == SSE && "Unexpected SSEUp classification."); 2258 ResType = GetByteVectorType(RetTy); 2259 break; 2260 2261 // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is 2262 // returned together with the previous X87 value in %st0. 2263 case X87Up: 2264 // If X87Up is preceded by X87, we don't need to do 2265 // anything. However, in some cases with unions it may not be 2266 // preceded by X87. In such situations we follow gcc and pass the 2267 // extra bits in an SSE reg. 2268 if (Lo != X87) { 2269 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 2270 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 2271 return ABIArgInfo::getDirect(HighPart, 8); 2272 } 2273 break; 2274 } 2275 2276 // If a high part was specified, merge it together with the low part. It is 2277 // known to pass in the high eightbyte of the result. We do this by forming a 2278 // first class struct aggregate with the high and low part: {low, high} 2279 if (HighPart) 2280 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 2281 2282 return ABIArgInfo::getDirect(ResType); 2283 } 2284 2285 ABIArgInfo X86_64ABIInfo::classifyArgumentType( 2286 QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE, 2287 bool isNamedArg) 2288 const 2289 { 2290 X86_64ABIInfo::Class Lo, Hi; 2291 classify(Ty, 0, Lo, Hi, isNamedArg); 2292 2293 // Check some invariants. 2294 // FIXME: Enforce these by construction. 2295 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 2296 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 2297 2298 neededInt = 0; 2299 neededSSE = 0; 2300 llvm::Type *ResType = nullptr; 2301 switch (Lo) { 2302 case NoClass: 2303 if (Hi == NoClass) 2304 return ABIArgInfo::getIgnore(); 2305 // If the low part is just padding, it takes no register, leave ResType 2306 // null. 2307 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 2308 "Unknown missing lo part"); 2309 break; 2310 2311 // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument 2312 // on the stack. 2313 case Memory: 2314 2315 // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or 2316 // COMPLEX_X87, it is passed in memory. 2317 case X87: 2318 case ComplexX87: 2319 if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect) 2320 ++neededInt; 2321 return getIndirectResult(Ty, freeIntRegs); 2322 2323 case SSEUp: 2324 case X87Up: 2325 llvm_unreachable("Invalid classification for lo word."); 2326 2327 // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next 2328 // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8 2329 // and %r9 is used. 2330 case Integer: 2331 ++neededInt; 2332 2333 // Pick an 8-byte type based on the preferred type. 2334 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0); 2335 2336 // If we have a sign or zero extended integer, make sure to return Extend 2337 // so that the parameter gets the right LLVM IR attributes. 2338 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 2339 // Treat an enum type as its underlying type. 2340 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2341 Ty = EnumTy->getDecl()->getIntegerType(); 2342 2343 if (Ty->isIntegralOrEnumerationType() && 2344 Ty->isPromotableIntegerType()) 2345 return ABIArgInfo::getExtend(); 2346 } 2347 2348 break; 2349 2350 // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next 2351 // available SSE register is used, the registers are taken in the 2352 // order from %xmm0 to %xmm7. 2353 case SSE: { 2354 llvm::Type *IRType = CGT.ConvertType(Ty); 2355 ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0); 2356 ++neededSSE; 2357 break; 2358 } 2359 } 2360 2361 llvm::Type *HighPart = nullptr; 2362 switch (Hi) { 2363 // Memory was handled previously, ComplexX87 and X87 should 2364 // never occur as hi classes, and X87Up must be preceded by X87, 2365 // which is passed in memory. 2366 case Memory: 2367 case X87: 2368 case ComplexX87: 2369 llvm_unreachable("Invalid classification for hi word."); 2370 2371 case NoClass: break; 2372 2373 case Integer: 2374 ++neededInt; 2375 // Pick an 8-byte type based on the preferred type. 2376 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 2377 2378 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 2379 return ABIArgInfo::getDirect(HighPart, 8); 2380 break; 2381 2382 // X87Up generally doesn't occur here (long double is passed in 2383 // memory), except in situations involving unions. 2384 case X87Up: 2385 case SSE: 2386 HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 2387 2388 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 2389 return ABIArgInfo::getDirect(HighPart, 8); 2390 2391 ++neededSSE; 2392 break; 2393 2394 // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the 2395 // eightbyte is passed in the upper half of the last used SSE 2396 // register. This only happens when 128-bit vectors are passed. 2397 case SSEUp: 2398 assert(Lo == SSE && "Unexpected SSEUp classification"); 2399 ResType = GetByteVectorType(Ty); 2400 break; 2401 } 2402 2403 // If a high part was specified, merge it together with the low part. It is 2404 // known to pass in the high eightbyte of the result. We do this by forming a 2405 // first class struct aggregate with the high and low part: {low, high} 2406 if (HighPart) 2407 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 2408 2409 return ABIArgInfo::getDirect(ResType); 2410 } 2411 2412 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 2413 2414 if (!getCXXABI().classifyReturnType(FI)) 2415 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 2416 2417 // Keep track of the number of assigned registers. 2418 unsigned freeIntRegs = 6, freeSSERegs = 8; 2419 2420 // If the return value is indirect, then the hidden argument is consuming one 2421 // integer register. 2422 if (FI.getReturnInfo().isIndirect()) 2423 --freeIntRegs; 2424 2425 bool isVariadic = FI.isVariadic(); 2426 unsigned numRequiredArgs = 0; 2427 if (isVariadic) 2428 numRequiredArgs = FI.getRequiredArgs().getNumRequiredArgs(); 2429 2430 // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers 2431 // get assigned (in left-to-right order) for passing as follows... 2432 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 2433 it != ie; ++it) { 2434 bool isNamedArg = true; 2435 if (isVariadic) 2436 isNamedArg = (it - FI.arg_begin()) < 2437 static_cast<signed>(numRequiredArgs); 2438 2439 unsigned neededInt, neededSSE; 2440 it->info = classifyArgumentType(it->type, freeIntRegs, neededInt, 2441 neededSSE, isNamedArg); 2442 2443 // AMD64-ABI 3.2.3p3: If there are no registers available for any 2444 // eightbyte of an argument, the whole argument is passed on the 2445 // stack. If registers have already been assigned for some 2446 // eightbytes of such an argument, the assignments get reverted. 2447 if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) { 2448 freeIntRegs -= neededInt; 2449 freeSSERegs -= neededSSE; 2450 } else { 2451 it->info = getIndirectResult(it->type, freeIntRegs); 2452 } 2453 } 2454 } 2455 2456 static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr, 2457 QualType Ty, 2458 CodeGenFunction &CGF) { 2459 llvm::Value *overflow_arg_area_p = 2460 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p"); 2461 llvm::Value *overflow_arg_area = 2462 CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area"); 2463 2464 // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16 2465 // byte boundary if alignment needed by type exceeds 8 byte boundary. 2466 // It isn't stated explicitly in the standard, but in practice we use 2467 // alignment greater than 16 where necessary. 2468 uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8; 2469 if (Align > 8) { 2470 // overflow_arg_area = (overflow_arg_area + align - 1) & -align; 2471 llvm::Value *Offset = 2472 llvm::ConstantInt::get(CGF.Int64Ty, Align - 1); 2473 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset); 2474 llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area, 2475 CGF.Int64Ty); 2476 llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, -(uint64_t)Align); 2477 overflow_arg_area = 2478 CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask), 2479 overflow_arg_area->getType(), 2480 "overflow_arg_area.align"); 2481 } 2482 2483 // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area. 2484 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 2485 llvm::Value *Res = 2486 CGF.Builder.CreateBitCast(overflow_arg_area, 2487 llvm::PointerType::getUnqual(LTy)); 2488 2489 // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to: 2490 // l->overflow_arg_area + sizeof(type). 2491 // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to 2492 // an 8 byte boundary. 2493 2494 uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8; 2495 llvm::Value *Offset = 2496 llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7); 2497 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset, 2498 "overflow_arg_area.next"); 2499 CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p); 2500 2501 // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type. 2502 return Res; 2503 } 2504 2505 llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 2506 CodeGenFunction &CGF) const { 2507 // Assume that va_list type is correct; should be pointer to LLVM type: 2508 // struct { 2509 // i32 gp_offset; 2510 // i32 fp_offset; 2511 // i8* overflow_arg_area; 2512 // i8* reg_save_area; 2513 // }; 2514 unsigned neededInt, neededSSE; 2515 2516 Ty = CGF.getContext().getCanonicalType(Ty); 2517 ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE, 2518 /*isNamedArg*/false); 2519 2520 // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed 2521 // in the registers. If not go to step 7. 2522 if (!neededInt && !neededSSE) 2523 return EmitVAArgFromMemory(VAListAddr, Ty, CGF); 2524 2525 // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of 2526 // general purpose registers needed to pass type and num_fp to hold 2527 // the number of floating point registers needed. 2528 2529 // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into 2530 // registers. In the case: l->gp_offset > 48 - num_gp * 8 or 2531 // l->fp_offset > 304 - num_fp * 16 go to step 7. 2532 // 2533 // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of 2534 // register save space). 2535 2536 llvm::Value *InRegs = nullptr; 2537 llvm::Value *gp_offset_p = nullptr, *gp_offset = nullptr; 2538 llvm::Value *fp_offset_p = nullptr, *fp_offset = nullptr; 2539 if (neededInt) { 2540 gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p"); 2541 gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset"); 2542 InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8); 2543 InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp"); 2544 } 2545 2546 if (neededSSE) { 2547 fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p"); 2548 fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset"); 2549 llvm::Value *FitsInFP = 2550 llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16); 2551 FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp"); 2552 InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP; 2553 } 2554 2555 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 2556 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 2557 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 2558 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 2559 2560 // Emit code to load the value if it was passed in registers. 2561 2562 CGF.EmitBlock(InRegBlock); 2563 2564 // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with 2565 // an offset of l->gp_offset and/or l->fp_offset. This may require 2566 // copying to a temporary location in case the parameter is passed 2567 // in different register classes or requires an alignment greater 2568 // than 8 for general purpose registers and 16 for XMM registers. 2569 // 2570 // FIXME: This really results in shameful code when we end up needing to 2571 // collect arguments from different places; often what should result in a 2572 // simple assembling of a structure from scattered addresses has many more 2573 // loads than necessary. Can we clean this up? 2574 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 2575 llvm::Value *RegAddr = 2576 CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(VAListAddr, 3), 2577 "reg_save_area"); 2578 if (neededInt && neededSSE) { 2579 // FIXME: Cleanup. 2580 assert(AI.isDirect() && "Unexpected ABI info for mixed regs"); 2581 llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType()); 2582 llvm::Value *Tmp = CGF.CreateMemTemp(Ty); 2583 Tmp = CGF.Builder.CreateBitCast(Tmp, ST->getPointerTo()); 2584 assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs"); 2585 llvm::Type *TyLo = ST->getElementType(0); 2586 llvm::Type *TyHi = ST->getElementType(1); 2587 assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) && 2588 "Unexpected ABI info for mixed regs"); 2589 llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo); 2590 llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi); 2591 llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset); 2592 llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset); 2593 llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr; 2594 llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr; 2595 llvm::Value *V = 2596 CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo)); 2597 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 2598 V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi)); 2599 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 2600 2601 RegAddr = CGF.Builder.CreateBitCast(Tmp, 2602 llvm::PointerType::getUnqual(LTy)); 2603 } else if (neededInt) { 2604 RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset); 2605 RegAddr = CGF.Builder.CreateBitCast(RegAddr, 2606 llvm::PointerType::getUnqual(LTy)); 2607 2608 // Copy to a temporary if necessary to ensure the appropriate alignment. 2609 std::pair<CharUnits, CharUnits> SizeAlign = 2610 CGF.getContext().getTypeInfoInChars(Ty); 2611 uint64_t TySize = SizeAlign.first.getQuantity(); 2612 unsigned TyAlign = SizeAlign.second.getQuantity(); 2613 if (TyAlign > 8) { 2614 llvm::Value *Tmp = CGF.CreateMemTemp(Ty); 2615 CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, 8, false); 2616 RegAddr = Tmp; 2617 } 2618 } else if (neededSSE == 1) { 2619 RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset); 2620 RegAddr = CGF.Builder.CreateBitCast(RegAddr, 2621 llvm::PointerType::getUnqual(LTy)); 2622 } else { 2623 assert(neededSSE == 2 && "Invalid number of needed registers!"); 2624 // SSE registers are spaced 16 bytes apart in the register save 2625 // area, we need to collect the two eightbytes together. 2626 llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset); 2627 llvm::Value *RegAddrHi = CGF.Builder.CreateConstGEP1_32(RegAddrLo, 16); 2628 llvm::Type *DoubleTy = CGF.DoubleTy; 2629 llvm::Type *DblPtrTy = 2630 llvm::PointerType::getUnqual(DoubleTy); 2631 llvm::StructType *ST = llvm::StructType::get(DoubleTy, DoubleTy, NULL); 2632 llvm::Value *V, *Tmp = CGF.CreateMemTemp(Ty); 2633 Tmp = CGF.Builder.CreateBitCast(Tmp, ST->getPointerTo()); 2634 V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo, 2635 DblPtrTy)); 2636 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 2637 V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi, 2638 DblPtrTy)); 2639 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 2640 RegAddr = CGF.Builder.CreateBitCast(Tmp, 2641 llvm::PointerType::getUnqual(LTy)); 2642 } 2643 2644 // AMD64-ABI 3.5.7p5: Step 5. Set: 2645 // l->gp_offset = l->gp_offset + num_gp * 8 2646 // l->fp_offset = l->fp_offset + num_fp * 16. 2647 if (neededInt) { 2648 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8); 2649 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset), 2650 gp_offset_p); 2651 } 2652 if (neededSSE) { 2653 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16); 2654 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset), 2655 fp_offset_p); 2656 } 2657 CGF.EmitBranch(ContBlock); 2658 2659 // Emit code to load the value if it was passed in memory. 2660 2661 CGF.EmitBlock(InMemBlock); 2662 llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF); 2663 2664 // Return the appropriate result. 2665 2666 CGF.EmitBlock(ContBlock); 2667 llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(), 2, 2668 "vaarg.addr"); 2669 ResAddr->addIncoming(RegAddr, InRegBlock); 2670 ResAddr->addIncoming(MemAddr, InMemBlock); 2671 return ResAddr; 2672 } 2673 2674 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, bool IsReturnType) const { 2675 2676 if (Ty->isVoidType()) 2677 return ABIArgInfo::getIgnore(); 2678 2679 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2680 Ty = EnumTy->getDecl()->getIntegerType(); 2681 2682 uint64_t Size = getContext().getTypeSize(Ty); 2683 2684 const RecordType *RT = Ty->getAs<RecordType>(); 2685 if (RT) { 2686 if (!IsReturnType) { 2687 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI())) 2688 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 2689 } 2690 2691 if (RT->getDecl()->hasFlexibleArrayMember()) 2692 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 2693 2694 // FIXME: mingw-w64-gcc emits 128-bit struct as i128 2695 if (Size == 128 && getTarget().getTriple().isWindowsGNUEnvironment()) 2696 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 2697 Size)); 2698 } 2699 2700 if (Ty->isMemberPointerType()) { 2701 // If the member pointer is represented by an LLVM int or ptr, pass it 2702 // directly. 2703 llvm::Type *LLTy = CGT.ConvertType(Ty); 2704 if (LLTy->isPointerTy() || LLTy->isIntegerTy()) 2705 return ABIArgInfo::getDirect(); 2706 } 2707 2708 if (RT || Ty->isMemberPointerType()) { 2709 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 2710 // not 1, 2, 4, or 8 bytes, must be passed by reference." 2711 if (Size > 64 || !llvm::isPowerOf2_64(Size)) 2712 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 2713 2714 // Otherwise, coerce it to a small integer. 2715 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 2716 } 2717 2718 if (Ty->isPromotableIntegerType()) 2719 return ABIArgInfo::getExtend(); 2720 2721 return ABIArgInfo::getDirect(); 2722 } 2723 2724 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 2725 if (!getCXXABI().classifyReturnType(FI)) 2726 FI.getReturnInfo() = classify(FI.getReturnType(), true); 2727 2728 for (auto &I : FI.arguments()) 2729 I.info = classify(I.type, false); 2730 } 2731 2732 llvm::Value *WinX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 2733 CodeGenFunction &CGF) const { 2734 llvm::Type *BPP = CGF.Int8PtrPtrTy; 2735 2736 CGBuilderTy &Builder = CGF.Builder; 2737 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, 2738 "ap"); 2739 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 2740 llvm::Type *PTy = 2741 llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 2742 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); 2743 2744 uint64_t Offset = 2745 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 8); 2746 llvm::Value *NextAddr = 2747 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), 2748 "ap.next"); 2749 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 2750 2751 return AddrTyped; 2752 } 2753 2754 namespace { 2755 2756 class NaClX86_64ABIInfo : public ABIInfo { 2757 public: 2758 NaClX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX) 2759 : ABIInfo(CGT), PInfo(CGT), NInfo(CGT, HasAVX) {} 2760 void computeInfo(CGFunctionInfo &FI) const override; 2761 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 2762 CodeGenFunction &CGF) const override; 2763 private: 2764 PNaClABIInfo PInfo; // Used for generating calls with pnaclcall callingconv. 2765 X86_64ABIInfo NInfo; // Used for everything else. 2766 }; 2767 2768 class NaClX86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2769 public: 2770 NaClX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX) 2771 : TargetCodeGenInfo(new NaClX86_64ABIInfo(CGT, HasAVX)) {} 2772 }; 2773 2774 } 2775 2776 void NaClX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 2777 if (FI.getASTCallingConvention() == CC_PnaclCall) 2778 PInfo.computeInfo(FI); 2779 else 2780 NInfo.computeInfo(FI); 2781 } 2782 2783 llvm::Value *NaClX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 2784 CodeGenFunction &CGF) const { 2785 // Always use the native convention; calling pnacl-style varargs functions 2786 // is unuspported. 2787 return NInfo.EmitVAArg(VAListAddr, Ty, CGF); 2788 } 2789 2790 2791 // PowerPC-32 2792 2793 namespace { 2794 class PPC32TargetCodeGenInfo : public DefaultTargetCodeGenInfo { 2795 public: 2796 PPC32TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {} 2797 2798 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 2799 // This is recovered from gcc output. 2800 return 1; // r1 is the dedicated stack pointer 2801 } 2802 2803 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2804 llvm::Value *Address) const override; 2805 }; 2806 2807 } 2808 2809 bool 2810 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2811 llvm::Value *Address) const { 2812 // This is calculated from the LLVM and GCC tables and verified 2813 // against gcc output. AFAIK all ABIs use the same encoding. 2814 2815 CodeGen::CGBuilderTy &Builder = CGF.Builder; 2816 2817 llvm::IntegerType *i8 = CGF.Int8Ty; 2818 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 2819 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 2820 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 2821 2822 // 0-31: r0-31, the 4-byte general-purpose registers 2823 AssignToArrayRange(Builder, Address, Four8, 0, 31); 2824 2825 // 32-63: fp0-31, the 8-byte floating-point registers 2826 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 2827 2828 // 64-76 are various 4-byte special-purpose registers: 2829 // 64: mq 2830 // 65: lr 2831 // 66: ctr 2832 // 67: ap 2833 // 68-75 cr0-7 2834 // 76: xer 2835 AssignToArrayRange(Builder, Address, Four8, 64, 76); 2836 2837 // 77-108: v0-31, the 16-byte vector registers 2838 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 2839 2840 // 109: vrsave 2841 // 110: vscr 2842 // 111: spe_acc 2843 // 112: spefscr 2844 // 113: sfp 2845 AssignToArrayRange(Builder, Address, Four8, 109, 113); 2846 2847 return false; 2848 } 2849 2850 // PowerPC-64 2851 2852 namespace { 2853 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information. 2854 class PPC64_SVR4_ABIInfo : public DefaultABIInfo { 2855 2856 public: 2857 PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 2858 2859 bool isPromotableTypeForABI(QualType Ty) const; 2860 2861 ABIArgInfo classifyReturnType(QualType RetTy) const; 2862 ABIArgInfo classifyArgumentType(QualType Ty) const; 2863 2864 // TODO: We can add more logic to computeInfo to improve performance. 2865 // Example: For aggregate arguments that fit in a register, we could 2866 // use getDirectInReg (as is done below for structs containing a single 2867 // floating-point value) to avoid pushing them to memory on function 2868 // entry. This would require changing the logic in PPCISelLowering 2869 // when lowering the parameters in the caller and args in the callee. 2870 void computeInfo(CGFunctionInfo &FI) const override { 2871 if (!getCXXABI().classifyReturnType(FI)) 2872 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 2873 for (auto &I : FI.arguments()) { 2874 // We rely on the default argument classification for the most part. 2875 // One exception: An aggregate containing a single floating-point 2876 // or vector item must be passed in a register if one is available. 2877 const Type *T = isSingleElementStruct(I.type, getContext()); 2878 if (T) { 2879 const BuiltinType *BT = T->getAs<BuiltinType>(); 2880 if (T->isVectorType() || (BT && BT->isFloatingPoint())) { 2881 QualType QT(T, 0); 2882 I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT)); 2883 continue; 2884 } 2885 } 2886 I.info = classifyArgumentType(I.type); 2887 } 2888 } 2889 2890 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 2891 CodeGenFunction &CGF) const override; 2892 }; 2893 2894 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo { 2895 public: 2896 PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT) 2897 : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT)) {} 2898 2899 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 2900 // This is recovered from gcc output. 2901 return 1; // r1 is the dedicated stack pointer 2902 } 2903 2904 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2905 llvm::Value *Address) const override; 2906 }; 2907 2908 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo { 2909 public: 2910 PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {} 2911 2912 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 2913 // This is recovered from gcc output. 2914 return 1; // r1 is the dedicated stack pointer 2915 } 2916 2917 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2918 llvm::Value *Address) const override; 2919 }; 2920 2921 } 2922 2923 // Return true if the ABI requires Ty to be passed sign- or zero- 2924 // extended to 64 bits. 2925 bool 2926 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const { 2927 // Treat an enum type as its underlying type. 2928 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2929 Ty = EnumTy->getDecl()->getIntegerType(); 2930 2931 // Promotable integer types are required to be promoted by the ABI. 2932 if (Ty->isPromotableIntegerType()) 2933 return true; 2934 2935 // In addition to the usual promotable integer types, we also need to 2936 // extend all 32-bit types, since the ABI requires promotion to 64 bits. 2937 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 2938 switch (BT->getKind()) { 2939 case BuiltinType::Int: 2940 case BuiltinType::UInt: 2941 return true; 2942 default: 2943 break; 2944 } 2945 2946 return false; 2947 } 2948 2949 ABIArgInfo 2950 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const { 2951 if (Ty->isAnyComplexType()) 2952 return ABIArgInfo::getDirect(); 2953 2954 if (isAggregateTypeForABI(Ty)) { 2955 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 2956 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 2957 2958 return ABIArgInfo::getIndirect(0); 2959 } 2960 2961 return (isPromotableTypeForABI(Ty) ? 2962 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 2963 } 2964 2965 ABIArgInfo 2966 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { 2967 if (RetTy->isVoidType()) 2968 return ABIArgInfo::getIgnore(); 2969 2970 if (RetTy->isAnyComplexType()) 2971 return ABIArgInfo::getDirect(); 2972 2973 if (isAggregateTypeForABI(RetTy)) 2974 return ABIArgInfo::getIndirect(0); 2975 2976 return (isPromotableTypeForABI(RetTy) ? 2977 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 2978 } 2979 2980 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine. 2981 llvm::Value *PPC64_SVR4_ABIInfo::EmitVAArg(llvm::Value *VAListAddr, 2982 QualType Ty, 2983 CodeGenFunction &CGF) const { 2984 llvm::Type *BP = CGF.Int8PtrTy; 2985 llvm::Type *BPP = CGF.Int8PtrPtrTy; 2986 2987 CGBuilderTy &Builder = CGF.Builder; 2988 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); 2989 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 2990 2991 // Update the va_list pointer. The pointer should be bumped by the 2992 // size of the object. We can trust getTypeSize() except for a complex 2993 // type whose base type is smaller than a doubleword. For these, the 2994 // size of the object is 16 bytes; see below for further explanation. 2995 unsigned SizeInBytes = CGF.getContext().getTypeSize(Ty) / 8; 2996 QualType BaseTy; 2997 unsigned CplxBaseSize = 0; 2998 2999 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 3000 BaseTy = CTy->getElementType(); 3001 CplxBaseSize = CGF.getContext().getTypeSize(BaseTy) / 8; 3002 if (CplxBaseSize < 8) 3003 SizeInBytes = 16; 3004 } 3005 3006 unsigned Offset = llvm::RoundUpToAlignment(SizeInBytes, 8); 3007 llvm::Value *NextAddr = 3008 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int64Ty, Offset), 3009 "ap.next"); 3010 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 3011 3012 // If we have a complex type and the base type is smaller than 8 bytes, 3013 // the ABI calls for the real and imaginary parts to be right-adjusted 3014 // in separate doublewords. However, Clang expects us to produce a 3015 // pointer to a structure with the two parts packed tightly. So generate 3016 // loads of the real and imaginary parts relative to the va_list pointer, 3017 // and store them to a temporary structure. 3018 if (CplxBaseSize && CplxBaseSize < 8) { 3019 llvm::Value *RealAddr = Builder.CreatePtrToInt(Addr, CGF.Int64Ty); 3020 llvm::Value *ImagAddr = RealAddr; 3021 if (CGF.CGM.getDataLayout().isBigEndian()) { 3022 RealAddr = Builder.CreateAdd(RealAddr, Builder.getInt64(8 - CplxBaseSize)); 3023 ImagAddr = Builder.CreateAdd(ImagAddr, Builder.getInt64(16 - CplxBaseSize)); 3024 } else { 3025 ImagAddr = Builder.CreateAdd(ImagAddr, Builder.getInt64(8)); 3026 } 3027 llvm::Type *PBaseTy = llvm::PointerType::getUnqual(CGF.ConvertType(BaseTy)); 3028 RealAddr = Builder.CreateIntToPtr(RealAddr, PBaseTy); 3029 ImagAddr = Builder.CreateIntToPtr(ImagAddr, PBaseTy); 3030 llvm::Value *Real = Builder.CreateLoad(RealAddr, false, ".vareal"); 3031 llvm::Value *Imag = Builder.CreateLoad(ImagAddr, false, ".vaimag"); 3032 llvm::Value *Ptr = CGF.CreateTempAlloca(CGT.ConvertTypeForMem(Ty), 3033 "vacplx"); 3034 llvm::Value *RealPtr = Builder.CreateStructGEP(Ptr, 0, ".real"); 3035 llvm::Value *ImagPtr = Builder.CreateStructGEP(Ptr, 1, ".imag"); 3036 Builder.CreateStore(Real, RealPtr, false); 3037 Builder.CreateStore(Imag, ImagPtr, false); 3038 return Ptr; 3039 } 3040 3041 // If the argument is smaller than 8 bytes, it is right-adjusted in 3042 // its doubleword slot. Adjust the pointer to pick it up from the 3043 // correct offset. 3044 if (SizeInBytes < 8 && CGF.CGM.getDataLayout().isBigEndian()) { 3045 llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty); 3046 AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt64(8 - SizeInBytes)); 3047 Addr = Builder.CreateIntToPtr(AddrAsInt, BP); 3048 } 3049 3050 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 3051 return Builder.CreateBitCast(Addr, PTy); 3052 } 3053 3054 static bool 3055 PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 3056 llvm::Value *Address) { 3057 // This is calculated from the LLVM and GCC tables and verified 3058 // against gcc output. AFAIK all ABIs use the same encoding. 3059 3060 CodeGen::CGBuilderTy &Builder = CGF.Builder; 3061 3062 llvm::IntegerType *i8 = CGF.Int8Ty; 3063 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 3064 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 3065 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 3066 3067 // 0-31: r0-31, the 8-byte general-purpose registers 3068 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 3069 3070 // 32-63: fp0-31, the 8-byte floating-point registers 3071 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 3072 3073 // 64-76 are various 4-byte special-purpose registers: 3074 // 64: mq 3075 // 65: lr 3076 // 66: ctr 3077 // 67: ap 3078 // 68-75 cr0-7 3079 // 76: xer 3080 AssignToArrayRange(Builder, Address, Four8, 64, 76); 3081 3082 // 77-108: v0-31, the 16-byte vector registers 3083 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 3084 3085 // 109: vrsave 3086 // 110: vscr 3087 // 111: spe_acc 3088 // 112: spefscr 3089 // 113: sfp 3090 AssignToArrayRange(Builder, Address, Four8, 109, 113); 3091 3092 return false; 3093 } 3094 3095 bool 3096 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable( 3097 CodeGen::CodeGenFunction &CGF, 3098 llvm::Value *Address) const { 3099 3100 return PPC64_initDwarfEHRegSizeTable(CGF, Address); 3101 } 3102 3103 bool 3104 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 3105 llvm::Value *Address) const { 3106 3107 return PPC64_initDwarfEHRegSizeTable(CGF, Address); 3108 } 3109 3110 //===----------------------------------------------------------------------===// 3111 // AArch64 ABI Implementation 3112 //===----------------------------------------------------------------------===// 3113 3114 namespace { 3115 3116 class AArch64ABIInfo : public ABIInfo { 3117 public: 3118 enum ABIKind { 3119 AAPCS = 0, 3120 DarwinPCS 3121 }; 3122 3123 private: 3124 ABIKind Kind; 3125 3126 public: 3127 AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind) : ABIInfo(CGT), Kind(Kind) {} 3128 3129 private: 3130 ABIKind getABIKind() const { return Kind; } 3131 bool isDarwinPCS() const { return Kind == DarwinPCS; } 3132 3133 ABIArgInfo classifyReturnType(QualType RetTy) const; 3134 ABIArgInfo classifyArgumentType(QualType RetTy, unsigned &AllocatedVFP, 3135 bool &IsHA, unsigned &AllocatedGPR, 3136 bool &IsSmallAggr, bool IsNamedArg) const; 3137 bool isIllegalVectorType(QualType Ty) const; 3138 3139 virtual void computeInfo(CGFunctionInfo &FI) const { 3140 // To correctly handle Homogeneous Aggregate, we need to keep track of the 3141 // number of SIMD and Floating-point registers allocated so far. 3142 // If the argument is an HFA or an HVA and there are sufficient unallocated 3143 // SIMD and Floating-point registers, then the argument is allocated to SIMD 3144 // and Floating-point Registers (with one register per member of the HFA or 3145 // HVA). Otherwise, the NSRN is set to 8. 3146 unsigned AllocatedVFP = 0; 3147 3148 // To correctly handle small aggregates, we need to keep track of the number 3149 // of GPRs allocated so far. If the small aggregate can't all fit into 3150 // registers, it will be on stack. We don't allow the aggregate to be 3151 // partially in registers. 3152 unsigned AllocatedGPR = 0; 3153 3154 // Find the number of named arguments. Variadic arguments get special 3155 // treatment with the Darwin ABI. 3156 unsigned NumRequiredArgs = (FI.isVariadic() ? 3157 FI.getRequiredArgs().getNumRequiredArgs() : 3158 FI.arg_size()); 3159 3160 if (!getCXXABI().classifyReturnType(FI)) 3161 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 3162 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 3163 it != ie; ++it) { 3164 unsigned PreAllocation = AllocatedVFP, PreGPR = AllocatedGPR; 3165 bool IsHA = false, IsSmallAggr = false; 3166 const unsigned NumVFPs = 8; 3167 const unsigned NumGPRs = 8; 3168 bool IsNamedArg = ((it - FI.arg_begin()) < 3169 static_cast<signed>(NumRequiredArgs)); 3170 it->info = classifyArgumentType(it->type, AllocatedVFP, IsHA, 3171 AllocatedGPR, IsSmallAggr, IsNamedArg); 3172 3173 // Under AAPCS the 64-bit stack slot alignment means we can't pass HAs 3174 // as sequences of floats since they'll get "holes" inserted as 3175 // padding by the back end. 3176 if (IsHA && AllocatedVFP > NumVFPs && !isDarwinPCS() && 3177 getContext().getTypeAlign(it->type) < 64) { 3178 uint32_t NumStackSlots = getContext().getTypeSize(it->type); 3179 NumStackSlots = llvm::RoundUpToAlignment(NumStackSlots, 64) / 64; 3180 3181 llvm::Type *CoerceTy = llvm::ArrayType::get( 3182 llvm::Type::getDoubleTy(getVMContext()), NumStackSlots); 3183 it->info = ABIArgInfo::getDirect(CoerceTy); 3184 } 3185 3186 // If we do not have enough VFP registers for the HA, any VFP registers 3187 // that are unallocated are marked as unavailable. To achieve this, we add 3188 // padding of (NumVFPs - PreAllocation) floats. 3189 if (IsHA && AllocatedVFP > NumVFPs && PreAllocation < NumVFPs) { 3190 llvm::Type *PaddingTy = llvm::ArrayType::get( 3191 llvm::Type::getFloatTy(getVMContext()), NumVFPs - PreAllocation); 3192 it->info.setPaddingType(PaddingTy); 3193 } 3194 3195 // If we do not have enough GPRs for the small aggregate, any GPR regs 3196 // that are unallocated are marked as unavailable. 3197 if (IsSmallAggr && AllocatedGPR > NumGPRs && PreGPR < NumGPRs) { 3198 llvm::Type *PaddingTy = llvm::ArrayType::get( 3199 llvm::Type::getInt32Ty(getVMContext()), NumGPRs - PreGPR); 3200 it->info = 3201 ABIArgInfo::getDirect(it->info.getCoerceToType(), 0, PaddingTy); 3202 } 3203 } 3204 } 3205 3206 llvm::Value *EmitDarwinVAArg(llvm::Value *VAListAddr, QualType Ty, 3207 CodeGenFunction &CGF) const; 3208 3209 llvm::Value *EmitAAPCSVAArg(llvm::Value *VAListAddr, QualType Ty, 3210 CodeGenFunction &CGF) const; 3211 3212 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 3213 CodeGenFunction &CGF) const { 3214 return isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF) 3215 : EmitAAPCSVAArg(VAListAddr, Ty, CGF); 3216 } 3217 }; 3218 3219 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo { 3220 public: 3221 AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind) 3222 : TargetCodeGenInfo(new AArch64ABIInfo(CGT, Kind)) {} 3223 3224 StringRef getARCRetainAutoreleasedReturnValueMarker() const { 3225 return "mov\tfp, fp\t\t; marker for objc_retainAutoreleaseReturnValue"; 3226 } 3227 3228 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const { return 31; } 3229 3230 virtual bool doesReturnSlotInterfereWithArgs() const { return false; } 3231 }; 3232 } 3233 3234 static bool isHomogeneousAggregate(QualType Ty, const Type *&Base, 3235 ASTContext &Context, 3236 uint64_t *HAMembers = nullptr); 3237 3238 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty, 3239 unsigned &AllocatedVFP, 3240 bool &IsHA, 3241 unsigned &AllocatedGPR, 3242 bool &IsSmallAggr, 3243 bool IsNamedArg) const { 3244 // Handle illegal vector types here. 3245 if (isIllegalVectorType(Ty)) { 3246 uint64_t Size = getContext().getTypeSize(Ty); 3247 if (Size <= 32) { 3248 llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext()); 3249 AllocatedGPR++; 3250 return ABIArgInfo::getDirect(ResType); 3251 } 3252 if (Size == 64) { 3253 llvm::Type *ResType = 3254 llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2); 3255 AllocatedVFP++; 3256 return ABIArgInfo::getDirect(ResType); 3257 } 3258 if (Size == 128) { 3259 llvm::Type *ResType = 3260 llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4); 3261 AllocatedVFP++; 3262 return ABIArgInfo::getDirect(ResType); 3263 } 3264 AllocatedGPR++; 3265 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 3266 } 3267 if (Ty->isVectorType()) 3268 // Size of a legal vector should be either 64 or 128. 3269 AllocatedVFP++; 3270 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 3271 if (BT->getKind() == BuiltinType::Half || 3272 BT->getKind() == BuiltinType::Float || 3273 BT->getKind() == BuiltinType::Double || 3274 BT->getKind() == BuiltinType::LongDouble) 3275 AllocatedVFP++; 3276 } 3277 3278 if (!isAggregateTypeForABI(Ty)) { 3279 // Treat an enum type as its underlying type. 3280 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3281 Ty = EnumTy->getDecl()->getIntegerType(); 3282 3283 if (!Ty->isFloatingType() && !Ty->isVectorType()) { 3284 unsigned Alignment = getContext().getTypeAlign(Ty); 3285 if (!isDarwinPCS() && Alignment > 64) 3286 AllocatedGPR = llvm::RoundUpToAlignment(AllocatedGPR, Alignment / 64); 3287 3288 int RegsNeeded = getContext().getTypeSize(Ty) > 64 ? 2 : 1; 3289 AllocatedGPR += RegsNeeded; 3290 } 3291 return (Ty->isPromotableIntegerType() && isDarwinPCS() 3292 ? ABIArgInfo::getExtend() 3293 : ABIArgInfo::getDirect()); 3294 } 3295 3296 // Structures with either a non-trivial destructor or a non-trivial 3297 // copy constructor are always indirect. 3298 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 3299 AllocatedGPR++; 3300 return ABIArgInfo::getIndirect(0, /*ByVal=*/RAA == 3301 CGCXXABI::RAA_DirectInMemory); 3302 } 3303 3304 // Empty records are always ignored on Darwin, but actually passed in C++ mode 3305 // elsewhere for GNU compatibility. 3306 if (isEmptyRecord(getContext(), Ty, true)) { 3307 if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS()) 3308 return ABIArgInfo::getIgnore(); 3309 3310 ++AllocatedGPR; 3311 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 3312 } 3313 3314 // Homogeneous Floating-point Aggregates (HFAs) need to be expanded. 3315 const Type *Base = nullptr; 3316 uint64_t Members = 0; 3317 if (isHomogeneousAggregate(Ty, Base, getContext(), &Members)) { 3318 IsHA = true; 3319 if (!IsNamedArg && isDarwinPCS()) { 3320 // With the Darwin ABI, variadic arguments are always passed on the stack 3321 // and should not be expanded. Treat variadic HFAs as arrays of doubles. 3322 uint64_t Size = getContext().getTypeSize(Ty); 3323 llvm::Type *BaseTy = llvm::Type::getDoubleTy(getVMContext()); 3324 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 3325 } 3326 AllocatedVFP += Members; 3327 return ABIArgInfo::getExpand(); 3328 } 3329 3330 // Aggregates <= 16 bytes are passed directly in registers or on the stack. 3331 uint64_t Size = getContext().getTypeSize(Ty); 3332 if (Size <= 128) { 3333 unsigned Alignment = getContext().getTypeAlign(Ty); 3334 if (!isDarwinPCS() && Alignment > 64) 3335 AllocatedGPR = llvm::RoundUpToAlignment(AllocatedGPR, Alignment / 64); 3336 3337 Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes 3338 AllocatedGPR += Size / 64; 3339 IsSmallAggr = true; 3340 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 3341 // For aggregates with 16-byte alignment, we use i128. 3342 if (Alignment < 128 && Size == 128) { 3343 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); 3344 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 3345 } 3346 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 3347 } 3348 3349 AllocatedGPR++; 3350 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 3351 } 3352 3353 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy) const { 3354 if (RetTy->isVoidType()) 3355 return ABIArgInfo::getIgnore(); 3356 3357 // Large vector types should be returned via memory. 3358 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) 3359 return ABIArgInfo::getIndirect(0); 3360 3361 if (!isAggregateTypeForABI(RetTy)) { 3362 // Treat an enum type as its underlying type. 3363 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 3364 RetTy = EnumTy->getDecl()->getIntegerType(); 3365 3366 return (RetTy->isPromotableIntegerType() && isDarwinPCS() 3367 ? ABIArgInfo::getExtend() 3368 : ABIArgInfo::getDirect()); 3369 } 3370 3371 if (isEmptyRecord(getContext(), RetTy, true)) 3372 return ABIArgInfo::getIgnore(); 3373 3374 const Type *Base = nullptr; 3375 if (isHomogeneousAggregate(RetTy, Base, getContext())) 3376 // Homogeneous Floating-point Aggregates (HFAs) are returned directly. 3377 return ABIArgInfo::getDirect(); 3378 3379 // Aggregates <= 16 bytes are returned directly in registers or on the stack. 3380 uint64_t Size = getContext().getTypeSize(RetTy); 3381 if (Size <= 128) { 3382 Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes 3383 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 3384 } 3385 3386 return ABIArgInfo::getIndirect(0); 3387 } 3388 3389 /// isIllegalVectorType - check whether the vector type is legal for AArch64. 3390 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const { 3391 if (const VectorType *VT = Ty->getAs<VectorType>()) { 3392 // Check whether VT is legal. 3393 unsigned NumElements = VT->getNumElements(); 3394 uint64_t Size = getContext().getTypeSize(VT); 3395 // NumElements should be power of 2 between 1 and 16. 3396 if ((NumElements & (NumElements - 1)) != 0 || NumElements > 16) 3397 return true; 3398 return Size != 64 && (Size != 128 || NumElements == 1); 3399 } 3400 return false; 3401 } 3402 3403 static llvm::Value *EmitAArch64VAArg(llvm::Value *VAListAddr, QualType Ty, 3404 int AllocatedGPR, int AllocatedVFP, 3405 bool IsIndirect, CodeGenFunction &CGF) { 3406 // The AArch64 va_list type and handling is specified in the Procedure Call 3407 // Standard, section B.4: 3408 // 3409 // struct { 3410 // void *__stack; 3411 // void *__gr_top; 3412 // void *__vr_top; 3413 // int __gr_offs; 3414 // int __vr_offs; 3415 // }; 3416 3417 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); 3418 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 3419 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); 3420 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 3421 auto &Ctx = CGF.getContext(); 3422 3423 llvm::Value *reg_offs_p = nullptr, *reg_offs = nullptr; 3424 int reg_top_index; 3425 int RegSize; 3426 if (AllocatedGPR) { 3427 assert(!AllocatedVFP && "Arguments never split between int & VFP regs"); 3428 // 3 is the field number of __gr_offs 3429 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p"); 3430 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs"); 3431 reg_top_index = 1; // field number for __gr_top 3432 RegSize = 8 * AllocatedGPR; 3433 } else { 3434 assert(!AllocatedGPR && "Argument must go in VFP or int regs"); 3435 // 4 is the field number of __vr_offs. 3436 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p"); 3437 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs"); 3438 reg_top_index = 2; // field number for __vr_top 3439 RegSize = 16 * AllocatedVFP; 3440 } 3441 3442 //======================================= 3443 // Find out where argument was passed 3444 //======================================= 3445 3446 // If reg_offs >= 0 we're already using the stack for this type of 3447 // argument. We don't want to keep updating reg_offs (in case it overflows, 3448 // though anyone passing 2GB of arguments, each at most 16 bytes, deserves 3449 // whatever they get). 3450 llvm::Value *UsingStack = nullptr; 3451 UsingStack = CGF.Builder.CreateICmpSGE( 3452 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0)); 3453 3454 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock); 3455 3456 // Otherwise, at least some kind of argument could go in these registers, the 3457 // question is whether this particular type is too big. 3458 CGF.EmitBlock(MaybeRegBlock); 3459 3460 // Integer arguments may need to correct register alignment (for example a 3461 // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we 3462 // align __gr_offs to calculate the potential address. 3463 if (AllocatedGPR && !IsIndirect && Ctx.getTypeAlign(Ty) > 64) { 3464 int Align = Ctx.getTypeAlign(Ty) / 8; 3465 3466 reg_offs = CGF.Builder.CreateAdd( 3467 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1), 3468 "align_regoffs"); 3469 reg_offs = CGF.Builder.CreateAnd( 3470 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align), 3471 "aligned_regoffs"); 3472 } 3473 3474 // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list. 3475 llvm::Value *NewOffset = nullptr; 3476 NewOffset = CGF.Builder.CreateAdd( 3477 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs"); 3478 CGF.Builder.CreateStore(NewOffset, reg_offs_p); 3479 3480 // Now we're in a position to decide whether this argument really was in 3481 // registers or not. 3482 llvm::Value *InRegs = nullptr; 3483 InRegs = CGF.Builder.CreateICmpSLE( 3484 NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg"); 3485 3486 CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock); 3487 3488 //======================================= 3489 // Argument was in registers 3490 //======================================= 3491 3492 // Now we emit the code for if the argument was originally passed in 3493 // registers. First start the appropriate block: 3494 CGF.EmitBlock(InRegBlock); 3495 3496 llvm::Value *reg_top_p = nullptr, *reg_top = nullptr; 3497 reg_top_p = 3498 CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p"); 3499 reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top"); 3500 llvm::Value *BaseAddr = CGF.Builder.CreateGEP(reg_top, reg_offs); 3501 llvm::Value *RegAddr = nullptr; 3502 llvm::Type *MemTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); 3503 3504 if (IsIndirect) { 3505 // If it's been passed indirectly (actually a struct), whatever we find from 3506 // stored registers or on the stack will actually be a struct **. 3507 MemTy = llvm::PointerType::getUnqual(MemTy); 3508 } 3509 3510 const Type *Base = nullptr; 3511 uint64_t NumMembers; 3512 bool IsHFA = isHomogeneousAggregate(Ty, Base, Ctx, &NumMembers); 3513 if (IsHFA && NumMembers > 1) { 3514 // Homogeneous aggregates passed in registers will have their elements split 3515 // and stored 16-bytes apart regardless of size (they're notionally in qN, 3516 // qN+1, ...). We reload and store into a temporary local variable 3517 // contiguously. 3518 assert(!IsIndirect && "Homogeneous aggregates should be passed directly"); 3519 llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0)); 3520 llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers); 3521 llvm::Value *Tmp = CGF.CreateTempAlloca(HFATy); 3522 int Offset = 0; 3523 3524 if (CGF.CGM.getDataLayout().isBigEndian() && Ctx.getTypeSize(Base) < 128) 3525 Offset = 16 - Ctx.getTypeSize(Base) / 8; 3526 for (unsigned i = 0; i < NumMembers; ++i) { 3527 llvm::Value *BaseOffset = 3528 llvm::ConstantInt::get(CGF.Int32Ty, 16 * i + Offset); 3529 llvm::Value *LoadAddr = CGF.Builder.CreateGEP(BaseAddr, BaseOffset); 3530 LoadAddr = CGF.Builder.CreateBitCast( 3531 LoadAddr, llvm::PointerType::getUnqual(BaseTy)); 3532 llvm::Value *StoreAddr = CGF.Builder.CreateStructGEP(Tmp, i); 3533 3534 llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr); 3535 CGF.Builder.CreateStore(Elem, StoreAddr); 3536 } 3537 3538 RegAddr = CGF.Builder.CreateBitCast(Tmp, MemTy); 3539 } else { 3540 // Otherwise the object is contiguous in memory 3541 unsigned BeAlign = reg_top_index == 2 ? 16 : 8; 3542 if (CGF.CGM.getDataLayout().isBigEndian() && 3543 (IsHFA || !isAggregateTypeForABI(Ty)) && 3544 Ctx.getTypeSize(Ty) < (BeAlign * 8)) { 3545 int Offset = BeAlign - Ctx.getTypeSize(Ty) / 8; 3546 BaseAddr = CGF.Builder.CreatePtrToInt(BaseAddr, CGF.Int64Ty); 3547 3548 BaseAddr = CGF.Builder.CreateAdd( 3549 BaseAddr, llvm::ConstantInt::get(CGF.Int64Ty, Offset), "align_be"); 3550 3551 BaseAddr = CGF.Builder.CreateIntToPtr(BaseAddr, CGF.Int8PtrTy); 3552 } 3553 3554 RegAddr = CGF.Builder.CreateBitCast(BaseAddr, MemTy); 3555 } 3556 3557 CGF.EmitBranch(ContBlock); 3558 3559 //======================================= 3560 // Argument was on the stack 3561 //======================================= 3562 CGF.EmitBlock(OnStackBlock); 3563 3564 llvm::Value *stack_p = nullptr, *OnStackAddr = nullptr; 3565 stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p"); 3566 OnStackAddr = CGF.Builder.CreateLoad(stack_p, "stack"); 3567 3568 // Again, stack arguments may need realigmnent. In this case both integer and 3569 // floating-point ones might be affected. 3570 if (!IsIndirect && Ctx.getTypeAlign(Ty) > 64) { 3571 int Align = Ctx.getTypeAlign(Ty) / 8; 3572 3573 OnStackAddr = CGF.Builder.CreatePtrToInt(OnStackAddr, CGF.Int64Ty); 3574 3575 OnStackAddr = CGF.Builder.CreateAdd( 3576 OnStackAddr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1), 3577 "align_stack"); 3578 OnStackAddr = CGF.Builder.CreateAnd( 3579 OnStackAddr, llvm::ConstantInt::get(CGF.Int64Ty, -Align), 3580 "align_stack"); 3581 3582 OnStackAddr = CGF.Builder.CreateIntToPtr(OnStackAddr, CGF.Int8PtrTy); 3583 } 3584 3585 uint64_t StackSize; 3586 if (IsIndirect) 3587 StackSize = 8; 3588 else 3589 StackSize = Ctx.getTypeSize(Ty) / 8; 3590 3591 // All stack slots are 8 bytes 3592 StackSize = llvm::RoundUpToAlignment(StackSize, 8); 3593 3594 llvm::Value *StackSizeC = llvm::ConstantInt::get(CGF.Int32Ty, StackSize); 3595 llvm::Value *NewStack = 3596 CGF.Builder.CreateGEP(OnStackAddr, StackSizeC, "new_stack"); 3597 3598 // Write the new value of __stack for the next call to va_arg 3599 CGF.Builder.CreateStore(NewStack, stack_p); 3600 3601 if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) && 3602 Ctx.getTypeSize(Ty) < 64) { 3603 int Offset = 8 - Ctx.getTypeSize(Ty) / 8; 3604 OnStackAddr = CGF.Builder.CreatePtrToInt(OnStackAddr, CGF.Int64Ty); 3605 3606 OnStackAddr = CGF.Builder.CreateAdd( 3607 OnStackAddr, llvm::ConstantInt::get(CGF.Int64Ty, Offset), "align_be"); 3608 3609 OnStackAddr = CGF.Builder.CreateIntToPtr(OnStackAddr, CGF.Int8PtrTy); 3610 } 3611 3612 OnStackAddr = CGF.Builder.CreateBitCast(OnStackAddr, MemTy); 3613 3614 CGF.EmitBranch(ContBlock); 3615 3616 //======================================= 3617 // Tidy up 3618 //======================================= 3619 CGF.EmitBlock(ContBlock); 3620 3621 llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(MemTy, 2, "vaarg.addr"); 3622 ResAddr->addIncoming(RegAddr, InRegBlock); 3623 ResAddr->addIncoming(OnStackAddr, OnStackBlock); 3624 3625 if (IsIndirect) 3626 return CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"); 3627 3628 return ResAddr; 3629 } 3630 3631 llvm::Value *AArch64ABIInfo::EmitAAPCSVAArg(llvm::Value *VAListAddr, QualType Ty, 3632 CodeGenFunction &CGF) const { 3633 3634 unsigned AllocatedGPR = 0, AllocatedVFP = 0; 3635 bool IsHA = false, IsSmallAggr = false; 3636 ABIArgInfo AI = classifyArgumentType(Ty, AllocatedVFP, IsHA, AllocatedGPR, 3637 IsSmallAggr, false /*IsNamedArg*/); 3638 3639 return EmitAArch64VAArg(VAListAddr, Ty, AllocatedGPR, AllocatedVFP, 3640 AI.isIndirect(), CGF); 3641 } 3642 3643 llvm::Value *AArch64ABIInfo::EmitDarwinVAArg(llvm::Value *VAListAddr, QualType Ty, 3644 CodeGenFunction &CGF) const { 3645 // We do not support va_arg for aggregates or illegal vector types. 3646 // Lower VAArg here for these cases and use the LLVM va_arg instruction for 3647 // other cases. 3648 if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty)) 3649 return nullptr; 3650 3651 uint64_t Size = CGF.getContext().getTypeSize(Ty) / 8; 3652 uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8; 3653 3654 const Type *Base = nullptr; 3655 bool isHA = isHomogeneousAggregate(Ty, Base, getContext()); 3656 3657 bool isIndirect = false; 3658 // Arguments bigger than 16 bytes which aren't homogeneous aggregates should 3659 // be passed indirectly. 3660 if (Size > 16 && !isHA) { 3661 isIndirect = true; 3662 Size = 8; 3663 Align = 8; 3664 } 3665 3666 llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext()); 3667 llvm::Type *BPP = llvm::PointerType::getUnqual(BP); 3668 3669 CGBuilderTy &Builder = CGF.Builder; 3670 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); 3671 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 3672 3673 if (isEmptyRecord(getContext(), Ty, true)) { 3674 // These are ignored for parameter passing purposes. 3675 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 3676 return Builder.CreateBitCast(Addr, PTy); 3677 } 3678 3679 const uint64_t MinABIAlign = 8; 3680 if (Align > MinABIAlign) { 3681 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, Align - 1); 3682 Addr = Builder.CreateGEP(Addr, Offset); 3683 llvm::Value *AsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty); 3684 llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, ~(Align - 1)); 3685 llvm::Value *Aligned = Builder.CreateAnd(AsInt, Mask); 3686 Addr = Builder.CreateIntToPtr(Aligned, BP, "ap.align"); 3687 } 3688 3689 uint64_t Offset = llvm::RoundUpToAlignment(Size, MinABIAlign); 3690 llvm::Value *NextAddr = Builder.CreateGEP( 3691 Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), "ap.next"); 3692 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 3693 3694 if (isIndirect) 3695 Addr = Builder.CreateLoad(Builder.CreateBitCast(Addr, BPP)); 3696 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 3697 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); 3698 3699 return AddrTyped; 3700 } 3701 3702 //===----------------------------------------------------------------------===// 3703 // ARM ABI Implementation 3704 //===----------------------------------------------------------------------===// 3705 3706 namespace { 3707 3708 class ARMABIInfo : public ABIInfo { 3709 public: 3710 enum ABIKind { 3711 APCS = 0, 3712 AAPCS = 1, 3713 AAPCS_VFP 3714 }; 3715 3716 private: 3717 ABIKind Kind; 3718 mutable int VFPRegs[16]; 3719 const unsigned NumVFPs; 3720 const unsigned NumGPRs; 3721 mutable unsigned AllocatedGPRs; 3722 mutable unsigned AllocatedVFPs; 3723 3724 public: 3725 ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) : ABIInfo(CGT), Kind(_Kind), 3726 NumVFPs(16), NumGPRs(4) { 3727 setRuntimeCC(); 3728 resetAllocatedRegs(); 3729 } 3730 3731 bool isEABI() const { 3732 switch (getTarget().getTriple().getEnvironment()) { 3733 case llvm::Triple::Android: 3734 case llvm::Triple::EABI: 3735 case llvm::Triple::EABIHF: 3736 case llvm::Triple::GNUEABI: 3737 case llvm::Triple::GNUEABIHF: 3738 return true; 3739 default: 3740 return false; 3741 } 3742 } 3743 3744 bool isEABIHF() const { 3745 switch (getTarget().getTriple().getEnvironment()) { 3746 case llvm::Triple::EABIHF: 3747 case llvm::Triple::GNUEABIHF: 3748 return true; 3749 default: 3750 return false; 3751 } 3752 } 3753 3754 ABIKind getABIKind() const { return Kind; } 3755 3756 private: 3757 ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic) const; 3758 ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic, 3759 bool &IsCPRC) const; 3760 bool isIllegalVectorType(QualType Ty) const; 3761 3762 void computeInfo(CGFunctionInfo &FI) const override; 3763 3764 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 3765 CodeGenFunction &CGF) const override; 3766 3767 llvm::CallingConv::ID getLLVMDefaultCC() const; 3768 llvm::CallingConv::ID getABIDefaultCC() const; 3769 void setRuntimeCC(); 3770 3771 void markAllocatedGPRs(unsigned Alignment, unsigned NumRequired) const; 3772 void markAllocatedVFPs(unsigned Alignment, unsigned NumRequired) const; 3773 void resetAllocatedRegs(void) const; 3774 }; 3775 3776 class ARMTargetCodeGenInfo : public TargetCodeGenInfo { 3777 public: 3778 ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 3779 :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {} 3780 3781 const ARMABIInfo &getABIInfo() const { 3782 return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo()); 3783 } 3784 3785 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 3786 return 13; 3787 } 3788 3789 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 3790 return "mov\tr7, r7\t\t@ marker for objc_retainAutoreleaseReturnValue"; 3791 } 3792 3793 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 3794 llvm::Value *Address) const override { 3795 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 3796 3797 // 0-15 are the 16 integer registers. 3798 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15); 3799 return false; 3800 } 3801 3802 unsigned getSizeOfUnwindException() const override { 3803 if (getABIInfo().isEABI()) return 88; 3804 return TargetCodeGenInfo::getSizeOfUnwindException(); 3805 } 3806 3807 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 3808 CodeGen::CodeGenModule &CGM) const override { 3809 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); 3810 if (!FD) 3811 return; 3812 3813 const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>(); 3814 if (!Attr) 3815 return; 3816 3817 const char *Kind; 3818 switch (Attr->getInterrupt()) { 3819 case ARMInterruptAttr::Generic: Kind = ""; break; 3820 case ARMInterruptAttr::IRQ: Kind = "IRQ"; break; 3821 case ARMInterruptAttr::FIQ: Kind = "FIQ"; break; 3822 case ARMInterruptAttr::SWI: Kind = "SWI"; break; 3823 case ARMInterruptAttr::ABORT: Kind = "ABORT"; break; 3824 case ARMInterruptAttr::UNDEF: Kind = "UNDEF"; break; 3825 } 3826 3827 llvm::Function *Fn = cast<llvm::Function>(GV); 3828 3829 Fn->addFnAttr("interrupt", Kind); 3830 3831 if (cast<ARMABIInfo>(getABIInfo()).getABIKind() == ARMABIInfo::APCS) 3832 return; 3833 3834 // AAPCS guarantees that sp will be 8-byte aligned on any public interface, 3835 // however this is not necessarily true on taking any interrupt. Instruct 3836 // the backend to perform a realignment as part of the function prologue. 3837 llvm::AttrBuilder B; 3838 B.addStackAlignmentAttr(8); 3839 Fn->addAttributes(llvm::AttributeSet::FunctionIndex, 3840 llvm::AttributeSet::get(CGM.getLLVMContext(), 3841 llvm::AttributeSet::FunctionIndex, 3842 B)); 3843 } 3844 3845 }; 3846 3847 } 3848 3849 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const { 3850 // To correctly handle Homogeneous Aggregate, we need to keep track of the 3851 // VFP registers allocated so far. 3852 // C.1.vfp If the argument is a VFP CPRC and there are sufficient consecutive 3853 // VFP registers of the appropriate type unallocated then the argument is 3854 // allocated to the lowest-numbered sequence of such registers. 3855 // C.2.vfp If the argument is a VFP CPRC then any VFP registers that are 3856 // unallocated are marked as unavailable. 3857 resetAllocatedRegs(); 3858 3859 if (getCXXABI().classifyReturnType(FI)) { 3860 if (FI.getReturnInfo().isIndirect()) 3861 markAllocatedGPRs(1, 1); 3862 } else { 3863 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), FI.isVariadic()); 3864 } 3865 for (auto &I : FI.arguments()) { 3866 unsigned PreAllocationVFPs = AllocatedVFPs; 3867 unsigned PreAllocationGPRs = AllocatedGPRs; 3868 bool IsCPRC = false; 3869 // 6.1.2.3 There is one VFP co-processor register class using registers 3870 // s0-s15 (d0-d7) for passing arguments. 3871 I.info = classifyArgumentType(I.type, FI.isVariadic(), IsCPRC); 3872 3873 // If we have allocated some arguments onto the stack (due to running 3874 // out of VFP registers), we cannot split an argument between GPRs and 3875 // the stack. If this situation occurs, we add padding to prevent the 3876 // GPRs from being used. In this situation, the current argument could 3877 // only be allocated by rule C.8, so rule C.6 would mark these GPRs as 3878 // unusable anyway. 3879 const bool StackUsed = PreAllocationGPRs > NumGPRs || PreAllocationVFPs > NumVFPs; 3880 if (!IsCPRC && PreAllocationGPRs < NumGPRs && AllocatedGPRs > NumGPRs && StackUsed) { 3881 llvm::Type *PaddingTy = llvm::ArrayType::get( 3882 llvm::Type::getInt32Ty(getVMContext()), NumGPRs - PreAllocationGPRs); 3883 if (I.info.canHaveCoerceToType()) { 3884 I.info = ABIArgInfo::getDirect(I.info.getCoerceToType() /* type */, 0 /* offset */, 3885 PaddingTy); 3886 } else { 3887 I.info = ABIArgInfo::getDirect(nullptr /* type */, 0 /* offset */, 3888 PaddingTy); 3889 } 3890 } 3891 } 3892 3893 // Always honor user-specified calling convention. 3894 if (FI.getCallingConvention() != llvm::CallingConv::C) 3895 return; 3896 3897 llvm::CallingConv::ID cc = getRuntimeCC(); 3898 if (cc != llvm::CallingConv::C) 3899 FI.setEffectiveCallingConvention(cc); 3900 } 3901 3902 /// Return the default calling convention that LLVM will use. 3903 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const { 3904 // The default calling convention that LLVM will infer. 3905 if (isEABIHF()) 3906 return llvm::CallingConv::ARM_AAPCS_VFP; 3907 else if (isEABI()) 3908 return llvm::CallingConv::ARM_AAPCS; 3909 else 3910 return llvm::CallingConv::ARM_APCS; 3911 } 3912 3913 /// Return the calling convention that our ABI would like us to use 3914 /// as the C calling convention. 3915 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const { 3916 switch (getABIKind()) { 3917 case APCS: return llvm::CallingConv::ARM_APCS; 3918 case AAPCS: return llvm::CallingConv::ARM_AAPCS; 3919 case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 3920 } 3921 llvm_unreachable("bad ABI kind"); 3922 } 3923 3924 void ARMABIInfo::setRuntimeCC() { 3925 assert(getRuntimeCC() == llvm::CallingConv::C); 3926 3927 // Don't muddy up the IR with a ton of explicit annotations if 3928 // they'd just match what LLVM will infer from the triple. 3929 llvm::CallingConv::ID abiCC = getABIDefaultCC(); 3930 if (abiCC != getLLVMDefaultCC()) 3931 RuntimeCC = abiCC; 3932 } 3933 3934 /// isHomogeneousAggregate - Return true if a type is an AAPCS-VFP homogeneous 3935 /// aggregate. If HAMembers is non-null, the number of base elements 3936 /// contained in the type is returned through it; this is used for the 3937 /// recursive calls that check aggregate component types. 3938 static bool isHomogeneousAggregate(QualType Ty, const Type *&Base, 3939 ASTContext &Context, uint64_t *HAMembers) { 3940 uint64_t Members = 0; 3941 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 3942 if (!isHomogeneousAggregate(AT->getElementType(), Base, Context, &Members)) 3943 return false; 3944 Members *= AT->getSize().getZExtValue(); 3945 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 3946 const RecordDecl *RD = RT->getDecl(); 3947 if (RD->hasFlexibleArrayMember()) 3948 return false; 3949 3950 Members = 0; 3951 for (const auto *FD : RD->fields()) { 3952 uint64_t FldMembers; 3953 if (!isHomogeneousAggregate(FD->getType(), Base, Context, &FldMembers)) 3954 return false; 3955 3956 Members = (RD->isUnion() ? 3957 std::max(Members, FldMembers) : Members + FldMembers); 3958 } 3959 } else { 3960 Members = 1; 3961 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 3962 Members = 2; 3963 Ty = CT->getElementType(); 3964 } 3965 3966 // Homogeneous aggregates for AAPCS-VFP must have base types of float, 3967 // double, or 64-bit or 128-bit vectors. 3968 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 3969 if (BT->getKind() != BuiltinType::Float && 3970 BT->getKind() != BuiltinType::Double && 3971 BT->getKind() != BuiltinType::LongDouble) 3972 return false; 3973 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 3974 unsigned VecSize = Context.getTypeSize(VT); 3975 if (VecSize != 64 && VecSize != 128) 3976 return false; 3977 } else { 3978 return false; 3979 } 3980 3981 // The base type must be the same for all members. Vector types of the 3982 // same total size are treated as being equivalent here. 3983 const Type *TyPtr = Ty.getTypePtr(); 3984 if (!Base) 3985 Base = TyPtr; 3986 3987 if (Base != TyPtr) { 3988 // Homogeneous aggregates are defined as containing members with the 3989 // same machine type. There are two cases in which two members have 3990 // different TypePtrs but the same machine type: 3991 3992 // 1) Vectors of the same length, regardless of the type and number 3993 // of their members. 3994 const bool SameLengthVectors = Base->isVectorType() && TyPtr->isVectorType() 3995 && (Context.getTypeSize(Base) == Context.getTypeSize(TyPtr)); 3996 3997 // 2) In the 32-bit AAPCS, `double' and `long double' have the same 3998 // machine type. This is not the case for the 64-bit AAPCS. 3999 const bool SameSizeDoubles = 4000 ( ( Base->isSpecificBuiltinType(BuiltinType::Double) 4001 && TyPtr->isSpecificBuiltinType(BuiltinType::LongDouble)) 4002 || ( Base->isSpecificBuiltinType(BuiltinType::LongDouble) 4003 && TyPtr->isSpecificBuiltinType(BuiltinType::Double))) 4004 && (Context.getTypeSize(Base) == Context.getTypeSize(TyPtr)); 4005 4006 if (!SameLengthVectors && !SameSizeDoubles) 4007 return false; 4008 } 4009 } 4010 4011 // Homogeneous Aggregates can have at most 4 members of the base type. 4012 if (HAMembers) 4013 *HAMembers = Members; 4014 4015 return (Members > 0 && Members <= 4); 4016 } 4017 4018 /// markAllocatedVFPs - update VFPRegs according to the alignment and 4019 /// number of VFP registers (unit is S register) requested. 4020 void ARMABIInfo::markAllocatedVFPs(unsigned Alignment, 4021 unsigned NumRequired) const { 4022 // Early Exit. 4023 if (AllocatedVFPs >= 16) { 4024 // We use AllocatedVFP > 16 to signal that some CPRCs were allocated on 4025 // the stack. 4026 AllocatedVFPs = 17; 4027 return; 4028 } 4029 // C.1.vfp If the argument is a VFP CPRC and there are sufficient consecutive 4030 // VFP registers of the appropriate type unallocated then the argument is 4031 // allocated to the lowest-numbered sequence of such registers. 4032 for (unsigned I = 0; I < 16; I += Alignment) { 4033 bool FoundSlot = true; 4034 for (unsigned J = I, JEnd = I + NumRequired; J < JEnd; J++) 4035 if (J >= 16 || VFPRegs[J]) { 4036 FoundSlot = false; 4037 break; 4038 } 4039 if (FoundSlot) { 4040 for (unsigned J = I, JEnd = I + NumRequired; J < JEnd; J++) 4041 VFPRegs[J] = 1; 4042 AllocatedVFPs += NumRequired; 4043 return; 4044 } 4045 } 4046 // C.2.vfp If the argument is a VFP CPRC then any VFP registers that are 4047 // unallocated are marked as unavailable. 4048 for (unsigned I = 0; I < 16; I++) 4049 VFPRegs[I] = 1; 4050 AllocatedVFPs = 17; // We do not have enough VFP registers. 4051 } 4052 4053 /// Update AllocatedGPRs to record the number of general purpose registers 4054 /// which have been allocated. It is valid for AllocatedGPRs to go above 4, 4055 /// this represents arguments being stored on the stack. 4056 void ARMABIInfo::markAllocatedGPRs(unsigned Alignment, 4057 unsigned NumRequired) const { 4058 assert((Alignment == 1 || Alignment == 2) && "Alignment must be 4 or 8 bytes"); 4059 4060 if (Alignment == 2 && AllocatedGPRs & 0x1) 4061 AllocatedGPRs += 1; 4062 4063 AllocatedGPRs += NumRequired; 4064 } 4065 4066 void ARMABIInfo::resetAllocatedRegs(void) const { 4067 AllocatedGPRs = 0; 4068 AllocatedVFPs = 0; 4069 for (unsigned i = 0; i < NumVFPs; ++i) 4070 VFPRegs[i] = 0; 4071 } 4072 4073 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, bool isVariadic, 4074 bool &IsCPRC) const { 4075 // We update number of allocated VFPs according to 4076 // 6.1.2.1 The following argument types are VFP CPRCs: 4077 // A single-precision floating-point type (including promoted 4078 // half-precision types); A double-precision floating-point type; 4079 // A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate 4080 // with a Base Type of a single- or double-precision floating-point type, 4081 // 64-bit containerized vectors or 128-bit containerized vectors with one 4082 // to four Elements. 4083 4084 // Handle illegal vector types here. 4085 if (isIllegalVectorType(Ty)) { 4086 uint64_t Size = getContext().getTypeSize(Ty); 4087 if (Size <= 32) { 4088 llvm::Type *ResType = 4089 llvm::Type::getInt32Ty(getVMContext()); 4090 markAllocatedGPRs(1, 1); 4091 return ABIArgInfo::getDirect(ResType); 4092 } 4093 if (Size == 64) { 4094 llvm::Type *ResType = llvm::VectorType::get( 4095 llvm::Type::getInt32Ty(getVMContext()), 2); 4096 if (getABIKind() == ARMABIInfo::AAPCS || isVariadic){ 4097 markAllocatedGPRs(2, 2); 4098 } else { 4099 markAllocatedVFPs(2, 2); 4100 IsCPRC = true; 4101 } 4102 return ABIArgInfo::getDirect(ResType); 4103 } 4104 if (Size == 128) { 4105 llvm::Type *ResType = llvm::VectorType::get( 4106 llvm::Type::getInt32Ty(getVMContext()), 4); 4107 if (getABIKind() == ARMABIInfo::AAPCS || isVariadic) { 4108 markAllocatedGPRs(2, 4); 4109 } else { 4110 markAllocatedVFPs(4, 4); 4111 IsCPRC = true; 4112 } 4113 return ABIArgInfo::getDirect(ResType); 4114 } 4115 markAllocatedGPRs(1, 1); 4116 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 4117 } 4118 // Update VFPRegs for legal vector types. 4119 if (getABIKind() == ARMABIInfo::AAPCS_VFP && !isVariadic) { 4120 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4121 uint64_t Size = getContext().getTypeSize(VT); 4122 // Size of a legal vector should be power of 2 and above 64. 4123 markAllocatedVFPs(Size >= 128 ? 4 : 2, Size / 32); 4124 IsCPRC = true; 4125 } 4126 } 4127 // Update VFPRegs for floating point types. 4128 if (getABIKind() == ARMABIInfo::AAPCS_VFP && !isVariadic) { 4129 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 4130 if (BT->getKind() == BuiltinType::Half || 4131 BT->getKind() == BuiltinType::Float) { 4132 markAllocatedVFPs(1, 1); 4133 IsCPRC = true; 4134 } 4135 if (BT->getKind() == BuiltinType::Double || 4136 BT->getKind() == BuiltinType::LongDouble) { 4137 markAllocatedVFPs(2, 2); 4138 IsCPRC = true; 4139 } 4140 } 4141 } 4142 4143 if (!isAggregateTypeForABI(Ty)) { 4144 // Treat an enum type as its underlying type. 4145 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 4146 Ty = EnumTy->getDecl()->getIntegerType(); 4147 } 4148 4149 unsigned Size = getContext().getTypeSize(Ty); 4150 if (!IsCPRC) 4151 markAllocatedGPRs(Size > 32 ? 2 : 1, (Size + 31) / 32); 4152 return (Ty->isPromotableIntegerType() ? 4153 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 4154 } 4155 4156 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 4157 markAllocatedGPRs(1, 1); 4158 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 4159 } 4160 4161 // Ignore empty records. 4162 if (isEmptyRecord(getContext(), Ty, true)) 4163 return ABIArgInfo::getIgnore(); 4164 4165 if (getABIKind() == ARMABIInfo::AAPCS_VFP && !isVariadic) { 4166 // Homogeneous Aggregates need to be expanded when we can fit the aggregate 4167 // into VFP registers. 4168 const Type *Base = nullptr; 4169 uint64_t Members = 0; 4170 if (isHomogeneousAggregate(Ty, Base, getContext(), &Members)) { 4171 assert(Base && "Base class should be set for homogeneous aggregate"); 4172 // Base can be a floating-point or a vector. 4173 if (Base->isVectorType()) { 4174 // ElementSize is in number of floats. 4175 unsigned ElementSize = getContext().getTypeSize(Base) == 64 ? 2 : 4; 4176 markAllocatedVFPs(ElementSize, 4177 Members * ElementSize); 4178 } else if (Base->isSpecificBuiltinType(BuiltinType::Float)) 4179 markAllocatedVFPs(1, Members); 4180 else { 4181 assert(Base->isSpecificBuiltinType(BuiltinType::Double) || 4182 Base->isSpecificBuiltinType(BuiltinType::LongDouble)); 4183 markAllocatedVFPs(2, Members * 2); 4184 } 4185 IsCPRC = true; 4186 return ABIArgInfo::getDirect(); 4187 } 4188 } 4189 4190 // Support byval for ARM. 4191 // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at 4192 // most 8-byte. We realign the indirect argument if type alignment is bigger 4193 // than ABI alignment. 4194 uint64_t ABIAlign = 4; 4195 uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8; 4196 if (getABIKind() == ARMABIInfo::AAPCS_VFP || 4197 getABIKind() == ARMABIInfo::AAPCS) 4198 ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8); 4199 if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) { 4200 // Update Allocated GPRs. Since this is only used when the size of the 4201 // argument is greater than 64 bytes, this will always use up any available 4202 // registers (of which there are 4). We also don't care about getting the 4203 // alignment right, because general-purpose registers cannot be back-filled. 4204 markAllocatedGPRs(1, 4); 4205 return ABIArgInfo::getIndirect(TyAlign, /*ByVal=*/true, 4206 /*Realign=*/TyAlign > ABIAlign); 4207 } 4208 4209 // Otherwise, pass by coercing to a structure of the appropriate size. 4210 llvm::Type* ElemTy; 4211 unsigned SizeRegs; 4212 // FIXME: Try to match the types of the arguments more accurately where 4213 // we can. 4214 if (getContext().getTypeAlign(Ty) <= 32) { 4215 ElemTy = llvm::Type::getInt32Ty(getVMContext()); 4216 SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32; 4217 markAllocatedGPRs(1, SizeRegs); 4218 } else { 4219 ElemTy = llvm::Type::getInt64Ty(getVMContext()); 4220 SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64; 4221 markAllocatedGPRs(2, SizeRegs * 2); 4222 } 4223 4224 llvm::Type *STy = 4225 llvm::StructType::get(llvm::ArrayType::get(ElemTy, SizeRegs), NULL); 4226 return ABIArgInfo::getDirect(STy); 4227 } 4228 4229 static bool isIntegerLikeType(QualType Ty, ASTContext &Context, 4230 llvm::LLVMContext &VMContext) { 4231 // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure 4232 // is called integer-like if its size is less than or equal to one word, and 4233 // the offset of each of its addressable sub-fields is zero. 4234 4235 uint64_t Size = Context.getTypeSize(Ty); 4236 4237 // Check that the type fits in a word. 4238 if (Size > 32) 4239 return false; 4240 4241 // FIXME: Handle vector types! 4242 if (Ty->isVectorType()) 4243 return false; 4244 4245 // Float types are never treated as "integer like". 4246 if (Ty->isRealFloatingType()) 4247 return false; 4248 4249 // If this is a builtin or pointer type then it is ok. 4250 if (Ty->getAs<BuiltinType>() || Ty->isPointerType()) 4251 return true; 4252 4253 // Small complex integer types are "integer like". 4254 if (const ComplexType *CT = Ty->getAs<ComplexType>()) 4255 return isIntegerLikeType(CT->getElementType(), Context, VMContext); 4256 4257 // Single element and zero sized arrays should be allowed, by the definition 4258 // above, but they are not. 4259 4260 // Otherwise, it must be a record type. 4261 const RecordType *RT = Ty->getAs<RecordType>(); 4262 if (!RT) return false; 4263 4264 // Ignore records with flexible arrays. 4265 const RecordDecl *RD = RT->getDecl(); 4266 if (RD->hasFlexibleArrayMember()) 4267 return false; 4268 4269 // Check that all sub-fields are at offset 0, and are themselves "integer 4270 // like". 4271 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 4272 4273 bool HadField = false; 4274 unsigned idx = 0; 4275 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 4276 i != e; ++i, ++idx) { 4277 const FieldDecl *FD = *i; 4278 4279 // Bit-fields are not addressable, we only need to verify they are "integer 4280 // like". We still have to disallow a subsequent non-bitfield, for example: 4281 // struct { int : 0; int x } 4282 // is non-integer like according to gcc. 4283 if (FD->isBitField()) { 4284 if (!RD->isUnion()) 4285 HadField = true; 4286 4287 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 4288 return false; 4289 4290 continue; 4291 } 4292 4293 // Check if this field is at offset 0. 4294 if (Layout.getFieldOffset(idx) != 0) 4295 return false; 4296 4297 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 4298 return false; 4299 4300 // Only allow at most one field in a structure. This doesn't match the 4301 // wording above, but follows gcc in situations with a field following an 4302 // empty structure. 4303 if (!RD->isUnion()) { 4304 if (HadField) 4305 return false; 4306 4307 HadField = true; 4308 } 4309 } 4310 4311 return true; 4312 } 4313 4314 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, 4315 bool isVariadic) const { 4316 if (RetTy->isVoidType()) 4317 return ABIArgInfo::getIgnore(); 4318 4319 // Large vector types should be returned via memory. 4320 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) { 4321 markAllocatedGPRs(1, 1); 4322 return ABIArgInfo::getIndirect(0); 4323 } 4324 4325 if (!isAggregateTypeForABI(RetTy)) { 4326 // Treat an enum type as its underlying type. 4327 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 4328 RetTy = EnumTy->getDecl()->getIntegerType(); 4329 4330 return (RetTy->isPromotableIntegerType() ? 4331 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 4332 } 4333 4334 // Are we following APCS? 4335 if (getABIKind() == APCS) { 4336 if (isEmptyRecord(getContext(), RetTy, false)) 4337 return ABIArgInfo::getIgnore(); 4338 4339 // Complex types are all returned as packed integers. 4340 // 4341 // FIXME: Consider using 2 x vector types if the back end handles them 4342 // correctly. 4343 if (RetTy->isAnyComplexType()) 4344 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 4345 getContext().getTypeSize(RetTy))); 4346 4347 // Integer like structures are returned in r0. 4348 if (isIntegerLikeType(RetTy, getContext(), getVMContext())) { 4349 // Return in the smallest viable integer type. 4350 uint64_t Size = getContext().getTypeSize(RetTy); 4351 if (Size <= 8) 4352 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 4353 if (Size <= 16) 4354 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 4355 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 4356 } 4357 4358 // Otherwise return in memory. 4359 markAllocatedGPRs(1, 1); 4360 return ABIArgInfo::getIndirect(0); 4361 } 4362 4363 // Otherwise this is an AAPCS variant. 4364 4365 if (isEmptyRecord(getContext(), RetTy, true)) 4366 return ABIArgInfo::getIgnore(); 4367 4368 // Check for homogeneous aggregates with AAPCS-VFP. 4369 if (getABIKind() == AAPCS_VFP && !isVariadic) { 4370 const Type *Base = nullptr; 4371 if (isHomogeneousAggregate(RetTy, Base, getContext())) { 4372 assert(Base && "Base class should be set for homogeneous aggregate"); 4373 // Homogeneous Aggregates are returned directly. 4374 return ABIArgInfo::getDirect(); 4375 } 4376 } 4377 4378 // Aggregates <= 4 bytes are returned in r0; other aggregates 4379 // are returned indirectly. 4380 uint64_t Size = getContext().getTypeSize(RetTy); 4381 if (Size <= 32) { 4382 // Return in the smallest viable integer type. 4383 if (Size <= 8) 4384 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 4385 if (Size <= 16) 4386 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 4387 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 4388 } 4389 4390 markAllocatedGPRs(1, 1); 4391 return ABIArgInfo::getIndirect(0); 4392 } 4393 4394 /// isIllegalVector - check whether Ty is an illegal vector type. 4395 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const { 4396 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4397 // Check whether VT is legal. 4398 unsigned NumElements = VT->getNumElements(); 4399 uint64_t Size = getContext().getTypeSize(VT); 4400 // NumElements should be power of 2. 4401 if ((NumElements & (NumElements - 1)) != 0) 4402 return true; 4403 // Size should be greater than 32 bits. 4404 return Size <= 32; 4405 } 4406 return false; 4407 } 4408 4409 llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 4410 CodeGenFunction &CGF) const { 4411 llvm::Type *BP = CGF.Int8PtrTy; 4412 llvm::Type *BPP = CGF.Int8PtrPtrTy; 4413 4414 CGBuilderTy &Builder = CGF.Builder; 4415 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); 4416 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 4417 4418 if (isEmptyRecord(getContext(), Ty, true)) { 4419 // These are ignored for parameter passing purposes. 4420 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 4421 return Builder.CreateBitCast(Addr, PTy); 4422 } 4423 4424 uint64_t Size = CGF.getContext().getTypeSize(Ty) / 8; 4425 uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8; 4426 bool IsIndirect = false; 4427 4428 // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for 4429 // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte. 4430 if (getABIKind() == ARMABIInfo::AAPCS_VFP || 4431 getABIKind() == ARMABIInfo::AAPCS) 4432 TyAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8); 4433 else 4434 TyAlign = 4; 4435 // Use indirect if size of the illegal vector is bigger than 16 bytes. 4436 if (isIllegalVectorType(Ty) && Size > 16) { 4437 IsIndirect = true; 4438 Size = 4; 4439 TyAlign = 4; 4440 } 4441 4442 // Handle address alignment for ABI alignment > 4 bytes. 4443 if (TyAlign > 4) { 4444 assert((TyAlign & (TyAlign - 1)) == 0 && 4445 "Alignment is not power of 2!"); 4446 llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty); 4447 AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1)); 4448 AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1))); 4449 Addr = Builder.CreateIntToPtr(AddrAsInt, BP, "ap.align"); 4450 } 4451 4452 uint64_t Offset = 4453 llvm::RoundUpToAlignment(Size, 4); 4454 llvm::Value *NextAddr = 4455 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), 4456 "ap.next"); 4457 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 4458 4459 if (IsIndirect) 4460 Addr = Builder.CreateLoad(Builder.CreateBitCast(Addr, BPP)); 4461 else if (TyAlign < CGF.getContext().getTypeAlign(Ty) / 8) { 4462 // We can't directly cast ap.cur to pointer to a vector type, since ap.cur 4463 // may not be correctly aligned for the vector type. We create an aligned 4464 // temporary space and copy the content over from ap.cur to the temporary 4465 // space. This is necessary if the natural alignment of the type is greater 4466 // than the ABI alignment. 4467 llvm::Type *I8PtrTy = Builder.getInt8PtrTy(); 4468 CharUnits CharSize = getContext().getTypeSizeInChars(Ty); 4469 llvm::Value *AlignedTemp = CGF.CreateTempAlloca(CGF.ConvertType(Ty), 4470 "var.align"); 4471 llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy); 4472 llvm::Value *Src = Builder.CreateBitCast(Addr, I8PtrTy); 4473 Builder.CreateMemCpy(Dst, Src, 4474 llvm::ConstantInt::get(CGF.IntPtrTy, CharSize.getQuantity()), 4475 TyAlign, false); 4476 Addr = AlignedTemp; //The content is in aligned location. 4477 } 4478 llvm::Type *PTy = 4479 llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 4480 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); 4481 4482 return AddrTyped; 4483 } 4484 4485 namespace { 4486 4487 class NaClARMABIInfo : public ABIInfo { 4488 public: 4489 NaClARMABIInfo(CodeGen::CodeGenTypes &CGT, ARMABIInfo::ABIKind Kind) 4490 : ABIInfo(CGT), PInfo(CGT), NInfo(CGT, Kind) {} 4491 void computeInfo(CGFunctionInfo &FI) const override; 4492 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 4493 CodeGenFunction &CGF) const override; 4494 private: 4495 PNaClABIInfo PInfo; // Used for generating calls with pnaclcall callingconv. 4496 ARMABIInfo NInfo; // Used for everything else. 4497 }; 4498 4499 class NaClARMTargetCodeGenInfo : public TargetCodeGenInfo { 4500 public: 4501 NaClARMTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, ARMABIInfo::ABIKind Kind) 4502 : TargetCodeGenInfo(new NaClARMABIInfo(CGT, Kind)) {} 4503 }; 4504 4505 } 4506 4507 void NaClARMABIInfo::computeInfo(CGFunctionInfo &FI) const { 4508 if (FI.getASTCallingConvention() == CC_PnaclCall) 4509 PInfo.computeInfo(FI); 4510 else 4511 static_cast<const ABIInfo&>(NInfo).computeInfo(FI); 4512 } 4513 4514 llvm::Value *NaClARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 4515 CodeGenFunction &CGF) const { 4516 // Always use the native convention; calling pnacl-style varargs functions 4517 // is unsupported. 4518 return static_cast<const ABIInfo&>(NInfo).EmitVAArg(VAListAddr, Ty, CGF); 4519 } 4520 4521 //===----------------------------------------------------------------------===// 4522 // NVPTX ABI Implementation 4523 //===----------------------------------------------------------------------===// 4524 4525 namespace { 4526 4527 class NVPTXABIInfo : public ABIInfo { 4528 public: 4529 NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 4530 4531 ABIArgInfo classifyReturnType(QualType RetTy) const; 4532 ABIArgInfo classifyArgumentType(QualType Ty) const; 4533 4534 void computeInfo(CGFunctionInfo &FI) const override; 4535 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 4536 CodeGenFunction &CFG) const override; 4537 }; 4538 4539 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo { 4540 public: 4541 NVPTXTargetCodeGenInfo(CodeGenTypes &CGT) 4542 : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {} 4543 4544 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 4545 CodeGen::CodeGenModule &M) const override; 4546 private: 4547 // Adds a NamedMDNode with F, Name, and Operand as operands, and adds the 4548 // resulting MDNode to the nvvm.annotations MDNode. 4549 static void addNVVMMetadata(llvm::Function *F, StringRef Name, int Operand); 4550 }; 4551 4552 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const { 4553 if (RetTy->isVoidType()) 4554 return ABIArgInfo::getIgnore(); 4555 4556 // note: this is different from default ABI 4557 if (!RetTy->isScalarType()) 4558 return ABIArgInfo::getDirect(); 4559 4560 // Treat an enum type as its underlying type. 4561 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 4562 RetTy = EnumTy->getDecl()->getIntegerType(); 4563 4564 return (RetTy->isPromotableIntegerType() ? 4565 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 4566 } 4567 4568 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const { 4569 // Treat an enum type as its underlying type. 4570 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4571 Ty = EnumTy->getDecl()->getIntegerType(); 4572 4573 return (Ty->isPromotableIntegerType() ? 4574 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 4575 } 4576 4577 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const { 4578 if (!getCXXABI().classifyReturnType(FI)) 4579 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4580 for (auto &I : FI.arguments()) 4581 I.info = classifyArgumentType(I.type); 4582 4583 // Always honor user-specified calling convention. 4584 if (FI.getCallingConvention() != llvm::CallingConv::C) 4585 return; 4586 4587 FI.setEffectiveCallingConvention(getRuntimeCC()); 4588 } 4589 4590 llvm::Value *NVPTXABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 4591 CodeGenFunction &CFG) const { 4592 llvm_unreachable("NVPTX does not support varargs"); 4593 } 4594 4595 void NVPTXTargetCodeGenInfo:: 4596 SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 4597 CodeGen::CodeGenModule &M) const{ 4598 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); 4599 if (!FD) return; 4600 4601 llvm::Function *F = cast<llvm::Function>(GV); 4602 4603 // Perform special handling in OpenCL mode 4604 if (M.getLangOpts().OpenCL) { 4605 // Use OpenCL function attributes to check for kernel functions 4606 // By default, all functions are device functions 4607 if (FD->hasAttr<OpenCLKernelAttr>()) { 4608 // OpenCL __kernel functions get kernel metadata 4609 // Create !{<func-ref>, metadata !"kernel", i32 1} node 4610 addNVVMMetadata(F, "kernel", 1); 4611 // And kernel functions are not subject to inlining 4612 F->addFnAttr(llvm::Attribute::NoInline); 4613 } 4614 } 4615 4616 // Perform special handling in CUDA mode. 4617 if (M.getLangOpts().CUDA) { 4618 // CUDA __global__ functions get a kernel metadata entry. Since 4619 // __global__ functions cannot be called from the device, we do not 4620 // need to set the noinline attribute. 4621 if (FD->hasAttr<CUDAGlobalAttr>()) { 4622 // Create !{<func-ref>, metadata !"kernel", i32 1} node 4623 addNVVMMetadata(F, "kernel", 1); 4624 } 4625 if (FD->hasAttr<CUDALaunchBoundsAttr>()) { 4626 // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node 4627 addNVVMMetadata(F, "maxntidx", 4628 FD->getAttr<CUDALaunchBoundsAttr>()->getMaxThreads()); 4629 // min blocks is a default argument for CUDALaunchBoundsAttr, so getting a 4630 // zero value from getMinBlocks either means it was not specified in 4631 // __launch_bounds__ or the user specified a 0 value. In both cases, we 4632 // don't have to add a PTX directive. 4633 int MinCTASM = FD->getAttr<CUDALaunchBoundsAttr>()->getMinBlocks(); 4634 if (MinCTASM > 0) { 4635 // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node 4636 addNVVMMetadata(F, "minctasm", MinCTASM); 4637 } 4638 } 4639 } 4640 } 4641 4642 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::Function *F, StringRef Name, 4643 int Operand) { 4644 llvm::Module *M = F->getParent(); 4645 llvm::LLVMContext &Ctx = M->getContext(); 4646 4647 // Get "nvvm.annotations" metadata node 4648 llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations"); 4649 4650 llvm::Value *MDVals[] = { 4651 F, llvm::MDString::get(Ctx, Name), 4652 llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand)}; 4653 // Append metadata to nvvm.annotations 4654 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 4655 } 4656 } 4657 4658 //===----------------------------------------------------------------------===// 4659 // SystemZ ABI Implementation 4660 //===----------------------------------------------------------------------===// 4661 4662 namespace { 4663 4664 class SystemZABIInfo : public ABIInfo { 4665 public: 4666 SystemZABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 4667 4668 bool isPromotableIntegerType(QualType Ty) const; 4669 bool isCompoundType(QualType Ty) const; 4670 bool isFPArgumentType(QualType Ty) const; 4671 4672 ABIArgInfo classifyReturnType(QualType RetTy) const; 4673 ABIArgInfo classifyArgumentType(QualType ArgTy) const; 4674 4675 void computeInfo(CGFunctionInfo &FI) const override { 4676 if (!getCXXABI().classifyReturnType(FI)) 4677 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4678 for (auto &I : FI.arguments()) 4679 I.info = classifyArgumentType(I.type); 4680 } 4681 4682 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 4683 CodeGenFunction &CGF) const override; 4684 }; 4685 4686 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo { 4687 public: 4688 SystemZTargetCodeGenInfo(CodeGenTypes &CGT) 4689 : TargetCodeGenInfo(new SystemZABIInfo(CGT)) {} 4690 }; 4691 4692 } 4693 4694 bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const { 4695 // Treat an enum type as its underlying type. 4696 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4697 Ty = EnumTy->getDecl()->getIntegerType(); 4698 4699 // Promotable integer types are required to be promoted by the ABI. 4700 if (Ty->isPromotableIntegerType()) 4701 return true; 4702 4703 // 32-bit values must also be promoted. 4704 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 4705 switch (BT->getKind()) { 4706 case BuiltinType::Int: 4707 case BuiltinType::UInt: 4708 return true; 4709 default: 4710 return false; 4711 } 4712 return false; 4713 } 4714 4715 bool SystemZABIInfo::isCompoundType(QualType Ty) const { 4716 return Ty->isAnyComplexType() || isAggregateTypeForABI(Ty); 4717 } 4718 4719 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const { 4720 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 4721 switch (BT->getKind()) { 4722 case BuiltinType::Float: 4723 case BuiltinType::Double: 4724 return true; 4725 default: 4726 return false; 4727 } 4728 4729 if (const RecordType *RT = Ty->getAsStructureType()) { 4730 const RecordDecl *RD = RT->getDecl(); 4731 bool Found = false; 4732 4733 // If this is a C++ record, check the bases first. 4734 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 4735 for (const auto &I : CXXRD->bases()) { 4736 QualType Base = I.getType(); 4737 4738 // Empty bases don't affect things either way. 4739 if (isEmptyRecord(getContext(), Base, true)) 4740 continue; 4741 4742 if (Found) 4743 return false; 4744 Found = isFPArgumentType(Base); 4745 if (!Found) 4746 return false; 4747 } 4748 4749 // Check the fields. 4750 for (const auto *FD : RD->fields()) { 4751 // Empty bitfields don't affect things either way. 4752 // Unlike isSingleElementStruct(), empty structure and array fields 4753 // do count. So do anonymous bitfields that aren't zero-sized. 4754 if (FD->isBitField() && FD->getBitWidthValue(getContext()) == 0) 4755 return true; 4756 4757 // Unlike isSingleElementStruct(), arrays do not count. 4758 // Nested isFPArgumentType structures still do though. 4759 if (Found) 4760 return false; 4761 Found = isFPArgumentType(FD->getType()); 4762 if (!Found) 4763 return false; 4764 } 4765 4766 // Unlike isSingleElementStruct(), trailing padding is allowed. 4767 // An 8-byte aligned struct s { float f; } is passed as a double. 4768 return Found; 4769 } 4770 4771 return false; 4772 } 4773 4774 llvm::Value *SystemZABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 4775 CodeGenFunction &CGF) const { 4776 // Assume that va_list type is correct; should be pointer to LLVM type: 4777 // struct { 4778 // i64 __gpr; 4779 // i64 __fpr; 4780 // i8 *__overflow_arg_area; 4781 // i8 *__reg_save_area; 4782 // }; 4783 4784 // Every argument occupies 8 bytes and is passed by preference in either 4785 // GPRs or FPRs. 4786 Ty = CGF.getContext().getCanonicalType(Ty); 4787 ABIArgInfo AI = classifyArgumentType(Ty); 4788 bool InFPRs = isFPArgumentType(Ty); 4789 4790 llvm::Type *APTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); 4791 bool IsIndirect = AI.isIndirect(); 4792 unsigned UnpaddedBitSize; 4793 if (IsIndirect) { 4794 APTy = llvm::PointerType::getUnqual(APTy); 4795 UnpaddedBitSize = 64; 4796 } else 4797 UnpaddedBitSize = getContext().getTypeSize(Ty); 4798 unsigned PaddedBitSize = 64; 4799 assert((UnpaddedBitSize <= PaddedBitSize) && "Invalid argument size."); 4800 4801 unsigned PaddedSize = PaddedBitSize / 8; 4802 unsigned Padding = (PaddedBitSize - UnpaddedBitSize) / 8; 4803 4804 unsigned MaxRegs, RegCountField, RegSaveIndex, RegPadding; 4805 if (InFPRs) { 4806 MaxRegs = 4; // Maximum of 4 FPR arguments 4807 RegCountField = 1; // __fpr 4808 RegSaveIndex = 16; // save offset for f0 4809 RegPadding = 0; // floats are passed in the high bits of an FPR 4810 } else { 4811 MaxRegs = 5; // Maximum of 5 GPR arguments 4812 RegCountField = 0; // __gpr 4813 RegSaveIndex = 2; // save offset for r2 4814 RegPadding = Padding; // values are passed in the low bits of a GPR 4815 } 4816 4817 llvm::Value *RegCountPtr = 4818 CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr"); 4819 llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count"); 4820 llvm::Type *IndexTy = RegCount->getType(); 4821 llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs); 4822 llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV, 4823 "fits_in_regs"); 4824 4825 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 4826 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 4827 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 4828 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 4829 4830 // Emit code to load the value if it was passed in registers. 4831 CGF.EmitBlock(InRegBlock); 4832 4833 // Work out the address of an argument register. 4834 llvm::Value *PaddedSizeV = llvm::ConstantInt::get(IndexTy, PaddedSize); 4835 llvm::Value *ScaledRegCount = 4836 CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count"); 4837 llvm::Value *RegBase = 4838 llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize + RegPadding); 4839 llvm::Value *RegOffset = 4840 CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset"); 4841 llvm::Value *RegSaveAreaPtr = 4842 CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr"); 4843 llvm::Value *RegSaveArea = 4844 CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area"); 4845 llvm::Value *RawRegAddr = 4846 CGF.Builder.CreateGEP(RegSaveArea, RegOffset, "raw_reg_addr"); 4847 llvm::Value *RegAddr = 4848 CGF.Builder.CreateBitCast(RawRegAddr, APTy, "reg_addr"); 4849 4850 // Update the register count 4851 llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1); 4852 llvm::Value *NewRegCount = 4853 CGF.Builder.CreateAdd(RegCount, One, "reg_count"); 4854 CGF.Builder.CreateStore(NewRegCount, RegCountPtr); 4855 CGF.EmitBranch(ContBlock); 4856 4857 // Emit code to load the value if it was passed in memory. 4858 CGF.EmitBlock(InMemBlock); 4859 4860 // Work out the address of a stack argument. 4861 llvm::Value *OverflowArgAreaPtr = 4862 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr"); 4863 llvm::Value *OverflowArgArea = 4864 CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"); 4865 llvm::Value *PaddingV = llvm::ConstantInt::get(IndexTy, Padding); 4866 llvm::Value *RawMemAddr = 4867 CGF.Builder.CreateGEP(OverflowArgArea, PaddingV, "raw_mem_addr"); 4868 llvm::Value *MemAddr = 4869 CGF.Builder.CreateBitCast(RawMemAddr, APTy, "mem_addr"); 4870 4871 // Update overflow_arg_area_ptr pointer 4872 llvm::Value *NewOverflowArgArea = 4873 CGF.Builder.CreateGEP(OverflowArgArea, PaddedSizeV, "overflow_arg_area"); 4874 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 4875 CGF.EmitBranch(ContBlock); 4876 4877 // Return the appropriate result. 4878 CGF.EmitBlock(ContBlock); 4879 llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(APTy, 2, "va_arg.addr"); 4880 ResAddr->addIncoming(RegAddr, InRegBlock); 4881 ResAddr->addIncoming(MemAddr, InMemBlock); 4882 4883 if (IsIndirect) 4884 return CGF.Builder.CreateLoad(ResAddr, "indirect_arg"); 4885 4886 return ResAddr; 4887 } 4888 4889 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI( 4890 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 4891 assert(Triple.getArch() == llvm::Triple::x86); 4892 4893 switch (Opts.getStructReturnConvention()) { 4894 case CodeGenOptions::SRCK_Default: 4895 break; 4896 case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return 4897 return false; 4898 case CodeGenOptions::SRCK_InRegs: // -freg-struct-return 4899 return true; 4900 } 4901 4902 if (Triple.isOSDarwin()) 4903 return true; 4904 4905 switch (Triple.getOS()) { 4906 case llvm::Triple::AuroraUX: 4907 case llvm::Triple::DragonFly: 4908 case llvm::Triple::FreeBSD: 4909 case llvm::Triple::OpenBSD: 4910 case llvm::Triple::Bitrig: 4911 return true; 4912 case llvm::Triple::Win32: 4913 switch (Triple.getEnvironment()) { 4914 case llvm::Triple::UnknownEnvironment: 4915 case llvm::Triple::Cygnus: 4916 case llvm::Triple::GNU: 4917 case llvm::Triple::MSVC: 4918 return true; 4919 default: 4920 return false; 4921 } 4922 default: 4923 return false; 4924 } 4925 } 4926 4927 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const { 4928 if (RetTy->isVoidType()) 4929 return ABIArgInfo::getIgnore(); 4930 if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64) 4931 return ABIArgInfo::getIndirect(0); 4932 return (isPromotableIntegerType(RetTy) ? 4933 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 4934 } 4935 4936 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const { 4937 // Handle the generic C++ ABI. 4938 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 4939 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 4940 4941 // Integers and enums are extended to full register width. 4942 if (isPromotableIntegerType(Ty)) 4943 return ABIArgInfo::getExtend(); 4944 4945 // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly. 4946 uint64_t Size = getContext().getTypeSize(Ty); 4947 if (Size != 8 && Size != 16 && Size != 32 && Size != 64) 4948 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 4949 4950 // Handle small structures. 4951 if (const RecordType *RT = Ty->getAs<RecordType>()) { 4952 // Structures with flexible arrays have variable length, so really 4953 // fail the size test above. 4954 const RecordDecl *RD = RT->getDecl(); 4955 if (RD->hasFlexibleArrayMember()) 4956 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 4957 4958 // The structure is passed as an unextended integer, a float, or a double. 4959 llvm::Type *PassTy; 4960 if (isFPArgumentType(Ty)) { 4961 assert(Size == 32 || Size == 64); 4962 if (Size == 32) 4963 PassTy = llvm::Type::getFloatTy(getVMContext()); 4964 else 4965 PassTy = llvm::Type::getDoubleTy(getVMContext()); 4966 } else 4967 PassTy = llvm::IntegerType::get(getVMContext(), Size); 4968 return ABIArgInfo::getDirect(PassTy); 4969 } 4970 4971 // Non-structure compounds are passed indirectly. 4972 if (isCompoundType(Ty)) 4973 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 4974 4975 return ABIArgInfo::getDirect(nullptr); 4976 } 4977 4978 //===----------------------------------------------------------------------===// 4979 // MSP430 ABI Implementation 4980 //===----------------------------------------------------------------------===// 4981 4982 namespace { 4983 4984 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo { 4985 public: 4986 MSP430TargetCodeGenInfo(CodeGenTypes &CGT) 4987 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 4988 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 4989 CodeGen::CodeGenModule &M) const override; 4990 }; 4991 4992 } 4993 4994 void MSP430TargetCodeGenInfo::SetTargetAttributes(const Decl *D, 4995 llvm::GlobalValue *GV, 4996 CodeGen::CodeGenModule &M) const { 4997 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 4998 if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) { 4999 // Handle 'interrupt' attribute: 5000 llvm::Function *F = cast<llvm::Function>(GV); 5001 5002 // Step 1: Set ISR calling convention. 5003 F->setCallingConv(llvm::CallingConv::MSP430_INTR); 5004 5005 // Step 2: Add attributes goodness. 5006 F->addFnAttr(llvm::Attribute::NoInline); 5007 5008 // Step 3: Emit ISR vector alias. 5009 unsigned Num = attr->getNumber() / 2; 5010 llvm::GlobalAlias::create(llvm::Function::ExternalLinkage, 5011 "__isr_" + Twine(Num), F); 5012 } 5013 } 5014 } 5015 5016 //===----------------------------------------------------------------------===// 5017 // MIPS ABI Implementation. This works for both little-endian and 5018 // big-endian variants. 5019 //===----------------------------------------------------------------------===// 5020 5021 namespace { 5022 class MipsABIInfo : public ABIInfo { 5023 bool IsO32; 5024 unsigned MinABIStackAlignInBytes, StackAlignInBytes; 5025 void CoerceToIntArgs(uint64_t TySize, 5026 SmallVectorImpl<llvm::Type *> &ArgList) const; 5027 llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const; 5028 llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const; 5029 llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const; 5030 public: 5031 MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) : 5032 ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8), 5033 StackAlignInBytes(IsO32 ? 8 : 16) {} 5034 5035 ABIArgInfo classifyReturnType(QualType RetTy) const; 5036 ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const; 5037 void computeInfo(CGFunctionInfo &FI) const override; 5038 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5039 CodeGenFunction &CGF) const override; 5040 }; 5041 5042 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo { 5043 unsigned SizeOfUnwindException; 5044 public: 5045 MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32) 5046 : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)), 5047 SizeOfUnwindException(IsO32 ? 24 : 32) {} 5048 5049 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 5050 return 29; 5051 } 5052 5053 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5054 CodeGen::CodeGenModule &CGM) const override { 5055 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); 5056 if (!FD) return; 5057 llvm::Function *Fn = cast<llvm::Function>(GV); 5058 if (FD->hasAttr<Mips16Attr>()) { 5059 Fn->addFnAttr("mips16"); 5060 } 5061 else if (FD->hasAttr<NoMips16Attr>()) { 5062 Fn->addFnAttr("nomips16"); 5063 } 5064 } 5065 5066 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5067 llvm::Value *Address) const override; 5068 5069 unsigned getSizeOfUnwindException() const override { 5070 return SizeOfUnwindException; 5071 } 5072 }; 5073 } 5074 5075 void MipsABIInfo::CoerceToIntArgs(uint64_t TySize, 5076 SmallVectorImpl<llvm::Type *> &ArgList) const { 5077 llvm::IntegerType *IntTy = 5078 llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8); 5079 5080 // Add (TySize / MinABIStackAlignInBytes) args of IntTy. 5081 for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N) 5082 ArgList.push_back(IntTy); 5083 5084 // If necessary, add one more integer type to ArgList. 5085 unsigned R = TySize % (MinABIStackAlignInBytes * 8); 5086 5087 if (R) 5088 ArgList.push_back(llvm::IntegerType::get(getVMContext(), R)); 5089 } 5090 5091 // In N32/64, an aligned double precision floating point field is passed in 5092 // a register. 5093 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const { 5094 SmallVector<llvm::Type*, 8> ArgList, IntArgList; 5095 5096 if (IsO32) { 5097 CoerceToIntArgs(TySize, ArgList); 5098 return llvm::StructType::get(getVMContext(), ArgList); 5099 } 5100 5101 if (Ty->isComplexType()) 5102 return CGT.ConvertType(Ty); 5103 5104 const RecordType *RT = Ty->getAs<RecordType>(); 5105 5106 // Unions/vectors are passed in integer registers. 5107 if (!RT || !RT->isStructureOrClassType()) { 5108 CoerceToIntArgs(TySize, ArgList); 5109 return llvm::StructType::get(getVMContext(), ArgList); 5110 } 5111 5112 const RecordDecl *RD = RT->getDecl(); 5113 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 5114 assert(!(TySize % 8) && "Size of structure must be multiple of 8."); 5115 5116 uint64_t LastOffset = 0; 5117 unsigned idx = 0; 5118 llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64); 5119 5120 // Iterate over fields in the struct/class and check if there are any aligned 5121 // double fields. 5122 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 5123 i != e; ++i, ++idx) { 5124 const QualType Ty = i->getType(); 5125 const BuiltinType *BT = Ty->getAs<BuiltinType>(); 5126 5127 if (!BT || BT->getKind() != BuiltinType::Double) 5128 continue; 5129 5130 uint64_t Offset = Layout.getFieldOffset(idx); 5131 if (Offset % 64) // Ignore doubles that are not aligned. 5132 continue; 5133 5134 // Add ((Offset - LastOffset) / 64) args of type i64. 5135 for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j) 5136 ArgList.push_back(I64); 5137 5138 // Add double type. 5139 ArgList.push_back(llvm::Type::getDoubleTy(getVMContext())); 5140 LastOffset = Offset + 64; 5141 } 5142 5143 CoerceToIntArgs(TySize - LastOffset, IntArgList); 5144 ArgList.append(IntArgList.begin(), IntArgList.end()); 5145 5146 return llvm::StructType::get(getVMContext(), ArgList); 5147 } 5148 5149 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset, 5150 uint64_t Offset) const { 5151 if (OrigOffset + MinABIStackAlignInBytes > Offset) 5152 return nullptr; 5153 5154 return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8); 5155 } 5156 5157 ABIArgInfo 5158 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const { 5159 uint64_t OrigOffset = Offset; 5160 uint64_t TySize = getContext().getTypeSize(Ty); 5161 uint64_t Align = getContext().getTypeAlign(Ty) / 8; 5162 5163 Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes), 5164 (uint64_t)StackAlignInBytes); 5165 unsigned CurrOffset = llvm::RoundUpToAlignment(Offset, Align); 5166 Offset = CurrOffset + llvm::RoundUpToAlignment(TySize, Align * 8) / 8; 5167 5168 if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) { 5169 // Ignore empty aggregates. 5170 if (TySize == 0) 5171 return ABIArgInfo::getIgnore(); 5172 5173 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 5174 Offset = OrigOffset + MinABIStackAlignInBytes; 5175 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 5176 } 5177 5178 // If we have reached here, aggregates are passed directly by coercing to 5179 // another structure type. Padding is inserted if the offset of the 5180 // aggregate is unaligned. 5181 return ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0, 5182 getPaddingType(OrigOffset, CurrOffset)); 5183 } 5184 5185 // Treat an enum type as its underlying type. 5186 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5187 Ty = EnumTy->getDecl()->getIntegerType(); 5188 5189 if (Ty->isPromotableIntegerType()) 5190 return ABIArgInfo::getExtend(); 5191 5192 return ABIArgInfo::getDirect( 5193 nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset)); 5194 } 5195 5196 llvm::Type* 5197 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const { 5198 const RecordType *RT = RetTy->getAs<RecordType>(); 5199 SmallVector<llvm::Type*, 8> RTList; 5200 5201 if (RT && RT->isStructureOrClassType()) { 5202 const RecordDecl *RD = RT->getDecl(); 5203 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 5204 unsigned FieldCnt = Layout.getFieldCount(); 5205 5206 // N32/64 returns struct/classes in floating point registers if the 5207 // following conditions are met: 5208 // 1. The size of the struct/class is no larger than 128-bit. 5209 // 2. The struct/class has one or two fields all of which are floating 5210 // point types. 5211 // 3. The offset of the first field is zero (this follows what gcc does). 5212 // 5213 // Any other composite results are returned in integer registers. 5214 // 5215 if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) { 5216 RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end(); 5217 for (; b != e; ++b) { 5218 const BuiltinType *BT = b->getType()->getAs<BuiltinType>(); 5219 5220 if (!BT || !BT->isFloatingPoint()) 5221 break; 5222 5223 RTList.push_back(CGT.ConvertType(b->getType())); 5224 } 5225 5226 if (b == e) 5227 return llvm::StructType::get(getVMContext(), RTList, 5228 RD->hasAttr<PackedAttr>()); 5229 5230 RTList.clear(); 5231 } 5232 } 5233 5234 CoerceToIntArgs(Size, RTList); 5235 return llvm::StructType::get(getVMContext(), RTList); 5236 } 5237 5238 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const { 5239 uint64_t Size = getContext().getTypeSize(RetTy); 5240 5241 if (RetTy->isVoidType() || Size == 0) 5242 return ABIArgInfo::getIgnore(); 5243 5244 if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) { 5245 if (Size <= 128) { 5246 if (RetTy->isAnyComplexType()) 5247 return ABIArgInfo::getDirect(); 5248 5249 // O32 returns integer vectors in registers. 5250 if (IsO32 && RetTy->isVectorType() && !RetTy->hasFloatingRepresentation()) 5251 return ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size)); 5252 5253 if (!IsO32) 5254 return ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size)); 5255 } 5256 5257 return ABIArgInfo::getIndirect(0); 5258 } 5259 5260 // Treat an enum type as its underlying type. 5261 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5262 RetTy = EnumTy->getDecl()->getIntegerType(); 5263 5264 return (RetTy->isPromotableIntegerType() ? 5265 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 5266 } 5267 5268 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const { 5269 ABIArgInfo &RetInfo = FI.getReturnInfo(); 5270 if (!getCXXABI().classifyReturnType(FI)) 5271 RetInfo = classifyReturnType(FI.getReturnType()); 5272 5273 // Check if a pointer to an aggregate is passed as a hidden argument. 5274 uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0; 5275 5276 for (auto &I : FI.arguments()) 5277 I.info = classifyArgumentType(I.type, Offset); 5278 } 5279 5280 llvm::Value* MipsABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5281 CodeGenFunction &CGF) const { 5282 llvm::Type *BP = CGF.Int8PtrTy; 5283 llvm::Type *BPP = CGF.Int8PtrPtrTy; 5284 5285 CGBuilderTy &Builder = CGF.Builder; 5286 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); 5287 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 5288 int64_t TypeAlign = getContext().getTypeAlign(Ty) / 8; 5289 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 5290 llvm::Value *AddrTyped; 5291 unsigned PtrWidth = getTarget().getPointerWidth(0); 5292 llvm::IntegerType *IntTy = (PtrWidth == 32) ? CGF.Int32Ty : CGF.Int64Ty; 5293 5294 if (TypeAlign > MinABIStackAlignInBytes) { 5295 llvm::Value *AddrAsInt = CGF.Builder.CreatePtrToInt(Addr, IntTy); 5296 llvm::Value *Inc = llvm::ConstantInt::get(IntTy, TypeAlign - 1); 5297 llvm::Value *Mask = llvm::ConstantInt::get(IntTy, -TypeAlign); 5298 llvm::Value *Add = CGF.Builder.CreateAdd(AddrAsInt, Inc); 5299 llvm::Value *And = CGF.Builder.CreateAnd(Add, Mask); 5300 AddrTyped = CGF.Builder.CreateIntToPtr(And, PTy); 5301 } 5302 else 5303 AddrTyped = Builder.CreateBitCast(Addr, PTy); 5304 5305 llvm::Value *AlignedAddr = Builder.CreateBitCast(AddrTyped, BP); 5306 TypeAlign = std::max((unsigned)TypeAlign, MinABIStackAlignInBytes); 5307 uint64_t Offset = 5308 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, TypeAlign); 5309 llvm::Value *NextAddr = 5310 Builder.CreateGEP(AlignedAddr, llvm::ConstantInt::get(IntTy, Offset), 5311 "ap.next"); 5312 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 5313 5314 return AddrTyped; 5315 } 5316 5317 bool 5318 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5319 llvm::Value *Address) const { 5320 // This information comes from gcc's implementation, which seems to 5321 // as canonical as it gets. 5322 5323 // Everything on MIPS is 4 bytes. Double-precision FP registers 5324 // are aliased to pairs of single-precision FP registers. 5325 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 5326 5327 // 0-31 are the general purpose registers, $0 - $31. 5328 // 32-63 are the floating-point registers, $f0 - $f31. 5329 // 64 and 65 are the multiply/divide registers, $hi and $lo. 5330 // 66 is the (notional, I think) register for signal-handler return. 5331 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65); 5332 5333 // 67-74 are the floating-point status registers, $fcc0 - $fcc7. 5334 // They are one bit wide and ignored here. 5335 5336 // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31. 5337 // (coprocessor 1 is the FP unit) 5338 // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31. 5339 // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31. 5340 // 176-181 are the DSP accumulator registers. 5341 AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181); 5342 return false; 5343 } 5344 5345 //===----------------------------------------------------------------------===// 5346 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults. 5347 // Currently subclassed only to implement custom OpenCL C function attribute 5348 // handling. 5349 //===----------------------------------------------------------------------===// 5350 5351 namespace { 5352 5353 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo { 5354 public: 5355 TCETargetCodeGenInfo(CodeGenTypes &CGT) 5356 : DefaultTargetCodeGenInfo(CGT) {} 5357 5358 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5359 CodeGen::CodeGenModule &M) const override; 5360 }; 5361 5362 void TCETargetCodeGenInfo::SetTargetAttributes(const Decl *D, 5363 llvm::GlobalValue *GV, 5364 CodeGen::CodeGenModule &M) const { 5365 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); 5366 if (!FD) return; 5367 5368 llvm::Function *F = cast<llvm::Function>(GV); 5369 5370 if (M.getLangOpts().OpenCL) { 5371 if (FD->hasAttr<OpenCLKernelAttr>()) { 5372 // OpenCL C Kernel functions are not subject to inlining 5373 F->addFnAttr(llvm::Attribute::NoInline); 5374 const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>(); 5375 if (Attr) { 5376 // Convert the reqd_work_group_size() attributes to metadata. 5377 llvm::LLVMContext &Context = F->getContext(); 5378 llvm::NamedMDNode *OpenCLMetadata = 5379 M.getModule().getOrInsertNamedMetadata("opencl.kernel_wg_size_info"); 5380 5381 SmallVector<llvm::Value*, 5> Operands; 5382 Operands.push_back(F); 5383 5384 Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty, 5385 llvm::APInt(32, Attr->getXDim()))); 5386 Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty, 5387 llvm::APInt(32, Attr->getYDim()))); 5388 Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty, 5389 llvm::APInt(32, Attr->getZDim()))); 5390 5391 // Add a boolean constant operand for "required" (true) or "hint" (false) 5392 // for implementing the work_group_size_hint attr later. Currently 5393 // always true as the hint is not yet implemented. 5394 Operands.push_back(llvm::ConstantInt::getTrue(Context)); 5395 OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands)); 5396 } 5397 } 5398 } 5399 } 5400 5401 } 5402 5403 //===----------------------------------------------------------------------===// 5404 // Hexagon ABI Implementation 5405 //===----------------------------------------------------------------------===// 5406 5407 namespace { 5408 5409 class HexagonABIInfo : public ABIInfo { 5410 5411 5412 public: 5413 HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 5414 5415 private: 5416 5417 ABIArgInfo classifyReturnType(QualType RetTy) const; 5418 ABIArgInfo classifyArgumentType(QualType RetTy) const; 5419 5420 void computeInfo(CGFunctionInfo &FI) const override; 5421 5422 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5423 CodeGenFunction &CGF) const override; 5424 }; 5425 5426 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo { 5427 public: 5428 HexagonTargetCodeGenInfo(CodeGenTypes &CGT) 5429 :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {} 5430 5431 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 5432 return 29; 5433 } 5434 }; 5435 5436 } 5437 5438 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const { 5439 if (!getCXXABI().classifyReturnType(FI)) 5440 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 5441 for (auto &I : FI.arguments()) 5442 I.info = classifyArgumentType(I.type); 5443 } 5444 5445 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const { 5446 if (!isAggregateTypeForABI(Ty)) { 5447 // Treat an enum type as its underlying type. 5448 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5449 Ty = EnumTy->getDecl()->getIntegerType(); 5450 5451 return (Ty->isPromotableIntegerType() ? 5452 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 5453 } 5454 5455 // Ignore empty records. 5456 if (isEmptyRecord(getContext(), Ty, true)) 5457 return ABIArgInfo::getIgnore(); 5458 5459 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 5460 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 5461 5462 uint64_t Size = getContext().getTypeSize(Ty); 5463 if (Size > 64) 5464 return ABIArgInfo::getIndirect(0, /*ByVal=*/true); 5465 // Pass in the smallest viable integer type. 5466 else if (Size > 32) 5467 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); 5468 else if (Size > 16) 5469 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 5470 else if (Size > 8) 5471 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 5472 else 5473 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 5474 } 5475 5476 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const { 5477 if (RetTy->isVoidType()) 5478 return ABIArgInfo::getIgnore(); 5479 5480 // Large vector types should be returned via memory. 5481 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64) 5482 return ABIArgInfo::getIndirect(0); 5483 5484 if (!isAggregateTypeForABI(RetTy)) { 5485 // Treat an enum type as its underlying type. 5486 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5487 RetTy = EnumTy->getDecl()->getIntegerType(); 5488 5489 return (RetTy->isPromotableIntegerType() ? 5490 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 5491 } 5492 5493 if (isEmptyRecord(getContext(), RetTy, true)) 5494 return ABIArgInfo::getIgnore(); 5495 5496 // Aggregates <= 8 bytes are returned in r0; other aggregates 5497 // are returned indirectly. 5498 uint64_t Size = getContext().getTypeSize(RetTy); 5499 if (Size <= 64) { 5500 // Return in the smallest viable integer type. 5501 if (Size <= 8) 5502 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 5503 if (Size <= 16) 5504 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 5505 if (Size <= 32) 5506 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 5507 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); 5508 } 5509 5510 return ABIArgInfo::getIndirect(0, /*ByVal=*/true); 5511 } 5512 5513 llvm::Value *HexagonABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5514 CodeGenFunction &CGF) const { 5515 // FIXME: Need to handle alignment 5516 llvm::Type *BPP = CGF.Int8PtrPtrTy; 5517 5518 CGBuilderTy &Builder = CGF.Builder; 5519 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, 5520 "ap"); 5521 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 5522 llvm::Type *PTy = 5523 llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 5524 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); 5525 5526 uint64_t Offset = 5527 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4); 5528 llvm::Value *NextAddr = 5529 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), 5530 "ap.next"); 5531 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 5532 5533 return AddrTyped; 5534 } 5535 5536 5537 //===----------------------------------------------------------------------===// 5538 // SPARC v9 ABI Implementation. 5539 // Based on the SPARC Compliance Definition version 2.4.1. 5540 // 5541 // Function arguments a mapped to a nominal "parameter array" and promoted to 5542 // registers depending on their type. Each argument occupies 8 or 16 bytes in 5543 // the array, structs larger than 16 bytes are passed indirectly. 5544 // 5545 // One case requires special care: 5546 // 5547 // struct mixed { 5548 // int i; 5549 // float f; 5550 // }; 5551 // 5552 // When a struct mixed is passed by value, it only occupies 8 bytes in the 5553 // parameter array, but the int is passed in an integer register, and the float 5554 // is passed in a floating point register. This is represented as two arguments 5555 // with the LLVM IR inreg attribute: 5556 // 5557 // declare void f(i32 inreg %i, float inreg %f) 5558 // 5559 // The code generator will only allocate 4 bytes from the parameter array for 5560 // the inreg arguments. All other arguments are allocated a multiple of 8 5561 // bytes. 5562 // 5563 namespace { 5564 class SparcV9ABIInfo : public ABIInfo { 5565 public: 5566 SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 5567 5568 private: 5569 ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const; 5570 void computeInfo(CGFunctionInfo &FI) const override; 5571 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5572 CodeGenFunction &CGF) const override; 5573 5574 // Coercion type builder for structs passed in registers. The coercion type 5575 // serves two purposes: 5576 // 5577 // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned' 5578 // in registers. 5579 // 2. Expose aligned floating point elements as first-level elements, so the 5580 // code generator knows to pass them in floating point registers. 5581 // 5582 // We also compute the InReg flag which indicates that the struct contains 5583 // aligned 32-bit floats. 5584 // 5585 struct CoerceBuilder { 5586 llvm::LLVMContext &Context; 5587 const llvm::DataLayout &DL; 5588 SmallVector<llvm::Type*, 8> Elems; 5589 uint64_t Size; 5590 bool InReg; 5591 5592 CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl) 5593 : Context(c), DL(dl), Size(0), InReg(false) {} 5594 5595 // Pad Elems with integers until Size is ToSize. 5596 void pad(uint64_t ToSize) { 5597 assert(ToSize >= Size && "Cannot remove elements"); 5598 if (ToSize == Size) 5599 return; 5600 5601 // Finish the current 64-bit word. 5602 uint64_t Aligned = llvm::RoundUpToAlignment(Size, 64); 5603 if (Aligned > Size && Aligned <= ToSize) { 5604 Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size)); 5605 Size = Aligned; 5606 } 5607 5608 // Add whole 64-bit words. 5609 while (Size + 64 <= ToSize) { 5610 Elems.push_back(llvm::Type::getInt64Ty(Context)); 5611 Size += 64; 5612 } 5613 5614 // Final in-word padding. 5615 if (Size < ToSize) { 5616 Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size)); 5617 Size = ToSize; 5618 } 5619 } 5620 5621 // Add a floating point element at Offset. 5622 void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) { 5623 // Unaligned floats are treated as integers. 5624 if (Offset % Bits) 5625 return; 5626 // The InReg flag is only required if there are any floats < 64 bits. 5627 if (Bits < 64) 5628 InReg = true; 5629 pad(Offset); 5630 Elems.push_back(Ty); 5631 Size = Offset + Bits; 5632 } 5633 5634 // Add a struct type to the coercion type, starting at Offset (in bits). 5635 void addStruct(uint64_t Offset, llvm::StructType *StrTy) { 5636 const llvm::StructLayout *Layout = DL.getStructLayout(StrTy); 5637 for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) { 5638 llvm::Type *ElemTy = StrTy->getElementType(i); 5639 uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i); 5640 switch (ElemTy->getTypeID()) { 5641 case llvm::Type::StructTyID: 5642 addStruct(ElemOffset, cast<llvm::StructType>(ElemTy)); 5643 break; 5644 case llvm::Type::FloatTyID: 5645 addFloat(ElemOffset, ElemTy, 32); 5646 break; 5647 case llvm::Type::DoubleTyID: 5648 addFloat(ElemOffset, ElemTy, 64); 5649 break; 5650 case llvm::Type::FP128TyID: 5651 addFloat(ElemOffset, ElemTy, 128); 5652 break; 5653 case llvm::Type::PointerTyID: 5654 if (ElemOffset % 64 == 0) { 5655 pad(ElemOffset); 5656 Elems.push_back(ElemTy); 5657 Size += 64; 5658 } 5659 break; 5660 default: 5661 break; 5662 } 5663 } 5664 } 5665 5666 // Check if Ty is a usable substitute for the coercion type. 5667 bool isUsableType(llvm::StructType *Ty) const { 5668 if (Ty->getNumElements() != Elems.size()) 5669 return false; 5670 for (unsigned i = 0, e = Elems.size(); i != e; ++i) 5671 if (Elems[i] != Ty->getElementType(i)) 5672 return false; 5673 return true; 5674 } 5675 5676 // Get the coercion type as a literal struct type. 5677 llvm::Type *getType() const { 5678 if (Elems.size() == 1) 5679 return Elems.front(); 5680 else 5681 return llvm::StructType::get(Context, Elems); 5682 } 5683 }; 5684 }; 5685 } // end anonymous namespace 5686 5687 ABIArgInfo 5688 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const { 5689 if (Ty->isVoidType()) 5690 return ABIArgInfo::getIgnore(); 5691 5692 uint64_t Size = getContext().getTypeSize(Ty); 5693 5694 // Anything too big to fit in registers is passed with an explicit indirect 5695 // pointer / sret pointer. 5696 if (Size > SizeLimit) 5697 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 5698 5699 // Treat an enum type as its underlying type. 5700 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5701 Ty = EnumTy->getDecl()->getIntegerType(); 5702 5703 // Integer types smaller than a register are extended. 5704 if (Size < 64 && Ty->isIntegerType()) 5705 return ABIArgInfo::getExtend(); 5706 5707 // Other non-aggregates go in registers. 5708 if (!isAggregateTypeForABI(Ty)) 5709 return ABIArgInfo::getDirect(); 5710 5711 // If a C++ object has either a non-trivial copy constructor or a non-trivial 5712 // destructor, it is passed with an explicit indirect pointer / sret pointer. 5713 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 5714 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory); 5715 5716 // This is a small aggregate type that should be passed in registers. 5717 // Build a coercion type from the LLVM struct type. 5718 llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty)); 5719 if (!StrTy) 5720 return ABIArgInfo::getDirect(); 5721 5722 CoerceBuilder CB(getVMContext(), getDataLayout()); 5723 CB.addStruct(0, StrTy); 5724 CB.pad(llvm::RoundUpToAlignment(CB.DL.getTypeSizeInBits(StrTy), 64)); 5725 5726 // Try to use the original type for coercion. 5727 llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType(); 5728 5729 if (CB.InReg) 5730 return ABIArgInfo::getDirectInReg(CoerceTy); 5731 else 5732 return ABIArgInfo::getDirect(CoerceTy); 5733 } 5734 5735 llvm::Value *SparcV9ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5736 CodeGenFunction &CGF) const { 5737 ABIArgInfo AI = classifyType(Ty, 16 * 8); 5738 llvm::Type *ArgTy = CGT.ConvertType(Ty); 5739 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 5740 AI.setCoerceToType(ArgTy); 5741 5742 llvm::Type *BPP = CGF.Int8PtrPtrTy; 5743 CGBuilderTy &Builder = CGF.Builder; 5744 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); 5745 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 5746 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 5747 llvm::Value *ArgAddr; 5748 unsigned Stride; 5749 5750 switch (AI.getKind()) { 5751 case ABIArgInfo::Expand: 5752 case ABIArgInfo::InAlloca: 5753 llvm_unreachable("Unsupported ABI kind for va_arg"); 5754 5755 case ABIArgInfo::Extend: 5756 Stride = 8; 5757 ArgAddr = Builder 5758 .CreateConstGEP1_32(Addr, 8 - getDataLayout().getTypeAllocSize(ArgTy), 5759 "extend"); 5760 break; 5761 5762 case ABIArgInfo::Direct: 5763 Stride = getDataLayout().getTypeAllocSize(AI.getCoerceToType()); 5764 ArgAddr = Addr; 5765 break; 5766 5767 case ABIArgInfo::Indirect: 5768 Stride = 8; 5769 ArgAddr = Builder.CreateBitCast(Addr, 5770 llvm::PointerType::getUnqual(ArgPtrTy), 5771 "indirect"); 5772 ArgAddr = Builder.CreateLoad(ArgAddr, "indirect.arg"); 5773 break; 5774 5775 case ABIArgInfo::Ignore: 5776 return llvm::UndefValue::get(ArgPtrTy); 5777 } 5778 5779 // Update VAList. 5780 Addr = Builder.CreateConstGEP1_32(Addr, Stride, "ap.next"); 5781 Builder.CreateStore(Addr, VAListAddrAsBPP); 5782 5783 return Builder.CreatePointerCast(ArgAddr, ArgPtrTy, "arg.addr"); 5784 } 5785 5786 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const { 5787 FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8); 5788 for (auto &I : FI.arguments()) 5789 I.info = classifyType(I.type, 16 * 8); 5790 } 5791 5792 namespace { 5793 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo { 5794 public: 5795 SparcV9TargetCodeGenInfo(CodeGenTypes &CGT) 5796 : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {} 5797 5798 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 5799 return 14; 5800 } 5801 5802 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5803 llvm::Value *Address) const override; 5804 }; 5805 } // end anonymous namespace 5806 5807 bool 5808 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5809 llvm::Value *Address) const { 5810 // This is calculated from the LLVM and GCC tables and verified 5811 // against gcc output. AFAIK all ABIs use the same encoding. 5812 5813 CodeGen::CGBuilderTy &Builder = CGF.Builder; 5814 5815 llvm::IntegerType *i8 = CGF.Int8Ty; 5816 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 5817 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 5818 5819 // 0-31: the 8-byte general-purpose registers 5820 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 5821 5822 // 32-63: f0-31, the 4-byte floating-point registers 5823 AssignToArrayRange(Builder, Address, Four8, 32, 63); 5824 5825 // Y = 64 5826 // PSR = 65 5827 // WIM = 66 5828 // TBR = 67 5829 // PC = 68 5830 // NPC = 69 5831 // FSR = 70 5832 // CSR = 71 5833 AssignToArrayRange(Builder, Address, Eight8, 64, 71); 5834 5835 // 72-87: d0-15, the 8-byte floating-point registers 5836 AssignToArrayRange(Builder, Address, Eight8, 72, 87); 5837 5838 return false; 5839 } 5840 5841 5842 //===----------------------------------------------------------------------===// 5843 // XCore ABI Implementation 5844 //===----------------------------------------------------------------------===// 5845 5846 namespace { 5847 5848 /// A SmallStringEnc instance is used to build up the TypeString by passing 5849 /// it by reference between functions that append to it. 5850 typedef llvm::SmallString<128> SmallStringEnc; 5851 5852 /// TypeStringCache caches the meta encodings of Types. 5853 /// 5854 /// The reason for caching TypeStrings is two fold: 5855 /// 1. To cache a type's encoding for later uses; 5856 /// 2. As a means to break recursive member type inclusion. 5857 /// 5858 /// A cache Entry can have a Status of: 5859 /// NonRecursive: The type encoding is not recursive; 5860 /// Recursive: The type encoding is recursive; 5861 /// Incomplete: An incomplete TypeString; 5862 /// IncompleteUsed: An incomplete TypeString that has been used in a 5863 /// Recursive type encoding. 5864 /// 5865 /// A NonRecursive entry will have all of its sub-members expanded as fully 5866 /// as possible. Whilst it may contain types which are recursive, the type 5867 /// itself is not recursive and thus its encoding may be safely used whenever 5868 /// the type is encountered. 5869 /// 5870 /// A Recursive entry will have all of its sub-members expanded as fully as 5871 /// possible. The type itself is recursive and it may contain other types which 5872 /// are recursive. The Recursive encoding must not be used during the expansion 5873 /// of a recursive type's recursive branch. For simplicity the code uses 5874 /// IncompleteCount to reject all usage of Recursive encodings for member types. 5875 /// 5876 /// An Incomplete entry is always a RecordType and only encodes its 5877 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and 5878 /// are placed into the cache during type expansion as a means to identify and 5879 /// handle recursive inclusion of types as sub-members. If there is recursion 5880 /// the entry becomes IncompleteUsed. 5881 /// 5882 /// During the expansion of a RecordType's members: 5883 /// 5884 /// If the cache contains a NonRecursive encoding for the member type, the 5885 /// cached encoding is used; 5886 /// 5887 /// If the cache contains a Recursive encoding for the member type, the 5888 /// cached encoding is 'Swapped' out, as it may be incorrect, and... 5889 /// 5890 /// If the member is a RecordType, an Incomplete encoding is placed into the 5891 /// cache to break potential recursive inclusion of itself as a sub-member; 5892 /// 5893 /// Once a member RecordType has been expanded, its temporary incomplete 5894 /// entry is removed from the cache. If a Recursive encoding was swapped out 5895 /// it is swapped back in; 5896 /// 5897 /// If an incomplete entry is used to expand a sub-member, the incomplete 5898 /// entry is marked as IncompleteUsed. The cache keeps count of how many 5899 /// IncompleteUsed entries it currently contains in IncompleteUsedCount; 5900 /// 5901 /// If a member's encoding is found to be a NonRecursive or Recursive viz: 5902 /// IncompleteUsedCount==0, the member's encoding is added to the cache. 5903 /// Else the member is part of a recursive type and thus the recursion has 5904 /// been exited too soon for the encoding to be correct for the member. 5905 /// 5906 class TypeStringCache { 5907 enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed}; 5908 struct Entry { 5909 std::string Str; // The encoded TypeString for the type. 5910 enum Status State; // Information about the encoding in 'Str'. 5911 std::string Swapped; // A temporary place holder for a Recursive encoding 5912 // during the expansion of RecordType's members. 5913 }; 5914 std::map<const IdentifierInfo *, struct Entry> Map; 5915 unsigned IncompleteCount; // Number of Incomplete entries in the Map. 5916 unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map. 5917 public: 5918 TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {}; 5919 void addIncomplete(const IdentifierInfo *ID, std::string StubEnc); 5920 bool removeIncomplete(const IdentifierInfo *ID); 5921 void addIfComplete(const IdentifierInfo *ID, StringRef Str, 5922 bool IsRecursive); 5923 StringRef lookupStr(const IdentifierInfo *ID); 5924 }; 5925 5926 /// TypeString encodings for enum & union fields must be order. 5927 /// FieldEncoding is a helper for this ordering process. 5928 class FieldEncoding { 5929 bool HasName; 5930 std::string Enc; 5931 public: 5932 FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {}; 5933 StringRef str() {return Enc.c_str();}; 5934 bool operator<(const FieldEncoding &rhs) const { 5935 if (HasName != rhs.HasName) return HasName; 5936 return Enc < rhs.Enc; 5937 } 5938 }; 5939 5940 class XCoreABIInfo : public DefaultABIInfo { 5941 public: 5942 XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 5943 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5944 CodeGenFunction &CGF) const override; 5945 }; 5946 5947 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo { 5948 mutable TypeStringCache TSC; 5949 public: 5950 XCoreTargetCodeGenInfo(CodeGenTypes &CGT) 5951 :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {} 5952 void emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 5953 CodeGen::CodeGenModule &M) const override; 5954 }; 5955 5956 } // End anonymous namespace. 5957 5958 llvm::Value *XCoreABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 5959 CodeGenFunction &CGF) const { 5960 CGBuilderTy &Builder = CGF.Builder; 5961 5962 // Get the VAList. 5963 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, 5964 CGF.Int8PtrPtrTy); 5965 llvm::Value *AP = Builder.CreateLoad(VAListAddrAsBPP); 5966 5967 // Handle the argument. 5968 ABIArgInfo AI = classifyArgumentType(Ty); 5969 llvm::Type *ArgTy = CGT.ConvertType(Ty); 5970 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 5971 AI.setCoerceToType(ArgTy); 5972 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 5973 llvm::Value *Val; 5974 uint64_t ArgSize = 0; 5975 switch (AI.getKind()) { 5976 case ABIArgInfo::Expand: 5977 case ABIArgInfo::InAlloca: 5978 llvm_unreachable("Unsupported ABI kind for va_arg"); 5979 case ABIArgInfo::Ignore: 5980 Val = llvm::UndefValue::get(ArgPtrTy); 5981 ArgSize = 0; 5982 break; 5983 case ABIArgInfo::Extend: 5984 case ABIArgInfo::Direct: 5985 Val = Builder.CreatePointerCast(AP, ArgPtrTy); 5986 ArgSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType()); 5987 if (ArgSize < 4) 5988 ArgSize = 4; 5989 break; 5990 case ABIArgInfo::Indirect: 5991 llvm::Value *ArgAddr; 5992 ArgAddr = Builder.CreateBitCast(AP, llvm::PointerType::getUnqual(ArgPtrTy)); 5993 ArgAddr = Builder.CreateLoad(ArgAddr); 5994 Val = Builder.CreatePointerCast(ArgAddr, ArgPtrTy); 5995 ArgSize = 4; 5996 break; 5997 } 5998 5999 // Increment the VAList. 6000 if (ArgSize) { 6001 llvm::Value *APN = Builder.CreateConstGEP1_32(AP, ArgSize); 6002 Builder.CreateStore(APN, VAListAddrAsBPP); 6003 } 6004 return Val; 6005 } 6006 6007 /// During the expansion of a RecordType, an incomplete TypeString is placed 6008 /// into the cache as a means to identify and break recursion. 6009 /// If there is a Recursive encoding in the cache, it is swapped out and will 6010 /// be reinserted by removeIncomplete(). 6011 /// All other types of encoding should have been used rather than arriving here. 6012 void TypeStringCache::addIncomplete(const IdentifierInfo *ID, 6013 std::string StubEnc) { 6014 if (!ID) 6015 return; 6016 Entry &E = Map[ID]; 6017 assert( (E.Str.empty() || E.State == Recursive) && 6018 "Incorrectly use of addIncomplete"); 6019 assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()"); 6020 E.Swapped.swap(E.Str); // swap out the Recursive 6021 E.Str.swap(StubEnc); 6022 E.State = Incomplete; 6023 ++IncompleteCount; 6024 } 6025 6026 /// Once the RecordType has been expanded, the temporary incomplete TypeString 6027 /// must be removed from the cache. 6028 /// If a Recursive was swapped out by addIncomplete(), it will be replaced. 6029 /// Returns true if the RecordType was defined recursively. 6030 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) { 6031 if (!ID) 6032 return false; 6033 auto I = Map.find(ID); 6034 assert(I != Map.end() && "Entry not present"); 6035 Entry &E = I->second; 6036 assert( (E.State == Incomplete || 6037 E.State == IncompleteUsed) && 6038 "Entry must be an incomplete type"); 6039 bool IsRecursive = false; 6040 if (E.State == IncompleteUsed) { 6041 // We made use of our Incomplete encoding, thus we are recursive. 6042 IsRecursive = true; 6043 --IncompleteUsedCount; 6044 } 6045 if (E.Swapped.empty()) 6046 Map.erase(I); 6047 else { 6048 // Swap the Recursive back. 6049 E.Swapped.swap(E.Str); 6050 E.Swapped.clear(); 6051 E.State = Recursive; 6052 } 6053 --IncompleteCount; 6054 return IsRecursive; 6055 } 6056 6057 /// Add the encoded TypeString to the cache only if it is NonRecursive or 6058 /// Recursive (viz: all sub-members were expanded as fully as possible). 6059 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str, 6060 bool IsRecursive) { 6061 if (!ID || IncompleteUsedCount) 6062 return; // No key or it is is an incomplete sub-type so don't add. 6063 Entry &E = Map[ID]; 6064 if (IsRecursive && !E.Str.empty()) { 6065 assert(E.State==Recursive && E.Str.size() == Str.size() && 6066 "This is not the same Recursive entry"); 6067 // The parent container was not recursive after all, so we could have used 6068 // this Recursive sub-member entry after all, but we assumed the worse when 6069 // we started viz: IncompleteCount!=0. 6070 return; 6071 } 6072 assert(E.Str.empty() && "Entry already present"); 6073 E.Str = Str.str(); 6074 E.State = IsRecursive? Recursive : NonRecursive; 6075 } 6076 6077 /// Return a cached TypeString encoding for the ID. If there isn't one, or we 6078 /// are recursively expanding a type (IncompleteCount != 0) and the cached 6079 /// encoding is Recursive, return an empty StringRef. 6080 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) { 6081 if (!ID) 6082 return StringRef(); // We have no key. 6083 auto I = Map.find(ID); 6084 if (I == Map.end()) 6085 return StringRef(); // We have no encoding. 6086 Entry &E = I->second; 6087 if (E.State == Recursive && IncompleteCount) 6088 return StringRef(); // We don't use Recursive encodings for member types. 6089 6090 if (E.State == Incomplete) { 6091 // The incomplete type is being used to break out of recursion. 6092 E.State = IncompleteUsed; 6093 ++IncompleteUsedCount; 6094 } 6095 return E.Str.c_str(); 6096 } 6097 6098 /// The XCore ABI includes a type information section that communicates symbol 6099 /// type information to the linker. The linker uses this information to verify 6100 /// safety/correctness of things such as array bound and pointers et al. 6101 /// The ABI only requires C (and XC) language modules to emit TypeStrings. 6102 /// This type information (TypeString) is emitted into meta data for all global 6103 /// symbols: definitions, declarations, functions & variables. 6104 /// 6105 /// The TypeString carries type, qualifier, name, size & value details. 6106 /// Please see 'Tools Development Guide' section 2.16.2 for format details: 6107 /// <https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf> 6108 /// The output is tested by test/CodeGen/xcore-stringtype.c. 6109 /// 6110 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 6111 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC); 6112 6113 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols. 6114 void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 6115 CodeGen::CodeGenModule &CGM) const { 6116 SmallStringEnc Enc; 6117 if (getTypeString(Enc, D, CGM, TSC)) { 6118 llvm::LLVMContext &Ctx = CGM.getModule().getContext(); 6119 llvm::SmallVector<llvm::Value *, 2> MDVals; 6120 MDVals.push_back(GV); 6121 MDVals.push_back(llvm::MDString::get(Ctx, Enc.str())); 6122 llvm::NamedMDNode *MD = 6123 CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings"); 6124 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 6125 } 6126 } 6127 6128 static bool appendType(SmallStringEnc &Enc, QualType QType, 6129 const CodeGen::CodeGenModule &CGM, 6130 TypeStringCache &TSC); 6131 6132 /// Helper function for appendRecordType(). 6133 /// Builds a SmallVector containing the encoded field types in declaration order. 6134 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE, 6135 const RecordDecl *RD, 6136 const CodeGen::CodeGenModule &CGM, 6137 TypeStringCache &TSC) { 6138 for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end(); 6139 I != E; ++I) { 6140 SmallStringEnc Enc; 6141 Enc += "m("; 6142 Enc += I->getName(); 6143 Enc += "){"; 6144 if (I->isBitField()) { 6145 Enc += "b("; 6146 llvm::raw_svector_ostream OS(Enc); 6147 OS.resync(); 6148 OS << I->getBitWidthValue(CGM.getContext()); 6149 OS.flush(); 6150 Enc += ':'; 6151 } 6152 if (!appendType(Enc, I->getType(), CGM, TSC)) 6153 return false; 6154 if (I->isBitField()) 6155 Enc += ')'; 6156 Enc += '}'; 6157 FE.push_back(FieldEncoding(!I->getName().empty(), Enc)); 6158 } 6159 return true; 6160 } 6161 6162 /// Appends structure and union types to Enc and adds encoding to cache. 6163 /// Recursively calls appendType (via extractFieldType) for each field. 6164 /// Union types have their fields ordered according to the ABI. 6165 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT, 6166 const CodeGen::CodeGenModule &CGM, 6167 TypeStringCache &TSC, const IdentifierInfo *ID) { 6168 // Append the cached TypeString if we have one. 6169 StringRef TypeString = TSC.lookupStr(ID); 6170 if (!TypeString.empty()) { 6171 Enc += TypeString; 6172 return true; 6173 } 6174 6175 // Start to emit an incomplete TypeString. 6176 size_t Start = Enc.size(); 6177 Enc += (RT->isUnionType()? 'u' : 's'); 6178 Enc += '('; 6179 if (ID) 6180 Enc += ID->getName(); 6181 Enc += "){"; 6182 6183 // We collect all encoded fields and order as necessary. 6184 bool IsRecursive = false; 6185 const RecordDecl *RD = RT->getDecl()->getDefinition(); 6186 if (RD && !RD->field_empty()) { 6187 // An incomplete TypeString stub is placed in the cache for this RecordType 6188 // so that recursive calls to this RecordType will use it whilst building a 6189 // complete TypeString for this RecordType. 6190 SmallVector<FieldEncoding, 16> FE; 6191 std::string StubEnc(Enc.substr(Start).str()); 6192 StubEnc += '}'; // StubEnc now holds a valid incomplete TypeString. 6193 TSC.addIncomplete(ID, std::move(StubEnc)); 6194 if (!extractFieldType(FE, RD, CGM, TSC)) { 6195 (void) TSC.removeIncomplete(ID); 6196 return false; 6197 } 6198 IsRecursive = TSC.removeIncomplete(ID); 6199 // The ABI requires unions to be sorted but not structures. 6200 // See FieldEncoding::operator< for sort algorithm. 6201 if (RT->isUnionType()) 6202 std::sort(FE.begin(), FE.end()); 6203 // We can now complete the TypeString. 6204 unsigned E = FE.size(); 6205 for (unsigned I = 0; I != E; ++I) { 6206 if (I) 6207 Enc += ','; 6208 Enc += FE[I].str(); 6209 } 6210 } 6211 Enc += '}'; 6212 TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive); 6213 return true; 6214 } 6215 6216 /// Appends enum types to Enc and adds the encoding to the cache. 6217 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET, 6218 TypeStringCache &TSC, 6219 const IdentifierInfo *ID) { 6220 // Append the cached TypeString if we have one. 6221 StringRef TypeString = TSC.lookupStr(ID); 6222 if (!TypeString.empty()) { 6223 Enc += TypeString; 6224 return true; 6225 } 6226 6227 size_t Start = Enc.size(); 6228 Enc += "e("; 6229 if (ID) 6230 Enc += ID->getName(); 6231 Enc += "){"; 6232 6233 // We collect all encoded enumerations and order them alphanumerically. 6234 if (const EnumDecl *ED = ET->getDecl()->getDefinition()) { 6235 SmallVector<FieldEncoding, 16> FE; 6236 for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E; 6237 ++I) { 6238 SmallStringEnc EnumEnc; 6239 EnumEnc += "m("; 6240 EnumEnc += I->getName(); 6241 EnumEnc += "){"; 6242 I->getInitVal().toString(EnumEnc); 6243 EnumEnc += '}'; 6244 FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc)); 6245 } 6246 std::sort(FE.begin(), FE.end()); 6247 unsigned E = FE.size(); 6248 for (unsigned I = 0; I != E; ++I) { 6249 if (I) 6250 Enc += ','; 6251 Enc += FE[I].str(); 6252 } 6253 } 6254 Enc += '}'; 6255 TSC.addIfComplete(ID, Enc.substr(Start), false); 6256 return true; 6257 } 6258 6259 /// Appends type's qualifier to Enc. 6260 /// This is done prior to appending the type's encoding. 6261 static void appendQualifier(SmallStringEnc &Enc, QualType QT) { 6262 // Qualifiers are emitted in alphabetical order. 6263 static const char *Table[] = {"","c:","r:","cr:","v:","cv:","rv:","crv:"}; 6264 int Lookup = 0; 6265 if (QT.isConstQualified()) 6266 Lookup += 1<<0; 6267 if (QT.isRestrictQualified()) 6268 Lookup += 1<<1; 6269 if (QT.isVolatileQualified()) 6270 Lookup += 1<<2; 6271 Enc += Table[Lookup]; 6272 } 6273 6274 /// Appends built-in types to Enc. 6275 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) { 6276 const char *EncType; 6277 switch (BT->getKind()) { 6278 case BuiltinType::Void: 6279 EncType = "0"; 6280 break; 6281 case BuiltinType::Bool: 6282 EncType = "b"; 6283 break; 6284 case BuiltinType::Char_U: 6285 EncType = "uc"; 6286 break; 6287 case BuiltinType::UChar: 6288 EncType = "uc"; 6289 break; 6290 case BuiltinType::SChar: 6291 EncType = "sc"; 6292 break; 6293 case BuiltinType::UShort: 6294 EncType = "us"; 6295 break; 6296 case BuiltinType::Short: 6297 EncType = "ss"; 6298 break; 6299 case BuiltinType::UInt: 6300 EncType = "ui"; 6301 break; 6302 case BuiltinType::Int: 6303 EncType = "si"; 6304 break; 6305 case BuiltinType::ULong: 6306 EncType = "ul"; 6307 break; 6308 case BuiltinType::Long: 6309 EncType = "sl"; 6310 break; 6311 case BuiltinType::ULongLong: 6312 EncType = "ull"; 6313 break; 6314 case BuiltinType::LongLong: 6315 EncType = "sll"; 6316 break; 6317 case BuiltinType::Float: 6318 EncType = "ft"; 6319 break; 6320 case BuiltinType::Double: 6321 EncType = "d"; 6322 break; 6323 case BuiltinType::LongDouble: 6324 EncType = "ld"; 6325 break; 6326 default: 6327 return false; 6328 } 6329 Enc += EncType; 6330 return true; 6331 } 6332 6333 /// Appends a pointer encoding to Enc before calling appendType for the pointee. 6334 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT, 6335 const CodeGen::CodeGenModule &CGM, 6336 TypeStringCache &TSC) { 6337 Enc += "p("; 6338 if (!appendType(Enc, PT->getPointeeType(), CGM, TSC)) 6339 return false; 6340 Enc += ')'; 6341 return true; 6342 } 6343 6344 /// Appends array encoding to Enc before calling appendType for the element. 6345 static bool appendArrayType(SmallStringEnc &Enc, QualType QT, 6346 const ArrayType *AT, 6347 const CodeGen::CodeGenModule &CGM, 6348 TypeStringCache &TSC, StringRef NoSizeEnc) { 6349 if (AT->getSizeModifier() != ArrayType::Normal) 6350 return false; 6351 Enc += "a("; 6352 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) 6353 CAT->getSize().toStringUnsigned(Enc); 6354 else 6355 Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "". 6356 Enc += ':'; 6357 // The Qualifiers should be attached to the type rather than the array. 6358 appendQualifier(Enc, QT); 6359 if (!appendType(Enc, AT->getElementType(), CGM, TSC)) 6360 return false; 6361 Enc += ')'; 6362 return true; 6363 } 6364 6365 /// Appends a function encoding to Enc, calling appendType for the return type 6366 /// and the arguments. 6367 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT, 6368 const CodeGen::CodeGenModule &CGM, 6369 TypeStringCache &TSC) { 6370 Enc += "f{"; 6371 if (!appendType(Enc, FT->getReturnType(), CGM, TSC)) 6372 return false; 6373 Enc += "}("; 6374 if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) { 6375 // N.B. we are only interested in the adjusted param types. 6376 auto I = FPT->param_type_begin(); 6377 auto E = FPT->param_type_end(); 6378 if (I != E) { 6379 do { 6380 if (!appendType(Enc, *I, CGM, TSC)) 6381 return false; 6382 ++I; 6383 if (I != E) 6384 Enc += ','; 6385 } while (I != E); 6386 if (FPT->isVariadic()) 6387 Enc += ",va"; 6388 } else { 6389 if (FPT->isVariadic()) 6390 Enc += "va"; 6391 else 6392 Enc += '0'; 6393 } 6394 } 6395 Enc += ')'; 6396 return true; 6397 } 6398 6399 /// Handles the type's qualifier before dispatching a call to handle specific 6400 /// type encodings. 6401 static bool appendType(SmallStringEnc &Enc, QualType QType, 6402 const CodeGen::CodeGenModule &CGM, 6403 TypeStringCache &TSC) { 6404 6405 QualType QT = QType.getCanonicalType(); 6406 6407 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) 6408 // The Qualifiers should be attached to the type rather than the array. 6409 // Thus we don't call appendQualifier() here. 6410 return appendArrayType(Enc, QT, AT, CGM, TSC, ""); 6411 6412 appendQualifier(Enc, QT); 6413 6414 if (const BuiltinType *BT = QT->getAs<BuiltinType>()) 6415 return appendBuiltinType(Enc, BT); 6416 6417 if (const PointerType *PT = QT->getAs<PointerType>()) 6418 return appendPointerType(Enc, PT, CGM, TSC); 6419 6420 if (const EnumType *ET = QT->getAs<EnumType>()) 6421 return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier()); 6422 6423 if (const RecordType *RT = QT->getAsStructureType()) 6424 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 6425 6426 if (const RecordType *RT = QT->getAsUnionType()) 6427 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 6428 6429 if (const FunctionType *FT = QT->getAs<FunctionType>()) 6430 return appendFunctionType(Enc, FT, CGM, TSC); 6431 6432 return false; 6433 } 6434 6435 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 6436 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) { 6437 if (!D) 6438 return false; 6439 6440 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 6441 if (FD->getLanguageLinkage() != CLanguageLinkage) 6442 return false; 6443 return appendType(Enc, FD->getType(), CGM, TSC); 6444 } 6445 6446 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 6447 if (VD->getLanguageLinkage() != CLanguageLinkage) 6448 return false; 6449 QualType QT = VD->getType().getCanonicalType(); 6450 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) { 6451 // Global ArrayTypes are given a size of '*' if the size is unknown. 6452 // The Qualifiers should be attached to the type rather than the array. 6453 // Thus we don't call appendQualifier() here. 6454 return appendArrayType(Enc, QT, AT, CGM, TSC, "*"); 6455 } 6456 return appendType(Enc, QT, CGM, TSC); 6457 } 6458 return false; 6459 } 6460 6461 6462 //===----------------------------------------------------------------------===// 6463 // Driver code 6464 //===----------------------------------------------------------------------===// 6465 6466 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { 6467 if (TheTargetCodeGenInfo) 6468 return *TheTargetCodeGenInfo; 6469 6470 const llvm::Triple &Triple = getTarget().getTriple(); 6471 switch (Triple.getArch()) { 6472 default: 6473 return *(TheTargetCodeGenInfo = new DefaultTargetCodeGenInfo(Types)); 6474 6475 case llvm::Triple::le32: 6476 return *(TheTargetCodeGenInfo = new PNaClTargetCodeGenInfo(Types)); 6477 case llvm::Triple::mips: 6478 case llvm::Triple::mipsel: 6479 return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, true)); 6480 6481 case llvm::Triple::mips64: 6482 case llvm::Triple::mips64el: 6483 return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, false)); 6484 6485 case llvm::Triple::aarch64: 6486 case llvm::Triple::aarch64_be: 6487 case llvm::Triple::arm64: 6488 case llvm::Triple::arm64_be: { 6489 AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS; 6490 if (getTarget().getABI() == "darwinpcs") 6491 Kind = AArch64ABIInfo::DarwinPCS; 6492 6493 return *(TheTargetCodeGenInfo = new AArch64TargetCodeGenInfo(Types, Kind)); 6494 } 6495 6496 case llvm::Triple::arm: 6497 case llvm::Triple::armeb: 6498 case llvm::Triple::thumb: 6499 case llvm::Triple::thumbeb: 6500 { 6501 ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS; 6502 if (getTarget().getABI() == "apcs-gnu") 6503 Kind = ARMABIInfo::APCS; 6504 else if (CodeGenOpts.FloatABI == "hard" || 6505 (CodeGenOpts.FloatABI != "soft" && 6506 Triple.getEnvironment() == llvm::Triple::GNUEABIHF)) 6507 Kind = ARMABIInfo::AAPCS_VFP; 6508 6509 switch (Triple.getOS()) { 6510 case llvm::Triple::NaCl: 6511 return *(TheTargetCodeGenInfo = 6512 new NaClARMTargetCodeGenInfo(Types, Kind)); 6513 default: 6514 return *(TheTargetCodeGenInfo = 6515 new ARMTargetCodeGenInfo(Types, Kind)); 6516 } 6517 } 6518 6519 case llvm::Triple::ppc: 6520 return *(TheTargetCodeGenInfo = new PPC32TargetCodeGenInfo(Types)); 6521 case llvm::Triple::ppc64: 6522 if (Triple.isOSBinFormatELF()) 6523 return *(TheTargetCodeGenInfo = new PPC64_SVR4_TargetCodeGenInfo(Types)); 6524 else 6525 return *(TheTargetCodeGenInfo = new PPC64TargetCodeGenInfo(Types)); 6526 case llvm::Triple::ppc64le: 6527 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); 6528 return *(TheTargetCodeGenInfo = new PPC64_SVR4_TargetCodeGenInfo(Types)); 6529 6530 case llvm::Triple::nvptx: 6531 case llvm::Triple::nvptx64: 6532 return *(TheTargetCodeGenInfo = new NVPTXTargetCodeGenInfo(Types)); 6533 6534 case llvm::Triple::msp430: 6535 return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo(Types)); 6536 6537 case llvm::Triple::systemz: 6538 return *(TheTargetCodeGenInfo = new SystemZTargetCodeGenInfo(Types)); 6539 6540 case llvm::Triple::tce: 6541 return *(TheTargetCodeGenInfo = new TCETargetCodeGenInfo(Types)); 6542 6543 case llvm::Triple::x86: { 6544 bool IsDarwinVectorABI = Triple.isOSDarwin(); 6545 bool IsSmallStructInRegABI = 6546 X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 6547 bool IsWin32FloatStructABI = Triple.isWindowsMSVCEnvironment(); 6548 6549 if (Triple.getOS() == llvm::Triple::Win32) { 6550 return *(TheTargetCodeGenInfo = 6551 new WinX86_32TargetCodeGenInfo(Types, 6552 IsDarwinVectorABI, IsSmallStructInRegABI, 6553 IsWin32FloatStructABI, 6554 CodeGenOpts.NumRegisterParameters)); 6555 } else { 6556 return *(TheTargetCodeGenInfo = 6557 new X86_32TargetCodeGenInfo(Types, 6558 IsDarwinVectorABI, IsSmallStructInRegABI, 6559 IsWin32FloatStructABI, 6560 CodeGenOpts.NumRegisterParameters)); 6561 } 6562 } 6563 6564 case llvm::Triple::x86_64: { 6565 bool HasAVX = getTarget().getABI() == "avx"; 6566 6567 switch (Triple.getOS()) { 6568 case llvm::Triple::Win32: 6569 return *(TheTargetCodeGenInfo = new WinX86_64TargetCodeGenInfo(Types)); 6570 case llvm::Triple::NaCl: 6571 return *(TheTargetCodeGenInfo = new NaClX86_64TargetCodeGenInfo(Types, 6572 HasAVX)); 6573 default: 6574 return *(TheTargetCodeGenInfo = new X86_64TargetCodeGenInfo(Types, 6575 HasAVX)); 6576 } 6577 } 6578 case llvm::Triple::hexagon: 6579 return *(TheTargetCodeGenInfo = new HexagonTargetCodeGenInfo(Types)); 6580 case llvm::Triple::sparcv9: 6581 return *(TheTargetCodeGenInfo = new SparcV9TargetCodeGenInfo(Types)); 6582 case llvm::Triple::xcore: 6583 return *(TheTargetCodeGenInfo = new XCoreTargetCodeGenInfo(Types)); 6584 } 6585 } 6586