1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // These classes wrap the information about a call or function 10 // definition used to handle ABI compliancy. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "TargetInfo.h" 15 #include "ABIInfo.h" 16 #include "CGBlocks.h" 17 #include "CGCXXABI.h" 18 #include "CGValue.h" 19 #include "CodeGenFunction.h" 20 #include "clang/AST/Attr.h" 21 #include "clang/AST/RecordLayout.h" 22 #include "clang/Basic/CodeGenOptions.h" 23 #include "clang/Basic/DiagnosticFrontend.h" 24 #include "clang/CodeGen/CGFunctionInfo.h" 25 #include "clang/CodeGen/SwiftCallingConv.h" 26 #include "llvm/ADT/SmallBitVector.h" 27 #include "llvm/ADT/StringExtras.h" 28 #include "llvm/ADT/StringSwitch.h" 29 #include "llvm/ADT/Triple.h" 30 #include "llvm/ADT/Twine.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/IntrinsicsNVPTX.h" 33 #include "llvm/IR/Type.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include <algorithm> // std::sort 36 37 using namespace clang; 38 using namespace CodeGen; 39 40 // Helper for coercing an aggregate argument or return value into an integer 41 // array of the same size (including padding) and alignment. This alternate 42 // coercion happens only for the RenderScript ABI and can be removed after 43 // runtimes that rely on it are no longer supported. 44 // 45 // RenderScript assumes that the size of the argument / return value in the IR 46 // is the same as the size of the corresponding qualified type. This helper 47 // coerces the aggregate type into an array of the same size (including 48 // padding). This coercion is used in lieu of expansion of struct members or 49 // other canonical coercions that return a coerced-type of larger size. 50 // 51 // Ty - The argument / return value type 52 // Context - The associated ASTContext 53 // LLVMContext - The associated LLVMContext 54 static ABIArgInfo coerceToIntArray(QualType Ty, 55 ASTContext &Context, 56 llvm::LLVMContext &LLVMContext) { 57 // Alignment and Size are measured in bits. 58 const uint64_t Size = Context.getTypeSize(Ty); 59 const uint64_t Alignment = Context.getTypeAlign(Ty); 60 llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment); 61 const uint64_t NumElements = (Size + Alignment - 1) / Alignment; 62 return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements)); 63 } 64 65 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder, 66 llvm::Value *Array, 67 llvm::Value *Value, 68 unsigned FirstIndex, 69 unsigned LastIndex) { 70 // Alternatively, we could emit this as a loop in the source. 71 for (unsigned I = FirstIndex; I <= LastIndex; ++I) { 72 llvm::Value *Cell = 73 Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I); 74 Builder.CreateAlignedStore(Value, Cell, CharUnits::One()); 75 } 76 } 77 78 static bool isAggregateTypeForABI(QualType T) { 79 return !CodeGenFunction::hasScalarEvaluationKind(T) || 80 T->isMemberFunctionPointerType(); 81 } 82 83 ABIArgInfo ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByVal, 84 bool Realign, 85 llvm::Type *Padding) const { 86 return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty), ByVal, 87 Realign, Padding); 88 } 89 90 ABIArgInfo 91 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const { 92 return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty), 93 /*ByVal*/ false, Realign); 94 } 95 96 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 97 QualType Ty) const { 98 return Address::invalid(); 99 } 100 101 bool ABIInfo::isPromotableIntegerTypeForABI(QualType Ty) const { 102 if (Ty->isPromotableIntegerType()) 103 return true; 104 105 if (const auto *EIT = Ty->getAs<ExtIntType>()) 106 if (EIT->getNumBits() < getContext().getTypeSize(getContext().IntTy)) 107 return true; 108 109 return false; 110 } 111 112 ABIInfo::~ABIInfo() {} 113 114 /// Does the given lowering require more than the given number of 115 /// registers when expanded? 116 /// 117 /// This is intended to be the basis of a reasonable basic implementation 118 /// of should{Pass,Return}IndirectlyForSwift. 119 /// 120 /// For most targets, a limit of four total registers is reasonable; this 121 /// limits the amount of code required in order to move around the value 122 /// in case it wasn't produced immediately prior to the call by the caller 123 /// (or wasn't produced in exactly the right registers) or isn't used 124 /// immediately within the callee. But some targets may need to further 125 /// limit the register count due to an inability to support that many 126 /// return registers. 127 static bool occupiesMoreThan(CodeGenTypes &cgt, 128 ArrayRef<llvm::Type*> scalarTypes, 129 unsigned maxAllRegisters) { 130 unsigned intCount = 0, fpCount = 0; 131 for (llvm::Type *type : scalarTypes) { 132 if (type->isPointerTy()) { 133 intCount++; 134 } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) { 135 auto ptrWidth = cgt.getTarget().getPointerWidth(0); 136 intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth; 137 } else { 138 assert(type->isVectorTy() || type->isFloatingPointTy()); 139 fpCount++; 140 } 141 } 142 143 return (intCount + fpCount > maxAllRegisters); 144 } 145 146 bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, 147 llvm::Type *eltTy, 148 unsigned numElts) const { 149 // The default implementation of this assumes that the target guarantees 150 // 128-bit SIMD support but nothing more. 151 return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16); 152 } 153 154 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT, 155 CGCXXABI &CXXABI) { 156 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); 157 if (!RD) { 158 if (!RT->getDecl()->canPassInRegisters()) 159 return CGCXXABI::RAA_Indirect; 160 return CGCXXABI::RAA_Default; 161 } 162 return CXXABI.getRecordArgABI(RD); 163 } 164 165 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T, 166 CGCXXABI &CXXABI) { 167 const RecordType *RT = T->getAs<RecordType>(); 168 if (!RT) 169 return CGCXXABI::RAA_Default; 170 return getRecordArgABI(RT, CXXABI); 171 } 172 173 static bool classifyReturnType(const CGCXXABI &CXXABI, CGFunctionInfo &FI, 174 const ABIInfo &Info) { 175 QualType Ty = FI.getReturnType(); 176 177 if (const auto *RT = Ty->getAs<RecordType>()) 178 if (!isa<CXXRecordDecl>(RT->getDecl()) && 179 !RT->getDecl()->canPassInRegisters()) { 180 FI.getReturnInfo() = Info.getNaturalAlignIndirect(Ty); 181 return true; 182 } 183 184 return CXXABI.classifyReturnType(FI); 185 } 186 187 /// Pass transparent unions as if they were the type of the first element. Sema 188 /// should ensure that all elements of the union have the same "machine type". 189 static QualType useFirstFieldIfTransparentUnion(QualType Ty) { 190 if (const RecordType *UT = Ty->getAsUnionType()) { 191 const RecordDecl *UD = UT->getDecl(); 192 if (UD->hasAttr<TransparentUnionAttr>()) { 193 assert(!UD->field_empty() && "sema created an empty transparent union"); 194 return UD->field_begin()->getType(); 195 } 196 } 197 return Ty; 198 } 199 200 CGCXXABI &ABIInfo::getCXXABI() const { 201 return CGT.getCXXABI(); 202 } 203 204 ASTContext &ABIInfo::getContext() const { 205 return CGT.getContext(); 206 } 207 208 llvm::LLVMContext &ABIInfo::getVMContext() const { 209 return CGT.getLLVMContext(); 210 } 211 212 const llvm::DataLayout &ABIInfo::getDataLayout() const { 213 return CGT.getDataLayout(); 214 } 215 216 const TargetInfo &ABIInfo::getTarget() const { 217 return CGT.getTarget(); 218 } 219 220 const CodeGenOptions &ABIInfo::getCodeGenOpts() const { 221 return CGT.getCodeGenOpts(); 222 } 223 224 bool ABIInfo::isAndroid() const { return getTarget().getTriple().isAndroid(); } 225 226 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 227 return false; 228 } 229 230 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 231 uint64_t Members) const { 232 return false; 233 } 234 235 LLVM_DUMP_METHOD void ABIArgInfo::dump() const { 236 raw_ostream &OS = llvm::errs(); 237 OS << "(ABIArgInfo Kind="; 238 switch (TheKind) { 239 case Direct: 240 OS << "Direct Type="; 241 if (llvm::Type *Ty = getCoerceToType()) 242 Ty->print(OS); 243 else 244 OS << "null"; 245 break; 246 case Extend: 247 OS << "Extend"; 248 break; 249 case Ignore: 250 OS << "Ignore"; 251 break; 252 case InAlloca: 253 OS << "InAlloca Offset=" << getInAllocaFieldIndex(); 254 break; 255 case Indirect: 256 OS << "Indirect Align=" << getIndirectAlign().getQuantity() 257 << " ByVal=" << getIndirectByVal() 258 << " Realign=" << getIndirectRealign(); 259 break; 260 case IndirectAliased: 261 OS << "Indirect Align=" << getIndirectAlign().getQuantity() 262 << " AadrSpace=" << getIndirectAddrSpace() 263 << " Realign=" << getIndirectRealign(); 264 break; 265 case Expand: 266 OS << "Expand"; 267 break; 268 case CoerceAndExpand: 269 OS << "CoerceAndExpand Type="; 270 getCoerceAndExpandType()->print(OS); 271 break; 272 } 273 OS << ")\n"; 274 } 275 276 // Dynamically round a pointer up to a multiple of the given alignment. 277 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF, 278 llvm::Value *Ptr, 279 CharUnits Align) { 280 llvm::Value *PtrAsInt = Ptr; 281 // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align; 282 PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy); 283 PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt, 284 llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1)); 285 PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt, 286 llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity())); 287 PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt, 288 Ptr->getType(), 289 Ptr->getName() + ".aligned"); 290 return PtrAsInt; 291 } 292 293 /// Emit va_arg for a platform using the common void* representation, 294 /// where arguments are simply emitted in an array of slots on the stack. 295 /// 296 /// This version implements the core direct-value passing rules. 297 /// 298 /// \param SlotSize - The size and alignment of a stack slot. 299 /// Each argument will be allocated to a multiple of this number of 300 /// slots, and all the slots will be aligned to this value. 301 /// \param AllowHigherAlign - The slot alignment is not a cap; 302 /// an argument type with an alignment greater than the slot size 303 /// will be emitted on a higher-alignment address, potentially 304 /// leaving one or more empty slots behind as padding. If this 305 /// is false, the returned address might be less-aligned than 306 /// DirectAlign. 307 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF, 308 Address VAListAddr, 309 llvm::Type *DirectTy, 310 CharUnits DirectSize, 311 CharUnits DirectAlign, 312 CharUnits SlotSize, 313 bool AllowHigherAlign) { 314 // Cast the element type to i8* if necessary. Some platforms define 315 // va_list as a struct containing an i8* instead of just an i8*. 316 if (VAListAddr.getElementType() != CGF.Int8PtrTy) 317 VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy); 318 319 llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur"); 320 321 // If the CC aligns values higher than the slot size, do so if needed. 322 Address Addr = Address::invalid(); 323 if (AllowHigherAlign && DirectAlign > SlotSize) { 324 Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign), 325 DirectAlign); 326 } else { 327 Addr = Address(Ptr, SlotSize); 328 } 329 330 // Advance the pointer past the argument, then store that back. 331 CharUnits FullDirectSize = DirectSize.alignTo(SlotSize); 332 Address NextPtr = 333 CGF.Builder.CreateConstInBoundsByteGEP(Addr, FullDirectSize, "argp.next"); 334 CGF.Builder.CreateStore(NextPtr.getPointer(), VAListAddr); 335 336 // If the argument is smaller than a slot, and this is a big-endian 337 // target, the argument will be right-adjusted in its slot. 338 if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() && 339 !DirectTy->isStructTy()) { 340 Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize); 341 } 342 343 Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy); 344 return Addr; 345 } 346 347 /// Emit va_arg for a platform using the common void* representation, 348 /// where arguments are simply emitted in an array of slots on the stack. 349 /// 350 /// \param IsIndirect - Values of this type are passed indirectly. 351 /// \param ValueInfo - The size and alignment of this type, generally 352 /// computed with getContext().getTypeInfoInChars(ValueTy). 353 /// \param SlotSizeAndAlign - The size and alignment of a stack slot. 354 /// Each argument will be allocated to a multiple of this number of 355 /// slots, and all the slots will be aligned to this value. 356 /// \param AllowHigherAlign - The slot alignment is not a cap; 357 /// an argument type with an alignment greater than the slot size 358 /// will be emitted on a higher-alignment address, potentially 359 /// leaving one or more empty slots behind as padding. 360 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr, 361 QualType ValueTy, bool IsIndirect, 362 TypeInfoChars ValueInfo, 363 CharUnits SlotSizeAndAlign, 364 bool AllowHigherAlign) { 365 // The size and alignment of the value that was passed directly. 366 CharUnits DirectSize, DirectAlign; 367 if (IsIndirect) { 368 DirectSize = CGF.getPointerSize(); 369 DirectAlign = CGF.getPointerAlign(); 370 } else { 371 DirectSize = ValueInfo.Width; 372 DirectAlign = ValueInfo.Align; 373 } 374 375 // Cast the address we've calculated to the right type. 376 llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy); 377 if (IsIndirect) 378 DirectTy = DirectTy->getPointerTo(0); 379 380 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy, 381 DirectSize, DirectAlign, 382 SlotSizeAndAlign, 383 AllowHigherAlign); 384 385 if (IsIndirect) { 386 Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.Align); 387 } 388 389 return Addr; 390 391 } 392 393 static Address emitMergePHI(CodeGenFunction &CGF, 394 Address Addr1, llvm::BasicBlock *Block1, 395 Address Addr2, llvm::BasicBlock *Block2, 396 const llvm::Twine &Name = "") { 397 assert(Addr1.getType() == Addr2.getType()); 398 llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name); 399 PHI->addIncoming(Addr1.getPointer(), Block1); 400 PHI->addIncoming(Addr2.getPointer(), Block2); 401 CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment()); 402 return Address(PHI, Align); 403 } 404 405 TargetCodeGenInfo::~TargetCodeGenInfo() = default; 406 407 // If someone can figure out a general rule for this, that would be great. 408 // It's probably just doomed to be platform-dependent, though. 409 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const { 410 // Verified for: 411 // x86-64 FreeBSD, Linux, Darwin 412 // x86-32 FreeBSD, Linux, Darwin 413 // PowerPC Linux, Darwin 414 // ARM Darwin (*not* EABI) 415 // AArch64 Linux 416 return 32; 417 } 418 419 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args, 420 const FunctionNoProtoType *fnType) const { 421 // The following conventions are known to require this to be false: 422 // x86_stdcall 423 // MIPS 424 // For everything else, we just prefer false unless we opt out. 425 return false; 426 } 427 428 void 429 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib, 430 llvm::SmallString<24> &Opt) const { 431 // This assumes the user is passing a library name like "rt" instead of a 432 // filename like "librt.a/so", and that they don't care whether it's static or 433 // dynamic. 434 Opt = "-l"; 435 Opt += Lib; 436 } 437 438 unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const { 439 // OpenCL kernels are called via an explicit runtime API with arguments 440 // set with clSetKernelArg(), not as normal sub-functions. 441 // Return SPIR_KERNEL by default as the kernel calling convention to 442 // ensure the fingerprint is fixed such way that each OpenCL argument 443 // gets one matching argument in the produced kernel function argument 444 // list to enable feasible implementation of clSetKernelArg() with 445 // aggregates etc. In case we would use the default C calling conv here, 446 // clSetKernelArg() might break depending on the target-specific 447 // conventions; different targets might split structs passed as values 448 // to multiple function arguments etc. 449 return llvm::CallingConv::SPIR_KERNEL; 450 } 451 452 llvm::Constant *TargetCodeGenInfo::getNullPointer(const CodeGen::CodeGenModule &CGM, 453 llvm::PointerType *T, QualType QT) const { 454 return llvm::ConstantPointerNull::get(T); 455 } 456 457 LangAS TargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM, 458 const VarDecl *D) const { 459 assert(!CGM.getLangOpts().OpenCL && 460 !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && 461 "Address space agnostic languages only"); 462 return D ? D->getType().getAddressSpace() : LangAS::Default; 463 } 464 465 llvm::Value *TargetCodeGenInfo::performAddrSpaceCast( 466 CodeGen::CodeGenFunction &CGF, llvm::Value *Src, LangAS SrcAddr, 467 LangAS DestAddr, llvm::Type *DestTy, bool isNonNull) const { 468 // Since target may map different address spaces in AST to the same address 469 // space, an address space conversion may end up as a bitcast. 470 if (auto *C = dyn_cast<llvm::Constant>(Src)) 471 return performAddrSpaceCast(CGF.CGM, C, SrcAddr, DestAddr, DestTy); 472 // Try to preserve the source's name to make IR more readable. 473 return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 474 Src, DestTy, Src->hasName() ? Src->getName() + ".ascast" : ""); 475 } 476 477 llvm::Constant * 478 TargetCodeGenInfo::performAddrSpaceCast(CodeGenModule &CGM, llvm::Constant *Src, 479 LangAS SrcAddr, LangAS DestAddr, 480 llvm::Type *DestTy) const { 481 // Since target may map different address spaces in AST to the same address 482 // space, an address space conversion may end up as a bitcast. 483 return llvm::ConstantExpr::getPointerCast(Src, DestTy); 484 } 485 486 llvm::SyncScope::ID 487 TargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts, 488 SyncScope Scope, 489 llvm::AtomicOrdering Ordering, 490 llvm::LLVMContext &Ctx) const { 491 return Ctx.getOrInsertSyncScopeID(""); /* default sync scope */ 492 } 493 494 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays); 495 496 /// isEmptyField - Return true iff a the field is "empty", that is it 497 /// is an unnamed bit-field or an (array of) empty record(s). 498 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD, 499 bool AllowArrays) { 500 if (FD->isUnnamedBitfield()) 501 return true; 502 503 QualType FT = FD->getType(); 504 505 // Constant arrays of empty records count as empty, strip them off. 506 // Constant arrays of zero length always count as empty. 507 bool WasArray = false; 508 if (AllowArrays) 509 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 510 if (AT->getSize() == 0) 511 return true; 512 FT = AT->getElementType(); 513 // The [[no_unique_address]] special case below does not apply to 514 // arrays of C++ empty records, so we need to remember this fact. 515 WasArray = true; 516 } 517 518 const RecordType *RT = FT->getAs<RecordType>(); 519 if (!RT) 520 return false; 521 522 // C++ record fields are never empty, at least in the Itanium ABI. 523 // 524 // FIXME: We should use a predicate for whether this behavior is true in the 525 // current ABI. 526 // 527 // The exception to the above rule are fields marked with the 528 // [[no_unique_address]] attribute (since C++20). Those do count as empty 529 // according to the Itanium ABI. The exception applies only to records, 530 // not arrays of records, so we must also check whether we stripped off an 531 // array type above. 532 if (isa<CXXRecordDecl>(RT->getDecl()) && 533 (WasArray || !FD->hasAttr<NoUniqueAddressAttr>())) 534 return false; 535 536 return isEmptyRecord(Context, FT, AllowArrays); 537 } 538 539 /// isEmptyRecord - Return true iff a structure contains only empty 540 /// fields. Note that a structure with a flexible array member is not 541 /// considered empty. 542 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) { 543 const RecordType *RT = T->getAs<RecordType>(); 544 if (!RT) 545 return false; 546 const RecordDecl *RD = RT->getDecl(); 547 if (RD->hasFlexibleArrayMember()) 548 return false; 549 550 // If this is a C++ record, check the bases first. 551 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 552 for (const auto &I : CXXRD->bases()) 553 if (!isEmptyRecord(Context, I.getType(), true)) 554 return false; 555 556 for (const auto *I : RD->fields()) 557 if (!isEmptyField(Context, I, AllowArrays)) 558 return false; 559 return true; 560 } 561 562 /// isSingleElementStruct - Determine if a structure is a "single 563 /// element struct", i.e. it has exactly one non-empty field or 564 /// exactly one field which is itself a single element 565 /// struct. Structures with flexible array members are never 566 /// considered single element structs. 567 /// 568 /// \return The field declaration for the single non-empty field, if 569 /// it exists. 570 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) { 571 const RecordType *RT = T->getAs<RecordType>(); 572 if (!RT) 573 return nullptr; 574 575 const RecordDecl *RD = RT->getDecl(); 576 if (RD->hasFlexibleArrayMember()) 577 return nullptr; 578 579 const Type *Found = nullptr; 580 581 // If this is a C++ record, check the bases first. 582 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 583 for (const auto &I : CXXRD->bases()) { 584 // Ignore empty records. 585 if (isEmptyRecord(Context, I.getType(), true)) 586 continue; 587 588 // If we already found an element then this isn't a single-element struct. 589 if (Found) 590 return nullptr; 591 592 // If this is non-empty and not a single element struct, the composite 593 // cannot be a single element struct. 594 Found = isSingleElementStruct(I.getType(), Context); 595 if (!Found) 596 return nullptr; 597 } 598 } 599 600 // Check for single element. 601 for (const auto *FD : RD->fields()) { 602 QualType FT = FD->getType(); 603 604 // Ignore empty fields. 605 if (isEmptyField(Context, FD, true)) 606 continue; 607 608 // If we already found an element then this isn't a single-element 609 // struct. 610 if (Found) 611 return nullptr; 612 613 // Treat single element arrays as the element. 614 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 615 if (AT->getSize().getZExtValue() != 1) 616 break; 617 FT = AT->getElementType(); 618 } 619 620 if (!isAggregateTypeForABI(FT)) { 621 Found = FT.getTypePtr(); 622 } else { 623 Found = isSingleElementStruct(FT, Context); 624 if (!Found) 625 return nullptr; 626 } 627 } 628 629 // We don't consider a struct a single-element struct if it has 630 // padding beyond the element type. 631 if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T)) 632 return nullptr; 633 634 return Found; 635 } 636 637 namespace { 638 Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty, 639 const ABIArgInfo &AI) { 640 // This default implementation defers to the llvm backend's va_arg 641 // instruction. It can handle only passing arguments directly 642 // (typically only handled in the backend for primitive types), or 643 // aggregates passed indirectly by pointer (NOTE: if the "byval" 644 // flag has ABI impact in the callee, this implementation cannot 645 // work.) 646 647 // Only a few cases are covered here at the moment -- those needed 648 // by the default abi. 649 llvm::Value *Val; 650 651 if (AI.isIndirect()) { 652 assert(!AI.getPaddingType() && 653 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 654 assert( 655 !AI.getIndirectRealign() && 656 "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!"); 657 658 auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty); 659 CharUnits TyAlignForABI = TyInfo.Align; 660 661 llvm::Type *BaseTy = 662 llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); 663 llvm::Value *Addr = 664 CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy); 665 return Address(Addr, TyAlignForABI); 666 } else { 667 assert((AI.isDirect() || AI.isExtend()) && 668 "Unexpected ArgInfo Kind in generic VAArg emitter!"); 669 670 assert(!AI.getInReg() && 671 "Unexpected InReg seen in arginfo in generic VAArg emitter!"); 672 assert(!AI.getPaddingType() && 673 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 674 assert(!AI.getDirectOffset() && 675 "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!"); 676 assert(!AI.getCoerceToType() && 677 "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!"); 678 679 Address Temp = CGF.CreateMemTemp(Ty, "varet"); 680 Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), CGF.ConvertType(Ty)); 681 CGF.Builder.CreateStore(Val, Temp); 682 return Temp; 683 } 684 } 685 686 /// DefaultABIInfo - The default implementation for ABI specific 687 /// details. This implementation provides information which results in 688 /// self-consistent and sensible LLVM IR generation, but does not 689 /// conform to any particular ABI. 690 class DefaultABIInfo : public ABIInfo { 691 public: 692 DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 693 694 ABIArgInfo classifyReturnType(QualType RetTy) const; 695 ABIArgInfo classifyArgumentType(QualType RetTy) const; 696 697 void computeInfo(CGFunctionInfo &FI) const override { 698 if (!getCXXABI().classifyReturnType(FI)) 699 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 700 for (auto &I : FI.arguments()) 701 I.info = classifyArgumentType(I.type); 702 } 703 704 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 705 QualType Ty) const override { 706 return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty)); 707 } 708 }; 709 710 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo { 711 public: 712 DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 713 : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {} 714 }; 715 716 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const { 717 Ty = useFirstFieldIfTransparentUnion(Ty); 718 719 if (isAggregateTypeForABI(Ty)) { 720 // Records with non-trivial destructors/copy-constructors should not be 721 // passed by value. 722 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 723 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 724 725 return getNaturalAlignIndirect(Ty); 726 } 727 728 // Treat an enum type as its underlying type. 729 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 730 Ty = EnumTy->getDecl()->getIntegerType(); 731 732 ASTContext &Context = getContext(); 733 if (const auto *EIT = Ty->getAs<ExtIntType>()) 734 if (EIT->getNumBits() > 735 Context.getTypeSize(Context.getTargetInfo().hasInt128Type() 736 ? Context.Int128Ty 737 : Context.LongLongTy)) 738 return getNaturalAlignIndirect(Ty); 739 740 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 741 : ABIArgInfo::getDirect()); 742 } 743 744 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const { 745 if (RetTy->isVoidType()) 746 return ABIArgInfo::getIgnore(); 747 748 if (isAggregateTypeForABI(RetTy)) 749 return getNaturalAlignIndirect(RetTy); 750 751 // Treat an enum type as its underlying type. 752 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 753 RetTy = EnumTy->getDecl()->getIntegerType(); 754 755 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 756 if (EIT->getNumBits() > 757 getContext().getTypeSize(getContext().getTargetInfo().hasInt128Type() 758 ? getContext().Int128Ty 759 : getContext().LongLongTy)) 760 return getNaturalAlignIndirect(RetTy); 761 762 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 763 : ABIArgInfo::getDirect()); 764 } 765 766 //===----------------------------------------------------------------------===// 767 // WebAssembly ABI Implementation 768 // 769 // This is a very simple ABI that relies a lot on DefaultABIInfo. 770 //===----------------------------------------------------------------------===// 771 772 class WebAssemblyABIInfo final : public SwiftABIInfo { 773 public: 774 enum ABIKind { 775 MVP = 0, 776 ExperimentalMV = 1, 777 }; 778 779 private: 780 DefaultABIInfo defaultInfo; 781 ABIKind Kind; 782 783 public: 784 explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind) 785 : SwiftABIInfo(CGT), defaultInfo(CGT), Kind(Kind) {} 786 787 private: 788 ABIArgInfo classifyReturnType(QualType RetTy) const; 789 ABIArgInfo classifyArgumentType(QualType Ty) const; 790 791 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 792 // non-virtual, but computeInfo and EmitVAArg are virtual, so we 793 // overload them. 794 void computeInfo(CGFunctionInfo &FI) const override { 795 if (!getCXXABI().classifyReturnType(FI)) 796 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 797 for (auto &Arg : FI.arguments()) 798 Arg.info = classifyArgumentType(Arg.type); 799 } 800 801 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 802 QualType Ty) const override; 803 804 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 805 bool asReturnValue) const override { 806 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 807 } 808 809 bool isSwiftErrorInRegister() const override { 810 return false; 811 } 812 }; 813 814 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo { 815 public: 816 explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 817 WebAssemblyABIInfo::ABIKind K) 818 : TargetCodeGenInfo(std::make_unique<WebAssemblyABIInfo>(CGT, K)) {} 819 820 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 821 CodeGen::CodeGenModule &CGM) const override { 822 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 823 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 824 if (const auto *Attr = FD->getAttr<WebAssemblyImportModuleAttr>()) { 825 llvm::Function *Fn = cast<llvm::Function>(GV); 826 llvm::AttrBuilder B; 827 B.addAttribute("wasm-import-module", Attr->getImportModule()); 828 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 829 } 830 if (const auto *Attr = FD->getAttr<WebAssemblyImportNameAttr>()) { 831 llvm::Function *Fn = cast<llvm::Function>(GV); 832 llvm::AttrBuilder B; 833 B.addAttribute("wasm-import-name", Attr->getImportName()); 834 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 835 } 836 if (const auto *Attr = FD->getAttr<WebAssemblyExportNameAttr>()) { 837 llvm::Function *Fn = cast<llvm::Function>(GV); 838 llvm::AttrBuilder B; 839 B.addAttribute("wasm-export-name", Attr->getExportName()); 840 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 841 } 842 } 843 844 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 845 llvm::Function *Fn = cast<llvm::Function>(GV); 846 if (!FD->doesThisDeclarationHaveABody() && !FD->hasPrototype()) 847 Fn->addFnAttr("no-prototype"); 848 } 849 } 850 }; 851 852 /// Classify argument of given type \p Ty. 853 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const { 854 Ty = useFirstFieldIfTransparentUnion(Ty); 855 856 if (isAggregateTypeForABI(Ty)) { 857 // Records with non-trivial destructors/copy-constructors should not be 858 // passed by value. 859 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 860 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 861 // Ignore empty structs/unions. 862 if (isEmptyRecord(getContext(), Ty, true)) 863 return ABIArgInfo::getIgnore(); 864 // Lower single-element structs to just pass a regular value. TODO: We 865 // could do reasonable-size multiple-element structs too, using getExpand(), 866 // though watch out for things like bitfields. 867 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 868 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 869 // For the experimental multivalue ABI, fully expand all other aggregates 870 if (Kind == ABIKind::ExperimentalMV) { 871 const RecordType *RT = Ty->getAs<RecordType>(); 872 assert(RT); 873 bool HasBitField = false; 874 for (auto *Field : RT->getDecl()->fields()) { 875 if (Field->isBitField()) { 876 HasBitField = true; 877 break; 878 } 879 } 880 if (!HasBitField) 881 return ABIArgInfo::getExpand(); 882 } 883 } 884 885 // Otherwise just do the default thing. 886 return defaultInfo.classifyArgumentType(Ty); 887 } 888 889 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const { 890 if (isAggregateTypeForABI(RetTy)) { 891 // Records with non-trivial destructors/copy-constructors should not be 892 // returned by value. 893 if (!getRecordArgABI(RetTy, getCXXABI())) { 894 // Ignore empty structs/unions. 895 if (isEmptyRecord(getContext(), RetTy, true)) 896 return ABIArgInfo::getIgnore(); 897 // Lower single-element structs to just return a regular value. TODO: We 898 // could do reasonable-size multiple-element structs too, using 899 // ABIArgInfo::getDirect(). 900 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 901 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 902 // For the experimental multivalue ABI, return all other aggregates 903 if (Kind == ABIKind::ExperimentalMV) 904 return ABIArgInfo::getDirect(); 905 } 906 } 907 908 // Otherwise just do the default thing. 909 return defaultInfo.classifyReturnType(RetTy); 910 } 911 912 Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 913 QualType Ty) const { 914 bool IsIndirect = isAggregateTypeForABI(Ty) && 915 !isEmptyRecord(getContext(), Ty, true) && 916 !isSingleElementStruct(Ty, getContext()); 917 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 918 getContext().getTypeInfoInChars(Ty), 919 CharUnits::fromQuantity(4), 920 /*AllowHigherAlign=*/true); 921 } 922 923 //===----------------------------------------------------------------------===// 924 // le32/PNaCl bitcode ABI Implementation 925 // 926 // This is a simplified version of the x86_32 ABI. Arguments and return values 927 // are always passed on the stack. 928 //===----------------------------------------------------------------------===// 929 930 class PNaClABIInfo : public ABIInfo { 931 public: 932 PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 933 934 ABIArgInfo classifyReturnType(QualType RetTy) const; 935 ABIArgInfo classifyArgumentType(QualType RetTy) const; 936 937 void computeInfo(CGFunctionInfo &FI) const override; 938 Address EmitVAArg(CodeGenFunction &CGF, 939 Address VAListAddr, QualType Ty) const override; 940 }; 941 942 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo { 943 public: 944 PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 945 : TargetCodeGenInfo(std::make_unique<PNaClABIInfo>(CGT)) {} 946 }; 947 948 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const { 949 if (!getCXXABI().classifyReturnType(FI)) 950 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 951 952 for (auto &I : FI.arguments()) 953 I.info = classifyArgumentType(I.type); 954 } 955 956 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 957 QualType Ty) const { 958 // The PNaCL ABI is a bit odd, in that varargs don't use normal 959 // function classification. Structs get passed directly for varargs 960 // functions, through a rewriting transform in 961 // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows 962 // this target to actually support a va_arg instructions with an 963 // aggregate type, unlike other targets. 964 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 965 } 966 967 /// Classify argument of given type \p Ty. 968 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const { 969 if (isAggregateTypeForABI(Ty)) { 970 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 971 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 972 return getNaturalAlignIndirect(Ty); 973 } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 974 // Treat an enum type as its underlying type. 975 Ty = EnumTy->getDecl()->getIntegerType(); 976 } else if (Ty->isFloatingType()) { 977 // Floating-point types don't go inreg. 978 return ABIArgInfo::getDirect(); 979 } else if (const auto *EIT = Ty->getAs<ExtIntType>()) { 980 // Treat extended integers as integers if <=64, otherwise pass indirectly. 981 if (EIT->getNumBits() > 64) 982 return getNaturalAlignIndirect(Ty); 983 return ABIArgInfo::getDirect(); 984 } 985 986 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 987 : ABIArgInfo::getDirect()); 988 } 989 990 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const { 991 if (RetTy->isVoidType()) 992 return ABIArgInfo::getIgnore(); 993 994 // In the PNaCl ABI we always return records/structures on the stack. 995 if (isAggregateTypeForABI(RetTy)) 996 return getNaturalAlignIndirect(RetTy); 997 998 // Treat extended integers as integers if <=64, otherwise pass indirectly. 999 if (const auto *EIT = RetTy->getAs<ExtIntType>()) { 1000 if (EIT->getNumBits() > 64) 1001 return getNaturalAlignIndirect(RetTy); 1002 return ABIArgInfo::getDirect(); 1003 } 1004 1005 // Treat an enum type as its underlying type. 1006 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 1007 RetTy = EnumTy->getDecl()->getIntegerType(); 1008 1009 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 1010 : ABIArgInfo::getDirect()); 1011 } 1012 1013 /// IsX86_MMXType - Return true if this is an MMX type. 1014 bool IsX86_MMXType(llvm::Type *IRType) { 1015 // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>. 1016 return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 && 1017 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() && 1018 IRType->getScalarSizeInBits() != 64; 1019 } 1020 1021 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 1022 StringRef Constraint, 1023 llvm::Type* Ty) { 1024 bool IsMMXCons = llvm::StringSwitch<bool>(Constraint) 1025 .Cases("y", "&y", "^Ym", true) 1026 .Default(false); 1027 if (IsMMXCons && Ty->isVectorTy()) { 1028 if (cast<llvm::VectorType>(Ty)->getPrimitiveSizeInBits().getFixedSize() != 1029 64) { 1030 // Invalid MMX constraint 1031 return nullptr; 1032 } 1033 1034 return llvm::Type::getX86_MMXTy(CGF.getLLVMContext()); 1035 } 1036 1037 // No operation needed 1038 return Ty; 1039 } 1040 1041 /// Returns true if this type can be passed in SSE registers with the 1042 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64. 1043 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) { 1044 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 1045 if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) { 1046 if (BT->getKind() == BuiltinType::LongDouble) { 1047 if (&Context.getTargetInfo().getLongDoubleFormat() == 1048 &llvm::APFloat::x87DoubleExtended()) 1049 return false; 1050 } 1051 return true; 1052 } 1053 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 1054 // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX 1055 // registers specially. 1056 unsigned VecSize = Context.getTypeSize(VT); 1057 if (VecSize == 128 || VecSize == 256 || VecSize == 512) 1058 return true; 1059 } 1060 return false; 1061 } 1062 1063 /// Returns true if this aggregate is small enough to be passed in SSE registers 1064 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64. 1065 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) { 1066 return NumMembers <= 4; 1067 } 1068 1069 /// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86. 1070 static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) { 1071 auto AI = ABIArgInfo::getDirect(T); 1072 AI.setInReg(true); 1073 AI.setCanBeFlattened(false); 1074 return AI; 1075 } 1076 1077 //===----------------------------------------------------------------------===// 1078 // X86-32 ABI Implementation 1079 //===----------------------------------------------------------------------===// 1080 1081 /// Similar to llvm::CCState, but for Clang. 1082 struct CCState { 1083 CCState(CGFunctionInfo &FI) 1084 : IsPreassigned(FI.arg_size()), CC(FI.getCallingConvention()) {} 1085 1086 llvm::SmallBitVector IsPreassigned; 1087 unsigned CC = CallingConv::CC_C; 1088 unsigned FreeRegs = 0; 1089 unsigned FreeSSERegs = 0; 1090 }; 1091 1092 enum { 1093 // Vectorcall only allows the first 6 parameters to be passed in registers. 1094 VectorcallMaxParamNumAsReg = 6 1095 }; 1096 1097 /// X86_32ABIInfo - The X86-32 ABI information. 1098 class X86_32ABIInfo : public SwiftABIInfo { 1099 enum Class { 1100 Integer, 1101 Float 1102 }; 1103 1104 static const unsigned MinABIStackAlignInBytes = 4; 1105 1106 bool IsDarwinVectorABI; 1107 bool IsRetSmallStructInRegABI; 1108 bool IsWin32StructABI; 1109 bool IsSoftFloatABI; 1110 bool IsMCUABI; 1111 unsigned DefaultNumRegisterParameters; 1112 1113 static bool isRegisterSize(unsigned Size) { 1114 return (Size == 8 || Size == 16 || Size == 32 || Size == 64); 1115 } 1116 1117 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 1118 // FIXME: Assumes vectorcall is in use. 1119 return isX86VectorTypeForVectorCall(getContext(), Ty); 1120 } 1121 1122 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 1123 uint64_t NumMembers) const override { 1124 // FIXME: Assumes vectorcall is in use. 1125 return isX86VectorCallAggregateSmallEnough(NumMembers); 1126 } 1127 1128 bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const; 1129 1130 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 1131 /// such that the argument will be passed in memory. 1132 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 1133 1134 ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const; 1135 1136 /// Return the alignment to use for the given type on the stack. 1137 unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const; 1138 1139 Class classify(QualType Ty) const; 1140 ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const; 1141 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 1142 1143 /// Updates the number of available free registers, returns 1144 /// true if any registers were allocated. 1145 bool updateFreeRegs(QualType Ty, CCState &State) const; 1146 1147 bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg, 1148 bool &NeedsPadding) const; 1149 bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const; 1150 1151 bool canExpandIndirectArgument(QualType Ty) const; 1152 1153 /// Rewrite the function info so that all memory arguments use 1154 /// inalloca. 1155 void rewriteWithInAlloca(CGFunctionInfo &FI) const; 1156 1157 void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1158 CharUnits &StackOffset, ABIArgInfo &Info, 1159 QualType Type) const; 1160 void runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const; 1161 1162 public: 1163 1164 void computeInfo(CGFunctionInfo &FI) const override; 1165 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 1166 QualType Ty) const override; 1167 1168 X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 1169 bool RetSmallStructInRegABI, bool Win32StructABI, 1170 unsigned NumRegisterParameters, bool SoftFloatABI) 1171 : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI), 1172 IsRetSmallStructInRegABI(RetSmallStructInRegABI), 1173 IsWin32StructABI(Win32StructABI), 1174 IsSoftFloatABI(SoftFloatABI), 1175 IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()), 1176 DefaultNumRegisterParameters(NumRegisterParameters) {} 1177 1178 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 1179 bool asReturnValue) const override { 1180 // LLVM's x86-32 lowering currently only assigns up to three 1181 // integer registers and three fp registers. Oddly, it'll use up to 1182 // four vector registers for vectors, but those can overlap with the 1183 // scalar registers. 1184 return occupiesMoreThan(CGT, scalars, /*total*/ 3); 1185 } 1186 1187 bool isSwiftErrorInRegister() const override { 1188 // x86-32 lowering does not support passing swifterror in a register. 1189 return false; 1190 } 1191 }; 1192 1193 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo { 1194 public: 1195 X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 1196 bool RetSmallStructInRegABI, bool Win32StructABI, 1197 unsigned NumRegisterParameters, bool SoftFloatABI) 1198 : TargetCodeGenInfo(std::make_unique<X86_32ABIInfo>( 1199 CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI, 1200 NumRegisterParameters, SoftFloatABI)) {} 1201 1202 static bool isStructReturnInRegABI( 1203 const llvm::Triple &Triple, const CodeGenOptions &Opts); 1204 1205 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 1206 CodeGen::CodeGenModule &CGM) const override; 1207 1208 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 1209 // Darwin uses different dwarf register numbers for EH. 1210 if (CGM.getTarget().getTriple().isOSDarwin()) return 5; 1211 return 4; 1212 } 1213 1214 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 1215 llvm::Value *Address) const override; 1216 1217 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 1218 StringRef Constraint, 1219 llvm::Type* Ty) const override { 1220 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 1221 } 1222 1223 void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue, 1224 std::string &Constraints, 1225 std::vector<llvm::Type *> &ResultRegTypes, 1226 std::vector<llvm::Type *> &ResultTruncRegTypes, 1227 std::vector<LValue> &ResultRegDests, 1228 std::string &AsmString, 1229 unsigned NumOutputs) const override; 1230 1231 llvm::Constant * 1232 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 1233 unsigned Sig = (0xeb << 0) | // jmp rel8 1234 (0x06 << 8) | // .+0x08 1235 ('v' << 16) | 1236 ('2' << 24); 1237 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 1238 } 1239 1240 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 1241 return "movl\t%ebp, %ebp" 1242 "\t\t// marker for objc_retainAutoreleaseReturnValue"; 1243 } 1244 }; 1245 1246 } 1247 1248 /// Rewrite input constraint references after adding some output constraints. 1249 /// In the case where there is one output and one input and we add one output, 1250 /// we need to replace all operand references greater than or equal to 1: 1251 /// mov $0, $1 1252 /// mov eax, $1 1253 /// The result will be: 1254 /// mov $0, $2 1255 /// mov eax, $2 1256 static void rewriteInputConstraintReferences(unsigned FirstIn, 1257 unsigned NumNewOuts, 1258 std::string &AsmString) { 1259 std::string Buf; 1260 llvm::raw_string_ostream OS(Buf); 1261 size_t Pos = 0; 1262 while (Pos < AsmString.size()) { 1263 size_t DollarStart = AsmString.find('$', Pos); 1264 if (DollarStart == std::string::npos) 1265 DollarStart = AsmString.size(); 1266 size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart); 1267 if (DollarEnd == std::string::npos) 1268 DollarEnd = AsmString.size(); 1269 OS << StringRef(&AsmString[Pos], DollarEnd - Pos); 1270 Pos = DollarEnd; 1271 size_t NumDollars = DollarEnd - DollarStart; 1272 if (NumDollars % 2 != 0 && Pos < AsmString.size()) { 1273 // We have an operand reference. 1274 size_t DigitStart = Pos; 1275 if (AsmString[DigitStart] == '{') { 1276 OS << '{'; 1277 ++DigitStart; 1278 } 1279 size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart); 1280 if (DigitEnd == std::string::npos) 1281 DigitEnd = AsmString.size(); 1282 StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart); 1283 unsigned OperandIndex; 1284 if (!OperandStr.getAsInteger(10, OperandIndex)) { 1285 if (OperandIndex >= FirstIn) 1286 OperandIndex += NumNewOuts; 1287 OS << OperandIndex; 1288 } else { 1289 OS << OperandStr; 1290 } 1291 Pos = DigitEnd; 1292 } 1293 } 1294 AsmString = std::move(OS.str()); 1295 } 1296 1297 /// Add output constraints for EAX:EDX because they are return registers. 1298 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs( 1299 CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints, 1300 std::vector<llvm::Type *> &ResultRegTypes, 1301 std::vector<llvm::Type *> &ResultTruncRegTypes, 1302 std::vector<LValue> &ResultRegDests, std::string &AsmString, 1303 unsigned NumOutputs) const { 1304 uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType()); 1305 1306 // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is 1307 // larger. 1308 if (!Constraints.empty()) 1309 Constraints += ','; 1310 if (RetWidth <= 32) { 1311 Constraints += "={eax}"; 1312 ResultRegTypes.push_back(CGF.Int32Ty); 1313 } else { 1314 // Use the 'A' constraint for EAX:EDX. 1315 Constraints += "=A"; 1316 ResultRegTypes.push_back(CGF.Int64Ty); 1317 } 1318 1319 // Truncate EAX or EAX:EDX to an integer of the appropriate size. 1320 llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth); 1321 ResultTruncRegTypes.push_back(CoerceTy); 1322 1323 // Coerce the integer by bitcasting the return slot pointer. 1324 ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(CGF), 1325 CoerceTy->getPointerTo())); 1326 ResultRegDests.push_back(ReturnSlot); 1327 1328 rewriteInputConstraintReferences(NumOutputs, 1, AsmString); 1329 } 1330 1331 /// shouldReturnTypeInRegister - Determine if the given type should be 1332 /// returned in a register (for the Darwin and MCU ABI). 1333 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty, 1334 ASTContext &Context) const { 1335 uint64_t Size = Context.getTypeSize(Ty); 1336 1337 // For i386, type must be register sized. 1338 // For the MCU ABI, it only needs to be <= 8-byte 1339 if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size))) 1340 return false; 1341 1342 if (Ty->isVectorType()) { 1343 // 64- and 128- bit vectors inside structures are not returned in 1344 // registers. 1345 if (Size == 64 || Size == 128) 1346 return false; 1347 1348 return true; 1349 } 1350 1351 // If this is a builtin, pointer, enum, complex type, member pointer, or 1352 // member function pointer it is ok. 1353 if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() || 1354 Ty->isAnyComplexType() || Ty->isEnumeralType() || 1355 Ty->isBlockPointerType() || Ty->isMemberPointerType()) 1356 return true; 1357 1358 // Arrays are treated like records. 1359 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) 1360 return shouldReturnTypeInRegister(AT->getElementType(), Context); 1361 1362 // Otherwise, it must be a record type. 1363 const RecordType *RT = Ty->getAs<RecordType>(); 1364 if (!RT) return false; 1365 1366 // FIXME: Traverse bases here too. 1367 1368 // Structure types are passed in register if all fields would be 1369 // passed in a register. 1370 for (const auto *FD : RT->getDecl()->fields()) { 1371 // Empty fields are ignored. 1372 if (isEmptyField(Context, FD, true)) 1373 continue; 1374 1375 // Check fields recursively. 1376 if (!shouldReturnTypeInRegister(FD->getType(), Context)) 1377 return false; 1378 } 1379 return true; 1380 } 1381 1382 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) { 1383 // Treat complex types as the element type. 1384 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 1385 Ty = CTy->getElementType(); 1386 1387 // Check for a type which we know has a simple scalar argument-passing 1388 // convention without any padding. (We're specifically looking for 32 1389 // and 64-bit integer and integer-equivalents, float, and double.) 1390 if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() && 1391 !Ty->isEnumeralType() && !Ty->isBlockPointerType()) 1392 return false; 1393 1394 uint64_t Size = Context.getTypeSize(Ty); 1395 return Size == 32 || Size == 64; 1396 } 1397 1398 static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD, 1399 uint64_t &Size) { 1400 for (const auto *FD : RD->fields()) { 1401 // Scalar arguments on the stack get 4 byte alignment on x86. If the 1402 // argument is smaller than 32-bits, expanding the struct will create 1403 // alignment padding. 1404 if (!is32Or64BitBasicType(FD->getType(), Context)) 1405 return false; 1406 1407 // FIXME: Reject bit-fields wholesale; there are two problems, we don't know 1408 // how to expand them yet, and the predicate for telling if a bitfield still 1409 // counts as "basic" is more complicated than what we were doing previously. 1410 if (FD->isBitField()) 1411 return false; 1412 1413 Size += Context.getTypeSize(FD->getType()); 1414 } 1415 return true; 1416 } 1417 1418 static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD, 1419 uint64_t &Size) { 1420 // Don't do this if there are any non-empty bases. 1421 for (const CXXBaseSpecifier &Base : RD->bases()) { 1422 if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(), 1423 Size)) 1424 return false; 1425 } 1426 if (!addFieldSizes(Context, RD, Size)) 1427 return false; 1428 return true; 1429 } 1430 1431 /// Test whether an argument type which is to be passed indirectly (on the 1432 /// stack) would have the equivalent layout if it was expanded into separate 1433 /// arguments. If so, we prefer to do the latter to avoid inhibiting 1434 /// optimizations. 1435 bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const { 1436 // We can only expand structure types. 1437 const RecordType *RT = Ty->getAs<RecordType>(); 1438 if (!RT) 1439 return false; 1440 const RecordDecl *RD = RT->getDecl(); 1441 uint64_t Size = 0; 1442 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 1443 if (!IsWin32StructABI) { 1444 // On non-Windows, we have to conservatively match our old bitcode 1445 // prototypes in order to be ABI-compatible at the bitcode level. 1446 if (!CXXRD->isCLike()) 1447 return false; 1448 } else { 1449 // Don't do this for dynamic classes. 1450 if (CXXRD->isDynamicClass()) 1451 return false; 1452 } 1453 if (!addBaseAndFieldSizes(getContext(), CXXRD, Size)) 1454 return false; 1455 } else { 1456 if (!addFieldSizes(getContext(), RD, Size)) 1457 return false; 1458 } 1459 1460 // We can do this if there was no alignment padding. 1461 return Size == getContext().getTypeSize(Ty); 1462 } 1463 1464 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const { 1465 // If the return value is indirect, then the hidden argument is consuming one 1466 // integer register. 1467 if (State.FreeRegs) { 1468 --State.FreeRegs; 1469 if (!IsMCUABI) 1470 return getNaturalAlignIndirectInReg(RetTy); 1471 } 1472 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 1473 } 1474 1475 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, 1476 CCState &State) const { 1477 if (RetTy->isVoidType()) 1478 return ABIArgInfo::getIgnore(); 1479 1480 const Type *Base = nullptr; 1481 uint64_t NumElts = 0; 1482 if ((State.CC == llvm::CallingConv::X86_VectorCall || 1483 State.CC == llvm::CallingConv::X86_RegCall) && 1484 isHomogeneousAggregate(RetTy, Base, NumElts)) { 1485 // The LLVM struct type for such an aggregate should lower properly. 1486 return ABIArgInfo::getDirect(); 1487 } 1488 1489 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 1490 // On Darwin, some vectors are returned in registers. 1491 if (IsDarwinVectorABI) { 1492 uint64_t Size = getContext().getTypeSize(RetTy); 1493 1494 // 128-bit vectors are a special case; they are returned in 1495 // registers and we need to make sure to pick a type the LLVM 1496 // backend will like. 1497 if (Size == 128) 1498 return ABIArgInfo::getDirect(llvm::FixedVectorType::get( 1499 llvm::Type::getInt64Ty(getVMContext()), 2)); 1500 1501 // Always return in register if it fits in a general purpose 1502 // register, or if it is 64 bits and has a single element. 1503 if ((Size == 8 || Size == 16 || Size == 32) || 1504 (Size == 64 && VT->getNumElements() == 1)) 1505 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1506 Size)); 1507 1508 return getIndirectReturnResult(RetTy, State); 1509 } 1510 1511 return ABIArgInfo::getDirect(); 1512 } 1513 1514 if (isAggregateTypeForABI(RetTy)) { 1515 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 1516 // Structures with flexible arrays are always indirect. 1517 if (RT->getDecl()->hasFlexibleArrayMember()) 1518 return getIndirectReturnResult(RetTy, State); 1519 } 1520 1521 // If specified, structs and unions are always indirect. 1522 if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType()) 1523 return getIndirectReturnResult(RetTy, State); 1524 1525 // Ignore empty structs/unions. 1526 if (isEmptyRecord(getContext(), RetTy, true)) 1527 return ABIArgInfo::getIgnore(); 1528 1529 // Small structures which are register sized are generally returned 1530 // in a register. 1531 if (shouldReturnTypeInRegister(RetTy, getContext())) { 1532 uint64_t Size = getContext().getTypeSize(RetTy); 1533 1534 // As a special-case, if the struct is a "single-element" struct, and 1535 // the field is of type "float" or "double", return it in a 1536 // floating-point register. (MSVC does not apply this special case.) 1537 // We apply a similar transformation for pointer types to improve the 1538 // quality of the generated IR. 1539 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 1540 if ((!IsWin32StructABI && SeltTy->isRealFloatingType()) 1541 || SeltTy->hasPointerRepresentation()) 1542 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 1543 1544 // FIXME: We should be able to narrow this integer in cases with dead 1545 // padding. 1546 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size)); 1547 } 1548 1549 return getIndirectReturnResult(RetTy, State); 1550 } 1551 1552 // Treat an enum type as its underlying type. 1553 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 1554 RetTy = EnumTy->getDecl()->getIntegerType(); 1555 1556 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 1557 if (EIT->getNumBits() > 64) 1558 return getIndirectReturnResult(RetTy, State); 1559 1560 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 1561 : ABIArgInfo::getDirect()); 1562 } 1563 1564 static bool isSIMDVectorType(ASTContext &Context, QualType Ty) { 1565 return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128; 1566 } 1567 1568 static bool isRecordWithSIMDVectorType(ASTContext &Context, QualType Ty) { 1569 const RecordType *RT = Ty->getAs<RecordType>(); 1570 if (!RT) 1571 return 0; 1572 const RecordDecl *RD = RT->getDecl(); 1573 1574 // If this is a C++ record, check the bases first. 1575 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 1576 for (const auto &I : CXXRD->bases()) 1577 if (!isRecordWithSIMDVectorType(Context, I.getType())) 1578 return false; 1579 1580 for (const auto *i : RD->fields()) { 1581 QualType FT = i->getType(); 1582 1583 if (isSIMDVectorType(Context, FT)) 1584 return true; 1585 1586 if (isRecordWithSIMDVectorType(Context, FT)) 1587 return true; 1588 } 1589 1590 return false; 1591 } 1592 1593 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty, 1594 unsigned Align) const { 1595 // Otherwise, if the alignment is less than or equal to the minimum ABI 1596 // alignment, just use the default; the backend will handle this. 1597 if (Align <= MinABIStackAlignInBytes) 1598 return 0; // Use default alignment. 1599 1600 // On non-Darwin, the stack type alignment is always 4. 1601 if (!IsDarwinVectorABI) { 1602 // Set explicit alignment, since we may need to realign the top. 1603 return MinABIStackAlignInBytes; 1604 } 1605 1606 // Otherwise, if the type contains an SSE vector type, the alignment is 16. 1607 if (Align >= 16 && (isSIMDVectorType(getContext(), Ty) || 1608 isRecordWithSIMDVectorType(getContext(), Ty))) 1609 return 16; 1610 1611 return MinABIStackAlignInBytes; 1612 } 1613 1614 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal, 1615 CCState &State) const { 1616 if (!ByVal) { 1617 if (State.FreeRegs) { 1618 --State.FreeRegs; // Non-byval indirects just use one pointer. 1619 if (!IsMCUABI) 1620 return getNaturalAlignIndirectInReg(Ty); 1621 } 1622 return getNaturalAlignIndirect(Ty, false); 1623 } 1624 1625 // Compute the byval alignment. 1626 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 1627 unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign); 1628 if (StackAlign == 0) 1629 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true); 1630 1631 // If the stack alignment is less than the type alignment, realign the 1632 // argument. 1633 bool Realign = TypeAlign > StackAlign; 1634 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign), 1635 /*ByVal=*/true, Realign); 1636 } 1637 1638 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const { 1639 const Type *T = isSingleElementStruct(Ty, getContext()); 1640 if (!T) 1641 T = Ty.getTypePtr(); 1642 1643 if (const BuiltinType *BT = T->getAs<BuiltinType>()) { 1644 BuiltinType::Kind K = BT->getKind(); 1645 if (K == BuiltinType::Float || K == BuiltinType::Double) 1646 return Float; 1647 } 1648 return Integer; 1649 } 1650 1651 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const { 1652 if (!IsSoftFloatABI) { 1653 Class C = classify(Ty); 1654 if (C == Float) 1655 return false; 1656 } 1657 1658 unsigned Size = getContext().getTypeSize(Ty); 1659 unsigned SizeInRegs = (Size + 31) / 32; 1660 1661 if (SizeInRegs == 0) 1662 return false; 1663 1664 if (!IsMCUABI) { 1665 if (SizeInRegs > State.FreeRegs) { 1666 State.FreeRegs = 0; 1667 return false; 1668 } 1669 } else { 1670 // The MCU psABI allows passing parameters in-reg even if there are 1671 // earlier parameters that are passed on the stack. Also, 1672 // it does not allow passing >8-byte structs in-register, 1673 // even if there are 3 free registers available. 1674 if (SizeInRegs > State.FreeRegs || SizeInRegs > 2) 1675 return false; 1676 } 1677 1678 State.FreeRegs -= SizeInRegs; 1679 return true; 1680 } 1681 1682 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State, 1683 bool &InReg, 1684 bool &NeedsPadding) const { 1685 // On Windows, aggregates other than HFAs are never passed in registers, and 1686 // they do not consume register slots. Homogenous floating-point aggregates 1687 // (HFAs) have already been dealt with at this point. 1688 if (IsWin32StructABI && isAggregateTypeForABI(Ty)) 1689 return false; 1690 1691 NeedsPadding = false; 1692 InReg = !IsMCUABI; 1693 1694 if (!updateFreeRegs(Ty, State)) 1695 return false; 1696 1697 if (IsMCUABI) 1698 return true; 1699 1700 if (State.CC == llvm::CallingConv::X86_FastCall || 1701 State.CC == llvm::CallingConv::X86_VectorCall || 1702 State.CC == llvm::CallingConv::X86_RegCall) { 1703 if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs) 1704 NeedsPadding = true; 1705 1706 return false; 1707 } 1708 1709 return true; 1710 } 1711 1712 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const { 1713 if (!updateFreeRegs(Ty, State)) 1714 return false; 1715 1716 if (IsMCUABI) 1717 return false; 1718 1719 if (State.CC == llvm::CallingConv::X86_FastCall || 1720 State.CC == llvm::CallingConv::X86_VectorCall || 1721 State.CC == llvm::CallingConv::X86_RegCall) { 1722 if (getContext().getTypeSize(Ty) > 32) 1723 return false; 1724 1725 return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() || 1726 Ty->isReferenceType()); 1727 } 1728 1729 return true; 1730 } 1731 1732 void X86_32ABIInfo::runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const { 1733 // Vectorcall x86 works subtly different than in x64, so the format is 1734 // a bit different than the x64 version. First, all vector types (not HVAs) 1735 // are assigned, with the first 6 ending up in the [XYZ]MM0-5 registers. 1736 // This differs from the x64 implementation, where the first 6 by INDEX get 1737 // registers. 1738 // In the second pass over the arguments, HVAs are passed in the remaining 1739 // vector registers if possible, or indirectly by address. The address will be 1740 // passed in ECX/EDX if available. Any other arguments are passed according to 1741 // the usual fastcall rules. 1742 MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments(); 1743 for (int I = 0, E = Args.size(); I < E; ++I) { 1744 const Type *Base = nullptr; 1745 uint64_t NumElts = 0; 1746 const QualType &Ty = Args[I].type; 1747 if ((Ty->isVectorType() || Ty->isBuiltinType()) && 1748 isHomogeneousAggregate(Ty, Base, NumElts)) { 1749 if (State.FreeSSERegs >= NumElts) { 1750 State.FreeSSERegs -= NumElts; 1751 Args[I].info = ABIArgInfo::getDirectInReg(); 1752 State.IsPreassigned.set(I); 1753 } 1754 } 1755 } 1756 } 1757 1758 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, 1759 CCState &State) const { 1760 // FIXME: Set alignment on indirect arguments. 1761 bool IsFastCall = State.CC == llvm::CallingConv::X86_FastCall; 1762 bool IsRegCall = State.CC == llvm::CallingConv::X86_RegCall; 1763 bool IsVectorCall = State.CC == llvm::CallingConv::X86_VectorCall; 1764 1765 Ty = useFirstFieldIfTransparentUnion(Ty); 1766 TypeInfo TI = getContext().getTypeInfo(Ty); 1767 1768 // Check with the C++ ABI first. 1769 const RecordType *RT = Ty->getAs<RecordType>(); 1770 if (RT) { 1771 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 1772 if (RAA == CGCXXABI::RAA_Indirect) { 1773 return getIndirectResult(Ty, false, State); 1774 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 1775 // The field index doesn't matter, we'll fix it up later. 1776 return ABIArgInfo::getInAlloca(/*FieldIndex=*/0); 1777 } 1778 } 1779 1780 // Regcall uses the concept of a homogenous vector aggregate, similar 1781 // to other targets. 1782 const Type *Base = nullptr; 1783 uint64_t NumElts = 0; 1784 if ((IsRegCall || IsVectorCall) && 1785 isHomogeneousAggregate(Ty, Base, NumElts)) { 1786 if (State.FreeSSERegs >= NumElts) { 1787 State.FreeSSERegs -= NumElts; 1788 1789 // Vectorcall passes HVAs directly and does not flatten them, but regcall 1790 // does. 1791 if (IsVectorCall) 1792 return getDirectX86Hva(); 1793 1794 if (Ty->isBuiltinType() || Ty->isVectorType()) 1795 return ABIArgInfo::getDirect(); 1796 return ABIArgInfo::getExpand(); 1797 } 1798 return getIndirectResult(Ty, /*ByVal=*/false, State); 1799 } 1800 1801 if (isAggregateTypeForABI(Ty)) { 1802 // Structures with flexible arrays are always indirect. 1803 // FIXME: This should not be byval! 1804 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 1805 return getIndirectResult(Ty, true, State); 1806 1807 // Ignore empty structs/unions on non-Windows. 1808 if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true)) 1809 return ABIArgInfo::getIgnore(); 1810 1811 llvm::LLVMContext &LLVMContext = getVMContext(); 1812 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 1813 bool NeedsPadding = false; 1814 bool InReg; 1815 if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) { 1816 unsigned SizeInRegs = (TI.Width + 31) / 32; 1817 SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32); 1818 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 1819 if (InReg) 1820 return ABIArgInfo::getDirectInReg(Result); 1821 else 1822 return ABIArgInfo::getDirect(Result); 1823 } 1824 llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr; 1825 1826 // Pass over-aligned aggregates on Windows indirectly. This behavior was 1827 // added in MSVC 2015. 1828 if (IsWin32StructABI && TI.AlignIsRequired && TI.Align > 32) 1829 return getIndirectResult(Ty, /*ByVal=*/false, State); 1830 1831 // Expand small (<= 128-bit) record types when we know that the stack layout 1832 // of those arguments will match the struct. This is important because the 1833 // LLVM backend isn't smart enough to remove byval, which inhibits many 1834 // optimizations. 1835 // Don't do this for the MCU if there are still free integer registers 1836 // (see X86_64 ABI for full explanation). 1837 if (TI.Width <= 4 * 32 && (!IsMCUABI || State.FreeRegs == 0) && 1838 canExpandIndirectArgument(Ty)) 1839 return ABIArgInfo::getExpandWithPadding( 1840 IsFastCall || IsVectorCall || IsRegCall, PaddingType); 1841 1842 return getIndirectResult(Ty, true, State); 1843 } 1844 1845 if (const VectorType *VT = Ty->getAs<VectorType>()) { 1846 // On Windows, vectors are passed directly if registers are available, or 1847 // indirectly if not. This avoids the need to align argument memory. Pass 1848 // user-defined vector types larger than 512 bits indirectly for simplicity. 1849 if (IsWin32StructABI) { 1850 if (TI.Width <= 512 && State.FreeSSERegs > 0) { 1851 --State.FreeSSERegs; 1852 return ABIArgInfo::getDirectInReg(); 1853 } 1854 return getIndirectResult(Ty, /*ByVal=*/false, State); 1855 } 1856 1857 // On Darwin, some vectors are passed in memory, we handle this by passing 1858 // it as an i8/i16/i32/i64. 1859 if (IsDarwinVectorABI) { 1860 if ((TI.Width == 8 || TI.Width == 16 || TI.Width == 32) || 1861 (TI.Width == 64 && VT->getNumElements() == 1)) 1862 return ABIArgInfo::getDirect( 1863 llvm::IntegerType::get(getVMContext(), TI.Width)); 1864 } 1865 1866 if (IsX86_MMXType(CGT.ConvertType(Ty))) 1867 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64)); 1868 1869 return ABIArgInfo::getDirect(); 1870 } 1871 1872 1873 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 1874 Ty = EnumTy->getDecl()->getIntegerType(); 1875 1876 bool InReg = shouldPrimitiveUseInReg(Ty, State); 1877 1878 if (isPromotableIntegerTypeForABI(Ty)) { 1879 if (InReg) 1880 return ABIArgInfo::getExtendInReg(Ty); 1881 return ABIArgInfo::getExtend(Ty); 1882 } 1883 1884 if (const auto * EIT = Ty->getAs<ExtIntType>()) { 1885 if (EIT->getNumBits() <= 64) { 1886 if (InReg) 1887 return ABIArgInfo::getDirectInReg(); 1888 return ABIArgInfo::getDirect(); 1889 } 1890 return getIndirectResult(Ty, /*ByVal=*/false, State); 1891 } 1892 1893 if (InReg) 1894 return ABIArgInfo::getDirectInReg(); 1895 return ABIArgInfo::getDirect(); 1896 } 1897 1898 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const { 1899 CCState State(FI); 1900 if (IsMCUABI) 1901 State.FreeRegs = 3; 1902 else if (State.CC == llvm::CallingConv::X86_FastCall) { 1903 State.FreeRegs = 2; 1904 State.FreeSSERegs = 3; 1905 } else if (State.CC == llvm::CallingConv::X86_VectorCall) { 1906 State.FreeRegs = 2; 1907 State.FreeSSERegs = 6; 1908 } else if (FI.getHasRegParm()) 1909 State.FreeRegs = FI.getRegParm(); 1910 else if (State.CC == llvm::CallingConv::X86_RegCall) { 1911 State.FreeRegs = 5; 1912 State.FreeSSERegs = 8; 1913 } else if (IsWin32StructABI) { 1914 // Since MSVC 2015, the first three SSE vectors have been passed in 1915 // registers. The rest are passed indirectly. 1916 State.FreeRegs = DefaultNumRegisterParameters; 1917 State.FreeSSERegs = 3; 1918 } else 1919 State.FreeRegs = DefaultNumRegisterParameters; 1920 1921 if (!::classifyReturnType(getCXXABI(), FI, *this)) { 1922 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State); 1923 } else if (FI.getReturnInfo().isIndirect()) { 1924 // The C++ ABI is not aware of register usage, so we have to check if the 1925 // return value was sret and put it in a register ourselves if appropriate. 1926 if (State.FreeRegs) { 1927 --State.FreeRegs; // The sret parameter consumes a register. 1928 if (!IsMCUABI) 1929 FI.getReturnInfo().setInReg(true); 1930 } 1931 } 1932 1933 // The chain argument effectively gives us another free register. 1934 if (FI.isChainCall()) 1935 ++State.FreeRegs; 1936 1937 // For vectorcall, do a first pass over the arguments, assigning FP and vector 1938 // arguments to XMM registers as available. 1939 if (State.CC == llvm::CallingConv::X86_VectorCall) 1940 runVectorCallFirstPass(FI, State); 1941 1942 bool UsedInAlloca = false; 1943 MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments(); 1944 for (int I = 0, E = Args.size(); I < E; ++I) { 1945 // Skip arguments that have already been assigned. 1946 if (State.IsPreassigned.test(I)) 1947 continue; 1948 1949 Args[I].info = classifyArgumentType(Args[I].type, State); 1950 UsedInAlloca |= (Args[I].info.getKind() == ABIArgInfo::InAlloca); 1951 } 1952 1953 // If we needed to use inalloca for any argument, do a second pass and rewrite 1954 // all the memory arguments to use inalloca. 1955 if (UsedInAlloca) 1956 rewriteWithInAlloca(FI); 1957 } 1958 1959 void 1960 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1961 CharUnits &StackOffset, ABIArgInfo &Info, 1962 QualType Type) const { 1963 // Arguments are always 4-byte-aligned. 1964 CharUnits WordSize = CharUnits::fromQuantity(4); 1965 assert(StackOffset.isMultipleOf(WordSize) && "unaligned inalloca struct"); 1966 1967 // sret pointers and indirect things will require an extra pointer 1968 // indirection, unless they are byval. Most things are byval, and will not 1969 // require this indirection. 1970 bool IsIndirect = false; 1971 if (Info.isIndirect() && !Info.getIndirectByVal()) 1972 IsIndirect = true; 1973 Info = ABIArgInfo::getInAlloca(FrameFields.size(), IsIndirect); 1974 llvm::Type *LLTy = CGT.ConvertTypeForMem(Type); 1975 if (IsIndirect) 1976 LLTy = LLTy->getPointerTo(0); 1977 FrameFields.push_back(LLTy); 1978 StackOffset += IsIndirect ? WordSize : getContext().getTypeSizeInChars(Type); 1979 1980 // Insert padding bytes to respect alignment. 1981 CharUnits FieldEnd = StackOffset; 1982 StackOffset = FieldEnd.alignTo(WordSize); 1983 if (StackOffset != FieldEnd) { 1984 CharUnits NumBytes = StackOffset - FieldEnd; 1985 llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext()); 1986 Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity()); 1987 FrameFields.push_back(Ty); 1988 } 1989 } 1990 1991 static bool isArgInAlloca(const ABIArgInfo &Info) { 1992 // Leave ignored and inreg arguments alone. 1993 switch (Info.getKind()) { 1994 case ABIArgInfo::InAlloca: 1995 return true; 1996 case ABIArgInfo::Ignore: 1997 case ABIArgInfo::IndirectAliased: 1998 return false; 1999 case ABIArgInfo::Indirect: 2000 case ABIArgInfo::Direct: 2001 case ABIArgInfo::Extend: 2002 return !Info.getInReg(); 2003 case ABIArgInfo::Expand: 2004 case ABIArgInfo::CoerceAndExpand: 2005 // These are aggregate types which are never passed in registers when 2006 // inalloca is involved. 2007 return true; 2008 } 2009 llvm_unreachable("invalid enum"); 2010 } 2011 2012 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const { 2013 assert(IsWin32StructABI && "inalloca only supported on win32"); 2014 2015 // Build a packed struct type for all of the arguments in memory. 2016 SmallVector<llvm::Type *, 6> FrameFields; 2017 2018 // The stack alignment is always 4. 2019 CharUnits StackAlign = CharUnits::fromQuantity(4); 2020 2021 CharUnits StackOffset; 2022 CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end(); 2023 2024 // Put 'this' into the struct before 'sret', if necessary. 2025 bool IsThisCall = 2026 FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall; 2027 ABIArgInfo &Ret = FI.getReturnInfo(); 2028 if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall && 2029 isArgInAlloca(I->info)) { 2030 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 2031 ++I; 2032 } 2033 2034 // Put the sret parameter into the inalloca struct if it's in memory. 2035 if (Ret.isIndirect() && !Ret.getInReg()) { 2036 addFieldToArgStruct(FrameFields, StackOffset, Ret, FI.getReturnType()); 2037 // On Windows, the hidden sret parameter is always returned in eax. 2038 Ret.setInAllocaSRet(IsWin32StructABI); 2039 } 2040 2041 // Skip the 'this' parameter in ecx. 2042 if (IsThisCall) 2043 ++I; 2044 2045 // Put arguments passed in memory into the struct. 2046 for (; I != E; ++I) { 2047 if (isArgInAlloca(I->info)) 2048 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 2049 } 2050 2051 FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields, 2052 /*isPacked=*/true), 2053 StackAlign); 2054 } 2055 2056 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF, 2057 Address VAListAddr, QualType Ty) const { 2058 2059 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 2060 2061 // x86-32 changes the alignment of certain arguments on the stack. 2062 // 2063 // Just messing with TypeInfo like this works because we never pass 2064 // anything indirectly. 2065 TypeInfo.Align = CharUnits::fromQuantity( 2066 getTypeStackAlignInBytes(Ty, TypeInfo.Align.getQuantity())); 2067 2068 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 2069 TypeInfo, CharUnits::fromQuantity(4), 2070 /*AllowHigherAlign*/ true); 2071 } 2072 2073 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI( 2074 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 2075 assert(Triple.getArch() == llvm::Triple::x86); 2076 2077 switch (Opts.getStructReturnConvention()) { 2078 case CodeGenOptions::SRCK_Default: 2079 break; 2080 case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return 2081 return false; 2082 case CodeGenOptions::SRCK_InRegs: // -freg-struct-return 2083 return true; 2084 } 2085 2086 if (Triple.isOSDarwin() || Triple.isOSIAMCU()) 2087 return true; 2088 2089 switch (Triple.getOS()) { 2090 case llvm::Triple::DragonFly: 2091 case llvm::Triple::FreeBSD: 2092 case llvm::Triple::OpenBSD: 2093 case llvm::Triple::Win32: 2094 return true; 2095 default: 2096 return false; 2097 } 2098 } 2099 2100 void X86_32TargetCodeGenInfo::setTargetAttributes( 2101 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2102 if (GV->isDeclaration()) 2103 return; 2104 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2105 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2106 llvm::Function *Fn = cast<llvm::Function>(GV); 2107 Fn->addFnAttr("stackrealign"); 2108 } 2109 if (FD->hasAttr<AnyX86InterruptAttr>()) { 2110 llvm::Function *Fn = cast<llvm::Function>(GV); 2111 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2112 } 2113 } 2114 } 2115 2116 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable( 2117 CodeGen::CodeGenFunction &CGF, 2118 llvm::Value *Address) const { 2119 CodeGen::CGBuilderTy &Builder = CGF.Builder; 2120 2121 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 2122 2123 // 0-7 are the eight integer registers; the order is different 2124 // on Darwin (for EH), but the range is the same. 2125 // 8 is %eip. 2126 AssignToArrayRange(Builder, Address, Four8, 0, 8); 2127 2128 if (CGF.CGM.getTarget().getTriple().isOSDarwin()) { 2129 // 12-16 are st(0..4). Not sure why we stop at 4. 2130 // These have size 16, which is sizeof(long double) on 2131 // platforms with 8-byte alignment for that type. 2132 llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16); 2133 AssignToArrayRange(Builder, Address, Sixteen8, 12, 16); 2134 2135 } else { 2136 // 9 is %eflags, which doesn't get a size on Darwin for some 2137 // reason. 2138 Builder.CreateAlignedStore( 2139 Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9), 2140 CharUnits::One()); 2141 2142 // 11-16 are st(0..5). Not sure why we stop at 5. 2143 // These have size 12, which is sizeof(long double) on 2144 // platforms with 4-byte alignment for that type. 2145 llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12); 2146 AssignToArrayRange(Builder, Address, Twelve8, 11, 16); 2147 } 2148 2149 return false; 2150 } 2151 2152 //===----------------------------------------------------------------------===// 2153 // X86-64 ABI Implementation 2154 //===----------------------------------------------------------------------===// 2155 2156 2157 namespace { 2158 /// The AVX ABI level for X86 targets. 2159 enum class X86AVXABILevel { 2160 None, 2161 AVX, 2162 AVX512 2163 }; 2164 2165 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel. 2166 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) { 2167 switch (AVXLevel) { 2168 case X86AVXABILevel::AVX512: 2169 return 512; 2170 case X86AVXABILevel::AVX: 2171 return 256; 2172 case X86AVXABILevel::None: 2173 return 128; 2174 } 2175 llvm_unreachable("Unknown AVXLevel"); 2176 } 2177 2178 /// X86_64ABIInfo - The X86_64 ABI information. 2179 class X86_64ABIInfo : public SwiftABIInfo { 2180 enum Class { 2181 Integer = 0, 2182 SSE, 2183 SSEUp, 2184 X87, 2185 X87Up, 2186 ComplexX87, 2187 NoClass, 2188 Memory 2189 }; 2190 2191 /// merge - Implement the X86_64 ABI merging algorithm. 2192 /// 2193 /// Merge an accumulating classification \arg Accum with a field 2194 /// classification \arg Field. 2195 /// 2196 /// \param Accum - The accumulating classification. This should 2197 /// always be either NoClass or the result of a previous merge 2198 /// call. In addition, this should never be Memory (the caller 2199 /// should just return Memory for the aggregate). 2200 static Class merge(Class Accum, Class Field); 2201 2202 /// postMerge - Implement the X86_64 ABI post merging algorithm. 2203 /// 2204 /// Post merger cleanup, reduces a malformed Hi and Lo pair to 2205 /// final MEMORY or SSE classes when necessary. 2206 /// 2207 /// \param AggregateSize - The size of the current aggregate in 2208 /// the classification process. 2209 /// 2210 /// \param Lo - The classification for the parts of the type 2211 /// residing in the low word of the containing object. 2212 /// 2213 /// \param Hi - The classification for the parts of the type 2214 /// residing in the higher words of the containing object. 2215 /// 2216 void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const; 2217 2218 /// classify - Determine the x86_64 register classes in which the 2219 /// given type T should be passed. 2220 /// 2221 /// \param Lo - The classification for the parts of the type 2222 /// residing in the low word of the containing object. 2223 /// 2224 /// \param Hi - The classification for the parts of the type 2225 /// residing in the high word of the containing object. 2226 /// 2227 /// \param OffsetBase - The bit offset of this type in the 2228 /// containing object. Some parameters are classified different 2229 /// depending on whether they straddle an eightbyte boundary. 2230 /// 2231 /// \param isNamedArg - Whether the argument in question is a "named" 2232 /// argument, as used in AMD64-ABI 3.5.7. 2233 /// 2234 /// If a word is unused its result will be NoClass; if a type should 2235 /// be passed in Memory then at least the classification of \arg Lo 2236 /// will be Memory. 2237 /// 2238 /// The \arg Lo class will be NoClass iff the argument is ignored. 2239 /// 2240 /// If the \arg Lo class is ComplexX87, then the \arg Hi class will 2241 /// also be ComplexX87. 2242 void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi, 2243 bool isNamedArg) const; 2244 2245 llvm::Type *GetByteVectorType(QualType Ty) const; 2246 llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType, 2247 unsigned IROffset, QualType SourceTy, 2248 unsigned SourceOffset) const; 2249 llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType, 2250 unsigned IROffset, QualType SourceTy, 2251 unsigned SourceOffset) const; 2252 2253 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 2254 /// such that the argument will be returned in memory. 2255 ABIArgInfo getIndirectReturnResult(QualType Ty) const; 2256 2257 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 2258 /// such that the argument will be passed in memory. 2259 /// 2260 /// \param freeIntRegs - The number of free integer registers remaining 2261 /// available. 2262 ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const; 2263 2264 ABIArgInfo classifyReturnType(QualType RetTy) const; 2265 2266 ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs, 2267 unsigned &neededInt, unsigned &neededSSE, 2268 bool isNamedArg) const; 2269 2270 ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt, 2271 unsigned &NeededSSE) const; 2272 2273 ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 2274 unsigned &NeededSSE) const; 2275 2276 bool IsIllegalVectorType(QualType Ty) const; 2277 2278 /// The 0.98 ABI revision clarified a lot of ambiguities, 2279 /// unfortunately in ways that were not always consistent with 2280 /// certain previous compilers. In particular, platforms which 2281 /// required strict binary compatibility with older versions of GCC 2282 /// may need to exempt themselves. 2283 bool honorsRevision0_98() const { 2284 return !getTarget().getTriple().isOSDarwin(); 2285 } 2286 2287 /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to 2288 /// classify it as INTEGER (for compatibility with older clang compilers). 2289 bool classifyIntegerMMXAsSSE() const { 2290 // Clang <= 3.8 did not do this. 2291 if (getContext().getLangOpts().getClangABICompat() <= 2292 LangOptions::ClangABI::Ver3_8) 2293 return false; 2294 2295 const llvm::Triple &Triple = getTarget().getTriple(); 2296 if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::PS4) 2297 return false; 2298 if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10) 2299 return false; 2300 return true; 2301 } 2302 2303 // GCC classifies vectors of __int128 as memory. 2304 bool passInt128VectorsInMem() const { 2305 // Clang <= 9.0 did not do this. 2306 if (getContext().getLangOpts().getClangABICompat() <= 2307 LangOptions::ClangABI::Ver9) 2308 return false; 2309 2310 const llvm::Triple &T = getTarget().getTriple(); 2311 return T.isOSLinux() || T.isOSNetBSD(); 2312 } 2313 2314 X86AVXABILevel AVXLevel; 2315 // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on 2316 // 64-bit hardware. 2317 bool Has64BitPointers; 2318 2319 public: 2320 X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) : 2321 SwiftABIInfo(CGT), AVXLevel(AVXLevel), 2322 Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) { 2323 } 2324 2325 bool isPassedUsingAVXType(QualType type) const { 2326 unsigned neededInt, neededSSE; 2327 // The freeIntRegs argument doesn't matter here. 2328 ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE, 2329 /*isNamedArg*/true); 2330 if (info.isDirect()) { 2331 llvm::Type *ty = info.getCoerceToType(); 2332 if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty)) 2333 return vectorTy->getPrimitiveSizeInBits().getFixedSize() > 128; 2334 } 2335 return false; 2336 } 2337 2338 void computeInfo(CGFunctionInfo &FI) const override; 2339 2340 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2341 QualType Ty) const override; 2342 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 2343 QualType Ty) const override; 2344 2345 bool has64BitPointers() const { 2346 return Has64BitPointers; 2347 } 2348 2349 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 2350 bool asReturnValue) const override { 2351 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2352 } 2353 bool isSwiftErrorInRegister() const override { 2354 return true; 2355 } 2356 }; 2357 2358 /// WinX86_64ABIInfo - The Windows X86_64 ABI information. 2359 class WinX86_64ABIInfo : public SwiftABIInfo { 2360 public: 2361 WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2362 : SwiftABIInfo(CGT), AVXLevel(AVXLevel), 2363 IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {} 2364 2365 void computeInfo(CGFunctionInfo &FI) const override; 2366 2367 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2368 QualType Ty) const override; 2369 2370 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 2371 // FIXME: Assumes vectorcall is in use. 2372 return isX86VectorTypeForVectorCall(getContext(), Ty); 2373 } 2374 2375 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 2376 uint64_t NumMembers) const override { 2377 // FIXME: Assumes vectorcall is in use. 2378 return isX86VectorCallAggregateSmallEnough(NumMembers); 2379 } 2380 2381 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type *> scalars, 2382 bool asReturnValue) const override { 2383 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2384 } 2385 2386 bool isSwiftErrorInRegister() const override { 2387 return true; 2388 } 2389 2390 private: 2391 ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType, 2392 bool IsVectorCall, bool IsRegCall) const; 2393 ABIArgInfo reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs, 2394 const ABIArgInfo ¤t) const; 2395 void computeVectorCallArgs(CGFunctionInfo &FI, unsigned FreeSSERegs, 2396 bool IsVectorCall, bool IsRegCall) const; 2397 2398 X86AVXABILevel AVXLevel; 2399 2400 bool IsMingw64; 2401 }; 2402 2403 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2404 public: 2405 X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2406 : TargetCodeGenInfo(std::make_unique<X86_64ABIInfo>(CGT, AVXLevel)) {} 2407 2408 const X86_64ABIInfo &getABIInfo() const { 2409 return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo()); 2410 } 2411 2412 /// Disable tail call on x86-64. The epilogue code before the tail jump blocks 2413 /// autoreleaseRV/retainRV and autoreleaseRV/unsafeClaimRV optimizations. 2414 bool markARCOptimizedReturnCallsAsNoTail() const override { return true; } 2415 2416 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2417 return 7; 2418 } 2419 2420 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2421 llvm::Value *Address) const override { 2422 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2423 2424 // 0-15 are the 16 integer registers. 2425 // 16 is %rip. 2426 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2427 return false; 2428 } 2429 2430 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 2431 StringRef Constraint, 2432 llvm::Type* Ty) const override { 2433 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 2434 } 2435 2436 bool isNoProtoCallVariadic(const CallArgList &args, 2437 const FunctionNoProtoType *fnType) const override { 2438 // The default CC on x86-64 sets %al to the number of SSA 2439 // registers used, and GCC sets this when calling an unprototyped 2440 // function, so we override the default behavior. However, don't do 2441 // that when AVX types are involved: the ABI explicitly states it is 2442 // undefined, and it doesn't work in practice because of how the ABI 2443 // defines varargs anyway. 2444 if (fnType->getCallConv() == CC_C) { 2445 bool HasAVXType = false; 2446 for (CallArgList::const_iterator 2447 it = args.begin(), ie = args.end(); it != ie; ++it) { 2448 if (getABIInfo().isPassedUsingAVXType(it->Ty)) { 2449 HasAVXType = true; 2450 break; 2451 } 2452 } 2453 2454 if (!HasAVXType) 2455 return true; 2456 } 2457 2458 return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType); 2459 } 2460 2461 llvm::Constant * 2462 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 2463 unsigned Sig = (0xeb << 0) | // jmp rel8 2464 (0x06 << 8) | // .+0x08 2465 ('v' << 16) | 2466 ('2' << 24); 2467 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 2468 } 2469 2470 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2471 CodeGen::CodeGenModule &CGM) const override { 2472 if (GV->isDeclaration()) 2473 return; 2474 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2475 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2476 llvm::Function *Fn = cast<llvm::Function>(GV); 2477 Fn->addFnAttr("stackrealign"); 2478 } 2479 if (FD->hasAttr<AnyX86InterruptAttr>()) { 2480 llvm::Function *Fn = cast<llvm::Function>(GV); 2481 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2482 } 2483 } 2484 } 2485 2486 void checkFunctionCallABI(CodeGenModule &CGM, SourceLocation CallLoc, 2487 const FunctionDecl *Caller, 2488 const FunctionDecl *Callee, 2489 const CallArgList &Args) const override; 2490 }; 2491 2492 static void initFeatureMaps(const ASTContext &Ctx, 2493 llvm::StringMap<bool> &CallerMap, 2494 const FunctionDecl *Caller, 2495 llvm::StringMap<bool> &CalleeMap, 2496 const FunctionDecl *Callee) { 2497 if (CalleeMap.empty() && CallerMap.empty()) { 2498 // The caller is potentially nullptr in the case where the call isn't in a 2499 // function. In this case, the getFunctionFeatureMap ensures we just get 2500 // the TU level setting (since it cannot be modified by 'target'.. 2501 Ctx.getFunctionFeatureMap(CallerMap, Caller); 2502 Ctx.getFunctionFeatureMap(CalleeMap, Callee); 2503 } 2504 } 2505 2506 static bool checkAVXParamFeature(DiagnosticsEngine &Diag, 2507 SourceLocation CallLoc, 2508 const llvm::StringMap<bool> &CallerMap, 2509 const llvm::StringMap<bool> &CalleeMap, 2510 QualType Ty, StringRef Feature, 2511 bool IsArgument) { 2512 bool CallerHasFeat = CallerMap.lookup(Feature); 2513 bool CalleeHasFeat = CalleeMap.lookup(Feature); 2514 if (!CallerHasFeat && !CalleeHasFeat) 2515 return Diag.Report(CallLoc, diag::warn_avx_calling_convention) 2516 << IsArgument << Ty << Feature; 2517 2518 // Mixing calling conventions here is very clearly an error. 2519 if (!CallerHasFeat || !CalleeHasFeat) 2520 return Diag.Report(CallLoc, diag::err_avx_calling_convention) 2521 << IsArgument << Ty << Feature; 2522 2523 // Else, both caller and callee have the required feature, so there is no need 2524 // to diagnose. 2525 return false; 2526 } 2527 2528 static bool checkAVXParam(DiagnosticsEngine &Diag, ASTContext &Ctx, 2529 SourceLocation CallLoc, 2530 const llvm::StringMap<bool> &CallerMap, 2531 const llvm::StringMap<bool> &CalleeMap, QualType Ty, 2532 bool IsArgument) { 2533 uint64_t Size = Ctx.getTypeSize(Ty); 2534 if (Size > 256) 2535 return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty, 2536 "avx512f", IsArgument); 2537 2538 if (Size > 128) 2539 return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty, "avx", 2540 IsArgument); 2541 2542 return false; 2543 } 2544 2545 void X86_64TargetCodeGenInfo::checkFunctionCallABI( 2546 CodeGenModule &CGM, SourceLocation CallLoc, const FunctionDecl *Caller, 2547 const FunctionDecl *Callee, const CallArgList &Args) const { 2548 llvm::StringMap<bool> CallerMap; 2549 llvm::StringMap<bool> CalleeMap; 2550 unsigned ArgIndex = 0; 2551 2552 // We need to loop through the actual call arguments rather than the the 2553 // function's parameters, in case this variadic. 2554 for (const CallArg &Arg : Args) { 2555 // The "avx" feature changes how vectors >128 in size are passed. "avx512f" 2556 // additionally changes how vectors >256 in size are passed. Like GCC, we 2557 // warn when a function is called with an argument where this will change. 2558 // Unlike GCC, we also error when it is an obvious ABI mismatch, that is, 2559 // the caller and callee features are mismatched. 2560 // Unfortunately, we cannot do this diagnostic in SEMA, since the callee can 2561 // change its ABI with attribute-target after this call. 2562 if (Arg.getType()->isVectorType() && 2563 CGM.getContext().getTypeSize(Arg.getType()) > 128) { 2564 initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee); 2565 QualType Ty = Arg.getType(); 2566 // The CallArg seems to have desugared the type already, so for clearer 2567 // diagnostics, replace it with the type in the FunctionDecl if possible. 2568 if (ArgIndex < Callee->getNumParams()) 2569 Ty = Callee->getParamDecl(ArgIndex)->getType(); 2570 2571 if (checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap, 2572 CalleeMap, Ty, /*IsArgument*/ true)) 2573 return; 2574 } 2575 ++ArgIndex; 2576 } 2577 2578 // Check return always, as we don't have a good way of knowing in codegen 2579 // whether this value is used, tail-called, etc. 2580 if (Callee->getReturnType()->isVectorType() && 2581 CGM.getContext().getTypeSize(Callee->getReturnType()) > 128) { 2582 initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee); 2583 checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap, 2584 CalleeMap, Callee->getReturnType(), 2585 /*IsArgument*/ false); 2586 } 2587 } 2588 2589 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) { 2590 // If the argument does not end in .lib, automatically add the suffix. 2591 // If the argument contains a space, enclose it in quotes. 2592 // This matches the behavior of MSVC. 2593 bool Quote = (Lib.find(" ") != StringRef::npos); 2594 std::string ArgStr = Quote ? "\"" : ""; 2595 ArgStr += Lib; 2596 if (!Lib.endswith_lower(".lib") && !Lib.endswith_lower(".a")) 2597 ArgStr += ".lib"; 2598 ArgStr += Quote ? "\"" : ""; 2599 return ArgStr; 2600 } 2601 2602 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo { 2603 public: 2604 WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2605 bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI, 2606 unsigned NumRegisterParameters) 2607 : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI, 2608 Win32StructABI, NumRegisterParameters, false) {} 2609 2610 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2611 CodeGen::CodeGenModule &CGM) const override; 2612 2613 void getDependentLibraryOption(llvm::StringRef Lib, 2614 llvm::SmallString<24> &Opt) const override { 2615 Opt = "/DEFAULTLIB:"; 2616 Opt += qualifyWindowsLibrary(Lib); 2617 } 2618 2619 void getDetectMismatchOption(llvm::StringRef Name, 2620 llvm::StringRef Value, 2621 llvm::SmallString<32> &Opt) const override { 2622 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2623 } 2624 }; 2625 2626 static void addStackProbeTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2627 CodeGen::CodeGenModule &CGM) { 2628 if (llvm::Function *Fn = dyn_cast_or_null<llvm::Function>(GV)) { 2629 2630 if (CGM.getCodeGenOpts().StackProbeSize != 4096) 2631 Fn->addFnAttr("stack-probe-size", 2632 llvm::utostr(CGM.getCodeGenOpts().StackProbeSize)); 2633 if (CGM.getCodeGenOpts().NoStackArgProbe) 2634 Fn->addFnAttr("no-stack-arg-probe"); 2635 } 2636 } 2637 2638 void WinX86_32TargetCodeGenInfo::setTargetAttributes( 2639 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2640 X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2641 if (GV->isDeclaration()) 2642 return; 2643 addStackProbeTargetAttributes(D, GV, CGM); 2644 } 2645 2646 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2647 public: 2648 WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2649 X86AVXABILevel AVXLevel) 2650 : TargetCodeGenInfo(std::make_unique<WinX86_64ABIInfo>(CGT, AVXLevel)) {} 2651 2652 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2653 CodeGen::CodeGenModule &CGM) const override; 2654 2655 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2656 return 7; 2657 } 2658 2659 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2660 llvm::Value *Address) const override { 2661 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2662 2663 // 0-15 are the 16 integer registers. 2664 // 16 is %rip. 2665 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2666 return false; 2667 } 2668 2669 void getDependentLibraryOption(llvm::StringRef Lib, 2670 llvm::SmallString<24> &Opt) const override { 2671 Opt = "/DEFAULTLIB:"; 2672 Opt += qualifyWindowsLibrary(Lib); 2673 } 2674 2675 void getDetectMismatchOption(llvm::StringRef Name, 2676 llvm::StringRef Value, 2677 llvm::SmallString<32> &Opt) const override { 2678 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2679 } 2680 }; 2681 2682 void WinX86_64TargetCodeGenInfo::setTargetAttributes( 2683 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2684 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2685 if (GV->isDeclaration()) 2686 return; 2687 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2688 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2689 llvm::Function *Fn = cast<llvm::Function>(GV); 2690 Fn->addFnAttr("stackrealign"); 2691 } 2692 if (FD->hasAttr<AnyX86InterruptAttr>()) { 2693 llvm::Function *Fn = cast<llvm::Function>(GV); 2694 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2695 } 2696 } 2697 2698 addStackProbeTargetAttributes(D, GV, CGM); 2699 } 2700 } 2701 2702 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo, 2703 Class &Hi) const { 2704 // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done: 2705 // 2706 // (a) If one of the classes is Memory, the whole argument is passed in 2707 // memory. 2708 // 2709 // (b) If X87UP is not preceded by X87, the whole argument is passed in 2710 // memory. 2711 // 2712 // (c) If the size of the aggregate exceeds two eightbytes and the first 2713 // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole 2714 // argument is passed in memory. NOTE: This is necessary to keep the 2715 // ABI working for processors that don't support the __m256 type. 2716 // 2717 // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE. 2718 // 2719 // Some of these are enforced by the merging logic. Others can arise 2720 // only with unions; for example: 2721 // union { _Complex double; unsigned; } 2722 // 2723 // Note that clauses (b) and (c) were added in 0.98. 2724 // 2725 if (Hi == Memory) 2726 Lo = Memory; 2727 if (Hi == X87Up && Lo != X87 && honorsRevision0_98()) 2728 Lo = Memory; 2729 if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp)) 2730 Lo = Memory; 2731 if (Hi == SSEUp && Lo != SSE) 2732 Hi = SSE; 2733 } 2734 2735 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) { 2736 // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is 2737 // classified recursively so that always two fields are 2738 // considered. The resulting class is calculated according to 2739 // the classes of the fields in the eightbyte: 2740 // 2741 // (a) If both classes are equal, this is the resulting class. 2742 // 2743 // (b) If one of the classes is NO_CLASS, the resulting class is 2744 // the other class. 2745 // 2746 // (c) If one of the classes is MEMORY, the result is the MEMORY 2747 // class. 2748 // 2749 // (d) If one of the classes is INTEGER, the result is the 2750 // INTEGER. 2751 // 2752 // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class, 2753 // MEMORY is used as class. 2754 // 2755 // (f) Otherwise class SSE is used. 2756 2757 // Accum should never be memory (we should have returned) or 2758 // ComplexX87 (because this cannot be passed in a structure). 2759 assert((Accum != Memory && Accum != ComplexX87) && 2760 "Invalid accumulated classification during merge."); 2761 if (Accum == Field || Field == NoClass) 2762 return Accum; 2763 if (Field == Memory) 2764 return Memory; 2765 if (Accum == NoClass) 2766 return Field; 2767 if (Accum == Integer || Field == Integer) 2768 return Integer; 2769 if (Field == X87 || Field == X87Up || Field == ComplexX87 || 2770 Accum == X87 || Accum == X87Up) 2771 return Memory; 2772 return SSE; 2773 } 2774 2775 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, 2776 Class &Lo, Class &Hi, bool isNamedArg) const { 2777 // FIXME: This code can be simplified by introducing a simple value class for 2778 // Class pairs with appropriate constructor methods for the various 2779 // situations. 2780 2781 // FIXME: Some of the split computations are wrong; unaligned vectors 2782 // shouldn't be passed in registers for example, so there is no chance they 2783 // can straddle an eightbyte. Verify & simplify. 2784 2785 Lo = Hi = NoClass; 2786 2787 Class &Current = OffsetBase < 64 ? Lo : Hi; 2788 Current = Memory; 2789 2790 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 2791 BuiltinType::Kind k = BT->getKind(); 2792 2793 if (k == BuiltinType::Void) { 2794 Current = NoClass; 2795 } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) { 2796 Lo = Integer; 2797 Hi = Integer; 2798 } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) { 2799 Current = Integer; 2800 } else if (k == BuiltinType::Float || k == BuiltinType::Double) { 2801 Current = SSE; 2802 } else if (k == BuiltinType::LongDouble) { 2803 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2804 if (LDF == &llvm::APFloat::IEEEquad()) { 2805 Lo = SSE; 2806 Hi = SSEUp; 2807 } else if (LDF == &llvm::APFloat::x87DoubleExtended()) { 2808 Lo = X87; 2809 Hi = X87Up; 2810 } else if (LDF == &llvm::APFloat::IEEEdouble()) { 2811 Current = SSE; 2812 } else 2813 llvm_unreachable("unexpected long double representation!"); 2814 } 2815 // FIXME: _Decimal32 and _Decimal64 are SSE. 2816 // FIXME: _float128 and _Decimal128 are (SSE, SSEUp). 2817 return; 2818 } 2819 2820 if (const EnumType *ET = Ty->getAs<EnumType>()) { 2821 // Classify the underlying integer type. 2822 classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg); 2823 return; 2824 } 2825 2826 if (Ty->hasPointerRepresentation()) { 2827 Current = Integer; 2828 return; 2829 } 2830 2831 if (Ty->isMemberPointerType()) { 2832 if (Ty->isMemberFunctionPointerType()) { 2833 if (Has64BitPointers) { 2834 // If Has64BitPointers, this is an {i64, i64}, so classify both 2835 // Lo and Hi now. 2836 Lo = Hi = Integer; 2837 } else { 2838 // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that 2839 // straddles an eightbyte boundary, Hi should be classified as well. 2840 uint64_t EB_FuncPtr = (OffsetBase) / 64; 2841 uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64; 2842 if (EB_FuncPtr != EB_ThisAdj) { 2843 Lo = Hi = Integer; 2844 } else { 2845 Current = Integer; 2846 } 2847 } 2848 } else { 2849 Current = Integer; 2850 } 2851 return; 2852 } 2853 2854 if (const VectorType *VT = Ty->getAs<VectorType>()) { 2855 uint64_t Size = getContext().getTypeSize(VT); 2856 if (Size == 1 || Size == 8 || Size == 16 || Size == 32) { 2857 // gcc passes the following as integer: 2858 // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float> 2859 // 2 bytes - <2 x char>, <1 x short> 2860 // 1 byte - <1 x char> 2861 Current = Integer; 2862 2863 // If this type crosses an eightbyte boundary, it should be 2864 // split. 2865 uint64_t EB_Lo = (OffsetBase) / 64; 2866 uint64_t EB_Hi = (OffsetBase + Size - 1) / 64; 2867 if (EB_Lo != EB_Hi) 2868 Hi = Lo; 2869 } else if (Size == 64) { 2870 QualType ElementType = VT->getElementType(); 2871 2872 // gcc passes <1 x double> in memory. :( 2873 if (ElementType->isSpecificBuiltinType(BuiltinType::Double)) 2874 return; 2875 2876 // gcc passes <1 x long long> as SSE but clang used to unconditionally 2877 // pass them as integer. For platforms where clang is the de facto 2878 // platform compiler, we must continue to use integer. 2879 if (!classifyIntegerMMXAsSSE() && 2880 (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) || 2881 ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) || 2882 ElementType->isSpecificBuiltinType(BuiltinType::Long) || 2883 ElementType->isSpecificBuiltinType(BuiltinType::ULong))) 2884 Current = Integer; 2885 else 2886 Current = SSE; 2887 2888 // If this type crosses an eightbyte boundary, it should be 2889 // split. 2890 if (OffsetBase && OffsetBase != 64) 2891 Hi = Lo; 2892 } else if (Size == 128 || 2893 (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) { 2894 QualType ElementType = VT->getElementType(); 2895 2896 // gcc passes 256 and 512 bit <X x __int128> vectors in memory. :( 2897 if (passInt128VectorsInMem() && Size != 128 && 2898 (ElementType->isSpecificBuiltinType(BuiltinType::Int128) || 2899 ElementType->isSpecificBuiltinType(BuiltinType::UInt128))) 2900 return; 2901 2902 // Arguments of 256-bits are split into four eightbyte chunks. The 2903 // least significant one belongs to class SSE and all the others to class 2904 // SSEUP. The original Lo and Hi design considers that types can't be 2905 // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense. 2906 // This design isn't correct for 256-bits, but since there're no cases 2907 // where the upper parts would need to be inspected, avoid adding 2908 // complexity and just consider Hi to match the 64-256 part. 2909 // 2910 // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in 2911 // registers if they are "named", i.e. not part of the "..." of a 2912 // variadic function. 2913 // 2914 // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are 2915 // split into eight eightbyte chunks, one SSE and seven SSEUP. 2916 Lo = SSE; 2917 Hi = SSEUp; 2918 } 2919 return; 2920 } 2921 2922 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 2923 QualType ET = getContext().getCanonicalType(CT->getElementType()); 2924 2925 uint64_t Size = getContext().getTypeSize(Ty); 2926 if (ET->isIntegralOrEnumerationType()) { 2927 if (Size <= 64) 2928 Current = Integer; 2929 else if (Size <= 128) 2930 Lo = Hi = Integer; 2931 } else if (ET == getContext().FloatTy) { 2932 Current = SSE; 2933 } else if (ET == getContext().DoubleTy) { 2934 Lo = Hi = SSE; 2935 } else if (ET == getContext().LongDoubleTy) { 2936 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2937 if (LDF == &llvm::APFloat::IEEEquad()) 2938 Current = Memory; 2939 else if (LDF == &llvm::APFloat::x87DoubleExtended()) 2940 Current = ComplexX87; 2941 else if (LDF == &llvm::APFloat::IEEEdouble()) 2942 Lo = Hi = SSE; 2943 else 2944 llvm_unreachable("unexpected long double representation!"); 2945 } 2946 2947 // If this complex type crosses an eightbyte boundary then it 2948 // should be split. 2949 uint64_t EB_Real = (OffsetBase) / 64; 2950 uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64; 2951 if (Hi == NoClass && EB_Real != EB_Imag) 2952 Hi = Lo; 2953 2954 return; 2955 } 2956 2957 if (const auto *EITy = Ty->getAs<ExtIntType>()) { 2958 if (EITy->getNumBits() <= 64) 2959 Current = Integer; 2960 else if (EITy->getNumBits() <= 128) 2961 Lo = Hi = Integer; 2962 // Larger values need to get passed in memory. 2963 return; 2964 } 2965 2966 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 2967 // Arrays are treated like structures. 2968 2969 uint64_t Size = getContext().getTypeSize(Ty); 2970 2971 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 2972 // than eight eightbytes, ..., it has class MEMORY. 2973 if (Size > 512) 2974 return; 2975 2976 // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned 2977 // fields, it has class MEMORY. 2978 // 2979 // Only need to check alignment of array base. 2980 if (OffsetBase % getContext().getTypeAlign(AT->getElementType())) 2981 return; 2982 2983 // Otherwise implement simplified merge. We could be smarter about 2984 // this, but it isn't worth it and would be harder to verify. 2985 Current = NoClass; 2986 uint64_t EltSize = getContext().getTypeSize(AT->getElementType()); 2987 uint64_t ArraySize = AT->getSize().getZExtValue(); 2988 2989 // The only case a 256-bit wide vector could be used is when the array 2990 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 2991 // to work for sizes wider than 128, early check and fallback to memory. 2992 // 2993 if (Size > 128 && 2994 (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel))) 2995 return; 2996 2997 for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) { 2998 Class FieldLo, FieldHi; 2999 classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg); 3000 Lo = merge(Lo, FieldLo); 3001 Hi = merge(Hi, FieldHi); 3002 if (Lo == Memory || Hi == Memory) 3003 break; 3004 } 3005 3006 postMerge(Size, Lo, Hi); 3007 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification."); 3008 return; 3009 } 3010 3011 if (const RecordType *RT = Ty->getAs<RecordType>()) { 3012 uint64_t Size = getContext().getTypeSize(Ty); 3013 3014 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 3015 // than eight eightbytes, ..., it has class MEMORY. 3016 if (Size > 512) 3017 return; 3018 3019 // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial 3020 // copy constructor or a non-trivial destructor, it is passed by invisible 3021 // reference. 3022 if (getRecordArgABI(RT, getCXXABI())) 3023 return; 3024 3025 const RecordDecl *RD = RT->getDecl(); 3026 3027 // Assume variable sized types are passed in memory. 3028 if (RD->hasFlexibleArrayMember()) 3029 return; 3030 3031 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 3032 3033 // Reset Lo class, this will be recomputed. 3034 Current = NoClass; 3035 3036 // If this is a C++ record, classify the bases first. 3037 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 3038 for (const auto &I : CXXRD->bases()) { 3039 assert(!I.isVirtual() && !I.getType()->isDependentType() && 3040 "Unexpected base class!"); 3041 const auto *Base = 3042 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 3043 3044 // Classify this field. 3045 // 3046 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a 3047 // single eightbyte, each is classified separately. Each eightbyte gets 3048 // initialized to class NO_CLASS. 3049 Class FieldLo, FieldHi; 3050 uint64_t Offset = 3051 OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base)); 3052 classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg); 3053 Lo = merge(Lo, FieldLo); 3054 Hi = merge(Hi, FieldHi); 3055 if (Lo == Memory || Hi == Memory) { 3056 postMerge(Size, Lo, Hi); 3057 return; 3058 } 3059 } 3060 } 3061 3062 // Classify the fields one at a time, merging the results. 3063 unsigned idx = 0; 3064 bool UseClang11Compat = getContext().getLangOpts().getClangABICompat() <= 3065 LangOptions::ClangABI::Ver11 || 3066 getContext().getTargetInfo().getTriple().isPS4(); 3067 bool IsUnion = RT->isUnionType() && !UseClang11Compat; 3068 3069 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 3070 i != e; ++i, ++idx) { 3071 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 3072 bool BitField = i->isBitField(); 3073 3074 // Ignore padding bit-fields. 3075 if (BitField && i->isUnnamedBitfield()) 3076 continue; 3077 3078 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than 3079 // eight eightbytes, or it contains unaligned fields, it has class MEMORY. 3080 // 3081 // The only case a 256-bit or a 512-bit wide vector could be used is when 3082 // the struct contains a single 256-bit or 512-bit element. Early check 3083 // and fallback to memory. 3084 // 3085 // FIXME: Extended the Lo and Hi logic properly to work for size wider 3086 // than 128. 3087 if (Size > 128 && 3088 ((!IsUnion && Size != getContext().getTypeSize(i->getType())) || 3089 Size > getNativeVectorSizeForAVXABI(AVXLevel))) { 3090 Lo = Memory; 3091 postMerge(Size, Lo, Hi); 3092 return; 3093 } 3094 // Note, skip this test for bit-fields, see below. 3095 if (!BitField && Offset % getContext().getTypeAlign(i->getType())) { 3096 Lo = Memory; 3097 postMerge(Size, Lo, Hi); 3098 return; 3099 } 3100 3101 // Classify this field. 3102 // 3103 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate 3104 // exceeds a single eightbyte, each is classified 3105 // separately. Each eightbyte gets initialized to class 3106 // NO_CLASS. 3107 Class FieldLo, FieldHi; 3108 3109 // Bit-fields require special handling, they do not force the 3110 // structure to be passed in memory even if unaligned, and 3111 // therefore they can straddle an eightbyte. 3112 if (BitField) { 3113 assert(!i->isUnnamedBitfield()); 3114 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 3115 uint64_t Size = i->getBitWidthValue(getContext()); 3116 3117 uint64_t EB_Lo = Offset / 64; 3118 uint64_t EB_Hi = (Offset + Size - 1) / 64; 3119 3120 if (EB_Lo) { 3121 assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes."); 3122 FieldLo = NoClass; 3123 FieldHi = Integer; 3124 } else { 3125 FieldLo = Integer; 3126 FieldHi = EB_Hi ? Integer : NoClass; 3127 } 3128 } else 3129 classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg); 3130 Lo = merge(Lo, FieldLo); 3131 Hi = merge(Hi, FieldHi); 3132 if (Lo == Memory || Hi == Memory) 3133 break; 3134 } 3135 3136 postMerge(Size, Lo, Hi); 3137 } 3138 } 3139 3140 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const { 3141 // If this is a scalar LLVM value then assume LLVM will pass it in the right 3142 // place naturally. 3143 if (!isAggregateTypeForABI(Ty)) { 3144 // Treat an enum type as its underlying type. 3145 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3146 Ty = EnumTy->getDecl()->getIntegerType(); 3147 3148 if (Ty->isExtIntType()) 3149 return getNaturalAlignIndirect(Ty); 3150 3151 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 3152 : ABIArgInfo::getDirect()); 3153 } 3154 3155 return getNaturalAlignIndirect(Ty); 3156 } 3157 3158 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const { 3159 if (const VectorType *VecTy = Ty->getAs<VectorType>()) { 3160 uint64_t Size = getContext().getTypeSize(VecTy); 3161 unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel); 3162 if (Size <= 64 || Size > LargestVector) 3163 return true; 3164 QualType EltTy = VecTy->getElementType(); 3165 if (passInt128VectorsInMem() && 3166 (EltTy->isSpecificBuiltinType(BuiltinType::Int128) || 3167 EltTy->isSpecificBuiltinType(BuiltinType::UInt128))) 3168 return true; 3169 } 3170 3171 return false; 3172 } 3173 3174 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty, 3175 unsigned freeIntRegs) const { 3176 // If this is a scalar LLVM value then assume LLVM will pass it in the right 3177 // place naturally. 3178 // 3179 // This assumption is optimistic, as there could be free registers available 3180 // when we need to pass this argument in memory, and LLVM could try to pass 3181 // the argument in the free register. This does not seem to happen currently, 3182 // but this code would be much safer if we could mark the argument with 3183 // 'onstack'. See PR12193. 3184 if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty) && 3185 !Ty->isExtIntType()) { 3186 // Treat an enum type as its underlying type. 3187 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3188 Ty = EnumTy->getDecl()->getIntegerType(); 3189 3190 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 3191 : ABIArgInfo::getDirect()); 3192 } 3193 3194 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 3195 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 3196 3197 // Compute the byval alignment. We specify the alignment of the byval in all 3198 // cases so that the mid-level optimizer knows the alignment of the byval. 3199 unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U); 3200 3201 // Attempt to avoid passing indirect results using byval when possible. This 3202 // is important for good codegen. 3203 // 3204 // We do this by coercing the value into a scalar type which the backend can 3205 // handle naturally (i.e., without using byval). 3206 // 3207 // For simplicity, we currently only do this when we have exhausted all of the 3208 // free integer registers. Doing this when there are free integer registers 3209 // would require more care, as we would have to ensure that the coerced value 3210 // did not claim the unused register. That would require either reording the 3211 // arguments to the function (so that any subsequent inreg values came first), 3212 // or only doing this optimization when there were no following arguments that 3213 // might be inreg. 3214 // 3215 // We currently expect it to be rare (particularly in well written code) for 3216 // arguments to be passed on the stack when there are still free integer 3217 // registers available (this would typically imply large structs being passed 3218 // by value), so this seems like a fair tradeoff for now. 3219 // 3220 // We can revisit this if the backend grows support for 'onstack' parameter 3221 // attributes. See PR12193. 3222 if (freeIntRegs == 0) { 3223 uint64_t Size = getContext().getTypeSize(Ty); 3224 3225 // If this type fits in an eightbyte, coerce it into the matching integral 3226 // type, which will end up on the stack (with alignment 8). 3227 if (Align == 8 && Size <= 64) 3228 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 3229 Size)); 3230 } 3231 3232 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align)); 3233 } 3234 3235 /// The ABI specifies that a value should be passed in a full vector XMM/YMM 3236 /// register. Pick an LLVM IR type that will be passed as a vector register. 3237 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const { 3238 // Wrapper structs/arrays that only contain vectors are passed just like 3239 // vectors; strip them off if present. 3240 if (const Type *InnerTy = isSingleElementStruct(Ty, getContext())) 3241 Ty = QualType(InnerTy, 0); 3242 3243 llvm::Type *IRType = CGT.ConvertType(Ty); 3244 if (isa<llvm::VectorType>(IRType)) { 3245 // Don't pass vXi128 vectors in their native type, the backend can't 3246 // legalize them. 3247 if (passInt128VectorsInMem() && 3248 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy(128)) { 3249 // Use a vXi64 vector. 3250 uint64_t Size = getContext().getTypeSize(Ty); 3251 return llvm::FixedVectorType::get(llvm::Type::getInt64Ty(getVMContext()), 3252 Size / 64); 3253 } 3254 3255 return IRType; 3256 } 3257 3258 if (IRType->getTypeID() == llvm::Type::FP128TyID) 3259 return IRType; 3260 3261 // We couldn't find the preferred IR vector type for 'Ty'. 3262 uint64_t Size = getContext().getTypeSize(Ty); 3263 assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!"); 3264 3265 3266 // Return a LLVM IR vector type based on the size of 'Ty'. 3267 return llvm::FixedVectorType::get(llvm::Type::getDoubleTy(getVMContext()), 3268 Size / 64); 3269 } 3270 3271 /// BitsContainNoUserData - Return true if the specified [start,end) bit range 3272 /// is known to either be off the end of the specified type or being in 3273 /// alignment padding. The user type specified is known to be at most 128 bits 3274 /// in size, and have passed through X86_64ABIInfo::classify with a successful 3275 /// classification that put one of the two halves in the INTEGER class. 3276 /// 3277 /// It is conservatively correct to return false. 3278 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit, 3279 unsigned EndBit, ASTContext &Context) { 3280 // If the bytes being queried are off the end of the type, there is no user 3281 // data hiding here. This handles analysis of builtins, vectors and other 3282 // types that don't contain interesting padding. 3283 unsigned TySize = (unsigned)Context.getTypeSize(Ty); 3284 if (TySize <= StartBit) 3285 return true; 3286 3287 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 3288 unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType()); 3289 unsigned NumElts = (unsigned)AT->getSize().getZExtValue(); 3290 3291 // Check each element to see if the element overlaps with the queried range. 3292 for (unsigned i = 0; i != NumElts; ++i) { 3293 // If the element is after the span we care about, then we're done.. 3294 unsigned EltOffset = i*EltSize; 3295 if (EltOffset >= EndBit) break; 3296 3297 unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0; 3298 if (!BitsContainNoUserData(AT->getElementType(), EltStart, 3299 EndBit-EltOffset, Context)) 3300 return false; 3301 } 3302 // If it overlaps no elements, then it is safe to process as padding. 3303 return true; 3304 } 3305 3306 if (const RecordType *RT = Ty->getAs<RecordType>()) { 3307 const RecordDecl *RD = RT->getDecl(); 3308 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 3309 3310 // If this is a C++ record, check the bases first. 3311 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 3312 for (const auto &I : CXXRD->bases()) { 3313 assert(!I.isVirtual() && !I.getType()->isDependentType() && 3314 "Unexpected base class!"); 3315 const auto *Base = 3316 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 3317 3318 // If the base is after the span we care about, ignore it. 3319 unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base)); 3320 if (BaseOffset >= EndBit) continue; 3321 3322 unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0; 3323 if (!BitsContainNoUserData(I.getType(), BaseStart, 3324 EndBit-BaseOffset, Context)) 3325 return false; 3326 } 3327 } 3328 3329 // Verify that no field has data that overlaps the region of interest. Yes 3330 // this could be sped up a lot by being smarter about queried fields, 3331 // however we're only looking at structs up to 16 bytes, so we don't care 3332 // much. 3333 unsigned idx = 0; 3334 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 3335 i != e; ++i, ++idx) { 3336 unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx); 3337 3338 // If we found a field after the region we care about, then we're done. 3339 if (FieldOffset >= EndBit) break; 3340 3341 unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0; 3342 if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset, 3343 Context)) 3344 return false; 3345 } 3346 3347 // If nothing in this record overlapped the area of interest, then we're 3348 // clean. 3349 return true; 3350 } 3351 3352 return false; 3353 } 3354 3355 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a 3356 /// float member at the specified offset. For example, {int,{float}} has a 3357 /// float at offset 4. It is conservatively correct for this routine to return 3358 /// false. 3359 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset, 3360 const llvm::DataLayout &TD) { 3361 // Base case if we find a float. 3362 if (IROffset == 0 && IRType->isFloatTy()) 3363 return true; 3364 3365 // If this is a struct, recurse into the field at the specified offset. 3366 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 3367 const llvm::StructLayout *SL = TD.getStructLayout(STy); 3368 unsigned Elt = SL->getElementContainingOffset(IROffset); 3369 IROffset -= SL->getElementOffset(Elt); 3370 return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD); 3371 } 3372 3373 // If this is an array, recurse into the field at the specified offset. 3374 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 3375 llvm::Type *EltTy = ATy->getElementType(); 3376 unsigned EltSize = TD.getTypeAllocSize(EltTy); 3377 IROffset -= IROffset/EltSize*EltSize; 3378 return ContainsFloatAtOffset(EltTy, IROffset, TD); 3379 } 3380 3381 return false; 3382 } 3383 3384 3385 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the 3386 /// low 8 bytes of an XMM register, corresponding to the SSE class. 3387 llvm::Type *X86_64ABIInfo:: 3388 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3389 QualType SourceTy, unsigned SourceOffset) const { 3390 // The only three choices we have are either double, <2 x float>, or float. We 3391 // pass as float if the last 4 bytes is just padding. This happens for 3392 // structs that contain 3 floats. 3393 if (BitsContainNoUserData(SourceTy, SourceOffset*8+32, 3394 SourceOffset*8+64, getContext())) 3395 return llvm::Type::getFloatTy(getVMContext()); 3396 3397 // We want to pass as <2 x float> if the LLVM IR type contains a float at 3398 // offset+0 and offset+4. Walk the LLVM IR type to find out if this is the 3399 // case. 3400 if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) && 3401 ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout())) 3402 return llvm::FixedVectorType::get(llvm::Type::getFloatTy(getVMContext()), 3403 2); 3404 3405 return llvm::Type::getDoubleTy(getVMContext()); 3406 } 3407 3408 3409 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in 3410 /// an 8-byte GPR. This means that we either have a scalar or we are talking 3411 /// about the high or low part of an up-to-16-byte struct. This routine picks 3412 /// the best LLVM IR type to represent this, which may be i64 or may be anything 3413 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*, 3414 /// etc). 3415 /// 3416 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for 3417 /// the source type. IROffset is an offset in bytes into the LLVM IR type that 3418 /// the 8-byte value references. PrefType may be null. 3419 /// 3420 /// SourceTy is the source-level type for the entire argument. SourceOffset is 3421 /// an offset into this that we're processing (which is always either 0 or 8). 3422 /// 3423 llvm::Type *X86_64ABIInfo:: 3424 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3425 QualType SourceTy, unsigned SourceOffset) const { 3426 // If we're dealing with an un-offset LLVM IR type, then it means that we're 3427 // returning an 8-byte unit starting with it. See if we can safely use it. 3428 if (IROffset == 0) { 3429 // Pointers and int64's always fill the 8-byte unit. 3430 if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) || 3431 IRType->isIntegerTy(64)) 3432 return IRType; 3433 3434 // If we have a 1/2/4-byte integer, we can use it only if the rest of the 3435 // goodness in the source type is just tail padding. This is allowed to 3436 // kick in for struct {double,int} on the int, but not on 3437 // struct{double,int,int} because we wouldn't return the second int. We 3438 // have to do this analysis on the source type because we can't depend on 3439 // unions being lowered a specific way etc. 3440 if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) || 3441 IRType->isIntegerTy(32) || 3442 (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) { 3443 unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 : 3444 cast<llvm::IntegerType>(IRType)->getBitWidth(); 3445 3446 if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth, 3447 SourceOffset*8+64, getContext())) 3448 return IRType; 3449 } 3450 } 3451 3452 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 3453 // If this is a struct, recurse into the field at the specified offset. 3454 const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy); 3455 if (IROffset < SL->getSizeInBytes()) { 3456 unsigned FieldIdx = SL->getElementContainingOffset(IROffset); 3457 IROffset -= SL->getElementOffset(FieldIdx); 3458 3459 return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset, 3460 SourceTy, SourceOffset); 3461 } 3462 } 3463 3464 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 3465 llvm::Type *EltTy = ATy->getElementType(); 3466 unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy); 3467 unsigned EltOffset = IROffset/EltSize*EltSize; 3468 return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy, 3469 SourceOffset); 3470 } 3471 3472 // Okay, we don't have any better idea of what to pass, so we pass this in an 3473 // integer register that isn't too big to fit the rest of the struct. 3474 unsigned TySizeInBytes = 3475 (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity(); 3476 3477 assert(TySizeInBytes != SourceOffset && "Empty field?"); 3478 3479 // It is always safe to classify this as an integer type up to i64 that 3480 // isn't larger than the structure. 3481 return llvm::IntegerType::get(getVMContext(), 3482 std::min(TySizeInBytes-SourceOffset, 8U)*8); 3483 } 3484 3485 3486 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally 3487 /// be used as elements of a two register pair to pass or return, return a 3488 /// first class aggregate to represent them. For example, if the low part of 3489 /// a by-value argument should be passed as i32* and the high part as float, 3490 /// return {i32*, float}. 3491 static llvm::Type * 3492 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi, 3493 const llvm::DataLayout &TD) { 3494 // In order to correctly satisfy the ABI, we need to the high part to start 3495 // at offset 8. If the high and low parts we inferred are both 4-byte types 3496 // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have 3497 // the second element at offset 8. Check for this: 3498 unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo); 3499 unsigned HiAlign = TD.getABITypeAlignment(Hi); 3500 unsigned HiStart = llvm::alignTo(LoSize, HiAlign); 3501 assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!"); 3502 3503 // To handle this, we have to increase the size of the low part so that the 3504 // second element will start at an 8 byte offset. We can't increase the size 3505 // of the second element because it might make us access off the end of the 3506 // struct. 3507 if (HiStart != 8) { 3508 // There are usually two sorts of types the ABI generation code can produce 3509 // for the low part of a pair that aren't 8 bytes in size: float or 3510 // i8/i16/i32. This can also include pointers when they are 32-bit (X32 and 3511 // NaCl). 3512 // Promote these to a larger type. 3513 if (Lo->isFloatTy()) 3514 Lo = llvm::Type::getDoubleTy(Lo->getContext()); 3515 else { 3516 assert((Lo->isIntegerTy() || Lo->isPointerTy()) 3517 && "Invalid/unknown lo type"); 3518 Lo = llvm::Type::getInt64Ty(Lo->getContext()); 3519 } 3520 } 3521 3522 llvm::StructType *Result = llvm::StructType::get(Lo, Hi); 3523 3524 // Verify that the second element is at an 8-byte offset. 3525 assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 && 3526 "Invalid x86-64 argument pair!"); 3527 return Result; 3528 } 3529 3530 ABIArgInfo X86_64ABIInfo:: 3531 classifyReturnType(QualType RetTy) const { 3532 // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the 3533 // classification algorithm. 3534 X86_64ABIInfo::Class Lo, Hi; 3535 classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true); 3536 3537 // Check some invariants. 3538 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3539 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3540 3541 llvm::Type *ResType = nullptr; 3542 switch (Lo) { 3543 case NoClass: 3544 if (Hi == NoClass) 3545 return ABIArgInfo::getIgnore(); 3546 // If the low part is just padding, it takes no register, leave ResType 3547 // null. 3548 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3549 "Unknown missing lo part"); 3550 break; 3551 3552 case SSEUp: 3553 case X87Up: 3554 llvm_unreachable("Invalid classification for lo word."); 3555 3556 // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via 3557 // hidden argument. 3558 case Memory: 3559 return getIndirectReturnResult(RetTy); 3560 3561 // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next 3562 // available register of the sequence %rax, %rdx is used. 3563 case Integer: 3564 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3565 3566 // If we have a sign or zero extended integer, make sure to return Extend 3567 // so that the parameter gets the right LLVM IR attributes. 3568 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3569 // Treat an enum type as its underlying type. 3570 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 3571 RetTy = EnumTy->getDecl()->getIntegerType(); 3572 3573 if (RetTy->isIntegralOrEnumerationType() && 3574 isPromotableIntegerTypeForABI(RetTy)) 3575 return ABIArgInfo::getExtend(RetTy); 3576 } 3577 break; 3578 3579 // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next 3580 // available SSE register of the sequence %xmm0, %xmm1 is used. 3581 case SSE: 3582 ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3583 break; 3584 3585 // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is 3586 // returned on the X87 stack in %st0 as 80-bit x87 number. 3587 case X87: 3588 ResType = llvm::Type::getX86_FP80Ty(getVMContext()); 3589 break; 3590 3591 // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real 3592 // part of the value is returned in %st0 and the imaginary part in 3593 // %st1. 3594 case ComplexX87: 3595 assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification."); 3596 ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()), 3597 llvm::Type::getX86_FP80Ty(getVMContext())); 3598 break; 3599 } 3600 3601 llvm::Type *HighPart = nullptr; 3602 switch (Hi) { 3603 // Memory was handled previously and X87 should 3604 // never occur as a hi class. 3605 case Memory: 3606 case X87: 3607 llvm_unreachable("Invalid classification for hi word."); 3608 3609 case ComplexX87: // Previously handled. 3610 case NoClass: 3611 break; 3612 3613 case Integer: 3614 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3615 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3616 return ABIArgInfo::getDirect(HighPart, 8); 3617 break; 3618 case SSE: 3619 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3620 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3621 return ABIArgInfo::getDirect(HighPart, 8); 3622 break; 3623 3624 // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte 3625 // is passed in the next available eightbyte chunk if the last used 3626 // vector register. 3627 // 3628 // SSEUP should always be preceded by SSE, just widen. 3629 case SSEUp: 3630 assert(Lo == SSE && "Unexpected SSEUp classification."); 3631 ResType = GetByteVectorType(RetTy); 3632 break; 3633 3634 // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is 3635 // returned together with the previous X87 value in %st0. 3636 case X87Up: 3637 // If X87Up is preceded by X87, we don't need to do 3638 // anything. However, in some cases with unions it may not be 3639 // preceded by X87. In such situations we follow gcc and pass the 3640 // extra bits in an SSE reg. 3641 if (Lo != X87) { 3642 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3643 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3644 return ABIArgInfo::getDirect(HighPart, 8); 3645 } 3646 break; 3647 } 3648 3649 // If a high part was specified, merge it together with the low part. It is 3650 // known to pass in the high eightbyte of the result. We do this by forming a 3651 // first class struct aggregate with the high and low part: {low, high} 3652 if (HighPart) 3653 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3654 3655 return ABIArgInfo::getDirect(ResType); 3656 } 3657 3658 ABIArgInfo X86_64ABIInfo::classifyArgumentType( 3659 QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE, 3660 bool isNamedArg) 3661 const 3662 { 3663 Ty = useFirstFieldIfTransparentUnion(Ty); 3664 3665 X86_64ABIInfo::Class Lo, Hi; 3666 classify(Ty, 0, Lo, Hi, isNamedArg); 3667 3668 // Check some invariants. 3669 // FIXME: Enforce these by construction. 3670 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3671 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3672 3673 neededInt = 0; 3674 neededSSE = 0; 3675 llvm::Type *ResType = nullptr; 3676 switch (Lo) { 3677 case NoClass: 3678 if (Hi == NoClass) 3679 return ABIArgInfo::getIgnore(); 3680 // If the low part is just padding, it takes no register, leave ResType 3681 // null. 3682 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3683 "Unknown missing lo part"); 3684 break; 3685 3686 // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument 3687 // on the stack. 3688 case Memory: 3689 3690 // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or 3691 // COMPLEX_X87, it is passed in memory. 3692 case X87: 3693 case ComplexX87: 3694 if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect) 3695 ++neededInt; 3696 return getIndirectResult(Ty, freeIntRegs); 3697 3698 case SSEUp: 3699 case X87Up: 3700 llvm_unreachable("Invalid classification for lo word."); 3701 3702 // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next 3703 // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8 3704 // and %r9 is used. 3705 case Integer: 3706 ++neededInt; 3707 3708 // Pick an 8-byte type based on the preferred type. 3709 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0); 3710 3711 // If we have a sign or zero extended integer, make sure to return Extend 3712 // so that the parameter gets the right LLVM IR attributes. 3713 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3714 // Treat an enum type as its underlying type. 3715 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3716 Ty = EnumTy->getDecl()->getIntegerType(); 3717 3718 if (Ty->isIntegralOrEnumerationType() && 3719 isPromotableIntegerTypeForABI(Ty)) 3720 return ABIArgInfo::getExtend(Ty); 3721 } 3722 3723 break; 3724 3725 // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next 3726 // available SSE register is used, the registers are taken in the 3727 // order from %xmm0 to %xmm7. 3728 case SSE: { 3729 llvm::Type *IRType = CGT.ConvertType(Ty); 3730 ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0); 3731 ++neededSSE; 3732 break; 3733 } 3734 } 3735 3736 llvm::Type *HighPart = nullptr; 3737 switch (Hi) { 3738 // Memory was handled previously, ComplexX87 and X87 should 3739 // never occur as hi classes, and X87Up must be preceded by X87, 3740 // which is passed in memory. 3741 case Memory: 3742 case X87: 3743 case ComplexX87: 3744 llvm_unreachable("Invalid classification for hi word."); 3745 3746 case NoClass: break; 3747 3748 case Integer: 3749 ++neededInt; 3750 // Pick an 8-byte type based on the preferred type. 3751 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3752 3753 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3754 return ABIArgInfo::getDirect(HighPart, 8); 3755 break; 3756 3757 // X87Up generally doesn't occur here (long double is passed in 3758 // memory), except in situations involving unions. 3759 case X87Up: 3760 case SSE: 3761 HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3762 3763 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3764 return ABIArgInfo::getDirect(HighPart, 8); 3765 3766 ++neededSSE; 3767 break; 3768 3769 // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the 3770 // eightbyte is passed in the upper half of the last used SSE 3771 // register. This only happens when 128-bit vectors are passed. 3772 case SSEUp: 3773 assert(Lo == SSE && "Unexpected SSEUp classification"); 3774 ResType = GetByteVectorType(Ty); 3775 break; 3776 } 3777 3778 // If a high part was specified, merge it together with the low part. It is 3779 // known to pass in the high eightbyte of the result. We do this by forming a 3780 // first class struct aggregate with the high and low part: {low, high} 3781 if (HighPart) 3782 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3783 3784 return ABIArgInfo::getDirect(ResType); 3785 } 3786 3787 ABIArgInfo 3788 X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 3789 unsigned &NeededSSE) const { 3790 auto RT = Ty->getAs<RecordType>(); 3791 assert(RT && "classifyRegCallStructType only valid with struct types"); 3792 3793 if (RT->getDecl()->hasFlexibleArrayMember()) 3794 return getIndirectReturnResult(Ty); 3795 3796 // Sum up bases 3797 if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 3798 if (CXXRD->isDynamicClass()) { 3799 NeededInt = NeededSSE = 0; 3800 return getIndirectReturnResult(Ty); 3801 } 3802 3803 for (const auto &I : CXXRD->bases()) 3804 if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE) 3805 .isIndirect()) { 3806 NeededInt = NeededSSE = 0; 3807 return getIndirectReturnResult(Ty); 3808 } 3809 } 3810 3811 // Sum up members 3812 for (const auto *FD : RT->getDecl()->fields()) { 3813 if (FD->getType()->isRecordType() && !FD->getType()->isUnionType()) { 3814 if (classifyRegCallStructTypeImpl(FD->getType(), NeededInt, NeededSSE) 3815 .isIndirect()) { 3816 NeededInt = NeededSSE = 0; 3817 return getIndirectReturnResult(Ty); 3818 } 3819 } else { 3820 unsigned LocalNeededInt, LocalNeededSSE; 3821 if (classifyArgumentType(FD->getType(), UINT_MAX, LocalNeededInt, 3822 LocalNeededSSE, true) 3823 .isIndirect()) { 3824 NeededInt = NeededSSE = 0; 3825 return getIndirectReturnResult(Ty); 3826 } 3827 NeededInt += LocalNeededInt; 3828 NeededSSE += LocalNeededSSE; 3829 } 3830 } 3831 3832 return ABIArgInfo::getDirect(); 3833 } 3834 3835 ABIArgInfo X86_64ABIInfo::classifyRegCallStructType(QualType Ty, 3836 unsigned &NeededInt, 3837 unsigned &NeededSSE) const { 3838 3839 NeededInt = 0; 3840 NeededSSE = 0; 3841 3842 return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE); 3843 } 3844 3845 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 3846 3847 const unsigned CallingConv = FI.getCallingConvention(); 3848 // It is possible to force Win64 calling convention on any x86_64 target by 3849 // using __attribute__((ms_abi)). In such case to correctly emit Win64 3850 // compatible code delegate this call to WinX86_64ABIInfo::computeInfo. 3851 if (CallingConv == llvm::CallingConv::Win64) { 3852 WinX86_64ABIInfo Win64ABIInfo(CGT, AVXLevel); 3853 Win64ABIInfo.computeInfo(FI); 3854 return; 3855 } 3856 3857 bool IsRegCall = CallingConv == llvm::CallingConv::X86_RegCall; 3858 3859 // Keep track of the number of assigned registers. 3860 unsigned FreeIntRegs = IsRegCall ? 11 : 6; 3861 unsigned FreeSSERegs = IsRegCall ? 16 : 8; 3862 unsigned NeededInt, NeededSSE; 3863 3864 if (!::classifyReturnType(getCXXABI(), FI, *this)) { 3865 if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() && 3866 !FI.getReturnType()->getTypePtr()->isUnionType()) { 3867 FI.getReturnInfo() = 3868 classifyRegCallStructType(FI.getReturnType(), NeededInt, NeededSSE); 3869 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 3870 FreeIntRegs -= NeededInt; 3871 FreeSSERegs -= NeededSSE; 3872 } else { 3873 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 3874 } 3875 } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>() && 3876 getContext().getCanonicalType(FI.getReturnType() 3877 ->getAs<ComplexType>() 3878 ->getElementType()) == 3879 getContext().LongDoubleTy) 3880 // Complex Long Double Type is passed in Memory when Regcall 3881 // calling convention is used. 3882 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 3883 else 3884 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 3885 } 3886 3887 // If the return value is indirect, then the hidden argument is consuming one 3888 // integer register. 3889 if (FI.getReturnInfo().isIndirect()) 3890 --FreeIntRegs; 3891 3892 // The chain argument effectively gives us another free register. 3893 if (FI.isChainCall()) 3894 ++FreeIntRegs; 3895 3896 unsigned NumRequiredArgs = FI.getNumRequiredArgs(); 3897 // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers 3898 // get assigned (in left-to-right order) for passing as follows... 3899 unsigned ArgNo = 0; 3900 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 3901 it != ie; ++it, ++ArgNo) { 3902 bool IsNamedArg = ArgNo < NumRequiredArgs; 3903 3904 if (IsRegCall && it->type->isStructureOrClassType()) 3905 it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE); 3906 else 3907 it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt, 3908 NeededSSE, IsNamedArg); 3909 3910 // AMD64-ABI 3.2.3p3: If there are no registers available for any 3911 // eightbyte of an argument, the whole argument is passed on the 3912 // stack. If registers have already been assigned for some 3913 // eightbytes of such an argument, the assignments get reverted. 3914 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 3915 FreeIntRegs -= NeededInt; 3916 FreeSSERegs -= NeededSSE; 3917 } else { 3918 it->info = getIndirectResult(it->type, FreeIntRegs); 3919 } 3920 } 3921 } 3922 3923 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF, 3924 Address VAListAddr, QualType Ty) { 3925 Address overflow_arg_area_p = 3926 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p"); 3927 llvm::Value *overflow_arg_area = 3928 CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area"); 3929 3930 // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16 3931 // byte boundary if alignment needed by type exceeds 8 byte boundary. 3932 // It isn't stated explicitly in the standard, but in practice we use 3933 // alignment greater than 16 where necessary. 3934 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 3935 if (Align > CharUnits::fromQuantity(8)) { 3936 overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area, 3937 Align); 3938 } 3939 3940 // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area. 3941 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 3942 llvm::Value *Res = 3943 CGF.Builder.CreateBitCast(overflow_arg_area, 3944 llvm::PointerType::getUnqual(LTy)); 3945 3946 // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to: 3947 // l->overflow_arg_area + sizeof(type). 3948 // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to 3949 // an 8 byte boundary. 3950 3951 uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8; 3952 llvm::Value *Offset = 3953 llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7); 3954 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset, 3955 "overflow_arg_area.next"); 3956 CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p); 3957 3958 // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type. 3959 return Address(Res, Align); 3960 } 3961 3962 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 3963 QualType Ty) const { 3964 // Assume that va_list type is correct; should be pointer to LLVM type: 3965 // struct { 3966 // i32 gp_offset; 3967 // i32 fp_offset; 3968 // i8* overflow_arg_area; 3969 // i8* reg_save_area; 3970 // }; 3971 unsigned neededInt, neededSSE; 3972 3973 Ty = getContext().getCanonicalType(Ty); 3974 ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE, 3975 /*isNamedArg*/false); 3976 3977 // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed 3978 // in the registers. If not go to step 7. 3979 if (!neededInt && !neededSSE) 3980 return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 3981 3982 // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of 3983 // general purpose registers needed to pass type and num_fp to hold 3984 // the number of floating point registers needed. 3985 3986 // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into 3987 // registers. In the case: l->gp_offset > 48 - num_gp * 8 or 3988 // l->fp_offset > 304 - num_fp * 16 go to step 7. 3989 // 3990 // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of 3991 // register save space). 3992 3993 llvm::Value *InRegs = nullptr; 3994 Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid(); 3995 llvm::Value *gp_offset = nullptr, *fp_offset = nullptr; 3996 if (neededInt) { 3997 gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p"); 3998 gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset"); 3999 InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8); 4000 InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp"); 4001 } 4002 4003 if (neededSSE) { 4004 fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p"); 4005 fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset"); 4006 llvm::Value *FitsInFP = 4007 llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16); 4008 FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp"); 4009 InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP; 4010 } 4011 4012 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 4013 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 4014 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 4015 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 4016 4017 // Emit code to load the value if it was passed in registers. 4018 4019 CGF.EmitBlock(InRegBlock); 4020 4021 // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with 4022 // an offset of l->gp_offset and/or l->fp_offset. This may require 4023 // copying to a temporary location in case the parameter is passed 4024 // in different register classes or requires an alignment greater 4025 // than 8 for general purpose registers and 16 for XMM registers. 4026 // 4027 // FIXME: This really results in shameful code when we end up needing to 4028 // collect arguments from different places; often what should result in a 4029 // simple assembling of a structure from scattered addresses has many more 4030 // loads than necessary. Can we clean this up? 4031 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 4032 llvm::Value *RegSaveArea = CGF.Builder.CreateLoad( 4033 CGF.Builder.CreateStructGEP(VAListAddr, 3), "reg_save_area"); 4034 4035 Address RegAddr = Address::invalid(); 4036 if (neededInt && neededSSE) { 4037 // FIXME: Cleanup. 4038 assert(AI.isDirect() && "Unexpected ABI info for mixed regs"); 4039 llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType()); 4040 Address Tmp = CGF.CreateMemTemp(Ty); 4041 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 4042 assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs"); 4043 llvm::Type *TyLo = ST->getElementType(0); 4044 llvm::Type *TyHi = ST->getElementType(1); 4045 assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) && 4046 "Unexpected ABI info for mixed regs"); 4047 llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo); 4048 llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi); 4049 llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegSaveArea, gp_offset); 4050 llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegSaveArea, fp_offset); 4051 llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr; 4052 llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr; 4053 4054 // Copy the first element. 4055 // FIXME: Our choice of alignment here and below is probably pessimistic. 4056 llvm::Value *V = CGF.Builder.CreateAlignedLoad( 4057 TyLo, CGF.Builder.CreateBitCast(RegLoAddr, PTyLo), 4058 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyLo))); 4059 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 4060 4061 // Copy the second element. 4062 V = CGF.Builder.CreateAlignedLoad( 4063 TyHi, CGF.Builder.CreateBitCast(RegHiAddr, PTyHi), 4064 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyHi))); 4065 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 4066 4067 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 4068 } else if (neededInt) { 4069 RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, gp_offset), 4070 CharUnits::fromQuantity(8)); 4071 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 4072 4073 // Copy to a temporary if necessary to ensure the appropriate alignment. 4074 auto TInfo = getContext().getTypeInfoInChars(Ty); 4075 uint64_t TySize = TInfo.Width.getQuantity(); 4076 CharUnits TyAlign = TInfo.Align; 4077 4078 // Copy into a temporary if the type is more aligned than the 4079 // register save area. 4080 if (TyAlign.getQuantity() > 8) { 4081 Address Tmp = CGF.CreateMemTemp(Ty); 4082 CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false); 4083 RegAddr = Tmp; 4084 } 4085 4086 } else if (neededSSE == 1) { 4087 RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset), 4088 CharUnits::fromQuantity(16)); 4089 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 4090 } else { 4091 assert(neededSSE == 2 && "Invalid number of needed registers!"); 4092 // SSE registers are spaced 16 bytes apart in the register save 4093 // area, we need to collect the two eightbytes together. 4094 // The ABI isn't explicit about this, but it seems reasonable 4095 // to assume that the slots are 16-byte aligned, since the stack is 4096 // naturally 16-byte aligned and the prologue is expected to store 4097 // all the SSE registers to the RSA. 4098 Address RegAddrLo = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset), 4099 CharUnits::fromQuantity(16)); 4100 Address RegAddrHi = 4101 CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo, 4102 CharUnits::fromQuantity(16)); 4103 llvm::Type *ST = AI.canHaveCoerceToType() 4104 ? AI.getCoerceToType() 4105 : llvm::StructType::get(CGF.DoubleTy, CGF.DoubleTy); 4106 llvm::Value *V; 4107 Address Tmp = CGF.CreateMemTemp(Ty); 4108 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 4109 V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast( 4110 RegAddrLo, ST->getStructElementType(0))); 4111 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 4112 V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast( 4113 RegAddrHi, ST->getStructElementType(1))); 4114 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 4115 4116 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 4117 } 4118 4119 // AMD64-ABI 3.5.7p5: Step 5. Set: 4120 // l->gp_offset = l->gp_offset + num_gp * 8 4121 // l->fp_offset = l->fp_offset + num_fp * 16. 4122 if (neededInt) { 4123 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8); 4124 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset), 4125 gp_offset_p); 4126 } 4127 if (neededSSE) { 4128 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16); 4129 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset), 4130 fp_offset_p); 4131 } 4132 CGF.EmitBranch(ContBlock); 4133 4134 // Emit code to load the value if it was passed in memory. 4135 4136 CGF.EmitBlock(InMemBlock); 4137 Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 4138 4139 // Return the appropriate result. 4140 4141 CGF.EmitBlock(ContBlock); 4142 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock, 4143 "vaarg.addr"); 4144 return ResAddr; 4145 } 4146 4147 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 4148 QualType Ty) const { 4149 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 4150 CGF.getContext().getTypeInfoInChars(Ty), 4151 CharUnits::fromQuantity(8), 4152 /*allowHigherAlign*/ false); 4153 } 4154 4155 ABIArgInfo 4156 WinX86_64ABIInfo::reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs, 4157 const ABIArgInfo ¤t) const { 4158 // Assumes vectorCall calling convention. 4159 const Type *Base = nullptr; 4160 uint64_t NumElts = 0; 4161 4162 if (!Ty->isBuiltinType() && !Ty->isVectorType() && 4163 isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) { 4164 FreeSSERegs -= NumElts; 4165 return getDirectX86Hva(); 4166 } 4167 return current; 4168 } 4169 4170 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs, 4171 bool IsReturnType, bool IsVectorCall, 4172 bool IsRegCall) const { 4173 4174 if (Ty->isVoidType()) 4175 return ABIArgInfo::getIgnore(); 4176 4177 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4178 Ty = EnumTy->getDecl()->getIntegerType(); 4179 4180 TypeInfo Info = getContext().getTypeInfo(Ty); 4181 uint64_t Width = Info.Width; 4182 CharUnits Align = getContext().toCharUnitsFromBits(Info.Align); 4183 4184 const RecordType *RT = Ty->getAs<RecordType>(); 4185 if (RT) { 4186 if (!IsReturnType) { 4187 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI())) 4188 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 4189 } 4190 4191 if (RT->getDecl()->hasFlexibleArrayMember()) 4192 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4193 4194 } 4195 4196 const Type *Base = nullptr; 4197 uint64_t NumElts = 0; 4198 // vectorcall adds the concept of a homogenous vector aggregate, similar to 4199 // other targets. 4200 if ((IsVectorCall || IsRegCall) && 4201 isHomogeneousAggregate(Ty, Base, NumElts)) { 4202 if (IsRegCall) { 4203 if (FreeSSERegs >= NumElts) { 4204 FreeSSERegs -= NumElts; 4205 if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType()) 4206 return ABIArgInfo::getDirect(); 4207 return ABIArgInfo::getExpand(); 4208 } 4209 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4210 } else if (IsVectorCall) { 4211 if (FreeSSERegs >= NumElts && 4212 (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) { 4213 FreeSSERegs -= NumElts; 4214 return ABIArgInfo::getDirect(); 4215 } else if (IsReturnType) { 4216 return ABIArgInfo::getExpand(); 4217 } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) { 4218 // HVAs are delayed and reclassified in the 2nd step. 4219 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4220 } 4221 } 4222 } 4223 4224 if (Ty->isMemberPointerType()) { 4225 // If the member pointer is represented by an LLVM int or ptr, pass it 4226 // directly. 4227 llvm::Type *LLTy = CGT.ConvertType(Ty); 4228 if (LLTy->isPointerTy() || LLTy->isIntegerTy()) 4229 return ABIArgInfo::getDirect(); 4230 } 4231 4232 if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) { 4233 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4234 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4235 if (Width > 64 || !llvm::isPowerOf2_64(Width)) 4236 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4237 4238 // Otherwise, coerce it to a small integer. 4239 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width)); 4240 } 4241 4242 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 4243 switch (BT->getKind()) { 4244 case BuiltinType::Bool: 4245 // Bool type is always extended to the ABI, other builtin types are not 4246 // extended. 4247 return ABIArgInfo::getExtend(Ty); 4248 4249 case BuiltinType::LongDouble: 4250 // Mingw64 GCC uses the old 80 bit extended precision floating point 4251 // unit. It passes them indirectly through memory. 4252 if (IsMingw64) { 4253 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 4254 if (LDF == &llvm::APFloat::x87DoubleExtended()) 4255 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4256 } 4257 break; 4258 4259 case BuiltinType::Int128: 4260 case BuiltinType::UInt128: 4261 // If it's a parameter type, the normal ABI rule is that arguments larger 4262 // than 8 bytes are passed indirectly. GCC follows it. We follow it too, 4263 // even though it isn't particularly efficient. 4264 if (!IsReturnType) 4265 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4266 4267 // Mingw64 GCC returns i128 in XMM0. Coerce to v2i64 to handle that. 4268 // Clang matches them for compatibility. 4269 return ABIArgInfo::getDirect(llvm::FixedVectorType::get( 4270 llvm::Type::getInt64Ty(getVMContext()), 2)); 4271 4272 default: 4273 break; 4274 } 4275 } 4276 4277 if (Ty->isExtIntType()) { 4278 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4279 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4280 // However, non-power-of-two _ExtInts will be passed as 1,2,4 or 8 bytes 4281 // anyway as long is it fits in them, so we don't have to check the power of 4282 // 2. 4283 if (Width <= 64) 4284 return ABIArgInfo::getDirect(); 4285 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4286 } 4287 4288 return ABIArgInfo::getDirect(); 4289 } 4290 4291 void WinX86_64ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI, 4292 unsigned FreeSSERegs, 4293 bool IsVectorCall, 4294 bool IsRegCall) const { 4295 unsigned Count = 0; 4296 for (auto &I : FI.arguments()) { 4297 // Vectorcall in x64 only permits the first 6 arguments to be passed 4298 // as XMM/YMM registers. 4299 if (Count < VectorcallMaxParamNumAsReg) 4300 I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall); 4301 else { 4302 // Since these cannot be passed in registers, pretend no registers 4303 // are left. 4304 unsigned ZeroSSERegsAvail = 0; 4305 I.info = classify(I.type, /*FreeSSERegs=*/ZeroSSERegsAvail, false, 4306 IsVectorCall, IsRegCall); 4307 } 4308 ++Count; 4309 } 4310 4311 for (auto &I : FI.arguments()) { 4312 I.info = reclassifyHvaArgType(I.type, FreeSSERegs, I.info); 4313 } 4314 } 4315 4316 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 4317 const unsigned CC = FI.getCallingConvention(); 4318 bool IsVectorCall = CC == llvm::CallingConv::X86_VectorCall; 4319 bool IsRegCall = CC == llvm::CallingConv::X86_RegCall; 4320 4321 // If __attribute__((sysv_abi)) is in use, use the SysV argument 4322 // classification rules. 4323 if (CC == llvm::CallingConv::X86_64_SysV) { 4324 X86_64ABIInfo SysVABIInfo(CGT, AVXLevel); 4325 SysVABIInfo.computeInfo(FI); 4326 return; 4327 } 4328 4329 unsigned FreeSSERegs = 0; 4330 if (IsVectorCall) { 4331 // We can use up to 4 SSE return registers with vectorcall. 4332 FreeSSERegs = 4; 4333 } else if (IsRegCall) { 4334 // RegCall gives us 16 SSE registers. 4335 FreeSSERegs = 16; 4336 } 4337 4338 if (!getCXXABI().classifyReturnType(FI)) 4339 FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true, 4340 IsVectorCall, IsRegCall); 4341 4342 if (IsVectorCall) { 4343 // We can use up to 6 SSE register parameters with vectorcall. 4344 FreeSSERegs = 6; 4345 } else if (IsRegCall) { 4346 // RegCall gives us 16 SSE registers, we can reuse the return registers. 4347 FreeSSERegs = 16; 4348 } 4349 4350 if (IsVectorCall) { 4351 computeVectorCallArgs(FI, FreeSSERegs, IsVectorCall, IsRegCall); 4352 } else { 4353 for (auto &I : FI.arguments()) 4354 I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall); 4355 } 4356 4357 } 4358 4359 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4360 QualType Ty) const { 4361 4362 bool IsIndirect = false; 4363 4364 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4365 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4366 if (isAggregateTypeForABI(Ty) || Ty->isMemberPointerType()) { 4367 uint64_t Width = getContext().getTypeSize(Ty); 4368 IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width); 4369 } 4370 4371 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 4372 CGF.getContext().getTypeInfoInChars(Ty), 4373 CharUnits::fromQuantity(8), 4374 /*allowHigherAlign*/ false); 4375 } 4376 4377 static bool PPC_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4378 llvm::Value *Address, bool Is64Bit, 4379 bool IsAIX) { 4380 // This is calculated from the LLVM and GCC tables and verified 4381 // against gcc output. AFAIK all PPC ABIs use the same encoding. 4382 4383 CodeGen::CGBuilderTy &Builder = CGF.Builder; 4384 4385 llvm::IntegerType *i8 = CGF.Int8Ty; 4386 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 4387 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 4388 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 4389 4390 // 0-31: r0-31, the 4-byte or 8-byte general-purpose registers 4391 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 0, 31); 4392 4393 // 32-63: fp0-31, the 8-byte floating-point registers 4394 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 4395 4396 // 64-67 are various 4-byte or 8-byte special-purpose registers: 4397 // 64: mq 4398 // 65: lr 4399 // 66: ctr 4400 // 67: ap 4401 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 64, 67); 4402 4403 // 68-76 are various 4-byte special-purpose registers: 4404 // 68-75 cr0-7 4405 // 76: xer 4406 AssignToArrayRange(Builder, Address, Four8, 68, 76); 4407 4408 // 77-108: v0-31, the 16-byte vector registers 4409 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 4410 4411 // 109: vrsave 4412 // 110: vscr 4413 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 109, 110); 4414 4415 // AIX does not utilize the rest of the registers. 4416 if (IsAIX) 4417 return false; 4418 4419 // 111: spe_acc 4420 // 112: spefscr 4421 // 113: sfp 4422 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 111, 113); 4423 4424 if (!Is64Bit) 4425 return false; 4426 4427 // TODO: Need to verify if these registers are used on 64 bit AIX with Power8 4428 // or above CPU. 4429 // 64-bit only registers: 4430 // 114: tfhar 4431 // 115: tfiar 4432 // 116: texasr 4433 AssignToArrayRange(Builder, Address, Eight8, 114, 116); 4434 4435 return false; 4436 } 4437 4438 // AIX 4439 namespace { 4440 /// AIXABIInfo - The AIX XCOFF ABI information. 4441 class AIXABIInfo : public ABIInfo { 4442 const bool Is64Bit; 4443 const unsigned PtrByteSize; 4444 CharUnits getParamTypeAlignment(QualType Ty) const; 4445 4446 public: 4447 AIXABIInfo(CodeGen::CodeGenTypes &CGT, bool Is64Bit) 4448 : ABIInfo(CGT), Is64Bit(Is64Bit), PtrByteSize(Is64Bit ? 8 : 4) {} 4449 4450 bool isPromotableTypeForABI(QualType Ty) const; 4451 4452 ABIArgInfo classifyReturnType(QualType RetTy) const; 4453 ABIArgInfo classifyArgumentType(QualType Ty) const; 4454 4455 void computeInfo(CGFunctionInfo &FI) const override { 4456 if (!getCXXABI().classifyReturnType(FI)) 4457 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4458 4459 for (auto &I : FI.arguments()) 4460 I.info = classifyArgumentType(I.type); 4461 } 4462 4463 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4464 QualType Ty) const override; 4465 }; 4466 4467 class AIXTargetCodeGenInfo : public TargetCodeGenInfo { 4468 const bool Is64Bit; 4469 4470 public: 4471 AIXTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool Is64Bit) 4472 : TargetCodeGenInfo(std::make_unique<AIXABIInfo>(CGT, Is64Bit)), 4473 Is64Bit(Is64Bit) {} 4474 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4475 return 1; // r1 is the dedicated stack pointer 4476 } 4477 4478 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4479 llvm::Value *Address) const override; 4480 }; 4481 } // namespace 4482 4483 // Return true if the ABI requires Ty to be passed sign- or zero- 4484 // extended to 32/64 bits. 4485 bool AIXABIInfo::isPromotableTypeForABI(QualType Ty) const { 4486 // Treat an enum type as its underlying type. 4487 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4488 Ty = EnumTy->getDecl()->getIntegerType(); 4489 4490 // Promotable integer types are required to be promoted by the ABI. 4491 if (Ty->isPromotableIntegerType()) 4492 return true; 4493 4494 if (!Is64Bit) 4495 return false; 4496 4497 // For 64 bit mode, in addition to the usual promotable integer types, we also 4498 // need to extend all 32-bit types, since the ABI requires promotion to 64 4499 // bits. 4500 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 4501 switch (BT->getKind()) { 4502 case BuiltinType::Int: 4503 case BuiltinType::UInt: 4504 return true; 4505 default: 4506 break; 4507 } 4508 4509 return false; 4510 } 4511 4512 ABIArgInfo AIXABIInfo::classifyReturnType(QualType RetTy) const { 4513 if (RetTy->isAnyComplexType()) 4514 return ABIArgInfo::getDirect(); 4515 4516 if (RetTy->isVectorType()) 4517 return ABIArgInfo::getDirect(); 4518 4519 if (RetTy->isVoidType()) 4520 return ABIArgInfo::getIgnore(); 4521 4522 if (isAggregateTypeForABI(RetTy)) 4523 return getNaturalAlignIndirect(RetTy); 4524 4525 return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 4526 : ABIArgInfo::getDirect()); 4527 } 4528 4529 ABIArgInfo AIXABIInfo::classifyArgumentType(QualType Ty) const { 4530 Ty = useFirstFieldIfTransparentUnion(Ty); 4531 4532 if (Ty->isAnyComplexType()) 4533 return ABIArgInfo::getDirect(); 4534 4535 if (Ty->isVectorType()) 4536 return ABIArgInfo::getDirect(); 4537 4538 if (isAggregateTypeForABI(Ty)) { 4539 // Records with non-trivial destructors/copy-constructors should not be 4540 // passed by value. 4541 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 4542 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 4543 4544 CharUnits CCAlign = getParamTypeAlignment(Ty); 4545 CharUnits TyAlign = getContext().getTypeAlignInChars(Ty); 4546 4547 return ABIArgInfo::getIndirect(CCAlign, /*ByVal*/ true, 4548 /*Realign*/ TyAlign > CCAlign); 4549 } 4550 4551 return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 4552 : ABIArgInfo::getDirect()); 4553 } 4554 4555 CharUnits AIXABIInfo::getParamTypeAlignment(QualType Ty) const { 4556 // Complex types are passed just like their elements. 4557 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 4558 Ty = CTy->getElementType(); 4559 4560 if (Ty->isVectorType()) 4561 return CharUnits::fromQuantity(16); 4562 4563 // If the structure contains a vector type, the alignment is 16. 4564 if (isRecordWithSIMDVectorType(getContext(), Ty)) 4565 return CharUnits::fromQuantity(16); 4566 4567 return CharUnits::fromQuantity(PtrByteSize); 4568 } 4569 4570 Address AIXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4571 QualType Ty) const { 4572 if (Ty->isAnyComplexType()) 4573 llvm::report_fatal_error("complex type is not supported on AIX yet"); 4574 4575 if (Ty->isVectorType()) 4576 llvm::report_fatal_error( 4577 "vector types are not yet supported for variadic functions on AIX"); 4578 4579 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 4580 TypeInfo.Align = getParamTypeAlignment(Ty); 4581 4582 CharUnits SlotSize = CharUnits::fromQuantity(PtrByteSize); 4583 4584 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, TypeInfo, 4585 SlotSize, /*AllowHigher*/ true); 4586 } 4587 4588 bool AIXTargetCodeGenInfo::initDwarfEHRegSizeTable( 4589 CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const { 4590 return PPC_initDwarfEHRegSizeTable(CGF, Address, Is64Bit, /*IsAIX*/ true); 4591 } 4592 4593 // PowerPC-32 4594 namespace { 4595 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information. 4596 class PPC32_SVR4_ABIInfo : public DefaultABIInfo { 4597 bool IsSoftFloatABI; 4598 bool IsRetSmallStructInRegABI; 4599 4600 CharUnits getParamTypeAlignment(QualType Ty) const; 4601 4602 public: 4603 PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI, 4604 bool RetSmallStructInRegABI) 4605 : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI), 4606 IsRetSmallStructInRegABI(RetSmallStructInRegABI) {} 4607 4608 ABIArgInfo classifyReturnType(QualType RetTy) const; 4609 4610 void computeInfo(CGFunctionInfo &FI) const override { 4611 if (!getCXXABI().classifyReturnType(FI)) 4612 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4613 for (auto &I : FI.arguments()) 4614 I.info = classifyArgumentType(I.type); 4615 } 4616 4617 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4618 QualType Ty) const override; 4619 }; 4620 4621 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo { 4622 public: 4623 PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI, 4624 bool RetSmallStructInRegABI) 4625 : TargetCodeGenInfo(std::make_unique<PPC32_SVR4_ABIInfo>( 4626 CGT, SoftFloatABI, RetSmallStructInRegABI)) {} 4627 4628 static bool isStructReturnInRegABI(const llvm::Triple &Triple, 4629 const CodeGenOptions &Opts); 4630 4631 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4632 // This is recovered from gcc output. 4633 return 1; // r1 is the dedicated stack pointer 4634 } 4635 4636 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4637 llvm::Value *Address) const override; 4638 }; 4639 } 4640 4641 CharUnits PPC32_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 4642 // Complex types are passed just like their elements. 4643 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 4644 Ty = CTy->getElementType(); 4645 4646 if (Ty->isVectorType()) 4647 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 4648 : 4); 4649 4650 // For single-element float/vector structs, we consider the whole type 4651 // to have the same alignment requirements as its single element. 4652 const Type *AlignTy = nullptr; 4653 if (const Type *EltType = isSingleElementStruct(Ty, getContext())) { 4654 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 4655 if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) || 4656 (BT && BT->isFloatingPoint())) 4657 AlignTy = EltType; 4658 } 4659 4660 if (AlignTy) 4661 return CharUnits::fromQuantity(AlignTy->isVectorType() ? 16 : 4); 4662 return CharUnits::fromQuantity(4); 4663 } 4664 4665 ABIArgInfo PPC32_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { 4666 uint64_t Size; 4667 4668 // -msvr4-struct-return puts small aggregates in GPR3 and GPR4. 4669 if (isAggregateTypeForABI(RetTy) && IsRetSmallStructInRegABI && 4670 (Size = getContext().getTypeSize(RetTy)) <= 64) { 4671 // System V ABI (1995), page 3-22, specified: 4672 // > A structure or union whose size is less than or equal to 8 bytes 4673 // > shall be returned in r3 and r4, as if it were first stored in the 4674 // > 8-byte aligned memory area and then the low addressed word were 4675 // > loaded into r3 and the high-addressed word into r4. Bits beyond 4676 // > the last member of the structure or union are not defined. 4677 // 4678 // GCC for big-endian PPC32 inserts the pad before the first member, 4679 // not "beyond the last member" of the struct. To stay compatible 4680 // with GCC, we coerce the struct to an integer of the same size. 4681 // LLVM will extend it and return i32 in r3, or i64 in r3:r4. 4682 if (Size == 0) 4683 return ABIArgInfo::getIgnore(); 4684 else { 4685 llvm::Type *CoerceTy = llvm::Type::getIntNTy(getVMContext(), Size); 4686 return ABIArgInfo::getDirect(CoerceTy); 4687 } 4688 } 4689 4690 return DefaultABIInfo::classifyReturnType(RetTy); 4691 } 4692 4693 // TODO: this implementation is now likely redundant with 4694 // DefaultABIInfo::EmitVAArg. 4695 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList, 4696 QualType Ty) const { 4697 if (getTarget().getTriple().isOSDarwin()) { 4698 auto TI = getContext().getTypeInfoInChars(Ty); 4699 TI.Align = getParamTypeAlignment(Ty); 4700 4701 CharUnits SlotSize = CharUnits::fromQuantity(4); 4702 return emitVoidPtrVAArg(CGF, VAList, Ty, 4703 classifyArgumentType(Ty).isIndirect(), TI, SlotSize, 4704 /*AllowHigherAlign=*/true); 4705 } 4706 4707 const unsigned OverflowLimit = 8; 4708 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 4709 // TODO: Implement this. For now ignore. 4710 (void)CTy; 4711 return Address::invalid(); // FIXME? 4712 } 4713 4714 // struct __va_list_tag { 4715 // unsigned char gpr; 4716 // unsigned char fpr; 4717 // unsigned short reserved; 4718 // void *overflow_arg_area; 4719 // void *reg_save_area; 4720 // }; 4721 4722 bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64; 4723 bool isInt = 4724 Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType(); 4725 bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64; 4726 4727 // All aggregates are passed indirectly? That doesn't seem consistent 4728 // with the argument-lowering code. 4729 bool isIndirect = Ty->isAggregateType(); 4730 4731 CGBuilderTy &Builder = CGF.Builder; 4732 4733 // The calling convention either uses 1-2 GPRs or 1 FPR. 4734 Address NumRegsAddr = Address::invalid(); 4735 if (isInt || IsSoftFloatABI) { 4736 NumRegsAddr = Builder.CreateStructGEP(VAList, 0, "gpr"); 4737 } else { 4738 NumRegsAddr = Builder.CreateStructGEP(VAList, 1, "fpr"); 4739 } 4740 4741 llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs"); 4742 4743 // "Align" the register count when TY is i64. 4744 if (isI64 || (isF64 && IsSoftFloatABI)) { 4745 NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1)); 4746 NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U)); 4747 } 4748 4749 llvm::Value *CC = 4750 Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond"); 4751 4752 llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs"); 4753 llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow"); 4754 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 4755 4756 Builder.CreateCondBr(CC, UsingRegs, UsingOverflow); 4757 4758 llvm::Type *DirectTy = CGF.ConvertType(Ty); 4759 if (isIndirect) DirectTy = DirectTy->getPointerTo(0); 4760 4761 // Case 1: consume registers. 4762 Address RegAddr = Address::invalid(); 4763 { 4764 CGF.EmitBlock(UsingRegs); 4765 4766 Address RegSaveAreaPtr = Builder.CreateStructGEP(VAList, 4); 4767 RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr), 4768 CharUnits::fromQuantity(8)); 4769 assert(RegAddr.getElementType() == CGF.Int8Ty); 4770 4771 // Floating-point registers start after the general-purpose registers. 4772 if (!(isInt || IsSoftFloatABI)) { 4773 RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr, 4774 CharUnits::fromQuantity(32)); 4775 } 4776 4777 // Get the address of the saved value by scaling the number of 4778 // registers we've used by the number of 4779 CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8); 4780 llvm::Value *RegOffset = 4781 Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity())); 4782 RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty, 4783 RegAddr.getPointer(), RegOffset), 4784 RegAddr.getAlignment().alignmentOfArrayElement(RegSize)); 4785 RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy); 4786 4787 // Increase the used-register count. 4788 NumRegs = 4789 Builder.CreateAdd(NumRegs, 4790 Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1)); 4791 Builder.CreateStore(NumRegs, NumRegsAddr); 4792 4793 CGF.EmitBranch(Cont); 4794 } 4795 4796 // Case 2: consume space in the overflow area. 4797 Address MemAddr = Address::invalid(); 4798 { 4799 CGF.EmitBlock(UsingOverflow); 4800 4801 Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr); 4802 4803 // Everything in the overflow area is rounded up to a size of at least 4. 4804 CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4); 4805 4806 CharUnits Size; 4807 if (!isIndirect) { 4808 auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty); 4809 Size = TypeInfo.Width.alignTo(OverflowAreaAlign); 4810 } else { 4811 Size = CGF.getPointerSize(); 4812 } 4813 4814 Address OverflowAreaAddr = Builder.CreateStructGEP(VAList, 3); 4815 Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"), 4816 OverflowAreaAlign); 4817 // Round up address of argument to alignment 4818 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 4819 if (Align > OverflowAreaAlign) { 4820 llvm::Value *Ptr = OverflowArea.getPointer(); 4821 OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align), 4822 Align); 4823 } 4824 4825 MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy); 4826 4827 // Increase the overflow area. 4828 OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size); 4829 Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr); 4830 CGF.EmitBranch(Cont); 4831 } 4832 4833 CGF.EmitBlock(Cont); 4834 4835 // Merge the cases with a phi. 4836 Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow, 4837 "vaarg.addr"); 4838 4839 // Load the pointer if the argument was passed indirectly. 4840 if (isIndirect) { 4841 Result = Address(Builder.CreateLoad(Result, "aggr"), 4842 getContext().getTypeAlignInChars(Ty)); 4843 } 4844 4845 return Result; 4846 } 4847 4848 bool PPC32TargetCodeGenInfo::isStructReturnInRegABI( 4849 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 4850 assert(Triple.getArch() == llvm::Triple::ppc); 4851 4852 switch (Opts.getStructReturnConvention()) { 4853 case CodeGenOptions::SRCK_Default: 4854 break; 4855 case CodeGenOptions::SRCK_OnStack: // -maix-struct-return 4856 return false; 4857 case CodeGenOptions::SRCK_InRegs: // -msvr4-struct-return 4858 return true; 4859 } 4860 4861 if (Triple.isOSBinFormatELF() && !Triple.isOSLinux()) 4862 return true; 4863 4864 return false; 4865 } 4866 4867 bool 4868 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4869 llvm::Value *Address) const { 4870 return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ false, 4871 /*IsAIX*/ false); 4872 } 4873 4874 // PowerPC-64 4875 4876 namespace { 4877 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information. 4878 class PPC64_SVR4_ABIInfo : public SwiftABIInfo { 4879 public: 4880 enum ABIKind { 4881 ELFv1 = 0, 4882 ELFv2 4883 }; 4884 4885 private: 4886 static const unsigned GPRBits = 64; 4887 ABIKind Kind; 4888 bool IsSoftFloatABI; 4889 4890 public: 4891 PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, 4892 bool SoftFloatABI) 4893 : SwiftABIInfo(CGT), Kind(Kind), IsSoftFloatABI(SoftFloatABI) {} 4894 4895 bool isPromotableTypeForABI(QualType Ty) const; 4896 CharUnits getParamTypeAlignment(QualType Ty) const; 4897 4898 ABIArgInfo classifyReturnType(QualType RetTy) const; 4899 ABIArgInfo classifyArgumentType(QualType Ty) const; 4900 4901 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 4902 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 4903 uint64_t Members) const override; 4904 4905 // TODO: We can add more logic to computeInfo to improve performance. 4906 // Example: For aggregate arguments that fit in a register, we could 4907 // use getDirectInReg (as is done below for structs containing a single 4908 // floating-point value) to avoid pushing them to memory on function 4909 // entry. This would require changing the logic in PPCISelLowering 4910 // when lowering the parameters in the caller and args in the callee. 4911 void computeInfo(CGFunctionInfo &FI) const override { 4912 if (!getCXXABI().classifyReturnType(FI)) 4913 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4914 for (auto &I : FI.arguments()) { 4915 // We rely on the default argument classification for the most part. 4916 // One exception: An aggregate containing a single floating-point 4917 // or vector item must be passed in a register if one is available. 4918 const Type *T = isSingleElementStruct(I.type, getContext()); 4919 if (T) { 4920 const BuiltinType *BT = T->getAs<BuiltinType>(); 4921 if ((T->isVectorType() && getContext().getTypeSize(T) == 128) || 4922 (BT && BT->isFloatingPoint())) { 4923 QualType QT(T, 0); 4924 I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT)); 4925 continue; 4926 } 4927 } 4928 I.info = classifyArgumentType(I.type); 4929 } 4930 } 4931 4932 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4933 QualType Ty) const override; 4934 4935 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 4936 bool asReturnValue) const override { 4937 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 4938 } 4939 4940 bool isSwiftErrorInRegister() const override { 4941 return false; 4942 } 4943 }; 4944 4945 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo { 4946 4947 public: 4948 PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT, 4949 PPC64_SVR4_ABIInfo::ABIKind Kind, 4950 bool SoftFloatABI) 4951 : TargetCodeGenInfo( 4952 std::make_unique<PPC64_SVR4_ABIInfo>(CGT, Kind, SoftFloatABI)) {} 4953 4954 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4955 // This is recovered from gcc output. 4956 return 1; // r1 is the dedicated stack pointer 4957 } 4958 4959 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4960 llvm::Value *Address) const override; 4961 }; 4962 4963 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo { 4964 public: 4965 PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {} 4966 4967 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4968 // This is recovered from gcc output. 4969 return 1; // r1 is the dedicated stack pointer 4970 } 4971 4972 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4973 llvm::Value *Address) const override; 4974 }; 4975 4976 } 4977 4978 // Return true if the ABI requires Ty to be passed sign- or zero- 4979 // extended to 64 bits. 4980 bool 4981 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const { 4982 // Treat an enum type as its underlying type. 4983 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4984 Ty = EnumTy->getDecl()->getIntegerType(); 4985 4986 // Promotable integer types are required to be promoted by the ABI. 4987 if (isPromotableIntegerTypeForABI(Ty)) 4988 return true; 4989 4990 // In addition to the usual promotable integer types, we also need to 4991 // extend all 32-bit types, since the ABI requires promotion to 64 bits. 4992 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 4993 switch (BT->getKind()) { 4994 case BuiltinType::Int: 4995 case BuiltinType::UInt: 4996 return true; 4997 default: 4998 break; 4999 } 5000 5001 if (const auto *EIT = Ty->getAs<ExtIntType>()) 5002 if (EIT->getNumBits() < 64) 5003 return true; 5004 5005 return false; 5006 } 5007 5008 /// isAlignedParamType - Determine whether a type requires 16-byte or 5009 /// higher alignment in the parameter area. Always returns at least 8. 5010 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 5011 // Complex types are passed just like their elements. 5012 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 5013 Ty = CTy->getElementType(); 5014 5015 // Only vector types of size 16 bytes need alignment (larger types are 5016 // passed via reference, smaller types are not aligned). 5017 if (Ty->isVectorType()) { 5018 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8); 5019 } else if (Ty->isRealFloatingType() && 5020 &getContext().getFloatTypeSemantics(Ty) == 5021 &llvm::APFloat::IEEEquad()) { 5022 // According to ABI document section 'Optional Save Areas': If extended 5023 // precision floating-point values in IEEE BINARY 128 QUADRUPLE PRECISION 5024 // format are supported, map them to a single quadword, quadword aligned. 5025 return CharUnits::fromQuantity(16); 5026 } 5027 5028 // For single-element float/vector structs, we consider the whole type 5029 // to have the same alignment requirements as its single element. 5030 const Type *AlignAsType = nullptr; 5031 const Type *EltType = isSingleElementStruct(Ty, getContext()); 5032 if (EltType) { 5033 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 5034 if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) || 5035 (BT && BT->isFloatingPoint())) 5036 AlignAsType = EltType; 5037 } 5038 5039 // Likewise for ELFv2 homogeneous aggregates. 5040 const Type *Base = nullptr; 5041 uint64_t Members = 0; 5042 if (!AlignAsType && Kind == ELFv2 && 5043 isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members)) 5044 AlignAsType = Base; 5045 5046 // With special case aggregates, only vector base types need alignment. 5047 if (AlignAsType) { 5048 return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8); 5049 } 5050 5051 // Otherwise, we only need alignment for any aggregate type that 5052 // has an alignment requirement of >= 16 bytes. 5053 if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) { 5054 return CharUnits::fromQuantity(16); 5055 } 5056 5057 return CharUnits::fromQuantity(8); 5058 } 5059 5060 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous 5061 /// aggregate. Base is set to the base element type, and Members is set 5062 /// to the number of base elements. 5063 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base, 5064 uint64_t &Members) const { 5065 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 5066 uint64_t NElements = AT->getSize().getZExtValue(); 5067 if (NElements == 0) 5068 return false; 5069 if (!isHomogeneousAggregate(AT->getElementType(), Base, Members)) 5070 return false; 5071 Members *= NElements; 5072 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 5073 const RecordDecl *RD = RT->getDecl(); 5074 if (RD->hasFlexibleArrayMember()) 5075 return false; 5076 5077 Members = 0; 5078 5079 // If this is a C++ record, check the bases first. 5080 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 5081 for (const auto &I : CXXRD->bases()) { 5082 // Ignore empty records. 5083 if (isEmptyRecord(getContext(), I.getType(), true)) 5084 continue; 5085 5086 uint64_t FldMembers; 5087 if (!isHomogeneousAggregate(I.getType(), Base, FldMembers)) 5088 return false; 5089 5090 Members += FldMembers; 5091 } 5092 } 5093 5094 for (const auto *FD : RD->fields()) { 5095 // Ignore (non-zero arrays of) empty records. 5096 QualType FT = FD->getType(); 5097 while (const ConstantArrayType *AT = 5098 getContext().getAsConstantArrayType(FT)) { 5099 if (AT->getSize().getZExtValue() == 0) 5100 return false; 5101 FT = AT->getElementType(); 5102 } 5103 if (isEmptyRecord(getContext(), FT, true)) 5104 continue; 5105 5106 // For compatibility with GCC, ignore empty bitfields in C++ mode. 5107 if (getContext().getLangOpts().CPlusPlus && 5108 FD->isZeroLengthBitField(getContext())) 5109 continue; 5110 5111 uint64_t FldMembers; 5112 if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers)) 5113 return false; 5114 5115 Members = (RD->isUnion() ? 5116 std::max(Members, FldMembers) : Members + FldMembers); 5117 } 5118 5119 if (!Base) 5120 return false; 5121 5122 // Ensure there is no padding. 5123 if (getContext().getTypeSize(Base) * Members != 5124 getContext().getTypeSize(Ty)) 5125 return false; 5126 } else { 5127 Members = 1; 5128 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 5129 Members = 2; 5130 Ty = CT->getElementType(); 5131 } 5132 5133 // Most ABIs only support float, double, and some vector type widths. 5134 if (!isHomogeneousAggregateBaseType(Ty)) 5135 return false; 5136 5137 // The base type must be the same for all members. Types that 5138 // agree in both total size and mode (float vs. vector) are 5139 // treated as being equivalent here. 5140 const Type *TyPtr = Ty.getTypePtr(); 5141 if (!Base) { 5142 Base = TyPtr; 5143 // If it's a non-power-of-2 vector, its size is already a power-of-2, 5144 // so make sure to widen it explicitly. 5145 if (const VectorType *VT = Base->getAs<VectorType>()) { 5146 QualType EltTy = VT->getElementType(); 5147 unsigned NumElements = 5148 getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy); 5149 Base = getContext() 5150 .getVectorType(EltTy, NumElements, VT->getVectorKind()) 5151 .getTypePtr(); 5152 } 5153 } 5154 5155 if (Base->isVectorType() != TyPtr->isVectorType() || 5156 getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr)) 5157 return false; 5158 } 5159 return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members); 5160 } 5161 5162 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 5163 // Homogeneous aggregates for ELFv2 must have base types of float, 5164 // double, long double, or 128-bit vectors. 5165 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 5166 if (BT->getKind() == BuiltinType::Float || 5167 BT->getKind() == BuiltinType::Double || 5168 BT->getKind() == BuiltinType::LongDouble || 5169 (getContext().getTargetInfo().hasFloat128Type() && 5170 (BT->getKind() == BuiltinType::Float128))) { 5171 if (IsSoftFloatABI) 5172 return false; 5173 return true; 5174 } 5175 } 5176 if (const VectorType *VT = Ty->getAs<VectorType>()) { 5177 if (getContext().getTypeSize(VT) == 128) 5178 return true; 5179 } 5180 return false; 5181 } 5182 5183 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough( 5184 const Type *Base, uint64_t Members) const { 5185 // Vector and fp128 types require one register, other floating point types 5186 // require one or two registers depending on their size. 5187 uint32_t NumRegs = 5188 ((getContext().getTargetInfo().hasFloat128Type() && 5189 Base->isFloat128Type()) || 5190 Base->isVectorType()) ? 1 5191 : (getContext().getTypeSize(Base) + 63) / 64; 5192 5193 // Homogeneous Aggregates may occupy at most 8 registers. 5194 return Members * NumRegs <= 8; 5195 } 5196 5197 ABIArgInfo 5198 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const { 5199 Ty = useFirstFieldIfTransparentUnion(Ty); 5200 5201 if (Ty->isAnyComplexType()) 5202 return ABIArgInfo::getDirect(); 5203 5204 // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes) 5205 // or via reference (larger than 16 bytes). 5206 if (Ty->isVectorType()) { 5207 uint64_t Size = getContext().getTypeSize(Ty); 5208 if (Size > 128) 5209 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5210 else if (Size < 128) { 5211 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 5212 return ABIArgInfo::getDirect(CoerceTy); 5213 } 5214 } 5215 5216 if (const auto *EIT = Ty->getAs<ExtIntType>()) 5217 if (EIT->getNumBits() > 128) 5218 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 5219 5220 if (isAggregateTypeForABI(Ty)) { 5221 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 5222 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 5223 5224 uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity(); 5225 uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); 5226 5227 // ELFv2 homogeneous aggregates are passed as array types. 5228 const Type *Base = nullptr; 5229 uint64_t Members = 0; 5230 if (Kind == ELFv2 && 5231 isHomogeneousAggregate(Ty, Base, Members)) { 5232 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 5233 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 5234 return ABIArgInfo::getDirect(CoerceTy); 5235 } 5236 5237 // If an aggregate may end up fully in registers, we do not 5238 // use the ByVal method, but pass the aggregate as array. 5239 // This is usually beneficial since we avoid forcing the 5240 // back-end to store the argument to memory. 5241 uint64_t Bits = getContext().getTypeSize(Ty); 5242 if (Bits > 0 && Bits <= 8 * GPRBits) { 5243 llvm::Type *CoerceTy; 5244 5245 // Types up to 8 bytes are passed as integer type (which will be 5246 // properly aligned in the argument save area doubleword). 5247 if (Bits <= GPRBits) 5248 CoerceTy = 5249 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 5250 // Larger types are passed as arrays, with the base type selected 5251 // according to the required alignment in the save area. 5252 else { 5253 uint64_t RegBits = ABIAlign * 8; 5254 uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits; 5255 llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits); 5256 CoerceTy = llvm::ArrayType::get(RegTy, NumRegs); 5257 } 5258 5259 return ABIArgInfo::getDirect(CoerceTy); 5260 } 5261 5262 // All other aggregates are passed ByVal. 5263 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 5264 /*ByVal=*/true, 5265 /*Realign=*/TyAlign > ABIAlign); 5266 } 5267 5268 return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 5269 : ABIArgInfo::getDirect()); 5270 } 5271 5272 ABIArgInfo 5273 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { 5274 if (RetTy->isVoidType()) 5275 return ABIArgInfo::getIgnore(); 5276 5277 if (RetTy->isAnyComplexType()) 5278 return ABIArgInfo::getDirect(); 5279 5280 // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes) 5281 // or via reference (larger than 16 bytes). 5282 if (RetTy->isVectorType()) { 5283 uint64_t Size = getContext().getTypeSize(RetTy); 5284 if (Size > 128) 5285 return getNaturalAlignIndirect(RetTy); 5286 else if (Size < 128) { 5287 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 5288 return ABIArgInfo::getDirect(CoerceTy); 5289 } 5290 } 5291 5292 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 5293 if (EIT->getNumBits() > 128) 5294 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 5295 5296 if (isAggregateTypeForABI(RetTy)) { 5297 // ELFv2 homogeneous aggregates are returned as array types. 5298 const Type *Base = nullptr; 5299 uint64_t Members = 0; 5300 if (Kind == ELFv2 && 5301 isHomogeneousAggregate(RetTy, Base, Members)) { 5302 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 5303 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 5304 return ABIArgInfo::getDirect(CoerceTy); 5305 } 5306 5307 // ELFv2 small aggregates are returned in up to two registers. 5308 uint64_t Bits = getContext().getTypeSize(RetTy); 5309 if (Kind == ELFv2 && Bits <= 2 * GPRBits) { 5310 if (Bits == 0) 5311 return ABIArgInfo::getIgnore(); 5312 5313 llvm::Type *CoerceTy; 5314 if (Bits > GPRBits) { 5315 CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits); 5316 CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy); 5317 } else 5318 CoerceTy = 5319 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 5320 return ABIArgInfo::getDirect(CoerceTy); 5321 } 5322 5323 // All other aggregates are returned indirectly. 5324 return getNaturalAlignIndirect(RetTy); 5325 } 5326 5327 return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 5328 : ABIArgInfo::getDirect()); 5329 } 5330 5331 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine. 5332 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5333 QualType Ty) const { 5334 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 5335 TypeInfo.Align = getParamTypeAlignment(Ty); 5336 5337 CharUnits SlotSize = CharUnits::fromQuantity(8); 5338 5339 // If we have a complex type and the base type is smaller than 8 bytes, 5340 // the ABI calls for the real and imaginary parts to be right-adjusted 5341 // in separate doublewords. However, Clang expects us to produce a 5342 // pointer to a structure with the two parts packed tightly. So generate 5343 // loads of the real and imaginary parts relative to the va_list pointer, 5344 // and store them to a temporary structure. 5345 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 5346 CharUnits EltSize = TypeInfo.Width / 2; 5347 if (EltSize < SlotSize) { 5348 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty, 5349 SlotSize * 2, SlotSize, 5350 SlotSize, /*AllowHigher*/ true); 5351 5352 Address RealAddr = Addr; 5353 Address ImagAddr = RealAddr; 5354 if (CGF.CGM.getDataLayout().isBigEndian()) { 5355 RealAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, 5356 SlotSize - EltSize); 5357 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr, 5358 2 * SlotSize - EltSize); 5359 } else { 5360 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize); 5361 } 5362 5363 llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType()); 5364 RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy); 5365 ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy); 5366 llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal"); 5367 llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag"); 5368 5369 Address Temp = CGF.CreateMemTemp(Ty, "vacplx"); 5370 CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty), 5371 /*init*/ true); 5372 return Temp; 5373 } 5374 } 5375 5376 // Otherwise, just use the general rule. 5377 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 5378 TypeInfo, SlotSize, /*AllowHigher*/ true); 5379 } 5380 5381 bool 5382 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable( 5383 CodeGen::CodeGenFunction &CGF, 5384 llvm::Value *Address) const { 5385 return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ true, 5386 /*IsAIX*/ false); 5387 } 5388 5389 bool 5390 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5391 llvm::Value *Address) const { 5392 return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ true, 5393 /*IsAIX*/ false); 5394 } 5395 5396 //===----------------------------------------------------------------------===// 5397 // AArch64 ABI Implementation 5398 //===----------------------------------------------------------------------===// 5399 5400 namespace { 5401 5402 class AArch64ABIInfo : public SwiftABIInfo { 5403 public: 5404 enum ABIKind { 5405 AAPCS = 0, 5406 DarwinPCS, 5407 Win64 5408 }; 5409 5410 private: 5411 ABIKind Kind; 5412 5413 public: 5414 AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind) 5415 : SwiftABIInfo(CGT), Kind(Kind) {} 5416 5417 private: 5418 ABIKind getABIKind() const { return Kind; } 5419 bool isDarwinPCS() const { return Kind == DarwinPCS; } 5420 5421 ABIArgInfo classifyReturnType(QualType RetTy, bool IsVariadic) const; 5422 ABIArgInfo classifyArgumentType(QualType RetTy) const; 5423 ABIArgInfo coerceIllegalVector(QualType Ty) const; 5424 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 5425 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 5426 uint64_t Members) const override; 5427 5428 bool isIllegalVectorType(QualType Ty) const; 5429 5430 void computeInfo(CGFunctionInfo &FI) const override { 5431 if (!::classifyReturnType(getCXXABI(), FI, *this)) 5432 FI.getReturnInfo() = 5433 classifyReturnType(FI.getReturnType(), FI.isVariadic()); 5434 5435 for (auto &it : FI.arguments()) 5436 it.info = classifyArgumentType(it.type); 5437 } 5438 5439 Address EmitDarwinVAArg(Address VAListAddr, QualType Ty, 5440 CodeGenFunction &CGF) const; 5441 5442 Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty, 5443 CodeGenFunction &CGF) const; 5444 5445 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5446 QualType Ty) const override { 5447 llvm::Type *BaseTy = CGF.ConvertType(Ty); 5448 if (isa<llvm::ScalableVectorType>(BaseTy)) 5449 llvm::report_fatal_error("Passing SVE types to variadic functions is " 5450 "currently not supported"); 5451 5452 return Kind == Win64 ? EmitMSVAArg(CGF, VAListAddr, Ty) 5453 : isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF) 5454 : EmitAAPCSVAArg(VAListAddr, Ty, CGF); 5455 } 5456 5457 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 5458 QualType Ty) const override; 5459 5460 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 5461 bool asReturnValue) const override { 5462 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 5463 } 5464 bool isSwiftErrorInRegister() const override { 5465 return true; 5466 } 5467 5468 bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy, 5469 unsigned elts) const override; 5470 5471 bool allowBFloatArgsAndRet() const override { 5472 return getTarget().hasBFloat16Type(); 5473 } 5474 }; 5475 5476 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo { 5477 public: 5478 AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind) 5479 : TargetCodeGenInfo(std::make_unique<AArch64ABIInfo>(CGT, Kind)) {} 5480 5481 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 5482 return "mov\tfp, fp\t\t// marker for objc_retainAutoreleaseReturnValue"; 5483 } 5484 5485 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 5486 return 31; 5487 } 5488 5489 bool doesReturnSlotInterfereWithArgs() const override { return false; } 5490 5491 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5492 CodeGen::CodeGenModule &CGM) const override { 5493 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 5494 if (!FD) 5495 return; 5496 5497 const auto *TA = FD->getAttr<TargetAttr>(); 5498 if (TA == nullptr) 5499 return; 5500 5501 ParsedTargetAttr Attr = TA->parse(); 5502 if (Attr.BranchProtection.empty()) 5503 return; 5504 5505 TargetInfo::BranchProtectionInfo BPI; 5506 StringRef Error; 5507 (void)CGM.getTarget().validateBranchProtection(Attr.BranchProtection, 5508 BPI, Error); 5509 assert(Error.empty()); 5510 5511 auto *Fn = cast<llvm::Function>(GV); 5512 static const char *SignReturnAddrStr[] = {"none", "non-leaf", "all"}; 5513 Fn->addFnAttr("sign-return-address", SignReturnAddrStr[static_cast<int>(BPI.SignReturnAddr)]); 5514 5515 if (BPI.SignReturnAddr != LangOptions::SignReturnAddressScopeKind::None) { 5516 Fn->addFnAttr("sign-return-address-key", 5517 BPI.SignKey == LangOptions::SignReturnAddressKeyKind::AKey 5518 ? "a_key" 5519 : "b_key"); 5520 } 5521 5522 Fn->addFnAttr("branch-target-enforcement", 5523 BPI.BranchTargetEnforcement ? "true" : "false"); 5524 } 5525 }; 5526 5527 class WindowsAArch64TargetCodeGenInfo : public AArch64TargetCodeGenInfo { 5528 public: 5529 WindowsAArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind K) 5530 : AArch64TargetCodeGenInfo(CGT, K) {} 5531 5532 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5533 CodeGen::CodeGenModule &CGM) const override; 5534 5535 void getDependentLibraryOption(llvm::StringRef Lib, 5536 llvm::SmallString<24> &Opt) const override { 5537 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); 5538 } 5539 5540 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, 5541 llvm::SmallString<32> &Opt) const override { 5542 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 5543 } 5544 }; 5545 5546 void WindowsAArch64TargetCodeGenInfo::setTargetAttributes( 5547 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 5548 AArch64TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 5549 if (GV->isDeclaration()) 5550 return; 5551 addStackProbeTargetAttributes(D, GV, CGM); 5552 } 5553 } 5554 5555 ABIArgInfo AArch64ABIInfo::coerceIllegalVector(QualType Ty) const { 5556 assert(Ty->isVectorType() && "expected vector type!"); 5557 5558 const auto *VT = Ty->castAs<VectorType>(); 5559 if (VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector) { 5560 assert(VT->getElementType()->isBuiltinType() && "expected builtin type!"); 5561 assert(VT->getElementType()->castAs<BuiltinType>()->getKind() == 5562 BuiltinType::UChar && 5563 "unexpected builtin type for SVE predicate!"); 5564 return ABIArgInfo::getDirect(llvm::ScalableVectorType::get( 5565 llvm::Type::getInt1Ty(getVMContext()), 16)); 5566 } 5567 5568 if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector) { 5569 assert(VT->getElementType()->isBuiltinType() && "expected builtin type!"); 5570 5571 const auto *BT = VT->getElementType()->castAs<BuiltinType>(); 5572 llvm::ScalableVectorType *ResType = nullptr; 5573 switch (BT->getKind()) { 5574 default: 5575 llvm_unreachable("unexpected builtin type for SVE vector!"); 5576 case BuiltinType::SChar: 5577 case BuiltinType::UChar: 5578 ResType = llvm::ScalableVectorType::get( 5579 llvm::Type::getInt8Ty(getVMContext()), 16); 5580 break; 5581 case BuiltinType::Short: 5582 case BuiltinType::UShort: 5583 ResType = llvm::ScalableVectorType::get( 5584 llvm::Type::getInt16Ty(getVMContext()), 8); 5585 break; 5586 case BuiltinType::Int: 5587 case BuiltinType::UInt: 5588 ResType = llvm::ScalableVectorType::get( 5589 llvm::Type::getInt32Ty(getVMContext()), 4); 5590 break; 5591 case BuiltinType::Long: 5592 case BuiltinType::ULong: 5593 ResType = llvm::ScalableVectorType::get( 5594 llvm::Type::getInt64Ty(getVMContext()), 2); 5595 break; 5596 case BuiltinType::Half: 5597 ResType = llvm::ScalableVectorType::get( 5598 llvm::Type::getHalfTy(getVMContext()), 8); 5599 break; 5600 case BuiltinType::Float: 5601 ResType = llvm::ScalableVectorType::get( 5602 llvm::Type::getFloatTy(getVMContext()), 4); 5603 break; 5604 case BuiltinType::Double: 5605 ResType = llvm::ScalableVectorType::get( 5606 llvm::Type::getDoubleTy(getVMContext()), 2); 5607 break; 5608 case BuiltinType::BFloat16: 5609 ResType = llvm::ScalableVectorType::get( 5610 llvm::Type::getBFloatTy(getVMContext()), 8); 5611 break; 5612 } 5613 return ABIArgInfo::getDirect(ResType); 5614 } 5615 5616 uint64_t Size = getContext().getTypeSize(Ty); 5617 // Android promotes <2 x i8> to i16, not i32 5618 if (isAndroid() && (Size <= 16)) { 5619 llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext()); 5620 return ABIArgInfo::getDirect(ResType); 5621 } 5622 if (Size <= 32) { 5623 llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext()); 5624 return ABIArgInfo::getDirect(ResType); 5625 } 5626 if (Size == 64) { 5627 auto *ResType = 5628 llvm::FixedVectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2); 5629 return ABIArgInfo::getDirect(ResType); 5630 } 5631 if (Size == 128) { 5632 auto *ResType = 5633 llvm::FixedVectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4); 5634 return ABIArgInfo::getDirect(ResType); 5635 } 5636 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5637 } 5638 5639 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const { 5640 Ty = useFirstFieldIfTransparentUnion(Ty); 5641 5642 // Handle illegal vector types here. 5643 if (isIllegalVectorType(Ty)) 5644 return coerceIllegalVector(Ty); 5645 5646 if (!isAggregateTypeForABI(Ty)) { 5647 // Treat an enum type as its underlying type. 5648 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5649 Ty = EnumTy->getDecl()->getIntegerType(); 5650 5651 if (const auto *EIT = Ty->getAs<ExtIntType>()) 5652 if (EIT->getNumBits() > 128) 5653 return getNaturalAlignIndirect(Ty); 5654 5655 return (isPromotableIntegerTypeForABI(Ty) && isDarwinPCS() 5656 ? ABIArgInfo::getExtend(Ty) 5657 : ABIArgInfo::getDirect()); 5658 } 5659 5660 // Structures with either a non-trivial destructor or a non-trivial 5661 // copy constructor are always indirect. 5662 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 5663 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 5664 CGCXXABI::RAA_DirectInMemory); 5665 } 5666 5667 // Empty records are always ignored on Darwin, but actually passed in C++ mode 5668 // elsewhere for GNU compatibility. 5669 uint64_t Size = getContext().getTypeSize(Ty); 5670 bool IsEmpty = isEmptyRecord(getContext(), Ty, true); 5671 if (IsEmpty || Size == 0) { 5672 if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS()) 5673 return ABIArgInfo::getIgnore(); 5674 5675 // GNU C mode. The only argument that gets ignored is an empty one with size 5676 // 0. 5677 if (IsEmpty && Size == 0) 5678 return ABIArgInfo::getIgnore(); 5679 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 5680 } 5681 5682 // Homogeneous Floating-point Aggregates (HFAs) need to be expanded. 5683 const Type *Base = nullptr; 5684 uint64_t Members = 0; 5685 if (isHomogeneousAggregate(Ty, Base, Members)) { 5686 return ABIArgInfo::getDirect( 5687 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members)); 5688 } 5689 5690 // Aggregates <= 16 bytes are passed directly in registers or on the stack. 5691 if (Size <= 128) { 5692 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 5693 // same size and alignment. 5694 if (getTarget().isRenderScriptTarget()) { 5695 return coerceToIntArray(Ty, getContext(), getVMContext()); 5696 } 5697 unsigned Alignment; 5698 if (Kind == AArch64ABIInfo::AAPCS) { 5699 Alignment = getContext().getTypeUnadjustedAlign(Ty); 5700 Alignment = Alignment < 128 ? 64 : 128; 5701 } else { 5702 Alignment = std::max(getContext().getTypeAlign(Ty), 5703 (unsigned)getTarget().getPointerWidth(0)); 5704 } 5705 Size = llvm::alignTo(Size, Alignment); 5706 5707 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 5708 // For aggregates with 16-byte alignment, we use i128. 5709 llvm::Type *BaseTy = llvm::Type::getIntNTy(getVMContext(), Alignment); 5710 return ABIArgInfo::getDirect( 5711 Size == Alignment ? BaseTy 5712 : llvm::ArrayType::get(BaseTy, Size / Alignment)); 5713 } 5714 5715 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5716 } 5717 5718 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy, 5719 bool IsVariadic) const { 5720 if (RetTy->isVoidType()) 5721 return ABIArgInfo::getIgnore(); 5722 5723 if (const auto *VT = RetTy->getAs<VectorType>()) { 5724 if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector || 5725 VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector) 5726 return coerceIllegalVector(RetTy); 5727 } 5728 5729 // Large vector types should be returned via memory. 5730 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) 5731 return getNaturalAlignIndirect(RetTy); 5732 5733 if (!isAggregateTypeForABI(RetTy)) { 5734 // Treat an enum type as its underlying type. 5735 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5736 RetTy = EnumTy->getDecl()->getIntegerType(); 5737 5738 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 5739 if (EIT->getNumBits() > 128) 5740 return getNaturalAlignIndirect(RetTy); 5741 5742 return (isPromotableIntegerTypeForABI(RetTy) && isDarwinPCS() 5743 ? ABIArgInfo::getExtend(RetTy) 5744 : ABIArgInfo::getDirect()); 5745 } 5746 5747 uint64_t Size = getContext().getTypeSize(RetTy); 5748 if (isEmptyRecord(getContext(), RetTy, true) || Size == 0) 5749 return ABIArgInfo::getIgnore(); 5750 5751 const Type *Base = nullptr; 5752 uint64_t Members = 0; 5753 if (isHomogeneousAggregate(RetTy, Base, Members) && 5754 !(getTarget().getTriple().getArch() == llvm::Triple::aarch64_32 && 5755 IsVariadic)) 5756 // Homogeneous Floating-point Aggregates (HFAs) are returned directly. 5757 return ABIArgInfo::getDirect(); 5758 5759 // Aggregates <= 16 bytes are returned directly in registers or on the stack. 5760 if (Size <= 128) { 5761 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 5762 // same size and alignment. 5763 if (getTarget().isRenderScriptTarget()) { 5764 return coerceToIntArray(RetTy, getContext(), getVMContext()); 5765 } 5766 unsigned Alignment = getContext().getTypeAlign(RetTy); 5767 Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes 5768 5769 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 5770 // For aggregates with 16-byte alignment, we use i128. 5771 if (Alignment < 128 && Size == 128) { 5772 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); 5773 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 5774 } 5775 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 5776 } 5777 5778 return getNaturalAlignIndirect(RetTy); 5779 } 5780 5781 /// isIllegalVectorType - check whether the vector type is legal for AArch64. 5782 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const { 5783 if (const VectorType *VT = Ty->getAs<VectorType>()) { 5784 // Check whether VT is a fixed-length SVE vector. These types are 5785 // represented as scalable vectors in function args/return and must be 5786 // coerced from fixed vectors. 5787 if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector || 5788 VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector) 5789 return true; 5790 5791 // Check whether VT is legal. 5792 unsigned NumElements = VT->getNumElements(); 5793 uint64_t Size = getContext().getTypeSize(VT); 5794 // NumElements should be power of 2. 5795 if (!llvm::isPowerOf2_32(NumElements)) 5796 return true; 5797 5798 // arm64_32 has to be compatible with the ARM logic here, which allows huge 5799 // vectors for some reason. 5800 llvm::Triple Triple = getTarget().getTriple(); 5801 if (Triple.getArch() == llvm::Triple::aarch64_32 && 5802 Triple.isOSBinFormatMachO()) 5803 return Size <= 32; 5804 5805 return Size != 64 && (Size != 128 || NumElements == 1); 5806 } 5807 return false; 5808 } 5809 5810 bool AArch64ABIInfo::isLegalVectorTypeForSwift(CharUnits totalSize, 5811 llvm::Type *eltTy, 5812 unsigned elts) const { 5813 if (!llvm::isPowerOf2_32(elts)) 5814 return false; 5815 if (totalSize.getQuantity() != 8 && 5816 (totalSize.getQuantity() != 16 || elts == 1)) 5817 return false; 5818 return true; 5819 } 5820 5821 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 5822 // Homogeneous aggregates for AAPCS64 must have base types of a floating 5823 // point type or a short-vector type. This is the same as the 32-bit ABI, 5824 // but with the difference that any floating-point type is allowed, 5825 // including __fp16. 5826 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 5827 if (BT->isFloatingPoint()) 5828 return true; 5829 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 5830 unsigned VecSize = getContext().getTypeSize(VT); 5831 if (VecSize == 64 || VecSize == 128) 5832 return true; 5833 } 5834 return false; 5835 } 5836 5837 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 5838 uint64_t Members) const { 5839 return Members <= 4; 5840 } 5841 5842 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr, 5843 QualType Ty, 5844 CodeGenFunction &CGF) const { 5845 ABIArgInfo AI = classifyArgumentType(Ty); 5846 bool IsIndirect = AI.isIndirect(); 5847 5848 llvm::Type *BaseTy = CGF.ConvertType(Ty); 5849 if (IsIndirect) 5850 BaseTy = llvm::PointerType::getUnqual(BaseTy); 5851 else if (AI.getCoerceToType()) 5852 BaseTy = AI.getCoerceToType(); 5853 5854 unsigned NumRegs = 1; 5855 if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) { 5856 BaseTy = ArrTy->getElementType(); 5857 NumRegs = ArrTy->getNumElements(); 5858 } 5859 bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy(); 5860 5861 // The AArch64 va_list type and handling is specified in the Procedure Call 5862 // Standard, section B.4: 5863 // 5864 // struct { 5865 // void *__stack; 5866 // void *__gr_top; 5867 // void *__vr_top; 5868 // int __gr_offs; 5869 // int __vr_offs; 5870 // }; 5871 5872 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); 5873 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 5874 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); 5875 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 5876 5877 CharUnits TySize = getContext().getTypeSizeInChars(Ty); 5878 CharUnits TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty); 5879 5880 Address reg_offs_p = Address::invalid(); 5881 llvm::Value *reg_offs = nullptr; 5882 int reg_top_index; 5883 int RegSize = IsIndirect ? 8 : TySize.getQuantity(); 5884 if (!IsFPR) { 5885 // 3 is the field number of __gr_offs 5886 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p"); 5887 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs"); 5888 reg_top_index = 1; // field number for __gr_top 5889 RegSize = llvm::alignTo(RegSize, 8); 5890 } else { 5891 // 4 is the field number of __vr_offs. 5892 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p"); 5893 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs"); 5894 reg_top_index = 2; // field number for __vr_top 5895 RegSize = 16 * NumRegs; 5896 } 5897 5898 //======================================= 5899 // Find out where argument was passed 5900 //======================================= 5901 5902 // If reg_offs >= 0 we're already using the stack for this type of 5903 // argument. We don't want to keep updating reg_offs (in case it overflows, 5904 // though anyone passing 2GB of arguments, each at most 16 bytes, deserves 5905 // whatever they get). 5906 llvm::Value *UsingStack = nullptr; 5907 UsingStack = CGF.Builder.CreateICmpSGE( 5908 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0)); 5909 5910 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock); 5911 5912 // Otherwise, at least some kind of argument could go in these registers, the 5913 // question is whether this particular type is too big. 5914 CGF.EmitBlock(MaybeRegBlock); 5915 5916 // Integer arguments may need to correct register alignment (for example a 5917 // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we 5918 // align __gr_offs to calculate the potential address. 5919 if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) { 5920 int Align = TyAlign.getQuantity(); 5921 5922 reg_offs = CGF.Builder.CreateAdd( 5923 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1), 5924 "align_regoffs"); 5925 reg_offs = CGF.Builder.CreateAnd( 5926 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align), 5927 "aligned_regoffs"); 5928 } 5929 5930 // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list. 5931 // The fact that this is done unconditionally reflects the fact that 5932 // allocating an argument to the stack also uses up all the remaining 5933 // registers of the appropriate kind. 5934 llvm::Value *NewOffset = nullptr; 5935 NewOffset = CGF.Builder.CreateAdd( 5936 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs"); 5937 CGF.Builder.CreateStore(NewOffset, reg_offs_p); 5938 5939 // Now we're in a position to decide whether this argument really was in 5940 // registers or not. 5941 llvm::Value *InRegs = nullptr; 5942 InRegs = CGF.Builder.CreateICmpSLE( 5943 NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg"); 5944 5945 CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock); 5946 5947 //======================================= 5948 // Argument was in registers 5949 //======================================= 5950 5951 // Now we emit the code for if the argument was originally passed in 5952 // registers. First start the appropriate block: 5953 CGF.EmitBlock(InRegBlock); 5954 5955 llvm::Value *reg_top = nullptr; 5956 Address reg_top_p = 5957 CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p"); 5958 reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top"); 5959 Address BaseAddr(CGF.Builder.CreateInBoundsGEP(reg_top, reg_offs), 5960 CharUnits::fromQuantity(IsFPR ? 16 : 8)); 5961 Address RegAddr = Address::invalid(); 5962 llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty); 5963 5964 if (IsIndirect) { 5965 // If it's been passed indirectly (actually a struct), whatever we find from 5966 // stored registers or on the stack will actually be a struct **. 5967 MemTy = llvm::PointerType::getUnqual(MemTy); 5968 } 5969 5970 const Type *Base = nullptr; 5971 uint64_t NumMembers = 0; 5972 bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers); 5973 if (IsHFA && NumMembers > 1) { 5974 // Homogeneous aggregates passed in registers will have their elements split 5975 // and stored 16-bytes apart regardless of size (they're notionally in qN, 5976 // qN+1, ...). We reload and store into a temporary local variable 5977 // contiguously. 5978 assert(!IsIndirect && "Homogeneous aggregates should be passed directly"); 5979 auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0)); 5980 llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0)); 5981 llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers); 5982 Address Tmp = CGF.CreateTempAlloca(HFATy, 5983 std::max(TyAlign, BaseTyInfo.Align)); 5984 5985 // On big-endian platforms, the value will be right-aligned in its slot. 5986 int Offset = 0; 5987 if (CGF.CGM.getDataLayout().isBigEndian() && 5988 BaseTyInfo.Width.getQuantity() < 16) 5989 Offset = 16 - BaseTyInfo.Width.getQuantity(); 5990 5991 for (unsigned i = 0; i < NumMembers; ++i) { 5992 CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset); 5993 Address LoadAddr = 5994 CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset); 5995 LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy); 5996 5997 Address StoreAddr = CGF.Builder.CreateConstArrayGEP(Tmp, i); 5998 5999 llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr); 6000 CGF.Builder.CreateStore(Elem, StoreAddr); 6001 } 6002 6003 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy); 6004 } else { 6005 // Otherwise the object is contiguous in memory. 6006 6007 // It might be right-aligned in its slot. 6008 CharUnits SlotSize = BaseAddr.getAlignment(); 6009 if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect && 6010 (IsHFA || !isAggregateTypeForABI(Ty)) && 6011 TySize < SlotSize) { 6012 CharUnits Offset = SlotSize - TySize; 6013 BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset); 6014 } 6015 6016 RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy); 6017 } 6018 6019 CGF.EmitBranch(ContBlock); 6020 6021 //======================================= 6022 // Argument was on the stack 6023 //======================================= 6024 CGF.EmitBlock(OnStackBlock); 6025 6026 Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p"); 6027 llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack"); 6028 6029 // Again, stack arguments may need realignment. In this case both integer and 6030 // floating-point ones might be affected. 6031 if (!IsIndirect && TyAlign.getQuantity() > 8) { 6032 int Align = TyAlign.getQuantity(); 6033 6034 OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty); 6035 6036 OnStackPtr = CGF.Builder.CreateAdd( 6037 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1), 6038 "align_stack"); 6039 OnStackPtr = CGF.Builder.CreateAnd( 6040 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align), 6041 "align_stack"); 6042 6043 OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy); 6044 } 6045 Address OnStackAddr(OnStackPtr, 6046 std::max(CharUnits::fromQuantity(8), TyAlign)); 6047 6048 // All stack slots are multiples of 8 bytes. 6049 CharUnits StackSlotSize = CharUnits::fromQuantity(8); 6050 CharUnits StackSize; 6051 if (IsIndirect) 6052 StackSize = StackSlotSize; 6053 else 6054 StackSize = TySize.alignTo(StackSlotSize); 6055 6056 llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize); 6057 llvm::Value *NewStack = 6058 CGF.Builder.CreateInBoundsGEP(OnStackPtr, StackSizeC, "new_stack"); 6059 6060 // Write the new value of __stack for the next call to va_arg 6061 CGF.Builder.CreateStore(NewStack, stack_p); 6062 6063 if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) && 6064 TySize < StackSlotSize) { 6065 CharUnits Offset = StackSlotSize - TySize; 6066 OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset); 6067 } 6068 6069 OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy); 6070 6071 CGF.EmitBranch(ContBlock); 6072 6073 //======================================= 6074 // Tidy up 6075 //======================================= 6076 CGF.EmitBlock(ContBlock); 6077 6078 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 6079 OnStackAddr, OnStackBlock, "vaargs.addr"); 6080 6081 if (IsIndirect) 6082 return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"), 6083 TyAlign); 6084 6085 return ResAddr; 6086 } 6087 6088 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty, 6089 CodeGenFunction &CGF) const { 6090 // The backend's lowering doesn't support va_arg for aggregates or 6091 // illegal vector types. Lower VAArg here for these cases and use 6092 // the LLVM va_arg instruction for everything else. 6093 if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty)) 6094 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 6095 6096 uint64_t PointerSize = getTarget().getPointerWidth(0) / 8; 6097 CharUnits SlotSize = CharUnits::fromQuantity(PointerSize); 6098 6099 // Empty records are ignored for parameter passing purposes. 6100 if (isEmptyRecord(getContext(), Ty, true)) { 6101 Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 6102 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 6103 return Addr; 6104 } 6105 6106 // The size of the actual thing passed, which might end up just 6107 // being a pointer for indirect types. 6108 auto TyInfo = getContext().getTypeInfoInChars(Ty); 6109 6110 // Arguments bigger than 16 bytes which aren't homogeneous 6111 // aggregates should be passed indirectly. 6112 bool IsIndirect = false; 6113 if (TyInfo.Width.getQuantity() > 16) { 6114 const Type *Base = nullptr; 6115 uint64_t Members = 0; 6116 IsIndirect = !isHomogeneousAggregate(Ty, Base, Members); 6117 } 6118 6119 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 6120 TyInfo, SlotSize, /*AllowHigherAlign*/ true); 6121 } 6122 6123 Address AArch64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 6124 QualType Ty) const { 6125 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 6126 CGF.getContext().getTypeInfoInChars(Ty), 6127 CharUnits::fromQuantity(8), 6128 /*allowHigherAlign*/ false); 6129 } 6130 6131 //===----------------------------------------------------------------------===// 6132 // ARM ABI Implementation 6133 //===----------------------------------------------------------------------===// 6134 6135 namespace { 6136 6137 class ARMABIInfo : public SwiftABIInfo { 6138 public: 6139 enum ABIKind { 6140 APCS = 0, 6141 AAPCS = 1, 6142 AAPCS_VFP = 2, 6143 AAPCS16_VFP = 3, 6144 }; 6145 6146 private: 6147 ABIKind Kind; 6148 bool IsFloatABISoftFP; 6149 6150 public: 6151 ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) 6152 : SwiftABIInfo(CGT), Kind(_Kind) { 6153 setCCs(); 6154 IsFloatABISoftFP = CGT.getCodeGenOpts().FloatABI == "softfp" || 6155 CGT.getCodeGenOpts().FloatABI == ""; // default 6156 } 6157 6158 bool isEABI() const { 6159 switch (getTarget().getTriple().getEnvironment()) { 6160 case llvm::Triple::Android: 6161 case llvm::Triple::EABI: 6162 case llvm::Triple::EABIHF: 6163 case llvm::Triple::GNUEABI: 6164 case llvm::Triple::GNUEABIHF: 6165 case llvm::Triple::MuslEABI: 6166 case llvm::Triple::MuslEABIHF: 6167 return true; 6168 default: 6169 return false; 6170 } 6171 } 6172 6173 bool isEABIHF() const { 6174 switch (getTarget().getTriple().getEnvironment()) { 6175 case llvm::Triple::EABIHF: 6176 case llvm::Triple::GNUEABIHF: 6177 case llvm::Triple::MuslEABIHF: 6178 return true; 6179 default: 6180 return false; 6181 } 6182 } 6183 6184 ABIKind getABIKind() const { return Kind; } 6185 6186 bool allowBFloatArgsAndRet() const override { 6187 return !IsFloatABISoftFP && getTarget().hasBFloat16Type(); 6188 } 6189 6190 private: 6191 ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic, 6192 unsigned functionCallConv) const; 6193 ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic, 6194 unsigned functionCallConv) const; 6195 ABIArgInfo classifyHomogeneousAggregate(QualType Ty, const Type *Base, 6196 uint64_t Members) const; 6197 ABIArgInfo coerceIllegalVector(QualType Ty) const; 6198 bool isIllegalVectorType(QualType Ty) const; 6199 bool containsAnyFP16Vectors(QualType Ty) const; 6200 6201 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 6202 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 6203 uint64_t Members) const override; 6204 6205 bool isEffectivelyAAPCS_VFP(unsigned callConvention, bool acceptHalf) const; 6206 6207 void computeInfo(CGFunctionInfo &FI) const override; 6208 6209 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6210 QualType Ty) const override; 6211 6212 llvm::CallingConv::ID getLLVMDefaultCC() const; 6213 llvm::CallingConv::ID getABIDefaultCC() const; 6214 void setCCs(); 6215 6216 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 6217 bool asReturnValue) const override { 6218 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 6219 } 6220 bool isSwiftErrorInRegister() const override { 6221 return true; 6222 } 6223 bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy, 6224 unsigned elts) const override; 6225 }; 6226 6227 class ARMTargetCodeGenInfo : public TargetCodeGenInfo { 6228 public: 6229 ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 6230 : TargetCodeGenInfo(std::make_unique<ARMABIInfo>(CGT, K)) {} 6231 6232 const ARMABIInfo &getABIInfo() const { 6233 return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo()); 6234 } 6235 6236 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 6237 return 13; 6238 } 6239 6240 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 6241 return "mov\tr7, r7\t\t// marker for objc_retainAutoreleaseReturnValue"; 6242 } 6243 6244 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 6245 llvm::Value *Address) const override { 6246 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 6247 6248 // 0-15 are the 16 integer registers. 6249 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15); 6250 return false; 6251 } 6252 6253 unsigned getSizeOfUnwindException() const override { 6254 if (getABIInfo().isEABI()) return 88; 6255 return TargetCodeGenInfo::getSizeOfUnwindException(); 6256 } 6257 6258 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6259 CodeGen::CodeGenModule &CGM) const override { 6260 if (GV->isDeclaration()) 6261 return; 6262 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 6263 if (!FD) 6264 return; 6265 6266 const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>(); 6267 if (!Attr) 6268 return; 6269 6270 const char *Kind; 6271 switch (Attr->getInterrupt()) { 6272 case ARMInterruptAttr::Generic: Kind = ""; break; 6273 case ARMInterruptAttr::IRQ: Kind = "IRQ"; break; 6274 case ARMInterruptAttr::FIQ: Kind = "FIQ"; break; 6275 case ARMInterruptAttr::SWI: Kind = "SWI"; break; 6276 case ARMInterruptAttr::ABORT: Kind = "ABORT"; break; 6277 case ARMInterruptAttr::UNDEF: Kind = "UNDEF"; break; 6278 } 6279 6280 llvm::Function *Fn = cast<llvm::Function>(GV); 6281 6282 Fn->addFnAttr("interrupt", Kind); 6283 6284 ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind(); 6285 if (ABI == ARMABIInfo::APCS) 6286 return; 6287 6288 // AAPCS guarantees that sp will be 8-byte aligned on any public interface, 6289 // however this is not necessarily true on taking any interrupt. Instruct 6290 // the backend to perform a realignment as part of the function prologue. 6291 llvm::AttrBuilder B; 6292 B.addStackAlignmentAttr(8); 6293 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 6294 } 6295 }; 6296 6297 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo { 6298 public: 6299 WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 6300 : ARMTargetCodeGenInfo(CGT, K) {} 6301 6302 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6303 CodeGen::CodeGenModule &CGM) const override; 6304 6305 void getDependentLibraryOption(llvm::StringRef Lib, 6306 llvm::SmallString<24> &Opt) const override { 6307 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); 6308 } 6309 6310 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, 6311 llvm::SmallString<32> &Opt) const override { 6312 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 6313 } 6314 }; 6315 6316 void WindowsARMTargetCodeGenInfo::setTargetAttributes( 6317 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 6318 ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 6319 if (GV->isDeclaration()) 6320 return; 6321 addStackProbeTargetAttributes(D, GV, CGM); 6322 } 6323 } 6324 6325 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const { 6326 if (!::classifyReturnType(getCXXABI(), FI, *this)) 6327 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), FI.isVariadic(), 6328 FI.getCallingConvention()); 6329 6330 for (auto &I : FI.arguments()) 6331 I.info = classifyArgumentType(I.type, FI.isVariadic(), 6332 FI.getCallingConvention()); 6333 6334 6335 // Always honor user-specified calling convention. 6336 if (FI.getCallingConvention() != llvm::CallingConv::C) 6337 return; 6338 6339 llvm::CallingConv::ID cc = getRuntimeCC(); 6340 if (cc != llvm::CallingConv::C) 6341 FI.setEffectiveCallingConvention(cc); 6342 } 6343 6344 /// Return the default calling convention that LLVM will use. 6345 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const { 6346 // The default calling convention that LLVM will infer. 6347 if (isEABIHF() || getTarget().getTriple().isWatchABI()) 6348 return llvm::CallingConv::ARM_AAPCS_VFP; 6349 else if (isEABI()) 6350 return llvm::CallingConv::ARM_AAPCS; 6351 else 6352 return llvm::CallingConv::ARM_APCS; 6353 } 6354 6355 /// Return the calling convention that our ABI would like us to use 6356 /// as the C calling convention. 6357 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const { 6358 switch (getABIKind()) { 6359 case APCS: return llvm::CallingConv::ARM_APCS; 6360 case AAPCS: return llvm::CallingConv::ARM_AAPCS; 6361 case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 6362 case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 6363 } 6364 llvm_unreachable("bad ABI kind"); 6365 } 6366 6367 void ARMABIInfo::setCCs() { 6368 assert(getRuntimeCC() == llvm::CallingConv::C); 6369 6370 // Don't muddy up the IR with a ton of explicit annotations if 6371 // they'd just match what LLVM will infer from the triple. 6372 llvm::CallingConv::ID abiCC = getABIDefaultCC(); 6373 if (abiCC != getLLVMDefaultCC()) 6374 RuntimeCC = abiCC; 6375 } 6376 6377 ABIArgInfo ARMABIInfo::coerceIllegalVector(QualType Ty) const { 6378 uint64_t Size = getContext().getTypeSize(Ty); 6379 if (Size <= 32) { 6380 llvm::Type *ResType = 6381 llvm::Type::getInt32Ty(getVMContext()); 6382 return ABIArgInfo::getDirect(ResType); 6383 } 6384 if (Size == 64 || Size == 128) { 6385 auto *ResType = llvm::FixedVectorType::get( 6386 llvm::Type::getInt32Ty(getVMContext()), Size / 32); 6387 return ABIArgInfo::getDirect(ResType); 6388 } 6389 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6390 } 6391 6392 ABIArgInfo ARMABIInfo::classifyHomogeneousAggregate(QualType Ty, 6393 const Type *Base, 6394 uint64_t Members) const { 6395 assert(Base && "Base class should be set for homogeneous aggregate"); 6396 // Base can be a floating-point or a vector. 6397 if (const VectorType *VT = Base->getAs<VectorType>()) { 6398 // FP16 vectors should be converted to integer vectors 6399 if (!getTarget().hasLegalHalfType() && containsAnyFP16Vectors(Ty)) { 6400 uint64_t Size = getContext().getTypeSize(VT); 6401 auto *NewVecTy = llvm::FixedVectorType::get( 6402 llvm::Type::getInt32Ty(getVMContext()), Size / 32); 6403 llvm::Type *Ty = llvm::ArrayType::get(NewVecTy, Members); 6404 return ABIArgInfo::getDirect(Ty, 0, nullptr, false); 6405 } 6406 } 6407 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); 6408 } 6409 6410 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, bool isVariadic, 6411 unsigned functionCallConv) const { 6412 // 6.1.2.1 The following argument types are VFP CPRCs: 6413 // A single-precision floating-point type (including promoted 6414 // half-precision types); A double-precision floating-point type; 6415 // A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate 6416 // with a Base Type of a single- or double-precision floating-point type, 6417 // 64-bit containerized vectors or 128-bit containerized vectors with one 6418 // to four Elements. 6419 // Variadic functions should always marshal to the base standard. 6420 bool IsAAPCS_VFP = 6421 !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ false); 6422 6423 Ty = useFirstFieldIfTransparentUnion(Ty); 6424 6425 // Handle illegal vector types here. 6426 if (isIllegalVectorType(Ty)) 6427 return coerceIllegalVector(Ty); 6428 6429 if (!isAggregateTypeForABI(Ty)) { 6430 // Treat an enum type as its underlying type. 6431 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 6432 Ty = EnumTy->getDecl()->getIntegerType(); 6433 } 6434 6435 if (const auto *EIT = Ty->getAs<ExtIntType>()) 6436 if (EIT->getNumBits() > 64) 6437 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 6438 6439 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 6440 : ABIArgInfo::getDirect()); 6441 } 6442 6443 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 6444 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 6445 } 6446 6447 // Ignore empty records. 6448 if (isEmptyRecord(getContext(), Ty, true)) 6449 return ABIArgInfo::getIgnore(); 6450 6451 if (IsAAPCS_VFP) { 6452 // Homogeneous Aggregates need to be expanded when we can fit the aggregate 6453 // into VFP registers. 6454 const Type *Base = nullptr; 6455 uint64_t Members = 0; 6456 if (isHomogeneousAggregate(Ty, Base, Members)) 6457 return classifyHomogeneousAggregate(Ty, Base, Members); 6458 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 6459 // WatchOS does have homogeneous aggregates. Note that we intentionally use 6460 // this convention even for a variadic function: the backend will use GPRs 6461 // if needed. 6462 const Type *Base = nullptr; 6463 uint64_t Members = 0; 6464 if (isHomogeneousAggregate(Ty, Base, Members)) { 6465 assert(Base && Members <= 4 && "unexpected homogeneous aggregate"); 6466 llvm::Type *Ty = 6467 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members); 6468 return ABIArgInfo::getDirect(Ty, 0, nullptr, false); 6469 } 6470 } 6471 6472 if (getABIKind() == ARMABIInfo::AAPCS16_VFP && 6473 getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) { 6474 // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're 6475 // bigger than 128-bits, they get placed in space allocated by the caller, 6476 // and a pointer is passed. 6477 return ABIArgInfo::getIndirect( 6478 CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false); 6479 } 6480 6481 // Support byval for ARM. 6482 // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at 6483 // most 8-byte. We realign the indirect argument if type alignment is bigger 6484 // than ABI alignment. 6485 uint64_t ABIAlign = 4; 6486 uint64_t TyAlign; 6487 if (getABIKind() == ARMABIInfo::AAPCS_VFP || 6488 getABIKind() == ARMABIInfo::AAPCS) { 6489 TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity(); 6490 ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8); 6491 } else { 6492 TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); 6493 } 6494 if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) { 6495 assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval"); 6496 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 6497 /*ByVal=*/true, 6498 /*Realign=*/TyAlign > ABIAlign); 6499 } 6500 6501 // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of 6502 // same size and alignment. 6503 if (getTarget().isRenderScriptTarget()) { 6504 return coerceToIntArray(Ty, getContext(), getVMContext()); 6505 } 6506 6507 // Otherwise, pass by coercing to a structure of the appropriate size. 6508 llvm::Type* ElemTy; 6509 unsigned SizeRegs; 6510 // FIXME: Try to match the types of the arguments more accurately where 6511 // we can. 6512 if (TyAlign <= 4) { 6513 ElemTy = llvm::Type::getInt32Ty(getVMContext()); 6514 SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32; 6515 } else { 6516 ElemTy = llvm::Type::getInt64Ty(getVMContext()); 6517 SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64; 6518 } 6519 6520 return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs)); 6521 } 6522 6523 static bool isIntegerLikeType(QualType Ty, ASTContext &Context, 6524 llvm::LLVMContext &VMContext) { 6525 // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure 6526 // is called integer-like if its size is less than or equal to one word, and 6527 // the offset of each of its addressable sub-fields is zero. 6528 6529 uint64_t Size = Context.getTypeSize(Ty); 6530 6531 // Check that the type fits in a word. 6532 if (Size > 32) 6533 return false; 6534 6535 // FIXME: Handle vector types! 6536 if (Ty->isVectorType()) 6537 return false; 6538 6539 // Float types are never treated as "integer like". 6540 if (Ty->isRealFloatingType()) 6541 return false; 6542 6543 // If this is a builtin or pointer type then it is ok. 6544 if (Ty->getAs<BuiltinType>() || Ty->isPointerType()) 6545 return true; 6546 6547 // Small complex integer types are "integer like". 6548 if (const ComplexType *CT = Ty->getAs<ComplexType>()) 6549 return isIntegerLikeType(CT->getElementType(), Context, VMContext); 6550 6551 // Single element and zero sized arrays should be allowed, by the definition 6552 // above, but they are not. 6553 6554 // Otherwise, it must be a record type. 6555 const RecordType *RT = Ty->getAs<RecordType>(); 6556 if (!RT) return false; 6557 6558 // Ignore records with flexible arrays. 6559 const RecordDecl *RD = RT->getDecl(); 6560 if (RD->hasFlexibleArrayMember()) 6561 return false; 6562 6563 // Check that all sub-fields are at offset 0, and are themselves "integer 6564 // like". 6565 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 6566 6567 bool HadField = false; 6568 unsigned idx = 0; 6569 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 6570 i != e; ++i, ++idx) { 6571 const FieldDecl *FD = *i; 6572 6573 // Bit-fields are not addressable, we only need to verify they are "integer 6574 // like". We still have to disallow a subsequent non-bitfield, for example: 6575 // struct { int : 0; int x } 6576 // is non-integer like according to gcc. 6577 if (FD->isBitField()) { 6578 if (!RD->isUnion()) 6579 HadField = true; 6580 6581 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 6582 return false; 6583 6584 continue; 6585 } 6586 6587 // Check if this field is at offset 0. 6588 if (Layout.getFieldOffset(idx) != 0) 6589 return false; 6590 6591 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 6592 return false; 6593 6594 // Only allow at most one field in a structure. This doesn't match the 6595 // wording above, but follows gcc in situations with a field following an 6596 // empty structure. 6597 if (!RD->isUnion()) { 6598 if (HadField) 6599 return false; 6600 6601 HadField = true; 6602 } 6603 } 6604 6605 return true; 6606 } 6607 6608 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, bool isVariadic, 6609 unsigned functionCallConv) const { 6610 6611 // Variadic functions should always marshal to the base standard. 6612 bool IsAAPCS_VFP = 6613 !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ true); 6614 6615 if (RetTy->isVoidType()) 6616 return ABIArgInfo::getIgnore(); 6617 6618 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 6619 // Large vector types should be returned via memory. 6620 if (getContext().getTypeSize(RetTy) > 128) 6621 return getNaturalAlignIndirect(RetTy); 6622 // TODO: FP16/BF16 vectors should be converted to integer vectors 6623 // This check is similar to isIllegalVectorType - refactor? 6624 if ((!getTarget().hasLegalHalfType() && 6625 (VT->getElementType()->isFloat16Type() || 6626 VT->getElementType()->isHalfType())) || 6627 (IsFloatABISoftFP && 6628 VT->getElementType()->isBFloat16Type())) 6629 return coerceIllegalVector(RetTy); 6630 } 6631 6632 if (!isAggregateTypeForABI(RetTy)) { 6633 // Treat an enum type as its underlying type. 6634 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 6635 RetTy = EnumTy->getDecl()->getIntegerType(); 6636 6637 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 6638 if (EIT->getNumBits() > 64) 6639 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 6640 6641 return isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 6642 : ABIArgInfo::getDirect(); 6643 } 6644 6645 // Are we following APCS? 6646 if (getABIKind() == APCS) { 6647 if (isEmptyRecord(getContext(), RetTy, false)) 6648 return ABIArgInfo::getIgnore(); 6649 6650 // Complex types are all returned as packed integers. 6651 // 6652 // FIXME: Consider using 2 x vector types if the back end handles them 6653 // correctly. 6654 if (RetTy->isAnyComplexType()) 6655 return ABIArgInfo::getDirect(llvm::IntegerType::get( 6656 getVMContext(), getContext().getTypeSize(RetTy))); 6657 6658 // Integer like structures are returned in r0. 6659 if (isIntegerLikeType(RetTy, getContext(), getVMContext())) { 6660 // Return in the smallest viable integer type. 6661 uint64_t Size = getContext().getTypeSize(RetTy); 6662 if (Size <= 8) 6663 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6664 if (Size <= 16) 6665 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6666 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6667 } 6668 6669 // Otherwise return in memory. 6670 return getNaturalAlignIndirect(RetTy); 6671 } 6672 6673 // Otherwise this is an AAPCS variant. 6674 6675 if (isEmptyRecord(getContext(), RetTy, true)) 6676 return ABIArgInfo::getIgnore(); 6677 6678 // Check for homogeneous aggregates with AAPCS-VFP. 6679 if (IsAAPCS_VFP) { 6680 const Type *Base = nullptr; 6681 uint64_t Members = 0; 6682 if (isHomogeneousAggregate(RetTy, Base, Members)) 6683 return classifyHomogeneousAggregate(RetTy, Base, Members); 6684 } 6685 6686 // Aggregates <= 4 bytes are returned in r0; other aggregates 6687 // are returned indirectly. 6688 uint64_t Size = getContext().getTypeSize(RetTy); 6689 if (Size <= 32) { 6690 // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of 6691 // same size and alignment. 6692 if (getTarget().isRenderScriptTarget()) { 6693 return coerceToIntArray(RetTy, getContext(), getVMContext()); 6694 } 6695 if (getDataLayout().isBigEndian()) 6696 // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4) 6697 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6698 6699 // Return in the smallest viable integer type. 6700 if (Size <= 8) 6701 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6702 if (Size <= 16) 6703 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6704 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6705 } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) { 6706 llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext()); 6707 llvm::Type *CoerceTy = 6708 llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32); 6709 return ABIArgInfo::getDirect(CoerceTy); 6710 } 6711 6712 return getNaturalAlignIndirect(RetTy); 6713 } 6714 6715 /// isIllegalVector - check whether Ty is an illegal vector type. 6716 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const { 6717 if (const VectorType *VT = Ty->getAs<VectorType> ()) { 6718 // On targets that don't support half, fp16 or bfloat, they are expanded 6719 // into float, and we don't want the ABI to depend on whether or not they 6720 // are supported in hardware. Thus return false to coerce vectors of these 6721 // types into integer vectors. 6722 // We do not depend on hasLegalHalfType for bfloat as it is a 6723 // separate IR type. 6724 if ((!getTarget().hasLegalHalfType() && 6725 (VT->getElementType()->isFloat16Type() || 6726 VT->getElementType()->isHalfType())) || 6727 (IsFloatABISoftFP && 6728 VT->getElementType()->isBFloat16Type())) 6729 return true; 6730 if (isAndroid()) { 6731 // Android shipped using Clang 3.1, which supported a slightly different 6732 // vector ABI. The primary differences were that 3-element vector types 6733 // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path 6734 // accepts that legacy behavior for Android only. 6735 // Check whether VT is legal. 6736 unsigned NumElements = VT->getNumElements(); 6737 // NumElements should be power of 2 or equal to 3. 6738 if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3) 6739 return true; 6740 } else { 6741 // Check whether VT is legal. 6742 unsigned NumElements = VT->getNumElements(); 6743 uint64_t Size = getContext().getTypeSize(VT); 6744 // NumElements should be power of 2. 6745 if (!llvm::isPowerOf2_32(NumElements)) 6746 return true; 6747 // Size should be greater than 32 bits. 6748 return Size <= 32; 6749 } 6750 } 6751 return false; 6752 } 6753 6754 /// Return true if a type contains any 16-bit floating point vectors 6755 bool ARMABIInfo::containsAnyFP16Vectors(QualType Ty) const { 6756 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 6757 uint64_t NElements = AT->getSize().getZExtValue(); 6758 if (NElements == 0) 6759 return false; 6760 return containsAnyFP16Vectors(AT->getElementType()); 6761 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 6762 const RecordDecl *RD = RT->getDecl(); 6763 6764 // If this is a C++ record, check the bases first. 6765 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 6766 if (llvm::any_of(CXXRD->bases(), [this](const CXXBaseSpecifier &B) { 6767 return containsAnyFP16Vectors(B.getType()); 6768 })) 6769 return true; 6770 6771 if (llvm::any_of(RD->fields(), [this](FieldDecl *FD) { 6772 return FD && containsAnyFP16Vectors(FD->getType()); 6773 })) 6774 return true; 6775 6776 return false; 6777 } else { 6778 if (const VectorType *VT = Ty->getAs<VectorType>()) 6779 return (VT->getElementType()->isFloat16Type() || 6780 VT->getElementType()->isBFloat16Type() || 6781 VT->getElementType()->isHalfType()); 6782 return false; 6783 } 6784 } 6785 6786 bool ARMABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, 6787 llvm::Type *eltTy, 6788 unsigned numElts) const { 6789 if (!llvm::isPowerOf2_32(numElts)) 6790 return false; 6791 unsigned size = getDataLayout().getTypeStoreSizeInBits(eltTy); 6792 if (size > 64) 6793 return false; 6794 if (vectorSize.getQuantity() != 8 && 6795 (vectorSize.getQuantity() != 16 || numElts == 1)) 6796 return false; 6797 return true; 6798 } 6799 6800 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 6801 // Homogeneous aggregates for AAPCS-VFP must have base types of float, 6802 // double, or 64-bit or 128-bit vectors. 6803 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 6804 if (BT->getKind() == BuiltinType::Float || 6805 BT->getKind() == BuiltinType::Double || 6806 BT->getKind() == BuiltinType::LongDouble) 6807 return true; 6808 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 6809 unsigned VecSize = getContext().getTypeSize(VT); 6810 if (VecSize == 64 || VecSize == 128) 6811 return true; 6812 } 6813 return false; 6814 } 6815 6816 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 6817 uint64_t Members) const { 6818 return Members <= 4; 6819 } 6820 6821 bool ARMABIInfo::isEffectivelyAAPCS_VFP(unsigned callConvention, 6822 bool acceptHalf) const { 6823 // Give precedence to user-specified calling conventions. 6824 if (callConvention != llvm::CallingConv::C) 6825 return (callConvention == llvm::CallingConv::ARM_AAPCS_VFP); 6826 else 6827 return (getABIKind() == AAPCS_VFP) || 6828 (acceptHalf && (getABIKind() == AAPCS16_VFP)); 6829 } 6830 6831 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6832 QualType Ty) const { 6833 CharUnits SlotSize = CharUnits::fromQuantity(4); 6834 6835 // Empty records are ignored for parameter passing purposes. 6836 if (isEmptyRecord(getContext(), Ty, true)) { 6837 Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize); 6838 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 6839 return Addr; 6840 } 6841 6842 CharUnits TySize = getContext().getTypeSizeInChars(Ty); 6843 CharUnits TyAlignForABI = getContext().getTypeUnadjustedAlignInChars(Ty); 6844 6845 // Use indirect if size of the illegal vector is bigger than 16 bytes. 6846 bool IsIndirect = false; 6847 const Type *Base = nullptr; 6848 uint64_t Members = 0; 6849 if (TySize > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) { 6850 IsIndirect = true; 6851 6852 // ARMv7k passes structs bigger than 16 bytes indirectly, in space 6853 // allocated by the caller. 6854 } else if (TySize > CharUnits::fromQuantity(16) && 6855 getABIKind() == ARMABIInfo::AAPCS16_VFP && 6856 !isHomogeneousAggregate(Ty, Base, Members)) { 6857 IsIndirect = true; 6858 6859 // Otherwise, bound the type's ABI alignment. 6860 // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for 6861 // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte. 6862 // Our callers should be prepared to handle an under-aligned address. 6863 } else if (getABIKind() == ARMABIInfo::AAPCS_VFP || 6864 getABIKind() == ARMABIInfo::AAPCS) { 6865 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 6866 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8)); 6867 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 6868 // ARMv7k allows type alignment up to 16 bytes. 6869 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 6870 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16)); 6871 } else { 6872 TyAlignForABI = CharUnits::fromQuantity(4); 6873 } 6874 6875 TypeInfoChars TyInfo(TySize, TyAlignForABI, false); 6876 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo, 6877 SlotSize, /*AllowHigherAlign*/ true); 6878 } 6879 6880 //===----------------------------------------------------------------------===// 6881 // NVPTX ABI Implementation 6882 //===----------------------------------------------------------------------===// 6883 6884 namespace { 6885 6886 class NVPTXTargetCodeGenInfo; 6887 6888 class NVPTXABIInfo : public ABIInfo { 6889 NVPTXTargetCodeGenInfo &CGInfo; 6890 6891 public: 6892 NVPTXABIInfo(CodeGenTypes &CGT, NVPTXTargetCodeGenInfo &Info) 6893 : ABIInfo(CGT), CGInfo(Info) {} 6894 6895 ABIArgInfo classifyReturnType(QualType RetTy) const; 6896 ABIArgInfo classifyArgumentType(QualType Ty) const; 6897 6898 void computeInfo(CGFunctionInfo &FI) const override; 6899 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6900 QualType Ty) const override; 6901 bool isUnsupportedType(QualType T) const; 6902 ABIArgInfo coerceToIntArrayWithLimit(QualType Ty, unsigned MaxSize) const; 6903 }; 6904 6905 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo { 6906 public: 6907 NVPTXTargetCodeGenInfo(CodeGenTypes &CGT) 6908 : TargetCodeGenInfo(std::make_unique<NVPTXABIInfo>(CGT, *this)) {} 6909 6910 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6911 CodeGen::CodeGenModule &M) const override; 6912 bool shouldEmitStaticExternCAliases() const override; 6913 6914 llvm::Type *getCUDADeviceBuiltinSurfaceDeviceType() const override { 6915 // On the device side, surface reference is represented as an object handle 6916 // in 64-bit integer. 6917 return llvm::Type::getInt64Ty(getABIInfo().getVMContext()); 6918 } 6919 6920 llvm::Type *getCUDADeviceBuiltinTextureDeviceType() const override { 6921 // On the device side, texture reference is represented as an object handle 6922 // in 64-bit integer. 6923 return llvm::Type::getInt64Ty(getABIInfo().getVMContext()); 6924 } 6925 6926 bool emitCUDADeviceBuiltinSurfaceDeviceCopy(CodeGenFunction &CGF, LValue Dst, 6927 LValue Src) const override { 6928 emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src); 6929 return true; 6930 } 6931 6932 bool emitCUDADeviceBuiltinTextureDeviceCopy(CodeGenFunction &CGF, LValue Dst, 6933 LValue Src) const override { 6934 emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src); 6935 return true; 6936 } 6937 6938 private: 6939 // Adds a NamedMDNode with GV, Name, and Operand as operands, and adds the 6940 // resulting MDNode to the nvvm.annotations MDNode. 6941 static void addNVVMMetadata(llvm::GlobalValue *GV, StringRef Name, 6942 int Operand); 6943 6944 static void emitBuiltinSurfTexDeviceCopy(CodeGenFunction &CGF, LValue Dst, 6945 LValue Src) { 6946 llvm::Value *Handle = nullptr; 6947 llvm::Constant *C = 6948 llvm::dyn_cast<llvm::Constant>(Src.getAddress(CGF).getPointer()); 6949 // Lookup `addrspacecast` through the constant pointer if any. 6950 if (auto *ASC = llvm::dyn_cast_or_null<llvm::AddrSpaceCastOperator>(C)) 6951 C = llvm::cast<llvm::Constant>(ASC->getPointerOperand()); 6952 if (auto *GV = llvm::dyn_cast_or_null<llvm::GlobalVariable>(C)) { 6953 // Load the handle from the specific global variable using 6954 // `nvvm.texsurf.handle.internal` intrinsic. 6955 Handle = CGF.EmitRuntimeCall( 6956 CGF.CGM.getIntrinsic(llvm::Intrinsic::nvvm_texsurf_handle_internal, 6957 {GV->getType()}), 6958 {GV}, "texsurf_handle"); 6959 } else 6960 Handle = CGF.EmitLoadOfScalar(Src, SourceLocation()); 6961 CGF.EmitStoreOfScalar(Handle, Dst); 6962 } 6963 }; 6964 6965 /// Checks if the type is unsupported directly by the current target. 6966 bool NVPTXABIInfo::isUnsupportedType(QualType T) const { 6967 ASTContext &Context = getContext(); 6968 if (!Context.getTargetInfo().hasFloat16Type() && T->isFloat16Type()) 6969 return true; 6970 if (!Context.getTargetInfo().hasFloat128Type() && 6971 (T->isFloat128Type() || 6972 (T->isRealFloatingType() && Context.getTypeSize(T) == 128))) 6973 return true; 6974 if (const auto *EIT = T->getAs<ExtIntType>()) 6975 return EIT->getNumBits() > 6976 (Context.getTargetInfo().hasInt128Type() ? 128U : 64U); 6977 if (!Context.getTargetInfo().hasInt128Type() && T->isIntegerType() && 6978 Context.getTypeSize(T) > 64U) 6979 return true; 6980 if (const auto *AT = T->getAsArrayTypeUnsafe()) 6981 return isUnsupportedType(AT->getElementType()); 6982 const auto *RT = T->getAs<RecordType>(); 6983 if (!RT) 6984 return false; 6985 const RecordDecl *RD = RT->getDecl(); 6986 6987 // If this is a C++ record, check the bases first. 6988 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 6989 for (const CXXBaseSpecifier &I : CXXRD->bases()) 6990 if (isUnsupportedType(I.getType())) 6991 return true; 6992 6993 for (const FieldDecl *I : RD->fields()) 6994 if (isUnsupportedType(I->getType())) 6995 return true; 6996 return false; 6997 } 6998 6999 /// Coerce the given type into an array with maximum allowed size of elements. 7000 ABIArgInfo NVPTXABIInfo::coerceToIntArrayWithLimit(QualType Ty, 7001 unsigned MaxSize) const { 7002 // Alignment and Size are measured in bits. 7003 const uint64_t Size = getContext().getTypeSize(Ty); 7004 const uint64_t Alignment = getContext().getTypeAlign(Ty); 7005 const unsigned Div = std::min<unsigned>(MaxSize, Alignment); 7006 llvm::Type *IntType = llvm::Type::getIntNTy(getVMContext(), Div); 7007 const uint64_t NumElements = (Size + Div - 1) / Div; 7008 return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements)); 7009 } 7010 7011 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const { 7012 if (RetTy->isVoidType()) 7013 return ABIArgInfo::getIgnore(); 7014 7015 if (getContext().getLangOpts().OpenMP && 7016 getContext().getLangOpts().OpenMPIsDevice && isUnsupportedType(RetTy)) 7017 return coerceToIntArrayWithLimit(RetTy, 64); 7018 7019 // note: this is different from default ABI 7020 if (!RetTy->isScalarType()) 7021 return ABIArgInfo::getDirect(); 7022 7023 // Treat an enum type as its underlying type. 7024 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 7025 RetTy = EnumTy->getDecl()->getIntegerType(); 7026 7027 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 7028 : ABIArgInfo::getDirect()); 7029 } 7030 7031 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const { 7032 // Treat an enum type as its underlying type. 7033 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7034 Ty = EnumTy->getDecl()->getIntegerType(); 7035 7036 // Return aggregates type as indirect by value 7037 if (isAggregateTypeForABI(Ty)) { 7038 // Under CUDA device compilation, tex/surf builtin types are replaced with 7039 // object types and passed directly. 7040 if (getContext().getLangOpts().CUDAIsDevice) { 7041 if (Ty->isCUDADeviceBuiltinSurfaceType()) 7042 return ABIArgInfo::getDirect( 7043 CGInfo.getCUDADeviceBuiltinSurfaceDeviceType()); 7044 if (Ty->isCUDADeviceBuiltinTextureType()) 7045 return ABIArgInfo::getDirect( 7046 CGInfo.getCUDADeviceBuiltinTextureDeviceType()); 7047 } 7048 return getNaturalAlignIndirect(Ty, /* byval */ true); 7049 } 7050 7051 if (const auto *EIT = Ty->getAs<ExtIntType>()) { 7052 if ((EIT->getNumBits() > 128) || 7053 (!getContext().getTargetInfo().hasInt128Type() && 7054 EIT->getNumBits() > 64)) 7055 return getNaturalAlignIndirect(Ty, /* byval */ true); 7056 } 7057 7058 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 7059 : ABIArgInfo::getDirect()); 7060 } 7061 7062 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const { 7063 if (!getCXXABI().classifyReturnType(FI)) 7064 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7065 for (auto &I : FI.arguments()) 7066 I.info = classifyArgumentType(I.type); 7067 7068 // Always honor user-specified calling convention. 7069 if (FI.getCallingConvention() != llvm::CallingConv::C) 7070 return; 7071 7072 FI.setEffectiveCallingConvention(getRuntimeCC()); 7073 } 7074 7075 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7076 QualType Ty) const { 7077 llvm_unreachable("NVPTX does not support varargs"); 7078 } 7079 7080 void NVPTXTargetCodeGenInfo::setTargetAttributes( 7081 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 7082 if (GV->isDeclaration()) 7083 return; 7084 const VarDecl *VD = dyn_cast_or_null<VarDecl>(D); 7085 if (VD) { 7086 if (M.getLangOpts().CUDA) { 7087 if (VD->getType()->isCUDADeviceBuiltinSurfaceType()) 7088 addNVVMMetadata(GV, "surface", 1); 7089 else if (VD->getType()->isCUDADeviceBuiltinTextureType()) 7090 addNVVMMetadata(GV, "texture", 1); 7091 return; 7092 } 7093 } 7094 7095 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 7096 if (!FD) return; 7097 7098 llvm::Function *F = cast<llvm::Function>(GV); 7099 7100 // Perform special handling in OpenCL mode 7101 if (M.getLangOpts().OpenCL) { 7102 // Use OpenCL function attributes to check for kernel functions 7103 // By default, all functions are device functions 7104 if (FD->hasAttr<OpenCLKernelAttr>()) { 7105 // OpenCL __kernel functions get kernel metadata 7106 // Create !{<func-ref>, metadata !"kernel", i32 1} node 7107 addNVVMMetadata(F, "kernel", 1); 7108 // And kernel functions are not subject to inlining 7109 F->addFnAttr(llvm::Attribute::NoInline); 7110 } 7111 } 7112 7113 // Perform special handling in CUDA mode. 7114 if (M.getLangOpts().CUDA) { 7115 // CUDA __global__ functions get a kernel metadata entry. Since 7116 // __global__ functions cannot be called from the device, we do not 7117 // need to set the noinline attribute. 7118 if (FD->hasAttr<CUDAGlobalAttr>()) { 7119 // Create !{<func-ref>, metadata !"kernel", i32 1} node 7120 addNVVMMetadata(F, "kernel", 1); 7121 } 7122 if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) { 7123 // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node 7124 llvm::APSInt MaxThreads(32); 7125 MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext()); 7126 if (MaxThreads > 0) 7127 addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue()); 7128 7129 // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was 7130 // not specified in __launch_bounds__ or if the user specified a 0 value, 7131 // we don't have to add a PTX directive. 7132 if (Attr->getMinBlocks()) { 7133 llvm::APSInt MinBlocks(32); 7134 MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext()); 7135 if (MinBlocks > 0) 7136 // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node 7137 addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue()); 7138 } 7139 } 7140 } 7141 } 7142 7143 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::GlobalValue *GV, 7144 StringRef Name, int Operand) { 7145 llvm::Module *M = GV->getParent(); 7146 llvm::LLVMContext &Ctx = M->getContext(); 7147 7148 // Get "nvvm.annotations" metadata node 7149 llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations"); 7150 7151 llvm::Metadata *MDVals[] = { 7152 llvm::ConstantAsMetadata::get(GV), llvm::MDString::get(Ctx, Name), 7153 llvm::ConstantAsMetadata::get( 7154 llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))}; 7155 // Append metadata to nvvm.annotations 7156 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 7157 } 7158 7159 bool NVPTXTargetCodeGenInfo::shouldEmitStaticExternCAliases() const { 7160 return false; 7161 } 7162 } 7163 7164 //===----------------------------------------------------------------------===// 7165 // SystemZ ABI Implementation 7166 //===----------------------------------------------------------------------===// 7167 7168 namespace { 7169 7170 class SystemZABIInfo : public SwiftABIInfo { 7171 bool HasVector; 7172 bool IsSoftFloatABI; 7173 7174 public: 7175 SystemZABIInfo(CodeGenTypes &CGT, bool HV, bool SF) 7176 : SwiftABIInfo(CGT), HasVector(HV), IsSoftFloatABI(SF) {} 7177 7178 bool isPromotableIntegerTypeForABI(QualType Ty) const; 7179 bool isCompoundType(QualType Ty) const; 7180 bool isVectorArgumentType(QualType Ty) const; 7181 bool isFPArgumentType(QualType Ty) const; 7182 QualType GetSingleElementType(QualType Ty) const; 7183 7184 ABIArgInfo classifyReturnType(QualType RetTy) const; 7185 ABIArgInfo classifyArgumentType(QualType ArgTy) const; 7186 7187 void computeInfo(CGFunctionInfo &FI) const override { 7188 if (!getCXXABI().classifyReturnType(FI)) 7189 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7190 for (auto &I : FI.arguments()) 7191 I.info = classifyArgumentType(I.type); 7192 } 7193 7194 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7195 QualType Ty) const override; 7196 7197 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 7198 bool asReturnValue) const override { 7199 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 7200 } 7201 bool isSwiftErrorInRegister() const override { 7202 return false; 7203 } 7204 }; 7205 7206 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo { 7207 public: 7208 SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector, bool SoftFloatABI) 7209 : TargetCodeGenInfo( 7210 std::make_unique<SystemZABIInfo>(CGT, HasVector, SoftFloatABI)) {} 7211 }; 7212 7213 } 7214 7215 bool SystemZABIInfo::isPromotableIntegerTypeForABI(QualType Ty) const { 7216 // Treat an enum type as its underlying type. 7217 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7218 Ty = EnumTy->getDecl()->getIntegerType(); 7219 7220 // Promotable integer types are required to be promoted by the ABI. 7221 if (ABIInfo::isPromotableIntegerTypeForABI(Ty)) 7222 return true; 7223 7224 if (const auto *EIT = Ty->getAs<ExtIntType>()) 7225 if (EIT->getNumBits() < 64) 7226 return true; 7227 7228 // 32-bit values must also be promoted. 7229 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 7230 switch (BT->getKind()) { 7231 case BuiltinType::Int: 7232 case BuiltinType::UInt: 7233 return true; 7234 default: 7235 return false; 7236 } 7237 return false; 7238 } 7239 7240 bool SystemZABIInfo::isCompoundType(QualType Ty) const { 7241 return (Ty->isAnyComplexType() || 7242 Ty->isVectorType() || 7243 isAggregateTypeForABI(Ty)); 7244 } 7245 7246 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const { 7247 return (HasVector && 7248 Ty->isVectorType() && 7249 getContext().getTypeSize(Ty) <= 128); 7250 } 7251 7252 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const { 7253 if (IsSoftFloatABI) 7254 return false; 7255 7256 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 7257 switch (BT->getKind()) { 7258 case BuiltinType::Float: 7259 case BuiltinType::Double: 7260 return true; 7261 default: 7262 return false; 7263 } 7264 7265 return false; 7266 } 7267 7268 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const { 7269 const RecordType *RT = Ty->getAs<RecordType>(); 7270 7271 if (RT && RT->isStructureOrClassType()) { 7272 const RecordDecl *RD = RT->getDecl(); 7273 QualType Found; 7274 7275 // If this is a C++ record, check the bases first. 7276 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 7277 for (const auto &I : CXXRD->bases()) { 7278 QualType Base = I.getType(); 7279 7280 // Empty bases don't affect things either way. 7281 if (isEmptyRecord(getContext(), Base, true)) 7282 continue; 7283 7284 if (!Found.isNull()) 7285 return Ty; 7286 Found = GetSingleElementType(Base); 7287 } 7288 7289 // Check the fields. 7290 for (const auto *FD : RD->fields()) { 7291 // For compatibility with GCC, ignore empty bitfields in C++ mode. 7292 // Unlike isSingleElementStruct(), empty structure and array fields 7293 // do count. So do anonymous bitfields that aren't zero-sized. 7294 if (getContext().getLangOpts().CPlusPlus && 7295 FD->isZeroLengthBitField(getContext())) 7296 continue; 7297 // Like isSingleElementStruct(), ignore C++20 empty data members. 7298 if (FD->hasAttr<NoUniqueAddressAttr>() && 7299 isEmptyRecord(getContext(), FD->getType(), true)) 7300 continue; 7301 7302 // Unlike isSingleElementStruct(), arrays do not count. 7303 // Nested structures still do though. 7304 if (!Found.isNull()) 7305 return Ty; 7306 Found = GetSingleElementType(FD->getType()); 7307 } 7308 7309 // Unlike isSingleElementStruct(), trailing padding is allowed. 7310 // An 8-byte aligned struct s { float f; } is passed as a double. 7311 if (!Found.isNull()) 7312 return Found; 7313 } 7314 7315 return Ty; 7316 } 7317 7318 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7319 QualType Ty) const { 7320 // Assume that va_list type is correct; should be pointer to LLVM type: 7321 // struct { 7322 // i64 __gpr; 7323 // i64 __fpr; 7324 // i8 *__overflow_arg_area; 7325 // i8 *__reg_save_area; 7326 // }; 7327 7328 // Every non-vector argument occupies 8 bytes and is passed by preference 7329 // in either GPRs or FPRs. Vector arguments occupy 8 or 16 bytes and are 7330 // always passed on the stack. 7331 Ty = getContext().getCanonicalType(Ty); 7332 auto TyInfo = getContext().getTypeInfoInChars(Ty); 7333 llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty); 7334 llvm::Type *DirectTy = ArgTy; 7335 ABIArgInfo AI = classifyArgumentType(Ty); 7336 bool IsIndirect = AI.isIndirect(); 7337 bool InFPRs = false; 7338 bool IsVector = false; 7339 CharUnits UnpaddedSize; 7340 CharUnits DirectAlign; 7341 if (IsIndirect) { 7342 DirectTy = llvm::PointerType::getUnqual(DirectTy); 7343 UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8); 7344 } else { 7345 if (AI.getCoerceToType()) 7346 ArgTy = AI.getCoerceToType(); 7347 InFPRs = (!IsSoftFloatABI && (ArgTy->isFloatTy() || ArgTy->isDoubleTy())); 7348 IsVector = ArgTy->isVectorTy(); 7349 UnpaddedSize = TyInfo.Width; 7350 DirectAlign = TyInfo.Align; 7351 } 7352 CharUnits PaddedSize = CharUnits::fromQuantity(8); 7353 if (IsVector && UnpaddedSize > PaddedSize) 7354 PaddedSize = CharUnits::fromQuantity(16); 7355 assert((UnpaddedSize <= PaddedSize) && "Invalid argument size."); 7356 7357 CharUnits Padding = (PaddedSize - UnpaddedSize); 7358 7359 llvm::Type *IndexTy = CGF.Int64Ty; 7360 llvm::Value *PaddedSizeV = 7361 llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity()); 7362 7363 if (IsVector) { 7364 // Work out the address of a vector argument on the stack. 7365 // Vector arguments are always passed in the high bits of a 7366 // single (8 byte) or double (16 byte) stack slot. 7367 Address OverflowArgAreaPtr = 7368 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr"); 7369 Address OverflowArgArea = 7370 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 7371 TyInfo.Align); 7372 Address MemAddr = 7373 CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr"); 7374 7375 // Update overflow_arg_area_ptr pointer 7376 llvm::Value *NewOverflowArgArea = 7377 CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV, 7378 "overflow_arg_area"); 7379 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 7380 7381 return MemAddr; 7382 } 7383 7384 assert(PaddedSize.getQuantity() == 8); 7385 7386 unsigned MaxRegs, RegCountField, RegSaveIndex; 7387 CharUnits RegPadding; 7388 if (InFPRs) { 7389 MaxRegs = 4; // Maximum of 4 FPR arguments 7390 RegCountField = 1; // __fpr 7391 RegSaveIndex = 16; // save offset for f0 7392 RegPadding = CharUnits(); // floats are passed in the high bits of an FPR 7393 } else { 7394 MaxRegs = 5; // Maximum of 5 GPR arguments 7395 RegCountField = 0; // __gpr 7396 RegSaveIndex = 2; // save offset for r2 7397 RegPadding = Padding; // values are passed in the low bits of a GPR 7398 } 7399 7400 Address RegCountPtr = 7401 CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr"); 7402 llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count"); 7403 llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs); 7404 llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV, 7405 "fits_in_regs"); 7406 7407 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 7408 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 7409 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 7410 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 7411 7412 // Emit code to load the value if it was passed in registers. 7413 CGF.EmitBlock(InRegBlock); 7414 7415 // Work out the address of an argument register. 7416 llvm::Value *ScaledRegCount = 7417 CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count"); 7418 llvm::Value *RegBase = 7419 llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity() 7420 + RegPadding.getQuantity()); 7421 llvm::Value *RegOffset = 7422 CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset"); 7423 Address RegSaveAreaPtr = 7424 CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr"); 7425 llvm::Value *RegSaveArea = 7426 CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area"); 7427 Address RawRegAddr(CGF.Builder.CreateGEP(RegSaveArea, RegOffset, 7428 "raw_reg_addr"), 7429 PaddedSize); 7430 Address RegAddr = 7431 CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr"); 7432 7433 // Update the register count 7434 llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1); 7435 llvm::Value *NewRegCount = 7436 CGF.Builder.CreateAdd(RegCount, One, "reg_count"); 7437 CGF.Builder.CreateStore(NewRegCount, RegCountPtr); 7438 CGF.EmitBranch(ContBlock); 7439 7440 // Emit code to load the value if it was passed in memory. 7441 CGF.EmitBlock(InMemBlock); 7442 7443 // Work out the address of a stack argument. 7444 Address OverflowArgAreaPtr = 7445 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr"); 7446 Address OverflowArgArea = 7447 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 7448 PaddedSize); 7449 Address RawMemAddr = 7450 CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr"); 7451 Address MemAddr = 7452 CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr"); 7453 7454 // Update overflow_arg_area_ptr pointer 7455 llvm::Value *NewOverflowArgArea = 7456 CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV, 7457 "overflow_arg_area"); 7458 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 7459 CGF.EmitBranch(ContBlock); 7460 7461 // Return the appropriate result. 7462 CGF.EmitBlock(ContBlock); 7463 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 7464 MemAddr, InMemBlock, "va_arg.addr"); 7465 7466 if (IsIndirect) 7467 ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"), 7468 TyInfo.Align); 7469 7470 return ResAddr; 7471 } 7472 7473 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const { 7474 if (RetTy->isVoidType()) 7475 return ABIArgInfo::getIgnore(); 7476 if (isVectorArgumentType(RetTy)) 7477 return ABIArgInfo::getDirect(); 7478 if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64) 7479 return getNaturalAlignIndirect(RetTy); 7480 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 7481 : ABIArgInfo::getDirect()); 7482 } 7483 7484 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const { 7485 // Handle the generic C++ ABI. 7486 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 7487 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7488 7489 // Integers and enums are extended to full register width. 7490 if (isPromotableIntegerTypeForABI(Ty)) 7491 return ABIArgInfo::getExtend(Ty); 7492 7493 // Handle vector types and vector-like structure types. Note that 7494 // as opposed to float-like structure types, we do not allow any 7495 // padding for vector-like structures, so verify the sizes match. 7496 uint64_t Size = getContext().getTypeSize(Ty); 7497 QualType SingleElementTy = GetSingleElementType(Ty); 7498 if (isVectorArgumentType(SingleElementTy) && 7499 getContext().getTypeSize(SingleElementTy) == Size) 7500 return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy)); 7501 7502 // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly. 7503 if (Size != 8 && Size != 16 && Size != 32 && Size != 64) 7504 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 7505 7506 // Handle small structures. 7507 if (const RecordType *RT = Ty->getAs<RecordType>()) { 7508 // Structures with flexible arrays have variable length, so really 7509 // fail the size test above. 7510 const RecordDecl *RD = RT->getDecl(); 7511 if (RD->hasFlexibleArrayMember()) 7512 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 7513 7514 // The structure is passed as an unextended integer, a float, or a double. 7515 llvm::Type *PassTy; 7516 if (isFPArgumentType(SingleElementTy)) { 7517 assert(Size == 32 || Size == 64); 7518 if (Size == 32) 7519 PassTy = llvm::Type::getFloatTy(getVMContext()); 7520 else 7521 PassTy = llvm::Type::getDoubleTy(getVMContext()); 7522 } else 7523 PassTy = llvm::IntegerType::get(getVMContext(), Size); 7524 return ABIArgInfo::getDirect(PassTy); 7525 } 7526 7527 // Non-structure compounds are passed indirectly. 7528 if (isCompoundType(Ty)) 7529 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 7530 7531 return ABIArgInfo::getDirect(nullptr); 7532 } 7533 7534 //===----------------------------------------------------------------------===// 7535 // MSP430 ABI Implementation 7536 //===----------------------------------------------------------------------===// 7537 7538 namespace { 7539 7540 class MSP430ABIInfo : public DefaultABIInfo { 7541 static ABIArgInfo complexArgInfo() { 7542 ABIArgInfo Info = ABIArgInfo::getDirect(); 7543 Info.setCanBeFlattened(false); 7544 return Info; 7545 } 7546 7547 public: 7548 MSP430ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 7549 7550 ABIArgInfo classifyReturnType(QualType RetTy) const { 7551 if (RetTy->isAnyComplexType()) 7552 return complexArgInfo(); 7553 7554 return DefaultABIInfo::classifyReturnType(RetTy); 7555 } 7556 7557 ABIArgInfo classifyArgumentType(QualType RetTy) const { 7558 if (RetTy->isAnyComplexType()) 7559 return complexArgInfo(); 7560 7561 return DefaultABIInfo::classifyArgumentType(RetTy); 7562 } 7563 7564 // Just copy the original implementations because 7565 // DefaultABIInfo::classify{Return,Argument}Type() are not virtual 7566 void computeInfo(CGFunctionInfo &FI) const override { 7567 if (!getCXXABI().classifyReturnType(FI)) 7568 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7569 for (auto &I : FI.arguments()) 7570 I.info = classifyArgumentType(I.type); 7571 } 7572 7573 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7574 QualType Ty) const override { 7575 return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty)); 7576 } 7577 }; 7578 7579 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo { 7580 public: 7581 MSP430TargetCodeGenInfo(CodeGenTypes &CGT) 7582 : TargetCodeGenInfo(std::make_unique<MSP430ABIInfo>(CGT)) {} 7583 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7584 CodeGen::CodeGenModule &M) const override; 7585 }; 7586 7587 } 7588 7589 void MSP430TargetCodeGenInfo::setTargetAttributes( 7590 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 7591 if (GV->isDeclaration()) 7592 return; 7593 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 7594 const auto *InterruptAttr = FD->getAttr<MSP430InterruptAttr>(); 7595 if (!InterruptAttr) 7596 return; 7597 7598 // Handle 'interrupt' attribute: 7599 llvm::Function *F = cast<llvm::Function>(GV); 7600 7601 // Step 1: Set ISR calling convention. 7602 F->setCallingConv(llvm::CallingConv::MSP430_INTR); 7603 7604 // Step 2: Add attributes goodness. 7605 F->addFnAttr(llvm::Attribute::NoInline); 7606 F->addFnAttr("interrupt", llvm::utostr(InterruptAttr->getNumber())); 7607 } 7608 } 7609 7610 //===----------------------------------------------------------------------===// 7611 // MIPS ABI Implementation. This works for both little-endian and 7612 // big-endian variants. 7613 //===----------------------------------------------------------------------===// 7614 7615 namespace { 7616 class MipsABIInfo : public ABIInfo { 7617 bool IsO32; 7618 unsigned MinABIStackAlignInBytes, StackAlignInBytes; 7619 void CoerceToIntArgs(uint64_t TySize, 7620 SmallVectorImpl<llvm::Type *> &ArgList) const; 7621 llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const; 7622 llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const; 7623 llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const; 7624 public: 7625 MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) : 7626 ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8), 7627 StackAlignInBytes(IsO32 ? 8 : 16) {} 7628 7629 ABIArgInfo classifyReturnType(QualType RetTy) const; 7630 ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const; 7631 void computeInfo(CGFunctionInfo &FI) const override; 7632 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7633 QualType Ty) const override; 7634 ABIArgInfo extendType(QualType Ty) const; 7635 }; 7636 7637 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo { 7638 unsigned SizeOfUnwindException; 7639 public: 7640 MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32) 7641 : TargetCodeGenInfo(std::make_unique<MipsABIInfo>(CGT, IsO32)), 7642 SizeOfUnwindException(IsO32 ? 24 : 32) {} 7643 7644 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 7645 return 29; 7646 } 7647 7648 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7649 CodeGen::CodeGenModule &CGM) const override { 7650 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 7651 if (!FD) return; 7652 llvm::Function *Fn = cast<llvm::Function>(GV); 7653 7654 if (FD->hasAttr<MipsLongCallAttr>()) 7655 Fn->addFnAttr("long-call"); 7656 else if (FD->hasAttr<MipsShortCallAttr>()) 7657 Fn->addFnAttr("short-call"); 7658 7659 // Other attributes do not have a meaning for declarations. 7660 if (GV->isDeclaration()) 7661 return; 7662 7663 if (FD->hasAttr<Mips16Attr>()) { 7664 Fn->addFnAttr("mips16"); 7665 } 7666 else if (FD->hasAttr<NoMips16Attr>()) { 7667 Fn->addFnAttr("nomips16"); 7668 } 7669 7670 if (FD->hasAttr<MicroMipsAttr>()) 7671 Fn->addFnAttr("micromips"); 7672 else if (FD->hasAttr<NoMicroMipsAttr>()) 7673 Fn->addFnAttr("nomicromips"); 7674 7675 const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>(); 7676 if (!Attr) 7677 return; 7678 7679 const char *Kind; 7680 switch (Attr->getInterrupt()) { 7681 case MipsInterruptAttr::eic: Kind = "eic"; break; 7682 case MipsInterruptAttr::sw0: Kind = "sw0"; break; 7683 case MipsInterruptAttr::sw1: Kind = "sw1"; break; 7684 case MipsInterruptAttr::hw0: Kind = "hw0"; break; 7685 case MipsInterruptAttr::hw1: Kind = "hw1"; break; 7686 case MipsInterruptAttr::hw2: Kind = "hw2"; break; 7687 case MipsInterruptAttr::hw3: Kind = "hw3"; break; 7688 case MipsInterruptAttr::hw4: Kind = "hw4"; break; 7689 case MipsInterruptAttr::hw5: Kind = "hw5"; break; 7690 } 7691 7692 Fn->addFnAttr("interrupt", Kind); 7693 7694 } 7695 7696 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 7697 llvm::Value *Address) const override; 7698 7699 unsigned getSizeOfUnwindException() const override { 7700 return SizeOfUnwindException; 7701 } 7702 }; 7703 } 7704 7705 void MipsABIInfo::CoerceToIntArgs( 7706 uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const { 7707 llvm::IntegerType *IntTy = 7708 llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8); 7709 7710 // Add (TySize / MinABIStackAlignInBytes) args of IntTy. 7711 for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N) 7712 ArgList.push_back(IntTy); 7713 7714 // If necessary, add one more integer type to ArgList. 7715 unsigned R = TySize % (MinABIStackAlignInBytes * 8); 7716 7717 if (R) 7718 ArgList.push_back(llvm::IntegerType::get(getVMContext(), R)); 7719 } 7720 7721 // In N32/64, an aligned double precision floating point field is passed in 7722 // a register. 7723 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const { 7724 SmallVector<llvm::Type*, 8> ArgList, IntArgList; 7725 7726 if (IsO32) { 7727 CoerceToIntArgs(TySize, ArgList); 7728 return llvm::StructType::get(getVMContext(), ArgList); 7729 } 7730 7731 if (Ty->isComplexType()) 7732 return CGT.ConvertType(Ty); 7733 7734 const RecordType *RT = Ty->getAs<RecordType>(); 7735 7736 // Unions/vectors are passed in integer registers. 7737 if (!RT || !RT->isStructureOrClassType()) { 7738 CoerceToIntArgs(TySize, ArgList); 7739 return llvm::StructType::get(getVMContext(), ArgList); 7740 } 7741 7742 const RecordDecl *RD = RT->getDecl(); 7743 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 7744 assert(!(TySize % 8) && "Size of structure must be multiple of 8."); 7745 7746 uint64_t LastOffset = 0; 7747 unsigned idx = 0; 7748 llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64); 7749 7750 // Iterate over fields in the struct/class and check if there are any aligned 7751 // double fields. 7752 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 7753 i != e; ++i, ++idx) { 7754 const QualType Ty = i->getType(); 7755 const BuiltinType *BT = Ty->getAs<BuiltinType>(); 7756 7757 if (!BT || BT->getKind() != BuiltinType::Double) 7758 continue; 7759 7760 uint64_t Offset = Layout.getFieldOffset(idx); 7761 if (Offset % 64) // Ignore doubles that are not aligned. 7762 continue; 7763 7764 // Add ((Offset - LastOffset) / 64) args of type i64. 7765 for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j) 7766 ArgList.push_back(I64); 7767 7768 // Add double type. 7769 ArgList.push_back(llvm::Type::getDoubleTy(getVMContext())); 7770 LastOffset = Offset + 64; 7771 } 7772 7773 CoerceToIntArgs(TySize - LastOffset, IntArgList); 7774 ArgList.append(IntArgList.begin(), IntArgList.end()); 7775 7776 return llvm::StructType::get(getVMContext(), ArgList); 7777 } 7778 7779 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset, 7780 uint64_t Offset) const { 7781 if (OrigOffset + MinABIStackAlignInBytes > Offset) 7782 return nullptr; 7783 7784 return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8); 7785 } 7786 7787 ABIArgInfo 7788 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const { 7789 Ty = useFirstFieldIfTransparentUnion(Ty); 7790 7791 uint64_t OrigOffset = Offset; 7792 uint64_t TySize = getContext().getTypeSize(Ty); 7793 uint64_t Align = getContext().getTypeAlign(Ty) / 8; 7794 7795 Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes), 7796 (uint64_t)StackAlignInBytes); 7797 unsigned CurrOffset = llvm::alignTo(Offset, Align); 7798 Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8; 7799 7800 if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) { 7801 // Ignore empty aggregates. 7802 if (TySize == 0) 7803 return ABIArgInfo::getIgnore(); 7804 7805 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 7806 Offset = OrigOffset + MinABIStackAlignInBytes; 7807 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7808 } 7809 7810 // If we have reached here, aggregates are passed directly by coercing to 7811 // another structure type. Padding is inserted if the offset of the 7812 // aggregate is unaligned. 7813 ABIArgInfo ArgInfo = 7814 ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0, 7815 getPaddingType(OrigOffset, CurrOffset)); 7816 ArgInfo.setInReg(true); 7817 return ArgInfo; 7818 } 7819 7820 // Treat an enum type as its underlying type. 7821 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7822 Ty = EnumTy->getDecl()->getIntegerType(); 7823 7824 // Make sure we pass indirectly things that are too large. 7825 if (const auto *EIT = Ty->getAs<ExtIntType>()) 7826 if (EIT->getNumBits() > 128 || 7827 (EIT->getNumBits() > 64 && 7828 !getContext().getTargetInfo().hasInt128Type())) 7829 return getNaturalAlignIndirect(Ty); 7830 7831 // All integral types are promoted to the GPR width. 7832 if (Ty->isIntegralOrEnumerationType()) 7833 return extendType(Ty); 7834 7835 return ABIArgInfo::getDirect( 7836 nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset)); 7837 } 7838 7839 llvm::Type* 7840 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const { 7841 const RecordType *RT = RetTy->getAs<RecordType>(); 7842 SmallVector<llvm::Type*, 8> RTList; 7843 7844 if (RT && RT->isStructureOrClassType()) { 7845 const RecordDecl *RD = RT->getDecl(); 7846 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 7847 unsigned FieldCnt = Layout.getFieldCount(); 7848 7849 // N32/64 returns struct/classes in floating point registers if the 7850 // following conditions are met: 7851 // 1. The size of the struct/class is no larger than 128-bit. 7852 // 2. The struct/class has one or two fields all of which are floating 7853 // point types. 7854 // 3. The offset of the first field is zero (this follows what gcc does). 7855 // 7856 // Any other composite results are returned in integer registers. 7857 // 7858 if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) { 7859 RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end(); 7860 for (; b != e; ++b) { 7861 const BuiltinType *BT = b->getType()->getAs<BuiltinType>(); 7862 7863 if (!BT || !BT->isFloatingPoint()) 7864 break; 7865 7866 RTList.push_back(CGT.ConvertType(b->getType())); 7867 } 7868 7869 if (b == e) 7870 return llvm::StructType::get(getVMContext(), RTList, 7871 RD->hasAttr<PackedAttr>()); 7872 7873 RTList.clear(); 7874 } 7875 } 7876 7877 CoerceToIntArgs(Size, RTList); 7878 return llvm::StructType::get(getVMContext(), RTList); 7879 } 7880 7881 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const { 7882 uint64_t Size = getContext().getTypeSize(RetTy); 7883 7884 if (RetTy->isVoidType()) 7885 return ABIArgInfo::getIgnore(); 7886 7887 // O32 doesn't treat zero-sized structs differently from other structs. 7888 // However, N32/N64 ignores zero sized return values. 7889 if (!IsO32 && Size == 0) 7890 return ABIArgInfo::getIgnore(); 7891 7892 if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) { 7893 if (Size <= 128) { 7894 if (RetTy->isAnyComplexType()) 7895 return ABIArgInfo::getDirect(); 7896 7897 // O32 returns integer vectors in registers and N32/N64 returns all small 7898 // aggregates in registers. 7899 if (!IsO32 || 7900 (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) { 7901 ABIArgInfo ArgInfo = 7902 ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size)); 7903 ArgInfo.setInReg(true); 7904 return ArgInfo; 7905 } 7906 } 7907 7908 return getNaturalAlignIndirect(RetTy); 7909 } 7910 7911 // Treat an enum type as its underlying type. 7912 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 7913 RetTy = EnumTy->getDecl()->getIntegerType(); 7914 7915 // Make sure we pass indirectly things that are too large. 7916 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 7917 if (EIT->getNumBits() > 128 || 7918 (EIT->getNumBits() > 64 && 7919 !getContext().getTargetInfo().hasInt128Type())) 7920 return getNaturalAlignIndirect(RetTy); 7921 7922 if (isPromotableIntegerTypeForABI(RetTy)) 7923 return ABIArgInfo::getExtend(RetTy); 7924 7925 if ((RetTy->isUnsignedIntegerOrEnumerationType() || 7926 RetTy->isSignedIntegerOrEnumerationType()) && Size == 32 && !IsO32) 7927 return ABIArgInfo::getSignExtend(RetTy); 7928 7929 return ABIArgInfo::getDirect(); 7930 } 7931 7932 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const { 7933 ABIArgInfo &RetInfo = FI.getReturnInfo(); 7934 if (!getCXXABI().classifyReturnType(FI)) 7935 RetInfo = classifyReturnType(FI.getReturnType()); 7936 7937 // Check if a pointer to an aggregate is passed as a hidden argument. 7938 uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0; 7939 7940 for (auto &I : FI.arguments()) 7941 I.info = classifyArgumentType(I.type, Offset); 7942 } 7943 7944 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7945 QualType OrigTy) const { 7946 QualType Ty = OrigTy; 7947 7948 // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64. 7949 // Pointers are also promoted in the same way but this only matters for N32. 7950 unsigned SlotSizeInBits = IsO32 ? 32 : 64; 7951 unsigned PtrWidth = getTarget().getPointerWidth(0); 7952 bool DidPromote = false; 7953 if ((Ty->isIntegerType() && 7954 getContext().getIntWidth(Ty) < SlotSizeInBits) || 7955 (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) { 7956 DidPromote = true; 7957 Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits, 7958 Ty->isSignedIntegerType()); 7959 } 7960 7961 auto TyInfo = getContext().getTypeInfoInChars(Ty); 7962 7963 // The alignment of things in the argument area is never larger than 7964 // StackAlignInBytes. 7965 TyInfo.Align = 7966 std::min(TyInfo.Align, CharUnits::fromQuantity(StackAlignInBytes)); 7967 7968 // MinABIStackAlignInBytes is the size of argument slots on the stack. 7969 CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes); 7970 7971 Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 7972 TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true); 7973 7974 7975 // If there was a promotion, "unpromote" into a temporary. 7976 // TODO: can we just use a pointer into a subset of the original slot? 7977 if (DidPromote) { 7978 Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp"); 7979 llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr); 7980 7981 // Truncate down to the right width. 7982 llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType() 7983 : CGF.IntPtrTy); 7984 llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy); 7985 if (OrigTy->isPointerType()) 7986 V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType()); 7987 7988 CGF.Builder.CreateStore(V, Temp); 7989 Addr = Temp; 7990 } 7991 7992 return Addr; 7993 } 7994 7995 ABIArgInfo MipsABIInfo::extendType(QualType Ty) const { 7996 int TySize = getContext().getTypeSize(Ty); 7997 7998 // MIPS64 ABI requires unsigned 32 bit integers to be sign extended. 7999 if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 8000 return ABIArgInfo::getSignExtend(Ty); 8001 8002 return ABIArgInfo::getExtend(Ty); 8003 } 8004 8005 bool 8006 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 8007 llvm::Value *Address) const { 8008 // This information comes from gcc's implementation, which seems to 8009 // as canonical as it gets. 8010 8011 // Everything on MIPS is 4 bytes. Double-precision FP registers 8012 // are aliased to pairs of single-precision FP registers. 8013 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 8014 8015 // 0-31 are the general purpose registers, $0 - $31. 8016 // 32-63 are the floating-point registers, $f0 - $f31. 8017 // 64 and 65 are the multiply/divide registers, $hi and $lo. 8018 // 66 is the (notional, I think) register for signal-handler return. 8019 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65); 8020 8021 // 67-74 are the floating-point status registers, $fcc0 - $fcc7. 8022 // They are one bit wide and ignored here. 8023 8024 // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31. 8025 // (coprocessor 1 is the FP unit) 8026 // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31. 8027 // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31. 8028 // 176-181 are the DSP accumulator registers. 8029 AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181); 8030 return false; 8031 } 8032 8033 //===----------------------------------------------------------------------===// 8034 // AVR ABI Implementation. 8035 //===----------------------------------------------------------------------===// 8036 8037 namespace { 8038 class AVRTargetCodeGenInfo : public TargetCodeGenInfo { 8039 public: 8040 AVRTargetCodeGenInfo(CodeGenTypes &CGT) 8041 : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {} 8042 8043 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 8044 CodeGen::CodeGenModule &CGM) const override { 8045 if (GV->isDeclaration()) 8046 return; 8047 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 8048 if (!FD) return; 8049 auto *Fn = cast<llvm::Function>(GV); 8050 8051 if (FD->getAttr<AVRInterruptAttr>()) 8052 Fn->addFnAttr("interrupt"); 8053 8054 if (FD->getAttr<AVRSignalAttr>()) 8055 Fn->addFnAttr("signal"); 8056 } 8057 }; 8058 } 8059 8060 //===----------------------------------------------------------------------===// 8061 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults. 8062 // Currently subclassed only to implement custom OpenCL C function attribute 8063 // handling. 8064 //===----------------------------------------------------------------------===// 8065 8066 namespace { 8067 8068 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo { 8069 public: 8070 TCETargetCodeGenInfo(CodeGenTypes &CGT) 8071 : DefaultTargetCodeGenInfo(CGT) {} 8072 8073 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 8074 CodeGen::CodeGenModule &M) const override; 8075 }; 8076 8077 void TCETargetCodeGenInfo::setTargetAttributes( 8078 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 8079 if (GV->isDeclaration()) 8080 return; 8081 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 8082 if (!FD) return; 8083 8084 llvm::Function *F = cast<llvm::Function>(GV); 8085 8086 if (M.getLangOpts().OpenCL) { 8087 if (FD->hasAttr<OpenCLKernelAttr>()) { 8088 // OpenCL C Kernel functions are not subject to inlining 8089 F->addFnAttr(llvm::Attribute::NoInline); 8090 const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>(); 8091 if (Attr) { 8092 // Convert the reqd_work_group_size() attributes to metadata. 8093 llvm::LLVMContext &Context = F->getContext(); 8094 llvm::NamedMDNode *OpenCLMetadata = 8095 M.getModule().getOrInsertNamedMetadata( 8096 "opencl.kernel_wg_size_info"); 8097 8098 SmallVector<llvm::Metadata *, 5> Operands; 8099 Operands.push_back(llvm::ConstantAsMetadata::get(F)); 8100 8101 Operands.push_back( 8102 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 8103 M.Int32Ty, llvm::APInt(32, Attr->getXDim())))); 8104 Operands.push_back( 8105 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 8106 M.Int32Ty, llvm::APInt(32, Attr->getYDim())))); 8107 Operands.push_back( 8108 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 8109 M.Int32Ty, llvm::APInt(32, Attr->getZDim())))); 8110 8111 // Add a boolean constant operand for "required" (true) or "hint" 8112 // (false) for implementing the work_group_size_hint attr later. 8113 // Currently always true as the hint is not yet implemented. 8114 Operands.push_back( 8115 llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context))); 8116 OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands)); 8117 } 8118 } 8119 } 8120 } 8121 8122 } 8123 8124 //===----------------------------------------------------------------------===// 8125 // Hexagon ABI Implementation 8126 //===----------------------------------------------------------------------===// 8127 8128 namespace { 8129 8130 class HexagonABIInfo : public DefaultABIInfo { 8131 public: 8132 HexagonABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 8133 8134 private: 8135 ABIArgInfo classifyReturnType(QualType RetTy) const; 8136 ABIArgInfo classifyArgumentType(QualType RetTy) const; 8137 ABIArgInfo classifyArgumentType(QualType RetTy, unsigned *RegsLeft) const; 8138 8139 void computeInfo(CGFunctionInfo &FI) const override; 8140 8141 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8142 QualType Ty) const override; 8143 Address EmitVAArgFromMemory(CodeGenFunction &CFG, Address VAListAddr, 8144 QualType Ty) const; 8145 Address EmitVAArgForHexagon(CodeGenFunction &CFG, Address VAListAddr, 8146 QualType Ty) const; 8147 Address EmitVAArgForHexagonLinux(CodeGenFunction &CFG, Address VAListAddr, 8148 QualType Ty) const; 8149 }; 8150 8151 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo { 8152 public: 8153 HexagonTargetCodeGenInfo(CodeGenTypes &CGT) 8154 : TargetCodeGenInfo(std::make_unique<HexagonABIInfo>(CGT)) {} 8155 8156 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 8157 return 29; 8158 } 8159 8160 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 8161 CodeGen::CodeGenModule &GCM) const override { 8162 if (GV->isDeclaration()) 8163 return; 8164 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 8165 if (!FD) 8166 return; 8167 } 8168 }; 8169 8170 } // namespace 8171 8172 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const { 8173 unsigned RegsLeft = 6; 8174 if (!getCXXABI().classifyReturnType(FI)) 8175 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 8176 for (auto &I : FI.arguments()) 8177 I.info = classifyArgumentType(I.type, &RegsLeft); 8178 } 8179 8180 static bool HexagonAdjustRegsLeft(uint64_t Size, unsigned *RegsLeft) { 8181 assert(Size <= 64 && "Not expecting to pass arguments larger than 64 bits" 8182 " through registers"); 8183 8184 if (*RegsLeft == 0) 8185 return false; 8186 8187 if (Size <= 32) { 8188 (*RegsLeft)--; 8189 return true; 8190 } 8191 8192 if (2 <= (*RegsLeft & (~1U))) { 8193 *RegsLeft = (*RegsLeft & (~1U)) - 2; 8194 return true; 8195 } 8196 8197 // Next available register was r5 but candidate was greater than 32-bits so it 8198 // has to go on the stack. However we still consume r5 8199 if (*RegsLeft == 1) 8200 *RegsLeft = 0; 8201 8202 return false; 8203 } 8204 8205 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty, 8206 unsigned *RegsLeft) const { 8207 if (!isAggregateTypeForABI(Ty)) { 8208 // Treat an enum type as its underlying type. 8209 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 8210 Ty = EnumTy->getDecl()->getIntegerType(); 8211 8212 uint64_t Size = getContext().getTypeSize(Ty); 8213 if (Size <= 64) 8214 HexagonAdjustRegsLeft(Size, RegsLeft); 8215 8216 if (Size > 64 && Ty->isExtIntType()) 8217 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 8218 8219 return isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 8220 : ABIArgInfo::getDirect(); 8221 } 8222 8223 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 8224 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 8225 8226 // Ignore empty records. 8227 if (isEmptyRecord(getContext(), Ty, true)) 8228 return ABIArgInfo::getIgnore(); 8229 8230 uint64_t Size = getContext().getTypeSize(Ty); 8231 unsigned Align = getContext().getTypeAlign(Ty); 8232 8233 if (Size > 64) 8234 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 8235 8236 if (HexagonAdjustRegsLeft(Size, RegsLeft)) 8237 Align = Size <= 32 ? 32 : 64; 8238 if (Size <= Align) { 8239 // Pass in the smallest viable integer type. 8240 if (!llvm::isPowerOf2_64(Size)) 8241 Size = llvm::NextPowerOf2(Size); 8242 return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size)); 8243 } 8244 return DefaultABIInfo::classifyArgumentType(Ty); 8245 } 8246 8247 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const { 8248 if (RetTy->isVoidType()) 8249 return ABIArgInfo::getIgnore(); 8250 8251 const TargetInfo &T = CGT.getTarget(); 8252 uint64_t Size = getContext().getTypeSize(RetTy); 8253 8254 if (RetTy->getAs<VectorType>()) { 8255 // HVX vectors are returned in vector registers or register pairs. 8256 if (T.hasFeature("hvx")) { 8257 assert(T.hasFeature("hvx-length64b") || T.hasFeature("hvx-length128b")); 8258 uint64_t VecSize = T.hasFeature("hvx-length64b") ? 64*8 : 128*8; 8259 if (Size == VecSize || Size == 2*VecSize) 8260 return ABIArgInfo::getDirectInReg(); 8261 } 8262 // Large vector types should be returned via memory. 8263 if (Size > 64) 8264 return getNaturalAlignIndirect(RetTy); 8265 } 8266 8267 if (!isAggregateTypeForABI(RetTy)) { 8268 // Treat an enum type as its underlying type. 8269 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 8270 RetTy = EnumTy->getDecl()->getIntegerType(); 8271 8272 if (Size > 64 && RetTy->isExtIntType()) 8273 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 8274 8275 return isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 8276 : ABIArgInfo::getDirect(); 8277 } 8278 8279 if (isEmptyRecord(getContext(), RetTy, true)) 8280 return ABIArgInfo::getIgnore(); 8281 8282 // Aggregates <= 8 bytes are returned in registers, other aggregates 8283 // are returned indirectly. 8284 if (Size <= 64) { 8285 // Return in the smallest viable integer type. 8286 if (!llvm::isPowerOf2_64(Size)) 8287 Size = llvm::NextPowerOf2(Size); 8288 return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size)); 8289 } 8290 return getNaturalAlignIndirect(RetTy, /*ByVal=*/true); 8291 } 8292 8293 Address HexagonABIInfo::EmitVAArgFromMemory(CodeGenFunction &CGF, 8294 Address VAListAddr, 8295 QualType Ty) const { 8296 // Load the overflow area pointer. 8297 Address __overflow_area_pointer_p = 8298 CGF.Builder.CreateStructGEP(VAListAddr, 2, "__overflow_area_pointer_p"); 8299 llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad( 8300 __overflow_area_pointer_p, "__overflow_area_pointer"); 8301 8302 uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8; 8303 if (Align > 4) { 8304 // Alignment should be a power of 2. 8305 assert((Align & (Align - 1)) == 0 && "Alignment is not power of 2!"); 8306 8307 // overflow_arg_area = (overflow_arg_area + align - 1) & -align; 8308 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int64Ty, Align - 1); 8309 8310 // Add offset to the current pointer to access the argument. 8311 __overflow_area_pointer = 8312 CGF.Builder.CreateGEP(__overflow_area_pointer, Offset); 8313 llvm::Value *AsInt = 8314 CGF.Builder.CreatePtrToInt(__overflow_area_pointer, CGF.Int32Ty); 8315 8316 // Create a mask which should be "AND"ed 8317 // with (overflow_arg_area + align - 1) 8318 llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -(int)Align); 8319 __overflow_area_pointer = CGF.Builder.CreateIntToPtr( 8320 CGF.Builder.CreateAnd(AsInt, Mask), __overflow_area_pointer->getType(), 8321 "__overflow_area_pointer.align"); 8322 } 8323 8324 // Get the type of the argument from memory and bitcast 8325 // overflow area pointer to the argument type. 8326 llvm::Type *PTy = CGF.ConvertTypeForMem(Ty); 8327 Address AddrTyped = CGF.Builder.CreateBitCast( 8328 Address(__overflow_area_pointer, CharUnits::fromQuantity(Align)), 8329 llvm::PointerType::getUnqual(PTy)); 8330 8331 // Round up to the minimum stack alignment for varargs which is 4 bytes. 8332 uint64_t Offset = llvm::alignTo(CGF.getContext().getTypeSize(Ty) / 8, 4); 8333 8334 __overflow_area_pointer = CGF.Builder.CreateGEP( 8335 __overflow_area_pointer, llvm::ConstantInt::get(CGF.Int32Ty, Offset), 8336 "__overflow_area_pointer.next"); 8337 CGF.Builder.CreateStore(__overflow_area_pointer, __overflow_area_pointer_p); 8338 8339 return AddrTyped; 8340 } 8341 8342 Address HexagonABIInfo::EmitVAArgForHexagon(CodeGenFunction &CGF, 8343 Address VAListAddr, 8344 QualType Ty) const { 8345 // FIXME: Need to handle alignment 8346 llvm::Type *BP = CGF.Int8PtrTy; 8347 llvm::Type *BPP = CGF.Int8PtrPtrTy; 8348 CGBuilderTy &Builder = CGF.Builder; 8349 Address VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); 8350 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 8351 // Handle address alignment for type alignment > 32 bits 8352 uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8; 8353 if (TyAlign > 4) { 8354 assert((TyAlign & (TyAlign - 1)) == 0 && "Alignment is not power of 2!"); 8355 llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty); 8356 AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1)); 8357 AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1))); 8358 Addr = Builder.CreateIntToPtr(AddrAsInt, BP); 8359 } 8360 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 8361 Address AddrTyped = Builder.CreateBitCast( 8362 Address(Addr, CharUnits::fromQuantity(TyAlign)), PTy); 8363 8364 uint64_t Offset = llvm::alignTo(CGF.getContext().getTypeSize(Ty) / 8, 4); 8365 llvm::Value *NextAddr = Builder.CreateGEP( 8366 Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), "ap.next"); 8367 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 8368 8369 return AddrTyped; 8370 } 8371 8372 Address HexagonABIInfo::EmitVAArgForHexagonLinux(CodeGenFunction &CGF, 8373 Address VAListAddr, 8374 QualType Ty) const { 8375 int ArgSize = CGF.getContext().getTypeSize(Ty) / 8; 8376 8377 if (ArgSize > 8) 8378 return EmitVAArgFromMemory(CGF, VAListAddr, Ty); 8379 8380 // Here we have check if the argument is in register area or 8381 // in overflow area. 8382 // If the saved register area pointer + argsize rounded up to alignment > 8383 // saved register area end pointer, argument is in overflow area. 8384 unsigned RegsLeft = 6; 8385 Ty = CGF.getContext().getCanonicalType(Ty); 8386 (void)classifyArgumentType(Ty, &RegsLeft); 8387 8388 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); 8389 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 8390 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); 8391 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 8392 8393 // Get rounded size of the argument.GCC does not allow vararg of 8394 // size < 4 bytes. We follow the same logic here. 8395 ArgSize = (CGF.getContext().getTypeSize(Ty) <= 32) ? 4 : 8; 8396 int ArgAlign = (CGF.getContext().getTypeSize(Ty) <= 32) ? 4 : 8; 8397 8398 // Argument may be in saved register area 8399 CGF.EmitBlock(MaybeRegBlock); 8400 8401 // Load the current saved register area pointer. 8402 Address __current_saved_reg_area_pointer_p = CGF.Builder.CreateStructGEP( 8403 VAListAddr, 0, "__current_saved_reg_area_pointer_p"); 8404 llvm::Value *__current_saved_reg_area_pointer = CGF.Builder.CreateLoad( 8405 __current_saved_reg_area_pointer_p, "__current_saved_reg_area_pointer"); 8406 8407 // Load the saved register area end pointer. 8408 Address __saved_reg_area_end_pointer_p = CGF.Builder.CreateStructGEP( 8409 VAListAddr, 1, "__saved_reg_area_end_pointer_p"); 8410 llvm::Value *__saved_reg_area_end_pointer = CGF.Builder.CreateLoad( 8411 __saved_reg_area_end_pointer_p, "__saved_reg_area_end_pointer"); 8412 8413 // If the size of argument is > 4 bytes, check if the stack 8414 // location is aligned to 8 bytes 8415 if (ArgAlign > 4) { 8416 8417 llvm::Value *__current_saved_reg_area_pointer_int = 8418 CGF.Builder.CreatePtrToInt(__current_saved_reg_area_pointer, 8419 CGF.Int32Ty); 8420 8421 __current_saved_reg_area_pointer_int = CGF.Builder.CreateAdd( 8422 __current_saved_reg_area_pointer_int, 8423 llvm::ConstantInt::get(CGF.Int32Ty, (ArgAlign - 1)), 8424 "align_current_saved_reg_area_pointer"); 8425 8426 __current_saved_reg_area_pointer_int = 8427 CGF.Builder.CreateAnd(__current_saved_reg_area_pointer_int, 8428 llvm::ConstantInt::get(CGF.Int32Ty, -ArgAlign), 8429 "align_current_saved_reg_area_pointer"); 8430 8431 __current_saved_reg_area_pointer = 8432 CGF.Builder.CreateIntToPtr(__current_saved_reg_area_pointer_int, 8433 __current_saved_reg_area_pointer->getType(), 8434 "align_current_saved_reg_area_pointer"); 8435 } 8436 8437 llvm::Value *__new_saved_reg_area_pointer = 8438 CGF.Builder.CreateGEP(__current_saved_reg_area_pointer, 8439 llvm::ConstantInt::get(CGF.Int32Ty, ArgSize), 8440 "__new_saved_reg_area_pointer"); 8441 8442 llvm::Value *UsingStack = 0; 8443 UsingStack = CGF.Builder.CreateICmpSGT(__new_saved_reg_area_pointer, 8444 __saved_reg_area_end_pointer); 8445 8446 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, InRegBlock); 8447 8448 // Argument in saved register area 8449 // Implement the block where argument is in register saved area 8450 CGF.EmitBlock(InRegBlock); 8451 8452 llvm::Type *PTy = CGF.ConvertType(Ty); 8453 llvm::Value *__saved_reg_area_p = CGF.Builder.CreateBitCast( 8454 __current_saved_reg_area_pointer, llvm::PointerType::getUnqual(PTy)); 8455 8456 CGF.Builder.CreateStore(__new_saved_reg_area_pointer, 8457 __current_saved_reg_area_pointer_p); 8458 8459 CGF.EmitBranch(ContBlock); 8460 8461 // Argument in overflow area 8462 // Implement the block where the argument is in overflow area. 8463 CGF.EmitBlock(OnStackBlock); 8464 8465 // Load the overflow area pointer 8466 Address __overflow_area_pointer_p = 8467 CGF.Builder.CreateStructGEP(VAListAddr, 2, "__overflow_area_pointer_p"); 8468 llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad( 8469 __overflow_area_pointer_p, "__overflow_area_pointer"); 8470 8471 // Align the overflow area pointer according to the alignment of the argument 8472 if (ArgAlign > 4) { 8473 llvm::Value *__overflow_area_pointer_int = 8474 CGF.Builder.CreatePtrToInt(__overflow_area_pointer, CGF.Int32Ty); 8475 8476 __overflow_area_pointer_int = 8477 CGF.Builder.CreateAdd(__overflow_area_pointer_int, 8478 llvm::ConstantInt::get(CGF.Int32Ty, ArgAlign - 1), 8479 "align_overflow_area_pointer"); 8480 8481 __overflow_area_pointer_int = 8482 CGF.Builder.CreateAnd(__overflow_area_pointer_int, 8483 llvm::ConstantInt::get(CGF.Int32Ty, -ArgAlign), 8484 "align_overflow_area_pointer"); 8485 8486 __overflow_area_pointer = CGF.Builder.CreateIntToPtr( 8487 __overflow_area_pointer_int, __overflow_area_pointer->getType(), 8488 "align_overflow_area_pointer"); 8489 } 8490 8491 // Get the pointer for next argument in overflow area and store it 8492 // to overflow area pointer. 8493 llvm::Value *__new_overflow_area_pointer = CGF.Builder.CreateGEP( 8494 __overflow_area_pointer, llvm::ConstantInt::get(CGF.Int32Ty, ArgSize), 8495 "__overflow_area_pointer.next"); 8496 8497 CGF.Builder.CreateStore(__new_overflow_area_pointer, 8498 __overflow_area_pointer_p); 8499 8500 CGF.Builder.CreateStore(__new_overflow_area_pointer, 8501 __current_saved_reg_area_pointer_p); 8502 8503 // Bitcast the overflow area pointer to the type of argument. 8504 llvm::Type *OverflowPTy = CGF.ConvertTypeForMem(Ty); 8505 llvm::Value *__overflow_area_p = CGF.Builder.CreateBitCast( 8506 __overflow_area_pointer, llvm::PointerType::getUnqual(OverflowPTy)); 8507 8508 CGF.EmitBranch(ContBlock); 8509 8510 // Get the correct pointer to load the variable argument 8511 // Implement the ContBlock 8512 CGF.EmitBlock(ContBlock); 8513 8514 llvm::Type *MemPTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); 8515 llvm::PHINode *ArgAddr = CGF.Builder.CreatePHI(MemPTy, 2, "vaarg.addr"); 8516 ArgAddr->addIncoming(__saved_reg_area_p, InRegBlock); 8517 ArgAddr->addIncoming(__overflow_area_p, OnStackBlock); 8518 8519 return Address(ArgAddr, CharUnits::fromQuantity(ArgAlign)); 8520 } 8521 8522 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8523 QualType Ty) const { 8524 8525 if (getTarget().getTriple().isMusl()) 8526 return EmitVAArgForHexagonLinux(CGF, VAListAddr, Ty); 8527 8528 return EmitVAArgForHexagon(CGF, VAListAddr, Ty); 8529 } 8530 8531 //===----------------------------------------------------------------------===// 8532 // Lanai ABI Implementation 8533 //===----------------------------------------------------------------------===// 8534 8535 namespace { 8536 class LanaiABIInfo : public DefaultABIInfo { 8537 public: 8538 LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 8539 8540 bool shouldUseInReg(QualType Ty, CCState &State) const; 8541 8542 void computeInfo(CGFunctionInfo &FI) const override { 8543 CCState State(FI); 8544 // Lanai uses 4 registers to pass arguments unless the function has the 8545 // regparm attribute set. 8546 if (FI.getHasRegParm()) { 8547 State.FreeRegs = FI.getRegParm(); 8548 } else { 8549 State.FreeRegs = 4; 8550 } 8551 8552 if (!getCXXABI().classifyReturnType(FI)) 8553 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 8554 for (auto &I : FI.arguments()) 8555 I.info = classifyArgumentType(I.type, State); 8556 } 8557 8558 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 8559 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 8560 }; 8561 } // end anonymous namespace 8562 8563 bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const { 8564 unsigned Size = getContext().getTypeSize(Ty); 8565 unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U; 8566 8567 if (SizeInRegs == 0) 8568 return false; 8569 8570 if (SizeInRegs > State.FreeRegs) { 8571 State.FreeRegs = 0; 8572 return false; 8573 } 8574 8575 State.FreeRegs -= SizeInRegs; 8576 8577 return true; 8578 } 8579 8580 ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal, 8581 CCState &State) const { 8582 if (!ByVal) { 8583 if (State.FreeRegs) { 8584 --State.FreeRegs; // Non-byval indirects just use one pointer. 8585 return getNaturalAlignIndirectInReg(Ty); 8586 } 8587 return getNaturalAlignIndirect(Ty, false); 8588 } 8589 8590 // Compute the byval alignment. 8591 const unsigned MinABIStackAlignInBytes = 4; 8592 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 8593 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true, 8594 /*Realign=*/TypeAlign > 8595 MinABIStackAlignInBytes); 8596 } 8597 8598 ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty, 8599 CCState &State) const { 8600 // Check with the C++ ABI first. 8601 const RecordType *RT = Ty->getAs<RecordType>(); 8602 if (RT) { 8603 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 8604 if (RAA == CGCXXABI::RAA_Indirect) { 8605 return getIndirectResult(Ty, /*ByVal=*/false, State); 8606 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 8607 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 8608 } 8609 } 8610 8611 if (isAggregateTypeForABI(Ty)) { 8612 // Structures with flexible arrays are always indirect. 8613 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 8614 return getIndirectResult(Ty, /*ByVal=*/true, State); 8615 8616 // Ignore empty structs/unions. 8617 if (isEmptyRecord(getContext(), Ty, true)) 8618 return ABIArgInfo::getIgnore(); 8619 8620 llvm::LLVMContext &LLVMContext = getVMContext(); 8621 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; 8622 if (SizeInRegs <= State.FreeRegs) { 8623 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 8624 SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32); 8625 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 8626 State.FreeRegs -= SizeInRegs; 8627 return ABIArgInfo::getDirectInReg(Result); 8628 } else { 8629 State.FreeRegs = 0; 8630 } 8631 return getIndirectResult(Ty, true, State); 8632 } 8633 8634 // Treat an enum type as its underlying type. 8635 if (const auto *EnumTy = Ty->getAs<EnumType>()) 8636 Ty = EnumTy->getDecl()->getIntegerType(); 8637 8638 bool InReg = shouldUseInReg(Ty, State); 8639 8640 // Don't pass >64 bit integers in registers. 8641 if (const auto *EIT = Ty->getAs<ExtIntType>()) 8642 if (EIT->getNumBits() > 64) 8643 return getIndirectResult(Ty, /*ByVal=*/true, State); 8644 8645 if (isPromotableIntegerTypeForABI(Ty)) { 8646 if (InReg) 8647 return ABIArgInfo::getDirectInReg(); 8648 return ABIArgInfo::getExtend(Ty); 8649 } 8650 if (InReg) 8651 return ABIArgInfo::getDirectInReg(); 8652 return ABIArgInfo::getDirect(); 8653 } 8654 8655 namespace { 8656 class LanaiTargetCodeGenInfo : public TargetCodeGenInfo { 8657 public: 8658 LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 8659 : TargetCodeGenInfo(std::make_unique<LanaiABIInfo>(CGT)) {} 8660 }; 8661 } 8662 8663 //===----------------------------------------------------------------------===// 8664 // AMDGPU ABI Implementation 8665 //===----------------------------------------------------------------------===// 8666 8667 namespace { 8668 8669 class AMDGPUABIInfo final : public DefaultABIInfo { 8670 private: 8671 static const unsigned MaxNumRegsForArgsRet = 16; 8672 8673 unsigned numRegsForType(QualType Ty) const; 8674 8675 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 8676 bool isHomogeneousAggregateSmallEnough(const Type *Base, 8677 uint64_t Members) const override; 8678 8679 // Coerce HIP scalar pointer arguments from generic pointers to global ones. 8680 llvm::Type *coerceKernelArgumentType(llvm::Type *Ty, unsigned FromAS, 8681 unsigned ToAS) const { 8682 // Single value types. 8683 if (Ty->isPointerTy() && Ty->getPointerAddressSpace() == FromAS) 8684 return llvm::PointerType::get( 8685 cast<llvm::PointerType>(Ty)->getElementType(), ToAS); 8686 return Ty; 8687 } 8688 8689 public: 8690 explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) : 8691 DefaultABIInfo(CGT) {} 8692 8693 ABIArgInfo classifyReturnType(QualType RetTy) const; 8694 ABIArgInfo classifyKernelArgumentType(QualType Ty) const; 8695 ABIArgInfo classifyArgumentType(QualType Ty, unsigned &NumRegsLeft) const; 8696 8697 void computeInfo(CGFunctionInfo &FI) const override; 8698 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8699 QualType Ty) const override; 8700 }; 8701 8702 bool AMDGPUABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 8703 return true; 8704 } 8705 8706 bool AMDGPUABIInfo::isHomogeneousAggregateSmallEnough( 8707 const Type *Base, uint64_t Members) const { 8708 uint32_t NumRegs = (getContext().getTypeSize(Base) + 31) / 32; 8709 8710 // Homogeneous Aggregates may occupy at most 16 registers. 8711 return Members * NumRegs <= MaxNumRegsForArgsRet; 8712 } 8713 8714 /// Estimate number of registers the type will use when passed in registers. 8715 unsigned AMDGPUABIInfo::numRegsForType(QualType Ty) const { 8716 unsigned NumRegs = 0; 8717 8718 if (const VectorType *VT = Ty->getAs<VectorType>()) { 8719 // Compute from the number of elements. The reported size is based on the 8720 // in-memory size, which includes the padding 4th element for 3-vectors. 8721 QualType EltTy = VT->getElementType(); 8722 unsigned EltSize = getContext().getTypeSize(EltTy); 8723 8724 // 16-bit element vectors should be passed as packed. 8725 if (EltSize == 16) 8726 return (VT->getNumElements() + 1) / 2; 8727 8728 unsigned EltNumRegs = (EltSize + 31) / 32; 8729 return EltNumRegs * VT->getNumElements(); 8730 } 8731 8732 if (const RecordType *RT = Ty->getAs<RecordType>()) { 8733 const RecordDecl *RD = RT->getDecl(); 8734 assert(!RD->hasFlexibleArrayMember()); 8735 8736 for (const FieldDecl *Field : RD->fields()) { 8737 QualType FieldTy = Field->getType(); 8738 NumRegs += numRegsForType(FieldTy); 8739 } 8740 8741 return NumRegs; 8742 } 8743 8744 return (getContext().getTypeSize(Ty) + 31) / 32; 8745 } 8746 8747 void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const { 8748 llvm::CallingConv::ID CC = FI.getCallingConvention(); 8749 8750 if (!getCXXABI().classifyReturnType(FI)) 8751 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 8752 8753 unsigned NumRegsLeft = MaxNumRegsForArgsRet; 8754 for (auto &Arg : FI.arguments()) { 8755 if (CC == llvm::CallingConv::AMDGPU_KERNEL) { 8756 Arg.info = classifyKernelArgumentType(Arg.type); 8757 } else { 8758 Arg.info = classifyArgumentType(Arg.type, NumRegsLeft); 8759 } 8760 } 8761 } 8762 8763 Address AMDGPUABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8764 QualType Ty) const { 8765 llvm_unreachable("AMDGPU does not support varargs"); 8766 } 8767 8768 ABIArgInfo AMDGPUABIInfo::classifyReturnType(QualType RetTy) const { 8769 if (isAggregateTypeForABI(RetTy)) { 8770 // Records with non-trivial destructors/copy-constructors should not be 8771 // returned by value. 8772 if (!getRecordArgABI(RetTy, getCXXABI())) { 8773 // Ignore empty structs/unions. 8774 if (isEmptyRecord(getContext(), RetTy, true)) 8775 return ABIArgInfo::getIgnore(); 8776 8777 // Lower single-element structs to just return a regular value. 8778 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 8779 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 8780 8781 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 8782 const RecordDecl *RD = RT->getDecl(); 8783 if (RD->hasFlexibleArrayMember()) 8784 return DefaultABIInfo::classifyReturnType(RetTy); 8785 } 8786 8787 // Pack aggregates <= 4 bytes into single VGPR or pair. 8788 uint64_t Size = getContext().getTypeSize(RetTy); 8789 if (Size <= 16) 8790 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 8791 8792 if (Size <= 32) 8793 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 8794 8795 if (Size <= 64) { 8796 llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext()); 8797 return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2)); 8798 } 8799 8800 if (numRegsForType(RetTy) <= MaxNumRegsForArgsRet) 8801 return ABIArgInfo::getDirect(); 8802 } 8803 } 8804 8805 // Otherwise just do the default thing. 8806 return DefaultABIInfo::classifyReturnType(RetTy); 8807 } 8808 8809 /// For kernels all parameters are really passed in a special buffer. It doesn't 8810 /// make sense to pass anything byval, so everything must be direct. 8811 ABIArgInfo AMDGPUABIInfo::classifyKernelArgumentType(QualType Ty) const { 8812 Ty = useFirstFieldIfTransparentUnion(Ty); 8813 8814 // TODO: Can we omit empty structs? 8815 8816 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 8817 Ty = QualType(SeltTy, 0); 8818 8819 llvm::Type *OrigLTy = CGT.ConvertType(Ty); 8820 llvm::Type *LTy = OrigLTy; 8821 if (getContext().getLangOpts().HIP) { 8822 LTy = coerceKernelArgumentType( 8823 OrigLTy, /*FromAS=*/getContext().getTargetAddressSpace(LangAS::Default), 8824 /*ToAS=*/getContext().getTargetAddressSpace(LangAS::cuda_device)); 8825 } 8826 8827 // FIXME: Should also use this for OpenCL, but it requires addressing the 8828 // problem of kernels being called. 8829 // 8830 // FIXME: This doesn't apply the optimization of coercing pointers in structs 8831 // to global address space when using byref. This would require implementing a 8832 // new kind of coercion of the in-memory type when for indirect arguments. 8833 if (!getContext().getLangOpts().OpenCL && LTy == OrigLTy && 8834 isAggregateTypeForABI(Ty)) { 8835 return ABIArgInfo::getIndirectAliased( 8836 getContext().getTypeAlignInChars(Ty), 8837 getContext().getTargetAddressSpace(LangAS::opencl_constant), 8838 false /*Realign*/, nullptr /*Padding*/); 8839 } 8840 8841 // If we set CanBeFlattened to true, CodeGen will expand the struct to its 8842 // individual elements, which confuses the Clover OpenCL backend; therefore we 8843 // have to set it to false here. Other args of getDirect() are just defaults. 8844 return ABIArgInfo::getDirect(LTy, 0, nullptr, false); 8845 } 8846 8847 ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty, 8848 unsigned &NumRegsLeft) const { 8849 assert(NumRegsLeft <= MaxNumRegsForArgsRet && "register estimate underflow"); 8850 8851 Ty = useFirstFieldIfTransparentUnion(Ty); 8852 8853 if (isAggregateTypeForABI(Ty)) { 8854 // Records with non-trivial destructors/copy-constructors should not be 8855 // passed by value. 8856 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 8857 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 8858 8859 // Ignore empty structs/unions. 8860 if (isEmptyRecord(getContext(), Ty, true)) 8861 return ABIArgInfo::getIgnore(); 8862 8863 // Lower single-element structs to just pass a regular value. TODO: We 8864 // could do reasonable-size multiple-element structs too, using getExpand(), 8865 // though watch out for things like bitfields. 8866 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 8867 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 8868 8869 if (const RecordType *RT = Ty->getAs<RecordType>()) { 8870 const RecordDecl *RD = RT->getDecl(); 8871 if (RD->hasFlexibleArrayMember()) 8872 return DefaultABIInfo::classifyArgumentType(Ty); 8873 } 8874 8875 // Pack aggregates <= 8 bytes into single VGPR or pair. 8876 uint64_t Size = getContext().getTypeSize(Ty); 8877 if (Size <= 64) { 8878 unsigned NumRegs = (Size + 31) / 32; 8879 NumRegsLeft -= std::min(NumRegsLeft, NumRegs); 8880 8881 if (Size <= 16) 8882 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 8883 8884 if (Size <= 32) 8885 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 8886 8887 // XXX: Should this be i64 instead, and should the limit increase? 8888 llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext()); 8889 return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2)); 8890 } 8891 8892 if (NumRegsLeft > 0) { 8893 unsigned NumRegs = numRegsForType(Ty); 8894 if (NumRegsLeft >= NumRegs) { 8895 NumRegsLeft -= NumRegs; 8896 return ABIArgInfo::getDirect(); 8897 } 8898 } 8899 } 8900 8901 // Otherwise just do the default thing. 8902 ABIArgInfo ArgInfo = DefaultABIInfo::classifyArgumentType(Ty); 8903 if (!ArgInfo.isIndirect()) { 8904 unsigned NumRegs = numRegsForType(Ty); 8905 NumRegsLeft -= std::min(NumRegs, NumRegsLeft); 8906 } 8907 8908 return ArgInfo; 8909 } 8910 8911 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo { 8912 public: 8913 AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT) 8914 : TargetCodeGenInfo(std::make_unique<AMDGPUABIInfo>(CGT)) {} 8915 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 8916 CodeGen::CodeGenModule &M) const override; 8917 unsigned getOpenCLKernelCallingConv() const override; 8918 8919 llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM, 8920 llvm::PointerType *T, QualType QT) const override; 8921 8922 LangAS getASTAllocaAddressSpace() const override { 8923 return getLangASFromTargetAS( 8924 getABIInfo().getDataLayout().getAllocaAddrSpace()); 8925 } 8926 LangAS getGlobalVarAddressSpace(CodeGenModule &CGM, 8927 const VarDecl *D) const override; 8928 llvm::SyncScope::ID getLLVMSyncScopeID(const LangOptions &LangOpts, 8929 SyncScope Scope, 8930 llvm::AtomicOrdering Ordering, 8931 llvm::LLVMContext &Ctx) const override; 8932 llvm::Function * 8933 createEnqueuedBlockKernel(CodeGenFunction &CGF, 8934 llvm::Function *BlockInvokeFunc, 8935 llvm::Value *BlockLiteral) const override; 8936 bool shouldEmitStaticExternCAliases() const override; 8937 void setCUDAKernelCallingConvention(const FunctionType *&FT) const override; 8938 }; 8939 } 8940 8941 static bool requiresAMDGPUProtectedVisibility(const Decl *D, 8942 llvm::GlobalValue *GV) { 8943 if (GV->getVisibility() != llvm::GlobalValue::HiddenVisibility) 8944 return false; 8945 8946 return D->hasAttr<OpenCLKernelAttr>() || 8947 (isa<FunctionDecl>(D) && D->hasAttr<CUDAGlobalAttr>()) || 8948 (isa<VarDecl>(D) && 8949 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || 8950 cast<VarDecl>(D)->getType()->isCUDADeviceBuiltinSurfaceType() || 8951 cast<VarDecl>(D)->getType()->isCUDADeviceBuiltinTextureType())); 8952 } 8953 8954 void AMDGPUTargetCodeGenInfo::setTargetAttributes( 8955 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 8956 if (requiresAMDGPUProtectedVisibility(D, GV)) { 8957 GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 8958 GV->setDSOLocal(true); 8959 } 8960 8961 if (GV->isDeclaration()) 8962 return; 8963 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 8964 if (!FD) 8965 return; 8966 8967 llvm::Function *F = cast<llvm::Function>(GV); 8968 8969 const auto *ReqdWGS = M.getLangOpts().OpenCL ? 8970 FD->getAttr<ReqdWorkGroupSizeAttr>() : nullptr; 8971 8972 8973 const bool IsOpenCLKernel = M.getLangOpts().OpenCL && 8974 FD->hasAttr<OpenCLKernelAttr>(); 8975 const bool IsHIPKernel = M.getLangOpts().HIP && 8976 FD->hasAttr<CUDAGlobalAttr>(); 8977 if ((IsOpenCLKernel || IsHIPKernel) && 8978 (M.getTriple().getOS() == llvm::Triple::AMDHSA)) 8979 F->addFnAttr("amdgpu-implicitarg-num-bytes", "56"); 8980 8981 if (IsHIPKernel) 8982 F->addFnAttr("uniform-work-group-size", "true"); 8983 8984 8985 const auto *FlatWGS = FD->getAttr<AMDGPUFlatWorkGroupSizeAttr>(); 8986 if (ReqdWGS || FlatWGS) { 8987 unsigned Min = 0; 8988 unsigned Max = 0; 8989 if (FlatWGS) { 8990 Min = FlatWGS->getMin() 8991 ->EvaluateKnownConstInt(M.getContext()) 8992 .getExtValue(); 8993 Max = FlatWGS->getMax() 8994 ->EvaluateKnownConstInt(M.getContext()) 8995 .getExtValue(); 8996 } 8997 if (ReqdWGS && Min == 0 && Max == 0) 8998 Min = Max = ReqdWGS->getXDim() * ReqdWGS->getYDim() * ReqdWGS->getZDim(); 8999 9000 if (Min != 0) { 9001 assert(Min <= Max && "Min must be less than or equal Max"); 9002 9003 std::string AttrVal = llvm::utostr(Min) + "," + llvm::utostr(Max); 9004 F->addFnAttr("amdgpu-flat-work-group-size", AttrVal); 9005 } else 9006 assert(Max == 0 && "Max must be zero"); 9007 } else if (IsOpenCLKernel || IsHIPKernel) { 9008 // By default, restrict the maximum size to a value specified by 9009 // --gpu-max-threads-per-block=n or its default value. 9010 std::string AttrVal = 9011 std::string("1,") + llvm::utostr(M.getLangOpts().GPUMaxThreadsPerBlock); 9012 F->addFnAttr("amdgpu-flat-work-group-size", AttrVal); 9013 } 9014 9015 if (const auto *Attr = FD->getAttr<AMDGPUWavesPerEUAttr>()) { 9016 unsigned Min = 9017 Attr->getMin()->EvaluateKnownConstInt(M.getContext()).getExtValue(); 9018 unsigned Max = Attr->getMax() ? Attr->getMax() 9019 ->EvaluateKnownConstInt(M.getContext()) 9020 .getExtValue() 9021 : 0; 9022 9023 if (Min != 0) { 9024 assert((Max == 0 || Min <= Max) && "Min must be less than or equal Max"); 9025 9026 std::string AttrVal = llvm::utostr(Min); 9027 if (Max != 0) 9028 AttrVal = AttrVal + "," + llvm::utostr(Max); 9029 F->addFnAttr("amdgpu-waves-per-eu", AttrVal); 9030 } else 9031 assert(Max == 0 && "Max must be zero"); 9032 } 9033 9034 if (const auto *Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) { 9035 unsigned NumSGPR = Attr->getNumSGPR(); 9036 9037 if (NumSGPR != 0) 9038 F->addFnAttr("amdgpu-num-sgpr", llvm::utostr(NumSGPR)); 9039 } 9040 9041 if (const auto *Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) { 9042 uint32_t NumVGPR = Attr->getNumVGPR(); 9043 9044 if (NumVGPR != 0) 9045 F->addFnAttr("amdgpu-num-vgpr", llvm::utostr(NumVGPR)); 9046 } 9047 9048 if (M.getContext().getTargetInfo().allowAMDGPUUnsafeFPAtomics()) 9049 F->addFnAttr("amdgpu-unsafe-fp-atomics", "true"); 9050 } 9051 9052 unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 9053 return llvm::CallingConv::AMDGPU_KERNEL; 9054 } 9055 9056 // Currently LLVM assumes null pointers always have value 0, 9057 // which results in incorrectly transformed IR. Therefore, instead of 9058 // emitting null pointers in private and local address spaces, a null 9059 // pointer in generic address space is emitted which is casted to a 9060 // pointer in local or private address space. 9061 llvm::Constant *AMDGPUTargetCodeGenInfo::getNullPointer( 9062 const CodeGen::CodeGenModule &CGM, llvm::PointerType *PT, 9063 QualType QT) const { 9064 if (CGM.getContext().getTargetNullPointerValue(QT) == 0) 9065 return llvm::ConstantPointerNull::get(PT); 9066 9067 auto &Ctx = CGM.getContext(); 9068 auto NPT = llvm::PointerType::get(PT->getElementType(), 9069 Ctx.getTargetAddressSpace(LangAS::opencl_generic)); 9070 return llvm::ConstantExpr::getAddrSpaceCast( 9071 llvm::ConstantPointerNull::get(NPT), PT); 9072 } 9073 9074 LangAS 9075 AMDGPUTargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM, 9076 const VarDecl *D) const { 9077 assert(!CGM.getLangOpts().OpenCL && 9078 !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && 9079 "Address space agnostic languages only"); 9080 LangAS DefaultGlobalAS = getLangASFromTargetAS( 9081 CGM.getContext().getTargetAddressSpace(LangAS::opencl_global)); 9082 if (!D) 9083 return DefaultGlobalAS; 9084 9085 LangAS AddrSpace = D->getType().getAddressSpace(); 9086 assert(AddrSpace == LangAS::Default || isTargetAddressSpace(AddrSpace)); 9087 if (AddrSpace != LangAS::Default) 9088 return AddrSpace; 9089 9090 if (CGM.isTypeConstant(D->getType(), false)) { 9091 if (auto ConstAS = CGM.getTarget().getConstantAddressSpace()) 9092 return ConstAS.getValue(); 9093 } 9094 return DefaultGlobalAS; 9095 } 9096 9097 llvm::SyncScope::ID 9098 AMDGPUTargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts, 9099 SyncScope Scope, 9100 llvm::AtomicOrdering Ordering, 9101 llvm::LLVMContext &Ctx) const { 9102 std::string Name; 9103 switch (Scope) { 9104 case SyncScope::OpenCLWorkGroup: 9105 Name = "workgroup"; 9106 break; 9107 case SyncScope::OpenCLDevice: 9108 Name = "agent"; 9109 break; 9110 case SyncScope::OpenCLAllSVMDevices: 9111 Name = ""; 9112 break; 9113 case SyncScope::OpenCLSubGroup: 9114 Name = "wavefront"; 9115 } 9116 9117 if (Ordering != llvm::AtomicOrdering::SequentiallyConsistent) { 9118 if (!Name.empty()) 9119 Name = Twine(Twine(Name) + Twine("-")).str(); 9120 9121 Name = Twine(Twine(Name) + Twine("one-as")).str(); 9122 } 9123 9124 return Ctx.getOrInsertSyncScopeID(Name); 9125 } 9126 9127 bool AMDGPUTargetCodeGenInfo::shouldEmitStaticExternCAliases() const { 9128 return false; 9129 } 9130 9131 void AMDGPUTargetCodeGenInfo::setCUDAKernelCallingConvention( 9132 const FunctionType *&FT) const { 9133 FT = getABIInfo().getContext().adjustFunctionType( 9134 FT, FT->getExtInfo().withCallingConv(CC_OpenCLKernel)); 9135 } 9136 9137 //===----------------------------------------------------------------------===// 9138 // SPARC v8 ABI Implementation. 9139 // Based on the SPARC Compliance Definition version 2.4.1. 9140 // 9141 // Ensures that complex values are passed in registers. 9142 // 9143 namespace { 9144 class SparcV8ABIInfo : public DefaultABIInfo { 9145 public: 9146 SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 9147 9148 private: 9149 ABIArgInfo classifyReturnType(QualType RetTy) const; 9150 void computeInfo(CGFunctionInfo &FI) const override; 9151 }; 9152 } // end anonymous namespace 9153 9154 9155 ABIArgInfo 9156 SparcV8ABIInfo::classifyReturnType(QualType Ty) const { 9157 if (Ty->isAnyComplexType()) { 9158 return ABIArgInfo::getDirect(); 9159 } 9160 else { 9161 return DefaultABIInfo::classifyReturnType(Ty); 9162 } 9163 } 9164 9165 void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const { 9166 9167 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 9168 for (auto &Arg : FI.arguments()) 9169 Arg.info = classifyArgumentType(Arg.type); 9170 } 9171 9172 namespace { 9173 class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo { 9174 public: 9175 SparcV8TargetCodeGenInfo(CodeGenTypes &CGT) 9176 : TargetCodeGenInfo(std::make_unique<SparcV8ABIInfo>(CGT)) {} 9177 }; 9178 } // end anonymous namespace 9179 9180 //===----------------------------------------------------------------------===// 9181 // SPARC v9 ABI Implementation. 9182 // Based on the SPARC Compliance Definition version 2.4.1. 9183 // 9184 // Function arguments a mapped to a nominal "parameter array" and promoted to 9185 // registers depending on their type. Each argument occupies 8 or 16 bytes in 9186 // the array, structs larger than 16 bytes are passed indirectly. 9187 // 9188 // One case requires special care: 9189 // 9190 // struct mixed { 9191 // int i; 9192 // float f; 9193 // }; 9194 // 9195 // When a struct mixed is passed by value, it only occupies 8 bytes in the 9196 // parameter array, but the int is passed in an integer register, and the float 9197 // is passed in a floating point register. This is represented as two arguments 9198 // with the LLVM IR inreg attribute: 9199 // 9200 // declare void f(i32 inreg %i, float inreg %f) 9201 // 9202 // The code generator will only allocate 4 bytes from the parameter array for 9203 // the inreg arguments. All other arguments are allocated a multiple of 8 9204 // bytes. 9205 // 9206 namespace { 9207 class SparcV9ABIInfo : public ABIInfo { 9208 public: 9209 SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 9210 9211 private: 9212 ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const; 9213 void computeInfo(CGFunctionInfo &FI) const override; 9214 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9215 QualType Ty) const override; 9216 9217 // Coercion type builder for structs passed in registers. The coercion type 9218 // serves two purposes: 9219 // 9220 // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned' 9221 // in registers. 9222 // 2. Expose aligned floating point elements as first-level elements, so the 9223 // code generator knows to pass them in floating point registers. 9224 // 9225 // We also compute the InReg flag which indicates that the struct contains 9226 // aligned 32-bit floats. 9227 // 9228 struct CoerceBuilder { 9229 llvm::LLVMContext &Context; 9230 const llvm::DataLayout &DL; 9231 SmallVector<llvm::Type*, 8> Elems; 9232 uint64_t Size; 9233 bool InReg; 9234 9235 CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl) 9236 : Context(c), DL(dl), Size(0), InReg(false) {} 9237 9238 // Pad Elems with integers until Size is ToSize. 9239 void pad(uint64_t ToSize) { 9240 assert(ToSize >= Size && "Cannot remove elements"); 9241 if (ToSize == Size) 9242 return; 9243 9244 // Finish the current 64-bit word. 9245 uint64_t Aligned = llvm::alignTo(Size, 64); 9246 if (Aligned > Size && Aligned <= ToSize) { 9247 Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size)); 9248 Size = Aligned; 9249 } 9250 9251 // Add whole 64-bit words. 9252 while (Size + 64 <= ToSize) { 9253 Elems.push_back(llvm::Type::getInt64Ty(Context)); 9254 Size += 64; 9255 } 9256 9257 // Final in-word padding. 9258 if (Size < ToSize) { 9259 Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size)); 9260 Size = ToSize; 9261 } 9262 } 9263 9264 // Add a floating point element at Offset. 9265 void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) { 9266 // Unaligned floats are treated as integers. 9267 if (Offset % Bits) 9268 return; 9269 // The InReg flag is only required if there are any floats < 64 bits. 9270 if (Bits < 64) 9271 InReg = true; 9272 pad(Offset); 9273 Elems.push_back(Ty); 9274 Size = Offset + Bits; 9275 } 9276 9277 // Add a struct type to the coercion type, starting at Offset (in bits). 9278 void addStruct(uint64_t Offset, llvm::StructType *StrTy) { 9279 const llvm::StructLayout *Layout = DL.getStructLayout(StrTy); 9280 for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) { 9281 llvm::Type *ElemTy = StrTy->getElementType(i); 9282 uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i); 9283 switch (ElemTy->getTypeID()) { 9284 case llvm::Type::StructTyID: 9285 addStruct(ElemOffset, cast<llvm::StructType>(ElemTy)); 9286 break; 9287 case llvm::Type::FloatTyID: 9288 addFloat(ElemOffset, ElemTy, 32); 9289 break; 9290 case llvm::Type::DoubleTyID: 9291 addFloat(ElemOffset, ElemTy, 64); 9292 break; 9293 case llvm::Type::FP128TyID: 9294 addFloat(ElemOffset, ElemTy, 128); 9295 break; 9296 case llvm::Type::PointerTyID: 9297 if (ElemOffset % 64 == 0) { 9298 pad(ElemOffset); 9299 Elems.push_back(ElemTy); 9300 Size += 64; 9301 } 9302 break; 9303 default: 9304 break; 9305 } 9306 } 9307 } 9308 9309 // Check if Ty is a usable substitute for the coercion type. 9310 bool isUsableType(llvm::StructType *Ty) const { 9311 return llvm::makeArrayRef(Elems) == Ty->elements(); 9312 } 9313 9314 // Get the coercion type as a literal struct type. 9315 llvm::Type *getType() const { 9316 if (Elems.size() == 1) 9317 return Elems.front(); 9318 else 9319 return llvm::StructType::get(Context, Elems); 9320 } 9321 }; 9322 }; 9323 } // end anonymous namespace 9324 9325 ABIArgInfo 9326 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const { 9327 if (Ty->isVoidType()) 9328 return ABIArgInfo::getIgnore(); 9329 9330 uint64_t Size = getContext().getTypeSize(Ty); 9331 9332 // Anything too big to fit in registers is passed with an explicit indirect 9333 // pointer / sret pointer. 9334 if (Size > SizeLimit) 9335 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 9336 9337 // Treat an enum type as its underlying type. 9338 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 9339 Ty = EnumTy->getDecl()->getIntegerType(); 9340 9341 // Integer types smaller than a register are extended. 9342 if (Size < 64 && Ty->isIntegerType()) 9343 return ABIArgInfo::getExtend(Ty); 9344 9345 if (const auto *EIT = Ty->getAs<ExtIntType>()) 9346 if (EIT->getNumBits() < 64) 9347 return ABIArgInfo::getExtend(Ty); 9348 9349 // Other non-aggregates go in registers. 9350 if (!isAggregateTypeForABI(Ty)) 9351 return ABIArgInfo::getDirect(); 9352 9353 // If a C++ object has either a non-trivial copy constructor or a non-trivial 9354 // destructor, it is passed with an explicit indirect pointer / sret pointer. 9355 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 9356 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 9357 9358 // This is a small aggregate type that should be passed in registers. 9359 // Build a coercion type from the LLVM struct type. 9360 llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty)); 9361 if (!StrTy) 9362 return ABIArgInfo::getDirect(); 9363 9364 CoerceBuilder CB(getVMContext(), getDataLayout()); 9365 CB.addStruct(0, StrTy); 9366 CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64)); 9367 9368 // Try to use the original type for coercion. 9369 llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType(); 9370 9371 if (CB.InReg) 9372 return ABIArgInfo::getDirectInReg(CoerceTy); 9373 else 9374 return ABIArgInfo::getDirect(CoerceTy); 9375 } 9376 9377 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9378 QualType Ty) const { 9379 ABIArgInfo AI = classifyType(Ty, 16 * 8); 9380 llvm::Type *ArgTy = CGT.ConvertType(Ty); 9381 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 9382 AI.setCoerceToType(ArgTy); 9383 9384 CharUnits SlotSize = CharUnits::fromQuantity(8); 9385 9386 CGBuilderTy &Builder = CGF.Builder; 9387 Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 9388 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 9389 9390 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 9391 9392 Address ArgAddr = Address::invalid(); 9393 CharUnits Stride; 9394 switch (AI.getKind()) { 9395 case ABIArgInfo::Expand: 9396 case ABIArgInfo::CoerceAndExpand: 9397 case ABIArgInfo::InAlloca: 9398 llvm_unreachable("Unsupported ABI kind for va_arg"); 9399 9400 case ABIArgInfo::Extend: { 9401 Stride = SlotSize; 9402 CharUnits Offset = SlotSize - TypeInfo.Width; 9403 ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend"); 9404 break; 9405 } 9406 9407 case ABIArgInfo::Direct: { 9408 auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType()); 9409 Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize); 9410 ArgAddr = Addr; 9411 break; 9412 } 9413 9414 case ABIArgInfo::Indirect: 9415 case ABIArgInfo::IndirectAliased: 9416 Stride = SlotSize; 9417 ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect"); 9418 ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"), 9419 TypeInfo.Align); 9420 break; 9421 9422 case ABIArgInfo::Ignore: 9423 return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.Align); 9424 } 9425 9426 // Update VAList. 9427 Address NextPtr = Builder.CreateConstInBoundsByteGEP(Addr, Stride, "ap.next"); 9428 Builder.CreateStore(NextPtr.getPointer(), VAListAddr); 9429 9430 return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr"); 9431 } 9432 9433 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const { 9434 FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8); 9435 for (auto &I : FI.arguments()) 9436 I.info = classifyType(I.type, 16 * 8); 9437 } 9438 9439 namespace { 9440 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo { 9441 public: 9442 SparcV9TargetCodeGenInfo(CodeGenTypes &CGT) 9443 : TargetCodeGenInfo(std::make_unique<SparcV9ABIInfo>(CGT)) {} 9444 9445 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 9446 return 14; 9447 } 9448 9449 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 9450 llvm::Value *Address) const override; 9451 }; 9452 } // end anonymous namespace 9453 9454 bool 9455 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 9456 llvm::Value *Address) const { 9457 // This is calculated from the LLVM and GCC tables and verified 9458 // against gcc output. AFAIK all ABIs use the same encoding. 9459 9460 CodeGen::CGBuilderTy &Builder = CGF.Builder; 9461 9462 llvm::IntegerType *i8 = CGF.Int8Ty; 9463 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 9464 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 9465 9466 // 0-31: the 8-byte general-purpose registers 9467 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 9468 9469 // 32-63: f0-31, the 4-byte floating-point registers 9470 AssignToArrayRange(Builder, Address, Four8, 32, 63); 9471 9472 // Y = 64 9473 // PSR = 65 9474 // WIM = 66 9475 // TBR = 67 9476 // PC = 68 9477 // NPC = 69 9478 // FSR = 70 9479 // CSR = 71 9480 AssignToArrayRange(Builder, Address, Eight8, 64, 71); 9481 9482 // 72-87: d0-15, the 8-byte floating-point registers 9483 AssignToArrayRange(Builder, Address, Eight8, 72, 87); 9484 9485 return false; 9486 } 9487 9488 // ARC ABI implementation. 9489 namespace { 9490 9491 class ARCABIInfo : public DefaultABIInfo { 9492 public: 9493 using DefaultABIInfo::DefaultABIInfo; 9494 9495 private: 9496 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9497 QualType Ty) const override; 9498 9499 void updateState(const ABIArgInfo &Info, QualType Ty, CCState &State) const { 9500 if (!State.FreeRegs) 9501 return; 9502 if (Info.isIndirect() && Info.getInReg()) 9503 State.FreeRegs--; 9504 else if (Info.isDirect() && Info.getInReg()) { 9505 unsigned sz = (getContext().getTypeSize(Ty) + 31) / 32; 9506 if (sz < State.FreeRegs) 9507 State.FreeRegs -= sz; 9508 else 9509 State.FreeRegs = 0; 9510 } 9511 } 9512 9513 void computeInfo(CGFunctionInfo &FI) const override { 9514 CCState State(FI); 9515 // ARC uses 8 registers to pass arguments. 9516 State.FreeRegs = 8; 9517 9518 if (!getCXXABI().classifyReturnType(FI)) 9519 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 9520 updateState(FI.getReturnInfo(), FI.getReturnType(), State); 9521 for (auto &I : FI.arguments()) { 9522 I.info = classifyArgumentType(I.type, State.FreeRegs); 9523 updateState(I.info, I.type, State); 9524 } 9525 } 9526 9527 ABIArgInfo getIndirectByRef(QualType Ty, bool HasFreeRegs) const; 9528 ABIArgInfo getIndirectByValue(QualType Ty) const; 9529 ABIArgInfo classifyArgumentType(QualType Ty, uint8_t FreeRegs) const; 9530 ABIArgInfo classifyReturnType(QualType RetTy) const; 9531 }; 9532 9533 class ARCTargetCodeGenInfo : public TargetCodeGenInfo { 9534 public: 9535 ARCTargetCodeGenInfo(CodeGenTypes &CGT) 9536 : TargetCodeGenInfo(std::make_unique<ARCABIInfo>(CGT)) {} 9537 }; 9538 9539 9540 ABIArgInfo ARCABIInfo::getIndirectByRef(QualType Ty, bool HasFreeRegs) const { 9541 return HasFreeRegs ? getNaturalAlignIndirectInReg(Ty) : 9542 getNaturalAlignIndirect(Ty, false); 9543 } 9544 9545 ABIArgInfo ARCABIInfo::getIndirectByValue(QualType Ty) const { 9546 // Compute the byval alignment. 9547 const unsigned MinABIStackAlignInBytes = 4; 9548 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 9549 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true, 9550 TypeAlign > MinABIStackAlignInBytes); 9551 } 9552 9553 Address ARCABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9554 QualType Ty) const { 9555 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 9556 getContext().getTypeInfoInChars(Ty), 9557 CharUnits::fromQuantity(4), true); 9558 } 9559 9560 ABIArgInfo ARCABIInfo::classifyArgumentType(QualType Ty, 9561 uint8_t FreeRegs) const { 9562 // Handle the generic C++ ABI. 9563 const RecordType *RT = Ty->getAs<RecordType>(); 9564 if (RT) { 9565 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 9566 if (RAA == CGCXXABI::RAA_Indirect) 9567 return getIndirectByRef(Ty, FreeRegs > 0); 9568 9569 if (RAA == CGCXXABI::RAA_DirectInMemory) 9570 return getIndirectByValue(Ty); 9571 } 9572 9573 // Treat an enum type as its underlying type. 9574 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 9575 Ty = EnumTy->getDecl()->getIntegerType(); 9576 9577 auto SizeInRegs = llvm::alignTo(getContext().getTypeSize(Ty), 32) / 32; 9578 9579 if (isAggregateTypeForABI(Ty)) { 9580 // Structures with flexible arrays are always indirect. 9581 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 9582 return getIndirectByValue(Ty); 9583 9584 // Ignore empty structs/unions. 9585 if (isEmptyRecord(getContext(), Ty, true)) 9586 return ABIArgInfo::getIgnore(); 9587 9588 llvm::LLVMContext &LLVMContext = getVMContext(); 9589 9590 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 9591 SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32); 9592 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 9593 9594 return FreeRegs >= SizeInRegs ? 9595 ABIArgInfo::getDirectInReg(Result) : 9596 ABIArgInfo::getDirect(Result, 0, nullptr, false); 9597 } 9598 9599 if (const auto *EIT = Ty->getAs<ExtIntType>()) 9600 if (EIT->getNumBits() > 64) 9601 return getIndirectByValue(Ty); 9602 9603 return isPromotableIntegerTypeForABI(Ty) 9604 ? (FreeRegs >= SizeInRegs ? ABIArgInfo::getExtendInReg(Ty) 9605 : ABIArgInfo::getExtend(Ty)) 9606 : (FreeRegs >= SizeInRegs ? ABIArgInfo::getDirectInReg() 9607 : ABIArgInfo::getDirect()); 9608 } 9609 9610 ABIArgInfo ARCABIInfo::classifyReturnType(QualType RetTy) const { 9611 if (RetTy->isAnyComplexType()) 9612 return ABIArgInfo::getDirectInReg(); 9613 9614 // Arguments of size > 4 registers are indirect. 9615 auto RetSize = llvm::alignTo(getContext().getTypeSize(RetTy), 32) / 32; 9616 if (RetSize > 4) 9617 return getIndirectByRef(RetTy, /*HasFreeRegs*/ true); 9618 9619 return DefaultABIInfo::classifyReturnType(RetTy); 9620 } 9621 9622 } // End anonymous namespace. 9623 9624 //===----------------------------------------------------------------------===// 9625 // XCore ABI Implementation 9626 //===----------------------------------------------------------------------===// 9627 9628 namespace { 9629 9630 /// A SmallStringEnc instance is used to build up the TypeString by passing 9631 /// it by reference between functions that append to it. 9632 typedef llvm::SmallString<128> SmallStringEnc; 9633 9634 /// TypeStringCache caches the meta encodings of Types. 9635 /// 9636 /// The reason for caching TypeStrings is two fold: 9637 /// 1. To cache a type's encoding for later uses; 9638 /// 2. As a means to break recursive member type inclusion. 9639 /// 9640 /// A cache Entry can have a Status of: 9641 /// NonRecursive: The type encoding is not recursive; 9642 /// Recursive: The type encoding is recursive; 9643 /// Incomplete: An incomplete TypeString; 9644 /// IncompleteUsed: An incomplete TypeString that has been used in a 9645 /// Recursive type encoding. 9646 /// 9647 /// A NonRecursive entry will have all of its sub-members expanded as fully 9648 /// as possible. Whilst it may contain types which are recursive, the type 9649 /// itself is not recursive and thus its encoding may be safely used whenever 9650 /// the type is encountered. 9651 /// 9652 /// A Recursive entry will have all of its sub-members expanded as fully as 9653 /// possible. The type itself is recursive and it may contain other types which 9654 /// are recursive. The Recursive encoding must not be used during the expansion 9655 /// of a recursive type's recursive branch. For simplicity the code uses 9656 /// IncompleteCount to reject all usage of Recursive encodings for member types. 9657 /// 9658 /// An Incomplete entry is always a RecordType and only encodes its 9659 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and 9660 /// are placed into the cache during type expansion as a means to identify and 9661 /// handle recursive inclusion of types as sub-members. If there is recursion 9662 /// the entry becomes IncompleteUsed. 9663 /// 9664 /// During the expansion of a RecordType's members: 9665 /// 9666 /// If the cache contains a NonRecursive encoding for the member type, the 9667 /// cached encoding is used; 9668 /// 9669 /// If the cache contains a Recursive encoding for the member type, the 9670 /// cached encoding is 'Swapped' out, as it may be incorrect, and... 9671 /// 9672 /// If the member is a RecordType, an Incomplete encoding is placed into the 9673 /// cache to break potential recursive inclusion of itself as a sub-member; 9674 /// 9675 /// Once a member RecordType has been expanded, its temporary incomplete 9676 /// entry is removed from the cache. If a Recursive encoding was swapped out 9677 /// it is swapped back in; 9678 /// 9679 /// If an incomplete entry is used to expand a sub-member, the incomplete 9680 /// entry is marked as IncompleteUsed. The cache keeps count of how many 9681 /// IncompleteUsed entries it currently contains in IncompleteUsedCount; 9682 /// 9683 /// If a member's encoding is found to be a NonRecursive or Recursive viz: 9684 /// IncompleteUsedCount==0, the member's encoding is added to the cache. 9685 /// Else the member is part of a recursive type and thus the recursion has 9686 /// been exited too soon for the encoding to be correct for the member. 9687 /// 9688 class TypeStringCache { 9689 enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed}; 9690 struct Entry { 9691 std::string Str; // The encoded TypeString for the type. 9692 enum Status State; // Information about the encoding in 'Str'. 9693 std::string Swapped; // A temporary place holder for a Recursive encoding 9694 // during the expansion of RecordType's members. 9695 }; 9696 std::map<const IdentifierInfo *, struct Entry> Map; 9697 unsigned IncompleteCount; // Number of Incomplete entries in the Map. 9698 unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map. 9699 public: 9700 TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {} 9701 void addIncomplete(const IdentifierInfo *ID, std::string StubEnc); 9702 bool removeIncomplete(const IdentifierInfo *ID); 9703 void addIfComplete(const IdentifierInfo *ID, StringRef Str, 9704 bool IsRecursive); 9705 StringRef lookupStr(const IdentifierInfo *ID); 9706 }; 9707 9708 /// TypeString encodings for enum & union fields must be order. 9709 /// FieldEncoding is a helper for this ordering process. 9710 class FieldEncoding { 9711 bool HasName; 9712 std::string Enc; 9713 public: 9714 FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {} 9715 StringRef str() { return Enc; } 9716 bool operator<(const FieldEncoding &rhs) const { 9717 if (HasName != rhs.HasName) return HasName; 9718 return Enc < rhs.Enc; 9719 } 9720 }; 9721 9722 class XCoreABIInfo : public DefaultABIInfo { 9723 public: 9724 XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 9725 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9726 QualType Ty) const override; 9727 }; 9728 9729 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo { 9730 mutable TypeStringCache TSC; 9731 void emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 9732 const CodeGen::CodeGenModule &M) const; 9733 9734 public: 9735 XCoreTargetCodeGenInfo(CodeGenTypes &CGT) 9736 : TargetCodeGenInfo(std::make_unique<XCoreABIInfo>(CGT)) {} 9737 void emitTargetMetadata(CodeGen::CodeGenModule &CGM, 9738 const llvm::MapVector<GlobalDecl, StringRef> 9739 &MangledDeclNames) const override; 9740 }; 9741 9742 } // End anonymous namespace. 9743 9744 // TODO: this implementation is likely now redundant with the default 9745 // EmitVAArg. 9746 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9747 QualType Ty) const { 9748 CGBuilderTy &Builder = CGF.Builder; 9749 9750 // Get the VAList. 9751 CharUnits SlotSize = CharUnits::fromQuantity(4); 9752 Address AP(Builder.CreateLoad(VAListAddr), SlotSize); 9753 9754 // Handle the argument. 9755 ABIArgInfo AI = classifyArgumentType(Ty); 9756 CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty); 9757 llvm::Type *ArgTy = CGT.ConvertType(Ty); 9758 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 9759 AI.setCoerceToType(ArgTy); 9760 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 9761 9762 Address Val = Address::invalid(); 9763 CharUnits ArgSize = CharUnits::Zero(); 9764 switch (AI.getKind()) { 9765 case ABIArgInfo::Expand: 9766 case ABIArgInfo::CoerceAndExpand: 9767 case ABIArgInfo::InAlloca: 9768 llvm_unreachable("Unsupported ABI kind for va_arg"); 9769 case ABIArgInfo::Ignore: 9770 Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign); 9771 ArgSize = CharUnits::Zero(); 9772 break; 9773 case ABIArgInfo::Extend: 9774 case ABIArgInfo::Direct: 9775 Val = Builder.CreateBitCast(AP, ArgPtrTy); 9776 ArgSize = CharUnits::fromQuantity( 9777 getDataLayout().getTypeAllocSize(AI.getCoerceToType())); 9778 ArgSize = ArgSize.alignTo(SlotSize); 9779 break; 9780 case ABIArgInfo::Indirect: 9781 case ABIArgInfo::IndirectAliased: 9782 Val = Builder.CreateElementBitCast(AP, ArgPtrTy); 9783 Val = Address(Builder.CreateLoad(Val), TypeAlign); 9784 ArgSize = SlotSize; 9785 break; 9786 } 9787 9788 // Increment the VAList. 9789 if (!ArgSize.isZero()) { 9790 Address APN = Builder.CreateConstInBoundsByteGEP(AP, ArgSize); 9791 Builder.CreateStore(APN.getPointer(), VAListAddr); 9792 } 9793 9794 return Val; 9795 } 9796 9797 /// During the expansion of a RecordType, an incomplete TypeString is placed 9798 /// into the cache as a means to identify and break recursion. 9799 /// If there is a Recursive encoding in the cache, it is swapped out and will 9800 /// be reinserted by removeIncomplete(). 9801 /// All other types of encoding should have been used rather than arriving here. 9802 void TypeStringCache::addIncomplete(const IdentifierInfo *ID, 9803 std::string StubEnc) { 9804 if (!ID) 9805 return; 9806 Entry &E = Map[ID]; 9807 assert( (E.Str.empty() || E.State == Recursive) && 9808 "Incorrectly use of addIncomplete"); 9809 assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()"); 9810 E.Swapped.swap(E.Str); // swap out the Recursive 9811 E.Str.swap(StubEnc); 9812 E.State = Incomplete; 9813 ++IncompleteCount; 9814 } 9815 9816 /// Once the RecordType has been expanded, the temporary incomplete TypeString 9817 /// must be removed from the cache. 9818 /// If a Recursive was swapped out by addIncomplete(), it will be replaced. 9819 /// Returns true if the RecordType was defined recursively. 9820 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) { 9821 if (!ID) 9822 return false; 9823 auto I = Map.find(ID); 9824 assert(I != Map.end() && "Entry not present"); 9825 Entry &E = I->second; 9826 assert( (E.State == Incomplete || 9827 E.State == IncompleteUsed) && 9828 "Entry must be an incomplete type"); 9829 bool IsRecursive = false; 9830 if (E.State == IncompleteUsed) { 9831 // We made use of our Incomplete encoding, thus we are recursive. 9832 IsRecursive = true; 9833 --IncompleteUsedCount; 9834 } 9835 if (E.Swapped.empty()) 9836 Map.erase(I); 9837 else { 9838 // Swap the Recursive back. 9839 E.Swapped.swap(E.Str); 9840 E.Swapped.clear(); 9841 E.State = Recursive; 9842 } 9843 --IncompleteCount; 9844 return IsRecursive; 9845 } 9846 9847 /// Add the encoded TypeString to the cache only if it is NonRecursive or 9848 /// Recursive (viz: all sub-members were expanded as fully as possible). 9849 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str, 9850 bool IsRecursive) { 9851 if (!ID || IncompleteUsedCount) 9852 return; // No key or it is is an incomplete sub-type so don't add. 9853 Entry &E = Map[ID]; 9854 if (IsRecursive && !E.Str.empty()) { 9855 assert(E.State==Recursive && E.Str.size() == Str.size() && 9856 "This is not the same Recursive entry"); 9857 // The parent container was not recursive after all, so we could have used 9858 // this Recursive sub-member entry after all, but we assumed the worse when 9859 // we started viz: IncompleteCount!=0. 9860 return; 9861 } 9862 assert(E.Str.empty() && "Entry already present"); 9863 E.Str = Str.str(); 9864 E.State = IsRecursive? Recursive : NonRecursive; 9865 } 9866 9867 /// Return a cached TypeString encoding for the ID. If there isn't one, or we 9868 /// are recursively expanding a type (IncompleteCount != 0) and the cached 9869 /// encoding is Recursive, return an empty StringRef. 9870 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) { 9871 if (!ID) 9872 return StringRef(); // We have no key. 9873 auto I = Map.find(ID); 9874 if (I == Map.end()) 9875 return StringRef(); // We have no encoding. 9876 Entry &E = I->second; 9877 if (E.State == Recursive && IncompleteCount) 9878 return StringRef(); // We don't use Recursive encodings for member types. 9879 9880 if (E.State == Incomplete) { 9881 // The incomplete type is being used to break out of recursion. 9882 E.State = IncompleteUsed; 9883 ++IncompleteUsedCount; 9884 } 9885 return E.Str; 9886 } 9887 9888 /// The XCore ABI includes a type information section that communicates symbol 9889 /// type information to the linker. The linker uses this information to verify 9890 /// safety/correctness of things such as array bound and pointers et al. 9891 /// The ABI only requires C (and XC) language modules to emit TypeStrings. 9892 /// This type information (TypeString) is emitted into meta data for all global 9893 /// symbols: definitions, declarations, functions & variables. 9894 /// 9895 /// The TypeString carries type, qualifier, name, size & value details. 9896 /// Please see 'Tools Development Guide' section 2.16.2 for format details: 9897 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf 9898 /// The output is tested by test/CodeGen/xcore-stringtype.c. 9899 /// 9900 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 9901 const CodeGen::CodeGenModule &CGM, 9902 TypeStringCache &TSC); 9903 9904 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols. 9905 void XCoreTargetCodeGenInfo::emitTargetMD( 9906 const Decl *D, llvm::GlobalValue *GV, 9907 const CodeGen::CodeGenModule &CGM) const { 9908 SmallStringEnc Enc; 9909 if (getTypeString(Enc, D, CGM, TSC)) { 9910 llvm::LLVMContext &Ctx = CGM.getModule().getContext(); 9911 llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV), 9912 llvm::MDString::get(Ctx, Enc.str())}; 9913 llvm::NamedMDNode *MD = 9914 CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings"); 9915 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 9916 } 9917 } 9918 9919 void XCoreTargetCodeGenInfo::emitTargetMetadata( 9920 CodeGen::CodeGenModule &CGM, 9921 const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames) const { 9922 // Warning, new MangledDeclNames may be appended within this loop. 9923 // We rely on MapVector insertions adding new elements to the end 9924 // of the container. 9925 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 9926 auto Val = *(MangledDeclNames.begin() + I); 9927 llvm::GlobalValue *GV = CGM.GetGlobalValue(Val.second); 9928 if (GV) { 9929 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 9930 emitTargetMD(D, GV, CGM); 9931 } 9932 } 9933 } 9934 //===----------------------------------------------------------------------===// 9935 // SPIR ABI Implementation 9936 //===----------------------------------------------------------------------===// 9937 9938 namespace { 9939 class SPIRTargetCodeGenInfo : public TargetCodeGenInfo { 9940 public: 9941 SPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 9942 : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {} 9943 unsigned getOpenCLKernelCallingConv() const override; 9944 }; 9945 9946 } // End anonymous namespace. 9947 9948 namespace clang { 9949 namespace CodeGen { 9950 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) { 9951 DefaultABIInfo SPIRABI(CGM.getTypes()); 9952 SPIRABI.computeInfo(FI); 9953 } 9954 } 9955 } 9956 9957 unsigned SPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 9958 return llvm::CallingConv::SPIR_KERNEL; 9959 } 9960 9961 static bool appendType(SmallStringEnc &Enc, QualType QType, 9962 const CodeGen::CodeGenModule &CGM, 9963 TypeStringCache &TSC); 9964 9965 /// Helper function for appendRecordType(). 9966 /// Builds a SmallVector containing the encoded field types in declaration 9967 /// order. 9968 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE, 9969 const RecordDecl *RD, 9970 const CodeGen::CodeGenModule &CGM, 9971 TypeStringCache &TSC) { 9972 for (const auto *Field : RD->fields()) { 9973 SmallStringEnc Enc; 9974 Enc += "m("; 9975 Enc += Field->getName(); 9976 Enc += "){"; 9977 if (Field->isBitField()) { 9978 Enc += "b("; 9979 llvm::raw_svector_ostream OS(Enc); 9980 OS << Field->getBitWidthValue(CGM.getContext()); 9981 Enc += ':'; 9982 } 9983 if (!appendType(Enc, Field->getType(), CGM, TSC)) 9984 return false; 9985 if (Field->isBitField()) 9986 Enc += ')'; 9987 Enc += '}'; 9988 FE.emplace_back(!Field->getName().empty(), Enc); 9989 } 9990 return true; 9991 } 9992 9993 /// Appends structure and union types to Enc and adds encoding to cache. 9994 /// Recursively calls appendType (via extractFieldType) for each field. 9995 /// Union types have their fields ordered according to the ABI. 9996 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT, 9997 const CodeGen::CodeGenModule &CGM, 9998 TypeStringCache &TSC, const IdentifierInfo *ID) { 9999 // Append the cached TypeString if we have one. 10000 StringRef TypeString = TSC.lookupStr(ID); 10001 if (!TypeString.empty()) { 10002 Enc += TypeString; 10003 return true; 10004 } 10005 10006 // Start to emit an incomplete TypeString. 10007 size_t Start = Enc.size(); 10008 Enc += (RT->isUnionType()? 'u' : 's'); 10009 Enc += '('; 10010 if (ID) 10011 Enc += ID->getName(); 10012 Enc += "){"; 10013 10014 // We collect all encoded fields and order as necessary. 10015 bool IsRecursive = false; 10016 const RecordDecl *RD = RT->getDecl()->getDefinition(); 10017 if (RD && !RD->field_empty()) { 10018 // An incomplete TypeString stub is placed in the cache for this RecordType 10019 // so that recursive calls to this RecordType will use it whilst building a 10020 // complete TypeString for this RecordType. 10021 SmallVector<FieldEncoding, 16> FE; 10022 std::string StubEnc(Enc.substr(Start).str()); 10023 StubEnc += '}'; // StubEnc now holds a valid incomplete TypeString. 10024 TSC.addIncomplete(ID, std::move(StubEnc)); 10025 if (!extractFieldType(FE, RD, CGM, TSC)) { 10026 (void) TSC.removeIncomplete(ID); 10027 return false; 10028 } 10029 IsRecursive = TSC.removeIncomplete(ID); 10030 // The ABI requires unions to be sorted but not structures. 10031 // See FieldEncoding::operator< for sort algorithm. 10032 if (RT->isUnionType()) 10033 llvm::sort(FE); 10034 // We can now complete the TypeString. 10035 unsigned E = FE.size(); 10036 for (unsigned I = 0; I != E; ++I) { 10037 if (I) 10038 Enc += ','; 10039 Enc += FE[I].str(); 10040 } 10041 } 10042 Enc += '}'; 10043 TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive); 10044 return true; 10045 } 10046 10047 /// Appends enum types to Enc and adds the encoding to the cache. 10048 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET, 10049 TypeStringCache &TSC, 10050 const IdentifierInfo *ID) { 10051 // Append the cached TypeString if we have one. 10052 StringRef TypeString = TSC.lookupStr(ID); 10053 if (!TypeString.empty()) { 10054 Enc += TypeString; 10055 return true; 10056 } 10057 10058 size_t Start = Enc.size(); 10059 Enc += "e("; 10060 if (ID) 10061 Enc += ID->getName(); 10062 Enc += "){"; 10063 10064 // We collect all encoded enumerations and order them alphanumerically. 10065 if (const EnumDecl *ED = ET->getDecl()->getDefinition()) { 10066 SmallVector<FieldEncoding, 16> FE; 10067 for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E; 10068 ++I) { 10069 SmallStringEnc EnumEnc; 10070 EnumEnc += "m("; 10071 EnumEnc += I->getName(); 10072 EnumEnc += "){"; 10073 I->getInitVal().toString(EnumEnc); 10074 EnumEnc += '}'; 10075 FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc)); 10076 } 10077 llvm::sort(FE); 10078 unsigned E = FE.size(); 10079 for (unsigned I = 0; I != E; ++I) { 10080 if (I) 10081 Enc += ','; 10082 Enc += FE[I].str(); 10083 } 10084 } 10085 Enc += '}'; 10086 TSC.addIfComplete(ID, Enc.substr(Start), false); 10087 return true; 10088 } 10089 10090 /// Appends type's qualifier to Enc. 10091 /// This is done prior to appending the type's encoding. 10092 static void appendQualifier(SmallStringEnc &Enc, QualType QT) { 10093 // Qualifiers are emitted in alphabetical order. 10094 static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"}; 10095 int Lookup = 0; 10096 if (QT.isConstQualified()) 10097 Lookup += 1<<0; 10098 if (QT.isRestrictQualified()) 10099 Lookup += 1<<1; 10100 if (QT.isVolatileQualified()) 10101 Lookup += 1<<2; 10102 Enc += Table[Lookup]; 10103 } 10104 10105 /// Appends built-in types to Enc. 10106 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) { 10107 const char *EncType; 10108 switch (BT->getKind()) { 10109 case BuiltinType::Void: 10110 EncType = "0"; 10111 break; 10112 case BuiltinType::Bool: 10113 EncType = "b"; 10114 break; 10115 case BuiltinType::Char_U: 10116 EncType = "uc"; 10117 break; 10118 case BuiltinType::UChar: 10119 EncType = "uc"; 10120 break; 10121 case BuiltinType::SChar: 10122 EncType = "sc"; 10123 break; 10124 case BuiltinType::UShort: 10125 EncType = "us"; 10126 break; 10127 case BuiltinType::Short: 10128 EncType = "ss"; 10129 break; 10130 case BuiltinType::UInt: 10131 EncType = "ui"; 10132 break; 10133 case BuiltinType::Int: 10134 EncType = "si"; 10135 break; 10136 case BuiltinType::ULong: 10137 EncType = "ul"; 10138 break; 10139 case BuiltinType::Long: 10140 EncType = "sl"; 10141 break; 10142 case BuiltinType::ULongLong: 10143 EncType = "ull"; 10144 break; 10145 case BuiltinType::LongLong: 10146 EncType = "sll"; 10147 break; 10148 case BuiltinType::Float: 10149 EncType = "ft"; 10150 break; 10151 case BuiltinType::Double: 10152 EncType = "d"; 10153 break; 10154 case BuiltinType::LongDouble: 10155 EncType = "ld"; 10156 break; 10157 default: 10158 return false; 10159 } 10160 Enc += EncType; 10161 return true; 10162 } 10163 10164 /// Appends a pointer encoding to Enc before calling appendType for the pointee. 10165 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT, 10166 const CodeGen::CodeGenModule &CGM, 10167 TypeStringCache &TSC) { 10168 Enc += "p("; 10169 if (!appendType(Enc, PT->getPointeeType(), CGM, TSC)) 10170 return false; 10171 Enc += ')'; 10172 return true; 10173 } 10174 10175 /// Appends array encoding to Enc before calling appendType for the element. 10176 static bool appendArrayType(SmallStringEnc &Enc, QualType QT, 10177 const ArrayType *AT, 10178 const CodeGen::CodeGenModule &CGM, 10179 TypeStringCache &TSC, StringRef NoSizeEnc) { 10180 if (AT->getSizeModifier() != ArrayType::Normal) 10181 return false; 10182 Enc += "a("; 10183 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) 10184 CAT->getSize().toStringUnsigned(Enc); 10185 else 10186 Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "". 10187 Enc += ':'; 10188 // The Qualifiers should be attached to the type rather than the array. 10189 appendQualifier(Enc, QT); 10190 if (!appendType(Enc, AT->getElementType(), CGM, TSC)) 10191 return false; 10192 Enc += ')'; 10193 return true; 10194 } 10195 10196 /// Appends a function encoding to Enc, calling appendType for the return type 10197 /// and the arguments. 10198 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT, 10199 const CodeGen::CodeGenModule &CGM, 10200 TypeStringCache &TSC) { 10201 Enc += "f{"; 10202 if (!appendType(Enc, FT->getReturnType(), CGM, TSC)) 10203 return false; 10204 Enc += "}("; 10205 if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) { 10206 // N.B. we are only interested in the adjusted param types. 10207 auto I = FPT->param_type_begin(); 10208 auto E = FPT->param_type_end(); 10209 if (I != E) { 10210 do { 10211 if (!appendType(Enc, *I, CGM, TSC)) 10212 return false; 10213 ++I; 10214 if (I != E) 10215 Enc += ','; 10216 } while (I != E); 10217 if (FPT->isVariadic()) 10218 Enc += ",va"; 10219 } else { 10220 if (FPT->isVariadic()) 10221 Enc += "va"; 10222 else 10223 Enc += '0'; 10224 } 10225 } 10226 Enc += ')'; 10227 return true; 10228 } 10229 10230 /// Handles the type's qualifier before dispatching a call to handle specific 10231 /// type encodings. 10232 static bool appendType(SmallStringEnc &Enc, QualType QType, 10233 const CodeGen::CodeGenModule &CGM, 10234 TypeStringCache &TSC) { 10235 10236 QualType QT = QType.getCanonicalType(); 10237 10238 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) 10239 // The Qualifiers should be attached to the type rather than the array. 10240 // Thus we don't call appendQualifier() here. 10241 return appendArrayType(Enc, QT, AT, CGM, TSC, ""); 10242 10243 appendQualifier(Enc, QT); 10244 10245 if (const BuiltinType *BT = QT->getAs<BuiltinType>()) 10246 return appendBuiltinType(Enc, BT); 10247 10248 if (const PointerType *PT = QT->getAs<PointerType>()) 10249 return appendPointerType(Enc, PT, CGM, TSC); 10250 10251 if (const EnumType *ET = QT->getAs<EnumType>()) 10252 return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier()); 10253 10254 if (const RecordType *RT = QT->getAsStructureType()) 10255 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 10256 10257 if (const RecordType *RT = QT->getAsUnionType()) 10258 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 10259 10260 if (const FunctionType *FT = QT->getAs<FunctionType>()) 10261 return appendFunctionType(Enc, FT, CGM, TSC); 10262 10263 return false; 10264 } 10265 10266 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 10267 const CodeGen::CodeGenModule &CGM, 10268 TypeStringCache &TSC) { 10269 if (!D) 10270 return false; 10271 10272 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 10273 if (FD->getLanguageLinkage() != CLanguageLinkage) 10274 return false; 10275 return appendType(Enc, FD->getType(), CGM, TSC); 10276 } 10277 10278 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 10279 if (VD->getLanguageLinkage() != CLanguageLinkage) 10280 return false; 10281 QualType QT = VD->getType().getCanonicalType(); 10282 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) { 10283 // Global ArrayTypes are given a size of '*' if the size is unknown. 10284 // The Qualifiers should be attached to the type rather than the array. 10285 // Thus we don't call appendQualifier() here. 10286 return appendArrayType(Enc, QT, AT, CGM, TSC, "*"); 10287 } 10288 return appendType(Enc, QT, CGM, TSC); 10289 } 10290 return false; 10291 } 10292 10293 //===----------------------------------------------------------------------===// 10294 // RISCV ABI Implementation 10295 //===----------------------------------------------------------------------===// 10296 10297 namespace { 10298 class RISCVABIInfo : public DefaultABIInfo { 10299 private: 10300 // Size of the integer ('x') registers in bits. 10301 unsigned XLen; 10302 // Size of the floating point ('f') registers in bits. Note that the target 10303 // ISA might have a wider FLen than the selected ABI (e.g. an RV32IF target 10304 // with soft float ABI has FLen==0). 10305 unsigned FLen; 10306 static const int NumArgGPRs = 8; 10307 static const int NumArgFPRs = 8; 10308 bool detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff, 10309 llvm::Type *&Field1Ty, 10310 CharUnits &Field1Off, 10311 llvm::Type *&Field2Ty, 10312 CharUnits &Field2Off) const; 10313 10314 public: 10315 RISCVABIInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen, unsigned FLen) 10316 : DefaultABIInfo(CGT), XLen(XLen), FLen(FLen) {} 10317 10318 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 10319 // non-virtual, but computeInfo is virtual, so we overload it. 10320 void computeInfo(CGFunctionInfo &FI) const override; 10321 10322 ABIArgInfo classifyArgumentType(QualType Ty, bool IsFixed, int &ArgGPRsLeft, 10323 int &ArgFPRsLeft) const; 10324 ABIArgInfo classifyReturnType(QualType RetTy) const; 10325 10326 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 10327 QualType Ty) const override; 10328 10329 ABIArgInfo extendType(QualType Ty) const; 10330 10331 bool detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty, 10332 CharUnits &Field1Off, llvm::Type *&Field2Ty, 10333 CharUnits &Field2Off, int &NeededArgGPRs, 10334 int &NeededArgFPRs) const; 10335 ABIArgInfo coerceAndExpandFPCCEligibleStruct(llvm::Type *Field1Ty, 10336 CharUnits Field1Off, 10337 llvm::Type *Field2Ty, 10338 CharUnits Field2Off) const; 10339 }; 10340 } // end anonymous namespace 10341 10342 void RISCVABIInfo::computeInfo(CGFunctionInfo &FI) const { 10343 QualType RetTy = FI.getReturnType(); 10344 if (!getCXXABI().classifyReturnType(FI)) 10345 FI.getReturnInfo() = classifyReturnType(RetTy); 10346 10347 // IsRetIndirect is true if classifyArgumentType indicated the value should 10348 // be passed indirect, or if the type size is a scalar greater than 2*XLen 10349 // and not a complex type with elements <= FLen. e.g. fp128 is passed direct 10350 // in LLVM IR, relying on the backend lowering code to rewrite the argument 10351 // list and pass indirectly on RV32. 10352 bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect; 10353 if (!IsRetIndirect && RetTy->isScalarType() && 10354 getContext().getTypeSize(RetTy) > (2 * XLen)) { 10355 if (RetTy->isComplexType() && FLen) { 10356 QualType EltTy = RetTy->castAs<ComplexType>()->getElementType(); 10357 IsRetIndirect = getContext().getTypeSize(EltTy) > FLen; 10358 } else { 10359 // This is a normal scalar > 2*XLen, such as fp128 on RV32. 10360 IsRetIndirect = true; 10361 } 10362 } 10363 10364 // We must track the number of GPRs used in order to conform to the RISC-V 10365 // ABI, as integer scalars passed in registers should have signext/zeroext 10366 // when promoted, but are anyext if passed on the stack. As GPR usage is 10367 // different for variadic arguments, we must also track whether we are 10368 // examining a vararg or not. 10369 int ArgGPRsLeft = IsRetIndirect ? NumArgGPRs - 1 : NumArgGPRs; 10370 int ArgFPRsLeft = FLen ? NumArgFPRs : 0; 10371 int NumFixedArgs = FI.getNumRequiredArgs(); 10372 10373 int ArgNum = 0; 10374 for (auto &ArgInfo : FI.arguments()) { 10375 bool IsFixed = ArgNum < NumFixedArgs; 10376 ArgInfo.info = 10377 classifyArgumentType(ArgInfo.type, IsFixed, ArgGPRsLeft, ArgFPRsLeft); 10378 ArgNum++; 10379 } 10380 } 10381 10382 // Returns true if the struct is a potential candidate for the floating point 10383 // calling convention. If this function returns true, the caller is 10384 // responsible for checking that if there is only a single field then that 10385 // field is a float. 10386 bool RISCVABIInfo::detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff, 10387 llvm::Type *&Field1Ty, 10388 CharUnits &Field1Off, 10389 llvm::Type *&Field2Ty, 10390 CharUnits &Field2Off) const { 10391 bool IsInt = Ty->isIntegralOrEnumerationType(); 10392 bool IsFloat = Ty->isRealFloatingType(); 10393 10394 if (IsInt || IsFloat) { 10395 uint64_t Size = getContext().getTypeSize(Ty); 10396 if (IsInt && Size > XLen) 10397 return false; 10398 // Can't be eligible if larger than the FP registers. Half precision isn't 10399 // currently supported on RISC-V and the ABI hasn't been confirmed, so 10400 // default to the integer ABI in that case. 10401 if (IsFloat && (Size > FLen || Size < 32)) 10402 return false; 10403 // Can't be eligible if an integer type was already found (int+int pairs 10404 // are not eligible). 10405 if (IsInt && Field1Ty && Field1Ty->isIntegerTy()) 10406 return false; 10407 if (!Field1Ty) { 10408 Field1Ty = CGT.ConvertType(Ty); 10409 Field1Off = CurOff; 10410 return true; 10411 } 10412 if (!Field2Ty) { 10413 Field2Ty = CGT.ConvertType(Ty); 10414 Field2Off = CurOff; 10415 return true; 10416 } 10417 return false; 10418 } 10419 10420 if (auto CTy = Ty->getAs<ComplexType>()) { 10421 if (Field1Ty) 10422 return false; 10423 QualType EltTy = CTy->getElementType(); 10424 if (getContext().getTypeSize(EltTy) > FLen) 10425 return false; 10426 Field1Ty = CGT.ConvertType(EltTy); 10427 Field1Off = CurOff; 10428 Field2Ty = Field1Ty; 10429 Field2Off = Field1Off + getContext().getTypeSizeInChars(EltTy); 10430 return true; 10431 } 10432 10433 if (const ConstantArrayType *ATy = getContext().getAsConstantArrayType(Ty)) { 10434 uint64_t ArraySize = ATy->getSize().getZExtValue(); 10435 QualType EltTy = ATy->getElementType(); 10436 CharUnits EltSize = getContext().getTypeSizeInChars(EltTy); 10437 for (uint64_t i = 0; i < ArraySize; ++i) { 10438 bool Ret = detectFPCCEligibleStructHelper(EltTy, CurOff, Field1Ty, 10439 Field1Off, Field2Ty, Field2Off); 10440 if (!Ret) 10441 return false; 10442 CurOff += EltSize; 10443 } 10444 return true; 10445 } 10446 10447 if (const auto *RTy = Ty->getAs<RecordType>()) { 10448 // Structures with either a non-trivial destructor or a non-trivial 10449 // copy constructor are not eligible for the FP calling convention. 10450 if (getRecordArgABI(Ty, CGT.getCXXABI())) 10451 return false; 10452 if (isEmptyRecord(getContext(), Ty, true)) 10453 return true; 10454 const RecordDecl *RD = RTy->getDecl(); 10455 // Unions aren't eligible unless they're empty (which is caught above). 10456 if (RD->isUnion()) 10457 return false; 10458 int ZeroWidthBitFieldCount = 0; 10459 for (const FieldDecl *FD : RD->fields()) { 10460 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 10461 uint64_t FieldOffInBits = Layout.getFieldOffset(FD->getFieldIndex()); 10462 QualType QTy = FD->getType(); 10463 if (FD->isBitField()) { 10464 unsigned BitWidth = FD->getBitWidthValue(getContext()); 10465 // Allow a bitfield with a type greater than XLen as long as the 10466 // bitwidth is XLen or less. 10467 if (getContext().getTypeSize(QTy) > XLen && BitWidth <= XLen) 10468 QTy = getContext().getIntTypeForBitwidth(XLen, false); 10469 if (BitWidth == 0) { 10470 ZeroWidthBitFieldCount++; 10471 continue; 10472 } 10473 } 10474 10475 bool Ret = detectFPCCEligibleStructHelper( 10476 QTy, CurOff + getContext().toCharUnitsFromBits(FieldOffInBits), 10477 Field1Ty, Field1Off, Field2Ty, Field2Off); 10478 if (!Ret) 10479 return false; 10480 10481 // As a quirk of the ABI, zero-width bitfields aren't ignored for fp+fp 10482 // or int+fp structs, but are ignored for a struct with an fp field and 10483 // any number of zero-width bitfields. 10484 if (Field2Ty && ZeroWidthBitFieldCount > 0) 10485 return false; 10486 } 10487 return Field1Ty != nullptr; 10488 } 10489 10490 return false; 10491 } 10492 10493 // Determine if a struct is eligible for passing according to the floating 10494 // point calling convention (i.e., when flattened it contains a single fp 10495 // value, fp+fp, or int+fp of appropriate size). If so, NeededArgFPRs and 10496 // NeededArgGPRs are incremented appropriately. 10497 bool RISCVABIInfo::detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty, 10498 CharUnits &Field1Off, 10499 llvm::Type *&Field2Ty, 10500 CharUnits &Field2Off, 10501 int &NeededArgGPRs, 10502 int &NeededArgFPRs) const { 10503 Field1Ty = nullptr; 10504 Field2Ty = nullptr; 10505 NeededArgGPRs = 0; 10506 NeededArgFPRs = 0; 10507 bool IsCandidate = detectFPCCEligibleStructHelper( 10508 Ty, CharUnits::Zero(), Field1Ty, Field1Off, Field2Ty, Field2Off); 10509 // Not really a candidate if we have a single int but no float. 10510 if (Field1Ty && !Field2Ty && !Field1Ty->isFloatingPointTy()) 10511 return false; 10512 if (!IsCandidate) 10513 return false; 10514 if (Field1Ty && Field1Ty->isFloatingPointTy()) 10515 NeededArgFPRs++; 10516 else if (Field1Ty) 10517 NeededArgGPRs++; 10518 if (Field2Ty && Field2Ty->isFloatingPointTy()) 10519 NeededArgFPRs++; 10520 else if (Field2Ty) 10521 NeededArgGPRs++; 10522 return true; 10523 } 10524 10525 // Call getCoerceAndExpand for the two-element flattened struct described by 10526 // Field1Ty, Field1Off, Field2Ty, Field2Off. This method will create an 10527 // appropriate coerceToType and unpaddedCoerceToType. 10528 ABIArgInfo RISCVABIInfo::coerceAndExpandFPCCEligibleStruct( 10529 llvm::Type *Field1Ty, CharUnits Field1Off, llvm::Type *Field2Ty, 10530 CharUnits Field2Off) const { 10531 SmallVector<llvm::Type *, 3> CoerceElts; 10532 SmallVector<llvm::Type *, 2> UnpaddedCoerceElts; 10533 if (!Field1Off.isZero()) 10534 CoerceElts.push_back(llvm::ArrayType::get( 10535 llvm::Type::getInt8Ty(getVMContext()), Field1Off.getQuantity())); 10536 10537 CoerceElts.push_back(Field1Ty); 10538 UnpaddedCoerceElts.push_back(Field1Ty); 10539 10540 if (!Field2Ty) { 10541 return ABIArgInfo::getCoerceAndExpand( 10542 llvm::StructType::get(getVMContext(), CoerceElts, !Field1Off.isZero()), 10543 UnpaddedCoerceElts[0]); 10544 } 10545 10546 CharUnits Field2Align = 10547 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(Field2Ty)); 10548 CharUnits Field1End = Field1Off + 10549 CharUnits::fromQuantity(getDataLayout().getTypeStoreSize(Field1Ty)); 10550 CharUnits Field2OffNoPadNoPack = Field1End.alignTo(Field2Align); 10551 10552 CharUnits Padding = CharUnits::Zero(); 10553 if (Field2Off > Field2OffNoPadNoPack) 10554 Padding = Field2Off - Field2OffNoPadNoPack; 10555 else if (Field2Off != Field2Align && Field2Off > Field1End) 10556 Padding = Field2Off - Field1End; 10557 10558 bool IsPacked = !Field2Off.isMultipleOf(Field2Align); 10559 10560 if (!Padding.isZero()) 10561 CoerceElts.push_back(llvm::ArrayType::get( 10562 llvm::Type::getInt8Ty(getVMContext()), Padding.getQuantity())); 10563 10564 CoerceElts.push_back(Field2Ty); 10565 UnpaddedCoerceElts.push_back(Field2Ty); 10566 10567 auto CoerceToType = 10568 llvm::StructType::get(getVMContext(), CoerceElts, IsPacked); 10569 auto UnpaddedCoerceToType = 10570 llvm::StructType::get(getVMContext(), UnpaddedCoerceElts, IsPacked); 10571 10572 return ABIArgInfo::getCoerceAndExpand(CoerceToType, UnpaddedCoerceToType); 10573 } 10574 10575 ABIArgInfo RISCVABIInfo::classifyArgumentType(QualType Ty, bool IsFixed, 10576 int &ArgGPRsLeft, 10577 int &ArgFPRsLeft) const { 10578 assert(ArgGPRsLeft <= NumArgGPRs && "Arg GPR tracking underflow"); 10579 Ty = useFirstFieldIfTransparentUnion(Ty); 10580 10581 // Structures with either a non-trivial destructor or a non-trivial 10582 // copy constructor are always passed indirectly. 10583 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 10584 if (ArgGPRsLeft) 10585 ArgGPRsLeft -= 1; 10586 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 10587 CGCXXABI::RAA_DirectInMemory); 10588 } 10589 10590 // Ignore empty structs/unions. 10591 if (isEmptyRecord(getContext(), Ty, true)) 10592 return ABIArgInfo::getIgnore(); 10593 10594 uint64_t Size = getContext().getTypeSize(Ty); 10595 10596 // Pass floating point values via FPRs if possible. 10597 if (IsFixed && Ty->isFloatingType() && !Ty->isComplexType() && 10598 FLen >= Size && ArgFPRsLeft) { 10599 ArgFPRsLeft--; 10600 return ABIArgInfo::getDirect(); 10601 } 10602 10603 // Complex types for the hard float ABI must be passed direct rather than 10604 // using CoerceAndExpand. 10605 if (IsFixed && Ty->isComplexType() && FLen && ArgFPRsLeft >= 2) { 10606 QualType EltTy = Ty->castAs<ComplexType>()->getElementType(); 10607 if (getContext().getTypeSize(EltTy) <= FLen) { 10608 ArgFPRsLeft -= 2; 10609 return ABIArgInfo::getDirect(); 10610 } 10611 } 10612 10613 if (IsFixed && FLen && Ty->isStructureOrClassType()) { 10614 llvm::Type *Field1Ty = nullptr; 10615 llvm::Type *Field2Ty = nullptr; 10616 CharUnits Field1Off = CharUnits::Zero(); 10617 CharUnits Field2Off = CharUnits::Zero(); 10618 int NeededArgGPRs; 10619 int NeededArgFPRs; 10620 bool IsCandidate = 10621 detectFPCCEligibleStruct(Ty, Field1Ty, Field1Off, Field2Ty, Field2Off, 10622 NeededArgGPRs, NeededArgFPRs); 10623 if (IsCandidate && NeededArgGPRs <= ArgGPRsLeft && 10624 NeededArgFPRs <= ArgFPRsLeft) { 10625 ArgGPRsLeft -= NeededArgGPRs; 10626 ArgFPRsLeft -= NeededArgFPRs; 10627 return coerceAndExpandFPCCEligibleStruct(Field1Ty, Field1Off, Field2Ty, 10628 Field2Off); 10629 } 10630 } 10631 10632 uint64_t NeededAlign = getContext().getTypeAlign(Ty); 10633 bool MustUseStack = false; 10634 // Determine the number of GPRs needed to pass the current argument 10635 // according to the ABI. 2*XLen-aligned varargs are passed in "aligned" 10636 // register pairs, so may consume 3 registers. 10637 int NeededArgGPRs = 1; 10638 if (!IsFixed && NeededAlign == 2 * XLen) 10639 NeededArgGPRs = 2 + (ArgGPRsLeft % 2); 10640 else if (Size > XLen && Size <= 2 * XLen) 10641 NeededArgGPRs = 2; 10642 10643 if (NeededArgGPRs > ArgGPRsLeft) { 10644 MustUseStack = true; 10645 NeededArgGPRs = ArgGPRsLeft; 10646 } 10647 10648 ArgGPRsLeft -= NeededArgGPRs; 10649 10650 if (!isAggregateTypeForABI(Ty) && !Ty->isVectorType()) { 10651 // Treat an enum type as its underlying type. 10652 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 10653 Ty = EnumTy->getDecl()->getIntegerType(); 10654 10655 // All integral types are promoted to XLen width, unless passed on the 10656 // stack. 10657 if (Size < XLen && Ty->isIntegralOrEnumerationType() && !MustUseStack) { 10658 return extendType(Ty); 10659 } 10660 10661 if (const auto *EIT = Ty->getAs<ExtIntType>()) { 10662 if (EIT->getNumBits() < XLen && !MustUseStack) 10663 return extendType(Ty); 10664 if (EIT->getNumBits() > 128 || 10665 (!getContext().getTargetInfo().hasInt128Type() && 10666 EIT->getNumBits() > 64)) 10667 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 10668 } 10669 10670 return ABIArgInfo::getDirect(); 10671 } 10672 10673 // Aggregates which are <= 2*XLen will be passed in registers if possible, 10674 // so coerce to integers. 10675 if (Size <= 2 * XLen) { 10676 unsigned Alignment = getContext().getTypeAlign(Ty); 10677 10678 // Use a single XLen int if possible, 2*XLen if 2*XLen alignment is 10679 // required, and a 2-element XLen array if only XLen alignment is required. 10680 if (Size <= XLen) { 10681 return ABIArgInfo::getDirect( 10682 llvm::IntegerType::get(getVMContext(), XLen)); 10683 } else if (Alignment == 2 * XLen) { 10684 return ABIArgInfo::getDirect( 10685 llvm::IntegerType::get(getVMContext(), 2 * XLen)); 10686 } else { 10687 return ABIArgInfo::getDirect(llvm::ArrayType::get( 10688 llvm::IntegerType::get(getVMContext(), XLen), 2)); 10689 } 10690 } 10691 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 10692 } 10693 10694 ABIArgInfo RISCVABIInfo::classifyReturnType(QualType RetTy) const { 10695 if (RetTy->isVoidType()) 10696 return ABIArgInfo::getIgnore(); 10697 10698 int ArgGPRsLeft = 2; 10699 int ArgFPRsLeft = FLen ? 2 : 0; 10700 10701 // The rules for return and argument types are the same, so defer to 10702 // classifyArgumentType. 10703 return classifyArgumentType(RetTy, /*IsFixed=*/true, ArgGPRsLeft, 10704 ArgFPRsLeft); 10705 } 10706 10707 Address RISCVABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 10708 QualType Ty) const { 10709 CharUnits SlotSize = CharUnits::fromQuantity(XLen / 8); 10710 10711 // Empty records are ignored for parameter passing purposes. 10712 if (isEmptyRecord(getContext(), Ty, true)) { 10713 Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize); 10714 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 10715 return Addr; 10716 } 10717 10718 auto TInfo = getContext().getTypeInfoInChars(Ty); 10719 10720 // Arguments bigger than 2*Xlen bytes are passed indirectly. 10721 bool IsIndirect = TInfo.Width > 2 * SlotSize; 10722 10723 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TInfo, 10724 SlotSize, /*AllowHigherAlign=*/true); 10725 } 10726 10727 ABIArgInfo RISCVABIInfo::extendType(QualType Ty) const { 10728 int TySize = getContext().getTypeSize(Ty); 10729 // RV64 ABI requires unsigned 32 bit integers to be sign extended. 10730 if (XLen == 64 && Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 10731 return ABIArgInfo::getSignExtend(Ty); 10732 return ABIArgInfo::getExtend(Ty); 10733 } 10734 10735 namespace { 10736 class RISCVTargetCodeGenInfo : public TargetCodeGenInfo { 10737 public: 10738 RISCVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen, 10739 unsigned FLen) 10740 : TargetCodeGenInfo(std::make_unique<RISCVABIInfo>(CGT, XLen, FLen)) {} 10741 10742 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 10743 CodeGen::CodeGenModule &CGM) const override { 10744 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 10745 if (!FD) return; 10746 10747 const auto *Attr = FD->getAttr<RISCVInterruptAttr>(); 10748 if (!Attr) 10749 return; 10750 10751 const char *Kind; 10752 switch (Attr->getInterrupt()) { 10753 case RISCVInterruptAttr::user: Kind = "user"; break; 10754 case RISCVInterruptAttr::supervisor: Kind = "supervisor"; break; 10755 case RISCVInterruptAttr::machine: Kind = "machine"; break; 10756 } 10757 10758 auto *Fn = cast<llvm::Function>(GV); 10759 10760 Fn->addFnAttr("interrupt", Kind); 10761 } 10762 }; 10763 } // namespace 10764 10765 //===----------------------------------------------------------------------===// 10766 // VE ABI Implementation. 10767 // 10768 namespace { 10769 class VEABIInfo : public DefaultABIInfo { 10770 public: 10771 VEABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 10772 10773 private: 10774 ABIArgInfo classifyReturnType(QualType RetTy) const; 10775 ABIArgInfo classifyArgumentType(QualType RetTy) const; 10776 void computeInfo(CGFunctionInfo &FI) const override; 10777 }; 10778 } // end anonymous namespace 10779 10780 ABIArgInfo VEABIInfo::classifyReturnType(QualType Ty) const { 10781 if (Ty->isAnyComplexType()) 10782 return ABIArgInfo::getDirect(); 10783 uint64_t Size = getContext().getTypeSize(Ty); 10784 if (Size < 64 && Ty->isIntegerType()) 10785 return ABIArgInfo::getExtend(Ty); 10786 return DefaultABIInfo::classifyReturnType(Ty); 10787 } 10788 10789 ABIArgInfo VEABIInfo::classifyArgumentType(QualType Ty) const { 10790 if (Ty->isAnyComplexType()) 10791 return ABIArgInfo::getDirect(); 10792 uint64_t Size = getContext().getTypeSize(Ty); 10793 if (Size < 64 && Ty->isIntegerType()) 10794 return ABIArgInfo::getExtend(Ty); 10795 return DefaultABIInfo::classifyArgumentType(Ty); 10796 } 10797 10798 void VEABIInfo::computeInfo(CGFunctionInfo &FI) const { 10799 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 10800 for (auto &Arg : FI.arguments()) 10801 Arg.info = classifyArgumentType(Arg.type); 10802 } 10803 10804 namespace { 10805 class VETargetCodeGenInfo : public TargetCodeGenInfo { 10806 public: 10807 VETargetCodeGenInfo(CodeGenTypes &CGT) 10808 : TargetCodeGenInfo(std::make_unique<VEABIInfo>(CGT)) {} 10809 // VE ABI requires the arguments of variadic and prototype-less functions 10810 // are passed in both registers and memory. 10811 bool isNoProtoCallVariadic(const CallArgList &args, 10812 const FunctionNoProtoType *fnType) const override { 10813 return true; 10814 } 10815 }; 10816 } // end anonymous namespace 10817 10818 //===----------------------------------------------------------------------===// 10819 // Driver code 10820 //===----------------------------------------------------------------------===// 10821 10822 bool CodeGenModule::supportsCOMDAT() const { 10823 return getTriple().supportsCOMDAT(); 10824 } 10825 10826 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { 10827 if (TheTargetCodeGenInfo) 10828 return *TheTargetCodeGenInfo; 10829 10830 // Helper to set the unique_ptr while still keeping the return value. 10831 auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & { 10832 this->TheTargetCodeGenInfo.reset(P); 10833 return *P; 10834 }; 10835 10836 const llvm::Triple &Triple = getTarget().getTriple(); 10837 switch (Triple.getArch()) { 10838 default: 10839 return SetCGInfo(new DefaultTargetCodeGenInfo(Types)); 10840 10841 case llvm::Triple::le32: 10842 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 10843 case llvm::Triple::mips: 10844 case llvm::Triple::mipsel: 10845 if (Triple.getOS() == llvm::Triple::NaCl) 10846 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 10847 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true)); 10848 10849 case llvm::Triple::mips64: 10850 case llvm::Triple::mips64el: 10851 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false)); 10852 10853 case llvm::Triple::avr: 10854 return SetCGInfo(new AVRTargetCodeGenInfo(Types)); 10855 10856 case llvm::Triple::aarch64: 10857 case llvm::Triple::aarch64_32: 10858 case llvm::Triple::aarch64_be: { 10859 AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS; 10860 if (getTarget().getABI() == "darwinpcs") 10861 Kind = AArch64ABIInfo::DarwinPCS; 10862 else if (Triple.isOSWindows()) 10863 return SetCGInfo( 10864 new WindowsAArch64TargetCodeGenInfo(Types, AArch64ABIInfo::Win64)); 10865 10866 return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind)); 10867 } 10868 10869 case llvm::Triple::wasm32: 10870 case llvm::Triple::wasm64: { 10871 WebAssemblyABIInfo::ABIKind Kind = WebAssemblyABIInfo::MVP; 10872 if (getTarget().getABI() == "experimental-mv") 10873 Kind = WebAssemblyABIInfo::ExperimentalMV; 10874 return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types, Kind)); 10875 } 10876 10877 case llvm::Triple::arm: 10878 case llvm::Triple::armeb: 10879 case llvm::Triple::thumb: 10880 case llvm::Triple::thumbeb: { 10881 if (Triple.getOS() == llvm::Triple::Win32) { 10882 return SetCGInfo( 10883 new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP)); 10884 } 10885 10886 ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS; 10887 StringRef ABIStr = getTarget().getABI(); 10888 if (ABIStr == "apcs-gnu") 10889 Kind = ARMABIInfo::APCS; 10890 else if (ABIStr == "aapcs16") 10891 Kind = ARMABIInfo::AAPCS16_VFP; 10892 else if (CodeGenOpts.FloatABI == "hard" || 10893 (CodeGenOpts.FloatABI != "soft" && 10894 (Triple.getEnvironment() == llvm::Triple::GNUEABIHF || 10895 Triple.getEnvironment() == llvm::Triple::MuslEABIHF || 10896 Triple.getEnvironment() == llvm::Triple::EABIHF))) 10897 Kind = ARMABIInfo::AAPCS_VFP; 10898 10899 return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind)); 10900 } 10901 10902 case llvm::Triple::ppc: { 10903 if (Triple.isOSAIX()) 10904 return SetCGInfo(new AIXTargetCodeGenInfo(Types, /*Is64Bit*/ false)); 10905 10906 bool IsSoftFloat = 10907 CodeGenOpts.FloatABI == "soft" || getTarget().hasFeature("spe"); 10908 bool RetSmallStructInRegABI = 10909 PPC32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 10910 return SetCGInfo( 10911 new PPC32TargetCodeGenInfo(Types, IsSoftFloat, RetSmallStructInRegABI)); 10912 } 10913 case llvm::Triple::ppc64: 10914 if (Triple.isOSAIX()) 10915 return SetCGInfo(new AIXTargetCodeGenInfo(Types, /*Is64Bit*/ true)); 10916 10917 if (Triple.isOSBinFormatELF()) { 10918 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1; 10919 if (getTarget().getABI() == "elfv2") 10920 Kind = PPC64_SVR4_ABIInfo::ELFv2; 10921 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 10922 10923 return SetCGInfo( 10924 new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, IsSoftFloat)); 10925 } 10926 return SetCGInfo(new PPC64TargetCodeGenInfo(Types)); 10927 case llvm::Triple::ppc64le: { 10928 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); 10929 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2; 10930 if (getTarget().getABI() == "elfv1") 10931 Kind = PPC64_SVR4_ABIInfo::ELFv1; 10932 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 10933 10934 return SetCGInfo( 10935 new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, IsSoftFloat)); 10936 } 10937 10938 case llvm::Triple::nvptx: 10939 case llvm::Triple::nvptx64: 10940 return SetCGInfo(new NVPTXTargetCodeGenInfo(Types)); 10941 10942 case llvm::Triple::msp430: 10943 return SetCGInfo(new MSP430TargetCodeGenInfo(Types)); 10944 10945 case llvm::Triple::riscv32: 10946 case llvm::Triple::riscv64: { 10947 StringRef ABIStr = getTarget().getABI(); 10948 unsigned XLen = getTarget().getPointerWidth(0); 10949 unsigned ABIFLen = 0; 10950 if (ABIStr.endswith("f")) 10951 ABIFLen = 32; 10952 else if (ABIStr.endswith("d")) 10953 ABIFLen = 64; 10954 return SetCGInfo(new RISCVTargetCodeGenInfo(Types, XLen, ABIFLen)); 10955 } 10956 10957 case llvm::Triple::systemz: { 10958 bool SoftFloat = CodeGenOpts.FloatABI == "soft"; 10959 bool HasVector = !SoftFloat && getTarget().getABI() == "vector"; 10960 return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector, SoftFloat)); 10961 } 10962 10963 case llvm::Triple::tce: 10964 case llvm::Triple::tcele: 10965 return SetCGInfo(new TCETargetCodeGenInfo(Types)); 10966 10967 case llvm::Triple::x86: { 10968 bool IsDarwinVectorABI = Triple.isOSDarwin(); 10969 bool RetSmallStructInRegABI = 10970 X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 10971 bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing(); 10972 10973 if (Triple.getOS() == llvm::Triple::Win32) { 10974 return SetCGInfo(new WinX86_32TargetCodeGenInfo( 10975 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 10976 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters)); 10977 } else { 10978 return SetCGInfo(new X86_32TargetCodeGenInfo( 10979 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 10980 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters, 10981 CodeGenOpts.FloatABI == "soft")); 10982 } 10983 } 10984 10985 case llvm::Triple::x86_64: { 10986 StringRef ABI = getTarget().getABI(); 10987 X86AVXABILevel AVXLevel = 10988 (ABI == "avx512" 10989 ? X86AVXABILevel::AVX512 10990 : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None); 10991 10992 switch (Triple.getOS()) { 10993 case llvm::Triple::Win32: 10994 return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel)); 10995 default: 10996 return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel)); 10997 } 10998 } 10999 case llvm::Triple::hexagon: 11000 return SetCGInfo(new HexagonTargetCodeGenInfo(Types)); 11001 case llvm::Triple::lanai: 11002 return SetCGInfo(new LanaiTargetCodeGenInfo(Types)); 11003 case llvm::Triple::r600: 11004 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 11005 case llvm::Triple::amdgcn: 11006 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 11007 case llvm::Triple::sparc: 11008 return SetCGInfo(new SparcV8TargetCodeGenInfo(Types)); 11009 case llvm::Triple::sparcv9: 11010 return SetCGInfo(new SparcV9TargetCodeGenInfo(Types)); 11011 case llvm::Triple::xcore: 11012 return SetCGInfo(new XCoreTargetCodeGenInfo(Types)); 11013 case llvm::Triple::arc: 11014 return SetCGInfo(new ARCTargetCodeGenInfo(Types)); 11015 case llvm::Triple::spir: 11016 case llvm::Triple::spir64: 11017 return SetCGInfo(new SPIRTargetCodeGenInfo(Types)); 11018 case llvm::Triple::ve: 11019 return SetCGInfo(new VETargetCodeGenInfo(Types)); 11020 } 11021 } 11022 11023 /// Create an OpenCL kernel for an enqueued block. 11024 /// 11025 /// The kernel has the same function type as the block invoke function. Its 11026 /// name is the name of the block invoke function postfixed with "_kernel". 11027 /// It simply calls the block invoke function then returns. 11028 llvm::Function * 11029 TargetCodeGenInfo::createEnqueuedBlockKernel(CodeGenFunction &CGF, 11030 llvm::Function *Invoke, 11031 llvm::Value *BlockLiteral) const { 11032 auto *InvokeFT = Invoke->getFunctionType(); 11033 llvm::SmallVector<llvm::Type *, 2> ArgTys; 11034 for (auto &P : InvokeFT->params()) 11035 ArgTys.push_back(P); 11036 auto &C = CGF.getLLVMContext(); 11037 std::string Name = Invoke->getName().str() + "_kernel"; 11038 auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false); 11039 auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name, 11040 &CGF.CGM.getModule()); 11041 auto IP = CGF.Builder.saveIP(); 11042 auto *BB = llvm::BasicBlock::Create(C, "entry", F); 11043 auto &Builder = CGF.Builder; 11044 Builder.SetInsertPoint(BB); 11045 llvm::SmallVector<llvm::Value *, 2> Args; 11046 for (auto &A : F->args()) 11047 Args.push_back(&A); 11048 Builder.CreateCall(Invoke, Args); 11049 Builder.CreateRetVoid(); 11050 Builder.restoreIP(IP); 11051 return F; 11052 } 11053 11054 /// Create an OpenCL kernel for an enqueued block. 11055 /// 11056 /// The type of the first argument (the block literal) is the struct type 11057 /// of the block literal instead of a pointer type. The first argument 11058 /// (block literal) is passed directly by value to the kernel. The kernel 11059 /// allocates the same type of struct on stack and stores the block literal 11060 /// to it and passes its pointer to the block invoke function. The kernel 11061 /// has "enqueued-block" function attribute and kernel argument metadata. 11062 llvm::Function *AMDGPUTargetCodeGenInfo::createEnqueuedBlockKernel( 11063 CodeGenFunction &CGF, llvm::Function *Invoke, 11064 llvm::Value *BlockLiteral) const { 11065 auto &Builder = CGF.Builder; 11066 auto &C = CGF.getLLVMContext(); 11067 11068 auto *BlockTy = BlockLiteral->getType()->getPointerElementType(); 11069 auto *InvokeFT = Invoke->getFunctionType(); 11070 llvm::SmallVector<llvm::Type *, 2> ArgTys; 11071 llvm::SmallVector<llvm::Metadata *, 8> AddressQuals; 11072 llvm::SmallVector<llvm::Metadata *, 8> AccessQuals; 11073 llvm::SmallVector<llvm::Metadata *, 8> ArgTypeNames; 11074 llvm::SmallVector<llvm::Metadata *, 8> ArgBaseTypeNames; 11075 llvm::SmallVector<llvm::Metadata *, 8> ArgTypeQuals; 11076 llvm::SmallVector<llvm::Metadata *, 8> ArgNames; 11077 11078 ArgTys.push_back(BlockTy); 11079 ArgTypeNames.push_back(llvm::MDString::get(C, "__block_literal")); 11080 AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(0))); 11081 ArgBaseTypeNames.push_back(llvm::MDString::get(C, "__block_literal")); 11082 ArgTypeQuals.push_back(llvm::MDString::get(C, "")); 11083 AccessQuals.push_back(llvm::MDString::get(C, "none")); 11084 ArgNames.push_back(llvm::MDString::get(C, "block_literal")); 11085 for (unsigned I = 1, E = InvokeFT->getNumParams(); I < E; ++I) { 11086 ArgTys.push_back(InvokeFT->getParamType(I)); 11087 ArgTypeNames.push_back(llvm::MDString::get(C, "void*")); 11088 AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(3))); 11089 AccessQuals.push_back(llvm::MDString::get(C, "none")); 11090 ArgBaseTypeNames.push_back(llvm::MDString::get(C, "void*")); 11091 ArgTypeQuals.push_back(llvm::MDString::get(C, "")); 11092 ArgNames.push_back( 11093 llvm::MDString::get(C, (Twine("local_arg") + Twine(I)).str())); 11094 } 11095 std::string Name = Invoke->getName().str() + "_kernel"; 11096 auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false); 11097 auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name, 11098 &CGF.CGM.getModule()); 11099 F->addFnAttr("enqueued-block"); 11100 auto IP = CGF.Builder.saveIP(); 11101 auto *BB = llvm::BasicBlock::Create(C, "entry", F); 11102 Builder.SetInsertPoint(BB); 11103 const auto BlockAlign = CGF.CGM.getDataLayout().getPrefTypeAlign(BlockTy); 11104 auto *BlockPtr = Builder.CreateAlloca(BlockTy, nullptr); 11105 BlockPtr->setAlignment(BlockAlign); 11106 Builder.CreateAlignedStore(F->arg_begin(), BlockPtr, BlockAlign); 11107 auto *Cast = Builder.CreatePointerCast(BlockPtr, InvokeFT->getParamType(0)); 11108 llvm::SmallVector<llvm::Value *, 2> Args; 11109 Args.push_back(Cast); 11110 for (auto I = F->arg_begin() + 1, E = F->arg_end(); I != E; ++I) 11111 Args.push_back(I); 11112 Builder.CreateCall(Invoke, Args); 11113 Builder.CreateRetVoid(); 11114 Builder.restoreIP(IP); 11115 11116 F->setMetadata("kernel_arg_addr_space", llvm::MDNode::get(C, AddressQuals)); 11117 F->setMetadata("kernel_arg_access_qual", llvm::MDNode::get(C, AccessQuals)); 11118 F->setMetadata("kernel_arg_type", llvm::MDNode::get(C, ArgTypeNames)); 11119 F->setMetadata("kernel_arg_base_type", 11120 llvm::MDNode::get(C, ArgBaseTypeNames)); 11121 F->setMetadata("kernel_arg_type_qual", llvm::MDNode::get(C, ArgTypeQuals)); 11122 if (CGF.CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 11123 F->setMetadata("kernel_arg_name", llvm::MDNode::get(C, ArgNames)); 11124 11125 return F; 11126 } 11127