1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // These classes wrap the information about a call or function 11 // definition used to handle ABI compliancy. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "TargetInfo.h" 16 #include "ABIInfo.h" 17 #include "CGBlocks.h" 18 #include "CGCXXABI.h" 19 #include "CGValue.h" 20 #include "CodeGenFunction.h" 21 #include "clang/AST/RecordLayout.h" 22 #include "clang/CodeGen/CGFunctionInfo.h" 23 #include "clang/CodeGen/SwiftCallingConv.h" 24 #include "clang/Frontend/CodeGenOptions.h" 25 #include "llvm/ADT/StringExtras.h" 26 #include "llvm/ADT/StringSwitch.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/ADT/Twine.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/Type.h" 31 #include "llvm/Support/raw_ostream.h" 32 #include <algorithm> // std::sort 33 34 using namespace clang; 35 using namespace CodeGen; 36 37 // Helper for coercing an aggregate argument or return value into an integer 38 // array of the same size (including padding) and alignment. This alternate 39 // coercion happens only for the RenderScript ABI and can be removed after 40 // runtimes that rely on it are no longer supported. 41 // 42 // RenderScript assumes that the size of the argument / return value in the IR 43 // is the same as the size of the corresponding qualified type. This helper 44 // coerces the aggregate type into an array of the same size (including 45 // padding). This coercion is used in lieu of expansion of struct members or 46 // other canonical coercions that return a coerced-type of larger size. 47 // 48 // Ty - The argument / return value type 49 // Context - The associated ASTContext 50 // LLVMContext - The associated LLVMContext 51 static ABIArgInfo coerceToIntArray(QualType Ty, 52 ASTContext &Context, 53 llvm::LLVMContext &LLVMContext) { 54 // Alignment and Size are measured in bits. 55 const uint64_t Size = Context.getTypeSize(Ty); 56 const uint64_t Alignment = Context.getTypeAlign(Ty); 57 llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment); 58 const uint64_t NumElements = (Size + Alignment - 1) / Alignment; 59 return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements)); 60 } 61 62 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder, 63 llvm::Value *Array, 64 llvm::Value *Value, 65 unsigned FirstIndex, 66 unsigned LastIndex) { 67 // Alternatively, we could emit this as a loop in the source. 68 for (unsigned I = FirstIndex; I <= LastIndex; ++I) { 69 llvm::Value *Cell = 70 Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I); 71 Builder.CreateAlignedStore(Value, Cell, CharUnits::One()); 72 } 73 } 74 75 static bool isAggregateTypeForABI(QualType T) { 76 return !CodeGenFunction::hasScalarEvaluationKind(T) || 77 T->isMemberFunctionPointerType(); 78 } 79 80 ABIArgInfo 81 ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByRef, bool Realign, 82 llvm::Type *Padding) const { 83 return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty), 84 ByRef, Realign, Padding); 85 } 86 87 ABIArgInfo 88 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const { 89 return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty), 90 /*ByRef*/ false, Realign); 91 } 92 93 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 94 QualType Ty) const { 95 return Address::invalid(); 96 } 97 98 ABIInfo::~ABIInfo() {} 99 100 /// Does the given lowering require more than the given number of 101 /// registers when expanded? 102 /// 103 /// This is intended to be the basis of a reasonable basic implementation 104 /// of should{Pass,Return}IndirectlyForSwift. 105 /// 106 /// For most targets, a limit of four total registers is reasonable; this 107 /// limits the amount of code required in order to move around the value 108 /// in case it wasn't produced immediately prior to the call by the caller 109 /// (or wasn't produced in exactly the right registers) or isn't used 110 /// immediately within the callee. But some targets may need to further 111 /// limit the register count due to an inability to support that many 112 /// return registers. 113 static bool occupiesMoreThan(CodeGenTypes &cgt, 114 ArrayRef<llvm::Type*> scalarTypes, 115 unsigned maxAllRegisters) { 116 unsigned intCount = 0, fpCount = 0; 117 for (llvm::Type *type : scalarTypes) { 118 if (type->isPointerTy()) { 119 intCount++; 120 } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) { 121 auto ptrWidth = cgt.getTarget().getPointerWidth(0); 122 intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth; 123 } else { 124 assert(type->isVectorTy() || type->isFloatingPointTy()); 125 fpCount++; 126 } 127 } 128 129 return (intCount + fpCount > maxAllRegisters); 130 } 131 132 bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, 133 llvm::Type *eltTy, 134 unsigned numElts) const { 135 // The default implementation of this assumes that the target guarantees 136 // 128-bit SIMD support but nothing more. 137 return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16); 138 } 139 140 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT, 141 CGCXXABI &CXXABI) { 142 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); 143 if (!RD) { 144 if (!RT->getDecl()->canPassInRegisters()) 145 return CGCXXABI::RAA_Indirect; 146 return CGCXXABI::RAA_Default; 147 } 148 return CXXABI.getRecordArgABI(RD); 149 } 150 151 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T, 152 CGCXXABI &CXXABI) { 153 const RecordType *RT = T->getAs<RecordType>(); 154 if (!RT) 155 return CGCXXABI::RAA_Default; 156 return getRecordArgABI(RT, CXXABI); 157 } 158 159 static bool classifyReturnType(const CGCXXABI &CXXABI, CGFunctionInfo &FI, 160 const ABIInfo &Info) { 161 QualType Ty = FI.getReturnType(); 162 163 if (const auto *RT = Ty->getAs<RecordType>()) 164 if (!isa<CXXRecordDecl>(RT->getDecl()) && 165 !RT->getDecl()->canPassInRegisters()) { 166 FI.getReturnInfo() = Info.getNaturalAlignIndirect(Ty); 167 return true; 168 } 169 170 return CXXABI.classifyReturnType(FI); 171 } 172 173 /// Pass transparent unions as if they were the type of the first element. Sema 174 /// should ensure that all elements of the union have the same "machine type". 175 static QualType useFirstFieldIfTransparentUnion(QualType Ty) { 176 if (const RecordType *UT = Ty->getAsUnionType()) { 177 const RecordDecl *UD = UT->getDecl(); 178 if (UD->hasAttr<TransparentUnionAttr>()) { 179 assert(!UD->field_empty() && "sema created an empty transparent union"); 180 return UD->field_begin()->getType(); 181 } 182 } 183 return Ty; 184 } 185 186 CGCXXABI &ABIInfo::getCXXABI() const { 187 return CGT.getCXXABI(); 188 } 189 190 ASTContext &ABIInfo::getContext() const { 191 return CGT.getContext(); 192 } 193 194 llvm::LLVMContext &ABIInfo::getVMContext() const { 195 return CGT.getLLVMContext(); 196 } 197 198 const llvm::DataLayout &ABIInfo::getDataLayout() const { 199 return CGT.getDataLayout(); 200 } 201 202 const TargetInfo &ABIInfo::getTarget() const { 203 return CGT.getTarget(); 204 } 205 206 const CodeGenOptions &ABIInfo::getCodeGenOpts() const { 207 return CGT.getCodeGenOpts(); 208 } 209 210 bool ABIInfo::isAndroid() const { return getTarget().getTriple().isAndroid(); } 211 212 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 213 return false; 214 } 215 216 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 217 uint64_t Members) const { 218 return false; 219 } 220 221 LLVM_DUMP_METHOD void ABIArgInfo::dump() const { 222 raw_ostream &OS = llvm::errs(); 223 OS << "(ABIArgInfo Kind="; 224 switch (TheKind) { 225 case Direct: 226 OS << "Direct Type="; 227 if (llvm::Type *Ty = getCoerceToType()) 228 Ty->print(OS); 229 else 230 OS << "null"; 231 break; 232 case Extend: 233 OS << "Extend"; 234 break; 235 case Ignore: 236 OS << "Ignore"; 237 break; 238 case InAlloca: 239 OS << "InAlloca Offset=" << getInAllocaFieldIndex(); 240 break; 241 case Indirect: 242 OS << "Indirect Align=" << getIndirectAlign().getQuantity() 243 << " ByVal=" << getIndirectByVal() 244 << " Realign=" << getIndirectRealign(); 245 break; 246 case Expand: 247 OS << "Expand"; 248 break; 249 case CoerceAndExpand: 250 OS << "CoerceAndExpand Type="; 251 getCoerceAndExpandType()->print(OS); 252 break; 253 } 254 OS << ")\n"; 255 } 256 257 // Dynamically round a pointer up to a multiple of the given alignment. 258 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF, 259 llvm::Value *Ptr, 260 CharUnits Align) { 261 llvm::Value *PtrAsInt = Ptr; 262 // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align; 263 PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy); 264 PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt, 265 llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1)); 266 PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt, 267 llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity())); 268 PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt, 269 Ptr->getType(), 270 Ptr->getName() + ".aligned"); 271 return PtrAsInt; 272 } 273 274 /// Emit va_arg for a platform using the common void* representation, 275 /// where arguments are simply emitted in an array of slots on the stack. 276 /// 277 /// This version implements the core direct-value passing rules. 278 /// 279 /// \param SlotSize - The size and alignment of a stack slot. 280 /// Each argument will be allocated to a multiple of this number of 281 /// slots, and all the slots will be aligned to this value. 282 /// \param AllowHigherAlign - The slot alignment is not a cap; 283 /// an argument type with an alignment greater than the slot size 284 /// will be emitted on a higher-alignment address, potentially 285 /// leaving one or more empty slots behind as padding. If this 286 /// is false, the returned address might be less-aligned than 287 /// DirectAlign. 288 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF, 289 Address VAListAddr, 290 llvm::Type *DirectTy, 291 CharUnits DirectSize, 292 CharUnits DirectAlign, 293 CharUnits SlotSize, 294 bool AllowHigherAlign) { 295 // Cast the element type to i8* if necessary. Some platforms define 296 // va_list as a struct containing an i8* instead of just an i8*. 297 if (VAListAddr.getElementType() != CGF.Int8PtrTy) 298 VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy); 299 300 llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur"); 301 302 // If the CC aligns values higher than the slot size, do so if needed. 303 Address Addr = Address::invalid(); 304 if (AllowHigherAlign && DirectAlign > SlotSize) { 305 Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign), 306 DirectAlign); 307 } else { 308 Addr = Address(Ptr, SlotSize); 309 } 310 311 // Advance the pointer past the argument, then store that back. 312 CharUnits FullDirectSize = DirectSize.alignTo(SlotSize); 313 llvm::Value *NextPtr = 314 CGF.Builder.CreateConstInBoundsByteGEP(Addr.getPointer(), FullDirectSize, 315 "argp.next"); 316 CGF.Builder.CreateStore(NextPtr, VAListAddr); 317 318 // If the argument is smaller than a slot, and this is a big-endian 319 // target, the argument will be right-adjusted in its slot. 320 if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() && 321 !DirectTy->isStructTy()) { 322 Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize); 323 } 324 325 Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy); 326 return Addr; 327 } 328 329 /// Emit va_arg for a platform using the common void* representation, 330 /// where arguments are simply emitted in an array of slots on the stack. 331 /// 332 /// \param IsIndirect - Values of this type are passed indirectly. 333 /// \param ValueInfo - The size and alignment of this type, generally 334 /// computed with getContext().getTypeInfoInChars(ValueTy). 335 /// \param SlotSizeAndAlign - The size and alignment of a stack slot. 336 /// Each argument will be allocated to a multiple of this number of 337 /// slots, and all the slots will be aligned to this value. 338 /// \param AllowHigherAlign - The slot alignment is not a cap; 339 /// an argument type with an alignment greater than the slot size 340 /// will be emitted on a higher-alignment address, potentially 341 /// leaving one or more empty slots behind as padding. 342 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr, 343 QualType ValueTy, bool IsIndirect, 344 std::pair<CharUnits, CharUnits> ValueInfo, 345 CharUnits SlotSizeAndAlign, 346 bool AllowHigherAlign) { 347 // The size and alignment of the value that was passed directly. 348 CharUnits DirectSize, DirectAlign; 349 if (IsIndirect) { 350 DirectSize = CGF.getPointerSize(); 351 DirectAlign = CGF.getPointerAlign(); 352 } else { 353 DirectSize = ValueInfo.first; 354 DirectAlign = ValueInfo.second; 355 } 356 357 // Cast the address we've calculated to the right type. 358 llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy); 359 if (IsIndirect) 360 DirectTy = DirectTy->getPointerTo(0); 361 362 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy, 363 DirectSize, DirectAlign, 364 SlotSizeAndAlign, 365 AllowHigherAlign); 366 367 if (IsIndirect) { 368 Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.second); 369 } 370 371 return Addr; 372 373 } 374 375 static Address emitMergePHI(CodeGenFunction &CGF, 376 Address Addr1, llvm::BasicBlock *Block1, 377 Address Addr2, llvm::BasicBlock *Block2, 378 const llvm::Twine &Name = "") { 379 assert(Addr1.getType() == Addr2.getType()); 380 llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name); 381 PHI->addIncoming(Addr1.getPointer(), Block1); 382 PHI->addIncoming(Addr2.getPointer(), Block2); 383 CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment()); 384 return Address(PHI, Align); 385 } 386 387 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; } 388 389 // If someone can figure out a general rule for this, that would be great. 390 // It's probably just doomed to be platform-dependent, though. 391 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const { 392 // Verified for: 393 // x86-64 FreeBSD, Linux, Darwin 394 // x86-32 FreeBSD, Linux, Darwin 395 // PowerPC Linux, Darwin 396 // ARM Darwin (*not* EABI) 397 // AArch64 Linux 398 return 32; 399 } 400 401 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args, 402 const FunctionNoProtoType *fnType) const { 403 // The following conventions are known to require this to be false: 404 // x86_stdcall 405 // MIPS 406 // For everything else, we just prefer false unless we opt out. 407 return false; 408 } 409 410 void 411 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib, 412 llvm::SmallString<24> &Opt) const { 413 // This assumes the user is passing a library name like "rt" instead of a 414 // filename like "librt.a/so", and that they don't care whether it's static or 415 // dynamic. 416 Opt = "-l"; 417 Opt += Lib; 418 } 419 420 unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const { 421 // OpenCL kernels are called via an explicit runtime API with arguments 422 // set with clSetKernelArg(), not as normal sub-functions. 423 // Return SPIR_KERNEL by default as the kernel calling convention to 424 // ensure the fingerprint is fixed such way that each OpenCL argument 425 // gets one matching argument in the produced kernel function argument 426 // list to enable feasible implementation of clSetKernelArg() with 427 // aggregates etc. In case we would use the default C calling conv here, 428 // clSetKernelArg() might break depending on the target-specific 429 // conventions; different targets might split structs passed as values 430 // to multiple function arguments etc. 431 return llvm::CallingConv::SPIR_KERNEL; 432 } 433 434 llvm::Constant *TargetCodeGenInfo::getNullPointer(const CodeGen::CodeGenModule &CGM, 435 llvm::PointerType *T, QualType QT) const { 436 return llvm::ConstantPointerNull::get(T); 437 } 438 439 LangAS TargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM, 440 const VarDecl *D) const { 441 assert(!CGM.getLangOpts().OpenCL && 442 !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && 443 "Address space agnostic languages only"); 444 return D ? D->getType().getAddressSpace() : LangAS::Default; 445 } 446 447 llvm::Value *TargetCodeGenInfo::performAddrSpaceCast( 448 CodeGen::CodeGenFunction &CGF, llvm::Value *Src, LangAS SrcAddr, 449 LangAS DestAddr, llvm::Type *DestTy, bool isNonNull) const { 450 // Since target may map different address spaces in AST to the same address 451 // space, an address space conversion may end up as a bitcast. 452 if (auto *C = dyn_cast<llvm::Constant>(Src)) 453 return performAddrSpaceCast(CGF.CGM, C, SrcAddr, DestAddr, DestTy); 454 return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DestTy); 455 } 456 457 llvm::Constant * 458 TargetCodeGenInfo::performAddrSpaceCast(CodeGenModule &CGM, llvm::Constant *Src, 459 LangAS SrcAddr, LangAS DestAddr, 460 llvm::Type *DestTy) const { 461 // Since target may map different address spaces in AST to the same address 462 // space, an address space conversion may end up as a bitcast. 463 return llvm::ConstantExpr::getPointerCast(Src, DestTy); 464 } 465 466 llvm::SyncScope::ID 467 TargetCodeGenInfo::getLLVMSyncScopeID(SyncScope S, llvm::LLVMContext &C) const { 468 return C.getOrInsertSyncScopeID(""); /* default sync scope */ 469 } 470 471 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays); 472 473 /// isEmptyField - Return true iff a the field is "empty", that is it 474 /// is an unnamed bit-field or an (array of) empty record(s). 475 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD, 476 bool AllowArrays) { 477 if (FD->isUnnamedBitfield()) 478 return true; 479 480 QualType FT = FD->getType(); 481 482 // Constant arrays of empty records count as empty, strip them off. 483 // Constant arrays of zero length always count as empty. 484 if (AllowArrays) 485 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 486 if (AT->getSize() == 0) 487 return true; 488 FT = AT->getElementType(); 489 } 490 491 const RecordType *RT = FT->getAs<RecordType>(); 492 if (!RT) 493 return false; 494 495 // C++ record fields are never empty, at least in the Itanium ABI. 496 // 497 // FIXME: We should use a predicate for whether this behavior is true in the 498 // current ABI. 499 if (isa<CXXRecordDecl>(RT->getDecl())) 500 return false; 501 502 return isEmptyRecord(Context, FT, AllowArrays); 503 } 504 505 /// isEmptyRecord - Return true iff a structure contains only empty 506 /// fields. Note that a structure with a flexible array member is not 507 /// considered empty. 508 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) { 509 const RecordType *RT = T->getAs<RecordType>(); 510 if (!RT) 511 return false; 512 const RecordDecl *RD = RT->getDecl(); 513 if (RD->hasFlexibleArrayMember()) 514 return false; 515 516 // If this is a C++ record, check the bases first. 517 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 518 for (const auto &I : CXXRD->bases()) 519 if (!isEmptyRecord(Context, I.getType(), true)) 520 return false; 521 522 for (const auto *I : RD->fields()) 523 if (!isEmptyField(Context, I, AllowArrays)) 524 return false; 525 return true; 526 } 527 528 /// isSingleElementStruct - Determine if a structure is a "single 529 /// element struct", i.e. it has exactly one non-empty field or 530 /// exactly one field which is itself a single element 531 /// struct. Structures with flexible array members are never 532 /// considered single element structs. 533 /// 534 /// \return The field declaration for the single non-empty field, if 535 /// it exists. 536 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) { 537 const RecordType *RT = T->getAs<RecordType>(); 538 if (!RT) 539 return nullptr; 540 541 const RecordDecl *RD = RT->getDecl(); 542 if (RD->hasFlexibleArrayMember()) 543 return nullptr; 544 545 const Type *Found = nullptr; 546 547 // If this is a C++ record, check the bases first. 548 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 549 for (const auto &I : CXXRD->bases()) { 550 // Ignore empty records. 551 if (isEmptyRecord(Context, I.getType(), true)) 552 continue; 553 554 // If we already found an element then this isn't a single-element struct. 555 if (Found) 556 return nullptr; 557 558 // If this is non-empty and not a single element struct, the composite 559 // cannot be a single element struct. 560 Found = isSingleElementStruct(I.getType(), Context); 561 if (!Found) 562 return nullptr; 563 } 564 } 565 566 // Check for single element. 567 for (const auto *FD : RD->fields()) { 568 QualType FT = FD->getType(); 569 570 // Ignore empty fields. 571 if (isEmptyField(Context, FD, true)) 572 continue; 573 574 // If we already found an element then this isn't a single-element 575 // struct. 576 if (Found) 577 return nullptr; 578 579 // Treat single element arrays as the element. 580 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 581 if (AT->getSize().getZExtValue() != 1) 582 break; 583 FT = AT->getElementType(); 584 } 585 586 if (!isAggregateTypeForABI(FT)) { 587 Found = FT.getTypePtr(); 588 } else { 589 Found = isSingleElementStruct(FT, Context); 590 if (!Found) 591 return nullptr; 592 } 593 } 594 595 // We don't consider a struct a single-element struct if it has 596 // padding beyond the element type. 597 if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T)) 598 return nullptr; 599 600 return Found; 601 } 602 603 namespace { 604 Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty, 605 const ABIArgInfo &AI) { 606 // This default implementation defers to the llvm backend's va_arg 607 // instruction. It can handle only passing arguments directly 608 // (typically only handled in the backend for primitive types), or 609 // aggregates passed indirectly by pointer (NOTE: if the "byval" 610 // flag has ABI impact in the callee, this implementation cannot 611 // work.) 612 613 // Only a few cases are covered here at the moment -- those needed 614 // by the default abi. 615 llvm::Value *Val; 616 617 if (AI.isIndirect()) { 618 assert(!AI.getPaddingType() && 619 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 620 assert( 621 !AI.getIndirectRealign() && 622 "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!"); 623 624 auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty); 625 CharUnits TyAlignForABI = TyInfo.second; 626 627 llvm::Type *BaseTy = 628 llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); 629 llvm::Value *Addr = 630 CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy); 631 return Address(Addr, TyAlignForABI); 632 } else { 633 assert((AI.isDirect() || AI.isExtend()) && 634 "Unexpected ArgInfo Kind in generic VAArg emitter!"); 635 636 assert(!AI.getInReg() && 637 "Unexpected InReg seen in arginfo in generic VAArg emitter!"); 638 assert(!AI.getPaddingType() && 639 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 640 assert(!AI.getDirectOffset() && 641 "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!"); 642 assert(!AI.getCoerceToType() && 643 "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!"); 644 645 Address Temp = CGF.CreateMemTemp(Ty, "varet"); 646 Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), CGF.ConvertType(Ty)); 647 CGF.Builder.CreateStore(Val, Temp); 648 return Temp; 649 } 650 } 651 652 /// DefaultABIInfo - The default implementation for ABI specific 653 /// details. This implementation provides information which results in 654 /// self-consistent and sensible LLVM IR generation, but does not 655 /// conform to any particular ABI. 656 class DefaultABIInfo : public ABIInfo { 657 public: 658 DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 659 660 ABIArgInfo classifyReturnType(QualType RetTy) const; 661 ABIArgInfo classifyArgumentType(QualType RetTy) const; 662 663 void computeInfo(CGFunctionInfo &FI) const override { 664 if (!getCXXABI().classifyReturnType(FI)) 665 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 666 for (auto &I : FI.arguments()) 667 I.info = classifyArgumentType(I.type); 668 } 669 670 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 671 QualType Ty) const override { 672 return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty)); 673 } 674 }; 675 676 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo { 677 public: 678 DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 679 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 680 }; 681 682 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const { 683 Ty = useFirstFieldIfTransparentUnion(Ty); 684 685 if (isAggregateTypeForABI(Ty)) { 686 // Records with non-trivial destructors/copy-constructors should not be 687 // passed by value. 688 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 689 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 690 691 return getNaturalAlignIndirect(Ty); 692 } 693 694 // Treat an enum type as its underlying type. 695 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 696 Ty = EnumTy->getDecl()->getIntegerType(); 697 698 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 699 : ABIArgInfo::getDirect()); 700 } 701 702 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const { 703 if (RetTy->isVoidType()) 704 return ABIArgInfo::getIgnore(); 705 706 if (isAggregateTypeForABI(RetTy)) 707 return getNaturalAlignIndirect(RetTy); 708 709 // Treat an enum type as its underlying type. 710 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 711 RetTy = EnumTy->getDecl()->getIntegerType(); 712 713 return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 714 : ABIArgInfo::getDirect()); 715 } 716 717 //===----------------------------------------------------------------------===// 718 // WebAssembly ABI Implementation 719 // 720 // This is a very simple ABI that relies a lot on DefaultABIInfo. 721 //===----------------------------------------------------------------------===// 722 723 class WebAssemblyABIInfo final : public DefaultABIInfo { 724 public: 725 explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT) 726 : DefaultABIInfo(CGT) {} 727 728 private: 729 ABIArgInfo classifyReturnType(QualType RetTy) const; 730 ABIArgInfo classifyArgumentType(QualType Ty) const; 731 732 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 733 // non-virtual, but computeInfo and EmitVAArg are virtual, so we 734 // overload them. 735 void computeInfo(CGFunctionInfo &FI) const override { 736 if (!getCXXABI().classifyReturnType(FI)) 737 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 738 for (auto &Arg : FI.arguments()) 739 Arg.info = classifyArgumentType(Arg.type); 740 } 741 742 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 743 QualType Ty) const override; 744 }; 745 746 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo { 747 public: 748 explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 749 : TargetCodeGenInfo(new WebAssemblyABIInfo(CGT)) {} 750 }; 751 752 /// Classify argument of given type \p Ty. 753 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const { 754 Ty = useFirstFieldIfTransparentUnion(Ty); 755 756 if (isAggregateTypeForABI(Ty)) { 757 // Records with non-trivial destructors/copy-constructors should not be 758 // passed by value. 759 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 760 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 761 // Ignore empty structs/unions. 762 if (isEmptyRecord(getContext(), Ty, true)) 763 return ABIArgInfo::getIgnore(); 764 // Lower single-element structs to just pass a regular value. TODO: We 765 // could do reasonable-size multiple-element structs too, using getExpand(), 766 // though watch out for things like bitfields. 767 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 768 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 769 } 770 771 // Otherwise just do the default thing. 772 return DefaultABIInfo::classifyArgumentType(Ty); 773 } 774 775 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const { 776 if (isAggregateTypeForABI(RetTy)) { 777 // Records with non-trivial destructors/copy-constructors should not be 778 // returned by value. 779 if (!getRecordArgABI(RetTy, getCXXABI())) { 780 // Ignore empty structs/unions. 781 if (isEmptyRecord(getContext(), RetTy, true)) 782 return ABIArgInfo::getIgnore(); 783 // Lower single-element structs to just return a regular value. TODO: We 784 // could do reasonable-size multiple-element structs too, using 785 // ABIArgInfo::getDirect(). 786 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 787 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 788 } 789 } 790 791 // Otherwise just do the default thing. 792 return DefaultABIInfo::classifyReturnType(RetTy); 793 } 794 795 Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 796 QualType Ty) const { 797 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect=*/ false, 798 getContext().getTypeInfoInChars(Ty), 799 CharUnits::fromQuantity(4), 800 /*AllowHigherAlign=*/ true); 801 } 802 803 //===----------------------------------------------------------------------===// 804 // le32/PNaCl bitcode ABI Implementation 805 // 806 // This is a simplified version of the x86_32 ABI. Arguments and return values 807 // are always passed on the stack. 808 //===----------------------------------------------------------------------===// 809 810 class PNaClABIInfo : public ABIInfo { 811 public: 812 PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 813 814 ABIArgInfo classifyReturnType(QualType RetTy) const; 815 ABIArgInfo classifyArgumentType(QualType RetTy) const; 816 817 void computeInfo(CGFunctionInfo &FI) const override; 818 Address EmitVAArg(CodeGenFunction &CGF, 819 Address VAListAddr, QualType Ty) const override; 820 }; 821 822 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo { 823 public: 824 PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 825 : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {} 826 }; 827 828 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const { 829 if (!getCXXABI().classifyReturnType(FI)) 830 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 831 832 for (auto &I : FI.arguments()) 833 I.info = classifyArgumentType(I.type); 834 } 835 836 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 837 QualType Ty) const { 838 // The PNaCL ABI is a bit odd, in that varargs don't use normal 839 // function classification. Structs get passed directly for varargs 840 // functions, through a rewriting transform in 841 // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows 842 // this target to actually support a va_arg instructions with an 843 // aggregate type, unlike other targets. 844 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 845 } 846 847 /// Classify argument of given type \p Ty. 848 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const { 849 if (isAggregateTypeForABI(Ty)) { 850 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 851 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 852 return getNaturalAlignIndirect(Ty); 853 } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 854 // Treat an enum type as its underlying type. 855 Ty = EnumTy->getDecl()->getIntegerType(); 856 } else if (Ty->isFloatingType()) { 857 // Floating-point types don't go inreg. 858 return ABIArgInfo::getDirect(); 859 } 860 861 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 862 : ABIArgInfo::getDirect()); 863 } 864 865 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const { 866 if (RetTy->isVoidType()) 867 return ABIArgInfo::getIgnore(); 868 869 // In the PNaCl ABI we always return records/structures on the stack. 870 if (isAggregateTypeForABI(RetTy)) 871 return getNaturalAlignIndirect(RetTy); 872 873 // Treat an enum type as its underlying type. 874 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 875 RetTy = EnumTy->getDecl()->getIntegerType(); 876 877 return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 878 : ABIArgInfo::getDirect()); 879 } 880 881 /// IsX86_MMXType - Return true if this is an MMX type. 882 bool IsX86_MMXType(llvm::Type *IRType) { 883 // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>. 884 return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 && 885 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() && 886 IRType->getScalarSizeInBits() != 64; 887 } 888 889 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 890 StringRef Constraint, 891 llvm::Type* Ty) { 892 bool IsMMXCons = llvm::StringSwitch<bool>(Constraint) 893 .Cases("y", "&y", "^Ym", true) 894 .Default(false); 895 if (IsMMXCons && Ty->isVectorTy()) { 896 if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) { 897 // Invalid MMX constraint 898 return nullptr; 899 } 900 901 return llvm::Type::getX86_MMXTy(CGF.getLLVMContext()); 902 } 903 904 // No operation needed 905 return Ty; 906 } 907 908 /// Returns true if this type can be passed in SSE registers with the 909 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64. 910 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) { 911 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 912 if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) { 913 if (BT->getKind() == BuiltinType::LongDouble) { 914 if (&Context.getTargetInfo().getLongDoubleFormat() == 915 &llvm::APFloat::x87DoubleExtended()) 916 return false; 917 } 918 return true; 919 } 920 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 921 // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX 922 // registers specially. 923 unsigned VecSize = Context.getTypeSize(VT); 924 if (VecSize == 128 || VecSize == 256 || VecSize == 512) 925 return true; 926 } 927 return false; 928 } 929 930 /// Returns true if this aggregate is small enough to be passed in SSE registers 931 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64. 932 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) { 933 return NumMembers <= 4; 934 } 935 936 /// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86. 937 static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) { 938 auto AI = ABIArgInfo::getDirect(T); 939 AI.setInReg(true); 940 AI.setCanBeFlattened(false); 941 return AI; 942 } 943 944 //===----------------------------------------------------------------------===// 945 // X86-32 ABI Implementation 946 //===----------------------------------------------------------------------===// 947 948 /// Similar to llvm::CCState, but for Clang. 949 struct CCState { 950 CCState(unsigned CC) : CC(CC), FreeRegs(0), FreeSSERegs(0) {} 951 952 unsigned CC; 953 unsigned FreeRegs; 954 unsigned FreeSSERegs; 955 }; 956 957 enum { 958 // Vectorcall only allows the first 6 parameters to be passed in registers. 959 VectorcallMaxParamNumAsReg = 6 960 }; 961 962 /// X86_32ABIInfo - The X86-32 ABI information. 963 class X86_32ABIInfo : public SwiftABIInfo { 964 enum Class { 965 Integer, 966 Float 967 }; 968 969 static const unsigned MinABIStackAlignInBytes = 4; 970 971 bool IsDarwinVectorABI; 972 bool IsRetSmallStructInRegABI; 973 bool IsWin32StructABI; 974 bool IsSoftFloatABI; 975 bool IsMCUABI; 976 unsigned DefaultNumRegisterParameters; 977 978 static bool isRegisterSize(unsigned Size) { 979 return (Size == 8 || Size == 16 || Size == 32 || Size == 64); 980 } 981 982 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 983 // FIXME: Assumes vectorcall is in use. 984 return isX86VectorTypeForVectorCall(getContext(), Ty); 985 } 986 987 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 988 uint64_t NumMembers) const override { 989 // FIXME: Assumes vectorcall is in use. 990 return isX86VectorCallAggregateSmallEnough(NumMembers); 991 } 992 993 bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const; 994 995 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 996 /// such that the argument will be passed in memory. 997 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 998 999 ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const; 1000 1001 /// Return the alignment to use for the given type on the stack. 1002 unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const; 1003 1004 Class classify(QualType Ty) const; 1005 ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const; 1006 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 1007 1008 /// Updates the number of available free registers, returns 1009 /// true if any registers were allocated. 1010 bool updateFreeRegs(QualType Ty, CCState &State) const; 1011 1012 bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg, 1013 bool &NeedsPadding) const; 1014 bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const; 1015 1016 bool canExpandIndirectArgument(QualType Ty) const; 1017 1018 /// Rewrite the function info so that all memory arguments use 1019 /// inalloca. 1020 void rewriteWithInAlloca(CGFunctionInfo &FI) const; 1021 1022 void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1023 CharUnits &StackOffset, ABIArgInfo &Info, 1024 QualType Type) const; 1025 void computeVectorCallArgs(CGFunctionInfo &FI, CCState &State, 1026 bool &UsedInAlloca) const; 1027 1028 public: 1029 1030 void computeInfo(CGFunctionInfo &FI) const override; 1031 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 1032 QualType Ty) const override; 1033 1034 X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 1035 bool RetSmallStructInRegABI, bool Win32StructABI, 1036 unsigned NumRegisterParameters, bool SoftFloatABI) 1037 : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI), 1038 IsRetSmallStructInRegABI(RetSmallStructInRegABI), 1039 IsWin32StructABI(Win32StructABI), 1040 IsSoftFloatABI(SoftFloatABI), 1041 IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()), 1042 DefaultNumRegisterParameters(NumRegisterParameters) {} 1043 1044 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 1045 bool asReturnValue) const override { 1046 // LLVM's x86-32 lowering currently only assigns up to three 1047 // integer registers and three fp registers. Oddly, it'll use up to 1048 // four vector registers for vectors, but those can overlap with the 1049 // scalar registers. 1050 return occupiesMoreThan(CGT, scalars, /*total*/ 3); 1051 } 1052 1053 bool isSwiftErrorInRegister() const override { 1054 // x86-32 lowering does not support passing swifterror in a register. 1055 return false; 1056 } 1057 }; 1058 1059 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo { 1060 public: 1061 X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 1062 bool RetSmallStructInRegABI, bool Win32StructABI, 1063 unsigned NumRegisterParameters, bool SoftFloatABI) 1064 : TargetCodeGenInfo(new X86_32ABIInfo( 1065 CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI, 1066 NumRegisterParameters, SoftFloatABI)) {} 1067 1068 static bool isStructReturnInRegABI( 1069 const llvm::Triple &Triple, const CodeGenOptions &Opts); 1070 1071 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 1072 CodeGen::CodeGenModule &CGM) const override; 1073 1074 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 1075 // Darwin uses different dwarf register numbers for EH. 1076 if (CGM.getTarget().getTriple().isOSDarwin()) return 5; 1077 return 4; 1078 } 1079 1080 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 1081 llvm::Value *Address) const override; 1082 1083 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 1084 StringRef Constraint, 1085 llvm::Type* Ty) const override { 1086 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 1087 } 1088 1089 void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue, 1090 std::string &Constraints, 1091 std::vector<llvm::Type *> &ResultRegTypes, 1092 std::vector<llvm::Type *> &ResultTruncRegTypes, 1093 std::vector<LValue> &ResultRegDests, 1094 std::string &AsmString, 1095 unsigned NumOutputs) const override; 1096 1097 llvm::Constant * 1098 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 1099 unsigned Sig = (0xeb << 0) | // jmp rel8 1100 (0x06 << 8) | // .+0x08 1101 ('v' << 16) | 1102 ('2' << 24); 1103 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 1104 } 1105 1106 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 1107 return "movl\t%ebp, %ebp" 1108 "\t\t// marker for objc_retainAutoreleaseReturnValue"; 1109 } 1110 }; 1111 1112 } 1113 1114 /// Rewrite input constraint references after adding some output constraints. 1115 /// In the case where there is one output and one input and we add one output, 1116 /// we need to replace all operand references greater than or equal to 1: 1117 /// mov $0, $1 1118 /// mov eax, $1 1119 /// The result will be: 1120 /// mov $0, $2 1121 /// mov eax, $2 1122 static void rewriteInputConstraintReferences(unsigned FirstIn, 1123 unsigned NumNewOuts, 1124 std::string &AsmString) { 1125 std::string Buf; 1126 llvm::raw_string_ostream OS(Buf); 1127 size_t Pos = 0; 1128 while (Pos < AsmString.size()) { 1129 size_t DollarStart = AsmString.find('$', Pos); 1130 if (DollarStart == std::string::npos) 1131 DollarStart = AsmString.size(); 1132 size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart); 1133 if (DollarEnd == std::string::npos) 1134 DollarEnd = AsmString.size(); 1135 OS << StringRef(&AsmString[Pos], DollarEnd - Pos); 1136 Pos = DollarEnd; 1137 size_t NumDollars = DollarEnd - DollarStart; 1138 if (NumDollars % 2 != 0 && Pos < AsmString.size()) { 1139 // We have an operand reference. 1140 size_t DigitStart = Pos; 1141 size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart); 1142 if (DigitEnd == std::string::npos) 1143 DigitEnd = AsmString.size(); 1144 StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart); 1145 unsigned OperandIndex; 1146 if (!OperandStr.getAsInteger(10, OperandIndex)) { 1147 if (OperandIndex >= FirstIn) 1148 OperandIndex += NumNewOuts; 1149 OS << OperandIndex; 1150 } else { 1151 OS << OperandStr; 1152 } 1153 Pos = DigitEnd; 1154 } 1155 } 1156 AsmString = std::move(OS.str()); 1157 } 1158 1159 /// Add output constraints for EAX:EDX because they are return registers. 1160 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs( 1161 CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints, 1162 std::vector<llvm::Type *> &ResultRegTypes, 1163 std::vector<llvm::Type *> &ResultTruncRegTypes, 1164 std::vector<LValue> &ResultRegDests, std::string &AsmString, 1165 unsigned NumOutputs) const { 1166 uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType()); 1167 1168 // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is 1169 // larger. 1170 if (!Constraints.empty()) 1171 Constraints += ','; 1172 if (RetWidth <= 32) { 1173 Constraints += "={eax}"; 1174 ResultRegTypes.push_back(CGF.Int32Ty); 1175 } else { 1176 // Use the 'A' constraint for EAX:EDX. 1177 Constraints += "=A"; 1178 ResultRegTypes.push_back(CGF.Int64Ty); 1179 } 1180 1181 // Truncate EAX or EAX:EDX to an integer of the appropriate size. 1182 llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth); 1183 ResultTruncRegTypes.push_back(CoerceTy); 1184 1185 // Coerce the integer by bitcasting the return slot pointer. 1186 ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(), 1187 CoerceTy->getPointerTo())); 1188 ResultRegDests.push_back(ReturnSlot); 1189 1190 rewriteInputConstraintReferences(NumOutputs, 1, AsmString); 1191 } 1192 1193 /// shouldReturnTypeInRegister - Determine if the given type should be 1194 /// returned in a register (for the Darwin and MCU ABI). 1195 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty, 1196 ASTContext &Context) const { 1197 uint64_t Size = Context.getTypeSize(Ty); 1198 1199 // For i386, type must be register sized. 1200 // For the MCU ABI, it only needs to be <= 8-byte 1201 if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size))) 1202 return false; 1203 1204 if (Ty->isVectorType()) { 1205 // 64- and 128- bit vectors inside structures are not returned in 1206 // registers. 1207 if (Size == 64 || Size == 128) 1208 return false; 1209 1210 return true; 1211 } 1212 1213 // If this is a builtin, pointer, enum, complex type, member pointer, or 1214 // member function pointer it is ok. 1215 if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() || 1216 Ty->isAnyComplexType() || Ty->isEnumeralType() || 1217 Ty->isBlockPointerType() || Ty->isMemberPointerType()) 1218 return true; 1219 1220 // Arrays are treated like records. 1221 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) 1222 return shouldReturnTypeInRegister(AT->getElementType(), Context); 1223 1224 // Otherwise, it must be a record type. 1225 const RecordType *RT = Ty->getAs<RecordType>(); 1226 if (!RT) return false; 1227 1228 // FIXME: Traverse bases here too. 1229 1230 // Structure types are passed in register if all fields would be 1231 // passed in a register. 1232 for (const auto *FD : RT->getDecl()->fields()) { 1233 // Empty fields are ignored. 1234 if (isEmptyField(Context, FD, true)) 1235 continue; 1236 1237 // Check fields recursively. 1238 if (!shouldReturnTypeInRegister(FD->getType(), Context)) 1239 return false; 1240 } 1241 return true; 1242 } 1243 1244 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) { 1245 // Treat complex types as the element type. 1246 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 1247 Ty = CTy->getElementType(); 1248 1249 // Check for a type which we know has a simple scalar argument-passing 1250 // convention without any padding. (We're specifically looking for 32 1251 // and 64-bit integer and integer-equivalents, float, and double.) 1252 if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() && 1253 !Ty->isEnumeralType() && !Ty->isBlockPointerType()) 1254 return false; 1255 1256 uint64_t Size = Context.getTypeSize(Ty); 1257 return Size == 32 || Size == 64; 1258 } 1259 1260 static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD, 1261 uint64_t &Size) { 1262 for (const auto *FD : RD->fields()) { 1263 // Scalar arguments on the stack get 4 byte alignment on x86. If the 1264 // argument is smaller than 32-bits, expanding the struct will create 1265 // alignment padding. 1266 if (!is32Or64BitBasicType(FD->getType(), Context)) 1267 return false; 1268 1269 // FIXME: Reject bit-fields wholesale; there are two problems, we don't know 1270 // how to expand them yet, and the predicate for telling if a bitfield still 1271 // counts as "basic" is more complicated than what we were doing previously. 1272 if (FD->isBitField()) 1273 return false; 1274 1275 Size += Context.getTypeSize(FD->getType()); 1276 } 1277 return true; 1278 } 1279 1280 static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD, 1281 uint64_t &Size) { 1282 // Don't do this if there are any non-empty bases. 1283 for (const CXXBaseSpecifier &Base : RD->bases()) { 1284 if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(), 1285 Size)) 1286 return false; 1287 } 1288 if (!addFieldSizes(Context, RD, Size)) 1289 return false; 1290 return true; 1291 } 1292 1293 /// Test whether an argument type which is to be passed indirectly (on the 1294 /// stack) would have the equivalent layout if it was expanded into separate 1295 /// arguments. If so, we prefer to do the latter to avoid inhibiting 1296 /// optimizations. 1297 bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const { 1298 // We can only expand structure types. 1299 const RecordType *RT = Ty->getAs<RecordType>(); 1300 if (!RT) 1301 return false; 1302 const RecordDecl *RD = RT->getDecl(); 1303 uint64_t Size = 0; 1304 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 1305 if (!IsWin32StructABI) { 1306 // On non-Windows, we have to conservatively match our old bitcode 1307 // prototypes in order to be ABI-compatible at the bitcode level. 1308 if (!CXXRD->isCLike()) 1309 return false; 1310 } else { 1311 // Don't do this for dynamic classes. 1312 if (CXXRD->isDynamicClass()) 1313 return false; 1314 } 1315 if (!addBaseAndFieldSizes(getContext(), CXXRD, Size)) 1316 return false; 1317 } else { 1318 if (!addFieldSizes(getContext(), RD, Size)) 1319 return false; 1320 } 1321 1322 // We can do this if there was no alignment padding. 1323 return Size == getContext().getTypeSize(Ty); 1324 } 1325 1326 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const { 1327 // If the return value is indirect, then the hidden argument is consuming one 1328 // integer register. 1329 if (State.FreeRegs) { 1330 --State.FreeRegs; 1331 if (!IsMCUABI) 1332 return getNaturalAlignIndirectInReg(RetTy); 1333 } 1334 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 1335 } 1336 1337 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, 1338 CCState &State) const { 1339 if (RetTy->isVoidType()) 1340 return ABIArgInfo::getIgnore(); 1341 1342 const Type *Base = nullptr; 1343 uint64_t NumElts = 0; 1344 if ((State.CC == llvm::CallingConv::X86_VectorCall || 1345 State.CC == llvm::CallingConv::X86_RegCall) && 1346 isHomogeneousAggregate(RetTy, Base, NumElts)) { 1347 // The LLVM struct type for such an aggregate should lower properly. 1348 return ABIArgInfo::getDirect(); 1349 } 1350 1351 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 1352 // On Darwin, some vectors are returned in registers. 1353 if (IsDarwinVectorABI) { 1354 uint64_t Size = getContext().getTypeSize(RetTy); 1355 1356 // 128-bit vectors are a special case; they are returned in 1357 // registers and we need to make sure to pick a type the LLVM 1358 // backend will like. 1359 if (Size == 128) 1360 return ABIArgInfo::getDirect(llvm::VectorType::get( 1361 llvm::Type::getInt64Ty(getVMContext()), 2)); 1362 1363 // Always return in register if it fits in a general purpose 1364 // register, or if it is 64 bits and has a single element. 1365 if ((Size == 8 || Size == 16 || Size == 32) || 1366 (Size == 64 && VT->getNumElements() == 1)) 1367 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1368 Size)); 1369 1370 return getIndirectReturnResult(RetTy, State); 1371 } 1372 1373 return ABIArgInfo::getDirect(); 1374 } 1375 1376 if (isAggregateTypeForABI(RetTy)) { 1377 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 1378 // Structures with flexible arrays are always indirect. 1379 if (RT->getDecl()->hasFlexibleArrayMember()) 1380 return getIndirectReturnResult(RetTy, State); 1381 } 1382 1383 // If specified, structs and unions are always indirect. 1384 if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType()) 1385 return getIndirectReturnResult(RetTy, State); 1386 1387 // Ignore empty structs/unions. 1388 if (isEmptyRecord(getContext(), RetTy, true)) 1389 return ABIArgInfo::getIgnore(); 1390 1391 // Small structures which are register sized are generally returned 1392 // in a register. 1393 if (shouldReturnTypeInRegister(RetTy, getContext())) { 1394 uint64_t Size = getContext().getTypeSize(RetTy); 1395 1396 // As a special-case, if the struct is a "single-element" struct, and 1397 // the field is of type "float" or "double", return it in a 1398 // floating-point register. (MSVC does not apply this special case.) 1399 // We apply a similar transformation for pointer types to improve the 1400 // quality of the generated IR. 1401 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 1402 if ((!IsWin32StructABI && SeltTy->isRealFloatingType()) 1403 || SeltTy->hasPointerRepresentation()) 1404 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 1405 1406 // FIXME: We should be able to narrow this integer in cases with dead 1407 // padding. 1408 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size)); 1409 } 1410 1411 return getIndirectReturnResult(RetTy, State); 1412 } 1413 1414 // Treat an enum type as its underlying type. 1415 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 1416 RetTy = EnumTy->getDecl()->getIntegerType(); 1417 1418 return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 1419 : ABIArgInfo::getDirect()); 1420 } 1421 1422 static bool isSSEVectorType(ASTContext &Context, QualType Ty) { 1423 return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128; 1424 } 1425 1426 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) { 1427 const RecordType *RT = Ty->getAs<RecordType>(); 1428 if (!RT) 1429 return 0; 1430 const RecordDecl *RD = RT->getDecl(); 1431 1432 // If this is a C++ record, check the bases first. 1433 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 1434 for (const auto &I : CXXRD->bases()) 1435 if (!isRecordWithSSEVectorType(Context, I.getType())) 1436 return false; 1437 1438 for (const auto *i : RD->fields()) { 1439 QualType FT = i->getType(); 1440 1441 if (isSSEVectorType(Context, FT)) 1442 return true; 1443 1444 if (isRecordWithSSEVectorType(Context, FT)) 1445 return true; 1446 } 1447 1448 return false; 1449 } 1450 1451 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty, 1452 unsigned Align) const { 1453 // Otherwise, if the alignment is less than or equal to the minimum ABI 1454 // alignment, just use the default; the backend will handle this. 1455 if (Align <= MinABIStackAlignInBytes) 1456 return 0; // Use default alignment. 1457 1458 // On non-Darwin, the stack type alignment is always 4. 1459 if (!IsDarwinVectorABI) { 1460 // Set explicit alignment, since we may need to realign the top. 1461 return MinABIStackAlignInBytes; 1462 } 1463 1464 // Otherwise, if the type contains an SSE vector type, the alignment is 16. 1465 if (Align >= 16 && (isSSEVectorType(getContext(), Ty) || 1466 isRecordWithSSEVectorType(getContext(), Ty))) 1467 return 16; 1468 1469 return MinABIStackAlignInBytes; 1470 } 1471 1472 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal, 1473 CCState &State) const { 1474 if (!ByVal) { 1475 if (State.FreeRegs) { 1476 --State.FreeRegs; // Non-byval indirects just use one pointer. 1477 if (!IsMCUABI) 1478 return getNaturalAlignIndirectInReg(Ty); 1479 } 1480 return getNaturalAlignIndirect(Ty, false); 1481 } 1482 1483 // Compute the byval alignment. 1484 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 1485 unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign); 1486 if (StackAlign == 0) 1487 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true); 1488 1489 // If the stack alignment is less than the type alignment, realign the 1490 // argument. 1491 bool Realign = TypeAlign > StackAlign; 1492 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign), 1493 /*ByVal=*/true, Realign); 1494 } 1495 1496 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const { 1497 const Type *T = isSingleElementStruct(Ty, getContext()); 1498 if (!T) 1499 T = Ty.getTypePtr(); 1500 1501 if (const BuiltinType *BT = T->getAs<BuiltinType>()) { 1502 BuiltinType::Kind K = BT->getKind(); 1503 if (K == BuiltinType::Float || K == BuiltinType::Double) 1504 return Float; 1505 } 1506 return Integer; 1507 } 1508 1509 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const { 1510 if (!IsSoftFloatABI) { 1511 Class C = classify(Ty); 1512 if (C == Float) 1513 return false; 1514 } 1515 1516 unsigned Size = getContext().getTypeSize(Ty); 1517 unsigned SizeInRegs = (Size + 31) / 32; 1518 1519 if (SizeInRegs == 0) 1520 return false; 1521 1522 if (!IsMCUABI) { 1523 if (SizeInRegs > State.FreeRegs) { 1524 State.FreeRegs = 0; 1525 return false; 1526 } 1527 } else { 1528 // The MCU psABI allows passing parameters in-reg even if there are 1529 // earlier parameters that are passed on the stack. Also, 1530 // it does not allow passing >8-byte structs in-register, 1531 // even if there are 3 free registers available. 1532 if (SizeInRegs > State.FreeRegs || SizeInRegs > 2) 1533 return false; 1534 } 1535 1536 State.FreeRegs -= SizeInRegs; 1537 return true; 1538 } 1539 1540 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State, 1541 bool &InReg, 1542 bool &NeedsPadding) const { 1543 // On Windows, aggregates other than HFAs are never passed in registers, and 1544 // they do not consume register slots. Homogenous floating-point aggregates 1545 // (HFAs) have already been dealt with at this point. 1546 if (IsWin32StructABI && isAggregateTypeForABI(Ty)) 1547 return false; 1548 1549 NeedsPadding = false; 1550 InReg = !IsMCUABI; 1551 1552 if (!updateFreeRegs(Ty, State)) 1553 return false; 1554 1555 if (IsMCUABI) 1556 return true; 1557 1558 if (State.CC == llvm::CallingConv::X86_FastCall || 1559 State.CC == llvm::CallingConv::X86_VectorCall || 1560 State.CC == llvm::CallingConv::X86_RegCall) { 1561 if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs) 1562 NeedsPadding = true; 1563 1564 return false; 1565 } 1566 1567 return true; 1568 } 1569 1570 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const { 1571 if (!updateFreeRegs(Ty, State)) 1572 return false; 1573 1574 if (IsMCUABI) 1575 return false; 1576 1577 if (State.CC == llvm::CallingConv::X86_FastCall || 1578 State.CC == llvm::CallingConv::X86_VectorCall || 1579 State.CC == llvm::CallingConv::X86_RegCall) { 1580 if (getContext().getTypeSize(Ty) > 32) 1581 return false; 1582 1583 return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() || 1584 Ty->isReferenceType()); 1585 } 1586 1587 return true; 1588 } 1589 1590 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, 1591 CCState &State) const { 1592 // FIXME: Set alignment on indirect arguments. 1593 1594 Ty = useFirstFieldIfTransparentUnion(Ty); 1595 1596 // Check with the C++ ABI first. 1597 const RecordType *RT = Ty->getAs<RecordType>(); 1598 if (RT) { 1599 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 1600 if (RAA == CGCXXABI::RAA_Indirect) { 1601 return getIndirectResult(Ty, false, State); 1602 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 1603 // The field index doesn't matter, we'll fix it up later. 1604 return ABIArgInfo::getInAlloca(/*FieldIndex=*/0); 1605 } 1606 } 1607 1608 // Regcall uses the concept of a homogenous vector aggregate, similar 1609 // to other targets. 1610 const Type *Base = nullptr; 1611 uint64_t NumElts = 0; 1612 if (State.CC == llvm::CallingConv::X86_RegCall && 1613 isHomogeneousAggregate(Ty, Base, NumElts)) { 1614 1615 if (State.FreeSSERegs >= NumElts) { 1616 State.FreeSSERegs -= NumElts; 1617 if (Ty->isBuiltinType() || Ty->isVectorType()) 1618 return ABIArgInfo::getDirect(); 1619 return ABIArgInfo::getExpand(); 1620 } 1621 return getIndirectResult(Ty, /*ByVal=*/false, State); 1622 } 1623 1624 if (isAggregateTypeForABI(Ty)) { 1625 // Structures with flexible arrays are always indirect. 1626 // FIXME: This should not be byval! 1627 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 1628 return getIndirectResult(Ty, true, State); 1629 1630 // Ignore empty structs/unions on non-Windows. 1631 if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true)) 1632 return ABIArgInfo::getIgnore(); 1633 1634 llvm::LLVMContext &LLVMContext = getVMContext(); 1635 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 1636 bool NeedsPadding = false; 1637 bool InReg; 1638 if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) { 1639 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; 1640 SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32); 1641 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 1642 if (InReg) 1643 return ABIArgInfo::getDirectInReg(Result); 1644 else 1645 return ABIArgInfo::getDirect(Result); 1646 } 1647 llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr; 1648 1649 // Expand small (<= 128-bit) record types when we know that the stack layout 1650 // of those arguments will match the struct. This is important because the 1651 // LLVM backend isn't smart enough to remove byval, which inhibits many 1652 // optimizations. 1653 // Don't do this for the MCU if there are still free integer registers 1654 // (see X86_64 ABI for full explanation). 1655 if (getContext().getTypeSize(Ty) <= 4 * 32 && 1656 (!IsMCUABI || State.FreeRegs == 0) && canExpandIndirectArgument(Ty)) 1657 return ABIArgInfo::getExpandWithPadding( 1658 State.CC == llvm::CallingConv::X86_FastCall || 1659 State.CC == llvm::CallingConv::X86_VectorCall || 1660 State.CC == llvm::CallingConv::X86_RegCall, 1661 PaddingType); 1662 1663 return getIndirectResult(Ty, true, State); 1664 } 1665 1666 if (const VectorType *VT = Ty->getAs<VectorType>()) { 1667 // On Darwin, some vectors are passed in memory, we handle this by passing 1668 // it as an i8/i16/i32/i64. 1669 if (IsDarwinVectorABI) { 1670 uint64_t Size = getContext().getTypeSize(Ty); 1671 if ((Size == 8 || Size == 16 || Size == 32) || 1672 (Size == 64 && VT->getNumElements() == 1)) 1673 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1674 Size)); 1675 } 1676 1677 if (IsX86_MMXType(CGT.ConvertType(Ty))) 1678 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64)); 1679 1680 return ABIArgInfo::getDirect(); 1681 } 1682 1683 1684 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 1685 Ty = EnumTy->getDecl()->getIntegerType(); 1686 1687 bool InReg = shouldPrimitiveUseInReg(Ty, State); 1688 1689 if (Ty->isPromotableIntegerType()) { 1690 if (InReg) 1691 return ABIArgInfo::getExtendInReg(Ty); 1692 return ABIArgInfo::getExtend(Ty); 1693 } 1694 1695 if (InReg) 1696 return ABIArgInfo::getDirectInReg(); 1697 return ABIArgInfo::getDirect(); 1698 } 1699 1700 void X86_32ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI, CCState &State, 1701 bool &UsedInAlloca) const { 1702 // Vectorcall x86 works subtly different than in x64, so the format is 1703 // a bit different than the x64 version. First, all vector types (not HVAs) 1704 // are assigned, with the first 6 ending up in the YMM0-5 or XMM0-5 registers. 1705 // This differs from the x64 implementation, where the first 6 by INDEX get 1706 // registers. 1707 // After that, integers AND HVAs are assigned Left to Right in the same pass. 1708 // Integers are passed as ECX/EDX if one is available (in order). HVAs will 1709 // first take up the remaining YMM/XMM registers. If insufficient registers 1710 // remain but an integer register (ECX/EDX) is available, it will be passed 1711 // in that, else, on the stack. 1712 for (auto &I : FI.arguments()) { 1713 // First pass do all the vector types. 1714 const Type *Base = nullptr; 1715 uint64_t NumElts = 0; 1716 const QualType& Ty = I.type; 1717 if ((Ty->isVectorType() || Ty->isBuiltinType()) && 1718 isHomogeneousAggregate(Ty, Base, NumElts)) { 1719 if (State.FreeSSERegs >= NumElts) { 1720 State.FreeSSERegs -= NumElts; 1721 I.info = ABIArgInfo::getDirect(); 1722 } else { 1723 I.info = classifyArgumentType(Ty, State); 1724 } 1725 UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca); 1726 } 1727 } 1728 1729 for (auto &I : FI.arguments()) { 1730 // Second pass, do the rest! 1731 const Type *Base = nullptr; 1732 uint64_t NumElts = 0; 1733 const QualType& Ty = I.type; 1734 bool IsHva = isHomogeneousAggregate(Ty, Base, NumElts); 1735 1736 if (IsHva && !Ty->isVectorType() && !Ty->isBuiltinType()) { 1737 // Assign true HVAs (non vector/native FP types). 1738 if (State.FreeSSERegs >= NumElts) { 1739 State.FreeSSERegs -= NumElts; 1740 I.info = getDirectX86Hva(); 1741 } else { 1742 I.info = getIndirectResult(Ty, /*ByVal=*/false, State); 1743 } 1744 } else if (!IsHva) { 1745 // Assign all Non-HVAs, so this will exclude Vector/FP args. 1746 I.info = classifyArgumentType(Ty, State); 1747 UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca); 1748 } 1749 } 1750 } 1751 1752 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const { 1753 CCState State(FI.getCallingConvention()); 1754 if (IsMCUABI) 1755 State.FreeRegs = 3; 1756 else if (State.CC == llvm::CallingConv::X86_FastCall) 1757 State.FreeRegs = 2; 1758 else if (State.CC == llvm::CallingConv::X86_VectorCall) { 1759 State.FreeRegs = 2; 1760 State.FreeSSERegs = 6; 1761 } else if (FI.getHasRegParm()) 1762 State.FreeRegs = FI.getRegParm(); 1763 else if (State.CC == llvm::CallingConv::X86_RegCall) { 1764 State.FreeRegs = 5; 1765 State.FreeSSERegs = 8; 1766 } else 1767 State.FreeRegs = DefaultNumRegisterParameters; 1768 1769 if (!::classifyReturnType(getCXXABI(), FI, *this)) { 1770 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State); 1771 } else if (FI.getReturnInfo().isIndirect()) { 1772 // The C++ ABI is not aware of register usage, so we have to check if the 1773 // return value was sret and put it in a register ourselves if appropriate. 1774 if (State.FreeRegs) { 1775 --State.FreeRegs; // The sret parameter consumes a register. 1776 if (!IsMCUABI) 1777 FI.getReturnInfo().setInReg(true); 1778 } 1779 } 1780 1781 // The chain argument effectively gives us another free register. 1782 if (FI.isChainCall()) 1783 ++State.FreeRegs; 1784 1785 bool UsedInAlloca = false; 1786 if (State.CC == llvm::CallingConv::X86_VectorCall) { 1787 computeVectorCallArgs(FI, State, UsedInAlloca); 1788 } else { 1789 // If not vectorcall, revert to normal behavior. 1790 for (auto &I : FI.arguments()) { 1791 I.info = classifyArgumentType(I.type, State); 1792 UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca); 1793 } 1794 } 1795 1796 // If we needed to use inalloca for any argument, do a second pass and rewrite 1797 // all the memory arguments to use inalloca. 1798 if (UsedInAlloca) 1799 rewriteWithInAlloca(FI); 1800 } 1801 1802 void 1803 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1804 CharUnits &StackOffset, ABIArgInfo &Info, 1805 QualType Type) const { 1806 // Arguments are always 4-byte-aligned. 1807 CharUnits FieldAlign = CharUnits::fromQuantity(4); 1808 1809 assert(StackOffset.isMultipleOf(FieldAlign) && "unaligned inalloca struct"); 1810 Info = ABIArgInfo::getInAlloca(FrameFields.size()); 1811 FrameFields.push_back(CGT.ConvertTypeForMem(Type)); 1812 StackOffset += getContext().getTypeSizeInChars(Type); 1813 1814 // Insert padding bytes to respect alignment. 1815 CharUnits FieldEnd = StackOffset; 1816 StackOffset = FieldEnd.alignTo(FieldAlign); 1817 if (StackOffset != FieldEnd) { 1818 CharUnits NumBytes = StackOffset - FieldEnd; 1819 llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext()); 1820 Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity()); 1821 FrameFields.push_back(Ty); 1822 } 1823 } 1824 1825 static bool isArgInAlloca(const ABIArgInfo &Info) { 1826 // Leave ignored and inreg arguments alone. 1827 switch (Info.getKind()) { 1828 case ABIArgInfo::InAlloca: 1829 return true; 1830 case ABIArgInfo::Indirect: 1831 assert(Info.getIndirectByVal()); 1832 return true; 1833 case ABIArgInfo::Ignore: 1834 return false; 1835 case ABIArgInfo::Direct: 1836 case ABIArgInfo::Extend: 1837 if (Info.getInReg()) 1838 return false; 1839 return true; 1840 case ABIArgInfo::Expand: 1841 case ABIArgInfo::CoerceAndExpand: 1842 // These are aggregate types which are never passed in registers when 1843 // inalloca is involved. 1844 return true; 1845 } 1846 llvm_unreachable("invalid enum"); 1847 } 1848 1849 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const { 1850 assert(IsWin32StructABI && "inalloca only supported on win32"); 1851 1852 // Build a packed struct type for all of the arguments in memory. 1853 SmallVector<llvm::Type *, 6> FrameFields; 1854 1855 // The stack alignment is always 4. 1856 CharUnits StackAlign = CharUnits::fromQuantity(4); 1857 1858 CharUnits StackOffset; 1859 CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end(); 1860 1861 // Put 'this' into the struct before 'sret', if necessary. 1862 bool IsThisCall = 1863 FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall; 1864 ABIArgInfo &Ret = FI.getReturnInfo(); 1865 if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall && 1866 isArgInAlloca(I->info)) { 1867 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 1868 ++I; 1869 } 1870 1871 // Put the sret parameter into the inalloca struct if it's in memory. 1872 if (Ret.isIndirect() && !Ret.getInReg()) { 1873 CanQualType PtrTy = getContext().getPointerType(FI.getReturnType()); 1874 addFieldToArgStruct(FrameFields, StackOffset, Ret, PtrTy); 1875 // On Windows, the hidden sret parameter is always returned in eax. 1876 Ret.setInAllocaSRet(IsWin32StructABI); 1877 } 1878 1879 // Skip the 'this' parameter in ecx. 1880 if (IsThisCall) 1881 ++I; 1882 1883 // Put arguments passed in memory into the struct. 1884 for (; I != E; ++I) { 1885 if (isArgInAlloca(I->info)) 1886 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 1887 } 1888 1889 FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields, 1890 /*isPacked=*/true), 1891 StackAlign); 1892 } 1893 1894 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF, 1895 Address VAListAddr, QualType Ty) const { 1896 1897 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 1898 1899 // x86-32 changes the alignment of certain arguments on the stack. 1900 // 1901 // Just messing with TypeInfo like this works because we never pass 1902 // anything indirectly. 1903 TypeInfo.second = CharUnits::fromQuantity( 1904 getTypeStackAlignInBytes(Ty, TypeInfo.second.getQuantity())); 1905 1906 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 1907 TypeInfo, CharUnits::fromQuantity(4), 1908 /*AllowHigherAlign*/ true); 1909 } 1910 1911 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI( 1912 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 1913 assert(Triple.getArch() == llvm::Triple::x86); 1914 1915 switch (Opts.getStructReturnConvention()) { 1916 case CodeGenOptions::SRCK_Default: 1917 break; 1918 case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return 1919 return false; 1920 case CodeGenOptions::SRCK_InRegs: // -freg-struct-return 1921 return true; 1922 } 1923 1924 if (Triple.isOSDarwin() || Triple.isOSIAMCU()) 1925 return true; 1926 1927 switch (Triple.getOS()) { 1928 case llvm::Triple::DragonFly: 1929 case llvm::Triple::FreeBSD: 1930 case llvm::Triple::OpenBSD: 1931 case llvm::Triple::Win32: 1932 return true; 1933 default: 1934 return false; 1935 } 1936 } 1937 1938 void X86_32TargetCodeGenInfo::setTargetAttributes( 1939 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 1940 if (GV->isDeclaration()) 1941 return; 1942 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 1943 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 1944 llvm::Function *Fn = cast<llvm::Function>(GV); 1945 Fn->addFnAttr("stackrealign"); 1946 } 1947 if (FD->hasAttr<AnyX86InterruptAttr>()) { 1948 llvm::Function *Fn = cast<llvm::Function>(GV); 1949 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 1950 } 1951 } 1952 } 1953 1954 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable( 1955 CodeGen::CodeGenFunction &CGF, 1956 llvm::Value *Address) const { 1957 CodeGen::CGBuilderTy &Builder = CGF.Builder; 1958 1959 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 1960 1961 // 0-7 are the eight integer registers; the order is different 1962 // on Darwin (for EH), but the range is the same. 1963 // 8 is %eip. 1964 AssignToArrayRange(Builder, Address, Four8, 0, 8); 1965 1966 if (CGF.CGM.getTarget().getTriple().isOSDarwin()) { 1967 // 12-16 are st(0..4). Not sure why we stop at 4. 1968 // These have size 16, which is sizeof(long double) on 1969 // platforms with 8-byte alignment for that type. 1970 llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16); 1971 AssignToArrayRange(Builder, Address, Sixteen8, 12, 16); 1972 1973 } else { 1974 // 9 is %eflags, which doesn't get a size on Darwin for some 1975 // reason. 1976 Builder.CreateAlignedStore( 1977 Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9), 1978 CharUnits::One()); 1979 1980 // 11-16 are st(0..5). Not sure why we stop at 5. 1981 // These have size 12, which is sizeof(long double) on 1982 // platforms with 4-byte alignment for that type. 1983 llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12); 1984 AssignToArrayRange(Builder, Address, Twelve8, 11, 16); 1985 } 1986 1987 return false; 1988 } 1989 1990 //===----------------------------------------------------------------------===// 1991 // X86-64 ABI Implementation 1992 //===----------------------------------------------------------------------===// 1993 1994 1995 namespace { 1996 /// The AVX ABI level for X86 targets. 1997 enum class X86AVXABILevel { 1998 None, 1999 AVX, 2000 AVX512 2001 }; 2002 2003 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel. 2004 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) { 2005 switch (AVXLevel) { 2006 case X86AVXABILevel::AVX512: 2007 return 512; 2008 case X86AVXABILevel::AVX: 2009 return 256; 2010 case X86AVXABILevel::None: 2011 return 128; 2012 } 2013 llvm_unreachable("Unknown AVXLevel"); 2014 } 2015 2016 /// X86_64ABIInfo - The X86_64 ABI information. 2017 class X86_64ABIInfo : public SwiftABIInfo { 2018 enum Class { 2019 Integer = 0, 2020 SSE, 2021 SSEUp, 2022 X87, 2023 X87Up, 2024 ComplexX87, 2025 NoClass, 2026 Memory 2027 }; 2028 2029 /// merge - Implement the X86_64 ABI merging algorithm. 2030 /// 2031 /// Merge an accumulating classification \arg Accum with a field 2032 /// classification \arg Field. 2033 /// 2034 /// \param Accum - The accumulating classification. This should 2035 /// always be either NoClass or the result of a previous merge 2036 /// call. In addition, this should never be Memory (the caller 2037 /// should just return Memory for the aggregate). 2038 static Class merge(Class Accum, Class Field); 2039 2040 /// postMerge - Implement the X86_64 ABI post merging algorithm. 2041 /// 2042 /// Post merger cleanup, reduces a malformed Hi and Lo pair to 2043 /// final MEMORY or SSE classes when necessary. 2044 /// 2045 /// \param AggregateSize - The size of the current aggregate in 2046 /// the classification process. 2047 /// 2048 /// \param Lo - The classification for the parts of the type 2049 /// residing in the low word of the containing object. 2050 /// 2051 /// \param Hi - The classification for the parts of the type 2052 /// residing in the higher words of the containing object. 2053 /// 2054 void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const; 2055 2056 /// classify - Determine the x86_64 register classes in which the 2057 /// given type T should be passed. 2058 /// 2059 /// \param Lo - The classification for the parts of the type 2060 /// residing in the low word of the containing object. 2061 /// 2062 /// \param Hi - The classification for the parts of the type 2063 /// residing in the high word of the containing object. 2064 /// 2065 /// \param OffsetBase - The bit offset of this type in the 2066 /// containing object. Some parameters are classified different 2067 /// depending on whether they straddle an eightbyte boundary. 2068 /// 2069 /// \param isNamedArg - Whether the argument in question is a "named" 2070 /// argument, as used in AMD64-ABI 3.5.7. 2071 /// 2072 /// If a word is unused its result will be NoClass; if a type should 2073 /// be passed in Memory then at least the classification of \arg Lo 2074 /// will be Memory. 2075 /// 2076 /// The \arg Lo class will be NoClass iff the argument is ignored. 2077 /// 2078 /// If the \arg Lo class is ComplexX87, then the \arg Hi class will 2079 /// also be ComplexX87. 2080 void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi, 2081 bool isNamedArg) const; 2082 2083 llvm::Type *GetByteVectorType(QualType Ty) const; 2084 llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType, 2085 unsigned IROffset, QualType SourceTy, 2086 unsigned SourceOffset) const; 2087 llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType, 2088 unsigned IROffset, QualType SourceTy, 2089 unsigned SourceOffset) const; 2090 2091 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 2092 /// such that the argument will be returned in memory. 2093 ABIArgInfo getIndirectReturnResult(QualType Ty) const; 2094 2095 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 2096 /// such that the argument will be passed in memory. 2097 /// 2098 /// \param freeIntRegs - The number of free integer registers remaining 2099 /// available. 2100 ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const; 2101 2102 ABIArgInfo classifyReturnType(QualType RetTy) const; 2103 2104 ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs, 2105 unsigned &neededInt, unsigned &neededSSE, 2106 bool isNamedArg) const; 2107 2108 ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt, 2109 unsigned &NeededSSE) const; 2110 2111 ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 2112 unsigned &NeededSSE) const; 2113 2114 bool IsIllegalVectorType(QualType Ty) const; 2115 2116 /// The 0.98 ABI revision clarified a lot of ambiguities, 2117 /// unfortunately in ways that were not always consistent with 2118 /// certain previous compilers. In particular, platforms which 2119 /// required strict binary compatibility with older versions of GCC 2120 /// may need to exempt themselves. 2121 bool honorsRevision0_98() const { 2122 return !getTarget().getTriple().isOSDarwin(); 2123 } 2124 2125 /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to 2126 /// classify it as INTEGER (for compatibility with older clang compilers). 2127 bool classifyIntegerMMXAsSSE() const { 2128 // Clang <= 3.8 did not do this. 2129 if (getContext().getLangOpts().getClangABICompat() <= 2130 LangOptions::ClangABI::Ver3_8) 2131 return false; 2132 2133 const llvm::Triple &Triple = getTarget().getTriple(); 2134 if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::PS4) 2135 return false; 2136 if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10) 2137 return false; 2138 return true; 2139 } 2140 2141 X86AVXABILevel AVXLevel; 2142 // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on 2143 // 64-bit hardware. 2144 bool Has64BitPointers; 2145 2146 public: 2147 X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) : 2148 SwiftABIInfo(CGT), AVXLevel(AVXLevel), 2149 Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) { 2150 } 2151 2152 bool isPassedUsingAVXType(QualType type) const { 2153 unsigned neededInt, neededSSE; 2154 // The freeIntRegs argument doesn't matter here. 2155 ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE, 2156 /*isNamedArg*/true); 2157 if (info.isDirect()) { 2158 llvm::Type *ty = info.getCoerceToType(); 2159 if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty)) 2160 return (vectorTy->getBitWidth() > 128); 2161 } 2162 return false; 2163 } 2164 2165 void computeInfo(CGFunctionInfo &FI) const override; 2166 2167 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2168 QualType Ty) const override; 2169 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 2170 QualType Ty) const override; 2171 2172 bool has64BitPointers() const { 2173 return Has64BitPointers; 2174 } 2175 2176 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 2177 bool asReturnValue) const override { 2178 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2179 } 2180 bool isSwiftErrorInRegister() const override { 2181 return true; 2182 } 2183 }; 2184 2185 /// WinX86_64ABIInfo - The Windows X86_64 ABI information. 2186 class WinX86_64ABIInfo : public SwiftABIInfo { 2187 public: 2188 WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) 2189 : SwiftABIInfo(CGT), 2190 IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {} 2191 2192 void computeInfo(CGFunctionInfo &FI) const override; 2193 2194 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2195 QualType Ty) const override; 2196 2197 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 2198 // FIXME: Assumes vectorcall is in use. 2199 return isX86VectorTypeForVectorCall(getContext(), Ty); 2200 } 2201 2202 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 2203 uint64_t NumMembers) const override { 2204 // FIXME: Assumes vectorcall is in use. 2205 return isX86VectorCallAggregateSmallEnough(NumMembers); 2206 } 2207 2208 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type *> scalars, 2209 bool asReturnValue) const override { 2210 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2211 } 2212 2213 bool isSwiftErrorInRegister() const override { 2214 return true; 2215 } 2216 2217 private: 2218 ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType, 2219 bool IsVectorCall, bool IsRegCall) const; 2220 ABIArgInfo reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs, 2221 const ABIArgInfo ¤t) const; 2222 void computeVectorCallArgs(CGFunctionInfo &FI, unsigned FreeSSERegs, 2223 bool IsVectorCall, bool IsRegCall) const; 2224 2225 bool IsMingw64; 2226 }; 2227 2228 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2229 public: 2230 X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2231 : TargetCodeGenInfo(new X86_64ABIInfo(CGT, AVXLevel)) {} 2232 2233 const X86_64ABIInfo &getABIInfo() const { 2234 return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo()); 2235 } 2236 2237 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2238 return 7; 2239 } 2240 2241 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2242 llvm::Value *Address) const override { 2243 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2244 2245 // 0-15 are the 16 integer registers. 2246 // 16 is %rip. 2247 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2248 return false; 2249 } 2250 2251 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 2252 StringRef Constraint, 2253 llvm::Type* Ty) const override { 2254 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 2255 } 2256 2257 bool isNoProtoCallVariadic(const CallArgList &args, 2258 const FunctionNoProtoType *fnType) const override { 2259 // The default CC on x86-64 sets %al to the number of SSA 2260 // registers used, and GCC sets this when calling an unprototyped 2261 // function, so we override the default behavior. However, don't do 2262 // that when AVX types are involved: the ABI explicitly states it is 2263 // undefined, and it doesn't work in practice because of how the ABI 2264 // defines varargs anyway. 2265 if (fnType->getCallConv() == CC_C) { 2266 bool HasAVXType = false; 2267 for (CallArgList::const_iterator 2268 it = args.begin(), ie = args.end(); it != ie; ++it) { 2269 if (getABIInfo().isPassedUsingAVXType(it->Ty)) { 2270 HasAVXType = true; 2271 break; 2272 } 2273 } 2274 2275 if (!HasAVXType) 2276 return true; 2277 } 2278 2279 return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType); 2280 } 2281 2282 llvm::Constant * 2283 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 2284 unsigned Sig = (0xeb << 0) | // jmp rel8 2285 (0x06 << 8) | // .+0x08 2286 ('v' << 16) | 2287 ('2' << 24); 2288 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 2289 } 2290 2291 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2292 CodeGen::CodeGenModule &CGM) const override { 2293 if (GV->isDeclaration()) 2294 return; 2295 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2296 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2297 llvm::Function *Fn = cast<llvm::Function>(GV); 2298 Fn->addFnAttr("stackrealign"); 2299 } 2300 if (FD->hasAttr<AnyX86InterruptAttr>()) { 2301 llvm::Function *Fn = cast<llvm::Function>(GV); 2302 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2303 } 2304 } 2305 } 2306 }; 2307 2308 class PS4TargetCodeGenInfo : public X86_64TargetCodeGenInfo { 2309 public: 2310 PS4TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2311 : X86_64TargetCodeGenInfo(CGT, AVXLevel) {} 2312 2313 void getDependentLibraryOption(llvm::StringRef Lib, 2314 llvm::SmallString<24> &Opt) const override { 2315 Opt = "\01"; 2316 // If the argument contains a space, enclose it in quotes. 2317 if (Lib.find(" ") != StringRef::npos) 2318 Opt += "\"" + Lib.str() + "\""; 2319 else 2320 Opt += Lib; 2321 } 2322 }; 2323 2324 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) { 2325 // If the argument does not end in .lib, automatically add the suffix. 2326 // If the argument contains a space, enclose it in quotes. 2327 // This matches the behavior of MSVC. 2328 bool Quote = (Lib.find(" ") != StringRef::npos); 2329 std::string ArgStr = Quote ? "\"" : ""; 2330 ArgStr += Lib; 2331 if (!Lib.endswith_lower(".lib")) 2332 ArgStr += ".lib"; 2333 ArgStr += Quote ? "\"" : ""; 2334 return ArgStr; 2335 } 2336 2337 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo { 2338 public: 2339 WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2340 bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI, 2341 unsigned NumRegisterParameters) 2342 : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI, 2343 Win32StructABI, NumRegisterParameters, false) {} 2344 2345 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2346 CodeGen::CodeGenModule &CGM) const override; 2347 2348 void getDependentLibraryOption(llvm::StringRef Lib, 2349 llvm::SmallString<24> &Opt) const override { 2350 Opt = "/DEFAULTLIB:"; 2351 Opt += qualifyWindowsLibrary(Lib); 2352 } 2353 2354 void getDetectMismatchOption(llvm::StringRef Name, 2355 llvm::StringRef Value, 2356 llvm::SmallString<32> &Opt) const override { 2357 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2358 } 2359 }; 2360 2361 static void addStackProbeTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2362 CodeGen::CodeGenModule &CGM) { 2363 if (llvm::Function *Fn = dyn_cast_or_null<llvm::Function>(GV)) { 2364 2365 if (CGM.getCodeGenOpts().StackProbeSize != 4096) 2366 Fn->addFnAttr("stack-probe-size", 2367 llvm::utostr(CGM.getCodeGenOpts().StackProbeSize)); 2368 if (CGM.getCodeGenOpts().NoStackArgProbe) 2369 Fn->addFnAttr("no-stack-arg-probe"); 2370 } 2371 } 2372 2373 void WinX86_32TargetCodeGenInfo::setTargetAttributes( 2374 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2375 X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2376 if (GV->isDeclaration()) 2377 return; 2378 addStackProbeTargetAttributes(D, GV, CGM); 2379 } 2380 2381 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2382 public: 2383 WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2384 X86AVXABILevel AVXLevel) 2385 : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {} 2386 2387 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2388 CodeGen::CodeGenModule &CGM) const override; 2389 2390 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2391 return 7; 2392 } 2393 2394 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2395 llvm::Value *Address) const override { 2396 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2397 2398 // 0-15 are the 16 integer registers. 2399 // 16 is %rip. 2400 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2401 return false; 2402 } 2403 2404 void getDependentLibraryOption(llvm::StringRef Lib, 2405 llvm::SmallString<24> &Opt) const override { 2406 Opt = "/DEFAULTLIB:"; 2407 Opt += qualifyWindowsLibrary(Lib); 2408 } 2409 2410 void getDetectMismatchOption(llvm::StringRef Name, 2411 llvm::StringRef Value, 2412 llvm::SmallString<32> &Opt) const override { 2413 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2414 } 2415 }; 2416 2417 void WinX86_64TargetCodeGenInfo::setTargetAttributes( 2418 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2419 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2420 if (GV->isDeclaration()) 2421 return; 2422 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2423 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2424 llvm::Function *Fn = cast<llvm::Function>(GV); 2425 Fn->addFnAttr("stackrealign"); 2426 } 2427 if (FD->hasAttr<AnyX86InterruptAttr>()) { 2428 llvm::Function *Fn = cast<llvm::Function>(GV); 2429 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2430 } 2431 } 2432 2433 addStackProbeTargetAttributes(D, GV, CGM); 2434 } 2435 } 2436 2437 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo, 2438 Class &Hi) const { 2439 // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done: 2440 // 2441 // (a) If one of the classes is Memory, the whole argument is passed in 2442 // memory. 2443 // 2444 // (b) If X87UP is not preceded by X87, the whole argument is passed in 2445 // memory. 2446 // 2447 // (c) If the size of the aggregate exceeds two eightbytes and the first 2448 // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole 2449 // argument is passed in memory. NOTE: This is necessary to keep the 2450 // ABI working for processors that don't support the __m256 type. 2451 // 2452 // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE. 2453 // 2454 // Some of these are enforced by the merging logic. Others can arise 2455 // only with unions; for example: 2456 // union { _Complex double; unsigned; } 2457 // 2458 // Note that clauses (b) and (c) were added in 0.98. 2459 // 2460 if (Hi == Memory) 2461 Lo = Memory; 2462 if (Hi == X87Up && Lo != X87 && honorsRevision0_98()) 2463 Lo = Memory; 2464 if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp)) 2465 Lo = Memory; 2466 if (Hi == SSEUp && Lo != SSE) 2467 Hi = SSE; 2468 } 2469 2470 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) { 2471 // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is 2472 // classified recursively so that always two fields are 2473 // considered. The resulting class is calculated according to 2474 // the classes of the fields in the eightbyte: 2475 // 2476 // (a) If both classes are equal, this is the resulting class. 2477 // 2478 // (b) If one of the classes is NO_CLASS, the resulting class is 2479 // the other class. 2480 // 2481 // (c) If one of the classes is MEMORY, the result is the MEMORY 2482 // class. 2483 // 2484 // (d) If one of the classes is INTEGER, the result is the 2485 // INTEGER. 2486 // 2487 // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class, 2488 // MEMORY is used as class. 2489 // 2490 // (f) Otherwise class SSE is used. 2491 2492 // Accum should never be memory (we should have returned) or 2493 // ComplexX87 (because this cannot be passed in a structure). 2494 assert((Accum != Memory && Accum != ComplexX87) && 2495 "Invalid accumulated classification during merge."); 2496 if (Accum == Field || Field == NoClass) 2497 return Accum; 2498 if (Field == Memory) 2499 return Memory; 2500 if (Accum == NoClass) 2501 return Field; 2502 if (Accum == Integer || Field == Integer) 2503 return Integer; 2504 if (Field == X87 || Field == X87Up || Field == ComplexX87 || 2505 Accum == X87 || Accum == X87Up) 2506 return Memory; 2507 return SSE; 2508 } 2509 2510 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, 2511 Class &Lo, Class &Hi, bool isNamedArg) const { 2512 // FIXME: This code can be simplified by introducing a simple value class for 2513 // Class pairs with appropriate constructor methods for the various 2514 // situations. 2515 2516 // FIXME: Some of the split computations are wrong; unaligned vectors 2517 // shouldn't be passed in registers for example, so there is no chance they 2518 // can straddle an eightbyte. Verify & simplify. 2519 2520 Lo = Hi = NoClass; 2521 2522 Class &Current = OffsetBase < 64 ? Lo : Hi; 2523 Current = Memory; 2524 2525 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 2526 BuiltinType::Kind k = BT->getKind(); 2527 2528 if (k == BuiltinType::Void) { 2529 Current = NoClass; 2530 } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) { 2531 Lo = Integer; 2532 Hi = Integer; 2533 } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) { 2534 Current = Integer; 2535 } else if (k == BuiltinType::Float || k == BuiltinType::Double) { 2536 Current = SSE; 2537 } else if (k == BuiltinType::LongDouble) { 2538 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2539 if (LDF == &llvm::APFloat::IEEEquad()) { 2540 Lo = SSE; 2541 Hi = SSEUp; 2542 } else if (LDF == &llvm::APFloat::x87DoubleExtended()) { 2543 Lo = X87; 2544 Hi = X87Up; 2545 } else if (LDF == &llvm::APFloat::IEEEdouble()) { 2546 Current = SSE; 2547 } else 2548 llvm_unreachable("unexpected long double representation!"); 2549 } 2550 // FIXME: _Decimal32 and _Decimal64 are SSE. 2551 // FIXME: _float128 and _Decimal128 are (SSE, SSEUp). 2552 return; 2553 } 2554 2555 if (const EnumType *ET = Ty->getAs<EnumType>()) { 2556 // Classify the underlying integer type. 2557 classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg); 2558 return; 2559 } 2560 2561 if (Ty->hasPointerRepresentation()) { 2562 Current = Integer; 2563 return; 2564 } 2565 2566 if (Ty->isMemberPointerType()) { 2567 if (Ty->isMemberFunctionPointerType()) { 2568 if (Has64BitPointers) { 2569 // If Has64BitPointers, this is an {i64, i64}, so classify both 2570 // Lo and Hi now. 2571 Lo = Hi = Integer; 2572 } else { 2573 // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that 2574 // straddles an eightbyte boundary, Hi should be classified as well. 2575 uint64_t EB_FuncPtr = (OffsetBase) / 64; 2576 uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64; 2577 if (EB_FuncPtr != EB_ThisAdj) { 2578 Lo = Hi = Integer; 2579 } else { 2580 Current = Integer; 2581 } 2582 } 2583 } else { 2584 Current = Integer; 2585 } 2586 return; 2587 } 2588 2589 if (const VectorType *VT = Ty->getAs<VectorType>()) { 2590 uint64_t Size = getContext().getTypeSize(VT); 2591 if (Size == 1 || Size == 8 || Size == 16 || Size == 32) { 2592 // gcc passes the following as integer: 2593 // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float> 2594 // 2 bytes - <2 x char>, <1 x short> 2595 // 1 byte - <1 x char> 2596 Current = Integer; 2597 2598 // If this type crosses an eightbyte boundary, it should be 2599 // split. 2600 uint64_t EB_Lo = (OffsetBase) / 64; 2601 uint64_t EB_Hi = (OffsetBase + Size - 1) / 64; 2602 if (EB_Lo != EB_Hi) 2603 Hi = Lo; 2604 } else if (Size == 64) { 2605 QualType ElementType = VT->getElementType(); 2606 2607 // gcc passes <1 x double> in memory. :( 2608 if (ElementType->isSpecificBuiltinType(BuiltinType::Double)) 2609 return; 2610 2611 // gcc passes <1 x long long> as SSE but clang used to unconditionally 2612 // pass them as integer. For platforms where clang is the de facto 2613 // platform compiler, we must continue to use integer. 2614 if (!classifyIntegerMMXAsSSE() && 2615 (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) || 2616 ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) || 2617 ElementType->isSpecificBuiltinType(BuiltinType::Long) || 2618 ElementType->isSpecificBuiltinType(BuiltinType::ULong))) 2619 Current = Integer; 2620 else 2621 Current = SSE; 2622 2623 // If this type crosses an eightbyte boundary, it should be 2624 // split. 2625 if (OffsetBase && OffsetBase != 64) 2626 Hi = Lo; 2627 } else if (Size == 128 || 2628 (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) { 2629 // Arguments of 256-bits are split into four eightbyte chunks. The 2630 // least significant one belongs to class SSE and all the others to class 2631 // SSEUP. The original Lo and Hi design considers that types can't be 2632 // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense. 2633 // This design isn't correct for 256-bits, but since there're no cases 2634 // where the upper parts would need to be inspected, avoid adding 2635 // complexity and just consider Hi to match the 64-256 part. 2636 // 2637 // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in 2638 // registers if they are "named", i.e. not part of the "..." of a 2639 // variadic function. 2640 // 2641 // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are 2642 // split into eight eightbyte chunks, one SSE and seven SSEUP. 2643 Lo = SSE; 2644 Hi = SSEUp; 2645 } 2646 return; 2647 } 2648 2649 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 2650 QualType ET = getContext().getCanonicalType(CT->getElementType()); 2651 2652 uint64_t Size = getContext().getTypeSize(Ty); 2653 if (ET->isIntegralOrEnumerationType()) { 2654 if (Size <= 64) 2655 Current = Integer; 2656 else if (Size <= 128) 2657 Lo = Hi = Integer; 2658 } else if (ET == getContext().FloatTy) { 2659 Current = SSE; 2660 } else if (ET == getContext().DoubleTy) { 2661 Lo = Hi = SSE; 2662 } else if (ET == getContext().LongDoubleTy) { 2663 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2664 if (LDF == &llvm::APFloat::IEEEquad()) 2665 Current = Memory; 2666 else if (LDF == &llvm::APFloat::x87DoubleExtended()) 2667 Current = ComplexX87; 2668 else if (LDF == &llvm::APFloat::IEEEdouble()) 2669 Lo = Hi = SSE; 2670 else 2671 llvm_unreachable("unexpected long double representation!"); 2672 } 2673 2674 // If this complex type crosses an eightbyte boundary then it 2675 // should be split. 2676 uint64_t EB_Real = (OffsetBase) / 64; 2677 uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64; 2678 if (Hi == NoClass && EB_Real != EB_Imag) 2679 Hi = Lo; 2680 2681 return; 2682 } 2683 2684 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 2685 // Arrays are treated like structures. 2686 2687 uint64_t Size = getContext().getTypeSize(Ty); 2688 2689 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 2690 // than eight eightbytes, ..., it has class MEMORY. 2691 if (Size > 512) 2692 return; 2693 2694 // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned 2695 // fields, it has class MEMORY. 2696 // 2697 // Only need to check alignment of array base. 2698 if (OffsetBase % getContext().getTypeAlign(AT->getElementType())) 2699 return; 2700 2701 // Otherwise implement simplified merge. We could be smarter about 2702 // this, but it isn't worth it and would be harder to verify. 2703 Current = NoClass; 2704 uint64_t EltSize = getContext().getTypeSize(AT->getElementType()); 2705 uint64_t ArraySize = AT->getSize().getZExtValue(); 2706 2707 // The only case a 256-bit wide vector could be used is when the array 2708 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 2709 // to work for sizes wider than 128, early check and fallback to memory. 2710 // 2711 if (Size > 128 && 2712 (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel))) 2713 return; 2714 2715 for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) { 2716 Class FieldLo, FieldHi; 2717 classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg); 2718 Lo = merge(Lo, FieldLo); 2719 Hi = merge(Hi, FieldHi); 2720 if (Lo == Memory || Hi == Memory) 2721 break; 2722 } 2723 2724 postMerge(Size, Lo, Hi); 2725 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification."); 2726 return; 2727 } 2728 2729 if (const RecordType *RT = Ty->getAs<RecordType>()) { 2730 uint64_t Size = getContext().getTypeSize(Ty); 2731 2732 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 2733 // than eight eightbytes, ..., it has class MEMORY. 2734 if (Size > 512) 2735 return; 2736 2737 // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial 2738 // copy constructor or a non-trivial destructor, it is passed by invisible 2739 // reference. 2740 if (getRecordArgABI(RT, getCXXABI())) 2741 return; 2742 2743 const RecordDecl *RD = RT->getDecl(); 2744 2745 // Assume variable sized types are passed in memory. 2746 if (RD->hasFlexibleArrayMember()) 2747 return; 2748 2749 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 2750 2751 // Reset Lo class, this will be recomputed. 2752 Current = NoClass; 2753 2754 // If this is a C++ record, classify the bases first. 2755 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 2756 for (const auto &I : CXXRD->bases()) { 2757 assert(!I.isVirtual() && !I.getType()->isDependentType() && 2758 "Unexpected base class!"); 2759 const CXXRecordDecl *Base = 2760 cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); 2761 2762 // Classify this field. 2763 // 2764 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a 2765 // single eightbyte, each is classified separately. Each eightbyte gets 2766 // initialized to class NO_CLASS. 2767 Class FieldLo, FieldHi; 2768 uint64_t Offset = 2769 OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base)); 2770 classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg); 2771 Lo = merge(Lo, FieldLo); 2772 Hi = merge(Hi, FieldHi); 2773 if (Lo == Memory || Hi == Memory) { 2774 postMerge(Size, Lo, Hi); 2775 return; 2776 } 2777 } 2778 } 2779 2780 // Classify the fields one at a time, merging the results. 2781 unsigned idx = 0; 2782 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 2783 i != e; ++i, ++idx) { 2784 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 2785 bool BitField = i->isBitField(); 2786 2787 // Ignore padding bit-fields. 2788 if (BitField && i->isUnnamedBitfield()) 2789 continue; 2790 2791 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than 2792 // four eightbytes, or it contains unaligned fields, it has class MEMORY. 2793 // 2794 // The only case a 256-bit wide vector could be used is when the struct 2795 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 2796 // to work for sizes wider than 128, early check and fallback to memory. 2797 // 2798 if (Size > 128 && (Size != getContext().getTypeSize(i->getType()) || 2799 Size > getNativeVectorSizeForAVXABI(AVXLevel))) { 2800 Lo = Memory; 2801 postMerge(Size, Lo, Hi); 2802 return; 2803 } 2804 // Note, skip this test for bit-fields, see below. 2805 if (!BitField && Offset % getContext().getTypeAlign(i->getType())) { 2806 Lo = Memory; 2807 postMerge(Size, Lo, Hi); 2808 return; 2809 } 2810 2811 // Classify this field. 2812 // 2813 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate 2814 // exceeds a single eightbyte, each is classified 2815 // separately. Each eightbyte gets initialized to class 2816 // NO_CLASS. 2817 Class FieldLo, FieldHi; 2818 2819 // Bit-fields require special handling, they do not force the 2820 // structure to be passed in memory even if unaligned, and 2821 // therefore they can straddle an eightbyte. 2822 if (BitField) { 2823 assert(!i->isUnnamedBitfield()); 2824 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 2825 uint64_t Size = i->getBitWidthValue(getContext()); 2826 2827 uint64_t EB_Lo = Offset / 64; 2828 uint64_t EB_Hi = (Offset + Size - 1) / 64; 2829 2830 if (EB_Lo) { 2831 assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes."); 2832 FieldLo = NoClass; 2833 FieldHi = Integer; 2834 } else { 2835 FieldLo = Integer; 2836 FieldHi = EB_Hi ? Integer : NoClass; 2837 } 2838 } else 2839 classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg); 2840 Lo = merge(Lo, FieldLo); 2841 Hi = merge(Hi, FieldHi); 2842 if (Lo == Memory || Hi == Memory) 2843 break; 2844 } 2845 2846 postMerge(Size, Lo, Hi); 2847 } 2848 } 2849 2850 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const { 2851 // If this is a scalar LLVM value then assume LLVM will pass it in the right 2852 // place naturally. 2853 if (!isAggregateTypeForABI(Ty)) { 2854 // Treat an enum type as its underlying type. 2855 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2856 Ty = EnumTy->getDecl()->getIntegerType(); 2857 2858 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 2859 : ABIArgInfo::getDirect()); 2860 } 2861 2862 return getNaturalAlignIndirect(Ty); 2863 } 2864 2865 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const { 2866 if (const VectorType *VecTy = Ty->getAs<VectorType>()) { 2867 uint64_t Size = getContext().getTypeSize(VecTy); 2868 unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel); 2869 if (Size <= 64 || Size > LargestVector) 2870 return true; 2871 } 2872 2873 return false; 2874 } 2875 2876 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty, 2877 unsigned freeIntRegs) const { 2878 // If this is a scalar LLVM value then assume LLVM will pass it in the right 2879 // place naturally. 2880 // 2881 // This assumption is optimistic, as there could be free registers available 2882 // when we need to pass this argument in memory, and LLVM could try to pass 2883 // the argument in the free register. This does not seem to happen currently, 2884 // but this code would be much safer if we could mark the argument with 2885 // 'onstack'. See PR12193. 2886 if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) { 2887 // Treat an enum type as its underlying type. 2888 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2889 Ty = EnumTy->getDecl()->getIntegerType(); 2890 2891 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 2892 : ABIArgInfo::getDirect()); 2893 } 2894 2895 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 2896 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 2897 2898 // Compute the byval alignment. We specify the alignment of the byval in all 2899 // cases so that the mid-level optimizer knows the alignment of the byval. 2900 unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U); 2901 2902 // Attempt to avoid passing indirect results using byval when possible. This 2903 // is important for good codegen. 2904 // 2905 // We do this by coercing the value into a scalar type which the backend can 2906 // handle naturally (i.e., without using byval). 2907 // 2908 // For simplicity, we currently only do this when we have exhausted all of the 2909 // free integer registers. Doing this when there are free integer registers 2910 // would require more care, as we would have to ensure that the coerced value 2911 // did not claim the unused register. That would require either reording the 2912 // arguments to the function (so that any subsequent inreg values came first), 2913 // or only doing this optimization when there were no following arguments that 2914 // might be inreg. 2915 // 2916 // We currently expect it to be rare (particularly in well written code) for 2917 // arguments to be passed on the stack when there are still free integer 2918 // registers available (this would typically imply large structs being passed 2919 // by value), so this seems like a fair tradeoff for now. 2920 // 2921 // We can revisit this if the backend grows support for 'onstack' parameter 2922 // attributes. See PR12193. 2923 if (freeIntRegs == 0) { 2924 uint64_t Size = getContext().getTypeSize(Ty); 2925 2926 // If this type fits in an eightbyte, coerce it into the matching integral 2927 // type, which will end up on the stack (with alignment 8). 2928 if (Align == 8 && Size <= 64) 2929 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 2930 Size)); 2931 } 2932 2933 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align)); 2934 } 2935 2936 /// The ABI specifies that a value should be passed in a full vector XMM/YMM 2937 /// register. Pick an LLVM IR type that will be passed as a vector register. 2938 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const { 2939 // Wrapper structs/arrays that only contain vectors are passed just like 2940 // vectors; strip them off if present. 2941 if (const Type *InnerTy = isSingleElementStruct(Ty, getContext())) 2942 Ty = QualType(InnerTy, 0); 2943 2944 llvm::Type *IRType = CGT.ConvertType(Ty); 2945 if (isa<llvm::VectorType>(IRType) || 2946 IRType->getTypeID() == llvm::Type::FP128TyID) 2947 return IRType; 2948 2949 // We couldn't find the preferred IR vector type for 'Ty'. 2950 uint64_t Size = getContext().getTypeSize(Ty); 2951 assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!"); 2952 2953 // Return a LLVM IR vector type based on the size of 'Ty'. 2954 return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 2955 Size / 64); 2956 } 2957 2958 /// BitsContainNoUserData - Return true if the specified [start,end) bit range 2959 /// is known to either be off the end of the specified type or being in 2960 /// alignment padding. The user type specified is known to be at most 128 bits 2961 /// in size, and have passed through X86_64ABIInfo::classify with a successful 2962 /// classification that put one of the two halves in the INTEGER class. 2963 /// 2964 /// It is conservatively correct to return false. 2965 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit, 2966 unsigned EndBit, ASTContext &Context) { 2967 // If the bytes being queried are off the end of the type, there is no user 2968 // data hiding here. This handles analysis of builtins, vectors and other 2969 // types that don't contain interesting padding. 2970 unsigned TySize = (unsigned)Context.getTypeSize(Ty); 2971 if (TySize <= StartBit) 2972 return true; 2973 2974 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 2975 unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType()); 2976 unsigned NumElts = (unsigned)AT->getSize().getZExtValue(); 2977 2978 // Check each element to see if the element overlaps with the queried range. 2979 for (unsigned i = 0; i != NumElts; ++i) { 2980 // If the element is after the span we care about, then we're done.. 2981 unsigned EltOffset = i*EltSize; 2982 if (EltOffset >= EndBit) break; 2983 2984 unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0; 2985 if (!BitsContainNoUserData(AT->getElementType(), EltStart, 2986 EndBit-EltOffset, Context)) 2987 return false; 2988 } 2989 // If it overlaps no elements, then it is safe to process as padding. 2990 return true; 2991 } 2992 2993 if (const RecordType *RT = Ty->getAs<RecordType>()) { 2994 const RecordDecl *RD = RT->getDecl(); 2995 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 2996 2997 // If this is a C++ record, check the bases first. 2998 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 2999 for (const auto &I : CXXRD->bases()) { 3000 assert(!I.isVirtual() && !I.getType()->isDependentType() && 3001 "Unexpected base class!"); 3002 const CXXRecordDecl *Base = 3003 cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); 3004 3005 // If the base is after the span we care about, ignore it. 3006 unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base)); 3007 if (BaseOffset >= EndBit) continue; 3008 3009 unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0; 3010 if (!BitsContainNoUserData(I.getType(), BaseStart, 3011 EndBit-BaseOffset, Context)) 3012 return false; 3013 } 3014 } 3015 3016 // Verify that no field has data that overlaps the region of interest. Yes 3017 // this could be sped up a lot by being smarter about queried fields, 3018 // however we're only looking at structs up to 16 bytes, so we don't care 3019 // much. 3020 unsigned idx = 0; 3021 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 3022 i != e; ++i, ++idx) { 3023 unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx); 3024 3025 // If we found a field after the region we care about, then we're done. 3026 if (FieldOffset >= EndBit) break; 3027 3028 unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0; 3029 if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset, 3030 Context)) 3031 return false; 3032 } 3033 3034 // If nothing in this record overlapped the area of interest, then we're 3035 // clean. 3036 return true; 3037 } 3038 3039 return false; 3040 } 3041 3042 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a 3043 /// float member at the specified offset. For example, {int,{float}} has a 3044 /// float at offset 4. It is conservatively correct for this routine to return 3045 /// false. 3046 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset, 3047 const llvm::DataLayout &TD) { 3048 // Base case if we find a float. 3049 if (IROffset == 0 && IRType->isFloatTy()) 3050 return true; 3051 3052 // If this is a struct, recurse into the field at the specified offset. 3053 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 3054 const llvm::StructLayout *SL = TD.getStructLayout(STy); 3055 unsigned Elt = SL->getElementContainingOffset(IROffset); 3056 IROffset -= SL->getElementOffset(Elt); 3057 return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD); 3058 } 3059 3060 // If this is an array, recurse into the field at the specified offset. 3061 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 3062 llvm::Type *EltTy = ATy->getElementType(); 3063 unsigned EltSize = TD.getTypeAllocSize(EltTy); 3064 IROffset -= IROffset/EltSize*EltSize; 3065 return ContainsFloatAtOffset(EltTy, IROffset, TD); 3066 } 3067 3068 return false; 3069 } 3070 3071 3072 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the 3073 /// low 8 bytes of an XMM register, corresponding to the SSE class. 3074 llvm::Type *X86_64ABIInfo:: 3075 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3076 QualType SourceTy, unsigned SourceOffset) const { 3077 // The only three choices we have are either double, <2 x float>, or float. We 3078 // pass as float if the last 4 bytes is just padding. This happens for 3079 // structs that contain 3 floats. 3080 if (BitsContainNoUserData(SourceTy, SourceOffset*8+32, 3081 SourceOffset*8+64, getContext())) 3082 return llvm::Type::getFloatTy(getVMContext()); 3083 3084 // We want to pass as <2 x float> if the LLVM IR type contains a float at 3085 // offset+0 and offset+4. Walk the LLVM IR type to find out if this is the 3086 // case. 3087 if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) && 3088 ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout())) 3089 return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2); 3090 3091 return llvm::Type::getDoubleTy(getVMContext()); 3092 } 3093 3094 3095 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in 3096 /// an 8-byte GPR. This means that we either have a scalar or we are talking 3097 /// about the high or low part of an up-to-16-byte struct. This routine picks 3098 /// the best LLVM IR type to represent this, which may be i64 or may be anything 3099 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*, 3100 /// etc). 3101 /// 3102 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for 3103 /// the source type. IROffset is an offset in bytes into the LLVM IR type that 3104 /// the 8-byte value references. PrefType may be null. 3105 /// 3106 /// SourceTy is the source-level type for the entire argument. SourceOffset is 3107 /// an offset into this that we're processing (which is always either 0 or 8). 3108 /// 3109 llvm::Type *X86_64ABIInfo:: 3110 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3111 QualType SourceTy, unsigned SourceOffset) const { 3112 // If we're dealing with an un-offset LLVM IR type, then it means that we're 3113 // returning an 8-byte unit starting with it. See if we can safely use it. 3114 if (IROffset == 0) { 3115 // Pointers and int64's always fill the 8-byte unit. 3116 if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) || 3117 IRType->isIntegerTy(64)) 3118 return IRType; 3119 3120 // If we have a 1/2/4-byte integer, we can use it only if the rest of the 3121 // goodness in the source type is just tail padding. This is allowed to 3122 // kick in for struct {double,int} on the int, but not on 3123 // struct{double,int,int} because we wouldn't return the second int. We 3124 // have to do this analysis on the source type because we can't depend on 3125 // unions being lowered a specific way etc. 3126 if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) || 3127 IRType->isIntegerTy(32) || 3128 (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) { 3129 unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 : 3130 cast<llvm::IntegerType>(IRType)->getBitWidth(); 3131 3132 if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth, 3133 SourceOffset*8+64, getContext())) 3134 return IRType; 3135 } 3136 } 3137 3138 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 3139 // If this is a struct, recurse into the field at the specified offset. 3140 const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy); 3141 if (IROffset < SL->getSizeInBytes()) { 3142 unsigned FieldIdx = SL->getElementContainingOffset(IROffset); 3143 IROffset -= SL->getElementOffset(FieldIdx); 3144 3145 return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset, 3146 SourceTy, SourceOffset); 3147 } 3148 } 3149 3150 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 3151 llvm::Type *EltTy = ATy->getElementType(); 3152 unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy); 3153 unsigned EltOffset = IROffset/EltSize*EltSize; 3154 return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy, 3155 SourceOffset); 3156 } 3157 3158 // Okay, we don't have any better idea of what to pass, so we pass this in an 3159 // integer register that isn't too big to fit the rest of the struct. 3160 unsigned TySizeInBytes = 3161 (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity(); 3162 3163 assert(TySizeInBytes != SourceOffset && "Empty field?"); 3164 3165 // It is always safe to classify this as an integer type up to i64 that 3166 // isn't larger than the structure. 3167 return llvm::IntegerType::get(getVMContext(), 3168 std::min(TySizeInBytes-SourceOffset, 8U)*8); 3169 } 3170 3171 3172 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally 3173 /// be used as elements of a two register pair to pass or return, return a 3174 /// first class aggregate to represent them. For example, if the low part of 3175 /// a by-value argument should be passed as i32* and the high part as float, 3176 /// return {i32*, float}. 3177 static llvm::Type * 3178 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi, 3179 const llvm::DataLayout &TD) { 3180 // In order to correctly satisfy the ABI, we need to the high part to start 3181 // at offset 8. If the high and low parts we inferred are both 4-byte types 3182 // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have 3183 // the second element at offset 8. Check for this: 3184 unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo); 3185 unsigned HiAlign = TD.getABITypeAlignment(Hi); 3186 unsigned HiStart = llvm::alignTo(LoSize, HiAlign); 3187 assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!"); 3188 3189 // To handle this, we have to increase the size of the low part so that the 3190 // second element will start at an 8 byte offset. We can't increase the size 3191 // of the second element because it might make us access off the end of the 3192 // struct. 3193 if (HiStart != 8) { 3194 // There are usually two sorts of types the ABI generation code can produce 3195 // for the low part of a pair that aren't 8 bytes in size: float or 3196 // i8/i16/i32. This can also include pointers when they are 32-bit (X32 and 3197 // NaCl). 3198 // Promote these to a larger type. 3199 if (Lo->isFloatTy()) 3200 Lo = llvm::Type::getDoubleTy(Lo->getContext()); 3201 else { 3202 assert((Lo->isIntegerTy() || Lo->isPointerTy()) 3203 && "Invalid/unknown lo type"); 3204 Lo = llvm::Type::getInt64Ty(Lo->getContext()); 3205 } 3206 } 3207 3208 llvm::StructType *Result = llvm::StructType::get(Lo, Hi); 3209 3210 // Verify that the second element is at an 8-byte offset. 3211 assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 && 3212 "Invalid x86-64 argument pair!"); 3213 return Result; 3214 } 3215 3216 ABIArgInfo X86_64ABIInfo:: 3217 classifyReturnType(QualType RetTy) const { 3218 // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the 3219 // classification algorithm. 3220 X86_64ABIInfo::Class Lo, Hi; 3221 classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true); 3222 3223 // Check some invariants. 3224 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3225 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3226 3227 llvm::Type *ResType = nullptr; 3228 switch (Lo) { 3229 case NoClass: 3230 if (Hi == NoClass) 3231 return ABIArgInfo::getIgnore(); 3232 // If the low part is just padding, it takes no register, leave ResType 3233 // null. 3234 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3235 "Unknown missing lo part"); 3236 break; 3237 3238 case SSEUp: 3239 case X87Up: 3240 llvm_unreachable("Invalid classification for lo word."); 3241 3242 // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via 3243 // hidden argument. 3244 case Memory: 3245 return getIndirectReturnResult(RetTy); 3246 3247 // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next 3248 // available register of the sequence %rax, %rdx is used. 3249 case Integer: 3250 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3251 3252 // If we have a sign or zero extended integer, make sure to return Extend 3253 // so that the parameter gets the right LLVM IR attributes. 3254 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3255 // Treat an enum type as its underlying type. 3256 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 3257 RetTy = EnumTy->getDecl()->getIntegerType(); 3258 3259 if (RetTy->isIntegralOrEnumerationType() && 3260 RetTy->isPromotableIntegerType()) 3261 return ABIArgInfo::getExtend(RetTy); 3262 } 3263 break; 3264 3265 // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next 3266 // available SSE register of the sequence %xmm0, %xmm1 is used. 3267 case SSE: 3268 ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3269 break; 3270 3271 // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is 3272 // returned on the X87 stack in %st0 as 80-bit x87 number. 3273 case X87: 3274 ResType = llvm::Type::getX86_FP80Ty(getVMContext()); 3275 break; 3276 3277 // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real 3278 // part of the value is returned in %st0 and the imaginary part in 3279 // %st1. 3280 case ComplexX87: 3281 assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification."); 3282 ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()), 3283 llvm::Type::getX86_FP80Ty(getVMContext())); 3284 break; 3285 } 3286 3287 llvm::Type *HighPart = nullptr; 3288 switch (Hi) { 3289 // Memory was handled previously and X87 should 3290 // never occur as a hi class. 3291 case Memory: 3292 case X87: 3293 llvm_unreachable("Invalid classification for hi word."); 3294 3295 case ComplexX87: // Previously handled. 3296 case NoClass: 3297 break; 3298 3299 case Integer: 3300 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3301 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3302 return ABIArgInfo::getDirect(HighPart, 8); 3303 break; 3304 case SSE: 3305 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3306 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3307 return ABIArgInfo::getDirect(HighPart, 8); 3308 break; 3309 3310 // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte 3311 // is passed in the next available eightbyte chunk if the last used 3312 // vector register. 3313 // 3314 // SSEUP should always be preceded by SSE, just widen. 3315 case SSEUp: 3316 assert(Lo == SSE && "Unexpected SSEUp classification."); 3317 ResType = GetByteVectorType(RetTy); 3318 break; 3319 3320 // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is 3321 // returned together with the previous X87 value in %st0. 3322 case X87Up: 3323 // If X87Up is preceded by X87, we don't need to do 3324 // anything. However, in some cases with unions it may not be 3325 // preceded by X87. In such situations we follow gcc and pass the 3326 // extra bits in an SSE reg. 3327 if (Lo != X87) { 3328 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3329 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3330 return ABIArgInfo::getDirect(HighPart, 8); 3331 } 3332 break; 3333 } 3334 3335 // If a high part was specified, merge it together with the low part. It is 3336 // known to pass in the high eightbyte of the result. We do this by forming a 3337 // first class struct aggregate with the high and low part: {low, high} 3338 if (HighPart) 3339 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3340 3341 return ABIArgInfo::getDirect(ResType); 3342 } 3343 3344 ABIArgInfo X86_64ABIInfo::classifyArgumentType( 3345 QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE, 3346 bool isNamedArg) 3347 const 3348 { 3349 Ty = useFirstFieldIfTransparentUnion(Ty); 3350 3351 X86_64ABIInfo::Class Lo, Hi; 3352 classify(Ty, 0, Lo, Hi, isNamedArg); 3353 3354 // Check some invariants. 3355 // FIXME: Enforce these by construction. 3356 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3357 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3358 3359 neededInt = 0; 3360 neededSSE = 0; 3361 llvm::Type *ResType = nullptr; 3362 switch (Lo) { 3363 case NoClass: 3364 if (Hi == NoClass) 3365 return ABIArgInfo::getIgnore(); 3366 // If the low part is just padding, it takes no register, leave ResType 3367 // null. 3368 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3369 "Unknown missing lo part"); 3370 break; 3371 3372 // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument 3373 // on the stack. 3374 case Memory: 3375 3376 // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or 3377 // COMPLEX_X87, it is passed in memory. 3378 case X87: 3379 case ComplexX87: 3380 if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect) 3381 ++neededInt; 3382 return getIndirectResult(Ty, freeIntRegs); 3383 3384 case SSEUp: 3385 case X87Up: 3386 llvm_unreachable("Invalid classification for lo word."); 3387 3388 // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next 3389 // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8 3390 // and %r9 is used. 3391 case Integer: 3392 ++neededInt; 3393 3394 // Pick an 8-byte type based on the preferred type. 3395 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0); 3396 3397 // If we have a sign or zero extended integer, make sure to return Extend 3398 // so that the parameter gets the right LLVM IR attributes. 3399 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3400 // Treat an enum type as its underlying type. 3401 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3402 Ty = EnumTy->getDecl()->getIntegerType(); 3403 3404 if (Ty->isIntegralOrEnumerationType() && 3405 Ty->isPromotableIntegerType()) 3406 return ABIArgInfo::getExtend(Ty); 3407 } 3408 3409 break; 3410 3411 // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next 3412 // available SSE register is used, the registers are taken in the 3413 // order from %xmm0 to %xmm7. 3414 case SSE: { 3415 llvm::Type *IRType = CGT.ConvertType(Ty); 3416 ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0); 3417 ++neededSSE; 3418 break; 3419 } 3420 } 3421 3422 llvm::Type *HighPart = nullptr; 3423 switch (Hi) { 3424 // Memory was handled previously, ComplexX87 and X87 should 3425 // never occur as hi classes, and X87Up must be preceded by X87, 3426 // which is passed in memory. 3427 case Memory: 3428 case X87: 3429 case ComplexX87: 3430 llvm_unreachable("Invalid classification for hi word."); 3431 3432 case NoClass: break; 3433 3434 case Integer: 3435 ++neededInt; 3436 // Pick an 8-byte type based on the preferred type. 3437 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3438 3439 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3440 return ABIArgInfo::getDirect(HighPart, 8); 3441 break; 3442 3443 // X87Up generally doesn't occur here (long double is passed in 3444 // memory), except in situations involving unions. 3445 case X87Up: 3446 case SSE: 3447 HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3448 3449 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3450 return ABIArgInfo::getDirect(HighPart, 8); 3451 3452 ++neededSSE; 3453 break; 3454 3455 // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the 3456 // eightbyte is passed in the upper half of the last used SSE 3457 // register. This only happens when 128-bit vectors are passed. 3458 case SSEUp: 3459 assert(Lo == SSE && "Unexpected SSEUp classification"); 3460 ResType = GetByteVectorType(Ty); 3461 break; 3462 } 3463 3464 // If a high part was specified, merge it together with the low part. It is 3465 // known to pass in the high eightbyte of the result. We do this by forming a 3466 // first class struct aggregate with the high and low part: {low, high} 3467 if (HighPart) 3468 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3469 3470 return ABIArgInfo::getDirect(ResType); 3471 } 3472 3473 ABIArgInfo 3474 X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 3475 unsigned &NeededSSE) const { 3476 auto RT = Ty->getAs<RecordType>(); 3477 assert(RT && "classifyRegCallStructType only valid with struct types"); 3478 3479 if (RT->getDecl()->hasFlexibleArrayMember()) 3480 return getIndirectReturnResult(Ty); 3481 3482 // Sum up bases 3483 if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 3484 if (CXXRD->isDynamicClass()) { 3485 NeededInt = NeededSSE = 0; 3486 return getIndirectReturnResult(Ty); 3487 } 3488 3489 for (const auto &I : CXXRD->bases()) 3490 if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE) 3491 .isIndirect()) { 3492 NeededInt = NeededSSE = 0; 3493 return getIndirectReturnResult(Ty); 3494 } 3495 } 3496 3497 // Sum up members 3498 for (const auto *FD : RT->getDecl()->fields()) { 3499 if (FD->getType()->isRecordType() && !FD->getType()->isUnionType()) { 3500 if (classifyRegCallStructTypeImpl(FD->getType(), NeededInt, NeededSSE) 3501 .isIndirect()) { 3502 NeededInt = NeededSSE = 0; 3503 return getIndirectReturnResult(Ty); 3504 } 3505 } else { 3506 unsigned LocalNeededInt, LocalNeededSSE; 3507 if (classifyArgumentType(FD->getType(), UINT_MAX, LocalNeededInt, 3508 LocalNeededSSE, true) 3509 .isIndirect()) { 3510 NeededInt = NeededSSE = 0; 3511 return getIndirectReturnResult(Ty); 3512 } 3513 NeededInt += LocalNeededInt; 3514 NeededSSE += LocalNeededSSE; 3515 } 3516 } 3517 3518 return ABIArgInfo::getDirect(); 3519 } 3520 3521 ABIArgInfo X86_64ABIInfo::classifyRegCallStructType(QualType Ty, 3522 unsigned &NeededInt, 3523 unsigned &NeededSSE) const { 3524 3525 NeededInt = 0; 3526 NeededSSE = 0; 3527 3528 return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE); 3529 } 3530 3531 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 3532 3533 const unsigned CallingConv = FI.getCallingConvention(); 3534 // It is possible to force Win64 calling convention on any x86_64 target by 3535 // using __attribute__((ms_abi)). In such case to correctly emit Win64 3536 // compatible code delegate this call to WinX86_64ABIInfo::computeInfo. 3537 if (CallingConv == llvm::CallingConv::Win64) { 3538 WinX86_64ABIInfo Win64ABIInfo(CGT); 3539 Win64ABIInfo.computeInfo(FI); 3540 return; 3541 } 3542 3543 bool IsRegCall = CallingConv == llvm::CallingConv::X86_RegCall; 3544 3545 // Keep track of the number of assigned registers. 3546 unsigned FreeIntRegs = IsRegCall ? 11 : 6; 3547 unsigned FreeSSERegs = IsRegCall ? 16 : 8; 3548 unsigned NeededInt, NeededSSE; 3549 3550 if (!::classifyReturnType(getCXXABI(), FI, *this)) { 3551 if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() && 3552 !FI.getReturnType()->getTypePtr()->isUnionType()) { 3553 FI.getReturnInfo() = 3554 classifyRegCallStructType(FI.getReturnType(), NeededInt, NeededSSE); 3555 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 3556 FreeIntRegs -= NeededInt; 3557 FreeSSERegs -= NeededSSE; 3558 } else { 3559 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 3560 } 3561 } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>()) { 3562 // Complex Long Double Type is passed in Memory when Regcall 3563 // calling convention is used. 3564 const ComplexType *CT = FI.getReturnType()->getAs<ComplexType>(); 3565 if (getContext().getCanonicalType(CT->getElementType()) == 3566 getContext().LongDoubleTy) 3567 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 3568 } else 3569 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 3570 } 3571 3572 // If the return value is indirect, then the hidden argument is consuming one 3573 // integer register. 3574 if (FI.getReturnInfo().isIndirect()) 3575 --FreeIntRegs; 3576 3577 // The chain argument effectively gives us another free register. 3578 if (FI.isChainCall()) 3579 ++FreeIntRegs; 3580 3581 unsigned NumRequiredArgs = FI.getNumRequiredArgs(); 3582 // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers 3583 // get assigned (in left-to-right order) for passing as follows... 3584 unsigned ArgNo = 0; 3585 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 3586 it != ie; ++it, ++ArgNo) { 3587 bool IsNamedArg = ArgNo < NumRequiredArgs; 3588 3589 if (IsRegCall && it->type->isStructureOrClassType()) 3590 it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE); 3591 else 3592 it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt, 3593 NeededSSE, IsNamedArg); 3594 3595 // AMD64-ABI 3.2.3p3: If there are no registers available for any 3596 // eightbyte of an argument, the whole argument is passed on the 3597 // stack. If registers have already been assigned for some 3598 // eightbytes of such an argument, the assignments get reverted. 3599 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 3600 FreeIntRegs -= NeededInt; 3601 FreeSSERegs -= NeededSSE; 3602 } else { 3603 it->info = getIndirectResult(it->type, FreeIntRegs); 3604 } 3605 } 3606 } 3607 3608 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF, 3609 Address VAListAddr, QualType Ty) { 3610 Address overflow_arg_area_p = CGF.Builder.CreateStructGEP( 3611 VAListAddr, 2, CharUnits::fromQuantity(8), "overflow_arg_area_p"); 3612 llvm::Value *overflow_arg_area = 3613 CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area"); 3614 3615 // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16 3616 // byte boundary if alignment needed by type exceeds 8 byte boundary. 3617 // It isn't stated explicitly in the standard, but in practice we use 3618 // alignment greater than 16 where necessary. 3619 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 3620 if (Align > CharUnits::fromQuantity(8)) { 3621 overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area, 3622 Align); 3623 } 3624 3625 // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area. 3626 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 3627 llvm::Value *Res = 3628 CGF.Builder.CreateBitCast(overflow_arg_area, 3629 llvm::PointerType::getUnqual(LTy)); 3630 3631 // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to: 3632 // l->overflow_arg_area + sizeof(type). 3633 // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to 3634 // an 8 byte boundary. 3635 3636 uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8; 3637 llvm::Value *Offset = 3638 llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7); 3639 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset, 3640 "overflow_arg_area.next"); 3641 CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p); 3642 3643 // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type. 3644 return Address(Res, Align); 3645 } 3646 3647 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 3648 QualType Ty) const { 3649 // Assume that va_list type is correct; should be pointer to LLVM type: 3650 // struct { 3651 // i32 gp_offset; 3652 // i32 fp_offset; 3653 // i8* overflow_arg_area; 3654 // i8* reg_save_area; 3655 // }; 3656 unsigned neededInt, neededSSE; 3657 3658 Ty = getContext().getCanonicalType(Ty); 3659 ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE, 3660 /*isNamedArg*/false); 3661 3662 // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed 3663 // in the registers. If not go to step 7. 3664 if (!neededInt && !neededSSE) 3665 return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 3666 3667 // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of 3668 // general purpose registers needed to pass type and num_fp to hold 3669 // the number of floating point registers needed. 3670 3671 // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into 3672 // registers. In the case: l->gp_offset > 48 - num_gp * 8 or 3673 // l->fp_offset > 304 - num_fp * 16 go to step 7. 3674 // 3675 // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of 3676 // register save space). 3677 3678 llvm::Value *InRegs = nullptr; 3679 Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid(); 3680 llvm::Value *gp_offset = nullptr, *fp_offset = nullptr; 3681 if (neededInt) { 3682 gp_offset_p = 3683 CGF.Builder.CreateStructGEP(VAListAddr, 0, CharUnits::Zero(), 3684 "gp_offset_p"); 3685 gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset"); 3686 InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8); 3687 InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp"); 3688 } 3689 3690 if (neededSSE) { 3691 fp_offset_p = 3692 CGF.Builder.CreateStructGEP(VAListAddr, 1, CharUnits::fromQuantity(4), 3693 "fp_offset_p"); 3694 fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset"); 3695 llvm::Value *FitsInFP = 3696 llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16); 3697 FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp"); 3698 InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP; 3699 } 3700 3701 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 3702 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 3703 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 3704 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 3705 3706 // Emit code to load the value if it was passed in registers. 3707 3708 CGF.EmitBlock(InRegBlock); 3709 3710 // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with 3711 // an offset of l->gp_offset and/or l->fp_offset. This may require 3712 // copying to a temporary location in case the parameter is passed 3713 // in different register classes or requires an alignment greater 3714 // than 8 for general purpose registers and 16 for XMM registers. 3715 // 3716 // FIXME: This really results in shameful code when we end up needing to 3717 // collect arguments from different places; often what should result in a 3718 // simple assembling of a structure from scattered addresses has many more 3719 // loads than necessary. Can we clean this up? 3720 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 3721 llvm::Value *RegSaveArea = CGF.Builder.CreateLoad( 3722 CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(16)), 3723 "reg_save_area"); 3724 3725 Address RegAddr = Address::invalid(); 3726 if (neededInt && neededSSE) { 3727 // FIXME: Cleanup. 3728 assert(AI.isDirect() && "Unexpected ABI info for mixed regs"); 3729 llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType()); 3730 Address Tmp = CGF.CreateMemTemp(Ty); 3731 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 3732 assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs"); 3733 llvm::Type *TyLo = ST->getElementType(0); 3734 llvm::Type *TyHi = ST->getElementType(1); 3735 assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) && 3736 "Unexpected ABI info for mixed regs"); 3737 llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo); 3738 llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi); 3739 llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegSaveArea, gp_offset); 3740 llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegSaveArea, fp_offset); 3741 llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr; 3742 llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr; 3743 3744 // Copy the first element. 3745 // FIXME: Our choice of alignment here and below is probably pessimistic. 3746 llvm::Value *V = CGF.Builder.CreateAlignedLoad( 3747 TyLo, CGF.Builder.CreateBitCast(RegLoAddr, PTyLo), 3748 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyLo))); 3749 CGF.Builder.CreateStore(V, 3750 CGF.Builder.CreateStructGEP(Tmp, 0, CharUnits::Zero())); 3751 3752 // Copy the second element. 3753 V = CGF.Builder.CreateAlignedLoad( 3754 TyHi, CGF.Builder.CreateBitCast(RegHiAddr, PTyHi), 3755 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyHi))); 3756 CharUnits Offset = CharUnits::fromQuantity( 3757 getDataLayout().getStructLayout(ST)->getElementOffset(1)); 3758 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1, Offset)); 3759 3760 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 3761 } else if (neededInt) { 3762 RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, gp_offset), 3763 CharUnits::fromQuantity(8)); 3764 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 3765 3766 // Copy to a temporary if necessary to ensure the appropriate alignment. 3767 std::pair<CharUnits, CharUnits> SizeAlign = 3768 getContext().getTypeInfoInChars(Ty); 3769 uint64_t TySize = SizeAlign.first.getQuantity(); 3770 CharUnits TyAlign = SizeAlign.second; 3771 3772 // Copy into a temporary if the type is more aligned than the 3773 // register save area. 3774 if (TyAlign.getQuantity() > 8) { 3775 Address Tmp = CGF.CreateMemTemp(Ty); 3776 CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false); 3777 RegAddr = Tmp; 3778 } 3779 3780 } else if (neededSSE == 1) { 3781 RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset), 3782 CharUnits::fromQuantity(16)); 3783 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 3784 } else { 3785 assert(neededSSE == 2 && "Invalid number of needed registers!"); 3786 // SSE registers are spaced 16 bytes apart in the register save 3787 // area, we need to collect the two eightbytes together. 3788 // The ABI isn't explicit about this, but it seems reasonable 3789 // to assume that the slots are 16-byte aligned, since the stack is 3790 // naturally 16-byte aligned and the prologue is expected to store 3791 // all the SSE registers to the RSA. 3792 Address RegAddrLo = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset), 3793 CharUnits::fromQuantity(16)); 3794 Address RegAddrHi = 3795 CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo, 3796 CharUnits::fromQuantity(16)); 3797 llvm::Type *ST = AI.canHaveCoerceToType() 3798 ? AI.getCoerceToType() 3799 : llvm::StructType::get(CGF.DoubleTy, CGF.DoubleTy); 3800 llvm::Value *V; 3801 Address Tmp = CGF.CreateMemTemp(Ty); 3802 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 3803 V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast( 3804 RegAddrLo, ST->getStructElementType(0))); 3805 CGF.Builder.CreateStore(V, 3806 CGF.Builder.CreateStructGEP(Tmp, 0, CharUnits::Zero())); 3807 V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast( 3808 RegAddrHi, ST->getStructElementType(1))); 3809 CGF.Builder.CreateStore(V, 3810 CGF.Builder.CreateStructGEP(Tmp, 1, CharUnits::fromQuantity(8))); 3811 3812 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 3813 } 3814 3815 // AMD64-ABI 3.5.7p5: Step 5. Set: 3816 // l->gp_offset = l->gp_offset + num_gp * 8 3817 // l->fp_offset = l->fp_offset + num_fp * 16. 3818 if (neededInt) { 3819 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8); 3820 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset), 3821 gp_offset_p); 3822 } 3823 if (neededSSE) { 3824 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16); 3825 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset), 3826 fp_offset_p); 3827 } 3828 CGF.EmitBranch(ContBlock); 3829 3830 // Emit code to load the value if it was passed in memory. 3831 3832 CGF.EmitBlock(InMemBlock); 3833 Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 3834 3835 // Return the appropriate result. 3836 3837 CGF.EmitBlock(ContBlock); 3838 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock, 3839 "vaarg.addr"); 3840 return ResAddr; 3841 } 3842 3843 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 3844 QualType Ty) const { 3845 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 3846 CGF.getContext().getTypeInfoInChars(Ty), 3847 CharUnits::fromQuantity(8), 3848 /*allowHigherAlign*/ false); 3849 } 3850 3851 ABIArgInfo 3852 WinX86_64ABIInfo::reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs, 3853 const ABIArgInfo ¤t) const { 3854 // Assumes vectorCall calling convention. 3855 const Type *Base = nullptr; 3856 uint64_t NumElts = 0; 3857 3858 if (!Ty->isBuiltinType() && !Ty->isVectorType() && 3859 isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) { 3860 FreeSSERegs -= NumElts; 3861 return getDirectX86Hva(); 3862 } 3863 return current; 3864 } 3865 3866 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs, 3867 bool IsReturnType, bool IsVectorCall, 3868 bool IsRegCall) const { 3869 3870 if (Ty->isVoidType()) 3871 return ABIArgInfo::getIgnore(); 3872 3873 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3874 Ty = EnumTy->getDecl()->getIntegerType(); 3875 3876 TypeInfo Info = getContext().getTypeInfo(Ty); 3877 uint64_t Width = Info.Width; 3878 CharUnits Align = getContext().toCharUnitsFromBits(Info.Align); 3879 3880 const RecordType *RT = Ty->getAs<RecordType>(); 3881 if (RT) { 3882 if (!IsReturnType) { 3883 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI())) 3884 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 3885 } 3886 3887 if (RT->getDecl()->hasFlexibleArrayMember()) 3888 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 3889 3890 } 3891 3892 const Type *Base = nullptr; 3893 uint64_t NumElts = 0; 3894 // vectorcall adds the concept of a homogenous vector aggregate, similar to 3895 // other targets. 3896 if ((IsVectorCall || IsRegCall) && 3897 isHomogeneousAggregate(Ty, Base, NumElts)) { 3898 if (IsRegCall) { 3899 if (FreeSSERegs >= NumElts) { 3900 FreeSSERegs -= NumElts; 3901 if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType()) 3902 return ABIArgInfo::getDirect(); 3903 return ABIArgInfo::getExpand(); 3904 } 3905 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3906 } else if (IsVectorCall) { 3907 if (FreeSSERegs >= NumElts && 3908 (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) { 3909 FreeSSERegs -= NumElts; 3910 return ABIArgInfo::getDirect(); 3911 } else if (IsReturnType) { 3912 return ABIArgInfo::getExpand(); 3913 } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) { 3914 // HVAs are delayed and reclassified in the 2nd step. 3915 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3916 } 3917 } 3918 } 3919 3920 if (Ty->isMemberPointerType()) { 3921 // If the member pointer is represented by an LLVM int or ptr, pass it 3922 // directly. 3923 llvm::Type *LLTy = CGT.ConvertType(Ty); 3924 if (LLTy->isPointerTy() || LLTy->isIntegerTy()) 3925 return ABIArgInfo::getDirect(); 3926 } 3927 3928 if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) { 3929 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 3930 // not 1, 2, 4, or 8 bytes, must be passed by reference." 3931 if (Width > 64 || !llvm::isPowerOf2_64(Width)) 3932 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 3933 3934 // Otherwise, coerce it to a small integer. 3935 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width)); 3936 } 3937 3938 // Bool type is always extended to the ABI, other builtin types are not 3939 // extended. 3940 const BuiltinType *BT = Ty->getAs<BuiltinType>(); 3941 if (BT && BT->getKind() == BuiltinType::Bool) 3942 return ABIArgInfo::getExtend(Ty); 3943 3944 // Mingw64 GCC uses the old 80 bit extended precision floating point unit. It 3945 // passes them indirectly through memory. 3946 if (IsMingw64 && BT && BT->getKind() == BuiltinType::LongDouble) { 3947 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 3948 if (LDF == &llvm::APFloat::x87DoubleExtended()) 3949 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3950 } 3951 3952 return ABIArgInfo::getDirect(); 3953 } 3954 3955 void WinX86_64ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI, 3956 unsigned FreeSSERegs, 3957 bool IsVectorCall, 3958 bool IsRegCall) const { 3959 unsigned Count = 0; 3960 for (auto &I : FI.arguments()) { 3961 // Vectorcall in x64 only permits the first 6 arguments to be passed 3962 // as XMM/YMM registers. 3963 if (Count < VectorcallMaxParamNumAsReg) 3964 I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall); 3965 else { 3966 // Since these cannot be passed in registers, pretend no registers 3967 // are left. 3968 unsigned ZeroSSERegsAvail = 0; 3969 I.info = classify(I.type, /*FreeSSERegs=*/ZeroSSERegsAvail, false, 3970 IsVectorCall, IsRegCall); 3971 } 3972 ++Count; 3973 } 3974 3975 for (auto &I : FI.arguments()) { 3976 I.info = reclassifyHvaArgType(I.type, FreeSSERegs, I.info); 3977 } 3978 } 3979 3980 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 3981 bool IsVectorCall = 3982 FI.getCallingConvention() == llvm::CallingConv::X86_VectorCall; 3983 bool IsRegCall = FI.getCallingConvention() == llvm::CallingConv::X86_RegCall; 3984 3985 unsigned FreeSSERegs = 0; 3986 if (IsVectorCall) { 3987 // We can use up to 4 SSE return registers with vectorcall. 3988 FreeSSERegs = 4; 3989 } else if (IsRegCall) { 3990 // RegCall gives us 16 SSE registers. 3991 FreeSSERegs = 16; 3992 } 3993 3994 if (!getCXXABI().classifyReturnType(FI)) 3995 FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true, 3996 IsVectorCall, IsRegCall); 3997 3998 if (IsVectorCall) { 3999 // We can use up to 6 SSE register parameters with vectorcall. 4000 FreeSSERegs = 6; 4001 } else if (IsRegCall) { 4002 // RegCall gives us 16 SSE registers, we can reuse the return registers. 4003 FreeSSERegs = 16; 4004 } 4005 4006 if (IsVectorCall) { 4007 computeVectorCallArgs(FI, FreeSSERegs, IsVectorCall, IsRegCall); 4008 } else { 4009 for (auto &I : FI.arguments()) 4010 I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall); 4011 } 4012 4013 } 4014 4015 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4016 QualType Ty) const { 4017 4018 bool IsIndirect = false; 4019 4020 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4021 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4022 if (isAggregateTypeForABI(Ty) || Ty->isMemberPointerType()) { 4023 uint64_t Width = getContext().getTypeSize(Ty); 4024 IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width); 4025 } 4026 4027 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 4028 CGF.getContext().getTypeInfoInChars(Ty), 4029 CharUnits::fromQuantity(8), 4030 /*allowHigherAlign*/ false); 4031 } 4032 4033 // PowerPC-32 4034 namespace { 4035 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information. 4036 class PPC32_SVR4_ABIInfo : public DefaultABIInfo { 4037 bool IsSoftFloatABI; 4038 4039 CharUnits getParamTypeAlignment(QualType Ty) const; 4040 4041 public: 4042 PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI) 4043 : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI) {} 4044 4045 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4046 QualType Ty) const override; 4047 }; 4048 4049 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo { 4050 public: 4051 PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI) 4052 : TargetCodeGenInfo(new PPC32_SVR4_ABIInfo(CGT, SoftFloatABI)) {} 4053 4054 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4055 // This is recovered from gcc output. 4056 return 1; // r1 is the dedicated stack pointer 4057 } 4058 4059 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4060 llvm::Value *Address) const override; 4061 }; 4062 } 4063 4064 CharUnits PPC32_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 4065 // Complex types are passed just like their elements 4066 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 4067 Ty = CTy->getElementType(); 4068 4069 if (Ty->isVectorType()) 4070 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 4071 : 4); 4072 4073 // For single-element float/vector structs, we consider the whole type 4074 // to have the same alignment requirements as its single element. 4075 const Type *AlignTy = nullptr; 4076 if (const Type *EltType = isSingleElementStruct(Ty, getContext())) { 4077 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 4078 if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) || 4079 (BT && BT->isFloatingPoint())) 4080 AlignTy = EltType; 4081 } 4082 4083 if (AlignTy) 4084 return CharUnits::fromQuantity(AlignTy->isVectorType() ? 16 : 4); 4085 return CharUnits::fromQuantity(4); 4086 } 4087 4088 // TODO: this implementation is now likely redundant with 4089 // DefaultABIInfo::EmitVAArg. 4090 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList, 4091 QualType Ty) const { 4092 if (getTarget().getTriple().isOSDarwin()) { 4093 auto TI = getContext().getTypeInfoInChars(Ty); 4094 TI.second = getParamTypeAlignment(Ty); 4095 4096 CharUnits SlotSize = CharUnits::fromQuantity(4); 4097 return emitVoidPtrVAArg(CGF, VAList, Ty, 4098 classifyArgumentType(Ty).isIndirect(), TI, SlotSize, 4099 /*AllowHigherAlign=*/true); 4100 } 4101 4102 const unsigned OverflowLimit = 8; 4103 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 4104 // TODO: Implement this. For now ignore. 4105 (void)CTy; 4106 return Address::invalid(); // FIXME? 4107 } 4108 4109 // struct __va_list_tag { 4110 // unsigned char gpr; 4111 // unsigned char fpr; 4112 // unsigned short reserved; 4113 // void *overflow_arg_area; 4114 // void *reg_save_area; 4115 // }; 4116 4117 bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64; 4118 bool isInt = 4119 Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType(); 4120 bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64; 4121 4122 // All aggregates are passed indirectly? That doesn't seem consistent 4123 // with the argument-lowering code. 4124 bool isIndirect = Ty->isAggregateType(); 4125 4126 CGBuilderTy &Builder = CGF.Builder; 4127 4128 // The calling convention either uses 1-2 GPRs or 1 FPR. 4129 Address NumRegsAddr = Address::invalid(); 4130 if (isInt || IsSoftFloatABI) { 4131 NumRegsAddr = Builder.CreateStructGEP(VAList, 0, CharUnits::Zero(), "gpr"); 4132 } else { 4133 NumRegsAddr = Builder.CreateStructGEP(VAList, 1, CharUnits::One(), "fpr"); 4134 } 4135 4136 llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs"); 4137 4138 // "Align" the register count when TY is i64. 4139 if (isI64 || (isF64 && IsSoftFloatABI)) { 4140 NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1)); 4141 NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U)); 4142 } 4143 4144 llvm::Value *CC = 4145 Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond"); 4146 4147 llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs"); 4148 llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow"); 4149 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 4150 4151 Builder.CreateCondBr(CC, UsingRegs, UsingOverflow); 4152 4153 llvm::Type *DirectTy = CGF.ConvertType(Ty); 4154 if (isIndirect) DirectTy = DirectTy->getPointerTo(0); 4155 4156 // Case 1: consume registers. 4157 Address RegAddr = Address::invalid(); 4158 { 4159 CGF.EmitBlock(UsingRegs); 4160 4161 Address RegSaveAreaPtr = 4162 Builder.CreateStructGEP(VAList, 4, CharUnits::fromQuantity(8)); 4163 RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr), 4164 CharUnits::fromQuantity(8)); 4165 assert(RegAddr.getElementType() == CGF.Int8Ty); 4166 4167 // Floating-point registers start after the general-purpose registers. 4168 if (!(isInt || IsSoftFloatABI)) { 4169 RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr, 4170 CharUnits::fromQuantity(32)); 4171 } 4172 4173 // Get the address of the saved value by scaling the number of 4174 // registers we've used by the number of 4175 CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8); 4176 llvm::Value *RegOffset = 4177 Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity())); 4178 RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty, 4179 RegAddr.getPointer(), RegOffset), 4180 RegAddr.getAlignment().alignmentOfArrayElement(RegSize)); 4181 RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy); 4182 4183 // Increase the used-register count. 4184 NumRegs = 4185 Builder.CreateAdd(NumRegs, 4186 Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1)); 4187 Builder.CreateStore(NumRegs, NumRegsAddr); 4188 4189 CGF.EmitBranch(Cont); 4190 } 4191 4192 // Case 2: consume space in the overflow area. 4193 Address MemAddr = Address::invalid(); 4194 { 4195 CGF.EmitBlock(UsingOverflow); 4196 4197 Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr); 4198 4199 // Everything in the overflow area is rounded up to a size of at least 4. 4200 CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4); 4201 4202 CharUnits Size; 4203 if (!isIndirect) { 4204 auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty); 4205 Size = TypeInfo.first.alignTo(OverflowAreaAlign); 4206 } else { 4207 Size = CGF.getPointerSize(); 4208 } 4209 4210 Address OverflowAreaAddr = 4211 Builder.CreateStructGEP(VAList, 3, CharUnits::fromQuantity(4)); 4212 Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"), 4213 OverflowAreaAlign); 4214 // Round up address of argument to alignment 4215 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 4216 if (Align > OverflowAreaAlign) { 4217 llvm::Value *Ptr = OverflowArea.getPointer(); 4218 OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align), 4219 Align); 4220 } 4221 4222 MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy); 4223 4224 // Increase the overflow area. 4225 OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size); 4226 Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr); 4227 CGF.EmitBranch(Cont); 4228 } 4229 4230 CGF.EmitBlock(Cont); 4231 4232 // Merge the cases with a phi. 4233 Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow, 4234 "vaarg.addr"); 4235 4236 // Load the pointer if the argument was passed indirectly. 4237 if (isIndirect) { 4238 Result = Address(Builder.CreateLoad(Result, "aggr"), 4239 getContext().getTypeAlignInChars(Ty)); 4240 } 4241 4242 return Result; 4243 } 4244 4245 bool 4246 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4247 llvm::Value *Address) const { 4248 // This is calculated from the LLVM and GCC tables and verified 4249 // against gcc output. AFAIK all ABIs use the same encoding. 4250 4251 CodeGen::CGBuilderTy &Builder = CGF.Builder; 4252 4253 llvm::IntegerType *i8 = CGF.Int8Ty; 4254 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 4255 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 4256 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 4257 4258 // 0-31: r0-31, the 4-byte general-purpose registers 4259 AssignToArrayRange(Builder, Address, Four8, 0, 31); 4260 4261 // 32-63: fp0-31, the 8-byte floating-point registers 4262 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 4263 4264 // 64-76 are various 4-byte special-purpose registers: 4265 // 64: mq 4266 // 65: lr 4267 // 66: ctr 4268 // 67: ap 4269 // 68-75 cr0-7 4270 // 76: xer 4271 AssignToArrayRange(Builder, Address, Four8, 64, 76); 4272 4273 // 77-108: v0-31, the 16-byte vector registers 4274 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 4275 4276 // 109: vrsave 4277 // 110: vscr 4278 // 111: spe_acc 4279 // 112: spefscr 4280 // 113: sfp 4281 AssignToArrayRange(Builder, Address, Four8, 109, 113); 4282 4283 return false; 4284 } 4285 4286 // PowerPC-64 4287 4288 namespace { 4289 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information. 4290 class PPC64_SVR4_ABIInfo : public ABIInfo { 4291 public: 4292 enum ABIKind { 4293 ELFv1 = 0, 4294 ELFv2 4295 }; 4296 4297 private: 4298 static const unsigned GPRBits = 64; 4299 ABIKind Kind; 4300 bool HasQPX; 4301 bool IsSoftFloatABI; 4302 4303 // A vector of float or double will be promoted to <4 x f32> or <4 x f64> and 4304 // will be passed in a QPX register. 4305 bool IsQPXVectorTy(const Type *Ty) const { 4306 if (!HasQPX) 4307 return false; 4308 4309 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4310 unsigned NumElements = VT->getNumElements(); 4311 if (NumElements == 1) 4312 return false; 4313 4314 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) { 4315 if (getContext().getTypeSize(Ty) <= 256) 4316 return true; 4317 } else if (VT->getElementType()-> 4318 isSpecificBuiltinType(BuiltinType::Float)) { 4319 if (getContext().getTypeSize(Ty) <= 128) 4320 return true; 4321 } 4322 } 4323 4324 return false; 4325 } 4326 4327 bool IsQPXVectorTy(QualType Ty) const { 4328 return IsQPXVectorTy(Ty.getTypePtr()); 4329 } 4330 4331 public: 4332 PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, bool HasQPX, 4333 bool SoftFloatABI) 4334 : ABIInfo(CGT), Kind(Kind), HasQPX(HasQPX), 4335 IsSoftFloatABI(SoftFloatABI) {} 4336 4337 bool isPromotableTypeForABI(QualType Ty) const; 4338 CharUnits getParamTypeAlignment(QualType Ty) const; 4339 4340 ABIArgInfo classifyReturnType(QualType RetTy) const; 4341 ABIArgInfo classifyArgumentType(QualType Ty) const; 4342 4343 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 4344 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 4345 uint64_t Members) const override; 4346 4347 // TODO: We can add more logic to computeInfo to improve performance. 4348 // Example: For aggregate arguments that fit in a register, we could 4349 // use getDirectInReg (as is done below for structs containing a single 4350 // floating-point value) to avoid pushing them to memory on function 4351 // entry. This would require changing the logic in PPCISelLowering 4352 // when lowering the parameters in the caller and args in the callee. 4353 void computeInfo(CGFunctionInfo &FI) const override { 4354 if (!getCXXABI().classifyReturnType(FI)) 4355 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4356 for (auto &I : FI.arguments()) { 4357 // We rely on the default argument classification for the most part. 4358 // One exception: An aggregate containing a single floating-point 4359 // or vector item must be passed in a register if one is available. 4360 const Type *T = isSingleElementStruct(I.type, getContext()); 4361 if (T) { 4362 const BuiltinType *BT = T->getAs<BuiltinType>(); 4363 if (IsQPXVectorTy(T) || 4364 (T->isVectorType() && getContext().getTypeSize(T) == 128) || 4365 (BT && BT->isFloatingPoint())) { 4366 QualType QT(T, 0); 4367 I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT)); 4368 continue; 4369 } 4370 } 4371 I.info = classifyArgumentType(I.type); 4372 } 4373 } 4374 4375 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4376 QualType Ty) const override; 4377 }; 4378 4379 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo { 4380 4381 public: 4382 PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT, 4383 PPC64_SVR4_ABIInfo::ABIKind Kind, bool HasQPX, 4384 bool SoftFloatABI) 4385 : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT, Kind, HasQPX, 4386 SoftFloatABI)) {} 4387 4388 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4389 // This is recovered from gcc output. 4390 return 1; // r1 is the dedicated stack pointer 4391 } 4392 4393 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4394 llvm::Value *Address) const override; 4395 }; 4396 4397 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo { 4398 public: 4399 PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {} 4400 4401 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4402 // This is recovered from gcc output. 4403 return 1; // r1 is the dedicated stack pointer 4404 } 4405 4406 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4407 llvm::Value *Address) const override; 4408 }; 4409 4410 } 4411 4412 // Return true if the ABI requires Ty to be passed sign- or zero- 4413 // extended to 64 bits. 4414 bool 4415 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const { 4416 // Treat an enum type as its underlying type. 4417 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4418 Ty = EnumTy->getDecl()->getIntegerType(); 4419 4420 // Promotable integer types are required to be promoted by the ABI. 4421 if (Ty->isPromotableIntegerType()) 4422 return true; 4423 4424 // In addition to the usual promotable integer types, we also need to 4425 // extend all 32-bit types, since the ABI requires promotion to 64 bits. 4426 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 4427 switch (BT->getKind()) { 4428 case BuiltinType::Int: 4429 case BuiltinType::UInt: 4430 return true; 4431 default: 4432 break; 4433 } 4434 4435 return false; 4436 } 4437 4438 /// isAlignedParamType - Determine whether a type requires 16-byte or 4439 /// higher alignment in the parameter area. Always returns at least 8. 4440 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 4441 // Complex types are passed just like their elements. 4442 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 4443 Ty = CTy->getElementType(); 4444 4445 // Only vector types of size 16 bytes need alignment (larger types are 4446 // passed via reference, smaller types are not aligned). 4447 if (IsQPXVectorTy(Ty)) { 4448 if (getContext().getTypeSize(Ty) > 128) 4449 return CharUnits::fromQuantity(32); 4450 4451 return CharUnits::fromQuantity(16); 4452 } else if (Ty->isVectorType()) { 4453 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8); 4454 } 4455 4456 // For single-element float/vector structs, we consider the whole type 4457 // to have the same alignment requirements as its single element. 4458 const Type *AlignAsType = nullptr; 4459 const Type *EltType = isSingleElementStruct(Ty, getContext()); 4460 if (EltType) { 4461 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 4462 if (IsQPXVectorTy(EltType) || (EltType->isVectorType() && 4463 getContext().getTypeSize(EltType) == 128) || 4464 (BT && BT->isFloatingPoint())) 4465 AlignAsType = EltType; 4466 } 4467 4468 // Likewise for ELFv2 homogeneous aggregates. 4469 const Type *Base = nullptr; 4470 uint64_t Members = 0; 4471 if (!AlignAsType && Kind == ELFv2 && 4472 isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members)) 4473 AlignAsType = Base; 4474 4475 // With special case aggregates, only vector base types need alignment. 4476 if (AlignAsType && IsQPXVectorTy(AlignAsType)) { 4477 if (getContext().getTypeSize(AlignAsType) > 128) 4478 return CharUnits::fromQuantity(32); 4479 4480 return CharUnits::fromQuantity(16); 4481 } else if (AlignAsType) { 4482 return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8); 4483 } 4484 4485 // Otherwise, we only need alignment for any aggregate type that 4486 // has an alignment requirement of >= 16 bytes. 4487 if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) { 4488 if (HasQPX && getContext().getTypeAlign(Ty) >= 256) 4489 return CharUnits::fromQuantity(32); 4490 return CharUnits::fromQuantity(16); 4491 } 4492 4493 return CharUnits::fromQuantity(8); 4494 } 4495 4496 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous 4497 /// aggregate. Base is set to the base element type, and Members is set 4498 /// to the number of base elements. 4499 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base, 4500 uint64_t &Members) const { 4501 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 4502 uint64_t NElements = AT->getSize().getZExtValue(); 4503 if (NElements == 0) 4504 return false; 4505 if (!isHomogeneousAggregate(AT->getElementType(), Base, Members)) 4506 return false; 4507 Members *= NElements; 4508 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 4509 const RecordDecl *RD = RT->getDecl(); 4510 if (RD->hasFlexibleArrayMember()) 4511 return false; 4512 4513 Members = 0; 4514 4515 // If this is a C++ record, check the bases first. 4516 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 4517 for (const auto &I : CXXRD->bases()) { 4518 // Ignore empty records. 4519 if (isEmptyRecord(getContext(), I.getType(), true)) 4520 continue; 4521 4522 uint64_t FldMembers; 4523 if (!isHomogeneousAggregate(I.getType(), Base, FldMembers)) 4524 return false; 4525 4526 Members += FldMembers; 4527 } 4528 } 4529 4530 for (const auto *FD : RD->fields()) { 4531 // Ignore (non-zero arrays of) empty records. 4532 QualType FT = FD->getType(); 4533 while (const ConstantArrayType *AT = 4534 getContext().getAsConstantArrayType(FT)) { 4535 if (AT->getSize().getZExtValue() == 0) 4536 return false; 4537 FT = AT->getElementType(); 4538 } 4539 if (isEmptyRecord(getContext(), FT, true)) 4540 continue; 4541 4542 // For compatibility with GCC, ignore empty bitfields in C++ mode. 4543 if (getContext().getLangOpts().CPlusPlus && 4544 FD->isZeroLengthBitField(getContext())) 4545 continue; 4546 4547 uint64_t FldMembers; 4548 if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers)) 4549 return false; 4550 4551 Members = (RD->isUnion() ? 4552 std::max(Members, FldMembers) : Members + FldMembers); 4553 } 4554 4555 if (!Base) 4556 return false; 4557 4558 // Ensure there is no padding. 4559 if (getContext().getTypeSize(Base) * Members != 4560 getContext().getTypeSize(Ty)) 4561 return false; 4562 } else { 4563 Members = 1; 4564 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 4565 Members = 2; 4566 Ty = CT->getElementType(); 4567 } 4568 4569 // Most ABIs only support float, double, and some vector type widths. 4570 if (!isHomogeneousAggregateBaseType(Ty)) 4571 return false; 4572 4573 // The base type must be the same for all members. Types that 4574 // agree in both total size and mode (float vs. vector) are 4575 // treated as being equivalent here. 4576 const Type *TyPtr = Ty.getTypePtr(); 4577 if (!Base) { 4578 Base = TyPtr; 4579 // If it's a non-power-of-2 vector, its size is already a power-of-2, 4580 // so make sure to widen it explicitly. 4581 if (const VectorType *VT = Base->getAs<VectorType>()) { 4582 QualType EltTy = VT->getElementType(); 4583 unsigned NumElements = 4584 getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy); 4585 Base = getContext() 4586 .getVectorType(EltTy, NumElements, VT->getVectorKind()) 4587 .getTypePtr(); 4588 } 4589 } 4590 4591 if (Base->isVectorType() != TyPtr->isVectorType() || 4592 getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr)) 4593 return false; 4594 } 4595 return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members); 4596 } 4597 4598 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 4599 // Homogeneous aggregates for ELFv2 must have base types of float, 4600 // double, long double, or 128-bit vectors. 4601 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 4602 if (BT->getKind() == BuiltinType::Float || 4603 BT->getKind() == BuiltinType::Double || 4604 BT->getKind() == BuiltinType::LongDouble) { 4605 if (IsSoftFloatABI) 4606 return false; 4607 return true; 4608 } 4609 } 4610 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4611 if (getContext().getTypeSize(VT) == 128 || IsQPXVectorTy(Ty)) 4612 return true; 4613 } 4614 return false; 4615 } 4616 4617 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough( 4618 const Type *Base, uint64_t Members) const { 4619 // Vector types require one register, floating point types require one 4620 // or two registers depending on their size. 4621 uint32_t NumRegs = 4622 Base->isVectorType() ? 1 : (getContext().getTypeSize(Base) + 63) / 64; 4623 4624 // Homogeneous Aggregates may occupy at most 8 registers. 4625 return Members * NumRegs <= 8; 4626 } 4627 4628 ABIArgInfo 4629 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const { 4630 Ty = useFirstFieldIfTransparentUnion(Ty); 4631 4632 if (Ty->isAnyComplexType()) 4633 return ABIArgInfo::getDirect(); 4634 4635 // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes) 4636 // or via reference (larger than 16 bytes). 4637 if (Ty->isVectorType() && !IsQPXVectorTy(Ty)) { 4638 uint64_t Size = getContext().getTypeSize(Ty); 4639 if (Size > 128) 4640 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4641 else if (Size < 128) { 4642 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 4643 return ABIArgInfo::getDirect(CoerceTy); 4644 } 4645 } 4646 4647 if (isAggregateTypeForABI(Ty)) { 4648 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 4649 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 4650 4651 uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity(); 4652 uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); 4653 4654 // ELFv2 homogeneous aggregates are passed as array types. 4655 const Type *Base = nullptr; 4656 uint64_t Members = 0; 4657 if (Kind == ELFv2 && 4658 isHomogeneousAggregate(Ty, Base, Members)) { 4659 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 4660 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 4661 return ABIArgInfo::getDirect(CoerceTy); 4662 } 4663 4664 // If an aggregate may end up fully in registers, we do not 4665 // use the ByVal method, but pass the aggregate as array. 4666 // This is usually beneficial since we avoid forcing the 4667 // back-end to store the argument to memory. 4668 uint64_t Bits = getContext().getTypeSize(Ty); 4669 if (Bits > 0 && Bits <= 8 * GPRBits) { 4670 llvm::Type *CoerceTy; 4671 4672 // Types up to 8 bytes are passed as integer type (which will be 4673 // properly aligned in the argument save area doubleword). 4674 if (Bits <= GPRBits) 4675 CoerceTy = 4676 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 4677 // Larger types are passed as arrays, with the base type selected 4678 // according to the required alignment in the save area. 4679 else { 4680 uint64_t RegBits = ABIAlign * 8; 4681 uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits; 4682 llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits); 4683 CoerceTy = llvm::ArrayType::get(RegTy, NumRegs); 4684 } 4685 4686 return ABIArgInfo::getDirect(CoerceTy); 4687 } 4688 4689 // All other aggregates are passed ByVal. 4690 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 4691 /*ByVal=*/true, 4692 /*Realign=*/TyAlign > ABIAlign); 4693 } 4694 4695 return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 4696 : ABIArgInfo::getDirect()); 4697 } 4698 4699 ABIArgInfo 4700 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { 4701 if (RetTy->isVoidType()) 4702 return ABIArgInfo::getIgnore(); 4703 4704 if (RetTy->isAnyComplexType()) 4705 return ABIArgInfo::getDirect(); 4706 4707 // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes) 4708 // or via reference (larger than 16 bytes). 4709 if (RetTy->isVectorType() && !IsQPXVectorTy(RetTy)) { 4710 uint64_t Size = getContext().getTypeSize(RetTy); 4711 if (Size > 128) 4712 return getNaturalAlignIndirect(RetTy); 4713 else if (Size < 128) { 4714 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 4715 return ABIArgInfo::getDirect(CoerceTy); 4716 } 4717 } 4718 4719 if (isAggregateTypeForABI(RetTy)) { 4720 // ELFv2 homogeneous aggregates are returned as array types. 4721 const Type *Base = nullptr; 4722 uint64_t Members = 0; 4723 if (Kind == ELFv2 && 4724 isHomogeneousAggregate(RetTy, Base, Members)) { 4725 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 4726 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 4727 return ABIArgInfo::getDirect(CoerceTy); 4728 } 4729 4730 // ELFv2 small aggregates are returned in up to two registers. 4731 uint64_t Bits = getContext().getTypeSize(RetTy); 4732 if (Kind == ELFv2 && Bits <= 2 * GPRBits) { 4733 if (Bits == 0) 4734 return ABIArgInfo::getIgnore(); 4735 4736 llvm::Type *CoerceTy; 4737 if (Bits > GPRBits) { 4738 CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits); 4739 CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy); 4740 } else 4741 CoerceTy = 4742 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 4743 return ABIArgInfo::getDirect(CoerceTy); 4744 } 4745 4746 // All other aggregates are returned indirectly. 4747 return getNaturalAlignIndirect(RetTy); 4748 } 4749 4750 return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 4751 : ABIArgInfo::getDirect()); 4752 } 4753 4754 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine. 4755 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4756 QualType Ty) const { 4757 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 4758 TypeInfo.second = getParamTypeAlignment(Ty); 4759 4760 CharUnits SlotSize = CharUnits::fromQuantity(8); 4761 4762 // If we have a complex type and the base type is smaller than 8 bytes, 4763 // the ABI calls for the real and imaginary parts to be right-adjusted 4764 // in separate doublewords. However, Clang expects us to produce a 4765 // pointer to a structure with the two parts packed tightly. So generate 4766 // loads of the real and imaginary parts relative to the va_list pointer, 4767 // and store them to a temporary structure. 4768 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 4769 CharUnits EltSize = TypeInfo.first / 2; 4770 if (EltSize < SlotSize) { 4771 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty, 4772 SlotSize * 2, SlotSize, 4773 SlotSize, /*AllowHigher*/ true); 4774 4775 Address RealAddr = Addr; 4776 Address ImagAddr = RealAddr; 4777 if (CGF.CGM.getDataLayout().isBigEndian()) { 4778 RealAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, 4779 SlotSize - EltSize); 4780 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr, 4781 2 * SlotSize - EltSize); 4782 } else { 4783 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize); 4784 } 4785 4786 llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType()); 4787 RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy); 4788 ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy); 4789 llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal"); 4790 llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag"); 4791 4792 Address Temp = CGF.CreateMemTemp(Ty, "vacplx"); 4793 CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty), 4794 /*init*/ true); 4795 return Temp; 4796 } 4797 } 4798 4799 // Otherwise, just use the general rule. 4800 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 4801 TypeInfo, SlotSize, /*AllowHigher*/ true); 4802 } 4803 4804 static bool 4805 PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4806 llvm::Value *Address) { 4807 // This is calculated from the LLVM and GCC tables and verified 4808 // against gcc output. AFAIK all ABIs use the same encoding. 4809 4810 CodeGen::CGBuilderTy &Builder = CGF.Builder; 4811 4812 llvm::IntegerType *i8 = CGF.Int8Ty; 4813 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 4814 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 4815 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 4816 4817 // 0-31: r0-31, the 8-byte general-purpose registers 4818 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 4819 4820 // 32-63: fp0-31, the 8-byte floating-point registers 4821 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 4822 4823 // 64-67 are various 8-byte special-purpose registers: 4824 // 64: mq 4825 // 65: lr 4826 // 66: ctr 4827 // 67: ap 4828 AssignToArrayRange(Builder, Address, Eight8, 64, 67); 4829 4830 // 68-76 are various 4-byte special-purpose registers: 4831 // 68-75 cr0-7 4832 // 76: xer 4833 AssignToArrayRange(Builder, Address, Four8, 68, 76); 4834 4835 // 77-108: v0-31, the 16-byte vector registers 4836 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 4837 4838 // 109: vrsave 4839 // 110: vscr 4840 // 111: spe_acc 4841 // 112: spefscr 4842 // 113: sfp 4843 // 114: tfhar 4844 // 115: tfiar 4845 // 116: texasr 4846 AssignToArrayRange(Builder, Address, Eight8, 109, 116); 4847 4848 return false; 4849 } 4850 4851 bool 4852 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable( 4853 CodeGen::CodeGenFunction &CGF, 4854 llvm::Value *Address) const { 4855 4856 return PPC64_initDwarfEHRegSizeTable(CGF, Address); 4857 } 4858 4859 bool 4860 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4861 llvm::Value *Address) const { 4862 4863 return PPC64_initDwarfEHRegSizeTable(CGF, Address); 4864 } 4865 4866 //===----------------------------------------------------------------------===// 4867 // AArch64 ABI Implementation 4868 //===----------------------------------------------------------------------===// 4869 4870 namespace { 4871 4872 class AArch64ABIInfo : public SwiftABIInfo { 4873 public: 4874 enum ABIKind { 4875 AAPCS = 0, 4876 DarwinPCS, 4877 Win64 4878 }; 4879 4880 private: 4881 ABIKind Kind; 4882 4883 public: 4884 AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind) 4885 : SwiftABIInfo(CGT), Kind(Kind) {} 4886 4887 private: 4888 ABIKind getABIKind() const { return Kind; } 4889 bool isDarwinPCS() const { return Kind == DarwinPCS; } 4890 4891 ABIArgInfo classifyReturnType(QualType RetTy) const; 4892 ABIArgInfo classifyArgumentType(QualType RetTy) const; 4893 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 4894 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 4895 uint64_t Members) const override; 4896 4897 bool isIllegalVectorType(QualType Ty) const; 4898 4899 void computeInfo(CGFunctionInfo &FI) const override { 4900 if (!::classifyReturnType(getCXXABI(), FI, *this)) 4901 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4902 4903 for (auto &it : FI.arguments()) 4904 it.info = classifyArgumentType(it.type); 4905 } 4906 4907 Address EmitDarwinVAArg(Address VAListAddr, QualType Ty, 4908 CodeGenFunction &CGF) const; 4909 4910 Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty, 4911 CodeGenFunction &CGF) const; 4912 4913 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4914 QualType Ty) const override { 4915 return Kind == Win64 ? EmitMSVAArg(CGF, VAListAddr, Ty) 4916 : isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF) 4917 : EmitAAPCSVAArg(VAListAddr, Ty, CGF); 4918 } 4919 4920 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 4921 QualType Ty) const override; 4922 4923 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 4924 bool asReturnValue) const override { 4925 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 4926 } 4927 bool isSwiftErrorInRegister() const override { 4928 return true; 4929 } 4930 4931 bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy, 4932 unsigned elts) const override; 4933 }; 4934 4935 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo { 4936 public: 4937 AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind) 4938 : TargetCodeGenInfo(new AArch64ABIInfo(CGT, Kind)) {} 4939 4940 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 4941 return "mov\tfp, fp\t\t// marker for objc_retainAutoreleaseReturnValue"; 4942 } 4943 4944 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4945 return 31; 4946 } 4947 4948 bool doesReturnSlotInterfereWithArgs() const override { return false; } 4949 }; 4950 4951 class WindowsAArch64TargetCodeGenInfo : public AArch64TargetCodeGenInfo { 4952 public: 4953 WindowsAArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind K) 4954 : AArch64TargetCodeGenInfo(CGT, K) {} 4955 4956 void getDependentLibraryOption(llvm::StringRef Lib, 4957 llvm::SmallString<24> &Opt) const override { 4958 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); 4959 } 4960 4961 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, 4962 llvm::SmallString<32> &Opt) const override { 4963 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 4964 } 4965 }; 4966 } 4967 4968 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const { 4969 Ty = useFirstFieldIfTransparentUnion(Ty); 4970 4971 // Handle illegal vector types here. 4972 if (isIllegalVectorType(Ty)) { 4973 uint64_t Size = getContext().getTypeSize(Ty); 4974 // Android promotes <2 x i8> to i16, not i32 4975 if (isAndroid() && (Size <= 16)) { 4976 llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext()); 4977 return ABIArgInfo::getDirect(ResType); 4978 } 4979 if (Size <= 32) { 4980 llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext()); 4981 return ABIArgInfo::getDirect(ResType); 4982 } 4983 if (Size == 64) { 4984 llvm::Type *ResType = 4985 llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2); 4986 return ABIArgInfo::getDirect(ResType); 4987 } 4988 if (Size == 128) { 4989 llvm::Type *ResType = 4990 llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4); 4991 return ABIArgInfo::getDirect(ResType); 4992 } 4993 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4994 } 4995 4996 if (!isAggregateTypeForABI(Ty)) { 4997 // Treat an enum type as its underlying type. 4998 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4999 Ty = EnumTy->getDecl()->getIntegerType(); 5000 5001 return (Ty->isPromotableIntegerType() && isDarwinPCS() 5002 ? ABIArgInfo::getExtend(Ty) 5003 : ABIArgInfo::getDirect()); 5004 } 5005 5006 // Structures with either a non-trivial destructor or a non-trivial 5007 // copy constructor are always indirect. 5008 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 5009 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 5010 CGCXXABI::RAA_DirectInMemory); 5011 } 5012 5013 // Empty records are always ignored on Darwin, but actually passed in C++ mode 5014 // elsewhere for GNU compatibility. 5015 uint64_t Size = getContext().getTypeSize(Ty); 5016 bool IsEmpty = isEmptyRecord(getContext(), Ty, true); 5017 if (IsEmpty || Size == 0) { 5018 if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS()) 5019 return ABIArgInfo::getIgnore(); 5020 5021 // GNU C mode. The only argument that gets ignored is an empty one with size 5022 // 0. 5023 if (IsEmpty && Size == 0) 5024 return ABIArgInfo::getIgnore(); 5025 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 5026 } 5027 5028 // Homogeneous Floating-point Aggregates (HFAs) need to be expanded. 5029 const Type *Base = nullptr; 5030 uint64_t Members = 0; 5031 if (isHomogeneousAggregate(Ty, Base, Members)) { 5032 return ABIArgInfo::getDirect( 5033 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members)); 5034 } 5035 5036 // Aggregates <= 16 bytes are passed directly in registers or on the stack. 5037 if (Size <= 128) { 5038 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 5039 // same size and alignment. 5040 if (getTarget().isRenderScriptTarget()) { 5041 return coerceToIntArray(Ty, getContext(), getVMContext()); 5042 } 5043 unsigned Alignment = getContext().getTypeAlign(Ty); 5044 Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes 5045 5046 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 5047 // For aggregates with 16-byte alignment, we use i128. 5048 if (Alignment < 128 && Size == 128) { 5049 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); 5050 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 5051 } 5052 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 5053 } 5054 5055 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5056 } 5057 5058 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy) const { 5059 if (RetTy->isVoidType()) 5060 return ABIArgInfo::getIgnore(); 5061 5062 // Large vector types should be returned via memory. 5063 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) 5064 return getNaturalAlignIndirect(RetTy); 5065 5066 if (!isAggregateTypeForABI(RetTy)) { 5067 // Treat an enum type as its underlying type. 5068 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5069 RetTy = EnumTy->getDecl()->getIntegerType(); 5070 5071 return (RetTy->isPromotableIntegerType() && isDarwinPCS() 5072 ? ABIArgInfo::getExtend(RetTy) 5073 : ABIArgInfo::getDirect()); 5074 } 5075 5076 uint64_t Size = getContext().getTypeSize(RetTy); 5077 if (isEmptyRecord(getContext(), RetTy, true) || Size == 0) 5078 return ABIArgInfo::getIgnore(); 5079 5080 const Type *Base = nullptr; 5081 uint64_t Members = 0; 5082 if (isHomogeneousAggregate(RetTy, Base, Members)) 5083 // Homogeneous Floating-point Aggregates (HFAs) are returned directly. 5084 return ABIArgInfo::getDirect(); 5085 5086 // Aggregates <= 16 bytes are returned directly in registers or on the stack. 5087 if (Size <= 128) { 5088 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 5089 // same size and alignment. 5090 if (getTarget().isRenderScriptTarget()) { 5091 return coerceToIntArray(RetTy, getContext(), getVMContext()); 5092 } 5093 unsigned Alignment = getContext().getTypeAlign(RetTy); 5094 Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes 5095 5096 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 5097 // For aggregates with 16-byte alignment, we use i128. 5098 if (Alignment < 128 && Size == 128) { 5099 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); 5100 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 5101 } 5102 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 5103 } 5104 5105 return getNaturalAlignIndirect(RetTy); 5106 } 5107 5108 /// isIllegalVectorType - check whether the vector type is legal for AArch64. 5109 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const { 5110 if (const VectorType *VT = Ty->getAs<VectorType>()) { 5111 // Check whether VT is legal. 5112 unsigned NumElements = VT->getNumElements(); 5113 uint64_t Size = getContext().getTypeSize(VT); 5114 // NumElements should be power of 2. 5115 if (!llvm::isPowerOf2_32(NumElements)) 5116 return true; 5117 return Size != 64 && (Size != 128 || NumElements == 1); 5118 } 5119 return false; 5120 } 5121 5122 bool AArch64ABIInfo::isLegalVectorTypeForSwift(CharUnits totalSize, 5123 llvm::Type *eltTy, 5124 unsigned elts) const { 5125 if (!llvm::isPowerOf2_32(elts)) 5126 return false; 5127 if (totalSize.getQuantity() != 8 && 5128 (totalSize.getQuantity() != 16 || elts == 1)) 5129 return false; 5130 return true; 5131 } 5132 5133 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 5134 // Homogeneous aggregates for AAPCS64 must have base types of a floating 5135 // point type or a short-vector type. This is the same as the 32-bit ABI, 5136 // but with the difference that any floating-point type is allowed, 5137 // including __fp16. 5138 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 5139 if (BT->isFloatingPoint()) 5140 return true; 5141 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 5142 unsigned VecSize = getContext().getTypeSize(VT); 5143 if (VecSize == 64 || VecSize == 128) 5144 return true; 5145 } 5146 return false; 5147 } 5148 5149 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 5150 uint64_t Members) const { 5151 return Members <= 4; 5152 } 5153 5154 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr, 5155 QualType Ty, 5156 CodeGenFunction &CGF) const { 5157 ABIArgInfo AI = classifyArgumentType(Ty); 5158 bool IsIndirect = AI.isIndirect(); 5159 5160 llvm::Type *BaseTy = CGF.ConvertType(Ty); 5161 if (IsIndirect) 5162 BaseTy = llvm::PointerType::getUnqual(BaseTy); 5163 else if (AI.getCoerceToType()) 5164 BaseTy = AI.getCoerceToType(); 5165 5166 unsigned NumRegs = 1; 5167 if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) { 5168 BaseTy = ArrTy->getElementType(); 5169 NumRegs = ArrTy->getNumElements(); 5170 } 5171 bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy(); 5172 5173 // The AArch64 va_list type and handling is specified in the Procedure Call 5174 // Standard, section B.4: 5175 // 5176 // struct { 5177 // void *__stack; 5178 // void *__gr_top; 5179 // void *__vr_top; 5180 // int __gr_offs; 5181 // int __vr_offs; 5182 // }; 5183 5184 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); 5185 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 5186 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); 5187 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 5188 5189 auto TyInfo = getContext().getTypeInfoInChars(Ty); 5190 CharUnits TyAlign = TyInfo.second; 5191 5192 Address reg_offs_p = Address::invalid(); 5193 llvm::Value *reg_offs = nullptr; 5194 int reg_top_index; 5195 CharUnits reg_top_offset; 5196 int RegSize = IsIndirect ? 8 : TyInfo.first.getQuantity(); 5197 if (!IsFPR) { 5198 // 3 is the field number of __gr_offs 5199 reg_offs_p = 5200 CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(24), 5201 "gr_offs_p"); 5202 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs"); 5203 reg_top_index = 1; // field number for __gr_top 5204 reg_top_offset = CharUnits::fromQuantity(8); 5205 RegSize = llvm::alignTo(RegSize, 8); 5206 } else { 5207 // 4 is the field number of __vr_offs. 5208 reg_offs_p = 5209 CGF.Builder.CreateStructGEP(VAListAddr, 4, CharUnits::fromQuantity(28), 5210 "vr_offs_p"); 5211 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs"); 5212 reg_top_index = 2; // field number for __vr_top 5213 reg_top_offset = CharUnits::fromQuantity(16); 5214 RegSize = 16 * NumRegs; 5215 } 5216 5217 //======================================= 5218 // Find out where argument was passed 5219 //======================================= 5220 5221 // If reg_offs >= 0 we're already using the stack for this type of 5222 // argument. We don't want to keep updating reg_offs (in case it overflows, 5223 // though anyone passing 2GB of arguments, each at most 16 bytes, deserves 5224 // whatever they get). 5225 llvm::Value *UsingStack = nullptr; 5226 UsingStack = CGF.Builder.CreateICmpSGE( 5227 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0)); 5228 5229 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock); 5230 5231 // Otherwise, at least some kind of argument could go in these registers, the 5232 // question is whether this particular type is too big. 5233 CGF.EmitBlock(MaybeRegBlock); 5234 5235 // Integer arguments may need to correct register alignment (for example a 5236 // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we 5237 // align __gr_offs to calculate the potential address. 5238 if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) { 5239 int Align = TyAlign.getQuantity(); 5240 5241 reg_offs = CGF.Builder.CreateAdd( 5242 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1), 5243 "align_regoffs"); 5244 reg_offs = CGF.Builder.CreateAnd( 5245 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align), 5246 "aligned_regoffs"); 5247 } 5248 5249 // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list. 5250 // The fact that this is done unconditionally reflects the fact that 5251 // allocating an argument to the stack also uses up all the remaining 5252 // registers of the appropriate kind. 5253 llvm::Value *NewOffset = nullptr; 5254 NewOffset = CGF.Builder.CreateAdd( 5255 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs"); 5256 CGF.Builder.CreateStore(NewOffset, reg_offs_p); 5257 5258 // Now we're in a position to decide whether this argument really was in 5259 // registers or not. 5260 llvm::Value *InRegs = nullptr; 5261 InRegs = CGF.Builder.CreateICmpSLE( 5262 NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg"); 5263 5264 CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock); 5265 5266 //======================================= 5267 // Argument was in registers 5268 //======================================= 5269 5270 // Now we emit the code for if the argument was originally passed in 5271 // registers. First start the appropriate block: 5272 CGF.EmitBlock(InRegBlock); 5273 5274 llvm::Value *reg_top = nullptr; 5275 Address reg_top_p = CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, 5276 reg_top_offset, "reg_top_p"); 5277 reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top"); 5278 Address BaseAddr(CGF.Builder.CreateInBoundsGEP(reg_top, reg_offs), 5279 CharUnits::fromQuantity(IsFPR ? 16 : 8)); 5280 Address RegAddr = Address::invalid(); 5281 llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty); 5282 5283 if (IsIndirect) { 5284 // If it's been passed indirectly (actually a struct), whatever we find from 5285 // stored registers or on the stack will actually be a struct **. 5286 MemTy = llvm::PointerType::getUnqual(MemTy); 5287 } 5288 5289 const Type *Base = nullptr; 5290 uint64_t NumMembers = 0; 5291 bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers); 5292 if (IsHFA && NumMembers > 1) { 5293 // Homogeneous aggregates passed in registers will have their elements split 5294 // and stored 16-bytes apart regardless of size (they're notionally in qN, 5295 // qN+1, ...). We reload and store into a temporary local variable 5296 // contiguously. 5297 assert(!IsIndirect && "Homogeneous aggregates should be passed directly"); 5298 auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0)); 5299 llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0)); 5300 llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers); 5301 Address Tmp = CGF.CreateTempAlloca(HFATy, 5302 std::max(TyAlign, BaseTyInfo.second)); 5303 5304 // On big-endian platforms, the value will be right-aligned in its slot. 5305 int Offset = 0; 5306 if (CGF.CGM.getDataLayout().isBigEndian() && 5307 BaseTyInfo.first.getQuantity() < 16) 5308 Offset = 16 - BaseTyInfo.first.getQuantity(); 5309 5310 for (unsigned i = 0; i < NumMembers; ++i) { 5311 CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset); 5312 Address LoadAddr = 5313 CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset); 5314 LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy); 5315 5316 Address StoreAddr = 5317 CGF.Builder.CreateConstArrayGEP(Tmp, i, BaseTyInfo.first); 5318 5319 llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr); 5320 CGF.Builder.CreateStore(Elem, StoreAddr); 5321 } 5322 5323 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy); 5324 } else { 5325 // Otherwise the object is contiguous in memory. 5326 5327 // It might be right-aligned in its slot. 5328 CharUnits SlotSize = BaseAddr.getAlignment(); 5329 if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect && 5330 (IsHFA || !isAggregateTypeForABI(Ty)) && 5331 TyInfo.first < SlotSize) { 5332 CharUnits Offset = SlotSize - TyInfo.first; 5333 BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset); 5334 } 5335 5336 RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy); 5337 } 5338 5339 CGF.EmitBranch(ContBlock); 5340 5341 //======================================= 5342 // Argument was on the stack 5343 //======================================= 5344 CGF.EmitBlock(OnStackBlock); 5345 5346 Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, 5347 CharUnits::Zero(), "stack_p"); 5348 llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack"); 5349 5350 // Again, stack arguments may need realignment. In this case both integer and 5351 // floating-point ones might be affected. 5352 if (!IsIndirect && TyAlign.getQuantity() > 8) { 5353 int Align = TyAlign.getQuantity(); 5354 5355 OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty); 5356 5357 OnStackPtr = CGF.Builder.CreateAdd( 5358 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1), 5359 "align_stack"); 5360 OnStackPtr = CGF.Builder.CreateAnd( 5361 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align), 5362 "align_stack"); 5363 5364 OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy); 5365 } 5366 Address OnStackAddr(OnStackPtr, 5367 std::max(CharUnits::fromQuantity(8), TyAlign)); 5368 5369 // All stack slots are multiples of 8 bytes. 5370 CharUnits StackSlotSize = CharUnits::fromQuantity(8); 5371 CharUnits StackSize; 5372 if (IsIndirect) 5373 StackSize = StackSlotSize; 5374 else 5375 StackSize = TyInfo.first.alignTo(StackSlotSize); 5376 5377 llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize); 5378 llvm::Value *NewStack = 5379 CGF.Builder.CreateInBoundsGEP(OnStackPtr, StackSizeC, "new_stack"); 5380 5381 // Write the new value of __stack for the next call to va_arg 5382 CGF.Builder.CreateStore(NewStack, stack_p); 5383 5384 if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) && 5385 TyInfo.first < StackSlotSize) { 5386 CharUnits Offset = StackSlotSize - TyInfo.first; 5387 OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset); 5388 } 5389 5390 OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy); 5391 5392 CGF.EmitBranch(ContBlock); 5393 5394 //======================================= 5395 // Tidy up 5396 //======================================= 5397 CGF.EmitBlock(ContBlock); 5398 5399 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 5400 OnStackAddr, OnStackBlock, "vaargs.addr"); 5401 5402 if (IsIndirect) 5403 return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"), 5404 TyInfo.second); 5405 5406 return ResAddr; 5407 } 5408 5409 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty, 5410 CodeGenFunction &CGF) const { 5411 // The backend's lowering doesn't support va_arg for aggregates or 5412 // illegal vector types. Lower VAArg here for these cases and use 5413 // the LLVM va_arg instruction for everything else. 5414 if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty)) 5415 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 5416 5417 CharUnits SlotSize = CharUnits::fromQuantity(8); 5418 5419 // Empty records are ignored for parameter passing purposes. 5420 if (isEmptyRecord(getContext(), Ty, true)) { 5421 Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 5422 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 5423 return Addr; 5424 } 5425 5426 // The size of the actual thing passed, which might end up just 5427 // being a pointer for indirect types. 5428 auto TyInfo = getContext().getTypeInfoInChars(Ty); 5429 5430 // Arguments bigger than 16 bytes which aren't homogeneous 5431 // aggregates should be passed indirectly. 5432 bool IsIndirect = false; 5433 if (TyInfo.first.getQuantity() > 16) { 5434 const Type *Base = nullptr; 5435 uint64_t Members = 0; 5436 IsIndirect = !isHomogeneousAggregate(Ty, Base, Members); 5437 } 5438 5439 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 5440 TyInfo, SlotSize, /*AllowHigherAlign*/ true); 5441 } 5442 5443 Address AArch64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 5444 QualType Ty) const { 5445 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 5446 CGF.getContext().getTypeInfoInChars(Ty), 5447 CharUnits::fromQuantity(8), 5448 /*allowHigherAlign*/ false); 5449 } 5450 5451 //===----------------------------------------------------------------------===// 5452 // ARM ABI Implementation 5453 //===----------------------------------------------------------------------===// 5454 5455 namespace { 5456 5457 class ARMABIInfo : public SwiftABIInfo { 5458 public: 5459 enum ABIKind { 5460 APCS = 0, 5461 AAPCS = 1, 5462 AAPCS_VFP = 2, 5463 AAPCS16_VFP = 3, 5464 }; 5465 5466 private: 5467 ABIKind Kind; 5468 5469 public: 5470 ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) 5471 : SwiftABIInfo(CGT), Kind(_Kind) { 5472 setCCs(); 5473 } 5474 5475 bool isEABI() const { 5476 switch (getTarget().getTriple().getEnvironment()) { 5477 case llvm::Triple::Android: 5478 case llvm::Triple::EABI: 5479 case llvm::Triple::EABIHF: 5480 case llvm::Triple::GNUEABI: 5481 case llvm::Triple::GNUEABIHF: 5482 case llvm::Triple::MuslEABI: 5483 case llvm::Triple::MuslEABIHF: 5484 return true; 5485 default: 5486 return false; 5487 } 5488 } 5489 5490 bool isEABIHF() const { 5491 switch (getTarget().getTriple().getEnvironment()) { 5492 case llvm::Triple::EABIHF: 5493 case llvm::Triple::GNUEABIHF: 5494 case llvm::Triple::MuslEABIHF: 5495 return true; 5496 default: 5497 return false; 5498 } 5499 } 5500 5501 ABIKind getABIKind() const { return Kind; } 5502 5503 private: 5504 ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic) const; 5505 ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic) const; 5506 bool isIllegalVectorType(QualType Ty) const; 5507 5508 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 5509 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 5510 uint64_t Members) const override; 5511 5512 void computeInfo(CGFunctionInfo &FI) const override; 5513 5514 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5515 QualType Ty) const override; 5516 5517 llvm::CallingConv::ID getLLVMDefaultCC() const; 5518 llvm::CallingConv::ID getABIDefaultCC() const; 5519 void setCCs(); 5520 5521 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 5522 bool asReturnValue) const override { 5523 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 5524 } 5525 bool isSwiftErrorInRegister() const override { 5526 return true; 5527 } 5528 bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy, 5529 unsigned elts) const override; 5530 }; 5531 5532 class ARMTargetCodeGenInfo : public TargetCodeGenInfo { 5533 public: 5534 ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 5535 :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {} 5536 5537 const ARMABIInfo &getABIInfo() const { 5538 return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo()); 5539 } 5540 5541 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 5542 return 13; 5543 } 5544 5545 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 5546 return "mov\tr7, r7\t\t// marker for objc_retainAutoreleaseReturnValue"; 5547 } 5548 5549 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5550 llvm::Value *Address) const override { 5551 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 5552 5553 // 0-15 are the 16 integer registers. 5554 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15); 5555 return false; 5556 } 5557 5558 unsigned getSizeOfUnwindException() const override { 5559 if (getABIInfo().isEABI()) return 88; 5560 return TargetCodeGenInfo::getSizeOfUnwindException(); 5561 } 5562 5563 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5564 CodeGen::CodeGenModule &CGM) const override { 5565 if (GV->isDeclaration()) 5566 return; 5567 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 5568 if (!FD) 5569 return; 5570 5571 const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>(); 5572 if (!Attr) 5573 return; 5574 5575 const char *Kind; 5576 switch (Attr->getInterrupt()) { 5577 case ARMInterruptAttr::Generic: Kind = ""; break; 5578 case ARMInterruptAttr::IRQ: Kind = "IRQ"; break; 5579 case ARMInterruptAttr::FIQ: Kind = "FIQ"; break; 5580 case ARMInterruptAttr::SWI: Kind = "SWI"; break; 5581 case ARMInterruptAttr::ABORT: Kind = "ABORT"; break; 5582 case ARMInterruptAttr::UNDEF: Kind = "UNDEF"; break; 5583 } 5584 5585 llvm::Function *Fn = cast<llvm::Function>(GV); 5586 5587 Fn->addFnAttr("interrupt", Kind); 5588 5589 ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind(); 5590 if (ABI == ARMABIInfo::APCS) 5591 return; 5592 5593 // AAPCS guarantees that sp will be 8-byte aligned on any public interface, 5594 // however this is not necessarily true on taking any interrupt. Instruct 5595 // the backend to perform a realignment as part of the function prologue. 5596 llvm::AttrBuilder B; 5597 B.addStackAlignmentAttr(8); 5598 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 5599 } 5600 }; 5601 5602 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo { 5603 public: 5604 WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 5605 : ARMTargetCodeGenInfo(CGT, K) {} 5606 5607 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5608 CodeGen::CodeGenModule &CGM) const override; 5609 5610 void getDependentLibraryOption(llvm::StringRef Lib, 5611 llvm::SmallString<24> &Opt) const override { 5612 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); 5613 } 5614 5615 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, 5616 llvm::SmallString<32> &Opt) const override { 5617 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 5618 } 5619 }; 5620 5621 void WindowsARMTargetCodeGenInfo::setTargetAttributes( 5622 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 5623 ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 5624 if (GV->isDeclaration()) 5625 return; 5626 addStackProbeTargetAttributes(D, GV, CGM); 5627 } 5628 } 5629 5630 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const { 5631 if (!::classifyReturnType(getCXXABI(), FI, *this)) 5632 FI.getReturnInfo() = 5633 classifyReturnType(FI.getReturnType(), FI.isVariadic()); 5634 5635 for (auto &I : FI.arguments()) 5636 I.info = classifyArgumentType(I.type, FI.isVariadic()); 5637 5638 // Always honor user-specified calling convention. 5639 if (FI.getCallingConvention() != llvm::CallingConv::C) 5640 return; 5641 5642 llvm::CallingConv::ID cc = getRuntimeCC(); 5643 if (cc != llvm::CallingConv::C) 5644 FI.setEffectiveCallingConvention(cc); 5645 } 5646 5647 /// Return the default calling convention that LLVM will use. 5648 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const { 5649 // The default calling convention that LLVM will infer. 5650 if (isEABIHF() || getTarget().getTriple().isWatchABI()) 5651 return llvm::CallingConv::ARM_AAPCS_VFP; 5652 else if (isEABI()) 5653 return llvm::CallingConv::ARM_AAPCS; 5654 else 5655 return llvm::CallingConv::ARM_APCS; 5656 } 5657 5658 /// Return the calling convention that our ABI would like us to use 5659 /// as the C calling convention. 5660 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const { 5661 switch (getABIKind()) { 5662 case APCS: return llvm::CallingConv::ARM_APCS; 5663 case AAPCS: return llvm::CallingConv::ARM_AAPCS; 5664 case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 5665 case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 5666 } 5667 llvm_unreachable("bad ABI kind"); 5668 } 5669 5670 void ARMABIInfo::setCCs() { 5671 assert(getRuntimeCC() == llvm::CallingConv::C); 5672 5673 // Don't muddy up the IR with a ton of explicit annotations if 5674 // they'd just match what LLVM will infer from the triple. 5675 llvm::CallingConv::ID abiCC = getABIDefaultCC(); 5676 if (abiCC != getLLVMDefaultCC()) 5677 RuntimeCC = abiCC; 5678 } 5679 5680 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, 5681 bool isVariadic) const { 5682 // 6.1.2.1 The following argument types are VFP CPRCs: 5683 // A single-precision floating-point type (including promoted 5684 // half-precision types); A double-precision floating-point type; 5685 // A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate 5686 // with a Base Type of a single- or double-precision floating-point type, 5687 // 64-bit containerized vectors or 128-bit containerized vectors with one 5688 // to four Elements. 5689 bool IsEffectivelyAAPCS_VFP = getABIKind() == AAPCS_VFP && !isVariadic; 5690 5691 Ty = useFirstFieldIfTransparentUnion(Ty); 5692 5693 // Handle illegal vector types here. 5694 if (isIllegalVectorType(Ty)) { 5695 uint64_t Size = getContext().getTypeSize(Ty); 5696 if (Size <= 32) { 5697 llvm::Type *ResType = 5698 llvm::Type::getInt32Ty(getVMContext()); 5699 return ABIArgInfo::getDirect(ResType); 5700 } 5701 if (Size == 64) { 5702 llvm::Type *ResType = llvm::VectorType::get( 5703 llvm::Type::getInt32Ty(getVMContext()), 2); 5704 return ABIArgInfo::getDirect(ResType); 5705 } 5706 if (Size == 128) { 5707 llvm::Type *ResType = llvm::VectorType::get( 5708 llvm::Type::getInt32Ty(getVMContext()), 4); 5709 return ABIArgInfo::getDirect(ResType); 5710 } 5711 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5712 } 5713 5714 // _Float16 and __fp16 get passed as if it were an int or float, but with 5715 // the top 16 bits unspecified. This is not done for OpenCL as it handles the 5716 // half type natively, and does not need to interwork with AAPCS code. 5717 if ((Ty->isFloat16Type() || Ty->isHalfType()) && 5718 !getContext().getLangOpts().NativeHalfArgsAndReturns) { 5719 llvm::Type *ResType = IsEffectivelyAAPCS_VFP ? 5720 llvm::Type::getFloatTy(getVMContext()) : 5721 llvm::Type::getInt32Ty(getVMContext()); 5722 return ABIArgInfo::getDirect(ResType); 5723 } 5724 5725 if (!isAggregateTypeForABI(Ty)) { 5726 // Treat an enum type as its underlying type. 5727 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 5728 Ty = EnumTy->getDecl()->getIntegerType(); 5729 } 5730 5731 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 5732 : ABIArgInfo::getDirect()); 5733 } 5734 5735 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 5736 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 5737 } 5738 5739 // Ignore empty records. 5740 if (isEmptyRecord(getContext(), Ty, true)) 5741 return ABIArgInfo::getIgnore(); 5742 5743 if (IsEffectivelyAAPCS_VFP) { 5744 // Homogeneous Aggregates need to be expanded when we can fit the aggregate 5745 // into VFP registers. 5746 const Type *Base = nullptr; 5747 uint64_t Members = 0; 5748 if (isHomogeneousAggregate(Ty, Base, Members)) { 5749 assert(Base && "Base class should be set for homogeneous aggregate"); 5750 // Base can be a floating-point or a vector. 5751 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); 5752 } 5753 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 5754 // WatchOS does have homogeneous aggregates. Note that we intentionally use 5755 // this convention even for a variadic function: the backend will use GPRs 5756 // if needed. 5757 const Type *Base = nullptr; 5758 uint64_t Members = 0; 5759 if (isHomogeneousAggregate(Ty, Base, Members)) { 5760 assert(Base && Members <= 4 && "unexpected homogeneous aggregate"); 5761 llvm::Type *Ty = 5762 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members); 5763 return ABIArgInfo::getDirect(Ty, 0, nullptr, false); 5764 } 5765 } 5766 5767 if (getABIKind() == ARMABIInfo::AAPCS16_VFP && 5768 getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) { 5769 // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're 5770 // bigger than 128-bits, they get placed in space allocated by the caller, 5771 // and a pointer is passed. 5772 return ABIArgInfo::getIndirect( 5773 CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false); 5774 } 5775 5776 // Support byval for ARM. 5777 // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at 5778 // most 8-byte. We realign the indirect argument if type alignment is bigger 5779 // than ABI alignment. 5780 uint64_t ABIAlign = 4; 5781 uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8; 5782 if (getABIKind() == ARMABIInfo::AAPCS_VFP || 5783 getABIKind() == ARMABIInfo::AAPCS) 5784 ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8); 5785 5786 if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) { 5787 assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval"); 5788 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 5789 /*ByVal=*/true, 5790 /*Realign=*/TyAlign > ABIAlign); 5791 } 5792 5793 // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of 5794 // same size and alignment. 5795 if (getTarget().isRenderScriptTarget()) { 5796 return coerceToIntArray(Ty, getContext(), getVMContext()); 5797 } 5798 5799 // Otherwise, pass by coercing to a structure of the appropriate size. 5800 llvm::Type* ElemTy; 5801 unsigned SizeRegs; 5802 // FIXME: Try to match the types of the arguments more accurately where 5803 // we can. 5804 if (getContext().getTypeAlign(Ty) <= 32) { 5805 ElemTy = llvm::Type::getInt32Ty(getVMContext()); 5806 SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32; 5807 } else { 5808 ElemTy = llvm::Type::getInt64Ty(getVMContext()); 5809 SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64; 5810 } 5811 5812 return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs)); 5813 } 5814 5815 static bool isIntegerLikeType(QualType Ty, ASTContext &Context, 5816 llvm::LLVMContext &VMContext) { 5817 // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure 5818 // is called integer-like if its size is less than or equal to one word, and 5819 // the offset of each of its addressable sub-fields is zero. 5820 5821 uint64_t Size = Context.getTypeSize(Ty); 5822 5823 // Check that the type fits in a word. 5824 if (Size > 32) 5825 return false; 5826 5827 // FIXME: Handle vector types! 5828 if (Ty->isVectorType()) 5829 return false; 5830 5831 // Float types are never treated as "integer like". 5832 if (Ty->isRealFloatingType()) 5833 return false; 5834 5835 // If this is a builtin or pointer type then it is ok. 5836 if (Ty->getAs<BuiltinType>() || Ty->isPointerType()) 5837 return true; 5838 5839 // Small complex integer types are "integer like". 5840 if (const ComplexType *CT = Ty->getAs<ComplexType>()) 5841 return isIntegerLikeType(CT->getElementType(), Context, VMContext); 5842 5843 // Single element and zero sized arrays should be allowed, by the definition 5844 // above, but they are not. 5845 5846 // Otherwise, it must be a record type. 5847 const RecordType *RT = Ty->getAs<RecordType>(); 5848 if (!RT) return false; 5849 5850 // Ignore records with flexible arrays. 5851 const RecordDecl *RD = RT->getDecl(); 5852 if (RD->hasFlexibleArrayMember()) 5853 return false; 5854 5855 // Check that all sub-fields are at offset 0, and are themselves "integer 5856 // like". 5857 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 5858 5859 bool HadField = false; 5860 unsigned idx = 0; 5861 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 5862 i != e; ++i, ++idx) { 5863 const FieldDecl *FD = *i; 5864 5865 // Bit-fields are not addressable, we only need to verify they are "integer 5866 // like". We still have to disallow a subsequent non-bitfield, for example: 5867 // struct { int : 0; int x } 5868 // is non-integer like according to gcc. 5869 if (FD->isBitField()) { 5870 if (!RD->isUnion()) 5871 HadField = true; 5872 5873 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 5874 return false; 5875 5876 continue; 5877 } 5878 5879 // Check if this field is at offset 0. 5880 if (Layout.getFieldOffset(idx) != 0) 5881 return false; 5882 5883 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 5884 return false; 5885 5886 // Only allow at most one field in a structure. This doesn't match the 5887 // wording above, but follows gcc in situations with a field following an 5888 // empty structure. 5889 if (!RD->isUnion()) { 5890 if (HadField) 5891 return false; 5892 5893 HadField = true; 5894 } 5895 } 5896 5897 return true; 5898 } 5899 5900 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, 5901 bool isVariadic) const { 5902 bool IsEffectivelyAAPCS_VFP = 5903 (getABIKind() == AAPCS_VFP || getABIKind() == AAPCS16_VFP) && !isVariadic; 5904 5905 if (RetTy->isVoidType()) 5906 return ABIArgInfo::getIgnore(); 5907 5908 // Large vector types should be returned via memory. 5909 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) { 5910 return getNaturalAlignIndirect(RetTy); 5911 } 5912 5913 // _Float16 and __fp16 get returned as if it were an int or float, but with 5914 // the top 16 bits unspecified. This is not done for OpenCL as it handles the 5915 // half type natively, and does not need to interwork with AAPCS code. 5916 if ((RetTy->isFloat16Type() || RetTy->isHalfType()) && 5917 !getContext().getLangOpts().NativeHalfArgsAndReturns) { 5918 llvm::Type *ResType = IsEffectivelyAAPCS_VFP ? 5919 llvm::Type::getFloatTy(getVMContext()) : 5920 llvm::Type::getInt32Ty(getVMContext()); 5921 return ABIArgInfo::getDirect(ResType); 5922 } 5923 5924 if (!isAggregateTypeForABI(RetTy)) { 5925 // Treat an enum type as its underlying type. 5926 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5927 RetTy = EnumTy->getDecl()->getIntegerType(); 5928 5929 return RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 5930 : ABIArgInfo::getDirect(); 5931 } 5932 5933 // Are we following APCS? 5934 if (getABIKind() == APCS) { 5935 if (isEmptyRecord(getContext(), RetTy, false)) 5936 return ABIArgInfo::getIgnore(); 5937 5938 // Complex types are all returned as packed integers. 5939 // 5940 // FIXME: Consider using 2 x vector types if the back end handles them 5941 // correctly. 5942 if (RetTy->isAnyComplexType()) 5943 return ABIArgInfo::getDirect(llvm::IntegerType::get( 5944 getVMContext(), getContext().getTypeSize(RetTy))); 5945 5946 // Integer like structures are returned in r0. 5947 if (isIntegerLikeType(RetTy, getContext(), getVMContext())) { 5948 // Return in the smallest viable integer type. 5949 uint64_t Size = getContext().getTypeSize(RetTy); 5950 if (Size <= 8) 5951 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 5952 if (Size <= 16) 5953 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 5954 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 5955 } 5956 5957 // Otherwise return in memory. 5958 return getNaturalAlignIndirect(RetTy); 5959 } 5960 5961 // Otherwise this is an AAPCS variant. 5962 5963 if (isEmptyRecord(getContext(), RetTy, true)) 5964 return ABIArgInfo::getIgnore(); 5965 5966 // Check for homogeneous aggregates with AAPCS-VFP. 5967 if (IsEffectivelyAAPCS_VFP) { 5968 const Type *Base = nullptr; 5969 uint64_t Members = 0; 5970 if (isHomogeneousAggregate(RetTy, Base, Members)) { 5971 assert(Base && "Base class should be set for homogeneous aggregate"); 5972 // Homogeneous Aggregates are returned directly. 5973 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); 5974 } 5975 } 5976 5977 // Aggregates <= 4 bytes are returned in r0; other aggregates 5978 // are returned indirectly. 5979 uint64_t Size = getContext().getTypeSize(RetTy); 5980 if (Size <= 32) { 5981 // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of 5982 // same size and alignment. 5983 if (getTarget().isRenderScriptTarget()) { 5984 return coerceToIntArray(RetTy, getContext(), getVMContext()); 5985 } 5986 if (getDataLayout().isBigEndian()) 5987 // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4) 5988 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 5989 5990 // Return in the smallest viable integer type. 5991 if (Size <= 8) 5992 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 5993 if (Size <= 16) 5994 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 5995 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 5996 } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) { 5997 llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext()); 5998 llvm::Type *CoerceTy = 5999 llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32); 6000 return ABIArgInfo::getDirect(CoerceTy); 6001 } 6002 6003 return getNaturalAlignIndirect(RetTy); 6004 } 6005 6006 /// isIllegalVector - check whether Ty is an illegal vector type. 6007 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const { 6008 if (const VectorType *VT = Ty->getAs<VectorType> ()) { 6009 if (isAndroid()) { 6010 // Android shipped using Clang 3.1, which supported a slightly different 6011 // vector ABI. The primary differences were that 3-element vector types 6012 // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path 6013 // accepts that legacy behavior for Android only. 6014 // Check whether VT is legal. 6015 unsigned NumElements = VT->getNumElements(); 6016 // NumElements should be power of 2 or equal to 3. 6017 if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3) 6018 return true; 6019 } else { 6020 // Check whether VT is legal. 6021 unsigned NumElements = VT->getNumElements(); 6022 uint64_t Size = getContext().getTypeSize(VT); 6023 // NumElements should be power of 2. 6024 if (!llvm::isPowerOf2_32(NumElements)) 6025 return true; 6026 // Size should be greater than 32 bits. 6027 return Size <= 32; 6028 } 6029 } 6030 return false; 6031 } 6032 6033 bool ARMABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, 6034 llvm::Type *eltTy, 6035 unsigned numElts) const { 6036 if (!llvm::isPowerOf2_32(numElts)) 6037 return false; 6038 unsigned size = getDataLayout().getTypeStoreSizeInBits(eltTy); 6039 if (size > 64) 6040 return false; 6041 if (vectorSize.getQuantity() != 8 && 6042 (vectorSize.getQuantity() != 16 || numElts == 1)) 6043 return false; 6044 return true; 6045 } 6046 6047 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 6048 // Homogeneous aggregates for AAPCS-VFP must have base types of float, 6049 // double, or 64-bit or 128-bit vectors. 6050 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 6051 if (BT->getKind() == BuiltinType::Float || 6052 BT->getKind() == BuiltinType::Double || 6053 BT->getKind() == BuiltinType::LongDouble) 6054 return true; 6055 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 6056 unsigned VecSize = getContext().getTypeSize(VT); 6057 if (VecSize == 64 || VecSize == 128) 6058 return true; 6059 } 6060 return false; 6061 } 6062 6063 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 6064 uint64_t Members) const { 6065 return Members <= 4; 6066 } 6067 6068 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6069 QualType Ty) const { 6070 CharUnits SlotSize = CharUnits::fromQuantity(4); 6071 6072 // Empty records are ignored for parameter passing purposes. 6073 if (isEmptyRecord(getContext(), Ty, true)) { 6074 Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize); 6075 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 6076 return Addr; 6077 } 6078 6079 auto TyInfo = getContext().getTypeInfoInChars(Ty); 6080 CharUnits TyAlignForABI = TyInfo.second; 6081 6082 // Use indirect if size of the illegal vector is bigger than 16 bytes. 6083 bool IsIndirect = false; 6084 const Type *Base = nullptr; 6085 uint64_t Members = 0; 6086 if (TyInfo.first > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) { 6087 IsIndirect = true; 6088 6089 // ARMv7k passes structs bigger than 16 bytes indirectly, in space 6090 // allocated by the caller. 6091 } else if (TyInfo.first > CharUnits::fromQuantity(16) && 6092 getABIKind() == ARMABIInfo::AAPCS16_VFP && 6093 !isHomogeneousAggregate(Ty, Base, Members)) { 6094 IsIndirect = true; 6095 6096 // Otherwise, bound the type's ABI alignment. 6097 // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for 6098 // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte. 6099 // Our callers should be prepared to handle an under-aligned address. 6100 } else if (getABIKind() == ARMABIInfo::AAPCS_VFP || 6101 getABIKind() == ARMABIInfo::AAPCS) { 6102 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 6103 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8)); 6104 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 6105 // ARMv7k allows type alignment up to 16 bytes. 6106 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 6107 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16)); 6108 } else { 6109 TyAlignForABI = CharUnits::fromQuantity(4); 6110 } 6111 TyInfo.second = TyAlignForABI; 6112 6113 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo, 6114 SlotSize, /*AllowHigherAlign*/ true); 6115 } 6116 6117 //===----------------------------------------------------------------------===// 6118 // NVPTX ABI Implementation 6119 //===----------------------------------------------------------------------===// 6120 6121 namespace { 6122 6123 class NVPTXABIInfo : public ABIInfo { 6124 public: 6125 NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 6126 6127 ABIArgInfo classifyReturnType(QualType RetTy) const; 6128 ABIArgInfo classifyArgumentType(QualType Ty) const; 6129 6130 void computeInfo(CGFunctionInfo &FI) const override; 6131 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6132 QualType Ty) const override; 6133 }; 6134 6135 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo { 6136 public: 6137 NVPTXTargetCodeGenInfo(CodeGenTypes &CGT) 6138 : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {} 6139 6140 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6141 CodeGen::CodeGenModule &M) const override; 6142 bool shouldEmitStaticExternCAliases() const override; 6143 6144 private: 6145 // Adds a NamedMDNode with F, Name, and Operand as operands, and adds the 6146 // resulting MDNode to the nvvm.annotations MDNode. 6147 static void addNVVMMetadata(llvm::Function *F, StringRef Name, int Operand); 6148 }; 6149 6150 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const { 6151 if (RetTy->isVoidType()) 6152 return ABIArgInfo::getIgnore(); 6153 6154 // note: this is different from default ABI 6155 if (!RetTy->isScalarType()) 6156 return ABIArgInfo::getDirect(); 6157 6158 // Treat an enum type as its underlying type. 6159 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 6160 RetTy = EnumTy->getDecl()->getIntegerType(); 6161 6162 return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 6163 : ABIArgInfo::getDirect()); 6164 } 6165 6166 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const { 6167 // Treat an enum type as its underlying type. 6168 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 6169 Ty = EnumTy->getDecl()->getIntegerType(); 6170 6171 // Return aggregates type as indirect by value 6172 if (isAggregateTypeForABI(Ty)) 6173 return getNaturalAlignIndirect(Ty, /* byval */ true); 6174 6175 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 6176 : ABIArgInfo::getDirect()); 6177 } 6178 6179 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const { 6180 if (!getCXXABI().classifyReturnType(FI)) 6181 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 6182 for (auto &I : FI.arguments()) 6183 I.info = classifyArgumentType(I.type); 6184 6185 // Always honor user-specified calling convention. 6186 if (FI.getCallingConvention() != llvm::CallingConv::C) 6187 return; 6188 6189 FI.setEffectiveCallingConvention(getRuntimeCC()); 6190 } 6191 6192 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6193 QualType Ty) const { 6194 llvm_unreachable("NVPTX does not support varargs"); 6195 } 6196 6197 void NVPTXTargetCodeGenInfo::setTargetAttributes( 6198 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 6199 if (GV->isDeclaration()) 6200 return; 6201 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 6202 if (!FD) return; 6203 6204 llvm::Function *F = cast<llvm::Function>(GV); 6205 6206 // Perform special handling in OpenCL mode 6207 if (M.getLangOpts().OpenCL) { 6208 // Use OpenCL function attributes to check for kernel functions 6209 // By default, all functions are device functions 6210 if (FD->hasAttr<OpenCLKernelAttr>()) { 6211 // OpenCL __kernel functions get kernel metadata 6212 // Create !{<func-ref>, metadata !"kernel", i32 1} node 6213 addNVVMMetadata(F, "kernel", 1); 6214 // And kernel functions are not subject to inlining 6215 F->addFnAttr(llvm::Attribute::NoInline); 6216 } 6217 } 6218 6219 // Perform special handling in CUDA mode. 6220 if (M.getLangOpts().CUDA) { 6221 // CUDA __global__ functions get a kernel metadata entry. Since 6222 // __global__ functions cannot be called from the device, we do not 6223 // need to set the noinline attribute. 6224 if (FD->hasAttr<CUDAGlobalAttr>()) { 6225 // Create !{<func-ref>, metadata !"kernel", i32 1} node 6226 addNVVMMetadata(F, "kernel", 1); 6227 } 6228 if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) { 6229 // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node 6230 llvm::APSInt MaxThreads(32); 6231 MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext()); 6232 if (MaxThreads > 0) 6233 addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue()); 6234 6235 // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was 6236 // not specified in __launch_bounds__ or if the user specified a 0 value, 6237 // we don't have to add a PTX directive. 6238 if (Attr->getMinBlocks()) { 6239 llvm::APSInt MinBlocks(32); 6240 MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext()); 6241 if (MinBlocks > 0) 6242 // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node 6243 addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue()); 6244 } 6245 } 6246 } 6247 } 6248 6249 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::Function *F, StringRef Name, 6250 int Operand) { 6251 llvm::Module *M = F->getParent(); 6252 llvm::LLVMContext &Ctx = M->getContext(); 6253 6254 // Get "nvvm.annotations" metadata node 6255 llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations"); 6256 6257 llvm::Metadata *MDVals[] = { 6258 llvm::ConstantAsMetadata::get(F), llvm::MDString::get(Ctx, Name), 6259 llvm::ConstantAsMetadata::get( 6260 llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))}; 6261 // Append metadata to nvvm.annotations 6262 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 6263 } 6264 6265 bool NVPTXTargetCodeGenInfo::shouldEmitStaticExternCAliases() const { 6266 return false; 6267 } 6268 } 6269 6270 //===----------------------------------------------------------------------===// 6271 // SystemZ ABI Implementation 6272 //===----------------------------------------------------------------------===// 6273 6274 namespace { 6275 6276 class SystemZABIInfo : public SwiftABIInfo { 6277 bool HasVector; 6278 6279 public: 6280 SystemZABIInfo(CodeGenTypes &CGT, bool HV) 6281 : SwiftABIInfo(CGT), HasVector(HV) {} 6282 6283 bool isPromotableIntegerType(QualType Ty) const; 6284 bool isCompoundType(QualType Ty) const; 6285 bool isVectorArgumentType(QualType Ty) const; 6286 bool isFPArgumentType(QualType Ty) const; 6287 QualType GetSingleElementType(QualType Ty) const; 6288 6289 ABIArgInfo classifyReturnType(QualType RetTy) const; 6290 ABIArgInfo classifyArgumentType(QualType ArgTy) const; 6291 6292 void computeInfo(CGFunctionInfo &FI) const override { 6293 if (!getCXXABI().classifyReturnType(FI)) 6294 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 6295 for (auto &I : FI.arguments()) 6296 I.info = classifyArgumentType(I.type); 6297 } 6298 6299 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6300 QualType Ty) const override; 6301 6302 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 6303 bool asReturnValue) const override { 6304 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 6305 } 6306 bool isSwiftErrorInRegister() const override { 6307 return false; 6308 } 6309 }; 6310 6311 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo { 6312 public: 6313 SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector) 6314 : TargetCodeGenInfo(new SystemZABIInfo(CGT, HasVector)) {} 6315 }; 6316 6317 } 6318 6319 bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const { 6320 // Treat an enum type as its underlying type. 6321 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 6322 Ty = EnumTy->getDecl()->getIntegerType(); 6323 6324 // Promotable integer types are required to be promoted by the ABI. 6325 if (Ty->isPromotableIntegerType()) 6326 return true; 6327 6328 // 32-bit values must also be promoted. 6329 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 6330 switch (BT->getKind()) { 6331 case BuiltinType::Int: 6332 case BuiltinType::UInt: 6333 return true; 6334 default: 6335 return false; 6336 } 6337 return false; 6338 } 6339 6340 bool SystemZABIInfo::isCompoundType(QualType Ty) const { 6341 return (Ty->isAnyComplexType() || 6342 Ty->isVectorType() || 6343 isAggregateTypeForABI(Ty)); 6344 } 6345 6346 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const { 6347 return (HasVector && 6348 Ty->isVectorType() && 6349 getContext().getTypeSize(Ty) <= 128); 6350 } 6351 6352 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const { 6353 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 6354 switch (BT->getKind()) { 6355 case BuiltinType::Float: 6356 case BuiltinType::Double: 6357 return true; 6358 default: 6359 return false; 6360 } 6361 6362 return false; 6363 } 6364 6365 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const { 6366 if (const RecordType *RT = Ty->getAsStructureType()) { 6367 const RecordDecl *RD = RT->getDecl(); 6368 QualType Found; 6369 6370 // If this is a C++ record, check the bases first. 6371 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 6372 for (const auto &I : CXXRD->bases()) { 6373 QualType Base = I.getType(); 6374 6375 // Empty bases don't affect things either way. 6376 if (isEmptyRecord(getContext(), Base, true)) 6377 continue; 6378 6379 if (!Found.isNull()) 6380 return Ty; 6381 Found = GetSingleElementType(Base); 6382 } 6383 6384 // Check the fields. 6385 for (const auto *FD : RD->fields()) { 6386 // For compatibility with GCC, ignore empty bitfields in C++ mode. 6387 // Unlike isSingleElementStruct(), empty structure and array fields 6388 // do count. So do anonymous bitfields that aren't zero-sized. 6389 if (getContext().getLangOpts().CPlusPlus && 6390 FD->isZeroLengthBitField(getContext())) 6391 continue; 6392 6393 // Unlike isSingleElementStruct(), arrays do not count. 6394 // Nested structures still do though. 6395 if (!Found.isNull()) 6396 return Ty; 6397 Found = GetSingleElementType(FD->getType()); 6398 } 6399 6400 // Unlike isSingleElementStruct(), trailing padding is allowed. 6401 // An 8-byte aligned struct s { float f; } is passed as a double. 6402 if (!Found.isNull()) 6403 return Found; 6404 } 6405 6406 return Ty; 6407 } 6408 6409 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6410 QualType Ty) const { 6411 // Assume that va_list type is correct; should be pointer to LLVM type: 6412 // struct { 6413 // i64 __gpr; 6414 // i64 __fpr; 6415 // i8 *__overflow_arg_area; 6416 // i8 *__reg_save_area; 6417 // }; 6418 6419 // Every non-vector argument occupies 8 bytes and is passed by preference 6420 // in either GPRs or FPRs. Vector arguments occupy 8 or 16 bytes and are 6421 // always passed on the stack. 6422 Ty = getContext().getCanonicalType(Ty); 6423 auto TyInfo = getContext().getTypeInfoInChars(Ty); 6424 llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty); 6425 llvm::Type *DirectTy = ArgTy; 6426 ABIArgInfo AI = classifyArgumentType(Ty); 6427 bool IsIndirect = AI.isIndirect(); 6428 bool InFPRs = false; 6429 bool IsVector = false; 6430 CharUnits UnpaddedSize; 6431 CharUnits DirectAlign; 6432 if (IsIndirect) { 6433 DirectTy = llvm::PointerType::getUnqual(DirectTy); 6434 UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8); 6435 } else { 6436 if (AI.getCoerceToType()) 6437 ArgTy = AI.getCoerceToType(); 6438 InFPRs = ArgTy->isFloatTy() || ArgTy->isDoubleTy(); 6439 IsVector = ArgTy->isVectorTy(); 6440 UnpaddedSize = TyInfo.first; 6441 DirectAlign = TyInfo.second; 6442 } 6443 CharUnits PaddedSize = CharUnits::fromQuantity(8); 6444 if (IsVector && UnpaddedSize > PaddedSize) 6445 PaddedSize = CharUnits::fromQuantity(16); 6446 assert((UnpaddedSize <= PaddedSize) && "Invalid argument size."); 6447 6448 CharUnits Padding = (PaddedSize - UnpaddedSize); 6449 6450 llvm::Type *IndexTy = CGF.Int64Ty; 6451 llvm::Value *PaddedSizeV = 6452 llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity()); 6453 6454 if (IsVector) { 6455 // Work out the address of a vector argument on the stack. 6456 // Vector arguments are always passed in the high bits of a 6457 // single (8 byte) or double (16 byte) stack slot. 6458 Address OverflowArgAreaPtr = 6459 CGF.Builder.CreateStructGEP(VAListAddr, 2, CharUnits::fromQuantity(16), 6460 "overflow_arg_area_ptr"); 6461 Address OverflowArgArea = 6462 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 6463 TyInfo.second); 6464 Address MemAddr = 6465 CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr"); 6466 6467 // Update overflow_arg_area_ptr pointer 6468 llvm::Value *NewOverflowArgArea = 6469 CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV, 6470 "overflow_arg_area"); 6471 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 6472 6473 return MemAddr; 6474 } 6475 6476 assert(PaddedSize.getQuantity() == 8); 6477 6478 unsigned MaxRegs, RegCountField, RegSaveIndex; 6479 CharUnits RegPadding; 6480 if (InFPRs) { 6481 MaxRegs = 4; // Maximum of 4 FPR arguments 6482 RegCountField = 1; // __fpr 6483 RegSaveIndex = 16; // save offset for f0 6484 RegPadding = CharUnits(); // floats are passed in the high bits of an FPR 6485 } else { 6486 MaxRegs = 5; // Maximum of 5 GPR arguments 6487 RegCountField = 0; // __gpr 6488 RegSaveIndex = 2; // save offset for r2 6489 RegPadding = Padding; // values are passed in the low bits of a GPR 6490 } 6491 6492 Address RegCountPtr = CGF.Builder.CreateStructGEP( 6493 VAListAddr, RegCountField, RegCountField * CharUnits::fromQuantity(8), 6494 "reg_count_ptr"); 6495 llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count"); 6496 llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs); 6497 llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV, 6498 "fits_in_regs"); 6499 6500 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 6501 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 6502 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 6503 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 6504 6505 // Emit code to load the value if it was passed in registers. 6506 CGF.EmitBlock(InRegBlock); 6507 6508 // Work out the address of an argument register. 6509 llvm::Value *ScaledRegCount = 6510 CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count"); 6511 llvm::Value *RegBase = 6512 llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity() 6513 + RegPadding.getQuantity()); 6514 llvm::Value *RegOffset = 6515 CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset"); 6516 Address RegSaveAreaPtr = 6517 CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(24), 6518 "reg_save_area_ptr"); 6519 llvm::Value *RegSaveArea = 6520 CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area"); 6521 Address RawRegAddr(CGF.Builder.CreateGEP(RegSaveArea, RegOffset, 6522 "raw_reg_addr"), 6523 PaddedSize); 6524 Address RegAddr = 6525 CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr"); 6526 6527 // Update the register count 6528 llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1); 6529 llvm::Value *NewRegCount = 6530 CGF.Builder.CreateAdd(RegCount, One, "reg_count"); 6531 CGF.Builder.CreateStore(NewRegCount, RegCountPtr); 6532 CGF.EmitBranch(ContBlock); 6533 6534 // Emit code to load the value if it was passed in memory. 6535 CGF.EmitBlock(InMemBlock); 6536 6537 // Work out the address of a stack argument. 6538 Address OverflowArgAreaPtr = CGF.Builder.CreateStructGEP( 6539 VAListAddr, 2, CharUnits::fromQuantity(16), "overflow_arg_area_ptr"); 6540 Address OverflowArgArea = 6541 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 6542 PaddedSize); 6543 Address RawMemAddr = 6544 CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr"); 6545 Address MemAddr = 6546 CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr"); 6547 6548 // Update overflow_arg_area_ptr pointer 6549 llvm::Value *NewOverflowArgArea = 6550 CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV, 6551 "overflow_arg_area"); 6552 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 6553 CGF.EmitBranch(ContBlock); 6554 6555 // Return the appropriate result. 6556 CGF.EmitBlock(ContBlock); 6557 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 6558 MemAddr, InMemBlock, "va_arg.addr"); 6559 6560 if (IsIndirect) 6561 ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"), 6562 TyInfo.second); 6563 6564 return ResAddr; 6565 } 6566 6567 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const { 6568 if (RetTy->isVoidType()) 6569 return ABIArgInfo::getIgnore(); 6570 if (isVectorArgumentType(RetTy)) 6571 return ABIArgInfo::getDirect(); 6572 if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64) 6573 return getNaturalAlignIndirect(RetTy); 6574 return (isPromotableIntegerType(RetTy) ? ABIArgInfo::getExtend(RetTy) 6575 : ABIArgInfo::getDirect()); 6576 } 6577 6578 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const { 6579 // Handle the generic C++ ABI. 6580 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 6581 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 6582 6583 // Integers and enums are extended to full register width. 6584 if (isPromotableIntegerType(Ty)) 6585 return ABIArgInfo::getExtend(Ty); 6586 6587 // Handle vector types and vector-like structure types. Note that 6588 // as opposed to float-like structure types, we do not allow any 6589 // padding for vector-like structures, so verify the sizes match. 6590 uint64_t Size = getContext().getTypeSize(Ty); 6591 QualType SingleElementTy = GetSingleElementType(Ty); 6592 if (isVectorArgumentType(SingleElementTy) && 6593 getContext().getTypeSize(SingleElementTy) == Size) 6594 return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy)); 6595 6596 // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly. 6597 if (Size != 8 && Size != 16 && Size != 32 && Size != 64) 6598 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6599 6600 // Handle small structures. 6601 if (const RecordType *RT = Ty->getAs<RecordType>()) { 6602 // Structures with flexible arrays have variable length, so really 6603 // fail the size test above. 6604 const RecordDecl *RD = RT->getDecl(); 6605 if (RD->hasFlexibleArrayMember()) 6606 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6607 6608 // The structure is passed as an unextended integer, a float, or a double. 6609 llvm::Type *PassTy; 6610 if (isFPArgumentType(SingleElementTy)) { 6611 assert(Size == 32 || Size == 64); 6612 if (Size == 32) 6613 PassTy = llvm::Type::getFloatTy(getVMContext()); 6614 else 6615 PassTy = llvm::Type::getDoubleTy(getVMContext()); 6616 } else 6617 PassTy = llvm::IntegerType::get(getVMContext(), Size); 6618 return ABIArgInfo::getDirect(PassTy); 6619 } 6620 6621 // Non-structure compounds are passed indirectly. 6622 if (isCompoundType(Ty)) 6623 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6624 6625 return ABIArgInfo::getDirect(nullptr); 6626 } 6627 6628 //===----------------------------------------------------------------------===// 6629 // MSP430 ABI Implementation 6630 //===----------------------------------------------------------------------===// 6631 6632 namespace { 6633 6634 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo { 6635 public: 6636 MSP430TargetCodeGenInfo(CodeGenTypes &CGT) 6637 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 6638 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6639 CodeGen::CodeGenModule &M) const override; 6640 }; 6641 6642 } 6643 6644 void MSP430TargetCodeGenInfo::setTargetAttributes( 6645 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 6646 if (GV->isDeclaration()) 6647 return; 6648 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 6649 if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) { 6650 // Handle 'interrupt' attribute: 6651 llvm::Function *F = cast<llvm::Function>(GV); 6652 6653 // Step 1: Set ISR calling convention. 6654 F->setCallingConv(llvm::CallingConv::MSP430_INTR); 6655 6656 // Step 2: Add attributes goodness. 6657 F->addFnAttr(llvm::Attribute::NoInline); 6658 6659 // Step 3: Emit ISR vector alias. 6660 unsigned Num = attr->getNumber() / 2; 6661 llvm::GlobalAlias::create(llvm::Function::ExternalLinkage, 6662 "__isr_" + Twine(Num), F); 6663 } 6664 } 6665 } 6666 6667 //===----------------------------------------------------------------------===// 6668 // MIPS ABI Implementation. This works for both little-endian and 6669 // big-endian variants. 6670 //===----------------------------------------------------------------------===// 6671 6672 namespace { 6673 class MipsABIInfo : public ABIInfo { 6674 bool IsO32; 6675 unsigned MinABIStackAlignInBytes, StackAlignInBytes; 6676 void CoerceToIntArgs(uint64_t TySize, 6677 SmallVectorImpl<llvm::Type *> &ArgList) const; 6678 llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const; 6679 llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const; 6680 llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const; 6681 public: 6682 MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) : 6683 ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8), 6684 StackAlignInBytes(IsO32 ? 8 : 16) {} 6685 6686 ABIArgInfo classifyReturnType(QualType RetTy) const; 6687 ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const; 6688 void computeInfo(CGFunctionInfo &FI) const override; 6689 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6690 QualType Ty) const override; 6691 ABIArgInfo extendType(QualType Ty) const; 6692 }; 6693 6694 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo { 6695 unsigned SizeOfUnwindException; 6696 public: 6697 MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32) 6698 : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)), 6699 SizeOfUnwindException(IsO32 ? 24 : 32) {} 6700 6701 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 6702 return 29; 6703 } 6704 6705 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6706 CodeGen::CodeGenModule &CGM) const override { 6707 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 6708 if (!FD) return; 6709 llvm::Function *Fn = cast<llvm::Function>(GV); 6710 6711 if (FD->hasAttr<MipsLongCallAttr>()) 6712 Fn->addFnAttr("long-call"); 6713 else if (FD->hasAttr<MipsShortCallAttr>()) 6714 Fn->addFnAttr("short-call"); 6715 6716 // Other attributes do not have a meaning for declarations. 6717 if (GV->isDeclaration()) 6718 return; 6719 6720 if (FD->hasAttr<Mips16Attr>()) { 6721 Fn->addFnAttr("mips16"); 6722 } 6723 else if (FD->hasAttr<NoMips16Attr>()) { 6724 Fn->addFnAttr("nomips16"); 6725 } 6726 6727 if (FD->hasAttr<MicroMipsAttr>()) 6728 Fn->addFnAttr("micromips"); 6729 else if (FD->hasAttr<NoMicroMipsAttr>()) 6730 Fn->addFnAttr("nomicromips"); 6731 6732 const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>(); 6733 if (!Attr) 6734 return; 6735 6736 const char *Kind; 6737 switch (Attr->getInterrupt()) { 6738 case MipsInterruptAttr::eic: Kind = "eic"; break; 6739 case MipsInterruptAttr::sw0: Kind = "sw0"; break; 6740 case MipsInterruptAttr::sw1: Kind = "sw1"; break; 6741 case MipsInterruptAttr::hw0: Kind = "hw0"; break; 6742 case MipsInterruptAttr::hw1: Kind = "hw1"; break; 6743 case MipsInterruptAttr::hw2: Kind = "hw2"; break; 6744 case MipsInterruptAttr::hw3: Kind = "hw3"; break; 6745 case MipsInterruptAttr::hw4: Kind = "hw4"; break; 6746 case MipsInterruptAttr::hw5: Kind = "hw5"; break; 6747 } 6748 6749 Fn->addFnAttr("interrupt", Kind); 6750 6751 } 6752 6753 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 6754 llvm::Value *Address) const override; 6755 6756 unsigned getSizeOfUnwindException() const override { 6757 return SizeOfUnwindException; 6758 } 6759 }; 6760 } 6761 6762 void MipsABIInfo::CoerceToIntArgs( 6763 uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const { 6764 llvm::IntegerType *IntTy = 6765 llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8); 6766 6767 // Add (TySize / MinABIStackAlignInBytes) args of IntTy. 6768 for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N) 6769 ArgList.push_back(IntTy); 6770 6771 // If necessary, add one more integer type to ArgList. 6772 unsigned R = TySize % (MinABIStackAlignInBytes * 8); 6773 6774 if (R) 6775 ArgList.push_back(llvm::IntegerType::get(getVMContext(), R)); 6776 } 6777 6778 // In N32/64, an aligned double precision floating point field is passed in 6779 // a register. 6780 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const { 6781 SmallVector<llvm::Type*, 8> ArgList, IntArgList; 6782 6783 if (IsO32) { 6784 CoerceToIntArgs(TySize, ArgList); 6785 return llvm::StructType::get(getVMContext(), ArgList); 6786 } 6787 6788 if (Ty->isComplexType()) 6789 return CGT.ConvertType(Ty); 6790 6791 const RecordType *RT = Ty->getAs<RecordType>(); 6792 6793 // Unions/vectors are passed in integer registers. 6794 if (!RT || !RT->isStructureOrClassType()) { 6795 CoerceToIntArgs(TySize, ArgList); 6796 return llvm::StructType::get(getVMContext(), ArgList); 6797 } 6798 6799 const RecordDecl *RD = RT->getDecl(); 6800 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 6801 assert(!(TySize % 8) && "Size of structure must be multiple of 8."); 6802 6803 uint64_t LastOffset = 0; 6804 unsigned idx = 0; 6805 llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64); 6806 6807 // Iterate over fields in the struct/class and check if there are any aligned 6808 // double fields. 6809 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 6810 i != e; ++i, ++idx) { 6811 const QualType Ty = i->getType(); 6812 const BuiltinType *BT = Ty->getAs<BuiltinType>(); 6813 6814 if (!BT || BT->getKind() != BuiltinType::Double) 6815 continue; 6816 6817 uint64_t Offset = Layout.getFieldOffset(idx); 6818 if (Offset % 64) // Ignore doubles that are not aligned. 6819 continue; 6820 6821 // Add ((Offset - LastOffset) / 64) args of type i64. 6822 for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j) 6823 ArgList.push_back(I64); 6824 6825 // Add double type. 6826 ArgList.push_back(llvm::Type::getDoubleTy(getVMContext())); 6827 LastOffset = Offset + 64; 6828 } 6829 6830 CoerceToIntArgs(TySize - LastOffset, IntArgList); 6831 ArgList.append(IntArgList.begin(), IntArgList.end()); 6832 6833 return llvm::StructType::get(getVMContext(), ArgList); 6834 } 6835 6836 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset, 6837 uint64_t Offset) const { 6838 if (OrigOffset + MinABIStackAlignInBytes > Offset) 6839 return nullptr; 6840 6841 return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8); 6842 } 6843 6844 ABIArgInfo 6845 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const { 6846 Ty = useFirstFieldIfTransparentUnion(Ty); 6847 6848 uint64_t OrigOffset = Offset; 6849 uint64_t TySize = getContext().getTypeSize(Ty); 6850 uint64_t Align = getContext().getTypeAlign(Ty) / 8; 6851 6852 Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes), 6853 (uint64_t)StackAlignInBytes); 6854 unsigned CurrOffset = llvm::alignTo(Offset, Align); 6855 Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8; 6856 6857 if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) { 6858 // Ignore empty aggregates. 6859 if (TySize == 0) 6860 return ABIArgInfo::getIgnore(); 6861 6862 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 6863 Offset = OrigOffset + MinABIStackAlignInBytes; 6864 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 6865 } 6866 6867 // If we have reached here, aggregates are passed directly by coercing to 6868 // another structure type. Padding is inserted if the offset of the 6869 // aggregate is unaligned. 6870 ABIArgInfo ArgInfo = 6871 ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0, 6872 getPaddingType(OrigOffset, CurrOffset)); 6873 ArgInfo.setInReg(true); 6874 return ArgInfo; 6875 } 6876 6877 // Treat an enum type as its underlying type. 6878 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 6879 Ty = EnumTy->getDecl()->getIntegerType(); 6880 6881 // All integral types are promoted to the GPR width. 6882 if (Ty->isIntegralOrEnumerationType()) 6883 return extendType(Ty); 6884 6885 return ABIArgInfo::getDirect( 6886 nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset)); 6887 } 6888 6889 llvm::Type* 6890 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const { 6891 const RecordType *RT = RetTy->getAs<RecordType>(); 6892 SmallVector<llvm::Type*, 8> RTList; 6893 6894 if (RT && RT->isStructureOrClassType()) { 6895 const RecordDecl *RD = RT->getDecl(); 6896 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 6897 unsigned FieldCnt = Layout.getFieldCount(); 6898 6899 // N32/64 returns struct/classes in floating point registers if the 6900 // following conditions are met: 6901 // 1. The size of the struct/class is no larger than 128-bit. 6902 // 2. The struct/class has one or two fields all of which are floating 6903 // point types. 6904 // 3. The offset of the first field is zero (this follows what gcc does). 6905 // 6906 // Any other composite results are returned in integer registers. 6907 // 6908 if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) { 6909 RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end(); 6910 for (; b != e; ++b) { 6911 const BuiltinType *BT = b->getType()->getAs<BuiltinType>(); 6912 6913 if (!BT || !BT->isFloatingPoint()) 6914 break; 6915 6916 RTList.push_back(CGT.ConvertType(b->getType())); 6917 } 6918 6919 if (b == e) 6920 return llvm::StructType::get(getVMContext(), RTList, 6921 RD->hasAttr<PackedAttr>()); 6922 6923 RTList.clear(); 6924 } 6925 } 6926 6927 CoerceToIntArgs(Size, RTList); 6928 return llvm::StructType::get(getVMContext(), RTList); 6929 } 6930 6931 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const { 6932 uint64_t Size = getContext().getTypeSize(RetTy); 6933 6934 if (RetTy->isVoidType()) 6935 return ABIArgInfo::getIgnore(); 6936 6937 // O32 doesn't treat zero-sized structs differently from other structs. 6938 // However, N32/N64 ignores zero sized return values. 6939 if (!IsO32 && Size == 0) 6940 return ABIArgInfo::getIgnore(); 6941 6942 if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) { 6943 if (Size <= 128) { 6944 if (RetTy->isAnyComplexType()) 6945 return ABIArgInfo::getDirect(); 6946 6947 // O32 returns integer vectors in registers and N32/N64 returns all small 6948 // aggregates in registers. 6949 if (!IsO32 || 6950 (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) { 6951 ABIArgInfo ArgInfo = 6952 ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size)); 6953 ArgInfo.setInReg(true); 6954 return ArgInfo; 6955 } 6956 } 6957 6958 return getNaturalAlignIndirect(RetTy); 6959 } 6960 6961 // Treat an enum type as its underlying type. 6962 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 6963 RetTy = EnumTy->getDecl()->getIntegerType(); 6964 6965 return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 6966 : ABIArgInfo::getDirect()); 6967 } 6968 6969 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const { 6970 ABIArgInfo &RetInfo = FI.getReturnInfo(); 6971 if (!getCXXABI().classifyReturnType(FI)) 6972 RetInfo = classifyReturnType(FI.getReturnType()); 6973 6974 // Check if a pointer to an aggregate is passed as a hidden argument. 6975 uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0; 6976 6977 for (auto &I : FI.arguments()) 6978 I.info = classifyArgumentType(I.type, Offset); 6979 } 6980 6981 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6982 QualType OrigTy) const { 6983 QualType Ty = OrigTy; 6984 6985 // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64. 6986 // Pointers are also promoted in the same way but this only matters for N32. 6987 unsigned SlotSizeInBits = IsO32 ? 32 : 64; 6988 unsigned PtrWidth = getTarget().getPointerWidth(0); 6989 bool DidPromote = false; 6990 if ((Ty->isIntegerType() && 6991 getContext().getIntWidth(Ty) < SlotSizeInBits) || 6992 (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) { 6993 DidPromote = true; 6994 Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits, 6995 Ty->isSignedIntegerType()); 6996 } 6997 6998 auto TyInfo = getContext().getTypeInfoInChars(Ty); 6999 7000 // The alignment of things in the argument area is never larger than 7001 // StackAlignInBytes. 7002 TyInfo.second = 7003 std::min(TyInfo.second, CharUnits::fromQuantity(StackAlignInBytes)); 7004 7005 // MinABIStackAlignInBytes is the size of argument slots on the stack. 7006 CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes); 7007 7008 Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 7009 TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true); 7010 7011 7012 // If there was a promotion, "unpromote" into a temporary. 7013 // TODO: can we just use a pointer into a subset of the original slot? 7014 if (DidPromote) { 7015 Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp"); 7016 llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr); 7017 7018 // Truncate down to the right width. 7019 llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType() 7020 : CGF.IntPtrTy); 7021 llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy); 7022 if (OrigTy->isPointerType()) 7023 V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType()); 7024 7025 CGF.Builder.CreateStore(V, Temp); 7026 Addr = Temp; 7027 } 7028 7029 return Addr; 7030 } 7031 7032 ABIArgInfo MipsABIInfo::extendType(QualType Ty) const { 7033 int TySize = getContext().getTypeSize(Ty); 7034 7035 // MIPS64 ABI requires unsigned 32 bit integers to be sign extended. 7036 if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 7037 return ABIArgInfo::getSignExtend(Ty); 7038 7039 return ABIArgInfo::getExtend(Ty); 7040 } 7041 7042 bool 7043 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 7044 llvm::Value *Address) const { 7045 // This information comes from gcc's implementation, which seems to 7046 // as canonical as it gets. 7047 7048 // Everything on MIPS is 4 bytes. Double-precision FP registers 7049 // are aliased to pairs of single-precision FP registers. 7050 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 7051 7052 // 0-31 are the general purpose registers, $0 - $31. 7053 // 32-63 are the floating-point registers, $f0 - $f31. 7054 // 64 and 65 are the multiply/divide registers, $hi and $lo. 7055 // 66 is the (notional, I think) register for signal-handler return. 7056 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65); 7057 7058 // 67-74 are the floating-point status registers, $fcc0 - $fcc7. 7059 // They are one bit wide and ignored here. 7060 7061 // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31. 7062 // (coprocessor 1 is the FP unit) 7063 // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31. 7064 // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31. 7065 // 176-181 are the DSP accumulator registers. 7066 AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181); 7067 return false; 7068 } 7069 7070 //===----------------------------------------------------------------------===// 7071 // AVR ABI Implementation. 7072 //===----------------------------------------------------------------------===// 7073 7074 namespace { 7075 class AVRTargetCodeGenInfo : public TargetCodeGenInfo { 7076 public: 7077 AVRTargetCodeGenInfo(CodeGenTypes &CGT) 7078 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) { } 7079 7080 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7081 CodeGen::CodeGenModule &CGM) const override { 7082 if (GV->isDeclaration()) 7083 return; 7084 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 7085 if (!FD) return; 7086 auto *Fn = cast<llvm::Function>(GV); 7087 7088 if (FD->getAttr<AVRInterruptAttr>()) 7089 Fn->addFnAttr("interrupt"); 7090 7091 if (FD->getAttr<AVRSignalAttr>()) 7092 Fn->addFnAttr("signal"); 7093 } 7094 }; 7095 } 7096 7097 //===----------------------------------------------------------------------===// 7098 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults. 7099 // Currently subclassed only to implement custom OpenCL C function attribute 7100 // handling. 7101 //===----------------------------------------------------------------------===// 7102 7103 namespace { 7104 7105 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo { 7106 public: 7107 TCETargetCodeGenInfo(CodeGenTypes &CGT) 7108 : DefaultTargetCodeGenInfo(CGT) {} 7109 7110 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7111 CodeGen::CodeGenModule &M) const override; 7112 }; 7113 7114 void TCETargetCodeGenInfo::setTargetAttributes( 7115 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 7116 if (GV->isDeclaration()) 7117 return; 7118 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 7119 if (!FD) return; 7120 7121 llvm::Function *F = cast<llvm::Function>(GV); 7122 7123 if (M.getLangOpts().OpenCL) { 7124 if (FD->hasAttr<OpenCLKernelAttr>()) { 7125 // OpenCL C Kernel functions are not subject to inlining 7126 F->addFnAttr(llvm::Attribute::NoInline); 7127 const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>(); 7128 if (Attr) { 7129 // Convert the reqd_work_group_size() attributes to metadata. 7130 llvm::LLVMContext &Context = F->getContext(); 7131 llvm::NamedMDNode *OpenCLMetadata = 7132 M.getModule().getOrInsertNamedMetadata( 7133 "opencl.kernel_wg_size_info"); 7134 7135 SmallVector<llvm::Metadata *, 5> Operands; 7136 Operands.push_back(llvm::ConstantAsMetadata::get(F)); 7137 7138 Operands.push_back( 7139 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 7140 M.Int32Ty, llvm::APInt(32, Attr->getXDim())))); 7141 Operands.push_back( 7142 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 7143 M.Int32Ty, llvm::APInt(32, Attr->getYDim())))); 7144 Operands.push_back( 7145 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 7146 M.Int32Ty, llvm::APInt(32, Attr->getZDim())))); 7147 7148 // Add a boolean constant operand for "required" (true) or "hint" 7149 // (false) for implementing the work_group_size_hint attr later. 7150 // Currently always true as the hint is not yet implemented. 7151 Operands.push_back( 7152 llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context))); 7153 OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands)); 7154 } 7155 } 7156 } 7157 } 7158 7159 } 7160 7161 //===----------------------------------------------------------------------===// 7162 // Hexagon ABI Implementation 7163 //===----------------------------------------------------------------------===// 7164 7165 namespace { 7166 7167 class HexagonABIInfo : public ABIInfo { 7168 7169 7170 public: 7171 HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 7172 7173 private: 7174 7175 ABIArgInfo classifyReturnType(QualType RetTy) const; 7176 ABIArgInfo classifyArgumentType(QualType RetTy) const; 7177 7178 void computeInfo(CGFunctionInfo &FI) const override; 7179 7180 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7181 QualType Ty) const override; 7182 }; 7183 7184 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo { 7185 public: 7186 HexagonTargetCodeGenInfo(CodeGenTypes &CGT) 7187 :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {} 7188 7189 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 7190 return 29; 7191 } 7192 }; 7193 7194 } 7195 7196 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const { 7197 if (!getCXXABI().classifyReturnType(FI)) 7198 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7199 for (auto &I : FI.arguments()) 7200 I.info = classifyArgumentType(I.type); 7201 } 7202 7203 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const { 7204 if (!isAggregateTypeForABI(Ty)) { 7205 // Treat an enum type as its underlying type. 7206 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7207 Ty = EnumTy->getDecl()->getIntegerType(); 7208 7209 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 7210 : ABIArgInfo::getDirect()); 7211 } 7212 7213 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 7214 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7215 7216 // Ignore empty records. 7217 if (isEmptyRecord(getContext(), Ty, true)) 7218 return ABIArgInfo::getIgnore(); 7219 7220 uint64_t Size = getContext().getTypeSize(Ty); 7221 if (Size > 64) 7222 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 7223 // Pass in the smallest viable integer type. 7224 else if (Size > 32) 7225 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); 7226 else if (Size > 16) 7227 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 7228 else if (Size > 8) 7229 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 7230 else 7231 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 7232 } 7233 7234 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const { 7235 if (RetTy->isVoidType()) 7236 return ABIArgInfo::getIgnore(); 7237 7238 // Large vector types should be returned via memory. 7239 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64) 7240 return getNaturalAlignIndirect(RetTy); 7241 7242 if (!isAggregateTypeForABI(RetTy)) { 7243 // Treat an enum type as its underlying type. 7244 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 7245 RetTy = EnumTy->getDecl()->getIntegerType(); 7246 7247 return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 7248 : ABIArgInfo::getDirect()); 7249 } 7250 7251 if (isEmptyRecord(getContext(), RetTy, true)) 7252 return ABIArgInfo::getIgnore(); 7253 7254 // Aggregates <= 8 bytes are returned in r0; other aggregates 7255 // are returned indirectly. 7256 uint64_t Size = getContext().getTypeSize(RetTy); 7257 if (Size <= 64) { 7258 // Return in the smallest viable integer type. 7259 if (Size <= 8) 7260 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 7261 if (Size <= 16) 7262 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 7263 if (Size <= 32) 7264 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 7265 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); 7266 } 7267 7268 return getNaturalAlignIndirect(RetTy, /*ByVal=*/true); 7269 } 7270 7271 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7272 QualType Ty) const { 7273 // FIXME: Someone needs to audit that this handle alignment correctly. 7274 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 7275 getContext().getTypeInfoInChars(Ty), 7276 CharUnits::fromQuantity(4), 7277 /*AllowHigherAlign*/ true); 7278 } 7279 7280 //===----------------------------------------------------------------------===// 7281 // Lanai ABI Implementation 7282 //===----------------------------------------------------------------------===// 7283 7284 namespace { 7285 class LanaiABIInfo : public DefaultABIInfo { 7286 public: 7287 LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 7288 7289 bool shouldUseInReg(QualType Ty, CCState &State) const; 7290 7291 void computeInfo(CGFunctionInfo &FI) const override { 7292 CCState State(FI.getCallingConvention()); 7293 // Lanai uses 4 registers to pass arguments unless the function has the 7294 // regparm attribute set. 7295 if (FI.getHasRegParm()) { 7296 State.FreeRegs = FI.getRegParm(); 7297 } else { 7298 State.FreeRegs = 4; 7299 } 7300 7301 if (!getCXXABI().classifyReturnType(FI)) 7302 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7303 for (auto &I : FI.arguments()) 7304 I.info = classifyArgumentType(I.type, State); 7305 } 7306 7307 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 7308 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 7309 }; 7310 } // end anonymous namespace 7311 7312 bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const { 7313 unsigned Size = getContext().getTypeSize(Ty); 7314 unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U; 7315 7316 if (SizeInRegs == 0) 7317 return false; 7318 7319 if (SizeInRegs > State.FreeRegs) { 7320 State.FreeRegs = 0; 7321 return false; 7322 } 7323 7324 State.FreeRegs -= SizeInRegs; 7325 7326 return true; 7327 } 7328 7329 ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal, 7330 CCState &State) const { 7331 if (!ByVal) { 7332 if (State.FreeRegs) { 7333 --State.FreeRegs; // Non-byval indirects just use one pointer. 7334 return getNaturalAlignIndirectInReg(Ty); 7335 } 7336 return getNaturalAlignIndirect(Ty, false); 7337 } 7338 7339 // Compute the byval alignment. 7340 const unsigned MinABIStackAlignInBytes = 4; 7341 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 7342 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true, 7343 /*Realign=*/TypeAlign > 7344 MinABIStackAlignInBytes); 7345 } 7346 7347 ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty, 7348 CCState &State) const { 7349 // Check with the C++ ABI first. 7350 const RecordType *RT = Ty->getAs<RecordType>(); 7351 if (RT) { 7352 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 7353 if (RAA == CGCXXABI::RAA_Indirect) { 7354 return getIndirectResult(Ty, /*ByVal=*/false, State); 7355 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 7356 return getNaturalAlignIndirect(Ty, /*ByRef=*/true); 7357 } 7358 } 7359 7360 if (isAggregateTypeForABI(Ty)) { 7361 // Structures with flexible arrays are always indirect. 7362 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 7363 return getIndirectResult(Ty, /*ByVal=*/true, State); 7364 7365 // Ignore empty structs/unions. 7366 if (isEmptyRecord(getContext(), Ty, true)) 7367 return ABIArgInfo::getIgnore(); 7368 7369 llvm::LLVMContext &LLVMContext = getVMContext(); 7370 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; 7371 if (SizeInRegs <= State.FreeRegs) { 7372 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 7373 SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32); 7374 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 7375 State.FreeRegs -= SizeInRegs; 7376 return ABIArgInfo::getDirectInReg(Result); 7377 } else { 7378 State.FreeRegs = 0; 7379 } 7380 return getIndirectResult(Ty, true, State); 7381 } 7382 7383 // Treat an enum type as its underlying type. 7384 if (const auto *EnumTy = Ty->getAs<EnumType>()) 7385 Ty = EnumTy->getDecl()->getIntegerType(); 7386 7387 bool InReg = shouldUseInReg(Ty, State); 7388 if (Ty->isPromotableIntegerType()) { 7389 if (InReg) 7390 return ABIArgInfo::getDirectInReg(); 7391 return ABIArgInfo::getExtend(Ty); 7392 } 7393 if (InReg) 7394 return ABIArgInfo::getDirectInReg(); 7395 return ABIArgInfo::getDirect(); 7396 } 7397 7398 namespace { 7399 class LanaiTargetCodeGenInfo : public TargetCodeGenInfo { 7400 public: 7401 LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 7402 : TargetCodeGenInfo(new LanaiABIInfo(CGT)) {} 7403 }; 7404 } 7405 7406 //===----------------------------------------------------------------------===// 7407 // AMDGPU ABI Implementation 7408 //===----------------------------------------------------------------------===// 7409 7410 namespace { 7411 7412 class AMDGPUABIInfo final : public DefaultABIInfo { 7413 private: 7414 static const unsigned MaxNumRegsForArgsRet = 16; 7415 7416 unsigned numRegsForType(QualType Ty) const; 7417 7418 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 7419 bool isHomogeneousAggregateSmallEnough(const Type *Base, 7420 uint64_t Members) const override; 7421 7422 public: 7423 explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) : 7424 DefaultABIInfo(CGT) {} 7425 7426 ABIArgInfo classifyReturnType(QualType RetTy) const; 7427 ABIArgInfo classifyKernelArgumentType(QualType Ty) const; 7428 ABIArgInfo classifyArgumentType(QualType Ty, unsigned &NumRegsLeft) const; 7429 7430 void computeInfo(CGFunctionInfo &FI) const override; 7431 }; 7432 7433 bool AMDGPUABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 7434 return true; 7435 } 7436 7437 bool AMDGPUABIInfo::isHomogeneousAggregateSmallEnough( 7438 const Type *Base, uint64_t Members) const { 7439 uint32_t NumRegs = (getContext().getTypeSize(Base) + 31) / 32; 7440 7441 // Homogeneous Aggregates may occupy at most 16 registers. 7442 return Members * NumRegs <= MaxNumRegsForArgsRet; 7443 } 7444 7445 /// Estimate number of registers the type will use when passed in registers. 7446 unsigned AMDGPUABIInfo::numRegsForType(QualType Ty) const { 7447 unsigned NumRegs = 0; 7448 7449 if (const VectorType *VT = Ty->getAs<VectorType>()) { 7450 // Compute from the number of elements. The reported size is based on the 7451 // in-memory size, which includes the padding 4th element for 3-vectors. 7452 QualType EltTy = VT->getElementType(); 7453 unsigned EltSize = getContext().getTypeSize(EltTy); 7454 7455 // 16-bit element vectors should be passed as packed. 7456 if (EltSize == 16) 7457 return (VT->getNumElements() + 1) / 2; 7458 7459 unsigned EltNumRegs = (EltSize + 31) / 32; 7460 return EltNumRegs * VT->getNumElements(); 7461 } 7462 7463 if (const RecordType *RT = Ty->getAs<RecordType>()) { 7464 const RecordDecl *RD = RT->getDecl(); 7465 assert(!RD->hasFlexibleArrayMember()); 7466 7467 for (const FieldDecl *Field : RD->fields()) { 7468 QualType FieldTy = Field->getType(); 7469 NumRegs += numRegsForType(FieldTy); 7470 } 7471 7472 return NumRegs; 7473 } 7474 7475 return (getContext().getTypeSize(Ty) + 31) / 32; 7476 } 7477 7478 void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const { 7479 llvm::CallingConv::ID CC = FI.getCallingConvention(); 7480 7481 if (!getCXXABI().classifyReturnType(FI)) 7482 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7483 7484 unsigned NumRegsLeft = MaxNumRegsForArgsRet; 7485 for (auto &Arg : FI.arguments()) { 7486 if (CC == llvm::CallingConv::AMDGPU_KERNEL) { 7487 Arg.info = classifyKernelArgumentType(Arg.type); 7488 } else { 7489 Arg.info = classifyArgumentType(Arg.type, NumRegsLeft); 7490 } 7491 } 7492 } 7493 7494 ABIArgInfo AMDGPUABIInfo::classifyReturnType(QualType RetTy) const { 7495 if (isAggregateTypeForABI(RetTy)) { 7496 // Records with non-trivial destructors/copy-constructors should not be 7497 // returned by value. 7498 if (!getRecordArgABI(RetTy, getCXXABI())) { 7499 // Ignore empty structs/unions. 7500 if (isEmptyRecord(getContext(), RetTy, true)) 7501 return ABIArgInfo::getIgnore(); 7502 7503 // Lower single-element structs to just return a regular value. 7504 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 7505 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 7506 7507 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 7508 const RecordDecl *RD = RT->getDecl(); 7509 if (RD->hasFlexibleArrayMember()) 7510 return DefaultABIInfo::classifyReturnType(RetTy); 7511 } 7512 7513 // Pack aggregates <= 4 bytes into single VGPR or pair. 7514 uint64_t Size = getContext().getTypeSize(RetTy); 7515 if (Size <= 16) 7516 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 7517 7518 if (Size <= 32) 7519 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 7520 7521 if (Size <= 64) { 7522 llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext()); 7523 return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2)); 7524 } 7525 7526 if (numRegsForType(RetTy) <= MaxNumRegsForArgsRet) 7527 return ABIArgInfo::getDirect(); 7528 } 7529 } 7530 7531 // Otherwise just do the default thing. 7532 return DefaultABIInfo::classifyReturnType(RetTy); 7533 } 7534 7535 /// For kernels all parameters are really passed in a special buffer. It doesn't 7536 /// make sense to pass anything byval, so everything must be direct. 7537 ABIArgInfo AMDGPUABIInfo::classifyKernelArgumentType(QualType Ty) const { 7538 Ty = useFirstFieldIfTransparentUnion(Ty); 7539 7540 // TODO: Can we omit empty structs? 7541 7542 // Coerce single element structs to its element. 7543 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 7544 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 7545 7546 // If we set CanBeFlattened to true, CodeGen will expand the struct to its 7547 // individual elements, which confuses the Clover OpenCL backend; therefore we 7548 // have to set it to false here. Other args of getDirect() are just defaults. 7549 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); 7550 } 7551 7552 ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty, 7553 unsigned &NumRegsLeft) const { 7554 assert(NumRegsLeft <= MaxNumRegsForArgsRet && "register estimate underflow"); 7555 7556 Ty = useFirstFieldIfTransparentUnion(Ty); 7557 7558 if (isAggregateTypeForABI(Ty)) { 7559 // Records with non-trivial destructors/copy-constructors should not be 7560 // passed by value. 7561 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 7562 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7563 7564 // Ignore empty structs/unions. 7565 if (isEmptyRecord(getContext(), Ty, true)) 7566 return ABIArgInfo::getIgnore(); 7567 7568 // Lower single-element structs to just pass a regular value. TODO: We 7569 // could do reasonable-size multiple-element structs too, using getExpand(), 7570 // though watch out for things like bitfields. 7571 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 7572 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 7573 7574 if (const RecordType *RT = Ty->getAs<RecordType>()) { 7575 const RecordDecl *RD = RT->getDecl(); 7576 if (RD->hasFlexibleArrayMember()) 7577 return DefaultABIInfo::classifyArgumentType(Ty); 7578 } 7579 7580 // Pack aggregates <= 8 bytes into single VGPR or pair. 7581 uint64_t Size = getContext().getTypeSize(Ty); 7582 if (Size <= 64) { 7583 unsigned NumRegs = (Size + 31) / 32; 7584 NumRegsLeft -= std::min(NumRegsLeft, NumRegs); 7585 7586 if (Size <= 16) 7587 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 7588 7589 if (Size <= 32) 7590 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 7591 7592 // XXX: Should this be i64 instead, and should the limit increase? 7593 llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext()); 7594 return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2)); 7595 } 7596 7597 if (NumRegsLeft > 0) { 7598 unsigned NumRegs = numRegsForType(Ty); 7599 if (NumRegsLeft >= NumRegs) { 7600 NumRegsLeft -= NumRegs; 7601 return ABIArgInfo::getDirect(); 7602 } 7603 } 7604 } 7605 7606 // Otherwise just do the default thing. 7607 ABIArgInfo ArgInfo = DefaultABIInfo::classifyArgumentType(Ty); 7608 if (!ArgInfo.isIndirect()) { 7609 unsigned NumRegs = numRegsForType(Ty); 7610 NumRegsLeft -= std::min(NumRegs, NumRegsLeft); 7611 } 7612 7613 return ArgInfo; 7614 } 7615 7616 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo { 7617 public: 7618 AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT) 7619 : TargetCodeGenInfo(new AMDGPUABIInfo(CGT)) {} 7620 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7621 CodeGen::CodeGenModule &M) const override; 7622 unsigned getOpenCLKernelCallingConv() const override; 7623 7624 llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM, 7625 llvm::PointerType *T, QualType QT) const override; 7626 7627 LangAS getASTAllocaAddressSpace() const override { 7628 return getLangASFromTargetAS( 7629 getABIInfo().getDataLayout().getAllocaAddrSpace()); 7630 } 7631 LangAS getGlobalVarAddressSpace(CodeGenModule &CGM, 7632 const VarDecl *D) const override; 7633 llvm::SyncScope::ID getLLVMSyncScopeID(SyncScope S, 7634 llvm::LLVMContext &C) const override; 7635 llvm::Function * 7636 createEnqueuedBlockKernel(CodeGenFunction &CGF, 7637 llvm::Function *BlockInvokeFunc, 7638 llvm::Value *BlockLiteral) const override; 7639 bool shouldEmitStaticExternCAliases() const override; 7640 void setCUDAKernelCallingConvention(llvm::Function *F) const override; 7641 }; 7642 } 7643 7644 void AMDGPUTargetCodeGenInfo::setTargetAttributes( 7645 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 7646 if (GV->isDeclaration()) 7647 return; 7648 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 7649 if (!FD) 7650 return; 7651 7652 llvm::Function *F = cast<llvm::Function>(GV); 7653 7654 const auto *ReqdWGS = M.getLangOpts().OpenCL ? 7655 FD->getAttr<ReqdWorkGroupSizeAttr>() : nullptr; 7656 7657 if (M.getLangOpts().OpenCL && FD->hasAttr<OpenCLKernelAttr>() && 7658 (M.getTriple().getOS() == llvm::Triple::AMDHSA)) 7659 F->addFnAttr("amdgpu-implicitarg-num-bytes", "48"); 7660 7661 const auto *FlatWGS = FD->getAttr<AMDGPUFlatWorkGroupSizeAttr>(); 7662 if (ReqdWGS || FlatWGS) { 7663 unsigned Min = FlatWGS ? FlatWGS->getMin() : 0; 7664 unsigned Max = FlatWGS ? FlatWGS->getMax() : 0; 7665 if (ReqdWGS && Min == 0 && Max == 0) 7666 Min = Max = ReqdWGS->getXDim() * ReqdWGS->getYDim() * ReqdWGS->getZDim(); 7667 7668 if (Min != 0) { 7669 assert(Min <= Max && "Min must be less than or equal Max"); 7670 7671 std::string AttrVal = llvm::utostr(Min) + "," + llvm::utostr(Max); 7672 F->addFnAttr("amdgpu-flat-work-group-size", AttrVal); 7673 } else 7674 assert(Max == 0 && "Max must be zero"); 7675 } 7676 7677 if (const auto *Attr = FD->getAttr<AMDGPUWavesPerEUAttr>()) { 7678 unsigned Min = Attr->getMin(); 7679 unsigned Max = Attr->getMax(); 7680 7681 if (Min != 0) { 7682 assert((Max == 0 || Min <= Max) && "Min must be less than or equal Max"); 7683 7684 std::string AttrVal = llvm::utostr(Min); 7685 if (Max != 0) 7686 AttrVal = AttrVal + "," + llvm::utostr(Max); 7687 F->addFnAttr("amdgpu-waves-per-eu", AttrVal); 7688 } else 7689 assert(Max == 0 && "Max must be zero"); 7690 } 7691 7692 if (const auto *Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) { 7693 unsigned NumSGPR = Attr->getNumSGPR(); 7694 7695 if (NumSGPR != 0) 7696 F->addFnAttr("amdgpu-num-sgpr", llvm::utostr(NumSGPR)); 7697 } 7698 7699 if (const auto *Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) { 7700 uint32_t NumVGPR = Attr->getNumVGPR(); 7701 7702 if (NumVGPR != 0) 7703 F->addFnAttr("amdgpu-num-vgpr", llvm::utostr(NumVGPR)); 7704 } 7705 } 7706 7707 unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 7708 return llvm::CallingConv::AMDGPU_KERNEL; 7709 } 7710 7711 // Currently LLVM assumes null pointers always have value 0, 7712 // which results in incorrectly transformed IR. Therefore, instead of 7713 // emitting null pointers in private and local address spaces, a null 7714 // pointer in generic address space is emitted which is casted to a 7715 // pointer in local or private address space. 7716 llvm::Constant *AMDGPUTargetCodeGenInfo::getNullPointer( 7717 const CodeGen::CodeGenModule &CGM, llvm::PointerType *PT, 7718 QualType QT) const { 7719 if (CGM.getContext().getTargetNullPointerValue(QT) == 0) 7720 return llvm::ConstantPointerNull::get(PT); 7721 7722 auto &Ctx = CGM.getContext(); 7723 auto NPT = llvm::PointerType::get(PT->getElementType(), 7724 Ctx.getTargetAddressSpace(LangAS::opencl_generic)); 7725 return llvm::ConstantExpr::getAddrSpaceCast( 7726 llvm::ConstantPointerNull::get(NPT), PT); 7727 } 7728 7729 LangAS 7730 AMDGPUTargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM, 7731 const VarDecl *D) const { 7732 assert(!CGM.getLangOpts().OpenCL && 7733 !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && 7734 "Address space agnostic languages only"); 7735 LangAS DefaultGlobalAS = getLangASFromTargetAS( 7736 CGM.getContext().getTargetAddressSpace(LangAS::opencl_global)); 7737 if (!D) 7738 return DefaultGlobalAS; 7739 7740 LangAS AddrSpace = D->getType().getAddressSpace(); 7741 assert(AddrSpace == LangAS::Default || isTargetAddressSpace(AddrSpace)); 7742 if (AddrSpace != LangAS::Default) 7743 return AddrSpace; 7744 7745 if (CGM.isTypeConstant(D->getType(), false)) { 7746 if (auto ConstAS = CGM.getTarget().getConstantAddressSpace()) 7747 return ConstAS.getValue(); 7748 } 7749 return DefaultGlobalAS; 7750 } 7751 7752 llvm::SyncScope::ID 7753 AMDGPUTargetCodeGenInfo::getLLVMSyncScopeID(SyncScope S, 7754 llvm::LLVMContext &C) const { 7755 StringRef Name; 7756 switch (S) { 7757 case SyncScope::OpenCLWorkGroup: 7758 Name = "workgroup"; 7759 break; 7760 case SyncScope::OpenCLDevice: 7761 Name = "agent"; 7762 break; 7763 case SyncScope::OpenCLAllSVMDevices: 7764 Name = ""; 7765 break; 7766 case SyncScope::OpenCLSubGroup: 7767 Name = "subgroup"; 7768 } 7769 return C.getOrInsertSyncScopeID(Name); 7770 } 7771 7772 bool AMDGPUTargetCodeGenInfo::shouldEmitStaticExternCAliases() const { 7773 return false; 7774 } 7775 7776 void AMDGPUTargetCodeGenInfo::setCUDAKernelCallingConvention( 7777 llvm::Function *F) const { 7778 F->setCallingConv(llvm::CallingConv::AMDGPU_KERNEL); 7779 } 7780 7781 //===----------------------------------------------------------------------===// 7782 // SPARC v8 ABI Implementation. 7783 // Based on the SPARC Compliance Definition version 2.4.1. 7784 // 7785 // Ensures that complex values are passed in registers. 7786 // 7787 namespace { 7788 class SparcV8ABIInfo : public DefaultABIInfo { 7789 public: 7790 SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 7791 7792 private: 7793 ABIArgInfo classifyReturnType(QualType RetTy) const; 7794 void computeInfo(CGFunctionInfo &FI) const override; 7795 }; 7796 } // end anonymous namespace 7797 7798 7799 ABIArgInfo 7800 SparcV8ABIInfo::classifyReturnType(QualType Ty) const { 7801 if (Ty->isAnyComplexType()) { 7802 return ABIArgInfo::getDirect(); 7803 } 7804 else { 7805 return DefaultABIInfo::classifyReturnType(Ty); 7806 } 7807 } 7808 7809 void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const { 7810 7811 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7812 for (auto &Arg : FI.arguments()) 7813 Arg.info = classifyArgumentType(Arg.type); 7814 } 7815 7816 namespace { 7817 class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo { 7818 public: 7819 SparcV8TargetCodeGenInfo(CodeGenTypes &CGT) 7820 : TargetCodeGenInfo(new SparcV8ABIInfo(CGT)) {} 7821 }; 7822 } // end anonymous namespace 7823 7824 //===----------------------------------------------------------------------===// 7825 // SPARC v9 ABI Implementation. 7826 // Based on the SPARC Compliance Definition version 2.4.1. 7827 // 7828 // Function arguments a mapped to a nominal "parameter array" and promoted to 7829 // registers depending on their type. Each argument occupies 8 or 16 bytes in 7830 // the array, structs larger than 16 bytes are passed indirectly. 7831 // 7832 // One case requires special care: 7833 // 7834 // struct mixed { 7835 // int i; 7836 // float f; 7837 // }; 7838 // 7839 // When a struct mixed is passed by value, it only occupies 8 bytes in the 7840 // parameter array, but the int is passed in an integer register, and the float 7841 // is passed in a floating point register. This is represented as two arguments 7842 // with the LLVM IR inreg attribute: 7843 // 7844 // declare void f(i32 inreg %i, float inreg %f) 7845 // 7846 // The code generator will only allocate 4 bytes from the parameter array for 7847 // the inreg arguments. All other arguments are allocated a multiple of 8 7848 // bytes. 7849 // 7850 namespace { 7851 class SparcV9ABIInfo : public ABIInfo { 7852 public: 7853 SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 7854 7855 private: 7856 ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const; 7857 void computeInfo(CGFunctionInfo &FI) const override; 7858 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7859 QualType Ty) const override; 7860 7861 // Coercion type builder for structs passed in registers. The coercion type 7862 // serves two purposes: 7863 // 7864 // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned' 7865 // in registers. 7866 // 2. Expose aligned floating point elements as first-level elements, so the 7867 // code generator knows to pass them in floating point registers. 7868 // 7869 // We also compute the InReg flag which indicates that the struct contains 7870 // aligned 32-bit floats. 7871 // 7872 struct CoerceBuilder { 7873 llvm::LLVMContext &Context; 7874 const llvm::DataLayout &DL; 7875 SmallVector<llvm::Type*, 8> Elems; 7876 uint64_t Size; 7877 bool InReg; 7878 7879 CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl) 7880 : Context(c), DL(dl), Size(0), InReg(false) {} 7881 7882 // Pad Elems with integers until Size is ToSize. 7883 void pad(uint64_t ToSize) { 7884 assert(ToSize >= Size && "Cannot remove elements"); 7885 if (ToSize == Size) 7886 return; 7887 7888 // Finish the current 64-bit word. 7889 uint64_t Aligned = llvm::alignTo(Size, 64); 7890 if (Aligned > Size && Aligned <= ToSize) { 7891 Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size)); 7892 Size = Aligned; 7893 } 7894 7895 // Add whole 64-bit words. 7896 while (Size + 64 <= ToSize) { 7897 Elems.push_back(llvm::Type::getInt64Ty(Context)); 7898 Size += 64; 7899 } 7900 7901 // Final in-word padding. 7902 if (Size < ToSize) { 7903 Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size)); 7904 Size = ToSize; 7905 } 7906 } 7907 7908 // Add a floating point element at Offset. 7909 void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) { 7910 // Unaligned floats are treated as integers. 7911 if (Offset % Bits) 7912 return; 7913 // The InReg flag is only required if there are any floats < 64 bits. 7914 if (Bits < 64) 7915 InReg = true; 7916 pad(Offset); 7917 Elems.push_back(Ty); 7918 Size = Offset + Bits; 7919 } 7920 7921 // Add a struct type to the coercion type, starting at Offset (in bits). 7922 void addStruct(uint64_t Offset, llvm::StructType *StrTy) { 7923 const llvm::StructLayout *Layout = DL.getStructLayout(StrTy); 7924 for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) { 7925 llvm::Type *ElemTy = StrTy->getElementType(i); 7926 uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i); 7927 switch (ElemTy->getTypeID()) { 7928 case llvm::Type::StructTyID: 7929 addStruct(ElemOffset, cast<llvm::StructType>(ElemTy)); 7930 break; 7931 case llvm::Type::FloatTyID: 7932 addFloat(ElemOffset, ElemTy, 32); 7933 break; 7934 case llvm::Type::DoubleTyID: 7935 addFloat(ElemOffset, ElemTy, 64); 7936 break; 7937 case llvm::Type::FP128TyID: 7938 addFloat(ElemOffset, ElemTy, 128); 7939 break; 7940 case llvm::Type::PointerTyID: 7941 if (ElemOffset % 64 == 0) { 7942 pad(ElemOffset); 7943 Elems.push_back(ElemTy); 7944 Size += 64; 7945 } 7946 break; 7947 default: 7948 break; 7949 } 7950 } 7951 } 7952 7953 // Check if Ty is a usable substitute for the coercion type. 7954 bool isUsableType(llvm::StructType *Ty) const { 7955 return llvm::makeArrayRef(Elems) == Ty->elements(); 7956 } 7957 7958 // Get the coercion type as a literal struct type. 7959 llvm::Type *getType() const { 7960 if (Elems.size() == 1) 7961 return Elems.front(); 7962 else 7963 return llvm::StructType::get(Context, Elems); 7964 } 7965 }; 7966 }; 7967 } // end anonymous namespace 7968 7969 ABIArgInfo 7970 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const { 7971 if (Ty->isVoidType()) 7972 return ABIArgInfo::getIgnore(); 7973 7974 uint64_t Size = getContext().getTypeSize(Ty); 7975 7976 // Anything too big to fit in registers is passed with an explicit indirect 7977 // pointer / sret pointer. 7978 if (Size > SizeLimit) 7979 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 7980 7981 // Treat an enum type as its underlying type. 7982 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7983 Ty = EnumTy->getDecl()->getIntegerType(); 7984 7985 // Integer types smaller than a register are extended. 7986 if (Size < 64 && Ty->isIntegerType()) 7987 return ABIArgInfo::getExtend(Ty); 7988 7989 // Other non-aggregates go in registers. 7990 if (!isAggregateTypeForABI(Ty)) 7991 return ABIArgInfo::getDirect(); 7992 7993 // If a C++ object has either a non-trivial copy constructor or a non-trivial 7994 // destructor, it is passed with an explicit indirect pointer / sret pointer. 7995 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 7996 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7997 7998 // This is a small aggregate type that should be passed in registers. 7999 // Build a coercion type from the LLVM struct type. 8000 llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty)); 8001 if (!StrTy) 8002 return ABIArgInfo::getDirect(); 8003 8004 CoerceBuilder CB(getVMContext(), getDataLayout()); 8005 CB.addStruct(0, StrTy); 8006 CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64)); 8007 8008 // Try to use the original type for coercion. 8009 llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType(); 8010 8011 if (CB.InReg) 8012 return ABIArgInfo::getDirectInReg(CoerceTy); 8013 else 8014 return ABIArgInfo::getDirect(CoerceTy); 8015 } 8016 8017 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8018 QualType Ty) const { 8019 ABIArgInfo AI = classifyType(Ty, 16 * 8); 8020 llvm::Type *ArgTy = CGT.ConvertType(Ty); 8021 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 8022 AI.setCoerceToType(ArgTy); 8023 8024 CharUnits SlotSize = CharUnits::fromQuantity(8); 8025 8026 CGBuilderTy &Builder = CGF.Builder; 8027 Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 8028 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 8029 8030 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 8031 8032 Address ArgAddr = Address::invalid(); 8033 CharUnits Stride; 8034 switch (AI.getKind()) { 8035 case ABIArgInfo::Expand: 8036 case ABIArgInfo::CoerceAndExpand: 8037 case ABIArgInfo::InAlloca: 8038 llvm_unreachable("Unsupported ABI kind for va_arg"); 8039 8040 case ABIArgInfo::Extend: { 8041 Stride = SlotSize; 8042 CharUnits Offset = SlotSize - TypeInfo.first; 8043 ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend"); 8044 break; 8045 } 8046 8047 case ABIArgInfo::Direct: { 8048 auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType()); 8049 Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize); 8050 ArgAddr = Addr; 8051 break; 8052 } 8053 8054 case ABIArgInfo::Indirect: 8055 Stride = SlotSize; 8056 ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect"); 8057 ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"), 8058 TypeInfo.second); 8059 break; 8060 8061 case ABIArgInfo::Ignore: 8062 return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.second); 8063 } 8064 8065 // Update VAList. 8066 llvm::Value *NextPtr = 8067 Builder.CreateConstInBoundsByteGEP(Addr.getPointer(), Stride, "ap.next"); 8068 Builder.CreateStore(NextPtr, VAListAddr); 8069 8070 return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr"); 8071 } 8072 8073 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const { 8074 FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8); 8075 for (auto &I : FI.arguments()) 8076 I.info = classifyType(I.type, 16 * 8); 8077 } 8078 8079 namespace { 8080 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo { 8081 public: 8082 SparcV9TargetCodeGenInfo(CodeGenTypes &CGT) 8083 : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {} 8084 8085 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 8086 return 14; 8087 } 8088 8089 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 8090 llvm::Value *Address) const override; 8091 }; 8092 } // end anonymous namespace 8093 8094 bool 8095 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 8096 llvm::Value *Address) const { 8097 // This is calculated from the LLVM and GCC tables and verified 8098 // against gcc output. AFAIK all ABIs use the same encoding. 8099 8100 CodeGen::CGBuilderTy &Builder = CGF.Builder; 8101 8102 llvm::IntegerType *i8 = CGF.Int8Ty; 8103 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 8104 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 8105 8106 // 0-31: the 8-byte general-purpose registers 8107 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 8108 8109 // 32-63: f0-31, the 4-byte floating-point registers 8110 AssignToArrayRange(Builder, Address, Four8, 32, 63); 8111 8112 // Y = 64 8113 // PSR = 65 8114 // WIM = 66 8115 // TBR = 67 8116 // PC = 68 8117 // NPC = 69 8118 // FSR = 70 8119 // CSR = 71 8120 AssignToArrayRange(Builder, Address, Eight8, 64, 71); 8121 8122 // 72-87: d0-15, the 8-byte floating-point registers 8123 AssignToArrayRange(Builder, Address, Eight8, 72, 87); 8124 8125 return false; 8126 } 8127 8128 8129 //===----------------------------------------------------------------------===// 8130 // XCore ABI Implementation 8131 //===----------------------------------------------------------------------===// 8132 8133 namespace { 8134 8135 /// A SmallStringEnc instance is used to build up the TypeString by passing 8136 /// it by reference between functions that append to it. 8137 typedef llvm::SmallString<128> SmallStringEnc; 8138 8139 /// TypeStringCache caches the meta encodings of Types. 8140 /// 8141 /// The reason for caching TypeStrings is two fold: 8142 /// 1. To cache a type's encoding for later uses; 8143 /// 2. As a means to break recursive member type inclusion. 8144 /// 8145 /// A cache Entry can have a Status of: 8146 /// NonRecursive: The type encoding is not recursive; 8147 /// Recursive: The type encoding is recursive; 8148 /// Incomplete: An incomplete TypeString; 8149 /// IncompleteUsed: An incomplete TypeString that has been used in a 8150 /// Recursive type encoding. 8151 /// 8152 /// A NonRecursive entry will have all of its sub-members expanded as fully 8153 /// as possible. Whilst it may contain types which are recursive, the type 8154 /// itself is not recursive and thus its encoding may be safely used whenever 8155 /// the type is encountered. 8156 /// 8157 /// A Recursive entry will have all of its sub-members expanded as fully as 8158 /// possible. The type itself is recursive and it may contain other types which 8159 /// are recursive. The Recursive encoding must not be used during the expansion 8160 /// of a recursive type's recursive branch. For simplicity the code uses 8161 /// IncompleteCount to reject all usage of Recursive encodings for member types. 8162 /// 8163 /// An Incomplete entry is always a RecordType and only encodes its 8164 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and 8165 /// are placed into the cache during type expansion as a means to identify and 8166 /// handle recursive inclusion of types as sub-members. If there is recursion 8167 /// the entry becomes IncompleteUsed. 8168 /// 8169 /// During the expansion of a RecordType's members: 8170 /// 8171 /// If the cache contains a NonRecursive encoding for the member type, the 8172 /// cached encoding is used; 8173 /// 8174 /// If the cache contains a Recursive encoding for the member type, the 8175 /// cached encoding is 'Swapped' out, as it may be incorrect, and... 8176 /// 8177 /// If the member is a RecordType, an Incomplete encoding is placed into the 8178 /// cache to break potential recursive inclusion of itself as a sub-member; 8179 /// 8180 /// Once a member RecordType has been expanded, its temporary incomplete 8181 /// entry is removed from the cache. If a Recursive encoding was swapped out 8182 /// it is swapped back in; 8183 /// 8184 /// If an incomplete entry is used to expand a sub-member, the incomplete 8185 /// entry is marked as IncompleteUsed. The cache keeps count of how many 8186 /// IncompleteUsed entries it currently contains in IncompleteUsedCount; 8187 /// 8188 /// If a member's encoding is found to be a NonRecursive or Recursive viz: 8189 /// IncompleteUsedCount==0, the member's encoding is added to the cache. 8190 /// Else the member is part of a recursive type and thus the recursion has 8191 /// been exited too soon for the encoding to be correct for the member. 8192 /// 8193 class TypeStringCache { 8194 enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed}; 8195 struct Entry { 8196 std::string Str; // The encoded TypeString for the type. 8197 enum Status State; // Information about the encoding in 'Str'. 8198 std::string Swapped; // A temporary place holder for a Recursive encoding 8199 // during the expansion of RecordType's members. 8200 }; 8201 std::map<const IdentifierInfo *, struct Entry> Map; 8202 unsigned IncompleteCount; // Number of Incomplete entries in the Map. 8203 unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map. 8204 public: 8205 TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {} 8206 void addIncomplete(const IdentifierInfo *ID, std::string StubEnc); 8207 bool removeIncomplete(const IdentifierInfo *ID); 8208 void addIfComplete(const IdentifierInfo *ID, StringRef Str, 8209 bool IsRecursive); 8210 StringRef lookupStr(const IdentifierInfo *ID); 8211 }; 8212 8213 /// TypeString encodings for enum & union fields must be order. 8214 /// FieldEncoding is a helper for this ordering process. 8215 class FieldEncoding { 8216 bool HasName; 8217 std::string Enc; 8218 public: 8219 FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {} 8220 StringRef str() { return Enc; } 8221 bool operator<(const FieldEncoding &rhs) const { 8222 if (HasName != rhs.HasName) return HasName; 8223 return Enc < rhs.Enc; 8224 } 8225 }; 8226 8227 class XCoreABIInfo : public DefaultABIInfo { 8228 public: 8229 XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 8230 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8231 QualType Ty) const override; 8232 }; 8233 8234 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo { 8235 mutable TypeStringCache TSC; 8236 public: 8237 XCoreTargetCodeGenInfo(CodeGenTypes &CGT) 8238 :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {} 8239 void emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 8240 CodeGen::CodeGenModule &M) const override; 8241 }; 8242 8243 } // End anonymous namespace. 8244 8245 // TODO: this implementation is likely now redundant with the default 8246 // EmitVAArg. 8247 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8248 QualType Ty) const { 8249 CGBuilderTy &Builder = CGF.Builder; 8250 8251 // Get the VAList. 8252 CharUnits SlotSize = CharUnits::fromQuantity(4); 8253 Address AP(Builder.CreateLoad(VAListAddr), SlotSize); 8254 8255 // Handle the argument. 8256 ABIArgInfo AI = classifyArgumentType(Ty); 8257 CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty); 8258 llvm::Type *ArgTy = CGT.ConvertType(Ty); 8259 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 8260 AI.setCoerceToType(ArgTy); 8261 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 8262 8263 Address Val = Address::invalid(); 8264 CharUnits ArgSize = CharUnits::Zero(); 8265 switch (AI.getKind()) { 8266 case ABIArgInfo::Expand: 8267 case ABIArgInfo::CoerceAndExpand: 8268 case ABIArgInfo::InAlloca: 8269 llvm_unreachable("Unsupported ABI kind for va_arg"); 8270 case ABIArgInfo::Ignore: 8271 Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign); 8272 ArgSize = CharUnits::Zero(); 8273 break; 8274 case ABIArgInfo::Extend: 8275 case ABIArgInfo::Direct: 8276 Val = Builder.CreateBitCast(AP, ArgPtrTy); 8277 ArgSize = CharUnits::fromQuantity( 8278 getDataLayout().getTypeAllocSize(AI.getCoerceToType())); 8279 ArgSize = ArgSize.alignTo(SlotSize); 8280 break; 8281 case ABIArgInfo::Indirect: 8282 Val = Builder.CreateElementBitCast(AP, ArgPtrTy); 8283 Val = Address(Builder.CreateLoad(Val), TypeAlign); 8284 ArgSize = SlotSize; 8285 break; 8286 } 8287 8288 // Increment the VAList. 8289 if (!ArgSize.isZero()) { 8290 llvm::Value *APN = 8291 Builder.CreateConstInBoundsByteGEP(AP.getPointer(), ArgSize); 8292 Builder.CreateStore(APN, VAListAddr); 8293 } 8294 8295 return Val; 8296 } 8297 8298 /// During the expansion of a RecordType, an incomplete TypeString is placed 8299 /// into the cache as a means to identify and break recursion. 8300 /// If there is a Recursive encoding in the cache, it is swapped out and will 8301 /// be reinserted by removeIncomplete(). 8302 /// All other types of encoding should have been used rather than arriving here. 8303 void TypeStringCache::addIncomplete(const IdentifierInfo *ID, 8304 std::string StubEnc) { 8305 if (!ID) 8306 return; 8307 Entry &E = Map[ID]; 8308 assert( (E.Str.empty() || E.State == Recursive) && 8309 "Incorrectly use of addIncomplete"); 8310 assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()"); 8311 E.Swapped.swap(E.Str); // swap out the Recursive 8312 E.Str.swap(StubEnc); 8313 E.State = Incomplete; 8314 ++IncompleteCount; 8315 } 8316 8317 /// Once the RecordType has been expanded, the temporary incomplete TypeString 8318 /// must be removed from the cache. 8319 /// If a Recursive was swapped out by addIncomplete(), it will be replaced. 8320 /// Returns true if the RecordType was defined recursively. 8321 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) { 8322 if (!ID) 8323 return false; 8324 auto I = Map.find(ID); 8325 assert(I != Map.end() && "Entry not present"); 8326 Entry &E = I->second; 8327 assert( (E.State == Incomplete || 8328 E.State == IncompleteUsed) && 8329 "Entry must be an incomplete type"); 8330 bool IsRecursive = false; 8331 if (E.State == IncompleteUsed) { 8332 // We made use of our Incomplete encoding, thus we are recursive. 8333 IsRecursive = true; 8334 --IncompleteUsedCount; 8335 } 8336 if (E.Swapped.empty()) 8337 Map.erase(I); 8338 else { 8339 // Swap the Recursive back. 8340 E.Swapped.swap(E.Str); 8341 E.Swapped.clear(); 8342 E.State = Recursive; 8343 } 8344 --IncompleteCount; 8345 return IsRecursive; 8346 } 8347 8348 /// Add the encoded TypeString to the cache only if it is NonRecursive or 8349 /// Recursive (viz: all sub-members were expanded as fully as possible). 8350 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str, 8351 bool IsRecursive) { 8352 if (!ID || IncompleteUsedCount) 8353 return; // No key or it is is an incomplete sub-type so don't add. 8354 Entry &E = Map[ID]; 8355 if (IsRecursive && !E.Str.empty()) { 8356 assert(E.State==Recursive && E.Str.size() == Str.size() && 8357 "This is not the same Recursive entry"); 8358 // The parent container was not recursive after all, so we could have used 8359 // this Recursive sub-member entry after all, but we assumed the worse when 8360 // we started viz: IncompleteCount!=0. 8361 return; 8362 } 8363 assert(E.Str.empty() && "Entry already present"); 8364 E.Str = Str.str(); 8365 E.State = IsRecursive? Recursive : NonRecursive; 8366 } 8367 8368 /// Return a cached TypeString encoding for the ID. If there isn't one, or we 8369 /// are recursively expanding a type (IncompleteCount != 0) and the cached 8370 /// encoding is Recursive, return an empty StringRef. 8371 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) { 8372 if (!ID) 8373 return StringRef(); // We have no key. 8374 auto I = Map.find(ID); 8375 if (I == Map.end()) 8376 return StringRef(); // We have no encoding. 8377 Entry &E = I->second; 8378 if (E.State == Recursive && IncompleteCount) 8379 return StringRef(); // We don't use Recursive encodings for member types. 8380 8381 if (E.State == Incomplete) { 8382 // The incomplete type is being used to break out of recursion. 8383 E.State = IncompleteUsed; 8384 ++IncompleteUsedCount; 8385 } 8386 return E.Str; 8387 } 8388 8389 /// The XCore ABI includes a type information section that communicates symbol 8390 /// type information to the linker. The linker uses this information to verify 8391 /// safety/correctness of things such as array bound and pointers et al. 8392 /// The ABI only requires C (and XC) language modules to emit TypeStrings. 8393 /// This type information (TypeString) is emitted into meta data for all global 8394 /// symbols: definitions, declarations, functions & variables. 8395 /// 8396 /// The TypeString carries type, qualifier, name, size & value details. 8397 /// Please see 'Tools Development Guide' section 2.16.2 for format details: 8398 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf 8399 /// The output is tested by test/CodeGen/xcore-stringtype.c. 8400 /// 8401 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 8402 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC); 8403 8404 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols. 8405 void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 8406 CodeGen::CodeGenModule &CGM) const { 8407 SmallStringEnc Enc; 8408 if (getTypeString(Enc, D, CGM, TSC)) { 8409 llvm::LLVMContext &Ctx = CGM.getModule().getContext(); 8410 llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV), 8411 llvm::MDString::get(Ctx, Enc.str())}; 8412 llvm::NamedMDNode *MD = 8413 CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings"); 8414 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 8415 } 8416 } 8417 8418 //===----------------------------------------------------------------------===// 8419 // SPIR ABI Implementation 8420 //===----------------------------------------------------------------------===// 8421 8422 namespace { 8423 class SPIRTargetCodeGenInfo : public TargetCodeGenInfo { 8424 public: 8425 SPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 8426 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 8427 unsigned getOpenCLKernelCallingConv() const override; 8428 }; 8429 8430 } // End anonymous namespace. 8431 8432 namespace clang { 8433 namespace CodeGen { 8434 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) { 8435 DefaultABIInfo SPIRABI(CGM.getTypes()); 8436 SPIRABI.computeInfo(FI); 8437 } 8438 } 8439 } 8440 8441 unsigned SPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 8442 return llvm::CallingConv::SPIR_KERNEL; 8443 } 8444 8445 static bool appendType(SmallStringEnc &Enc, QualType QType, 8446 const CodeGen::CodeGenModule &CGM, 8447 TypeStringCache &TSC); 8448 8449 /// Helper function for appendRecordType(). 8450 /// Builds a SmallVector containing the encoded field types in declaration 8451 /// order. 8452 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE, 8453 const RecordDecl *RD, 8454 const CodeGen::CodeGenModule &CGM, 8455 TypeStringCache &TSC) { 8456 for (const auto *Field : RD->fields()) { 8457 SmallStringEnc Enc; 8458 Enc += "m("; 8459 Enc += Field->getName(); 8460 Enc += "){"; 8461 if (Field->isBitField()) { 8462 Enc += "b("; 8463 llvm::raw_svector_ostream OS(Enc); 8464 OS << Field->getBitWidthValue(CGM.getContext()); 8465 Enc += ':'; 8466 } 8467 if (!appendType(Enc, Field->getType(), CGM, TSC)) 8468 return false; 8469 if (Field->isBitField()) 8470 Enc += ')'; 8471 Enc += '}'; 8472 FE.emplace_back(!Field->getName().empty(), Enc); 8473 } 8474 return true; 8475 } 8476 8477 /// Appends structure and union types to Enc and adds encoding to cache. 8478 /// Recursively calls appendType (via extractFieldType) for each field. 8479 /// Union types have their fields ordered according to the ABI. 8480 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT, 8481 const CodeGen::CodeGenModule &CGM, 8482 TypeStringCache &TSC, const IdentifierInfo *ID) { 8483 // Append the cached TypeString if we have one. 8484 StringRef TypeString = TSC.lookupStr(ID); 8485 if (!TypeString.empty()) { 8486 Enc += TypeString; 8487 return true; 8488 } 8489 8490 // Start to emit an incomplete TypeString. 8491 size_t Start = Enc.size(); 8492 Enc += (RT->isUnionType()? 'u' : 's'); 8493 Enc += '('; 8494 if (ID) 8495 Enc += ID->getName(); 8496 Enc += "){"; 8497 8498 // We collect all encoded fields and order as necessary. 8499 bool IsRecursive = false; 8500 const RecordDecl *RD = RT->getDecl()->getDefinition(); 8501 if (RD && !RD->field_empty()) { 8502 // An incomplete TypeString stub is placed in the cache for this RecordType 8503 // so that recursive calls to this RecordType will use it whilst building a 8504 // complete TypeString for this RecordType. 8505 SmallVector<FieldEncoding, 16> FE; 8506 std::string StubEnc(Enc.substr(Start).str()); 8507 StubEnc += '}'; // StubEnc now holds a valid incomplete TypeString. 8508 TSC.addIncomplete(ID, std::move(StubEnc)); 8509 if (!extractFieldType(FE, RD, CGM, TSC)) { 8510 (void) TSC.removeIncomplete(ID); 8511 return false; 8512 } 8513 IsRecursive = TSC.removeIncomplete(ID); 8514 // The ABI requires unions to be sorted but not structures. 8515 // See FieldEncoding::operator< for sort algorithm. 8516 if (RT->isUnionType()) 8517 llvm::sort(FE.begin(), FE.end()); 8518 // We can now complete the TypeString. 8519 unsigned E = FE.size(); 8520 for (unsigned I = 0; I != E; ++I) { 8521 if (I) 8522 Enc += ','; 8523 Enc += FE[I].str(); 8524 } 8525 } 8526 Enc += '}'; 8527 TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive); 8528 return true; 8529 } 8530 8531 /// Appends enum types to Enc and adds the encoding to the cache. 8532 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET, 8533 TypeStringCache &TSC, 8534 const IdentifierInfo *ID) { 8535 // Append the cached TypeString if we have one. 8536 StringRef TypeString = TSC.lookupStr(ID); 8537 if (!TypeString.empty()) { 8538 Enc += TypeString; 8539 return true; 8540 } 8541 8542 size_t Start = Enc.size(); 8543 Enc += "e("; 8544 if (ID) 8545 Enc += ID->getName(); 8546 Enc += "){"; 8547 8548 // We collect all encoded enumerations and order them alphanumerically. 8549 if (const EnumDecl *ED = ET->getDecl()->getDefinition()) { 8550 SmallVector<FieldEncoding, 16> FE; 8551 for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E; 8552 ++I) { 8553 SmallStringEnc EnumEnc; 8554 EnumEnc += "m("; 8555 EnumEnc += I->getName(); 8556 EnumEnc += "){"; 8557 I->getInitVal().toString(EnumEnc); 8558 EnumEnc += '}'; 8559 FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc)); 8560 } 8561 llvm::sort(FE.begin(), FE.end()); 8562 unsigned E = FE.size(); 8563 for (unsigned I = 0; I != E; ++I) { 8564 if (I) 8565 Enc += ','; 8566 Enc += FE[I].str(); 8567 } 8568 } 8569 Enc += '}'; 8570 TSC.addIfComplete(ID, Enc.substr(Start), false); 8571 return true; 8572 } 8573 8574 /// Appends type's qualifier to Enc. 8575 /// This is done prior to appending the type's encoding. 8576 static void appendQualifier(SmallStringEnc &Enc, QualType QT) { 8577 // Qualifiers are emitted in alphabetical order. 8578 static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"}; 8579 int Lookup = 0; 8580 if (QT.isConstQualified()) 8581 Lookup += 1<<0; 8582 if (QT.isRestrictQualified()) 8583 Lookup += 1<<1; 8584 if (QT.isVolatileQualified()) 8585 Lookup += 1<<2; 8586 Enc += Table[Lookup]; 8587 } 8588 8589 /// Appends built-in types to Enc. 8590 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) { 8591 const char *EncType; 8592 switch (BT->getKind()) { 8593 case BuiltinType::Void: 8594 EncType = "0"; 8595 break; 8596 case BuiltinType::Bool: 8597 EncType = "b"; 8598 break; 8599 case BuiltinType::Char_U: 8600 EncType = "uc"; 8601 break; 8602 case BuiltinType::UChar: 8603 EncType = "uc"; 8604 break; 8605 case BuiltinType::SChar: 8606 EncType = "sc"; 8607 break; 8608 case BuiltinType::UShort: 8609 EncType = "us"; 8610 break; 8611 case BuiltinType::Short: 8612 EncType = "ss"; 8613 break; 8614 case BuiltinType::UInt: 8615 EncType = "ui"; 8616 break; 8617 case BuiltinType::Int: 8618 EncType = "si"; 8619 break; 8620 case BuiltinType::ULong: 8621 EncType = "ul"; 8622 break; 8623 case BuiltinType::Long: 8624 EncType = "sl"; 8625 break; 8626 case BuiltinType::ULongLong: 8627 EncType = "ull"; 8628 break; 8629 case BuiltinType::LongLong: 8630 EncType = "sll"; 8631 break; 8632 case BuiltinType::Float: 8633 EncType = "ft"; 8634 break; 8635 case BuiltinType::Double: 8636 EncType = "d"; 8637 break; 8638 case BuiltinType::LongDouble: 8639 EncType = "ld"; 8640 break; 8641 default: 8642 return false; 8643 } 8644 Enc += EncType; 8645 return true; 8646 } 8647 8648 /// Appends a pointer encoding to Enc before calling appendType for the pointee. 8649 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT, 8650 const CodeGen::CodeGenModule &CGM, 8651 TypeStringCache &TSC) { 8652 Enc += "p("; 8653 if (!appendType(Enc, PT->getPointeeType(), CGM, TSC)) 8654 return false; 8655 Enc += ')'; 8656 return true; 8657 } 8658 8659 /// Appends array encoding to Enc before calling appendType for the element. 8660 static bool appendArrayType(SmallStringEnc &Enc, QualType QT, 8661 const ArrayType *AT, 8662 const CodeGen::CodeGenModule &CGM, 8663 TypeStringCache &TSC, StringRef NoSizeEnc) { 8664 if (AT->getSizeModifier() != ArrayType::Normal) 8665 return false; 8666 Enc += "a("; 8667 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) 8668 CAT->getSize().toStringUnsigned(Enc); 8669 else 8670 Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "". 8671 Enc += ':'; 8672 // The Qualifiers should be attached to the type rather than the array. 8673 appendQualifier(Enc, QT); 8674 if (!appendType(Enc, AT->getElementType(), CGM, TSC)) 8675 return false; 8676 Enc += ')'; 8677 return true; 8678 } 8679 8680 /// Appends a function encoding to Enc, calling appendType for the return type 8681 /// and the arguments. 8682 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT, 8683 const CodeGen::CodeGenModule &CGM, 8684 TypeStringCache &TSC) { 8685 Enc += "f{"; 8686 if (!appendType(Enc, FT->getReturnType(), CGM, TSC)) 8687 return false; 8688 Enc += "}("; 8689 if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) { 8690 // N.B. we are only interested in the adjusted param types. 8691 auto I = FPT->param_type_begin(); 8692 auto E = FPT->param_type_end(); 8693 if (I != E) { 8694 do { 8695 if (!appendType(Enc, *I, CGM, TSC)) 8696 return false; 8697 ++I; 8698 if (I != E) 8699 Enc += ','; 8700 } while (I != E); 8701 if (FPT->isVariadic()) 8702 Enc += ",va"; 8703 } else { 8704 if (FPT->isVariadic()) 8705 Enc += "va"; 8706 else 8707 Enc += '0'; 8708 } 8709 } 8710 Enc += ')'; 8711 return true; 8712 } 8713 8714 /// Handles the type's qualifier before dispatching a call to handle specific 8715 /// type encodings. 8716 static bool appendType(SmallStringEnc &Enc, QualType QType, 8717 const CodeGen::CodeGenModule &CGM, 8718 TypeStringCache &TSC) { 8719 8720 QualType QT = QType.getCanonicalType(); 8721 8722 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) 8723 // The Qualifiers should be attached to the type rather than the array. 8724 // Thus we don't call appendQualifier() here. 8725 return appendArrayType(Enc, QT, AT, CGM, TSC, ""); 8726 8727 appendQualifier(Enc, QT); 8728 8729 if (const BuiltinType *BT = QT->getAs<BuiltinType>()) 8730 return appendBuiltinType(Enc, BT); 8731 8732 if (const PointerType *PT = QT->getAs<PointerType>()) 8733 return appendPointerType(Enc, PT, CGM, TSC); 8734 8735 if (const EnumType *ET = QT->getAs<EnumType>()) 8736 return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier()); 8737 8738 if (const RecordType *RT = QT->getAsStructureType()) 8739 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 8740 8741 if (const RecordType *RT = QT->getAsUnionType()) 8742 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 8743 8744 if (const FunctionType *FT = QT->getAs<FunctionType>()) 8745 return appendFunctionType(Enc, FT, CGM, TSC); 8746 8747 return false; 8748 } 8749 8750 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 8751 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) { 8752 if (!D) 8753 return false; 8754 8755 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 8756 if (FD->getLanguageLinkage() != CLanguageLinkage) 8757 return false; 8758 return appendType(Enc, FD->getType(), CGM, TSC); 8759 } 8760 8761 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 8762 if (VD->getLanguageLinkage() != CLanguageLinkage) 8763 return false; 8764 QualType QT = VD->getType().getCanonicalType(); 8765 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) { 8766 // Global ArrayTypes are given a size of '*' if the size is unknown. 8767 // The Qualifiers should be attached to the type rather than the array. 8768 // Thus we don't call appendQualifier() here. 8769 return appendArrayType(Enc, QT, AT, CGM, TSC, "*"); 8770 } 8771 return appendType(Enc, QT, CGM, TSC); 8772 } 8773 return false; 8774 } 8775 8776 //===----------------------------------------------------------------------===// 8777 // RISCV ABI Implementation 8778 //===----------------------------------------------------------------------===// 8779 8780 namespace { 8781 class RISCVABIInfo : public DefaultABIInfo { 8782 private: 8783 unsigned XLen; // Size of the integer ('x') registers in bits. 8784 static const int NumArgGPRs = 8; 8785 8786 public: 8787 RISCVABIInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen) 8788 : DefaultABIInfo(CGT), XLen(XLen) {} 8789 8790 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 8791 // non-virtual, but computeInfo is virtual, so we overload it. 8792 void computeInfo(CGFunctionInfo &FI) const override; 8793 8794 ABIArgInfo classifyArgumentType(QualType Ty, bool IsFixed, 8795 int &ArgGPRsLeft) const; 8796 ABIArgInfo classifyReturnType(QualType RetTy) const; 8797 8798 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8799 QualType Ty) const override; 8800 8801 ABIArgInfo extendType(QualType Ty) const; 8802 }; 8803 } // end anonymous namespace 8804 8805 void RISCVABIInfo::computeInfo(CGFunctionInfo &FI) const { 8806 QualType RetTy = FI.getReturnType(); 8807 if (!getCXXABI().classifyReturnType(FI)) 8808 FI.getReturnInfo() = classifyReturnType(RetTy); 8809 8810 // IsRetIndirect is true if classifyArgumentType indicated the value should 8811 // be passed indirect or if the type size is greater than 2*xlen. e.g. fp128 8812 // is passed direct in LLVM IR, relying on the backend lowering code to 8813 // rewrite the argument list and pass indirectly on RV32. 8814 bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect || 8815 getContext().getTypeSize(RetTy) > (2 * XLen); 8816 8817 // We must track the number of GPRs used in order to conform to the RISC-V 8818 // ABI, as integer scalars passed in registers should have signext/zeroext 8819 // when promoted, but are anyext if passed on the stack. As GPR usage is 8820 // different for variadic arguments, we must also track whether we are 8821 // examining a vararg or not. 8822 int ArgGPRsLeft = IsRetIndirect ? NumArgGPRs - 1 : NumArgGPRs; 8823 int NumFixedArgs = FI.getNumRequiredArgs(); 8824 8825 int ArgNum = 0; 8826 for (auto &ArgInfo : FI.arguments()) { 8827 bool IsFixed = ArgNum < NumFixedArgs; 8828 ArgInfo.info = classifyArgumentType(ArgInfo.type, IsFixed, ArgGPRsLeft); 8829 ArgNum++; 8830 } 8831 } 8832 8833 ABIArgInfo RISCVABIInfo::classifyArgumentType(QualType Ty, bool IsFixed, 8834 int &ArgGPRsLeft) const { 8835 assert(ArgGPRsLeft <= NumArgGPRs && "Arg GPR tracking underflow"); 8836 Ty = useFirstFieldIfTransparentUnion(Ty); 8837 8838 // Structures with either a non-trivial destructor or a non-trivial 8839 // copy constructor are always passed indirectly. 8840 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 8841 if (ArgGPRsLeft) 8842 ArgGPRsLeft -= 1; 8843 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 8844 CGCXXABI::RAA_DirectInMemory); 8845 } 8846 8847 // Ignore empty structs/unions. 8848 if (isEmptyRecord(getContext(), Ty, true)) 8849 return ABIArgInfo::getIgnore(); 8850 8851 uint64_t Size = getContext().getTypeSize(Ty); 8852 uint64_t NeededAlign = getContext().getTypeAlign(Ty); 8853 bool MustUseStack = false; 8854 // Determine the number of GPRs needed to pass the current argument 8855 // according to the ABI. 2*XLen-aligned varargs are passed in "aligned" 8856 // register pairs, so may consume 3 registers. 8857 int NeededArgGPRs = 1; 8858 if (!IsFixed && NeededAlign == 2 * XLen) 8859 NeededArgGPRs = 2 + (ArgGPRsLeft % 2); 8860 else if (Size > XLen && Size <= 2 * XLen) 8861 NeededArgGPRs = 2; 8862 8863 if (NeededArgGPRs > ArgGPRsLeft) { 8864 MustUseStack = true; 8865 NeededArgGPRs = ArgGPRsLeft; 8866 } 8867 8868 ArgGPRsLeft -= NeededArgGPRs; 8869 8870 if (!isAggregateTypeForABI(Ty) && !Ty->isVectorType()) { 8871 // Treat an enum type as its underlying type. 8872 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 8873 Ty = EnumTy->getDecl()->getIntegerType(); 8874 8875 // All integral types are promoted to XLen width, unless passed on the 8876 // stack. 8877 if (Size < XLen && Ty->isIntegralOrEnumerationType() && !MustUseStack) { 8878 return extendType(Ty); 8879 } 8880 8881 return ABIArgInfo::getDirect(); 8882 } 8883 8884 // Aggregates which are <= 2*XLen will be passed in registers if possible, 8885 // so coerce to integers. 8886 if (Size <= 2 * XLen) { 8887 unsigned Alignment = getContext().getTypeAlign(Ty); 8888 8889 // Use a single XLen int if possible, 2*XLen if 2*XLen alignment is 8890 // required, and a 2-element XLen array if only XLen alignment is required. 8891 if (Size <= XLen) { 8892 return ABIArgInfo::getDirect( 8893 llvm::IntegerType::get(getVMContext(), XLen)); 8894 } else if (Alignment == 2 * XLen) { 8895 return ABIArgInfo::getDirect( 8896 llvm::IntegerType::get(getVMContext(), 2 * XLen)); 8897 } else { 8898 return ABIArgInfo::getDirect(llvm::ArrayType::get( 8899 llvm::IntegerType::get(getVMContext(), XLen), 2)); 8900 } 8901 } 8902 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 8903 } 8904 8905 ABIArgInfo RISCVABIInfo::classifyReturnType(QualType RetTy) const { 8906 if (RetTy->isVoidType()) 8907 return ABIArgInfo::getIgnore(); 8908 8909 int ArgGPRsLeft = 2; 8910 8911 // The rules for return and argument types are the same, so defer to 8912 // classifyArgumentType. 8913 return classifyArgumentType(RetTy, /*IsFixed=*/true, ArgGPRsLeft); 8914 } 8915 8916 Address RISCVABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8917 QualType Ty) const { 8918 CharUnits SlotSize = CharUnits::fromQuantity(XLen / 8); 8919 8920 // Empty records are ignored for parameter passing purposes. 8921 if (isEmptyRecord(getContext(), Ty, true)) { 8922 Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize); 8923 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 8924 return Addr; 8925 } 8926 8927 std::pair<CharUnits, CharUnits> SizeAndAlign = 8928 getContext().getTypeInfoInChars(Ty); 8929 8930 // Arguments bigger than 2*Xlen bytes are passed indirectly. 8931 bool IsIndirect = SizeAndAlign.first > 2 * SlotSize; 8932 8933 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, SizeAndAlign, 8934 SlotSize, /*AllowHigherAlign=*/true); 8935 } 8936 8937 ABIArgInfo RISCVABIInfo::extendType(QualType Ty) const { 8938 int TySize = getContext().getTypeSize(Ty); 8939 // RV64 ABI requires unsigned 32 bit integers to be sign extended. 8940 if (XLen == 64 && Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 8941 return ABIArgInfo::getSignExtend(Ty); 8942 return ABIArgInfo::getExtend(Ty); 8943 } 8944 8945 namespace { 8946 class RISCVTargetCodeGenInfo : public TargetCodeGenInfo { 8947 public: 8948 RISCVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen) 8949 : TargetCodeGenInfo(new RISCVABIInfo(CGT, XLen)) {} 8950 }; 8951 } // namespace 8952 8953 //===----------------------------------------------------------------------===// 8954 // Driver code 8955 //===----------------------------------------------------------------------===// 8956 8957 bool CodeGenModule::supportsCOMDAT() const { 8958 return getTriple().supportsCOMDAT(); 8959 } 8960 8961 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { 8962 if (TheTargetCodeGenInfo) 8963 return *TheTargetCodeGenInfo; 8964 8965 // Helper to set the unique_ptr while still keeping the return value. 8966 auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & { 8967 this->TheTargetCodeGenInfo.reset(P); 8968 return *P; 8969 }; 8970 8971 const llvm::Triple &Triple = getTarget().getTriple(); 8972 switch (Triple.getArch()) { 8973 default: 8974 return SetCGInfo(new DefaultTargetCodeGenInfo(Types)); 8975 8976 case llvm::Triple::le32: 8977 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 8978 case llvm::Triple::mips: 8979 case llvm::Triple::mipsel: 8980 if (Triple.getOS() == llvm::Triple::NaCl) 8981 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 8982 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true)); 8983 8984 case llvm::Triple::mips64: 8985 case llvm::Triple::mips64el: 8986 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false)); 8987 8988 case llvm::Triple::avr: 8989 return SetCGInfo(new AVRTargetCodeGenInfo(Types)); 8990 8991 case llvm::Triple::aarch64: 8992 case llvm::Triple::aarch64_be: { 8993 AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS; 8994 if (getTarget().getABI() == "darwinpcs") 8995 Kind = AArch64ABIInfo::DarwinPCS; 8996 else if (Triple.isOSWindows()) 8997 return SetCGInfo( 8998 new WindowsAArch64TargetCodeGenInfo(Types, AArch64ABIInfo::Win64)); 8999 9000 return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind)); 9001 } 9002 9003 case llvm::Triple::wasm32: 9004 case llvm::Triple::wasm64: 9005 return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types)); 9006 9007 case llvm::Triple::arm: 9008 case llvm::Triple::armeb: 9009 case llvm::Triple::thumb: 9010 case llvm::Triple::thumbeb: { 9011 if (Triple.getOS() == llvm::Triple::Win32) { 9012 return SetCGInfo( 9013 new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP)); 9014 } 9015 9016 ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS; 9017 StringRef ABIStr = getTarget().getABI(); 9018 if (ABIStr == "apcs-gnu") 9019 Kind = ARMABIInfo::APCS; 9020 else if (ABIStr == "aapcs16") 9021 Kind = ARMABIInfo::AAPCS16_VFP; 9022 else if (CodeGenOpts.FloatABI == "hard" || 9023 (CodeGenOpts.FloatABI != "soft" && 9024 (Triple.getEnvironment() == llvm::Triple::GNUEABIHF || 9025 Triple.getEnvironment() == llvm::Triple::MuslEABIHF || 9026 Triple.getEnvironment() == llvm::Triple::EABIHF))) 9027 Kind = ARMABIInfo::AAPCS_VFP; 9028 9029 return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind)); 9030 } 9031 9032 case llvm::Triple::ppc: 9033 return SetCGInfo( 9034 new PPC32TargetCodeGenInfo(Types, CodeGenOpts.FloatABI == "soft")); 9035 case llvm::Triple::ppc64: 9036 if (Triple.isOSBinFormatELF()) { 9037 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1; 9038 if (getTarget().getABI() == "elfv2") 9039 Kind = PPC64_SVR4_ABIInfo::ELFv2; 9040 bool HasQPX = getTarget().getABI() == "elfv1-qpx"; 9041 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 9042 9043 return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX, 9044 IsSoftFloat)); 9045 } else 9046 return SetCGInfo(new PPC64TargetCodeGenInfo(Types)); 9047 case llvm::Triple::ppc64le: { 9048 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); 9049 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2; 9050 if (getTarget().getABI() == "elfv1" || getTarget().getABI() == "elfv1-qpx") 9051 Kind = PPC64_SVR4_ABIInfo::ELFv1; 9052 bool HasQPX = getTarget().getABI() == "elfv1-qpx"; 9053 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 9054 9055 return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX, 9056 IsSoftFloat)); 9057 } 9058 9059 case llvm::Triple::nvptx: 9060 case llvm::Triple::nvptx64: 9061 return SetCGInfo(new NVPTXTargetCodeGenInfo(Types)); 9062 9063 case llvm::Triple::msp430: 9064 return SetCGInfo(new MSP430TargetCodeGenInfo(Types)); 9065 9066 case llvm::Triple::riscv32: 9067 return SetCGInfo(new RISCVTargetCodeGenInfo(Types, 32)); 9068 case llvm::Triple::riscv64: 9069 return SetCGInfo(new RISCVTargetCodeGenInfo(Types, 64)); 9070 9071 case llvm::Triple::systemz: { 9072 bool HasVector = getTarget().getABI() == "vector"; 9073 return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector)); 9074 } 9075 9076 case llvm::Triple::tce: 9077 case llvm::Triple::tcele: 9078 return SetCGInfo(new TCETargetCodeGenInfo(Types)); 9079 9080 case llvm::Triple::x86: { 9081 bool IsDarwinVectorABI = Triple.isOSDarwin(); 9082 bool RetSmallStructInRegABI = 9083 X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 9084 bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing(); 9085 9086 if (Triple.getOS() == llvm::Triple::Win32) { 9087 return SetCGInfo(new WinX86_32TargetCodeGenInfo( 9088 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 9089 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters)); 9090 } else { 9091 return SetCGInfo(new X86_32TargetCodeGenInfo( 9092 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 9093 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters, 9094 CodeGenOpts.FloatABI == "soft")); 9095 } 9096 } 9097 9098 case llvm::Triple::x86_64: { 9099 StringRef ABI = getTarget().getABI(); 9100 X86AVXABILevel AVXLevel = 9101 (ABI == "avx512" 9102 ? X86AVXABILevel::AVX512 9103 : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None); 9104 9105 switch (Triple.getOS()) { 9106 case llvm::Triple::Win32: 9107 return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel)); 9108 case llvm::Triple::PS4: 9109 return SetCGInfo(new PS4TargetCodeGenInfo(Types, AVXLevel)); 9110 default: 9111 return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel)); 9112 } 9113 } 9114 case llvm::Triple::hexagon: 9115 return SetCGInfo(new HexagonTargetCodeGenInfo(Types)); 9116 case llvm::Triple::lanai: 9117 return SetCGInfo(new LanaiTargetCodeGenInfo(Types)); 9118 case llvm::Triple::r600: 9119 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 9120 case llvm::Triple::amdgcn: 9121 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 9122 case llvm::Triple::sparc: 9123 return SetCGInfo(new SparcV8TargetCodeGenInfo(Types)); 9124 case llvm::Triple::sparcv9: 9125 return SetCGInfo(new SparcV9TargetCodeGenInfo(Types)); 9126 case llvm::Triple::xcore: 9127 return SetCGInfo(new XCoreTargetCodeGenInfo(Types)); 9128 case llvm::Triple::spir: 9129 case llvm::Triple::spir64: 9130 return SetCGInfo(new SPIRTargetCodeGenInfo(Types)); 9131 } 9132 } 9133 9134 /// Create an OpenCL kernel for an enqueued block. 9135 /// 9136 /// The kernel has the same function type as the block invoke function. Its 9137 /// name is the name of the block invoke function postfixed with "_kernel". 9138 /// It simply calls the block invoke function then returns. 9139 llvm::Function * 9140 TargetCodeGenInfo::createEnqueuedBlockKernel(CodeGenFunction &CGF, 9141 llvm::Function *Invoke, 9142 llvm::Value *BlockLiteral) const { 9143 auto *InvokeFT = Invoke->getFunctionType(); 9144 llvm::SmallVector<llvm::Type *, 2> ArgTys; 9145 for (auto &P : InvokeFT->params()) 9146 ArgTys.push_back(P); 9147 auto &C = CGF.getLLVMContext(); 9148 std::string Name = Invoke->getName().str() + "_kernel"; 9149 auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false); 9150 auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name, 9151 &CGF.CGM.getModule()); 9152 auto IP = CGF.Builder.saveIP(); 9153 auto *BB = llvm::BasicBlock::Create(C, "entry", F); 9154 auto &Builder = CGF.Builder; 9155 Builder.SetInsertPoint(BB); 9156 llvm::SmallVector<llvm::Value *, 2> Args; 9157 for (auto &A : F->args()) 9158 Args.push_back(&A); 9159 Builder.CreateCall(Invoke, Args); 9160 Builder.CreateRetVoid(); 9161 Builder.restoreIP(IP); 9162 return F; 9163 } 9164 9165 /// Create an OpenCL kernel for an enqueued block. 9166 /// 9167 /// The type of the first argument (the block literal) is the struct type 9168 /// of the block literal instead of a pointer type. The first argument 9169 /// (block literal) is passed directly by value to the kernel. The kernel 9170 /// allocates the same type of struct on stack and stores the block literal 9171 /// to it and passes its pointer to the block invoke function. The kernel 9172 /// has "enqueued-block" function attribute and kernel argument metadata. 9173 llvm::Function *AMDGPUTargetCodeGenInfo::createEnqueuedBlockKernel( 9174 CodeGenFunction &CGF, llvm::Function *Invoke, 9175 llvm::Value *BlockLiteral) const { 9176 auto &Builder = CGF.Builder; 9177 auto &C = CGF.getLLVMContext(); 9178 9179 auto *BlockTy = BlockLiteral->getType()->getPointerElementType(); 9180 auto *InvokeFT = Invoke->getFunctionType(); 9181 llvm::SmallVector<llvm::Type *, 2> ArgTys; 9182 llvm::SmallVector<llvm::Metadata *, 8> AddressQuals; 9183 llvm::SmallVector<llvm::Metadata *, 8> AccessQuals; 9184 llvm::SmallVector<llvm::Metadata *, 8> ArgTypeNames; 9185 llvm::SmallVector<llvm::Metadata *, 8> ArgBaseTypeNames; 9186 llvm::SmallVector<llvm::Metadata *, 8> ArgTypeQuals; 9187 llvm::SmallVector<llvm::Metadata *, 8> ArgNames; 9188 9189 ArgTys.push_back(BlockTy); 9190 ArgTypeNames.push_back(llvm::MDString::get(C, "__block_literal")); 9191 AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(0))); 9192 ArgBaseTypeNames.push_back(llvm::MDString::get(C, "__block_literal")); 9193 ArgTypeQuals.push_back(llvm::MDString::get(C, "")); 9194 AccessQuals.push_back(llvm::MDString::get(C, "none")); 9195 ArgNames.push_back(llvm::MDString::get(C, "block_literal")); 9196 for (unsigned I = 1, E = InvokeFT->getNumParams(); I < E; ++I) { 9197 ArgTys.push_back(InvokeFT->getParamType(I)); 9198 ArgTypeNames.push_back(llvm::MDString::get(C, "void*")); 9199 AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(3))); 9200 AccessQuals.push_back(llvm::MDString::get(C, "none")); 9201 ArgBaseTypeNames.push_back(llvm::MDString::get(C, "void*")); 9202 ArgTypeQuals.push_back(llvm::MDString::get(C, "")); 9203 ArgNames.push_back( 9204 llvm::MDString::get(C, (Twine("local_arg") + Twine(I)).str())); 9205 } 9206 std::string Name = Invoke->getName().str() + "_kernel"; 9207 auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false); 9208 auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name, 9209 &CGF.CGM.getModule()); 9210 F->addFnAttr("enqueued-block"); 9211 auto IP = CGF.Builder.saveIP(); 9212 auto *BB = llvm::BasicBlock::Create(C, "entry", F); 9213 Builder.SetInsertPoint(BB); 9214 unsigned BlockAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(BlockTy); 9215 auto *BlockPtr = Builder.CreateAlloca(BlockTy, nullptr); 9216 BlockPtr->setAlignment(BlockAlign); 9217 Builder.CreateAlignedStore(F->arg_begin(), BlockPtr, BlockAlign); 9218 auto *Cast = Builder.CreatePointerCast(BlockPtr, InvokeFT->getParamType(0)); 9219 llvm::SmallVector<llvm::Value *, 2> Args; 9220 Args.push_back(Cast); 9221 for (auto I = F->arg_begin() + 1, E = F->arg_end(); I != E; ++I) 9222 Args.push_back(I); 9223 Builder.CreateCall(Invoke, Args); 9224 Builder.CreateRetVoid(); 9225 Builder.restoreIP(IP); 9226 9227 F->setMetadata("kernel_arg_addr_space", llvm::MDNode::get(C, AddressQuals)); 9228 F->setMetadata("kernel_arg_access_qual", llvm::MDNode::get(C, AccessQuals)); 9229 F->setMetadata("kernel_arg_type", llvm::MDNode::get(C, ArgTypeNames)); 9230 F->setMetadata("kernel_arg_base_type", 9231 llvm::MDNode::get(C, ArgBaseTypeNames)); 9232 F->setMetadata("kernel_arg_type_qual", llvm::MDNode::get(C, ArgTypeQuals)); 9233 if (CGF.CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 9234 F->setMetadata("kernel_arg_name", llvm::MDNode::get(C, ArgNames)); 9235 9236 return F; 9237 } 9238