1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // These classes wrap the information about a call or function
11 // definition used to handle ABI compliancy.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "TargetInfo.h"
16 #include "ABIInfo.h"
17 #include "CGCXXABI.h"
18 #include "CGValue.h"
19 #include "CodeGenFunction.h"
20 #include "clang/AST/RecordLayout.h"
21 #include "clang/CodeGen/CGFunctionInfo.h"
22 #include "clang/CodeGen/SwiftCallingConv.h"
23 #include "clang/Frontend/CodeGenOptions.h"
24 #include "llvm/ADT/StringExtras.h"
25 #include "llvm/ADT/Triple.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/Type.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include <algorithm>    // std::sort
30 
31 using namespace clang;
32 using namespace CodeGen;
33 
34 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
35                                llvm::Value *Array,
36                                llvm::Value *Value,
37                                unsigned FirstIndex,
38                                unsigned LastIndex) {
39   // Alternatively, we could emit this as a loop in the source.
40   for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
41     llvm::Value *Cell =
42         Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I);
43     Builder.CreateAlignedStore(Value, Cell, CharUnits::One());
44   }
45 }
46 
47 static bool isAggregateTypeForABI(QualType T) {
48   return !CodeGenFunction::hasScalarEvaluationKind(T) ||
49          T->isMemberFunctionPointerType();
50 }
51 
52 ABIArgInfo
53 ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByRef, bool Realign,
54                                  llvm::Type *Padding) const {
55   return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty),
56                                  ByRef, Realign, Padding);
57 }
58 
59 ABIArgInfo
60 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const {
61   return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty),
62                                       /*ByRef*/ false, Realign);
63 }
64 
65 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
66                              QualType Ty) const {
67   return Address::invalid();
68 }
69 
70 ABIInfo::~ABIInfo() {}
71 
72 /// Does the given lowering require more than the given number of
73 /// registers when expanded?
74 ///
75 /// This is intended to be the basis of a reasonable basic implementation
76 /// of should{Pass,Return}IndirectlyForSwift.
77 ///
78 /// For most targets, a limit of four total registers is reasonable; this
79 /// limits the amount of code required in order to move around the value
80 /// in case it wasn't produced immediately prior to the call by the caller
81 /// (or wasn't produced in exactly the right registers) or isn't used
82 /// immediately within the callee.  But some targets may need to further
83 /// limit the register count due to an inability to support that many
84 /// return registers.
85 static bool occupiesMoreThan(CodeGenTypes &cgt,
86                              ArrayRef<llvm::Type*> scalarTypes,
87                              unsigned maxAllRegisters) {
88   unsigned intCount = 0, fpCount = 0;
89   for (llvm::Type *type : scalarTypes) {
90     if (type->isPointerTy()) {
91       intCount++;
92     } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) {
93       auto ptrWidth = cgt.getTarget().getPointerWidth(0);
94       intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth;
95     } else {
96       assert(type->isVectorTy() || type->isFloatingPointTy());
97       fpCount++;
98     }
99   }
100 
101   return (intCount + fpCount > maxAllRegisters);
102 }
103 
104 bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize,
105                                              llvm::Type *eltTy,
106                                              unsigned numElts) const {
107   // The default implementation of this assumes that the target guarantees
108   // 128-bit SIMD support but nothing more.
109   return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16);
110 }
111 
112 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT,
113                                               CGCXXABI &CXXABI) {
114   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
115   if (!RD)
116     return CGCXXABI::RAA_Default;
117   return CXXABI.getRecordArgABI(RD);
118 }
119 
120 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T,
121                                               CGCXXABI &CXXABI) {
122   const RecordType *RT = T->getAs<RecordType>();
123   if (!RT)
124     return CGCXXABI::RAA_Default;
125   return getRecordArgABI(RT, CXXABI);
126 }
127 
128 /// Pass transparent unions as if they were the type of the first element. Sema
129 /// should ensure that all elements of the union have the same "machine type".
130 static QualType useFirstFieldIfTransparentUnion(QualType Ty) {
131   if (const RecordType *UT = Ty->getAsUnionType()) {
132     const RecordDecl *UD = UT->getDecl();
133     if (UD->hasAttr<TransparentUnionAttr>()) {
134       assert(!UD->field_empty() && "sema created an empty transparent union");
135       return UD->field_begin()->getType();
136     }
137   }
138   return Ty;
139 }
140 
141 CGCXXABI &ABIInfo::getCXXABI() const {
142   return CGT.getCXXABI();
143 }
144 
145 ASTContext &ABIInfo::getContext() const {
146   return CGT.getContext();
147 }
148 
149 llvm::LLVMContext &ABIInfo::getVMContext() const {
150   return CGT.getLLVMContext();
151 }
152 
153 const llvm::DataLayout &ABIInfo::getDataLayout() const {
154   return CGT.getDataLayout();
155 }
156 
157 const TargetInfo &ABIInfo::getTarget() const {
158   return CGT.getTarget();
159 }
160 
161 bool ABIInfo:: isAndroid() const { return getTarget().getTriple().isAndroid(); }
162 
163 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
164   return false;
165 }
166 
167 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
168                                                 uint64_t Members) const {
169   return false;
170 }
171 
172 bool ABIInfo::shouldSignExtUnsignedType(QualType Ty) const {
173   return false;
174 }
175 
176 LLVM_DUMP_METHOD void ABIArgInfo::dump() const {
177   raw_ostream &OS = llvm::errs();
178   OS << "(ABIArgInfo Kind=";
179   switch (TheKind) {
180   case Direct:
181     OS << "Direct Type=";
182     if (llvm::Type *Ty = getCoerceToType())
183       Ty->print(OS);
184     else
185       OS << "null";
186     break;
187   case Extend:
188     OS << "Extend";
189     break;
190   case Ignore:
191     OS << "Ignore";
192     break;
193   case InAlloca:
194     OS << "InAlloca Offset=" << getInAllocaFieldIndex();
195     break;
196   case Indirect:
197     OS << "Indirect Align=" << getIndirectAlign().getQuantity()
198        << " ByVal=" << getIndirectByVal()
199        << " Realign=" << getIndirectRealign();
200     break;
201   case Expand:
202     OS << "Expand";
203     break;
204   case CoerceAndExpand:
205     OS << "CoerceAndExpand Type=";
206     getCoerceAndExpandType()->print(OS);
207     break;
208   }
209   OS << ")\n";
210 }
211 
212 // Dynamically round a pointer up to a multiple of the given alignment.
213 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF,
214                                                   llvm::Value *Ptr,
215                                                   CharUnits Align) {
216   llvm::Value *PtrAsInt = Ptr;
217   // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align;
218   PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy);
219   PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt,
220         llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1));
221   PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt,
222            llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity()));
223   PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt,
224                                         Ptr->getType(),
225                                         Ptr->getName() + ".aligned");
226   return PtrAsInt;
227 }
228 
229 /// Emit va_arg for a platform using the common void* representation,
230 /// where arguments are simply emitted in an array of slots on the stack.
231 ///
232 /// This version implements the core direct-value passing rules.
233 ///
234 /// \param SlotSize - The size and alignment of a stack slot.
235 ///   Each argument will be allocated to a multiple of this number of
236 ///   slots, and all the slots will be aligned to this value.
237 /// \param AllowHigherAlign - The slot alignment is not a cap;
238 ///   an argument type with an alignment greater than the slot size
239 ///   will be emitted on a higher-alignment address, potentially
240 ///   leaving one or more empty slots behind as padding.  If this
241 ///   is false, the returned address might be less-aligned than
242 ///   DirectAlign.
243 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF,
244                                       Address VAListAddr,
245                                       llvm::Type *DirectTy,
246                                       CharUnits DirectSize,
247                                       CharUnits DirectAlign,
248                                       CharUnits SlotSize,
249                                       bool AllowHigherAlign) {
250   // Cast the element type to i8* if necessary.  Some platforms define
251   // va_list as a struct containing an i8* instead of just an i8*.
252   if (VAListAddr.getElementType() != CGF.Int8PtrTy)
253     VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy);
254 
255   llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur");
256 
257   // If the CC aligns values higher than the slot size, do so if needed.
258   Address Addr = Address::invalid();
259   if (AllowHigherAlign && DirectAlign > SlotSize) {
260     Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign),
261                                                  DirectAlign);
262   } else {
263     Addr = Address(Ptr, SlotSize);
264   }
265 
266   // Advance the pointer past the argument, then store that back.
267   CharUnits FullDirectSize = DirectSize.alignTo(SlotSize);
268   llvm::Value *NextPtr =
269     CGF.Builder.CreateConstInBoundsByteGEP(Addr.getPointer(), FullDirectSize,
270                                            "argp.next");
271   CGF.Builder.CreateStore(NextPtr, VAListAddr);
272 
273   // If the argument is smaller than a slot, and this is a big-endian
274   // target, the argument will be right-adjusted in its slot.
275   if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian()) {
276     Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize);
277   }
278 
279   Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy);
280   return Addr;
281 }
282 
283 /// Emit va_arg for a platform using the common void* representation,
284 /// where arguments are simply emitted in an array of slots on the stack.
285 ///
286 /// \param IsIndirect - Values of this type are passed indirectly.
287 /// \param ValueInfo - The size and alignment of this type, generally
288 ///   computed with getContext().getTypeInfoInChars(ValueTy).
289 /// \param SlotSizeAndAlign - The size and alignment of a stack slot.
290 ///   Each argument will be allocated to a multiple of this number of
291 ///   slots, and all the slots will be aligned to this value.
292 /// \param AllowHigherAlign - The slot alignment is not a cap;
293 ///   an argument type with an alignment greater than the slot size
294 ///   will be emitted on a higher-alignment address, potentially
295 ///   leaving one or more empty slots behind as padding.
296 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr,
297                                 QualType ValueTy, bool IsIndirect,
298                                 std::pair<CharUnits, CharUnits> ValueInfo,
299                                 CharUnits SlotSizeAndAlign,
300                                 bool AllowHigherAlign) {
301   // The size and alignment of the value that was passed directly.
302   CharUnits DirectSize, DirectAlign;
303   if (IsIndirect) {
304     DirectSize = CGF.getPointerSize();
305     DirectAlign = CGF.getPointerAlign();
306   } else {
307     DirectSize = ValueInfo.first;
308     DirectAlign = ValueInfo.second;
309   }
310 
311   // Cast the address we've calculated to the right type.
312   llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy);
313   if (IsIndirect)
314     DirectTy = DirectTy->getPointerTo(0);
315 
316   Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy,
317                                         DirectSize, DirectAlign,
318                                         SlotSizeAndAlign,
319                                         AllowHigherAlign);
320 
321   if (IsIndirect) {
322     Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.second);
323   }
324 
325   return Addr;
326 
327 }
328 
329 static Address emitMergePHI(CodeGenFunction &CGF,
330                             Address Addr1, llvm::BasicBlock *Block1,
331                             Address Addr2, llvm::BasicBlock *Block2,
332                             const llvm::Twine &Name = "") {
333   assert(Addr1.getType() == Addr2.getType());
334   llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name);
335   PHI->addIncoming(Addr1.getPointer(), Block1);
336   PHI->addIncoming(Addr2.getPointer(), Block2);
337   CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment());
338   return Address(PHI, Align);
339 }
340 
341 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }
342 
343 // If someone can figure out a general rule for this, that would be great.
344 // It's probably just doomed to be platform-dependent, though.
345 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const {
346   // Verified for:
347   //   x86-64     FreeBSD, Linux, Darwin
348   //   x86-32     FreeBSD, Linux, Darwin
349   //   PowerPC    Linux, Darwin
350   //   ARM        Darwin (*not* EABI)
351   //   AArch64    Linux
352   return 32;
353 }
354 
355 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args,
356                                      const FunctionNoProtoType *fnType) const {
357   // The following conventions are known to require this to be false:
358   //   x86_stdcall
359   //   MIPS
360   // For everything else, we just prefer false unless we opt out.
361   return false;
362 }
363 
364 void
365 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib,
366                                              llvm::SmallString<24> &Opt) const {
367   // This assumes the user is passing a library name like "rt" instead of a
368   // filename like "librt.a/so", and that they don't care whether it's static or
369   // dynamic.
370   Opt = "-l";
371   Opt += Lib;
372 }
373 
374 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
375 
376 /// isEmptyField - Return true iff a the field is "empty", that is it
377 /// is an unnamed bit-field or an (array of) empty record(s).
378 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
379                          bool AllowArrays) {
380   if (FD->isUnnamedBitfield())
381     return true;
382 
383   QualType FT = FD->getType();
384 
385   // Constant arrays of empty records count as empty, strip them off.
386   // Constant arrays of zero length always count as empty.
387   if (AllowArrays)
388     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
389       if (AT->getSize() == 0)
390         return true;
391       FT = AT->getElementType();
392     }
393 
394   const RecordType *RT = FT->getAs<RecordType>();
395   if (!RT)
396     return false;
397 
398   // C++ record fields are never empty, at least in the Itanium ABI.
399   //
400   // FIXME: We should use a predicate for whether this behavior is true in the
401   // current ABI.
402   if (isa<CXXRecordDecl>(RT->getDecl()))
403     return false;
404 
405   return isEmptyRecord(Context, FT, AllowArrays);
406 }
407 
408 /// isEmptyRecord - Return true iff a structure contains only empty
409 /// fields. Note that a structure with a flexible array member is not
410 /// considered empty.
411 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
412   const RecordType *RT = T->getAs<RecordType>();
413   if (!RT)
414     return false;
415   const RecordDecl *RD = RT->getDecl();
416   if (RD->hasFlexibleArrayMember())
417     return false;
418 
419   // If this is a C++ record, check the bases first.
420   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
421     for (const auto &I : CXXRD->bases())
422       if (!isEmptyRecord(Context, I.getType(), true))
423         return false;
424 
425   for (const auto *I : RD->fields())
426     if (!isEmptyField(Context, I, AllowArrays))
427       return false;
428   return true;
429 }
430 
431 /// isSingleElementStruct - Determine if a structure is a "single
432 /// element struct", i.e. it has exactly one non-empty field or
433 /// exactly one field which is itself a single element
434 /// struct. Structures with flexible array members are never
435 /// considered single element structs.
436 ///
437 /// \return The field declaration for the single non-empty field, if
438 /// it exists.
439 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
440   const RecordType *RT = T->getAs<RecordType>();
441   if (!RT)
442     return nullptr;
443 
444   const RecordDecl *RD = RT->getDecl();
445   if (RD->hasFlexibleArrayMember())
446     return nullptr;
447 
448   const Type *Found = nullptr;
449 
450   // If this is a C++ record, check the bases first.
451   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
452     for (const auto &I : CXXRD->bases()) {
453       // Ignore empty records.
454       if (isEmptyRecord(Context, I.getType(), true))
455         continue;
456 
457       // If we already found an element then this isn't a single-element struct.
458       if (Found)
459         return nullptr;
460 
461       // If this is non-empty and not a single element struct, the composite
462       // cannot be a single element struct.
463       Found = isSingleElementStruct(I.getType(), Context);
464       if (!Found)
465         return nullptr;
466     }
467   }
468 
469   // Check for single element.
470   for (const auto *FD : RD->fields()) {
471     QualType FT = FD->getType();
472 
473     // Ignore empty fields.
474     if (isEmptyField(Context, FD, true))
475       continue;
476 
477     // If we already found an element then this isn't a single-element
478     // struct.
479     if (Found)
480       return nullptr;
481 
482     // Treat single element arrays as the element.
483     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
484       if (AT->getSize().getZExtValue() != 1)
485         break;
486       FT = AT->getElementType();
487     }
488 
489     if (!isAggregateTypeForABI(FT)) {
490       Found = FT.getTypePtr();
491     } else {
492       Found = isSingleElementStruct(FT, Context);
493       if (!Found)
494         return nullptr;
495     }
496   }
497 
498   // We don't consider a struct a single-element struct if it has
499   // padding beyond the element type.
500   if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T))
501     return nullptr;
502 
503   return Found;
504 }
505 
506 namespace {
507 Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty,
508                        const ABIArgInfo &AI) {
509   // This default implementation defers to the llvm backend's va_arg
510   // instruction. It can handle only passing arguments directly
511   // (typically only handled in the backend for primitive types), or
512   // aggregates passed indirectly by pointer (NOTE: if the "byval"
513   // flag has ABI impact in the callee, this implementation cannot
514   // work.)
515 
516   // Only a few cases are covered here at the moment -- those needed
517   // by the default abi.
518   llvm::Value *Val;
519 
520   if (AI.isIndirect()) {
521     assert(!AI.getPaddingType() &&
522            "Unexpected PaddingType seen in arginfo in generic VAArg emitter!");
523     assert(
524         !AI.getIndirectRealign() &&
525         "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!");
526 
527     auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty);
528     CharUnits TyAlignForABI = TyInfo.second;
529 
530     llvm::Type *BaseTy =
531         llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
532     llvm::Value *Addr =
533         CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy);
534     return Address(Addr, TyAlignForABI);
535   } else {
536     assert((AI.isDirect() || AI.isExtend()) &&
537            "Unexpected ArgInfo Kind in generic VAArg emitter!");
538 
539     assert(!AI.getInReg() &&
540            "Unexpected InReg seen in arginfo in generic VAArg emitter!");
541     assert(!AI.getPaddingType() &&
542            "Unexpected PaddingType seen in arginfo in generic VAArg emitter!");
543     assert(!AI.getDirectOffset() &&
544            "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!");
545     assert(!AI.getCoerceToType() &&
546            "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!");
547 
548     Address Temp = CGF.CreateMemTemp(Ty, "varet");
549     Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), CGF.ConvertType(Ty));
550     CGF.Builder.CreateStore(Val, Temp);
551     return Temp;
552   }
553 }
554 
555 /// DefaultABIInfo - The default implementation for ABI specific
556 /// details. This implementation provides information which results in
557 /// self-consistent and sensible LLVM IR generation, but does not
558 /// conform to any particular ABI.
559 class DefaultABIInfo : public ABIInfo {
560 public:
561   DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
562 
563   ABIArgInfo classifyReturnType(QualType RetTy) const;
564   ABIArgInfo classifyArgumentType(QualType RetTy) const;
565 
566   void computeInfo(CGFunctionInfo &FI) const override {
567     if (!getCXXABI().classifyReturnType(FI))
568       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
569     for (auto &I : FI.arguments())
570       I.info = classifyArgumentType(I.type);
571   }
572 
573   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
574                     QualType Ty) const override {
575     return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty));
576   }
577 };
578 
579 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
580 public:
581   DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
582     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
583 };
584 
585 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
586   Ty = useFirstFieldIfTransparentUnion(Ty);
587 
588   if (isAggregateTypeForABI(Ty)) {
589     // Records with non-trivial destructors/copy-constructors should not be
590     // passed by value.
591     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
592       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
593 
594     return getNaturalAlignIndirect(Ty);
595   }
596 
597   // Treat an enum type as its underlying type.
598   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
599     Ty = EnumTy->getDecl()->getIntegerType();
600 
601   return (Ty->isPromotableIntegerType() ?
602           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
603 }
604 
605 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
606   if (RetTy->isVoidType())
607     return ABIArgInfo::getIgnore();
608 
609   if (isAggregateTypeForABI(RetTy))
610     return getNaturalAlignIndirect(RetTy);
611 
612   // Treat an enum type as its underlying type.
613   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
614     RetTy = EnumTy->getDecl()->getIntegerType();
615 
616   return (RetTy->isPromotableIntegerType() ?
617           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
618 }
619 
620 //===----------------------------------------------------------------------===//
621 // WebAssembly ABI Implementation
622 //
623 // This is a very simple ABI that relies a lot on DefaultABIInfo.
624 //===----------------------------------------------------------------------===//
625 
626 class WebAssemblyABIInfo final : public DefaultABIInfo {
627 public:
628   explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT)
629       : DefaultABIInfo(CGT) {}
630 
631 private:
632   ABIArgInfo classifyReturnType(QualType RetTy) const;
633   ABIArgInfo classifyArgumentType(QualType Ty) const;
634 
635   // DefaultABIInfo's classifyReturnType and classifyArgumentType are
636   // non-virtual, but computeInfo and EmitVAArg are virtual, so we
637   // overload them.
638   void computeInfo(CGFunctionInfo &FI) const override {
639     if (!getCXXABI().classifyReturnType(FI))
640       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
641     for (auto &Arg : FI.arguments())
642       Arg.info = classifyArgumentType(Arg.type);
643   }
644 
645   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
646                     QualType Ty) const override;
647 };
648 
649 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo {
650 public:
651   explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
652       : TargetCodeGenInfo(new WebAssemblyABIInfo(CGT)) {}
653 };
654 
655 /// \brief Classify argument of given type \p Ty.
656 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const {
657   Ty = useFirstFieldIfTransparentUnion(Ty);
658 
659   if (isAggregateTypeForABI(Ty)) {
660     // Records with non-trivial destructors/copy-constructors should not be
661     // passed by value.
662     if (auto RAA = getRecordArgABI(Ty, getCXXABI()))
663       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
664     // Ignore empty structs/unions.
665     if (isEmptyRecord(getContext(), Ty, true))
666       return ABIArgInfo::getIgnore();
667     // Lower single-element structs to just pass a regular value. TODO: We
668     // could do reasonable-size multiple-element structs too, using getExpand(),
669     // though watch out for things like bitfields.
670     if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
671       return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
672   }
673 
674   // Otherwise just do the default thing.
675   return DefaultABIInfo::classifyArgumentType(Ty);
676 }
677 
678 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const {
679   if (isAggregateTypeForABI(RetTy)) {
680     // Records with non-trivial destructors/copy-constructors should not be
681     // returned by value.
682     if (!getRecordArgABI(RetTy, getCXXABI())) {
683       // Ignore empty structs/unions.
684       if (isEmptyRecord(getContext(), RetTy, true))
685         return ABIArgInfo::getIgnore();
686       // Lower single-element structs to just return a regular value. TODO: We
687       // could do reasonable-size multiple-element structs too, using
688       // ABIArgInfo::getDirect().
689       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
690         return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
691     }
692   }
693 
694   // Otherwise just do the default thing.
695   return DefaultABIInfo::classifyReturnType(RetTy);
696 }
697 
698 Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
699                                       QualType Ty) const {
700   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect=*/ false,
701                           getContext().getTypeInfoInChars(Ty),
702                           CharUnits::fromQuantity(4),
703                           /*AllowHigherAlign=*/ true);
704 }
705 
706 //===----------------------------------------------------------------------===//
707 // le32/PNaCl bitcode ABI Implementation
708 //
709 // This is a simplified version of the x86_32 ABI.  Arguments and return values
710 // are always passed on the stack.
711 //===----------------------------------------------------------------------===//
712 
713 class PNaClABIInfo : public ABIInfo {
714  public:
715   PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
716 
717   ABIArgInfo classifyReturnType(QualType RetTy) const;
718   ABIArgInfo classifyArgumentType(QualType RetTy) const;
719 
720   void computeInfo(CGFunctionInfo &FI) const override;
721   Address EmitVAArg(CodeGenFunction &CGF,
722                     Address VAListAddr, QualType Ty) const override;
723 };
724 
725 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo {
726  public:
727   PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
728     : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {}
729 };
730 
731 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const {
732   if (!getCXXABI().classifyReturnType(FI))
733     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
734 
735   for (auto &I : FI.arguments())
736     I.info = classifyArgumentType(I.type);
737 }
738 
739 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
740                                 QualType Ty) const {
741   // The PNaCL ABI is a bit odd, in that varargs don't use normal
742   // function classification. Structs get passed directly for varargs
743   // functions, through a rewriting transform in
744   // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows
745   // this target to actually support a va_arg instructions with an
746   // aggregate type, unlike other targets.
747   return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect());
748 }
749 
750 /// \brief Classify argument of given type \p Ty.
751 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const {
752   if (isAggregateTypeForABI(Ty)) {
753     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
754       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
755     return getNaturalAlignIndirect(Ty);
756   } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
757     // Treat an enum type as its underlying type.
758     Ty = EnumTy->getDecl()->getIntegerType();
759   } else if (Ty->isFloatingType()) {
760     // Floating-point types don't go inreg.
761     return ABIArgInfo::getDirect();
762   }
763 
764   return (Ty->isPromotableIntegerType() ?
765           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
766 }
767 
768 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const {
769   if (RetTy->isVoidType())
770     return ABIArgInfo::getIgnore();
771 
772   // In the PNaCl ABI we always return records/structures on the stack.
773   if (isAggregateTypeForABI(RetTy))
774     return getNaturalAlignIndirect(RetTy);
775 
776   // Treat an enum type as its underlying type.
777   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
778     RetTy = EnumTy->getDecl()->getIntegerType();
779 
780   return (RetTy->isPromotableIntegerType() ?
781           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
782 }
783 
784 /// IsX86_MMXType - Return true if this is an MMX type.
785 bool IsX86_MMXType(llvm::Type *IRType) {
786   // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>.
787   return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
788     cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
789     IRType->getScalarSizeInBits() != 64;
790 }
791 
792 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
793                                           StringRef Constraint,
794                                           llvm::Type* Ty) {
795   if ((Constraint == "y" || Constraint == "&y") && Ty->isVectorTy()) {
796     if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) {
797       // Invalid MMX constraint
798       return nullptr;
799     }
800 
801     return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
802   }
803 
804   // No operation needed
805   return Ty;
806 }
807 
808 /// Returns true if this type can be passed in SSE registers with the
809 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64.
810 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) {
811   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
812     if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half)
813       return true;
814   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
815     // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX
816     // registers specially.
817     unsigned VecSize = Context.getTypeSize(VT);
818     if (VecSize == 128 || VecSize == 256 || VecSize == 512)
819       return true;
820   }
821   return false;
822 }
823 
824 /// Returns true if this aggregate is small enough to be passed in SSE registers
825 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64.
826 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) {
827   return NumMembers <= 4;
828 }
829 
830 //===----------------------------------------------------------------------===//
831 // X86-32 ABI Implementation
832 //===----------------------------------------------------------------------===//
833 
834 /// \brief Similar to llvm::CCState, but for Clang.
835 struct CCState {
836   CCState(unsigned CC) : CC(CC), FreeRegs(0), FreeSSERegs(0) {}
837 
838   unsigned CC;
839   unsigned FreeRegs;
840   unsigned FreeSSERegs;
841 };
842 
843 /// X86_32ABIInfo - The X86-32 ABI information.
844 class X86_32ABIInfo : public SwiftABIInfo {
845   enum Class {
846     Integer,
847     Float
848   };
849 
850   static const unsigned MinABIStackAlignInBytes = 4;
851 
852   bool IsDarwinVectorABI;
853   bool IsRetSmallStructInRegABI;
854   bool IsWin32StructABI;
855   bool IsSoftFloatABI;
856   bool IsMCUABI;
857   unsigned DefaultNumRegisterParameters;
858 
859   static bool isRegisterSize(unsigned Size) {
860     return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
861   }
862 
863   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
864     // FIXME: Assumes vectorcall is in use.
865     return isX86VectorTypeForVectorCall(getContext(), Ty);
866   }
867 
868   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
869                                          uint64_t NumMembers) const override {
870     // FIXME: Assumes vectorcall is in use.
871     return isX86VectorCallAggregateSmallEnough(NumMembers);
872   }
873 
874   bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const;
875 
876   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
877   /// such that the argument will be passed in memory.
878   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
879 
880   ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const;
881 
882   /// \brief Return the alignment to use for the given type on the stack.
883   unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
884 
885   Class classify(QualType Ty) const;
886   ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const;
887   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
888   /// \brief Updates the number of available free registers, returns
889   /// true if any registers were allocated.
890   bool updateFreeRegs(QualType Ty, CCState &State) const;
891 
892   bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg,
893                                 bool &NeedsPadding) const;
894   bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const;
895 
896   bool canExpandIndirectArgument(QualType Ty) const;
897 
898   /// \brief Rewrite the function info so that all memory arguments use
899   /// inalloca.
900   void rewriteWithInAlloca(CGFunctionInfo &FI) const;
901 
902   void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
903                            CharUnits &StackOffset, ABIArgInfo &Info,
904                            QualType Type) const;
905 
906 public:
907 
908   void computeInfo(CGFunctionInfo &FI) const override;
909   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
910                     QualType Ty) const override;
911 
912   X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
913                 bool RetSmallStructInRegABI, bool Win32StructABI,
914                 unsigned NumRegisterParameters, bool SoftFloatABI)
915     : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI),
916       IsRetSmallStructInRegABI(RetSmallStructInRegABI),
917       IsWin32StructABI(Win32StructABI),
918       IsSoftFloatABI(SoftFloatABI),
919       IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()),
920       DefaultNumRegisterParameters(NumRegisterParameters) {}
921 
922   bool shouldPassIndirectlyForSwift(CharUnits totalSize,
923                                     ArrayRef<llvm::Type*> scalars,
924                                     bool asReturnValue) const override {
925     // LLVM's x86-32 lowering currently only assigns up to three
926     // integer registers and three fp registers.  Oddly, it'll use up to
927     // four vector registers for vectors, but those can overlap with the
928     // scalar registers.
929     return occupiesMoreThan(CGT, scalars, /*total*/ 3);
930   }
931 };
932 
933 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
934 public:
935   X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
936                           bool RetSmallStructInRegABI, bool Win32StructABI,
937                           unsigned NumRegisterParameters, bool SoftFloatABI)
938       : TargetCodeGenInfo(new X86_32ABIInfo(
939             CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI,
940             NumRegisterParameters, SoftFloatABI)) {}
941 
942   static bool isStructReturnInRegABI(
943       const llvm::Triple &Triple, const CodeGenOptions &Opts);
944 
945   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
946                            CodeGen::CodeGenModule &CGM) const override;
947 
948   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
949     // Darwin uses different dwarf register numbers for EH.
950     if (CGM.getTarget().getTriple().isOSDarwin()) return 5;
951     return 4;
952   }
953 
954   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
955                                llvm::Value *Address) const override;
956 
957   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
958                                   StringRef Constraint,
959                                   llvm::Type* Ty) const override {
960     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
961   }
962 
963   void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue,
964                                 std::string &Constraints,
965                                 std::vector<llvm::Type *> &ResultRegTypes,
966                                 std::vector<llvm::Type *> &ResultTruncRegTypes,
967                                 std::vector<LValue> &ResultRegDests,
968                                 std::string &AsmString,
969                                 unsigned NumOutputs) const override;
970 
971   llvm::Constant *
972   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
973     unsigned Sig = (0xeb << 0) |  // jmp rel8
974                    (0x06 << 8) |  //           .+0x08
975                    ('F' << 16) |
976                    ('T' << 24);
977     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
978   }
979 
980   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
981     return "movl\t%ebp, %ebp"
982            "\t\t## marker for objc_retainAutoreleaseReturnValue";
983   }
984 };
985 
986 }
987 
988 /// Rewrite input constraint references after adding some output constraints.
989 /// In the case where there is one output and one input and we add one output,
990 /// we need to replace all operand references greater than or equal to 1:
991 ///     mov $0, $1
992 ///     mov eax, $1
993 /// The result will be:
994 ///     mov $0, $2
995 ///     mov eax, $2
996 static void rewriteInputConstraintReferences(unsigned FirstIn,
997                                              unsigned NumNewOuts,
998                                              std::string &AsmString) {
999   std::string Buf;
1000   llvm::raw_string_ostream OS(Buf);
1001   size_t Pos = 0;
1002   while (Pos < AsmString.size()) {
1003     size_t DollarStart = AsmString.find('$', Pos);
1004     if (DollarStart == std::string::npos)
1005       DollarStart = AsmString.size();
1006     size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart);
1007     if (DollarEnd == std::string::npos)
1008       DollarEnd = AsmString.size();
1009     OS << StringRef(&AsmString[Pos], DollarEnd - Pos);
1010     Pos = DollarEnd;
1011     size_t NumDollars = DollarEnd - DollarStart;
1012     if (NumDollars % 2 != 0 && Pos < AsmString.size()) {
1013       // We have an operand reference.
1014       size_t DigitStart = Pos;
1015       size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart);
1016       if (DigitEnd == std::string::npos)
1017         DigitEnd = AsmString.size();
1018       StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart);
1019       unsigned OperandIndex;
1020       if (!OperandStr.getAsInteger(10, OperandIndex)) {
1021         if (OperandIndex >= FirstIn)
1022           OperandIndex += NumNewOuts;
1023         OS << OperandIndex;
1024       } else {
1025         OS << OperandStr;
1026       }
1027       Pos = DigitEnd;
1028     }
1029   }
1030   AsmString = std::move(OS.str());
1031 }
1032 
1033 /// Add output constraints for EAX:EDX because they are return registers.
1034 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs(
1035     CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints,
1036     std::vector<llvm::Type *> &ResultRegTypes,
1037     std::vector<llvm::Type *> &ResultTruncRegTypes,
1038     std::vector<LValue> &ResultRegDests, std::string &AsmString,
1039     unsigned NumOutputs) const {
1040   uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType());
1041 
1042   // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is
1043   // larger.
1044   if (!Constraints.empty())
1045     Constraints += ',';
1046   if (RetWidth <= 32) {
1047     Constraints += "={eax}";
1048     ResultRegTypes.push_back(CGF.Int32Ty);
1049   } else {
1050     // Use the 'A' constraint for EAX:EDX.
1051     Constraints += "=A";
1052     ResultRegTypes.push_back(CGF.Int64Ty);
1053   }
1054 
1055   // Truncate EAX or EAX:EDX to an integer of the appropriate size.
1056   llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth);
1057   ResultTruncRegTypes.push_back(CoerceTy);
1058 
1059   // Coerce the integer by bitcasting the return slot pointer.
1060   ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(),
1061                                                   CoerceTy->getPointerTo()));
1062   ResultRegDests.push_back(ReturnSlot);
1063 
1064   rewriteInputConstraintReferences(NumOutputs, 1, AsmString);
1065 }
1066 
1067 /// shouldReturnTypeInRegister - Determine if the given type should be
1068 /// returned in a register (for the Darwin and MCU ABI).
1069 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
1070                                                ASTContext &Context) const {
1071   uint64_t Size = Context.getTypeSize(Ty);
1072 
1073   // For i386, type must be register sized.
1074   // For the MCU ABI, it only needs to be <= 8-byte
1075   if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size)))
1076    return false;
1077 
1078   if (Ty->isVectorType()) {
1079     // 64- and 128- bit vectors inside structures are not returned in
1080     // registers.
1081     if (Size == 64 || Size == 128)
1082       return false;
1083 
1084     return true;
1085   }
1086 
1087   // If this is a builtin, pointer, enum, complex type, member pointer, or
1088   // member function pointer it is ok.
1089   if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
1090       Ty->isAnyComplexType() || Ty->isEnumeralType() ||
1091       Ty->isBlockPointerType() || Ty->isMemberPointerType())
1092     return true;
1093 
1094   // Arrays are treated like records.
1095   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
1096     return shouldReturnTypeInRegister(AT->getElementType(), Context);
1097 
1098   // Otherwise, it must be a record type.
1099   const RecordType *RT = Ty->getAs<RecordType>();
1100   if (!RT) return false;
1101 
1102   // FIXME: Traverse bases here too.
1103 
1104   // Structure types are passed in register if all fields would be
1105   // passed in a register.
1106   for (const auto *FD : RT->getDecl()->fields()) {
1107     // Empty fields are ignored.
1108     if (isEmptyField(Context, FD, true))
1109       continue;
1110 
1111     // Check fields recursively.
1112     if (!shouldReturnTypeInRegister(FD->getType(), Context))
1113       return false;
1114   }
1115   return true;
1116 }
1117 
1118 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
1119   // Treat complex types as the element type.
1120   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
1121     Ty = CTy->getElementType();
1122 
1123   // Check for a type which we know has a simple scalar argument-passing
1124   // convention without any padding.  (We're specifically looking for 32
1125   // and 64-bit integer and integer-equivalents, float, and double.)
1126   if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
1127       !Ty->isEnumeralType() && !Ty->isBlockPointerType())
1128     return false;
1129 
1130   uint64_t Size = Context.getTypeSize(Ty);
1131   return Size == 32 || Size == 64;
1132 }
1133 
1134 /// Test whether an argument type which is to be passed indirectly (on the
1135 /// stack) would have the equivalent layout if it was expanded into separate
1136 /// arguments. If so, we prefer to do the latter to avoid inhibiting
1137 /// optimizations.
1138 bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const {
1139   // We can only expand structure types.
1140   const RecordType *RT = Ty->getAs<RecordType>();
1141   if (!RT)
1142     return false;
1143   const RecordDecl *RD = RT->getDecl();
1144   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1145     if (!IsWin32StructABI ) {
1146       // On non-Windows, we have to conservatively match our old bitcode
1147       // prototypes in order to be ABI-compatible at the bitcode level.
1148       if (!CXXRD->isCLike())
1149         return false;
1150     } else {
1151       // Don't do this for dynamic classes.
1152       if (CXXRD->isDynamicClass())
1153         return false;
1154       // Don't do this if there are any non-empty bases.
1155       for (const CXXBaseSpecifier &Base : CXXRD->bases()) {
1156         if (!isEmptyRecord(getContext(), Base.getType(), /*AllowArrays=*/true))
1157           return false;
1158       }
1159     }
1160   }
1161 
1162   uint64_t Size = 0;
1163 
1164   for (const auto *FD : RD->fields()) {
1165     // Scalar arguments on the stack get 4 byte alignment on x86. If the
1166     // argument is smaller than 32-bits, expanding the struct will create
1167     // alignment padding.
1168     if (!is32Or64BitBasicType(FD->getType(), getContext()))
1169       return false;
1170 
1171     // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
1172     // how to expand them yet, and the predicate for telling if a bitfield still
1173     // counts as "basic" is more complicated than what we were doing previously.
1174     if (FD->isBitField())
1175       return false;
1176 
1177     Size += getContext().getTypeSize(FD->getType());
1178   }
1179 
1180   // We can do this if there was no alignment padding.
1181   return Size == getContext().getTypeSize(Ty);
1182 }
1183 
1184 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const {
1185   // If the return value is indirect, then the hidden argument is consuming one
1186   // integer register.
1187   if (State.FreeRegs) {
1188     --State.FreeRegs;
1189     if (!IsMCUABI)
1190       return getNaturalAlignIndirectInReg(RetTy);
1191   }
1192   return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
1193 }
1194 
1195 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
1196                                              CCState &State) const {
1197   if (RetTy->isVoidType())
1198     return ABIArgInfo::getIgnore();
1199 
1200   const Type *Base = nullptr;
1201   uint64_t NumElts = 0;
1202   if (State.CC == llvm::CallingConv::X86_VectorCall &&
1203       isHomogeneousAggregate(RetTy, Base, NumElts)) {
1204     // The LLVM struct type for such an aggregate should lower properly.
1205     return ABIArgInfo::getDirect();
1206   }
1207 
1208   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
1209     // On Darwin, some vectors are returned in registers.
1210     if (IsDarwinVectorABI) {
1211       uint64_t Size = getContext().getTypeSize(RetTy);
1212 
1213       // 128-bit vectors are a special case; they are returned in
1214       // registers and we need to make sure to pick a type the LLVM
1215       // backend will like.
1216       if (Size == 128)
1217         return ABIArgInfo::getDirect(llvm::VectorType::get(
1218                   llvm::Type::getInt64Ty(getVMContext()), 2));
1219 
1220       // Always return in register if it fits in a general purpose
1221       // register, or if it is 64 bits and has a single element.
1222       if ((Size == 8 || Size == 16 || Size == 32) ||
1223           (Size == 64 && VT->getNumElements() == 1))
1224         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1225                                                             Size));
1226 
1227       return getIndirectReturnResult(RetTy, State);
1228     }
1229 
1230     return ABIArgInfo::getDirect();
1231   }
1232 
1233   if (isAggregateTypeForABI(RetTy)) {
1234     if (const RecordType *RT = RetTy->getAs<RecordType>()) {
1235       // Structures with flexible arrays are always indirect.
1236       if (RT->getDecl()->hasFlexibleArrayMember())
1237         return getIndirectReturnResult(RetTy, State);
1238     }
1239 
1240     // If specified, structs and unions are always indirect.
1241     if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType())
1242       return getIndirectReturnResult(RetTy, State);
1243 
1244     // Ignore empty structs/unions.
1245     if (isEmptyRecord(getContext(), RetTy, true))
1246       return ABIArgInfo::getIgnore();
1247 
1248     // Small structures which are register sized are generally returned
1249     // in a register.
1250     if (shouldReturnTypeInRegister(RetTy, getContext())) {
1251       uint64_t Size = getContext().getTypeSize(RetTy);
1252 
1253       // As a special-case, if the struct is a "single-element" struct, and
1254       // the field is of type "float" or "double", return it in a
1255       // floating-point register. (MSVC does not apply this special case.)
1256       // We apply a similar transformation for pointer types to improve the
1257       // quality of the generated IR.
1258       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
1259         if ((!IsWin32StructABI && SeltTy->isRealFloatingType())
1260             || SeltTy->hasPointerRepresentation())
1261           return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
1262 
1263       // FIXME: We should be able to narrow this integer in cases with dead
1264       // padding.
1265       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
1266     }
1267 
1268     return getIndirectReturnResult(RetTy, State);
1269   }
1270 
1271   // Treat an enum type as its underlying type.
1272   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
1273     RetTy = EnumTy->getDecl()->getIntegerType();
1274 
1275   return (RetTy->isPromotableIntegerType() ?
1276           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1277 }
1278 
1279 static bool isSSEVectorType(ASTContext &Context, QualType Ty) {
1280   return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128;
1281 }
1282 
1283 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) {
1284   const RecordType *RT = Ty->getAs<RecordType>();
1285   if (!RT)
1286     return 0;
1287   const RecordDecl *RD = RT->getDecl();
1288 
1289   // If this is a C++ record, check the bases first.
1290   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
1291     for (const auto &I : CXXRD->bases())
1292       if (!isRecordWithSSEVectorType(Context, I.getType()))
1293         return false;
1294 
1295   for (const auto *i : RD->fields()) {
1296     QualType FT = i->getType();
1297 
1298     if (isSSEVectorType(Context, FT))
1299       return true;
1300 
1301     if (isRecordWithSSEVectorType(Context, FT))
1302       return true;
1303   }
1304 
1305   return false;
1306 }
1307 
1308 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
1309                                                  unsigned Align) const {
1310   // Otherwise, if the alignment is less than or equal to the minimum ABI
1311   // alignment, just use the default; the backend will handle this.
1312   if (Align <= MinABIStackAlignInBytes)
1313     return 0; // Use default alignment.
1314 
1315   // On non-Darwin, the stack type alignment is always 4.
1316   if (!IsDarwinVectorABI) {
1317     // Set explicit alignment, since we may need to realign the top.
1318     return MinABIStackAlignInBytes;
1319   }
1320 
1321   // Otherwise, if the type contains an SSE vector type, the alignment is 16.
1322   if (Align >= 16 && (isSSEVectorType(getContext(), Ty) ||
1323                       isRecordWithSSEVectorType(getContext(), Ty)))
1324     return 16;
1325 
1326   return MinABIStackAlignInBytes;
1327 }
1328 
1329 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal,
1330                                             CCState &State) const {
1331   if (!ByVal) {
1332     if (State.FreeRegs) {
1333       --State.FreeRegs; // Non-byval indirects just use one pointer.
1334       if (!IsMCUABI)
1335         return getNaturalAlignIndirectInReg(Ty);
1336     }
1337     return getNaturalAlignIndirect(Ty, false);
1338   }
1339 
1340   // Compute the byval alignment.
1341   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
1342   unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
1343   if (StackAlign == 0)
1344     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true);
1345 
1346   // If the stack alignment is less than the type alignment, realign the
1347   // argument.
1348   bool Realign = TypeAlign > StackAlign;
1349   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign),
1350                                  /*ByVal=*/true, Realign);
1351 }
1352 
1353 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const {
1354   const Type *T = isSingleElementStruct(Ty, getContext());
1355   if (!T)
1356     T = Ty.getTypePtr();
1357 
1358   if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
1359     BuiltinType::Kind K = BT->getKind();
1360     if (K == BuiltinType::Float || K == BuiltinType::Double)
1361       return Float;
1362   }
1363   return Integer;
1364 }
1365 
1366 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const {
1367   if (!IsSoftFloatABI) {
1368     Class C = classify(Ty);
1369     if (C == Float)
1370       return false;
1371   }
1372 
1373   unsigned Size = getContext().getTypeSize(Ty);
1374   unsigned SizeInRegs = (Size + 31) / 32;
1375 
1376   if (SizeInRegs == 0)
1377     return false;
1378 
1379   if (!IsMCUABI) {
1380     if (SizeInRegs > State.FreeRegs) {
1381       State.FreeRegs = 0;
1382       return false;
1383     }
1384   } else {
1385     // The MCU psABI allows passing parameters in-reg even if there are
1386     // earlier parameters that are passed on the stack. Also,
1387     // it does not allow passing >8-byte structs in-register,
1388     // even if there are 3 free registers available.
1389     if (SizeInRegs > State.FreeRegs || SizeInRegs > 2)
1390       return false;
1391   }
1392 
1393   State.FreeRegs -= SizeInRegs;
1394   return true;
1395 }
1396 
1397 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State,
1398                                              bool &InReg,
1399                                              bool &NeedsPadding) const {
1400   // On Windows, aggregates other than HFAs are never passed in registers, and
1401   // they do not consume register slots. Homogenous floating-point aggregates
1402   // (HFAs) have already been dealt with at this point.
1403   if (IsWin32StructABI && isAggregateTypeForABI(Ty))
1404     return false;
1405 
1406   NeedsPadding = false;
1407   InReg = !IsMCUABI;
1408 
1409   if (!updateFreeRegs(Ty, State))
1410     return false;
1411 
1412   if (IsMCUABI)
1413     return true;
1414 
1415   if (State.CC == llvm::CallingConv::X86_FastCall ||
1416       State.CC == llvm::CallingConv::X86_VectorCall) {
1417     if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs)
1418       NeedsPadding = true;
1419 
1420     return false;
1421   }
1422 
1423   return true;
1424 }
1425 
1426 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const {
1427   if (!updateFreeRegs(Ty, State))
1428     return false;
1429 
1430   if (IsMCUABI)
1431     return false;
1432 
1433   if (State.CC == llvm::CallingConv::X86_FastCall ||
1434       State.CC == llvm::CallingConv::X86_VectorCall) {
1435     if (getContext().getTypeSize(Ty) > 32)
1436       return false;
1437 
1438     return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() ||
1439         Ty->isReferenceType());
1440   }
1441 
1442   return true;
1443 }
1444 
1445 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
1446                                                CCState &State) const {
1447   // FIXME: Set alignment on indirect arguments.
1448 
1449   Ty = useFirstFieldIfTransparentUnion(Ty);
1450 
1451   // Check with the C++ ABI first.
1452   const RecordType *RT = Ty->getAs<RecordType>();
1453   if (RT) {
1454     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
1455     if (RAA == CGCXXABI::RAA_Indirect) {
1456       return getIndirectResult(Ty, false, State);
1457     } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
1458       // The field index doesn't matter, we'll fix it up later.
1459       return ABIArgInfo::getInAlloca(/*FieldIndex=*/0);
1460     }
1461   }
1462 
1463   // vectorcall adds the concept of a homogenous vector aggregate, similar
1464   // to other targets.
1465   const Type *Base = nullptr;
1466   uint64_t NumElts = 0;
1467   if (State.CC == llvm::CallingConv::X86_VectorCall &&
1468       isHomogeneousAggregate(Ty, Base, NumElts)) {
1469     if (State.FreeSSERegs >= NumElts) {
1470       State.FreeSSERegs -= NumElts;
1471       if (Ty->isBuiltinType() || Ty->isVectorType())
1472         return ABIArgInfo::getDirect();
1473       return ABIArgInfo::getExpand();
1474     }
1475     return getIndirectResult(Ty, /*ByVal=*/false, State);
1476   }
1477 
1478   if (isAggregateTypeForABI(Ty)) {
1479     // Structures with flexible arrays are always indirect.
1480     // FIXME: This should not be byval!
1481     if (RT && RT->getDecl()->hasFlexibleArrayMember())
1482       return getIndirectResult(Ty, true, State);
1483 
1484     // Ignore empty structs/unions on non-Windows.
1485     if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true))
1486       return ABIArgInfo::getIgnore();
1487 
1488     llvm::LLVMContext &LLVMContext = getVMContext();
1489     llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
1490     bool NeedsPadding = false;
1491     bool InReg;
1492     if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) {
1493       unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
1494       SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32);
1495       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
1496       if (InReg)
1497         return ABIArgInfo::getDirectInReg(Result);
1498       else
1499         return ABIArgInfo::getDirect(Result);
1500     }
1501     llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr;
1502 
1503     // Expand small (<= 128-bit) record types when we know that the stack layout
1504     // of those arguments will match the struct. This is important because the
1505     // LLVM backend isn't smart enough to remove byval, which inhibits many
1506     // optimizations.
1507     // Don't do this for the MCU if there are still free integer registers
1508     // (see X86_64 ABI for full explanation).
1509     if (getContext().getTypeSize(Ty) <= 4 * 32 &&
1510         (!IsMCUABI || State.FreeRegs == 0) && canExpandIndirectArgument(Ty))
1511       return ABIArgInfo::getExpandWithPadding(
1512           State.CC == llvm::CallingConv::X86_FastCall ||
1513               State.CC == llvm::CallingConv::X86_VectorCall,
1514           PaddingType);
1515 
1516     return getIndirectResult(Ty, true, State);
1517   }
1518 
1519   if (const VectorType *VT = Ty->getAs<VectorType>()) {
1520     // On Darwin, some vectors are passed in memory, we handle this by passing
1521     // it as an i8/i16/i32/i64.
1522     if (IsDarwinVectorABI) {
1523       uint64_t Size = getContext().getTypeSize(Ty);
1524       if ((Size == 8 || Size == 16 || Size == 32) ||
1525           (Size == 64 && VT->getNumElements() == 1))
1526         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1527                                                             Size));
1528     }
1529 
1530     if (IsX86_MMXType(CGT.ConvertType(Ty)))
1531       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64));
1532 
1533     return ABIArgInfo::getDirect();
1534   }
1535 
1536 
1537   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1538     Ty = EnumTy->getDecl()->getIntegerType();
1539 
1540   bool InReg = shouldPrimitiveUseInReg(Ty, State);
1541 
1542   if (Ty->isPromotableIntegerType()) {
1543     if (InReg)
1544       return ABIArgInfo::getExtendInReg();
1545     return ABIArgInfo::getExtend();
1546   }
1547 
1548   if (InReg)
1549     return ABIArgInfo::getDirectInReg();
1550   return ABIArgInfo::getDirect();
1551 }
1552 
1553 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
1554   CCState State(FI.getCallingConvention());
1555   if (IsMCUABI)
1556     State.FreeRegs = 3;
1557   else if (State.CC == llvm::CallingConv::X86_FastCall)
1558     State.FreeRegs = 2;
1559   else if (State.CC == llvm::CallingConv::X86_VectorCall) {
1560     State.FreeRegs = 2;
1561     State.FreeSSERegs = 6;
1562   } else if (FI.getHasRegParm())
1563     State.FreeRegs = FI.getRegParm();
1564   else
1565     State.FreeRegs = DefaultNumRegisterParameters;
1566 
1567   if (!getCXXABI().classifyReturnType(FI)) {
1568     FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State);
1569   } else if (FI.getReturnInfo().isIndirect()) {
1570     // The C++ ABI is not aware of register usage, so we have to check if the
1571     // return value was sret and put it in a register ourselves if appropriate.
1572     if (State.FreeRegs) {
1573       --State.FreeRegs;  // The sret parameter consumes a register.
1574       if (!IsMCUABI)
1575         FI.getReturnInfo().setInReg(true);
1576     }
1577   }
1578 
1579   // The chain argument effectively gives us another free register.
1580   if (FI.isChainCall())
1581     ++State.FreeRegs;
1582 
1583   bool UsedInAlloca = false;
1584   for (auto &I : FI.arguments()) {
1585     I.info = classifyArgumentType(I.type, State);
1586     UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca);
1587   }
1588 
1589   // If we needed to use inalloca for any argument, do a second pass and rewrite
1590   // all the memory arguments to use inalloca.
1591   if (UsedInAlloca)
1592     rewriteWithInAlloca(FI);
1593 }
1594 
1595 void
1596 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
1597                                    CharUnits &StackOffset, ABIArgInfo &Info,
1598                                    QualType Type) const {
1599   // Arguments are always 4-byte-aligned.
1600   CharUnits FieldAlign = CharUnits::fromQuantity(4);
1601 
1602   assert(StackOffset.isMultipleOf(FieldAlign) && "unaligned inalloca struct");
1603   Info = ABIArgInfo::getInAlloca(FrameFields.size());
1604   FrameFields.push_back(CGT.ConvertTypeForMem(Type));
1605   StackOffset += getContext().getTypeSizeInChars(Type);
1606 
1607   // Insert padding bytes to respect alignment.
1608   CharUnits FieldEnd = StackOffset;
1609   StackOffset = FieldEnd.alignTo(FieldAlign);
1610   if (StackOffset != FieldEnd) {
1611     CharUnits NumBytes = StackOffset - FieldEnd;
1612     llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext());
1613     Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity());
1614     FrameFields.push_back(Ty);
1615   }
1616 }
1617 
1618 static bool isArgInAlloca(const ABIArgInfo &Info) {
1619   // Leave ignored and inreg arguments alone.
1620   switch (Info.getKind()) {
1621   case ABIArgInfo::InAlloca:
1622     return true;
1623   case ABIArgInfo::Indirect:
1624     assert(Info.getIndirectByVal());
1625     return true;
1626   case ABIArgInfo::Ignore:
1627     return false;
1628   case ABIArgInfo::Direct:
1629   case ABIArgInfo::Extend:
1630     if (Info.getInReg())
1631       return false;
1632     return true;
1633   case ABIArgInfo::Expand:
1634   case ABIArgInfo::CoerceAndExpand:
1635     // These are aggregate types which are never passed in registers when
1636     // inalloca is involved.
1637     return true;
1638   }
1639   llvm_unreachable("invalid enum");
1640 }
1641 
1642 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const {
1643   assert(IsWin32StructABI && "inalloca only supported on win32");
1644 
1645   // Build a packed struct type for all of the arguments in memory.
1646   SmallVector<llvm::Type *, 6> FrameFields;
1647 
1648   // The stack alignment is always 4.
1649   CharUnits StackAlign = CharUnits::fromQuantity(4);
1650 
1651   CharUnits StackOffset;
1652   CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end();
1653 
1654   // Put 'this' into the struct before 'sret', if necessary.
1655   bool IsThisCall =
1656       FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall;
1657   ABIArgInfo &Ret = FI.getReturnInfo();
1658   if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall &&
1659       isArgInAlloca(I->info)) {
1660     addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
1661     ++I;
1662   }
1663 
1664   // Put the sret parameter into the inalloca struct if it's in memory.
1665   if (Ret.isIndirect() && !Ret.getInReg()) {
1666     CanQualType PtrTy = getContext().getPointerType(FI.getReturnType());
1667     addFieldToArgStruct(FrameFields, StackOffset, Ret, PtrTy);
1668     // On Windows, the hidden sret parameter is always returned in eax.
1669     Ret.setInAllocaSRet(IsWin32StructABI);
1670   }
1671 
1672   // Skip the 'this' parameter in ecx.
1673   if (IsThisCall)
1674     ++I;
1675 
1676   // Put arguments passed in memory into the struct.
1677   for (; I != E; ++I) {
1678     if (isArgInAlloca(I->info))
1679       addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
1680   }
1681 
1682   FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields,
1683                                         /*isPacked=*/true),
1684                   StackAlign);
1685 }
1686 
1687 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF,
1688                                  Address VAListAddr, QualType Ty) const {
1689 
1690   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
1691 
1692   // x86-32 changes the alignment of certain arguments on the stack.
1693   //
1694   // Just messing with TypeInfo like this works because we never pass
1695   // anything indirectly.
1696   TypeInfo.second = CharUnits::fromQuantity(
1697                 getTypeStackAlignInBytes(Ty, TypeInfo.second.getQuantity()));
1698 
1699   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
1700                           TypeInfo, CharUnits::fromQuantity(4),
1701                           /*AllowHigherAlign*/ true);
1702 }
1703 
1704 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI(
1705     const llvm::Triple &Triple, const CodeGenOptions &Opts) {
1706   assert(Triple.getArch() == llvm::Triple::x86);
1707 
1708   switch (Opts.getStructReturnConvention()) {
1709   case CodeGenOptions::SRCK_Default:
1710     break;
1711   case CodeGenOptions::SRCK_OnStack:  // -fpcc-struct-return
1712     return false;
1713   case CodeGenOptions::SRCK_InRegs:  // -freg-struct-return
1714     return true;
1715   }
1716 
1717   if (Triple.isOSDarwin() || Triple.isOSIAMCU())
1718     return true;
1719 
1720   switch (Triple.getOS()) {
1721   case llvm::Triple::DragonFly:
1722   case llvm::Triple::FreeBSD:
1723   case llvm::Triple::OpenBSD:
1724   case llvm::Triple::Bitrig:
1725   case llvm::Triple::Win32:
1726     return true;
1727   default:
1728     return false;
1729   }
1730 }
1731 
1732 void X86_32TargetCodeGenInfo::setTargetAttributes(const Decl *D,
1733                                                   llvm::GlobalValue *GV,
1734                                             CodeGen::CodeGenModule &CGM) const {
1735   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
1736     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
1737       // Get the LLVM function.
1738       llvm::Function *Fn = cast<llvm::Function>(GV);
1739 
1740       // Now add the 'alignstack' attribute with a value of 16.
1741       llvm::AttrBuilder B;
1742       B.addStackAlignmentAttr(16);
1743       Fn->addAttributes(llvm::AttributeSet::FunctionIndex,
1744                       llvm::AttributeSet::get(CGM.getLLVMContext(),
1745                                               llvm::AttributeSet::FunctionIndex,
1746                                               B));
1747     }
1748     if (FD->hasAttr<AnyX86InterruptAttr>()) {
1749       llvm::Function *Fn = cast<llvm::Function>(GV);
1750       Fn->setCallingConv(llvm::CallingConv::X86_INTR);
1751     }
1752   }
1753 }
1754 
1755 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
1756                                                CodeGen::CodeGenFunction &CGF,
1757                                                llvm::Value *Address) const {
1758   CodeGen::CGBuilderTy &Builder = CGF.Builder;
1759 
1760   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
1761 
1762   // 0-7 are the eight integer registers;  the order is different
1763   //   on Darwin (for EH), but the range is the same.
1764   // 8 is %eip.
1765   AssignToArrayRange(Builder, Address, Four8, 0, 8);
1766 
1767   if (CGF.CGM.getTarget().getTriple().isOSDarwin()) {
1768     // 12-16 are st(0..4).  Not sure why we stop at 4.
1769     // These have size 16, which is sizeof(long double) on
1770     // platforms with 8-byte alignment for that type.
1771     llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
1772     AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
1773 
1774   } else {
1775     // 9 is %eflags, which doesn't get a size on Darwin for some
1776     // reason.
1777     Builder.CreateAlignedStore(
1778         Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9),
1779                                CharUnits::One());
1780 
1781     // 11-16 are st(0..5).  Not sure why we stop at 5.
1782     // These have size 12, which is sizeof(long double) on
1783     // platforms with 4-byte alignment for that type.
1784     llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
1785     AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
1786   }
1787 
1788   return false;
1789 }
1790 
1791 //===----------------------------------------------------------------------===//
1792 // X86-64 ABI Implementation
1793 //===----------------------------------------------------------------------===//
1794 
1795 
1796 namespace {
1797 /// The AVX ABI level for X86 targets.
1798 enum class X86AVXABILevel {
1799   None,
1800   AVX,
1801   AVX512
1802 };
1803 
1804 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel.
1805 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) {
1806   switch (AVXLevel) {
1807   case X86AVXABILevel::AVX512:
1808     return 512;
1809   case X86AVXABILevel::AVX:
1810     return 256;
1811   case X86AVXABILevel::None:
1812     return 128;
1813   }
1814   llvm_unreachable("Unknown AVXLevel");
1815 }
1816 
1817 /// X86_64ABIInfo - The X86_64 ABI information.
1818 class X86_64ABIInfo : public SwiftABIInfo {
1819   enum Class {
1820     Integer = 0,
1821     SSE,
1822     SSEUp,
1823     X87,
1824     X87Up,
1825     ComplexX87,
1826     NoClass,
1827     Memory
1828   };
1829 
1830   /// merge - Implement the X86_64 ABI merging algorithm.
1831   ///
1832   /// Merge an accumulating classification \arg Accum with a field
1833   /// classification \arg Field.
1834   ///
1835   /// \param Accum - The accumulating classification. This should
1836   /// always be either NoClass or the result of a previous merge
1837   /// call. In addition, this should never be Memory (the caller
1838   /// should just return Memory for the aggregate).
1839   static Class merge(Class Accum, Class Field);
1840 
1841   /// postMerge - Implement the X86_64 ABI post merging algorithm.
1842   ///
1843   /// Post merger cleanup, reduces a malformed Hi and Lo pair to
1844   /// final MEMORY or SSE classes when necessary.
1845   ///
1846   /// \param AggregateSize - The size of the current aggregate in
1847   /// the classification process.
1848   ///
1849   /// \param Lo - The classification for the parts of the type
1850   /// residing in the low word of the containing object.
1851   ///
1852   /// \param Hi - The classification for the parts of the type
1853   /// residing in the higher words of the containing object.
1854   ///
1855   void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
1856 
1857   /// classify - Determine the x86_64 register classes in which the
1858   /// given type T should be passed.
1859   ///
1860   /// \param Lo - The classification for the parts of the type
1861   /// residing in the low word of the containing object.
1862   ///
1863   /// \param Hi - The classification for the parts of the type
1864   /// residing in the high word of the containing object.
1865   ///
1866   /// \param OffsetBase - The bit offset of this type in the
1867   /// containing object.  Some parameters are classified different
1868   /// depending on whether they straddle an eightbyte boundary.
1869   ///
1870   /// \param isNamedArg - Whether the argument in question is a "named"
1871   /// argument, as used in AMD64-ABI 3.5.7.
1872   ///
1873   /// If a word is unused its result will be NoClass; if a type should
1874   /// be passed in Memory then at least the classification of \arg Lo
1875   /// will be Memory.
1876   ///
1877   /// The \arg Lo class will be NoClass iff the argument is ignored.
1878   ///
1879   /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
1880   /// also be ComplexX87.
1881   void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi,
1882                 bool isNamedArg) const;
1883 
1884   llvm::Type *GetByteVectorType(QualType Ty) const;
1885   llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
1886                                  unsigned IROffset, QualType SourceTy,
1887                                  unsigned SourceOffset) const;
1888   llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
1889                                      unsigned IROffset, QualType SourceTy,
1890                                      unsigned SourceOffset) const;
1891 
1892   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1893   /// such that the argument will be returned in memory.
1894   ABIArgInfo getIndirectReturnResult(QualType Ty) const;
1895 
1896   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1897   /// such that the argument will be passed in memory.
1898   ///
1899   /// \param freeIntRegs - The number of free integer registers remaining
1900   /// available.
1901   ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;
1902 
1903   ABIArgInfo classifyReturnType(QualType RetTy) const;
1904 
1905   ABIArgInfo classifyArgumentType(QualType Ty,
1906                                   unsigned freeIntRegs,
1907                                   unsigned &neededInt,
1908                                   unsigned &neededSSE,
1909                                   bool isNamedArg) const;
1910 
1911   bool IsIllegalVectorType(QualType Ty) const;
1912 
1913   /// The 0.98 ABI revision clarified a lot of ambiguities,
1914   /// unfortunately in ways that were not always consistent with
1915   /// certain previous compilers.  In particular, platforms which
1916   /// required strict binary compatibility with older versions of GCC
1917   /// may need to exempt themselves.
1918   bool honorsRevision0_98() const {
1919     return !getTarget().getTriple().isOSDarwin();
1920   }
1921 
1922   /// GCC classifies <1 x long long> as SSE but compatibility with older clang
1923   // compilers require us to classify it as INTEGER.
1924   bool classifyIntegerMMXAsSSE() const {
1925     const llvm::Triple &Triple = getTarget().getTriple();
1926     if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::PS4)
1927       return false;
1928     if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10)
1929       return false;
1930     return true;
1931   }
1932 
1933   X86AVXABILevel AVXLevel;
1934   // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on
1935   // 64-bit hardware.
1936   bool Has64BitPointers;
1937 
1938 public:
1939   X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) :
1940       SwiftABIInfo(CGT), AVXLevel(AVXLevel),
1941       Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {
1942   }
1943 
1944   bool isPassedUsingAVXType(QualType type) const {
1945     unsigned neededInt, neededSSE;
1946     // The freeIntRegs argument doesn't matter here.
1947     ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE,
1948                                            /*isNamedArg*/true);
1949     if (info.isDirect()) {
1950       llvm::Type *ty = info.getCoerceToType();
1951       if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
1952         return (vectorTy->getBitWidth() > 128);
1953     }
1954     return false;
1955   }
1956 
1957   void computeInfo(CGFunctionInfo &FI) const override;
1958 
1959   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
1960                     QualType Ty) const override;
1961   Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
1962                       QualType Ty) const override;
1963 
1964   bool has64BitPointers() const {
1965     return Has64BitPointers;
1966   }
1967 
1968   bool shouldPassIndirectlyForSwift(CharUnits totalSize,
1969                                     ArrayRef<llvm::Type*> scalars,
1970                                     bool asReturnValue) const override {
1971     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
1972   }
1973 };
1974 
1975 /// WinX86_64ABIInfo - The Windows X86_64 ABI information.
1976 class WinX86_64ABIInfo : public ABIInfo {
1977 public:
1978   WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT)
1979       : ABIInfo(CGT),
1980         IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {}
1981 
1982   void computeInfo(CGFunctionInfo &FI) const override;
1983 
1984   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
1985                     QualType Ty) const override;
1986 
1987   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
1988     // FIXME: Assumes vectorcall is in use.
1989     return isX86VectorTypeForVectorCall(getContext(), Ty);
1990   }
1991 
1992   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
1993                                          uint64_t NumMembers) const override {
1994     // FIXME: Assumes vectorcall is in use.
1995     return isX86VectorCallAggregateSmallEnough(NumMembers);
1996   }
1997 
1998 private:
1999   ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs,
2000                       bool IsReturnType) const;
2001 
2002   bool IsMingw64;
2003 };
2004 
2005 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
2006 public:
2007   X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
2008       : TargetCodeGenInfo(new X86_64ABIInfo(CGT, AVXLevel)) {}
2009 
2010   const X86_64ABIInfo &getABIInfo() const {
2011     return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
2012   }
2013 
2014   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
2015     return 7;
2016   }
2017 
2018   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2019                                llvm::Value *Address) const override {
2020     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
2021 
2022     // 0-15 are the 16 integer registers.
2023     // 16 is %rip.
2024     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
2025     return false;
2026   }
2027 
2028   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
2029                                   StringRef Constraint,
2030                                   llvm::Type* Ty) const override {
2031     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
2032   }
2033 
2034   bool isNoProtoCallVariadic(const CallArgList &args,
2035                              const FunctionNoProtoType *fnType) const override {
2036     // The default CC on x86-64 sets %al to the number of SSA
2037     // registers used, and GCC sets this when calling an unprototyped
2038     // function, so we override the default behavior.  However, don't do
2039     // that when AVX types are involved: the ABI explicitly states it is
2040     // undefined, and it doesn't work in practice because of how the ABI
2041     // defines varargs anyway.
2042     if (fnType->getCallConv() == CC_C) {
2043       bool HasAVXType = false;
2044       for (CallArgList::const_iterator
2045              it = args.begin(), ie = args.end(); it != ie; ++it) {
2046         if (getABIInfo().isPassedUsingAVXType(it->Ty)) {
2047           HasAVXType = true;
2048           break;
2049         }
2050       }
2051 
2052       if (!HasAVXType)
2053         return true;
2054     }
2055 
2056     return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
2057   }
2058 
2059   llvm::Constant *
2060   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
2061     unsigned Sig;
2062     if (getABIInfo().has64BitPointers())
2063       Sig = (0xeb << 0) |  // jmp rel8
2064             (0x0a << 8) |  //           .+0x0c
2065             ('F' << 16) |
2066             ('T' << 24);
2067     else
2068       Sig = (0xeb << 0) |  // jmp rel8
2069             (0x06 << 8) |  //           .+0x08
2070             ('F' << 16) |
2071             ('T' << 24);
2072     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
2073   }
2074 
2075   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2076                            CodeGen::CodeGenModule &CGM) const override {
2077     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
2078       if (FD->hasAttr<AnyX86InterruptAttr>()) {
2079         llvm::Function *Fn = cast<llvm::Function>(GV);
2080         Fn->setCallingConv(llvm::CallingConv::X86_INTR);
2081       }
2082     }
2083   }
2084 };
2085 
2086 class PS4TargetCodeGenInfo : public X86_64TargetCodeGenInfo {
2087 public:
2088   PS4TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
2089     : X86_64TargetCodeGenInfo(CGT, AVXLevel) {}
2090 
2091   void getDependentLibraryOption(llvm::StringRef Lib,
2092                                  llvm::SmallString<24> &Opt) const override {
2093     Opt = "\01";
2094     // If the argument contains a space, enclose it in quotes.
2095     if (Lib.find(" ") != StringRef::npos)
2096       Opt += "\"" + Lib.str() + "\"";
2097     else
2098       Opt += Lib;
2099   }
2100 };
2101 
2102 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) {
2103   // If the argument does not end in .lib, automatically add the suffix.
2104   // If the argument contains a space, enclose it in quotes.
2105   // This matches the behavior of MSVC.
2106   bool Quote = (Lib.find(" ") != StringRef::npos);
2107   std::string ArgStr = Quote ? "\"" : "";
2108   ArgStr += Lib;
2109   if (!Lib.endswith_lower(".lib"))
2110     ArgStr += ".lib";
2111   ArgStr += Quote ? "\"" : "";
2112   return ArgStr;
2113 }
2114 
2115 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo {
2116 public:
2117   WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
2118         bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI,
2119         unsigned NumRegisterParameters)
2120     : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI,
2121         Win32StructABI, NumRegisterParameters, false) {}
2122 
2123   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2124                            CodeGen::CodeGenModule &CGM) const override;
2125 
2126   void getDependentLibraryOption(llvm::StringRef Lib,
2127                                  llvm::SmallString<24> &Opt) const override {
2128     Opt = "/DEFAULTLIB:";
2129     Opt += qualifyWindowsLibrary(Lib);
2130   }
2131 
2132   void getDetectMismatchOption(llvm::StringRef Name,
2133                                llvm::StringRef Value,
2134                                llvm::SmallString<32> &Opt) const override {
2135     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
2136   }
2137 };
2138 
2139 static void addStackProbeSizeTargetAttribute(const Decl *D,
2140                                              llvm::GlobalValue *GV,
2141                                              CodeGen::CodeGenModule &CGM) {
2142   if (D && isa<FunctionDecl>(D)) {
2143     if (CGM.getCodeGenOpts().StackProbeSize != 4096) {
2144       llvm::Function *Fn = cast<llvm::Function>(GV);
2145 
2146       Fn->addFnAttr("stack-probe-size",
2147                     llvm::utostr(CGM.getCodeGenOpts().StackProbeSize));
2148     }
2149   }
2150 }
2151 
2152 void WinX86_32TargetCodeGenInfo::setTargetAttributes(const Decl *D,
2153                                                      llvm::GlobalValue *GV,
2154                                             CodeGen::CodeGenModule &CGM) const {
2155   X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
2156 
2157   addStackProbeSizeTargetAttribute(D, GV, CGM);
2158 }
2159 
2160 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
2161 public:
2162   WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
2163                              X86AVXABILevel AVXLevel)
2164       : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {}
2165 
2166   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2167                            CodeGen::CodeGenModule &CGM) const override;
2168 
2169   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
2170     return 7;
2171   }
2172 
2173   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2174                                llvm::Value *Address) const override {
2175     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
2176 
2177     // 0-15 are the 16 integer registers.
2178     // 16 is %rip.
2179     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
2180     return false;
2181   }
2182 
2183   void getDependentLibraryOption(llvm::StringRef Lib,
2184                                  llvm::SmallString<24> &Opt) const override {
2185     Opt = "/DEFAULTLIB:";
2186     Opt += qualifyWindowsLibrary(Lib);
2187   }
2188 
2189   void getDetectMismatchOption(llvm::StringRef Name,
2190                                llvm::StringRef Value,
2191                                llvm::SmallString<32> &Opt) const override {
2192     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
2193   }
2194 };
2195 
2196 void WinX86_64TargetCodeGenInfo::setTargetAttributes(const Decl *D,
2197                                                      llvm::GlobalValue *GV,
2198                                             CodeGen::CodeGenModule &CGM) const {
2199   TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
2200 
2201   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
2202     if (FD->hasAttr<AnyX86InterruptAttr>()) {
2203       llvm::Function *Fn = cast<llvm::Function>(GV);
2204       Fn->setCallingConv(llvm::CallingConv::X86_INTR);
2205     }
2206   }
2207 
2208   addStackProbeSizeTargetAttribute(D, GV, CGM);
2209 }
2210 }
2211 
2212 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
2213                               Class &Hi) const {
2214   // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
2215   //
2216   // (a) If one of the classes is Memory, the whole argument is passed in
2217   //     memory.
2218   //
2219   // (b) If X87UP is not preceded by X87, the whole argument is passed in
2220   //     memory.
2221   //
2222   // (c) If the size of the aggregate exceeds two eightbytes and the first
2223   //     eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
2224   //     argument is passed in memory. NOTE: This is necessary to keep the
2225   //     ABI working for processors that don't support the __m256 type.
2226   //
2227   // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
2228   //
2229   // Some of these are enforced by the merging logic.  Others can arise
2230   // only with unions; for example:
2231   //   union { _Complex double; unsigned; }
2232   //
2233   // Note that clauses (b) and (c) were added in 0.98.
2234   //
2235   if (Hi == Memory)
2236     Lo = Memory;
2237   if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
2238     Lo = Memory;
2239   if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
2240     Lo = Memory;
2241   if (Hi == SSEUp && Lo != SSE)
2242     Hi = SSE;
2243 }
2244 
2245 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
2246   // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
2247   // classified recursively so that always two fields are
2248   // considered. The resulting class is calculated according to
2249   // the classes of the fields in the eightbyte:
2250   //
2251   // (a) If both classes are equal, this is the resulting class.
2252   //
2253   // (b) If one of the classes is NO_CLASS, the resulting class is
2254   // the other class.
2255   //
2256   // (c) If one of the classes is MEMORY, the result is the MEMORY
2257   // class.
2258   //
2259   // (d) If one of the classes is INTEGER, the result is the
2260   // INTEGER.
2261   //
2262   // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
2263   // MEMORY is used as class.
2264   //
2265   // (f) Otherwise class SSE is used.
2266 
2267   // Accum should never be memory (we should have returned) or
2268   // ComplexX87 (because this cannot be passed in a structure).
2269   assert((Accum != Memory && Accum != ComplexX87) &&
2270          "Invalid accumulated classification during merge.");
2271   if (Accum == Field || Field == NoClass)
2272     return Accum;
2273   if (Field == Memory)
2274     return Memory;
2275   if (Accum == NoClass)
2276     return Field;
2277   if (Accum == Integer || Field == Integer)
2278     return Integer;
2279   if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
2280       Accum == X87 || Accum == X87Up)
2281     return Memory;
2282   return SSE;
2283 }
2284 
2285 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
2286                              Class &Lo, Class &Hi, bool isNamedArg) const {
2287   // FIXME: This code can be simplified by introducing a simple value class for
2288   // Class pairs with appropriate constructor methods for the various
2289   // situations.
2290 
2291   // FIXME: Some of the split computations are wrong; unaligned vectors
2292   // shouldn't be passed in registers for example, so there is no chance they
2293   // can straddle an eightbyte. Verify & simplify.
2294 
2295   Lo = Hi = NoClass;
2296 
2297   Class &Current = OffsetBase < 64 ? Lo : Hi;
2298   Current = Memory;
2299 
2300   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
2301     BuiltinType::Kind k = BT->getKind();
2302 
2303     if (k == BuiltinType::Void) {
2304       Current = NoClass;
2305     } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
2306       Lo = Integer;
2307       Hi = Integer;
2308     } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
2309       Current = Integer;
2310     } else if (k == BuiltinType::Float || k == BuiltinType::Double) {
2311       Current = SSE;
2312     } else if (k == BuiltinType::LongDouble) {
2313       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
2314       if (LDF == &llvm::APFloat::IEEEquad) {
2315         Lo = SSE;
2316         Hi = SSEUp;
2317       } else if (LDF == &llvm::APFloat::x87DoubleExtended) {
2318         Lo = X87;
2319         Hi = X87Up;
2320       } else if (LDF == &llvm::APFloat::IEEEdouble) {
2321         Current = SSE;
2322       } else
2323         llvm_unreachable("unexpected long double representation!");
2324     }
2325     // FIXME: _Decimal32 and _Decimal64 are SSE.
2326     // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
2327     return;
2328   }
2329 
2330   if (const EnumType *ET = Ty->getAs<EnumType>()) {
2331     // Classify the underlying integer type.
2332     classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg);
2333     return;
2334   }
2335 
2336   if (Ty->hasPointerRepresentation()) {
2337     Current = Integer;
2338     return;
2339   }
2340 
2341   if (Ty->isMemberPointerType()) {
2342     if (Ty->isMemberFunctionPointerType()) {
2343       if (Has64BitPointers) {
2344         // If Has64BitPointers, this is an {i64, i64}, so classify both
2345         // Lo and Hi now.
2346         Lo = Hi = Integer;
2347       } else {
2348         // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that
2349         // straddles an eightbyte boundary, Hi should be classified as well.
2350         uint64_t EB_FuncPtr = (OffsetBase) / 64;
2351         uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64;
2352         if (EB_FuncPtr != EB_ThisAdj) {
2353           Lo = Hi = Integer;
2354         } else {
2355           Current = Integer;
2356         }
2357       }
2358     } else {
2359       Current = Integer;
2360     }
2361     return;
2362   }
2363 
2364   if (const VectorType *VT = Ty->getAs<VectorType>()) {
2365     uint64_t Size = getContext().getTypeSize(VT);
2366     if (Size == 1 || Size == 8 || Size == 16 || Size == 32) {
2367       // gcc passes the following as integer:
2368       // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float>
2369       // 2 bytes - <2 x char>, <1 x short>
2370       // 1 byte  - <1 x char>
2371       Current = Integer;
2372 
2373       // If this type crosses an eightbyte boundary, it should be
2374       // split.
2375       uint64_t EB_Lo = (OffsetBase) / 64;
2376       uint64_t EB_Hi = (OffsetBase + Size - 1) / 64;
2377       if (EB_Lo != EB_Hi)
2378         Hi = Lo;
2379     } else if (Size == 64) {
2380       QualType ElementType = VT->getElementType();
2381 
2382       // gcc passes <1 x double> in memory. :(
2383       if (ElementType->isSpecificBuiltinType(BuiltinType::Double))
2384         return;
2385 
2386       // gcc passes <1 x long long> as SSE but clang used to unconditionally
2387       // pass them as integer.  For platforms where clang is the de facto
2388       // platform compiler, we must continue to use integer.
2389       if (!classifyIntegerMMXAsSSE() &&
2390           (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) ||
2391            ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) ||
2392            ElementType->isSpecificBuiltinType(BuiltinType::Long) ||
2393            ElementType->isSpecificBuiltinType(BuiltinType::ULong)))
2394         Current = Integer;
2395       else
2396         Current = SSE;
2397 
2398       // If this type crosses an eightbyte boundary, it should be
2399       // split.
2400       if (OffsetBase && OffsetBase != 64)
2401         Hi = Lo;
2402     } else if (Size == 128 ||
2403                (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) {
2404       // Arguments of 256-bits are split into four eightbyte chunks. The
2405       // least significant one belongs to class SSE and all the others to class
2406       // SSEUP. The original Lo and Hi design considers that types can't be
2407       // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
2408       // This design isn't correct for 256-bits, but since there're no cases
2409       // where the upper parts would need to be inspected, avoid adding
2410       // complexity and just consider Hi to match the 64-256 part.
2411       //
2412       // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in
2413       // registers if they are "named", i.e. not part of the "..." of a
2414       // variadic function.
2415       //
2416       // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are
2417       // split into eight eightbyte chunks, one SSE and seven SSEUP.
2418       Lo = SSE;
2419       Hi = SSEUp;
2420     }
2421     return;
2422   }
2423 
2424   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
2425     QualType ET = getContext().getCanonicalType(CT->getElementType());
2426 
2427     uint64_t Size = getContext().getTypeSize(Ty);
2428     if (ET->isIntegralOrEnumerationType()) {
2429       if (Size <= 64)
2430         Current = Integer;
2431       else if (Size <= 128)
2432         Lo = Hi = Integer;
2433     } else if (ET == getContext().FloatTy) {
2434       Current = SSE;
2435     } else if (ET == getContext().DoubleTy) {
2436       Lo = Hi = SSE;
2437     } else if (ET == getContext().LongDoubleTy) {
2438       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
2439       if (LDF == &llvm::APFloat::IEEEquad)
2440         Current = Memory;
2441       else if (LDF == &llvm::APFloat::x87DoubleExtended)
2442         Current = ComplexX87;
2443       else if (LDF == &llvm::APFloat::IEEEdouble)
2444         Lo = Hi = SSE;
2445       else
2446         llvm_unreachable("unexpected long double representation!");
2447     }
2448 
2449     // If this complex type crosses an eightbyte boundary then it
2450     // should be split.
2451     uint64_t EB_Real = (OffsetBase) / 64;
2452     uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
2453     if (Hi == NoClass && EB_Real != EB_Imag)
2454       Hi = Lo;
2455 
2456     return;
2457   }
2458 
2459   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
2460     // Arrays are treated like structures.
2461 
2462     uint64_t Size = getContext().getTypeSize(Ty);
2463 
2464     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
2465     // than four eightbytes, ..., it has class MEMORY.
2466     if (Size > 256)
2467       return;
2468 
2469     // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
2470     // fields, it has class MEMORY.
2471     //
2472     // Only need to check alignment of array base.
2473     if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
2474       return;
2475 
2476     // Otherwise implement simplified merge. We could be smarter about
2477     // this, but it isn't worth it and would be harder to verify.
2478     Current = NoClass;
2479     uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
2480     uint64_t ArraySize = AT->getSize().getZExtValue();
2481 
2482     // The only case a 256-bit wide vector could be used is when the array
2483     // contains a single 256-bit element. Since Lo and Hi logic isn't extended
2484     // to work for sizes wider than 128, early check and fallback to memory.
2485     if (Size > 128 && EltSize != 256)
2486       return;
2487 
2488     for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
2489       Class FieldLo, FieldHi;
2490       classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg);
2491       Lo = merge(Lo, FieldLo);
2492       Hi = merge(Hi, FieldHi);
2493       if (Lo == Memory || Hi == Memory)
2494         break;
2495     }
2496 
2497     postMerge(Size, Lo, Hi);
2498     assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
2499     return;
2500   }
2501 
2502   if (const RecordType *RT = Ty->getAs<RecordType>()) {
2503     uint64_t Size = getContext().getTypeSize(Ty);
2504 
2505     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
2506     // than four eightbytes, ..., it has class MEMORY.
2507     if (Size > 256)
2508       return;
2509 
2510     // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
2511     // copy constructor or a non-trivial destructor, it is passed by invisible
2512     // reference.
2513     if (getRecordArgABI(RT, getCXXABI()))
2514       return;
2515 
2516     const RecordDecl *RD = RT->getDecl();
2517 
2518     // Assume variable sized types are passed in memory.
2519     if (RD->hasFlexibleArrayMember())
2520       return;
2521 
2522     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
2523 
2524     // Reset Lo class, this will be recomputed.
2525     Current = NoClass;
2526 
2527     // If this is a C++ record, classify the bases first.
2528     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
2529       for (const auto &I : CXXRD->bases()) {
2530         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
2531                "Unexpected base class!");
2532         const CXXRecordDecl *Base =
2533           cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
2534 
2535         // Classify this field.
2536         //
2537         // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
2538         // single eightbyte, each is classified separately. Each eightbyte gets
2539         // initialized to class NO_CLASS.
2540         Class FieldLo, FieldHi;
2541         uint64_t Offset =
2542           OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base));
2543         classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg);
2544         Lo = merge(Lo, FieldLo);
2545         Hi = merge(Hi, FieldHi);
2546         if (Lo == Memory || Hi == Memory) {
2547           postMerge(Size, Lo, Hi);
2548           return;
2549         }
2550       }
2551     }
2552 
2553     // Classify the fields one at a time, merging the results.
2554     unsigned idx = 0;
2555     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2556            i != e; ++i, ++idx) {
2557       uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
2558       bool BitField = i->isBitField();
2559 
2560       // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
2561       // four eightbytes, or it contains unaligned fields, it has class MEMORY.
2562       //
2563       // The only case a 256-bit wide vector could be used is when the struct
2564       // contains a single 256-bit element. Since Lo and Hi logic isn't extended
2565       // to work for sizes wider than 128, early check and fallback to memory.
2566       //
2567       if (Size > 128 && getContext().getTypeSize(i->getType()) != 256) {
2568         Lo = Memory;
2569         postMerge(Size, Lo, Hi);
2570         return;
2571       }
2572       // Note, skip this test for bit-fields, see below.
2573       if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
2574         Lo = Memory;
2575         postMerge(Size, Lo, Hi);
2576         return;
2577       }
2578 
2579       // Classify this field.
2580       //
2581       // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
2582       // exceeds a single eightbyte, each is classified
2583       // separately. Each eightbyte gets initialized to class
2584       // NO_CLASS.
2585       Class FieldLo, FieldHi;
2586 
2587       // Bit-fields require special handling, they do not force the
2588       // structure to be passed in memory even if unaligned, and
2589       // therefore they can straddle an eightbyte.
2590       if (BitField) {
2591         // Ignore padding bit-fields.
2592         if (i->isUnnamedBitfield())
2593           continue;
2594 
2595         uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
2596         uint64_t Size = i->getBitWidthValue(getContext());
2597 
2598         uint64_t EB_Lo = Offset / 64;
2599         uint64_t EB_Hi = (Offset + Size - 1) / 64;
2600 
2601         if (EB_Lo) {
2602           assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
2603           FieldLo = NoClass;
2604           FieldHi = Integer;
2605         } else {
2606           FieldLo = Integer;
2607           FieldHi = EB_Hi ? Integer : NoClass;
2608         }
2609       } else
2610         classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg);
2611       Lo = merge(Lo, FieldLo);
2612       Hi = merge(Hi, FieldHi);
2613       if (Lo == Memory || Hi == Memory)
2614         break;
2615     }
2616 
2617     postMerge(Size, Lo, Hi);
2618   }
2619 }
2620 
2621 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
2622   // If this is a scalar LLVM value then assume LLVM will pass it in the right
2623   // place naturally.
2624   if (!isAggregateTypeForABI(Ty)) {
2625     // Treat an enum type as its underlying type.
2626     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2627       Ty = EnumTy->getDecl()->getIntegerType();
2628 
2629     return (Ty->isPromotableIntegerType() ?
2630             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2631   }
2632 
2633   return getNaturalAlignIndirect(Ty);
2634 }
2635 
2636 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
2637   if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
2638     uint64_t Size = getContext().getTypeSize(VecTy);
2639     unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel);
2640     if (Size <= 64 || Size > LargestVector)
2641       return true;
2642   }
2643 
2644   return false;
2645 }
2646 
2647 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
2648                                             unsigned freeIntRegs) const {
2649   // If this is a scalar LLVM value then assume LLVM will pass it in the right
2650   // place naturally.
2651   //
2652   // This assumption is optimistic, as there could be free registers available
2653   // when we need to pass this argument in memory, and LLVM could try to pass
2654   // the argument in the free register. This does not seem to happen currently,
2655   // but this code would be much safer if we could mark the argument with
2656   // 'onstack'. See PR12193.
2657   if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) {
2658     // Treat an enum type as its underlying type.
2659     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2660       Ty = EnumTy->getDecl()->getIntegerType();
2661 
2662     return (Ty->isPromotableIntegerType() ?
2663             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2664   }
2665 
2666   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
2667     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
2668 
2669   // Compute the byval alignment. We specify the alignment of the byval in all
2670   // cases so that the mid-level optimizer knows the alignment of the byval.
2671   unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
2672 
2673   // Attempt to avoid passing indirect results using byval when possible. This
2674   // is important for good codegen.
2675   //
2676   // We do this by coercing the value into a scalar type which the backend can
2677   // handle naturally (i.e., without using byval).
2678   //
2679   // For simplicity, we currently only do this when we have exhausted all of the
2680   // free integer registers. Doing this when there are free integer registers
2681   // would require more care, as we would have to ensure that the coerced value
2682   // did not claim the unused register. That would require either reording the
2683   // arguments to the function (so that any subsequent inreg values came first),
2684   // or only doing this optimization when there were no following arguments that
2685   // might be inreg.
2686   //
2687   // We currently expect it to be rare (particularly in well written code) for
2688   // arguments to be passed on the stack when there are still free integer
2689   // registers available (this would typically imply large structs being passed
2690   // by value), so this seems like a fair tradeoff for now.
2691   //
2692   // We can revisit this if the backend grows support for 'onstack' parameter
2693   // attributes. See PR12193.
2694   if (freeIntRegs == 0) {
2695     uint64_t Size = getContext().getTypeSize(Ty);
2696 
2697     // If this type fits in an eightbyte, coerce it into the matching integral
2698     // type, which will end up on the stack (with alignment 8).
2699     if (Align == 8 && Size <= 64)
2700       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2701                                                           Size));
2702   }
2703 
2704   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align));
2705 }
2706 
2707 /// The ABI specifies that a value should be passed in a full vector XMM/YMM
2708 /// register. Pick an LLVM IR type that will be passed as a vector register.
2709 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
2710   // Wrapper structs/arrays that only contain vectors are passed just like
2711   // vectors; strip them off if present.
2712   if (const Type *InnerTy = isSingleElementStruct(Ty, getContext()))
2713     Ty = QualType(InnerTy, 0);
2714 
2715   llvm::Type *IRType = CGT.ConvertType(Ty);
2716   if (isa<llvm::VectorType>(IRType) ||
2717       IRType->getTypeID() == llvm::Type::FP128TyID)
2718     return IRType;
2719 
2720   // We couldn't find the preferred IR vector type for 'Ty'.
2721   uint64_t Size = getContext().getTypeSize(Ty);
2722   assert((Size == 128 || Size == 256) && "Invalid type found!");
2723 
2724   // Return a LLVM IR vector type based on the size of 'Ty'.
2725   return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()),
2726                                Size / 64);
2727 }
2728 
2729 /// BitsContainNoUserData - Return true if the specified [start,end) bit range
2730 /// is known to either be off the end of the specified type or being in
2731 /// alignment padding.  The user type specified is known to be at most 128 bits
2732 /// in size, and have passed through X86_64ABIInfo::classify with a successful
2733 /// classification that put one of the two halves in the INTEGER class.
2734 ///
2735 /// It is conservatively correct to return false.
2736 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
2737                                   unsigned EndBit, ASTContext &Context) {
2738   // If the bytes being queried are off the end of the type, there is no user
2739   // data hiding here.  This handles analysis of builtins, vectors and other
2740   // types that don't contain interesting padding.
2741   unsigned TySize = (unsigned)Context.getTypeSize(Ty);
2742   if (TySize <= StartBit)
2743     return true;
2744 
2745   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
2746     unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
2747     unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
2748 
2749     // Check each element to see if the element overlaps with the queried range.
2750     for (unsigned i = 0; i != NumElts; ++i) {
2751       // If the element is after the span we care about, then we're done..
2752       unsigned EltOffset = i*EltSize;
2753       if (EltOffset >= EndBit) break;
2754 
2755       unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
2756       if (!BitsContainNoUserData(AT->getElementType(), EltStart,
2757                                  EndBit-EltOffset, Context))
2758         return false;
2759     }
2760     // If it overlaps no elements, then it is safe to process as padding.
2761     return true;
2762   }
2763 
2764   if (const RecordType *RT = Ty->getAs<RecordType>()) {
2765     const RecordDecl *RD = RT->getDecl();
2766     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
2767 
2768     // If this is a C++ record, check the bases first.
2769     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
2770       for (const auto &I : CXXRD->bases()) {
2771         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
2772                "Unexpected base class!");
2773         const CXXRecordDecl *Base =
2774           cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
2775 
2776         // If the base is after the span we care about, ignore it.
2777         unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base));
2778         if (BaseOffset >= EndBit) continue;
2779 
2780         unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
2781         if (!BitsContainNoUserData(I.getType(), BaseStart,
2782                                    EndBit-BaseOffset, Context))
2783           return false;
2784       }
2785     }
2786 
2787     // Verify that no field has data that overlaps the region of interest.  Yes
2788     // this could be sped up a lot by being smarter about queried fields,
2789     // however we're only looking at structs up to 16 bytes, so we don't care
2790     // much.
2791     unsigned idx = 0;
2792     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2793          i != e; ++i, ++idx) {
2794       unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
2795 
2796       // If we found a field after the region we care about, then we're done.
2797       if (FieldOffset >= EndBit) break;
2798 
2799       unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
2800       if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
2801                                  Context))
2802         return false;
2803     }
2804 
2805     // If nothing in this record overlapped the area of interest, then we're
2806     // clean.
2807     return true;
2808   }
2809 
2810   return false;
2811 }
2812 
2813 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
2814 /// float member at the specified offset.  For example, {int,{float}} has a
2815 /// float at offset 4.  It is conservatively correct for this routine to return
2816 /// false.
2817 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset,
2818                                   const llvm::DataLayout &TD) {
2819   // Base case if we find a float.
2820   if (IROffset == 0 && IRType->isFloatTy())
2821     return true;
2822 
2823   // If this is a struct, recurse into the field at the specified offset.
2824   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
2825     const llvm::StructLayout *SL = TD.getStructLayout(STy);
2826     unsigned Elt = SL->getElementContainingOffset(IROffset);
2827     IROffset -= SL->getElementOffset(Elt);
2828     return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
2829   }
2830 
2831   // If this is an array, recurse into the field at the specified offset.
2832   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
2833     llvm::Type *EltTy = ATy->getElementType();
2834     unsigned EltSize = TD.getTypeAllocSize(EltTy);
2835     IROffset -= IROffset/EltSize*EltSize;
2836     return ContainsFloatAtOffset(EltTy, IROffset, TD);
2837   }
2838 
2839   return false;
2840 }
2841 
2842 
2843 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
2844 /// low 8 bytes of an XMM register, corresponding to the SSE class.
2845 llvm::Type *X86_64ABIInfo::
2846 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
2847                    QualType SourceTy, unsigned SourceOffset) const {
2848   // The only three choices we have are either double, <2 x float>, or float. We
2849   // pass as float if the last 4 bytes is just padding.  This happens for
2850   // structs that contain 3 floats.
2851   if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
2852                             SourceOffset*8+64, getContext()))
2853     return llvm::Type::getFloatTy(getVMContext());
2854 
2855   // We want to pass as <2 x float> if the LLVM IR type contains a float at
2856   // offset+0 and offset+4.  Walk the LLVM IR type to find out if this is the
2857   // case.
2858   if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) &&
2859       ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout()))
2860     return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2);
2861 
2862   return llvm::Type::getDoubleTy(getVMContext());
2863 }
2864 
2865 
2866 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
2867 /// an 8-byte GPR.  This means that we either have a scalar or we are talking
2868 /// about the high or low part of an up-to-16-byte struct.  This routine picks
2869 /// the best LLVM IR type to represent this, which may be i64 or may be anything
2870 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
2871 /// etc).
2872 ///
2873 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
2874 /// the source type.  IROffset is an offset in bytes into the LLVM IR type that
2875 /// the 8-byte value references.  PrefType may be null.
2876 ///
2877 /// SourceTy is the source-level type for the entire argument.  SourceOffset is
2878 /// an offset into this that we're processing (which is always either 0 or 8).
2879 ///
2880 llvm::Type *X86_64ABIInfo::
2881 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
2882                        QualType SourceTy, unsigned SourceOffset) const {
2883   // If we're dealing with an un-offset LLVM IR type, then it means that we're
2884   // returning an 8-byte unit starting with it.  See if we can safely use it.
2885   if (IROffset == 0) {
2886     // Pointers and int64's always fill the 8-byte unit.
2887     if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) ||
2888         IRType->isIntegerTy(64))
2889       return IRType;
2890 
2891     // If we have a 1/2/4-byte integer, we can use it only if the rest of the
2892     // goodness in the source type is just tail padding.  This is allowed to
2893     // kick in for struct {double,int} on the int, but not on
2894     // struct{double,int,int} because we wouldn't return the second int.  We
2895     // have to do this analysis on the source type because we can't depend on
2896     // unions being lowered a specific way etc.
2897     if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
2898         IRType->isIntegerTy(32) ||
2899         (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) {
2900       unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 :
2901           cast<llvm::IntegerType>(IRType)->getBitWidth();
2902 
2903       if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
2904                                 SourceOffset*8+64, getContext()))
2905         return IRType;
2906     }
2907   }
2908 
2909   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
2910     // If this is a struct, recurse into the field at the specified offset.
2911     const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy);
2912     if (IROffset < SL->getSizeInBytes()) {
2913       unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
2914       IROffset -= SL->getElementOffset(FieldIdx);
2915 
2916       return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
2917                                     SourceTy, SourceOffset);
2918     }
2919   }
2920 
2921   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
2922     llvm::Type *EltTy = ATy->getElementType();
2923     unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy);
2924     unsigned EltOffset = IROffset/EltSize*EltSize;
2925     return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
2926                                   SourceOffset);
2927   }
2928 
2929   // Okay, we don't have any better idea of what to pass, so we pass this in an
2930   // integer register that isn't too big to fit the rest of the struct.
2931   unsigned TySizeInBytes =
2932     (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
2933 
2934   assert(TySizeInBytes != SourceOffset && "Empty field?");
2935 
2936   // It is always safe to classify this as an integer type up to i64 that
2937   // isn't larger than the structure.
2938   return llvm::IntegerType::get(getVMContext(),
2939                                 std::min(TySizeInBytes-SourceOffset, 8U)*8);
2940 }
2941 
2942 
2943 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
2944 /// be used as elements of a two register pair to pass or return, return a
2945 /// first class aggregate to represent them.  For example, if the low part of
2946 /// a by-value argument should be passed as i32* and the high part as float,
2947 /// return {i32*, float}.
2948 static llvm::Type *
2949 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
2950                            const llvm::DataLayout &TD) {
2951   // In order to correctly satisfy the ABI, we need to the high part to start
2952   // at offset 8.  If the high and low parts we inferred are both 4-byte types
2953   // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
2954   // the second element at offset 8.  Check for this:
2955   unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
2956   unsigned HiAlign = TD.getABITypeAlignment(Hi);
2957   unsigned HiStart = llvm::alignTo(LoSize, HiAlign);
2958   assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
2959 
2960   // To handle this, we have to increase the size of the low part so that the
2961   // second element will start at an 8 byte offset.  We can't increase the size
2962   // of the second element because it might make us access off the end of the
2963   // struct.
2964   if (HiStart != 8) {
2965     // There are usually two sorts of types the ABI generation code can produce
2966     // for the low part of a pair that aren't 8 bytes in size: float or
2967     // i8/i16/i32.  This can also include pointers when they are 32-bit (X32 and
2968     // NaCl).
2969     // Promote these to a larger type.
2970     if (Lo->isFloatTy())
2971       Lo = llvm::Type::getDoubleTy(Lo->getContext());
2972     else {
2973       assert((Lo->isIntegerTy() || Lo->isPointerTy())
2974              && "Invalid/unknown lo type");
2975       Lo = llvm::Type::getInt64Ty(Lo->getContext());
2976     }
2977   }
2978 
2979   llvm::StructType *Result = llvm::StructType::get(Lo, Hi, nullptr);
2980 
2981 
2982   // Verify that the second element is at an 8-byte offset.
2983   assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
2984          "Invalid x86-64 argument pair!");
2985   return Result;
2986 }
2987 
2988 ABIArgInfo X86_64ABIInfo::
2989 classifyReturnType(QualType RetTy) const {
2990   // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
2991   // classification algorithm.
2992   X86_64ABIInfo::Class Lo, Hi;
2993   classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true);
2994 
2995   // Check some invariants.
2996   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
2997   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
2998 
2999   llvm::Type *ResType = nullptr;
3000   switch (Lo) {
3001   case NoClass:
3002     if (Hi == NoClass)
3003       return ABIArgInfo::getIgnore();
3004     // If the low part is just padding, it takes no register, leave ResType
3005     // null.
3006     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
3007            "Unknown missing lo part");
3008     break;
3009 
3010   case SSEUp:
3011   case X87Up:
3012     llvm_unreachable("Invalid classification for lo word.");
3013 
3014     // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
3015     // hidden argument.
3016   case Memory:
3017     return getIndirectReturnResult(RetTy);
3018 
3019     // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
3020     // available register of the sequence %rax, %rdx is used.
3021   case Integer:
3022     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
3023 
3024     // If we have a sign or zero extended integer, make sure to return Extend
3025     // so that the parameter gets the right LLVM IR attributes.
3026     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
3027       // Treat an enum type as its underlying type.
3028       if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
3029         RetTy = EnumTy->getDecl()->getIntegerType();
3030 
3031       if (RetTy->isIntegralOrEnumerationType() &&
3032           RetTy->isPromotableIntegerType())
3033         return ABIArgInfo::getExtend();
3034     }
3035     break;
3036 
3037     // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
3038     // available SSE register of the sequence %xmm0, %xmm1 is used.
3039   case SSE:
3040     ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
3041     break;
3042 
3043     // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
3044     // returned on the X87 stack in %st0 as 80-bit x87 number.
3045   case X87:
3046     ResType = llvm::Type::getX86_FP80Ty(getVMContext());
3047     break;
3048 
3049     // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
3050     // part of the value is returned in %st0 and the imaginary part in
3051     // %st1.
3052   case ComplexX87:
3053     assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
3054     ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
3055                                     llvm::Type::getX86_FP80Ty(getVMContext()),
3056                                     nullptr);
3057     break;
3058   }
3059 
3060   llvm::Type *HighPart = nullptr;
3061   switch (Hi) {
3062     // Memory was handled previously and X87 should
3063     // never occur as a hi class.
3064   case Memory:
3065   case X87:
3066     llvm_unreachable("Invalid classification for hi word.");
3067 
3068   case ComplexX87: // Previously handled.
3069   case NoClass:
3070     break;
3071 
3072   case Integer:
3073     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3074     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3075       return ABIArgInfo::getDirect(HighPart, 8);
3076     break;
3077   case SSE:
3078     HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3079     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3080       return ABIArgInfo::getDirect(HighPart, 8);
3081     break;
3082 
3083     // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
3084     // is passed in the next available eightbyte chunk if the last used
3085     // vector register.
3086     //
3087     // SSEUP should always be preceded by SSE, just widen.
3088   case SSEUp:
3089     assert(Lo == SSE && "Unexpected SSEUp classification.");
3090     ResType = GetByteVectorType(RetTy);
3091     break;
3092 
3093     // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
3094     // returned together with the previous X87 value in %st0.
3095   case X87Up:
3096     // If X87Up is preceded by X87, we don't need to do
3097     // anything. However, in some cases with unions it may not be
3098     // preceded by X87. In such situations we follow gcc and pass the
3099     // extra bits in an SSE reg.
3100     if (Lo != X87) {
3101       HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3102       if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3103         return ABIArgInfo::getDirect(HighPart, 8);
3104     }
3105     break;
3106   }
3107 
3108   // If a high part was specified, merge it together with the low part.  It is
3109   // known to pass in the high eightbyte of the result.  We do this by forming a
3110   // first class struct aggregate with the high and low part: {low, high}
3111   if (HighPart)
3112     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
3113 
3114   return ABIArgInfo::getDirect(ResType);
3115 }
3116 
3117 ABIArgInfo X86_64ABIInfo::classifyArgumentType(
3118   QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE,
3119   bool isNamedArg)
3120   const
3121 {
3122   Ty = useFirstFieldIfTransparentUnion(Ty);
3123 
3124   X86_64ABIInfo::Class Lo, Hi;
3125   classify(Ty, 0, Lo, Hi, isNamedArg);
3126 
3127   // Check some invariants.
3128   // FIXME: Enforce these by construction.
3129   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
3130   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
3131 
3132   neededInt = 0;
3133   neededSSE = 0;
3134   llvm::Type *ResType = nullptr;
3135   switch (Lo) {
3136   case NoClass:
3137     if (Hi == NoClass)
3138       return ABIArgInfo::getIgnore();
3139     // If the low part is just padding, it takes no register, leave ResType
3140     // null.
3141     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
3142            "Unknown missing lo part");
3143     break;
3144 
3145     // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
3146     // on the stack.
3147   case Memory:
3148 
3149     // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
3150     // COMPLEX_X87, it is passed in memory.
3151   case X87:
3152   case ComplexX87:
3153     if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect)
3154       ++neededInt;
3155     return getIndirectResult(Ty, freeIntRegs);
3156 
3157   case SSEUp:
3158   case X87Up:
3159     llvm_unreachable("Invalid classification for lo word.");
3160 
3161     // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
3162     // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
3163     // and %r9 is used.
3164   case Integer:
3165     ++neededInt;
3166 
3167     // Pick an 8-byte type based on the preferred type.
3168     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
3169 
3170     // If we have a sign or zero extended integer, make sure to return Extend
3171     // so that the parameter gets the right LLVM IR attributes.
3172     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
3173       // Treat an enum type as its underlying type.
3174       if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3175         Ty = EnumTy->getDecl()->getIntegerType();
3176 
3177       if (Ty->isIntegralOrEnumerationType() &&
3178           Ty->isPromotableIntegerType())
3179         return ABIArgInfo::getExtend();
3180     }
3181 
3182     break;
3183 
3184     // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
3185     // available SSE register is used, the registers are taken in the
3186     // order from %xmm0 to %xmm7.
3187   case SSE: {
3188     llvm::Type *IRType = CGT.ConvertType(Ty);
3189     ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
3190     ++neededSSE;
3191     break;
3192   }
3193   }
3194 
3195   llvm::Type *HighPart = nullptr;
3196   switch (Hi) {
3197     // Memory was handled previously, ComplexX87 and X87 should
3198     // never occur as hi classes, and X87Up must be preceded by X87,
3199     // which is passed in memory.
3200   case Memory:
3201   case X87:
3202   case ComplexX87:
3203     llvm_unreachable("Invalid classification for hi word.");
3204 
3205   case NoClass: break;
3206 
3207   case Integer:
3208     ++neededInt;
3209     // Pick an 8-byte type based on the preferred type.
3210     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
3211 
3212     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
3213       return ABIArgInfo::getDirect(HighPart, 8);
3214     break;
3215 
3216     // X87Up generally doesn't occur here (long double is passed in
3217     // memory), except in situations involving unions.
3218   case X87Up:
3219   case SSE:
3220     HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
3221 
3222     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
3223       return ABIArgInfo::getDirect(HighPart, 8);
3224 
3225     ++neededSSE;
3226     break;
3227 
3228     // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
3229     // eightbyte is passed in the upper half of the last used SSE
3230     // register.  This only happens when 128-bit vectors are passed.
3231   case SSEUp:
3232     assert(Lo == SSE && "Unexpected SSEUp classification");
3233     ResType = GetByteVectorType(Ty);
3234     break;
3235   }
3236 
3237   // If a high part was specified, merge it together with the low part.  It is
3238   // known to pass in the high eightbyte of the result.  We do this by forming a
3239   // first class struct aggregate with the high and low part: {low, high}
3240   if (HighPart)
3241     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
3242 
3243   return ABIArgInfo::getDirect(ResType);
3244 }
3245 
3246 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
3247 
3248   if (!getCXXABI().classifyReturnType(FI))
3249     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3250 
3251   // Keep track of the number of assigned registers.
3252   unsigned freeIntRegs = 6, freeSSERegs = 8;
3253 
3254   // If the return value is indirect, then the hidden argument is consuming one
3255   // integer register.
3256   if (FI.getReturnInfo().isIndirect())
3257     --freeIntRegs;
3258 
3259   // The chain argument effectively gives us another free register.
3260   if (FI.isChainCall())
3261     ++freeIntRegs;
3262 
3263   unsigned NumRequiredArgs = FI.getNumRequiredArgs();
3264   // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
3265   // get assigned (in left-to-right order) for passing as follows...
3266   unsigned ArgNo = 0;
3267   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3268        it != ie; ++it, ++ArgNo) {
3269     bool IsNamedArg = ArgNo < NumRequiredArgs;
3270 
3271     unsigned neededInt, neededSSE;
3272     it->info = classifyArgumentType(it->type, freeIntRegs, neededInt,
3273                                     neededSSE, IsNamedArg);
3274 
3275     // AMD64-ABI 3.2.3p3: If there are no registers available for any
3276     // eightbyte of an argument, the whole argument is passed on the
3277     // stack. If registers have already been assigned for some
3278     // eightbytes of such an argument, the assignments get reverted.
3279     if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) {
3280       freeIntRegs -= neededInt;
3281       freeSSERegs -= neededSSE;
3282     } else {
3283       it->info = getIndirectResult(it->type, freeIntRegs);
3284     }
3285   }
3286 }
3287 
3288 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF,
3289                                          Address VAListAddr, QualType Ty) {
3290   Address overflow_arg_area_p = CGF.Builder.CreateStructGEP(
3291       VAListAddr, 2, CharUnits::fromQuantity(8), "overflow_arg_area_p");
3292   llvm::Value *overflow_arg_area =
3293     CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
3294 
3295   // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
3296   // byte boundary if alignment needed by type exceeds 8 byte boundary.
3297   // It isn't stated explicitly in the standard, but in practice we use
3298   // alignment greater than 16 where necessary.
3299   CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
3300   if (Align > CharUnits::fromQuantity(8)) {
3301     overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area,
3302                                                       Align);
3303   }
3304 
3305   // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
3306   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
3307   llvm::Value *Res =
3308     CGF.Builder.CreateBitCast(overflow_arg_area,
3309                               llvm::PointerType::getUnqual(LTy));
3310 
3311   // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
3312   // l->overflow_arg_area + sizeof(type).
3313   // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
3314   // an 8 byte boundary.
3315 
3316   uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
3317   llvm::Value *Offset =
3318       llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7);
3319   overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
3320                                             "overflow_arg_area.next");
3321   CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
3322 
3323   // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
3324   return Address(Res, Align);
3325 }
3326 
3327 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
3328                                  QualType Ty) const {
3329   // Assume that va_list type is correct; should be pointer to LLVM type:
3330   // struct {
3331   //   i32 gp_offset;
3332   //   i32 fp_offset;
3333   //   i8* overflow_arg_area;
3334   //   i8* reg_save_area;
3335   // };
3336   unsigned neededInt, neededSSE;
3337 
3338   Ty = getContext().getCanonicalType(Ty);
3339   ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE,
3340                                        /*isNamedArg*/false);
3341 
3342   // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
3343   // in the registers. If not go to step 7.
3344   if (!neededInt && !neededSSE)
3345     return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
3346 
3347   // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
3348   // general purpose registers needed to pass type and num_fp to hold
3349   // the number of floating point registers needed.
3350 
3351   // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
3352   // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
3353   // l->fp_offset > 304 - num_fp * 16 go to step 7.
3354   //
3355   // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
3356   // register save space).
3357 
3358   llvm::Value *InRegs = nullptr;
3359   Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid();
3360   llvm::Value *gp_offset = nullptr, *fp_offset = nullptr;
3361   if (neededInt) {
3362     gp_offset_p =
3363         CGF.Builder.CreateStructGEP(VAListAddr, 0, CharUnits::Zero(),
3364                                     "gp_offset_p");
3365     gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
3366     InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
3367     InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
3368   }
3369 
3370   if (neededSSE) {
3371     fp_offset_p =
3372         CGF.Builder.CreateStructGEP(VAListAddr, 1, CharUnits::fromQuantity(4),
3373                                     "fp_offset_p");
3374     fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
3375     llvm::Value *FitsInFP =
3376       llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
3377     FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
3378     InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
3379   }
3380 
3381   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
3382   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
3383   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
3384   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
3385 
3386   // Emit code to load the value if it was passed in registers.
3387 
3388   CGF.EmitBlock(InRegBlock);
3389 
3390   // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
3391   // an offset of l->gp_offset and/or l->fp_offset. This may require
3392   // copying to a temporary location in case the parameter is passed
3393   // in different register classes or requires an alignment greater
3394   // than 8 for general purpose registers and 16 for XMM registers.
3395   //
3396   // FIXME: This really results in shameful code when we end up needing to
3397   // collect arguments from different places; often what should result in a
3398   // simple assembling of a structure from scattered addresses has many more
3399   // loads than necessary. Can we clean this up?
3400   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
3401   llvm::Value *RegSaveArea = CGF.Builder.CreateLoad(
3402       CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(16)),
3403                                   "reg_save_area");
3404 
3405   Address RegAddr = Address::invalid();
3406   if (neededInt && neededSSE) {
3407     // FIXME: Cleanup.
3408     assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
3409     llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
3410     Address Tmp = CGF.CreateMemTemp(Ty);
3411     Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
3412     assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
3413     llvm::Type *TyLo = ST->getElementType(0);
3414     llvm::Type *TyHi = ST->getElementType(1);
3415     assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
3416            "Unexpected ABI info for mixed regs");
3417     llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
3418     llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
3419     llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegSaveArea, gp_offset);
3420     llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegSaveArea, fp_offset);
3421     llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr;
3422     llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr;
3423 
3424     // Copy the first element.
3425     llvm::Value *V =
3426       CGF.Builder.CreateDefaultAlignedLoad(
3427                                CGF.Builder.CreateBitCast(RegLoAddr, PTyLo));
3428     CGF.Builder.CreateStore(V,
3429                     CGF.Builder.CreateStructGEP(Tmp, 0, CharUnits::Zero()));
3430 
3431     // Copy the second element.
3432     V = CGF.Builder.CreateDefaultAlignedLoad(
3433                                CGF.Builder.CreateBitCast(RegHiAddr, PTyHi));
3434     CharUnits Offset = CharUnits::fromQuantity(
3435                    getDataLayout().getStructLayout(ST)->getElementOffset(1));
3436     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1, Offset));
3437 
3438     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
3439   } else if (neededInt) {
3440     RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, gp_offset),
3441                       CharUnits::fromQuantity(8));
3442     RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
3443 
3444     // Copy to a temporary if necessary to ensure the appropriate alignment.
3445     std::pair<CharUnits, CharUnits> SizeAlign =
3446         getContext().getTypeInfoInChars(Ty);
3447     uint64_t TySize = SizeAlign.first.getQuantity();
3448     CharUnits TyAlign = SizeAlign.second;
3449 
3450     // Copy into a temporary if the type is more aligned than the
3451     // register save area.
3452     if (TyAlign.getQuantity() > 8) {
3453       Address Tmp = CGF.CreateMemTemp(Ty);
3454       CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false);
3455       RegAddr = Tmp;
3456     }
3457 
3458   } else if (neededSSE == 1) {
3459     RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset),
3460                       CharUnits::fromQuantity(16));
3461     RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
3462   } else {
3463     assert(neededSSE == 2 && "Invalid number of needed registers!");
3464     // SSE registers are spaced 16 bytes apart in the register save
3465     // area, we need to collect the two eightbytes together.
3466     // The ABI isn't explicit about this, but it seems reasonable
3467     // to assume that the slots are 16-byte aligned, since the stack is
3468     // naturally 16-byte aligned and the prologue is expected to store
3469     // all the SSE registers to the RSA.
3470     Address RegAddrLo = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset),
3471                                 CharUnits::fromQuantity(16));
3472     Address RegAddrHi =
3473       CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo,
3474                                              CharUnits::fromQuantity(16));
3475     llvm::Type *DoubleTy = CGF.DoubleTy;
3476     llvm::StructType *ST = llvm::StructType::get(DoubleTy, DoubleTy, nullptr);
3477     llvm::Value *V;
3478     Address Tmp = CGF.CreateMemTemp(Ty);
3479     Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
3480     V = CGF.Builder.CreateLoad(
3481                    CGF.Builder.CreateElementBitCast(RegAddrLo, DoubleTy));
3482     CGF.Builder.CreateStore(V,
3483                    CGF.Builder.CreateStructGEP(Tmp, 0, CharUnits::Zero()));
3484     V = CGF.Builder.CreateLoad(
3485                    CGF.Builder.CreateElementBitCast(RegAddrHi, DoubleTy));
3486     CGF.Builder.CreateStore(V,
3487           CGF.Builder.CreateStructGEP(Tmp, 1, CharUnits::fromQuantity(8)));
3488 
3489     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
3490   }
3491 
3492   // AMD64-ABI 3.5.7p5: Step 5. Set:
3493   // l->gp_offset = l->gp_offset + num_gp * 8
3494   // l->fp_offset = l->fp_offset + num_fp * 16.
3495   if (neededInt) {
3496     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
3497     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
3498                             gp_offset_p);
3499   }
3500   if (neededSSE) {
3501     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
3502     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
3503                             fp_offset_p);
3504   }
3505   CGF.EmitBranch(ContBlock);
3506 
3507   // Emit code to load the value if it was passed in memory.
3508 
3509   CGF.EmitBlock(InMemBlock);
3510   Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
3511 
3512   // Return the appropriate result.
3513 
3514   CGF.EmitBlock(ContBlock);
3515   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock,
3516                                  "vaarg.addr");
3517   return ResAddr;
3518 }
3519 
3520 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
3521                                    QualType Ty) const {
3522   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
3523                           CGF.getContext().getTypeInfoInChars(Ty),
3524                           CharUnits::fromQuantity(8),
3525                           /*allowHigherAlign*/ false);
3526 }
3527 
3528 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs,
3529                                       bool IsReturnType) const {
3530 
3531   if (Ty->isVoidType())
3532     return ABIArgInfo::getIgnore();
3533 
3534   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3535     Ty = EnumTy->getDecl()->getIntegerType();
3536 
3537   TypeInfo Info = getContext().getTypeInfo(Ty);
3538   uint64_t Width = Info.Width;
3539   CharUnits Align = getContext().toCharUnitsFromBits(Info.Align);
3540 
3541   const RecordType *RT = Ty->getAs<RecordType>();
3542   if (RT) {
3543     if (!IsReturnType) {
3544       if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()))
3545         return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
3546     }
3547 
3548     if (RT->getDecl()->hasFlexibleArrayMember())
3549       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
3550 
3551   }
3552 
3553   // vectorcall adds the concept of a homogenous vector aggregate, similar to
3554   // other targets.
3555   const Type *Base = nullptr;
3556   uint64_t NumElts = 0;
3557   if (FreeSSERegs && isHomogeneousAggregate(Ty, Base, NumElts)) {
3558     if (FreeSSERegs >= NumElts) {
3559       FreeSSERegs -= NumElts;
3560       if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())
3561         return ABIArgInfo::getDirect();
3562       return ABIArgInfo::getExpand();
3563     }
3564     return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3565   }
3566 
3567 
3568   if (Ty->isMemberPointerType()) {
3569     // If the member pointer is represented by an LLVM int or ptr, pass it
3570     // directly.
3571     llvm::Type *LLTy = CGT.ConvertType(Ty);
3572     if (LLTy->isPointerTy() || LLTy->isIntegerTy())
3573       return ABIArgInfo::getDirect();
3574   }
3575 
3576   if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) {
3577     // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
3578     // not 1, 2, 4, or 8 bytes, must be passed by reference."
3579     if (Width > 64 || !llvm::isPowerOf2_64(Width))
3580       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
3581 
3582     // Otherwise, coerce it to a small integer.
3583     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width));
3584   }
3585 
3586   // Bool type is always extended to the ABI, other builtin types are not
3587   // extended.
3588   const BuiltinType *BT = Ty->getAs<BuiltinType>();
3589   if (BT && BT->getKind() == BuiltinType::Bool)
3590     return ABIArgInfo::getExtend();
3591 
3592   // Mingw64 GCC uses the old 80 bit extended precision floating point unit. It
3593   // passes them indirectly through memory.
3594   if (IsMingw64 && BT && BT->getKind() == BuiltinType::LongDouble) {
3595     const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
3596     if (LDF == &llvm::APFloat::x87DoubleExtended)
3597       return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3598   }
3599 
3600   return ABIArgInfo::getDirect();
3601 }
3602 
3603 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
3604   bool IsVectorCall =
3605       FI.getCallingConvention() == llvm::CallingConv::X86_VectorCall;
3606 
3607   // We can use up to 4 SSE return registers with vectorcall.
3608   unsigned FreeSSERegs = IsVectorCall ? 4 : 0;
3609   if (!getCXXABI().classifyReturnType(FI))
3610     FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true);
3611 
3612   // We can use up to 6 SSE register parameters with vectorcall.
3613   FreeSSERegs = IsVectorCall ? 6 : 0;
3614   for (auto &I : FI.arguments())
3615     I.info = classify(I.type, FreeSSERegs, false);
3616 }
3617 
3618 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
3619                                     QualType Ty) const {
3620   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
3621                           CGF.getContext().getTypeInfoInChars(Ty),
3622                           CharUnits::fromQuantity(8),
3623                           /*allowHigherAlign*/ false);
3624 }
3625 
3626 // PowerPC-32
3627 namespace {
3628 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information.
3629 class PPC32_SVR4_ABIInfo : public DefaultABIInfo {
3630 bool IsSoftFloatABI;
3631 public:
3632   PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI)
3633       : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI) {}
3634 
3635   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
3636                     QualType Ty) const override;
3637 };
3638 
3639 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo {
3640 public:
3641   PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI)
3642       : TargetCodeGenInfo(new PPC32_SVR4_ABIInfo(CGT, SoftFloatABI)) {}
3643 
3644   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
3645     // This is recovered from gcc output.
3646     return 1; // r1 is the dedicated stack pointer
3647   }
3648 
3649   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3650                                llvm::Value *Address) const override;
3651 };
3652 
3653 }
3654 
3655 // TODO: this implementation is now likely redundant with
3656 // DefaultABIInfo::EmitVAArg.
3657 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList,
3658                                       QualType Ty) const {
3659   const unsigned OverflowLimit = 8;
3660   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
3661     // TODO: Implement this. For now ignore.
3662     (void)CTy;
3663     return Address::invalid(); // FIXME?
3664   }
3665 
3666   // struct __va_list_tag {
3667   //   unsigned char gpr;
3668   //   unsigned char fpr;
3669   //   unsigned short reserved;
3670   //   void *overflow_arg_area;
3671   //   void *reg_save_area;
3672   // };
3673 
3674   bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64;
3675   bool isInt =
3676       Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType();
3677   bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64;
3678 
3679   // All aggregates are passed indirectly?  That doesn't seem consistent
3680   // with the argument-lowering code.
3681   bool isIndirect = Ty->isAggregateType();
3682 
3683   CGBuilderTy &Builder = CGF.Builder;
3684 
3685   // The calling convention either uses 1-2 GPRs or 1 FPR.
3686   Address NumRegsAddr = Address::invalid();
3687   if (isInt || IsSoftFloatABI) {
3688     NumRegsAddr = Builder.CreateStructGEP(VAList, 0, CharUnits::Zero(), "gpr");
3689   } else {
3690     NumRegsAddr = Builder.CreateStructGEP(VAList, 1, CharUnits::One(), "fpr");
3691   }
3692 
3693   llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs");
3694 
3695   // "Align" the register count when TY is i64.
3696   if (isI64 || (isF64 && IsSoftFloatABI)) {
3697     NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1));
3698     NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U));
3699   }
3700 
3701   llvm::Value *CC =
3702       Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond");
3703 
3704   llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs");
3705   llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow");
3706   llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
3707 
3708   Builder.CreateCondBr(CC, UsingRegs, UsingOverflow);
3709 
3710   llvm::Type *DirectTy = CGF.ConvertType(Ty);
3711   if (isIndirect) DirectTy = DirectTy->getPointerTo(0);
3712 
3713   // Case 1: consume registers.
3714   Address RegAddr = Address::invalid();
3715   {
3716     CGF.EmitBlock(UsingRegs);
3717 
3718     Address RegSaveAreaPtr =
3719       Builder.CreateStructGEP(VAList, 4, CharUnits::fromQuantity(8));
3720     RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr),
3721                       CharUnits::fromQuantity(8));
3722     assert(RegAddr.getElementType() == CGF.Int8Ty);
3723 
3724     // Floating-point registers start after the general-purpose registers.
3725     if (!(isInt || IsSoftFloatABI)) {
3726       RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr,
3727                                                    CharUnits::fromQuantity(32));
3728     }
3729 
3730     // Get the address of the saved value by scaling the number of
3731     // registers we've used by the number of
3732     CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8);
3733     llvm::Value *RegOffset =
3734       Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity()));
3735     RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty,
3736                                             RegAddr.getPointer(), RegOffset),
3737                       RegAddr.getAlignment().alignmentOfArrayElement(RegSize));
3738     RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy);
3739 
3740     // Increase the used-register count.
3741     NumRegs =
3742       Builder.CreateAdd(NumRegs,
3743                         Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1));
3744     Builder.CreateStore(NumRegs, NumRegsAddr);
3745 
3746     CGF.EmitBranch(Cont);
3747   }
3748 
3749   // Case 2: consume space in the overflow area.
3750   Address MemAddr = Address::invalid();
3751   {
3752     CGF.EmitBlock(UsingOverflow);
3753 
3754     Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr);
3755 
3756     // Everything in the overflow area is rounded up to a size of at least 4.
3757     CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4);
3758 
3759     CharUnits Size;
3760     if (!isIndirect) {
3761       auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty);
3762       Size = TypeInfo.first.alignTo(OverflowAreaAlign);
3763     } else {
3764       Size = CGF.getPointerSize();
3765     }
3766 
3767     Address OverflowAreaAddr =
3768       Builder.CreateStructGEP(VAList, 3, CharUnits::fromQuantity(4));
3769     Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"),
3770                          OverflowAreaAlign);
3771     // Round up address of argument to alignment
3772     CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
3773     if (Align > OverflowAreaAlign) {
3774       llvm::Value *Ptr = OverflowArea.getPointer();
3775       OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align),
3776                                                            Align);
3777     }
3778 
3779     MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy);
3780 
3781     // Increase the overflow area.
3782     OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size);
3783     Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr);
3784     CGF.EmitBranch(Cont);
3785   }
3786 
3787   CGF.EmitBlock(Cont);
3788 
3789   // Merge the cases with a phi.
3790   Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow,
3791                                 "vaarg.addr");
3792 
3793   // Load the pointer if the argument was passed indirectly.
3794   if (isIndirect) {
3795     Result = Address(Builder.CreateLoad(Result, "aggr"),
3796                      getContext().getTypeAlignInChars(Ty));
3797   }
3798 
3799   return Result;
3800 }
3801 
3802 bool
3803 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3804                                                 llvm::Value *Address) const {
3805   // This is calculated from the LLVM and GCC tables and verified
3806   // against gcc output.  AFAIK all ABIs use the same encoding.
3807 
3808   CodeGen::CGBuilderTy &Builder = CGF.Builder;
3809 
3810   llvm::IntegerType *i8 = CGF.Int8Ty;
3811   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
3812   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
3813   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
3814 
3815   // 0-31: r0-31, the 4-byte general-purpose registers
3816   AssignToArrayRange(Builder, Address, Four8, 0, 31);
3817 
3818   // 32-63: fp0-31, the 8-byte floating-point registers
3819   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
3820 
3821   // 64-76 are various 4-byte special-purpose registers:
3822   // 64: mq
3823   // 65: lr
3824   // 66: ctr
3825   // 67: ap
3826   // 68-75 cr0-7
3827   // 76: xer
3828   AssignToArrayRange(Builder, Address, Four8, 64, 76);
3829 
3830   // 77-108: v0-31, the 16-byte vector registers
3831   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
3832 
3833   // 109: vrsave
3834   // 110: vscr
3835   // 111: spe_acc
3836   // 112: spefscr
3837   // 113: sfp
3838   AssignToArrayRange(Builder, Address, Four8, 109, 113);
3839 
3840   return false;
3841 }
3842 
3843 // PowerPC-64
3844 
3845 namespace {
3846 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information.
3847 class PPC64_SVR4_ABIInfo : public ABIInfo {
3848 public:
3849   enum ABIKind {
3850     ELFv1 = 0,
3851     ELFv2
3852   };
3853 
3854 private:
3855   static const unsigned GPRBits = 64;
3856   ABIKind Kind;
3857   bool HasQPX;
3858 
3859   // A vector of float or double will be promoted to <4 x f32> or <4 x f64> and
3860   // will be passed in a QPX register.
3861   bool IsQPXVectorTy(const Type *Ty) const {
3862     if (!HasQPX)
3863       return false;
3864 
3865     if (const VectorType *VT = Ty->getAs<VectorType>()) {
3866       unsigned NumElements = VT->getNumElements();
3867       if (NumElements == 1)
3868         return false;
3869 
3870       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) {
3871         if (getContext().getTypeSize(Ty) <= 256)
3872           return true;
3873       } else if (VT->getElementType()->
3874                    isSpecificBuiltinType(BuiltinType::Float)) {
3875         if (getContext().getTypeSize(Ty) <= 128)
3876           return true;
3877       }
3878     }
3879 
3880     return false;
3881   }
3882 
3883   bool IsQPXVectorTy(QualType Ty) const {
3884     return IsQPXVectorTy(Ty.getTypePtr());
3885   }
3886 
3887 public:
3888   PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, bool HasQPX)
3889       : ABIInfo(CGT), Kind(Kind), HasQPX(HasQPX) {}
3890 
3891   bool isPromotableTypeForABI(QualType Ty) const;
3892   CharUnits getParamTypeAlignment(QualType Ty) const;
3893 
3894   ABIArgInfo classifyReturnType(QualType RetTy) const;
3895   ABIArgInfo classifyArgumentType(QualType Ty) const;
3896 
3897   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
3898   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
3899                                          uint64_t Members) const override;
3900 
3901   // TODO: We can add more logic to computeInfo to improve performance.
3902   // Example: For aggregate arguments that fit in a register, we could
3903   // use getDirectInReg (as is done below for structs containing a single
3904   // floating-point value) to avoid pushing them to memory on function
3905   // entry.  This would require changing the logic in PPCISelLowering
3906   // when lowering the parameters in the caller and args in the callee.
3907   void computeInfo(CGFunctionInfo &FI) const override {
3908     if (!getCXXABI().classifyReturnType(FI))
3909       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3910     for (auto &I : FI.arguments()) {
3911       // We rely on the default argument classification for the most part.
3912       // One exception:  An aggregate containing a single floating-point
3913       // or vector item must be passed in a register if one is available.
3914       const Type *T = isSingleElementStruct(I.type, getContext());
3915       if (T) {
3916         const BuiltinType *BT = T->getAs<BuiltinType>();
3917         if (IsQPXVectorTy(T) ||
3918             (T->isVectorType() && getContext().getTypeSize(T) == 128) ||
3919             (BT && BT->isFloatingPoint())) {
3920           QualType QT(T, 0);
3921           I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT));
3922           continue;
3923         }
3924       }
3925       I.info = classifyArgumentType(I.type);
3926     }
3927   }
3928 
3929   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
3930                     QualType Ty) const override;
3931 };
3932 
3933 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo {
3934 
3935 public:
3936   PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT,
3937                                PPC64_SVR4_ABIInfo::ABIKind Kind, bool HasQPX)
3938       : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT, Kind, HasQPX)) {}
3939 
3940   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
3941     // This is recovered from gcc output.
3942     return 1; // r1 is the dedicated stack pointer
3943   }
3944 
3945   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3946                                llvm::Value *Address) const override;
3947 };
3948 
3949 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
3950 public:
3951   PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
3952 
3953   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
3954     // This is recovered from gcc output.
3955     return 1; // r1 is the dedicated stack pointer
3956   }
3957 
3958   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3959                                llvm::Value *Address) const override;
3960 };
3961 
3962 }
3963 
3964 // Return true if the ABI requires Ty to be passed sign- or zero-
3965 // extended to 64 bits.
3966 bool
3967 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const {
3968   // Treat an enum type as its underlying type.
3969   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3970     Ty = EnumTy->getDecl()->getIntegerType();
3971 
3972   // Promotable integer types are required to be promoted by the ABI.
3973   if (Ty->isPromotableIntegerType())
3974     return true;
3975 
3976   // In addition to the usual promotable integer types, we also need to
3977   // extend all 32-bit types, since the ABI requires promotion to 64 bits.
3978   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
3979     switch (BT->getKind()) {
3980     case BuiltinType::Int:
3981     case BuiltinType::UInt:
3982       return true;
3983     default:
3984       break;
3985     }
3986 
3987   return false;
3988 }
3989 
3990 /// isAlignedParamType - Determine whether a type requires 16-byte or
3991 /// higher alignment in the parameter area.  Always returns at least 8.
3992 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const {
3993   // Complex types are passed just like their elements.
3994   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
3995     Ty = CTy->getElementType();
3996 
3997   // Only vector types of size 16 bytes need alignment (larger types are
3998   // passed via reference, smaller types are not aligned).
3999   if (IsQPXVectorTy(Ty)) {
4000     if (getContext().getTypeSize(Ty) > 128)
4001       return CharUnits::fromQuantity(32);
4002 
4003     return CharUnits::fromQuantity(16);
4004   } else if (Ty->isVectorType()) {
4005     return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8);
4006   }
4007 
4008   // For single-element float/vector structs, we consider the whole type
4009   // to have the same alignment requirements as its single element.
4010   const Type *AlignAsType = nullptr;
4011   const Type *EltType = isSingleElementStruct(Ty, getContext());
4012   if (EltType) {
4013     const BuiltinType *BT = EltType->getAs<BuiltinType>();
4014     if (IsQPXVectorTy(EltType) || (EltType->isVectorType() &&
4015          getContext().getTypeSize(EltType) == 128) ||
4016         (BT && BT->isFloatingPoint()))
4017       AlignAsType = EltType;
4018   }
4019 
4020   // Likewise for ELFv2 homogeneous aggregates.
4021   const Type *Base = nullptr;
4022   uint64_t Members = 0;
4023   if (!AlignAsType && Kind == ELFv2 &&
4024       isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members))
4025     AlignAsType = Base;
4026 
4027   // With special case aggregates, only vector base types need alignment.
4028   if (AlignAsType && IsQPXVectorTy(AlignAsType)) {
4029     if (getContext().getTypeSize(AlignAsType) > 128)
4030       return CharUnits::fromQuantity(32);
4031 
4032     return CharUnits::fromQuantity(16);
4033   } else if (AlignAsType) {
4034     return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8);
4035   }
4036 
4037   // Otherwise, we only need alignment for any aggregate type that
4038   // has an alignment requirement of >= 16 bytes.
4039   if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) {
4040     if (HasQPX && getContext().getTypeAlign(Ty) >= 256)
4041       return CharUnits::fromQuantity(32);
4042     return CharUnits::fromQuantity(16);
4043   }
4044 
4045   return CharUnits::fromQuantity(8);
4046 }
4047 
4048 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous
4049 /// aggregate.  Base is set to the base element type, and Members is set
4050 /// to the number of base elements.
4051 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base,
4052                                      uint64_t &Members) const {
4053   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
4054     uint64_t NElements = AT->getSize().getZExtValue();
4055     if (NElements == 0)
4056       return false;
4057     if (!isHomogeneousAggregate(AT->getElementType(), Base, Members))
4058       return false;
4059     Members *= NElements;
4060   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
4061     const RecordDecl *RD = RT->getDecl();
4062     if (RD->hasFlexibleArrayMember())
4063       return false;
4064 
4065     Members = 0;
4066 
4067     // If this is a C++ record, check the bases first.
4068     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
4069       for (const auto &I : CXXRD->bases()) {
4070         // Ignore empty records.
4071         if (isEmptyRecord(getContext(), I.getType(), true))
4072           continue;
4073 
4074         uint64_t FldMembers;
4075         if (!isHomogeneousAggregate(I.getType(), Base, FldMembers))
4076           return false;
4077 
4078         Members += FldMembers;
4079       }
4080     }
4081 
4082     for (const auto *FD : RD->fields()) {
4083       // Ignore (non-zero arrays of) empty records.
4084       QualType FT = FD->getType();
4085       while (const ConstantArrayType *AT =
4086              getContext().getAsConstantArrayType(FT)) {
4087         if (AT->getSize().getZExtValue() == 0)
4088           return false;
4089         FT = AT->getElementType();
4090       }
4091       if (isEmptyRecord(getContext(), FT, true))
4092         continue;
4093 
4094       // For compatibility with GCC, ignore empty bitfields in C++ mode.
4095       if (getContext().getLangOpts().CPlusPlus &&
4096           FD->isBitField() && FD->getBitWidthValue(getContext()) == 0)
4097         continue;
4098 
4099       uint64_t FldMembers;
4100       if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers))
4101         return false;
4102 
4103       Members = (RD->isUnion() ?
4104                  std::max(Members, FldMembers) : Members + FldMembers);
4105     }
4106 
4107     if (!Base)
4108       return false;
4109 
4110     // Ensure there is no padding.
4111     if (getContext().getTypeSize(Base) * Members !=
4112         getContext().getTypeSize(Ty))
4113       return false;
4114   } else {
4115     Members = 1;
4116     if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
4117       Members = 2;
4118       Ty = CT->getElementType();
4119     }
4120 
4121     // Most ABIs only support float, double, and some vector type widths.
4122     if (!isHomogeneousAggregateBaseType(Ty))
4123       return false;
4124 
4125     // The base type must be the same for all members.  Types that
4126     // agree in both total size and mode (float vs. vector) are
4127     // treated as being equivalent here.
4128     const Type *TyPtr = Ty.getTypePtr();
4129     if (!Base) {
4130       Base = TyPtr;
4131       // If it's a non-power-of-2 vector, its size is already a power-of-2,
4132       // so make sure to widen it explicitly.
4133       if (const VectorType *VT = Base->getAs<VectorType>()) {
4134         QualType EltTy = VT->getElementType();
4135         unsigned NumElements =
4136             getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy);
4137         Base = getContext()
4138                    .getVectorType(EltTy, NumElements, VT->getVectorKind())
4139                    .getTypePtr();
4140       }
4141     }
4142 
4143     if (Base->isVectorType() != TyPtr->isVectorType() ||
4144         getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr))
4145       return false;
4146   }
4147   return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members);
4148 }
4149 
4150 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
4151   // Homogeneous aggregates for ELFv2 must have base types of float,
4152   // double, long double, or 128-bit vectors.
4153   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
4154     if (BT->getKind() == BuiltinType::Float ||
4155         BT->getKind() == BuiltinType::Double ||
4156         BT->getKind() == BuiltinType::LongDouble)
4157       return true;
4158   }
4159   if (const VectorType *VT = Ty->getAs<VectorType>()) {
4160     if (getContext().getTypeSize(VT) == 128 || IsQPXVectorTy(Ty))
4161       return true;
4162   }
4163   return false;
4164 }
4165 
4166 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough(
4167     const Type *Base, uint64_t Members) const {
4168   // Vector types require one register, floating point types require one
4169   // or two registers depending on their size.
4170   uint32_t NumRegs =
4171       Base->isVectorType() ? 1 : (getContext().getTypeSize(Base) + 63) / 64;
4172 
4173   // Homogeneous Aggregates may occupy at most 8 registers.
4174   return Members * NumRegs <= 8;
4175 }
4176 
4177 ABIArgInfo
4178 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const {
4179   Ty = useFirstFieldIfTransparentUnion(Ty);
4180 
4181   if (Ty->isAnyComplexType())
4182     return ABIArgInfo::getDirect();
4183 
4184   // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes)
4185   // or via reference (larger than 16 bytes).
4186   if (Ty->isVectorType() && !IsQPXVectorTy(Ty)) {
4187     uint64_t Size = getContext().getTypeSize(Ty);
4188     if (Size > 128)
4189       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
4190     else if (Size < 128) {
4191       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
4192       return ABIArgInfo::getDirect(CoerceTy);
4193     }
4194   }
4195 
4196   if (isAggregateTypeForABI(Ty)) {
4197     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
4198       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
4199 
4200     uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity();
4201     uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity();
4202 
4203     // ELFv2 homogeneous aggregates are passed as array types.
4204     const Type *Base = nullptr;
4205     uint64_t Members = 0;
4206     if (Kind == ELFv2 &&
4207         isHomogeneousAggregate(Ty, Base, Members)) {
4208       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
4209       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
4210       return ABIArgInfo::getDirect(CoerceTy);
4211     }
4212 
4213     // If an aggregate may end up fully in registers, we do not
4214     // use the ByVal method, but pass the aggregate as array.
4215     // This is usually beneficial since we avoid forcing the
4216     // back-end to store the argument to memory.
4217     uint64_t Bits = getContext().getTypeSize(Ty);
4218     if (Bits > 0 && Bits <= 8 * GPRBits) {
4219       llvm::Type *CoerceTy;
4220 
4221       // Types up to 8 bytes are passed as integer type (which will be
4222       // properly aligned in the argument save area doubleword).
4223       if (Bits <= GPRBits)
4224         CoerceTy =
4225             llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8));
4226       // Larger types are passed as arrays, with the base type selected
4227       // according to the required alignment in the save area.
4228       else {
4229         uint64_t RegBits = ABIAlign * 8;
4230         uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits;
4231         llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits);
4232         CoerceTy = llvm::ArrayType::get(RegTy, NumRegs);
4233       }
4234 
4235       return ABIArgInfo::getDirect(CoerceTy);
4236     }
4237 
4238     // All other aggregates are passed ByVal.
4239     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
4240                                    /*ByVal=*/true,
4241                                    /*Realign=*/TyAlign > ABIAlign);
4242   }
4243 
4244   return (isPromotableTypeForABI(Ty) ?
4245           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
4246 }
4247 
4248 ABIArgInfo
4249 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
4250   if (RetTy->isVoidType())
4251     return ABIArgInfo::getIgnore();
4252 
4253   if (RetTy->isAnyComplexType())
4254     return ABIArgInfo::getDirect();
4255 
4256   // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes)
4257   // or via reference (larger than 16 bytes).
4258   if (RetTy->isVectorType() && !IsQPXVectorTy(RetTy)) {
4259     uint64_t Size = getContext().getTypeSize(RetTy);
4260     if (Size > 128)
4261       return getNaturalAlignIndirect(RetTy);
4262     else if (Size < 128) {
4263       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
4264       return ABIArgInfo::getDirect(CoerceTy);
4265     }
4266   }
4267 
4268   if (isAggregateTypeForABI(RetTy)) {
4269     // ELFv2 homogeneous aggregates are returned as array types.
4270     const Type *Base = nullptr;
4271     uint64_t Members = 0;
4272     if (Kind == ELFv2 &&
4273         isHomogeneousAggregate(RetTy, Base, Members)) {
4274       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
4275       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
4276       return ABIArgInfo::getDirect(CoerceTy);
4277     }
4278 
4279     // ELFv2 small aggregates are returned in up to two registers.
4280     uint64_t Bits = getContext().getTypeSize(RetTy);
4281     if (Kind == ELFv2 && Bits <= 2 * GPRBits) {
4282       if (Bits == 0)
4283         return ABIArgInfo::getIgnore();
4284 
4285       llvm::Type *CoerceTy;
4286       if (Bits > GPRBits) {
4287         CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits);
4288         CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy, nullptr);
4289       } else
4290         CoerceTy =
4291             llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8));
4292       return ABIArgInfo::getDirect(CoerceTy);
4293     }
4294 
4295     // All other aggregates are returned indirectly.
4296     return getNaturalAlignIndirect(RetTy);
4297   }
4298 
4299   return (isPromotableTypeForABI(RetTy) ?
4300           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
4301 }
4302 
4303 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine.
4304 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4305                                       QualType Ty) const {
4306   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
4307   TypeInfo.second = getParamTypeAlignment(Ty);
4308 
4309   CharUnits SlotSize = CharUnits::fromQuantity(8);
4310 
4311   // If we have a complex type and the base type is smaller than 8 bytes,
4312   // the ABI calls for the real and imaginary parts to be right-adjusted
4313   // in separate doublewords.  However, Clang expects us to produce a
4314   // pointer to a structure with the two parts packed tightly.  So generate
4315   // loads of the real and imaginary parts relative to the va_list pointer,
4316   // and store them to a temporary structure.
4317   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
4318     CharUnits EltSize = TypeInfo.first / 2;
4319     if (EltSize < SlotSize) {
4320       Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty,
4321                                             SlotSize * 2, SlotSize,
4322                                             SlotSize, /*AllowHigher*/ true);
4323 
4324       Address RealAddr = Addr;
4325       Address ImagAddr = RealAddr;
4326       if (CGF.CGM.getDataLayout().isBigEndian()) {
4327         RealAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr,
4328                                                           SlotSize - EltSize);
4329         ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr,
4330                                                       2 * SlotSize - EltSize);
4331       } else {
4332         ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize);
4333       }
4334 
4335       llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType());
4336       RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy);
4337       ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy);
4338       llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal");
4339       llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag");
4340 
4341       Address Temp = CGF.CreateMemTemp(Ty, "vacplx");
4342       CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty),
4343                              /*init*/ true);
4344       return Temp;
4345     }
4346   }
4347 
4348   // Otherwise, just use the general rule.
4349   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
4350                           TypeInfo, SlotSize, /*AllowHigher*/ true);
4351 }
4352 
4353 static bool
4354 PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4355                               llvm::Value *Address) {
4356   // This is calculated from the LLVM and GCC tables and verified
4357   // against gcc output.  AFAIK all ABIs use the same encoding.
4358 
4359   CodeGen::CGBuilderTy &Builder = CGF.Builder;
4360 
4361   llvm::IntegerType *i8 = CGF.Int8Ty;
4362   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
4363   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
4364   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
4365 
4366   // 0-31: r0-31, the 8-byte general-purpose registers
4367   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
4368 
4369   // 32-63: fp0-31, the 8-byte floating-point registers
4370   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
4371 
4372   // 64-76 are various 4-byte special-purpose registers:
4373   // 64: mq
4374   // 65: lr
4375   // 66: ctr
4376   // 67: ap
4377   // 68-75 cr0-7
4378   // 76: xer
4379   AssignToArrayRange(Builder, Address, Four8, 64, 76);
4380 
4381   // 77-108: v0-31, the 16-byte vector registers
4382   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
4383 
4384   // 109: vrsave
4385   // 110: vscr
4386   // 111: spe_acc
4387   // 112: spefscr
4388   // 113: sfp
4389   AssignToArrayRange(Builder, Address, Four8, 109, 113);
4390 
4391   return false;
4392 }
4393 
4394 bool
4395 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable(
4396   CodeGen::CodeGenFunction &CGF,
4397   llvm::Value *Address) const {
4398 
4399   return PPC64_initDwarfEHRegSizeTable(CGF, Address);
4400 }
4401 
4402 bool
4403 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4404                                                 llvm::Value *Address) const {
4405 
4406   return PPC64_initDwarfEHRegSizeTable(CGF, Address);
4407 }
4408 
4409 //===----------------------------------------------------------------------===//
4410 // AArch64 ABI Implementation
4411 //===----------------------------------------------------------------------===//
4412 
4413 namespace {
4414 
4415 class AArch64ABIInfo : public SwiftABIInfo {
4416 public:
4417   enum ABIKind {
4418     AAPCS = 0,
4419     DarwinPCS
4420   };
4421 
4422 private:
4423   ABIKind Kind;
4424 
4425 public:
4426   AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind)
4427     : SwiftABIInfo(CGT), Kind(Kind) {}
4428 
4429 private:
4430   ABIKind getABIKind() const { return Kind; }
4431   bool isDarwinPCS() const { return Kind == DarwinPCS; }
4432 
4433   ABIArgInfo classifyReturnType(QualType RetTy) const;
4434   ABIArgInfo classifyArgumentType(QualType RetTy) const;
4435   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
4436   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
4437                                          uint64_t Members) const override;
4438 
4439   bool isIllegalVectorType(QualType Ty) const;
4440 
4441   void computeInfo(CGFunctionInfo &FI) const override {
4442     if (!getCXXABI().classifyReturnType(FI))
4443       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4444 
4445     for (auto &it : FI.arguments())
4446       it.info = classifyArgumentType(it.type);
4447   }
4448 
4449   Address EmitDarwinVAArg(Address VAListAddr, QualType Ty,
4450                           CodeGenFunction &CGF) const;
4451 
4452   Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty,
4453                          CodeGenFunction &CGF) const;
4454 
4455   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4456                     QualType Ty) const override {
4457     return isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF)
4458                          : EmitAAPCSVAArg(VAListAddr, Ty, CGF);
4459   }
4460 
4461   bool shouldPassIndirectlyForSwift(CharUnits totalSize,
4462                                     ArrayRef<llvm::Type*> scalars,
4463                                     bool asReturnValue) const override {
4464     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
4465   }
4466 };
4467 
4468 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo {
4469 public:
4470   AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind)
4471       : TargetCodeGenInfo(new AArch64ABIInfo(CGT, Kind)) {}
4472 
4473   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
4474     return "mov\tfp, fp\t\t; marker for objc_retainAutoreleaseReturnValue";
4475   }
4476 
4477   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4478     return 31;
4479   }
4480 
4481   bool doesReturnSlotInterfereWithArgs() const override { return false; }
4482 };
4483 }
4484 
4485 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const {
4486   Ty = useFirstFieldIfTransparentUnion(Ty);
4487 
4488   // Handle illegal vector types here.
4489   if (isIllegalVectorType(Ty)) {
4490     uint64_t Size = getContext().getTypeSize(Ty);
4491     // Android promotes <2 x i8> to i16, not i32
4492     if (isAndroid() && (Size <= 16)) {
4493       llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext());
4494       return ABIArgInfo::getDirect(ResType);
4495     }
4496     if (Size <= 32) {
4497       llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext());
4498       return ABIArgInfo::getDirect(ResType);
4499     }
4500     if (Size == 64) {
4501       llvm::Type *ResType =
4502           llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2);
4503       return ABIArgInfo::getDirect(ResType);
4504     }
4505     if (Size == 128) {
4506       llvm::Type *ResType =
4507           llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4);
4508       return ABIArgInfo::getDirect(ResType);
4509     }
4510     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
4511   }
4512 
4513   if (!isAggregateTypeForABI(Ty)) {
4514     // Treat an enum type as its underlying type.
4515     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4516       Ty = EnumTy->getDecl()->getIntegerType();
4517 
4518     return (Ty->isPromotableIntegerType() && isDarwinPCS()
4519                 ? ABIArgInfo::getExtend()
4520                 : ABIArgInfo::getDirect());
4521   }
4522 
4523   // Structures with either a non-trivial destructor or a non-trivial
4524   // copy constructor are always indirect.
4525   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
4526     return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
4527                                      CGCXXABI::RAA_DirectInMemory);
4528   }
4529 
4530   // Empty records are always ignored on Darwin, but actually passed in C++ mode
4531   // elsewhere for GNU compatibility.
4532   if (isEmptyRecord(getContext(), Ty, true)) {
4533     if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS())
4534       return ABIArgInfo::getIgnore();
4535 
4536     return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
4537   }
4538 
4539   // Homogeneous Floating-point Aggregates (HFAs) need to be expanded.
4540   const Type *Base = nullptr;
4541   uint64_t Members = 0;
4542   if (isHomogeneousAggregate(Ty, Base, Members)) {
4543     return ABIArgInfo::getDirect(
4544         llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members));
4545   }
4546 
4547   // Aggregates <= 16 bytes are passed directly in registers or on the stack.
4548   uint64_t Size = getContext().getTypeSize(Ty);
4549   if (Size <= 128) {
4550     unsigned Alignment = getContext().getTypeAlign(Ty);
4551     Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes
4552 
4553     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
4554     // For aggregates with 16-byte alignment, we use i128.
4555     if (Alignment < 128 && Size == 128) {
4556       llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
4557       return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
4558     }
4559     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
4560   }
4561 
4562   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
4563 }
4564 
4565 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy) const {
4566   if (RetTy->isVoidType())
4567     return ABIArgInfo::getIgnore();
4568 
4569   // Large vector types should be returned via memory.
4570   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
4571     return getNaturalAlignIndirect(RetTy);
4572 
4573   if (!isAggregateTypeForABI(RetTy)) {
4574     // Treat an enum type as its underlying type.
4575     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
4576       RetTy = EnumTy->getDecl()->getIntegerType();
4577 
4578     return (RetTy->isPromotableIntegerType() && isDarwinPCS()
4579                 ? ABIArgInfo::getExtend()
4580                 : ABIArgInfo::getDirect());
4581   }
4582 
4583   if (isEmptyRecord(getContext(), RetTy, true))
4584     return ABIArgInfo::getIgnore();
4585 
4586   const Type *Base = nullptr;
4587   uint64_t Members = 0;
4588   if (isHomogeneousAggregate(RetTy, Base, Members))
4589     // Homogeneous Floating-point Aggregates (HFAs) are returned directly.
4590     return ABIArgInfo::getDirect();
4591 
4592   // Aggregates <= 16 bytes are returned directly in registers or on the stack.
4593   uint64_t Size = getContext().getTypeSize(RetTy);
4594   if (Size <= 128) {
4595     unsigned Alignment = getContext().getTypeAlign(RetTy);
4596     Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes
4597 
4598     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
4599     // For aggregates with 16-byte alignment, we use i128.
4600     if (Alignment < 128 && Size == 128) {
4601       llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
4602       return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
4603     }
4604     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
4605   }
4606 
4607   return getNaturalAlignIndirect(RetTy);
4608 }
4609 
4610 /// isIllegalVectorType - check whether the vector type is legal for AArch64.
4611 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const {
4612   if (const VectorType *VT = Ty->getAs<VectorType>()) {
4613     // Check whether VT is legal.
4614     unsigned NumElements = VT->getNumElements();
4615     uint64_t Size = getContext().getTypeSize(VT);
4616     // NumElements should be power of 2.
4617     if (!llvm::isPowerOf2_32(NumElements))
4618       return true;
4619     return Size != 64 && (Size != 128 || NumElements == 1);
4620   }
4621   return false;
4622 }
4623 
4624 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
4625   // Homogeneous aggregates for AAPCS64 must have base types of a floating
4626   // point type or a short-vector type. This is the same as the 32-bit ABI,
4627   // but with the difference that any floating-point type is allowed,
4628   // including __fp16.
4629   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
4630     if (BT->isFloatingPoint())
4631       return true;
4632   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
4633     unsigned VecSize = getContext().getTypeSize(VT);
4634     if (VecSize == 64 || VecSize == 128)
4635       return true;
4636   }
4637   return false;
4638 }
4639 
4640 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
4641                                                        uint64_t Members) const {
4642   return Members <= 4;
4643 }
4644 
4645 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr,
4646                                             QualType Ty,
4647                                             CodeGenFunction &CGF) const {
4648   ABIArgInfo AI = classifyArgumentType(Ty);
4649   bool IsIndirect = AI.isIndirect();
4650 
4651   llvm::Type *BaseTy = CGF.ConvertType(Ty);
4652   if (IsIndirect)
4653     BaseTy = llvm::PointerType::getUnqual(BaseTy);
4654   else if (AI.getCoerceToType())
4655     BaseTy = AI.getCoerceToType();
4656 
4657   unsigned NumRegs = 1;
4658   if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) {
4659     BaseTy = ArrTy->getElementType();
4660     NumRegs = ArrTy->getNumElements();
4661   }
4662   bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy();
4663 
4664   // The AArch64 va_list type and handling is specified in the Procedure Call
4665   // Standard, section B.4:
4666   //
4667   // struct {
4668   //   void *__stack;
4669   //   void *__gr_top;
4670   //   void *__vr_top;
4671   //   int __gr_offs;
4672   //   int __vr_offs;
4673   // };
4674 
4675   llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
4676   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
4677   llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
4678   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
4679 
4680   auto TyInfo = getContext().getTypeInfoInChars(Ty);
4681   CharUnits TyAlign = TyInfo.second;
4682 
4683   Address reg_offs_p = Address::invalid();
4684   llvm::Value *reg_offs = nullptr;
4685   int reg_top_index;
4686   CharUnits reg_top_offset;
4687   int RegSize = IsIndirect ? 8 : TyInfo.first.getQuantity();
4688   if (!IsFPR) {
4689     // 3 is the field number of __gr_offs
4690     reg_offs_p =
4691         CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(24),
4692                                     "gr_offs_p");
4693     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs");
4694     reg_top_index = 1; // field number for __gr_top
4695     reg_top_offset = CharUnits::fromQuantity(8);
4696     RegSize = llvm::alignTo(RegSize, 8);
4697   } else {
4698     // 4 is the field number of __vr_offs.
4699     reg_offs_p =
4700         CGF.Builder.CreateStructGEP(VAListAddr, 4, CharUnits::fromQuantity(28),
4701                                     "vr_offs_p");
4702     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs");
4703     reg_top_index = 2; // field number for __vr_top
4704     reg_top_offset = CharUnits::fromQuantity(16);
4705     RegSize = 16 * NumRegs;
4706   }
4707 
4708   //=======================================
4709   // Find out where argument was passed
4710   //=======================================
4711 
4712   // If reg_offs >= 0 we're already using the stack for this type of
4713   // argument. We don't want to keep updating reg_offs (in case it overflows,
4714   // though anyone passing 2GB of arguments, each at most 16 bytes, deserves
4715   // whatever they get).
4716   llvm::Value *UsingStack = nullptr;
4717   UsingStack = CGF.Builder.CreateICmpSGE(
4718       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0));
4719 
4720   CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock);
4721 
4722   // Otherwise, at least some kind of argument could go in these registers, the
4723   // question is whether this particular type is too big.
4724   CGF.EmitBlock(MaybeRegBlock);
4725 
4726   // Integer arguments may need to correct register alignment (for example a
4727   // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we
4728   // align __gr_offs to calculate the potential address.
4729   if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) {
4730     int Align = TyAlign.getQuantity();
4731 
4732     reg_offs = CGF.Builder.CreateAdd(
4733         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1),
4734         "align_regoffs");
4735     reg_offs = CGF.Builder.CreateAnd(
4736         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align),
4737         "aligned_regoffs");
4738   }
4739 
4740   // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list.
4741   // The fact that this is done unconditionally reflects the fact that
4742   // allocating an argument to the stack also uses up all the remaining
4743   // registers of the appropriate kind.
4744   llvm::Value *NewOffset = nullptr;
4745   NewOffset = CGF.Builder.CreateAdd(
4746       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs");
4747   CGF.Builder.CreateStore(NewOffset, reg_offs_p);
4748 
4749   // Now we're in a position to decide whether this argument really was in
4750   // registers or not.
4751   llvm::Value *InRegs = nullptr;
4752   InRegs = CGF.Builder.CreateICmpSLE(
4753       NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg");
4754 
4755   CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock);
4756 
4757   //=======================================
4758   // Argument was in registers
4759   //=======================================
4760 
4761   // Now we emit the code for if the argument was originally passed in
4762   // registers. First start the appropriate block:
4763   CGF.EmitBlock(InRegBlock);
4764 
4765   llvm::Value *reg_top = nullptr;
4766   Address reg_top_p = CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index,
4767                                                   reg_top_offset, "reg_top_p");
4768   reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top");
4769   Address BaseAddr(CGF.Builder.CreateInBoundsGEP(reg_top, reg_offs),
4770                    CharUnits::fromQuantity(IsFPR ? 16 : 8));
4771   Address RegAddr = Address::invalid();
4772   llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty);
4773 
4774   if (IsIndirect) {
4775     // If it's been passed indirectly (actually a struct), whatever we find from
4776     // stored registers or on the stack will actually be a struct **.
4777     MemTy = llvm::PointerType::getUnqual(MemTy);
4778   }
4779 
4780   const Type *Base = nullptr;
4781   uint64_t NumMembers = 0;
4782   bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers);
4783   if (IsHFA && NumMembers > 1) {
4784     // Homogeneous aggregates passed in registers will have their elements split
4785     // and stored 16-bytes apart regardless of size (they're notionally in qN,
4786     // qN+1, ...). We reload and store into a temporary local variable
4787     // contiguously.
4788     assert(!IsIndirect && "Homogeneous aggregates should be passed directly");
4789     auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0));
4790     llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0));
4791     llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers);
4792     Address Tmp = CGF.CreateTempAlloca(HFATy,
4793                                        std::max(TyAlign, BaseTyInfo.second));
4794 
4795     // On big-endian platforms, the value will be right-aligned in its slot.
4796     int Offset = 0;
4797     if (CGF.CGM.getDataLayout().isBigEndian() &&
4798         BaseTyInfo.first.getQuantity() < 16)
4799       Offset = 16 - BaseTyInfo.first.getQuantity();
4800 
4801     for (unsigned i = 0; i < NumMembers; ++i) {
4802       CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset);
4803       Address LoadAddr =
4804         CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset);
4805       LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy);
4806 
4807       Address StoreAddr =
4808         CGF.Builder.CreateConstArrayGEP(Tmp, i, BaseTyInfo.first);
4809 
4810       llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr);
4811       CGF.Builder.CreateStore(Elem, StoreAddr);
4812     }
4813 
4814     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy);
4815   } else {
4816     // Otherwise the object is contiguous in memory.
4817 
4818     // It might be right-aligned in its slot.
4819     CharUnits SlotSize = BaseAddr.getAlignment();
4820     if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect &&
4821         (IsHFA || !isAggregateTypeForABI(Ty)) &&
4822         TyInfo.first < SlotSize) {
4823       CharUnits Offset = SlotSize - TyInfo.first;
4824       BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset);
4825     }
4826 
4827     RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy);
4828   }
4829 
4830   CGF.EmitBranch(ContBlock);
4831 
4832   //=======================================
4833   // Argument was on the stack
4834   //=======================================
4835   CGF.EmitBlock(OnStackBlock);
4836 
4837   Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0,
4838                                                 CharUnits::Zero(), "stack_p");
4839   llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack");
4840 
4841   // Again, stack arguments may need realignment. In this case both integer and
4842   // floating-point ones might be affected.
4843   if (!IsIndirect && TyAlign.getQuantity() > 8) {
4844     int Align = TyAlign.getQuantity();
4845 
4846     OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty);
4847 
4848     OnStackPtr = CGF.Builder.CreateAdd(
4849         OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1),
4850         "align_stack");
4851     OnStackPtr = CGF.Builder.CreateAnd(
4852         OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align),
4853         "align_stack");
4854 
4855     OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy);
4856   }
4857   Address OnStackAddr(OnStackPtr,
4858                       std::max(CharUnits::fromQuantity(8), TyAlign));
4859 
4860   // All stack slots are multiples of 8 bytes.
4861   CharUnits StackSlotSize = CharUnits::fromQuantity(8);
4862   CharUnits StackSize;
4863   if (IsIndirect)
4864     StackSize = StackSlotSize;
4865   else
4866     StackSize = TyInfo.first.alignTo(StackSlotSize);
4867 
4868   llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize);
4869   llvm::Value *NewStack =
4870       CGF.Builder.CreateInBoundsGEP(OnStackPtr, StackSizeC, "new_stack");
4871 
4872   // Write the new value of __stack for the next call to va_arg
4873   CGF.Builder.CreateStore(NewStack, stack_p);
4874 
4875   if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) &&
4876       TyInfo.first < StackSlotSize) {
4877     CharUnits Offset = StackSlotSize - TyInfo.first;
4878     OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset);
4879   }
4880 
4881   OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy);
4882 
4883   CGF.EmitBranch(ContBlock);
4884 
4885   //=======================================
4886   // Tidy up
4887   //=======================================
4888   CGF.EmitBlock(ContBlock);
4889 
4890   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
4891                                  OnStackAddr, OnStackBlock, "vaargs.addr");
4892 
4893   if (IsIndirect)
4894     return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"),
4895                    TyInfo.second);
4896 
4897   return ResAddr;
4898 }
4899 
4900 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty,
4901                                         CodeGenFunction &CGF) const {
4902   // The backend's lowering doesn't support va_arg for aggregates or
4903   // illegal vector types.  Lower VAArg here for these cases and use
4904   // the LLVM va_arg instruction for everything else.
4905   if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty))
4906     return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect());
4907 
4908   CharUnits SlotSize = CharUnits::fromQuantity(8);
4909 
4910   // Empty records are ignored for parameter passing purposes.
4911   if (isEmptyRecord(getContext(), Ty, true)) {
4912     Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
4913     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
4914     return Addr;
4915   }
4916 
4917   // The size of the actual thing passed, which might end up just
4918   // being a pointer for indirect types.
4919   auto TyInfo = getContext().getTypeInfoInChars(Ty);
4920 
4921   // Arguments bigger than 16 bytes which aren't homogeneous
4922   // aggregates should be passed indirectly.
4923   bool IsIndirect = false;
4924   if (TyInfo.first.getQuantity() > 16) {
4925     const Type *Base = nullptr;
4926     uint64_t Members = 0;
4927     IsIndirect = !isHomogeneousAggregate(Ty, Base, Members);
4928   }
4929 
4930   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
4931                           TyInfo, SlotSize, /*AllowHigherAlign*/ true);
4932 }
4933 
4934 //===----------------------------------------------------------------------===//
4935 // ARM ABI Implementation
4936 //===----------------------------------------------------------------------===//
4937 
4938 namespace {
4939 
4940 class ARMABIInfo : public SwiftABIInfo {
4941 public:
4942   enum ABIKind {
4943     APCS = 0,
4944     AAPCS = 1,
4945     AAPCS_VFP = 2,
4946     AAPCS16_VFP = 3,
4947   };
4948 
4949 private:
4950   ABIKind Kind;
4951 
4952 public:
4953   ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind)
4954       : SwiftABIInfo(CGT), Kind(_Kind) {
4955     setCCs();
4956   }
4957 
4958   bool isEABI() const {
4959     switch (getTarget().getTriple().getEnvironment()) {
4960     case llvm::Triple::Android:
4961     case llvm::Triple::EABI:
4962     case llvm::Triple::EABIHF:
4963     case llvm::Triple::GNUEABI:
4964     case llvm::Triple::GNUEABIHF:
4965       return true;
4966     default:
4967       return false;
4968     }
4969   }
4970 
4971   bool isEABIHF() const {
4972     switch (getTarget().getTriple().getEnvironment()) {
4973     case llvm::Triple::EABIHF:
4974     case llvm::Triple::GNUEABIHF:
4975       return true;
4976     default:
4977       return false;
4978     }
4979   }
4980 
4981   ABIKind getABIKind() const { return Kind; }
4982 
4983 private:
4984   ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic) const;
4985   ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic) const;
4986   bool isIllegalVectorType(QualType Ty) const;
4987 
4988   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
4989   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
4990                                          uint64_t Members) const override;
4991 
4992   void computeInfo(CGFunctionInfo &FI) const override;
4993 
4994   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4995                     QualType Ty) const override;
4996 
4997   llvm::CallingConv::ID getLLVMDefaultCC() const;
4998   llvm::CallingConv::ID getABIDefaultCC() const;
4999   void setCCs();
5000 
5001   bool shouldPassIndirectlyForSwift(CharUnits totalSize,
5002                                     ArrayRef<llvm::Type*> scalars,
5003                                     bool asReturnValue) const override {
5004     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
5005   }
5006 };
5007 
5008 class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
5009 public:
5010   ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
5011     :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {}
5012 
5013   const ARMABIInfo &getABIInfo() const {
5014     return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo());
5015   }
5016 
5017   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
5018     return 13;
5019   }
5020 
5021   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
5022     return "mov\tr7, r7\t\t@ marker for objc_retainAutoreleaseReturnValue";
5023   }
5024 
5025   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5026                                llvm::Value *Address) const override {
5027     llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
5028 
5029     // 0-15 are the 16 integer registers.
5030     AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15);
5031     return false;
5032   }
5033 
5034   unsigned getSizeOfUnwindException() const override {
5035     if (getABIInfo().isEABI()) return 88;
5036     return TargetCodeGenInfo::getSizeOfUnwindException();
5037   }
5038 
5039   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5040                            CodeGen::CodeGenModule &CGM) const override {
5041     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
5042     if (!FD)
5043       return;
5044 
5045     const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>();
5046     if (!Attr)
5047       return;
5048 
5049     const char *Kind;
5050     switch (Attr->getInterrupt()) {
5051     case ARMInterruptAttr::Generic: Kind = ""; break;
5052     case ARMInterruptAttr::IRQ:     Kind = "IRQ"; break;
5053     case ARMInterruptAttr::FIQ:     Kind = "FIQ"; break;
5054     case ARMInterruptAttr::SWI:     Kind = "SWI"; break;
5055     case ARMInterruptAttr::ABORT:   Kind = "ABORT"; break;
5056     case ARMInterruptAttr::UNDEF:   Kind = "UNDEF"; break;
5057     }
5058 
5059     llvm::Function *Fn = cast<llvm::Function>(GV);
5060 
5061     Fn->addFnAttr("interrupt", Kind);
5062 
5063     ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind();
5064     if (ABI == ARMABIInfo::APCS)
5065       return;
5066 
5067     // AAPCS guarantees that sp will be 8-byte aligned on any public interface,
5068     // however this is not necessarily true on taking any interrupt. Instruct
5069     // the backend to perform a realignment as part of the function prologue.
5070     llvm::AttrBuilder B;
5071     B.addStackAlignmentAttr(8);
5072     Fn->addAttributes(llvm::AttributeSet::FunctionIndex,
5073                       llvm::AttributeSet::get(CGM.getLLVMContext(),
5074                                               llvm::AttributeSet::FunctionIndex,
5075                                               B));
5076   }
5077 };
5078 
5079 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo {
5080 public:
5081   WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
5082       : ARMTargetCodeGenInfo(CGT, K) {}
5083 
5084   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5085                            CodeGen::CodeGenModule &CGM) const override;
5086 };
5087 
5088 void WindowsARMTargetCodeGenInfo::setTargetAttributes(
5089     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
5090   ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
5091   addStackProbeSizeTargetAttribute(D, GV, CGM);
5092 }
5093 }
5094 
5095 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
5096   if (!getCXXABI().classifyReturnType(FI))
5097     FI.getReturnInfo() =
5098         classifyReturnType(FI.getReturnType(), FI.isVariadic());
5099 
5100   for (auto &I : FI.arguments())
5101     I.info = classifyArgumentType(I.type, FI.isVariadic());
5102 
5103   // Always honor user-specified calling convention.
5104   if (FI.getCallingConvention() != llvm::CallingConv::C)
5105     return;
5106 
5107   llvm::CallingConv::ID cc = getRuntimeCC();
5108   if (cc != llvm::CallingConv::C)
5109     FI.setEffectiveCallingConvention(cc);
5110 }
5111 
5112 /// Return the default calling convention that LLVM will use.
5113 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const {
5114   // The default calling convention that LLVM will infer.
5115   if (isEABIHF() || getTarget().getTriple().isWatchABI())
5116     return llvm::CallingConv::ARM_AAPCS_VFP;
5117   else if (isEABI())
5118     return llvm::CallingConv::ARM_AAPCS;
5119   else
5120     return llvm::CallingConv::ARM_APCS;
5121 }
5122 
5123 /// Return the calling convention that our ABI would like us to use
5124 /// as the C calling convention.
5125 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const {
5126   switch (getABIKind()) {
5127   case APCS: return llvm::CallingConv::ARM_APCS;
5128   case AAPCS: return llvm::CallingConv::ARM_AAPCS;
5129   case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
5130   case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
5131   }
5132   llvm_unreachable("bad ABI kind");
5133 }
5134 
5135 void ARMABIInfo::setCCs() {
5136   assert(getRuntimeCC() == llvm::CallingConv::C);
5137 
5138   // Don't muddy up the IR with a ton of explicit annotations if
5139   // they'd just match what LLVM will infer from the triple.
5140   llvm::CallingConv::ID abiCC = getABIDefaultCC();
5141   if (abiCC != getLLVMDefaultCC())
5142     RuntimeCC = abiCC;
5143 
5144   // AAPCS apparently requires runtime support functions to be soft-float, but
5145   // that's almost certainly for historic reasons (Thumb1 not supporting VFP
5146   // most likely). It's more convenient for AAPCS16_VFP to be hard-float.
5147   switch (getABIKind()) {
5148   case APCS:
5149   case AAPCS16_VFP:
5150     if (abiCC != getLLVMDefaultCC())
5151       BuiltinCC = abiCC;
5152     break;
5153   case AAPCS:
5154   case AAPCS_VFP:
5155     BuiltinCC = llvm::CallingConv::ARM_AAPCS;
5156     break;
5157   }
5158 }
5159 
5160 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty,
5161                                             bool isVariadic) const {
5162   // 6.1.2.1 The following argument types are VFP CPRCs:
5163   //   A single-precision floating-point type (including promoted
5164   //   half-precision types); A double-precision floating-point type;
5165   //   A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate
5166   //   with a Base Type of a single- or double-precision floating-point type,
5167   //   64-bit containerized vectors or 128-bit containerized vectors with one
5168   //   to four Elements.
5169   bool IsEffectivelyAAPCS_VFP = getABIKind() == AAPCS_VFP && !isVariadic;
5170 
5171   Ty = useFirstFieldIfTransparentUnion(Ty);
5172 
5173   // Handle illegal vector types here.
5174   if (isIllegalVectorType(Ty)) {
5175     uint64_t Size = getContext().getTypeSize(Ty);
5176     if (Size <= 32) {
5177       llvm::Type *ResType =
5178           llvm::Type::getInt32Ty(getVMContext());
5179       return ABIArgInfo::getDirect(ResType);
5180     }
5181     if (Size == 64) {
5182       llvm::Type *ResType = llvm::VectorType::get(
5183           llvm::Type::getInt32Ty(getVMContext()), 2);
5184       return ABIArgInfo::getDirect(ResType);
5185     }
5186     if (Size == 128) {
5187       llvm::Type *ResType = llvm::VectorType::get(
5188           llvm::Type::getInt32Ty(getVMContext()), 4);
5189       return ABIArgInfo::getDirect(ResType);
5190     }
5191     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5192   }
5193 
5194   // __fp16 gets passed as if it were an int or float, but with the top 16 bits
5195   // unspecified. This is not done for OpenCL as it handles the half type
5196   // natively, and does not need to interwork with AAPCS code.
5197   if (Ty->isHalfType() && !getContext().getLangOpts().NativeHalfArgsAndReturns) {
5198     llvm::Type *ResType = IsEffectivelyAAPCS_VFP ?
5199       llvm::Type::getFloatTy(getVMContext()) :
5200       llvm::Type::getInt32Ty(getVMContext());
5201     return ABIArgInfo::getDirect(ResType);
5202   }
5203 
5204   if (!isAggregateTypeForABI(Ty)) {
5205     // Treat an enum type as its underlying type.
5206     if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
5207       Ty = EnumTy->getDecl()->getIntegerType();
5208     }
5209 
5210     return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend()
5211                                           : ABIArgInfo::getDirect());
5212   }
5213 
5214   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
5215     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
5216   }
5217 
5218   // Ignore empty records.
5219   if (isEmptyRecord(getContext(), Ty, true))
5220     return ABIArgInfo::getIgnore();
5221 
5222   if (IsEffectivelyAAPCS_VFP) {
5223     // Homogeneous Aggregates need to be expanded when we can fit the aggregate
5224     // into VFP registers.
5225     const Type *Base = nullptr;
5226     uint64_t Members = 0;
5227     if (isHomogeneousAggregate(Ty, Base, Members)) {
5228       assert(Base && "Base class should be set for homogeneous aggregate");
5229       // Base can be a floating-point or a vector.
5230       return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
5231     }
5232   } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) {
5233     // WatchOS does have homogeneous aggregates. Note that we intentionally use
5234     // this convention even for a variadic function: the backend will use GPRs
5235     // if needed.
5236     const Type *Base = nullptr;
5237     uint64_t Members = 0;
5238     if (isHomogeneousAggregate(Ty, Base, Members)) {
5239       assert(Base && Members <= 4 && "unexpected homogeneous aggregate");
5240       llvm::Type *Ty =
5241         llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members);
5242       return ABIArgInfo::getDirect(Ty, 0, nullptr, false);
5243     }
5244   }
5245 
5246   if (getABIKind() == ARMABIInfo::AAPCS16_VFP &&
5247       getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) {
5248     // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're
5249     // bigger than 128-bits, they get placed in space allocated by the caller,
5250     // and a pointer is passed.
5251     return ABIArgInfo::getIndirect(
5252         CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false);
5253   }
5254 
5255   // Support byval for ARM.
5256   // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at
5257   // most 8-byte. We realign the indirect argument if type alignment is bigger
5258   // than ABI alignment.
5259   uint64_t ABIAlign = 4;
5260   uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8;
5261   if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
5262        getABIKind() == ARMABIInfo::AAPCS)
5263     ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
5264 
5265   if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) {
5266     assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval");
5267     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
5268                                    /*ByVal=*/true,
5269                                    /*Realign=*/TyAlign > ABIAlign);
5270   }
5271 
5272   // Otherwise, pass by coercing to a structure of the appropriate size.
5273   llvm::Type* ElemTy;
5274   unsigned SizeRegs;
5275   // FIXME: Try to match the types of the arguments more accurately where
5276   // we can.
5277   if (getContext().getTypeAlign(Ty) <= 32) {
5278     ElemTy = llvm::Type::getInt32Ty(getVMContext());
5279     SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
5280   } else {
5281     ElemTy = llvm::Type::getInt64Ty(getVMContext());
5282     SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
5283   }
5284 
5285   return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs));
5286 }
5287 
5288 static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
5289                               llvm::LLVMContext &VMContext) {
5290   // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
5291   // is called integer-like if its size is less than or equal to one word, and
5292   // the offset of each of its addressable sub-fields is zero.
5293 
5294   uint64_t Size = Context.getTypeSize(Ty);
5295 
5296   // Check that the type fits in a word.
5297   if (Size > 32)
5298     return false;
5299 
5300   // FIXME: Handle vector types!
5301   if (Ty->isVectorType())
5302     return false;
5303 
5304   // Float types are never treated as "integer like".
5305   if (Ty->isRealFloatingType())
5306     return false;
5307 
5308   // If this is a builtin or pointer type then it is ok.
5309   if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
5310     return true;
5311 
5312   // Small complex integer types are "integer like".
5313   if (const ComplexType *CT = Ty->getAs<ComplexType>())
5314     return isIntegerLikeType(CT->getElementType(), Context, VMContext);
5315 
5316   // Single element and zero sized arrays should be allowed, by the definition
5317   // above, but they are not.
5318 
5319   // Otherwise, it must be a record type.
5320   const RecordType *RT = Ty->getAs<RecordType>();
5321   if (!RT) return false;
5322 
5323   // Ignore records with flexible arrays.
5324   const RecordDecl *RD = RT->getDecl();
5325   if (RD->hasFlexibleArrayMember())
5326     return false;
5327 
5328   // Check that all sub-fields are at offset 0, and are themselves "integer
5329   // like".
5330   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
5331 
5332   bool HadField = false;
5333   unsigned idx = 0;
5334   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
5335        i != e; ++i, ++idx) {
5336     const FieldDecl *FD = *i;
5337 
5338     // Bit-fields are not addressable, we only need to verify they are "integer
5339     // like". We still have to disallow a subsequent non-bitfield, for example:
5340     //   struct { int : 0; int x }
5341     // is non-integer like according to gcc.
5342     if (FD->isBitField()) {
5343       if (!RD->isUnion())
5344         HadField = true;
5345 
5346       if (!isIntegerLikeType(FD->getType(), Context, VMContext))
5347         return false;
5348 
5349       continue;
5350     }
5351 
5352     // Check if this field is at offset 0.
5353     if (Layout.getFieldOffset(idx) != 0)
5354       return false;
5355 
5356     if (!isIntegerLikeType(FD->getType(), Context, VMContext))
5357       return false;
5358 
5359     // Only allow at most one field in a structure. This doesn't match the
5360     // wording above, but follows gcc in situations with a field following an
5361     // empty structure.
5362     if (!RD->isUnion()) {
5363       if (HadField)
5364         return false;
5365 
5366       HadField = true;
5367     }
5368   }
5369 
5370   return true;
5371 }
5372 
5373 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy,
5374                                           bool isVariadic) const {
5375   bool IsEffectivelyAAPCS_VFP =
5376       (getABIKind() == AAPCS_VFP || getABIKind() == AAPCS16_VFP) && !isVariadic;
5377 
5378   if (RetTy->isVoidType())
5379     return ABIArgInfo::getIgnore();
5380 
5381   // Large vector types should be returned via memory.
5382   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) {
5383     return getNaturalAlignIndirect(RetTy);
5384   }
5385 
5386   // __fp16 gets returned as if it were an int or float, but with the top 16
5387   // bits unspecified. This is not done for OpenCL as it handles the half type
5388   // natively, and does not need to interwork with AAPCS code.
5389   if (RetTy->isHalfType() && !getContext().getLangOpts().NativeHalfArgsAndReturns) {
5390     llvm::Type *ResType = IsEffectivelyAAPCS_VFP ?
5391       llvm::Type::getFloatTy(getVMContext()) :
5392       llvm::Type::getInt32Ty(getVMContext());
5393     return ABIArgInfo::getDirect(ResType);
5394   }
5395 
5396   if (!isAggregateTypeForABI(RetTy)) {
5397     // Treat an enum type as its underlying type.
5398     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5399       RetTy = EnumTy->getDecl()->getIntegerType();
5400 
5401     return RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend()
5402                                             : ABIArgInfo::getDirect();
5403   }
5404 
5405   // Are we following APCS?
5406   if (getABIKind() == APCS) {
5407     if (isEmptyRecord(getContext(), RetTy, false))
5408       return ABIArgInfo::getIgnore();
5409 
5410     // Complex types are all returned as packed integers.
5411     //
5412     // FIXME: Consider using 2 x vector types if the back end handles them
5413     // correctly.
5414     if (RetTy->isAnyComplexType())
5415       return ABIArgInfo::getDirect(llvm::IntegerType::get(
5416           getVMContext(), getContext().getTypeSize(RetTy)));
5417 
5418     // Integer like structures are returned in r0.
5419     if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
5420       // Return in the smallest viable integer type.
5421       uint64_t Size = getContext().getTypeSize(RetTy);
5422       if (Size <= 8)
5423         return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
5424       if (Size <= 16)
5425         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
5426       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
5427     }
5428 
5429     // Otherwise return in memory.
5430     return getNaturalAlignIndirect(RetTy);
5431   }
5432 
5433   // Otherwise this is an AAPCS variant.
5434 
5435   if (isEmptyRecord(getContext(), RetTy, true))
5436     return ABIArgInfo::getIgnore();
5437 
5438   // Check for homogeneous aggregates with AAPCS-VFP.
5439   if (IsEffectivelyAAPCS_VFP) {
5440     const Type *Base = nullptr;
5441     uint64_t Members = 0;
5442     if (isHomogeneousAggregate(RetTy, Base, Members)) {
5443       assert(Base && "Base class should be set for homogeneous aggregate");
5444       // Homogeneous Aggregates are returned directly.
5445       return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
5446     }
5447   }
5448 
5449   // Aggregates <= 4 bytes are returned in r0; other aggregates
5450   // are returned indirectly.
5451   uint64_t Size = getContext().getTypeSize(RetTy);
5452   if (Size <= 32) {
5453     if (getDataLayout().isBigEndian())
5454       // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4)
5455       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
5456 
5457     // Return in the smallest viable integer type.
5458     if (Size <= 8)
5459       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
5460     if (Size <= 16)
5461       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
5462     return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
5463   } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) {
5464     llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext());
5465     llvm::Type *CoerceTy =
5466         llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32);
5467     return ABIArgInfo::getDirect(CoerceTy);
5468   }
5469 
5470   return getNaturalAlignIndirect(RetTy);
5471 }
5472 
5473 /// isIllegalVector - check whether Ty is an illegal vector type.
5474 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const {
5475   if (const VectorType *VT = Ty->getAs<VectorType> ()) {
5476     if (isAndroid()) {
5477       // Android shipped using Clang 3.1, which supported a slightly different
5478       // vector ABI. The primary differences were that 3-element vector types
5479       // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path
5480       // accepts that legacy behavior for Android only.
5481       // Check whether VT is legal.
5482       unsigned NumElements = VT->getNumElements();
5483       // NumElements should be power of 2 or equal to 3.
5484       if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3)
5485         return true;
5486     } else {
5487       // Check whether VT is legal.
5488       unsigned NumElements = VT->getNumElements();
5489       uint64_t Size = getContext().getTypeSize(VT);
5490       // NumElements should be power of 2.
5491       if (!llvm::isPowerOf2_32(NumElements))
5492         return true;
5493       // Size should be greater than 32 bits.
5494       return Size <= 32;
5495     }
5496   }
5497   return false;
5498 }
5499 
5500 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
5501   // Homogeneous aggregates for AAPCS-VFP must have base types of float,
5502   // double, or 64-bit or 128-bit vectors.
5503   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
5504     if (BT->getKind() == BuiltinType::Float ||
5505         BT->getKind() == BuiltinType::Double ||
5506         BT->getKind() == BuiltinType::LongDouble)
5507       return true;
5508   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
5509     unsigned VecSize = getContext().getTypeSize(VT);
5510     if (VecSize == 64 || VecSize == 128)
5511       return true;
5512   }
5513   return false;
5514 }
5515 
5516 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
5517                                                    uint64_t Members) const {
5518   return Members <= 4;
5519 }
5520 
5521 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5522                               QualType Ty) const {
5523   CharUnits SlotSize = CharUnits::fromQuantity(4);
5524 
5525   // Empty records are ignored for parameter passing purposes.
5526   if (isEmptyRecord(getContext(), Ty, true)) {
5527     Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize);
5528     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
5529     return Addr;
5530   }
5531 
5532   auto TyInfo = getContext().getTypeInfoInChars(Ty);
5533   CharUnits TyAlignForABI = TyInfo.second;
5534 
5535   // Use indirect if size of the illegal vector is bigger than 16 bytes.
5536   bool IsIndirect = false;
5537   const Type *Base = nullptr;
5538   uint64_t Members = 0;
5539   if (TyInfo.first > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) {
5540     IsIndirect = true;
5541 
5542   // ARMv7k passes structs bigger than 16 bytes indirectly, in space
5543   // allocated by the caller.
5544   } else if (TyInfo.first > CharUnits::fromQuantity(16) &&
5545              getABIKind() == ARMABIInfo::AAPCS16_VFP &&
5546              !isHomogeneousAggregate(Ty, Base, Members)) {
5547     IsIndirect = true;
5548 
5549   // Otherwise, bound the type's ABI alignment.
5550   // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for
5551   // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte.
5552   // Our callers should be prepared to handle an under-aligned address.
5553   } else if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
5554              getABIKind() == ARMABIInfo::AAPCS) {
5555     TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
5556     TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8));
5557   } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) {
5558     // ARMv7k allows type alignment up to 16 bytes.
5559     TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
5560     TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16));
5561   } else {
5562     TyAlignForABI = CharUnits::fromQuantity(4);
5563   }
5564   TyInfo.second = TyAlignForABI;
5565 
5566   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo,
5567                           SlotSize, /*AllowHigherAlign*/ true);
5568 }
5569 
5570 //===----------------------------------------------------------------------===//
5571 // NVPTX ABI Implementation
5572 //===----------------------------------------------------------------------===//
5573 
5574 namespace {
5575 
5576 class NVPTXABIInfo : public ABIInfo {
5577 public:
5578   NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
5579 
5580   ABIArgInfo classifyReturnType(QualType RetTy) const;
5581   ABIArgInfo classifyArgumentType(QualType Ty) const;
5582 
5583   void computeInfo(CGFunctionInfo &FI) const override;
5584   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5585                     QualType Ty) const override;
5586 };
5587 
5588 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo {
5589 public:
5590   NVPTXTargetCodeGenInfo(CodeGenTypes &CGT)
5591     : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {}
5592 
5593   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5594                            CodeGen::CodeGenModule &M) const override;
5595 private:
5596   // Adds a NamedMDNode with F, Name, and Operand as operands, and adds the
5597   // resulting MDNode to the nvvm.annotations MDNode.
5598   static void addNVVMMetadata(llvm::Function *F, StringRef Name, int Operand);
5599 };
5600 
5601 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const {
5602   if (RetTy->isVoidType())
5603     return ABIArgInfo::getIgnore();
5604 
5605   // note: this is different from default ABI
5606   if (!RetTy->isScalarType())
5607     return ABIArgInfo::getDirect();
5608 
5609   // Treat an enum type as its underlying type.
5610   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5611     RetTy = EnumTy->getDecl()->getIntegerType();
5612 
5613   return (RetTy->isPromotableIntegerType() ?
5614           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5615 }
5616 
5617 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const {
5618   // Treat an enum type as its underlying type.
5619   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5620     Ty = EnumTy->getDecl()->getIntegerType();
5621 
5622   // Return aggregates type as indirect by value
5623   if (isAggregateTypeForABI(Ty))
5624     return getNaturalAlignIndirect(Ty, /* byval */ true);
5625 
5626   return (Ty->isPromotableIntegerType() ?
5627           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5628 }
5629 
5630 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
5631   if (!getCXXABI().classifyReturnType(FI))
5632     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
5633   for (auto &I : FI.arguments())
5634     I.info = classifyArgumentType(I.type);
5635 
5636   // Always honor user-specified calling convention.
5637   if (FI.getCallingConvention() != llvm::CallingConv::C)
5638     return;
5639 
5640   FI.setEffectiveCallingConvention(getRuntimeCC());
5641 }
5642 
5643 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5644                                 QualType Ty) const {
5645   llvm_unreachable("NVPTX does not support varargs");
5646 }
5647 
5648 void NVPTXTargetCodeGenInfo::
5649 setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5650                     CodeGen::CodeGenModule &M) const{
5651   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
5652   if (!FD) return;
5653 
5654   llvm::Function *F = cast<llvm::Function>(GV);
5655 
5656   // Perform special handling in OpenCL mode
5657   if (M.getLangOpts().OpenCL) {
5658     // Use OpenCL function attributes to check for kernel functions
5659     // By default, all functions are device functions
5660     if (FD->hasAttr<OpenCLKernelAttr>()) {
5661       // OpenCL __kernel functions get kernel metadata
5662       // Create !{<func-ref>, metadata !"kernel", i32 1} node
5663       addNVVMMetadata(F, "kernel", 1);
5664       // And kernel functions are not subject to inlining
5665       F->addFnAttr(llvm::Attribute::NoInline);
5666     }
5667   }
5668 
5669   // Perform special handling in CUDA mode.
5670   if (M.getLangOpts().CUDA) {
5671     // CUDA __global__ functions get a kernel metadata entry.  Since
5672     // __global__ functions cannot be called from the device, we do not
5673     // need to set the noinline attribute.
5674     if (FD->hasAttr<CUDAGlobalAttr>()) {
5675       // Create !{<func-ref>, metadata !"kernel", i32 1} node
5676       addNVVMMetadata(F, "kernel", 1);
5677     }
5678     if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) {
5679       // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node
5680       llvm::APSInt MaxThreads(32);
5681       MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext());
5682       if (MaxThreads > 0)
5683         addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue());
5684 
5685       // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was
5686       // not specified in __launch_bounds__ or if the user specified a 0 value,
5687       // we don't have to add a PTX directive.
5688       if (Attr->getMinBlocks()) {
5689         llvm::APSInt MinBlocks(32);
5690         MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext());
5691         if (MinBlocks > 0)
5692           // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node
5693           addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue());
5694       }
5695     }
5696   }
5697 }
5698 
5699 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::Function *F, StringRef Name,
5700                                              int Operand) {
5701   llvm::Module *M = F->getParent();
5702   llvm::LLVMContext &Ctx = M->getContext();
5703 
5704   // Get "nvvm.annotations" metadata node
5705   llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations");
5706 
5707   llvm::Metadata *MDVals[] = {
5708       llvm::ConstantAsMetadata::get(F), llvm::MDString::get(Ctx, Name),
5709       llvm::ConstantAsMetadata::get(
5710           llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))};
5711   // Append metadata to nvvm.annotations
5712   MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
5713 }
5714 }
5715 
5716 //===----------------------------------------------------------------------===//
5717 // SystemZ ABI Implementation
5718 //===----------------------------------------------------------------------===//
5719 
5720 namespace {
5721 
5722 class SystemZABIInfo : public SwiftABIInfo {
5723   bool HasVector;
5724 
5725 public:
5726   SystemZABIInfo(CodeGenTypes &CGT, bool HV)
5727     : SwiftABIInfo(CGT), HasVector(HV) {}
5728 
5729   bool isPromotableIntegerType(QualType Ty) const;
5730   bool isCompoundType(QualType Ty) const;
5731   bool isVectorArgumentType(QualType Ty) const;
5732   bool isFPArgumentType(QualType Ty) const;
5733   QualType GetSingleElementType(QualType Ty) const;
5734 
5735   ABIArgInfo classifyReturnType(QualType RetTy) const;
5736   ABIArgInfo classifyArgumentType(QualType ArgTy) const;
5737 
5738   void computeInfo(CGFunctionInfo &FI) const override {
5739     if (!getCXXABI().classifyReturnType(FI))
5740       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
5741     for (auto &I : FI.arguments())
5742       I.info = classifyArgumentType(I.type);
5743   }
5744 
5745   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5746                     QualType Ty) const override;
5747 
5748   bool shouldPassIndirectlyForSwift(CharUnits totalSize,
5749                                     ArrayRef<llvm::Type*> scalars,
5750                                     bool asReturnValue) const override {
5751     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
5752   }
5753 };
5754 
5755 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
5756 public:
5757   SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector)
5758     : TargetCodeGenInfo(new SystemZABIInfo(CGT, HasVector)) {}
5759 };
5760 
5761 }
5762 
5763 bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const {
5764   // Treat an enum type as its underlying type.
5765   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5766     Ty = EnumTy->getDecl()->getIntegerType();
5767 
5768   // Promotable integer types are required to be promoted by the ABI.
5769   if (Ty->isPromotableIntegerType())
5770     return true;
5771 
5772   // 32-bit values must also be promoted.
5773   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
5774     switch (BT->getKind()) {
5775     case BuiltinType::Int:
5776     case BuiltinType::UInt:
5777       return true;
5778     default:
5779       return false;
5780     }
5781   return false;
5782 }
5783 
5784 bool SystemZABIInfo::isCompoundType(QualType Ty) const {
5785   return (Ty->isAnyComplexType() ||
5786           Ty->isVectorType() ||
5787           isAggregateTypeForABI(Ty));
5788 }
5789 
5790 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const {
5791   return (HasVector &&
5792           Ty->isVectorType() &&
5793           getContext().getTypeSize(Ty) <= 128);
5794 }
5795 
5796 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const {
5797   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
5798     switch (BT->getKind()) {
5799     case BuiltinType::Float:
5800     case BuiltinType::Double:
5801       return true;
5802     default:
5803       return false;
5804     }
5805 
5806   return false;
5807 }
5808 
5809 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const {
5810   if (const RecordType *RT = Ty->getAsStructureType()) {
5811     const RecordDecl *RD = RT->getDecl();
5812     QualType Found;
5813 
5814     // If this is a C++ record, check the bases first.
5815     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
5816       for (const auto &I : CXXRD->bases()) {
5817         QualType Base = I.getType();
5818 
5819         // Empty bases don't affect things either way.
5820         if (isEmptyRecord(getContext(), Base, true))
5821           continue;
5822 
5823         if (!Found.isNull())
5824           return Ty;
5825         Found = GetSingleElementType(Base);
5826       }
5827 
5828     // Check the fields.
5829     for (const auto *FD : RD->fields()) {
5830       // For compatibility with GCC, ignore empty bitfields in C++ mode.
5831       // Unlike isSingleElementStruct(), empty structure and array fields
5832       // do count.  So do anonymous bitfields that aren't zero-sized.
5833       if (getContext().getLangOpts().CPlusPlus &&
5834           FD->isBitField() && FD->getBitWidthValue(getContext()) == 0)
5835         continue;
5836 
5837       // Unlike isSingleElementStruct(), arrays do not count.
5838       // Nested structures still do though.
5839       if (!Found.isNull())
5840         return Ty;
5841       Found = GetSingleElementType(FD->getType());
5842     }
5843 
5844     // Unlike isSingleElementStruct(), trailing padding is allowed.
5845     // An 8-byte aligned struct s { float f; } is passed as a double.
5846     if (!Found.isNull())
5847       return Found;
5848   }
5849 
5850   return Ty;
5851 }
5852 
5853 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5854                                   QualType Ty) const {
5855   // Assume that va_list type is correct; should be pointer to LLVM type:
5856   // struct {
5857   //   i64 __gpr;
5858   //   i64 __fpr;
5859   //   i8 *__overflow_arg_area;
5860   //   i8 *__reg_save_area;
5861   // };
5862 
5863   // Every non-vector argument occupies 8 bytes and is passed by preference
5864   // in either GPRs or FPRs.  Vector arguments occupy 8 or 16 bytes and are
5865   // always passed on the stack.
5866   Ty = getContext().getCanonicalType(Ty);
5867   auto TyInfo = getContext().getTypeInfoInChars(Ty);
5868   llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty);
5869   llvm::Type *DirectTy = ArgTy;
5870   ABIArgInfo AI = classifyArgumentType(Ty);
5871   bool IsIndirect = AI.isIndirect();
5872   bool InFPRs = false;
5873   bool IsVector = false;
5874   CharUnits UnpaddedSize;
5875   CharUnits DirectAlign;
5876   if (IsIndirect) {
5877     DirectTy = llvm::PointerType::getUnqual(DirectTy);
5878     UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8);
5879   } else {
5880     if (AI.getCoerceToType())
5881       ArgTy = AI.getCoerceToType();
5882     InFPRs = ArgTy->isFloatTy() || ArgTy->isDoubleTy();
5883     IsVector = ArgTy->isVectorTy();
5884     UnpaddedSize = TyInfo.first;
5885     DirectAlign = TyInfo.second;
5886   }
5887   CharUnits PaddedSize = CharUnits::fromQuantity(8);
5888   if (IsVector && UnpaddedSize > PaddedSize)
5889     PaddedSize = CharUnits::fromQuantity(16);
5890   assert((UnpaddedSize <= PaddedSize) && "Invalid argument size.");
5891 
5892   CharUnits Padding = (PaddedSize - UnpaddedSize);
5893 
5894   llvm::Type *IndexTy = CGF.Int64Ty;
5895   llvm::Value *PaddedSizeV =
5896     llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity());
5897 
5898   if (IsVector) {
5899     // Work out the address of a vector argument on the stack.
5900     // Vector arguments are always passed in the high bits of a
5901     // single (8 byte) or double (16 byte) stack slot.
5902     Address OverflowArgAreaPtr =
5903       CGF.Builder.CreateStructGEP(VAListAddr, 2, CharUnits::fromQuantity(16),
5904                                   "overflow_arg_area_ptr");
5905     Address OverflowArgArea =
5906       Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
5907               TyInfo.second);
5908     Address MemAddr =
5909       CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr");
5910 
5911     // Update overflow_arg_area_ptr pointer
5912     llvm::Value *NewOverflowArgArea =
5913       CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV,
5914                             "overflow_arg_area");
5915     CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
5916 
5917     return MemAddr;
5918   }
5919 
5920   assert(PaddedSize.getQuantity() == 8);
5921 
5922   unsigned MaxRegs, RegCountField, RegSaveIndex;
5923   CharUnits RegPadding;
5924   if (InFPRs) {
5925     MaxRegs = 4; // Maximum of 4 FPR arguments
5926     RegCountField = 1; // __fpr
5927     RegSaveIndex = 16; // save offset for f0
5928     RegPadding = CharUnits(); // floats are passed in the high bits of an FPR
5929   } else {
5930     MaxRegs = 5; // Maximum of 5 GPR arguments
5931     RegCountField = 0; // __gpr
5932     RegSaveIndex = 2; // save offset for r2
5933     RegPadding = Padding; // values are passed in the low bits of a GPR
5934   }
5935 
5936   Address RegCountPtr = CGF.Builder.CreateStructGEP(
5937       VAListAddr, RegCountField, RegCountField * CharUnits::fromQuantity(8),
5938       "reg_count_ptr");
5939   llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count");
5940   llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs);
5941   llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV,
5942                                                  "fits_in_regs");
5943 
5944   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
5945   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
5946   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
5947   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
5948 
5949   // Emit code to load the value if it was passed in registers.
5950   CGF.EmitBlock(InRegBlock);
5951 
5952   // Work out the address of an argument register.
5953   llvm::Value *ScaledRegCount =
5954     CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count");
5955   llvm::Value *RegBase =
5956     llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity()
5957                                       + RegPadding.getQuantity());
5958   llvm::Value *RegOffset =
5959     CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset");
5960   Address RegSaveAreaPtr =
5961       CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(24),
5962                                   "reg_save_area_ptr");
5963   llvm::Value *RegSaveArea =
5964     CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area");
5965   Address RawRegAddr(CGF.Builder.CreateGEP(RegSaveArea, RegOffset,
5966                                            "raw_reg_addr"),
5967                      PaddedSize);
5968   Address RegAddr =
5969     CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr");
5970 
5971   // Update the register count
5972   llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1);
5973   llvm::Value *NewRegCount =
5974     CGF.Builder.CreateAdd(RegCount, One, "reg_count");
5975   CGF.Builder.CreateStore(NewRegCount, RegCountPtr);
5976   CGF.EmitBranch(ContBlock);
5977 
5978   // Emit code to load the value if it was passed in memory.
5979   CGF.EmitBlock(InMemBlock);
5980 
5981   // Work out the address of a stack argument.
5982   Address OverflowArgAreaPtr = CGF.Builder.CreateStructGEP(
5983       VAListAddr, 2, CharUnits::fromQuantity(16), "overflow_arg_area_ptr");
5984   Address OverflowArgArea =
5985     Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
5986             PaddedSize);
5987   Address RawMemAddr =
5988     CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr");
5989   Address MemAddr =
5990     CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr");
5991 
5992   // Update overflow_arg_area_ptr pointer
5993   llvm::Value *NewOverflowArgArea =
5994     CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV,
5995                           "overflow_arg_area");
5996   CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
5997   CGF.EmitBranch(ContBlock);
5998 
5999   // Return the appropriate result.
6000   CGF.EmitBlock(ContBlock);
6001   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
6002                                  MemAddr, InMemBlock, "va_arg.addr");
6003 
6004   if (IsIndirect)
6005     ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"),
6006                       TyInfo.second);
6007 
6008   return ResAddr;
6009 }
6010 
6011 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const {
6012   if (RetTy->isVoidType())
6013     return ABIArgInfo::getIgnore();
6014   if (isVectorArgumentType(RetTy))
6015     return ABIArgInfo::getDirect();
6016   if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64)
6017     return getNaturalAlignIndirect(RetTy);
6018   return (isPromotableIntegerType(RetTy) ?
6019           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
6020 }
6021 
6022 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const {
6023   // Handle the generic C++ ABI.
6024   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
6025     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
6026 
6027   // Integers and enums are extended to full register width.
6028   if (isPromotableIntegerType(Ty))
6029     return ABIArgInfo::getExtend();
6030 
6031   // Handle vector types and vector-like structure types.  Note that
6032   // as opposed to float-like structure types, we do not allow any
6033   // padding for vector-like structures, so verify the sizes match.
6034   uint64_t Size = getContext().getTypeSize(Ty);
6035   QualType SingleElementTy = GetSingleElementType(Ty);
6036   if (isVectorArgumentType(SingleElementTy) &&
6037       getContext().getTypeSize(SingleElementTy) == Size)
6038     return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy));
6039 
6040   // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly.
6041   if (Size != 8 && Size != 16 && Size != 32 && Size != 64)
6042     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
6043 
6044   // Handle small structures.
6045   if (const RecordType *RT = Ty->getAs<RecordType>()) {
6046     // Structures with flexible arrays have variable length, so really
6047     // fail the size test above.
6048     const RecordDecl *RD = RT->getDecl();
6049     if (RD->hasFlexibleArrayMember())
6050       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
6051 
6052     // The structure is passed as an unextended integer, a float, or a double.
6053     llvm::Type *PassTy;
6054     if (isFPArgumentType(SingleElementTy)) {
6055       assert(Size == 32 || Size == 64);
6056       if (Size == 32)
6057         PassTy = llvm::Type::getFloatTy(getVMContext());
6058       else
6059         PassTy = llvm::Type::getDoubleTy(getVMContext());
6060     } else
6061       PassTy = llvm::IntegerType::get(getVMContext(), Size);
6062     return ABIArgInfo::getDirect(PassTy);
6063   }
6064 
6065   // Non-structure compounds are passed indirectly.
6066   if (isCompoundType(Ty))
6067     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
6068 
6069   return ABIArgInfo::getDirect(nullptr);
6070 }
6071 
6072 //===----------------------------------------------------------------------===//
6073 // MSP430 ABI Implementation
6074 //===----------------------------------------------------------------------===//
6075 
6076 namespace {
6077 
6078 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
6079 public:
6080   MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
6081     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
6082   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6083                            CodeGen::CodeGenModule &M) const override;
6084 };
6085 
6086 }
6087 
6088 void MSP430TargetCodeGenInfo::setTargetAttributes(const Decl *D,
6089                                                   llvm::GlobalValue *GV,
6090                                              CodeGen::CodeGenModule &M) const {
6091   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
6092     if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) {
6093       // Handle 'interrupt' attribute:
6094       llvm::Function *F = cast<llvm::Function>(GV);
6095 
6096       // Step 1: Set ISR calling convention.
6097       F->setCallingConv(llvm::CallingConv::MSP430_INTR);
6098 
6099       // Step 2: Add attributes goodness.
6100       F->addFnAttr(llvm::Attribute::NoInline);
6101 
6102       // Step 3: Emit ISR vector alias.
6103       unsigned Num = attr->getNumber() / 2;
6104       llvm::GlobalAlias::create(llvm::Function::ExternalLinkage,
6105                                 "__isr_" + Twine(Num), F);
6106     }
6107   }
6108 }
6109 
6110 //===----------------------------------------------------------------------===//
6111 // MIPS ABI Implementation.  This works for both little-endian and
6112 // big-endian variants.
6113 //===----------------------------------------------------------------------===//
6114 
6115 namespace {
6116 class MipsABIInfo : public ABIInfo {
6117   bool IsO32;
6118   unsigned MinABIStackAlignInBytes, StackAlignInBytes;
6119   void CoerceToIntArgs(uint64_t TySize,
6120                        SmallVectorImpl<llvm::Type *> &ArgList) const;
6121   llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const;
6122   llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const;
6123   llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const;
6124 public:
6125   MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) :
6126     ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8),
6127     StackAlignInBytes(IsO32 ? 8 : 16) {}
6128 
6129   ABIArgInfo classifyReturnType(QualType RetTy) const;
6130   ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const;
6131   void computeInfo(CGFunctionInfo &FI) const override;
6132   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6133                     QualType Ty) const override;
6134   bool shouldSignExtUnsignedType(QualType Ty) const override;
6135 };
6136 
6137 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
6138   unsigned SizeOfUnwindException;
6139 public:
6140   MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32)
6141     : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)),
6142       SizeOfUnwindException(IsO32 ? 24 : 32) {}
6143 
6144   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
6145     return 29;
6146   }
6147 
6148   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6149                            CodeGen::CodeGenModule &CGM) const override {
6150     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
6151     if (!FD) return;
6152     llvm::Function *Fn = cast<llvm::Function>(GV);
6153     if (FD->hasAttr<Mips16Attr>()) {
6154       Fn->addFnAttr("mips16");
6155     }
6156     else if (FD->hasAttr<NoMips16Attr>()) {
6157       Fn->addFnAttr("nomips16");
6158     }
6159 
6160     const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>();
6161     if (!Attr)
6162       return;
6163 
6164     const char *Kind;
6165     switch (Attr->getInterrupt()) {
6166     case MipsInterruptAttr::eic:     Kind = "eic"; break;
6167     case MipsInterruptAttr::sw0:     Kind = "sw0"; break;
6168     case MipsInterruptAttr::sw1:     Kind = "sw1"; break;
6169     case MipsInterruptAttr::hw0:     Kind = "hw0"; break;
6170     case MipsInterruptAttr::hw1:     Kind = "hw1"; break;
6171     case MipsInterruptAttr::hw2:     Kind = "hw2"; break;
6172     case MipsInterruptAttr::hw3:     Kind = "hw3"; break;
6173     case MipsInterruptAttr::hw4:     Kind = "hw4"; break;
6174     case MipsInterruptAttr::hw5:     Kind = "hw5"; break;
6175     }
6176 
6177     Fn->addFnAttr("interrupt", Kind);
6178 
6179   }
6180 
6181   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
6182                                llvm::Value *Address) const override;
6183 
6184   unsigned getSizeOfUnwindException() const override {
6185     return SizeOfUnwindException;
6186   }
6187 };
6188 }
6189 
6190 void MipsABIInfo::CoerceToIntArgs(
6191     uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const {
6192   llvm::IntegerType *IntTy =
6193     llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
6194 
6195   // Add (TySize / MinABIStackAlignInBytes) args of IntTy.
6196   for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N)
6197     ArgList.push_back(IntTy);
6198 
6199   // If necessary, add one more integer type to ArgList.
6200   unsigned R = TySize % (MinABIStackAlignInBytes * 8);
6201 
6202   if (R)
6203     ArgList.push_back(llvm::IntegerType::get(getVMContext(), R));
6204 }
6205 
6206 // In N32/64, an aligned double precision floating point field is passed in
6207 // a register.
6208 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const {
6209   SmallVector<llvm::Type*, 8> ArgList, IntArgList;
6210 
6211   if (IsO32) {
6212     CoerceToIntArgs(TySize, ArgList);
6213     return llvm::StructType::get(getVMContext(), ArgList);
6214   }
6215 
6216   if (Ty->isComplexType())
6217     return CGT.ConvertType(Ty);
6218 
6219   const RecordType *RT = Ty->getAs<RecordType>();
6220 
6221   // Unions/vectors are passed in integer registers.
6222   if (!RT || !RT->isStructureOrClassType()) {
6223     CoerceToIntArgs(TySize, ArgList);
6224     return llvm::StructType::get(getVMContext(), ArgList);
6225   }
6226 
6227   const RecordDecl *RD = RT->getDecl();
6228   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
6229   assert(!(TySize % 8) && "Size of structure must be multiple of 8.");
6230 
6231   uint64_t LastOffset = 0;
6232   unsigned idx = 0;
6233   llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64);
6234 
6235   // Iterate over fields in the struct/class and check if there are any aligned
6236   // double fields.
6237   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
6238        i != e; ++i, ++idx) {
6239     const QualType Ty = i->getType();
6240     const BuiltinType *BT = Ty->getAs<BuiltinType>();
6241 
6242     if (!BT || BT->getKind() != BuiltinType::Double)
6243       continue;
6244 
6245     uint64_t Offset = Layout.getFieldOffset(idx);
6246     if (Offset % 64) // Ignore doubles that are not aligned.
6247       continue;
6248 
6249     // Add ((Offset - LastOffset) / 64) args of type i64.
6250     for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j)
6251       ArgList.push_back(I64);
6252 
6253     // Add double type.
6254     ArgList.push_back(llvm::Type::getDoubleTy(getVMContext()));
6255     LastOffset = Offset + 64;
6256   }
6257 
6258   CoerceToIntArgs(TySize - LastOffset, IntArgList);
6259   ArgList.append(IntArgList.begin(), IntArgList.end());
6260 
6261   return llvm::StructType::get(getVMContext(), ArgList);
6262 }
6263 
6264 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset,
6265                                         uint64_t Offset) const {
6266   if (OrigOffset + MinABIStackAlignInBytes > Offset)
6267     return nullptr;
6268 
6269   return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8);
6270 }
6271 
6272 ABIArgInfo
6273 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const {
6274   Ty = useFirstFieldIfTransparentUnion(Ty);
6275 
6276   uint64_t OrigOffset = Offset;
6277   uint64_t TySize = getContext().getTypeSize(Ty);
6278   uint64_t Align = getContext().getTypeAlign(Ty) / 8;
6279 
6280   Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes),
6281                    (uint64_t)StackAlignInBytes);
6282   unsigned CurrOffset = llvm::alignTo(Offset, Align);
6283   Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8;
6284 
6285   if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) {
6286     // Ignore empty aggregates.
6287     if (TySize == 0)
6288       return ABIArgInfo::getIgnore();
6289 
6290     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
6291       Offset = OrigOffset + MinABIStackAlignInBytes;
6292       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
6293     }
6294 
6295     // If we have reached here, aggregates are passed directly by coercing to
6296     // another structure type. Padding is inserted if the offset of the
6297     // aggregate is unaligned.
6298     ABIArgInfo ArgInfo =
6299         ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0,
6300                               getPaddingType(OrigOffset, CurrOffset));
6301     ArgInfo.setInReg(true);
6302     return ArgInfo;
6303   }
6304 
6305   // Treat an enum type as its underlying type.
6306   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
6307     Ty = EnumTy->getDecl()->getIntegerType();
6308 
6309   // All integral types are promoted to the GPR width.
6310   if (Ty->isIntegralOrEnumerationType())
6311     return ABIArgInfo::getExtend();
6312 
6313   return ABIArgInfo::getDirect(
6314       nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset));
6315 }
6316 
6317 llvm::Type*
6318 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const {
6319   const RecordType *RT = RetTy->getAs<RecordType>();
6320   SmallVector<llvm::Type*, 8> RTList;
6321 
6322   if (RT && RT->isStructureOrClassType()) {
6323     const RecordDecl *RD = RT->getDecl();
6324     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
6325     unsigned FieldCnt = Layout.getFieldCount();
6326 
6327     // N32/64 returns struct/classes in floating point registers if the
6328     // following conditions are met:
6329     // 1. The size of the struct/class is no larger than 128-bit.
6330     // 2. The struct/class has one or two fields all of which are floating
6331     //    point types.
6332     // 3. The offset of the first field is zero (this follows what gcc does).
6333     //
6334     // Any other composite results are returned in integer registers.
6335     //
6336     if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) {
6337       RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end();
6338       for (; b != e; ++b) {
6339         const BuiltinType *BT = b->getType()->getAs<BuiltinType>();
6340 
6341         if (!BT || !BT->isFloatingPoint())
6342           break;
6343 
6344         RTList.push_back(CGT.ConvertType(b->getType()));
6345       }
6346 
6347       if (b == e)
6348         return llvm::StructType::get(getVMContext(), RTList,
6349                                      RD->hasAttr<PackedAttr>());
6350 
6351       RTList.clear();
6352     }
6353   }
6354 
6355   CoerceToIntArgs(Size, RTList);
6356   return llvm::StructType::get(getVMContext(), RTList);
6357 }
6358 
6359 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
6360   uint64_t Size = getContext().getTypeSize(RetTy);
6361 
6362   if (RetTy->isVoidType())
6363     return ABIArgInfo::getIgnore();
6364 
6365   // O32 doesn't treat zero-sized structs differently from other structs.
6366   // However, N32/N64 ignores zero sized return values.
6367   if (!IsO32 && Size == 0)
6368     return ABIArgInfo::getIgnore();
6369 
6370   if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) {
6371     if (Size <= 128) {
6372       if (RetTy->isAnyComplexType())
6373         return ABIArgInfo::getDirect();
6374 
6375       // O32 returns integer vectors in registers and N32/N64 returns all small
6376       // aggregates in registers.
6377       if (!IsO32 ||
6378           (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) {
6379         ABIArgInfo ArgInfo =
6380             ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
6381         ArgInfo.setInReg(true);
6382         return ArgInfo;
6383       }
6384     }
6385 
6386     return getNaturalAlignIndirect(RetTy);
6387   }
6388 
6389   // Treat an enum type as its underlying type.
6390   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
6391     RetTy = EnumTy->getDecl()->getIntegerType();
6392 
6393   return (RetTy->isPromotableIntegerType() ?
6394           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
6395 }
6396 
6397 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
6398   ABIArgInfo &RetInfo = FI.getReturnInfo();
6399   if (!getCXXABI().classifyReturnType(FI))
6400     RetInfo = classifyReturnType(FI.getReturnType());
6401 
6402   // Check if a pointer to an aggregate is passed as a hidden argument.
6403   uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0;
6404 
6405   for (auto &I : FI.arguments())
6406     I.info = classifyArgumentType(I.type, Offset);
6407 }
6408 
6409 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6410                                QualType OrigTy) const {
6411   QualType Ty = OrigTy;
6412 
6413   // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64.
6414   // Pointers are also promoted in the same way but this only matters for N32.
6415   unsigned SlotSizeInBits = IsO32 ? 32 : 64;
6416   unsigned PtrWidth = getTarget().getPointerWidth(0);
6417   bool DidPromote = false;
6418   if ((Ty->isIntegerType() &&
6419           getContext().getIntWidth(Ty) < SlotSizeInBits) ||
6420       (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) {
6421     DidPromote = true;
6422     Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits,
6423                                             Ty->isSignedIntegerType());
6424   }
6425 
6426   auto TyInfo = getContext().getTypeInfoInChars(Ty);
6427 
6428   // The alignment of things in the argument area is never larger than
6429   // StackAlignInBytes.
6430   TyInfo.second =
6431     std::min(TyInfo.second, CharUnits::fromQuantity(StackAlignInBytes));
6432 
6433   // MinABIStackAlignInBytes is the size of argument slots on the stack.
6434   CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes);
6435 
6436   Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
6437                           TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true);
6438 
6439 
6440   // If there was a promotion, "unpromote" into a temporary.
6441   // TODO: can we just use a pointer into a subset of the original slot?
6442   if (DidPromote) {
6443     Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp");
6444     llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr);
6445 
6446     // Truncate down to the right width.
6447     llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType()
6448                                                  : CGF.IntPtrTy);
6449     llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy);
6450     if (OrigTy->isPointerType())
6451       V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType());
6452 
6453     CGF.Builder.CreateStore(V, Temp);
6454     Addr = Temp;
6455   }
6456 
6457   return Addr;
6458 }
6459 
6460 bool MipsABIInfo::shouldSignExtUnsignedType(QualType Ty) const {
6461   int TySize = getContext().getTypeSize(Ty);
6462 
6463   // MIPS64 ABI requires unsigned 32 bit integers to be sign extended.
6464   if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
6465     return true;
6466 
6467   return false;
6468 }
6469 
6470 bool
6471 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
6472                                                llvm::Value *Address) const {
6473   // This information comes from gcc's implementation, which seems to
6474   // as canonical as it gets.
6475 
6476   // Everything on MIPS is 4 bytes.  Double-precision FP registers
6477   // are aliased to pairs of single-precision FP registers.
6478   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
6479 
6480   // 0-31 are the general purpose registers, $0 - $31.
6481   // 32-63 are the floating-point registers, $f0 - $f31.
6482   // 64 and 65 are the multiply/divide registers, $hi and $lo.
6483   // 66 is the (notional, I think) register for signal-handler return.
6484   AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65);
6485 
6486   // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
6487   // They are one bit wide and ignored here.
6488 
6489   // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
6490   // (coprocessor 1 is the FP unit)
6491   // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
6492   // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
6493   // 176-181 are the DSP accumulator registers.
6494   AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181);
6495   return false;
6496 }
6497 
6498 //===----------------------------------------------------------------------===//
6499 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults.
6500 // Currently subclassed only to implement custom OpenCL C function attribute
6501 // handling.
6502 //===----------------------------------------------------------------------===//
6503 
6504 namespace {
6505 
6506 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo {
6507 public:
6508   TCETargetCodeGenInfo(CodeGenTypes &CGT)
6509     : DefaultTargetCodeGenInfo(CGT) {}
6510 
6511   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6512                            CodeGen::CodeGenModule &M) const override;
6513 };
6514 
6515 void TCETargetCodeGenInfo::setTargetAttributes(
6516     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
6517   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
6518   if (!FD) return;
6519 
6520   llvm::Function *F = cast<llvm::Function>(GV);
6521 
6522   if (M.getLangOpts().OpenCL) {
6523     if (FD->hasAttr<OpenCLKernelAttr>()) {
6524       // OpenCL C Kernel functions are not subject to inlining
6525       F->addFnAttr(llvm::Attribute::NoInline);
6526       const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>();
6527       if (Attr) {
6528         // Convert the reqd_work_group_size() attributes to metadata.
6529         llvm::LLVMContext &Context = F->getContext();
6530         llvm::NamedMDNode *OpenCLMetadata =
6531             M.getModule().getOrInsertNamedMetadata(
6532                 "opencl.kernel_wg_size_info");
6533 
6534         SmallVector<llvm::Metadata *, 5> Operands;
6535         Operands.push_back(llvm::ConstantAsMetadata::get(F));
6536 
6537         Operands.push_back(
6538             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
6539                 M.Int32Ty, llvm::APInt(32, Attr->getXDim()))));
6540         Operands.push_back(
6541             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
6542                 M.Int32Ty, llvm::APInt(32, Attr->getYDim()))));
6543         Operands.push_back(
6544             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
6545                 M.Int32Ty, llvm::APInt(32, Attr->getZDim()))));
6546 
6547         // Add a boolean constant operand for "required" (true) or "hint"
6548         // (false) for implementing the work_group_size_hint attr later.
6549         // Currently always true as the hint is not yet implemented.
6550         Operands.push_back(
6551             llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context)));
6552         OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands));
6553       }
6554     }
6555   }
6556 }
6557 
6558 }
6559 
6560 //===----------------------------------------------------------------------===//
6561 // Hexagon ABI Implementation
6562 //===----------------------------------------------------------------------===//
6563 
6564 namespace {
6565 
6566 class HexagonABIInfo : public ABIInfo {
6567 
6568 
6569 public:
6570   HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
6571 
6572 private:
6573 
6574   ABIArgInfo classifyReturnType(QualType RetTy) const;
6575   ABIArgInfo classifyArgumentType(QualType RetTy) const;
6576 
6577   void computeInfo(CGFunctionInfo &FI) const override;
6578 
6579   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6580                     QualType Ty) const override;
6581 };
6582 
6583 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo {
6584 public:
6585   HexagonTargetCodeGenInfo(CodeGenTypes &CGT)
6586     :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {}
6587 
6588   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
6589     return 29;
6590   }
6591 };
6592 
6593 }
6594 
6595 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const {
6596   if (!getCXXABI().classifyReturnType(FI))
6597     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
6598   for (auto &I : FI.arguments())
6599     I.info = classifyArgumentType(I.type);
6600 }
6601 
6602 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const {
6603   if (!isAggregateTypeForABI(Ty)) {
6604     // Treat an enum type as its underlying type.
6605     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
6606       Ty = EnumTy->getDecl()->getIntegerType();
6607 
6608     return (Ty->isPromotableIntegerType() ?
6609             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
6610   }
6611 
6612   // Ignore empty records.
6613   if (isEmptyRecord(getContext(), Ty, true))
6614     return ABIArgInfo::getIgnore();
6615 
6616   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
6617     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
6618 
6619   uint64_t Size = getContext().getTypeSize(Ty);
6620   if (Size > 64)
6621     return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
6622     // Pass in the smallest viable integer type.
6623   else if (Size > 32)
6624       return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
6625   else if (Size > 16)
6626       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6627   else if (Size > 8)
6628       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
6629   else
6630       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
6631 }
6632 
6633 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const {
6634   if (RetTy->isVoidType())
6635     return ABIArgInfo::getIgnore();
6636 
6637   // Large vector types should be returned via memory.
6638   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64)
6639     return getNaturalAlignIndirect(RetTy);
6640 
6641   if (!isAggregateTypeForABI(RetTy)) {
6642     // Treat an enum type as its underlying type.
6643     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
6644       RetTy = EnumTy->getDecl()->getIntegerType();
6645 
6646     return (RetTy->isPromotableIntegerType() ?
6647             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
6648   }
6649 
6650   if (isEmptyRecord(getContext(), RetTy, true))
6651     return ABIArgInfo::getIgnore();
6652 
6653   // Aggregates <= 8 bytes are returned in r0; other aggregates
6654   // are returned indirectly.
6655   uint64_t Size = getContext().getTypeSize(RetTy);
6656   if (Size <= 64) {
6657     // Return in the smallest viable integer type.
6658     if (Size <= 8)
6659       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
6660     if (Size <= 16)
6661       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
6662     if (Size <= 32)
6663       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6664     return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
6665   }
6666 
6667   return getNaturalAlignIndirect(RetTy, /*ByVal=*/true);
6668 }
6669 
6670 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6671                                   QualType Ty) const {
6672   // FIXME: Someone needs to audit that this handle alignment correctly.
6673   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
6674                           getContext().getTypeInfoInChars(Ty),
6675                           CharUnits::fromQuantity(4),
6676                           /*AllowHigherAlign*/ true);
6677 }
6678 
6679 //===----------------------------------------------------------------------===//
6680 // Lanai ABI Implementation
6681 //===----------------------------------------------------------------------===//
6682 
6683 namespace {
6684 class LanaiABIInfo : public DefaultABIInfo {
6685 public:
6686   LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
6687 
6688   bool shouldUseInReg(QualType Ty, CCState &State) const;
6689 
6690   void computeInfo(CGFunctionInfo &FI) const override {
6691     CCState State(FI.getCallingConvention());
6692     // Lanai uses 4 registers to pass arguments unless the function has the
6693     // regparm attribute set.
6694     if (FI.getHasRegParm()) {
6695       State.FreeRegs = FI.getRegParm();
6696     } else {
6697       State.FreeRegs = 4;
6698     }
6699 
6700     if (!getCXXABI().classifyReturnType(FI))
6701       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
6702     for (auto &I : FI.arguments())
6703       I.info = classifyArgumentType(I.type, State);
6704   }
6705 
6706   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
6707   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
6708 };
6709 } // end anonymous namespace
6710 
6711 bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const {
6712   unsigned Size = getContext().getTypeSize(Ty);
6713   unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U;
6714 
6715   if (SizeInRegs == 0)
6716     return false;
6717 
6718   if (SizeInRegs > State.FreeRegs) {
6719     State.FreeRegs = 0;
6720     return false;
6721   }
6722 
6723   State.FreeRegs -= SizeInRegs;
6724 
6725   return true;
6726 }
6727 
6728 ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal,
6729                                            CCState &State) const {
6730   if (!ByVal) {
6731     if (State.FreeRegs) {
6732       --State.FreeRegs; // Non-byval indirects just use one pointer.
6733       return getNaturalAlignIndirectInReg(Ty);
6734     }
6735     return getNaturalAlignIndirect(Ty, false);
6736   }
6737 
6738   // Compute the byval alignment.
6739   const unsigned MinABIStackAlignInBytes = 4;
6740   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
6741   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true,
6742                                  /*Realign=*/TypeAlign >
6743                                      MinABIStackAlignInBytes);
6744 }
6745 
6746 ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty,
6747                                               CCState &State) const {
6748   // Check with the C++ ABI first.
6749   const RecordType *RT = Ty->getAs<RecordType>();
6750   if (RT) {
6751     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
6752     if (RAA == CGCXXABI::RAA_Indirect) {
6753       return getIndirectResult(Ty, /*ByVal=*/false, State);
6754     } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
6755       return getNaturalAlignIndirect(Ty, /*ByRef=*/true);
6756     }
6757   }
6758 
6759   if (isAggregateTypeForABI(Ty)) {
6760     // Structures with flexible arrays are always indirect.
6761     if (RT && RT->getDecl()->hasFlexibleArrayMember())
6762       return getIndirectResult(Ty, /*ByVal=*/true, State);
6763 
6764     // Ignore empty structs/unions.
6765     if (isEmptyRecord(getContext(), Ty, true))
6766       return ABIArgInfo::getIgnore();
6767 
6768     llvm::LLVMContext &LLVMContext = getVMContext();
6769     unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
6770     if (SizeInRegs <= State.FreeRegs) {
6771       llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
6772       SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32);
6773       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
6774       State.FreeRegs -= SizeInRegs;
6775       return ABIArgInfo::getDirectInReg(Result);
6776     } else {
6777       State.FreeRegs = 0;
6778     }
6779     return getIndirectResult(Ty, true, State);
6780   }
6781 
6782   // Treat an enum type as its underlying type.
6783   if (const auto *EnumTy = Ty->getAs<EnumType>())
6784     Ty = EnumTy->getDecl()->getIntegerType();
6785 
6786   bool InReg = shouldUseInReg(Ty, State);
6787   if (Ty->isPromotableIntegerType()) {
6788     if (InReg)
6789       return ABIArgInfo::getDirectInReg();
6790     return ABIArgInfo::getExtend();
6791   }
6792   if (InReg)
6793     return ABIArgInfo::getDirectInReg();
6794   return ABIArgInfo::getDirect();
6795 }
6796 
6797 namespace {
6798 class LanaiTargetCodeGenInfo : public TargetCodeGenInfo {
6799 public:
6800   LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
6801       : TargetCodeGenInfo(new LanaiABIInfo(CGT)) {}
6802 };
6803 }
6804 
6805 //===----------------------------------------------------------------------===//
6806 // AMDGPU ABI Implementation
6807 //===----------------------------------------------------------------------===//
6808 
6809 namespace {
6810 
6811 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo {
6812 public:
6813   AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT)
6814     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
6815   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6816                            CodeGen::CodeGenModule &M) const override;
6817 };
6818 
6819 }
6820 
6821 void AMDGPUTargetCodeGenInfo::setTargetAttributes(
6822   const Decl *D,
6823   llvm::GlobalValue *GV,
6824   CodeGen::CodeGenModule &M) const {
6825   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
6826   if (!FD)
6827     return;
6828 
6829   if (const auto Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) {
6830     llvm::Function *F = cast<llvm::Function>(GV);
6831     uint32_t NumVGPR = Attr->getNumVGPR();
6832     if (NumVGPR != 0)
6833       F->addFnAttr("amdgpu_num_vgpr", llvm::utostr(NumVGPR));
6834   }
6835 
6836   if (const auto Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) {
6837     llvm::Function *F = cast<llvm::Function>(GV);
6838     unsigned NumSGPR = Attr->getNumSGPR();
6839     if (NumSGPR != 0)
6840       F->addFnAttr("amdgpu_num_sgpr", llvm::utostr(NumSGPR));
6841   }
6842 }
6843 
6844 
6845 //===----------------------------------------------------------------------===//
6846 // SPARC v9 ABI Implementation.
6847 // Based on the SPARC Compliance Definition version 2.4.1.
6848 //
6849 // Function arguments a mapped to a nominal "parameter array" and promoted to
6850 // registers depending on their type. Each argument occupies 8 or 16 bytes in
6851 // the array, structs larger than 16 bytes are passed indirectly.
6852 //
6853 // One case requires special care:
6854 //
6855 //   struct mixed {
6856 //     int i;
6857 //     float f;
6858 //   };
6859 //
6860 // When a struct mixed is passed by value, it only occupies 8 bytes in the
6861 // parameter array, but the int is passed in an integer register, and the float
6862 // is passed in a floating point register. This is represented as two arguments
6863 // with the LLVM IR inreg attribute:
6864 //
6865 //   declare void f(i32 inreg %i, float inreg %f)
6866 //
6867 // The code generator will only allocate 4 bytes from the parameter array for
6868 // the inreg arguments. All other arguments are allocated a multiple of 8
6869 // bytes.
6870 //
6871 namespace {
6872 class SparcV9ABIInfo : public ABIInfo {
6873 public:
6874   SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
6875 
6876 private:
6877   ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const;
6878   void computeInfo(CGFunctionInfo &FI) const override;
6879   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6880                     QualType Ty) const override;
6881 
6882   // Coercion type builder for structs passed in registers. The coercion type
6883   // serves two purposes:
6884   //
6885   // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned'
6886   //    in registers.
6887   // 2. Expose aligned floating point elements as first-level elements, so the
6888   //    code generator knows to pass them in floating point registers.
6889   //
6890   // We also compute the InReg flag which indicates that the struct contains
6891   // aligned 32-bit floats.
6892   //
6893   struct CoerceBuilder {
6894     llvm::LLVMContext &Context;
6895     const llvm::DataLayout &DL;
6896     SmallVector<llvm::Type*, 8> Elems;
6897     uint64_t Size;
6898     bool InReg;
6899 
6900     CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl)
6901       : Context(c), DL(dl), Size(0), InReg(false) {}
6902 
6903     // Pad Elems with integers until Size is ToSize.
6904     void pad(uint64_t ToSize) {
6905       assert(ToSize >= Size && "Cannot remove elements");
6906       if (ToSize == Size)
6907         return;
6908 
6909       // Finish the current 64-bit word.
6910       uint64_t Aligned = llvm::alignTo(Size, 64);
6911       if (Aligned > Size && Aligned <= ToSize) {
6912         Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size));
6913         Size = Aligned;
6914       }
6915 
6916       // Add whole 64-bit words.
6917       while (Size + 64 <= ToSize) {
6918         Elems.push_back(llvm::Type::getInt64Ty(Context));
6919         Size += 64;
6920       }
6921 
6922       // Final in-word padding.
6923       if (Size < ToSize) {
6924         Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size));
6925         Size = ToSize;
6926       }
6927     }
6928 
6929     // Add a floating point element at Offset.
6930     void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) {
6931       // Unaligned floats are treated as integers.
6932       if (Offset % Bits)
6933         return;
6934       // The InReg flag is only required if there are any floats < 64 bits.
6935       if (Bits < 64)
6936         InReg = true;
6937       pad(Offset);
6938       Elems.push_back(Ty);
6939       Size = Offset + Bits;
6940     }
6941 
6942     // Add a struct type to the coercion type, starting at Offset (in bits).
6943     void addStruct(uint64_t Offset, llvm::StructType *StrTy) {
6944       const llvm::StructLayout *Layout = DL.getStructLayout(StrTy);
6945       for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) {
6946         llvm::Type *ElemTy = StrTy->getElementType(i);
6947         uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i);
6948         switch (ElemTy->getTypeID()) {
6949         case llvm::Type::StructTyID:
6950           addStruct(ElemOffset, cast<llvm::StructType>(ElemTy));
6951           break;
6952         case llvm::Type::FloatTyID:
6953           addFloat(ElemOffset, ElemTy, 32);
6954           break;
6955         case llvm::Type::DoubleTyID:
6956           addFloat(ElemOffset, ElemTy, 64);
6957           break;
6958         case llvm::Type::FP128TyID:
6959           addFloat(ElemOffset, ElemTy, 128);
6960           break;
6961         case llvm::Type::PointerTyID:
6962           if (ElemOffset % 64 == 0) {
6963             pad(ElemOffset);
6964             Elems.push_back(ElemTy);
6965             Size += 64;
6966           }
6967           break;
6968         default:
6969           break;
6970         }
6971       }
6972     }
6973 
6974     // Check if Ty is a usable substitute for the coercion type.
6975     bool isUsableType(llvm::StructType *Ty) const {
6976       return llvm::makeArrayRef(Elems) == Ty->elements();
6977     }
6978 
6979     // Get the coercion type as a literal struct type.
6980     llvm::Type *getType() const {
6981       if (Elems.size() == 1)
6982         return Elems.front();
6983       else
6984         return llvm::StructType::get(Context, Elems);
6985     }
6986   };
6987 };
6988 } // end anonymous namespace
6989 
6990 ABIArgInfo
6991 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const {
6992   if (Ty->isVoidType())
6993     return ABIArgInfo::getIgnore();
6994 
6995   uint64_t Size = getContext().getTypeSize(Ty);
6996 
6997   // Anything too big to fit in registers is passed with an explicit indirect
6998   // pointer / sret pointer.
6999   if (Size > SizeLimit)
7000     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
7001 
7002   // Treat an enum type as its underlying type.
7003   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
7004     Ty = EnumTy->getDecl()->getIntegerType();
7005 
7006   // Integer types smaller than a register are extended.
7007   if (Size < 64 && Ty->isIntegerType())
7008     return ABIArgInfo::getExtend();
7009 
7010   // Other non-aggregates go in registers.
7011   if (!isAggregateTypeForABI(Ty))
7012     return ABIArgInfo::getDirect();
7013 
7014   // If a C++ object has either a non-trivial copy constructor or a non-trivial
7015   // destructor, it is passed with an explicit indirect pointer / sret pointer.
7016   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
7017     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
7018 
7019   // This is a small aggregate type that should be passed in registers.
7020   // Build a coercion type from the LLVM struct type.
7021   llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty));
7022   if (!StrTy)
7023     return ABIArgInfo::getDirect();
7024 
7025   CoerceBuilder CB(getVMContext(), getDataLayout());
7026   CB.addStruct(0, StrTy);
7027   CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64));
7028 
7029   // Try to use the original type for coercion.
7030   llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType();
7031 
7032   if (CB.InReg)
7033     return ABIArgInfo::getDirectInReg(CoerceTy);
7034   else
7035     return ABIArgInfo::getDirect(CoerceTy);
7036 }
7037 
7038 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7039                                   QualType Ty) const {
7040   ABIArgInfo AI = classifyType(Ty, 16 * 8);
7041   llvm::Type *ArgTy = CGT.ConvertType(Ty);
7042   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
7043     AI.setCoerceToType(ArgTy);
7044 
7045   CharUnits SlotSize = CharUnits::fromQuantity(8);
7046 
7047   CGBuilderTy &Builder = CGF.Builder;
7048   Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
7049   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
7050 
7051   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
7052 
7053   Address ArgAddr = Address::invalid();
7054   CharUnits Stride;
7055   switch (AI.getKind()) {
7056   case ABIArgInfo::Expand:
7057   case ABIArgInfo::CoerceAndExpand:
7058   case ABIArgInfo::InAlloca:
7059     llvm_unreachable("Unsupported ABI kind for va_arg");
7060 
7061   case ABIArgInfo::Extend: {
7062     Stride = SlotSize;
7063     CharUnits Offset = SlotSize - TypeInfo.first;
7064     ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend");
7065     break;
7066   }
7067 
7068   case ABIArgInfo::Direct: {
7069     auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
7070     Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize);
7071     ArgAddr = Addr;
7072     break;
7073   }
7074 
7075   case ABIArgInfo::Indirect:
7076     Stride = SlotSize;
7077     ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect");
7078     ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"),
7079                       TypeInfo.second);
7080     break;
7081 
7082   case ABIArgInfo::Ignore:
7083     return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.second);
7084   }
7085 
7086   // Update VAList.
7087   llvm::Value *NextPtr =
7088     Builder.CreateConstInBoundsByteGEP(Addr.getPointer(), Stride, "ap.next");
7089   Builder.CreateStore(NextPtr, VAListAddr);
7090 
7091   return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr");
7092 }
7093 
7094 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const {
7095   FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8);
7096   for (auto &I : FI.arguments())
7097     I.info = classifyType(I.type, 16 * 8);
7098 }
7099 
7100 namespace {
7101 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo {
7102 public:
7103   SparcV9TargetCodeGenInfo(CodeGenTypes &CGT)
7104     : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {}
7105 
7106   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
7107     return 14;
7108   }
7109 
7110   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
7111                                llvm::Value *Address) const override;
7112 };
7113 } // end anonymous namespace
7114 
7115 bool
7116 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
7117                                                 llvm::Value *Address) const {
7118   // This is calculated from the LLVM and GCC tables and verified
7119   // against gcc output.  AFAIK all ABIs use the same encoding.
7120 
7121   CodeGen::CGBuilderTy &Builder = CGF.Builder;
7122 
7123   llvm::IntegerType *i8 = CGF.Int8Ty;
7124   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
7125   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
7126 
7127   // 0-31: the 8-byte general-purpose registers
7128   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
7129 
7130   // 32-63: f0-31, the 4-byte floating-point registers
7131   AssignToArrayRange(Builder, Address, Four8, 32, 63);
7132 
7133   //   Y   = 64
7134   //   PSR = 65
7135   //   WIM = 66
7136   //   TBR = 67
7137   //   PC  = 68
7138   //   NPC = 69
7139   //   FSR = 70
7140   //   CSR = 71
7141   AssignToArrayRange(Builder, Address, Eight8, 64, 71);
7142 
7143   // 72-87: d0-15, the 8-byte floating-point registers
7144   AssignToArrayRange(Builder, Address, Eight8, 72, 87);
7145 
7146   return false;
7147 }
7148 
7149 
7150 //===----------------------------------------------------------------------===//
7151 // XCore ABI Implementation
7152 //===----------------------------------------------------------------------===//
7153 
7154 namespace {
7155 
7156 /// A SmallStringEnc instance is used to build up the TypeString by passing
7157 /// it by reference between functions that append to it.
7158 typedef llvm::SmallString<128> SmallStringEnc;
7159 
7160 /// TypeStringCache caches the meta encodings of Types.
7161 ///
7162 /// The reason for caching TypeStrings is two fold:
7163 ///   1. To cache a type's encoding for later uses;
7164 ///   2. As a means to break recursive member type inclusion.
7165 ///
7166 /// A cache Entry can have a Status of:
7167 ///   NonRecursive:   The type encoding is not recursive;
7168 ///   Recursive:      The type encoding is recursive;
7169 ///   Incomplete:     An incomplete TypeString;
7170 ///   IncompleteUsed: An incomplete TypeString that has been used in a
7171 ///                   Recursive type encoding.
7172 ///
7173 /// A NonRecursive entry will have all of its sub-members expanded as fully
7174 /// as possible. Whilst it may contain types which are recursive, the type
7175 /// itself is not recursive and thus its encoding may be safely used whenever
7176 /// the type is encountered.
7177 ///
7178 /// A Recursive entry will have all of its sub-members expanded as fully as
7179 /// possible. The type itself is recursive and it may contain other types which
7180 /// are recursive. The Recursive encoding must not be used during the expansion
7181 /// of a recursive type's recursive branch. For simplicity the code uses
7182 /// IncompleteCount to reject all usage of Recursive encodings for member types.
7183 ///
7184 /// An Incomplete entry is always a RecordType and only encodes its
7185 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and
7186 /// are placed into the cache during type expansion as a means to identify and
7187 /// handle recursive inclusion of types as sub-members. If there is recursion
7188 /// the entry becomes IncompleteUsed.
7189 ///
7190 /// During the expansion of a RecordType's members:
7191 ///
7192 ///   If the cache contains a NonRecursive encoding for the member type, the
7193 ///   cached encoding is used;
7194 ///
7195 ///   If the cache contains a Recursive encoding for the member type, the
7196 ///   cached encoding is 'Swapped' out, as it may be incorrect, and...
7197 ///
7198 ///   If the member is a RecordType, an Incomplete encoding is placed into the
7199 ///   cache to break potential recursive inclusion of itself as a sub-member;
7200 ///
7201 ///   Once a member RecordType has been expanded, its temporary incomplete
7202 ///   entry is removed from the cache. If a Recursive encoding was swapped out
7203 ///   it is swapped back in;
7204 ///
7205 ///   If an incomplete entry is used to expand a sub-member, the incomplete
7206 ///   entry is marked as IncompleteUsed. The cache keeps count of how many
7207 ///   IncompleteUsed entries it currently contains in IncompleteUsedCount;
7208 ///
7209 ///   If a member's encoding is found to be a NonRecursive or Recursive viz:
7210 ///   IncompleteUsedCount==0, the member's encoding is added to the cache.
7211 ///   Else the member is part of a recursive type and thus the recursion has
7212 ///   been exited too soon for the encoding to be correct for the member.
7213 ///
7214 class TypeStringCache {
7215   enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed};
7216   struct Entry {
7217     std::string Str;     // The encoded TypeString for the type.
7218     enum Status State;   // Information about the encoding in 'Str'.
7219     std::string Swapped; // A temporary place holder for a Recursive encoding
7220                          // during the expansion of RecordType's members.
7221   };
7222   std::map<const IdentifierInfo *, struct Entry> Map;
7223   unsigned IncompleteCount;     // Number of Incomplete entries in the Map.
7224   unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map.
7225 public:
7226   TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {}
7227   void addIncomplete(const IdentifierInfo *ID, std::string StubEnc);
7228   bool removeIncomplete(const IdentifierInfo *ID);
7229   void addIfComplete(const IdentifierInfo *ID, StringRef Str,
7230                      bool IsRecursive);
7231   StringRef lookupStr(const IdentifierInfo *ID);
7232 };
7233 
7234 /// TypeString encodings for enum & union fields must be order.
7235 /// FieldEncoding is a helper for this ordering process.
7236 class FieldEncoding {
7237   bool HasName;
7238   std::string Enc;
7239 public:
7240   FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {}
7241   StringRef str() {return Enc.c_str();}
7242   bool operator<(const FieldEncoding &rhs) const {
7243     if (HasName != rhs.HasName) return HasName;
7244     return Enc < rhs.Enc;
7245   }
7246 };
7247 
7248 class XCoreABIInfo : public DefaultABIInfo {
7249 public:
7250   XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
7251   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7252                     QualType Ty) const override;
7253 };
7254 
7255 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo {
7256   mutable TypeStringCache TSC;
7257 public:
7258   XCoreTargetCodeGenInfo(CodeGenTypes &CGT)
7259     :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {}
7260   void emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
7261                     CodeGen::CodeGenModule &M) const override;
7262 };
7263 
7264 } // End anonymous namespace.
7265 
7266 // TODO: this implementation is likely now redundant with the default
7267 // EmitVAArg.
7268 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7269                                 QualType Ty) const {
7270   CGBuilderTy &Builder = CGF.Builder;
7271 
7272   // Get the VAList.
7273   CharUnits SlotSize = CharUnits::fromQuantity(4);
7274   Address AP(Builder.CreateLoad(VAListAddr), SlotSize);
7275 
7276   // Handle the argument.
7277   ABIArgInfo AI = classifyArgumentType(Ty);
7278   CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty);
7279   llvm::Type *ArgTy = CGT.ConvertType(Ty);
7280   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
7281     AI.setCoerceToType(ArgTy);
7282   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
7283 
7284   Address Val = Address::invalid();
7285   CharUnits ArgSize = CharUnits::Zero();
7286   switch (AI.getKind()) {
7287   case ABIArgInfo::Expand:
7288   case ABIArgInfo::CoerceAndExpand:
7289   case ABIArgInfo::InAlloca:
7290     llvm_unreachable("Unsupported ABI kind for va_arg");
7291   case ABIArgInfo::Ignore:
7292     Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign);
7293     ArgSize = CharUnits::Zero();
7294     break;
7295   case ABIArgInfo::Extend:
7296   case ABIArgInfo::Direct:
7297     Val = Builder.CreateBitCast(AP, ArgPtrTy);
7298     ArgSize = CharUnits::fromQuantity(
7299                        getDataLayout().getTypeAllocSize(AI.getCoerceToType()));
7300     ArgSize = ArgSize.alignTo(SlotSize);
7301     break;
7302   case ABIArgInfo::Indirect:
7303     Val = Builder.CreateElementBitCast(AP, ArgPtrTy);
7304     Val = Address(Builder.CreateLoad(Val), TypeAlign);
7305     ArgSize = SlotSize;
7306     break;
7307   }
7308 
7309   // Increment the VAList.
7310   if (!ArgSize.isZero()) {
7311     llvm::Value *APN =
7312       Builder.CreateConstInBoundsByteGEP(AP.getPointer(), ArgSize);
7313     Builder.CreateStore(APN, VAListAddr);
7314   }
7315 
7316   return Val;
7317 }
7318 
7319 /// During the expansion of a RecordType, an incomplete TypeString is placed
7320 /// into the cache as a means to identify and break recursion.
7321 /// If there is a Recursive encoding in the cache, it is swapped out and will
7322 /// be reinserted by removeIncomplete().
7323 /// All other types of encoding should have been used rather than arriving here.
7324 void TypeStringCache::addIncomplete(const IdentifierInfo *ID,
7325                                     std::string StubEnc) {
7326   if (!ID)
7327     return;
7328   Entry &E = Map[ID];
7329   assert( (E.Str.empty() || E.State == Recursive) &&
7330          "Incorrectly use of addIncomplete");
7331   assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()");
7332   E.Swapped.swap(E.Str); // swap out the Recursive
7333   E.Str.swap(StubEnc);
7334   E.State = Incomplete;
7335   ++IncompleteCount;
7336 }
7337 
7338 /// Once the RecordType has been expanded, the temporary incomplete TypeString
7339 /// must be removed from the cache.
7340 /// If a Recursive was swapped out by addIncomplete(), it will be replaced.
7341 /// Returns true if the RecordType was defined recursively.
7342 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) {
7343   if (!ID)
7344     return false;
7345   auto I = Map.find(ID);
7346   assert(I != Map.end() && "Entry not present");
7347   Entry &E = I->second;
7348   assert( (E.State == Incomplete ||
7349            E.State == IncompleteUsed) &&
7350          "Entry must be an incomplete type");
7351   bool IsRecursive = false;
7352   if (E.State == IncompleteUsed) {
7353     // We made use of our Incomplete encoding, thus we are recursive.
7354     IsRecursive = true;
7355     --IncompleteUsedCount;
7356   }
7357   if (E.Swapped.empty())
7358     Map.erase(I);
7359   else {
7360     // Swap the Recursive back.
7361     E.Swapped.swap(E.Str);
7362     E.Swapped.clear();
7363     E.State = Recursive;
7364   }
7365   --IncompleteCount;
7366   return IsRecursive;
7367 }
7368 
7369 /// Add the encoded TypeString to the cache only if it is NonRecursive or
7370 /// Recursive (viz: all sub-members were expanded as fully as possible).
7371 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str,
7372                                     bool IsRecursive) {
7373   if (!ID || IncompleteUsedCount)
7374     return; // No key or it is is an incomplete sub-type so don't add.
7375   Entry &E = Map[ID];
7376   if (IsRecursive && !E.Str.empty()) {
7377     assert(E.State==Recursive && E.Str.size() == Str.size() &&
7378            "This is not the same Recursive entry");
7379     // The parent container was not recursive after all, so we could have used
7380     // this Recursive sub-member entry after all, but we assumed the worse when
7381     // we started viz: IncompleteCount!=0.
7382     return;
7383   }
7384   assert(E.Str.empty() && "Entry already present");
7385   E.Str = Str.str();
7386   E.State = IsRecursive? Recursive : NonRecursive;
7387 }
7388 
7389 /// Return a cached TypeString encoding for the ID. If there isn't one, or we
7390 /// are recursively expanding a type (IncompleteCount != 0) and the cached
7391 /// encoding is Recursive, return an empty StringRef.
7392 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) {
7393   if (!ID)
7394     return StringRef();   // We have no key.
7395   auto I = Map.find(ID);
7396   if (I == Map.end())
7397     return StringRef();   // We have no encoding.
7398   Entry &E = I->second;
7399   if (E.State == Recursive && IncompleteCount)
7400     return StringRef();   // We don't use Recursive encodings for member types.
7401 
7402   if (E.State == Incomplete) {
7403     // The incomplete type is being used to break out of recursion.
7404     E.State = IncompleteUsed;
7405     ++IncompleteUsedCount;
7406   }
7407   return E.Str.c_str();
7408 }
7409 
7410 /// The XCore ABI includes a type information section that communicates symbol
7411 /// type information to the linker. The linker uses this information to verify
7412 /// safety/correctness of things such as array bound and pointers et al.
7413 /// The ABI only requires C (and XC) language modules to emit TypeStrings.
7414 /// This type information (TypeString) is emitted into meta data for all global
7415 /// symbols: definitions, declarations, functions & variables.
7416 ///
7417 /// The TypeString carries type, qualifier, name, size & value details.
7418 /// Please see 'Tools Development Guide' section 2.16.2 for format details:
7419 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf
7420 /// The output is tested by test/CodeGen/xcore-stringtype.c.
7421 ///
7422 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
7423                           CodeGen::CodeGenModule &CGM, TypeStringCache &TSC);
7424 
7425 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols.
7426 void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
7427                                           CodeGen::CodeGenModule &CGM) const {
7428   SmallStringEnc Enc;
7429   if (getTypeString(Enc, D, CGM, TSC)) {
7430     llvm::LLVMContext &Ctx = CGM.getModule().getContext();
7431     llvm::SmallVector<llvm::Metadata *, 2> MDVals;
7432     MDVals.push_back(llvm::ConstantAsMetadata::get(GV));
7433     MDVals.push_back(llvm::MDString::get(Ctx, Enc.str()));
7434     llvm::NamedMDNode *MD =
7435       CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings");
7436     MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
7437   }
7438 }
7439 
7440 //===----------------------------------------------------------------------===//
7441 // SPIR ABI Implementation
7442 //===----------------------------------------------------------------------===//
7443 
7444 namespace {
7445 class SPIRTargetCodeGenInfo : public TargetCodeGenInfo {
7446 public:
7447   SPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
7448     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
7449   void emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
7450                     CodeGen::CodeGenModule &M) const override;
7451 };
7452 } // End anonymous namespace.
7453 
7454 /// Emit SPIR specific metadata: OpenCL and SPIR version.
7455 void SPIRTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
7456                                          CodeGen::CodeGenModule &CGM) const {
7457   llvm::LLVMContext &Ctx = CGM.getModule().getContext();
7458   llvm::Type *Int32Ty = llvm::Type::getInt32Ty(Ctx);
7459   llvm::Module &M = CGM.getModule();
7460   // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
7461   // opencl.spir.version named metadata.
7462   llvm::Metadata *SPIRVerElts[] = {
7463       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(Int32Ty, 2)),
7464       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(Int32Ty, 0))};
7465   llvm::NamedMDNode *SPIRVerMD =
7466       M.getOrInsertNamedMetadata("opencl.spir.version");
7467   SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
7468   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
7469   // opencl.ocl.version named metadata node.
7470   llvm::Metadata *OCLVerElts[] = {
7471       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
7472           Int32Ty, CGM.getLangOpts().OpenCLVersion / 100)),
7473       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
7474           Int32Ty, (CGM.getLangOpts().OpenCLVersion % 100) / 10))};
7475   llvm::NamedMDNode *OCLVerMD =
7476       M.getOrInsertNamedMetadata("opencl.ocl.version");
7477   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
7478 }
7479 
7480 static bool appendType(SmallStringEnc &Enc, QualType QType,
7481                        const CodeGen::CodeGenModule &CGM,
7482                        TypeStringCache &TSC);
7483 
7484 /// Helper function for appendRecordType().
7485 /// Builds a SmallVector containing the encoded field types in declaration
7486 /// order.
7487 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE,
7488                              const RecordDecl *RD,
7489                              const CodeGen::CodeGenModule &CGM,
7490                              TypeStringCache &TSC) {
7491   for (const auto *Field : RD->fields()) {
7492     SmallStringEnc Enc;
7493     Enc += "m(";
7494     Enc += Field->getName();
7495     Enc += "){";
7496     if (Field->isBitField()) {
7497       Enc += "b(";
7498       llvm::raw_svector_ostream OS(Enc);
7499       OS << Field->getBitWidthValue(CGM.getContext());
7500       Enc += ':';
7501     }
7502     if (!appendType(Enc, Field->getType(), CGM, TSC))
7503       return false;
7504     if (Field->isBitField())
7505       Enc += ')';
7506     Enc += '}';
7507     FE.emplace_back(!Field->getName().empty(), Enc);
7508   }
7509   return true;
7510 }
7511 
7512 /// Appends structure and union types to Enc and adds encoding to cache.
7513 /// Recursively calls appendType (via extractFieldType) for each field.
7514 /// Union types have their fields ordered according to the ABI.
7515 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT,
7516                              const CodeGen::CodeGenModule &CGM,
7517                              TypeStringCache &TSC, const IdentifierInfo *ID) {
7518   // Append the cached TypeString if we have one.
7519   StringRef TypeString = TSC.lookupStr(ID);
7520   if (!TypeString.empty()) {
7521     Enc += TypeString;
7522     return true;
7523   }
7524 
7525   // Start to emit an incomplete TypeString.
7526   size_t Start = Enc.size();
7527   Enc += (RT->isUnionType()? 'u' : 's');
7528   Enc += '(';
7529   if (ID)
7530     Enc += ID->getName();
7531   Enc += "){";
7532 
7533   // We collect all encoded fields and order as necessary.
7534   bool IsRecursive = false;
7535   const RecordDecl *RD = RT->getDecl()->getDefinition();
7536   if (RD && !RD->field_empty()) {
7537     // An incomplete TypeString stub is placed in the cache for this RecordType
7538     // so that recursive calls to this RecordType will use it whilst building a
7539     // complete TypeString for this RecordType.
7540     SmallVector<FieldEncoding, 16> FE;
7541     std::string StubEnc(Enc.substr(Start).str());
7542     StubEnc += '}';  // StubEnc now holds a valid incomplete TypeString.
7543     TSC.addIncomplete(ID, std::move(StubEnc));
7544     if (!extractFieldType(FE, RD, CGM, TSC)) {
7545       (void) TSC.removeIncomplete(ID);
7546       return false;
7547     }
7548     IsRecursive = TSC.removeIncomplete(ID);
7549     // The ABI requires unions to be sorted but not structures.
7550     // See FieldEncoding::operator< for sort algorithm.
7551     if (RT->isUnionType())
7552       std::sort(FE.begin(), FE.end());
7553     // We can now complete the TypeString.
7554     unsigned E = FE.size();
7555     for (unsigned I = 0; I != E; ++I) {
7556       if (I)
7557         Enc += ',';
7558       Enc += FE[I].str();
7559     }
7560   }
7561   Enc += '}';
7562   TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive);
7563   return true;
7564 }
7565 
7566 /// Appends enum types to Enc and adds the encoding to the cache.
7567 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET,
7568                            TypeStringCache &TSC,
7569                            const IdentifierInfo *ID) {
7570   // Append the cached TypeString if we have one.
7571   StringRef TypeString = TSC.lookupStr(ID);
7572   if (!TypeString.empty()) {
7573     Enc += TypeString;
7574     return true;
7575   }
7576 
7577   size_t Start = Enc.size();
7578   Enc += "e(";
7579   if (ID)
7580     Enc += ID->getName();
7581   Enc += "){";
7582 
7583   // We collect all encoded enumerations and order them alphanumerically.
7584   if (const EnumDecl *ED = ET->getDecl()->getDefinition()) {
7585     SmallVector<FieldEncoding, 16> FE;
7586     for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E;
7587          ++I) {
7588       SmallStringEnc EnumEnc;
7589       EnumEnc += "m(";
7590       EnumEnc += I->getName();
7591       EnumEnc += "){";
7592       I->getInitVal().toString(EnumEnc);
7593       EnumEnc += '}';
7594       FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc));
7595     }
7596     std::sort(FE.begin(), FE.end());
7597     unsigned E = FE.size();
7598     for (unsigned I = 0; I != E; ++I) {
7599       if (I)
7600         Enc += ',';
7601       Enc += FE[I].str();
7602     }
7603   }
7604   Enc += '}';
7605   TSC.addIfComplete(ID, Enc.substr(Start), false);
7606   return true;
7607 }
7608 
7609 /// Appends type's qualifier to Enc.
7610 /// This is done prior to appending the type's encoding.
7611 static void appendQualifier(SmallStringEnc &Enc, QualType QT) {
7612   // Qualifiers are emitted in alphabetical order.
7613   static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"};
7614   int Lookup = 0;
7615   if (QT.isConstQualified())
7616     Lookup += 1<<0;
7617   if (QT.isRestrictQualified())
7618     Lookup += 1<<1;
7619   if (QT.isVolatileQualified())
7620     Lookup += 1<<2;
7621   Enc += Table[Lookup];
7622 }
7623 
7624 /// Appends built-in types to Enc.
7625 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) {
7626   const char *EncType;
7627   switch (BT->getKind()) {
7628     case BuiltinType::Void:
7629       EncType = "0";
7630       break;
7631     case BuiltinType::Bool:
7632       EncType = "b";
7633       break;
7634     case BuiltinType::Char_U:
7635       EncType = "uc";
7636       break;
7637     case BuiltinType::UChar:
7638       EncType = "uc";
7639       break;
7640     case BuiltinType::SChar:
7641       EncType = "sc";
7642       break;
7643     case BuiltinType::UShort:
7644       EncType = "us";
7645       break;
7646     case BuiltinType::Short:
7647       EncType = "ss";
7648       break;
7649     case BuiltinType::UInt:
7650       EncType = "ui";
7651       break;
7652     case BuiltinType::Int:
7653       EncType = "si";
7654       break;
7655     case BuiltinType::ULong:
7656       EncType = "ul";
7657       break;
7658     case BuiltinType::Long:
7659       EncType = "sl";
7660       break;
7661     case BuiltinType::ULongLong:
7662       EncType = "ull";
7663       break;
7664     case BuiltinType::LongLong:
7665       EncType = "sll";
7666       break;
7667     case BuiltinType::Float:
7668       EncType = "ft";
7669       break;
7670     case BuiltinType::Double:
7671       EncType = "d";
7672       break;
7673     case BuiltinType::LongDouble:
7674       EncType = "ld";
7675       break;
7676     default:
7677       return false;
7678   }
7679   Enc += EncType;
7680   return true;
7681 }
7682 
7683 /// Appends a pointer encoding to Enc before calling appendType for the pointee.
7684 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT,
7685                               const CodeGen::CodeGenModule &CGM,
7686                               TypeStringCache &TSC) {
7687   Enc += "p(";
7688   if (!appendType(Enc, PT->getPointeeType(), CGM, TSC))
7689     return false;
7690   Enc += ')';
7691   return true;
7692 }
7693 
7694 /// Appends array encoding to Enc before calling appendType for the element.
7695 static bool appendArrayType(SmallStringEnc &Enc, QualType QT,
7696                             const ArrayType *AT,
7697                             const CodeGen::CodeGenModule &CGM,
7698                             TypeStringCache &TSC, StringRef NoSizeEnc) {
7699   if (AT->getSizeModifier() != ArrayType::Normal)
7700     return false;
7701   Enc += "a(";
7702   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
7703     CAT->getSize().toStringUnsigned(Enc);
7704   else
7705     Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "".
7706   Enc += ':';
7707   // The Qualifiers should be attached to the type rather than the array.
7708   appendQualifier(Enc, QT);
7709   if (!appendType(Enc, AT->getElementType(), CGM, TSC))
7710     return false;
7711   Enc += ')';
7712   return true;
7713 }
7714 
7715 /// Appends a function encoding to Enc, calling appendType for the return type
7716 /// and the arguments.
7717 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT,
7718                              const CodeGen::CodeGenModule &CGM,
7719                              TypeStringCache &TSC) {
7720   Enc += "f{";
7721   if (!appendType(Enc, FT->getReturnType(), CGM, TSC))
7722     return false;
7723   Enc += "}(";
7724   if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) {
7725     // N.B. we are only interested in the adjusted param types.
7726     auto I = FPT->param_type_begin();
7727     auto E = FPT->param_type_end();
7728     if (I != E) {
7729       do {
7730         if (!appendType(Enc, *I, CGM, TSC))
7731           return false;
7732         ++I;
7733         if (I != E)
7734           Enc += ',';
7735       } while (I != E);
7736       if (FPT->isVariadic())
7737         Enc += ",va";
7738     } else {
7739       if (FPT->isVariadic())
7740         Enc += "va";
7741       else
7742         Enc += '0';
7743     }
7744   }
7745   Enc += ')';
7746   return true;
7747 }
7748 
7749 /// Handles the type's qualifier before dispatching a call to handle specific
7750 /// type encodings.
7751 static bool appendType(SmallStringEnc &Enc, QualType QType,
7752                        const CodeGen::CodeGenModule &CGM,
7753                        TypeStringCache &TSC) {
7754 
7755   QualType QT = QType.getCanonicalType();
7756 
7757   if (const ArrayType *AT = QT->getAsArrayTypeUnsafe())
7758     // The Qualifiers should be attached to the type rather than the array.
7759     // Thus we don't call appendQualifier() here.
7760     return appendArrayType(Enc, QT, AT, CGM, TSC, "");
7761 
7762   appendQualifier(Enc, QT);
7763 
7764   if (const BuiltinType *BT = QT->getAs<BuiltinType>())
7765     return appendBuiltinType(Enc, BT);
7766 
7767   if (const PointerType *PT = QT->getAs<PointerType>())
7768     return appendPointerType(Enc, PT, CGM, TSC);
7769 
7770   if (const EnumType *ET = QT->getAs<EnumType>())
7771     return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier());
7772 
7773   if (const RecordType *RT = QT->getAsStructureType())
7774     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
7775 
7776   if (const RecordType *RT = QT->getAsUnionType())
7777     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
7778 
7779   if (const FunctionType *FT = QT->getAs<FunctionType>())
7780     return appendFunctionType(Enc, FT, CGM, TSC);
7781 
7782   return false;
7783 }
7784 
7785 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
7786                           CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) {
7787   if (!D)
7788     return false;
7789 
7790   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
7791     if (FD->getLanguageLinkage() != CLanguageLinkage)
7792       return false;
7793     return appendType(Enc, FD->getType(), CGM, TSC);
7794   }
7795 
7796   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
7797     if (VD->getLanguageLinkage() != CLanguageLinkage)
7798       return false;
7799     QualType QT = VD->getType().getCanonicalType();
7800     if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) {
7801       // Global ArrayTypes are given a size of '*' if the size is unknown.
7802       // The Qualifiers should be attached to the type rather than the array.
7803       // Thus we don't call appendQualifier() here.
7804       return appendArrayType(Enc, QT, AT, CGM, TSC, "*");
7805     }
7806     return appendType(Enc, QT, CGM, TSC);
7807   }
7808   return false;
7809 }
7810 
7811 
7812 //===----------------------------------------------------------------------===//
7813 // Driver code
7814 //===----------------------------------------------------------------------===//
7815 
7816 const llvm::Triple &CodeGenModule::getTriple() const {
7817   return getTarget().getTriple();
7818 }
7819 
7820 bool CodeGenModule::supportsCOMDAT() const {
7821   return getTriple().supportsCOMDAT();
7822 }
7823 
7824 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
7825   if (TheTargetCodeGenInfo)
7826     return *TheTargetCodeGenInfo;
7827 
7828   // Helper to set the unique_ptr while still keeping the return value.
7829   auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & {
7830     this->TheTargetCodeGenInfo.reset(P);
7831     return *P;
7832   };
7833 
7834   const llvm::Triple &Triple = getTarget().getTriple();
7835   switch (Triple.getArch()) {
7836   default:
7837     return SetCGInfo(new DefaultTargetCodeGenInfo(Types));
7838 
7839   case llvm::Triple::le32:
7840     return SetCGInfo(new PNaClTargetCodeGenInfo(Types));
7841   case llvm::Triple::mips:
7842   case llvm::Triple::mipsel:
7843     if (Triple.getOS() == llvm::Triple::NaCl)
7844       return SetCGInfo(new PNaClTargetCodeGenInfo(Types));
7845     return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true));
7846 
7847   case llvm::Triple::mips64:
7848   case llvm::Triple::mips64el:
7849     return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false));
7850 
7851   case llvm::Triple::aarch64:
7852   case llvm::Triple::aarch64_be: {
7853     AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS;
7854     if (getTarget().getABI() == "darwinpcs")
7855       Kind = AArch64ABIInfo::DarwinPCS;
7856 
7857     return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind));
7858   }
7859 
7860   case llvm::Triple::wasm32:
7861   case llvm::Triple::wasm64:
7862     return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types));
7863 
7864   case llvm::Triple::arm:
7865   case llvm::Triple::armeb:
7866   case llvm::Triple::thumb:
7867   case llvm::Triple::thumbeb: {
7868     if (Triple.getOS() == llvm::Triple::Win32) {
7869       return SetCGInfo(
7870           new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP));
7871     }
7872 
7873     ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
7874     StringRef ABIStr = getTarget().getABI();
7875     if (ABIStr == "apcs-gnu")
7876       Kind = ARMABIInfo::APCS;
7877     else if (ABIStr == "aapcs16")
7878       Kind = ARMABIInfo::AAPCS16_VFP;
7879     else if (CodeGenOpts.FloatABI == "hard" ||
7880              (CodeGenOpts.FloatABI != "soft" &&
7881               (Triple.getEnvironment() == llvm::Triple::GNUEABIHF ||
7882                Triple.getEnvironment() == llvm::Triple::EABIHF)))
7883       Kind = ARMABIInfo::AAPCS_VFP;
7884 
7885     return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind));
7886   }
7887 
7888   case llvm::Triple::ppc:
7889     return SetCGInfo(
7890         new PPC32TargetCodeGenInfo(Types, CodeGenOpts.FloatABI == "soft"));
7891   case llvm::Triple::ppc64:
7892     if (Triple.isOSBinFormatELF()) {
7893       PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1;
7894       if (getTarget().getABI() == "elfv2")
7895         Kind = PPC64_SVR4_ABIInfo::ELFv2;
7896       bool HasQPX = getTarget().getABI() == "elfv1-qpx";
7897 
7898       return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX));
7899     } else
7900       return SetCGInfo(new PPC64TargetCodeGenInfo(Types));
7901   case llvm::Triple::ppc64le: {
7902     assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
7903     PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2;
7904     if (getTarget().getABI() == "elfv1" || getTarget().getABI() == "elfv1-qpx")
7905       Kind = PPC64_SVR4_ABIInfo::ELFv1;
7906     bool HasQPX = getTarget().getABI() == "elfv1-qpx";
7907 
7908     return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX));
7909   }
7910 
7911   case llvm::Triple::nvptx:
7912   case llvm::Triple::nvptx64:
7913     return SetCGInfo(new NVPTXTargetCodeGenInfo(Types));
7914 
7915   case llvm::Triple::msp430:
7916     return SetCGInfo(new MSP430TargetCodeGenInfo(Types));
7917 
7918   case llvm::Triple::systemz: {
7919     bool HasVector = getTarget().getABI() == "vector";
7920     return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector));
7921   }
7922 
7923   case llvm::Triple::tce:
7924     return SetCGInfo(new TCETargetCodeGenInfo(Types));
7925 
7926   case llvm::Triple::x86: {
7927     bool IsDarwinVectorABI = Triple.isOSDarwin();
7928     bool RetSmallStructInRegABI =
7929         X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
7930     bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing();
7931 
7932     if (Triple.getOS() == llvm::Triple::Win32) {
7933       return SetCGInfo(new WinX86_32TargetCodeGenInfo(
7934           Types, IsDarwinVectorABI, RetSmallStructInRegABI,
7935           IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters));
7936     } else {
7937       return SetCGInfo(new X86_32TargetCodeGenInfo(
7938           Types, IsDarwinVectorABI, RetSmallStructInRegABI,
7939           IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters,
7940           CodeGenOpts.FloatABI == "soft"));
7941     }
7942   }
7943 
7944   case llvm::Triple::x86_64: {
7945     StringRef ABI = getTarget().getABI();
7946     X86AVXABILevel AVXLevel =
7947         (ABI == "avx512"
7948              ? X86AVXABILevel::AVX512
7949              : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None);
7950 
7951     switch (Triple.getOS()) {
7952     case llvm::Triple::Win32:
7953       return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel));
7954     case llvm::Triple::PS4:
7955       return SetCGInfo(new PS4TargetCodeGenInfo(Types, AVXLevel));
7956     default:
7957       return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel));
7958     }
7959   }
7960   case llvm::Triple::hexagon:
7961     return SetCGInfo(new HexagonTargetCodeGenInfo(Types));
7962   case llvm::Triple::lanai:
7963     return SetCGInfo(new LanaiTargetCodeGenInfo(Types));
7964   case llvm::Triple::r600:
7965     return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types));
7966   case llvm::Triple::amdgcn:
7967     return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types));
7968   case llvm::Triple::sparcv9:
7969     return SetCGInfo(new SparcV9TargetCodeGenInfo(Types));
7970   case llvm::Triple::xcore:
7971     return SetCGInfo(new XCoreTargetCodeGenInfo(Types));
7972   case llvm::Triple::spir:
7973   case llvm::Triple::spir64:
7974     return SetCGInfo(new SPIRTargetCodeGenInfo(Types));
7975   }
7976 }
7977